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Camouflaged object discrimination was studied with two objectives: to develop a model of 

object discrimination, and to develop a neuroelectric index of camouflaged object discrimination. 

Scalp potentials were recorded for 8 second intervals in two conditions. In the experimental 

condition subjects, 3 female and 3 male right-handed university students with no know 

neurological disorders, ages 23 to 47, viewed images depicting target objects embedded in a 

camouflaging background that delayed target discrimination. Subjects signaled discrimination by 

blinking. In a contrd condition subjects were instructed to blink at will. Linear interchannel 

association within theta band EEG was estimated using crosscorrelation and coherence 

analyses; general association, using mutual information analysis. Correlation and coherence 

increased over the 1 second interval preceding discrimination, between multiple regions with a 

larger increase between more widely separated areas, and an inverse relationship between 

association and separation. Associations initially included occipital and left temporal regions, 

developing into a bilateral pattern involving left and right frontal and temporal areas, and 

evolving into an organization, immediately prior to discrimination, that included bilateral occipital, 

temporal, central, frontal and prefrontal regions. Mutual information showed a similar pattern, 

indicating a strong linear component to interregional association. The Discrimination Index was 

defined as the ratio of crosscorrelation mean to variance. The index increased by 78% 

immediately prior to discrimination in the picture condition, and decreased by 11% over the 

same interval in the control condition. A model is presented, according to which a unitary 

percept is the dmergent result of a process of self-organization Mthin a network of interregional 

signaling in which information interchange between multiple and wide-spread cortical regions in 

successive iterations accomplishes a recursive series of transformations of the original retinal 

representation, through which elementary features are bound into a population of successively 

more complex ensembles, which are in turn selected according to the goodness of match with 

memory templates. A successful match terminates the iterations, accomplishing the target- 

background discrimination. The model suggests a dynamical system within which the pattern of 

interareal signaling, driven by energy relaxation, self-organizes in order to coordinate the 

processing resources within multiple and widespread cortical regions. 

Key Words: visual perception; camouflage; scalp potentials; self-organization model 
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The Secret Sits 

We dance round in a ring and suppose, 

But the Secret sits in the middle and knows. 

Robert Frost, 1942 
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I Introduction 



1 Overview 

The subject of this work was the connection between the process of mental model 

creation, and the underlying neuronal events. The phenomenon that was studied was the 

discrimination of a camouflaged object from its background. Such discrimination, it is 

suggested, involves to the formation of a mental model concerning the relationship of the target 

object and its background. 

One approach to the study of model creation w s  taken by the Gestalt school of 

Psychology, which had its beginnings in Germany in the late nineteenth century. In 1890, 

Christian Ehrenfels discussed the "Gestalt qualities" of a perception. Ehrenfels questioned how it 

was that certain perceptual experiences could maintain their form, or gestalt, in the face of 

changes in sensory qualities (Leahey, 1987). An example is the perception of a melody as being 

essentially unaltered through transpositions of key. Gestalt psychology challenged the 

reductionist model of Wlhelm Wundt's structuralism, according to which complexes could 

usefully be analyzed into component parts. According to Gestalt psychological teaching, 

meaning emerges from the organization of the component parts of a perceptual experience. 

Consequently, such meaning is lost when the experience is analyzed into its components. 

Gestalt psychology posited a number of rules of organization. One such rule is closure. 

As an example of closure, the image of an incomplete circle may nevertheless be percieved to 

represent a circle, rather than an arc segment. The arc and the background, and the relationship 

between them, organize to form a gestalt, a whole, out of which emerges the perception of the 

circle. This process, by which the interrelationships among the elements of the image give rise 

to a unitary percept can be viewed as an example of model creation. The model that is formed, 

on the basis of the immediate sensory data together Mth prior experience, is that of a complete 

but occluded, circle. 

Ivan Pavlov in 1935 criticized Gestalt psychdogy for its idealistic basis, which he 

suggested was mentalistic and lacking in a physiological foundation (Brennan, 1991). Gestalt 

psychdogy addressed this criticism Ath the concept of isomorphism, a correspondance between 

the strudural relationships in the perceptual field of an individual, and the underlying electrical 

brain field. While the perceptual field is evoked by sensory activity, the brain field is the result of 

electrochemical processes. The exact nature of this isomorphism has however remained 

obscure (Leahey, 1987). Karl Lashley expressed the question as "how [do] the specialized areas 

of the cerebral cortex interact to produce the integration evident in thought and behavior". The 

present study explored one facet of this question, the connection between the perceptual 

phenomena and underlying neuronal events during the process of model creation. 



Such model creation occurs chronically and automatically throughout our interactions 

d t h  our environment. At a perceptually simple level this process is involved in the circle 

completion phenomenom. At a more complex level model creation is involved in the perceptual- 

cognitive process of visually discovering an object that is initially indistinguishable from a 

camouflaging background. In the one case the model is that of an occluded circle. In the other 

case the model is that of the forms and corresponding identities of the initially camouflaged 

target and its background. 

