RESOLUTION THEOREM PROVING REVISITED

by

Rob S. Ballantyne

B.Sc. Simon Fraser University, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
QOF THE REQUIREMENTS fOR THE DEGREE OF
MASTER OF SCIENCE
in the Department of Mathematics and Statistics

of

Simon Fraser University

(© Rob S. Ballantyne 1995
SIMON FRASER UNIVERSITY
October 1995

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

L4 |

National Library
of Canada

Acquisttions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontano
K14 ON4

Bibliothéque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa {Ontario)
K1A ON4

Your hie Volre rélérence

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Our fiie Notre réference

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-16783-6

Canada

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my
thesis, project or extended essay (the title of which is shown below)
to users of the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a
request from the library of any other university, or other
educational institution, on its own behalf or for one of its users. |
further agree that permission for multiple copying of this work for
scholarly purposes may be granted by me or the Dean of Graduate
Studies. It is understood that copying or publication of this work
for financial gain shall not be allowed without my written
permission.

Title of Thesis/Project/Extended Essay

QESC)L_U‘T'\DM e e PE.S:‘V&M(-‘_} &TU\‘S ITED

Author: , - I
(signature)

(name)

Cet. 25/9%

(date)

APPROVAL

Name: Rob §S. Ballantyne
Degree: Master of Science
Title of Thesis: Resolution Theorem Proving Revisited

Examining Committee: Dr. C. Schwarz

Chair

Dr. S. K. Thomason, Senior Supervisor

Dr. A. H. Lachlan

Dr. A. R. Freedman

’

Dr. A. Gupta, External Examiner

Date Approved: October 26, 1995

1

Abstract

In 1965 Robinson published the original paper on the resolution theorem proving
method. The conventions utilized in that paper would not be recognized as standard
logic conventions today. For example, Robinson’s notion of a model was an infinite
collection of atomic or negated atomic formulas that was complete. We modernize
Robinson’s work by phrasing it in the context of a modern logician. Robinson, in the
1965 paper, commented that resolution calculates a proof set without making that

calculation explicit; we show how these calculations can be made explicit.

il

Dedication

This thesis is dedicated to two individuals who due to their untimely deaths were
unable to witness the conclusion of my masters degree. To my father, Paul Stewart

Ballantyne, and Professor Alan Mekler; they are sorely missed.

iv

Acknowledgments

I would like to thank Professor Steve Thomason for his encouragement, support, and
patience during the completion of this thesis. Also I would like to thank my wife,
Sandy Ballantyne, for her patience and understanding during the completion of the

thesis.

In addition I would like to acknowledge Professor Alistair Lachlan for his frequent
wise advice and the Department of Mathematics and Statistics for its support and

patience.

Contents

Abstract 11
Dedication iv
Acknowledgments v
1 Introduction 1
2 Preliminaries 4
2.1 Language e e 4
2.2 Structures o o e e e e e e e e e e e e e e 6
2.3 The Clausal Form of Sentences 8
3 Ground Resolution 10
3.1 Definitions e e e e e e e e e 10
3.2 Resolution e e e e e e e e e 11

vi

3.3 First-Order Theorem Proving 16
Substitution and Unification 19
4.1 Substitutions 19
4.2 Unification - . . . o 21
Resolution 30
5.1 The Resolution Procedure 30
5.2 The Resolution Theorem 36
5.3 The Role of Unification in Resolution 38
54 Conclusion e 41

vil

Chapter 1

Introduction

Automating the process of formal reasoning has been a long-standing goal of logic.
The search for an algorithm to determine provability or validity of first-order sentences

began shortly after the description of first-order systems.

Kurt Godel demonstrated, via the Undecidability Theorem [Godel34], that in gen-
eral it is impossible for an automated procedure to determine whether a formal sen-
tence was provable or not. This dashed the hope of reducing first-order reasoning
to an algorithm and it was some years after Godel’s result before work continued on
automated theorem proving. It was still, after all, possible to have an algorithm that

would for any sentence establish its validity if the sentence was valid.

The first attempts at automated theorem proving were with propositional logic.
Here algorithms for deciding a sentence’s validity have been known for some time. The
first such algorithms most likely considered truth tables for a particular sentence. If
the truth table demonstrated that the sentence was true in all possible cases then

that sentence was valid.

CHAPTER 1. INTRODUCTION

(3]

In later work Davis & Putnam [Davis60] produced an efficient method for testing
propositional sentences in conjunctive normal form for satisfiability. Given a pro-
cedure that tests for satisfiability it is easy to determine the validity of a sentence.
Simply apply the satisfiability test to the negation of that sentence and the original

sentence is valid if and only if its negation is unsatisfiable.

The initial attempts at first-order logic basically reduced the first-order case to
performing many iterations of a propositional algorithm. Each iteration of these
propositional algorithms attempted to show the unsatisfiability of a sentence on a

particular finite first-order structure.

Dag Prawitz [Prawitz60] first demonstrated that it is possible to combine together
the propositional test for satisfiability with calculations of the potential models to
produce an algorithm that didn’t look at every possible model but only examined
models that could help demonstrate the unsatisfiability of the sentence in question.
Unfortunately Prawitz’s method required that sentences be continually converted and

re-converted into a particular normal form, a procedure that is very ineflicient.

In [Robinson65] Robinson fused together Prawitz’s idea of “calculating as you
go” with Davis & Putnam’s efficient method of working with conjunctive normal
form sentences to produce a method called resolution. Resolution overcame the ‘re-
normalizing’ weakness of Prawitz’s method. Sentences are converted into a normal

form just once and never needed to be re-cenverted again.

In this thesis we revisit Robinson’s paper on resolution and we update his results
into the language of the modern logician, predominantly by the use of first-order struc-
tures in place of the sets of atomic and negated atomic sentence that Robinson used

for models. Our approach is not unknown in the literature; Loveland [Loveland79]

CHAPTER 1. INTRODUCTION 3

and Fitting [Fitting94] for example employ first-order structures. In Robinson’s pa-
per completeness of resolution follows from the completeness of ground resolution.
Here that is the case as well, but we demonstrate the completeness of ground resolu-
tion with respect to first-order structures instead of Robinson’s rmodels. Other work
has taken alternative approachs. Loveland [Loveland79] uses his g-models, which are
similar to Robinson’s models, to demonstrate the completeness of ground resolution.
Fitting [Fitting94] proves completeness of resolution directly using a Model Existence
Theorem. In place of the usual unification algorithm we provide a unification algo-
rithmn that is expressed as a recursive definition and is particularly succinct. We also
attempt to justify a comment that Robinson left unjustified. Namely, in [Robinson65]
Robinson mentions that resolution calculates a proof set without making that calcu-

lation explicit. We show how the calculation can be made explicit.

Chapter 2

Preliminaries

2.1 Language

The notion of language that we will use throughout this thesis is a slight variant of
that defined by Shoenfield [Shoenfield67]. Our languages, unlike Shoenficld’s, need

not include an equality symbol. A first-order language has the following components:
1. variables: z,y, z, w, z1,y1, z1, w1y, To, - . .,

2. for each n > 0, n-ary predicate symbols and n-ary function symbols,
3. the logical symbols —, Vv, 3.
Below we use L to denote this kind of language. The predicate and function

symbols of L are called the non-logical symbols of L; these together with the variables

and logical symbols constitute the symbols of L.

CHAPTER 2. PRELIMINARIES 5

With respect to formulas of our language x,y,z, w are syntactic variables that
range over the variables of the language L; p,q are syntactic variables that range
over the predicate symbols; f, g are syntactic variables that range over the function
symbols; a, b are syntactic variables that range over constant symbols (where a con-
stant is, as usual, a 0-ary function); and 1, m, n, are syntactic variables that range

over the non-logical (function and predicate) symbols.

Definition 2.1.1 Expr(L) is the smallest set of sequences of the symbols of L closed

under the following conditions:

1. each sequence of length one whose member is a variable of L is in. Expr(L),

2. ifuy,...,u, € Expr(L) and n is an n-ary non-logical symbol then nu; ... u, is

an element of Expr(L).

Term(L) is the set of members of Expr(L) which have no occurrences of predicate
symbols. Atomic(L) is the set of expressions of the form pa;...a, where p is an n-
ary predicate symbol and ay,a, € Term(L). Fla(L) is the least subset of Expr(L)

closed under the following conditions:

1. Atomic(L) C Fla(L),

0o

if A € Fla(L) then -A € Fla(L),

3. if A,B € Fla(L) then VAB € Fla(L),

4. if A € Fla(L) then 3xA € Fla(L).

