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Abstract

Camouflaged object discrimination was studied with two objectives: to develop a model of
object discrimination, and to develop a neuroelectric index of camouflaged object discrimination.
Scalp potentials were recorded for 8 second intervals in two conditions. In the experimental
condition subjects, 3 female and 3 male right-handed university students with no known
neurological disorders, ages 23 to 47, viewed images depicting target objects embedded in a
camouflaging background that delayed target discrimination. Subjects signaled discrimination by
blinking. 1n a control condition subjects were instructed to blink at will. Linear inter-channel
association within theta band EEG was estimated using cross-comrelation and coherence
analyses; general association, using mutual information analysis. Correlation and coherence
increased over the 1 second interval preceding discrimination, between multiple regions with a
larger increase between more widely separated areas, and an inverse relationship between
association and separation. Associations initially included occipital and left temporal regions,
developing into a bilateral pattem involving left and right frontal and temporal areas, and
evolving into an organization, immediately prior to discrimination, that included bilateral occipital,
temporal, central, frontal and prefrontal regions. Mutual information showed a similar pattem,
indicating a strong linear component to interregional association. The Discrimination index was
defined as the ratio of cross-comrelation mean to variance. The index increased by 78%
immediately prior to discrimination in the picture condition, and decreased by 11% over the
same interval in the control condition. A model is presented, according to which a unitary
percept is the €mergent result of a process of self-organization within a network of interregional
signaling in which information interchange between muiltiple and wide-spread cortical regions in
successive iterations accomplishes a recursive series of transformations of the original retinal
representation, through which elementary features are bound into a population of successively
more complex ensembles, which are in tum selected according to the goodness of match with
memory templates. A successful match terminates the iterations, accomplishing the target-
background discrimination. The model suggests a dynamical system within which the pattem of
interareal signaling, driven by energy relaxation, self-organizes in order to coordinate the

processing resources within multiple and widespread cortical regions.
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The Secret Sits

We dance round in a ring and suppose,
But the Secret sits in the middle and knows.

Robert Frost, 1942
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| Introduction



1 Overview

The subject of this work was the connection between the process of mental model
creation, and the underlying neuronal events. The phenomenon that was studied was the
discrimination of a camouflaged object from its background. Such discrimination, it is
suggested, involves to the formation of a mental model conceming the relationship of the target
object and its background.

One approach to the study of model creation was taken by the Gestalt school of
Psychology, which had its beginnings in Germany in the late nineteenth century. In 1890,
Christian Ehrenfels discussed the "Gestalt qualities” of a perception. Ehrenfels questioned how it
was that certain perceptual experiences could maintain their form, or gestalt, in the face of
changes in sensory qualities (Leahey, 1987). An example is the perception of a melody as being
essentially unaltered through transpositions of key. Gestalt psychology challenged the
reductionist model of Wilhelm Wundt's structuralism, according to which complexes could
usefully be analyzed into component parts. According to Gestalt psychological teaching,
meaning emerges from the organization of the component parts of a perceptual experience.
Consequently, such meaning is lost when the experience is analyzed into its components.

Gestalt psychology posited a number of rules of organization. One such rule is closure.
As an example of closure, the image of an incomplete circle may nevertheless be percieved to
represent a circle, rather than an arc segment. The arc and the background, and the relationship
between them, organize to form a gestait, a whole, out of which emerges the perception of the
circle. This process, by which the interrelationships among the elements of the image give rise
to a unitary percept can be viewed as an example of model creation. The model that is formed,
on the basis of the immediate sensory data together with prior experience, is that of a complete
but occluded, circle.

ivan Paviov in 1935 criticized Gestalt psychology for its idealistic basis, which he
suggested was mentalistic and lacking in a physiological foundation (Brennan, 1991). Gestalt
psychology addressed this criticism with the concept of isomorphism, a correspondance between
the structural relationships in the perceptual field of an individual, and the underlying electrical
brain field. While the perceptual field is evoked by sensory activity, the brain field is the result of
electrochemical processes. The exact nature of this isomorphism has however remained
obscure (Leahey, 1987). Karl Lashley expressed the question as "how [do] the specialized areas
of the cerebral cortex interact to produce the integration evident in thought and behavior”. The
present study explored one facet of this question, the connection between the perceptual

phenomena and underlying neuronal events during the process of model creation.



Such model creation occurs chronically and automatically throughout our interactions
with our environment. At a perceptually simple level this process is involved in the circle
completion phenomenom. At a more compiex level model creation is involved in the perceptual-
cognitive process of visually discovering an object that is initially indistinguishable from a
camouflaging background. In the one case the model is that of an occluded circle. In the other
case the model is that of the forms and comresponding identities of the initially camouflaged
target and its background.

Traditionally, studies of brain function have involved the recording of EEG responses to
stimuli whose physical characteristics change between conditions. In contrast, the present study
used an unchanging stimulus, which however was designed to evoke a changing perception. it
was to this changing perception, of the constant stimulus, that brain electrical activity was
recorded. EEG signals were recorded while a subject performed the task of discriminating a
camouflaged target. This task will be refered to as object discrimination. By object
discrimination is meant the phenomenon that occurs when, after a period of visual examination,
an individual is able to eventually distinguish a target object from within the context of a visual
embedding matrix intended to have the effect of camouflaging the target, and to then identify the
target as belonging to a particular semantic category. As an example, an initially indecipherabie
image might eventually be recognized as representing a bird sitting in grass (Figure 2.1). The
image, which is first interpreted in one way, later comes to be interpreted in a different way. This
study aims to identify the neurophysiological events that are associated with such shifts in
interpretation to an unchanging stimulus. An experiment will be designed that will provide the
conditions under which such discrimination can take place. The results of this experiment will be
used to develop a description of the neural activity underlying object discrimination.

The direction taken in this work was determined in part by the findings of previous
studies of both an empirical and theoretical nature. Empirical studies include investigations of
brain function from two general methodological approaches. The first approach emphasizes the
study of signal properties, and in particular the correlational structure, of single cell activity,
during tasks involving visual perception. The second, complementary approach, through the
study of single-cell and field potentials, and through the study of the effects of lesions,
emphasizes the delineation of the anatomical and functional systems involved in the object
discrimination process. Theoretical work includes a number of models which have been
proposed to account for visual perception in terms of cortical integration. Models that will be
discussed in Section 3 of the present Unit include the reentrant cortical integration (RCI) model
developed by Finkel and Edelman (1989), and the convergence zone framework proposed by
Damasio and Damasio (1993). Elements of these models, which view perceptual integration

from the perspective of interregional organization, will be shown to be subsumed by a more



general description. According to this proposed description, the integration of perceptual
experience is the outcome of a process of cortical self-organization driven by a mechanism of
energy relaxation. This mechanism provides a natural direction for the evolution of the
configuration of interegional signaling, without requiring the invocation of higher level
coordinating mechanisms to direct the process of sensory integration.

Unit | contains discussions of a number of fundamental issues. Section 1 presents an
overview of the present work. Section 2 discusses psychoneural identity, and more particularly
the question as to whether mental events can be studied by physical means. Section 3
discusses a number of models of visual perception through cortical integration. Section 4
reviews a selection of neurophysiological studies of visual perception. Section 5 outlines a
proposal for a model of the neuronal processes underlying visual object discrimination, and
discusses a number of predictions that can be derived from this model.

Unit Il details a number of experiments and analyses designed to test these predictions,
using methods that can be classed as linear analytic procedures. Section 6 will describe an
experiment in which interregional associations during object perception are examined, by looking
at changes in the pattem of cross-correlations as a function of time, and as a function of the
relative distance between pairs of electrode sites. Chapters 7 and 8 elaborate on the data
obtained from the experiment described in Section 6. These sections examine the topographical
distribution of the intercorrelations. Section 7 deals with changes in cross-correlation between all
pairs of electrode sites. Section 8 100ks at the topographical distribution of the mean correlation,
that is, the extent to which the signals from each electrode site are correlated with the signals
from all other electrode sites. Chapters 9 through 11 describe analyses of the data using
altemative measures of association. Section 9 looks at the analysis of interregional coupling
using mutual information, a measure of general association. Section 10 repeats this analysis
using measures of coherence and phase, while Section 11 looks at the topographical distribution
of coherence. Section 12 addresses an issue related to possible applications of the results of
this study, the issue of the changes with time of two statistics computed for the cross-correlations
as a function of time, the mean and variance. The Discrimination Index is then defined, as a
factor which uses information about both the mean and variance of the comrelations, and it is
shown how this index changes with time before and after the moment of discrimination.

Unit i details analyses of the results of this study using nonlinear analytic techniques.
Section 13 will describe the application of a neural network classifier that is trained to detect
features in the recorded signals associated with the visual discrimination event. A number of
previous studies applying neural networks to the problem of neuroelectric signal analysis are

discussed. Section 14 deals with comrelation dimension, a measure of dynamical system



complexity. The correlation dimension and its application to neuroelectric signal analysis is
discussed.

Unit IV presents a discussion of the implications of the results of this study for a number
of issues. Section 15 summarizes the findings of the present study. Section 16 elaborates on
the model of neuronal processes associated with object discrimination. This elaboration
continues in Section 17 with a discussion of the concept of cortical seif-organization in
perception. In Section 18 the present findings are related to alternative models of cortical
integration. Section 19 speculates on the relationship between perception and conscious
awareness. Section 20 lists a number of extensions of the present work, while Section 21
discusses potential practical applications of the results of this study.

Appendix 1 addresses a methodological issue, the effect of signal-to-noise ratio on

strength of correlation. Appendix 2 shows the stimulus images used in the experiment.



2 Psychoneural Identity: Can Mental Processes be Studied?

The fundamental proposition underlying the association between physical evidence such
as neuroelectric measurements and mental activity is the principle of psychoneural identity.
Psychoneural identity is the assumption that every mental state or event can be identified with a
corresponding distinctive brain state, and that this brain state in tum is an in-principle specifiable
physiological occurrence (Reber, 1985). Regan (1989, p. 167) suggests that there is no general
agreement among neuroscientists on this issue. He cites John Eccles as an instance of a
neuroscientist who finds this position 'inconceivable' on the basis that neural machinery cannot
be rich enough to act as the ground of consciousness and memory (e.g., Eccles, 1981).
Although such an extreme position of rejection of psychoneural identity may be held by only a
small minority of workers in this field, perhaps less infrequent may be an underying feeling,
expressed or unexpressed, that the scope of human potential, seemingly limitless in its capacity
for innovation, is too wide and rich to be the product of less than one and a half kilograms of
brain tissue.

Attempts have been made to try and reconcile psychoneural identify with the intuition
that mental events transcend deterministic physics. Penrose (1989) for example has taken the
position that mental phenomena such as consciousness are noncomputable, that these
phenomena cannot be reduced to the level of algorithms carmrying out deterministic
computations. In support of this position, he has suggested that the small physical scale of
microtubules within neurons is of the right order to allow quantum effects to exert a significant
influence on the macroscopic level, and in this way bring an element of indeterminacy to the
workings of the brain, freeing the results of neural activity from the apparent constraints imposed
by determinism. |

On the other hand even an admittedly superficial analysis of the information storage
capacity of the brain reveals a perhaps unexpected depth. First of all, assuming that mental
phenomena are not uncomputable, that is, mental phenomena could be expressed in algorithmic
terms, then the question may be asked, what are the limits of such computation? Alan Turing
(1937) proved that any procedure that could be expressed as a finite algorithm could be carried
out by a universal Turing machine. A universal Turing machine is a device that, suitably
programmed, can carry out any computation that can be expressed as an algorithm of finite
length. An essential requirement of this Turing machine is an unlimited storage capacity. Taking
1012 as the order of magnitude of the number of neurons in the brain (Kandel and Schwartz,
1985), with on the order of 104 synapses per neuron (Rosenweig and Leiman, 1989) gives a
figure of 1016 as the order of magnitude of the number of interconnections in the human brain.

In general, information can be stored within a system such as the brain, in terms of the pattem of



synaptic connections, using at one extreme local representation of each bit of information, and at
the other extreme a totally distributed representation of each bit. With local representation of the
information, that is, with each bit of information coded at one single location in terms of the
synaptic strength at one particular synapse, the number of storage units needed to store n bits of
information would be n. The storage capacity C of such a system with n synaptic nodes would
thus be simply

Cxn

In this case, the brain, with on the order of 1016 storage locations, would in principle be capable
of storing on the order of 1016 bits of information. At the opposite extreme from local
representation is distributed representation of information. With distributed representation, a
collective or network of interconnected synapses, rather than a single synapse, codes each bit of
information. Importantly, any one synapse is assumed to be able to take part in many such
networks and thus to participate in the encoding of multiple bits of information. With distributed
representation, the information is encoded, not in terms of the strength of a single synapse of a
single neuron, but rather in terms of a pattem of interconnections amongst the multiple neurons
comprising a network. With such distributed information representation, the number of units of
storage needed to code n bits of information is on the order of log n (Gallant, 1993), assuming
total connectivity and the ability for individual cells to participate in an unlimited number of

separate networks. The storage capacity C of a system with n synaptic nodes would now be
C o 10n

With the distributed representation method of encoding information, the brain would have a
maximum storage capacity of on the order of 10 raised to the power of 1016, Again, it must be
emphasized that the extent to which this storage capability could be realized would depend on
the degree of interconnectivity of the network, and on the extent to which individual ceills could
take part in multiple networks. Anatomical studies reveal that a significant proportion of the
mass of the brain is devoted to such interconnectivity, in the form of the diverse association
tracts, commisures and projection fibers that make up the medullary centers (Barr and Kieman,
1988, p. 244). Admittedly superficial, this observation nonetheless suggests that
interconnectivity must play a significant role in the functioning of the brain.

These information storage capacity estimates for the brain using distributed
representation are only very broad order of magnitude values. Furthermore, it may be more
plausible to consider that the brain makes use of some combination of local and distributed
representation. Nevertheless, capacities even remotely near magnitudes such as 10 raised to
the power 1016 would seem to be large enough to account for the richness and diversity of



mental life, and the seemingly endiess labyrinths of creative thought. If it can be accepted that
mental events are not uncomputable, and that such events could be expressed as finite
algorithms running on some equivalent of a universal Turing machine within the brain, then at
least on the basis of the vast storage capacity available to such a machine, the limits of the
computations that could be carried out by such a machine would appear to be correspondingly
vast. Arguments, such as Eccles (1981) proposes, for the existence of mind separate from brain
would seem to be an attempt to support a philosophical position on the basis of an incomplete
reading of neurophysiological data.

The tendency to attribute a quality in the data to the object under scrutiny rather than to
our interpretation of the data is not new. Consciousness, as the background against which the
events of mental life are played out, is on the one hand compellingly real, and on the other hand
seemingly irreducible to a physical basis. That consciousness appears to possess such a
noumenal character, argues Churchland (1995), may be only the result of the lack of an
appropriate conceptual framework. He cites as examples Ptolemy who in the first century
dismissed the possibility of gaining knowledge about stars and planets because of their great
distance from us, and August Comte who in the nineteenth century similarly argued that the
constituents of stars could never be known because of their remoteness. Churchland's (1995)
argument is that if an entity is apparently unknowable to us, then this may tell something about
us, rather than about the entity. In the present case, the apparent lack of a conceptual
framework from within which the phenomena of consciousness might be understood should be
used to suggest that such a framework can not exist.

The view that mental events are in some way fundamentally distinct from material
phenomena can be traced at least to the ideas of Gottfried Leibniz. Leibniz proposed a thought
experiment (Leibniz, 1965) in which, if one were reduced to a minute size and were able to enter
the brain and examine the machinery and processes of the brain, one would nevertheless be
unable to find evidence of features of mental life such as thoughts, sensations and desires. On
the basis of this argument this Leibniz concluded that such features must be separate from the
physical machinery of the brain. Churchland (1995) points out that, in analogy with the earlier
examples, Leibniz made the assumption that absence of evidence of the physical nature of
mental entities was taken as evidence of their absence. Again, the altemative exists that we do
not have the conceptual framework that would allow us to perceive such entities, whether or not
in fact these entities constituted a separate level of reality or whether they were identical with
some arrangement of neuronal elements. In making this argument, Leibniz takes a position that
appears to be similar to the perspective adopted by more recent thinkers (e.g., Eccles, 1981)
who - assume that our inability to understand or to find a location within the brain for

consciousness implies that consciousness must transcend the physical bounds imposed by



neurophysiology, rather than allowing for the possibility that we may be bringing insufficient
analytical power to bear on the question. In taking this position, Leibniz appears to be assuming
what he is trying to prove.

This argument, extended in contemporary philosophy by Searle's (1987) analogy of the
Chinese room, thus suggests that entities such as understanding and knowing are distinct from
and somehow transcend the neurophysiological machinery upon which they are based. it
remains possible however that terms such as consciousness, knowing and feeling are labels that
have been applied to phenomena in a way that is analogous to the way in which constellations
were once constructed in the night sky. This fallacy of reification would seem to be an ever-
present danger that might be particularly likely when consciousness is desperately striving to
understand consciousness itself: there is no frame of reference for this understanding that is
independent of the entity that is attempting to understand.

A further argument for the transcendent, non-physical nature of feelings has been put
forward by Nagel (1974) who proposed the question of what it might be like to be a bat. While
we might leam in complete detail about the neural functions of a bat's brain, we still would not,
argues Nagel, know what it is actually like to be a bat. Since we can know only indirectly what it
is like to be a bat, the experience of being a bat cannot be captured by the study of physical
systems. This experience therefore must somehow transcend such physical systems.
Churchland (1995) points out that there is a conflation in this argument between ways of
knowing, and the nature of the object of the knowing itself. The bat knows directly what it is like
to be a bat because of causal connections between its sensory and neural systems. A
neuroscientist may infer, and thus know indirectly, what it might be like to be a bat, through
studying this neurophysiology. These are statements about two ways of knowing, direct and
indirect, with a common referent, in this case the experience of being a bat. This difference in
ways of knowing is made more evident using an example with a more concrete referent. VWhile |
have direct knowledge of what it is like for me to be thirsty as a result of causal connections
between various systems of my body, an observer can note from my behaviour signs that
indicate this thirst, and know in this indirect way that | am thirsty. In both the case of knowing
directly that | am thirsty, and in the case of the observer knowing this fact indirectly, the object of
the knowing is the same: a constellation of physiological responses to a particular state of my
body. This purely physical referent is in the one case known directly and in the other case known
only indirectly. The point is that being known to an outside observer only indirectly does not
necessarily render the referent insubstantial or transcendental. In this way, that the qualia or
‘raw feels' that constitute experience can be known only indirectly by an outside observer does

not imply that such qualia are necessarily nonphysical.



In the following section the discussion will proceed to particular issues. Several
neurophysiological models of visual perception will be discussed. Overall, these models
emphasize the importance of interconnectivity within a distributed processing network, the
functional significance of the signaling that takes place through the medium of these

interconnections, and the relationship between the pattemn of signaling and the architecture of the
network itself.
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3 Neurophysiological Models of Cortical Integration

The models that will be discussed in this section have been proposed to account for
aspects of visual perception in terms of cortical organization. The first of these models is the
reentrant cortical integration model proposed as a test of the theory of neuronal group selection
put forward by Edelman (1989). This model emphasizes the primacy, in perception, of
correlational activity resulting from reentrant signaling between neuronal groups. A second
model which will be discussed is the convergence zone framework, proposed by Damasio and
Damasio (1993). A third model which will be reviewed briefly is Mishkin's (1993) model of object
recognition.

3.1 The Theory of Neuronal Group Selection

Gilbert (1995) classifies theorizing about visual mechanisms into two extreme positions.
At one end, relatively passive filter models identify processing stages, with the visual system at
each stage organizing and filtering information to be passed on the next level. There neuronal
systems act on various basis sets, that is orthogonal combinations of features which, when
assembled, can represent any arbitrary object. At the other extreme of theorizing, a position that
may be referred to as a generalist view endows neural connections with the capacity to form and
reform through interactions with the environment, so that any neuron or group of neurons can
emulate any filter characteristic.

A model, suggested by Gilbert (1995) as being exemplary of the generalist position, is
Gerald Edelman's Theory of Neuronal Group Selection (TNGS) (e.g., Edelman, 1987, 1992). A
part of the TNGS that forms a prototypical example of a neuronal model of perception from a
theoretical perspective is Edelman's view of perceptual categorization, the function that he views
as "fundamental in any attempt to relate physiology to psychology." (Edeiman, 1992, p. 89).

The TNGS is motivated by several observations. One observation is that the world does
not appear to come prepackaged into perceptual categories. Second, there is observed to be a
high degree of variation in brain structure both between and within individuals. According to
Edelman's (1987) theory of neural Darwinism, of which the TNGS is an extension, in order for an
organism to adapt to such an a priori unlabelled world, the organism's neural system acts
according to a process of selection on this observed neural variability. Edelman proposes that
the appropriate level at which to consider neural systems is a neuronal group, a neural structure
involving multiple interconnected neurons. Neuronal groups exhibit a high degree of vanability
in terms of functional anatomy, or intemal wiring. According to Edelman’s theory, competitive
activity between neuronal groups enforces a process of selection which operates on these highly

variable neuronal groups. This process of selection works to promote the activity and survival of
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some neuronal groups over others. Selection leads, in Edelman's terms, to differential
amplification of particular variants within neural populations. The result of this selection process
is that those neuronal groups are selected for whose activity is reinforced as a result of an
individual's interactions with the environment.

The TNGS is thus based in part on the observation that there does not exist a precise
point-to-point wiring scheme in any sufficiently rich neural system, such as that of invertebrates.
This observation, along with the continuous rather than discrete nature of neural signals,
Edelman appears to feel is support for an argument against conceptualizing the brain as a
computer, performing computation. Neural wiring in such a system exhibits what Edelman terms
degeneracy (1989, p. 50). Degeneracy refers to the observation that there does not appear to
exist a one-to-one mapping between the activity of any particular system of neuronal groups, and
any particular output or sets of outputs. Thus, multiple neuronal groups may be associated with
the same output, while a single group may be associated with multipie outputs. This observation
would appear to be fundamentally a statement of the distributed nature of neural systems. In
distributed systems, all activity such as information processing and storage, is distributed among
a system of processing elements, and is camied out in an asymbolic, or subsymbolic
(Smolensky, 1988) form. This non-computational view of neural operation, Edelman (1989)
contrasts with the information processing view of neural activity, in which functions are pre-
programmed into systems which then carry out their actions in a comrespondingly defined way,
using computational procedures based on symbol manipulation.

Thus, building on the concept of neural Darwinism, Edelman (1987) proposed the theory
of neuronal group selection, a feature of which deals with the manifest ability of neural systems
to perceptually categorize an a priori uniabelled world. This ability is the result of two processes.
First, in embryonic development, selection acts to establish the general configuration of neuronal
networks. Second, during development and as a result of behavioural interaction with the
environment, selection of certain neuronal groups over others acts to establish functional circuits
and maps. Maps are functions that transform sensory inputs into comresponding cortical
representations. In this way, perceptual categorization can take place, as a result of interactions
with the environment acting in concert with neuronal selection. The result is that within the brain,
perceptual categories about the world are created.

An essential feature of the TNGS relevant to the process of perceptual categorization
and, thus, to the present work is the process of complex reciprocal signaling between neuronal
groups which Edelman refers to as reentry, and which he describes as "temporally ongoing
parallel signaling between separate maps along ordered anatomical connections” (Edelman,
1989, p. 65). An analogy may be made with computer code modules that are designed to take
in, process, and output information, with the possibility that one such module of code, referred to
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as reentrant code, can originate data which then directly or indirectly reenters the originating
module in a recursive loop. The analogy between such recursive code and neural functions
should not however be pressed beyond noting that brain regions, on a general systems level,
might be viewed as processing modules similarly capable of exchanging complex information,
along the feedforward and feedback connections within the numerous association tracts,
commisures and projection fibers. Edelman (1992, p. 95) suggests that this signaling should
show up in the form of correlations between the activity of brain structures, and hence as
correlations in the EEG.

Reentry is to be distinguished from simple feedback. This distinction might be supported
by the following argument (although Edelman himseif does not appear to argue in these terms).
While the effects of feedback can in principle be predicted using linear analytic methods, the
effects of reentry can not. This effect is the result in part of a topological difference between
feedback and reentry: Reentry is distinguished from feedback in that reentry is characterized by
a muitiplicity of pathways along which the information transfer takes place. In altemative terms,
signal transfer in reentry occurs in parallel, while signal transfer in simple feedback occurs in
serial. This paralielism associated with reentry has the significant outcome that the individual
signals have the potential for interacting at their destination. The effect of such interactions is a
nonlinearity in the nature of the information exchange, with the resuit that the neuronal groups,
associated through such reentrant signaling, comprise a nonlinear system. The behaviour of
such nonlinear systems, although fully deterministic, has been shown to be in general
unpredictable, and potentially chaotic (e.g., May, 1976). These mutual interactions inherent in
reentrant signaling, among the multiple signals camied over multiple and reciprocal parallel paths
among neuronal groups, resuit in a high degree of functional complexity.

As a result of such reentrant signaling, according to the TNGS, neuronal groups become
coupled and coordinate their individual activities. In particular, reentrant signaling among
muitiple neuronal groups has the effect of synchronizing their operation, resulting in coherent
activity among these groups.

The concept of reentrant signaling between neuronal groups is relevant to the present
study of visual perception in two ways. First, according to the TNGS, reentry is the underlying
neurophysiological factor that foorms a substrate for the coupling between multiple neuronal
systems, and that results in synchronization between the activity of such systems. Second, this
reentry-based association is responsible for brain functions ranging in scale from perceptual
categornization to consciousness.

Directly relevant to the present work, perceptual categorization, according to the TNGS,
occurs as the result of the activity of multiple neuronal groups, coordinated through the process
of reentrant signaling. In particular, according to the TNGS, perceptual categorization is the
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result of reentrant signaling between neural systems, each dealing with to some extent
orthogonal dimensions of the sensory features of a stimulus. Such systems implement
functions which-map a particular facet of the sensory information, onto particular cortical regions.
According to the TNGS, for nontrivial perceptual categorization to take place, at least two such
maps, each carrying information about a disjunctive aspect of the stimulus, must be connected
through reentrant signaling. Through this signaling, the various disjunctive aspects of the
stimulus are mutually bound, resulting in the formation of a higher-order response to the initial
stimulus. The reentrant signaling among these several maps thus leads to the creation of a
higher-order concept, making use of a subset of the orthogonal features of the stimulus.

Importantly, the reentrant signaling which synchronizes the activity of the connected
maps acts to promote synaptic changes within these maps. Straightforwardly, this can occur
when cells within such maps, interconnected through reentry and firing synchronously, are likely
to receive multiple, simultaneous inputs. The more neurons, comprising an interconnected set of
maps, that are firing synchronously, the more likely it is in tum for any one of the participating
neurons to receive simultaneous multiple excitatory inputs, and consequently the more likely it is
for these neurons to themselves fire. Repeated exposure to the same stimulus environment
then acts to reinforce such neural connections through repeated activation of same synapses.
These statements are of course a description of Hebbian leaming (Hebb, 1949).

Edelman’s (1989) view of perceptual categorization involves the notion of what he refers
to as primary consciousness (p. 104), a fundamental level of awareness of the intemal and
extemnal world. Primary consciousness is comprised of experiences such as mental images, and
is constrained to a time history defined by the span of short-term memory (p. 24). Primary
consciousness is the result of the following sequence of processes. Perceptual categorization of
exteroceptive signals, of the world extemal to the individual, is camied out by reentrant signaling
within and between cortical regions as well as between the cortex and subcortical regions such
as the thalamus. In parallel with this process, perceptual categorization of intemally generated,
interoceptive, signals is mediated by reentrant interactions within and between limbic and brain-
stem systems as well as by biochemical signaling systems. These two categorization systems
may each be considered to represent maps. In the one case exteroceptive signals, and in the
other case interoceptive signals are mapped onto cortical regions. In tum, and at the next level
of abstraction of the information generated within the brain, the thalamo-cortical and the limbic-
brain stem systems interact. Their information products are compared, presumably also through
the process of reentrant signaling, in the hippocampus, septum and the cingulate gyri. The
results of this comparison are in tum re-categorized in the cingulate gyri, temporal lobes and the
parietal and frontal cortex. Edelman (1989, p. 156) refers to the results of this process as
conceptual categorization. Although not a statement made by the TNGS, this conceptual
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categorization might be considered to form a component of an organism's intemalized model of
the world. Significantly, this conceptual categorization itself then is reentrantly connected back
to the neuronal systems involved in the perceptual categorization of new exteroceptive signals.
The results of the conceptual categorization thus influence subsequent perceptual
categorizations. Essentially, a current set of perceptual categories formed about the world are in
this way modulated by the resuilts of the previous conceptual categorization process. This effect
would appear to be a statement about the influence of the intemal world model, on on-going
perception. How the world is interpreted at any one instant is influenced by how the world was
interpreted at previous times. The TNGS proposes that this effect of conceptual categorization,
or in altemative terms, of an interalized world model, on subsequent perceptual categorization
is the basis for primary consciousness.

Primary consciousness, founded on recurrent signaling between neuronal populations, is
thus itself the outcome of a recursive process in which notions of self and nonself are interpreted
in terms of each other, resulting in a construct which on the one hand forms a context in which
subsequent notions about the world are interpreted, and which on the other hand is itself
reevaluated in terms of such notions about the world.

These ideas are relevant to the present study in the following way. The reentrant
cortico-cortical and thalamo-cortical signaling that Edelman (1989) associates with perceptual
categorization may be expected to show an effect of the experimental manipulation that will be
camried out in the present work. In particular, the effects of reentrant signaling associated with
object categorization and discrimination should be observable as correlated activity between the
relevant cortical areas, when subjects are engaged in a task involving such categorization.

Reentry is the basis for a computational model of cortical integration, the reentrant
cortical integration (RCl) model (Finkel and Edelman, 1989). This model demonstrates the
efficacy of recursive information interchange, reentry among multiple local processing networks
along reciprocal feedforward and feedback interconnections. By means of this reentrant
signaling such networks are able to exchange information regarding stimulus feature
discriminations performed locally by each of the networks, allowing all networks to mutually
make use of the results of such discriminations. Reentrant signaling also aliows responses to
complex and illusory stimuli to be synthesized since information generated by each network
eventually retums to that network along reciprocal pathways. These functions were facilitated by
the elimination of conflicting responses generated by the individual networks, also as a result of
the inter-regional reentrant signaling. A feature of the RCI is that no central coordinating
structure is required to direct the process of feature integration and synthesis. Finkel and
Edelman (1989) found that during this integration process, changes in network coupling strengths
were associated with episodes of cormrelated activity among the local networks.
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3.2 Neuronal Ensembles

A second model of visual perception, and an example of a neuronal model of perception
from a neurophysiological perspective, is Mishkin's (1993) model of object recognition, a model
which in some general ways resembles Edelman's TNGS. According to Mishkin (1993), object
recognition involves the re-activation, by a visual stimulus, of a previously formed cell assembiy.
A retinal stimulus sequentially activates large neuronal groups in the occipito-temporal circuit.
Mishkin refers to these groups as neuronal ensembles, and suggests that they form the neuronal
representation of the visual stimulus. In the latter stages of this occipito-temporal activation,
sequentially-connected temporal, thalamic and frontal areas of the limbic system become
involved. These latter activations then lead to the strengthening of feedback limbo-cortical and
cortico-cortical synapses. Through this process, cell assemblies are created (Hebb, 1949).
These cell assemblies, which form the stored representation of the stimulus, are subsets of the
neuronal ensemble. Visual recognition, Mishkin (1993) suggests, occurs when a neuronal
ensemble that has been activated by a visual stimulus in tum re-activates a such an existing cell
assembly. While the neuronal ensembles are activated by feedforward signals from the retina,
cell assemblies can be activated both, by feedback signals from the limbic system, as well as
signals more directly from the neuronal ensemble. Mishkin's notion of memory activation with
the involvement of the limbic system resembles Edelman's model of primary consciousness
which involves, not so much sequential activation of, but the correlated activity between, the
limbic system and primary and secondary sensory cortices.

3.3 The Convergence Zone Framework

A third approach to the problem of perceptual integration, and also a model based on
neurophysiological evidence, is the convergence zone framework proposed by Damasio and
Damasio (1993). While Mishkin's (1993) model sees perception in terms of the creation and
later reactivation of neuronal ensembles by a sensory stimulus, Damasio and Damasio's (1993)
view of the cortical processes underlying perception and memory involves the storage and
subsequent reactivation of a code that contains instead, only a key. This key encodes the
pattem of interconnections among the various participating neuronal groups involved in the
original perception, a pattem that is later reinstated during recognition and recall. Damasio and
Damasio (1993) base their model of large-scale distributed processing in perception and memory
on the findings of lesion studies in humans. As an example, perception is not disrupted by
bilateral lesions of anterior temporal or prefrontal cortices, while lesions in many sensory regions
do impair perceptual integration processes. Thus, within the visual system, lesions to posterior

regions, including the inferior occipital cortex, impair the retrieval of stimulus features such as
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color (Damasio, Yamada, Damasio, Corbett and McKee, 1980). Lesions to intermediate regions
including the inferotemporal cortex, spare feature retrieval but can impair category level
recognitions for items leamed through vision alone (e.g., Warrington and Shallice, 1984).
Lesions to anterior regions including bilateral medial temporal regions, nonmedial
anterotemporal cortices, and parts of the inferotemporal cortex, impair retrieval of item level
components, while leaving intact retrieval of features and category level components (Damasio,
Tranel and Damasio, 1989). The authors interpret this pattemn of findings as suggesting the
existence of a hierarchy of knowledge retrieval or access. This hierarchy is associated with a
corresponding hierarchy of cortico-cortical connections within the feedforward chain from primary
visual cortex to entorhinal cortex. Retrieval of more complex knowledge is associated with
pathways located towards the end of the feedforward chain, closest to the entorhinal cortex.
Retrieval of more elementary or lower level knowedge is associated with connections located
towards the start of this chain, closest to the primary visual cortex.

The findings of such lesion studies, the authors conclude, indicate that the integration of
perceptual phenomena is not determined by any single cortical area. Instead, they suggest, such
perceptual integration must involve muitiple cortical areas involved in distributed processing of
information, rather than involving processes within localized cortical regions. In tum, the authors
propose that these large-scale networks are controlled by ensembles of neurons, of which they
suggest there may be thousands. Damasio and Damasio (1993) term these ensembles
convergence zones.

Functionally, convergence zones are groups of control neurons whose function, Damasio
and Damasio (1993) propose, is to organize networks of interconnections over a wide range of
scales, within both cortical and subcortical regions. Such organization, they suggest, involves
the selective strengthening of a subset of the feedforward and feedback loops, connecting
cortical and subcortical regions, that pass through a convergence zone. These groups of control
neurons thus coordinate the activity of multiple cortical regions, and exert an influence during
both initial perception and subsequent recall. During perception, convergence zones encode the
pattem of interrelations between the associated sensory regions. During recall, convergence
zones reinstate these associations. The effect of this mechanism, the authors suggest, is to
coordinate processes that are distributed over the large-scale networks that are involved in
perception and memory.

Neuroanatomically, convergence zones are suggested to be neuronal collectives that are
focal points for multiple feedforward and feedback loops. Anatomical evidence for such zones
includes the finding of large-scale divergent projections (Bressler, 1995). Examples include sites
in the medial pulvinary nucteus of the thalamus that are found to project to multiple widespread

cortical regions, with these cortical regions themselves being interconnected by cortico-cortical
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association tracts (Asanuma, Andersen and Cowan, 1985). Bressler (1995) suggests that the
function of the pulvinar nucleus may be to prime particular sets of cortical regions, and in this
way to facilitate communication and interaction between these regions.

Convergence zones are thus proposed to be a mechanism for binding knowiedge at
various stages of complexity (Damasio and Damasio, 1994). In accord with the findings of lesion
studies, low level convergence zones located in relatively posterior cortical regions function to
bind elementary stimulus features, while higher level zones in more anterior cortical locations
would bind comrespondingly more complex feature transformations.

The convergence zone framework can be compared with Finkel and Edelman’s (1989)
RC! model based on Edelman's (1989) TNGS. In terms of architecture, Damasio and Damasio's
(1993) model emphasizes a convergence-divergence topology. In this topology, convergence
zones are centers onto which muitiple pathways converge and from which muitiple pathways
diverge. In contrast, the RC! model of perception posits inter-cortical mappings that are
relatively completely and reciprocally interconnected, both hierarchically and heterarchically. A
second point of distinction between these two models is that the RCI model directly addresses
the issue of the dynamical behaviour of inter-cortical communication during perception. The
convergence zone framework emphasizes instead the changes in functional topology of cortical
regions, and how these changes are mediated by key neuronal ensembles during perceptual and
memory operations. These distinctions between the two approaches, which to some extent
represent orthogonal and even complementary views on perceptual and memory processes, are
reflected in the general ways in which tests of the modeils could be carried out. The convergence
zone framework, developed in part on the basis of the results of lesion studies, would appear to
be most directly testable by means of such studies. Preexisting or experimental lesions could be
used to verfy the existence and extent of the proposed convergence zones. While the
convergence zone framework does imply coordinated activity among muitipte cortical regions
along the feedforward and feedback paths directed by a convergence zone, the RCI model
speaks more directly to the dynamics of intercortical communication by means of reentry. The
RCI model would correspondingly be more directly verified by studies of inter-cortical coherence.
From a network topological perspective however, the convergence zone framework is consistent
with the view that synchronous intercortical activity is mediated by one or more pacemakers, that
is, centers which commonly drives the oscillatory activity of muitiple neuronal regions resulting in
synchronized activity among these regions. In contrast, the RCI model would appear to be
relatively neutral on this issue, since architectural concems are not the primary focus of this
model. The RCI model rather focuses on a theoretical description of the systems level events,
and the nature of the associated signaling, that take place during perception. Admitting the point
that the RC! model and the convergence zone frameworks may be contrasted to only a limited
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extent, the RCI model nevertheless does not entail the concept of synchronization by means of a
pacemaker, and in this sense might be seen to be the more parsimonious view. A contrasting
position to the pacemaker view of intercortical association is the notion that muitiple cortical
regions can self-organize through the agency of interregional signaling, to create a larger scale
network with the individual cortical regions engaged in mutually synchronous activity. Finkel and
Edeiman's (1989) RC! model would appear to be more clearly consistent with such a view, that
perception involves a self-organization of multiple cortical regions by means of reentry. The
principle of cortical self-organization will form a central component of the model of perceptual
integration that will be presented in the present study.
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4 Studies of Visual Perception

4.1 Studies of Correlated Activity in the Visual System

One approach to the study of visual processes is the analysis of intercorrelations
between the activity of individual cells in avian (Gray and Singer, 1989; Gray, Konig, Engel and
Singer, 1989) and cat (Gray and Singer, 1989; Engel, Konig, Gray and Singer, 1990) visual
systems.

In a prototypical study of correlational activity in the visual system, autocorreiation
analysis of single-cell recording in area 17 of cat visual cortex has revealed that the activity at a
high proportion of recording sites has a prominent periodic component, with a frequency in the
gamma band, between 40 and 60 Hz (Gray, Konig, Engel and Singer, 1989). Cross-correlation
analysis applied to pairs of recording sites showed that approximately half of the site pairs that
were tested showed significant levels of linear association. The study next examined the
pattemns of auto and cross-correlation as a function of visual stimulus characteristics. A single
long moving light bar stimulus was found to elicit oscillatory activity that was synchronous across
individual cells within a group of cells, with particular groups of cells becoming synchronized
depending on the orientation of the bar. This synchronization was marked by a zero relative
phase angle, and persisted for recording sites with the same orientation preference, that were
separated by distances of up to 7 mm in the case of two subjects. The wide separation between
these recording sites suggested that the sites had non-overlapping receptive fields.
Consequently, the authors hypothesized, these sites should be activated by both a single long
moving bar, as well as by two shorter moving bars. When two shorter bars were moved in the
same direction, correlated activity was found at the corresponding recording sites. When the two
bars were moved in opposite directions however, the correlation disappeared. The authors
suggest that possible neuroanatomical substrates for these comrelations might be tangential
connections within the visual cortex, or back-projections from other cortical regions.
Furthermore, they propose that such interareal comrelations may function as a mechanism to
accomplish transient binding of stimulus features such as orientation, continuity and organization
of motion. Such a binding process, they point out, is essential to elementary stages of visual
analysis involved in, for example, figure-ground discrimination.

While horizontal connections within the striate cortex have been suggested to mediate
gamma band oscillations (e.g., Gray and Singer, 1989), Gilbert (1995) suggests that it is not
clear first, whether such oscillations result in binding or segmentation, and second, whether these

oscillations are merely an epiphenomenon. That is, gamma band oscillations and dynamic
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changes in receptive field properties may both be the result of synaptic changes within the
horizontal connections.

Evidence of more widely distributed coherences, among visual regions of the macaque
monkey, were found in a study by Bressler, Coppola and Nakamura (1993). In this study the
subjects were trained to either press or ignore a bar in response to particular visual stimuli.
Coherences in several frequency bands ranging from 12.5 Hz to 87.5 Hz, were computed
between signals recorded from electrodes placed in a number of regions, including striate,
prestriate, parietal and motor cortices. In the press condition, significant increases in coherence
were found between striate and motor areas immediately preceding and following the actual
response, and between striate and parietal areas in the interval between stimulus onset and
response onset. In the ignore condition the striate-motor coherence was absent, while the
striate-parietal coherence was similar to that in the press condition. Thus, the increase in
coherence, an indication of synchronized activity, between striate and motor regions was a
function of whether or not a motor response was required, while the increase in striate-parietal
coherence occurred in both conditions. The magnitude of the coherence increases was roughly
inversely proportional to frequency: The largest increases occurred in the lowest frequency band
centered on 12.5 Hz. This finding is consistent with the results of previous studies with humans
that showed multi-regional coupling below 10 Hz in scalp-recordings of averaged event-related
potentials (Gevins, Morgan and Bressler, 1987). While coherence increases in the Bressler et
at. (1993) study extended to the gamma band, there was no evidence of a relative increase in
the gamma frequency band as had been suggested previously (e.g., Bressler, 1990). The
authors concluded that the coherence increases were not the result of the appearance of the
stimulus itself, but rather, appearing after stimulus onset, were the result of subjects'
discrimination between the two different stimuli, and subsequent preparation to respond. They
suggest that these coherence increases, appearing at mulitiple frequencies, reflect inter-cortical
synchronization on multiple time-scales, affording cortical processing with a flexibility that would
not be available were the coherence increases restricted to narrow frequency bands. They
suggest further that the wide spatial distribution of the coherences indicates that such
synchronization can take place between any cortical regions, and lends support to models of
high-level functions such as perception and action that involve binding between muitiple and

wide-spread cortical regions.

4.2 Studies of Visual Processes in Non-human Primates

Much work has been carried out in the investigation of the neuronal processes that are

involved in object recognition and discrimination.  Many of these studies have involved non-
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human subjects, notably the macaque monkey, upon which procedures such as single-cell
recordings are more conveniently carried out. For this reason, some caution would appear to be
in order in applying these results to theorizing about human visual processes. With this caveat
in mind, a number of studies will now be reviewed which bear on the questions of what neuronal
systems are involved in object recognition, and how these systems interact to produce the
phenomenon of infegrated perception. The purpose of reviewing such studies in the present
context is twofold. First, it is to sketch out in broad terms a picture of which systems act in what
way during visual perception, in order to suggest features that might be expected to be present in
the resuits of the present study. Second, it is as to provide a point of reference for later
discussions of the implications of the finding of the present study for the cortical dynamics
associated with object discrimination in humans. These studies also collectively demonstrate the
complexity of the visual system, and therefore the limited value of attempting any analysis of the
visual system based on a reductionist approach.

One perspective on the visual system suggests an analysis into a component involved
with spatial properties of the stimulus and a component involved with stimulus features
(Ungerleider and Mishkin, 1982; Mishkin, Ungerieider and Macko, 1983). According to this
analysis, information flow within the visual system occurs within a dorsal parietal and a ventral
temporal pathway, both originating in the primary visual cortex. The parietal pathway, directed
towards parietal lobe components associated with spatial and motor activity, is involved in tasks
related to the spatial location of objects in the visual field and spatial guidance of motor
responses. The temporal pathway, directed towards the inferotemporal cortex, is associated with
the analysis of visual form and pattem. Thus, the parietal pathway may be generally
characterized as dealing with ‘'where' information regarding the stimulus, whereas the temporal
pathway can be thought of as dealing with ‘what' information.