Traditionally, studies of brain function have involved the recording of EEG responses to 

stimuli whose physical characteristics change between conditions. In contrast, the present study 

used an unchanging stimulus, which however was designed to evoke a changing perception. It 

was to this changing perception, of the constant stimulus, that brain electrical activity was 

recorded. EEG signals were recorded Wile a subject performed the task of discriminating a 

camouflaged target. This task All be referred to as object discrimination. By object 

discrimination is meant the phenomenon that occurs Wen, after a period of visual examination, 

an individual is able to eventually distinguish a target object from Whin the context of a visual 

embedding matrix intended to have the effect of camouflaging the target, and to then identify the 

target as belonging to a particular semantic category. As an example, an initially indecipherable 

image might eventually be recognized as representing a bird sitting in grass (Figure 2.1). The 

image, which is first interpreted in one way, later comes to be interpreted in a different way. This 

study aims to identify the neurophysidogical events that are associated Ath such shifts in 

interpretation to an unchanging stimulus. An experiment All be designed that All provide the 

conditions under which such discrimination can take place. The results of this experiment All be 

used to develop a description of the neural activity underlying object discrimination. 

The direction taken in this wrk was determined in part by the findings of previous 

studies of both an empirical and theoretical nature. Empirical studies include investigations of 

brain function from hM, general methodological approaches. The first approach emphasizes the 

study of signal properties, and in particular the correlational structure, of single cell activity, 

during tasks invdving visual perception. The second, complementary approach, through the 

study of singlecell and field potentials, and through the study of the effects of lesions, 

emphasizes the delineation of the anatomical and functional systems involved in the object 

discrimination process. Theoretical m r k  includes a number of models which have been 

proposed to account for visual perception in terms of cortical integration. Models that will be 

discussed in Section 3 of the present Unit include the reentrant cortical integration (RCI) model 

developed by Finkel and Edelman (1989), and the convergence zone framemrk proposed by 

Damasio and Damasio (1993). Elements of these models, which view perceptual integration 

from the perspective of interregional organization, dl1 be show to be subsumed by a more 



general description. According to this proposed description, the integration of perceptual 

experience is the outcome of a process of cortical self-organization driven by a mechanism of 

energy relaxation. This mechanism provides a natural direction for the evolution of the 

configuration of interregional signaling, without requiring the invocation of higher level 

coordinating mechanisms to direct the process of sensory integration. 

Unit I contains discussions of a number of fundamental issues. Section 1 presents an 

overview of the present work. Section 2 discusses psychoneural identity, and more particularly 

the question as to whether mental events can be studied by physical means. Section 3 

discusses a number of models of visual perception through cortical integration. Section 4 

reviews a selection of neurophysiological studies of visual perception. Section 5 outlines a 

proposal for a model of the neuronal processes underlying visual object discrimination, and 

discusses a number of predictions that can be derived from this model. 

Unit II details a number of experiments and analyses designed to test these predictions, 

using methods that can be classed as linear analytic procedures. Section 6 will describe an 

experiment in which interregional associations during object perception are examined, by looking 

at changes in the pattern of crosscorrelations as a function of time, and as a function of the 

relative distance between pairs of electrode sites. Chapters 7 and 8 elaborate on the data 

obtained from the experiment described in Section 6. These sections examine the topographical 

distribution of the intemrrelations. Section 7 deals with changes in cross~orrelation between all 

pairs of electrode sites. Section 8 looks at the topographical distribution of the mean correlation, 

that is, the extent to which the signals from each electrode site are correlated with the signals 

from all other electrode sites. Chapters 9 through 11 describe analyses of the data using 

alternative measures of association. Section 9 looks at the analysis of interregional coupling 

using mutual information, a measure of general association. Section 10 repeats this analysis 

using measures of coherence and phase, while Section 11 looks at the topographical distribution 

of coherence. Section 12 addresses an issue related to possible applications of the results of 

this study, the issue of the changes with time of two statistics computed for the crosscorrelations 

as a function of time, the mean and variance. The Discrimination Index is then defined, as a 

factor M ich  uses inforrnation about both the mean and variance of the correlations, and it is 

shown how this index changes with time before and after the moment of discrimination. 

Unit Ill details analyses of the results of this study using nonlinear analytic techniques. 

Section 13 will describe the application of a neural network classifier that is trained to detect 

features in the recorded signals associated with the visual discrimination event. A number of 

previous studies applying neural networks to the problem of neuroelectric signal analysis are 

discussed. Section 14 deals with correlation dimension, a measure of dynamical system 



complexity. The correlation dimension and its application to neuroelectric signal analysis is 

discussed. 

Unit IV presents a discussion of the implications of the results of this study for a number 

of issues. Section 15 summarizes the findings of the present study. Section 16 elaborates on 

the model of neuronal processes associated with object discrimination. This elaboration 

continues in Section 17 with a discussion of the concept of cortical self-organization in 

perception. In Section 18 the present findings are related to alternative models of cortical 

integration. Section 19 speculates on the relationship between perception and C O ~ S ~ ~ O U S  

awareness. Section 20 lists a number of extensions of the present work, Mi le  Section 21 

discusses potential practical applications of the results of this study. 

Appendix 1 addresses a methodological issue, the effect of signal-tonoise ratio on 

strength of correlation. Appendix 2 shows the stimulus images used in the experiment. 



The fundamental proposition underlying the association between physical evidence such 

as neuroelectric measurements and mental activity is the principle of psychoneural identity. 

Psychoneural identity is the assumption that every mental state or event can be identified with a 

corresponding distinctive brain state, and that this brain state in turn is an in-principle specifiable 

physiological occurrence (Reber, 1985). Regan (1989, p. 167) suggests that there is no general 

agreement among neuroscientists on this issue. He cites John Eccles as an instance of a 

neuroscientist who finds this position 'inconceivable' on the basis that neural machinery cannot 

be rich enough to act as the ground of consciousness and memory (e.g., Eccles, 1981). 

