
RESOLUTfOX THEOREM PROVING REVISITED

Rob S. Ballantyne

B.Sc. Simon Fraser University, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIR.EMENTS FOR T H E DEGREE OF

MASTER OF SCIENCE

in the Department of Mathernat ics and St at istics

of

Simon Fraser University

@ Rob S. Ballantyne 1995

SEA4ON FRASER UNIVERSITY

October 1995

All rights reserved. This work may not he

reproduced in whole or in part, by photocopy

or other means, without the permission of the author,

National L~brary 1+1 of Canada
B~bliotheque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques

395 Wellingtm Street 395. rue Wellington
GRavra, Ontario Ottawa !Ontario)
K i r i ON4 K I A ON4

Your lde Volre reference

Our fde Nolre r@ft rence

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, ban,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

Lsauterar a accord6 une licence
irrevocable et non exclusive
perrnettant a la Bibliotheque
nationale du Canada de
reproduire, pr&ter, distribuer ou -
vendre des copies de sa these
de quelque manibre et sous
quelque forrne que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes int6ress6es.

The author retains ownership of i'auteur conserve la propriete du
the copyright in his/her thesis. droit d'auteur qui protege sa
Neither the thesis nor substantial thhse. Ni la these ni des extraits
extracts from it may be printed or substantiels de celle-ci ne
otherwise reproduced without doivent &re imprimes su
his/her permission. autrement reproduits sans son

autorisation.

ISBN 0-612-16783-6

PARTIAL COPYRIGHT LICENSE

i hereby grant to Simon Fraser Universit the right to lend rlrv
thesis, pro'ect or extended essay (the title o which is shown l)el&) f' fY
to users o the Simon Fraser University Library, and to makc
partial or single copies only for such users or in response to a
request from the library of any other university, or other
educational institution, on its own behalf or for one of its users. i
further agree that permission for multiple copying of this work for-
scholarly purposes may be granted by me or the DeLm of Graduatc
Studies. It is understood that copying or publication of this work
for financial gain shd l not be allowed without my written
perrnission.

Title of Thesis/Project/Extended Essay

Author: -. -
(signature)

APPROVAL

t ame: N

Degree:

Title of Thesis:

Rob S. Ballantyne

hfaster of Science

Resolution Theorem Proving Revisited

Examining Committee: Dr. C. Schwarz

Chair

Dr. S. I<. Thomason, Senior Supervisor

Date Approved:

Dr. A. 13. Lachlan

-

Dr. A. R. heedman

Dr. A. Gupta, External Examiner

October 26, 1995

Abstract

In 1965 Robinson published the original paper on the resolution t l~~orcnl prtrvillg

method. The conventions utilized in that paper would not bc recognized as s t m d ~ r d

logic conventions today. For example, Robinson's notion of a model was iul infinite

collection of atomic or negated atomic formulas that was complctc. Wc moclcrnizo

Robinson's work by phrasing it in the context of a modern logician. R.ol)insol~, in i , l ~

1965 paper, commented that resolution calculates a proof set without making that,

calculation explicit; we show how these calculations can bc madc explicit.

Dedication

This thesis is dedicated to two individuals who due to their untimely deaths were

unable to witness the conclusion of my masters degree. To my father, Paul Stewart

Ballantyne, and Professor Alan Mekler; they are sorely missed.

Acknowledgments

I would like to thank Professor Steve Thornason for his encouragement, support, and

patience during the completion of this thesis. Also I would like to thank mny wife,

Sandy Ballantyne, for her patience and understanding during the conlpletion of the

thesis.

In addition I would like to acknowledge Professor Alistair Lachlan for his frequent

wise advice and the Department of Mathematics and Statistics for its support and

patience.

Contents

Abstract

Dedication

Acknowledgments

1 Introduction

2 Preliminaries 4

2.1 Language . 4

2.2 Structures . - . 6

2.3 The Clausal Form of Sentences . 8

3 Ground Resolution 10

3.1 Definitions . 10

3.2 Resolution . 1 1

. 3.3 First-Order Theorem Proving 1 (i

4 Substitution and Unification 19

. 4.1 Substitutions 10

. 4.2 Unification 21

5 Resolution 30

. 5 1 The Resoltrt-ion Procedure 30

. 5.2 The Resolution Theorem :Hi

. 5.3 The Role of Unification in Resolution :I8

. 5.4 Conclusion 41

Chapter 1

Introduction

Automating the process of formal reas~ning has been a long-standing goal of logic.

The search for an algorithm to determine provability or validity of first-order sentences

began shortly after the description of first-ord,er systems.

Kurt Godel demonstrated, via the Undecidability Theorem [Gode134], that in gen-

eral it is impossible for an automa+,ed procedure to determine whether a formal sen-

tence was provable or not. This dashed the hope of reducing first-order reasoning

to an algorithm and it was some years after Godel's result before work continued on

automated tkieorem proving. It was still, after all, possible to hzve an algorithm that

would for any sentence establish its validity if the sentence was valid.

The first attempts at automated tkeorem proving were with propositional logic.

Here dgoritiuns for deciding a sentence's validity have been known for some time. The

first such algori-;itbs most likely cmsiderzd truth tables for a particular sentence. If

the truth table demonstrated that the sentence was true in all possible cases then

that sentence was d i d .

In later work Davis 6; Putnam [DavisGD] produced an efiiric~lt n~a t lmd for tcstiug

propositional sentences in conju~ctive normal form for satisfiability. Givc~i a pro-

cedure that tests for satisfiability it is easy to determine thc validity of a ;cntcnc.c\.

Simply apply the satisfiability test to the negation of that scntencc and the original

sentence is valid if and only if its negation is unsatisfiable.

The initial attempts at first-order logic basically reduced the first-t;rdcr cast. 10

performing many iterations of a propositional algorithm. Each iteration of thew

propositional algorithms attempted to show the unsatisfiability of a sentencc. OII a

particular finite first-order structure.

Dag Prawitz [PrawitzGO] first demonstrated that it is possible to combinc togc%hcr

tke propositional test for satisfiability with calculations of the potential modols to

produce an algorithm that didn't look at every possible model but only oxarniried

models that could help demonstrate the unsatisfiability of the sentence in qucsticm.

Unfortunately Prawitz's method required that sentences be continually cornwrtod ant1

re-converted into a particular normal form, a procedure that is very inefficient.

In [Robinson651 Robinson fused together Prawitz's idea of "calculating as you

go" with Davis & Putnam's efficient method of working with conjunctivc: normal

form sentences to produce a method called resolution. Resolution overcame thc 'rc-

normalizing' weakness of Prawitz's method. Sentences are convcrtcd into a norrnal

form just once and never needed to be re-ccnverted again.

In this thesis we revisit Robinson's paper on resolution and we update his results

into the language of the modern logician, predominantly by the use of first-ordcr struc-

tures in place of the sets of atomic and negated atomic sentence that Itohinson usctl

for models. Our approach is not unknown in the literature; Loveland [Lovcland79]

and Fitting !Fitting941 for example empl~y first-order structures. In Robinson's pa-

per completeness of resolution follows from the completeness of ground resolution.

Herc that is the case as well, but we demonstrate the completeness of ground resolu-

tion with respect to first-order structures instead of Robinson's models. Other work

has taken alternative approachs. Loveland [Loveland791 uses his g-models, which are

similar to Robinson's models, to demonstrate the completeness of ground resolution.

Fitting [Fitting941 proves completeness of resolution directly using a Model Existence

Theorem. In place of the usual unification algorithm we provide a unification algo-

rithm that is expressed as a recursive definition and is particularly succinct. We also

at tempt to justify a comment that Robinson left unjustified. Kamely, in [Robinson651

Robinson mentions that resolution calculates a proof set without making that calcu-

lation explicit. We show how the calculation can be made explicit.

Chapter 2

Preliminaries

2.1 Language

The notion of language that we will use throughout this tficsis is a slight varia~lt, of'

that defined by Shoenfield jShoenfield67j. Our languages, unlikc Shoenfit:ld's, 11c:ctd

not. include an equality symbol. A first-order language has the followirlg c:onlponcnt,s:

1. variables: z , y, z, w, X I , yl, zl, wi, zz, - - -,

2. for each n > 0, n-ary predicate syrnbols and n-ary function symbols,

3. the logical symbols 7, V: 3.

Below we use L to denote this kind of language. The predicate and functio~l

symbols of L are called the non-logical symbols of L; these together with t.hc varia1,lt:s

and logical symbols constitute the symbols of L.