An element of Expr(L) is called an ezpression of the language and an element of

Term(L) is called a term of the language. A member of Atomic(L) is an atomic for-

mula. and an element of Fla(L) a formula. We drop the reference L, to the language,

CHAPTER 2. PRELIMINARIES 6

and write Expr, Term, Atomic, and Fla for Expr(L), Term(L), Atomic(L), and Fla(L)

respectively, when it is clear which language is under discussion.

We define the free wariables of an expression inductively as follows. The free
variables of a term are the variables occurring in that term. The free variables: in
—A are the free variables in A, in AAB are the free variables in either A or B, in
JxA are the free variables in A except x. An expression is a sentence if it has no frec

variables.

A formula which is either atomic or negated atomic is called a literal. For any

literal A we define the complement A’ of A as:

-A if A is atomic

B if A=-B.

A=

Notice that the complement of a literal is a literal and not a more complicated formula.

At this point we admit the use of the usual logical connectives and quantificrs as
abbreviations. We also admit the usual infix notation for connectives, as an “abbre-

viation.”

2.2 Structures

We now define the notion of truth, that is, the assignment of truth values to formulas.

We follow the presentation given by Enderton in [Enderton72].

Definition 2.2.1 A structure 2 for a language L consists of: a non-empty set ||
called the universe, for each n-ary function symbol f of L a corresponding n-ary func-

tion fy : |A|" — |A|, and for each n-ary predicate symbol p of L an n-ary relation

CHAPTER 2. PRELIMINARIES 7

Py C |A|". A sub-structure of a A is a structure A’ such that |A'| C ||, the predi-
cates py, of A are restrictions of the corresponding predicates py of U to ||, and

the functions fa of A’ are restrictions of the corresponding functions fy of A to |A'|.

Definition 2.2.2 A valuation for a structure 2 is a function that maps the set of

variables of the language to ||.

We can inductively extend any valuation s to a function § : Term — || in the
following way. Let t € Term; then either t is a variable or t is fu;...u,. If t is
a variable then set 3(t) = s(t), otherwise set §(t) = fy(5(u;),...,5(u,)). For any

valuation s and any a € U, and variable x the valuation s(x/a) is defined by
a ify=x

s(x/a)(y) =

s(y) otherwise.

Definition 2.2.3 For A € Fla(L), U a structure for L, and s a valuation for 2|, we
say that A makes A true with s (and we write F=q Als]) if

1. Ais pt: .. .t and (g(tl), Ceey §(tn)) € Py, O7

2. A is -B and it is not the case that f=qo BJs], or

3. A is VAB and either f=q Als] or o B[s], or

4. A is 3xB and there ezists a € |U| such that k=q Bls(x/a)].
If A is a sentence in the language L then a structure 2, for the language L, will make
that sentence true or false independent of the valuation s and we write f=q A instead
of =u A[s]. For a sentence A if o A we say that 2 models or satisfies A. We say

that a sentence A is valid if every structure for the language L satisfies that sentence,

and if no such structure satisfies A then we say that A is unsatisfiable.

CHAPTER 2. PRELIMINARIES 8

2.3 The Clausal Form of Sentences

A sentence A is said to be prenez if it is of the form @Qx; ... Q,x,B where cach @,
is either 3 or V and B is quantifier-free; in this case B is referred to as the matriz of
A. If a sentence is prenex and all of its quantifiers are universal then the sentence is
said to be universal. A formula A is in conjunctive normal form if A is of the form

B, ABy A ... AB, and each of the B; is a disjunction of literals.

The purpose of this section is to demonstrate that for any sentence A we can
find a universal sentence B with its matrix in conjunctive normal form and which is
satisfiable if and only if A is satisfiable. The results needed to show this are standard

and below we only describe the conversion process. See the appropriate sections of

[Shoenfield67] for details.

We convert a formula into a prenex form formula by “pushing” the quantifiers
outward, taking care to change the sense of the quantifier (change V to 3 and 3 to V)
if we push the quantifier past a negation symbol. We also take care not to capture
variables in the scope of quantifiers that previously did not bind them by renaming the
variables as required (see [Shoenfield67], page 36). In this way we obtain a formula,

in prenex form, which is provably equivalent to the original formula.

We then obtain a universal formula from the prenex formula above by eliminating
the existential quantifiers by the use of Skolem functions (see [Shoenfield67], page 56).
At this point we have a universal formula in an enlarged language (more function

symbols) such that the universal formula is satisfiable if and only if the original is.

Finally we convert the matrix of the universal formula to conjunctive normal form
and thus we have obtained a formula which is provably equivalent to the universal

formula and that is satisfiable if and only if the original formula was satisfiable.

CHAPTER 2. PRELIMINARIES 9

Example 2.3.1 Consider the sentence =3y(VzP(z)) A (VzQ(z,y)). After moving the
quantifiers outward we obtain Yy3zi3ze—(P(z1) A Q(z2,y)). The next step requires
that we remove all existential quantifiers by use of Skolem functions, thus we obtain

Vy—(P(a) A Q(f(a),y)). Now we convert the matriz of this sentence to conjunctive
normal form and obtain Vy(—P(a) vV =Q(f(a),y)).

We represent a universal prenex sentence

k li
Vx,Vxs ... VX, /\ (\/ Ai,j)

i=1 \j=1

(where the A, ;’s are literals) as a set:
([Ar1y - Ary], [A2a, s Aggy],y o [Akay - Aky]) -

where it is understood that [By,...,B,] is the set {B;,...,B,} considered as a dis-
junction of the B;’s and (C1,...,C,) is the set {C},...,C,} considered as a conjunc-

tion of the Cj’s.

We call a set [A1,..., A;], where the A;’s are literals, a clause. The empty clause
is denoted [J. Note that many sentences may be represented by one single set of
clauses, because repetition and order of conjuncts and disjuncts is lost in the passage
to the set of clauses. This is not a problem, however, because these sentences are

satisfied by exactly the same structures.

If C = [By,...,By] is a clause we write }=9 C to mean }=q Vx;...Vx,V:, B,
when x; ...x, are all the variables that occur in the literals of C. When S is a set of

clauses we write |=4 S to mean that }=y C for each C € S.

Chapter 3

Ground Resolution

In this chapter we present an introduction to resolution, a proof method that is espe-
cially amenable to automated theorem proving due mainly to the fact that resolution
has just one inference rule (and no axioms) to implement. For the time being we
consider resolution only for sets of clauses in which no variables occur, the so-called

ground clauses.

3.1 Definitions

Definition 3.1.1 A term with no variables is called a ground term and o clouse

composed of literals with no variables is called a ground clause.

Definition 3.1.2 With any set S of clauses there is associated a set Herb(S) of
ground terms, called the Herbrand universe of S. We define Herb(S) inductively as
follows: let T be the set of constants occurring in S (if S has no constants then let

T = {a}, where a is a constant symbol). Then Herb(S) is the least set of terms

10

CHAPTER 3. GROUND RESOLUTION 11

containing T' such that if £ is an n-ary function symbol occurring in S and ty,... t,

are elements of Herb(S) then ft; ...t, € Herb(S).

Definition 3.1.3 If S is any set of clauses and P is any set of terms then the satu-
ratiou of S with P, denoted P(S), is the set of all clauses obtained from the clauses
in S by substituting for each variable a term in P. Where P is the Herbrand universe
of a set of clauses S we call any element of P(S) a Herbrand instance of the clause

of S from which it was derived.

3.2 Resolution

Definition 3.2.1 If C and D are ground clauses, A € C, and A’ € D then (C —
{A}) U (D - {A'}) is a ground resolvant of C and D.

Producing resolvants of two clauses is the basis of our inference rule for first-order

logic so we need to show that the rule is sound.

Proposition 3.2.1 Let S be a set of ground clauses, let C,D € S, and let R be a
ground resolvant of C and D. If }=9 S then }=q SU{R}.

Proof: If R is a ground resolvant of C and D then R = (C — {A}) U (D - {A'})
for some ground literal A. Now suppose =9 S and for a contradiction suppose 2
does not model S U {R}. Clearly 2 satisfies C but not C — {A}, so 2 makes A
true. Similarly % satisfies D but not D — {A'}, so 2 makes A’ true; but this is a

contradiction.

CHAPTER 3. GROUND RESOLUTION : 12

Definition 3.2.2 If S is any set of ground clauses, then the ground resolution of
S, denoted R(S), is S together with all ground resolvants of all pairs of clauses in
S. The n-th ground resolution, R™(S), is defined inductively by: R°(S) = S and
R™1(S) = R(R™(S)).