Although such an extreme position of rejection of psychoneural identity may be held by only a 

small minority of workers in this field, perhaps less infrequent may be an underlying feeling, 

expressed or unexpressed, that the scope of human potential, seemingly limitless in its capacity 

for innovation, is too wide and rich to be the product of less than one and a half kilograms of 

brain tissue. 

Attempts have been made to try and reconcile psychoneural identify with the intuition 

that mental events transcend deterministic physics. Penrose (1989) for example has taken the 

position that mental phenomena such as consciousness are noncomputable, that these 

phenomena cannot be reduced to the level of algorithms carrying out deterministic 

computations. In support of this position, he has suggested that the small physical scale of 

microtubules within neurons is of the right order to allow quantum effects to exert a significant 

influence on the macroscopic level, and in this way bring an element of indeterminacy to the 

workings of the brain, freeing the results of neural activity from the apparent constraints imposed 

by determinism. 

On the other hand even an admittedly superficial analysis of the information storage 

capacity of the brain reveals a perhaps unexpected depth. First of all, assuming that mental 

phenomena are not uncomputable, that is, mental phenomena could be expressed in algorithmic 

terms, then the question may be asked, what are the limits of such computation? Alan Turing 

(1 937) proved that any procedure that could be expressed as a finite algorithm could be canied 

out by a universal Turing machine. A universal Turing machine is a device that, suitably 

programmed, can carry out any computation that can be expressed as an algorithm of finite 

length. An essential requirement of this Turing machine is an unlimited storage capacity. Taking 

1012 as the order of magnitude of the number of neurons in the brain (Kandel and Schwartz, 

1985), with on the order of 104 synapses per neuron (Rosenweig and Leiman, 1989) gives a 

figure of 1016 as the order of magnitude of the number of interconnections in the human brain. 

In general, information can be stored within a system such as the brain, in terms of the pattern of 



synaptic connections, using at one extreme local representation of each bit of information, and at 

the other extreme a totally distributed representation of each bit. With local representation of the 

information, that is, with each bit of information coded at one single location in terms of the 

synaptic strength at one particular synapse, the number of storage units needed to store n bits of 

information would be n. The storage capacity C of such a system with n synaptic nodes m l d  

thus be simply 

C a n  

In this case, the brain, with on the order of 1016 storage locations, would in principle be capable 

of storing on the order of 1016 bits of information. At the opposite extreme from local 

representation is distributed representation of information. With distributed representation, a 

collective or network of interconnected synapses, rather than a single synapse, codes each bit of 

information. Importantly, any one synapse is assumed to be able to take part in many such 

networks and thus to participate in the encoding of multiple bits of information. With distributed 

representation, the information is encoded, not in terms of the strength of a single synapse of a 

single neuron, but rather in terms of a pattern of interconnections amongst the multiple neurons 

comprising a netwrk. With such distributed information representation, the number of units of 

storage needed to code n bits of information is on the order of log n (Gallant, 1993 assuming 

total connectivity and the ability for individual cells to participate in an unlimited number of 

separate networks. The storage capacity C of a system with n synaptic nodes would now be 

With the distributed representation method of encoding information, the brain would have a 

storage capacity of on the order of 10 raised to the power of 1016. Again, it must be 

emphasized that the extent to which this storage capability could be realized would depend on 

the degree of interconnectivity of the netwwk, and on the extent to which individual cells could 

take part in multiple netvmks. Anatomical studies reveal that a significant proportion of the 

mass of the brain is devoted to such interconnectivity, in the form of the diverse association 

tracts, commisures and projection fibers that make up the medullary centers (Barr and Kieman, 

1988, p. 244). Admittedly superficial, this observation nonetheless suggests that 

interconnectivity must play a significant role in the functioning of the brain. 

These information storage capacity estimates for the brain using distributed 

representation are only very broad order of magnitude values. Furthermore, it may be more 

plausible to consider that the brain makes use of some combination of local and distributed 

representation. Nevertheless, capacities even remotely near magnitudes such as 10 raised to 

the power 1016 muld seem to be large enough to account for the richness and diversity of 



mental life, and the seemingly endless labyrinths of creative thought. If it can be accepted that 

mental events are not uncomputable, and that such events could be expressed as finite 

algorithms running on some equivalent of a universal Turing machine within the brain, then at 

least on the basis of the vast storage capacity available to such a machine, the limits of the 

computations that could be canied out by such a machine wuld appear to be correspondingly 

vast. Arguments, such as Eccles (1981) proposes, for the existence of mind separate from brain 

would seem to be an attempt to support a philosophical position on the basis of an incomplete 

reading of neurophysiological data. 

The tendency to attribute a quality in the data to the object under suutiny rather than to 

our interpretation of the data is not new. Consciousness, as the background against which the 

events of mental life are played out, is on the one hand compellingly real, and on the other hand 

seemingly irreducible to a physical basis. That consciousness appears to possess such a 

noumenal character, argues Churchland (1995), may be only the result of the lack of an 

appropriate conceptual framemk. He cites as examples Ptolemy who in the first century 

dismissed the possibility of gaining W e d g e  about stars and planets because of their great 

distance from us, and August Comte who in the nineteenth century similarly argued that the 

constituents of stars could never be knowm because of their remoteness. Churchland's (1995) 

argument is that if an entity is apparently unknowable to us, then this may tell something about 

us, rather than about the entity. In the present case, the apparent lack of a conceptual 

framework from within which the phenomena of consciousness might be understood should be 

used to suggest that such a framework can not exist. 