More recent appraisals have suggested that such an analysis may be insufficient to
account for anatomical and functional evidence linking these pathways (Maunsell and Ferrera,
1995). Anatomical evidence includes the finding of interconnections between the parietal and
temporal pathways (Maunsell and Van Essen, 1983). Functional evidence includes the finding of
extra-retinal signals in the visual cortex, related to functions such as eye position and movement
(Anderson and Montcastle, 1983) and memory (Miyashita, 1988), suggesting that the temporal
and parietal visual pathways may be specialized for extra-retinal signals similar to the way in
which these pathways are specialized for signals of retinal origin. One study of memory effects
in the visual system (Maunsell, Sclar, Nealey and DePriest, 1991) used a match to sample task.
A macaque monkey was presented with a sample stimulus, a visual grating with one of 4
possible orientations, followed after a 600 to 800 ms interval by a similar test stimulus with one

of the 4 orientations. The subject was trained to press a lever when the test and sample
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orientations matched. A primary interest in this study was to determine how the cell responses
were affected by the grating orientation for which the subject was looking. During the
presentation of the test stimulus recordings were made from cells in V4 with receptive fields
covered by the stimulus. While a majority of neurons responded to a particular test stimulus
orientation irespective of what stimulus had been presented as the sample, approximately 25%
responded to a test stimulus orientation only when this orientation matched that of the sample
stimulus. The authors suggest that these neurons are associated with a memory function in
which the subject is remembering the orientation of the sample stimulus. Such cells are
sensitive therefore, the authors propose, to the memory of a stimulus orientation, analogous to
how the other tested cells are responding to stimulus orientation itself. In contrast neurons in
area V1 showed relatively littie effect of the orientation that the subject was seeking. The study
next looked for evidence of spatial memory in cells in the parietal pathway, using moving dot
patterns with 4 possible directions of motion. Cells were found that were sensitivity to direction
of motion of the sample, but the effects were relatively weak in the middle temporal area (MT),
and only somewhat stronger in later stages that included the medial superior temporal area
(MST) and area 7a. Interestingly the authors found that the response of cells in area V4 of the
temporal pathway, to direction of motion, were as strong or stronger as the response of the cells
in the parietal pathway. Maunsell et al. (1991) concluded that the association between
performance on behavioural tasks and particular visual areas may not be well predicted by the
response properties of the neurons within the respective areas. In place of the 'whatwhere'
functional distinction proposed by Ungerieider and Mishkin (1982), Maunsell and Femrera (1995)
suggest that a more accurate description may be one proposed by Goodale and Milner (1992):
The temporal pathway may deal with object identification (‘'what'), while the parietal pathway is
concemed with visual guidance tasks involved with the guidance of visual behaviours ("how).
The complexity of the processing associated with visual perception is demonstrated also
by studies showing that feedback projections within the visual system are associated with higher
level influences such as attention. In the macaque, for example, the receptive field of neurons in
area V4 has been found to be sensitive to attention, with the size of the receptive field becoming
restricted when the animal is not attending to a stimulus (Moran and Desimone, 1985). In this
study, it was found that the feature specificity of cells in area V4 can also be modified by
attention. Neurons that were sensitive to stimulus orientation when the animal was attending to
the stimulus became insensitive to orientation when the animal was not attending. Mishkin
(1993) points out that the dorsal and ventral visual pathways contain both feedforward and
feedback projections, and that the feedback projections may have a function in stimulus attention
and memory. Gilbert (1995) similarly suggests that feedback projections within the visual

system provide an anatomical substrate for such influences, influences that may extend to the
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earliest levels of visual processing. In addition to such higher level influences on the visual
system, Gilbert (1995) suggests that within the primary visual areas horizontal connections
mediate higher-level effects such as context dependency. Cells within the striate cortex for
example are interconnected by horizontal connections. Such connections, he suggests, enable
individual cells to integrate information from extended cortical areas, and therefore from an
extended portion of the visual field that, because of the visual topography of the striate cortex, is
larger than the receptive field of individual neurons. Cells in the visual cortex are known to alter
their functional specificity with changes in the sensory context within which a stimulus is
presented (e.g., Kanisza, 1979). Such context dependency, Gilbert (1995) proposes, may be
mediated by the horizontal connections within the primary visual areas. These horizontal
connections have been found to target cells of similar functional properties such as, for example,
orientation preference (Gilbert and Wiesel, 1989). Such findings, Gilbert (1995) suggests, call
into question the notion of a neuronal receptive field.

The influence on the visual system of higher level effects such as attention and memory,
suggest Desimone, Miller, Chelazzi and Lueschow (1995), is the result of feedback from the
prefrontal cortex. Such feedback can have a priming effect on inferotemporal neurons,
constituting a higher level influence on object recognition. The typically large number of objects
in a visual scene requires selection processes that must function at all levels of the visual
system. In early stages such processes involve pre-attentive functions involved with, for
example, figure-ground separation, that serve to increase the saliency of anomalous shapes
within the visual field. Complementing such reiatively low-evel processes are attentive and
memory processes that are similarly engaged in the task of selecting subsets of the objects
within the visual field. These memory processes consist of both automatic processes based on
stimulus repetition that could bias a response towards novel stimuli, as well as cognitive
processes involving working memory that take part in the analysis of temporal sequences of
stimuli. Miller, Li and Desimone (1993) investigated such memory processes in the visual
system of a macaque monkey with a match to sample task similar to that used by Maunseli et al.
(1991). Recordings were made from cells in the anteroventral portion of the inferotemporal
cortex (IT), an area which has been associated with visual memory (e.g., Meuneir, Bachevalier,
Mishkin and Mumay, 1993). Subjects were presented repeatedly with initially novel sample
stimuli with a different set of stimuli for each cell. Intervening stimuli were presented between
each sample presentation. Between-trial analyses of recordings made during stimulus
presentations revealed a number of findings. First, there was an expected response to the
different stimuli. This finding was expected on the basis that cells in the IT cortex have been
shown to be responsive to stimulus features such as shape, texture and color (e.g., Tanaka,
Saito, Fukada and Moryia, 1991). Second, in approximately one-third of the IT cells, a
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decrement in the response of the cells was found, with each successive sample presentation,
demonstrating a familiarity effect. This response suppression effect lasted through 150
intervening stimuli. The pattemn was repeated when a second, new, sample stimulus was used.
The authors refer to this process as an adaptive mnemonic filter, and suggest that it may
activate orienting and attentional systems to favor novel stimuli. Desimone et al. (1995) propose
that the memory functions within the IT may be associated with cells whose response does not
change over presentations, while the IT neurons with declining responses may be those that
have coded non-critical features of the stimulus.

Miller et al. (1993) next examined short term memory effects in the anteroventral area of
the IT cortex. In a variation of the original match to sample task, subjects were presented with a
familiar sampie stimulus, followed by from 1 to 6 test stimuli. Cell responses during the
presentation of the final test stimulus showed a clear distinction between the case when the test
stimulus matched or did not match the sample stimulus. Responses to matching test stimuli was
suppressed relative to the responses for non-matching stimuli, even with 5 intervening stimuli
corresponding to an interval of several seconds. This response suppression was found for
approximately half of the tested cells. All tested cells showed a response preference related to
stimulus features. The rapidity of these suppression effects, which occurred within 80 ms of
stimulus onset, the authors claim argues against the cause being feedback from other areas, but
suggests rather that a sensitivity to repetition may be intrinsic to the visual system.

The findings of a related study (Miller and Desimone, 1984) suggest that these memory
effects are not due to low-level comparison processes, since similar effects were found when test
items are presented in a different size or location on the retina (Lueschow, Miller and Desimone,
1983). Miller and Desimone (1994) addressed the question of whether the match suppression
might be due to a voluntary, working memory process, or an automatic repetition detector. The
paradigm in this study included trials presented as in the Miller et al. (1993) study, along with
trials in which, as well as a possible match between sample and test stimuli, there might occur a
match between test stimuli within a trial. If the response suppression mechanism involved a
voluntary memory mechanism, then response suppression should be observed only for test
stimuli that matched the sample and not to test stimuli that matched other test stimuli. If on the
other hand response suppression is the result of a repetition sensitivity within the IT cortex then
suppression should occur in both cases. As before subjects were trained to respond to matches
between the sample and the final test stimulus. Responses were found to be equally well
suppressed for both a match to sample and a match to an irrelevant test stimulus, supporting the
view that the response suppression mechanism involves a sensitivity to repetition. However, a
portion of the cells that showed significant memory effects were sensitive to matches to sample

stimuli, but not to matches to test stimuli.
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Together, these findings indicate the existence of two short-term memory systems in the
anteroventral regions of the IT cortex, suggest Miller and Desimone (1994), an automatic
repetition-sensitive mechanism and a voluntary working memory system. The authors propose
that this working memory might depend on priming of IT neurons by ventral pre-frontal cortex,
with which the IT cortex is substantially interconnected. Evidence in support of this suggestion
includes the findings of lesion studies showing consequent performance decrements on matching
to sample tasks (e.g., Mishkin and Manning, 1978).

in summary, the results of these behavioural studies with macaque monkeys indicate the
existence of two short-term memory processes in the visual system, a mechanism sensitive to
stimulus repetition effects and involved in orienting to novel stimuli, and a process involved with
maintaining in short term-memory a representation of an attended-to object in the visual field.

4.3 Generalizing to Humans

There appear to be a number of reasons why the results of studies such as many of
those cited above, that base their findings on work with non-human subjects, may only with
limitations be generalized to humans.

First, studies of object discrimination using non-human subjects would in large part seem
to make use of a single modality, involving primarily an analysis of the visual features of the
object. In contrast, visual discrimination in humans can be relatively more complex. Both visual
and auditory modalities can be involved, since humans have the option of making use of
language related processes. Object discrimination by humans can involve a naming process,
the retrieval of a label, along with an analysis of visual features. Furthermore, these modalities
may interact. Auditory contextual cues for example can modify the processing of visual cues.
The ubiquitous presence of interconnections between cortical areas in general and between
primary sensory areas in particular at least provides a substrate for such interactions to occur.

Second, investigations of object discrimination processes can not reasonably be carried
out in an intentional vacuum. For completeness sake, an analysis of the neuronal processes
associated with object discrimination should entail consideration of the purpose for which the
discrimination is occurring. In studies with human subjects, the manifold purposes associated
with object discrimination in the real world devolve primarily, although not exclusively, into the
relatively simple goals associated with complying with experimental instructions. These goals,
whatever their specific nature may be, can in no way be compared with those of non-human
subjects, and in particular in view of the paradigms necessitated by single cell recordings. These
different higher level influences such as intention on visual perception should be reflected in
corresponding differences in neural activity. In both human and non-human subjects the effects
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of higherevel influences such as attention and memory on discrimination processes have been
demonstrated. There would not appear to be any principled reason why these influences should
not include the effects of factors such as intention, the goal or purpose for which the
discrimination is occuming. It seems reasonable to conclude, on the basis of these factors, that

caution should be exercised in generalizing from non-human to human subjects.

4.4 Studies of Human Visual Processes

One finding from studies of visual perception in non-human subjects that does appear to
be applicable to human visual processes is the functional specialization of the visual system into
featural and spatial processing systems. Evidence for a dorsal-ventral dichotomy in human
visual systems has been found in both lesion studies, as well as in a series of functional imaging
studies involving measurement of cerebral blood flow using tracer compounds labeled with
radioactive isotopes.

An example of a lesion study involved two groups of patients, undergoing either left or
right anterior temporal lobectomy (Hermann and Seidenberg, 1983). Patients were administered
object recognition task involving face recognition, and spatial localization tasks involving line
orientation. The patients performed the tasks immediately after the operations, and after an
interval of 6 months. On both sets of tests a dissociation was found in patients' performance on
the two types of tasks. Patients demonstrated a significant loss in facial recognition ability, while
gaining a concomitant improvement in line orientation performance. This pattem of performance
was found to be similar for both groups of patients, those who had undergone the left and the
right anterior temporal lobectomies. The results show clearly that the anterior temporal
lobectomy had a specific effect on the object recognition system within the occipitotemporal
region, while leaving the spatial perception system in the occipitoparietal region relatively
unaffected.

A lesion study by Newcombe and Ratcliffe (1987) made use of both case and
postmortem data on 2 male subjects who had suffered brain trauma as young adults. Case 1 was
injured at age 31 and died at age 70. Damage had occurred in the midsection of the right
rolandic region, and the patient had scotomata in the left visual field. Case 1 was unable to
perform cube counting and maze leaming tasks but was able to recognize familiar faces and to
perceive shadowed faces. Case 2 was injured at age 29 and died at age 50. Damage had
occurred in the right temporal lobe, and the patient had visual impairment of the left upper
quadrant of the visual field. Postmortem examination revealed a cyst in the right temporal lobe.
in contrast with case 1, case 2 was able to perform cube-counting and maze-leaming tasks but

was unable to recognize familiar faces or to perceive shadowed faces, a reversal of the
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symptoms displayed by Case 1. These resuits are generally consistent with and analysis of the
visual system into dorsal and ventral components. Case 1 suffered damage to the rolandic
region involving the parietal lobe, and thus areas associated with the dorsal visual pathway, and
nevertheless was able to perform effectively on object recognition tasks, but not on spatial
perception tasks such as maze leaming. Case 2 on the other hand, suffered damage to the right
temporal lobe, a region associated with the ventral visual pathway, and was able to perform the
spatial perception tasks and unable to perform the object recognition tasks.

A study using measurements of regional cerebral biood flow (rCBF) found that during a
spatial task involving dot-location matching an increase in blood flow occumred in the lateral
occipital and supenor parietal cortical regions. Correspondingly, during a face matching task, a
task involving featural rather than spatial properties of a stimulus, an increase in blood flow
occurred within a zone including the lateral occipital and posterior temporal cortices (Haxby,
Grady, Horwitz, Ungerieider, Mishkin, Carson, Herscovitch, Schapiro and Rapoport, 1991).

Haxby and Horwitz (1994) carried out measurements of changes in rCBF by positron
emission tomography, while subjects performed dot location and face matching tasks. The
spatial task was associated with selective rCBF increases in dorsal occipital, superior parietal,
and intraparietal sulcus cortex bilaterally and in dorsal right premotor cortex. In contrast the
shape analysis task was associated with selective rCBF increases in the fusiform gyrus in
occipital and occipitotemporal cortex bilaterally and in a right prefrontal area in the inferior frontal
gyrus. Concurmrently, decreases in rCBF were seen during both tasks, in auditory, auditory
association, somatosensory, and midcingulate cortices.

Correlations between the values of normalized regional cerebral blood flow (rCBF) within
several cortical regions were found in a study by Horwitz, Grady, Haxby, Schapiro, Rapoport,
Ungerleider and Mishkin (1992) using a spatial dot location task and a shape analysis face
matching task. During both types of tasks significant correlations were found between the
changes in rCBF in the right hemisphere in an extrastriate occipital region, and in an inferior
occipitotemporal area. The rCBF value in the extrastriate occipital region was similar in both
types of tasks. The value of rCBF in the inferior occipitotemporal region however was higher
during the face-matching task than during the dot-location matching task, supporting the view
that the functional specialization of the inferotemporal region includes a sensitivity to object
featural properties.

A study exploring age-related changes of the dorsal-ventral visual system dichotomy
was cafried out by Grady and Haxby (1992). In order to measure rCBF, positron emission
tomographic scans were performed on subjects in two age groups, a young group, with a mean
age 27 years, and an old group, with a mean age of 72 years. Subjects were asked to perform

an object perception task that involved face matching, and a spatial perception task that involved
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dot-location matching. Both age groups showed increases in rCBF values in occipitotemporal
cortex during the object perception task, and in the superior parietal cortex during dot-location
matching task. Interestingly, the old subject group showed higher levels of rCBF in both regions,
during both types of tasks, than did the young subject group.

A cognitive behavioural study similarly found evidence in support of the object-spatial
system dichotomy (Tresch and Sinnamon, 1993), by demonstrating selective interference
between tasks associated with the two visual systems. A spatial perception task involved having
subjects remember the location of a dot, while an object recognition task involved remembering
the form of an object. Performance on the spatial memory task was found to be impaired when
subjects were engaged in a second spatial task involving movement perception, but not when
subjects were asked to perform an object recognition task. Correspondingly, performance on the
object recognition task was impaired by a second task in this same category that involved
discrimination, but not by a task involving spatial perception.

The findings of lesion, rCBF and cognitive studies all support the notion that human
visual systems, like those of non-human primates, can be usefully factored into two components:
a dorsal occipito-parietal system supporting spatial perception and a ventral occipito-
inferotemporal system supporting feature perception.

The reviewed studies have generally made use of relatively elementary visual
perception tasks. A study using a more complex visual task looked at whether a difference in
scalp potential could be found corresponding to the difference between a seif-generated mental
image, and a mental image generated from a prior perception (Petsche, Lacroix, Lindner,
Rappelsberger and Schmidt-Henrich, 1992). EEG amplitude and coherence were measured in
two conditions, visualization of an abstract concept and visualization of a painting. In one task,
subjects were asked to generate a mental image comresponding to an abstract concept, a task
expected to involve thinking with images. In a second task subjects were asked to interpret a
painting which they had previewed before the EEG recording session. This second task was
expected to engage thinking with language. EEG recordings were analyzed in terms of theta (4
to 7.5 Hz), alpha (8 to 12.5 Hz), beta (13 to 18 Hz), beta 2 (18.5 to 24 Hz) and beta 3 (24.5 to
31.5 Hz) frequency bands, using measures of amplitude and coherence. A complex pattem of
amplitude and coherence changes was found. In the abstract visualization task, amplitude
decreases were found in all bands, at aimost all electrode locations. Coherence increases
included the left frontal and central regions in the beta 2 band, and right frontal, central, and
temporal areas in the beta 3 band. Coherence decreases included the right frontal and temporal
areas in the theta and alpha bands. In the painting interpretation task, amplitude decreases were
found in the left hemisphere in the beta band, and in posterior regions in the beta 3 band.

Coherence increases included the left frontal, central, temporal and parietal areas in the theta
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band, the left central area in the alpha band, and left frontal areas in the beta bands. Coherence
decreases included the right anterior region in the alpha band, and the right posterior area in the
beta ranges. These results indicated that the differences in mental processes associated with
self-generated and perceptually-inspired mental images, were reflected most consistently in
electrical changes over the frontal regions. The authors concluded that mental imagery involves
connections between muiltiple brain regions, and conclude generally that creative, mental activity
appears to be reflected in amplitude and coherence changes of the EEG between muitiple
cortical regions.

Rappelsberger and Petsche (1988) similarly found that interregional coherence was
affected by a visualization task, mental rotation of a cube. Subjects, 13 male and 18 female
right-handers, were shown a cube which they were then asked to visualize rotating. A pattem of
coherences was found that involved muitiple cortical areas. Theta band coherence increasés
were found in right parietal and right temporo-occipital areas in males, and in the left hemisphere
in females. Alpha band coherence decreases were found in the left occipital region in males and
in bilateral occipital areas in females. Beta band coherence increases occurred in right parietal
and left temporo-occipital areas in males, and in left parietal areas and right temporo-occipital
areas in females. Coherence increases were found in all bands between left and right parietal
areas in both males and females. The authors propose that degree of coherence between
different brain areas may be related to functional couplings between these areas. In support of
this view, Bust and Galbraith (1975) found that inter-regional coherence was directly related to
the density of connections between the regions.

The results of these studies by Petsche et al. (1982) and Rappelsberger and Petsche
(1988) have demonstrated that the dynamics of the neural processes underlying perceptual and
cognitive tasks are reflected in changes in the pattem of correlations in the activity between

muitiple and wide-spread cortical areas.

4.5 Structures and Sensitivities in the Visual System

The association between behaviour involving object recognition and the occipital and
temporal areas is supported by two lines of evidence, ablation studies and single cell recordings.
On the one hand, profound deficits on visual discrimination and recognition tasks has been
shown to result from ablation of the bilateral anterior IT cortex (e.g., Ungerieider and Mishkin,
1982), and of area V4 (e.g., Schiller and Lee, 1991). On the other hand, populations of cells in
the IT cortex have been found to be sensitive to shape discrimination. Cells in the anterior IT
cortex have been shown to more sensitive to moderately complex shapes rather than to simple

features. Such cells, for example, have been shown to respond to hand-like shapes (Gross,



Rocha-Miranda and Bender, 1972), faces (Young and Yamane, 1992), and complex shapes not
coresponding to familiar objects (Fujita, Tanaka, Ito and Cheng, 1992), as well as to be widely
invariant to stimulus features such as position, size and color (e.g., Desimone, Albright, Gross
and Bruce, 1984).

Young (1995) suggests that an adequate analysis of visual pathways should involve
consideration of the high degree of interconnectivity between the parietal and inferotemporai
pathways. An analysis by Felleman and Van Essen (1991) for example shows that the visual
system contains at least 32 systems interconnected by over 300 pathways. This analysis
concentrates on connections and areas in which the connections terminate: the connections are
considered to be ascending or descending depending on whether the connections terminate in
cell-rich or cell-poor areas respectively. The result is necessarily a unidimensional hierarchical
amrangement for the visual system, suggests Young (1992), that does not take into account the
possibility of non-hierarchical configurations such as connections between the parietal and
occipito-temporal streams. A topological analysis sensitive to such muitidimensional
configurations conducted by Young and Scannell (1993) found that the occipitotemporal regions
comprise a hierarchical organization distinct from the dorsal pathway, a structural distinction
consistent with the functional dichotomy proposed by Ungerieider and Mishkin (1982).

At the same time Young (1995) suggests that a more complete analysis would need to
consider connections between these two visual pathways, as well as between these paths and
other cortical areas. Evidence supporting such connections includes the presence, within the
occipito-temporal stream, of a discontinuity between anterior and posterior IT cortex (Tanaka et
al., 1991). The posterior IT is characterized by small receptive fields and a sensitivity to simple
features, while the anterior IT is marked by relatively large receptive fields, and cells that are
preferentially sensitive to more complex features. This discontinuity, Young (1995) proposes,
suggests the presence of elaborate callosal connections at the anterior IT. Further, the existence
of the many interconnections between the IT and parietal pathways suggests that the dorsal
stream may have functions more extensive than simply foveation. On the other hand signaling
into the IT regions involves inputs from many areas, such as the limbic system, in which lesions
have been shown to result in discrimination and recognition deficits (Mishkin and Appenzeller,
1987).

While cells of the anterior IT cortex have been shown to respond to complex shapes
such as hands and faces, a question remains as to what shape elements such cells are sensitive.
Fuijita et al. (1992) found that cells in the IT cortex are organized into modules, each of which is
sensitive to a particular pattem element. These elements are suggested to form a set of basis
functions into which more complex visual shapes can be analyzed. Fuiita et al. (1992) estimate

the number of such modules to be on the order of 1000, with a resulting very large number of

31



possible combinations available to represent real-world objects. The response of such modules
to real-world objects would be a population response, by a collection of cells within these
modules. Interestingly, Tanaka et al. (1991) showed that such cells may respond on an
exclusive-or basis. Cells which for example respond to a T-shape may not respond when the T
is presented in combination with other elements, such as for example within a cross shape.
Thus, such cells may respond to the simultaneous occurrence of one feature and the absence of
a second feature. It may also be possible, in this example, that a cross-sensitive cell exists that
inhibits the response of the T-sensitive cell. Such findings serve to underscore the complexity of
recognition processes, and the limits of present knowledge about recognition mechanisms in the
visual system.

Such evidence illustrating the complexity of the visual system suggests that a
reductionist approach to vision may not be appropriate. Van Essen and DeYoe (1995) propose
that the visual system consists of parallel processing streams, with a diverging-converging
architecture. In their view, the visual system consists of multiple concurrently-operating streams.
These streams, extending the length of the visual system from the retina to the anterior areas of
the inferotemporal cortex, may in some locations condense into local networks of relatively fewer
paths. At other locations these streams may expand into networks of relatively greater numbers
of paths, with multiple feedback paths throughout the system. This topography is suggestive of
the convergence zone framework proposed by Damasio and Damasio (1993). The overall
perspective then, is that elementary visual cues and their resulting transformed intermediate
products interact within the visual system in creating relatively high level resuits such as motion,
form and depth. In their view, cues such as velocity, binocular disparity and orientation all
contribute to streams that carmry out analyses of motion, form and depth. Van Essen and Deyoe
(1995) base their view on anatomical data, such as the finding of approximately 30 distinct areas
within the macaque visual system, with on the order of 10 inputs and 10 outputs to each area
(Felleman and Van Essen, 1991). Such interconnections, they point out, are generally aranged
in reciprocal pairs, arguing against simple hierarchical models of visual processing. On the basis
of the finding that the connections within such pairs terminate in different cortical layers, such
reciprocal pairs have been identified as comesponding to forward and backward projections.
Together, such findings allow the visual areas to be arranged into a network with a high degree

of interconnectedness and complexity.

4.6 Summary and Conclusions
The findings of the studies reviewed in the previous section have underscored the

complexity of the visual system. This complexity is demonstrated, for example, by the profuse
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feedback projections within the visual system that have been suggested to be involved in higher-
level influences on visual perception. These influences include attentional effects (Mishkin,
1993; Gilbert, 1995), a notion that is supported by the findings of attentional influences on the
receptive field of neurons in V4 (Moran and Desimone, 1985). In tum, attentional effects have
been suggested to be indistinguishable from memory effects within the visual system (Desimone
et al., 1985; Miller et al., 1993). The effects of still more wide-ranging feedback influences on
the visual system have been found in studies demonstrating the effects of prefrontal cortex on
the ventral visual pathway, providing a mechanism for multiple memory systems within the
inferotemporal cortex (Miller and Desimone, 1994). Along with feedback projections, horizontal
interconnections within the primary visual cortex have been suggested to be involved in other
higher level effects in the primary visual areas, such as context dependency and feature
integration (Gilbert and Wiesel, 1989; Gilbert, 1995).

The clarity of the analysis of the visual system into @ what-where dichotomy itself has
been questioned (Young, 1995) on the basis several lines of evidence. These includes the
complex neuroanatomy of, and the profuse interconnections between the two pathways
(Maunsell and Van Essen, 1983; Felleman and Van Essen, 1991), the finding of extrastriate
signals within these areas related to higher level effects such as attention and memory (Maunsell
et al., 1991), the complex cell responses found in the inferotemporal cortex (Fuijita et al., 1992;
Tanaka et al., 1991; Young, 1992), and functional and anatomical discontinuities within the
inferotemporal cortex (Tanaka et al., 1991). Such considerations led Maunsell et al. (1991) to
suggest that the what/where functional description for the ventral-dorsal dichotomy be replaced
with a higher level description involving an object identification-spatial guidance distinction.

Together, such findings suggest that a reductionist approach to the problem of object
recognition may not be appropriate in view of the complexity of the interactions within and
between the different areas of the visual system. Thus, it may not be possible, when discussing
a relatively higher level and more complex visual processes in organisms such as humans, to
associate these processes with limited areas of the brain. Rather it appears more appropriate to
suggest that in humans visual perception, while involving the inferotemporal cortex along with
the primary sensory areas of the occipital cortex, can be expected to critically engage as well
other areas, such as central and frontal cortices.



5 A Model of Neural Processes in Object Discrimination

The description presented here of the neural events which underlie object discrimination
emphasizes the importance of the structure and time-evolution of intemregional associations in
the process of perception. It is proposed that the complex of neural events associated with
visual discrimination can be usefully parsed into a model involving 3 interacting, and
concurrently operating, functions:

(1) feature discrimination, a stimulus driven process in which elementary features of the central
representation of a visual image are identified on the basis of characteristics such as lines,

forms, edges and colors.

(2) feature binding, a process in which the elementary visual features that have been identified
then undergo binding and transformation resulting in feature ensembles of increased
complexity and dimensionality. This process of feature binding is guided by past leaming, in
the form of memory templates, based for example on the temporal or spatial co-occurence of

visual elements.

(3) matching or association, a model driven process in which features or feature ensembles over
a range of scales of complexity are compared with existing memory templates. At the lowest
levels of complexity such matching would occur between the central representation of
elementary visual features and hard-wired representations in the visual system, and can
therefore be identified with the feature discrimination described in (1). At higher levels,
feature ensembles would be matched with comrespondingly more compiex memory templates
that have been created through interactions between the individual and the environment that
begin in early stages of ontogenesis and continue throughout the life of the organism. At
these higher levels, this matching process can be identified with the feature binding described
in (2).

Functions (1) and (2) thus represent points on a continuum rather than essentially unique
operations, points that differ essentially in the complexity of the information packet being
matched with existing memory templates. Furthermore, the carrying out of these functions might
in tum involve multiple simultaneous operations that occur in parallel, a notion that is supported
by the parallelism inherent in intra-cortical and inter-cortical signaling pathways. In the lower-
level analyses of visual features for example, the retinotopic mapping of visual features within

the primary visual areas allows analysis of elementary features in parallel. Demonstrations of



elementary feature analysis within the primary visual areas date from the work of Hubel and
Wiesel (1962, 1968) who found that within the primary visual areas information corresponding to
visual stimuli is analyzed in terms of relatively local visual elements such as edges and oriented
lines. At higher levels, the feature binding process might analogously involve the creation of
multiple simultaneous, and to some extent orthogonal transformations, each of which would then
be available for comparison with existing memory templates. At all levels of complexity
therefore, the comparison or association process might involve the simultaneous, parallel
examination of a large population of associations.

According to the model, there is not expected to be a clear distinction between the
particular cortical systems associated with these three functions, in terms of the type of
processing that is camied out. Specifically, there are not expected to be cortical systems
dedicated exclusively to performing on the one hand the functions of elementary feature analysis
and feature transformation, and on the other hand memory matching. Rather it is suggested that
the memory matching function is an operation that is inherent in the neuronal structures carrying
out feature identification and feature or feature ensemble transformation. Thus, the cells and
neuronal groups in regions extending from the primary visual areas to the anterior inferotemporal
cortex that have shown sensitivities to features ranging in complexity from relatively simple to
relatively complex respectively, can be considered, in this sense, to have encoded memories
corresponding to such features and feature consteliations, over time and as a result of
interactions with the environment, or in the case of elementary visual elements, as result of
genetic inheritance.

it is proposed then, that image feature analysis and transformation and memory
matching occur within the same neuronal region, for any given range of feature complexity, and
that the relative extent of the cortical areas that are involved in these operations ié dependent on
the complexity of the information being processed. The more complex the information being
processed the larger the extent of the associated cortical regions. It is proposed that successful
discrimination of visually complex depictions of real-world target objects embedded in a visually
camouflaging matrix will eventually involve most cortical regions, including occipital, temporal,
frontal and central. The three functions that have been proposed as components of the process
of object discrimination are therefore suggested to represent functional rather than structural
distinctions. Thus, for example, the operation of feature analysis might closely depend on
finding a match in memory for a particular feature or group of features. In this broad concept of
memory, the particular cells that have been demonstrated to have particular sensitivities, such
as to elementary visual features in the primary visual cortex (Hubel and Wiesel, 1962), and to
hands, faces, and other complex shapes in the anterior inferotemporal cortex (e.g., Fujita et al.,
1892), can be considered to owe this sensitivity to the network of interconnections involving
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these cells with some associated cell population. Again, such a network can be trhough of as
having encoded information about such stimulus features either through developmental
experience, or as a result of genetically-guided wiring. All three of the processes proposed to be
involved in object discrimination would thus occur within the primary visual areas for relatively
simple features, within the primary visual areas together with inferotemporal regions for more
complex feature ensembles, and within these areas together with frontal cortical regions for still
more complex and higher-dimensional transformations of the image elements.

Importantly, it is proposed that during visual recognition this set of processes does not in
general occur as a single-pass sequence, but rather, that visual discrimination of complex real-
world objects typically involves multiple iterations of the three functions. Furthermore, when the
eventual outcome is successful discrimination, these multiple iterations will involve over time
successively larger cortical areas, as increasingly more complex image feature transformations
are involved. Thus, it is presently proposed that visual discrimination can involve repeated
iterations of the processes of elementary feature identification, feature binding or transformation,
and ensemble matching or association.

To illustrate, discrimination of a relatively simple target object from a visual background
might first involve identification of elements of the image such as lines, edges and simple
shapes in a process that would essentially involve matching these visual elements with existing
memory templates. These templates would be encoded as sensitivities to elementary features
within early visual cortical regions. Once such relatively low-level matches have occurred, and
corespondingly the elementary visual features have been identified, the features would then be
available to be bound together by being transformed to form more complex feature ensembles in
a following iteration. As a part of this transformation, such feature ensembles would be matched
with prior leaming, that is, with pre-existing memory templates encoded as sensitivities to more
complex feature constellations. The existence of such relatively complex feature sensitivities
has been hypothesized by Fuijita et al. (1992), who suggest that the inferotemporal cortex may
contain regions sensitive to pattem partials that could act as basis functions, combinations of
which could then be assembled to create sensitivities to arbitrarily compiex visual stimuli (Perrett
and Oram, 1993). Successful visual discrimination will occur when this sequence of events
results in a match in an iteration corresponding to a level of complexity of the feature ensembles
that would be determined by a higher-level influence, such as the goal of the discrimination task.
Thus, if the goal is to detect simple line segments the iterations would terminate at a relatively
early iteration, corresponding to a relatively dimensionally simple feature ensemble. If however
the goal is to detect a more complex shape then the iterations would proceed until a
correspondingly more complex feature ensembles were created. [f, within a given iteration, a
sufficiently accurate match does not occur, then a subsequent iteration should take place. The
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results of the first iteration might in some way be able to modify the component processes in the
second iteration in such a way that the probability of success on the next iteration is increased.
This next iteration could involve a re-analysis of the image for a new set of features that could
then be used to create new feature ensembles. Altematively, the next iteration could involve a
re-transformation of the existing features to form new ensembles. Once again, the resulting
features and feature ensembles would be available for matching with memory templates.
Successful discrimination would result, if, over some number of iterations of this sequence, a
match occurs between the feature ensembles and a pre-existing representation in memory.

For the purpose of a more concrete illustration, imagine that the task is to view a
monochromatic image composed of short, nonlinear line segments, within which is embedded a
disjointed circle formed of similar short and nonlinear line segments. Such an image was used
by Ullman and Shashua (1988) in their computational model of object discrimination. When
initially viewed, this image would trigger the discrimination process through which the individual
line segments are detected and separated from the background. The discriminated line
segments would then be available to the transformation and binding operation. Through this
operation, the various informational dimensions of the image elements, including elementary
dimensions such as shape and length, as well as higher order dimensions such as distributions of
shape and length over the image, would be combined through some transformational function to
form a feature ensemble. The feature ensemble would then be matched against pre-existing
memory templates. This ensemble would represent a particular topographic organization of the
elementary image features, such as for example, a complex curve. If the feature ensembie
representing this complex curve did not find a matching memory template, a subsequent
iteration would take place. This next iteration might involve further transformations of the
existing feature ensembles to create more complex feature bundles. If at some stage of these
iterations, determined by influences from higher level regions, a successful match with a
memory template did not occur, then a following iteration might involve a resetting of this
process, with again a re-transformation of the elementary image features into one or more novel
feature ensembles. A new round of iterations of the transformational binding function would
occur, again creating a sequence of successively more complex feature ensembles for matching
with existing memory templates. Target discrimination would occur when the result of these
iterations was eventually a successful match between a feature ensemble and an existing
memory template.

More extensive versions of this sequence of events will occur when the discrimination
task is sufficiently challenging. In the scenario described above, the image features are
transformed and bound into a single feature ensemble. Instead, in each iteration a population of

ensembles might be created, each of which contains a to some degree orthogonai transformation
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of the original elementary features. This population would then be matched in parallel against a
coresponding population of memory templates. The transformation products, the feature
ensembles, of any one such iteration would then be selected on the basis of the goodness of the
match between the ensembles and corresponding memory templates. Those feature ensembles
that are able to make a sufficiently good match would then survive to the next iteration, to the
next round of transformation and matching. Computational models of such processes exist,
generally subsumed under the rubric of genetic algorithms. Approaches based on genetic
algorithms, in which a population of transformations is evolved over some number of
generations, have been shown to be capable of searching complex problem spaces with an
efficiency that can surpass that of more traditional search methods used in the application of
distributed network models, such as for exampie gradient descent methods (Goldberg, 1989;
Holland, 1975).

In order for this evolutionary component of the proposed description of neuronal
processes underlying object discrimination to make such a description a more economical one,
two general conditions must be met. First, the task to be accomplished, in this case the
generation of a feature ensemble that is able to find a match with an existing memory template,
should be one which presents multiple competing, but only partially correct, solutions. Such
tasks are referred to as having a solution space containing muitiple local minima. Object
discrimination would appear to be a clear exampie of such a task, in view of the large number of
possible topographical configurations that are possible with even a modest set of elementary
visual features. That is, even a relatively small number of features such as simple lines,
orientation, and colors can interact to form a relatively large number of more complex shapes.
Each of these shapes would represent a possible outcome of the transformational process, while
only a small subset would succeed in finding a match in memory. Second, the substrate
available to camry out the evolutionary program should be capable of massively parallel
operations. This second condition would also appear to be well satisfied, by the high degree of
interconnectedness both within and between neuronal regions.

What then are some possible mechanisms that could direct the process of
transformation through which feature ensembles are created. Three possibilities are presented.

The first possibility is that feature ensemble formation might be guided by intemal
heuristics that have evolved through environmental interactions. Such a heuristic might for
example be based on the temporal or spatial co-occurrence of features.

The second possibility is that the process of creating new transformations might be
guided by the results of the previous iteration. Thus the previous iteration would result in some
set of indices that would encode the characteristics of the mismatch or mismatches between

feature ensembles and prior leaming. These indices would then be available to serve as a
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correction or feedback signal that would carry information required to cormrect the previous
transformation step, and possibly even the initial image segmentation step.

This correction process is reminiscent of gradient-descent methods, such as the back-
propagation algorithm, that have been developed to allow training to occur in neural networks,
the computational models of biological neuronal networks. In contrast with the original back-
propagation algorithm which required non-local information in order to iteratively update the
values of the analogs of synaptic strengths, versions have been developed that not only use only
strictly local information in computing a synaptic strength update, but also are more flexible in
that the node transfer function, the input-output characteristic of a neuron analog, is made an
attribute of each node and thus can vary from node to node (e.g., Fausett, 1990). The question
of how well or badly such computational models represent neural processes is not addressed
here. Pertinent to the present discussion is that such models nevertheless do succeed in
demonstrating flexible leaming characteristics on the basis of only local information at each step
of the leaming process.

What is required of such schemes however is that a comrection or feedback signal be
able to propagate back from a comparison stage, in which the actual and target outcomes are
compared and a measure of the difference between the two is computed, towards intermediate
and initial stages of analysis. This requirement for a feedback path in neural systems would
appear to be well met by the numerous and ubiquitous back projections between and within all
cortical regions. More specifically, in the present context of visual object perception, the
occipitotemporal pathway proposed by Ungerleider and Mishkin (1982) as a neural system for
object discrimination, contains extensive feedforward and feedback connections between the
primary visual areas of the occipital cortex, and the inferotemporal (IT) cortex. Further, as
Desimone et al. (1995) point out, based on memory priming studies in monkeys (Miller and
Desimone, 1994), extensive connections exist between the prefrontal and IT cortices. Such
connections, they suggest, may serve to prime the inferotemporal cortex, and thus function as a
higher-evel influence on the visual analytic functions carried out in the IT cortices.

A third possible mechanism by which the process of ensemble creation could be directed
is energy relaxation. The direction taken by the transformations that create feature ensembles
would be one which, over the course of successive iterations, would tend to minimize the level of
energy within the associated neuronal system. The mechanism of energy relaxation is discussed
in the last Unit of this work. In brief, it is proposed that the iterative process of feature
transformation and binding is subserved by a self-organization of the pattem of inter-cortical
signaling, a seif-organization which has the effect of minimizing both the information content
within the neuronal system involved in the discrimination process, that is the information required

to describe the corresponding state of the system, and the level of energy within the neuronal
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system. It is proposed that the more organized the configuration of inter-cortical signaling, the
less energy is required to maintain this configuration, on the straightforward basis that an
element of signaling should require some increment of energy to camy out.

The three possible mechanisms proposed as directors of the process of ensembie
formation, leamed heuristics, corrections by one iteration of the subsequent iteration, and energy
relaxation, are not presented as mutually exclusive possibilities. Thus, the nature of the
correction to the direction taken by one iteration by the results of a previous iteration can be
thought of as decreasing the level of system energy. Both of these mechanisms operating in
concert in this way may in tum, at least to some extent, involve a leaming process in which
components of these mechanisms would develop over the course of ontogenesis as a result of
interactions between the individual and the environment. Furthermore, one way in which
guidance for the direction taken by the feature transformations might be transferred from one
iteration to the next is by means of a genetic algorithmic mechanism as described above, in
which a process of selection operates on a population of transformation products, based on the
degree of match between a feature ensemble and a corresponding memory template. In tum,
the degree of match between a feature ensemble and a memory template might be related to the
energy level of the associated neuronal systems. Thus, it is suggested, the level of energy
required to maintain an interregional signaling configuration corresponding to some degree of
match between an ensemble and a memory template would be inversely proportional to the
degree of match. The better the match, the less energy that would be required to maintain the
corresponding interregional signaling configuration.

To summarize this description of the neuronal processes underlying visual
discrimination, it is proposed that progressively, over a short interval of time prior to
discrimination, an increasing proportion of the brain engages in cooperative activity. This
activity can be characterized as a cortical self-organization in which the interchange of
increasingly complex information occurs in successive iterations that continue until
discrimination has been achieved. These iterations involve operations that can be parsed, it is
proposed, into a set of functions consisting of (1) feature analysis, a stimulus-driven process, in
which elements of the image are identified; (2) feature binding, a process through which visual
elements or lower-evel feature ensembles are transformed into higher level ensembles; and (3)
memory matching, as existing memory templates are successively approximated in terms of the
feature ensembles. It is suggested that these 3 functions represent only functional divisions of
the neuronal processes that underlie object discrimination, and are not mutually distinct in terms
of the underlying neuronal systems or the schedule on which these functions are camied out.
This set of functions are carried, it is suggested, out within the same neuronal populations for

any given level of compiexity of the feature transformation.
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Thus, discrimination of a target object from an embedding visual matrix involves a
process that may be viewed as successively approximating the results of prior leaming
represented by existing memory templates, in terms of a sequence of increasingly complex
transformations of the elements of the central representation of retinal signals within the primary
visual cortex, until the results of a transformation sufficiently well approximate information stored
within existing memory templates. The corresponding cortical dynamics can be conceptualized
as a process of self-organization of the topological structure of the signaling between muitiple
cortical regions. The ultimate result of this self-organization is an emergent unitary percept.
This description will be referred to as the Cortical Self-Organization (CSO) model of the neuronal
processes underlying visual discrimination. The CSO model is schematically diagrammed in
Figure 16.1

As a corollary intended to engage practical applications of the results of the present
study, it is suggested that the changes in correlation that occur during the visual discrimination
process can be summarized using information contained within the two indices, correlation mean
and correlation variance. It is proposed that these two measures can be combined to yield an
overall summary index which will be referred to as a Discrimination Index. This index is
suggested to be a measure of the degree to which a target object has been discriminated from
an embedding visual context. Practical application of the Discrimination Index might include its
use as a real-time index of a subject's state of attention and level of performance on a task
requiring visual perception.

In this section the CSO model has been outlined, as a description of the neuronal events
associated with visual discrimination. Particular elements of the CSO mode! will be tested in the
present work, by attempting to find, associated with successful discrimination of a target object,
particular characteristics of the EEG. These characteristics are outlined in the following section.

41



5.1 Predictions

A number of statements will be derived from the CSO model that are related to the
experimental paradigm to be used in this study, and in particular to the kinds of analyses that will
be performed on the resulting data. Such siatements will involve characteristics of the scalp
potentials that should be observable during visual discrimination. These statements will in tum
be used to generate a number of specific predictions.

The successive iterations of the operations of image element identification,
transformation and matching, when building towards eventual discrimination, are suggested to
involve successively larger extents of cortex. These cortical regions are expected to initially
involve the primary visual cortex, along with inferotemporal areas, and to eventually involve
larger cortical areas including frontal and central regions. The processes of feature binding and
association, dealing with increasingly complex and multi-dimensional transformations of the
features of the visual image, need to access memory templates located within correspondingly
greater extents of cortex. In doing so, therefore, not only are more and more widely separated
cortical areas involved, but also the exchange of information, the signaling, between these areas
should become increasingly coordinated as this increasing number of cortical areas participate in
common process. This common process, consisting of the analysis and binding of image
elements and association of these elements with existing memory templates carried out in an
iterated sequence, thus involves an increasing number of cortical areas exchanging increasingly
complex information. The earlier events in this process, identification and transformational
binding of elementary image elements may, it is suggested, be camied out by distinct cortical
areas operating to some extent independently, and each associated with a particular set of
dimensions of the data. The process of binding occurring within these separate cortical regions
would then be reflected in multiple centers of oscillatory activity whose frequency and phase
characteristics would be unique to each region. In terms of scalp potentials the observable effect
would be an aperiodic signal at each electrode site with relatively low levels of association
between sites. In the later stages of the object discrimination process there would be an
increase in the amount of inter-regional signaling which would occur as the separate cortical
regions engage in the attempt both, to mutually associate their feature ensembles, and to
associate these ensembles with previously leamed visual memories. As a consequence, the
oscillatory activity associated with the separate cortical areas would become increasingly
synchronized. The result, it is suggested, should be an increasing level of association between
the scalp potentials measured over these cortical areas. Thus, it is suggested, the effect of the
inter-regional signaling is to mutually synchronize the oscillatory activity occurring within

separéte cortical regions.
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To summarize, the following neural events are proposed to occur over a short interval of
time preceding the moment of discrimination. When a visual image is initially attended to,
cortical areas within the primary visual cortex such as V1, that have been shown to be involved
in elementary feature identification and discrimination, are expected to be active. Since a clear
structural division between systems performing feature discrimination and feature transformation
is not expected to exist, the primary visual areas engaged in feature analysis are also expected
to be involved in relatively local, low-level transformations of the data, into relatively low-
dimensioned ensembles. At the same time such regions might be expected to be engaged in a
relatively limited amount of mutual signaling or information interchange as the competition for
cortical communications resources favors intraregional rather than inter-regional signaling
(Thatcher, Krause, and Hrybyk, 1986). The relatively independent nature of the activity within
these cortical regions should result in mutually asynchronous field potentials across the different
cortical regions, and a correspondingly low level of association between the scalp electrical
activity over these regions. Over time, and as the moment of discrimination approaches, the
level of inter-regional signaling is proposed to increase. Multiple cortical regions engage in an
increasing level of information exchange, corresponding to the increasingly complex, high-
dimensioned feature transformations that are being created, and that involving increasingly
greater neuronal populations within the respective regions. The result is an escalating level of
mutual synchronization of the oscillatory activity occumring across these regions.
Correspondingly, it is expected that potentials measured at muitiple points on the scalp will be
characterized by an increasing level of mutual association.