Theorem 3.2.1 (The Ground Resolution Theorem) Let S be any set of ground
clauses. Then S is unsatisfiable if and only if Q€ R"(S) for some n > 0.

Given the Ground Resolution theorem (the proof will be along in a moment) we

now have a procedure for testing the validity of any variable-free sentence A:

1. Write —A as a set S of ground clauses.
2. Set n « 1.

3. While R*(S) # R™1(S) and O ¢ R™(S)

set n < n+ 1.

4. If O € R™1(S) then —~A is unsatisfiable and hence A is valid. Otherwise
R™(S) = R™*1(S) and R™(S) is satisfiable and so —A is satisfiable and A is

not valid.

Notice that if S is finite then step 3 of the procedure will not loop forever; there are
only finitely many distinct literals in S and hence there are only finitely many clauses

of those literals and hence not all of R%(S), R'(S), R*(S), ... can be distinct.

Example 3.2.1 Let p,q, and v be 0-ary predicate symbols. Then the variable free

sentence (p — q) = ((g = r) = (p = 1)) is a tautology.

CHAPTER 3. GROUND RESOLUTION 13

The negation of this sentence is equivalent to (-pV ¢) A(—~gV r) Ap A -r. So let
S = ([~p, 4, [~g, 7], [p], [-r])

and then

and

R*(8) = R(S) U([r], [-p],0)
and since [J € R?*(S) we stop and answer that R?(S) is unsatisfiable and have hence

refuted the negation of (p — q) — ((¢ = r) = (p = 7)) and have shown the sentence

valid.

Before we can prove the Ground Resolution Theorem we require the notion of a

partial truth valuation.

Definition 3.2.3 A partial truth valuation for L is a function v that maps a subset of
the set of all ground atomic sentences of L into {T,F}. A truth valuation is a partial
truth valuation which is total on the set of ground atomic sentences of L. We can
extend a partial truth valuation v to a partial function v that maps literals, clauses,
and sets of clauses to {T,F} in the following way. For a literal A we define:

f

v(A) if A is atomic
T if A=-B andv(B)=F
F if A=-Bandv(B)=T
| undefined if A = —B and v(B) is undefined.

For a clause C, 5(C) = T unless 5(A) = F for every literal A € C, in which case
9(C) = F. Finallyo(S) =T for a set S of clauses if and only if 5(C) =T for every
clause C € S and (S) = F if and only if there is a clause C € S for which v(C) = F.

CHAPTER 3. GROUND RESOLUTION 14

Note that #(0J) = F and that if O € S then 9(S) = F. Also note that © is a total

function with respect to either clauses or sets of clauses.

Lemma 3.2.1 If S is any finite set of ground clauses, then there is a truth valuation

v such that T(S) = T if and only if there is no n for which O € R™(S).

Proof: (=) Suppose 7(S) = T. By an analog of the proof of Proposition 3.2.1 it is
easy to see that: if 5(S) = T then 9(R(S)) = T. Thus, if 9(S) = T then 5(R"*(S)) =T
for all n € w, so O & R™(S) for all n € w.

(«<=) Suppose there is no n such that O € R™(S). Let T be the first R"(S) for
which R™*(S) = R*"*!(S), i.e. T is the terminating set of the resolution procedure.
We proceed by constructing a sequence of partial truth valuations that ends with a
valuation that assigns a truth value to all the literals in 7". This partial truth valuation

is then extended to a total valuation in an arbitrary way but still maps T" to T.

Let A,,..., A be all the distinct atomic formulas such that each A; or its com-
plement occurs in a clause of T and let vy be the empty partial truth valuation. From

v; we obtain v;4; by first letting
v;(B) if B € dom(v;)
Wit1 (B) - T if B= AH,]

undefined otherwise.

Now we take v;;; to be w; 1 unless there is a clause C € T such that w;;;(C) = F,

in which case we let
v;(B) if B € dom(v;)
Vi+1 (B) = F if B = A-H—l

undefined otherwise.

CHAPTER 3. GROUND RESOLUTION 15

At the end of this procedure we set

vp(A) if A is in the domain of v
v(A) =

F otherwise.

We claim that #(T") = T. The proof is by induction.
Clearly, 7o(T) = T because [J ¢ T and v is the empty partial truth valuation.

Now suppose there is a least stage, say ¢, where 7;,(T") = F. Then thereisa C € T
with 4;(C) = F. Notice that v; # w; because v; is set equal to w; only if w; maps every
element of 7' to T. From this we conclude that 7;(A;) = F. Now since 7,_1(C) =T
and 7;(C) = F we can see that A; € C and v;_; maps all the elements of C, except
A;, to F. Now because v; was not chosen to be w; there must be a D € T such that
w;(D) = F and thus —A; € D and ;1 maps all the elements of D, except —=A;, to F.
So the clause R = (C ~ {A;}) U (D — {—A;}) is an element of T because T is closed
under resolution. And @;_;(B) = F for all B € R. So ¢ is not the least stage where

7;(T) = F. This is a contradiction, thus 9(T") = T and v is total. B
Proof (of the Ground Resolution Theorem):

(<) Suppose that S is satisfied by 2; then it is clear by Proposition 3.2.1 that 2
also models R™(S), but f=q [, so O & R™(S).

(=>) By the foregoing lemma, let v be a truth valuation such that 7(S) = T. Now

from v we obtain a structure 2 that satisfies S.

Let the universe of our model 2 be Herb(S) and for each function symbol f in
the language of S let fy(t;,...,t,) = ft;...t,. Finally for each predicate symbol
p let (ty,...,t,) € pq if and only if v(pt;...t,) = T. Notice that A makes an

atomic sentence true if and only if v assigns the value T to that sentence. So v and 2

CHAPTER 3. GROUND RESOLUTION 16

“agree” on the truth values for the atomic sentences, therefore they must agree upon

all clauses in S and therefore on S itself and thus =9 S. B

3.3 First-Order Theorem Proving

We are able, so far, to determine the unsatisfiability of a set of ground clauses with
the ground resolution procedure. Here we show that to determine the unsatisfiability
of a set of arbitrary (not necessarily ground) clauses it is sufficient to examine a sct of
ground clauses that are Herbrand instances of the original set of clauses and determine

if that set is unsatisfiable.

Theorem 3.3.1 Let A be a universal prenex sentence and let S be A'’s representation
as a set of clauses; then A is unsatisfiable if and only if P(S) is unsatisfiable, where

P is the Herbrand universe of S.

Proof: (<) If U satisfies A then, since A is universal, 2 satisfies every Herbrand

instance of the matrix of A, so k=q P(S).

(=) Let A be Vx;...Vx,B where B is quantifier-free, and suppcse that there is
a model A of P(S). Let A’ be the sub-structure of 2 to just the elements of || that
are named by the members of P. The structure 2’ will make A true if }=q BJs| for
every s mapping each of the variables occurring in B to the members of |2’|. But the
elements of || are just those elements named by members of P so kg A because

':QU P(S) |

Lemma 3.3.1 A prenez universal sentence VX, ...Vx,A is unsatisfiable if and only

if some finite subset of P(S) is unsatisfiable, where S represents ¥x,...Vx,A as a

CHAPTER 3. GROUND RESOLUTION 17

set of clauses and P =Herb(S).

Proof: From the above theorem we know that Vx;...Vx,A is unsatisfiable if and
only if the set P(S) is unsatisfiable, and by The Compactness Theorem the set P(S)

is unsatisfiable if and only if some finite subset of it is. &

Lemma 3.3.2 A set S of clauses is unsatisfiable if and only if there is some finite

P C Herb(S) such that P(S) is unsatisjiable.

Proof: (<) Let P C Herb(S) be finite and suppose P(S) is unsatisfiable. Now P(S)
is essentially a set of Herbrand instances of A, where Vx; ...Vx,A is the sentence
that S represents. Since P(S) is unsatisfiable, from Lemma 3.3.1, Vx;...Vx,A is
unsatisfiable and hence S is unsatisfiable.

(=) A set of clauses represents a universal prenex sentence Vx; ...Vx,A where A is
in conjunctive normal form. From the previous lemma we know that Vx;...Vx,A
is unsatisfiable if and only if some finite set, say I', of Herbrand instances of A is
unsatisfiable. Each instance of A is again in prenex conjunctive normal form and I
is therefore essentially set of ground clauses. Let P comprise the elements of Herb(S)

that occur in I'. Now I' C P(S) and P(S) is unsatisfiable if I" is. B

Given Lemma 3.3.2 we now have a procedure to determine the satisfiability of a
set S of arbitrary clauses: we must search all the finite subsets of Herb(S) for a set
P such that the set P(S) of ground clauses is unsatisfiable. Of course we use ground

resolution to check P(S) for unsatisfiability.