The view that mental events are in some m y  fundamentally distinct from material 

phenomena can be traced at least to the ideas of Gottfried Leibniz. Leibniz proposed a thought 

experiment (Leibniz, 1965) in which, if one were reduced to a minute size and were able to enter 

the brain and examine the machinery and processes of the brain, one m l d  nevertheless be 

unable to find evidence of features of mental life such as thoughts, sensations and desires. On 

the basis of this argument this Leibniz concluded that such features must be separate from the 

physical machinery of the brain. Churchland (1995) points out that, in analogy with the earlier 

examples, Leibniz made the assumption that absence of evidence of the physical nature of 

mental entities has taken as evidence of their absence. Again, the alternative exists that we do 

not have the conceptual framework that would allow us to perceive such entities, whether or not 

in fact these entities constituted a separate level of reality or whether they were identical with 

some arrangement of neuronal elements. In making this argument, Leibniz takes a position that 

appears to be similar to the perspective adopted by more recent thinkers (e.g., Eccles, 1981) 

who assume that our inability to understand or to find a location within the brain for 

consciousness implies that consciousness must transcend the physical bounds imposed by 



neurophysidogy, rather than allowing for the possibility that ve may be bringing insufficient 

analytical W r  to bear on the question. In taking this position, Leibniz appears to be assuming 

what he is trying to prove. 

This argument, extended in contemporary philosophy by Searle's (1987) analogy of the 

Chinese room, thus suggests that entities such as understanding and knowing are distinct from 

and somehow transcend the neurophysiological machinery upon which they are based. It 

remains possible however that terms such as consciousness, knowing and feeling are labels that 

have been applied to phenomena in a way that is analogous to the way in which constellations 

were once constructed in the night sky. This fallacy of reification wuld seem to be an ever- 

Present danger that might be particularly likely when consciousness is desperately striving to 

understand consciousness itself: there is no frame of reference for this understanding that is 

independent of the entity that is attempting to understand. 

A further argument for the transcendent, non-physical nature of feelings has been put 

forward by Nagel (1974) who proposed the question of M a t  it might be like to be a bat. While 

we might learn in complete detail about the neural functions of a bat's brain, we still w ~ l d  not, 

argues Nagel, know what it is actually like to be a bat. Since we can know only indirectly what it 

is like to be a bat, the experience of being a bat cannot be captured by the study of physical 

systems. This experience therefore must somehow transcend such physical Systems. 

Churchland (1995) points out that there is a conflation in this argument between ways of 

knowing, and the nature of the object of the knowing itself. The bat knows directly what it is like 

to be a bat because of causal connections between its sensory and neural Systems. A 

neuroscientist may infer, and thus know indirectly, what it might be like to be a bat, through 

studying this neurophysidogy. These are statements about bu hays of k-ng, direct and 

indirect, with a common referent, in this case the experience of being a bat. This difference in 

ways of knowing is made more evident using an example with a more concrete referent. While I 

have direct krmdedge of what it is like for me to be thirsty as a result of causal connections 

between various systems of my body, an observer can note from my behaviour signs that 

indicate this thirst, and know in this indirect way that I am thirsty. In both the case of knMng 

directly that I am thirsty, and in the case of the observer knowing this fact indirectly, the object of 

the knowing is the same: a constellation of physiological responses to a particular state of my 

body. This purely physical referent is in the one case known directly and in the other case know 

only indirectly. The point is that being know to an outside observer only indirectly does not 

necessarily render the referent insubstantial or transcendental. In this way, that the qualia or 

'raw feels' that constitute experience can be known only indirectly by an outside observer does 

not imply that such qualia are necessarily nonphysical. 



In the fo l lhng section the discussion will proceed to particular issues. Several 

neurophysiological models of visual perception will be discussed. Overall, these models 

emphasize the importance of interconnectivity within a distributed processing ndbOrk, the 

functional significance of the signaling that takes place through the medium of these 

interconnections, and the relationship bebeen the pattern of signaling and the architecture of the 

network itself. 



3 Neurophysiological Models of Cortical Integration 

The models that will be discussed in this section have been proposed to account for 

aspects of visual perception in terms of cortical organization. The first of these models is the 

reentrant cortical integration model proposed as a test of the theory of neuronal group selection 

put forward by Edelman (1989). This model emphasizes the primacy, in perception, of 

correlational activity resulting from reentrant signaling between neuronal groups. A second 

model which will be discussed is the convergence zone framework, proposed by Damasio and 

Damasio (1993). A third model which will be reviewd briefly is Mishkin's (1993) model of object 

recognition. 

3.1 The Theory of Neuronal Group Selection 

Gilbert (1995) classifies theorizing about visual mechanisms into two extreme positions. 

At one end, relatively passive filter models identify processing stages, Ath the visual system at 

each stage organizing and filtering information to be passed on the next level. There neuronal 

Systems act on various basis sets, that is orthogonal combinations of features which, when 

assembled, can represent any arbitrary object. ~t the other extreme of theorizing, a position that 

may be referred to as a generalist view endows neural connections with the capacity to form and 

reform through interactions with the environment, so that any neuron or group of neurons can 

emulate any filter characteristic. 

A r?Iodel, suggested by Gilbert (1995) as being exemplary of the generalist position, is 

Gerald Edelman's Theory of Neuronal Group Selection (TNGS) (e.g., Edelman, 1987, 1992). A 

part of the TNGS that forms a prototypical example of a neuronal model of perception from a 

theoretical perspective is Edelman's view of perceptual categorization, the function that he views 

as "fundamental in any attempt to relate physiology to psychology." (Edelman, 1992, p. 89). 