Thus, imminently successful visual discrimination is distinguished from eventually
unsuccessful image analysis by the involvement of increasingly larger cortical areas as the
ultimately successful transformation or feature ensemble is able to find a match in terms of an
increasing number of information dimensions, and hence in terms of the information stored in
increasingly large and more numerous cortical areas associated with these higher-dimensional
transformations of the data. Through the mechanism of inter-regional signaling, the synchronous
involvement of these ever larger and more numerous cortical areas then results in an ever
increasing degree of comrelation between the electrical field potentials associated with these
regions, in some interval of time preceding discrimination. A very general analogy might be a
network of coupled oscillators, with each oscillator representing the activity of one cortical area
camrying out the process of feature binding through transformation. The coupling strength
between the oscillators, representing the level of inter-regional signaling, would thus increase as
the moment of discrimination approaches.

These elaborations of the CSO model allow a number of predictions to be made in the
context of the paradigm used in the present study. It is suggested that, when the perceptual task
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is to discover a camouflaged object embedded within a complex image, the associated EEG will
show a number of characteristics that should observable during a short interval of time preceding
the moment of discrimination.

1. The magnitude of intercomelations between all cortical areas is expected to increase with
time during an interval preceding the moment of discrimination. Initially, these
intercorrelations are expected to increase between areas associated with relatively low and
moderate level visual feature analysis and transformation, the occipital and inferotemporal
areas. Subsequently, these intercomrelations are expected to involve larger cortical extents,
as the feature analysis and transformation processes result in increasingly complex feature
ensembles that then require matching with prior leaming within correspondingly larger areas
of cortex.

2. Averaged over time, the magnitude of intercorrelations is expected to vary approximately in
inverse proportion to the physical distance between the corresponding electrodes.

3. Intercomrelations between cortical regions that are widely spatially separated are expected to
increase more than comrelations between cortical areas that are closer together. A
consequence is that the variability in the magnitude of these intercorrelations is expected to
decrease.

These three characteristics are motivated by features of the CSO model, as well as by
the results of pervious studies. The first of these characteristics , the increase in the magnitude
of intercorrelations, has been suggested to be a consequence of the phenomenon that muitiple
regions of the brain engage in an increasing degree of reciprocal signaling as the moment of
discrimination approaches. In altemative terms, during the interval preceding successful
discrimination there should be an increasing rate of information interchange between cortical
regions. The suggestion of the initial involvement of primary visual and inferotemporal regions is
motivated in part by the results of lesion studies, primarily using macaque monkeys, that have
defined the functional specializations of these areas in the process of object discrimination (e.g.,
Damasio, Damasio and Tranel, 1990; DeYoe and Van Essen 1988; Gilbert, 1992; Ungerleider
and Mishkin, 1982). The suggestion that frontal areas are involved in the later stages of the
object perception process is motivated in part by the results of studies demonstrating attention-
related effects within the visual system as a result of communication between anterior
inferotemporal and prefrontal areas (Miller and Desimone, 1994), as well as the results of studies

of EEG coherence during visual image interpretation (Petsche et al., 1992).
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The second characteristic, while not directly addressed by the CSO model, is
nevertheless included since this feature is expected to be a prominent feature of the observed
EEG associations. The inverse relationship between correlation and inter-regional distance, is
predicted on the basis of studies of the neuro-anatomy of the cortex. Braitenberg (1978) has
pointed out that the cortex contains between 10 and 100 times as many short-axoned neurons
that arborize in the immediate vicinity of the cell body, as long-axoned pyramidal cells whose
axons reach lengths of upwards of several centimeters. This greater density of short
connections within the cortex relative to longer connections, and the decreasing density of such
connections with distance (Thatcher et al., 1986), should mean that correlations between
electrode sites should decrease with increasing distance between the sites.

The third characteristic, the relatively larger increase in comrelations between widely-
spaced regions relative to closely-spaced regions, is suggested to be a resuilt of the importance,
for visual discrimination, of communication not only within, but also between cortical regions.
Communication, and hence the level of coordinated activity, within and between closely spaced
cortical regions is expected to be significant in the initial stages of the visual discrimination
process, reflecting on-going analysis of perceptual elements of the central representation of the
visual image by relatively local cortical regions. Over the duration of the discrimination process
it is expected that the degree of coupling between these closely-spaced regions will not increase
substantially. In contrast, communication, and hence the level of coordinated activity, among
more widely-spaced cortical regions is expected to be relatively low at the start of the recording
epoch, since visual elements have yet to undergo binding into more complex feature
ensembles, and association with the comrespondingly complex memory templates. At the
moment of discrimination, image elements have been bound into feature ensembles that have
been successfully matched with memory templates. This feature binding and memory matching
are proposed to be indicated by an increase over time of the magnitude of cormrelations between
relatively widely-separated cortical regions. The level of association between these regions is
therefore proposed to increase substantially in order for discrimination to occur. As
discrimination approaches, there should be a comresponding decrease in varability among
interregional associations, since associations between closely-spaced regions change relatively
little while associations between widely-spaced regions increase.

While these predictions all deal with the topological aspects of the neuronal processes
associated with visual discrimination, the study of correlations addresses a compiementary
issue, the issue of the dynamics of the interregional signaling associated with discrimination.
Implicit in the search for comrelates of visual discrimination in an analysis of between-signal
associations is the idea that the pattem of associations preceding discrimination is based on
oscillatory components of the recorded potentials. These oscillatory components, it is
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suggested, reflect the iterated nature of the neuronal processes associated with discrimination,
that is, the successive iterations of the processes of feature analysis, transformation and
memory matching that were outlined in the CSO model.

Reber (1985) suggests as a definition of perception, that it consists of "those processes
that give coherence and unity to sensory input"” (p. 527). In this study subjects will be presented
with stimuli designed to encourage such perceptual unification to occur. Subjects will be shown
high-contrast images containing target objects embedded within a visually-complex background.
Subjects are expected to generally initially interpret such images only as pattems of random
shapes. Over a short interval of time, and for at least a subset of the set of images presented,
discrimination of the target objects from the background should occur. The neural processes
associated with this discrimination should be reflected in EEG signals recorded concurrently with
the stimulus presentation, particularly when these signals are analyzed in terms of features that
reflect the proposed underlying interregional synchronization. These analyses will include cross-
correlation, coherence and mutual information.



Il Linear Analyses
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6 Cross-correlation analysis

6.1 Introduction

This experiment will try to find evidence in terms of cross-correlations related to the
predictions that were made on the basis of the CSO model of object discrimination. First, the
magnitude of comrelations is expected to increase over time as the moment of discrimination
approaches. Second, the size of correlations is expected to be approximately inversely
proportional to inter-electrode distance. Third, correlations between distantly-spaced electrode
sites are expected to increase more than correlations between closely-spaced sites. These
predictions can be recast into the form of questions regarding the temporal and spatial features
of the correlational structure of EEG signals recorded during a visual discrimination event. The
primary question to be answered is, how do between-channel corelations change as a function
of time, both before and after the moment of discrimination. A secondary question is, how do
these correlations change as a function of distance between electrode sites.

An experiment has been designed in order to try to answer these questions. In overview,
the pattem of correlations between signals recorded from pairs of electrode sites will be
compared for two conditions. In the first, picture condition, subjects will be attempting to
discriminate a target object that is visually embedded in a complex visual background. In the
second, control condition, subjects will be looking at a fixation point on a neutral background. In
the first case subjects will signal discrimination with an eye-blink. In the second condition
subjects will blink at a time of their choosing. In both cases signais will be recorded and
analyzed from two intervals of time. The first interval will be the 1 second interval preceding the
eye-blink. The second interval will be the 1 second interval following the cessation of eye
movements after the blink.

This procedure has been designed to provide subjects with the opportunity to engage in
the neural events that are involved in the process of visual discrimination. Thus, the
experimental stimuli consist of depictions of objects that are expected to be relatively familiar,
such as birds and animals, and which if presented on their own, subjects could reasonably be
expected to recognize immediately. These target objects, however, are embedded in a visual
background that is intended to delay the onset of discrimination, by requiring subjects to attempt
to discriminate between the background and the target objects. Until such target-background
discrimination has taken place, the embedded targets will not be perceived or identified as
discrete objects.

~ During the time that subjects are attending to the stimulus image, and when the outcome

is successful discrimination, subjects are expected to automatically, that is, without conscious



awareness of the process, organize the visual elements which together comprise the depiction of
the target object and the visual context in such a way that the target becomes salient and distinct
from the context. It is this process that is the focus of the present investigation. It is suggested,
on the basis of pilot work, that significant portions of this process will occur over a short interval
of time, on the order of a second, preceding the actual moment at which the target object is
perceived. Finally, it is assumed that whatever neurophysiological events are involved in this
object discrimination process, such events will to a significant degree be reflected in the
electrophysiological activity that will be measured across the scalp, to the extent scalp
measurements are able to access the electrical activity of the relevant neural generating
structures. Correspondingly, it is acknowledged that the activity of cortical processes will be
represented in the scalp electrical measurements to a greater extent than that of subcortical
processes.

In summary, the analysis of cross-comrelations in the present section is intended to
answer the following questions. First, is there a significant increase with time in the magnitude of
correlation? Second, is there a significant decrease in the magnitude of correlation with
increasing distance? Third, is there a greater increase in cormrelation between more widely-

spaced cortical regions than between closely-spaced regions?

6.2 Method

6.2.1 Subjects

The subjects in this study consisted of 3 female and 3 male university undergraduates or
graduates, ranging in age from 23 to 47, with a mean age of 33.5, and a standard deviation of
10.8. All subjects are right-handed with English as their first language. Subjects have no known
neurological disorders. Two of the subjects (1 male and 1 female) were paid for their

participation.

6.2.2 Materials and Procedure

The stimuli are comprised of a set of 31 images, each of which depicts a target object,
generally an animal or a bird, embedded within a complex visual matrix that is intended to have
the effect of camouflaging the target. The example presented in Figure 6.1 shows a bird sitting
in grass, with the shading and markings on the bird matching the pattem of the grass. Each
image was constructed by first scanning a photograph of the appropriate scene, and then
converting the scanned image into a monochromatic version with the original picture tones

converted to 2 calues, black and white. The resolution of the monochromatic image is 100 pixels
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per inch. The result is a high-contrast version of the original picture. Scanning and conversion
were done using PhotoStyler 2.0 ® by Aldus Publishing, an image processing program. The
result for each picture was a bit-mapped file that was then stored on disk. In total, 31 stimulus

pictures were constructed in this way. Appendix 2 shows the remaining 30 stimulus pictures.
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Figure 6.1 Typical stimulus picture
This picture is one of the stimulus images presented to subjects in the picture condition. It shows
a bird positioned approximately in the center of the picture, sitting in dried grass. The original
photograph was scanned to convert it into a bit-mapped file, and the file was then converted into
a high-contrast 2-color black and white image (picture adapted from Frisch, 1973).

b &6

There were two conditions in this experiment, a picture condition and a control condition.
In both conditions, subjects were seated in a darkened room facing a computer monitor on which
the stimuli were presented. The distance between the subject's head and the display screen was
approximately 60 cm, and the size of the stimulus picture on the screen was adjusted to 5 cm
vertically, comresponding to a visual angle of approximately 4.8 degrees, by 6.7 cm horizontally,
for a visual angle of approximately 6.4 degrees.

In the picture condition subjects were instructed to maintain focus on a fixation point that
remained constantly in view in the center of the display. Subjects were instructed to blink when
they felt that they had discriminated an object in the image. Subjects were presented with the
entire sequence of 31 images, one image at a time. Each image was shown continuously for 8
seconds, with an inter-trial interval that varied randomly between 10 and 20 seconds. Subjects
were instructed to keep looking at the discriminated object after they had blinked. The difficulty-
of-discrimination level varied from very easy to very difficult, estimated on the basis of subject

debriefings.  Subjects were able to discriminate the easy-to-recognize objects within
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approximately one second, while they were generally not able to discriminate the difficult objects
at all. Subjects were presented with the entire set of 31 images twice in a continuous sequence,
with only a normal inter-trial interval between sets. EEG recordings were made during the 8
second interval that the stimulus images were presented. The start of the recording was
synchronized with image onset.

Following the presentation of the two sets of 31 stimulus images, a total of 20 control
trials were recorded. No attempt was made to counterbalance the presentation schedule of
control and picture trials across subjects. In the control condition, a diffusing screen was fixed
over the monitor screen. This screen, consisting of a sheet of white paper large enough to cover
the screen, had a fixation point marked on it in the same visual position as the fixation point on
the monitor display. The diffuser did not allow any underlying shapes to be recognizable, but
showed only a general brightening when the monitor display brightened. The length of this
brightening interval was fixed at 8 seconds, the same duration for which the stimulus pictures
were visible in the picture condition. Overall screen illumination was adjusted to create an
approximately constant brightness level in the two conditions. In this control condition subjects
were instructed to blink at any time of their choosing, but within the time during which the diffuser
brightened. EEG recordings were made during this 8 second brightening interval. The start of
the recording was synchronized with the onset of the 8 second interval. Using this amrangement,
20 control trials were recorded. The entire recording session of picture and control trials required
approximately 45 minutes.

A total of 20 channels in the 1020 system were recorded. This electrode topography is
shown in Figure 6.6. Electrode Fpz was used as the ground connection, and linked-ears were
used as the reference. Recordings were made using the EEG ampilifiers in a Nihon-Khoden
model EEG-4217 EEG recording station. Amplifier outputs were routed to data collection
software, Brainwave V1.1 ® written by Procet Engineering, through a National Instruments
model ATM1064-F analog to digital conversion system. In the Nihon-Khoden machine, the high-
pass filter setting was 3 Hz, the low-pass filter setting was 70 Hz (-3 dB points), and a 60 Hz
notch-filter was used. The EEG data were digitized at 128 samples per second and each trial
stored on disk as a separate ASCII file. Figure 6.3 shows a typical record of 8 seconds of EEG
recorded at electrode Fp1 from a subject in the picture condition. Figure 6.4 shows a single
channel from this ensemble, electrode Fp1, illustrating the typical EEG features associated with

an eye-blink.
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Figure 6.2 Electrode topography

Data were recorded from these 20 electrodes which were located using the intemational 1020
system. Electrode Fpz was used as the ground reference, and linked ears were used as the
signal reference.
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Figure 6.3 Typical wave-form ensemble

These waveforms were recorded from subject 7 in the picture condition. The eye blink can be
seen at approximately the center of the interval. The horizontal scale represents a time-interval
of 8 seconds, digitized at 128 points per second, resuiting in a total of 1024 points.
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Figure 6.4 Typical eye-blink wave-form.

Typical eye-blink signal (measured at electrode Fp1) from subject 7 in the picture condition,
consists of a negative-spike, followed by a slow positive wave. The amplitude of the positive
wave is typically minimal 1.5 seconds after the start of the spike. Thus, the eye-blink is defined
as 1.5 seconds in duration. The 1 sec. intervals selected for analysis, labeled BBE (before-blink
epoch) and ABE (after-blink epoch) are each subdivided into 4, 0.25 sec. time-windows. The
end of the BBE, is 20 time points (0.156 seconds) before the start of the spike. The ABE starts
at the end of the eye-blink. Sampling rate is 128 points/sec.

Data were recorded in 6 separate sessions, one session for each of 6 subjects. Data
from one subject (6) were rejected after debriefing revealed that the subject had misunderstood
and therefore not followed the instruction to blink only on discriminating the camouflaged object.
The recording sessions were preceded by 3 pilot sessions, the aim of which had been to provide
initial data to aid in hypothesis construction, as well as to perfect the recording paradigm and to
verify the integrity of the recording equipment. Subject 5 had participated in one of the pilot
sessions. In each experimental session there were 62 picture trials and 20 control trials. Tnals
were rejected if they were found to contain artifacts such as relatively sharp changes in potential
that might be related to eye movements or general body movements, or if the start of the blink
occurs too close to the beginning or too close to the end of the record. Specifically, trials were
rejected if the blink occurred within 1.187 seconds of the start of the record, or within 2.5
seconds of the end of the record.

For both control and picture conditions, two intervals within the data record were
analyzed. The first interval is referred to as the before-blink epoch (BBE). The end of the BBE
is defined as 24 data points (187 milliseconds) before the start of the eye-blink. The start of the
eye-blink was defined as a negative going voltage change with a rate of change of at least 50
microvolts in 31 milliseconds. The value of 24 data points was chosen with the intention of
accounting for the reaction time between the discrimination event and the start of the blink. That

is, the 24 data points coresponding to 187 ms were intended to exclude from the subsequent
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analysis potentials related to preparation for the eye blink. The BBE, defined as the 1 second
interval preceding the end-point of the BBE, is divided into 4 time-windows, each 32 data points
(0.25 seconds) long. These time windows are labeled 1 through 4, and are shown in Figure 6.4.
The length of a time-window was chosen as a compromise between adequate temporal
resolution within a recording epoch on the one hand, and getting enough data points in each
window for robust analytical results on the other hand. The primary type of analysis that will be
performed on this data is comrelation. If there are too few data points in a window then the
between-channel correlations will be dominated by machine noise, at frequencies for which the
period is much less than the number of points in the window. The lowest frequency that will be
examined is 2 Hz. The window width of 0.25 seconds corresponds to a half cycle of a 2 Hz
signal. While this window width should still allow a 2 Hz signal to be analyzed, it is estimated
that a narrower window would probably not be usable. Trials are rejected if they do not contain
at least 4 such time-windows. This leads to the criterion that the blink must occur at least 1.187
seconds after the start of the record (4 windows of 0.25 sec. each, plus 187 milliseconds for blink
reaction time). The length of the before-blink epoch itself, 1 second, was chosen as a
compromise between on the one hand including a sufficient number of time windows to get a
good picture of what is happening before the blink, and on the other hand, not limiting the
number of cases that would be available to be analyzed. A longer before-blink epoch would
have precluded a greater number of cases from being analyzed, those cases in which the blink
occuired too close to the start of the record.

The second interval that will be analyzed is referred to as the after-blink epoch (ABE).
The ABE starts 1.5 seconds after the start of the blink, and has a duration of 1 second, and
correspondingly 4 time-windows labeled 5 through 8, and shown in Figure 6.4. The start of the
ABE was defined to be 1.5 seconds following the start of the blink. This definition was made on
the basis of observations of multipie records of the blink waveform which indicated that
significant electrical activity associated with the eye-blink, a iow-frequency rolling wave, was
generally minimal after 1.5 seconds following the start of the negative-going voltage spike.

In sum, each trial was qualified on the basis of being free from artifacts, and containing
at least 128 data points, equivalent to 1 second, both before and after the blink. From trials
qualified in this way, the three midline channels, Fz, Cz, and Pz, were removed. The motive for
this is that it seems reasonable that if there are no generating brain structures underlying these
channels then signals from these channels would represent the summation of signals from
adjacent channels. As such, these midline channeis would necessarily be comelated with
adjacent channels, and would therefore camy no independent information. Subsequent analysis
was therefore carmed out on the remaining 16 channeis of the intemational 1020 system: Fp1,
Fp2, F7, F3, F4, F8, T3, C3, C4, T4, T5, P3, P4, T6, O1 and O2.
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Next, the 1 second intervals of the BBE and ABE from each qualified trial were band-
pass filtered to extract the 2 to 8 Hz frequency components. The lower frequency limit of 2 Hz
was chosen in order to exclude from further analysis the effects of any low-frequency artifacts
that might yet be present in the recordings, and which might be generated by sources such as
slow eye or facial muscle movements, or by respiration. Additionally, the length of the time-
window, 32 data points, is equal to the period of a 4 Hz signal. In the 32 point time window there
will be one-half cycle of a 2 Hz signal, and proportionately smaller fractions of a cycle of lower
frequencies. These small fractions of a cycle for such lower frequencies would convey little
information about the behaviour, such as correlation, of these low frequencies. In any event,
there would be relatively little signal at frequencies below 2 Hz since the high-pass filter setting
used for recording the data was set at 3 Hz (-3 dB).

The higher frequency bands, alpha, beta and gamma, were not analyzed because of
the findings of the pilot experiments, and because of the results of the numerical experiment
outlined in Appendix 1. Pilot analyses on these higher frequency bands indicated that in fact
there was little or no effect of picture condition on correlations when signals were filtered to
extract alpha, beta and gamma band components. Furthermore, estimates of signal to noise
ratio within the beta and gamma bands, as described in Appendix 1, indicated that the magnitude
of correlation would be affected by the level of noise within these bands. The findings described
in Appendix 1 are that correlations computed from data filtered to extract higher frequency
components such as the beta and gamma band, are likely to be significantly affected by the
signal-to-noise ratio within the recordings. Noise is defined here as electrical signals that are not
generated by the subject, but rather originate either within the recording equipment or are picked
up by capacitive and inductive coupling between the subject and the electrode wires connecting
the subject with the recording equipment, and extraneous electrical wiring and equipment within
the vicinity of the subject. If this noise has a time-varying component with a time-scale
comparable to that of the data recording itself, then the magnitude of comrelations computed from
such data will include a component proportional to the noise level. This time-varying component
in the computed comrelations may mask or at least modulate any effect of the experimental
manipulations. A conclusion of the resuits of Appendix 1 is that the effects, on magnitude of
intercorrelation, of time-varying components of noise may not be separable from the effects of
the experimental manipulation, at frequencies higher than the alpha band. Consistent with this
finding, it has been pointed out gamma band signals may not be easily detectable on the scalp
because first, such signals are greatly attenuated due to volume conduction through the skull,
and second, these signals are confounded with scalp muscle activity (Bressler, 1990).

The theta frequency band, as defined in the present study at 2 to 8 Hz, was not

subdivided into smaller segments because of a phenomenon associated with narrow-band
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filtering: narrow band-pass filtering can create spurious signals when the data contain rapid
changes or spikes, even if such changes are of low amplitude: the spike events tend to become
smeared out in time in inverse proportion to the width of the filter pass-band, generating spurious
periodic signals over the length of the time-interval. Such spurious signals may have relatively
less effect if the resulting data were being analyzed for amplitude or power, but they would have
a significant effect if correlational analysis was used: these spurious signals would have the
effect of essentially adding noise to the data and, as a resuit, affecting the magnitude of
correlations computed from the data.

The next step of the analysis was to compute cross-comrelograms for each condition, for
each subject, for each trial, for each time window of the BBE and ABE, and for each of the 120
possible pairs of time series using the recordings from the 16 electrodes. Each correlogram was
computed by varying the lag between each pair of time series over the range of -8 to +8. One
unit of lag comresponds to the inverse of the sampling rate, 7.8125 milliseconds. This range of
lags was chosen on the basis of the results of analyses conducted on the pilot data. For each
value of lag the cormrelation between the pair of time series is computed. An average cross
comrelogram was then computed for each subject, for each condition, for each epoch, for each
window, and for each channel pair. This was done by averaging over the cross-correlograms for
individual cases for a subject. For each of these mean cormrelograms, 2 values were determined,
the maximum value of correlation, and the value of lag at which the maximum correlation

occurred. These steps are shown in the following diagram:



for each subject, record 8 seconds. from 19 channels
at 128 points/sec.

{
[ for each trial, remove mid-line channels Fz, Cz, Pz |
{
for each trial, locate eye-blink and time-windows
of BBE and ABE
{

for each trial, create separate matrices for BBE and ABE;
each matrix is 16 channels by 128 points (1 sec.)
y

[ band-pass filter each matrix for 2 to 8 Hz |
{

separate each matrix into individual time windows
each 0.25 sec. (32 points)
y

for each time-window, compute all possible cross-correlograms
using a lag of -8 to +8
y
for each cross-correlogram, find maximum correlation
and corresponding value of lag

for each subject, condition, window and electrode pair,
compute mean correlation and lag
by averaging across all trials

For each electrode pair an estimate was computed of the physical distance between the
pair of electrodes. A simple Euclidean distance was computed based on a flat scalp geometry,
resulting in a distance measure in arbitrary units. This flat scalp geometry consists of a 5 by 5
matrix upon which electrode sites are positioned. Each electrode can thus be assigned a column
number and a row number to indicate its location on this matrix. Distance is computed by taking
the square root of the sum of the squared difference between the column numbers and the
squared difference between the row numbers. The minimum distance of 1 comresponds to
adjacent electrodes. The maximum distance between 2 electrodes is approximately 4.47 units.
This flat scalp model is sufficient for the purposes of the present analysis, since the only variable
that is computed from the distance is the ordinal ranking of electrode pairs in terms of distance
between members of a pair.

The cross-correlation computations as well as all supporting functions were carried out

using the data analysis program Simulnet™ version 2.3.

57



6.2.3 Analyses

The predictions that correlation would increase with time during the BBE, and decrease
with increasing between-electrode distance, were tested using an analysis of variance of the
intercorrelations. Correlation was analyzed, using a 2-factor within subjects analysis of variance.
The two factors were time, and distance between electrodes. The varnable time had 4 levels
comresponding to the 4 time windows within each of the recording epochs. The vanable distance
had 120 levels corresponding to the 120 intercorrelations ranked according to between-electrode
distance. The prediction, that over the interval preceding discrimination comrelations between
distantly spaced electrodes would increase more then correlations between more closely spaced
electrodes, was tested by conducting separate 1-way within subject analyses of variance on the
12 electrode pairs separated by the shortest distances and the 12 electrode pairs separated by
the longest distances.

Although no predictions were made at the outset regarding the behaviour of the value of
lag, an exploratory analysis of lag was conducted. Lag was analyzed using a procedure identical
to that employed for correlation, using a 2-way within-subjects analysis of variance. As for
correlation, the two factors were time and distance, defined as for the analysis of cross-
correlations.

A similar analysis of variance was conducted for recordings in what will be termed the
no-blink condition. The no-blink condition consists of the subset of trials in the picture condition
in which subject failed to discriminate the camouflaged target object embedded in each stimulus
image during the 8 second recording interval. It is predicted that the results in this condition will
be very similar to those obtained in the control condition, in which subjects were instructed to
blink at will while looking at a fixation point on a neutral screen. If the resuits in these two
conditions are similar then the validity of the control condition wili be supported.

For each of these analysis an estimate of effect size was computed. The measure used
was omega-squared, as suggested by Keppel (1991, p. 63). The values of effect size may be
interpreted using guidelines suggested by Cohen (1977):

Effect Size Interpretation

0.01 small effect
0.06 moderate effect
>0.15 large effect




6.3 Results

6.3.1 Analysis of Correlation

The three predictions made on the basis of the CSO model were confirmed by the
results. Confirming the first prediction, there was one significant effect of time, in the picture
condition in the BBE (F = 3.16, p = 0.027, effect size = 0.0003). Correlation increased over the
duration of the BBE, from a value of 0.715 to 0.789. In contrast, in the control condition
correlations remained relatively constant over the BBE, decreasing slightly and non-significantly
from 0.740 to 0.719 (F < 1). Table 6.2 lists the mean comelations for each time window,
averaged over all distances, that is, over all 120 possible pairwise combinations of electrodes.
These mean correlations as a function of time-window are graphed in Figure 6.5a.

Confirming the second prediction, there were significant effects of distance in both the
BBE and ABE, and in both the picture condition (BBE: F = 20.9, p < 0.0001, effect size = 0.11;
ABE: F =16.7, p < 0.0001, effect size = 0.085) and in the control condition (BBE: F =273, p <
0.0001, effect size = 0.11; ABE: F = 25.5, p < 0.0001, effect size = 0.10), with correlation
decreasing with increasing distance in all cases. Correlation decreased from approximately 0.85
for adjacent electrodes to approximately 0.6 for electrode pairs spaced furthest apart. These
mean correlations as a function of inter-electrode distance are graphed in Figure 6.6a for the
before-blink epoch and Figure 6.6b for the after-blink epoch. Table 6.1 shows the results of the
analysis of vanance, listing the values of F along with the comesponding values of probability
and effect size.

Confirming the third prediction, correlations between the 12 most closely-spaced
electrode pairs increased from 0.836 to 0.856 over the BBE (F = 1.19, p = 0.317, effect size =
0.0003). Over this same interval correlations between the 12 most distantly-spaced electrode
pairs increased from 0.577 to 0.698 over the BBE (F = 2.89, p = 0.038, effect size = 0.003).
Since these secondary analyses of variance were conducted on only subsets of the data upon
which the original analysis of variance was conducted, it is not expected that the significance
probabilities may need the comrections normally required when multiple tests of significance are
conducted on the same data. These results are shown in Table 6.3, and graphed in Figure 6.7a

for the picture condition and Figure 6.7b for the control condition.
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Table 6.1 Results of analysis of variance of intercorrelation
The table shows the results of a two-way within subjects analysis o

variance of cross-comrelogram maxima.

Significant effects of distanc

occur for all conditions and epochs. A significant effect of time occurs i
the before-blink epoch in the picture condition only.

Condition Epoch item Time Distance TxD
Picture BBE F 3.16 20.9 1.0
p 0.027 < 0.0001 0.53
Effect 0.0003 0.1 00
ABE F <1 16.7 <1
p < 0.0001
Effect 0.085
Control BBE F <1 27.3 <1
p < 0.0001
Effect 0.1
ABE F 1.27 25.5 <1
p 0.29 < 0.0001
Effect 0.0 0.10

Table 6.2 Mean intercorrelations

The table shows cross-correlation maxima averaged over all trials for bot

conditions, and for each time window.

Epoch Window Control Picture

BBE 1 0.740 0.715
2 0.739 0.737
3 0.752 0.752
4 0.719 0.789

ABE 5 0.740 0.745
6 0.749 0.737
7 0.768 0.734
8 0.730 0.755




Table 6.3 Short vs. long intercorrelations

The table shows cross-correlation maxima, averaged over all tnals, for th
12 shortest inter-electrode distances, labeled Short, and the 12 longes
inter-electrode distances, {abeled Long. Only long distance correlation
increase significantly from windows 1 to 4.

Distance
Window Short Long
1 0.836 0.577
2 0.822 0.619
3 0.833 0.651
4 0.856 0.698
F 1.19 2.89
P 0.32 0.038
Effect 0.0003 0.003
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Figure 6.5 Correlation vs. time
Correlations are cross-correlogram maxima averaged across all subjects, and across ali 120
possible pairwise correlations.
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Figure 6.6 Correlation vs. electrode spacing

Correlations are cross-correlogram maxima, averaged across subjects and across the 4 time
windows of the before-blink epoch (a) and the after-blink epoch (b). Correlations are shown for
all 120 possible pairwise combinations of the 16 recorded electrodes. Each point on the graphs
shows the correlation for a single pair of electrodes. Electrode pair 1 is part of the group of most
closely spaced electrode pairs. Electrode pair 120 is part of the group of most distantly spaced
pairs.
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Figure 6.7 Short and long distance correlations

Short distance comrelations are averaged over correlations between the 12 electrode pairs
separated by the shortest distance. Long distance correlations are averaged over correlations
between the 12 electrode pairs separated by the longest distances. In the picture condition (a)
long distance correlations increase significantly from time-window 1 to 4, while short correlations
remain relatively constant. All other cormrelations remain relatively unchanged over the 4 time-
windows of the respective epochs.
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6.3.2 Analysis of Lag

There were no significant effects of time in the picture condition in either the BBE (F <
1), or the ABE (F = 1.24, p = 0.30, effect size = 0.0). There were no significant effects of time in
the control condition in either the BBE (F < 1), or in the ABE (F < 1). Table 6.5 lists mean lags
for each time window, averaged over all 120 possible electrode pairs. These means are graphed
in Figure 6.8.

In the picture condition, there was a significant effect of distance in the BBE (F = 2.41, p
< 0.0001, effect size = 0.008), with an increasing value of lag with distance, from approximately
0.35 (2.73 ms) for short distances to 0.55 (4.30 ms) for long distances. A unit of lag corresponds
to a time of 7.8125 milliseconds. Also in the picture condition, there was a significant effect of
distance in the ABE (F = 1.67, p < 0.0001, effect size = 0.004), with a decreasing value of lag
with distance, from approximately 0.23 (1.80 ms) for short distances to 0.04 (0.31 ms) for long
distances.

In the control condition, there was a significant effect of distance in the BBE (F = 1.46, p
= 0.001, effect size = 0.002), with an increasing value of lag with distance, from about 0.28 (2.19
ms) for short distances to about 0.44 (3.44 ms) for long distances. Also in the control condition,
there was a non-significant effect of distance in the ABE (F = 1.09, p = 0.243, effect size =
0.0004), with a decreasing value of lag with distance, from approximately 0.16 (1.25 ms) for
short distances to -0.06 (-0.47 ms) for long distances. There was a significant interaction
between time and distance in the control condition in the BBE (F = 1.25, p = 0.001, effect size =
0.003), resulting from the value of lag being higher in time-window 2 for long distances than for
short distances. Figure 6.9 shows the values of lag as a function of distance for the BBE (a) and
ABE (b).

Summarizing the effects of time and distance on lag, there were no significant effects of
time on the value of lag in either the control or picture conditions. [n both the picture and control
conditions, lag increased with distance during the BBE, and decreased with distance during the
ABE. These results are listed in Tabie 6.4.



Table 6.4 Results of analysis of variance of lag

The table shows the results of a two-way within subjects analysis o
vanance of lags comesponding to cross-correlation maxima. La
increases significantly with distance in both epochs in the pictur
condition, and decreases significantly in the before-blink epoch in th
control condition. A significant interaction between time and distanc
occurs in the before-blink epoch in the control condition.

Condition Epoch Item Time Distance TxD
Picture BBE F <1 2.41 <1
p < 0.0001
Effect 0.008
ABE F 1.24 1.67 <1
o] 0.30 < 0.0001
Effect 0.0 0.004
Control BBE F <1 1.46 1.25
o] 0.001 0.001
Effect 0.002 0.003
ABE F <1 1.09 <1
p 0.243
Effect 0.0004

Table 6.5 Mean lags

The table shows lags comesponding to cross-comrelation maxima
averaged over all trials.

Epoch Window Control Picture
BBE 1 .617 .536

2 .439 .185

3 .282 .618

4 .162 .506
ABE 5 -.046 -.213

6 -.277 .409

7 .123 .344

8 .193 .433
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Figure 6.8 Lag vs. time
Lags are the values of lag corresponding to cross-correlation maxima for each condition,
averaged across subjects and across all 120 possible pairwise correlations.



(a) before-blink epoch
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Figure 6.9 Lag as a function of electrode spacing

Lags comrespond to cross-comrelogram maxima, averaged across subjects and across the 4 time
windows of the before-blink epoch (a) and the after-blink epoch (b). Lags are shown for all 120
possible electrode pairs of the 16 electrodes that were recorded. Each point on the graphs
shows the lag for one pair of electrodes. Electrode pair 1 is part of the group of most closely
spaced electrode pairs. Electrode pair 120 is part of the group of most distantly spaced pairs.

6.3.3 The No-blink Condition

Magnitude of correlation in the no-blink condition is shown in Figure 6.10 as a function of

time, and in Figure 6.11 as a function of distance. The magnitude of correlations, averaged over
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all distances, was approximately 0.75. This value of correlation is consistent with the values of
~ corelation measured in the control condition Correlation varied from approximately 0.85 at short
distances to approximately 0.65 at long distances These values are consistent with long and
short correlation magnitudes computed in the control condition. The results of the analysis of

variance were a significant effect of distance only (F = 100.4, p < 0.0001, effect size = 0.06).
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0.6

Figure 6.10 Correlations vs. time, no-blink condition
Correlations are cross-correlogram maxima for the no-blink condition. Correlations vs. time
window are computed for 2 groups of electrode pairs. Short and long correlations are computed
between electrode pairs separated by 1, and more than 4 distance units respectively.
Correlations are averaged across the 12 correlations within each distance group, across cases,
and across subjects. Limits indicate the range of values.
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Figure 6.11 Correlations vs. distance, no-blink condition

Correlations are cross-correlogram maxima for the no-blink condition, plotted as a function of
inter-electrode distance, are averaged across all time-windows and across all subjects.
Correlations are shown for all 120 possible electrode pairs of the 16 electrodes that were
recorded. Each point on the graphs shows the correlation for one pair of electrodes. Electrode
pair 1 is part of the group of most closely spaced electrode pairs. Electrode pair 120 is part of
the group of most distantly spaced pairs.

6.4 Discussion

6.4.1 Correlations

The results of the cross-correlation analysis are consistent with the predictions that were
made, on the basis of the CSO model, for the behaviour of correlations in the interval preceding
the moment of discrimination. Cormrelations were found to decrease with increasing inter-
electrode distance, to increase with time approaching the moment of discrimination, and to
increase more between widely-spaced electrodes than between electrodes that were close
together. These findings will now be discussed in more detail.

The observation that significant effects of time were found using theta band components
but not, according to pilot analyses, in higher frequency bands, is consistent with similar findings
in previous work. Bressler et al. (1993) and Gevins et al. (1987) both observed interregional
coherences that decreased in magnitude with increasing frequency, with the largest coherences
occurming in the theta band. in a picture interpretation task, Petsche et al. (1992) similarly found
large associations in the theta band, between regions including the occipital and temporal

cortices.
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A number of significant effects of between-electrode distance on cross-correlation were
found. In both the control and picture conditions comrelations decreased with increasing inter-
electrode distance. A similar effect was found by Thatcher et al., (1986) in their study of the
spatial distribution of coherence and phase of resting EEG. The authors used their findings as
evidence in support of a model of cortico-cortical connections involving short and long distance
axonal connections. Relevant to the present finding, Thatcher et al. (1986) suggested that the
decrease in coherence with increasing inter-electrode distance was the result of the decreasing
density with distance, of short-axonal connections. At short inter-electrode distances, they
suggest, coherence is mediated by short-distance axonal connections between Golgi type Il
cells, also referred to as intemeurons, short-axoned neurons whose axons form dendrites in the
immediate neighborhood of the cell body. The density of these connections between any two
cortical regions decreases with the distance between the regions, causing a corresponding drop
in level of coherence. At large inter-regional distances coherence, they suggest, would be
mediated instead by long-axonal connections between Golgi type | cells, long-axoned neurons
with projections to relatively distant regions. The combined effect, they predicted, was that level
of coherence should be an approximately quadratic function of distance, first decreasing with
distance to reflect the diminishing effect of intemeurons with increasing distance, and later
increasing to reflect the effect of long-axoned neurons. Confirming this suggestion, their finding
was that coherence at first decreased rapidly with distance, and then leveled off at a non-zero
magnitude. In the present study, while there is no evidence of a quadratic relationship as such
between correlation and distance, it is nevertheless clear that correlation, while decreasing with
distance, does not fall to zero at the largest distances. This finding might thus be interpreted as
being generally consistent with the hypothesis that at the short distances correlation is mediated
by short-axoned associations between Golgi type Il neurons, while at long distances over which
the effect of short axoned connections is presumably minimal, the non-zero value of correlation
must be mediated by the effects of long-axoned associations between Golgi type | neurons. On
the other hand, the non-zero value of correlation at long distances might reflect the effects of
volume conduction. The results of the analysis of lag, discussed below, can be used to decide
between these two possibilities.

A number of effects of time on cross-cormreiation were also found. In the present study,
in the control condition there is a slight and non-significant decrease in comrelation over the 1
second epoch preceding the eye-blink, with most of the decrease occurring during the final
quarter second of the epoch. In the picture condition, there is a significant increase in correlation
over the 1 second interval before the eye-blink that signals discrimination. Furthermore in the
picture condition there is a greater increase in comrelation between electrode sites separated by

longer distances than between those separated by shorter distances. Thus, although in the
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picture condition the pattems of changes with time are found for all inter-electrode distances, the
most noticeable effects of the experimental manipulation are found in the correlations between
the most widely separated sites. Summarizing this pattem, in the picture condition, there is an
increase in correlations over the interval preceding discrimination that is greater between
electrodes spaced far apart on the scalp relative to electrodes that are adjacent on the scalp.
These findings are consistent with the hypothesis that, as the process of object discrimination
proceeds towards the moment of discrimination, there is increasing coordination between the
activities of ever more distantly separated brain regions, as a result, it is proposed, of reciprocal
signaling between these regions, along cortico-cortical association tracts between Golgi type |
neurons.

A neuroanatomical basis for such reciprocal, inter-regional signaling is known to exist in
the form of long axonal pathways connecting multiple regions of the cortex. These pathways can
be functionally grouped into three categories: association tracts, commisures, and projection
tracts, that together constitute the white matter of the brain (Diamond, Scheibel and Elson, 1985;
Barr and Kieman, 1988; Nieuwenhuys, Voogd and van Huijzen, 1981). These connections will
now be described in order to illustrate the high degree of connectivity that exists both within and
between hemispheres, and between subcortical and cortical regions.

Association tracts consist of bundles of axons that connect various regions within each of
the cerebral hemispheres. Association tracts themselves may be classified generally into two
groups on the basis of the length of the tracts. Short association fibers, also referred to as U-
fibers, connect adjacent cortical gyri. Long association fibers connect more distant regions, and
include three major tracts. The cingulum connects the frontal and parietal lobes with parts of the
temporal lobe and with the parahippocampal gy'rus. The uncinate fasciculus connects the
anterior regions of the temporal lobe with the orbital gyrus of the frontal lobe and with portions of
the middle and inferior frontal gyri. A portion of the uncinate fasciculus known as the inferior
occipitofrontal fasciculus connects the orbital and frontal gyri with the occipital lobe. Lastly, the
arcuate fasciculus forms a path between the superior and middle frontal gyri with portions of the
temporal lobe. A part of the arcuate fasciculus referred to as the superior longitudinal fasciculus
connects areas of the frontal and occipital cortices. These association fibers are shown
schematically in Figure 6.12.

Commisures are groupings of axons that form paths between homotopic areas in the two
cerebral hemispheres. The two major commisural fiber bundles are the corpus callosum and the
anterior commisure. The corpus callosum is composed of the genu anteriorly, and the body and
the splenium posteriorly. The genu connects corresponding anterior cortical regions in the two
hemispheres. The body, which intersects association tracts and projection fibers in each

hemisphere, provides one of the principal paths between comresponding regions of the left and
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right hemispheres. The splenium interconnects posterior cortical areas including the left and
right occipital cortices. The anterior commisure is one of the bundles of fibers which provides a
path between the left and right temporal lobes. These commisures are shown schematically in
Figure 6.13.

Projection fibers are bundles of axonal fibers that connect regions of the cortical sheet
with subcortical nuclei. In the medullary center, these projection fibers form the corona radiata,
which links with many areas of the pyramidal cell l1ayers of the cerebral cortex. In the subcortical
regions the fibers of the corona radiata congregate in the intemnal capsule, carrying fibers many
of which function as a reciprocal signal pathway between the thalamus and the cerebral cortex.
The intemnal capsule is divided into 5 parts: the anterior limb, the genu, the posterior limb, the
retrolenticular fibers, and the sublenticular fibers. The anterior limb contains frontopontine fibers,
as well as connecting the mediodorsal thalamic nucleus with the prefrontal cortex. The genu
includes fibers originating in the ventral lateral nucleus of the thalamus, and projecting to motor
and premotor areas of the frontal lobe. The posterior limb carries the middie thalamic radiation,
which includes efferent fibers of the ventral posterior thalamic nucleus that project to the
somesthetic region of the parietal lobe. The middle thalamic radiation carries as well other fibers
that contribute towards creating a reciprocal signaling system between the thalamus and the
association cortex of the parietal lobe. The retrolenticular fibers originate largely as efferent
fibers of the lateral geniculate nucleus, and form the optic radiations which terminate in the
primary visual area of the occipital cortex. The sublenticular fibers originate mainly in the medial
geniculate nucleus, and continue as the auditory radiations to project to the auditory areas of the
temporal lobe. These projection fibers are shown schematically in Figure 6.14.