At this point we have a procedure that will test for the satisfiability of any given
sentence of first order logic, where we first write that sentence in an equivalently-

satisfiable clausal form, say S. A drawback to this procedure is that we must generate

CHAPTER 3. GROUND RESOLUTION 18

asequence Py C P, C ... of finite subsets of Herb(S) with the property that ,¢., I°, =
Herb(.S) then in sequence perform ground resolution on P;(S), for 1 < i. When we
find a P; for which grcund resolution halts with an empty clause that P; is called
a proof set for S. Our procedure then is, in simple terms, to search out a proof sct
amongst the finite subsets of the Herbrand universe for the given clause. This search
may not end and even when it does the number of potential proof sets we have to
search through may be extremely large. In addition each ground resolution calulation
carried out at every stage of the above procedure may require exponential amounts

of time (in terms of the input size), as shown by Urquhart [Urquhart87].

Resolution (freed from the restriction to ground clauses) will not have this draw-
back. Resolution, it turns out, attempts to calculate the proof set of a set of clauses

as it resolves upon those clauses.

Chapter 4

Substitution and Unification

While ground resolution forms resolvants from ground clauses, the general resolution
procedure has to form resolvants out of clauses of literals that have occurrences of
variables. In the previous chapter we noted that resolution attempts to calculate the
proof set of a set of clauses. It is this part of the resolution procedure, the part
that deals with the variables, that generates a proof set. This sub-procedure, called
unification, is the process of finding substitutions that make two or more literals

identical.

4.1 Substitutions

Definition 4.1.1 A substitution @ is a function from a set of variables to a set of

19

CHAPTER 4. SUBSTITUTION AND UNIFICATION 20

a set of expressions defined by:

to if t is a variable

l(tlg) - (tné) if t is the expression 1ty ... t,.

Further, if t is a literal we define (—t)8 to be —(t6).

The need to apply a substitution to each element of a clause or to each element of
every member of a set of clauses arises. We write C and S8 for the sets {tf : t € ('}
and {D@ : D € S} respectively. From now on we write # instead of 8; no confusion

should arise from this shorthand.

If @ is a substitution such that xf # x for only finitely many variables x we
represent 6 by the set {x — x0 : x6 # x}. A set {x; — t1,...,x, — t,}, wherc

Xy, ..., Xy are distinct, defines a substitution 6 via:

20 — ti ifz = X,
z otherwise.

From this point forward we no longer make a distinction between a representation of
a substitution and the substitution itself; we write § = {x; — t;,...,x, — t,} and

refer to this set as a substitution.

It is clear that the substitution represented by {} is the identity function. If C'is
a clause and z,,...,z, are all the distinct variables that occur in C (in somec fixed

order) then the substitutions
c={2,— T1,...,2Zn > Tn}

and nc = {21 — Y1,...,2, — Yo} are called the z-standardization and the y-

standardization of C' respectively.

CHAPTER 4. SUBSTITUTION AND UNIFICATION 21

Lemma 4.1.1 Let 0 = {x; = t1,.... X, = t,} and 0 ={y, = uy,...,y,, = Un}.

Thenfoo={y,—muf:1<i<m}uUu{x;—t;:1 <t <nA (Vihgm(x: #;)}

Proof:

Let A={y,muf:1<i<m}U{x;=>t;: 1 <i<nA(Viigem(xi#y,)} Itis
sufficient to see that # o ¢ and A assign the same value to each of the variables
X1, 3Xn Y15+ -+» Ym- Let y; be an arbitrary one of the y’s. Then y;A = u;6 and
y;(foo) = (y;0)0 = u;6. Now let x; be an arbitrary one of the x’s that is not a y;

then x;A = t; and (x;0)0 = x,6 =t;. &

Definition 4.1.2 Let A be a set of atomic formulas or terms and let 6 be a substi-
tution such that t0 = uf for all t,u € A; then 6 is a unifier of the set A. Further if
0 is a unifier of A such that for any unifier A of A there exists a substitution o such

that A = o o 0 then 0 is a most general unifier of A.

We require the notion of a unifier for a pair of sequences. If (ty,...,t,) and
(uy,...,u,) are two sequences and 6 is a substitution such that t;§ = u;0 for each
1 < ¢ < n we say that 6 unifies the two sequences. As in Definition 4.1.2, if 6 is
a unifier of a pair of sequences such that for any unifier A of those two sequences

A = ¢ o0 then 0 is called a most general unifier of that pair of sequences.

4.2 TUnification

Unification is the process of finding a most general unifier for a set of formulas. We
proceed by showing that unifying pairs of expressions is sufficient, since a unifier of
a set can be calculated by considering the elements pairwise. Finally we provide a

unification algorithm for pairs of expressions and prove it correct.

CHAPTER 4. SUBSTITUTION AND UNIFICATION

[}
[&)

Lemma 4.2.1 Let (t1,...,t;) and (u,,...,uy) be two sequences most generally unifi-
able by 0 and let o be a most general unifier of ty10 and ug10. Then oo@ is a most

general unifier of (t1,...,ter1) and (uy, ... Ury).

Proof: There are two things to prove: that oof is a unifier and that it is most general.
Notice that t;60 = u;f for 1 < i < k so (t;0)0 = (w;0)0. Now (tg+18)o = (up6)o

because o unifies ti 160 and ug;6.

We now show that o 08 is most general. Let A be any unifier of (t,,...,t;) and
(uy,...,Uks1). The substitution A is also a unifier of (t;,...,t;) and (uy,...,u) so
there is a substitution « such that A = & 0§ (because ¢ is a most general unifier of
{t1,...,tx) and (u,,...,u;)). Now A also unifies txy; and ugyy so tyyfa = upfa
and hence « is a unifier of t;.10 and u,,0, so there is a substitution 4 such that
a = Boo (because o is a most general unifier of t;0 and u,4160). So A = (Boc)of =

Bo(co00) and o o0 is indeed most general. B

If we wish to find a most general unifier for aset {A;, ..., Ax} of expressions we can
look for a most general unifier of the two sequences (A, ..., Ax 1) and (A,, ..., Ag).
It is easy to see that a most general unifier of of the pair of sequences is a most
general unifier of the set and vice versa. So to calculate the most general unifier of
an arbitrary set of expressions it is sufficient to calculate the most general unifier of

a pair of sequences of elements drawn from that set in the above way.

We now present the algorithm for calculating most general unifiers of two expres-

sions.

CHAFTER 4. SUBSTITUTION AND UNIFICATION 23

Algorithm 4.2.1

{} ift=u

{t — u} if t is a variable and t does not occur
in u.

{u—t} if u is a variable, t is not, and u does

mgu(t,u) = < not occur in t

f,06, 10...00; ift =mnt;...t,, u = nu,...u, and
6.,; = mgu(tiOi...Oi_l,uiﬁl ...91;_1) fOT‘

FAIL otherwise.

\

We need to show both that this algorithm halts and that it halts with a most
general unifier of its inputs, when the inputs are unifiable, but first we require some

preliminary results about the algorithm and the substitutions that it produces.

To clarify the number of steps that mgu(%, u) takes we define an additional function

#mgu(t,u) as follows:

.

1 ift=u

1 if t is a variable and t does not occur
in u.

1 if u is a variable, t is not, and u does

] t, = .
#mgu(u) not occur in t

ki+ko+---+k, ift =mnt...t,, u =nu;...u, and
k‘i = #mgu(tiﬁi...ﬁi_l,uib’l...Oi_l)
for1<i<n

FAIL otherwise.

L
Where it is understood that the 8;s mentioned in the fou.,th case of the definition are

the substitutions calculated in the corresponding case of the definition of mgu. When

CHAPTER 4. SUBSTITUTION AND UNIFICATION 24

we refer to the number of steps in calculating mgu(t, u) we mean #mgu(t, u).

Let V(t) be the set of variables occurring in t, for convenience let V(t,u) =
V(t) UV (u), and let v(t,u) be the cardinality of V(t,u).! Further let N(t) be the
number of occurrences of non-logical symbols in t and let n(t,u) = N(t) + N(u).
Then we define an ordering on pairs of expressions by: (t,u) < (t/,u’) if and only if

either v(t,u) < v(t’,u’) or both v(t,u) = v(t’,u’) and n(t,u) < n(t’,0’).

Lemma 4.2.2 The ordering < on pairs of expressions is irreflexive, transitive, and

well-founded.