The TNGS is motivated by several observations. One observation is that the W d  does 

not appear to come prepackaged into perceptual categories. Second, there is observed to be a 

high degree of variation in brain structure both between and within individuals. According to 

Edelman's (1987) theory of neural DaMnism, of which the TNGS is an extension, in order for an 

organism to adapt to such an a priori unlabelled w i d ,  the organism's neural system acts 

according to a process of selection on this observed neural variability. Edelman proposes that 

the appropriate level at which to consider neural systems is a neuronal group, a neural structure 

involving multiple interconnected neurons. Neuronal groups exhibit a high degree of variability 

in terms of functional anatomy, or internal wiring. According to Edelman's theory, competitive 

activity between neuronal groups enforces a process of selection which operates on these highly 

variable neuronal groups. This process of selection works to promote the activity and survival of 



some neuronal groups over others. Selection leads, in Edelman's terms, to differential 

amplification of particular variants within neural populations. The result of this selection process 

is that those neuronal groups are selected for vhose activity is reinforced as a result of an 

individual's interactions with the environment. 

The TNGS is thus based in part on the observation that there does not exist a precise 

point-t*point wiring scheme in any sufficiently rich neural system, such as that of invertebrates. 

This observation, along with the continuous rather than discrete nature of neural signals, 

Edelman appears to feel is support for an argument against conceptualizing the brain as a 

computer, performing computation. Neural wiring in such a system exhibits what Edelman terms 

degeneracy (1989, p. 50). Degeneracy refers to the observation that there does not appear to 

exist a one-twne mapping between the activity of any particular system of neuronal groups, and 

any particular output or sets of outputs. Thus, multiple neuronal groups may be associated with 

the same output, while a single group may be associated with multiple outputs. This observation 

w l d  appear to be fundamentally a statement of the distributed nature of neural systems. In 

distributed systems, all activity such as information processing and storage, is distributed among 

a system of processing elements, and is carried out in an asymbolic, or subsymbdic 

(Smolensky, 1988) form. This noncomputational view of neural operation, Edelman (1989) 

contrasts with the information processing view of neural activity, in which functions are pre- 

programmed into systems which then carry out their actions in a correspondingly defined way, 

using computational procedures based on symbol manipulation. 

Thus, building on the concept of neural DanAnism, Edelman (1987) proposed the theory 

of neuronal group selection, a feature of which deals Mth the manifest ability of neural systems 

to perceptually categorize an a priori unlabelled wold. This ability is the result of hu processes. 

First, in embryonic development, selection acts to establish the general configuration of neuronal 

nehurks. Second, during development and as a result of behavioural interaction with the 

environment, selection of certain neuronal groups over others acts to establish functional circuits 

and maps. Maps are functions that transform sensory inputs into corresponding cortical 

representations. In this m y ,  perceptual categorization can take place, as a result of interactions 

with the environment acting in concert with neuronal selection. The result is that within the brain, 

perceptual categories about the hotid are created. 

An essential feature of the TNGS relevant to the process of perceptual categorization 

and, thus, to the present work is the process of complex reciprocal signaling between neuronal 

groups which Edelman refers to as reentry, and which he describes as 'Yemporally ongoing 

parallel signaling between separate maps along ordered anatomical connections" (Edelman, 

1989, p. 65). An analogy may be made with computer code modules that are designed to take 

in, process, and output information, with the possibility that one such module of code, referred to 



as reentrant code, can originate data Mich then directly or indirectly reenters the originating 

module in a recursive loop. The analogy between such recursive code and neural functions 

should not however be pressed beyond noting that brain regions, on a general systems level, 

might be viewed as processing modules similarly capable of exchanging complex information, 

along the feedforward and feedback connections within the numerous association tracts, 

commisures and projection fibers. Edelman (1992, p. 95) suggests that this signaling should 

show up in the form of correlations between the activity of brain structures, and hence as 

correlations in the EEG. 

Reentry is to be distinguished from simple feedback This distinction might be supported 

by the following argument (although Edelman himself does not appear to argue in these terms). 

While the effects of feedback can in principle be predicted using linear analytic methods, the 

effects of reentry can not. This effect is the result in part of a topological difference between 

feedback and reentry: Reentry is distinguished from feedback in that reentry is characterized by 

a multiplicity of pathways along Mich the inforrnation transfer takes place. In alternative terms, 

signal transfer in reentry occurs in parallel, Mi le  signal transfer in simple feedback occurs in 

serial. This parallelism associated with reentry has the significant outcome that the individual 

signals have the potential for interacting at their destination. The effect of such interactions is a 

nonlinearity in the nature of the information exchange, with the result that the neuronal groups, 

associated through such reentrant signaling, comprise a nonlinear system. The behaviour of 

such nonlinear systems, although fully deterministic, has been show to be in general 

unpredictable, and potentially chaotic (e.g., May, 1976). These mutual interactions inherent in 

reentrant signaling, among the multiple signals canied over multiple and reciprocal parallel paths 

among neuronal groups, result in a high degree of functional complexity. 

As a result of such reentrant signaling, according to the TNGS, neuronal groups become 

coupled and coordinate their individual activities. In particular, reentrant signaling among 

multiple neuronal groups has the effect of synchronizing their operation, resulting in coherent 

activity among these groups. 