Together, these three types of neural pathways are reasonable candidates to form the
neuroanatomical basis of the comelations that have been found in the present study to exist
between signals recorded between all areas of the cortex. In terms of volume, the bundles of
fibers connecting the various cortical and subcortical regions occupy a substantial if not the
major portion of the volume of the brain. Connectivity would clearly appear to be of the essence
in the functioning of the brain. It is suggested that the pattem of correlations found in the present

study to be associated with visual discrimination, is directly made possible by this connectivity.
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IOF inferior occiptofrontal fasciculus
SLF superior longitudinal fasciculus
SAF short association fibers

UF uncinate fasciculus )
AF arcuate fasciculus
C  cingulum .

Figure 6.12 Association Fibers
The major association fibers, shown schematically in this figure, interconnect cortical and
subcortical regions within each of the two hemispheres (Adapted from Diamond et al., 1985).

posterior
forceps

anterior
forceps

Figure 6.13 Commisural Fibers
Commisural fibers, shown in this schematic presentation, connect homotopic regions of the left
and right hemispheres (Adapted from Diamond et al., 1985).
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Figure 6.14 Projection Fibers
The projection fiber systems shown here schematically connect subcortical nuclei with multiple
and widespread cortical regions (Adapted from Diamond et al., 1985).

As a final issue conceming methodology, in this experiment, the order of presentation
was not varied between subjects. All subjects first recieved, twice over, the entire set of 31
images, and then recieved the 20 trials of the control condition. There was no attempt to
counterbalance the order of presentation. A consequence of this could be some measure of
practice effect. In general, such a practice effect would mean that subjects had leamed
something during the initial presentations of the stimulus images, and that such leaming would
then have influenced their performance in the control trials. It was initially conjectured however
that probably all that subjects would leam during the picture trials would be how to maintain their
visual focus on the fixation spot for the eight second recording intervals. It is possible
nevertheless that during the picture trials subjects might leam the behaviour of scrutinizing for
possible hidden images whatever image was presented. Such scrutiny could then have been
applied to the blank screen of the control condition, perhaps resulting in representations of
objects being 'discovered’ when none were being presented. In other words, it is possible that
there might have occurred some measure of the phenomenon seen with participants in sensory
deprivation experiments, in which neutral visual screens can provide a background for
halluq‘natory episodes. Counterbalancing by presenting some subjects with the control trials

before the picture trials would have been able to deal with this question.
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6.4.2 Lags

At the outset there were no predictions made conceming the behaviour of lag. Lag was
therefore analyzed from an exploratory perspective. There were no significant changes in lag
with time in either condition or epoch. There were however significant changes in lag with inter-
electrode distance. These effects are graphed in Figure 6.9a for the before-blink epoch and
Figure 6.9b for the after blink epoch.

In both picture and control conditions, lag was found to increase with increasing inter-
electrode distance in the epoch preceding the blink. Lag increased from approximately 0.35 (2.7
ms) to 0.54 (4.2 ms) in the picture condition, and from approximately 0.28 (2.2 ms) to 0.43 (3.4
ms) in the control condition. This increase in lag with distance before the blink is consistent with
an explanation proposed by Thatcher et al. (1986). The authors computed, for resting EEG,
coherence and phase, measures that are analogous to squared cross correiation and lag. The
authors suggested that if volume conduction were responsible for coherence then phase should
not vary with distance, since volume conduction mechanisms involves relatively short time
delays whose rate of change with distance is correspondingly small. If, on the other hand,
coherence is mediated by axonal transmission along association and other tracts, then it is to be
expected that lag should vary reiatively more as a function of distance, increasing with distance,
since axonal signal transmission involves time-delays that do increase significantly with distance.
The present findings are consistent with this latter position, that the computed pattems of
comrelation must be primarily the result of axonal transmission, along association fibers,
commisures and projection fibers, rather than by volume conduction.

A contrasting result however was found in picture condition in the epoch following the
blink, with lag decreasing with increasing inter-electrode distance. The value of lag decreased
from approximately 0.23 to 0.04. This result might be interpretable in terms of a conjectured
description of the relative level of synchronization within and between cortical areas. Thus, lags
between closely-spaced regions remain relatively unchanged with time both prior to, and
following discrimination. The magnitude of lags between more distantly-spaced regions,
however, is different before and after discrimination, reflecting differences in the nature of
interregional signaling between the before and after-blink epochs. Before discrimination, the
visual analytic processes associated with the analysis of the image are associated with a
relatively high level of interregional signaling between more widely-separated cortical areas, thus
making manifest the time-delay effects associated with axonal transmission. Immediately
following successful discrimination there is relatively less signaling between widely-separated
cortical regions, so that the time-delay effects associated with axonal transmission would be

relatively insignificant. Furthermore, the high degree of synchronization between distantly-
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spaced regions immediately following discrimination could result in the lag between such regions
decreasing to values that are lower than those for more closely-spaced regions. Thus, before
discrimination, as the visual image is being analyzed, the high level of interregional
communication would be associated with distance-dependent time-delays and therefore a
relatively large value of lag. Once discrimination has occurred and synchronization between
distant cortical regions has been established, the level of such inter-regional communication
could decrease, lessening the impact of distance-dependent delays, while the now-synchronized
activity between these distantly-spaced cortical regions would be reflected in a iow value of lag.
The second significant finding with respect to lag was the interaction between time and
distance following the blink in the control condition. The value of lag was higher for long
distances than for short distances, but this difference was larger for early time-windows than for
later time-windows in the before-blink epoch. Thus, for later time-windows, approaching the
blink, the value of lag was approximately the same for short and long distances. For early time-
windows however, the value of lag was higher for long than for short distances. This finding
might be interpreted as reflecting some small amount of visual analysis occurring in the early
time-windows preceding the blink in the control condition. The level of such visual analysis
might be expected to decrease to even lower levels in a relaxation of visual attention
immediately before the blink. Overall then, this interaction might, it is conjectured, indicate the
changing level of visual attention directed towards the neutral target and fixation point presented

to subjects in the control condition.

6.4.3 Correlation Before and After Discrimination

Examination of the mean correlation for each time-window (Table 6.2) shows that a part
of the increase in correlation that occurs prior to discrimination is still evident immediately
following discrimination, after which the level of comrelations drop to approximately pre-
discrimination levels. A comparison of the levels of correlation immediately before and after
discrimination might provide some evidence for the kinds of processes involved in the process of
recognizing camouflaged objects. Correlations immediately following discrimination, 0.745, were
intermediate in value between their initial levels at the start of the BBE, 0.715, and their levels at
the end of the BBE, 0.789. To the extent that level of comrelation may be related in a general
way to type of neural processing, this finding might indicate that at least some, although not all,
of the processes that were occurring just before discrimination were still in operation immediately
after discrimination. As a first approximation functional description of the process of object
discrimination, it might be conjectured that this process involves both a graphical and a lexical

component. The graphical component woulid include those neural sub-processes involved with
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identifying visual elements of the image, transforming bundies of elements into feature
- ensembles, and associating those feature ensembles with pre-existing visual memories. These
are a subset of the processes that could be reasonably be expected to be involved in visual
discrimination. The lexical component of the process of visual discrimination would include
those neural subprocesses involved in associating the emerging feature ensembles with pre-
existing lexical memories, or in altemative terms, in retrieving a label for the discriminated
object.

It seems reasonable that while either or both of these components might be active
immediately before discrimination, only sub processes other than those associated with labeiing
of the object should be active immediately following discrimination: once a label for the object
has been retrieved the associated neural activities would presumably no longer be required to be
active. That is, in most instances of discrimination, if labeling is involved then it will occur
immediately prior the moment of discrimination rather than immediately following discrimination.
Since at least a portion of the increase in correlation just before discrimination is still present just
after the blink, it might be concluded that not all of the increase in correlated activity occurring
just before discrimination is associated with the lexical component. Rather, at least a portion of
the increase in correlated activity just before discrimination should be expected to be associated
with processes other than those associated with the lexical component of discrimination, and
therefore associated with the graphical component. One tentative conclusion that might be
drawn from these findings is that both a graphical and a lexical component may be involved in
the discrimination process, or altematively that both processes are involved in at least some
trials and for some subjects. Other scenarios are possible, however. An aitermnative conclusion
would be that only the graphical component is involved, but that the sub-processes involved in
this component are more active immediately before than immediately after discrimination. Still a
third possibility is that the graphical component is active immediately before, while the lexical
component is active immediately following discrimination, as subjects blink upon visually
recognizing the stimulus image, but then afterwards seek to associate the image with a label.

Follow-up debriefings of all subjects indicated that several of these possibilities, in fact,
occurred. On some presentations subjects blinked after they had recognized the object and had
a label for it, while on other presentations they blinked after only recognizing the visual image,
and before a label was available. In those cases, subjects indicated that a label would
sometimes become available after the blink.

It might be concluded that the process of visual discrimination of a relatively compiex
image cannot be readily associated with either only a visual or only a lexical component. Rather,
as subject debriefings indicated, the graphical component might occur first to be followed by the

lexical component, or altematively both of these components might occur together. In the
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present paradigm it was felt to be important that the attention of subjects not be directed towards
labeling of the visual images, as it was felt that such direction would have an effect on the nature
of the events preceding the eye-blink, and in fact might bias subjects towards wanting to label
the stimulus images before-blinking to signify discrimination. in the procedure used in the
present study, therefore, subjects were deliberately not debriefed after individual trials. With
follow-up debriefings conducted after the end of the testing sessions, it was not possible to
determine for each trial whether labeling had been involved: such debriefings suggested that
subjects would have difficulty in recalling accurately the time-order of discrimination and labeling
on individual presentations. In the present study, therefore, the neural processes associated with
visual object discrimination will not be dissected into a graphical and a lexical component, but
rather will be considered only as a whole, consisting of a conglomerate of component sub-
processes which are assumed to include a requisite graphical component and an optional exical
component.

6.4.4 The No-blink Condition

The validity of the control condition is supported by the results of the analysis of the no-
blink condition, those trials in which subjects viewed a camouflaged object but failed to recognize
it. The values of correlation in this condition are approximately equal to the corresponding levels
of comrelation in the control condition. This finding would suggest that as far as level of
correlation is concemed, there is litlle difference between subjects simply looking at a blank
screen as in the control condition, and subjects looking at a camouflaged object and not
recognizing it as in the no-blink condition. It seems reasonable to infer from this that the resuits
would not have been different if a complex but undiscriminable object, rather than a blank
diffusing screen, had been used in the control condition. Thus, the results measured in the
control condition appear to be reasonably independent of the type of neutral image used,

supporting the validity of the control condition.
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7 Topographical Distribution of Correlations

7.1 Introduction

The findings of the correlation analysis were that intercorrelations increased significantly
with time preceding the moment of discrimination, and that this increase with time was larger for
electrode pairs separated by large distances than for pairs that were close together. The work of
the present section is intended to identify the particular brain regions that were involved in this
pattern of comrelations. The present section therefore examines the topographical distribution
over the scalp of the change in correlations, over the duration of the before-biink epoch. More
particularly, the present section attempts to answer the following question: What is the
topographical distribution of the differences, between the picture and control conditions, of the
correlations between pairs of electrodes, in each of the 4 time-windows of the before-
discrimination epoch? That is, having computed for each electrode pair the difference in
comrelations between the picture and control conditions, how are these differences distributed
over the scalp?

Correlation differences will be investigated, rather than absolute comrelation values, in
each of the conditions, because what is wanted is a reflection of the effect of the experimental
manipulation on the distribution of comelations. Within the record of the before-blink epoch,
there may be evidence of other effects, such as preparation for the eye-blink. By examining
correlation difference rather than absolute correlation it is intended that such effects, that are not
related to the experimental manipulation, will be subtracted out. A second motivation for using
correlation differences is the results of pilot work, which indicated that examining such absolute
comrelation values did not provide a clear picture of the topology of the comrelated activity.
Absolute correlation values in both conditions were found to be large, at approximately 0.6 to
0.8, in relation to the comresponding between-condition differences, which were typically
approximately 0.1, in a small subset of the 120 possible electrode pairs.

7.2 Method

A 2-dimensional projection or map of the physical electrode positions over the scalp is
used to display the between-channel comrelations. This map is used to dispiay the difference in
magnitude of correlation between control and picture conditions, with a separate map for each of
the 4 time windows of the before-blink epoch. This comrelation difference r; is computed for

each pair of electrodes, i and k, as

drj k = r(picture); - r(control); k
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where r(.)jk represents the intercorrelation between electrodes i and k. The magnitude of this
comrelation difference for a pair of electrodes is coded in terms of the thickness of a line joining
the two electrodes. Negative correlation differences are shown as gray lines, positive changes in
correlation are shown as black lines. A positive difference indicates a higher correlation in the

picture condition. A negative difference comrespondingly indicates a higher correlation in the
control condition.

7.3 Results

The topographical distributions of 3r, the changes in cross-comrelation between the
picture and control conditions are shown in Figure 7.1 through Figure 7.5 for each subject, and in
Figure 7.6 averaged across subjects. Table 7.1 lists the values of &r averaged across subjects
and sorted in order of increasing distance between electrode pairs.

A number of general features may be immediately noted by examining Figure 7.6. First,
between the 4 time-windows there are clear changes in the topography of the values of 3r.
Second, these changes progress from relatively little difference in time-window 1, to a large
positive difference in time-window 4 indicating a greater degree of cormreiation, in time-window 4,
in the picture than in the control conditions. Third, each of the 4 time-windows displays a unique

pattemn. These pattemns are summarized as foliows:

1. Time-window 1: there is relatively little difference between the picture and control conditions,
with minor positive values over the right frontal (F8) and central (C4) areas, indicating little

difference in correlation in all areas between the picture and control conditions.

2. Time-window 2: the pattem now shows a greater positive value of correlation difference over
the left hemisphere. Largest positive values occur over left anterior temporal (T3) and right
occipital (02) areas. Somewhat smaller positive values are found over left occipital (O1), left
central (C3), left and right posterior temporal (TS, T6) and right parietal (P4). This pattem
indicates a larger correlation in the picture than the control conditions between bilateral

occipital areas and bilateral posterior temporal areas, and the left anterior temporal area.
3. Time-window 3; the distribution of 3r values now shows a more bilateral distribution of

positive values, localized over bilateral frontal (F7, F8) and right anterior temporal (T4) areas,

with somewhat smaller values over the left frontal area (Fp1). This pattem indicates larger
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interhemispheric correlations, in the picture than in the control conditions, between bilateral

frontal and temporal areas.

. Time-window 4: the overall pattem now shows the involvement of all areas in large positive
values of correlation difference, indicating a relatively larger correlation between ail areas in
the picture than the control conditions. There is a somewhat greater degree of correlation

between left and right hemispheres than in the anterior-posterior direction.
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Figure 7.1 Topography of correlation differences, subject 4

The graphs show the magnitude of the difference in correlations, between the picture and control
conditions. Correlation differences are computed as r(picture) - r(control). Correlations are
cross-correlogram maxima, averaged across all trials for this subject. Line thickness is
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation
difference of 0.15. Correlation differences less than 0.03 are not shown. Black lines indicate a
positive difference, with a higher correlation in the picture than in the control conditions. Gray
lines indicate a negative difference, with a higher relative correlation in the control condition.
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Figure 7.2 Topography of correlation differences, subject 5

The graphs show the magnitude of the difference in correlations, between the picture and control
conditions. Correlation differences are computed as r(picture) - r(control). Correlations are
cross-corelogram maxima, averaged across all trials for this subject. Line thickness is
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation
difference of 0.15. Correlation differences less than 0.03 are not shown. Black lines indicate a
positive difference, with a higher correlation in the picture than in the control conditions. Gray
lines indicate a negative difference, with a higher relative correlation in the control condition.
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Figure 7.3 Topography of correlation differences, subject7

The graphs show the magnitude of the difference in cormrelations, between the picture and control
conditions. Correlation differences are computed as r(picture) - r(control). Correlations are
cross-corelogram maxima, averaged across all trials for this subject. Line thickness is
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation
difference of 0.15. Correlation differences less than 0.03 are not shown. Black lines indicate a
positive difference, with a higher correlation in the picture than in the control conditions. Gray
lines indicate a negative difference, with a higher relative correlation in the control condition.
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Figure 7.4 Topography of correlation differences, subject 8

The graphs show the magnitude of the difference in correlations, between the picture and control
conditions. Correlation differences are computed as r(picture) - r(control). Correlations are
cross-correlogram maxima, averaged across all trials for this subject. Line thickness is
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation
difference of 0.15. Correlation differences less than 0.03 are not shown. Black lines indicate a
positive difference, with a higher correlation in the picture than in the control conditions. Gray
lines indicate a negative difference, with a higher relative correlation in the control condition.
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Figure 7.5 Topography of correlation differences, subject 9

The graphs show the magnitude of the difference in correlations, between the picture and control
conditions. Correlation differences are computed as r(picture) - r(control). Correlations are
cross-correlogram maxima, averaged across all trials for this subject. Line thickness is
proportional to magnitude of cormrelation difference. The thickest lines correspond to a correlation
difference of 0.15. Correlation differences less than 0.03 are not shown. Black lines indicate a
positive difference, with a higher correlation in the picture than in the control conditions. Gray
lines indicate a negative difference, with a higher relative correlation in the control condition.
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Figure 7.6 Topography of correlation differences, average across subjects

The graphs show the magnitude of the difference in correlations, between the picture and control
conditions. Correlation differences are computed as r(picture) - r(control). Correlations are
cross-correlogram maxima, averaged across all trials and all subjects. Line thickness is
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation
difference of 0.15. Correlation differences less than 0.03 are not shown. Black lines indicate a
positive difference, with a higher correlation in the picture than in the control conditions. Gray
lines indicate a negative difference, with a higher relative correlation in the control condition.
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Table 7.1 Correlation change

The correlation change, computed as r(picture) - r(control), is shown for al
possible pairs of the 16 electrodes and for each time-window of the before
blink epoch.

Time-window

Channel 1 Channel 2 1 2 3 4
C4 P4 0.035 -0.0303 -0.0277 0.0451
T3 T5 -0.0238 0.0409 0.00972 0.103
T5 P3 0.0482 0.0542 -0.0263 0.00894
T3 Cc3 0.024 0.0659 0.0154 0.0705
P4 02 -0.0237 0.00824 -0.0326 -0.0396
T4 T6 -0.0208 -0.106 -0.0101 0.0457
C4 T4 0.0159 0.0182 0.0135 0.0761
F4 F8 -0.00586 -0.00558 0.0046 0.0582
F7 F3 0.0343 0.0472 -0.0168 0.0606
Fp2 F4 0.0173 -0.0211 0.00464 0.0639
F8 T4 -0.032 -0.0547 -0.0111 0.0259
Fp1 F3 -0.00503 0.0339 -0.00884 0.0622
F4 C4 -0.054 -0.0519 0.0134 0.0232
F3 Cc3 -0.0392 -0.00236 -0.00888 0.0749
C3 P3 -0.0484 0.0304 0.00768 0.0369
F7 T3 -0.0296 -0.0368 0.0184 0.0664
P4 T6 -0.0241 -0.0268 -0.00491 -0.0163
P3 o1 0.00663 0.059 -0.0379 0.0225
TS o1 0.00007 0.0565 -0.00732 0.0117
F3 T3 -0.00815 0.0553 -0.0164 0.0655
C4 T6 -0.0343 -0.0582 -0.06 0.0508
T3 P3 0.0124 0.13 0.0477 0.107
Fp2 F8 0.0158 -0.0204 0.00154 0.00688
T6 02 -0.0456 0.00706 -0.022 -0.0337
F8 C4 0.0156 -0.014 0.0605 0.086
F7 C3 -0.0162 0.0112 -0.0156 0.108
F4 T4 0.00257 -0.0772 0.0176 0.125
T4 P4 0.0517 -0.0515 0.0343 0.0737
C3 T5 -0.0357 0.0192 -0.00599 0.0426
Fp1 F7 0.00372 0.0677 0.026 -0.00272
F4 P4 -0.0229 -0.0842 -0.00807 0.0521
01 02 0.0178 0.0533 -0.00242 0.0645
C3 o1 -0.0498 0.099 -0.0861 0.0381
F7 T5 -0.031 -0.043 0.0337 0.0576
Fp2 C4 -0.0436 -0.0647 -0.0348 0.0865
Cc3 C4 -0.0276 0.023 0.00387 0.0867
F3 F4 -0.00009 0.0373 0.0382 0.0683
Fp1 C3 -0.0674 0.0375 -0.0107 0.112
Fp1 Fp2 0.0514 0.0433 0.0151 0.12
P3 P4 0.0141 0.0231 0.0228 0.0122
F8 T6 -0.0535 -0.145 -0.0244 0.0303
F3 P3 -0.0546 -0.0442 -0.00099 0.106
C4 02 -0.0101 -0.00826  -0.0283 0.0144
F4 T6 -0.0972 -0.0975 -0.0281 0.0866
P4 01 -0.0102 0.009 -0.0395 -0.0122
F3 C4 -0.0973 -0.0316 -0.0244 0.102
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Table 7.1 Correlation change

(continued)

Time-window
Channel 1 Channel 2 1 2 3 4
F4 C3 0.00953 0.00661 0.00599 0.067
F3 T5 0.0126 -0.069 0.0227 0.0733
C4 P3 0.0123 -0.0248 0.00959 -0.0133
Fp1 T3 -0.0849 0.0586 0.0652 0.0679
T4 02 0.0268 0.0251 0.00188 0.0277
Fp2 T4 -0.0678 0.0857 -0.0307 0.0427
T3 o1 0.0176 0.0879 -0.0369 0.158
C3 P4 0.0206 0.0824 0.00977 0.0746
F7 P3 0.0494 -0.0596 0.0114 0.0752
P3 02 0.0363 0.0567 0.00157 -0.0139
F8 P4 0.0861 0.107 0.0217 0.0944
Fp2 F3 0.00174 -0.00185 0.0125 0.0708
Fp1 F4 0.00087 0.0205 0.0439 0.118
F4 P3 -0.0685 0.062 0.0335 0.00532
F3 P4 -0.0483 -0.0446 -0.0304 0.13
C4 o1 0.00918 -0.0152 0.0334 0.0331
C3 02 0.00445 0.11 -0.0265 -0.00191
Fp2 C3 -0.0645 0.00685 -0.0508 0.107
Fp1 C4 -0.085 0.0197 0.00104 0.0995
F7 F4 0.00007 0.0159 0.0529 0.0778
P3 T6 -0.0206 0.00385 -0.0047 0.00561
T5 P4 0.0288 0.0298 0.00792 0.0235
F3 o1 0.0229 0.00238 0.0644 0.117
Fp2 P4 0.00016 -0.111 -0.0205 0.102
F3 F8 0.0612 0.0105 0.0601 0.091
Fp1 P3 0.0875 0.00788 0.00137 0.042
C3 T4 0.0154 0.0151 0.0848 0.193
T3 C4 0.0183 0.0972 0.0229 0.0896
F4 02 -0.0605 0.00691 0.0171 0.0396
T6 o1 0.0272 0.0194 -0.0301 0.0491
F4 T3 0.0133 0.0635 0.00908 0.12
T5 02 0.0348 0.13 0.00202 0.0232
Fp2 T6 0.105 0.13 -0.0564 0.0558
T4 P3 -0.0065 0.00125 0.0391 0.0969
F3 T4 0.0543 -0.0875 0.0451 0.189
C4 T5 0.0119 -0.0568 0.0268 0.0746
C3 T6 0.00639 0.0691 -0.0288 0.0909
Fp1 F8 0.0125 0.0047 0.0677 0.106
F7 o1 0.075 -0.0369 -0.0281 0.0364
Fp1 T5 0.0537 0.0137 -0.0855 0.0173
T3 P4 0.038 0.122 0.0141 0.125
F8 02 0.0293 -0.0451 -0.0188 0.0311
F7 C4 0.0619 -0.032 0.0116 0.0918
F8 C3 0.0274 0.00583 0.0453 0.115
Fp2 F7 -0.0366 0.0556 0.0518 0.0174
F4 TS -0.0468 0.0473 0.0372 0.112
F3 02 0.0332 0.0268 0.0483 0.0743
T4 o1 0.00576 -0.0383 0.0645 0.0918
F3 T6 0.C863 0.0607 -0.0482 0.171
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Table 7.1 Correlation change

(continued)

Time-window
Channel 1 Channel 2 1 2 3 4
Fp2 P3 0.103 -0.0581 -0.0368 0.0848
Fp1 P4 -0.0382 0.016 0.00464 0.0931
T3 02 -0.031 0.0781 0.0102 0.138
Fp2 T3 -0.0441 0.0237 0.1 0.0606
F7 P4 0.0472 -0.0795 0.0124 0.0672
Fp1 T4 -0.0524 -0.0528 0.0446 0.169
F8 P3 -0.0321 0.0746 0.0347 0.0634
F4 01 -0.0364 0.00472 -0.00471 0.0932
Fp2 02 -0.0652 -0.0268 0.01 0.0546
Fp1 O1 -0.0263 0.0122 0.00973 0.0553
T5 T6 0.00472 0.0925 -0.0389 0.119
T3 T4 0.0139 0.0529 0.0931 0.2
F7 F8 0.075 0.0471 0.0634 -0.056
T4 T5 0.00997 -0.0404 0.0897 0.148
T3 T6 -0.0304 0.088 -0.0365 0.175
F7 T4 0.0367 -0.0668 0.142 0.0616
F8 T3 0.0237 0.0887 0.0467 0.102
Fp1 T6 0.104 -0.0805 0.00677 0.0966
Fp2 T5 -0.0503 0.007 -0.0788 0.0464
F7 02 0.128 -0.0836 0.0154 0.0117
F8 o1 -0.0607 0.0046 0.00886 0.118
Fp1 02 -0.031 0.0142 0.0716 0.0185
Fp2 O1 0.0317 0.0183 -0.0297 0.12
F7 T6 0.137 0.15 -0.0289 0.0806
F8 T5 0.0424 -0.0089 0.0287 0.124

7.4 Discussion

In the picture condition correlations are more extensive, connecting more electrode sites,
both within and between hemispheres, than in the control condition. This observation is
consistent with the proposed description of correlated activity during visual discrimination, that
the pattem of correlations should include an increasing number of cortical areas as the process
of discrimination progresses to the moment of discrimination. Thus, substantial changes in
correlation between the picture and control conditions occur between electrodes over almost all
cortical regions. A number of observations might be made regarding the topographical
distribution of the values of 5r.

A general observation is that the distribution of &r varies profoundly between time-
windows. Accepting the hypothesis that the neuronal activity underlying object discrimination is
periodic in nature, then the time-scale of this neuronal activity can be roughly estimated as being

no greater than the time interval from one time window to the next, 250 ms. This interval can be



compared with the finding in pilot work that significant changes in correlation were found only in
the lowest frequency range of 2 to 8 Hz. These pilot results suggest that the period of the
processes accessed by the correlation measurements is not much less than 125 ms, the period
of an 8 Hz signal. While these pilot results should be confirmed by replication, it would appear
that the periodicity of the neuronal events associated with discrimination lie within the range of
from 125 ms to 250 ms.

A second observation can be made with respect to the possible duration of the events
associated with object discrimination. Examination of Figure 7.6 suggests that the significant
activity occurs between time-windows 2 and 4. This observation suggests that the subset of the
neuronal events associated with object discrimination that are accessed by the cormrelation
measurements occur within an interval of less than 1 second. On many trials, however, subjects
did not blink to signal discrimination untii some seconds after stimulus onset. At least 2
possibilities might account for this extra time between stimulus onset and discrimination. First, it
might be that on some trials subjects needed the extra time to orient to the part of the image
containing the camouflaged object. It was clear from debriefings that subjects were generally
able to comply with the instruction to attend to the fixation point at all times. Subjects might
therefore have been shifting their attentional focus to different parts of the image, while staying
on the fixation point. A second possibility is that neuronal events contributing to the eventual
discrimination, a fuse as it were, occur prior to time-window 2, but are characterized by relatively
low values of comrelation. This might be the case if, for example, such events involved relatively
independent activity in neuronal populations smaller in cortical extent than the several square
centimeters accessed by a single electrode. This second possibility is consistent with the CSO
model. According to this model, a component of the process of discrimination involves analysis
of lowlevel stimulus features, in comrespondingly local cortical regions, and with a
comrespondingly iow level of interregional signaling.

A third general observation is that the specific features of these distributions of &r vary to
some extent with subject. This might be interpreted as indicating that subjects are complying
with experimental instructions to varying degrees, or altematively that subjects are following
instructions, but that in so doing are nevertheless exhibiting to some extent unique pattems of
correlated neural activity. In spite of this, to some extent, subject-specific nature of the pattems
of correlations, the overall findings are that striking commonalties in the differences between the
control and picture conditions do exist.

Examining Figure 7.6, a progression of events is clearly indicated. In the first time-
window, 1, there is relatively little difference between picture and control conditions in terms of

level of correlated activity.
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In time-window 2 the activity evolves to include occipital and posterior temporal areas
bilaterally, as well as the left anterior temporal area. This pattem in time-window 2 might be
attributable to two effects. The first is the operation of the ventral visual pathway identified by
Ungerieider and Mishkin (1982) as the pnmary cortical system involved with the process of
object recognition. This pathway involves the occipital and inferotemporal cortices. The second
effect is the accessing of a lexical associate or label for the object. As stated above, debriefing
indicated that such naming prior to discrimination occurred for most subjects on some of the
trals. This naming process would then be expected to involve speech and language, and
therefore the participation of the sensory language area consisting of the auditory association
cortex located in the left temporal region and adjacent parietal areas. Subjects were all right-
handed and thus their language areas were most probably situated in the left temporal regions.
These observations are consistent with the findings of the study by Petsche et al. (1992) which
also found significant theta band coherences involving the left temporal region.

In time window 3, the pattem of comrelations shifted to involve interhemispheric
connections between frontal and temporal areas. This shift towards the involvement of frontal
areas might be conjectured to indicate memory access processes associated with the frontal
regions. At the same time, the cormrelations between occipital and temporal areas prevalent in
time-window 2 are relatively diminished. The change in topography between time-windows 2
and 3 suggests a progressive sequence of events within the discrimination process. There might
be an altemative explanation, however, in terms of the hypothesized recurrent nature of the
discrimination process. This recurrent activity is proposed to involve successive cycles of a
process that consists of feature analysis, feature transformation, and memory matching. On the
basis of pilot analyses, the frequency of this periodicity is estimated to lie between 4 and 8 Hz,
the frequency band that was used in the present analysis. The comresponding range of periods is
therefore between 125 and 250 ms. It might be that the duration of the time-windows in the
present analysis, 250 ms, is interacting with the periodicity of the neuronal activity involved in the
discrimination process. In effect, these time-windows act like a stroboscope, preferentially
presenting glimpses of portions of underlying neuronal activity that is synchronized with the
period of the time-windows. Since the timing of the time-windows is not synchronized with such
neuronal activity, the overall effect might be a 'beat’ effect, an apparent frequency to the
observed activity equal to the difference between the frequencies of the time-windows and the
neuronal processes. While clearly this conjectured scenario is itself based on conjectures, the
result of these effects would be that the apparent neuronal events within one time window would
appear to be anomalously distinct from the activity in other time-windows.

~ In the final time window, 4, the pattem of correlations involves, as predicted by the CSO

model, most cortical regions, and with somewhat more profuse correlations between than within
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hemispheres. These observation of time-window 4 suggest that successful discrimination of
complex visual images, depicting real-world objects, eventually needs to involve the correlated
activity between all cortical regions, including occipital, frontal, temporal, parietal and central
areas, and require significant levels of interregional signaling both within and between
hemispheres.

In summary, these findings are generally consistent with the CSO model. During the
task of object discrimination using visually complex, non lexical images, an increase in the
degree of coupling is observed between almost all regions of the brain, both between and within
hemispheres. The evolving pattemn of interregional associations can be interpreted as an index
of the rate of information interchange or signaling between multiple and relatively local cortical
centers of coordinated activity, which over the course of the discrimination process increase in
extent to include increasingly greater proportions of the cortex, in an iterated process of
matching increasingly complex feature ensembles with the stored results of prior leaming. When
the elementary features of the stimulus are bound and transformed into a construct with which a
sufficiently accurate memory match is possible, the elementary and discrete features of the
stimulus may be said to have been transformed and bound into a unitary percept.

Examining Figure 7.1 through Figure 7.6, it is clear that there is a great deal of variability
in the pattem of comrelation differences across subjects. While all regions of the brain are
connected by substantial levels of corelation, the time window at which the overall maximum
amount of intercorrelation occurs varies between window 2 and window 4. There are at least two
possible explanations for these observations, one having to do with the experimental paradigm,
and the other having to do with deeper issues of inter-individual variability.

One possibility is that some portion of the variability is due to the fact that for each
subject, the correlations represent a mean across trials with the underlying EEG signals aligned
on the onset of the blink. That is, the location of the time windows is referenced to the eye blink.
It appears possible that subjects, while attempting to comply with instructions, nevertheless did
not always blink immediately after the target object was discemed. In that case, the peak of the
correlations would appear at different time before the blink itself. Any individual variability in this
reaction time would then show up as differences in the location of the maximum intercorrelations
with respect to the blink.

A more interesting possibility is that the observed differences are attributable to inter-
individual differences in neural function during the task of camouflaged object discrimination.
Thus, it is possible that the differences in the pattern of intercorrelations observed in Figures 7.1
through 7.5 reflect corresponding differences in the way that different subjects’ brains are wired.
While at the behavioural level a common level of performance is observed, this performance

may be subserved by significantly different neural organization, both in terms of 'hard-wired'
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interregional connections, and in terms of how these connections transiently organize during task
performance.

This issue recalls that one of Edelman's (1989) foundational postulates for his Theory of
Neuronal Group Selection is that there does not exist, in any sufficientty complex neuronal
system, a precise point-to-point wiring scheme. Rather, he observes, there is evident a
significant degree of individual variability in the configuration of neuronal interconnections. This
variability in tum provides the substrate that allows the process of neuronal group selection to
"differentially amplity” particular variants within neuronal populations. As stated earlier, Edelman
(e.g., 1989) suggests that neuronal groups, circuits composed of multiple interconnected
neurons, are an appropniate fevel to consider neuronal systems. Such neuronal groups are seen
to be highly variable in terms of their intemal wiring configuration. Further, such vanablity
extends to inter-group, and eventually to interregional connection pattems. On a general level it
is obvious that commonalities in interregional connectivity do exist, as evidenced by anatomical
structures such as commisures, tracts and projections. When pattems of connectivity are
examined on ever more detailed levels, comrespondingly greater degrees of inter-individual
variability are observed. Edelman (e.g., 1989) suggests that there exists competitive activity
among neuronal groups, activity that leads to a process of selection in which some groups
survive and function at the expense of other groups. Importantly, it is the nature of an
individual's interactions with the environment that determines the evolution of such neuronal
groups. Those groups are selected for whose activity is reinforced as a result of such
environmental interactions. As such interactions can be guaranteed to be, in detail, highly
variable between individuals, the pattem of connectivity within neuronal groups will
correspondingly be variable. Furthermore, and as suggested by the present resuits, such
varability may extend to interregional signaling configurations. Again, while on a gross level,
pattems of anatomical connections are relatively, although perhaps not absolutely, constant
across individuals, pattems of interregional signaling may be strongly dictated by intra-group
wiring. For different individuals performing a common task, the same pattem of large-scale
anatomical connections may thus support a wide range of pattems of signalling between cortical
regions, because of the individually-specific pattems of small-scale connectivities within and
between neuronal groups.

In sum, the present findings are consistent with Edelman's (e.g., 1989) foundational
proposition that environmental interactions determine the selection of neuronal groups and

therefore the fine structure of neuronal connectivity.
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8 Topographical Distribution of Net Correlations

8.1 Introduction

This section will attempt to answer the following question. For each of the 4 time-
windows of the before-blink epoch, to what extent is the oscillatory activity at each of the
electrode sites related to the oscillatory activity at all other electrode sites in terms of cross-
correlation? In other words, for each time-window and for each electrode site, what is the
average correlation between the signal from that electrode, and the signals from ail other
electrode sites? According to the predictions made at the outset of this study, successful
discrimination should ultimately involve communication between all cortical regions, and
therefore a high level of correlation between the signal at any one electrode site and the signals
at all electrode sites. The existence of the numerous tracts, commisures and projections

interconnecting all cortical regions provides a physiological substrate for such communication to
occeur.

8.2 Method

The average correlation difference dry for each electrode k is computed, for each of the
4 time windows of the before-blink epoch, by averaging over the comelations between that
electrode and all 15 other electrodes:

dr = 1/n{Z [ r(picture); - r(control); ] }

where n is the total number of electrodes - 1, and the sum is taken overi (z k) = 1to n.
For each of the 4 time-windows the result is a set of 16 numbers, each of which specify the mean

correlation a single electrode and the 15 other electrodes.

8.3 Results

Figure 8.1 shows the distribution of 5r' for a typical subject, subject 5. Figure 8.2 shows
the distribution of 8r' averaged over subjects. In these figures the diameter of the circles at each
electrode position is proportional to the value of 8r. A circle diameter equal to the grid spacing in
the figures corresponds to a value of & of 0.12. A filled circle at an electrode position
represents a positive value of 8r', and thus a greater average correlation in the picture than in the
control conditions between that electrode and all other electrodes. Empty circles represent
coresponding negative values of &.  All figures are drawn to the same scale. These
correlations are listed in Table 8.1. A substantial difference can be seen in the distribution of &r

between each of the 4 time windows. This distribution will be outlined for each time window.
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. Time-window 1: there are net negative values of &' over most areas, with only small positive
values over the left temporal area (T3, T5).

. Time-window 2: positive values of 8r' occur mainly in the left hemisphere. The largest
positive values are found over the left fronto-temporal (T3), and the left central (C3) areas.
Smaller positive values are found over the occipital areas bilaterally (01, 02), and the left

posterior temporal area (T5). Negative values occur over all other regions.

. Time-window 3: Positive values of 3r' are distributed more bilaterally in this time-window,
with the largest positive values over left frontal (F7), and the right fronto-temporal (F4, F8,
T4) areas.

. Time-window 4: Positive values of &' occur over all regions. Largest positive values are
found over the left fronto-temporal and central (F3, T3, C3), and right fronto-temporal (T4)
areas.
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Figure 8.1 Topography of net difference correlations, subject 5

The graphs show the distribution over the scalp of the net difference correlations for each
electrode site, for subject 5. Difference correlations are computed for each pair of electrodes as
r(picture) - r(control). The net difference comelation for any one electrode is the sum of the
correlation differences between that electrode and all 15 other electrodes, divided by 15. Circle
diameter indicates the magnitude of the net difference correlation. A diameter equal to the size
of the map grid corresponds to a value of 0.12. Empty circles indicate a negative net difference
correlation, and filled circles indicate a positive value.
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(a) time-window 1 (b) time-window 2
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Figure 8.2 Topography of net difference correlations, average across subjects

The graphs show the distribution over the scalp of the net difference cormrelations for each
electrode site, averaged across subjects. Difference correlation is computed for each pair of
electrodes as r(picture) - r(control). The net difference correlation for any one electrode is the
sum of the correlation differences between that electrode and all 15 other electrodes, divided by
15. Circle diameter indicates the magnitude of the net difference comrelation. A diameter equal
to the size of the map grid corresponds to a value of 0.12. Empty circles indicate a negative net
difference correlation, and filled circles indicate a positive value.



Table 8.1 Average correlation difference

The average correlation difference is computed for each electrode and eac
time window by calcuiating the difference cormrelation between an electrod
and all other electrodes, and dividing the result by 15. Difference correlation
are computed by subtracting the comrelation in the control condition from th
correlation in the picture condition.

Time-Window

Channel 1 2 3 4

Fp1 -0.0378 0.0183 0.00818 0.0784
Fp2 -0.0353 -0.0252 0.0242 0.0669
F7 -0.0457 -0.025 0.018 0.0479
F3 -0.0327 0.00857 -0.00896 0.097
F4 -0.0245 -0.0222 0.0135 0.0741
F8 0.0177 0.0149 0.026 0.0664
T3 0.0127 0.0678 0.00077 0.11
C3 -0.0224 0.0377 0.00535 0.0816
C4 0.025 -0.0153 -0.00458 0.0631
T4 0.014 -0.0401 0.041 0.104
T5 0.0112 0.0119 0.00066 0.0658
P3 -0.0244 0.00272 0.00664 0.0426
P4 0.00396 0.0184 0.00536 0.055
T6 -0.0531 -0.0383 0.0277 0.0677
o1 0.0224 0.0218 0.0225 0.0664
02 -0.0267 0.0202 0.0108 0.0272

8.4 Discussion

The results of this analysis of the distribution of average correlation differences, &r, are
generally consistent with the results of the previous analysis, the distribution of intercorrelation
differences. The present results demonstrate that object discrimination involves, in a short time
interval preceding the moment of discrimination, the progressive involvement of various cortical
areas, with clear differences in the distribution of 5r' between each of the 4 time windows. In
time-window 1, there is little difference in average correlation between the picture and control
conditions, at any of the electrodes. In time-window 2 the left fronto-temporal and central areas,
along with the occipital areas bilaterally and the left posterior temporal areas, all show the largest
positive values of &, indicating a relatively larger correlation in the picture than in the control
condition, between these areas and all other cortical areas. This observation, consistent with the
results of the previous analysis, the distribution of correlation differences, suggests that within
time window 2 the neuronal systems that are operating may include the ventral occipital-
inferotemporal visual processing pathway, and the sensory language area in the teft temporal
region. In time-window 3, a more generally bilateral pattem of small positive values of &r

indicates an increasing level of communication between frontal and temporal areas in the left



and right hemispheres. In time-window 4, and also consistent with the results of the analysis of
correlation differences, the topographic distribution of average correlation differences similarly
indicates that visual discrimination eventually involves increases in correlation between all areas
of the cortex. This evolving pattem of average correlation differences supports the prediction of
the CSO model that object discrimination should involve progressively larger cortical extents,

beginning with the occipital and temporal regions, and ultimately spreading to include most
cortical regions.

100



9 Mutual Information Analysis

9.1 Introduction

There are two motives for considering mutual information as a measure to be
investigated in the present study of visual discrimination. The first motive involves the
conceptualization, briefly mentioned earlier, of the neural processes during perception as
involving a changing pattem of information interchange between cortical systems. Mutual
information more directly than comelation addresses this issue of information interchange.
Mutual information, like correiation, is a measure which is defined for a pair of variables. In
informational terms, mutual information is a measure of how much information about one
variable can be predicted by making a measurement of the second variable. In terms of the
EEG time series that are the subjects of analysis in the present study, the mutual information
between two time series, each recorded from one electrode, is an estimate of how much
information about one of these time series is available from the second time series. The
suggestion is now made that by extension, mutual information, calculated for each of the 4 time
windows of the before and after-blink epochs, for each pair of electrodes, is related to the rate of
information transfer between the cortical areas accessed by those electrodes.

The second motive involves the nature of mutual information as a statistic. Pearson
product-moment comrelation, used in the computation of cross-comrelations, estimates the
strength of linear relationship between two variables. In the present context, when computed for
the signals from a pair of electrodes, this measure of correlation, or more precisely the square of
the correlation, is a measure of the extent to which the signal at one of the electrodes can be
predicted by means of a linear function of the signal measured at the second electrode. In
contrast, the mutual information function estimates the strength of a general relationship
between two vanables, without the restriction of linearity. Again in the present context, when
computed for the signals from a pair of electrodes, mutual information would be a measure of
the degree to which the signal at one electrode could be predicted by means of an arbitrary, and
not necessarily linear, function of the signal from the second electrode. By comparing the resulits
of the mutual information analysis with the results of the correlation analysis, it may be possible
to estimate the extent to which the relationship between the activity of the different cortical
regions can be considered to be reasonably well modeled by a linear process. A practical
limitation in this respect is that the two measures, correlation and mutual information, are not
equivalent in terms of the number of samples of data they require to produce stable results. In
particular, because of the way in which mutual information is calculated, as described in the

following section, it would appear that a greater number of data points is needed in order to
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calculate a stable estimate of mutual information, as compared with the number needed for a
stable estimate of correlation.

9.2 Method

The concept of mutual information can be developed in terms of the concept of entropy.
Entropy is a measure of the average amount of information that is available from a single
measurement of a variable. Entropy, and mutual information, have their origins in information
theory (Shannon, 1948), and for this reason discussions of these quantities involve the concept
of a message. A message, in terms of measurements made of a dynamical system, can be
considered to be equivalent to the range of a set of values, a range within which the
measurements made on such a system may lie. Consider a system a variable of which
produces any one of n different messages, or equivalently n ranges of values. Furthermore,
each of these messages, or ranges of values of the variable, has a probability p; of occurring.
The entropy of such a system, as estimated by the measurements made of the variable, is
defined as

H=-Z pjlog pi

In concrete terms, and applied to the time-series of the EEG, each of these messages is
some range of values of the voltage measurement. Consider for example that the total range of
voltage measurements is -80 microvolts to +80 microvolts. This total range can be divided into
a number of sub-intervals, such as for example 8, 10 microvolt intervals, starting with -80 to -70
microvolts, and ending with +70 microvolts to +80 microvolts. The EEG time-series is then
binned by assigning each data point of the time-series to one of these 10 intervals or bins. This
process essentially constructs a discrete frequency distribution from the time-series data
samples. In terms of the definition of entropy, each one of these 10 intervals is one possible
message from the system being measured. Next, a probability p; is assigned to each of these
intervals or messages. This probability is, for each interval, the probability that the time-series
has a voltage value within the interval. The result now is the discrete probability distribution for
the original time-series. Next, each of these probabilities is multiplied by the logarithm of the
probability, forming the products p; log p;. Finally, these products are summed over the total
number of intervals, in this example, 10. The resuit is an estimate of the entropy of the system,
the average amount of information derived from a single measurement made on the system.
When the logarithm is taken to base 2, the units of entropy are bits.