Witli respect to formulas of our language x, y, z , w are syntactic variables that

range over the variables of the language L: p, q are syntactic variables that range

over the predicate symbols; f: g are syntactic variables that range over the function

symbols; a, b are syntactic variables that range over constant symbols (where a con-

stant is, as usual, a 0-ary function); and 1, rn, n, are syntactic variables that range

uver the non-logical (function and predicate) symbols.

Definition 2.1.1 Expr(L) is the sm.allest set of sequences of the symbols of L closed

under the following conditions:

1. each sequence of length one whose member is a variable of L is ir, Expr(L),

2. i f ul, . . . , u, E Expr(L) and n is an n-ary non-logical symbol then nu1 . . . u, is

an element of Expr(L).

Tcrm(L) is the set of members of Expr(L) which have no occurrences of predicate

synb~lYc. ,4tom?c(L) is the set of espressions of the form pal . . .a,, where p is an n-

ary predicate symbol and al , a, E Term(L) . Fla(L) is the least subset of Expr (L)

closed under the following conditions:

3. i,f A, B f Fla(L) then VAB E Fla(L),

4. if A E Fla(L) then 3xA E Fla(L).

An element of Expr(L) is called an eqression of the language and an element of

Term(L) is called a term of the language. A member of Atomic(L) is an atomic for-

mula. and an element of Fla(L) a formula. We drop the reference L, to the language,

and write Expr, Term, Atomic, and Fla for Espr(L j , Term(L) , Atoniic(L.), ant1 Fla(L)

respectively, when it is clear which language is under discussion.

We define the free variables of an expression inductively as follows. Tllc fwc

variables of a term are the variables occurring in that tcrm. The frcc variables: in

1 A are the free variables in A, in AAB are the free variables in cithcr A or B, in

3xA are the free variables in A except x. An expression is a sentence if i t has ilo frec

variables.

A formula which is either atomic or negated atomic is called a l i t t -1~~1. For m y

literal A we define the complement A' of A as:

A, = { 1 A if A is atomic

B i f A = l B .

Notice that the complement of a literal is a literal and not a more complicated forrnda.

At this point we admit the use of the usual logical conncctives and quantifiers as

abbreviations. We also admit the usual infix notation for conncctives, as an %bbrc!-

viation."

2.2 Structures

We now define the notion of truth, that is, the assignment of truth valucs to formulas.

We follow the presentation given by Enderton in [Enderton72].

Definition 2.2.1 A structure 2l for a language L consists of: a on-empty scl 121

called the universe, for each n-ary function symbol f of L a corresponding w a r y fmc-

t ion fB : j'UIn + I%I, and for each n-ary predicate symbol p of L an n-ary rc:latian

CHAPTER 2. PRELIMINARIES 7

r 121)". A sub-structure of a 24 is a structure 24' such that 124'1 2]%I, the predi- P, =

cutes p , , of U' are restrictions of the corresponding predicates p,, of !A to /%'I, and

thc functions fill, of U' are restrictions of the corresponding functions fQl of 24 to I%'(.

Definition 2.2.2 A valuation for a structure 24 is a function that maps the set of

variables of the language to I % / .

We can inductively extend any valuation s to a function 3 : Term + IUJ in the

following way. Let t E Term; then either t is a variable or t is ful . . . u,. If t is

a variable then set ~ (t) = s(t), otherwise set ~ (t) = f2(S(ul), . . . , 3(un)). For any

valuation s and any a E 21, and variable x the valuation s(x/a) is defined by

a i f y = x
s (x / a) (Y > =

s(y) otherwise.

Definition 2.2.3 For A E Fla(L), U a structure for L, and s a valuation for 24, we

say that sZI makes A true with s (and we write Ea A[s]) i f

I . A is ptl . . . t, and (~ (t l) , . . . , ~ (t ,)) E p?,, or

2. A is 1B and it i s not the case that bill B[s], or

3. A is VAB and either Fa Als] or B[s], or

4. A is 3xB and there exists a E JSUI such that B[s(x/a)] .

If A is a sentence in the language 6/ then a structure 26, for the language L, will make

that sentence true or false independent of the valuation s and we write FT1 A instead

of A[s] . For a sentence A if +a A we say that 21 models or satisfies A. We say

that a sentence A is valid if every structure for the language L satisfies that sentence,

and if no such structure satisfies A then we say that A is unsatisfiable.

CHAPTER 2. PRELIMNARIES

2.3 The Clausal Form of Sentences

A sentence A is said to be prenex if it is of the form Qlxl . . . Q,,x,,B wherc each Q,

is either 3 or V and B is quantifier-free; in this case B is referred to as the ~ t ~ a t ~ i : i ' 01'

A. If a sentence is prenex and all of its quantifiers are universal then the scxltellcc is

said to be universal. A formula A is in conjunctive normal form if A is of thc forrri

B1 A B2 A . . . A B, and each of the B, is a disjunction of literals.

The purpose of this section is to demonstrate that for any sentence A wt. can

find a universal sentence B with its matrix in conjunctive normal form anti which is

satisfiable if and only if A is satisfiable. The results needed to show this are ~t~al~clarcl

and below we only describe the conversion process. See the appropriate scc:t,ions of

EShoenfield671 for details.

We convert a formula into a prenex form formula by "pushing" thc quantifiers

outward, taking care to change the sense of the quantifier (change b' to 3 and 3 t,o V)

if we push the quantifier past a negation symbol. We also take carc not to capture

variables in the scope of quantifiers that previously did not bind them by rcnarriing thc!

variables as required (see [Shoenfield67], page 36). I11 this way we obtain a formula,

in prenex form, which is provably equivalent to the original formula.

We then obtain a universal formula from the prencx formula abovc b y diirrtinat,ilig

the existential quantifiers by the use of Skolem functions (see [Sho(:nfic~ltl67], page 56).

At this point we have a universal formula in an enlarged language (rnorc frmction

symbols) such that the universal formula is satisfiable if and only if the original is.

Finally we convert the matrix of the universal formula to conjunctive nor111;~l form

and thus we have obtained a formula which is provably equivalent, to thc urlivctmd

formula and that is satisfiable if and only if the original formula was satisfiahlc.

CHAPTER 2. PRELI.IVIArARIES 9

Example 2.3.1 Consider the sentence -dy(VxP(x)) A (VxQ(x, y)). After moving the

quantifiers outward we obtain Vy3x13x2~(P(xl) A Q(x2, y)) . The next step requires

that we remove all existential quantifiers by use of Skolem functions, thus we obtain

Vy-t(P(a) A Q(f (a), y)). Now we convert the matrix of this sentence to conjunctive

normal form and obtain 'v'y(iP(a) V l Q (f (a), y)).

We represent a universal prenex sentence

(where the Ai,j's are literals) as a set:

where it is understood that [B1,. . . , B,] is the set {B1,. . . , B,) considered as a dis-

junction of the Bi's and (C1, . . . , C,) is the set {Cl, . . . , C,) considered as a conjunc-

tion of the G's.

We call a set [Az, . . . , Ail, where the Aj's are literals, a clause. The empty clause

is denoted 0. Note that many sentences may be represented by one single set of

clauses, because repetition and order of conjuncts and disjuncts is lost in the passage

to the set of clauses. This is not a problem, however, because these sentences are

satisfied by exactly the same structures.

If C = [B1,. . . , Br] is a clause we write Fa C to mean Vxl . . . Vxn vtZl Bi

when xl . . . x, are all the variables that occur in the literals of C. When S is a set of

clauses we write k3 S to mean that Fa C for each C E S.

Chapter 3

Ground Resolution

In this chapter we present an introduction to resolution, a proof mcttioti that is tspo-

cially amenable to automated theorem proving due mainly to the fact that rcsolntisil

has just one inference rule (and no axioms) to implement. For the tirm bcing wv

consider resolution only for sets of clauses in which no variables occur, the so-callccl

ground clauses.

3.1 Definitions

Definition 3.1.1 A term with n o variables is called a ground tcrrr~ a r d a claust!

composed of literals with no variables is called a ground clause.

Definition 3.1.2 With any set S of clauses there i s associated u set I-Ic!rh(S) ol

ground terms, called the Herbrand universe of S . W e define Herb(S) i n d u ~ t i v ~ l p US

follows: let T be the set of constants occurring in S (if S has no constants then let

T = {a), where a is a constant symbol). Then Herb(S) i s the leout set o/ t e r m

CHAPTER 3. GI30 UND RESOLUTION

containing T such that i f f i s an n-ary function symbol occurring in S and t l , . . . , t,

are elements of Herb(S) then ftl . . . t, E Herb(S).