Proof: Irreflexivity. Since v(t,u) = v(t,u) and n(t,u) = n(t,u) it is not possible

that (t,u) < (t,u).

Transitivity. Let (t,u) < (t',u’) and let (t',u’) < (t”,u”). Since (t,u) < (t',u’)
CJfu(tua) <
< U(t”)

either v(t,u) < v(t’,u’) or both v(t,u) = v(t’,uv’) and n(t,u) < n(t’, v’
v(t’,u’) then v(t,u) < v(t",u”), and (t,u) < (t"”,u"), because -
If, on the other hand, both v(t,u) = v(t',u’) and n(t,u) < =

!
,ua

)
v(t', u')
(t',u’) then either

)
v(t', ') < v(t”,u"), in which case v(t,u) < v(t”,u”), or both v(t’,u’) =
and n(t’,uw') < n(t”,u”), in which case v(t,u) = v(t",u”) and n(t,u) < n(t”,\.x”).

Either way (t,u) < (t”,u”) and the ordering is transitive.

Well-foundedness. Suppose < is not well-founded; then there is an infinite de-
scending chain of pairs {tj,u;) > (tz,up) > ---. Since v(t;,u;) = v(te,ug) > -+
there must be an m such that v(t;, u;) = v(tm, uy) for all i > m. Since the sequence
of pairs is descending n(t; 41, uiy1) < n(t;, w;) for all ¢ > m; this is clearly impossible,

So < is well-founded. &

1Although v has been used as the name of a truth valuation previously we second it in this
Chapter, everywhere else it still refers to a truth valuation.

CHAPTER 4. SUBSTITUTION AND UNIFICATION 25

A substitution 8 is proper if whenever x occurs in tf then xf = x. The notation
rng* (6) stands for the set {x8|x# # x} and by V(rng*(#)) we mean the set of variables
that occur in any of the expressions in rng*(#). In the arguments below the terms
of crucial importantce are those of the form x6 where x6 differs from x, this is what

motivates the special notion of the range of a substitution rng*(8).

Lemma 4.2.3
1. V(mg*(6;06,)) C V(rng*(61)) U V(rng*(6)).

2. V(t0,uf) C V(t,u) UV (rng*(9)).

Proof: First part 1: let x € V(rng*(6; 0 61)); thus x occurs in y6,6, and y # y6,0,
for some y. Since x occurs in (y#6;)8, there must be a variable, say z, occurring in
y#;, such that x occurs in zf,. There are two possibilities: z6; = z or not. If 26, =z
then z == x and since z occurred in yf; the variable x occurs in y#;. Notice in this
case that x # y because otherwise x = yf, and x = x#, and xf; = x, so x6,6; = x
and then x ¢ V(rng*(63 0 6;)). So x is a member of V(rng*(6,)). If, on the other
hand, 26, # z then x € V(rng*(62)). |

Now part 2: let x occur in either tf or uf; then there is a z occurring in either t
or u such that x occurs in z6. Either zf = z, in which case z = x and x € V(t,u), or

z0 # z, in which case x € V(rng*(6)). B
Lemma 4.2.4 If 6 = mgu(t,u) then V(rng*(6)) C V (t, u).

Proof: The result is proved by induction on the length of a computation, recall that

the length of the computation of mgu(t,u) is #mgu(t, u).

CHAPTER 4. SUBSTITUTION AND UNIFICATION 2

1=

Suppose the result holds for all computations of length less than & and that 6 =
mgu(t, u) takes k steps. If k = 1 then @ is either {}, {t = u} or {u > t}. In any
case it is clear that the variables that occur in rng*(#) occur in either t or u. Now
suppose that £ > 1; then t and u must be pt; ... t, and pu,...u, respectively and

6 =6, 0---00;, where 6; = mgu(t;6, ...6,—1,w;6,...0;_) for 1 <i < n. Note that
V(rng*(@,)) g V(tigl VSN 9,'_1, u,ﬂl N Oi—l) for1 S) S n

because the computation of mgu(t;6; ...0;-1,u;6, ...0;,_,) requires fewer than k steps,
for each 1 < ¢ < n. To see that V(rng*(8)) C V(t, u) use Lemma 4.2.3(1) n— 1 times
to obtain

V(rng*(f,0---06;)) CV(rng*(61))U... UV (rng*(6,))

and note that V(rng*(6;)) C V(pt;...t;, pu; ... u;) because
6; = mgu(pt; ... t;,pu; ... u;), forl <i<n.

It is clear that V(pt;...t;,pu;...w;)) C V(pt;...t,,pu; ... u,), for 1 <i < n, so
V(rng*(0)) C V(t,u). A

Lemma 4.2.5 If § = mgu(t, u) then 0 is proper.

Proof: This proof, like the previous, proceeds by an induction on the length of a

computation.

Suppose that § = mgu(t, u) requires k steps to compute and that 6’ = mgu(t’, u’)
is proper for any computation requiring fewer than k steps. If k = 1 then the result
holds by the requirements of Algorithm 4.2.3 in its first three cases. Consider a
computation which has more than one step; then t = pt,...t,, u = pu;... u,,

6; = mgu(t;6,...60;-1,u;0,...6,;) for 1 <i<m,and 6 = f,0.--00,. Since #, and

CHAPTER 4. SUBSTITUTION AND UNIFICATION 27

#,.1 0+ 06, both must require fewer than k steps to compute they must be proper.

To demonstrate that 8, o - o 6, is proper let x occur in w#é, ... 68, for some term w.

Sub claim: x occurs in v#;...68,_1 for some term v. Towards a contradiction
suppose that x does not occur in vé;...60,_; for any v. Then, in particular x does
not occur in either t,0; ...60,_ 1 oruyl;...0,_1,ie. X € V(tn0;...00_1,u,6; ...60,_1).
Because 0, = mgu(t,6;...0,_1,un01...6,_1) and x & V(t,61...0, 1,06, ...60,1)
it follows that x ¢ V/(rng*(8,)) by Lemma 4.2.4. So if x doesn’t occur in v ...60,_4
and x ¢ V(rng*(6,)) then x can not occur in v#, ...#6, for any v but this is clearly
a contradiction because x occurs in wé; ...6,. So we have proved the sub claim and

that x occurs in v#, ..., _; for some term v.

Given that x occurs in v#, ...60,_; for some v and that 8,_; o--- o 6, is proper
x0, ...0n,1 = x. Given that x occurs in (wb), ...6,_1)0, and that 6, is proper x6, =

x. Sox6;...0,=x.1

Lemma 4.2.6 Ift =pt,...t,, u=pu;...u,, 1 <j<n, and
01' = mgu(t,ﬂl . .01;_1,11,;01 . .97;_.1), fOT‘]. S 1 S j

then (tié’l v Gi,u50, ... 91;*1> < (t, 11> fOT‘ 1<i<g.

Proof: Since 6;_, o--- 06, = mgu(pt;...t;_1,pu;...u;1) it follows that
V(rng*(@i—10---061)) CV(pty...ti, puy ... u;_q),
by Lemma 4.2.4, and in turn
V(pt:...ti-1,pur...u;) C V(t,u),
so V(rng*(6;—y 0-+-06:)) C V(t,u). Clearly V(t;,u;) C V(t,u), so

V(ti91 PN 91;_1, u,-91 e 01'-—1) g V(t, 11),

CHAPTER 4. SUBSTITUTION AND UNIFICATION

[]
&4

{

by Lemma 4.2.3(2).

IfV(t6,...6,1,u6...6,_;) C V(t,u) then (t;0,...60;_1,u;0,...6;,) < (t,u) .
On the other hand if V(t:0, ...6;,1,w0;...6;,_1) = V(t,u) then, since ;_;0--.06, is
proper (Lemma 4.2.5 with 6;_; 0 - -08; = mgu(pt; ...t;_1,pt; .. . t;1)), t;f, ... 6;_ =
t; and uw;6, ...0;_; = u; because if x occurs in either t; or u; and if x0,...6;.1 # x

then x doesn’t occur in either t;0;...6;,_; or u;8;...6,_; but then
V(t,@l e 01'_.1, ui01 - 0,;1) # V(t, U).

Since t; and u; do not contain an occurrence of p that occurred in t and u it follows

that n(t;, u;) < n(t,u) and (t;6,...6;_1,u;6,...0,_1) < (t,u). A

Theorem 4.2.1 (The Unification Theorem) The algorithm mgu(t,u) halts; and
t and u are unifiable if and only if 0 = mgu(t,u) is a most general unifier of t and

u.