Mutual information is defined in terms of entropy (Fraser and Swinney, 1986; Gray,
1990). Consider 2 systems S and Q, each generating messages s; and qi as above. A value of

entropy can be defined for both of these systems, H(S) and H(Q). Next, the concept of entropy
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can be extended to include the case where a pair of measurements, (s;, Qx) is made
~ simultaneously from these two systems. The joint entropy, H(S, Q) is the amount of information
available from this single pair of measurements of systems S and Q. The notion of joint entropy
can be developed in terms analogous to those used for the entropy of a single system. The pairs
of measurement (s;, qx) are first binned. Continuing the example above, each of the individual
measurements from systems S and Q are placed into intervals of 10 microvolts, beginning with
the -80 to -70 microvolt interval and ending with the 70 to 80 microvolt interval. These separate
intervals are combined to form a discrete joint frequency distribution of n by n bins. The first bin
for example contains those measurements for which messages s; and qx both fall within the
range of -80 to -70 microvolts, and so on. As before, for each of these bins a probability p;y is
computed, creating a discrete joint probability distribution for the pair of time series. Finally, the
sum of the products of these probabilities and their logarithms is accumulated. The joint entropy

of systems S and Q is then
H(S, Q) = - Z pix Log pik

Mutual Information is then defined in terms of the individual entropies of systems S and

Q, and their joint entropy, as the sum of the individual entropies minus their joint entropy:
I(S, Q) = H(S) + H(Q) - H(S, Q)

in the present analysis, all logarithms are taken to base 2, so that the resulting values of
mutual information represent the number of bits of information that can be predicted about one
time series, from a measurement made on a second time series.

A partial limitation in applying mutual information to the present data is that, in order to
form a reasonable estimate of the discrete frequency distributions for the variables, more data
points may be needed than are required in order to compute the corresponding Pearson
correlation.

The mutual information computations as well as all supporting functions were carried out

using the data analysis program Simulnet™ version 2.3.

9.3 Results

The three predictions made on the basis of the CSO model were generally confirmed by
the results. Partially confirming the first prediction, there was one, marginally significant, effect
of time, and this occurred in the picture condition in the BBE (F = 2.24, p = 0.08, effect size =
0.0002). Mutual information increased over the duration of the BBE, from 0.690 bits to 0.728
bits. In contrast, in the control condition mutual information remained relatively constant over
the BBE, decreasing slightly and non-significantly from 0.685 bits to 0.673 bits (F < 1). Table 9.2
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lists the mean mutual information values for each time window, averaged over all distances, that
is, over all 120 possible pairwise electrode pairs. These values as a function of time-window are
graphed in Figure 9.1a.

Confirming the second prediction, there were significant effects of distance in both the
BBE and ABE, and both in the picture condition (BBE: F = 15.5, p < 0.0001, effect size = 0.08;
ABE: F = 18.1, p < 0.0001, effect size = 0.09) and in the control condition (BBE: F = 24.6, p <
0.0001, effect size = 0.10; ABE: F = 19.6, p < 0.0001, effect size = 0.08) conditions, with mutual
information decreasing with increasing distance in all cases. Mutual information decreased from
approximately 0.78 bits for adjacent electrodes to approximately 0.61 bits for electrode pairs
spaced furthest apart. These values of mutual information as a function of inter-electrode
distance are graphed in Figures 9.2a for the before-blink epoch and Figure 9.2b for the after-
blink epoch. Table 9.1 shows the results of the analysis of variance, listing the values of F along
with the corresponding values of probability and effect size.

Confirming the third prediction, in the picture condition, the values of mutual information
between the 12 most closely-spaced electrode pairs increased from 0.776 bits to 0.808 bits over
the BBE (F = 1.71, p = 0.17, effect size = 0.001). Over this same interval the values of mutual
infformation between the 12 most distantly-spaced electrode pairs increased from 0.596 bits to
0.652 bits (F = 2.25, p = 0.086, effect size = 0.002). Since these secondary analyses of variance
were conducted on subsets of the data upon which the original analysis of variance was
conducted, it is not expected that the significance probabilities may need the cormrections
normally required when multiple tests of significance are conducted on the same data. These

results are shown in Table 9.3, and graphed in Figure 9.1b.
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Table 9.1 Results of analysis of variance of mutual information

The table shows the results of a two-way within subjects analysis o
variance of mutual information. Significant effects of distance occur fo
all conditions and epochs. A marginally significant effect of time occurs i
the before-blink epoch in the picture condition only.

Condition Epoch Item Time Distance @ T xD
Picture BBE F 2.24 15.5 <1
p 0.08 < 0.0001
Effect 0.0002 0.08
ABE F 1.79 18.1 <1
P 0.15 < 0.0001
Effect 0.0001 0.09
Control BBE F <1 246 1.01
p < 0.0001 0.11
Effect 0.10 0.001
ABE F 1.22 19.6 <1
P 0.31 < 0.0001
Effect 0.0 0.08

Table 9.2 Mean mutual information
The table shows mutual information, averaged over all trials.

Epoch Window Control Picture

BBE 1 0.685 0.690
2 0.693 0.671
3 0.692 0.709
4 0.673 0.728

ABE 5 0.692 0.688
6 0.673 0.679
7 0.658 0.646
8 0.684 0.649
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Table 9.3 Short vs. long mutual information

The table shows mutuai information, averaged over all trials, for the 1
shortest (Short) and the 12 longest (Long) between electrode distances
Mutual information between long-distance electrode pairs increase mor
from windows 1 to 4 than mutual information between short-distanc
electrode pairs.

Distance
Window Short Long
1 .776 .596
2 .756 .552
3 .788 .634
4 .808 .645
F 1.71 225
P 0.17 0.08
Effect 0.001 0.002
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(a) mutual information averaged over all distances
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Figure 9.1 Mutual information vs. time

(a) Mutual information vs. time window in the before and after-blink epochs. Mutual information
values are averaged across all 120 possible electrode pairs, across cases and across subjects.
There is a marginally significant increase in mutual information between time windows 1 and 4 in
the picture condition. (b) Short distance mutual information values in the picture condition are
averaged over the 12 electrode pairs separated by the shortest distance. Long distance values
are averaged over the 12 electrode pairs separated by the longest distances. Long distance
mutual information values increase significantly from time-window 1 to 4, while short distance
values remain relatively constant.
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(a) before-blink epoch
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Figure 9.2 Mutual information vs. inter-electrode distance

Mutual information decreased significantly with distance for both the before-blink epoch
(windows 1 to 4) and after-blink epoch (windows 5 to 8), and in both the picture and control
conditions. Mutual information values are averaged across subjects and across the 4 time
windows of the before-blink epoch (a) and the after-blink epoch (b). Values are shown for all 120
possible electrode pairs of the 16 electrodes that were recorded. Each point on the graphs
shows the mutual information for one pair of electrodes. Electrode pair 1 is part of the group of
most closely spaced electrode pairs. Electrode pair 120 is part of the group of most distantly
spaced pairs.
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9.4 Discussion

The values of mutual information varied in much the same way, as a function of time
and inter-electrode distance, as the values of correlation. First, mutual information increased,
although only marginally significantly, over the 1 second interval preceding discrimination. In
terms of the interpretation of mutual information as an estimate of the number of bits of
information that can be predicted about one process from a measurement on a second process,
these results could be restated as an increase, over the before-blink epoch, in the rate of
information exchange between the cortical systems accessed by the recorded electrodes.
Second, mutual information decreased with increasing inter-electrode distance. Third, mutual
information not only increased with time up to the moment of discrimination, but increased by a
greater amount for more distantly spaced electrode pairs than for more closely spaced pairs. All
of these findings are in accord with the predictions made on the basis of the CSO model for the
expected behaviour of interregional associations.

Given this similarity between the results of the cross-correlation analysis and the mutual
information analysis, one conclusion that can be tentatively drawn is that the relationship
between the signals recorded from pairs of electrodes appears to be well modeled as a linear
function. That is, the findings of the mutual information analysis are reasonably consistent with
the conclusion that the activity of the cortical system accessed by any one electrode is at least

approximately linearly related to the activity of any other such cortical system.

109



10 Coherence Analysis

10.1 Introduction

The intent of this section is to repeat the analysis that was caried out using cross-
correlation and lag, using altemative measures of association, coherence and phase.
Coherence, in general terms, is a measure of association, which can be computed for a pair of
time histories; that is, the frequency domain analog of squared cross-comrelation. More
particularly, coherence is the cross-correlation between two complex Fourier power spectra that
are computed for two time series; that is, the cross spectral density (CSD), averaged over some
range of frequencies. As such, coherence is an estimate of the amount of shared power, or
vaniance, within that frequency range, between the two time series. In aitemative terms,
coherence represents the proportion of the power, or variance, within some specified frequency
band, in one time series that can be accounted for by a linear function of the other time series
(Otnes and Enochson, 1972, 1978). In these terms, the analogy with squared cross-correlation,
the proportion of the variance of one variable that can be accounted for by a linear function of a
second variable, becomes evident. While cross-correlation is defined in the time domain,
coherence is analogously defined in the frequency domain. The second statistic that will be
computed is phase, a measure analogous to lag that represents an estimate of the difference in
phase angles between the periodic components within the two time-series, averaged over some
range of frequencies.

One motivation for using coherence and phase analysis in the present study, since
cross-correlation and phase have already been computed, is to attempt to connect some of the
present results with the results of earlier studies that have used coherence and phase analysis of
the EEG.

EEG amplitude and coherence changes related to the different thinking processes
involved in the visualization of an abstract concept and the interpretation of a painting were
found in a study by Petsche, Lacroix, Lindner, Rappelsberger and Schmidt-Henrich (1992). This
study investigated the question of whether changes in brain function would be found
corresponding to the difference between a self-generated mental image and a mental image
generated from a prior perception. In one task, subjects were asked to generate a mental image
comresponding to an abstract concept, a task expected to involve thinking with images. In a
second task, subjects were asked to interpret a painting viewed before the recording session, a
task expected to engage thinking with language. EEG recordings were analyzed using measures

of amplitude and coherence.
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A complex pattem of coherence changes was found. In the abstract visualization task,
coherence increases included the left frontal and central regions, and right frontal, central, and
temporal regions in the beta bands. Coherence decreases included the right frontal and
temporal areas in the theta and alpha bands. In the painting interpretation task, coherence
increases included the left frontal, central, temporal and parietal areas in the theta band, the left
central area in the alpha band, and left frontal areas in all beta bands. Coherence decreases
included the right anterior region in the alpha band, and the right posterior area in all beta bands.
These results were interpreted as suggesting that the differences in mental processes associated
with self-generated and perceptually-inspired mental images were reflected most consistently in
activity over frontai regions, and that mental imagery involves connections between multiple,
widespread, cortical regions.

Rappelsberger and Petsche (1988) had similarly found that EEG coherence and
amplitude changes were affected by a mental visualization task, cube rotation. Subjects were
shown a cube which they were then asked to visualize rotating. A complex pattem of coherence
increases was found that included all cortical regions, but that was to some extent different for
males and females. However, a finding common to both females and males was a coherence
increase in all frequency bands between left and right parietal areas. The authors suggest that
degree of coherence between cortical regions may be related to functional couplings between
these areas.

Thatcher et al. (1986) computed coherence and phase for resting EEG's recorded from a
sample of 189 children with ages from 5 to 16 years. They found that coherence decreased
approximately quadratically with increasing inter-electrode distance, while lag increased
approximately quadratically with increasing distance, results which led the authors to conclude
that EEG coherences were determined mainly by axonal rather than volume conduction.

In terms of the present study, it is expected that coherence and phase should show the
same dependence on inter-electrode distance, since again, the inter-regional associations are
proposed to be determined primarily by the effects of axonal conduction, and not by volume
conduction. It is expected as well that the behaviour of coherence and phase shouid generally
echo that of cross-correlation and lag, since cross-correlation and lag analyses, like coherence
and phase analyses, are based on the behaviour of oscillatory signal components. In particular,
it is expected that coherence should increase with time over the before-blink epoch, reflecting
increasing synchronization, and hence increasingly similar power spectra, between signals
recorded over multiple cortical regions. It is expected that phase should increase with inter-
electrode distance, reflecting the fact that the observed inter-regional associations are the resuit

of signal transmission along axons, with the associated relatively large change in level of
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association with distance, rather than as a result of volume conduction with correspondingly
~ smail rate-of-change of association with distance.

One partial limitation in applying coherence and phase analysis to the present data is the
relatively limited number of data points, 32, available in each time-window. This small number
of points results in a power spectrum with a correspondingly limited number of discrete frequency
points. It is known (Otnes and Enochson, 1972) that cross spectral density estimates are
distributed approximately as chi-squared variables, with a standard error of estimate given by e =
1/ Vn, where n is the number of individual frequency values averaged over in computing the
CSD. Thus, in the present case, the 32 data points in the original time-series are used to
generate 16 discrete frequency values in the CSD. Standard emor is then 25%. In the previous
analysis of cross-correlation, correlation varied as a function of time by approximately 10% (from
approximately 0.5 to 0.61). Using these values as a rough guide, and assuming that the
magnitude of the coherence effect is of the same order as the magnitude of the cross-correlation
effect, it is predicted that it may not be possible to detect the time-related variation in
coherence, and consequently, in phase. Under the same assumption, the distance-related
variation in coherence should be detectable. Cross-comrelation varied as a function of distance

by approximately 60% (from approximately 0.8 to 0.2).

10.2 Method

The procedure used in this coherence and phase analysis duplicated exactly the
procedure that was used earlier in the cross-correlation and lag analysis, except that coherence
and phase computations were substituted for the cross-correlation and lag computations.

The coherence computation first involves computing complex Fourier spectra for the two
time series, X(f) and Y(f). Next, from these Fourier spectra, the following quantities are
computed:

Power spectral density of X(f): Gx(f) = (2 / n) |X(f)|2
Power spectral density of Y(f): Gy(f) = (2 /n) [Y(f)]2
Cross power density: Gxy(f) = (2 / n) [X*(f) Y(f)]

where | . | denotes the absolute value and * denotes the complex conjugate. From the cross

power density, the cospectra, Cxy(f), and quadspectra, Qxy(f) are computed using the relation

|Gxy(f)|2 = Cxy(f)2 + Qxy(f)?

The cospectra and quadspectra represent, respectively, the real and imaginary

components of the cross power density. Next, coherence, y, and phase, ¢, are computed for
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each frequency component. Coherence is computed by dividing the squared absolute value of
~ the cross power density by the power spectral densities of the two time series, a normalizing
operation. Phase is computed by calculating the inverse tangent of the ratio of the
quadspectrum to the cospectrum.

() = [Gxy(f)|2/ Gx(f) Gy(f)
&f) = arctan (Qxy / Cxy)

Finally, smoothed values of coherence and phase are computed, by averaging over a
range of n frequency components.

Coherence = (1/n) 2 v;
Phase(f) = (1/n) Z ¢

In the present case, the average was computed over the 2 to 8 Hz frequency range. The
resulting value of coherence represents the average cross-correlation between the power spectra
of the two time series, normalized by dividing by the respective power spectral densities for the
two individual time series. The values of phase are specified in degrees.

The coherence and phase computations as well as all supporting functions were carmied

out using the data analysis program Simulnet™ version 2.3.

10.3 Results

In terms of coherence, there were significant effects of distance in both the BBE and
ABE, and in both the picture (BBE: F = 22.8, p < 0.0001, effect size =0.11; ABE: F =226, p <
0.0001, effect size = 0.11) and control (BBE: F = 32.8, p < 0.0001, effect size = 0.13; ABE: F =
30.0, p < 0.0001, effect size = 0.12) conditions, with coherence decreasing with increasing
distance in all cases. Coherence decreased from approximately 0.75 for adjacent electrodes to
approximately 0.5 for electrode pairs spaced furthest apart. These mean correlations as a
function of inter-electrode distance are graphed in Figures 10.1a for the before-blink epoch and
10.1b for the after-blink epoch. Table 10.1 shows the results of the analysis of variance, listing
the values of F along with the corresponding values of probability and effect size. Table 10.2
shows the corresponding values of mean coherence for each condition and time window.

In terms of phase, there were a number of small but significant effects of distance. In
the picture condition phase decreased in the before-blink epoch from 2.33 degrees for short
distances to 0.34 degrees for long distances (F = 1.92, p < 0.0001, effect size = 0.005). In the
control condition phase decreased in the before-blink epoch from 1.90 degrees to 1.09 degrees
(F = 1.41, p = 0.002, effect size = 0.002), and increased in the after-blink epoch from 1.69
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degrees to 2.80 degrees (F = 1.49, p = 0.0005, effect size = 0.002). There were no significant

effects of time on the magnitude of phase. These results are shown in Table 10.3.

Tabie 10.1 Results of analysis of variance of coherence

The table shows the results of a two-way within subjects analysis o
variance of coherence. Significant effects of distance occur for al
conditions and epochs.

Condition Epoch Item Time Distance T xD
Picture BBE F <1 228 1.0
p < 0.0001 0.21
Effect 0.11 0.0
ABE F 1.93 226 <1
P 0.13 < 0.0001
Effect 0.0001 0.11
Control BBE F <1 326 1.2
p < 0.0001 0.013
Effect 0.13 0.002
ABE F <1 30.0 1.1
p < 0.0001 0.19
Effect 0.12 0.0009

Table 10.2 Mean coherence
The table shows mean coherence for each time-window, averaged ove

all trials.

Epoch Window Control Picture

BBE 1 0.626 0.625
2 0.604 0.628
3 0.612 0.608
4 0.616 0.629

ABE 5 0.618 0.614
6 0.621 0.633
7 0.632 0.586
8 0.62 0.594
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~ Table 10.3 Resulits of analysis of variance of phase

The table shows the results of a two-way within subjects analysis o
variance of phase. Phase decreased significantly with increasing distanc
in the picture and control conditions in the before-blink epoch, an
increased significantly with distance in the control condition in the after

blink epoch.
Condition Epoch Item Time Distance TxD
Picture BBE F <1 1.92 1.05
P <0.0001 0.24
Effect 0.005 0.0009
ABE F 1.05 1.10 <1
p 0.37 0.22
Effect 0 0.0006
Control BBE F 1.25 1.41 <1
p 0.29 0.002
Effect 0] 0.002
ABE F <1 1.49 <1
p 0.0005
Effect 0.002
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Figure 10.1 Coherence vs. inter-electrode distance

Coherence values are averaged across subjects and across the 4 time windows of the before-
blink epoch (a) and the after-blink epoch (b). Values are shown for all 120 possible electrode
pairs of the 16 electrodes that were recorded. Each point on the graphs shows the coherence for
one pair of electrodes. Electrode pair 1 is part of the group of most closely spaced electrode

pairs. Electrode pair 120 is part of the group of most distantly spaced pairs.

10.4 Discussion

Averaged over all time-windows within an epoch, coherence varied significantly with

inter-electrode distance. For both the before and after-blink epochs, at short inter-electrode
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distances, comresponding to adjacent electrode positions, coherence magnitude was
' approximately 0.75, while at the longest inter-electrode distances coherence dropped to
approximately 0.5. These findings are consistent with the findings of Thatcher et al. 1986), who
similarly found, in resting EEG, an inverse relationship between between-electrode distance and
coherence. Examining Figures 10.1a and 10.1b the change in coherence with distance appears
to be approximately quadratic. This observation is only approximate however, since a simplified
distance metric was used, based on a flat-scalp model, and intended only for ordinal ranking of
electrode pairs in terms of distance. Nevertheless, this observation is at least generally
consistent with Thatcher et al.'s (1986) results, similarly showing a quadratic retationship
between coherence and distance. The present results are thus generally consistent with
Thatcher et al's (1986) view of EEG associations, based on axonal rather than volume
conduction.

Phase was found to decrease with distance in the before-blink epoch in both conditions,
and to increase in the after-blink epoch in the control condition. it was expected that phase
should increase with distance regardiess of whether interregional correlations were founded on
axonal signaling or volume conduction. An explanation that can be suggested for the observed
decreases in phase with distance is that the accuracy of the phase computation was
compromised because of the limited number of data points that was available within each time
window. A replication of this study should attempt to increase the number of available data
points. One way in which this might be done is to increase the sampling rate of the EEG signals
from the present value of 128 points per second to a value of 256 points per second. This
strategy should help to the extent that it provides new data points that are sufficiently
independent of the existing data points.
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11 Topographic Distribution of Coherence Differences

11.1 Introduction

Inspection of Figure 10.1a and 10.1b reveals differences between coherences in the
picture and control conditions, but mainly for electrode pairs separated by the longer inter-
electrode distances, and with a higher value of coherence in the picture than in the control
conditions in the before-blink epoch, and the reverse in the after-blink epoch. A t-test was
computed to test these observations. The t-tests were computed for the longest-distance 10% of
the coherences in both the before and after-blink epochs. The results confirmed the
observations. In the before-blink epoch, the mean coherences for picture and control conditions
were 0.521 and 0.500 respectively, with a corresponding value of t of 2.95 (p = 0.004). In the
after-blink epoch, the mean coherences for picture and control conditions were 0.499 and 0.510
respectively, with a corresponding value of t of -1.72 (p = 0.05). On the basis of the significance
of these differences, topographic distributions were plotted, of the difference in coherence
between picture and control conditions.

11.2 Method

These topographic distribution plots were constructed in exactly the same way as those
for intercorrelation in Section 10. Coherence differences were displayed using a 2-dimensional
projection or map of the physical electrode positions over the scalp. This map was used to
display the difference in magnitude of coherence between control and picture conditions, with a
separate map for each of the 4 time windows of the before-blink epoch. This coherence
difference is computed for each electrode k, as

vk = y(picture)y - y(control)

The magnitude of this coherence difference for a pair of electrodes is coded in terms of
the thickness of a line joining the two electrodes. Negative coherence differences are shown in
gray, positive changes in coherence are shown in black. A positive difference indicates a higher
value of coherence in the picture condition. A negative difference correspondingly indicates a

higher coherence in the control condition.

11.3 Results

The topographical distributions of &y, the changes in coherence between the picture and

control conditions, are shown in Figure 11.1 averaged across subjects. There are clear
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» differences in the topography of the values of 3y between the 4 time windows, with unique
pattems in each window. These patterns may be summarized as follows:

1. Time-window 1: Relatively moderate level associations exist between left fronto-temporal
regions and a range of other areas including frontal and temporal regions bilaterally.

Associations are also found between left temporal and left occipital areas.

2. Time-window 2: Widespread and strong levels of association exist between left fronto-

temporal areas, and bilateral prefrontal, occipital and parietal areas.

3. Time-window 3: Moderate to strong associations occur between left frontal and anterior

temporal areas, and bilateral prefrontal, frontal and occipital areas.

4. Time-window 4. Moderate level associations are relatively localized in extent, between left

and right frontal and anterior temporal areas.

118



(a) time-window!_ (b) time-window 2
=t

44-'4\‘.&&

Ty \/ -

e

7 e L TN

AR

} N, Tl Ny, S

A\\\&_ NS

R W0 "
\‘:,p:\x\‘

—\
\

(c) time-window 3 .

_——— e = e m

Figure 11.1 Topography of coherence differences, average across subjects

The graphs show the magnitude of the difference in coherence, between the picture and control
conditions. Coherence differences are computed as y(picture) - y(control). Coherences are
averaged across all trials and all subjects. Line thickness is proportional to magnitude of
coherence difference. The thickest lines comrespond to a coherence difference of 0.15.
Coherence differences less than 0.03 are not shown. Black lines indicate a positive difference,
with a higher coherence in the picture than in the control conditions. Gray lines indicate a
negative difference, with a higher coherence in the control condition.

11.4 Discussion

The pattem of coherence over the 4 time-windows of the before-blink epoch shows a
greater involvement of the {eft hemisphere, and in particular of the left fronto-temporal region,
which appears to be a focus of association: In general, other cortical areas appear to be
preferentially associated with the left fronto-temporal region than with each other. The
beginnings of this pattem are evident in time window 1, and become particularly evident in time
window 2. In the following time windows 3 and 4 the pattem of association becomes more

bilateral, with a less evident focus on the left fronto-temporal area, as connections develop
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between bilateral prefrontal, frontal and occipital areas in time window 3, and between bilateral
frontal and anterior temporal regions in time-window 4.

in general, the topographic distributions of coherence differences somewhat resembies
those of intercorrelation differences, in showing a strong association between bilateral occipital
and left temporal areas. Again, these findings are consistent with the ventral visual pathway
proposed by Ungerleider and Mishkin (1982). A clear difference between the coherence
distribution and the intercorrelation distribution occurs in time-window 4. In time-window 4
coherence shows a relatively moderate, relatively localized level of association, while
intercorrelation showed a widespread and high level of association. Cross-correlation is
proportional to the cross-product between sample voltage values, while coherence is proportional
to the cross-product between sample frequency components. A high value of cross-correlation
together with a low value of coherence for a pair of time-series might imply that, while multiple
frequency components were present in common in both of the time-series and at the same
phase angles, leading to a large value of correlation, the relative amplitudes of these
components were sufficiently different between the two time series to result in a low value of
coherence. This is of course only a conjecture, and other possibilities are possible, for example
involving some sort of interaction with the relatively high standard error of estimate of the
coherence. A replication using a higher sampling rate might provide resuits which could
distinguish between these possibilities. A higher sampling rate will reduce the standard error of
estimate of coherence, since more data points will be available for analysis within each time

window.
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12 The Discrimination Index

12.1 Introduction

This section will deal with the question of whether the information regarding the changing
pattern of correlations with time in the before-blink epoch can be summarized as an index that
can indicate the extent to which an object within a target object has been discriminatea from its
background.

Such an index, which will be referred to here as the Discrimination Index, will be
constructed by making use of two sources of information about the correlations in the before-
blink epoch. First, this index would need to take account of the overall value of correlation
between all cortical areas. The mean correlation, computed over all electrode pairs for each
time window, can be used to summarize this effect. Second, this index wouid need to be
sensitive to the fact that, during successful discrimination, not only does the magnitude of
correlations, averaged over all cortical regions, increase, but also the proportion of the cortex
connected by these correlations increases. The variance in the correlations, computed over all
electrode pairs, can be used to summarize this second effect. To elaborate this connection
between correlation variance and proportion of cortex connected by significant levels of
correlation, the present findings show that at the start of the before-blink epoch, correlations
between closely-spaced regions are substantial relative to comrelations between more distantly
spaced areas. Thus, only a portion of the cortical regions is connected by substantial
correlations. As time proceeds towards the moment of discrimination, the correlations between
the closely-spaced regions remain relatively constant, while correlations between distantly
spaced regions increase in magnitude, and in this way increasing the proportion of the cortex

that is connected by correlations of substantial magnitude.

12.2 Method

For both the picture and control conditions, and for each time-window, two statistics are
computed The first statistic is the mean correlation, calculated over all 120 electrode-pairs, for
each time window. This value is then averaged over all trials for all subjects. The second
statistic is the comresponding variance in the correlations over these 120 electrode pairs, also
computed for each time window. Again, the resulting value is averaged over all trials for all
subjects. Finally, for each time window and for both conditions, the ratio of these two statistics is
computed. This ratio is the Discrimination Index, defined as the ratio of the mean correlation to

correlation variance computed over all possible electrode pairs.
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12.3 Results

In the before-blink epoch, the Discrimination index increased from 9.51 to 16.9 (77.7%)
in the picture condition, and decreased from 12.8 to 11.2 (12.5%) in the control condition. In the
after-blink epoch, the Discrimination Index increased from 9.51 to 16.9 (11.1%) in the picture
condition, and decreased from 11.8 to 11.2 (5.1%) in the control condition. Correlation mean,
correlation variance, and the Discrimination Index are listed for each time window in Table 12.1.
Figure 12.1 shows correlation variance for each time window, averaged across subjects. Figure
12.2 shows the Discrimination Index for each time-window, averaged across subjects.

The change in both the mean and variance of the correlations appears to be an
approximately quadratic change with time, with the rate of change of this index increasing with
time window. As Figure 6.5 and Figure 12.1 illustrate, in the picture condition mean correlation
increases while correlation variance decreases. In contrast, in the control condition mean
correlations decrease while correlation variance increases. As shown in Figure 12.2, the ratio of

these two quantities, the discrimination index therefore increases, approximately quadratically

with time.
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Figure 12.1 Intercorrelation variance

Intercorrelation variance is computed for each condition and time-window by calculating the
variance over all 120 possible intercorrelations, and then averaging the result across all cases
and subjects.
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Figure 12.2 Discrimination Index
The Discrimination Index is computed for each condition and time-window by calculating the
ratio of intercorrelation mean to intercormrelation variance.

Table 12.1 Discrimination Index

The table shows comelation mean and variance, computed over all 12
electrode pairs, and the Discrimination Index for each time window.

Mean Variance Discrimination Index

Epoch Window Control Picture Control Picture Control  Picture
BBE 1 0.740 0715 0578 00752 128 9.51

2 0739 0737 0622 0.0717 119 10.3

3 0.752 0.752 0562 0.0552 13.4 13.6

4 0.719 0789 0642 0.0467 11.2 16.9
ABE 5 0740 0745 0627 00635 11.8 11.7

6 0.749 0737 0615 0070 122 10.5

7 0.768 0.734 0537 0.0616 143 11.9

8 0730 0.755 0652 0.0581 11.2 13.0

12.4 Discussion

The Discrimination Index increases approximately quadratically with time in the picture
condition, in the 1 second interval preceding discrimination. In view of this clearly defined
change, the index appears to be able to effectively summarize the information contained in the
mean and variance of the intercomrelations, and therefore offers what would appear to be an
effective measure of the degree to which a target has been discriminated from the background.

The Discrimination Index uses information about both the magnitude and spatial

variability of intercorrelations. These two sources of information in tum access two general
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features of brain function that are observed to occur during visual discrimination. In brief,
correlation mean accesses information regarding the finding that intercorrelations increase over
a short interval of time preceding the moment of discrimination. Correlation variance in tum
accesses information regarding the finding that within this time interval intercomrelations between
widely-spaced electrode pairs increases more than correlations between more closely-spaced
electrode pairs. The magnitude of the comrelations is suggested to be related to the degree to
which oscillatory components of brain activity, averaged across the entire brain, are
synchronized. This magnitude increases over the 1 second preceding discrimination, implying a
comresponding increase in the degree of synchronization of the oscillatory activity, averaged
across all cortical regions. The spatial vanability of the correlations is a consequence of the
finding that, over the before-blink epoch, intercorrelations between closely-spaced regions
increase relatively little while intercomrelations between more distantly-spaced regions increase
relatively more. Thus the values of distantly-separated intercorrelations approach the values of
intercorrelations between closely-spaced regions, with the resuit that the variability in correlations
computed across all distances, decreases over the before-blink epoch. An altemative way of
conceptualizing the variance in correlations is as a measure of the proportion of the cortex that is
engaged in significant, mutually-correlated activity. While in this situation correlation mean and
variance are thus only partially independent, these two measures each contribute information

that is useful in constructing the Discrimination Index.
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13 Neural Network Analysis

13.1 Introduction

As a matter of terminology, the phrase neural network is used in this thesis to refer to
computational models of biological networks. To distinguish between these two cases, the
biological networks will be referred to as neuronal networks, while the artificial networks will be
referred to simply as neural networks.

Two related questions are addressed in this section. First, can the neuroelectric activity
recorded in the picture and control conditions be discriminated using a neural network-based
classifier? Specifically, can a neural network classifier distinguish between the signals recorded
in the picture condition from those recorded in the control condition? A related question is, can
an automated process be found that can reliably distinguish between these two conditions and in
this way provide an objective indicator of whether an individual has been able to successfully
discriminate a target from a camouflaging background?

One such indicator has already been discussed, the Discrimination Index. The
Discrimination index, the ratio of cross-comrelation mean to cross-comrelation vanance, was
shown to increase significantly over an interval spanning the 1 second prior to recognition, in the
picture condition, but not in the control condition. The present section will attempt to
demonstrate an altemative to the Discrimination index. This altermative, a neural network
classifier, has a number of advantages.

The first advantage is that a neural network-based classifier operates without the
constraints of an a prion model of the basis upon which the classification is to be performed.
The Discrimination Index on the other hand is designed to make use of information related to
intercorrelations. The model implicitly adopted by the Discrimination Index is thus one which
posits that differences between the picture and control conditions are to be found in the between-
channel correlations. In contrast, the neural network classifier to be applied in the present
section will operate without such restrictions. The classifier will make use of all possible features
in the data in attempting to camry out the classification of the neuroelectric signals into one of the
two categornies, picture and control.

The second advantage is computational efficiency. Once the neural network has been
trained by being presented with a sufficient number of exemplars of the two categories to be
discriminated, a relatively small amount of computation is required to test and classify a novel
exemplar. This advantage would be particularly important in possible uses of this approach in
real-time applications where the network could rapidly discemn that an individual has successfully

discriminated a given target.
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13.1.1 Neural Networks as Analytic Techniques

Neural Network programs were inspired in part by network theories of how storage of
information and leaming occur in the brain. One such theory is that of Donald Hebb (Hebb,
1949). According the Hebb's theory, leaming and memory are phenomena which result from the
strengthening of the synaptic connections between simultaneously active neurons: "When the
axon of cell A is near enough to excite a cell B ... A's efficacy, as one of the cells firing B is
increased.” (Hebb, 1949). Repeated stimulation of some particular network of neurons
eventually results in permanent changes in the strengths of the interconnections between the
neurons within this network. The result is that a memory trace has been laid down, or relatedly,
that leaming has occurred.

The development of neural network models was inspired in part by such leaming and
memory functions of the brain. In general terms, the brain receives data from its environment.
On the basis of this data, the brain is then able to induce rules pertaining to that environment, or
to form intemnal representations of some of the features of that environment. These rules, or
representations, then allow the brain to make predictions about a future state of affairs of the
environment, on the basis of data about current conditions. Predictive ability in tum is related to
probability of survival, conferring an evolutionary advantage on an organism which is able in this
way to anticipate future conditions based on past experience. Neural networks, as computer
simutations of such a rule-inducing system, similarly leam the rules, or features, embedded in
examples presented to the network in training.

In a typical application, a neural network configuration may consist of three layers of
nodes. An input layer containing a number of nodes equal to the number of elements in a
predictor vector, provides a connection point, allowing the predictor vectors to be supplied to the
network. Variable-strength couplings, the network weights, connect the input layer with the
second, hidden layer. These input-to-hidden layer weights are modified over the course of the
network training phase using some rule, such as the back-propagation algorithm. As a result,
after training, the hidden layer nodes represent a set of features abstracted by the network from
the bolus of training exemplars. A second set of weights, also modified during the training
process, connects the hidden layer with the output layer. The nodes of the output layer thus
each receive a unique weighted combination of the intemal features stored in the hidden layer.

In the training phase, neural network is trained by presenting it with a series of
exemplars. Each exemplar consists of a pair of vectors, a predictor vector, and a criterion
vector representing the outcome or outcomes associated with that predictor. The predictors will,
typically, be the values of a number of independent variables. The criterion, or target outcomes,

associated with each such predictor will corespondingly represent the values of one or more
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dependent variables. As a concrete example, predictors might represent recordings of brain
electrical activity. The associated target outcomes could then be a code representing a
corresponding behavioural response, or experimental condition such as a cognitive or perceptual
task. Using a training rule such as back-propagation, the neural network attempts to minimize
the difference between the actual outcome or output of the network, and the target outcomes
coded within each of the training facts. In order to accomplish this goal, over the training
session, the network develops an intemal representation of the features present in the training
examples. One limitation that can also be an advantage in applying neural networks to such
pattem analysis tasks is that these intemal feature representations do not necessarily correspond
to obvious features of the data. The positive side of this behaviour is that these intemal
representations may, given sufficient training, come to represent features of the predictor vectors
which are more efficient in performing the pattem analysis task than those features presumed to
be significant on the basis of beforehand assumptions. In any event, these intemal
representations are distributed in the network weights, and are summarized in terms of the
activation values of the hidden nodes: For each hidden node, these activation values are the
weighted sums of the outputs of the previous layer, the weightings being the network weight
values.

As training proceeds, the leaming progress of the network can be periodically tested by
presenting it with a series of test exemplars, while recording the resulting test errors. The set of
test exemplars is generally created by sampling without replacement from the initial pool of
training exemplars. Test error is the difference between the actual network outcomes and the
target outcomes coded in the test exemplars. The size of this test emror is an indication of how
well the network has abstracted the significant features in the training exempilars, or in other
words, how well the network has leamed. When test error is seen to have reached a minimum,
the network is considered to have been optimally trained. At this point, the network can be put to
work, by presenting it with a set of exemplars for which there is no known outcome. The network
will then generate an output for each of these unknown exemplars, on the basis of the
information that the network has abstracted over the course of the training phase. These outputs
are the network’s predicted outcomes for each of the exemplars.

An advantage that neural networks have over other signal classification techniques is
that no a priori model needs to be adopted. With Fourier analysis, for example, the a priori
model is that the sought-after discriminability is present in the frequency and phase components
of the data. Similarly, with classification techniques based on cross-correiation or coherence the
initial assumption is made that the features upon which successful classification can be made
involve correlations or coherences. With neural networks, there need not exist any preconceived

notion about what aspects of the data are important for doing the classification. The data are
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presented to the network, and the network takes on the problem of determining what dimensions
or features in the data hold the key to discriminability. The network's intemal, distributed
representation of the data, coded in terms of the network weights, contains the discrimination
criteria. As stated earlier, this feature of neural networks is a two-edged sword. While this
intemnal representation of the data may be more effective than preconceived criteria in terms of
performing the data analysis, these discrimination criteria that the network has developed can
not be easily accessed. That is, a network user may not be able to relate the network's weights
or hidden node activation values to physical features in the data.

The power of neural networks as function approximators, or as classifiers, derives from
the ability of neural networks to function as nonlinear analyzers. This ability in tum is in part the
result of the nonlinear transfer function generally adopted for the simulated neurons. Without a
nonlinear transfer function, neural networks would be reduced to performing only as linear
analyzers. We might consider the behaviour of a network with only an input and an output layer
of simulated neurons or nodes, and with only linear transfer functions for each node. With such
linear transfer functions the output of any node is linearly proportional to the input to the node.
Such a network would only be able to present to the output nodes linear combinations of the
values present at the input nodes. Next, consider added to this network a third, hidden layer
containing nodes that also have linear transfer functions. The input to each hidden node is a
linear combination of the inputs. The output of each hidden node is still this linear combination
of inputs, albeit in general scaled by some numeric factor. Each output node in tum receives
inputs from these hidden nodes, and thus receives several of the linear combinations of network
inputs represented by each of the hidden nodes. Having a linear transfer characteristic, each
output node linearly combines these incoming combinations. This 'linear combination of linear
combinations' of the input signals is, by the definition of linearity, simply another linear
combination, of the original network inputs. No matter how many layers a neural network had, if
all nodes were linear, the overall network could do no more than generate outputs which were
linear functions of the inputs.

When the hidden layer nodes are given nonlinear, rather than linear, transfer functions,
the output of a hidden node becomes a nonlinear function of the signals received from the input
nodes. The implication of this statement is that the way that a hidden node responds to any
particular signal from any one input node now depends on the signals coming to that hidden
node from all other input nodes. The nonlinear transfer function implies that interactions
between the effects of the input signals are now possibie. It is the complexity inherent in these
interactions that is responsible for the rich, and sometimes chaotic behaviour that neural
networks have been shown to have. in terms of their performance as classifiers, neural networks

owe to this nonlinear transfer function that ability to discriminate between classes of input vectors
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that are non-linearly related. Straightforwardly, a neural network can discriminate between two
~ sets or classes of inputs that are separated by a nonlinear decision boundary in the vanabie
space of the inputs, because the network can form a comespondingly nonlinear decision
boundary, by generating at its outputs nonlinear combinations of the data presented to its inputs.
Experience has shown that real-world data sets more often than not are characterized by such
nonlinear relationships among the sub-groups within the data.

13.1.2 EEG Signal Analysis Using Neural Networks

In this section are reviewed several of the studies that have been carried out to date that
have demonstrated the effectiveness of neural network systems in the classification and
categorization of EEG data. Aithough much of the theoretical work underlying neural networks
predates the work leading to the development of other nonlinear methods such as chaos-analytic
techniques, the application of neural networks to the classification of EEG signals is relatively
more recent. To date, relatively few studies have been carried out in this area.

Gabor and Seyal (1992) applied a multi-layer back-propagation neural network to the
problem of recognition of interictal epileptiform spike-wave pattems in the EEG, in a study using
5 epileptic subjects. EEG recordings were made from 8 pairs of channels including all scalp
areas. The neurai network used for the data analysis included 1 input node for each of these 8
EEG channel pairs, 8 hidden nodes and 1 output node. In order to decrease the computational
load on the network, EEG data was preprocessed by calculating and using only the slopes of the
spike events for each of the 8 channels. The training and testing vectors corresponded therefore
to the spatial distribution of the rates of change of spike voltage. An average of 94.2% of the
waves were classified comrectly, with 20.9% false-positive classifications. These resuits, the
authors suggest, provide evidence that a neural network-based pattem classifier can perform
effectively in the identification of epileptiform transients in the EEG. They conclude that the
network’s inherent properties of being able to leam features across training examples, and of
being able to generalize this leaming to novel instances, were properties that allowed the
network to identify waveforms which differed from the training pattemns but that still maintained
the spatio-temporal characteristics of epileptiform waveforms.

Jando, Siegel, Horvath and Buzaki (1993) similarly used a multi-layer neural network to
classify epileptiform EEG activity. In their study, spike-wave activity was recorded over 12 hours
from the neocortex of rats that had been bred to exhibit epileptic symptoms. Neural network
configuration was optimized by conducting a parametric study of numbers of input and hidden
neurons. It was found that a network of 16 input and 19 hidden neurons was most efficient in

terms of classification error rate achieved after a fixed number of iterations. One output neuron
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was used, corresponding to a discrimination between two conditions, epileptiform versus non-
epileptiform input. The authors analyzed both the raw time-series, as well as Fourier
transformations of the raw data including both amplitude and phase. Each time series consisted
of 12 seconds of recorded EEG data, digitized at 100 samples per second, and selected visually
to represent one of the two data conditions. The training set consisted of 469 time-series
corresponding to spike-wave activity, and 1,133 time-series of non-spike-wave activity. The
authors chose to analyze each time series using a time-window containing 16 data points, and
sliding across the time-series in steps of one data point. At each step, the 16 data points were
presented to the neural network input nodes.

The network correctly classified 96% of epileptiform events, and misclassified 30% of
non-epileptiform events. The authors suggest that this performance demonstrates the power of
a non-linear analytic technique such as a neural network to find correspondingly non-linear
relationships between dependent and independent variables. Techniques limited to utilizing only
linear relationships are prone, they suggest, to committing false-positive misclassification.
Training speed was found to be higher when the network was supplied with Fourier transformed
data than when it was supplied with raw data. This finding suggests that the distinguishing
features between the epileptiform and control conditions consisted of amplitude and phase
differences of periodic components within the data. As Smith (1993) has pointed out, doing
some of the work that the network would otherwise have to do by preprocessing the data usuaily
results in improved training.