Definition 3.1.3 If S is any set of clauses and P is any set of terms then the satu-

ration of S with P, denoted P (S) , is the set of all clauses obtained from the clauses

in S by substituting for each variable a t e r n in P . Where P is the Herbrand universe

of a set of clauses S we call any element of P(S) a Herbrand instance of the clause

of S from which it was derived.

3.2 Resolution

Definition 3.2.1 If C and D are ground clauses, A E C , and A' E D then (C -

{A)) U (D - {A')) is a ground resolvant of C and D.

Producing resolvants of two clauses is the basis of our inference rule for first-order

logic so we need to show that the rule is sound.

Proposition 3.2.1 Let S be a set of ground clauses, let C, D E S , and let R be a

ground resolvant of C and D. If kIL S then Fa S U {R).

Proof: If R is a ground resolvant of C and D then R = (C - {A)) U (D - {A'))

for some ground literal A. Now suppose k?, S and for a contradiction suppose U

does not model S U {R). Clearly U satisfies C but not C - {A), so U makes A

true. Similarly 24 satisfies D but not D - {A'), so 21 makes A' true; but this is a

contradiction. I

CHAPTER 3. GROUND RESOLUTION 12

Definition 3.2.2 If S is any set of ground clauses, then the ground rcsol~t~ion of

S, denoted R(S), i s S together with all ground resolvants of all pui.l..s of clazues in.

S . The n-th ground resolution, Rn(S), i s defined inductiucly bp: Ro(S) -7: S mil

Rn+l (S) = R(Rn (S)) .

Theorem 3.2.1 (The Ground Resolution Theorem) Let S be any set of ground

clauses. Then S is unsatisfiable i f and only i f E Rn(S) for some n 2 0.

Given the Ground Resolution theorem (the proof will be along in a ni0111~1lt) we

now have a procedure for testing the validity of any variable-free sentence A:

1. Write 1A as a set S of ground clauses.

2. Set n t 1.

3. While Rn(S) # Rn+l (S) and @ Rnf (S)

set n t n + l .

4. If E Rn+'(S) then i A is unsatisfiable and hence A is valid. Othmwisc

T (S) = Rn+l(S) and R"+l(S) is satisfiable and so iA is satisfiable ard A is

not valid.

Notice that if S is finite then step 3 of the procedure will not loop forever; thcrc are

only finitely many distinct literals in S and hence thsre are only finitcly rriany cltzuscs

of those literals and hence not all of R0 (S), R1 (S), R2 (S) , . . . can bc distinct.

Exarnple 3.2.1 Let p, q, and r be 0-ary predicate symbols. Then the vnrzablc frec

sentence (p -+ q) --+ ((q -+ T) -+ (p -+ r)) is a tautology.

CHAPTER 3. GROUND RESOLUTION 43

Thc negation of this sentence is equivalent to (i p V q) A (i q V r) A p A i r . So let

and since 0 E R2(S) we stop and answer that R2(S) is unsatisfiable and have hence

refuted the negation of (p + q) + ((q + r) + (p + r)) and have shown the sentence

valid.

Before we can prove the Ground Resolution Theorem we require the notion of a

partial truth valuation.

Definition 3.2.3 A partial truth valuation for L is a function v that maps a subset of

the set of all ground at.omic sentences of L into (T , F). A truth valuation i s a partial

truth valuation which is total on the set of ground atomic sentences of L. W e can

extend a partial truth valuation v to a partial function @ that maps literals, clauses,

and sets of clauses to (T, F) in the following way. For a literal A we define:

v (A) if A is atomic

I ' zf A = =B and v (B) = F
alA) = , I

I zf A = =B and v (B) = T

(undefined if A = 1B and v(B) is undefined.

For a clawe C, @(C) = T unless D(A) = F for every literal A E C, in which case

6 (C) = F. Finally D(S) = T for a set S of clauses i f and only if 3(C) = T for every

clause C E S and 6(S) = F i f and only if there is a clause C E S for which G(C) = F.

CHAPTER 3. GROUND RESOLUTION 14

Note that ~(0) = F and that if O E S then e(S) = F. Also note that 1, is a total

function with respect t o either clauses or sets of clauses.

Lemma 3.2.1 If S is any finite set of ground clauses, then there is a truth valunt.ion

v such that @(S) = T .if and only i f there is no n for which E Rn.(S).

Proof: (=+) Suppose E(S) = T. By an analog of the proof of Proposition 3.2.1 it is

easy to see that: if e(S) = T then $(R(S)) = T. Thus, if C(S) = T then 6(R7"S)) =. 7

for all n E w , so 6 Rn(S) for all n E u.

(+=) Suppose there is no n such that 0 E Rn(S). Let T be the first R7'(S) lor

which P (S) = Rn+'(S), i.e. T is the terminating set of the resolution procedure.

We proceed by constructing a sequence of partial truth valuations that ends with a

valuation that assigns a truth value to all the literals in T. This partial truth valuation

is then extended to a total valuation in an arbitrary way but still maps T to T.

Let A', . . . , Ak be all the distinct atomic formulas such that each Ai or its corn-

plement occurs in a clause of T and let uo be the empty partial truth valuation. Froin

vi we obtain ui+l by first letting

vi (B) if B E dorn(ui)

if B = Ai+'

undef ined otherwise.

Now we take vi+l to be wi+l unless there is a clause C E T such that ;ii-ti+l(C) = F,

in which case we let

vi (B) if B E dom(vi)

if B = Ai+l

undefined otherwise.

CHAPTER 3. GROUND RESOLUTION

At the end of this procedure we set

vk(A) if A is in the domain of vk

otherwise.

We claim that @(T) = T. The proof is by induction.

Clearly, @(T) = T because 0 4 T and vo is the empty partial truth valuation.

Now suppose there is a least stage, say i, where ai (T) = F. Then there is a C E T

with .iji(C) = F. Kotice that vi # wi because vi is set equal to wi only if uri maps every

element of T to T. From this we conclude that vi (Ai) = F. Now since B ~ - ~ (C) = T

and iji(C) = F we can see that Ai E C and iji-1 maps all the elements of C, except

Ai, to F. Now because vi was not chosen to be wi there must be a D E T such that

wi(D) = F and thus l A i E D and fji-l maps all the elements of D, except -Ai7 to F.

So the clause R = (C - {Ai}) U (D - {iAi}) is an element of T because T is closed

under resolution. And .ijiVl(B) = F for all B f R. So i is not the least stage where

Gi(T) = F. This is a contradiction, thus G(T) = T and v is total. I

Proof (of the Ground Resolution Theorem):

(+=) Suppose that S is satisfied by U; then it is clear by Proposition 3.2.1 that 24

also models Rn (S), but J=2 El, so 0 Sf Rn(S) .

(+) By the foregoing lemma, let v be a truth valuation such that @(S) = T. Now

from v we obtain a structure 21 that satisfies S.

Let the universe of our model U be Herb(S) and for each function symbol f in

the language of S let f?, (tl , . . . , t,) = ftl . . . t,. Finally for each predicate symbol

p let (t l , . . . , t,) E p?, if and only if v(ptl . . . t,) = T. Notice that U makes an

atomic sentence true if and only if v assigns the value T to that sentence. So v and U

CHAPTER 3. GROUND RESOL UTION

"agree" on the truth values for the atomic sentences, therefore they must. agrcc upon

all clauses in S and therefore on S itself and thus Fs2, S. 4

3.3 First-Order Theorem Proving

We are able, so far, to determine the unsatisfiability of a set of ground clauses with

the ground resolution procedure. Here we show that to determine the unsatisfiability

of a set of arbitrary (not necessarily ground) clauses it is sufficient to examirlc a sclt of

ground clauses that are Herbrand instances of the original set of clauses and determine

if that set is unsatisfiable.

Theorem 3.3.1 Let A be a universal prenex sentence and let S be A's repr.c:serttation

as a set of clauses; then A i s unsatzsfiable i f and only i f P(S) is unsatisfiable, where

P is the Herbrand universe of S .

Proof: (+) If U satisfies A then, since A is universal, U satisfies every Herbrand

instance of the matrix of A, so P(S) .

(a) Let A be Vxl . . . Vx,B where B is quantifier-free, and suppcse that thcre is

a model '2 of P(S) . Let 3' be the sub-structure of 21 to just the elemcnts of 1211 that,

are named by the members of P. The structure 3' will make A true if B[s\ Em

every s mapping each of tile variables occurring in B to the members of (24'1. But the

elements of 12L'I are just those elements named by members of P so A bccausc

k?,' P(S) .