Proof: Suppose that for some pair of expressions the algorithm does not halt.
Then there must be a least pair, with respect to the ordering < of pairs of ex-
pressions, (t,u) say, for which mgu(t,u) does not halt. Because mgu(t,u) does
not halt, t must be It,...t,, and u must be lu;...u, and there must be a least k,
1 < k < n, for which mgu(tgf, ...60k_1,uxb; ...0_,) does not halt and 0,,..., 0k

are mgu(ty, uy),...,mgu{te_16;...8_2,ux_16;...6k_2). By Lemma 4.2.6
(tk01 e Hk,—-l, gl ... 9k~1> < <t, u),
but this contradicts the leastness of (t,u).

Now that we have shown that mgu(t, u) must halt, we still need to verify that

when # = mgu(t, u) then 0 is a unifier and in fact is a most general unifier.

CHAPTER 4. SUBSTITUTION AND UNIFICATION 29

Case 1: t = u. In this case # = {} = mgu(t,u). Any unifier A of t and u can be

expressed as Ao {} so {} is a most general unifier.

Case 2: t is a variable and u # t. In this case § = {t > u}. Note that the
variable t does not occur in u. Let A be any unifier of t and u, note that t6 = u so

tfA = ul = uf) and so A = X o8 and hence # is most general.
Case 3: u is a variable and t is not. This case is analogous to Case 2.

Case 4: t = lt;...t,, u = lu;...u,, and 6; = mgu(t;6;...6;_1,u;0;...0;_) for
1 <1 < n. We need to show that 6, o...o0 6 is a most general unifier of (t;,...,t,)

and (uj, ..., u,) but this is clear by induction using Lemma 4.2.1.

Finally we show that if mgu(t,u) returns a FAIL result then t and u are not
unifiable. Suppose to the contrary that their is a pair of expressions that are unifiable
but the algorithm fails to produce a unifier. Now since there is at least cne such pair
let the pair (t,u) be least such that t and u are unifiable but mgu(t,u) = FAIL. If t
or u is a variable then there is just one way for the algorithm to fail, that is for t to
occur in u (or the other way around, the cases are analogous) and t s u. If this is the
case any would-be unifier, 6 say, would map t to some term v but then v would occur
within uf so § couldn’t possibly unify t and u. The other case in which the algorithm
can produce a FAIL result is if in the calculation of mgu(t, u) we must first calculate
mgu(t;6;...0;_1,t,0,...0;_1) and the later calculation results in a FAIL result but this
is clearly impossible by our choice of (t, u) because (t;0;...6;,_1,t6,...60;_1) < (t,u),

and (t, u) was supposed to be least. W

Chapter 5

Resolution

In this chapter we present the resolution procedure and show that for any particular
set S of clauses this procedure will demonstrate the unsatisfiability of S if § is un-
satisfiable. We also live up to our promise to demonstrate how unification calculates

a proof set.

5.1 The Resolution Procedure

The resolution procedure is similar to the ground resolution procedure. In fact, all we
must do is extend the definition of resolvant so that we may calculate the resolvant

of two arbitrary clauses, not just ground clauses.

Definition 5.1.1 Let C and D be two clauses; also let L and M be such that L C C
and M C D. Further let N be the set of atomic formulas A such that either A

or the complement A’ is a member of Léc U Mnp. Also suppose that N is most

30

CHAPTER 5. RESOLUTION 31

generally unifiable by on and that L&con and Mnpon are singleton sets containing

complementary literals; then
(C - L)écO’N U (D - M)T]DO'N

is a resolvant of the clauses C and D. If S is a set of clauses then R(S), the resolution
of S, 15 S together with all possible resolvants of every pair of clauses in S. We also

define the n-resolution R"™(S) inductively by: R°(S) = S and R*(S) = R(R"1(S)).

Note that in this definition the role of of the z- and y-standardizations, {¢ and 7np, is
simply to ensure that the variables that occur in C'és and Dnp are disjoint. Ensuring
that the variables are disjoint guarantees that we do not mistakenly bind logically

different variables to the same understood universal quantifier.

Given these definitions we may go on to describe the resolution procedure. To
demonstrate the validity of a sentence A we:

1. Convert —A to a set S of clauses, as outlined in Section 2.3.

2. Let 2 «+ 0.

3. While 0 ¢ R*(S) do i « i+ 1.
If we manage to find an ¢ for which O € R*(S) then we have demonstrated the
unsatisfiability of the set S of clauses and hence the validity of A.

Notice that the resolution procedure does not constitute a decision procedure for

first-order logic, i.e. if A is not valid, then the procedure will never halt.

Before we justify the resolution procedure the following example should make the

reader reasonably familiar with the way the algorithm works.

CHAPTER 5. RESOLUTION 32

Example 5.1.1 Every group of exponent two is Abelian.

The example is from group theory, actually a fragment of group theory—we will not
require axioms about inverses. We show, with the standard axioms of group theory,
that: every group of exponent two is abelian, i.e. if 2% = e for every element x of the
group tiuen y-z = z-y for every y and z in the group. First we formalize group theory
in a first order language. Our language consists of a 3-ary predicate symbol G and a
constant symbol e. The idea is that G(z,y, z) should represent z - y = z, and that e

is the group identity.
The associativity axioms of group theory are then represented by:
G(?J, by, U) A G(y, Z, ’l)) A G(u’ Z, ’I.U) - G(IL', v, ’LU)
G(z,y,u) A G(y,z,v) A G(z,v,w) = G(u, z,w).
Now we represent the identity axioms as:
G(z,e,)
Gle,z,x).

The axiom G(z,z,e) represents the fact that the group is of exponent two. Finally

we can represent T -y =y - T by
G(z,y,z) = G(y, z, 2).

The sentence A we are attempting to prove by the resolution procedure is an im-
plication whose antecedent is a conjunction of the associativity axioms, identity ax-
ioms, and axioms expressing that the group is of exponent two. The consequent of
A is G(z,y,2) — G(y,z,z). After preparing the sentence —A as indicated in Sec-
tion 2.3 we obtain a conjunction of the associativity and identity axioms together

with G(a, b,c) A =G(b,a,c), the Skolemized negation of the consequent. So the set of

CHAPTER 5. RESOLUTION

clauses on which we perform resolution is

([=G(z.y.u), =Gy, 2,v),~G(u, z,w), G(z,v,w)]
~G(z,y,u), ~G(y, 2,v), ~G(z,v, w), G(u, z,)]
[G(z, e, 2)]
[G(e, z, 7))
Gz, z,¢€)]
IG(a,b,c)]
[=G(b,a,0)]

33

(5.1)
(5.2)
(5.3)
(5.4)
(5.5)
(5.6)
(5.7)

In this example we wili not calculate all possible resolvants of the clauses at each

stage; this would generate far too many clauses to serve as a illuminating example.

Instead we will demonstrate a sequence of resolution steps that results in the empty

clause. We will also not explicitly form both the z- and y-standardizations of the

clauses we are resolving upon. We instead will ensure that the variables that occur in

each clause are disjoint from the variables occurring in the other clause. We present

a resolution step in the following way

C
D

oN

(C— L)Ycon U (D — M)npon

underlining the atomic formulas in C and D which comprise the subsets L and M in

the definition of resolution, Definition 5.1.1.

CHAPTER 5. RESOLUTION 34

Resolving the z-standardization of (1) with (7)
iﬂG(ml) T2, :1:4): ﬁG(-’1:2: I3, :1:5)7 ﬁG(:I:-’lv I3, -7:6)7 G(ﬂ:], T5, IG)]
{ﬂG(bﬂ a, C)J

{z1— b,z5 = a,z6 — ¢}

[ﬂG(ba T2, :1:4): ﬁC;'(:I:% I3, (l), ﬂG(:Ella I3, C)]

And resolving this with the y-standardization of (5)
[~G (b, z2, z4), °G (22, 23, @), °G(z4, 3,)]
[G(y1, 91, €)]
{y1 = b, zo > b,z4 — €}
[-G(b, z3,a), ~G (e, 3, c)].
And resolving this with the y-standardization of (4)
(=G (b, z3,a), G (e, 3, ¢)]
[Gle, y1, 1)

_{:1:3 = C, Y C}

[—G(b,c, a)].
Now we resolve this with the z-standardization of (2)

(=G (21, T2, T3), °G (T2, T4, T5), G (21, T5, T6), G(3, x,,,xm)]
[—G(b,c,a)]
{z3+ b,z4 — c,z6 — a}

(—G(z1, T2, b), "G(z2, ¢, T5), ~G(x1, T5,a)).