EEG waveforms were classified according to sleep stage using a multi-layer network
(Grozinger, Kloppel and Roschke; 1993). The goal in this study was to train the network to
classify samples of EEG recorded during sleep as corresponding to REM or NREM periods.
EEG recordings at electrode Cz were made from subjects during sleep. The EEG records were
digitized at 100 samples per second, and separated into 6 frequency ranges, 0.5 to 3.5 Hz, 3.5 to
7.5 Hz, 7.5 to 15 Hz, 15 to 25 Hz, 25 to 45 Hz and 0.5 to 45 Hz. Power within each band was
computed and used as one component of the network input vector, forming training and testing
vectors of 6 components. Cofrespondingly the network was composed of 6 input nodes, one for
each component, 4 hidden nodes and 1 output node. Raw data for each exemplar consisted of
2048 data points, with data from one night used for the training exemplars and data for a
subsequent night used for the testing exemplars. A total of 1300 training and testing exemplars
were used. Following a training phase, testing results were an average of 89% of exemplars
comrectly classified as either REM or NREM. The authors point out that conventional EEG
analysis to determine sleep stage requires additional recordings of electrooculographic and
electromyographic potentials. The results using the neural network demonstrate that such

classification can be accomplished using only scalp EEG recordings.
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The event related P300 response in patients with multiple sclerosis (MS) was
distinguished from the P300 in a normal control group using a muiti-layer neural network (Slater,
Wu, Honig, Ramsay and Morgan, 1994). Characteristically, amplitude of the P300 response has
been shown to be sensitive to stimulus probability, increasing for rare stimuli, while latency has
been found to be linked to task difficulty, increasing for example with increasing difficulty of
stimulus discrimination. While P300 characteristics have been found to be altered in patients
with MS, with, in particular, an increase in latency, such alterations are too subtle, the authors
point out, to allow them to be used in clinical diagnosis. An oddbail paradigm was used to elicit
the P300, with infrequent target audio tones interspersed with frequent standard tones of a
different pitch. Recordings of P300 components were made to the target tones at electrode sites
Fz, Cz and Pz. Averages were formed over 100 recordings each containing 256 data points.
Training and testing exemplars were then formed by uniformly sampling 25 points from each of
these averaged recordings. A set of 101 training exemplars was formed in this way for each of
the three electrodes, 51 from the MS group and 50 from the control group. Testing data
consisted of 10 MS and 10 control exemplars for each electrode. Three identical neural
networks were used in the analysis, one for each electrode. Each network consisted of 25 input
nodes, corresponding to the 25 exemplar data points, 8 hidden nodes and 2 output nodes. Final
scoring was done on the basis of a 2 out of 3 majonity rule. An exemplar was categorized
according to whatever classification was assigned to that exemplar by at least 2 of the 3
networks. Classification accuracy when the performance of each network was considered
separately was found to be 85% at Cz, and 80% at both Fz and Pz. Using the majonity rule,
classification accuracy was 90%. The authors point out the difficulty with using neural networks
that the basis of the classifications is generally not easily available. On the other hand, they
suggest, if network performance indicates an effective ability to distinguish between disease and
control conditions, then the network is nevertheless useful as a tool for clinical diagnosis.

The diagnostic capability of neural networks has also been used to classify subjects as
depressive, psychotic or normal (Kloppel, 1994b). EEG recordings were made from 18 subjects,
6 depressives, 6 psychotics and 6 normal controls. Recordings were made from 16 scalp
electrodes, over an interval of 30 minutes. Preprocessing consisted of reducing 4 second
segments of the EEG record to 6 values, representing spectral power levels in the delta, theta,
alpha 1, alpha 2, beta 1 and beta 2 frequency bands. Artifacts were eliminated by setting to zero
those data points identified as artifactual, and linear interpolation was then used to bridge the
surrounding data points. Neural network was examined after training on data from varying
numbers of subjects. After training on data from only one subject, the network was able to
classify unlabelied data segments from that same subject with an accuracy of 80%. After

training on two or more subjects, classifying data segments belonging to any one subject,
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dropped to 66%. The network was thus able to recognize data belonging to the subject on which
~ the network had been trained. However, the network was only marginally well able to generalize
this knowledge to the classification of data from other subjects.

A different type of network, a Leaming Vector Quantizer (LVQ), has also been used in a
number of studies involving EEG classification. The LVQ is a self-organizing network,
comprised of mutually interconnected nodes, in comparison with the multi-layer back-
propagation network which is organized in hierarchically connected layers. The LVQ does not
require feedback in order to leam. Such feedback is required by networks using the back-
propagation training algorithm, in the form of the target criterion values that form part of each of
the training exemplars. The LVQ is thus in the class of unsupervised networks, in comparison
with multi-layer networks which are classed as supervised networks. Vectors representing sets
of data points are presented to the LVQ. After a number of such presentations the LVQ is able
to place a vector into one of several categories. This function is similar to that performed by
traditional statistical cluster-analysis techniques.

An LVQ applied to the classification of EEG waveforms was used to predict laterality of
hand movement (Pfurtscheller, Flotzinger, Mohl and Peltoranta, 1992). A total of 30 channels of
EEG data were recorded from 3 subjects prior to voluntary right or left hand movements. Each
channel was referenced to the weighted average of 5 surrounding channels. Subjects were
asked to press a microswitch with either a left or right finger and for a specified duration.
Direction and duration were indicated by cues presented in succession on a computer monitor.
Subjects were asked to initiate the movement following the duration cue, and EEG recordings
were made during the interval between the direction and duration cues. Recording terminated
approximately 0.5 seconds before the start of movement. Training data consisted of single trial
records of event-related desynchronization, in the 8 to 10 Hz and 10 to 12 Hz frequency bands.
Trials were selected manually to use only those which showed clear and artifact-free alpha
activity. In a training phase, the LVQ was allowed to self-organize, a process analogous to the
pattem-formation which occurs in multi-layer neural network weights. After training, the LVQ
could significantly well predict side of hand movement, with an accuracy of 85%, 74% and 64%
respectively for the three subjects. The authors claim that this finding is the first demonstration
that EEG signals can be classified without the use of averaging. They point out that by not using
averaging, the problem of dealing with a statistically nonstationary signal is avoided. The results
do however confirm the findings of averaged potential studies that signals related to the
preparation for finger movement are available for several seconds prior to the start of
movement.

An LVQ network was also used to perform on-line EEG classifications (Flotzinger,

Kalcher and Pfurtscheller, 1993). Subjects were instructed to press a microswitch with either left
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or right index fingers as indicated by a direction cue presented visually on a computer monitor,
and upon an initiate-movement cue presented 1 second later. Training vectors were formed
from EEG recordings made during this 1 second interval between the presentation of the
direction cue, and prior to actual movement, from channel pairs C3-Cz and C4-Cz. The LVQ
was trained to predict laterality of movement prior to the actual movement itself. The goal of the
study was to have the network predict laterality without any movement actually occurring. The
network was first trained, and then used to predict side of movement. The network's prediction
was displayed on the computer monitor as feedback to the subject. In the later stages of the
prediction phase the microswitch was removed so that network’s predictions were made solely on
the basis of pre-movement EEG's. After training, the LVQ was found to be abie to cormrectly
predict side of movement between 59% and 86% of the time, both with the microswitch present,
and without the microswitch. Such on-line prediction is made possible, the authors suggest, by
the operating speed of the LVQ, which they suggest is higher than that of a muiti-layer neural
network.

13.1.3 Summary and Discussion

Neural networks, both of the muiti-layer and LVQ types, have been demonstrated to be
effective as pattem classifiers. Using multi-layer networks, this classification ability has been
applied to the problem of recognizing epileptic spike-waves in humans (Gabor and Seyal, 1992)
and in rats (Jando, Siegel, Horvath and Buzaki, 1993), classifying stages of sleep (Grozinger et
al, 1993), recognizing the effects of multiple sclerosis on event-related potentials (Slater et al.,
1994), and distinguishing normal, depressive and psychotic subjects (Kloppel, 1994b). LVQ
networks have been used to classify movement-related potentials to predict the laterality of
finger movement (Pfurtscheller et al, 1992; Flotzinger et al, 1993).

One reason that neural networks are effective in dealing with EEG data may be that
neural network classifiers are examples of nonlinear techniques. In particular, it has been
suggested that the success of neural networks as categorizers is probably due in part to the
ability of neural networks to function as nonlinear discriminant analyzers. Webb and Lowe
(1990) report on theoretical results involving layered nonlinear feed-forward adaptive networks
that demonstrate why such networks are effective at performing classification tasks. The authors
show that this discriminatory ability is a result of the first half of the network, from input nodes to
hidden nodes, performing a nonlinear transformation of the input data into a feature space,
defined by the hidden units, in which the discrimination should be easier. The second half of the
network, from the hidden to the output nodes, then executes a linear transformation aimed at

minimizing the mean-square eror to a set of given output pattems. [n short, neural networks are
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capable of performing nonlinear discriminant analysis. The brain, as a distributed, nonlinear
’ dynamical system, is probably not effectively describable or analyzable using purely linear
methods. Reasonably, the analysis of such a nonlinear system should require the application of
correspondingly nonlinear methods, examples of which have been discussed in this section. A
comprehensive overview of the application of neural networks to the analysis of EEG data can
be found in Kioppel (1994a).

13.2 The Hypothesis

It is suggested that the exemplars representing the control and picture conditions of the
present study will be distinguishable to varying degrees, depending on the time-window. In
particular, and on the basis of the results of the cross-correlation analysis, it is suggested that
there should be an increasingly effective discrimination over the 4 time-windows of the before-
blink epoch. Furthermore, and again on the basis of the cross-correlation analysis resuits, it is
proposed that the data from the 4 time-windows of the after-blink epoch will be relatively less
discriminable.

The ability of the probabilistic network to discriminate between picture and control
condition using data from the time-windows of the before-blink epoch will depend, it is
suggested, on features of the data that are related to the increasing level of organization of the

inter-cortical signaling over the course of this epoch.

13.3 Method

The approach that will be used in this analysis is neural network classification of the data
within a moving time window, swept across two 1 second intervals of the recorded EEG. The
first interval is the 1 second epoch preceding the eye-blink by which subjects signal the target
discrimination event. The second interval is the 1 second epoch which begins after the cessation
of artifacts associated with the blink, 1.5 seconds after the start of the eye-blink artifact. EEG
recordings made during these epochs in both the picture and control conditions will be used to
construct network exemplars. The network will then be asked to leam to distinguish between

exemplars corresponding to these two conditions.

13.3.1 The Neural Network

The general type of neural network used in this study is a form of the probabilistic
network, developed by Specht (1990), the generalized regression neural network (GRNN)
(Specht, 1991; Wasserman, 1993). In general terms, the GRNN, like the back-propagation

neural network, is able to approximate any functional relationship between input and output. The
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following description will be based on the network being used as a classifier; that is, to leam to
' place test exemplars into one of 2 or more categories.

Structurally, the GRNN resembles the back-propagation neural network. The GRNN has
a number of inputs equal to the number of predictor values in the training or testing exemplars.
The input nodes of the GRNN, like those of a back-propagation network, are merely connection
points to which the elements of the test exemplars are applied, one at a time. The GRNN has a
number of hidden units equal to the number of training exemplars. There is one hidden unit for
each training exemplar. Unlike the back-propagation network then, the GRNN does not require
an estimate of the number of hidden units to be made before training can begin. Finally, the
GRNN has a number of outputs equal to, if the GRNN is used as a classifier, the number of
categories being discriminated. More generally, the number of outputs of the GRNN is equal to
the number of criterion variables being predicted.

The GRNN however differs functionally from the back-propagation neural network. First,
there is no counterpart to the iterated back-propagation network training phase. Instead, the
entire training matrix is installed in the GRNN, as the weights between the input and hidden
layers. In more detail, the weights between the input nodes and each hidden node represent a
single training exemplar. Thus, the weights between the input layer and hidden node 1 are the
components of the predictor part of training exemplar 1. Recall that each exemplar consists of
two parts. The first part consists of the predictor values representing the values of the variables
being used to predict some outcome, while the second part consists of the criterion values
representing the values of the variables being predicted. The equivalent of training with the
GRNN thus takes no more time than is required to load the training file into working memory.
This scheme is in direct contrast with back-propagation networks which must iteratively apply a
heuristic, such as the method of steepest descent, to adjust the values of the input node to
hidden node weights. The testing phase of the GRNN also differs significantly from that of the
back-propagation network. in order to describe the GRNN testing phase it is useful to first state
what the outputs of the GRNN represent. With the GRNN used as a classifier, the outputs of the
GRNN are the probabilities that the test exemplars belong to the categories being discriminated.
The GRNN implements a procedure for estimating the probability of a test exemplar vector given
a set of training exemplars, based on the principle of Bayesian classification. The GRNN will in
fact approach an optimum Bayesian classifier given a large enough number of training
exemplars (Wasserman, 1993).

The algorithm used for GRNN testing may be described as follows. In the training phase
the entire set of training exemplars is loaded into the network, with the components of each of
the exemplars becoming the weights between the input nodes and one hidden node

corresponding to that exemplar. The testing phase begins with a testing exemplar being applied
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to the input nodes. Each hidden node will thus receive the product, and more precisely the
| vector dot-product, of the testing exemplar and the training exemplar comresponding to that
hidden node. This vector dot-product is a direct measure of the collinearity, or in general terms
the similarity, between the test vector and a training vector. Other similarity measures can also
be used, such as the sum of squares of the difference between the components of the test and
training vectors. This latter measure of collinearnity is used in the present analysis.

Each hidden node then performs a non-linear transformation on this dot-product. While
in the back-propagation network the transformation generally invoives the sigmoidal function, in
the case of the GRNN the corresponding transformation involves the exponential function. The
meaning of this transformed dot-product is that it represents the probability of obtaining the
particular testing exempiar, given a probability density function with a mean equal to the mean of
the training exemplar, and standard deviation defined by a parameter referred to as smoothing
(generally, smoothing is the only parameter than needs to be selected when using the GRNN).
Straightforwardly then, the GRNN computes at each hidden node the probability of the current
test exempilar, given the existence of the training exemplar corresponding to that hidden node.
The more similar the testing and training exemplar are, or in alternative terms the more nearly
collinear they are, the greater will be the resulting probability of that testing exemplar occuming,
given the training exemplar.

These individual probabilities next need to be combined in order to generate the desired
output of the GRNN. This output is the probability of the current test exemplar given all of the
training exemplars. This combining is performed in the hidden to output connections of the
GRNN. The transformed output of each hidden node is connected to each output node. As in
the back-propagation network, these connections between the hidden and output nodes contain
weights. However, and again in contrast with the back-propagation network, these weights in the
GRNN are not trained, but rather are assigned values. These values are dummy codes
representing the category of each of the hidden nodes. Recall that each hidden node represents
one training exemplar, and that this exemplar belongs to one of the categories being
discriminated. The dummy codes between a hidden node and all the output nodes are 1 for the
output node which represents the same category as the training node, and O for all other output
nodes. As an example, if there are two categories, A and B, being discriminated, the GRNN will
have 2 output nodes, node A and node B. Let us assume that hidden node 1, representing
training exemplar 1, belongs to category A. The weight between hidden node 1 and output node
A will be 1, and the weight between hidden node 1 and output node B will be 0. The effect of this
coding is to connect only hidden and output nodes of the same category, with the resuit that an
output node of a particular category will receive inputs only from hidden nodes of the same

category. That output node then simply sums these individual inputs. While each of these
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inputs from the hidden nodes represents the probability of the current test exemplar given a
- particular training exemplar, this sum at an output node represents the probability of the current
testing exemplar given all of the training exemplars in one category. Finally, in order to generate
an output which represents the actual probability, the value at each output node is normalized by
dividing by the sum of all hidden node outputs.

Thus, for this 2 category example, the value generated by the network at output node 1
is the probability that the currently-applied test exempiar belongs to category A. The value at
output 2 is the probability that the testing exemplar belongs to category B.

This technique of combining the probability density functions of individual exemplars of a
category to approximate the probability density function of the category is due to Parzen (1962).
Parzen showed that with a sufficient number of exemplars of a class, the result will approach the
true probability density function of the category.

An advantage that the GRNN has over the neural network and the genetic network is the
single pass nature of the algorithm. Training and testing can typically be several orders of
magnitude faster for the GRNN than for the neural or genetic networks. A potential limitation is
that, since all training examples are stored in working memory, the size of the training data set is

limited by the amount of available memory.

Algorithm

The following algorithm describes the testing phase of the GRNN.

Symbols:

Xi the j-th test exemplar vector

uj the i-th training exemplar vector

hj probability of test exemplar x; given the probability of a training exemplar, u;.
c smoothing parameter; defines the standard deviation of the PDF

Ck output corresponding to category k

For each test exemplar x;
1 For each training exemplar u;
1.1 Estimate the probability of x; given the probability of u;:

hj = exp[- (xi - uj)T(xi - uj) / 267]

139



2 Compute the sum over all probabilities:
sum(1) = 3 h;
3 For each output (category) ck

3.1 Compute sum(2), the sum over h; for all category k training exemplars:
sum(2) = 2 h;
j=k
3.2 Compute the probability of x; by dividing sum(2) by sum(1):

o= [Zh]/[Zh)
=
The value of ck now represents an estimate of the probability of test exemplar x; given all
training exemplars from category k.
The implementation of the generalized regression neural network function and all

supporting operations utilized in the present analysis were performed using the data analysis
program Simulnet™ version 2.3.

13.3.2 Training and Testing Exemplars

Exemplar vectors used to train and test the network all have the same format. These
vectors x;j consist of two parts, a predictor portion comprised of n components pj and a criterion

portion comprised of m components ck
Xi = {p1, ...pn; C1, ... Cm)

In the present application, there is 1 criterion component, a dummy code denoting the
category membership of the exemplar. The predictor component of each exemplar is created as
follows. From the data for each subject and for each trial, two sets of data are extracted. The
first set is a matrix containing the 16 channels of 128 data points each, corresponding to the 1
second interval preceding the blink. The second set is a matrix containing the 16 channels of
128 data points each corresponding to the 1 second interval following the blink. Each of these
matrices is then converted into a vector, by concatenating all 16 channels, placing them end-to-
end. These vectors thus consist of 128 x 16 or 2048 components. The first 128 components
thus comrespond to channel 1 (Fp1), and the last 128 components correspond to channel 16 (O2).
One such vector is created from each trial for each subject. These vectors form the predictor
sections {p1, ... pn} of each of the exemplars. The criterion dummy code that is added as a final

element to each exemplar labels the exemplar as comresponding to the picture or to the control
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conditions. There were 54 control condition exemplars and 42 picture condition exemplars, for a
total of 96 exemplars.

13.3.3 Jackknifed Classification

In order to make optimal use of the available number of exemplars, a jackknifing
classification procedure was chosen. Each one of the 96 exemplars was in tum removed from
the total set of exemplars. The remaining 95 exemplars were used to train the neural network,
while the single withheld exemplar was then applied to the network for classification. The
resulting score assigned to that exemplar by the network, the probability of obtaining that
exemplar given the existence of the other 85 exemplars, was recorded. This procedure was
repeated for all 96 exemplars. The result was a set of 96 scores, one for each exemplar,
denoting the probability that the exemplar belonged to one of the two categories. Next, the
effectiveness of the network in camying out this classification was computed. A t-test of
significance was computed on the two groups of scores, the group of scores for control condition
exemplars and the group of scores for picture condition exemplars. The resulting numerical
value of t is equal to the difference in the means of the two groups divided by the pooled
standard deviation computed over both groups. The value of t is therefore an index of the

relative difference between the two groups as estimated by the network.

13.4 Results

For each of the 8 time-windows, and for each of the 96 exemplars that were tested,
(representing the 96 trials, 54 from the picture condition and 42 from the control condition), a
score was generated by the network. Each of these scores represents the probability, as
computed by the network, of that exempiar occurring, given the probability density functions for
each of the two categories (control and picture), constructed using the other 95 exemplars. The
network scores for each of the 8 time-windows are shown in Table 13.1.

The results of the t-tests for the difference in network scores for the control and picture
conditions are shown in Table 13.2 for the before-blink epoch, and in Table 13.3 for the after-
blink epoch. For the before-blink epoch, the values of t increase monotonically from time-
windows 1 to 4. A significant value of t in time window 4 (t = -2.828, p = 0.003) indicated that the
network was able to significantly well classify exemplars as belonging to either the control or
picture conditions on the basis of the EEG recorded during the final 0.25 seconds preceding the
blink. For the after blink epoch, non-significant values of t occurred in time windows 5, 7 and 8,
indicating that the network was not able to classify exemplars into the two categories on the

basis of EEG recorded during these windows. A significant value of t did however occur in time-
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window 6 (t = -1.745, p = 0.042), indicating significantly effective classification of exemplars on

~ the basis of EEG from this window. These resuits are graphed in Figure 13.1.
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. Table 13.1 Generalized Regression Neural Network Scores

Each score represents the probability, computed by the network, of the occurrence of th
corresponding exemplar, given the probabilities of the other exemplars, that is, given th
probability density functions for the control and for the picture conditions, computed using th
other 95 exemplars. The Group label is coded as O for the control condition, 1 for the pictur
condition.

Trial Group 1 2 3 4 5 6 7 8

1 0] .0419 588 883 .36 122 0136 .237 .0963
2 0] 388 842 0279 .255 515 0843 .388 .407
3 0 .0741 .0479 .0307 529 .165 .658 .354 .184
4 0 392 124 234 0781 .278 885 .167 .0305
5 0 431 212 141 247 261 377 .266 .052
6 0 985 0076 .851 254 238 394 825 544
7 0 .0058 .3 .33 .0B45 .0886 .875 .378 .0465
8 0 331 882 386 542 531 539 .19 314
9 0 .024 0007 .0445 853 608 0384 .731 .0884
10 0 .0339 386 389 582 228 .234 929 .149
11 0 303 0879 301 233 .116 516 646 .82
12 0 161 979 886 452 377 .02 326 .0814
13 0 531 124 182 1657 122 996 489 0823
14 0 403 516 .964 14 .65 42 198 162
15 0 013 856 575 .0683 .138 .0126 .373 .189
16 0 15 857 205 967 394 0652 .0917 .671
17 0 0016 777 056 .128 0964 .0682 .375 .866
18 0 .0007 447 175 751 636 998 922 619
19 0 .22 .0772 801 .0403 .683 .42 .35 .429
20 0 813 0129 .0058 .3%6 .0139 .519 277 372
21 0 405 163 .119 338 .0536 .0624 .0473 .857
22 0 114 .04 .87 .504 0925 .0347 .13 .232
23 0 345 185 168 446 266 351 .78 .302
24 0 975 657 341 161 105 104 126 .2

25 0 .0844 549 0282 .172 1 .85 .236 .26
26 0 .0080 .991 .26 1561 178 .0033 212 492
27 0 .0736 .0594 .0783 .286 .566 .341 399 226
28 0 339 .0147 152 834 .62 975 544 745
29 0 A75 0112 0244 142 022 .0447 .202 .233
30 0 .248 .0258 .401 801 .261 .0663 .0416 .202
31 0 .0411 0532 .639 .08 526 696 645 117
32 0] .0007 197 .37 143 0611 401 .0773 .913
33 0 0761 11 391 .0543 539 0712 .0982 .236
34 0 103 132 0229 637 .204 .832 254 277
35 0 786 927 556 326 392 8 511 .0847
36 0 .161  .0056 .0424 .262 .16 0775 299 19
37 0 547 0917 559 362 222 423 885 .225
38 0 .066 .108 961 836 .842 265 0606 .962
39 0 .0285 .0215 876 263 .51 263 174 204
40 0 .0079 0777 647 251 413 119 .0651 .156
41 0 .05 304 .15 0361 .189 876 .0866 .264
42 0 132 281 306 585 406 .61 .286 .065
43 0 0562 .163 .131 211 0118 .866 .586 .272
44 0 0755 131 325 609 245 .0988 .0726 .58
45 0 0039 0064 558 176 .228 .194 0193 .643
46 0 .0010 .0943 .0202 .293 .498 .0107 .304 .428
47 0 0037 019 144 127 297 .0035 .0857 .154
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~ Table 13.1 Generalized Regression Neural Network Scores
(continued)

Trial Group 1 2 3 4 5 6 7

48 0 .0006 .0321 .0221 .139 .748 0205 .51 0414
49 0 .46 .22 0947 0708 .0747 .143 596 .404
50 0 0191 268 124 163 .167 341 236 .202
51 0 099 0036 .0316 .377 .313 .181 314 .0873
52 0 .0038 .0048 .0192 .12 289 .0783 .872 12
53 0 .242 2906 0385 .437 234 0017 .132 .03
54 0 .0063 .0832 .0727 .0561 .58 .266 .0024 .615
55 1 .0364 811 663 .118 988 279 .97 .252
56 1 .0069 .0681 .161 2856 .723 279 121 .0119
57 1 .0061 .0114 833 126 .0333 897 .279 .626
58 1 .0046 098 853 726 131 1 435 373
59 1 173 864 355 594 501 806 7 176
60 1 .282 .0041 .143 0807 .751 .33 0113 .792
61 1 .0163 614 689 506 .994 231 924 285
62 1 134 172 247 116 1 .96 207 .18
63 1 613 011 0441 866 361 .81 496 0191
64 1 549 244 0602 .867 1 977 .581  .0351
65 1 144 0172 0977 171 483 661 108 .377
66 1 .0852 0122 983 .183 219 .0675 .0845 .452
67 1 392 0245 073 929 536 991 .0539 .321
68 1 .0957 813 631 961 994 648 501 .285
69 1 .0007 244 0169 .588 .0307 .022 309 .0615
70 1 .0244 52 .0066 .901 .0891 .924 0479 .72
71 1 136 789 411 744 216 .0752 .345 442
72 1 .0022 269 .635 .57 .0331 .751 .0338 .853
73 1 087 845 519 335 244 958 456 .0284
74 1 .0208 .089 .384 503 249 652 394 .0362
75 1 .267 0635 .286 .97 429 1 737 993
76 1 0476 .0612 953 397 .169 .0585 .282 .25
77 1 344 0069 .12 367 .13 221 925 962
78 1 .0264 .0145 .0615 .13 216 152 .13 .0889
79 1 528 241 751 .82 199 0044 115 643
80 1 253 998 493 0107 .286 .934 014 .64
81 1 0125 875 .0233 .171 .178 243 0219 .18
82 1 0313 .025 516 .58 427 792 .269 .16
83 1 696 .0284 0080 .991 .315 .0871 .62 371
84 1 933 .24 434 0938 .0152 439 489 394
85 1 915 784 973 312 796 .0013 .142 .0463
86 1 517 .0008 .199 .0978 .082 873 .341 .662
87 1 0082 915 .182 .538 .0189 .0363 .323 .237
88 1 0815 .499 318 738 215 .75 271 .788
89 1 358 0284 506 .349 326 491 0324 .283
90 1 .0018 .0054 .48 226 .0423 996 424 6

91 1 537 047 667 579 117 108 446 116
92 1 098 485 372 594 .12 926 356 .156
93 1 268 .0026 .36 422 362 0539 .172 .0836
94 1 .0002 .018 .0009 .02 173 011 101 .27
95 1 0001 .0517 .0113 .487 .0769 .0296 .0141 .0912
96 1 208 489 778 459 183 176 .0917 .293
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Table 13.2 T-test Results for Network Scores

The values of t are computed for the two groups of scores, corresponding to the control an
picture conditions, for time-windows 1 to 4 of the before-blink epoch, and 5 to 8 of the after
blink epoch. The control group contains 54 scores, and the picture condition contains 4
scores, for a df of 94. In the before-blink epoch, t vaiues increase from time-windows 1 to 4
A significant value of t in time-window 4 indicates that the network was able to significanti
well distinguish between the exemplars of the picture and control conditions, on the basis o
EEG recorded during the final 0.25 seconds preceding the blink. In the after-blink epoch,

values are not significant for windows 5, 7 and 8, indicating that the network could not fin
differences between the picture and control conditions in these time-windows. Only window

shows a significant value of t, indicating that in time-window 6 the network was able t
significantly well classify exemplars as to category.

Window Student'st p (1-tailed) Mn (control) Var (control) Mn (picture) Var (picture)

1 .548 .293 .204 .063 .234 .079
2 474 .318 .264 .091 .295 115
3 1.04 .151 317 .091 .381 .088
4 2517 .0067 325 .06 .465 .089
5 371 .356 323 .053 .343 .096
6 2.021 .023 .346 107 .493 .147
7 -.317 .376 .335 .063 .318 .07

8 .538 .296 .319 .066 .348 .077
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Figure 13.1 Generalized Regression Neural Network classification results

The figure shows the values of t resulting from t-tests conducted on the GRNN scores for the two
sets of exemplars, representing the picture and control groups. Separate t-tests were conducted
for scores for each of the time windows of the before-blink epoch (windows 1 to 4) and the after-
blink epoch (windows 5 to 8). The highly significant value of t in window 4 indicates that the
GRNN was able to accurately classify exemplars representing the picture and control groups into
their respective categories. In tum, this result indicates that data in time-window 4 provided a
clear basis upon which the two groups could be distinguished.

13.5 Discussion

Over the time-windows of the before-blink epoch, classification accuracy of the network
increased almost monotonically, reaching a highly significant level in time window 4, and a
significant level in window 6. These results indicate that the GRNN was able to accurately
classify exemplars representing the picture and control groups into their respective categories
using data from time-windows 4 and 6. In tum, these results indicates that data in time-window
4, and to a lesser extent time-window 6, provided an effective basis upon which the picture and
control groups could be distinguished.

These results, within the before-blink epoch, imply that data from the two conditions
contain features that are increasingly dissimilar as the moment of visual discrimination, signaled
by the blink, approaches. Applying the results of the previous correlation analyses, it is
suggested that these distinguishing features are related to the increasing level of organization of

the signals over the time-windows of the before-blink epoch.
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These neural network classification results are thus consistent with the results of the
cross-correlation, coherence and mutual information analyses, all of which indicated that
interregional synchronization increased during the before-blink epoch. In the after-blink epoch,
only time-window 6 showed a significant value of t, which however was smaller than the value of
t found for time-window 4. The network was thus able to discriminate between picture and
control conditions on the basis of the EEG recorded during time-window 6. This discrimination
was however less effective than that which the network was able to accomplish using time
window 4. A possible explanation for the finding of a significant classification in time window 6 is
that during this interval subjects were re-focusing their attention the target images in the picture
conditions, an event that would therefore be associated with an EEG that was different from that
associated with the corresponding time window in the control condition. In the control condition
there was no such image on which subjects could re-focus. Thus, during time-window 6 the re-
focusing on the target image would have created a short-lived state of increased cortical
organization.

As an extension of the present work, it is proposed that an experiment could be designed
in which subjects would not blink to indicate discrimination. Instead, subjects would be asked
after every tnal whether they had been able to recognize the camouflaged target object. Trials
would then be separated into two groups, those in which a discrimination event occurred, and
those in which discrimination did not take place. A shorter presentation interval for each image
would be used. Based on the results of the present study, it is expected that presentation
interval could be shortened to about 2 seconds. As in the present study, individual images would
be presented more than once. Those images that are not discriminated on a first presentation
might be decoded on a subsequent presentation. Network exemplars would be constructed from
EEG recordings made during each of these 2 second presentation intervals. Again, as in the
present study, the GRNN would be asked to leam to discriminate between exemplars
representing intervals during which discrimination occurred from those representing intervals for
which discrimination did not occur. If this proposed experiment shows that the network can
discriminate between these two cases, a further experiment would be carried out. This further
experiment would be similar in intent to the first proposed extension, with the difference that the
neural network classification would be performed on-line. That is, the network would be asked to
indicate the presence of a recognition event with a short time delay after the event actually
occurs. It is estimated, based on the experience of the present study, that a generalized
regression network running on a 486DX or better processor should be capable of classifying one
or two seconds worth of data within a few milliseconds. This experiment would also be used to
determine the minimum number of data points that are required in a real-time situation, for the

network to accurately detect the target discrimination event. The present results suggest that the
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major features differentiating the picture and control conditions are found within the last 0.25
~ seconds prior to the eye-blink by which subjects signaled discrimination. |If such an experiment
has a successful outcome, it will have demonstrated that it would be practical to try to design
human-machine interfaces in which an observer would be able to signal detection of a
camouflaged target within the time required to collect the minimum required number of data
points. Significantly, such a signal wouid not involve a motor response from the observer,
opening the door to potential areas of application in which a motor response is not practical or

even available.
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14 Correlation Dimension Analysis

14.1 Introduction

The correlation dimension is an estimate of the complexity of a dynamical system. More
precisely, the correlation dimension represents a lower bound on the number of variables that
are required to adequately model a dynamical system (Farmer, Ott and Yorke, 1983). In relation
to the area of study addressed by the present work, it is suggested that a prototypical example of
such a system is the organization of intercortical signaling underlying perceptual and cognitive
processes. An analysis of the correlation dimension computed for EEG recorded during epochs
of dissimilar types and scales of perceptual and cognitive activity therefore is expected to show
an effect of these dissimilarities, reflected in differences in the computed estimates of comrelation
dimension.

In providing a context for this analysis, the following brief review includes studies that
represent several areas of application of measures of dynamical complexity (correlation
dimension, symbolized as d2) and sensitivity to initial conditions (Lyapunov exponents). These
areas include the relationship between these measures and the effects of task and of pathology.
Arising from such studies are a number of issues related to methodology, and to the general
applicability of these nonlinear analytical measures to analysis of neuroelectric signals. In
addressing these general issues of applicability, the following review includes studies involving a
variety of independent variables whose scope exceeds the area of visual perception that is the

particular focus of the present work.

14.1.1 The Effect of Task

Correlation dimension has been found to index task complexity, showing a larger value
for more complex cognitive tasks relative to less complex tasks. The comparative effect on
correlation dimension of mathematical tasks versus a rest condition was examined using five
subjects in 3 eyes-closed conditions, resting, serial addition by 2's, and serial subtraction by 7's
(Rapp, Bashore, Martinerie, Albano, Zimmerman and Mees, 1989). A resting condition preceded
and followed each arithmetic condition. The first finding was that the average value of
correlation dimension across all resting conditions was found to be 3.9, while for both of the
arithmetic tasks the value was 4.8. The second finding was that the increase in dimensionality
from a preceding rest period to an arithmetic task was greater for the subtraction task than for
the addition task. This finding suggests, according to the authors, that the subtraction condition

involves the relatively more compiex task.
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Similar resuits were found by Nan and Jinghua (1988) in a study of relative hemispheric
involvement in a mental arithmetic task. Correlation dimension was calculated for recordings
made of scalp potentials at several electrode sites before, during and after the arithmetic task.
Three subjects participated in this study, one left-handed and two right-handed. Scaip potentials
were measured at six electrode sites, FP1, FP2, T3, T4, O1 and 02. For all subjects correlation
dimension was significantly affected by task for temporal recordings only. For the left-handed
subject the right temporal area showed an increase in dimensionality during the arithmetic task,
while the left temporal area showed no change in dimensionality. For both of the right-handed
subjects the opposite pattem was observed: During the arithmetic task the left temporal area
showed an increase in dimensionality while the right temporal area showed no effect. Following
the arithmetic task, correlation dimension for the affected temporal areas retumed to pre-task
levels. In sum, both prior to and following the mental arithmetic task, dimensionality estimates of
the electrical activity at both temporal areas were approximately equal. During the arithmetic
task however, dimensionality increases were found in the recordings from temporal areas
contralateral to subjects’ handedness.

Estimates of correlation dimension for alpha frequency components of the EEG were
computed for 6 subjects in an eyes-closed condition (Basar, Basar-Eroglu, Roschke and Schult,
1990). Simultaneous recordings were made at 4 midline sites, vertex, parietal, occipital and
frontal. Signals were filtered at 5 to 15 Hz. Overall, cormrelation dimension at each of the 4 sites
varied between 5.5 and 7.5. It has been demonstrated however that frequency filtering can have
an effect on the value of correlation dimension. Badii, Broggi, Derighetti, Ravani, Ciliberto,
Politi, and Rubio (1988) for example found that correlation dimension increases with filtering.
Intuitively, averaging would have an effect on the geometric properties of the phase-space
attractor, thus affecting value of the corresponding dimensionality estimate. While the authors
concluded that the dimensionality estimates showed a convergence in value across the
measured sites, such convergence might reflect the effects of the common filtering process.
Basar et al. (1990) suggest nevertheless that for similar initial conditions EEG activity, as
reflected in the phase-space attractor and hence comelation dimension, is reproducible.

Using an analysis of the coherence of the EEG, Basar et al. (1890) found support for the
view that alpha EEG contains a deterministic, task-related component. While coherence is not
in the class of nonlinear techniques discussed in the present Unit, the following description
illustrates the value of applying both linear and nonlinear techniques to an analysis application.
Recordings were made from 5 subjects at electrode sites Cz, P3, P4, O1 and O2, against an
earlobe reference. Subjects were instructed to attend to an 800 ms light-intensity step stimulus
presented every 2 seconds, with missing stimuli. Subjects were asked to predict and count the

occurrences of the missing stimuli. In the easy condition, every fourth stimulus was missing. In

150



_ the difficult condition every 4 to 7 stimuli were missing. The paradigm also included an eyes
closed control condition. Recordings were made beginning 1 second before the missing
stimulus, and included the evoked response to the missing stimulus. In the easy condition alpha
EEG produced in the interval between 300 and 1000 ms prior to the missing stimulus was phase
coherent between separate missing stimulus events. These EEG segments were correlated to
the extent that the subjects were able to mentally track the missing stimulus. In both the difficult
and control conditions there was significantly less phase coherence between alpha responses to
the missing stimulus, a result consistent with the observation that in the difficult condition
subjects had relatively more difficulty in tracking the missing stimulus events. These findings,
the authors suggest, indicate the finding of a coherent brain state during which frequency
components in the alpha range were phase-locked to an extemal signal.

Basar et al. (1990) propose that these alpha coherences support the results of the
correlation dimension analysis, that the EEG reflects a deterministic cognitive process, and more
particularly in their study, an attentional process. Subjects who could attend to the missing
stimuli sufficiently well demonstrated their attentiveness in terms of alpha-range EEG signals
that were phase-locked to the stimuli being attended. The authors note as well that correlation
dimensions measured across the 4 sites showed very different pattems over the time-span of the
recording. They point out that different recording locations may show entirely different pattems
of activity, when examined using measures such as correlation dimension and spectral analysis.
For this reason, they suggest, such measures are usefully combined with other techniques, such
as inter-trial phase-coherence.

Correlation dimension has also found to increase relative to a resting condition during a
sequence-learning task (Gregson, Britton, Campbell and Gates, 1991]. Correlation dimension
was computed for EEG data recorded from 6 subjects in 4 conditions, an eyes-closed resting
condition, and three light-stimulus prediction conditions. Recordings were made from electrode
pairs O1 to 02, and F3 to F4. Subsequent inspection of the apparent amount of noise in the
records led the authors to use only the O1 and O2 recordings for analysis. The three prediction
conditions differed in terms of the relative probabilities of the light stimuli, with the third
prediction condition being the most difficult. Multiple estimates of the correlation dimension were
computed for the recorded EEG. Although there was considerable variability in the
dimensionailities both within and across subjects, there was an overall increase in dimensionality
from the resting condition (d2 = 8.0) to the prediction conditions (d2 = 9.3, 8.8 and 8.1), and with
no significant difference among the prediction conditions themseives.

Effects of task complexity were also found in a partial replication of Gregson et al.
(1991), but using different electrode positions, Fp1 to P1 and Fp2 to P2 (Gregson, Campbell and

Gates, 1992). Each dimensionality value was computed by averaging correlation dimensions for
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‘ 30 samples for each subject-channel combination. Again differences were found between the
eyes-closed condition (d2 = 7.75) and the light-prediction conditions (d2 = 8.3). An effect of task
difficulty was also found, with a higher correlation dimension for the most difficult prediction
condition (d2 = 8.37) than for the two less difficult prediction conditions (d2 = 8.3 and 8.27). The
authors note that although there appears to be support for the notion that correlation dimension
increases with task complexity, there is at the same time, and as in their previous experiment, a
great deal of variability in the dimensionality values both within and across subjects. In sum,
estimates of dimensionality using data from occipital recordings showed a difference between
task and rest conditions only, while estimates using fronto-parietal recordings showed an
additional effect of task complexity. The topography of the values of correlation dimension
would appear to contain useful information about the distributional characteristics of neuronal
system complexity within and between tasks.

Both Gregson et al. (1991) and Gregson et al. (1992) would appear to be relatively
methodologically sounder studies of the correlation dimension, in that multiple values of
correlation dimension were computed for a single subject-trial combination. This procedure
allows an estimate to be made of the stability across subjects and across trials of the correlation
dimension value. These studies found substantial variability in the value of dimensionality, a
finding that may help to explain the divergent estimates of dimensionality apparent when
comparing results across studies.

In a two-part study, dimensionality estimates were computed in relation to first, a variety
of different tasks, and second, degree of hypnotizability (Ray, Wells and Elbert, 1991). In the
first part of the study, 12 subjects were engaged in 6 tasks, consisting of visualization tasks,
tactile sensory tasks, an observation task, and a verbal alliteration task. Dimensionality was
found to be highest for the visualization tasks (d2 = 5.2 to 5.4), followed by the tactile and
observation tasks (d2 = 4.7 to 4.8) and lowest for the verbal task (d2 = 4.4). In the visualization
task dimensionality was approximately equal for frontal, parietal and temporal channels. All
other tasks showed a lower dimensionality for frontal than for frontal and temporal channels.
These spatial differences might be related, the authors suggest, to the dissimilar processes that
might occur in the one case during the visualization tasks which involve intemally directed
attention, and in the second case during the tasks which require some interaction with the
extemnal environment.

In the second part of the study, estimates of dimensionality were related to degree of
hypnotizability. A pool of 600 subjects was screened to select a group of 60 which was further
screened to form a high and a low-hypnotizability group. Subjects underwent a protocol
consisting of a baseline period followed by battery of tasks including imagery, spatial

manipulation, mental arithmetic, and a Stroop naming task, followed by hypnotic induction, then

152



a repeat of the tasks, then removal of the trance state, and ending with a second baseline period.
No difference in dimensionality was found between the high and low hypnotizables during the
baseline periods (d2 = 5.2). Following the induction procedure however there was a significant
difference between the two groups. High hypnotizables showed a higher dimensionality (d2 =
5.5) than low hypnotizables (d2 = 5.2). Fourier analysis of theta activity revealed an interaction
between state and hypnotizability. Prior to induction, high hypnotizables showed more theta
activity than low hypnotizables. This difference disappeared following induction. This double
dissociation would appear to indicate that different processes are tapped by the nonlinear
correlation dimensionality analysis, and the linear Fourier analysis. The nonlinearity of brain
dynamics thus may not be fully describable in terms of a linear model such as Fourier analysis,
but instead requires the contribution of nonlinear descriptors such as fractal dimensionality.

Corroborative findings of higher dimensionality estimates during visualization come from
2 studies of the effect of task on correlation dimension, and alpha and beta power (Lutzenberger,
Elbert, Birbaumer, Ray and Schupp, 1992). These studies were intended to extend the results
of previous studies (e.g., Ray et al. 1991) by involving several modalities, and by using Fourier
analysis.

The first study tested the effect of task on dimensionality and both alpha and beta power,
by engaging subjects in tasks involving tactile perception (determining the smoothest of a
selection of sandpapers), vision (observing a double pendulum swinging), and imagery
(imagining a past emotional experience). EEG recordings were made over 16 second intervals
producing 2048 data points. A significant effect of task was found on all measures. Correlation
dimension and both alpha and beta power increased monotonically from the visual perception
task, to the tactile perception task, to the mental visualization task. The alpha power results,
higher alpha power in the visualization than in the perception tasks, are consistent with previous
findings that alpha power is higher during tasks involving inwardly-directed attention than during
tasks in which attention is directed outwardly (Ray and Cole, 1985). The higher dimensionality
for the visualization task suggests that this task is associated with a relatively more compiex
neural dynamical state than the two perception tasks.

in the second study the finding from the first study of dissimilar effects of visual
perception and mental visualization was reexamined, but using the same object as the referent
for both conditions. In the frontal areas only, a higher dimensionality was found for the visual
imagery condition than for the perception condition. Both alpha and beta power showed
increases in the visualization condition, mainly in parietal, but also in frontal areas. The finding
of a difference in dimensionality between object perception and visualization in frontal areas is
consistent with the results of metabolic examinations showing increased frontal metabolism

during thinking as compared with perceiving (Roland, 1982). Lutzenberger et al. (1992) suggest
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that dimensionality analysis complements traditional techniques of EEG analysis, which in their
 view are atheoretical and descriptive.

A study of correlation dimension and its relationship to intelligence (Lutzenberger,
Birbaumer, Flow, Rockstroh and Elbert, 1992) found evidence of such a relationship, but only
during rest and not during task performance. Subjects were tested for intelligence using the
Catell culture fair intelligence test. Subjects were divided on the basis of the test results into a
low 1Q group (a mean {Q of 84.4), and a high I1Q group (a mean IQ of 118.2). Subjects were then
engaged in 2 task conditions. In the first condition, EEG's were recorded from subjects during a
no-instruction rest period. In the second condition, which followed the rest period, EEGs were
recorded while subjects engaged in a mental imagery task. Data samples of 2048 points were
recorded, over an interval of 20.48 seconds. Estimates of d2 were computed for each sample.

Dimensionality, which the authors viewed as indicative of relative complexity of neuronal
activity, was found to be higher for the high 1Q group than for the low IQ group. This difference
was significant during the resting condition in the parietal region, but was not significant during
the imaging condition. A significant correlation between 1Q and dimensionality was found at
electrode Pz, with dimensionality accounting for about a quarter of the variance in Q.
Interestingly, measures of power in the delta, theta, alpha and beta ranges showed no difference
between the 1Q groups. As an explanation for these findings the authors propose that in the
resting condition, higher IQ subjects manifest a greater number of simultaneously active
neuronal assemblies, and thus a higher dimensionality, than low |Q subjects. In the imaging
condition, task requirements impose equal restrictions on the 2 groups in terms of the number of
activated cell assemblies, leading to a smaller difference in dimensionality between the groups.