The concept of reentrant signaling between neuronal groups is relevant to the present 

study of visual perception in tw mys. First, according to the TNGS, reentry is the unde~lying 

neurophysidogical factor that forms a substrate for the coupling between multiple neuronal 

systems, and that results in synchronization between the activity of such systems. Second, this 

reentry-based association is responsible for brain functions ranging in scale from perceptual 

categorization to consciousness. 

Directly relevant to the present wwk, perceptual categorization, according to the TNGS, 

occws as the result of the activity of multiple neuronal groups, coordinated through the process 

of reentrant signaling. In particular, according to the TNGS, perceptual categorization is the 



result of reentrant signaling between neural systems, each dealing with to some extent 

orthogonal dimensions of the sensory features of a stimulus. Such systems implement 

functions Wich map a particular facet of the sensory information, onto particular cortical regions. 

According to the TNGS, for nontrivial perceptual categorization to take place, at least two such 

maps, each carrying information about a disjunctive aspect of the stimulus, must be connected 

through reentrant signaling. Through this signaling, the various disjunctive aspects of the 

stimulus are mutually bound, resulting in the formation of a higher-order response to the initial 

stimulus. The reentrant signaling among these several maps thus leads to the creation of a 

higher-order concept, making use of a subset of the orthogonal features of the stimulus. 

Importantly, the reentrant signaling which synchronizes the activity of the connected 

maps acts to promote synaptic changes within these maps. Straightfo~rdly, this can occur 

Wen cells within such maps, interconnected through reentry and firing synchronously, are likely 

to receive multiple, simultaneous inputs. The more neurons, comprising an interconnected set of 

maps, that are firing synchronously, the more likely it is in turn for any one of the participating 

neurons to receive simultaneous multiple excitatory inputs, and consequently the more likely it is 

for these neurons to themselves fire. Repeated exposure to the same stimulus environment 

then acts to reinforce such neural connections through repeated activation of same synapses. 

These statements are of course a description of Hebbian learning (Hebb, 1949). 

Edelman's (1989) view of perceptual categorization invdves the notion of Wat he refers 

to as primary consciousness (p. 104), a fundamental level of avareness of the internal and 

external wolld. Primary consciousness is comprised of experiences such as mental images, and 

is constrained to a time history defined by the span of short-term memory (p. 24). Primary 

consciousness is the result of the fo l ldng sequence of processes. Perceptual categorization of 

exteroceptive signals, of the world external to the individual, is carried out by reentrant signaling 

within and between cortical regions as well as between the cortex and subcortical regions such 

as the thalamus. In parallel with this process, perceptual categorization of internally generated, 

interoceptive, signals is mediated by reentrant interactions within and between limbic and brain- 

stem systems as well as by biochemical signaling systems. These tw categorization systems 

may each be considered to represent maps. In the one case exteroceptive signals, and in the 

other case interoceptive signals are mapped onto cortical regions. In turn, and at the next level 

of abstraction of the information generated within the brain, the thalamocortical and the limbio 

brain stem systems interact. Their information products are compared, presumably also through 

the process of reentrant signaling, in the hippocampus, septum and the ungulate gyri. The 

results of this comparison are in turn recategorized in the cingulate gyri, temporal lobes and the 

parietal and frontal cortex. Edelman (1989, p. 156) refers to the results of this process as 

conceptual categorization. Although not a statement made by the TNGS, this conceptual 



categorization might be considered to form a component of an organism's internalized model of 

the mrld. Significantly, this conceptual categorization itself then is reentrantly connected back 

to the neuronal systems involved in the perceptual categorization of new exteroceptive signals. 

The results of the conceptual categorization thus influence subsequent perceptual 

categorizations. Essentially, a current set of perceptual categories formed about the world are in 

this way modulated by the results of the previous conceptual categorization process. This effect 

would appear to be a statement about the influence of the internal world model, on ongoing 

perception. How the world is interpreted at any one instant is influenced by how the world was 

interpreted at previous times. The TNGS proposes that this effect of conceptual categorization, 

or in alternative terms, of an internalized mr ld  model, on subsequent perceptual categorization 

is the basis for primary consciousness. 

Primary consciousness, founded on recurrent signaling between neuronal populations, is 

thus itself the outcome of a recursive process in which notions of self and nonself are interpreted 

in terms of each other, resulting in a construct which on the one hand forms a context in which 

subsequent notions about the world are interpreted, and which on the other hand is itself 

reevaluated in terms of such notions about the mrld. 

These ideas are relevant to the present study in the following way. The reentrant 

corticoGortical and thalamocortical signaling that Edelman (1989) associates with perceptual 

categorization may be expected to show an effect of the experimental manipulation that will be 

canied out in the present work. In particular, the effects of reentrant signaling associated with 

object categorization and discrimination should be observable as correlated activity between the 

relevant cortical areas, when subjects are engaged in a task involving such categorization. 

Reentry is the basis for a computational model of cortical integration, the reentrant 

cortical integration (RCI) model (Finkel and Edelman, 1989). This model demonstrates the 

efficacy of recursive information interchange, reentry among multiple local processing netvmks 

along reciprocal f eed fmrd  and feedback interconnections. By means of this reentrant 

signaling such netwwks are able to exchange information regarding stimulus feature 

discriminations performed locally by each of the nethaks, allowing all networks to mutually 

make use of the results of such discriminations. Reentrant signaling also allows responses to 

complex and illusory stimuli to be synthesized since information generated by each netmrk 

eventually returns to that network along reciprocal pathways. These functions were facilitated by 

the elimination of conflicting responses generated by the individual networks, also as a result of 

the inter-regional reentrant signaling. A feature of the RCI is that no central coordinating 

structure is required to direct the process of feature integration and synthesis. Finkel and 

Edelman (1989) found that during this integration process, changes in network coupling strengths 

were associated with episodes of correlated activity among the local networks. 