Lemma 3.3.1 A prenex universal sentence Vxl . . . Vx,A i s unsatisfiuble zj and only

i f some finite subset of P (S) is zcnsatisfiable, where S represents tJxl . . . Vx,A as a

CHAPTER 3. GROUND RESOLUTION

set oJ clauses und P =Herb(S)

Proof: From the above theorem we know that Vxl . . . Yx,A is unsatisfiable if and

only if the set P(S) is unsatisfiable, and by The Compactness Theorem the set P(S)

is unsatisfiable if and only if some finite subset of it is. I

Lemma 3.3.2 A set S of clauses i s unsatisfiable i f and only i f there is some finite

P C Merb(S) such that P(S) is unsutis~5able.

Proof: (e) Let P C Herb(S) be finite and suppose P(S) is unsatisfiable. Now P(S)

is essentially a set of Herbrand instances of A, where Vxl . . . VxnA is the sentence

that S represents. Since P(S) is unsatisfiable, from Lemma 3.3.1, Vxl.. . Vx,A is

unsatisfiable and hence S is unsatisfiable.

(+) A set of clauses represents a universal prenex sentence Vxl . . . VxnA where A is

in conjunctive normal form. From the previous lemma we know that Vxl . . . Vx,A

is unsatisfiable if and only if some finite set, say r, of Herbrand instances of A is

unsatisfiable. Each instance of A is again in prenex conjunctive normal form and I'

is therefore essentially set of ground clauses. Let P comprise the elements of Herb(S)

that occur in I'. Now r P(S) and P(S) is unsatisfiable if I' is. fl

Given Lemma 3.3.2 we now have a procedure to determine the satisfiability of a

set S of arbitrary clauses: we must search all the finite subsets of Herb(S) for a set

P such that the set P(S) of ground clauses is unsatisfiable. Of course we use ground

resolution to check P(S) for unsatisfiability.

At this point we have a procedme that will test for the satisfiability of any given

sentence of first order logic, where we first write that sentence in an equivalently-

satisfiable clausal form, say S. A drawback to this procedure is that we must generate

a sequence Po C PI C . . . of finite subsets of Herb(S) with the property that U,,,, P,, = -

Herb(S) then in sequence perform ground resolution on P,(S), far 1 < i . \;Vhcn wc.

find a P, for which grcund resolution halts with an empty clausc that PI is mild

a proof set for S. Our procedure then is, in simple term, to sc;trdi out a proof set

amongst the finite subsets of the Herbrand universe for the given c1a:lsc. This ssexch

may not end and even when it does the number of potential proof sets wc haw to

search through may be extremely large. In addition each ground resolution calulation

carried out at every stage of the abwe procedure may require exponential anloulits

of time (in 5errns of the input size), as shown by Urquhart jfJrcluhwt8'7].

Resolution (freed from the restriction to ground clauses) will not have this tiri1,~-

back. Resolution, it turns out, attempts to calculate the proof set of ta set of' cla~ises

as it resolves upon those clauses.

Chapter 4

Substitution and Unification

?Vhile ground resolution forms resolvants from ground clauses, the general resolution

procedure has to form resolvants out of clauses of literals that have occurrences of

variables. In the pre.tious chapter we noted that resolution attempts to calculate the

proof set of a set of clauses. It is this part of the resolution procedure, the part

that deals with the that generates a proof set. This sub-procedure, called

unification, is the process of finding substitutions that make two or more literals

identical.

4.1 Substitutions

Dehition 4.1.1 A substitution o ̂ is a function from a set of variables to a set of
-

terns. From a suhstifvtfon 13 we am obtain 0, a fi~nction ,Corn a set of eqressions to

a set of expressions defined by:

t 6 i f t zs a zrariable
tg= {

l(t16) . . . (tnO) i f t is the expression Itl . . . t,.

Further, ift is a literal we define (1t)B to be l(t0).

The need to apply a substitution to each element of a clause or to each elcnlcnt, of

every member of a set of clauses arises. We write co and S$ for the sets {tg : t E C }

and { D B : D E S) respectively. From now on we write 19 instead of 6; no co~ifi~ion

should arise from this shorthand.

If 6 is a substitution such that x0 # x for only finitely many variables x wc

represent 6 by the set {x I-+ x0 : x6 # x). A set 1x1 I-+ t l , . . . ,x,, I---+ t,,), wht:rc

XI, . . . , x, are distinct, defines a substitution 6 via:

ti i f z=x i
zo= {

z otherwise.

From this point forward we no longer make a distinction between a rcprescntation of

a substitution and the substitution itself; we write 0 = (xl r-, t l , . . . , x,, t-, t,,) and

refer t o this set as a substitution.

It is clear that the substitution represented by {) is the identity func1,iori. If C is

a clause acd zl, . . . , z, are all the distinct variables that occur in C (in sorrlc f ixd

order) then the substitutions

and = {zl t-, yl, . . . , z, y,) are called the 2-standardization and thc y-

standardization of C respectively.

CHAPTER 4. SUBSTITUTION AND UNfFTCATION 2 1

Proof:

Let X = {y, ci ~8 : 1 < i 5 m) U {xi rt ti : 1 5 i 5 n A (Vj)l<j<,(xi - - # yj)). It is

sufficient to see that 8 o a and X assign the same value to each of the variables

X I , . . . , X ~ ~ Y ~ , . . - ; Y ~ . Let yj be an arbitrary one of the y7s. Then yjX = uj8 and

y, (8 o 0) = (yjo)8 = uj8. Now let xi be an arbitrary one of the x's that is not a y;

then xiX = ti and (xia)O = xi8 = ti. ia

Definition 4.1.2 Let A be a set of atomic formdas or terms and let 0 be a substi-

tution such that t8 = u0 for all t , u E A; then 8 is a unifier of the set A. Further if

8 is a unifier of A such that for any unifier X of A there exists a substitution a such

that X = a o 0 then 8 is a most general unifier of A.

We require the notion of a unifier for a pair of sequences. If (tl, . . . , t,) and

(ul, . . . , un) are two sequences and ~9 is a substitution such that tie = ui8 for each

1 5 i < n we say that 8 unifies the two sequences. As in Definition 4.1.2, if 0 is

a unifier of a pair of sequences such that for any unifier X of those two sequences

X = a 0 0 then 8 is called a most general unifier of that pair of sequences.

4.2 Unification

Unification is the process of finding a most general unifier for a set of formulas. We

proceed by showing that unifying pairs of expressions is sufficient, since a unifier of

a set can be calculated by considering the elements pairwise. Finally we provide a

unification algorithm for pairs of expressions and prove it correct.

CHAPTER 4. SUBSTITUTION AND UNIFICATION

Lemma 4.2.1 Let (t l , . . . , tk) and (ul, . . . , uk) be two sequences most g e n r ~ a l l y unlifi-

able by 8 and let a be a most general unifier of tk+18 and ukS18. Then a o If is a most

general unifier of (tl, . . . , tk+l) and (ul, . . . , u ~ + I) .

Proof: There are two things to prove: that a08 is a unifier and that it is most gtmrral.

Notice that ti@ = ~~8 for 1 5 2 5 k SO (tiO)O = (ui8)0. Now (tk+,0)g - (U ~ + ~ @) ~ T

because a unifies tk+10 and uk+lO.

We now show that a o 8 is most general. Let X be any unifier of (t l , . . . , tk., 1) aid

(ul, . . . , uk+1). The substitution X is also a unifier of (t l , . . . , tk) and (ul , . . . , uk) so

there is a substitution a such that X = a o B (because 8 is a most general unifier of

(t l , . . . , tk) and (ul, . . . , uk)). NOW also unifies tk+1 and uk+l SO tk+10a =": U ~ + - ~ @ N

and hence a is a unifier of tk+10 and uk+18, so there is a substitution P such t h t

a = /3 o a (because a is a most general unifier of tk+18 and uk+l 8). So X == (,B o a) o 8 .=

p o (a o 0) and a o 0 is indeed most general. M

If we wish to find a most general unifier for a set {Al, . . . , Ak) of expressions we cim

look for a most general unifier of the two sequences (A1, . . . , Ak-l) and (A2, . . . , Ak).