The effect of processing load was investigated by computing estimates of d2 and
measuring alpha power for EEG's recorded from 12 subjects during no-task eyes open and eyes
closed conditions (Pritchard and Duke, 1992). Blocks of eyes open and closed conditions were
repeated 4 times. The authors prefer the term dimensional complexity for their measure, in view
of what they see as the limitations in the available EEG data with respect to the correlation
dimension algorithm. These limitations include first, violations of requirements for an unlimited
amount of noise-free data, and second, for a statistically stationary dynamical process.
Dimensional complexity was found to be lower in the eyes closed than in the eyes open
condition. The increased dimensional complexity in the eyes open condition was found to be
well accounted for by the data from the occipital channels. A similar and inverse pattem was
found for alpha power which decreased in the eyes open relative to the eyes closed condition.
Finally, across the 4 blocks of eyes open and eyes closed tasks, dimensional complexity
decreased, while alpha power increased. These results were interpreted as indicating that

dimensional estimates may be useful in a relative sense, as an indicator of processing load. The
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} authors point out however that dimensional estimates may not be valid in an absolute sense.
The EEG signal may not fulfill the requirement of representing a stationary process, although
there appears to be no generally accepted criterion for determining when a shift in stationarity of
the EEG occurs. The non-stationarity of the EEG would appear to be indicated by the finding
that dimensionality changed across the 4 identical condition blocks.

14.1.2 The Effect of Pathology

A number of studies have explored the relationship between nonlinear measures such as
correlation dimension and Lyapunov exponents and organic pathological conditions, principally
epilepsy and Creutzfeld-Jakob disease.

Comparing states of arousal with epileptic seizure activity, Babloyantz and Destexhe
(1986) found correlation dimension values to be lowest for epileptic activity and REM sleep,
higher for stage 2 and 4 sleep, and highest for wakefulness. Estimates of the comrelation
dimension were computed for wakefulness, REM, stage 2 and stage 4 sleep in a normal subject,
and an epileptic seizure event in an epileptic subject. For the wakefulness condition, the
computation was not able to produce a bound on the cormrelation dimension, suggesting a high
value of dimensionality. A similar result was encountered for the REM sleep condition. For both
stage 2 and stage 4 sleep, comrelation dimension was computed to have a value of between 4
and 5. For the epileptic seizure events, recordings were made of the differential signal between
frontal and parietal regions, and between the vertex and temporal regions. The same resuits
were found for all channels: correlation dimension for epileptic seizure activity was found to be
approximately 2. A similar pattem of results was found for the correlation dimension computed
using data recorded from the limbic cortex of a rat, during rest, locomotion and an epileptic
seizure induced by kindling (Pijn, Van Neerven, Noest and Lopes da Silva, 1991). For the rest
and locomotion conditions dimensionality was found to be unbounded and high. For the seizure
condition a dimensionality of between 2 and 4 were computed.

These distinctions between wakefulness, sieep and pathology have been explored using
a number of different nonlinear measures (Gallez and Babloyantz, 1991). Several nonlinear
analyses were applied to EEG recorded during wakefulness with eyes closed, stage 4 sleep, and
Creutzfeld-Jakob coma. The first measure involved calculation of Lyapunov exponents,
indicators of sensitivity to initial conditions and hence the presence of deterministic chaos. The
second method involved computation of Kolmogorov entropy, a measure of the rate at which
new information is produced, or the mean time for which a signal can be predicted. The third
method used calculation of attractor dimensionality, an estimate of generating system

complexity. Attractor dimensionality was estimated using the correlation dimension and two
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other related measures of dimensionality based on Lyapunov exponents, the Kaplan-Yorke and
~ the Mori conjectures.

There were three main findings. First, the number of positive Lyapunov exponents was
highest for the wakefulness condition, and lowest for the coma and sleep conditions. The greater
the number of positive exponents, the greater is the sensitivity of the system to perturbations,
and therefore the more chaotic the underlying generating system. The authors interpreted their
findings to mean that the higher chactic level in the wakefulness condition make possible a
greater variety of behaviours. Second, metric entropy was found to be higher during
wakefulness than during deep sleep. The greater the metric entropy, the greater the rate at
which the system is producing information, or in altemate terms, the less predictable it is. The
authors relate this finding to the greater rate of information processing during wakefulness
relative to deep sleep. The third finding was that bounded, and similar, values of dimensionality
were computed by the correlation dimension, and by two estimates of dimensionality based on
Lyapunov exponents. The bounded dimensionality values indicate, the authors proposed, the
presence of strange attractors during the phases of brain activity which were studied. The
convergence in dimensionality values produced by the three methods that were used would
indicate that estimates of dimensionality are at least to some extent robust in the face of
altemative computational approaches.

The authors note however that typically there is a great deal of variance in the
dimensionality values even using the same estimator with different data samples, and suggest
that experimental situations should be arranged to provide a clear distinction between the types
of tasks that are used, and thus between the associated neural activities. They emphasize that
dimensionality estimates are most effective when used to distinguish between the effects of
different types of task requirements, rather than when used as indicators of absolute complexity
of neural dynamics.

Correlation dimension, Lyapunov exponent, and autocorrelation estimates were
computed for EEG recorded during an epileptic seizure in a single subject study (Frank,
Lookman, Nerenberg, Essex, Lemieux and Blume, 1990). In contrast with Babloyantz and
Destexhe (1986), Frank et ai. (1990) were able to obtain a longer-term recording of a seizure,
lasting approximately 75 seconds, and including both absence and grand-mal events. The
authors estimated the stationarity of the record by looking at the variance of different portions of
the entire recording, along principal component axes. They suggest that what they refer to as
dynamical nonstationarity - changes in the dynamical properties of the record - would be
indicated by different variances along the different dimensions, and between the different
portions of the record. No evidence of this was found and the authors conciude that their signal

record was statistically stationary. Correlation dimension was found to have a bounded value of
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5.6, consistent with the presence of a strange attractor in the dynamics underlying the epileptic
' activity. The first Lyapunov exponent was 1, consistent with the computed decay rate of the

autocorrelation function, and suggesting a chaotic component to the underlying dynamics.

Essentially the same results were obtained with the same subject after a 3 month interval.

These findings support the position, the authors conclude, that the neural dynamics
during an epileptic seizure are deterministicaly chaotic, a determination that could not be made
without the calculation of Lyapunov exponents. The authors point out that the ubiquitous
myoelectric noise contamination of EEG records would have an effect on both the computation
both of dimensionality and Lyapunov exponents. They can see no solution to this problem other
than intracranial recording.

In an investigation of the association between nonlinear measures and alcohol
consumption, Palus, Dvorak and David (1992) found an inverse relationship between biood
alcohol level and dimensionality. The authors studied the effect of alcohol intoxication on two
measures, the correlation dimension, and a measure which they term linear complexity. Linear
complexity they defined as the negative inverse of the sum of the logarithms of the eigenvalues.
The authors found that both of these measures were well correlated with level of blood alcohol.
Both measures decreased in magnitude with increasing blood alcohol. Intuitively, since linear
complexity is a function of the number of significant eigenvalues, it would seem reasonable that

this measure show index system complexity in a similar manner to the correlation dimension.

14.1.3 Methodological Issues

In a study which focused on methodology, Destexhe, Sepulchre and Babloyantz (1988)
compared several techniques for computing the cormrelation dimension of an EEG recording, the
standard Grassberger - Procaccia algorithm, a hybrid of this algorithm with singular value
decomposition aimed at reducing the noise components in the data, and a muiti-channel version
of Grassberger - Procaccia method in which data from multiple channels, rather than from only
one channel, is analyzed. The authors computed correlation dimension during a number of
conditions including Creutzfeld-Jakob seizure (d2 = 3.7 to 5.4), alpha (d2 = 6.1 to 7.4), deep-
sleep (d2 = 4.4 to 4.5), and epileptic seizure (d2 = 2.03 to 2.05). They concluded that the results
of these three methods agree only if the value of correlation dimension is less than 4. It may be
observed that in some of the reviewed studies this requirement is not met. Destexhe et al.'s
(1988) results suggest that comelation dimension may not be a robust estimator, unless the
conditions under which it is calculated are carefully and completely specified.

The study by Dvorak and Siska (1986) work points up some of the difficulties involved in

estimating the comrelation dimension. Correlation dimension estimates were computed for EEG
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recordings were made at sites O1, O2 and C4 using adult male subjects in 3 conditions: vigilant
" eyes closed, relaxed eyes open, and mental arithmetic (subtracting by 13's down from 1000).
The pattem of dimensionality changes was found to be different at the occipital and central sites.
At 02, dimensionality was low (d2 = 5.7) for the eyes closed, and equally high (d2 = 6.5) for both
relaxed eyes open and arithmetic task conditions. At C4, dimensionality was highest in the eyes
closed (d2 = 5.5), medium in the eyes open relaxed (d2 = 5.3), and lowest in the arithmetic task
condition (d2 = 4.7). The authors studied the effect of signal stationarity, and of filtering. Using
a sample of 1,000 points from a record of 15,000 points, they found that correlation dimension
varied with the ordinal position of the sample in the entire record (d2 = 3.8 to 5.5). Filtering the
entire record with a 30 Hz low-pass filter reduced both the absolute values of dimensionality, and
the variability with respect to sample ordinal position (d2 = 3.8 to 4).

These results may be summarized in terms of four conclusions. First, the results
support, generally, other findings (e.g., Nan and Jinghua, 1988, Rapp et al., 1989) of
dimensionality changes with cognitive task. Second, the findings support the observation in
other studies that scalp location interacts with the relationship between dimensionality and task
condition. Third, they point up the sensitivity of the comrelation dimension estimate to signal pre-
processing. Fourth, the variability of the dimensionality estimates using the unfiltered data would
appear to support the contention that the EEG is a statistically nonstationary signal, reflecting a
nonstationarity in the underlying dynamics.

Rapp et al. (1989) also surveyed the use of the correlation dimension in the analysis of
EEG recordings by different groups, and present a rationale for using the correlation dimension.
The authors suggest that, in comparison with other statistics, the correlation dimension uses
more of the information present in a time-series such as the EEG. The correlation dimension,
they suggest, is therefore a more robust characterization of the behaviour of such a system.
Rapp et al. (1989) also compared the standard computational procedure for the correlation
dimension with a hybrid method combining the Grassberger - Procaccia algorithm with singular
value decomposition, an idea which was presented by Broomhead and King (1886). The matrix
of vectors formed by embedding the time-series in a phase-space is filtered by means of the
singular value decomposition. Only the most significant components are then used to generate
an estimate of the original matrix, which is then used in the conventional Grassberger -
Procaccia computation. The result is a uniform redistribution of noise among the retained
components, which form the basis of an embedding phase-space of reduced dimensionality.
The latter feature enhances the robustness of the Grassberger - Procaccia computation, while,
since only a reduced matrix is analyzed, reducing the computational overhead.

The authors note however the variability in published dimensionality estimates for a

variety of experimental conditions. They describe some of the difficulties associated with the
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dimensionality computation which may be the cause of the variance in published dimensionality
~ estimates. Besides issues such as selection of algorithm parameter values (e.g., lag, maximum
embedding dimension), data collection variables (e.g., sampling rate), they suggest that the EEG
is generally not a statistically stationary signal. In other words, statistical properties of the EEG
may change significantly over the course of a recording session. The effect of such
nonstationary behaviour on the correlation dimension is, they state, not completely understood.

Nonstationarity of the EEG is also addressed by Jansen (1991). He suggests that, while
there is evidence for the chaotic nature of the EEG, that, in other words, the EEG is a reflection
of an underlying nonlinear dynamical system, the EEG does not meet the requirements that
would allow measures such as dimensionality or Lyapunov exponents to be calculated. In
particular, he notes, these measures make the assumption that the signal being analyzed is a
reflection of a system which has evolved through its asymptotic region and has converged to a
pattem of behaviour which is statistically stationary. The question of whether this is the case for
the EEG, he suggests, appears to be unanswerable.

it should be noted however that some authors, for example, Rapp et al. (1989) refer to
the dimensionality estimate as the comrelation index, rather than comrelation dimension, in
recognition of the EEG's nonstationarity. They suggest, with Gallez and Babloyantz (1991), that
the dimensionality estimate is therefore best used in a comparative sense, as an index of the
difference in brain dynamical complexity across tasks, rather than as an absolute measure of
brain dynamics.

Mayer-Kress and Layne (1987) computed cormrelation dimension for existing data
obtained from a number of sources, and compared their results with those of other studies. The
data represented the conditions of resting eyes open and closed, sleep stages Il and IV, REM
sleep, petit-mal seizures, anesthesia, and verbal memory, visual memory, abstraction and word
association tasks. In most cases, the values of comrelation dimension were associated with
uncertainties in the values that were on the same order of size as the dimensionality estimates
themselves. The exception was the awake, eyes-closed, resting condition. The authors
concluded that in general comrelation dimension cannot be effectively computed due, they
suggest, to the nonstationary nature of the EEG, and due to the formal data requirements of the
comelation dimension computation procedure. They propose that comelation dimension should
be used only in a comparative sense, with subjects acting as their own controls.

A critical analysis of the use of the Lyapunov exponent with EEG data is presented by
Principe and Lo (1991). The authors computed Lyapunov exponent for EEG recorded during
stage |l sleep. They concluded that the range of values which they calculated (2 to 4) represents
only an order of magnitude estimate for the following reasons. First, the EEG is statistically

nonstationary. Second, the Lyapunov exponent algorithm which they used and which is the only
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one so far available (due to Wolif, Swift, Swinney and Vastano 1985) requires knowiedge of the
- generating dynamical system that is unavailable in the case of the EEG. The authors do point
out however that the positive sign of their computed values is consistent with the view that the
EEG reflects a deterministically chaotic rather than a stochastic dynamical process.

In summary, both correlation dimension and Lyapunov exponents have been used to
analyze EEG recordings made in a number of different sets of conditions, involving both clinical
and non-clinical subject groups, and a number of different task conditions. The consensus would
appear to be that, because of data limitations such as the statistically non-stationary nature of
the EEG, correlation dimension can best be viewed as an index of relative, rather than absolute,
system complexity. Correlation dimension appears to increase with task complexity, and in tasks
such as mental visualization relative to resting conditions. The positive values calculated for
Lyapunov exponents suggest that the EEG reflects a chaotic generating system. Again
however, EEG nonstationarity on the one hand and unavailability of easily-applied algorithms on
the other hand, suggest that caution should be applied in interpreting the findings as indicating
the presence of chaos in the EEG.

14.2 The Hypothesis

The present experiment is aimed at finding out whether changes in cognitive and
perceptual processes can be found to be reflected in corresponding changes in the correlation
dimension computed for time series recordings of EEG. Estimates of the correlation dimension
will be computed for EEGs recorded during two condition. In the first (picture) condition, subjects
inspecting an image containing a camouflaged target object are able to discriminate the target
from the background, signaling the discrimination event with an eye-blink. In the second
(control) condition subjects blink at will while fixating on a neutral screen. It is expected that the
neuronal events over a short interval preceding discrimination will be reflected in a higher value
of comrelation dimension than the neuronal events that are associated with spontaneous eye-
blinks while fixating on the neutral screen. This hypothesis is made on the basis of the results of
the cross-correlation analysis, which demonstrated that over a 1 second epoch preceding
discrimination there was evidence of significant changes in the configuration of interregional
association. It is this change in the pattem of interregional communication that is proposed to
responsible for a higher value of correlation dimension, relative to the control condition. The
resuits of the cross-correlation analysis showed that over the 1 second epoch preceding the blink
in the control condition there was a relatively less change in the pattem of interregional

association.

160



14.3 Method

14.3.1 Preprocessing

The following operations were carried out on the recordings from every subject and
every trial, and for both control and picture conditions. First, the 1 second (128 points) intervals
representing the before-blink epoch and the after-blink epoch were isolated from the matrix of
data for each trial. The result was, for each trial, a pair of matrices, each 128 time-points by 16
channels. No other transformations were performed on the data. Next, each of these matrices
was used to construct a phase-space attractor in a 16-dimensional space. The dimensionality of
each of these attractors was then computed, as the estimates of cormrelation dimension. The
construction of the phase-space attractor and the correlation dimension computation are

described in the following section.

14.3.2 Correlation Dimension

Correlation dimension represents an estimate of the lower bound on the number of
variables that are involved in the dynamical behaviour, or evolution over time, of a multivariate
system. The computation of correlation dimension involves first the construction of a phase
space attractor. This attractor is essentially a graph plotted on a multi-dimensional set of axes.
The axes represent the various dimensions of the multivariate system. Each point on the
attractor represents the value, at a particular time, of each of these dimensions, and thus
represents the state of the multivariate system at that time. Once the attractor has been
constructed, its dimensionality can be computed. This dimension will in general have a non-
integer value. Attractors with such non-integral values of dimensionality are referred to as
strange attractors. Algorithms have been developed that allow attractor dimensionality to be
computed. One of the easiest to apply is the Grassberger-Procaccia algorithm (Grassberger and
Procaccia, 1983).

The present analysis makes use of a multiple time-series version (e.g., Destexhe et al.,
1988) of the Grassberger-Procaccia algorithm. The original single time-series version of this
algorithm was intended to provide a means by which a dimensionality estimate could be
computed when data from only a single variable of the multivariate system under study was
available. This algorithm was based on a result demonstrated by Takens (1980) showing that a
number of dynamical properties of the underlying system are preserved when the time series is
used to reconstruct a multi-dimensional phase-space attractor. In particular the dimensionality of
the multivariate process is represented as the dimensionality of the attractor, when a number of

conditions are met. These conditions raise a number of problematical issues when the method is
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applied to real data. In the standard algorithm a single time series is used to generate a phase
space attractor for which dimensionality can then be computed. This process involves
embedding the time series in a phase space of suitable dimensionality. Two key parameters are
involved in this embedding. The first is the choice of embedding dimension. Schaffer, Truty and
Fulmer (1988) suggest a value of at least 2m + 1, where m is the hypothesized value of
dimensionality of the attractor. Since m is not known beforehand, prudence dictates a large
value of embedding dimension. The larger this value however the more demanding are the data
requirements. As embedding dimension increases, the number of data points that are required
to construct the attractor correspondingly increase. The second key parameter involved in
embedding the phase space attractor is lag. The lag parameter is used in the selection of sets of
points from the time series to serve as the coordinates of individual points on the attractor.
While with an unlimited quantity of noise-free data the choice of lag is not critical, with a limited
number of noisy data points the value of lag can be critical. In particular dimensionality in such a
real case will vary with the value of lag.

These limitations of the Grassberger-Procaccia algorithm are circumvented in the
present approach of using the records of muitiple variables, that is EEG channels, from the
neuronal generating system. This approach is of course only possible when multiple time series
are availabie. Using this method, the embedding process is eliminated. The starting point for
this approach is the matrix of data points, organized as m data points by p channels. The phase
space attractor is created by simply taking the p data points corresponding to a single time point,
and then using these data points as the coordinates of a single point on the attractor in a p-
dimensional phase space. The process is repeated for all m time-points in the original data
matrix. Once the attractor has been created, the comrelation integral C(r) is computed. For each
of a series of values of a parameter r, the correlation integral is the probability of finding an
attractor point within a distance r of a given reference point also on the attractor. This probability
is averaged over a number of points on the attractor, n. In the present case, n is equal to the

total number of points on the attractor, m. Thus,

n
C( = lim 1n2 X H{r- |xi- x|} ...eqn 14.1
n—o i =1
where x; is a vector representing a reference point and x; is a vector representing any other point
on the attractor, n is the number of points on the attractor that are averaged over, r is the
distance from a reference point, |.| denotes the modulus, and H is the Heaviside function defined

as

H(x) =0, x<0 ...eqn 14.2
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H(x) = 1; x>0

The Heaviside function thus simply counts the number of pairs of points that are separated by a
distance less than r. Once the correlation integral has been evaluated for a range of values of r,
the correlation dimension, d2, is computed as

d2=InC({r)/Inr ...eqn 14.3

The correlation dimension computation was carried out using the data analysis program
Simulnet™ version 2.3.

14.4 Results

The estimates of correlation dimension were found to be significantly larger for the 54
trials from the picture condition than for the 42 trials from the control condition, but only for the
before-blink epoch and not for the after-blink epoch. Correlation dimension estimates are shown
for all trials in Table 14.1, and in Figure 14.1 for the before-blink epoch, and Figure 14.2 for the
after-blink epoch.

For the before-blink epoch, the mean values of d2 were highly significantly different
between the picture and control conditions. The mean correlation dimensions were 5.44 for the
control condition and 5.96 for the picture condition. The resulting value of t was 2.24 (p = 0.014).
For the after-blink epoch, the mean values of d2 were only marginally significantly different
between the control and picture conditions. The mean correlation dimensions were 5.86 for the
control condition and 6.32 for the picture condition. The resulting value of t was 1.55 (p = 0.063).

The means are shown in Figure 14.3, and the results of the t-tests are shown in Table 14.2.
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Table 14.1 Correlation Dimension Estimates

Each correlation dimension value represents an estimate of the relative complexity o
the dynamical system underlying the EEG measurements during that trial. The Grou
label is coded as O for the control condition, 1 for the picture condition. BBE indicate
the before-blink epoch. ABE indicates the after-blink epoch.

Trial Group BBE ABE

1 0 6.03 5.5

2 0 4.64 4.32
3 0 4.38 4.82
4 0 4.55 5.62
5 0 4.69 4.98
6 0 4.24 5.91
7 0 4.93 4.29
8 0 52 5.41
9 0 5.83 5.7

10 0 5.08 571
11 0 4.69 6.26
12 0 463 © 729
13 0 4.41 422
14 0 4.44 4.13
15 0 5.04 4.86
16 0 5.49 4.68
17 0 4.43 4.29
18 0 4.75 4.07
19 0 582 4.75
20 0 4.36 4.4

21 0 488 5.69
22 0 6.07 7.99
23 0 6.15 4.45
24 0 54 5.19
25 0 4.97 6.52
26 0 5.62 437
27 0 4.15 5.73
28 0 6.44 4.48
29 0 6.13 55

30 0 5.01 6.87
31 0 7.09 4.91
32 0 5.27 4.92
33 0 4.62 7.83
34 0 4.45 5.17
35 0 4.62 8.02
36 0 5.01 4.91
37 0 7.39 7.47
38 0 4.58 8.24
39 0 4.96 7.84
40 0 4.77 5.17
41 0 4.91 5.14
42 0 5.92 7.18
43 0 7.92 7.7
44 0 5.93 8.61
45 0 7.87 5.55
46 0 7.66 6.32
47 0 6.23 6.84
48 0 5.1 6.7
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~ Table 14.1 Correlation Dimension Estimates
(continued)

Trial Group BBE ABE

49 0 6.86 8.12
50 0 4.75 8.08
51 0 6.93 7.47
12 0 7.47 6.27
53 0 4.34 5.46
54 0 6.58 465
55 1 5.02 5.12
56 1 4.24 4.34
57 1 6.67 8.1

58 1 6.98 4.14
59 1 5.58 4.24
60 1 4.84 4.23
61 1 4.73 4.4

62 1 7.36 4.12
63 1 484 6.42
64 1 47 4.44
65 1 6.61 7.68
66 1 5.1 4.69
67 1 5.28 6.07
68 1 4.46 6.58
69 1 5.89 5.09
70 1 4.51 4.18
71 1 4.69 4.56
72 1 5.31 73

73 1 4.72 5.54
74 1 6.23 485
75 1 6.67 6.63
76 1 4.46 6.42
77 1 5.9 7.42
78 1 5.17 7.92
79 1 6.7 5.72
80 1 52 6.56
81 1 5.65 4.78
82 1 474 5.08
83 1 7.34 6.88
84 1 6.76 8.36
85 1 7.37 8.29
86 1 593 6.29
87 1 5.21 9.17
88 1 5.8 6.6

89 1 8.63 8.49
90 1 494 6.66
91 1 8.06 7.19
92 1 6.23 8.78
93 1 7.91 8.32
94 1 8 8.14
95 1 7.31 9.03
96 1 8.44 6.68




- Table 14.2 T-test Results for Correlation Dimensions

The values of t are computed for the two groups of scores, corresponding to the control an
picture conditions, for the before-blink epoch and the after-blink epoch. The control grou
contains 54 scores, and the picture condition contains 42 scores, for a df of 94. In the before
blink epoch, mean correlation dimension for the picture condition was highly significantl
larger than for the control condition. In the after-blink epoch, mean comrelation dimension fo
the picture condition was only marginally significantly larger than for the control condition.

Epoch Student'st probability Mn (control) Var (control) Mn (picture) Var (picture)
before blink 2.24 0.014 5.44 1.07 5.96 1.52
after blink 1.55 0.063 5.86 1.76 6.32 2.51
9~
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Figure 14.1 Correlation dimension estimates for the before-blink epoch

The figure shows the correlation dimension estimates for each of the 96 cases. Cases 1 to 54,
shown in white, represent the control condition. Cases 55 to 96, shown in biack, represent the
picture condition. The mean correlation dimension for the picture condition is significantly higher

than for the control condition.
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Figure 14.2 Correlation dimension estimates for the after-blink epoch

The figure shows the comrelation dimension estimates for each of the 96 cases. Cases 1 to 54,
shown in white, represent the control condition. Cases 55 to 96, shown in black, represent the
picture condition. The mean comrelation dimension for the picture condition is marginally
significantly higher than for the control condition.
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Figure 14.3 Mean correlation dimensions

The figure shows the mean of the cumrelation dimension estimates for the control and picture
conditions, for the 1 second epoch preceding the blink signaling discrimination (the before-blink
epoch, BBE), and for the 1 second epoch starting after the cessation of blink artifacts (the after-
blink epoch, ABE). There is a highly significant difference in d2 between the control and picture
conditions in the BBE, and a marginally significant difference in d2 between conditions in the
ABE.

14.5 Discussion

There was a significant difference in d2 between conditions in the 1 second interval
preceding the eye-blink by which subjects signaled discrimination, with a larger value of
dimensionality in the picture than in the control conditions. The larger value of d2 in the picture
condition, preceding discrimination, supports the hypothesis made at the outset, that the neural
processes occurring over a short interval preceding discrimination would be reflected in a higher
value of comrelation dimension than the comresponding processes associated with gaze-fixation
on a neutral screen. This proposal was made on the basis of the cross-correlation results which
showed that over the 1 second epoch preceding discrimination there were profound changes in
the configuration of interregional signaling, changes which it was proposed would result in a
higher relative value of d2 in the picture condition. In the 1 second interval following the eye-
blink, there was a corresponding marginally significant difference, with again a larger value of
dimensionality in the picture than in the control conditions. There were no predictions made at
the outset in regards to this difference. Such a finding might be explainable however as

indicating that following the eye-blink in the picture condition the re-fixation on the discovered

168



target image are associated with a relatively more complex dynamical behaviour in terms of the
configuration of interregional signaling. Thus, following the blink in the picture conditions,
subjects would re-fixate on the presented image and the discovered target object, and continue
with some degree of visual analysis of the image. In contrast, following the blink in the control
condition the re-fixation on the fixation point within a neutral screen would be associated with
relatively less complex dynamical behaviour.

Another finding, for which no hypothesis had been initially advanced, was the result that
values of d2 were higher, aithough not significantly, in the 1 second epoch following the blink
than in the 1 second epoch preceding the blink. It could be conjectured that this finding is a
reflection of a progression of more varied, less cognitively focused, visual analyses of the
presented image following the blink than before the blink. Thus, it is suggested that over the 1
second interval before the blink subjects were engaged in a relatively cognitively focused search
for the camouflaged target object. Over the course of the 1 second interval foliowing the blink
however, it is suggested that subjects would engage in a more varied sequence of cognitive
tasks, starting with, for example, visually refocussing on the discovered target image, and
proceeding to retrieving memory templates representing memory associations with the target
object. As an altemative explanation, it might be possible that the after-blink epoch included
neuronal processes associated with the termination of the eye-blink. These neural processes.
which would occur only at the start of the epoch, would be followed by processes associated with
more perceptually-oriented processing of the visual image, would then result in a relatively more
complex pattem of dynamical behaviour in the after-blink epoch.

The finding of a difference in the estimate of comelation dimension between conditions
and between epochs suggests that the estimate of comrelation dimension as computed in the
present analysis is a sensitive index of the quality of the neuronal activity underlying perceptual
and cognitive events. One issue that must be addressed is the implications of the finding of a
fractional value of dimension for the question of whether or not the neuronal system in question
is behaving chaotically.

There are two points to be raised. First of all, computation of correlation dimension by
itseif does not speak to this question. The determination of the presence of chaotic dynamics
would depend of the computation of a measure such as Lyapunov exponents, a measure that
indexes the degree of sensitivity displayed by the dynamical system to changes in initial
conditions, and to perturbations generally. In the present analysis no such index was computed,
and therefore no statement can be made regarding the possible presence of a chaotic dynamic
component to the behaviour of the relevant neuronal systems. The second point concems the
meaning of the computed values of what has been referred to as the correlation dimension.

Recalling the discussion presented earlier regarding the data requirements of a correlation
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dimension computation, it is probably more appropriate in the present case to refer to the
computed values as estimates of a comrelation index. Correlation index is, then, appropriately
treated as a measure of the relative complexity of the comresponding dynamical systems, rather
than as measures of absolute dimensionality (Rapp et al., 1989; Gallez and Babloyantz, 1991;
Mayer-Kress and Layne, 1987).

Thus, the present findings of estimates in the region of from 5.44 to 6.32 may only with
caution be interpreted as indicating that the corresponding neuronal dynamics can be adequately
described in terms of between § and 6 variables. A statement regarding the absolute level of
dimensional complexity would probably require a greater number of data points for the
computation than are available in the present analysis. Smith (1992) for example suggests that
for an estimated dimension of 5, an RMS error of 0.1 would require on the order of 5000 data
points. What would appear to be safely concluded from the present resuits is that the cortical
dynamics underlying a short interval preceding the moment of discrimination are, on average,
significantly more complex than the dynamics underlying the comresponding interval in the
control condition.
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15 Summary of Findings

The paradigm used in the present study has addressed the question of the neuronal
basis of visual discrimination, and through this the issue of the neural events associated with
visual feature binding. This paradigm has been designed to present subjects with images
constructed in such a way that, initially, the central representations of image features are visually
unorganized and an intended target object is unperceived. Preceding successful discrimination,
these representations, it is suggested, undergo a process of transformation that involves binding
or integration of the representations into feature ensembles, as a result of which a unified
percept is constructed through association of these feature ensembles with information contained
within existing memory templates. Discrimination and, it is suggested, this process of feature
binding and association, is observed to be associated with an increasing level of synchronization
between increasingly spatially-extended cortical regions. More particularly, the findings of the
present study, using three different measures of association, support the conclusion that, as the
moment of visual discrimination approaches, the process of discrimination involves the
coordinated activity of both more, and more widely separated cortical regions, involving the left
hemisphere preferentially, and including occipital, temporal, central and frontal cortical regions.

The findings of the cross-correlation analysis were that in the picture condition,
correlations increased over a short time interval preceding the moment of discrimination, while in
the control condition, comrelations remained relatively constant over a short interval preceding
the voluntary eye-blink. In both picture and control conditions, and in the time intervals both
before and after the blink, comrelations decreased with increasing distance between electrodes.
Finally, in the picture condition, correlations increased by a greater amount between a subset of
widely separated electrode positions than between more closely spaced positions. This subset of
electrode positions included scalp areas over occipital, temporal and frontal regions. Significant
effects on lag were found only as a function of distance, with an increase in lag with inter-
electrode distance prior to discrimination in both the control and picture conditions, and a
decrease in lag with increasing distance prior to the blink in the control condition.

Coherence analysis showed that for a subset of electrode pairs coherence was higher in
the picture condition than in the control condition. Consistent with the results of the cross-
correlation analysis, this subset of electrodes included areas over occipital, temporal and frontal
regions, with a greater involvement of the left hemisphere. In both conditions, the value of
coherence was an approximately inverse quadratic function of inter-electrode distance,
supporting the view (Thatcher et al., 1986) that EEG coherences are the result of axonal, rather

than volume conduction.
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The pattem of changes of mutual information was similar to that for cross-comelation.
Mutuai information decreased with increasing inter-electrode distance. Mutual information
increased with time up to the moment of discrimination, and increased by a greater amount for
more distantly spaced electrode pairs than for more closely spaced pairs. These findings
suggested that the rate of information exchange between cortical systems increased with time up
to the moment of discrimination. One conclusion that can be drawn from the similarity in the
resuits of the cross-comrelation and the mutual information analyses is that the relationship
between the activity at different cortical regions appears to be reasonably linear.

The findings of these linear analyses were supported by the results of the nonlinear
analyses. Correiation dimension was found to be higher for the picture condition than for the
control condition. This finding reflects, it is suggested, the relatively more complex time-
evolution of the interregional signaling configuration in the picture condition. That is, it was
observed that there was a greater change in the pattem of intemregional signaling, as indicated by
interregional associations, over the 1 second interval preceding the eye blink, in the picture than
in the control condition.

Based on these findings of a robust difference between picture and control conditions on
a variety of linear and nonlinear measures, it was expected that a neural network classifier would
be able to distinguish between the EEG recordings of the 1 second before-blink epoch for the
picture and control conditions. It was in fact found that a generalized regression neural network
couid significantly well perform this discrimination.

The predictions made at the outset on the basis of the cortical self-organization model of
visual discrimination were that (1) intemregional associations should increase, over a short
interval preceding discrimination, involving wide extents of cortex, rather than only particular
regions, (2) the strength of association should vary inversely with interregional distance, (3) the
strength of association should increase preferentially between widely separated cortical regions,
and (4) these associations should be based on oscillatory signal components. The present

findings would appear to be in general accord with these predictions.
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16 A Neural Basis for Object Discrimination

The correlational activity studied in the present work was analyzed using oscillatory
features within the recorded electrical activity. These features, which may include both periodic
and aperiodic components, reflect corresponding oscillatory characteristics in the activity of the
neural processes underlying visual discrimination. These oscillatory characteristics, it is
proposed, in tum, reflect reciprocal information transfer or signaling between muitiple cortical
regions. This proposal is made on the basis of the following argument. Two ways in which
oscillatory activity can arise is first, relaxation phenomena, and second, reciprocal signaling
between subsystems with a positive value of gain. An example of a relaxation phenomenon
leading to oscillatory activity is the sum-and-fire characteristic of a neuron. Reciprocal signaling
in the simplest case can consist of feedforward and feedback paths connecting multiple
subsystems. Such connections, together with the time delays inherent in any dynamical system,
and the forward gain in the connected subsystems form a network that has the potential for
exhibiting a rhythmic pattem of activity involving the connected systems. These three elements,
gain, reciprocal connections, and delay, are all represented in neuronal systems. Signaling
between cortical regions occurs along the profuse cortico-cortical and cortico-thalamic
connections that have been described. Such information interchange, for example along arcuate
fibers between cortical regions, along projection fibers between cortical regions and subcortical
centers such as the thalamus, and along commisures between the left and right hemispheres, is
the first requirement for the generation of rhythmic activity. The second requirement is similarly
met in that time-delays are inherent in neural function, and are the result of synaptic and axonal
transmission delays. Finally the gain function is likewise an inherent property of neurons. On
the level of individual neurons, gain or amplification is represented in terms of the signal
regeneration properties of axons, and the sum-and-fire behaviour typical of neurons.

A potential result of such reciprocal signaling, along association fibers with inherent
delays, between the neuronal groups comprising disparate areas of the brain, can thus
reasonably be expected to be an oscillatory pattem of activity. A direct reflection of this activity
is the observed oscillatory nature of EEG signals found over all cortical areas. This oscillatory
pattem may contain both periodic and aperiodic components. Stated more generally, the
frequency of this oscillatory activity may change over time in a complex way. A neuronal basis
for such a changing pattem of frequencies could be that the frequency that is observed at any
time over any cortical region is the result of signaling within a network comprised of some
particular number of components such as cortical microcolumns. As the size and configuration
of this network change over time, so would the associated timé-delays, and thus the frequency

associated with this dynamic configuration would also change from moment to moment.
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It might be suggested that the band-pass filtering used to preprocess the data prior to
analysis would inevitably emphasize such periodic activity. While band-pass filtering can make
such periodic activity more easily observabie, filtering alters the characteristics of the activity
relatively minimally when the passband of the filter is sufficiently wide, relative to the center
frequency of the passband. On the other hand, methods such as analysis of EEG components
that rely on averaging over many stimulus or response registered recordings, do impose a
transformation on the original signals. Notably, the results of the averaging process present a
distorted picture of both the magnitude and the temporal structure of the averaged signals. The
point here is that in the present study the oscillatory activity that forms the basis of the
subsequent correlational analysis was present in the original recorded EEG, and was not created
by the techniques used to preprocess the signals. In contrast with features such as EEG
components, the observed periodic activity should be a direct reflection of the behaviour of
underlying neuronal systems, and as such should be a reasonable basis upon which to construct
a description of the neurophysiological events associated with visual discrimination.

The discrimination of representations of complex real-world objects from a visually
complex background is seen in the present study to involve the comrelated activity between most,
rather than between only a few, cortical regions. This comrelated activity, it is suggested, is the
result of interegional signaling involving bilateral occipital, temporal, central, parietal and frontal
areas. The neuronal activity associated with object discrimination is found to be an oscillatory
pattem, with frequencies predominantly in the theta band, and with a correiation between the
different brain areas that changes in a distinct way over the 1 second interval preceding the
moment of discrimination. First, mean correlation, averaged over all electrode pairs, increases.
Second, spatial vanability in the correlation, computed over all electrode pairs, decreases. The
implications of these observations together is first, that over the course of the before-blink
epoch, there is an increased level of coupling between neuronal regions, and second, that the
magnitude of this increase in coupling is approximately proportional to the distance separating
the neuronal regions. In sum, visual discrimination is characterized by coupling increases
between most neuronal regions, but with a greater coupling increase between distantly spaced
regions.

The neurophysiological processes associated with visual discrimination are thus
associated with relatively little change in coupling between closely spaced regions. The level of
coupling between such regions, indicated by a correlation of 0.75, is already substantial. At the
start of the discrimination process, these regions, according to CSO model, carry out reiatively
independent and low-level analyses of stimulus features. According to the model, successful
visual discrimination requires that in addition the coupling between distantly spaced sites also

increases, as increasingly complex feature transformations are generated through associations
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formed between correspondingly larger extents of cortex. Over the interval preceding
discrimination, cross-correlations between such distantly spaced sites are seen to increase from
approximately 0.2 to 0.4. If the magnitude of the correlation coefficient is assumed to reflect the
degree of coupling between cortical regions, then mean coupling strength between these regions
increases by on the order of 100%, between the beginning and end of the 1 second interval
preceding discrimination.

These observations can be interpreted as supporting the CSO model of object
discrimination. That is, it is predominantly the increase in coupling strengths between distantly
spaced cortical regions that mediates the process of visual discrimination. Correlations between
closely spaced regions are indicators of the ongoing relatively local processing that transforms
primary stimulus features and fower level ensembles into more complex feature ensembles.
Such ensembles can be conceptualized as being in effect particular configurations of
interregional signaling by means of which the central representation of the features of the visual
image are transformed and bound. Visual discrimination is only able to occur when image
features have been bound or transformed into a sufficiently complex, multidimensional
transformation of the original retinal representation of the image, that then matches a pre-
existing memory template. Such feature transformation or binding is in tum indicated by the
increase in the magnitude of cormrelations, as discrimination approaches, between relatively
widely separated cortical regions.

According to the CSO model then, a unitary percept, which in the present study is a
discriminated target object, is the emergent product of a process of self-organization of the
signaling configuration between a set of neuronal collectives. This self-organization, it is
proposed, involves signaling, in successive iterations, between multiple and wide-spread cortical
regions, that camies out a recursive sequence of transformations of the original retinal
representation of the stimulus. Through these transformations the elementary features of this
retinal representation are successively bound by being transformed into successively more
complex feature ensembles, which as part of this transformation process are compared with
successively more complex memory templates. The transformation process is in this way
guided by the influence of existing memory templates. In essence, therefore, the processes of
transformation and template matching are not separable.

To this description an additional feature is added, one that while not addressed by the
present findings nevertheless allows the task of visual discrimination to be carmied out with a
computationally simple approach. Computational simplicity, it is proposed, translates into an
economy of description given an inherent attribute of neuronal signaling pathways. This attribute

is the high degree of interconnectivity both within and between neuronal regions, an
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interconnectivity which in tum implies the possibility of a correspondingly high degree of
functional parallelism in terms of intra and inter-cortical signaling.

In any one iteration this functional parallelism inherent in cortical signaling, it is
suggested, can support a population of simultaneous feature ensemble-creating transformations.
This in tum would result in the simultaneous creation of a corresponding population of feature
ensembles, that is a population of coexisting, simultaneously active configurations of
interregional signaling. Out of this population of available ensembles that may be generated in
any given iteration, the ensembles that survive to become the features entering into the next
round of transformation and memory matching are those that result in a sufficiently accurate
match with existing templates. This description of these successive iterations might thus be
conceptualized as representing an analog of Darwinian evolution, in which not organisms, but
interregional signaling configurations are evolved. This evolution takes place within an
environment in which fithess corresponds to a successful match between a feature ensemble
and an existing memory template. An evolutionary model of this sort is an instance of the
genetic algorithmic approach to the task of searching for global minima within complex problem
spaces. Genetic algorithms have shown a competitive advantage in situations in which such
exploration of a problem space is made difficult by the presence of multiple distracting local
minima, and in which the possibility exists for multiple operations to occur in parallel (Goidberg,
1989; Holland, 1975). The CSO model is schematically diagrammed in Figure 16.1.

177



population population match population
of features of ensembles ensembles of memory
with templates templates

- gt
transformation = —(template 2

and binding

ﬂensemble p% '

select ensembles
for fitness on the
basis of goodness
of match

selected ensembles become the new
features in the next iteration

Figure 16.1 The Cortical Self-Organization Model

According to the model, it is proposed that in an iterated sequence, the brain chronically and
automatically carries out a process of transformation and binding of the population of n features,
by means of which a population of p feature ensembles are created. Feature ensembles are in
effect specific configurations of interregional signaling through which sets of features are
transformed and bound. By matching each of the p ensemble against the population of m
existing memory templates, the p ensembles are rated for fitness. On the basis of this fitness
rating a sub-population of the p ensembles is selected to act as the popuiation of initial features
in a subsequent iteration. This sub-population consists of ensembles that most closely matched
existing memory templates. This process continues iteratively until a sufficiently accurate match
occurs between a feature ensemble and a memory template. The winning ensemble represents
the particular configuration of interregional signaling by which the central representation of visual
image features is successfully matched with a memory template. The driving force for this
process is proposed to be a mechanism involving energy relaxation. The more closely an
ensemble matches a memory template the less energy is required to maintain the configuration
of interregional signaling corresponding to that ensemble. The ultimately winning ensemble thus
represents the particular inter-regional signaling configuration associated with a minimum energy
state of the associated neuronal system.

While the term computation has been used for expository convenience in the preceding
discussion it must be emphasized that the CSO model does not propose that the various
transformational processes occurring during visual discrimination involve some sort of
manipulation of symbols according to computational rules, a perspective associated with the
Artificial Intelligence approach to the modeling of cognitive behaviour (e.g., Minsky, 1968).
Rather, the CSO makes the assumption that all such transformations take place in an asymbolic,
fully distributed fashion (McCleliand and Rumelhart, 1988), making use of the substrate of dense
anatomical pathways that exists, subserving cortical communication.

At the start of this transformation and matching process, the comresponding memory
templates would conceivably consist of elements such as edges, orientations and colors. At

some lowest level such elements may be hard-wired into the visual system (e.g., Hubel and
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Wiesel, 1962). At some higher level, these templates would arise as a result of interactions
between the individual and the environment in early development. As this process continues,
such memory templates could represent more complex feature constellations including, for
example, complex shapes such as the sensitivities to pattem partials hypothesized to exist in the
inferotemporal cortex (Fujita et al., 1992; Perrett and Oram, 1993). This sequence of iterations
would only terminate when a match occurs between the results of a stage of feature
transformation and an existing memory template. At a particular level of iteration, that would be
determined by high-level considerations such as intention, the purpose for which the particular
discrimination is being conducted. Thus, if the intention is to discriminate a particular line
orientation or elementary shape, the iterations might terminate after relatively few iterations. If,
however, the purpose of the discrimination task is, as in the present study, to detect a complex
depiction of a real-world object such as an animal or a bird, then a correspondingly greater
number of iterations might be required. At the termination of the iterations, the comresponding
network of interregional signaling may be thought of as having self-organized into a configuration
that allows a successful match to occur between the highest level feature ensembles that
comrespond to the goal of the discrimination task, and existing memory templates. At this point,
behaviourally, the target object has been successfully discriminated from its visual context.