And then this with the y-standardization of (5)
g—'G(zl: Iy, b)'! ﬂC;(:l;:h c, $5)1 ﬁG(:l‘:l y L5, (L)]
fG (yla Y. 6)}
{x2 > ¢, y1 = ¢, 5 — €}

[-G(z1,¢,b), ~G(a1, ¢,).

CHAPTER 5. RESOLUTION

And this with the y-standardization of (3),
[-G(z1,¢,b), "G(z1,€,a)]
Gy, e,91)]
—{z; — a,y — a}
[-G(a, ¢, b)].
Now we resolve this with the z-standardization of (1),
[(~G(z1, T2, T4), "G(x2, T3, T5), "G (T4, T3, Te), G(Z1, T35, Tp)]
[2G(a,c,b)]

{z,— a,z25 — ¢, z6 — b}

[-G(a, z2, T4), ~G(z2, x3, C), "G (Z4, T3,b)].
And this with (5)
[~G(a, zq, 24), ~G(z2, T3, ¢), "G (z4, T3,)]
Gy, 31, ¢)]
—{z9 > a,z4 — e,1n — a}
[-G(a, z3,c), ~G(e, z3,b)].
And this in turn with (4)
[~G(a, x3, ¢), ~G(e, 3,)]
[G(e, y1,3)]
—{z3+> b,y1 — b}

[—G(a, b, ¢)].

Finally this with (6)
[~G(a, b, c)]

[G(a,b,¢)]

—{}
0.

35

CHAPTER 5. RESOLUTION 36

5.2 The Resolution Theorem

Here we provide the proof that justifies the resolution procedure of the preceding

section; the result is in [Robinson65).

Theorem 5.2.1 (The Resolution Theoremn) Let S be a set of clauses and P be a
subset of Herb(S). Then R(P(S)) C P(R(S)).

Proof: Let A € R(P(S)); then either A € P(S), in which case A € P(R(S)) because
S C R(S), or A is a ground resolvant of two clauses, say C and D, in P(S). Now
C = C'a and D = D' where C’' and D’ are both elements of S and « and 3 are the

substitutions {x; — t1,...x, — t,} and {y, = uy,...y,, = u,}, where x,,...,x,
are all the variables occurring in ' and y,...,Yy,, are all the variables occurring in
D’ and further that tq,...,t,,u;,...,u,, are all elements of P.

Since A is a ground resolvant of C' and D there are literals A € C' and B € D that
are complements and A = (C — {A})U (D — {B}). Note that A € C'a and B € D'f3
so there are sets L C C’ and M C D' such that La = {A} and Mg = {B}.

Let 8 = {1 t1,...,2, = t,, 51 = Uy, ..., ¥m — Uy}; then we can see that
A= (C"— L)c6U (D' — M)npb, where £ = {x; = z|,...,X, — 2, } and npy =
{y1 = ¥1,--,¥m = Ym}. It is clear that 6 is a unifier of N the set of atomic
formulas such that they or their complements occurs in L€ U M7y, So there is
a most general unifier o of N and 8 = A o o for some substitution A. Now let
B = (C' - L)¢cro, U (D' — M)npo, and note that B is a resolvant of C' and D’ so
B € R(S). Notice that A = B and that A maps all of the variables that occur in I3
to elements of P so A € P(R(S)). B

Corollary 5.2.1 R*(P(S)) € P(R™(S)).

CHAPTER 5. RESOLUTION 37

Proof: The Resolution Theorem is the n = 1 case. Now suppose that R¥(P(S)) C
P(R*(S)) and consider R¥*'(P(S)). Now

RM(P(S)) = R(R(P(S)))
and R(R*(P(S)) C R(P(R*(S))) because of the induction hypothesis and the easily
verifiable fact: A C B = R(A) C R(B). Now

R(P(R*(S))) € P(R(R*(S)))

because of the Resolution Theorem so R¥*1(P(S)) C P(R**1(S)). o

Theorem 5.2.2 (Completeness for Resolution Theorem Proving) If a set of

clauses S is unsatisfiable then [0 € R™(S) for some n < w.

Proof: If S is unsatisfiable, then by Lemma 3.3.2 there exists a finite P C Herb(S)
and an n < w such that [0 € R"(P(S)). By application of Corollary 5.2.1 to O €
R*(P(S)) we obtain 0 € P(R™(S)). Natice that if 0 € P(R™(S)) then O must be a
member of R*(S). &

Theorem 5.2.3 (Soundness of the Resolution Rule) If o C, Eao D, and R
is a resolvant of C' and D then =y R.

Proof: Since R is equivalent to a universal sentence, if we show that 2l satisfies every
ground instance of R then we will have shown that [=o R. Notice that each ground
instance of K can be obtained by applying a substitution, A say, to R. Thus if o RA

for every substitution A then [=q R.

Let 2 make both C' and D true; also let A be an arbitrary substitution such that

R\ is a ground clause. From the definition of a resolvant

R=(C - L)con U (D — M)npoy.

CHAPTER 5. RESOLUTION 38

Since A makes C' and D true it also makes Ccon and Dnpoy true; further 2 makes
CéconA and DnponA true as well. It may happen that ClconA and Dnpoy A are
not ground clauses so select an arbitrary substitution, v say, such that Cécan v/
and DnpoyAv are ground clauses. It is easy to see that R is a ground resolvant of
CéconAv and DnponyAv. Proposition 3.2.1 now produces that [=o R, but recall
that A was arbitrary so this holds for all substitutions A such that R\ is a ground
clause. So we may now conclude that F=q R, because 2 satisfies every ground instance

of R.

5.3 The Role of Unification in Resolution

Recall that a proof set P for a set S of clauses is a set of ground terms, in the
language of S, such that the Ground Resolution Procedure terminates after n steps
with O € R™(P(S)). It was previously mentioned that unification calculates a proof
set for a particular set of clauses; this section is intended to justify that claim. But,

we must first introduce the notion of a deduction.

Definition 5.3.1 A deduction (ground deduction) of a clause C,, from a set S of
clauses is a sequence C1,C,, ..., C, of clauses such that each C; is either an element
of S or a resolvant (ground resolvant) of C; and Cy, for 1 < j,k < i. A deduction

(ground deduction) from S ending in O is a refutation (ground refutation) of S.

Theorem 5.3.1 There is a deduction of C from S if and only if C € R™(S) for some

< W.

Proof: (=) Let Cy,...,C, = C be a deduction of C from S. Now we show that
C; € R*(S), by induction on i. Clearly Cy € S and so Cy € R°(S). Suppose that C;

CHAPTER 5. RESOLUTION 39

is in R*(S). Since C;,, is either an element of S, in which case C;11 € R**1(S), or
Ci41 is a resolvant of C; and Cy, with 1 < j,k <4+ 1, in which case Ciy; € R*1(S).
So Cl, ey Cz'+1 € Ri_H(S).

(<=) We use induction on the number of applications of R. If C' € R%(S) then C € S
and hence the sequence C is a deduction of C from S. Now suppose that D € R™(S)
implies that there is a deduction: Dy, ..., D,, = D. Let C be an element of R™*1(S)
that is not in R™(S), thus C must be a resolvant of two elements D’ and D" of R™(S).
Since D' and D" are elements of R™(S) there are deductions: Dj,...,D] = D' and
Df,...,D{ = D", but then D},...,D; ,DY,...,D},C is a deduction of C. B

Corollary 5.3.1 There is a refutation of S if and only if 0 € R™(S) for somen < w.

Let P be a set of terms; a P-instance of an expression t is tA where A is a
substitution with rng(A) C P. A P-instance of a clause C is {AAA € C} where
rng(A) C P. A P-instance of a set S of clauses is {CA|C € S} with rng(A\) C P.
Notice that the saturation of a set S of clauses with P is the set of all P-instances of

every clause of S, specifically P(S) = {CA|C € S,rng(\) C P}.

Let Cy,...,C, = [0 be a refutation from S and let o,, ..., o, be substitutions such

that o; is the identity function if C; € S, and if C; is a resolvant of C; and Cy, where
Ci = (C; — L)¢,on U (Dy — M)nc,on

and 1 < 4,k <1, then o; is op.

We obtain a proof set for S is the following way. First, if the language of S has
no constant symbols, augment the language with a new constant symbol. Second, let

P, = {a}, where a is any constant symbol from the language of S. Finally, for : < n

CHAPTER 5. RESOLUTION 40

let
P; = {t|t = x0;1, A for some variable x and some A such that rng(\) C P, }.