It is easy to see that a most general unifier of of the pair of sequcnccs is a most,

general unifier of the set and vice versa. So to calculate the most gcneral unifier of

an arbitrary set of expressions it is sufficient to calculate the most gcneral unifier of

a pair of sequences of elements drawn from that set in the above way.

We now present the algorithm for calculating most general unifitx-s of two cxpces-

sions.

CHA FTER 4. S UBSTITUTION AND UNIFICATION

Algorithm 4.2.1

{t I-+ 4 zf t is a variable and t does not occur
in u.

(U !+ t} 2f u 2s a variable, t is not, and u does
not occur in t

8,08, - l o . . . o O 1 if t = n t l . . . t , , u = nu1 . . . u, and
Oi = mgu(tiOi.. . Oi-l, uiO1.. . 8i-1) for
l < i < n -

FAIL otherwise.

We need to show both that this algorithm halts and that it halts with a most

general unifier of its inputs, when the inputs are unifiable, but first we require some

preliminary results about the algorithm and the substitutions that it produces.

To clarify the number of steps that mgu(t, u) takes we define an additional function

#mgu(t , u) as follows:

if t is a variable and t does not occur
in u.

if u is a variable, t is not, and u does
not occur in t

kl + k2 + . - - + kn if t = n t l . ..t,! u = nu1 ... u, and
ki = #mgu(ti&. . .Oi-l ,~iOl. . .ti',-1)
for 1 < i < n

FAIL otherwise.

Where it is understood that the Ois mentioned in the fou;th case of the definition are

the substitutiol~s calculated in the corresponding case of the definition of mgu. When

CHAPTER 4. S U B S T I T UTf0 .N AND U2LrfFICC4TION

we refer to the number of steps in calculating mgu(t, u) wc meail #rngu(t, u).

Let V(t) be the set of variables occurring in t, for co~lveniencc~ lct, I F (t , u) -

V(t) u V(u), and let v(t , u) be the cardinality of I:(t , u). ' Further k t N(t) br t h

number of occurrences of non-logical symbols in t and let n(t, U) =: N (t) - t N (u).

Then we define an ordering on pairs of expressions by: (t , u) < (t', u') if and only if

either v(t , u) < v(t1, u') or both v(t, u) = v(t l , u') and n(t, u) < r2(t1, u').

Lemma 4.2.2 The ordering < on pairs of expressions is irreflexivc, hnrwitivr:, cmd

well-founded.

Proof: Irreflexivity. Since v(t , u) = u (t , u) and n(t, u) = n(t , u) i t is not possit de

that (t ,u) < (t ,u).

Transitivity. Let (t, u) (t', u') and let (t', u') < (t", u"). Since (t , u) < (t', u')

either v(t , u) < u(t l , u') or both u(t , u) = v(t1, u') and n(t, u) < n(t1, u'). If v(t, u) <

v(t1, u') then v(t , u) < v(tl', u"), and (t, u) < (t", u"), because v(tt, u') < v(t", u"),

If, on the other hand, both v(t,u) = v(t',ul) and n(t, u) < n(tl,u') h n cithr

v(t1, u') < u(t", u"), in which case v (t , u) < v(tr', u"), or both ~ (t ' , u') = ~ (t " , u")

and n(tl, u') < n(t", u"), in which case v(t , u) -- v(tU, u") and n(t, u) < , t h (t u , 11").

Either way (t, u) < (t", u") and the ordering is transitive.

Well-foundedness. Suppose < is not well-founded; then tlic!rc! is an i~lfirtitx: cle-

scending chain of pairs (tl, ul) > (tz, ul) > . . -. Since v(tl, u,) 3 4t2, uz) L . .
there must be an m such that v(t,, ui) = v(t,, u,) for all i > rn. Si~ico tlit: SC:C~IOIK:C

of pairs is descending n(ti+1, uitl) < n(t i , ui) for all i 2 rn; this is clearly inij>ossiblc.

So < is well-founded. I

'Although v has been used as the name of a truth valuation prcviously wt.? xeconcl it irr t h
Chapter, everywhere else it still refers to a truth valuation.

CHAPTER 4. SUBSTITUTION AND UNIFICATION

A substitution B is proper if whenever x occurs in t0 then x0 = x. The notation

rng*(0) stands for the set (x0lx0 # X) and by V(rng'(0)) we mean the set of variables

that occur in any of the expressions in rng*(0). In the argu~nents below the terms

of crucial importantce are those of the form x0 where x0 differs from x, this is what

motivates the special notion of the range of a substitution rng*(0).

Lemma 4.2.3

Proof: First part 1: let x E Vjrng*(02 0 &)) ; thus x occurs in y&02 and y # yOlO2,

for some y. Since x occurs in (y01)02 there must be a variable, say z, occurring in

ydl, such that x occurs in z02. There are two possibilities: 1102 = z or not. If zeZ = z

then z -- x and since z occurred in yo1 the variable x occurs in ye1. Notice in this

case that x # y because otherwise x = yel and x = xOI and x02 = x, so x0102 = x

and then x V(rng* (& o el)). So x is a member of V(rng* (B1)). If, on the other

hand, z& # z then x E V(rng*(&)).

Now part 2: let x occur in either t0 or u0; then there is a z occurring in either t

or u such that x occurs in z0. Either z0 = z, in which case z = x and x E V(t, u), or

z0 # z, in which case x E V(mg* (0)). 8

Proof: The result is proved by induction on the length of a computation, recall that

the length of the computation of mgu(t, u) is #mgu(t, u).

CHAPTER 4. SUBSTITUTION AND UNIFICATION

Suppose the result holds for all computations of lengtlh less than A. and tLhat 0 :

mgu(t, u) takes k steps. If k = 1 then 8 is either {), {t I+ u) or (u r-, t). 111 any

case it is clear that the variables that occur in rng'(0) occur in c i th r t or u. Now

suppose that k > 1; then t and u must be ptl . . . t,, and pul . . . u, rcspc\ct,ivdy and

6 = 0, o. . .oOl, where Bi = mgu(t,O1.. . 0 , - 1 , ~ , 8 ~ . . .0,-1) for 1 < i < 77. Nc~tt* that

V(rng* (Oi)) 5 V(tiO1 . . . 8i-l, uigl . . . Oi-1) for 1 5 1: < 12

because the computation of mgu(tiOl . . . 0,- uiB1 . . .8,- 1) rcquires fcwer than k stcps,

for each I 5 i < n. To see that V(rnge(0)) 5 V(t, u) use Lenl~na 4.2.3(1) 76 - 1 tirncs

to obtain

V(rng* (0, o . . o 8,)) c V(rng* (01)) U . . . U V(rng* (0,))

and note that V(rng* (Oi)) C V(ptl . . . ti, p u l . . . ui) becausc

Bi = mgu(pt . . . ti, pul . . . ui), for 1 < i 5 nn.

It is clear that V(ptl . . . t i , pul . . . ui) G V(ptl . . . t,, pul . . . u,,,), for 1 5 i 5 n, so

V(rng*(O)) 5 V(t, u). I

Lemma 4.2.5 If 8 = mgu(t, u) then 8 is proper.

Proof: This proof, like the previous, proceeds by an induction on thc lcrigth of ii

computation.

Suppose that 13 = mgu(t, u) requires k steps to compute and that 0' -- nigu(tl, u')

is proper for any computation requiring fewer than k steps. If k -- 1 then the result

holds by the requirements of Algorithm 4.2.3 in its first thrcc casts. Consider a

computation which has more than one step; then t = ptl . tTb7 u I- put . . . uIb7

Bi = mgu(tiO1 . . . Bi-l, uiB1 . , , for 1 5 i 5 n, and 0 -^- I)t2 o . o 6,. Since & and

CHAPTER 4. SUBSTITUTION AND UNIFICATION 27

o . . o O1 both must require fewer than k steps to compite they must be proper.

To demonstrate that On o . o O1 is proper let x occur in wel . . .On for some term w.

Sub claim: x occurs in vO1.. . On-1 for some term v. Towards a contradiction

suppose that x does not occur in vO1 . . . On-1 for any v. Then, in particular x does

not occur in either tnO1.. . or un&. . .@,-I, i.e. x @ V(t,Ol.. . On-1, unO1. . . On-l).

Because On 3 mgu(tnOl . . . On-17 un01. . . &-I) and x 6 V(tnO1. . -9,-1, unO1 . . .On-l)

it follows that x # V(rng* (9,)) by Lemma 4.2.4. So if x doesn't occur in vO1 . . . On-1

and x V(rng*(O,)) then x can not occur in vOl . . . On for any v but this is clearly

a contradiction because x occurs in wO1 . . .On. So we have proved the sub claim and

that x occurs in vO1 . . . On-1 for some term v.