The phenomenon of visual discrimination can be considered to be an instance of the
more general process of induction, or theory formation. A rule or unified model is induced from
initially apparently isolated data fragments. Such model construction underlies enterprises such
as scientific theorizing; it underlies as well the ubiquitous phenomenon of camouflaged target
discrimination. Both of these examples may, on different occasions, involve both conscious and
non-conscious components. Thus, Kekule is reported to have discovered the structure of the
benzene molecule in a flash of insight while boarding a bus. In a fundamentally similar way, a
subject in the present study discovers the identity of a camouflaged target when the target
appears to suddenly pop out after a period of visual inspection. While a pattem of evolution of
interregional association through cortical self-organization is proposed to underlie the
phenomenon of visual discrimination, such cortical self-organization should in fact serve as the

ground of theory formation in general.
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17 Cortical Self-Organization

17.1 Interregional Signaling Topologies

In this section the present findings will be discussed in relation to possible configurations
of intercortical signaling underlying object discrimination, and how these configurations may
evolve during perceptual integration. A primary finding of the present study is that immediately
before the point of discrimination, multiple cortical regions, including bilateral occipital, temporal,
central, frontal and prefrontal, showed evidence of mutually synchronous activity. At least two
general configurations could serve as a basis for such associations. First, these associations
might be attributable to the influences of a common source driving each of the several cortical
regions. Second, the interregional associations might be interpreted as an increase in the level
of mutual coupling among these regions.

The first possibility involves driving of the oscillatory activity within muitiple cortical
regions by a common source. This mechanism would require extensive connections between all
cortical regions and a common neuronal hub, or pacemaker. Such connections might be
provided by, for example, the projection fibers of the corona radiata that connect thalamic
efferents with the cortex. Arguments have been made both in support of and in opposition to this
view. On the one hand, as Bressler (1995) has suggested, a neuronal substrate for a pacemaker
might include the large-scale pathways that have been found to project from non-specific nuclei
within the thalamus to muitiple and widespread cortical target areas (Goldman-Rakic, 1988,
1992). On the other hand, it has been pointed out that beyond the optic chiasm, there is a
segregation of optic afferents to the two hemispheres, and that therefore there is no common
input to the two hemispheres which could act as a driving source (Engel, Konig, Kreiter, Schillen
and Singer, 1992; Llinas, Grace, and Yarom, 1991; Steriade, Curro Dossi, Pare and Oakson,
1991). It has also been proposed that multiple sources of activity synchronized with small
relative phases must be driven by a common source, because of the effects of transmission
delays (Ts'o, Gilbert, and Wiesel, 1986). However, the findings of Engel et al. (1991), in a study
of inter-columnar coherence in the visual system of the cat, suggest otherwise. These findings
showed that reciprocal signaling between cortical regions can result in synchronized activity
among these regions with a zero relative phase delay, in the presence of transmission delays of
up to several milliseconds. In support of these findings, simulations carried out by Konig and
Schillen (1991) have shown that synchronized activity with a zero phase delay can be achieved if
conduction delays are not greater than one-third of the period of the oscillatory activity. Resuits
such as these, suggesting that a small relative phase angle does not necessarily imply a

pacemaker driving source, are consistent with the second possible mechanism that could
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account for the increased level of coupling among muitiple cortical regions, a non-hierarchical
network of mutual interconnections.

This second possibility involves reciprocal cortico-cortical (Engel, Konig, Kreiter and
Singer, 1991) and cortico-thalamic (Edeiman, 1989) signaling. The present findings are
consistent with the view that at the start of the 1 second epoch preceding discrimination the
frequencies of the activity at the various cortical regions may be relatively dissimilar, as each
region operates in relative autonomy. The result of such autonomy would be the observed low
values of interregional association. As the moment of discrimination approaches, an increasing
level of interregional signaling would result in multiple cortical regions becoming increasingiy
coupied. This, in tum, would result in mutual entrainment of the activity at these regions, which
would then be reflected in the observed increasing level of interregional association.

These two contrasting positions can be very approximately modeled in terms of multiple
functional units interconnected by the two topologies. in the first case, this topology consists of
relatively weak coupling strengths between all units, with the exception of relatively strong level
of coupling between these units and a central or hub unit acting as a common driving source.
This configuration will be referred to as the hub topology, and is diagrammed in Figure 17.1a. In
the second case, the topology consists of inter-unit couplings with relatively equal strengths, and
with no preferentially strong couplings to a common unit that could function as a pacemaker.
This arrangement will be referred to as the distributed topology, diagrammed in Figure 17.1b. in
both cases units have the capability to oscillate in any one of a number of distinct modes, with
the frequency and phase associated with each mode being a function of the signals received
from other units through the inter-unit couplings.

In both of these prototypical topologies, each of these units can be conceptualized as
itself consisting of a network of processing units. The result is a recursive structure, with the
network configuration repeating at different spatial scales. In particular, each unit might be
considered to consist of a recurrently connected network, a configuration that constitutes a
dynamical system with a potential for a rich set of behaviours (e.g., Ermentrout, 1994). These
behaviours, and their corresponding encapsulation in terms of phase space attractors, can range,
depending on inter-unit coupling parameters, from static states, corresponding to point attractors,
through oscillatory behaviour with various combinations of frequencies, corresponding to limit
cycles, to chaotic behaviour describable by a phase space attractor with a fractal dimension and
with a positive Lyapunov exponent, commonly termed a strange attractor (e.g., Moon, 1987, p.
23). These potential classes of behaviour, characteristic of each of the coupled units, can in tum
give rise to a corresponding range of dynamical behaviours in the network comprised of the
interconnected individual units. Experimental observations of simultaneous coherences at

multiple frequencies during cognitive tasks is suggested by Bressler et al. (1983) as providing
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cortical information processing with a degree of flexibility in perceptual tasks not available from
~ oscillatory behaviour over a more limited range of time-scales. On purely theoretical grounds,
Churchland (1995) has proposed that such recurrent neural networks, with the ability to operate
on information in a recursive manner, inherently posses the behavioural flexibility to account for
such phenomena as figure-ground discrimination, and ambiguous-figure resolution.

In the proposed model topologies, each of the individual units has, in addition to the
inputs from other units or from the pacemaker, a perturbing noise input. This noise input would
have the capability to modulate the frequency of the oscillatory activity of individual units.
Figure 17.2 shows a simplified schematic diagram of some of the connections that comprise the
visual system. The double-headed amrows in the figure indicate reciprocal connections. A more
complete functional connection diagram of the visual system is presented by Van Essen and
DeYoe (1995). In their more complete diagram of functional interconnections within the visual
system, and as is suggested by Figure 17.2, the topology of the visual system would appear to
be well modeled as a distributed rather than as a hub configuration. On the other hand, some
combination of these two topologies is also a possibility. A diagram such as that presented by
Van Essen and DeYoe (1995) is intended to model a particular subset of the functions in visual
perception, those involved in the processing of visual features. A wider perspective on the issue
of visual perception might identify as well functions not directly concemed with such processing,
but concemed with giobal modulation of neural states, for example by processes associated with
attention and arousal. Such global functions might be well modeled by a configuration
resembling a hub rather than a distributed topology. In any event, each of these two possible
topologies can be associated with particular predictions. These predictions will be discussed in

the following section.
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(a) hub topology (b) distributed topology

Figure 17.1 Prototypical inter-regional signaling topologies

These network configurations consist of discrete nodes interconnected by strong (solid lines) or
weak (dashed lines) links. Each node itself consists of a recurrent network structure. The hub
topology is characterized by relatively strong connections between all processing units and a
single central unit, with relatively weaker connections between the processing units themselves.
The distributed topology is characterized by relatively equal strength connections between all
processing units.

parietal region
Y5
i V3
retinal LGN
signal
Y1
V2
Y4
inferior temporal
region

Figure 17.2 Reciprocal interconnections in the visual system

This schematic diagram shows a few of the major connections that have been identified between
cortical and subcortical regions involved in visual perception. Double-headed arrows indicate
reciprocal connections. (Adapted from Edelman, 1989).

17.2 Predictions From the Two Topologies

The first prediction concems the spatial variance, that is the instantaneous variance
computed across multiple network nodes, in the relative phases of the oscillatory activity at the
processing nodes. in a distributed topology perturbed by noise, one mode of operation should be
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synchronous activity with some non-zero value of spatial phase variance. In contrast, a hub
topology similarly perturbed by noise should show a smaller relative value of spatial phase
variance. This suggestion is made on the basis of the argument that in the distributed topology,
inter-node coupling would result in interactions at each node between signals amiving from other
nodes and the perturbing noise inputs. These interactions could then propagate throughout the
network along the inter-node links, resulting in higher level interactions. The result would be a
relatively large value of spatial phase variance. In the case of the hub topology, noise
perturbations would again interact with the signal from the hub at individual nodes. However,
since with this topology inter-node coupling strength is low, these interactions would not
propagate as readily, resulting in less higher-level interaction. The outcome would be a
relatively smaller spatial phase variance. Thus, the higher level interactions within the
distributed topology would result in a relatively more complex and nonlinear system behaviour,
with a correspondingly greater spatial and temporal phase variance, in contrast with the hub
topology. With the hub topology, the lower ievel of interaction would result in the relatively less
complex and relatively linear behaviour, with a corespondingly smaller phase variance. An
analysis of spatial phase variance would thus address the issue of the possible configuration of
interregional signaling. A low value would be more consistent with the view that intercortical
signaling can be modeled by a hub topology, with multiple cortical sites driven by a common
pacemaker. A large value would be more consistent with a distributed topology, with
synchronization of multiple sites mediated by their mutual interconnections. In order for it to be
useful in discriminating between the two topologies however, the value of spatial phase variance
would need to be calibrated using measurements on known pattems of intercortical connections.
Such measurements would also probably be best camied out using single cell recordings from
multiple sites, rather than using the more spatially extended and diffuse measurements from the
scalp. For these reasons, this prediction regarding phase variance can not be applied to the
present results.

The second prediction relates to the relative number of oscillatory modes associated with
the two topologies. The hub topology would appear to have a single dominant mode of
oscillation, in which all of the driven units oscillate in synchrony. In contrast, the distributed
topology should be capable of exhibiting a wide range of oscillatory modes, with the particular
mode being determined by the instantaneous distribution of inter-unit coupling strengths. A
network of N recurrent networks, each with the potential for m dynamic modes of behaviour
would itself have the potential, in the absence of additional constraints related to for example
degree of connectivity and coupling strengths, for exhibiting Nm states or modes of behaviour
(MacGregor, 1993; p. 303). Of these, only a subset of modes would be characterized by more-

or-less synchronous activity among ail units, similar to the dominant mode of the hub topology.
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Many other possible modes however would be characterized by relatively more compiex
behaviours, and corresponding more complex pattems of signaling between the coupied nodes.
A robot simulation of insect gait pattems has shown that such a system of coupled processing
units will self-organize (e.g., Brooks, 1991; Chiel and Beer, 1993; Fetz, 1993). Self organization
can be defined in the present context as follows. The system of coupled processing units will
settle into stable anu organized pattems of behaviour that are determined by interactions with the
environment, that is, extemal inputs to the network, as well as by constraints directing mutual
interactions between the coupled units, but importantly, without the necessity for a central
controlling signal to direct this organization. Simulations of gait pattems such as those cited
above find that with such a distributed signaling topology multiple operating modes are possible,
with a particular mode selected by the nature of the interaction between the network and the
environment. In summary, a hub topology should be characterized by a singie dominant mode
with all coupled units operating in synchrony, while a distributed topology should be
characterized by multiple possible operating modes, only a subset of which would correspond to
synchronous activity among the coupled units. This admittedly simplistic line of reasoning
nevertheless suggests that the observation of synchronous activity among a network of
processing units, which in the present study corresponds to the observed high degree of
correlation among multiple cortical regions prior to discrimination, implies a greater likelihood
that the processing units are interconnected by a unimodal hub topology rather than a
multimodal distributed topology. This conclusion may be drawn only in the absence of additional
constraints.

As an example of such a constraint, an additional factor can be brought into this analysis
of interregional signaling configurations, the notion of the energy within a coupled system. For
the distributed topology, the various operating modes can each be associated with a particular
level of energy. In the absence of additional requirements, this energy level should be a
minimum for the totally synchronous mode. In such a case, this synchronous mode, with all
coupled units operating in synchrony, would be the preferred state of the system. The system
would tend to relax into this minimum energy configuration. An analogy that can be drawn from
physics is the case of Rayleigh-Benard convection within a body of fluid receiving energy at the
bottom and dissipating it at the top (e.g., Baker and Gollub, 1990, p. 133). A simplified model of
such convection dynamics was studied by Lorenz (1963) who developed a system of three

coupled ordinary differential equations:

X=ac(y-x)
Y ERx-y-xz
Z=xy-Bz
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This highly simplified approximation has nevertheless been found to be capable of
displaying a wide range of behaviours, from fixed points to limit cycles to deterministic chaos,
depending on the values assigned to the system parameters o, R and B. In these equations the
prime denotes a differential with respect to time, x corresponds to the intensity of the convective
movement and y corresponds to the temperature difference between top and bottom of the mass
of fluid. At low levels of energy input, heat transfer within the body of fluid occurs primarily by
conduction. As the rate of energy input increases, a transition in the nature of the energy
transfer mechanisms within the fluid occurs. Energy transfer eventually comes to involve, in
addition to conduction, convection in the form of multiple local circulating systems of fluid, that
is, convection columns. This transition, from an essentially stochastic process involving the
relatively random, unorganized, motion of individual molecules, to an organized process
involving a system of convection columns each consisting of large numbers of molecules
moving in relative synchrony, is an example of the process of seif-organization. At increasing
levels of energy input, further transitions take place within this system. In these further
transitions, not only does the number of convection columns increase, but increasing numbers of
columns of different sizes occur simultaneously. At a sufficiently high level of energy input, the
motion of the fluid becomes turbulent, or in altemate terms, chaotic. Even at high levels of
energy input however, the phenomenon of intermittency can interrupt the chaotic regime. Limit
cycles, that is intervals of predictable oscillatory behaviour, can occur, punctuated by ermratic
chaotic bursts (e.g., Peitgen, Jurgens and Saupe, 1992; p. 253). The driving force for the initial
self-organization of the fluid into columns, and for the subsequent transitions, is minimization of
the quantity of energy stored within the fluid. The amount of stored energy can be related to the
temperature difference between the top and bottom of the body of fluid. By self-organizing, the
dynamics of the body of fluid are able to effect the transfer of a relatively larger amount of
energy from bottom to top, and thus minimize the amount of energy stored within the fluid.

It is not suggested that cortical processes resemble fluid convection dynamics on any but
the most general level. On this general level however, it is proposed that the multiple possibie
interregional signaling modes of a network of cortical systems coupled by a distributed signaling
topology may, in analogy with a dynamical system such as that which describes fluid convection,
similarly evolve into a minimum configuration along a dimension equivalent to energy. With the
constraint that the level of input to the neuronal system of this equivalent variable is not
unlimited, the minimal system configuration should correspond to the fully synchronous mode.
The principal characteristic of such a mode is synchronized activity among the coupled cortical
regions. Furthermore, and again in analogy with convection dynamics, at increasing levels of

equivalent input, modes more complex than the fully synchronous mode might occur.
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Some care must be taken in making the analogy between fluid convection dynamics and
neuronal interregional signaling dynamics. The concept of energy minimization in the fluid
convection case translates, it is suggested, into an equivalent variable in the neuronal signaling
case, a variable that involves information. Thus, while the fluid is seen to self-organize in order
to minimize the amount of stored energy, the neuronal signaling configuration can be
conceptualized as self-organizing in order to minimize the amount of stored information. That is,
the reason as it were for the interregional signaling configuration to self-organize wouid be to
minimize the amount of information that the associated neural system would need to deal with,
essentially the amount of information that it would need to contain, by means of an appropriate
organization of that information.

A final consideration in comparing the two possible interregional signaling configurations
is that, in the absence of additional constraints, of the two topologies the fully distributed
configuration would appear to be the more economical description. In the fully distributed
topology all nodes and links between nodes are hierarchically equal. In contrast, the hub
topology presumes a two-level hierarchy, on the one hand the hub and its connections to all
other nodes, and on the other hand the nodes and their interconnecting links. Thus, while the
present findings appear to be generally consistent with both topologies, parsimony of description
would suggest choosing the fully distributed model as the neuronal signaling configuration
responsible for the present results. Constraints or requirements beyond those of absolute
simplicity of description reasonably do exist: The complex of perceptual and cognitive functions
involved in propeiling an organism over the course of its span of existence is most reasonably
supported by whatever neural signaling structures represent the most effective trade-off between
reliability and efficiency. Such structures may involve the characteristics of a distributed
topology for functions such as memory that are efficiently and robustly implemented by means of
the sharing of information among multiple processing systems. In complement, such structures
may involve the characteristics of a hub topology for functions related to global modulatory
functions such as those related to attention and arousal. Both of these classes of functions
should be involved in perceptual-cognitive operations in general, and in the visual discrimination
task of the present study in particular.

Summarizing this discussion of how the present findings relate to the topography of the
underlying intercortical signaling, the observation of synchronous activity among widespread
cortical regions at recognition is consistent with both a hub and a distributed topology. The hub
topology is preferred on the basis of the greater likelihood of fully synchronous operation with this
configuration. This advantage is mitigated however by consideration of a relaxation mechanism
within- a distributed topology. With the constraint that the information input to the neuronal

systems is not unlimited, this relaxation mechanism should favor the fully synchronous mode for
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the distributed topology. The distributed topology would also appear to be preferred on the
grounds that it represents a simpler description of the underlying configuration of interregional
signaling. Finally, a more realistic assessment of the diversity of functions required by tasks
such as discrimination of camouflaged targets suggests that both topologies are reasonably
involved.

17.3 Perception as a Relaxation Phenomenon

The idea that object perception can be conceptualized as a relaxation process, proposed
by Tom Richardson (in conversation, 1995), suggests that the underlying neuronal processes can
be considered as a dynamical system evolving towards a state comesponding to a minimum
along some dimension.” Dynamical systems can typically be considered as relaxing or evolving
into a state of minimum energy. A non-trivial example of a dynamical system with a point
attractor is a soap film. In conforming to the constraints imposed by a supporting wire-frame
structure, the soap film adopts the surface configuration which corresponds to a minimum in the
level of energy stored within the film, in terms of the forces associated primarily with surface
tension. In an analogous way, the neuronal systems involved in object perception, constrained
on the one hand by the information within the central representation of the visual stimulus, and
on the other hand by the information stored within existing memory templates, might in a similar
way be considered to relax or evolve into a state that corresponds to a minimum along some
dimension. As stated earlier, this dimension need not be energy in the case of a neuronal
system, but rather could be an equivalent variable such as information. Bomowing from
statistical physics, the process of evolving towards an information minimum is equivalent to
evolving towards a corresponding entropy minimum. By a definition of entropy, a decreasing
value of entropy for a system implies that a decreasing amount of information is needed to
describe the state of the system. This should in fact be the case in the present example of
object discrimination. By way of a simple analogy, a network of oscillators can be described in
terms of fewer bits of information when the coupling between the oscillators is strong enough to
entrain the frequencies of the individual oscillators, than when the coupling strength is low and
the oscillators operate with relatively independent frequencies and phases. in a similar way, the
state of a system comprised of muitiple neuronal regions operating in synchrony should in
principle be describable in terms of less information, that is fewer frequencies and phases, than
the state of a system consisting of multiple neuronal populations operating relatively
autonomously. A description of the latter system would involve a relatively greater number of

frequencies and phases.
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Features of two of the views of visual perception that were discussed earier, the RCI
model and the convergence zone framework, can be encompassed by the proposal that
perception involves a relaxation process, in which multiple cortical systems self-organize by
relaxing into a state corresponding to a minimum along a dimension involving information.
According to the RCi model, the process of perceptual categorization involves reentrant
signaling between neuronal populations within a neural system that creates sensory-cortical,
limbocortical and corticocortical mappings at multiple scales. Such mappings may be viewed as
neuronal configurations that implement transformational functions between sensory, cortical, and
subcortical systems. The creation and evolution of these maps might be restated as the
organization of discrete neuronal populations into functional networks. Importantly, this
organization is directed, not by some controlling device extemal to the neural system, but
through interaction between the system and the environment, and by the degree to which the
configuration of these mappings is successful in adapting the individual to the environment. This
is a description of a process of self-organization in which, as larger networks are created out of
more local structures, the information within the overall system might be seen to tend towards a
minimum. In other words, the more highly organized the overall system comprised of these
neuronal groups becomes, the fewer bits of information are needed to describe the state of the
system,

In a generally similar way, the convergence zone framework suggests that discrete and
widely separated neuronal populations organize through the mechanism of feedforward and
feedback connections that link such populations with local control centers, the convergence
zones. Again, this organization occurs, not as the result of an imposed directive from a higher
level source, but as the result of a property inherent in the neuronal system itself: During
perception, convergence zones encode a pattem of interconnections among muitiple cortical
regions, a pattem that captures the configuration associated with the perception. These zones
then, in a sense, play back that code to reestablish the interconnection pattem during memory
recall and recognition. The information needed to specify the state of this self-organized system
is less, it is suggested, than the information needed to describe the system before it has self-
organized.

In general, statements about the neuronal basis of perception, such as the RCl model
and the convergence zone framework, can be conceptualized, it is proposed, as being different
perspectives on a common model, exemplified by the presently proposed cortical self-
organization model. According to the CSO model, a coherent perception is the emergent result
of a process of self-organization of a system comprised of muitiple discrete neuronal
populations, driven by a natural tendency, a relaxation process, which invoives the minimization

of a dimension such as information.
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To summarize the discussion thus far, it is suggested that object perception can be
conceptualized as a relaxation process in which the pattem of interregional signaling between
the components of the associated neuronal system relaxes towards a state of minimum
information, and correspondingly, minimum entropy. The decreasing entropy level of this
neuronal system corresponds to an increase in the level of organization of the associated
components. While the analogy of fluid convection dynamics involves self-organization driven
by energy relaxation, the case of neuronal interregional signaling dynamics invoives a
corresponding self-organization through information relaxation, a relaxation into an information
minimum.

it may be, however, that in the case of neuronal signaling, the two vanables, energy and
information, can be considered to be related. Thus, the increasing degree of organization of the
pattem of interregional signaling may correspond to a decreasing level of energy contained
within the associated neuronal system. A possible mechanism for this correspondence can be
suggested. Since a finite amount of energy is required to carry out an element of interregional
signaling, a more organized and hence generally simpler signaling configuration should require
less energy to sustain than a less organized and more complex pattem of signaling.

Object discrimination might therefore be viewed as a tendency towards self-organization
of muitiple cortical systems, driven by the requirement of reducing the total energy within the
system. Through this process of self-organization, the relatively high information content
associated with the compiex original retinal representation of the visual image is transformed
into an integrated, discriminated, percept associated with corresponding information and energy
minima.

These statements form part of the CSO model of object discrimination. According to the
model, object discrimination is subserved by a sequence of operations that occurs chronically
and automatically within the neuronal systems associated with perceptual and cognitive
processing, and which operate on primary sensory input initially, and in a recursive manner on
the products of these operations themselves subsequently. Thus, it is proposed, visual
discrimination entails an iterated process in which a sequence of transformations of the central
representation of a visual image are used to successively approximate of the results of prior
leaming. This iterated process, creating a series of increasingly complex transformations, or
feature ensembles, of the image elements, continues until a match occurs between the feature
ensembles and information contained within existing memory templates. The sequence of these
successive iterations can be considered as a process of self-organization occurring among
muiltiple neuronal populations, driven by the requirement that the total amount of energy and
information contained within this system is to be minimized. The result of this self-organization

is an emergent unified perception, which in the present case is represented by the target object,
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successfully discriminated from its background. In equivalent information-theoretic terms, the
associated neuronal system can be conceptualized as relaxing towards a state of minimum
entropy.

The view presented here of the network of neuronal functions associated with object
discrimination is that of a dynamical system within which the pattem of interregional
communication, driven by a mechanism of energy relaxation, is able to self-organize in order to
coordinate the processing resources within multiple and widespread cortical regions. A
consequence of this view of the process of cortical integration in terms of energy minimization is
that it endows the process with a teleological component. A central coordinating device or
structure is thus not required in order to direct the flow of events during the process of cortical
integration in the direction of generating a unified percept. The principle of energy relaxation
provides a natural driving force, and thus a direction, for the sequence of processes involved in
generating such an integrated percept.
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18 Relating the Present Findings to Alternative Models

In this section, a key feature of the results of the present study, the spatial extent of
synchronization, will now be discussed in relation to two models of visual perception. The first
model is the reentrant cortical integration (RCI) model (Finkel and Edelman, 1989). The RCI
model is an example of a model involving relatively distributed pattem of communication. The
second model is Damasio and Damasio's (1993) convergence zone framework. This framework,
in contrast with the RCI, is an example of a model that proposes a hierarchical system of
interregional signaling.

The present study found that immediately prior to the moment of discrimination, multiple
cortical areas including bilateral occipital, temporal, central and frontal regions showed evidence
of mutually coherent activity. As discussed earlier, this finding wouid appear to be more
appropriately modeled by a distributed topology, and is thus more consistent with the reentrant
cortical integration model than with the convergence zone framework.

The convergence zone framework posits the existence of controlling neuronal
collectives, the convergence zone, that function to organize multiple and widespread cortical
regions into a network of nodes capable of operating in mutual synchrony. Such convergence
zones in tum require the existence of feedforward and feedback paths between any one zone
and multiple other cortical areas. Pathways that have been shown to exist, connecting thalamic
(Goldman-Rakic, 1988, 1982) and non-thalamic (Rolls, 1989) sources with multiple cortical
areas, are generally limited in scope. Such pathways do not generally project from a single
source to the wide range of cortical regions that are observed in the present study to be involved
in coherent activity. Wider-scale projection systems have been found however. These include
the identification of corticothalamic ascending and descending pathways between the
intralaminar nucleus of the thalamus and all areas of the cortex (Llinas and Ribary, 1983). The
convergence zone framework suggests that a large number of controlling regions may exist on
many scales, each of which coordinates the activity of a collection of subordinate cortical areas.
The activity of such individual controlling regions can, in tum, become synchronized by means of
still higher order convergence zones. Such higher level zones would thus coordinate signaling
among lower level zones. /

In contrast with the convergence zone framework, the reentrant cortical integration
model does not require central controlling structures to direct the organization of multiple cortical
regions into a topology capable of mutually coherent activity. According to the RCI model,
coherent activity, and the consequent binding of stimulus features, is a result of the complex
reciprocal signaling among these regions, termed reentry. In contrast with the convergence zone

framework, the RC! model suggests that these multiple regions are interconnected in a non-
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hierarchical configuration. The RCI model, with an underlying distributed topology would, at
least in this limited respect, appear to be a more economical explanation consistent with the
present results.

In summary, it is suggested that the present findings, primarily in terms of the observed
wide extent of coherently-coupled cortical regions, are to some extent more economically
explained in terms of a description such as the reentry-based RCI| model, than in terms of a view
such as the convergence zone framework. It is suggested further that the interregional
coherences observed in the present study are more consistent with a model involving inter-
regional information interchange, similar to the reentry mechanism proposed by Edelman (1989),
rather than with a model involving a common-source driving by central controlling structures. It
must be acknowledged however that the present results do not appear to be useful in making a
discrimination between these two positions on grounds other than economy of description. Thus
the present findings, particularly in terms of the topographic distribution of interregional
associations, do not provide the level of spatial resolution that would be required to address the
question of the existence of convergence zones. This question might however be addressable
using techniques such as MEG recording with dense sensor amays.

These conclusions, regarding the possible signaling topologies consistent with the
present resuits, must be qualified by an important limitation that is to some degree inherent in
the measurement paradigm used in the present study. By making measurements of scalp
potentials there is a tendency to associate such potentials with generating structures located
within immediately adjacent cortical regions. The validity of such an assumption rests in part on
the physical proximity of such cortical sources to the scalp electrodes themselves. This
proximity argues for the view that the effect of cortical sources will be represented in the scalp
electrical activity preferentially with respect to the effects of subcortical sources. Reasonably,
the effects of such subcortical sources must nevertheless represent some component of the
potentials measured at the scalp, either relatively directly through volume conduction from
subcortical regions to the scalp, or indirectly as a modulatory influence on cortical activity. For
example, the observation in the present study that associations were maximal between
oscillatory components in the theta frequency range hints at the possibility that interactions
between cortical regions and the hipppcampus may be involved (Miller, 1991; Basar,
Schurmann, Basar-Eroglu and Demiralp, 1994). Miller (1991) for example suggests that theta
activity may be the result of a corticohippocampal resonance, pointing out that the total
transmission delay within a loop involving cortex and hippocampus is of the right order to resuit
in a theta band penodicity. The function of this theta activity, he proposes, is to modulate the
level of activation of networks of cortical cells in aid of feature binding and memory retrieval

processes. In support of this notion, local negative potential excursions in the upper cortical
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layers have been associated with a lowering of cortical activation thresholds (Birbaumer,
Lutzenberger, Elbert and Trevorrow, 1994), while EEG positivities have been suggested to
reflect increases in activation thresholds (Mitzdorf, 1985).

In order to try to estimate the effect of such non-cortical generating structures on the
basis of scalp potentials, essentially inferential techniques have been developed that generally
make use of iterative optimization algorithms. Such algorithms attempt to infer the location,
orientation and strength of one or more subcortical generators on the basis of an observed
pattem of scalp potentials (e.g., Kertesz, 1994). These valuable techniques nevertheless suffer
from the effects of the inverse probiem: there is no unique solution in terms of the locations of
subcortical generators corresponding to any observed topography of scalp potentials. Typically,
therefore, source localization procedures make use of biologically-driven constraints, in order to
try to develop solutions which comrespond to subcortical structures that have been hypothesized
to exist on the basis of independent theoretical or empirical work. In any event, in the present
study such source localization procedures have not been employed. For this reason any
statements that are made here regarding inter-cortical connection topologies consistent with the
present findings must acknowledge the fact that the effects of subcortical sources has not been
estimated. The use of subcortical source localization procedures represents a possible direction
for future extensions to the present work.

194



19 Perception and Awareness

In general terms, the present findings show that visual object discrimination is associated
with a transient wave of synchronization that sweeps out from the primary visual areas, and
which eventually includes virtually all cortical regions, occipital, temporal, central and frontal. It
is this synchronization transient, representing a momentary increase in the degree of coupling of
these diverse cortical regions, that defines the discrimination event, as reflected in the subjective
state of conscious awareness of the target object as an entity distinct from its background.

Thus, on the basis of the present findings it might be suggested that it is only when
sufficiently large and numerous areas of cortex are participating in synchronous activity that the
phenomenon of conscious - that is, reportable - awareness of the discrimination of an object
occurs. According to the CSO model, however, preceding such discrimination of a complex
object there shouid be a sequence of precursor events involving over time a progressively more
complex and multidimensional bundle of information about the central representation of the
stimulus. Although not specifically tested in this study, introspection suggests that, beyond the
very general awareness of elementary visual forms such as lines, colors and orientations, the
neural events occurring during the discrimination process do not generally give rise to any
conscious or reportable awareness of such intermediate feature ensembles. The effect does,
however, vary with the stimulus. For some images, such a pop-out effect occurs, while for
others, the discrimination process is somewhat more continuous.

One interpretation of this observation is that, for the stimuli for which the pop-out effect
occurs, intermediate processing products do not exist, but rather than the discrimination process
involves initial elementary visual feature analysis followed by a massively-parallel recursive
memory-matching or search process. In such a case, there would be no feature-transformation
products of intermediate complexity of which the subject could be aware. Rather, only when the
memory search had succeeded in generating a successful match would conscious, reportable,
awareness of the target occur. This suggestion is supported by the everyday observation that
how, or even if, an object is perceived is largely determined by what one is prepared to see.

These statements represent a possible modification of the CSO model. According to the
model, object discrimination involves a relatively continuous process of successive iterations of
a process involving feature analysis, transformation, and memory matching, creating
successively more complex feature ensembles. According to the present discussion, object
discrimination, in at least some cases, involves a somewhat discontinuous process of successive
iterations of initial feature identification and relatively low-level binding of these features into a
population of feature ensembles, followed by a massively-parallel memory search. An

unsuccessful search would be followed by a rebinding of primary visual features into a new
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population of feature ensemble along new feature dimensions, with a subsequent memory
search for a match to these new ensemble. In the present results there appears to be no
evidence upon which to discriminate between one or the other of these hypotheses, other than
the general observation that, for at least a subset of the stimuli, reportable awareness appears to

be associated only with successful discrimination.
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20 Extensions

A number of extensions of the present study suggest themselves. One extension that
involves a modification of the present methodology would be to compute an on-line measure of
association. This measure would indicate the relative degree of intercortical coupling. In the
present paradigm, associations were measured both before and after the eye-blink. In a follow-
up study, aimed for example at refining the discrimination signal itself, a measure of association
could be computed for signals recorded only prior to discrimination. In this approach, an
increase in association, detected using an appropriate algorithm, would then be used to tum the
computer display off. The subject would immediately be asked whether discrimination had taken
place, and the relative timing of the discrimination event and the offset of the display. This
approach would have the advantage of not requiring some action on the part of the subject, such
as the eye-blink, to signal discrimination. This approach would have the associated benefit of
eliminating the effect of the observed timing uncertainty between the increase in association and
the eye-blink.

A second extension would be to replace the on-line computation of a measure of
association with a neural network associator. The neural network could be trained to associate
characteristics of the EEG signals with the object discrimination event. This approach would
have the advantage that a neural network can operate as a universal function approximator,
making optimal use of EEG signal features. A neural network would not be biased by any
particular model of what the nature of the relationship between EEG signal characteristics and
the object discrimination event should be.

A third extension, discussed earlier, would involve the use of source localization
techniques in order to try to estimate the effects of subcortical, such as for example, thalamic,
sources. ldeally, such localization techniques would use information present over a window of
time, such as the 0.25 second time-windows defined in the present work, rather than information
from a single time-point. An altemative to localization techniques based on scalp measurements
would be functional imaging techniques, such as for example magnetic resonance imaging or
regional cerebral blood flow measurements within the present target discrimination paradigm.

A fourth extension would be to repeat the present study using measurements of
magnetic rather than electric fields over the scalp. Such MEG measurements have as one
advantage an increa/sed level of spatial resolution: In comparison with electric fields, magnetic
fields interact minimally with the tissues that intervene between cortical and subcortical
generators, and the scalp. The result is a smaller degree of blurring using magnetic rather than
electric fields, in that such fields more accurately represent the topography of the underlying

generating structures, than do scalp potentials.
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21 Applications

A number of areas of application of the results of this study suggest themselves. One
area in which these results could be applied is in the design of human-machine interfaces. This
area includes any application that requires a means of communication between a human being
and a computerized system. Such a system might, for example, perform environmental
monitoring, or facilitate interpersonal communication. The data analysis methodology used in
the present study invoived aligning the EEG time-segments on the blink by which subjects
signaled the object discrimination event. A more general, and perhaps more powerful procedure
would be to continuously, that is, on an on-line basis, process the EEG signals to compute some
measure of association such as intercorrelation, and then to look for increases in association
between a subset of the 1020 electrode ensemble. According to the present results, such
increases, between bilateral occipital, and fronto-temporal sites, should effectively index the
occurrence of an object discrimination event. An altemative, as discussed earlier, would be to
use a neural network associator to indicate to moment of discrimination. The overall result
would be that a person could signal discrimination of a target object from a camouflaging or
distracting background in a non-verbal, non-motoric way, through the sharp increase in
magnitude of intercorrelation. Applications for this effect would include tasks in which individuals
are involved in scanning visually-complex or dynamic scenes, such as computer-generated
displays, in search of particular objects or groupings of objects while ignoring a non-essential
background. It should be possible to design such human-machine interfaces in such a way that
an individual could to react to an object or constellation of object features on the display without
producing an actual motor response. In this way it would be possible to eliminate the reaction
times associated with generating such a response.

Another general areas of applications might invoive providing a channel of
communication for persons with motor disabilities that make it difficult for them to generate
responses to events in their environment based on muscle action. With appropriate training, it
may be possible for persons to generate a discrimination response to a target object while
ignoring potentially distracting non-target objects. In this respect an extension of the present
paradigm would be to look for differences in the evolution of the pattem of interregional
associations in relation to differences in the visual features of the discriminated target objects.
The question fo be answered would therefore be, are there differences in the pattem of
interregional associations, or in the time-evolution of this pattem, as a function of target features
such as shape or color? An experiment designed to answer this question would represent yet

one more possible extension to the present study.
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The present findings also suggest that the paradigm used in the present study may have
applications within neuro-cognitive studies generally, as a means of generating a response
corresponding to item discrimination. In the present study subjects were instructed to blink
following onset of the conscious awareness of the identity of the target objects. It may be
possible however that a similar large-scale coherence response might be found to be associated
with only implicit, rather than explicit tests of recognition of a stimulus (for a review see
Schacter, Chiu and Ochsner, 1993).
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Appendix 1 Effect of Noise on Correlation

A1.1 Introduction and Method

The issue has been raised in the literature that the observed magnitude of correlations
are affected by the signal to noise ratio of the data. For example, Pijn, Vijn, da Silva, Van Emde
Boas, and Blanes (1989) point out that the strength of a comrelation between 2 sets of data is
artificially decreased by the presence of random noise. To estimate the effect of random noise
on the strength of correlation a numerical experiment was camied out using artificial data, to find
the relationship between correlation and signal-to-noise ratio. Next, in order to measure the
amount of noise in the experimental data that was due to EEG amplifier and to environmental
sources, a dummy-input circuit to the EEG amplifiers used in the present study was constructed.
This artificial input was intended to approximately model the subject for the purpose of assessing
the amount of noise that was recorded as part of the experimental data. Using this dummy input,
the output at all 16 channels was recorded. This recording was done immediately after data from
subject 8 had been recorded. The RMS amplitude of the actual experimental data (excluding
eye-blink waveforms) was measured, and the corresponding values of signal to noise ratio were
computed for each session.

The artificial data for the numerical experiment consisted of 10 pairs of vectors with each
pair of vectors having a different signal-to-noise ratio. Each vector consisted of 32 data points,
and consisted of one cycle of a sine wave with an RMS amplitude that was constant across all
vectors, together with additive gaussian noise with an RMS amplitude that was adjusted for each
pair of vectors In this way a different signal-to-noise level was created for each pair. This one
cycle sine-wave in the 32 data points is equivaient, in the object discrimination data, to a
frequency of 4 Hz. This frequency is the geometric mean of the frequency band used in the
analysis of the object discrimination data, 2 to 8 Hz. Signal-to-noise ratios ranged between 0.25
and 10. Correlations were then computed between each pair of vectors.

In order to measure the noise level of the EEG amplifiers used in the present study, the
dummy input was connected to the EEG amplifier inputs, in place of the scalp electrodes. The
dummy input was a set of 19, 4.7 kilo-ohm resistors. One resistor, modeling the electrode to
scalp resistance, was connected to each input of the head-box that was used in the experiment:
16 resistors to the 16 channel inputs Fp1 through O2, 2 resistors to the reference inputs, and 1
resistor to the ground input. The other ends of all 19 resistors were connected together, and
connected to a 5 foot length of insulated wire. The purpose of this wire was to approximately
model the antenna effect of the body, in order to assess the common mode rejection capability

of the amplifiers. This dummy input was constructed, connected to the head-box of the EEG
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machine, and a recording was made of the resulting outputs of the amplifiers. All machine
settings were identical to those used in the study. In particular, filters were set to 3 Hz high-pass,
and 70 Hz low-pass, and a total of 1024 data points was recorded at a sampling rate of 128
points per second. The 3 midline channels, Fz, Cz and Pz were removed. The resulting matrix
of 16 channels of 1024 data points was band-pass filtered to extract the 2 to 8 Hz frequency
band. Standard deviation was then computed over the entire matrix. The result of this
calculation is the RMS noise amplitude of the recording equipment.

The noise level in the actual data recorded during the study was measured using the
following procedure. The data was first band-pass filtered to select the 2 to 8 Hz frequency
band. The standard deviation was next computed over the matrix of 1024 points by 16 channels
for a single trial, and averaged over § randomly selected trials from each session. The result is
the RMS signal amplitude. Portions of the data containing eye-blink waveforms were excluded
from the computation.

A1.2 Resulits and Discussion

The results of the numerical experiment showed that the magnitude of cormrelation was
relatively unaffected when signal-to-noise ratio was greater than approximately 4. At a signai-to
noise ratio of 1, comelation decreased to approximately 0.5. The results are shown in Figure
Al1.1

The RMS signal level in the experimental data was found to range between 1.1 micro
volts (subject 6) and 2.1 micro volts (subject 7). RMS noise amplitude measured using the
dummy load was 0.106 micro volts. This noise is some combination of intrinsic amplifier noise,
together with environmental noise. The signal-to-noise ratio for subject 8 is accurate, since the
machine noise measurements were made immediately after data from subject 8 had been
recorded. The signal to noise ratios for sessions 1 through 7 must be considered to be
approximate. The resulits for all sessions are shown in Table A1.1. Signal to noise ratios range
from 10.4 for subject 6 to 19.3 for subject 7.

~

Table A1.1 Signal-To-Noise Ratios with Theta Band Filtering

Subject Signal (micro volts) Noise (micro volts) Signal-to-noise ratio
4 1.75 0.106 16.5
5 20 0.106 18.9
6 1.1 0.106 10.4
7 2.05 0.106 19.3
8 1.68 0.106 15.8
9 1.55 0.106 14.6
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Signal-to-noise ratio

Figure A1.1 Pearson product-moment correlation as a function of signal-to-noise ratio.
Correlation was computed between two time series. In each of these, the signal component was
a 1 cycle sine-wave. An independent noise component was added to each of these signals.
This noise component had a gaussian distribution. The length of the time-series used in the
analysis was 32 data points.

The results of the numerical experiment indicate that signal-to-noise ratio does affect
magnitude of correlation, and that the effect of noise becomes noticeable at signal-to-noise
ratios of less than about 4. The computed estimates of signal-to-noise ratios for the recorded
data suggest that extemal noise is not a problem in this study for data filtered at 2 to 8 Hz.

In order to get an estimate of the signal to noise ratio for other frequency bands, the
frequency distribution of the recorded data was examined by performing a Fourier analysis on
the data. It was found that the resulting amplitude spectrum was well modeled by a 14
frequency distnibution, over the frequency range of 2 to 64 Hz. That is, the amplitude of the
frequency components within the data was found to be inversely proportional to frequency.
Using this model, the RMS signal level within bands other than the 2 to 8 Hz band can be
estimated. The RMS signal level in frequency bands other than the theta band shouid be
roughly inversely proportional to the ratio between the mean geometric mean frequency of the
theta band, 4 Hz, and the geometric mean of the other frequency bands. Using this approach, it
is estimated that the resulting signal to noise ratios in the alpha band will be approximately 1/3 of
the values for the theta band. For the beta band signal to noise ratio will be 1/6 of the theta band
value, and for the gamma band signal to noise ratio will be 1/10 of the theta band value. The

203



significance of these values is that for the alpha band the signal to noise ratio is marginally high
enough to allow its effect on correlation to be ignored. For the beta and gamma bands however
there can be expected to be a significant effect of signal to noise ratio on cormrelation. These
effects of signal to noise ratio on correlation would of course be discountable if the level of noise
did not vary significantly over the course of a recording. In that case, noise would have the
effect of depressing the value of comrelation, but this effect would be uniform over time and
would thus not impair comparisons made between conditions, and between time-intervals. If on
the other hand the level of noise were to change with time then such comparisons could no
longer be camried out. It seems reasonable that the component of noise due to the amplifiers
themselves should be relatively constant over the time-spans of the data recordings. The
component of the noise that is due to extemal, environmental sources on the other hand can not
reasonably be expected to remain constant over the time scale of the recordings. An overall,
and conservative conclusion would appear to be that in the present study, using correlational
analyses, theta, and to a somewhat lesser extent alpha, band filtering allows for minimal
interaction between system noise and level of correlation. On the other hand filtering the data to
attempt to extract beta and gamma band components is probably not appropriate when the

resulting filtered data is subjected to comrelational analysis.
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Appendix 2 - Stimulus Pictures

Picture Credits

All stimulus pictures used in this study were adapted from the original sources using the
methodology outlined in the methods section in Unit 2. None of the items was used directly.
Stimuli were adapted from the following sources:

Picture Adapted From:

1,8 Mooney and Ferguson (1951)

3 Porter (1954)

5 James (1989)

2,4,6,9 10,29 Fogden (1974)

7,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 28 MacKay (1990)

21, 22, 23, 27 Hosking and MacDonnell (1979)
24, 26 Reedy (1973)

25,30 Frisch (1973)
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Figure A3.1 Stimulus pictures
(1) horse’s head; (2) pheasant; (3) face (4) plover chick (5) Dalmatian dog (6) moth
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Figure A3.1 (continued) Stimulus pictures
(7) horses; (8) facial profile; (9) ptarmigan; (10) frog; (11) bear; (12) deer
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Figure A3.1 (continued) Stimulus pictures
(13) eagle; (14) pack horses; (15) horse's head; (16) rabbit; (17) horse through trees; (18) horse
and rider
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Figure A3.1 (continued) Stimulus pictures
(19) face in rocks; (20) face in rocks; (21) courser; (22) eagle; (23) ow; (24) fist
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Figure A3.1 (continued) Stimulus pictures

(25) lamb; (26) rose in hand;

: (30) tenrec

(29) heron;

(27) plover; (28) leopard,;
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