3.2 Neuronal Ensembles 

A second model of visual perception, and an example of a neuronal model of perception 

from a neurophysiological perspective, is Mishkin's (1993) model of object recognition, a model 

which in some general ways resembles Edelman's TNGS. According to Mishkin (1993), object 

recognition involves the re-activation, by a visual stimulus, of a previously formed cell assembly. 

A retinal stimulus sequentially activates large neuronal groups in the occipito-temporal circuit. 

Mishkin refers to these groups as neuronal ensembles, and suggests that they form the neuronal 

representation of the visual stimulus. In the latter stages of this occipito-temporal activation, 

sequentiallyannected temporal, thalamic and frontal areas of the limbic system become 

involved. These latter activations then lead to the strengthening of feedback limbocortical and 

corticxxxrtical synapses. Thrwgh this process, cell assemblies are created (Hebb, 1949). 

These cell assemblies, Wich form the stored representation of the stimulus, are subsets of the 

neuronal ensemble. Visual recognition, Mishkin (1993) suggests, occurs M e n  a neuronal 

ensemble that has been activated by a visual stimulus in turn re-activates a such an existing cell 

assembly. While the neumal ensembles are activated by feedforward signals from the retina, 

cell assemblies can be activated both, by feedback signals from the limbic system, as well as 

signals more directly from the neuronal ensemble. Mishkin's notion of memory activation with 

the involvement of the limbic system resembles Edelman's model of primary consciousness 

Wich involves, not so much sequential activation of, but the correlated activity between, the 

limbic system and primary and secondary sensory cortices. 

3.3 The Convergence Zone Framewrk 

A third approach to the problem of perceptual integration, and also a model based on 

neurophysiological evidence, is the convergence zone framewrk proposed by Damasio and 

Damasio (1993). While Mishkin's (1993) model sees perception in terms of the creation and 

later reactivation of neumal ensembles by a sensory stimulus, Damasio and Damasio's (1993) 

view of the cortical processes underlying perception and memoly involves the storage and 

subsequent reactivation of a code that contains instead, only a key. This key encodes the 

pattern of interconnections among the various participating neuronal groups involved in the 

original perception, a pattern that is later reinstated during recognition and recall. Damasio and 

Damasio (1993) base their model of large-scale distributed processing in perception and memory 

on the findings of lesion studies in humans. As an example, perception is not disrupted by 

bilateral lesions of anterior temporal or prefrontal cortices, Wile lesions in many sensory regions 

do impair perceptual integration processes. Thus, within the visual system, lesions to posterior 

regions, including the inferior occipital cortex, impair the retrieval of stimulus features such as 



color (Damasio, Yamada, Damasio, Corbett and McKee, 1980). Lesions to intermediate regions 

including the inferotemporal cortex, spare feature retrieval but can impair category level 

recognitions for items learned through vision alone (e.g., Wanington and Shallice, 1984). 

Lesions to anterior regions including bilateral medial temporal regions, nonmedial 

anterotemporal cortices, and parts of the inferotemporal cortex, impair retrieval of item level 

components, while leaving intact retrieval of features and category level components (Damasio, 

Tranel and Damasio, 1989). The authors interpret this pattern of findings as suggesting the 

existence of a hierarchy of knoAedge retrieval or access. This hierarchy is associated with a 

corresponding hierarchy of corticocortical connections Athin the feedforward chain from primary 

visual cortex to entorhinal cortex. Retrieval of more complex W e d g e  is associated with 

pathways located to~mrds the end of the f eed fmrd  chain, closest to the entorhinal cortex. 

Retrieval of more elementary or lower level m e d g e  is associated Ath connections located 

towards the start of this chain, closest to the primaly visual cortex. 

The findings of such lesion studies, the authors conclude, indicate that the integration of 

perceptual phenomena is not determined by any single cortical area. Instead, they suggest, such 

perceptual integration must involve multiple cortical areas involved in distributed processing of 

information, rather than involving processes within localized cortical regions. In turn, the authors 

propose that these large-scale netwwks are controlled by ensembles of neurons, of which they 

suggest there may be thousands. Damasio and Damasio (1993) term these ensembles 

convergence zones. 

Functionally, convergence zones are groups of control neurons whose function, Damasio 

and Damasio (1993) propose, is to organize netwwks of interconnections over a wide range of 

scales, within both cortical and subcortical regions. Such organization, they suggest, involves 

the selective strengthening of a subset of the f eed fmrd  and feedback loops, connecting 

cortical and subcortical regions, that pass through a convergence zone. These groups of control 

neurons thus coordinate the activity of multiple cortical regions, and exert an influence during 

both initial perception and subsequent recall. During perception, convergence zones encode the 

pattern of interrelations between the associated sensory regions. During recall, convergence 

zones reinstate these associations. The effect of this mechanism, the authors suggest, is to 

coordinate processes that are distributed over the large-scale netwwks that are involved in 

perception and memory. 