Given that x occurs in vO1 . . . 0n-l for some v and that On-1 o o O1 is proper

xO1 . . . = x. Given that x occurs in (wO1.. . and that On is proper xOn =

X. SO ~ 8 : . . On = X* I

Lemma 4.2.6 If t = p t l . . . t,, u = pul . . . u,, 1 5 j 5 n, and

then (tie1 . . . Oi-,, uiO1 . . . OiAl) < (t , U) for 1 < i 5 j .

Proof: Since Oi-1 0 . . - 0 191 = mgu(pt 1 . . . ti-l, pul . . . ui.-1) it follows that

by Lemma 4.2.4, and in turn

V(pt1.. . t i - l ,pu l . . . ~ i - l > c V(t , u) ,

so V(rng*(8i-l o - * . 0 8 ~)) C V(t, u). Clearly V(ti,ui) G V(t ,u) , so

v(tiel . . . u,el . . . eiWl) c v (t , u),

CHAPTER 4. SUBSTTTUTION AND UNIFICATION

by Lemma 4.2.3(2).

If V(tiB1 . . . Bi-], uiOl . . . Bi-l) c V(t, U) then (t,Ol . . . O*-, , uiO1 . . . Oi-1) < (t, U) .
On the other hand if V(t& . . . uiOl . . . = V(t, u) then, since OiVl o , . . o H I is

proper (Lemma 4.2.5 with Oi-lo.. . 0 0 ~ = mgu(ptl . . . t i v l , p t1 . . . ti.-I)), t iBl. . .Oi.-l --

ti and u & . . . OiFl = ui because if x occurs in either ti or ui and if xB1 . . .&-I f x

then x doesn't occur in either tiel . . . OiVl or uiB1 . . . Bi-l but then

V(tiB1 . . . Bi-17 uiBl . . . Oi-l) # V(t, u).

Since ti and ui do not contain an occurrence of p that occurred in t and u it follcrws

that n(ti, ui) < n(t , U) and (tiel . . .Bi-l, uiel . . . &-I) < (t, u).

Theorem 4.2.1 (The Unification Theorem) The algorithm mgu(t, u) halts; and

t and u are unifiable ;if and only if 0 = mgu(t, u) is a most general .tlnijifier o f t and

U.

Proof: Suppose that for some pair of expressions the algorithm docs not halt.

Then there must be a least pair, with respect to the ordering < of pairs of cx-

pressions, (t, u) say, for which mgu(t, u) does not halt. Because rngu(t, u) does

not halt, t must be Itl . . . t, and u must be lul . . . u, and therc must bc a It:as% k ,

1 5 k < n, for which mgu(tkO1 . . . Ok-1, ukB1 . . . 6k,1) does not halt and 01, . . . , Ok.-

are mgu(tl, ul) , . . . , x n g ~ (t ~ - ~ 0 ~ . . . @k-2, u ~ - ~ O ~ . . . Ok-'&!). By Lcrnma 4.2.6

(t& . . . ukO1 . . . < (t, u),

but this contradicts the leastness of (t , u).

Now that we have shown that mgu(t, u) must halt, we still need to verify that

when 0 = mgu(t, u) then 8 is a unifier and in fact is a most general unifier.

CHA P'TER 4. S UBSTIT UTlON AND U.iVIFICATION

Case 1: t = u. In this case 0 = () = mgu(t, u). Any unifier X of t and u can be

expressed as X o {) so {) is a most general unifier.

Case 2: t is a variable and u # t . In this case 8 = {t t-, u). Note that the

variable t does not occur in u. Let X be any unifier of t and u, note that t0 = u so

t0X = uX = u8A and so X = X 0 0 and hence 0 is most general.

Case 3: u is a variable and t is not. This case is analogous to Case 2.

Case 4: t = I t l . . . t,, u = lu l . . .u,, and Oi = mgu(tiQ1.. . 1 3 ~ - ~ , u ~ 0 ~ . . .Oi-l) for

I < i < n. We need to show that 0, o . . . 0 is a most general unifier of (t l , . . . , t,)

and (ul , . . . , u,) but this is clear by induction using Lemma 4.2.1.

Finally we show that if mgu(t, u) returns a FAlL result then t and u are not

unifiable. Suppose to the contrary that their is a pair of expressions that are unifiable

but the algorithm fails to produce a unifier. Now since there is at least one such pair

let the pair (t, u) be least such that t and u are unifiable but mgu(t, u) = FAIL. If t

or u is a variable then there is just one way for the algorithm t o fail, that is for t to

occur in u (or the other way around, the cases are analogous) and t # u. If this is the

case any would-be unifier, 0 say, would map t to some term v but then v would occur

within u0 so 8 couldn't possibly unify t and u. The other case in which the algorithm

can produce a FAlL resdt is if in the calculation of mgu(t, u) we must first calculate

mgu(ti& . . . Oiel, tiel . . . Oi-l) and the later calculation results in a FAlL result but this

is clearly impossible by our choice of (t, u) because (tiel . . . tie1 . . . 0i-l) < (t, u),

and (t , u) was supposed to be least.

Chapter 5

Resolution

In this chapter we present the resolution procedure and show that for any particular.

set S of clauses this procedure will demonstrate the unsatisfiability of S if S is un-

satisfiable. We also live up to our promise to demonstrate how unificatiori calculates

a proof set.

5.1 The Resolution Procedure

The resolution procedure is similar to the ground resolution procedure. In fact, all we

must do is extend the definition of resolvant so that we may calculate the rcsolvarlt

of two arbitrary clauses, not just ground clauses.

Definition 5.1.1 Let C and D be two clauses; also let L and M be such that I, t C

and A4 C D. Further let N be the set of atomic forrr~ulas A such that either A

or the complement A' is a member of L<c U MqD- Also suppose that N is m o ~ t

CHAPTER 5. RESOLUTION 3 1

generally unifiable by a~ and that L & ~ N and MqDaN are singleton sets containing

complementary literals; then

is a resolvant of the clauses C and D. If S i s a set of clauses then R(S), the resolution

of S , is S to-gether with all possible resolvants of every pair of clauses in S. W e also

define the n-resolution Rn(S) inductively by: P (S) = S and Rn(S) = R(Rn-' (S)).

Note that in this definition the role of of the x- and y-standardizations, Jc and qo, is

simply to ensure that the variables that occur in C& and DqD are disjoint. Ensuring

that the variables are disjoint guarantees that we do not mistakenly bind logically

different variables to the same understood universal quantifier.

Given these definitions we may go on to describe the resolution procedure. To

demonstrate the validity of a sentence A we:

1. Convert 1A to a set S of clauses, as outlined in Section 2.3.

2. Let i +- 0.

3. While 0 4 Ri(S) do i t i + 1.

If we manage to find an i for which C) E Ri(S) then we have demonstrated the

unsatisfiability of the set S of clauses and hence the validity of A.

Notice that the resolution procedure does not constitute a decision procedure for

first-order logic, i.e. if A is not valid, then the procedure will never halt.

Before we justify the resolution procedure the following example should make the

reader reasonably familiar with the way the algorithm works.

CHAPTER 5. RESOLLrTION

Example 5.1.1 Every group of exponent two is A belian..

The example is from group theory, actually a fragment of group tlicol-y- wc will not

req~ire axioms about inverses. We show, with the standard axioms of group thcory,

that: every group of exponent two is abelian, i.e. if x2 = e for every element .r. o f t h

group then y - z = z y for every y and z in the group. First we formalize group thcory

in a first order language. Our language consists of a 3-ary predicate syrnbol C: i~t1<1 a

constant symbol e. The idea is that G(x, y , z) should represent r r . . y = z, and that

is the group identity.

The associativity axioms of group theory are then represented by:

Kow we represent the identity axioms as:

The axiom G(x7 x, e) represents the fact that the group is of exponent. two. ft'irlally

we can represent x - y = y - x by

The sentence A we are attempting to prove by the resolution proccdurc* is ari ixrl-

plication whose antecedent is a conjunction of the associativity axioms, idmtity ax-

iom, and axioms expressing that the grotlp is of exponerit two. The c:~-,nsrtqar~nt. QF

A is G(z, y, z) -+ G(y,x, 2). After preparing the sentence 1 A as indicat.ct1 in Scc-

tion 2.3 we obtain a conjunction of the associativity and identity axioms togothor

with G(a, b, c) A 7G(b, a; c), the Skolemized negation of the consequent. So t h sc?t, of

cfause on which we perform resolution is

! i i-tG'(x, i y:u), -G(y7 Z: v) , 7G(u7 Z, w) , G(x, V ? w)j

[TG~Z: yt ~ . j , ~ G (Y : Z, v) , ~ G (x , V , w)? G(u, Z: w)j

fG(x: e, x)]

P (e , x, 41
[G(x, X: e)j

[G(a, b? c)]

[lG(b, a, c)]

In this example we wili not calculate all possible resolvants of the clauses at each

stage; this would generaye far too many clauses to serve as a illuminating example.