We claim that P, is the required proof set for S. Observe that P; C P, for 1 < i <
1<n+1.

To show that P; is a proof set we exhibit a ground refutation from P (S). Let
¥; be a sequence comprising all of the Pj-instances of the C;. We need to show
that the sequence obtained by concatenating sequences ¥; through X,, we denote
this concatenation of sequences as ¥,,...,%,, is a ground refutation, i.e. &, = [
We show this sequence is a ground refutation by induction on the length n of the
resolution refutation of S. Observe that Cy € S; hence any element of X, is in P, (S)
so ¥, is a ground deduction. Now suppose that ¥,,...,3; is a ground deduction
and let C;,, be any element of ¥;;,. Since C},, is a Pgyi-instance of Ciyy then
Cii1 = CrpA, with rng(A) C Py, If Cryq € S then Cr A € Py (S) € Pi(S) and
hence Cj ., € Pi(S), s0 ¥y, ..., Ek41, Ck41A is ground deduction of Ci A from Pi(S).
If Cyq1 & S then

Crs1 = (Cr — L), 0541 U (Cr — M)1c,, Okt1

and

Cin1A = (Cr = L), 0611 AU (Cry — M), Okp1 M.

To conclude the argument we show that Cj , is a ground resolvant of Cié¢, 0441 A and

CNe,, 0k+1A and that Ciée,0r1A and Cpne, ok A occur in 3 and 3, respectively.
T’ m + t k+ T’ m T

Because of ok, ’s action on L and M (Léc,0k+1 and Mg, 0k are compiementary
k+ 19k+ m ekt
singletons) and because A makes any clause to which it is applied a ground clause

Ci412 is indeed a ground resolvant of Ci{c,0x41A and Cne:,, Tk 1A

CHAPTER 5. RESOLUTION 41

It remains to show that rng(X o o410 §¢,) € P, for if this is the case then
Ci€¢, 0k 1A occurs in the sequence ;. Let t € rng(X o oxyq © €¢,); since &g, only
renames variables this is the same as saying that t = xox 1A, for some variable x.
Observe that rng(A\) € Py so t = x0,41 A is in Py, by the definition of P;. Since
[< k + 1 the term t is also a member of F,. We have demonstrated that Ci{¢, o1

occurs in ;. Similarly C.1e,, 0k 1A occurs in X,

Since the choice of Uf |, was arbitrary we in fact have that ¥,,...,3;; is a

deduction from P (S).

Finally, since C,, = [and any PF,-instance of [J is (1, the ground deduction
¥4,..., %, is a ground refutation of P(S).

5.4 Conclusion
We conclude this thesis with an example that demonstrates that Resolution is indeed
an improvement over the saturation methods described at the end of Chapter 3.

For this particular example we drop the parentheses for functions, with the un-
derstanding that the reader could readily provide them if required. We consider the

following set of clauses:

([P(a)], [=P(z), P(fz)], [=P(f*"a)]).

First we will demonstrate the invalidity of this set of clauses with Resolution.

CHAPTER 5. RESOLUTION 42

Resolving the second clause with itself, for example yields
[-P(z), P(fz)]
[=P(y), P(fy)]
—{z — fy}
[=P(y), P(ffy)]

and then resolving this resolvant with itself yields
[=P(z), P(f fz)]
[=P(y), P(f fy)]

{z — fy}

[=P(y), P(ffffy)]-

It is easily seen that there is a deduction of length n + 1:

[ﬂP(z),P(fx)],[ﬂP(x),P(ffz)],...,[ﬂP(w),P(f'z"a:)]

where each clause in the deduction is a resolvant of two copies of the immediately
prior clause, one of which has had all of its variables renamed y. Also note that in
each case the substitution is of the form {y — f2*(z)}. Hence there is a refutation of

length n + 5:

[“P(.’L‘),P(f.’l})],[‘lP(:L‘),.P(ff:l‘)],,[ﬁP(IL‘)P(fznl')],
[P(a)], [P(f*a)), [P (f*a)], 0.

Consider a ground resolution proof from the same set of clauses. The first thing
to notice is that because we must saturate the set of clauses we are interested in
before we start producing ground resolvants we will be unable to achieve the same
“doubling up” that occurred in the resolution case. We require clauses of the form

-P(f*a), P(f¥*'a)] for 0 < k < 2¥ — 1. A refutation then takes on the form:
)

[=P(a), P(fa)l, [~P(fa),P(ffa)],[—P(a), P(ffa)l,[~P(ffa)P(fffa)l,
.o, [PP@)P(f¥a)], [P(a)], [P(f*a)], [~P(f*a)], (1.

CHAPTER 5. RESOLUTION 43

This refutation is of length 2%} + 3. It is clear that resolution is an improvement
over ground resolution in terms of length of refutation, at least in this particular case.
And, by Corollary 5.2.1 it is also clear that resolution could not have a longer shortest

refutation.

With the method of the last section we can calculate a proof set of the above set

of clauses from the resolution, repeated here for convenience

[~P(z), P(fz)],[=P(z)P(ffz)],...,[~P(z), P(f*z)],
[P(a)], [P(f*a)], [-P(f*a)], 0.

Since a is the only constant in our language P45 = {a}. Let C1,C,...,Cphis be
the above refutation. Then #;, the unifying substitution for each Cj, is {y +— szx}
for 2 < 7 < n+ 1. The substitutions 6y, 8,,2, 0,43, 0nta, and 6,5 corresponding to
clauses Ci,Chi2, Cria, Cnia, and Cpys are {},{},{z + a},{}, and {} respectively.

So we obtain, by the calculation in the last section:

Poys = {a}
Powa = {a}
Prnis = {a}
P2 = {a}
Py = {a}

P = {a, f2n~1a}

Pn_l — {a’ f2n»2a, f2n-1a’ fzn—1+2n—-2a}

P, = {a,f2a,f4a,...,f2"'2a}
P = {a,fa,f%a,...,f¥a}.

And, this is exactly the proof set that was required in the previous ground resolution

CHAPTER 5. RESOLUTION 44

example. To see that P; is {f*a|0 < k < 2™ — 1} observe that for 1 < & < n that
P, = Poyy U {f"** 'a|f*a € P}. This doubles the number of elements in each
successive set Py because at each stage we are adding a distinct power of 2 to the
exponent of f. There is one element in F,;; and n doublings to get to P, so there

must be 2" elements in P;. So P, is indeed the required proof set for this example.

Considering the improvement that resolution has over the previous methods of
automated theorem proving one may legitimately ask why resolution isn’t actually
used by researchers to solve problems. While resolution is a dramatic improvement
over the level-saturation methods that went before, it is generally held that resolution
is also inadequate to solve the kinds of problems such people might want to present
to it. The research that followed Robinson's result at first attempted to refine the
resolution rule (the calculation of resolvants) while maintaining logical completeness.
These improvements were still inadequate. Later research went in the direction of
sacrificing the completeness of the method for computational efficiency. In particular
the Prolog programming language has had some success. Now research on resolution-
based automated theorem proving continues with these two disparate foci: slow but

complete methods, and somewhat faster but incomplete methods.

Bibliography

[Baaz92] Baaz, M. and Leitsch, A., Complexity of resolution proofs and function

introduction, Annals of Pure and Applied Logic, 57(1992), 181-215.

[Davis60] Davis, M. and Putnam, H., A computing procedure for quantification the-
ory, Journal of the ACM, 7(1960), 201-215.

[Enderton72] Enderton, H., A Mathematical Introduction to Logic, Academic Press,
Orlando, 1972.

[Fitting94] Fitting, Melvin, First-Order Logic and Automated Theorem Proving,
Springer-Verlag, New York, 1994.

[Godel34] Godel, K., On Undecidable Propositions of Formal Mathematical Systems,
Institute for Advanced Study Report, 1934.

(Loveland79] Loveland, Donald W., Automated Theorem Proving: A Logical Basis,
Elsevier North-Holland, Amsterdam, 1979.

[Paterson78] Paterson, M. S., and Wegman, M. N., Linear Unification, Journal of
Computer and System Science 16(2), 158-167.

[Prawitz60] Prawitz, D., An improved proof procedure, Theoria 26(1960), 102-139.

45

BIBLIOGRAPHY 46

[Robinson65] Robinson, J. A., A machine-oriented logic based on the resolution prin-

ciple, Journal of the ACM, 1(1965), 23-41.
[Shoenfield67] Shoenfield, J., Mathematical Logic, Addison-Wesley, New York, 1967.

[Urquhart87] Urquhart, A., Hard examples for resolution, Journal of the ACM,
34(19£7), 209-219.