Instead we will demonstrate a sequence of resolution steps that results in the empty

clause. We will also not explicitly form both the z- and y-standardizations of the

clauses we are resolving upon. \Ye instead will ensure that the variables that occur in

each clause are disjoint from the variables occurring in the other clause. We present

a resolution step in the following way

C

D

ox

(C - t)k-aiv u (D - ~ ~) W P 1 v

underlining the atomic formulas in C and D which comprise the subsets L and M in

-*:4-: L~LIGI~ of rediftim, Definition 5.1.1.

CHAPTER 5. RESOL L~TfOll;'

Resolving the x-standardization of (1) with (7)

And resolving this with the y-standardization of (5)

And resolving this with the y-sxandardization of (4)

Xow we resolve this with the x-standardization of (2)

And then this with the y-standardization of (5)

CHAPTER 5. RESOLUTION

And this with the y-standardization of (3),

Now we resolve this with the x-standardization of (I),

And this with (5)

And this in turn with (4)

Finally this with (6)

CHAPTER 5. RESOLUTION

5.2 The Resolution Theorem

Here we provide the proof that justifies the resolution proccdurc of thc prcccding

section; the result is in [Robinson65].

Theorem 5.2.1 (The Resolution Theorern) Let S be u set of clauses unn' P bc' a

subset of Herb(S). Then R(P(S)) E P(R(S)).

Proof: Let A E R(P(S)); then either A E P(S) , in which case A E P(R(S)) bccizuuc

S 5 R(S), or A is a ground resolvant of two clauses, say @ and D, in P (S) . Now

C = C'a and D = D'p where C' and D' are both elements of S and cw and /.3 arc t,hc

substitutions {xl I-, tl, . . . x, I+ t,} and {y, I-+ ul , . . . y,, I+ u,,,}, wherc xl , , . . , x,

are all the variables occurring in C' and yl , . . . , y,, are all the variables occurring i11

D' and further that tl, . . . , t,, ul , . . . , u, are all elements of P.

Since A is a grwmd resolvant of C and D there are literals A E C and B E D that

are complements and A = (C - {A)) U (D - {B)). Note that A E C'LY and B E D'P

so there are sets L C C' and M E D' such that La = {A) and M/3 =: {B).

Let 8 = {XI e t i , . . . , x, I-, tn,yl ++ u ~ , . . . , y, t-+ u ,) ; then we can sce that

A = (C' - L) b 8 U (D' - M)q& where JCl = {xI e x L , . . . , x,, ++ x,,) and rlul -:-

{yl I+ 91,. . . , ym e ym). It is clear that 8 is a unifier of N the sct of atoruic:

formulas such that they or their complements occurs in L& u A4r1,)l. So tht:rt? is

a most general unifier a~ of N and 8 = X o ON for some substitution A. Now let

B = (C' - L)&lan U (Dl - M)qpa;, and note that B is a resolvant of C' and D' so

B E R(S). Notice that A = BX and that X maps all of thc variables that occur in I1

to elements of P so A E P(R(S)) . I

Corollary 5 . Z l Rn (P i s)) P(Rn(S)) .

CHAPTER 5. RESOLUTION

Proof: The Resolution Theorem is the n = 1 case. Now suppose that Rk((PS))

P(RI"(S)) and consider Rk+l (~(s)) . Now

and 7Z(7Zk(p(S)) 2 72(p(Rk(S))) because of the induction hypothesis and the easily

verifiable fact: A C B + R(A) 2 R(B). Now

because of the Resolution Theorem so Rk+'(p(s)) C P(Rk+l (S)) . I

Theorem 5.2.2 (Completeness for Resolution Theorem Proving) If a set of

clauses S is unsatisfiable then E Rn(S) for some n < w.

Proof: If S is unsatisfiable, then by Lemma 3.3.2 there exists a finite P C Herb(S)

and an n <. w such that E Rn(P(S)). By application of Corollary 5.2.1 to O E

RTL(P(S)) we obtain E P(Rn(S)). Notice that if O E P(Rn(S)) then El must be a

niernber of Rn(S). I

Theorem 5.2.3 (Soundness of the Resolution Rule) If C, D, and R

is a resolvant of C and D then kg R.

Proof: Since R is equivalent to a universal sentence, if we show that 24 satisfies every

ground instance of R then we will have shown that +a R. Notice that each ground

instance of R can be obtained by applying a substitution, X say, to R. Thus if /=?[RX

for every substitution X then Fa R.

Let '21 make both C and D true; also let X be an arbitrary substitution such that

RX is a ground clause. From the definition of a resolvant

R = (C - L) t c a ~ U (D - M)rlD*lv.

CHAPTER 5. RESOLUTlOlV

Since makes C and D true it also makes C<ca,ll and DrlDaiv true; further 21 nlt~kvs

CScaNX and DqDaNX true as well. It may happen th& CtcaNX and D T) ~ C ~ ~ ~ X i:t,rc

not ground clauses so select an arbitrary substitution, I / say, sudi t , h t C',tc-lcrAIX~/

and D . r] D ~ N h are ground clauses. It is easy to see that RX is a ground resolvant. uf

C t c a N h and DqDaNXv. Proposition 3.2.1 now produces that ka RX. \jutj recall

that X was arbitrary so this holds for all substitutions X such that RX is n gr tm~d

clause. So we may now conclude that /=nt R, because '21 satisfies evcry ground inst,ancc

of R. I

5.3 The Role of Unification in Resolution

Recall that a proof set P for a set S of clauses is a set of ground terms, in thc

language of S, such that the Ground Resolution Procedure terminates aftm n stops

with 51 E Rn(P(S)) . It was previously mentioned that unification calculi~,t~cs a proof

set for a particular set of clauses; this section is intended to justify that claim. I3ut,

we must first introduce the notion of a deduction.

Definition 5.3.1 A deduction (ground deduction) of a clause C;:, f~.orn a set S of

clauses i s a sequence Cl, C2, . . . , C, of clauses such that each C, is either. o,n clerrwnt

of S or a resolvant (ground resolvant) of Cj and Ck, for. 1 < j , k < i. A deduction

(ground deduction) from S ending in CI is a refutatian (ground refutation) of S .

Theorem 5.3.1 There i s a deduction of C from S if and only zfC E Rr"(S) for. some

n < w.

Proof: (*) Let Co,. . . , Cn = C be a deduction of C from S. Now wc show that

Ci E Ri(S), by induction on i. Clearly Co E S and so Co E e (S) . Suppose that Ci

CHAPTER 5. RESOLUTION

is in Ri(S). Since Ci+l is either an element of S, in which case Ci+1 E Ri+l(S), or

Ci+1 is a resolvant of Cj and Ck with 1 5 j , k < i + 1, in which case Ci+l E Rfi+'(S).

So C1, . . . , Ci+1 E Ri+' (S).

(c;;) We use induction on the number of applications of R. If C E w(S) then C E S

and hence the sequence C is a deduction of C from S. Now suppose that D E Rm(S)

implies that there is a deduction: Dl, . . . , Dm = D. Let C be an element of Rm+'(S)

that is not in Rm (S), thus C must be a resolvant of two elements Dl and D" of Rm (S).

Since Dl and DN are elements of Rm(S) there are deductions: Di, . . . , D& = D' and

By,. . . , 13;' - D", but then Di, . . . , DL, Dy, . . . , D;', C is a deduction of C. I

Corollary 5.3.1 There is a refutation of S zf and only zf O E Rn(S) for some n < w .

Let P be a set of terms; a P-instance of an expression t is t X where X is a

substitution with rng(X) C P . A P-instance of a clause C is {AXIA E C) where

rng(X) C P . A P-instance of a set S of clauses is {CXIC E S) with rng(X) E P.

Notice that the saturation of a set S of clauses with P is the set of all P-instances of

every clause of S, specifically P(S) = {CXJC E S, rng(X) C P).

Let Cl, . . . , C, = CJ be a refutation from S and let D l , . . . , a, be substitutions such

that ai is the identity function if Ci E S, and if Ci is a resolvant of Cj and Ck, where

and 1 2 j , k < i , then cri is a ~ .

We obtain a proof set for S is the following way. First, if the language of S has

no constant symbols, augment the language with a new constant symbol. Second, let

P, = (a), where a is any constant symbol from the language of S. Finally, for i < n

CHAPTER 5. RESOLUTION

let

Pi = {t (t = ~ a i , ~ X for some variable x and some X such that rng(X) C Pi.,.) .

We claim that PI is the required proof set for S. Observe that P, C P, for 1 5 i <

' < n + l . 3 -

To show that Pl is a proof set we exhibit a ground refutation from Pl(S). Let

Ei be a sequence comprising all of the P,-instances of the C,. Mk ~lcctl to sltow

that the sequence obtained by concatenating sequences CI through C,, , wtt dcuot8c

this concatenation of sequences as E l , . . . , C, , is a ground refutation, i.c. X,, -- C1.

We show this sequence is a ground refutation by induction on the icngth T) , of the

resolution refutation of S. Observe that C1 E S; hence any elenlcnt of Ct is i r ~ Pt (S)

so C1 is a ground deduction. Now suppose that El, . . . , Ck is a ground drdwtion

and let CL,, be any element of Since CL+, is a Pk+l-instance of CA+, thcn

CL+l = CktlX, with rng(X) Pk+l. If Ck+1 E S then Ck+lX E Pk+1(S) 2 d3,(S) and

hence CL+, E Pl (S) , so El, . . . , Ek+l, CktlX is ground deduction of Ck+ I X from PI (5').

If Ck+1 $ S then

and

To conclude the argument we show that CL+, is a ground rcsolvant of G'&ok,+ 1 X atld

Cmqcm~k+lX and that (= i < C i ~ k + l X and CmqCTf,ok+lX occur in and C,, rcspt:cbivcly.

Because of u ~ + ~ ' s action on L and rV1 (LJclok+l and lt/lr)CTn~k+l arc cornplcmentary

singletons) and because X makes any clause to which it is applied a ground C~~LIISC:

Ck+1X is indeed a ground resolvant of CLcci~k+lX and Cfnqc,ok+l A.

CHAPTER 5. RESOLUTION 41

It remains to show that rng(X o c k + l 0 eCl) C 8, for if this is the case then

ClccL~k+lX occurs in the sequence XI. Let t E rng(X o a k + l o &) ; since JCl only

renames variables this is the same as saying that t = X O ~ + ~ X , for some variable x.

Observe that rng(X) C Pk+l so t = is in Pk, by the definition of Pk. Since

1 < k + 1 the term t is also a member of Pl. We have demonstrated that C&, a k + l X

occurs in C1, Similarly Cmrlc,ak+lX occurs in Em.

Since the choice of SIC+, was arbitrary we in fact have that C1, . . . , Ck+l is a

deduction from PI (S) .

Finally, since C, = and any P,-instance of 0 is 0, the ground deduction

El, . . . , C, is a ground refutation of PI (S).

5.4 Conclusion

We conclude this thesis with an example that demonstrates that Resolution is indeed

an improvement over the saturation methods described at the end of Chapter 3.

For this particular example we drop the parentheses for functions, with the un-

derstanding that the reader could readily provide them if required. We consider the

following set of clauses:

First we will demonstrate the invalidity of this set of clauses with Resolution.

CHAPTER 5. RESOL UTION

Resolving the second clause with itself, for example yields

bp(x>2 P (f 41
E+'(Y), P (f dl
-b * fd
[+ (~ > 7 P (f f y) l

and then resolving this resolvant with itself yields

[+(4? p (f f 41
[+'(Y>, P (f f y) l

-b * f u)
b P (y > , J ' (f f f f ~) l .

It is easily seen that there is a deduction of length n + 1 :

where each clause in the deduction is a rcsolvant of two copics o f thc irrlrnedintt;ly

prior clause, one of which has had all of its variables renarucd y. Also ric,t,r. that in

each case the substitution is of the form { y H f Z* (x) } . Hence thcrr is a rcfutatio~l o f

length n + 5:

Consider a ground resolution proof from the sarno sct of clauscs. 'rhc! first thing

to notice is that because we must saturate the set of clausos wtt arc iutc?restotl in

before we start producing ground resolvants we will be unat->le to achiwe the sarnct

"doubling up" that occurred in the resolution case. We requirc clausas of the forrn

[l P (f k a) , ~ (f ~ + + ' a)] for 0 5 k 5 2k - 1. A refutation then takes on the form

CHAPTER 5. RESOLUTION

This refutation is of length 2"+' + 3. It is clear that resolution is an improvement

over ground resolution in terms of length of refutation, at least in this particular case.

And, by Corollary 5.2.1 it is also clear that resolution could not have a longer shortest

refutation.

With the method of the last section we can calculate a proof set of the above set

of clauses from the resolution, repeated here for convenience

[p(a)], [p(f2"a)], [+(f2"a)], 0.

Sincc a is the only constant ilz our language Pn+5 = {a). Let C1, C2, . . . , Cn+5 be

the above refutation. Then 8,) the unifying substitution for each Ci, is {y H f2'-'x)

for 2 5 i 5 n + 1. The substitutions 01, On+3, 0nf4, and 0n+5 corresponding to

clauses Cl , Cn+z, Cn+3, CnS4, and are {), {), {x t-) a), I), and {) respectively.

So we obtain, by the calculation in the last section:

P* = {a, f2a, f4a , . . . , f 2n-2a)

p1 = {a, fa , f2a , . . ., f2n-'a)

And, this is exactly the proof set that was required in the previous ground resolution

CHAPTER 5. RESOLUTION 44

example. To see that PI is (f k u l ~ < k 5 2" - 1) observe that for 1 < k 5 12, that

Pr, = Pk+1 U {f "+ 2k-1al f "a E P k] . This doubles the number of elements in etch

successive set Pk because at each stage we are adding a distinct power of 2 to thc

exponent of f . There is one element in Pn+l and n doublings to gtt to PI s:) thcrc

must be 2" elements in PI. So PI is indeed the required proof set for this exan~plc.

Considering the improvement that resolution has over the previous ~nr?thocis of

automated theorem proving one may legitimately ask why resolution isn't actually

used by researchers to solve problems. While resolution is a dramatic improvcmcnC

over the level-saturation methods that went before, it is generally held that resolu t io~i

is also inadequate to solve the kinds of problems such people might want to present

to it. The research that followed Robinson's result at first attempted to refinc t h

resolution rule (the calculation of resolvants) while maintaining logical completeness.

These improvements were still inadequate. Later research went in the direction of

sacrificing the completeness of the method for computational efficiency. In particular

the Prolog programming language has had some success. Now research on resolu1,iun-

based automated theorem proving continues with these two disparate foci: slow but

complete methods, and somewhat faster but incomplete methods.

Bibliography

iBaaz92j Baaz, M. and Leitsch, A., Complexity of resolution proofs and function

introduction, Annals of Pure and Applied Logic, 57(1992), 181-21 5.

[DavisGO] Davis, M. and Putnam, H., A computing procedure for quantification the-

ory, Journal of the ACM, 7(1960), 201-215.

[Enderto1~72] Enderton, H., A Mathematical Introduction to Logic, Academic Press,

Orlando, 1972.

(Fitting941 Fitting, Melvin, First-Order Logic and Automated Theorem Proving,

Springer-Verlag, New York, 1994.

fGodel34j Godel, K-, On Undecidable Propositions of Formal Mathematical Systems,

Institute for Advanced Study Rspori, 1934.

[Loveland79] Loveland, Donald W., Automated Theorem Proving: A Logical Basis,

Elsevier Sorth-Holland, Amsterdam, 1979.

[Paterson78] Paterson, M. S., and Wegman, %I. K., Linear Unification, Journal of

Computer and System Science 16(2), 158-167.

[Prawitz60] Prawitz, D., An improved proof procedure, Theoria 26(1960), 102-139.

[Robinson651 Robinson, J. A,, A machine-oriented logic based on the resolution prin-

ciple, Journal of the ACM, l(l965), 23-41.

fShoenf?eld67] Shoenfield. J.: Mathematical Logic, Addison-Wcslcy, New Yctrk, 1967.

[Urquhart87] Urquhart, A., Hard examples for resolution, Journal of the ACM,

34(lg87), 209-219.