Neuroanatomically, convergence zones are suggested to be neuronal collectives that are 

focal points for multiple feedforward and feedback loops. Anatomical evidence for such zones 

includes the finding of large-scale divergent projections (Bressler, 1995). Examples include sites 

in the medial pulvinary nucleus of the thalamus that are found to project to multiple widespread 

cortical regions, with these cortical regions themselves being interconnected by corticocortical 



association tracts (Asanuma, Andersen and C w n ,  1985). Bressler (1995) suggests that the 

function of the pulvinar nucleus may be to prime particular sets of cortical regions, and in this 

way to facilitate communication and interaction between these regions. 

Convergence zones are thus proposed to be a mechanism for binding knowledge at 

various stages of complexity (Damasio and Damasio, 1994). In accord with the findings of lesion 

studies, low level convergence zones located in relatively posterior cortical regions function to 

bind elementary stimulus features, while higher level zones in more anterior cortical locations 

muld bind correspondingly more complex feature transformations. 

The convergence zone f r a m e W  can be compared with Finkel and Edelman's (1989) 

RCI model based on Edelman's (1989) TNGS. In terms of architecture, Damasio and Damasio's 

(1993) model emphasizes a convergencedivergence topology. In this topology, convergence 

zones are centers onto which multiple pathways converge and from which multiple pathways 

diverge. In contrast, the RCI model of perception posits intercottical mappings that are 

relatively completely and reciprocally interconnected, both hierarchically and heterarchically. A 

second point of distinction between these tvm models is that the RCI model directly addresses 

the issue of the dynamical behaviour of intercottical communication during perception. The 

convergence zone framemrk emphasizes instead the changes in functional topology of cortical 

regions, and how these changes are mediated by key neuronal ensembles during perceptual and 

memory operations. These distinctions between the tvm approaches, which to some extent 

represent orthogonal and even complementary views on perceptual and memory processes, are 

reflected in the general ways in which tests of the models could be carried out. The convergence 

zone frame&, developed in part on the basis of the results of lesion studies, m l d  appear to 

be most directly testable by means of such studies. Preexisting or experimental lesions could be 

used to verify the existence and extent of the proposed convergence zones. While the 

convergence zone framework does imply coordinated activity among multiple cortical regions 

along the f eed fmrd  and feedback paths directed by a convergence zone, the RCI model 

speaks more directly to the dynamics of intercortical communication by means of reentry. The 

RCI model w l d  correspondingly be more directly verified by studies of intercottical coherence. 

From a n e m  topological perspective however, the convergence zone framewrk is consistent 

with the view that synchronous intercortical activity is mediated by one or more pacemakers, that 

is, centers which commonly drives the oscillatory activity of multiple neuronal regions resulting in 

synchronized activity among these regions. In contrast, the RCI model muld appear to be 

relatively neutral on this issue, since architectural concerns are not the primary focus of this 

model. The RCI model rather focuses on a theoretical description of the systems level events, 

and the nature of the associated signaling, that take place during perception. Admitting the point 

that the RCI model and the convergence zone frameworks may be contrasted to only a limited 



extent, the RCI model nevertheless does not entail the concept of synchronization by means of a 

pacemaker, and in this sense might be seen to be the more parsimonious view. A contrasting 

position to the pacemaker view of intercortical association is the notion that multiple cortical 

regions can self-organize through the agency of interregional signaling, to create a larger scale 

network with the individual cortical regions engaged in mutually synchronous activity. Finkel and 

Edelman's (1989) RCI model wuld  appear to be more clearly consistent with such a view, that 

perception involves a self-organization of multiple cortical regions by means of reentry. The 

principle of cortical self-organization will form a central component of the model of perceptual 

integration that will be presented in the present study. 



4 Studies of Visual Perception 

4.1 Studies of Correlated Activity in the Visual System 

One approach to the study of visual processes is the analysis of intercorrelations 

between the activity of individual cells in avian (Gray and Singer, 1989; Gray, Konig, Engel and 

Singer, 1989) and cat (Gray and Singer, 1989; Engel, Konig, Gray and Singer, 1990) visual 

systems. 

In a prototypical study of correlational activity in the visual system, autocorrelation 

analysis of single~ell recording in area 17 of cat visual cortex has revealed that the activity at a 

high proportion of recording sites has a prominent periodic component, with a frequency in the 

gamma band, between 40 and 60 Hz (Gray, Konig, Engel and Singer, 1989). Crosscorrelation 

analysis applied to pairs of recording sites showed that approximately half of the site pairs that 

were tested showed significant levels of linear association. The study next examined the 

patterns of auto and crosscorrelation as a function of visual stimulus characteristics. A single 

long moving light bar stimulus was found to elicit oscillatory activity that was synchronous across 

individual cells within a group of cells, with particular groups of cells becoming synchronized 

depending on the orientation of the bar. This synchronization was marked by a zero relative 

phase angle, and persisted for recording sites with the same orientation preference, that were 

separated by distances of up to 7 mm in the case of two subjects. The wide separation between 

these recording sites suggested that the sites had non-overlapping receptive fields. 

Consequently, the authors hypothesized, these sites should be activated by both a single long 

moving bar, as well as by two shorter moving bars. When two shorter bars were moved in the 

same direction, correlated activity was found at the corresponding recording sites. When the two 

bars were moved in opposite directions however, the correlation disappeared. The authors 

suggest that possible neuroanatomical substrates for these correlations might be tangential 

connections within the visual cortex, or back-projections from other cortical regions. 

Furthermore, they propose that such interareal correlations may function as a mechanism to 

accomplish transient binding of stimulus features such as orientation, continuity and organization 

of motion. Such a binding process, they point out, is essential to elementary stages of visual 

analysis involved in, for example, figureground discrimination. 

While horizontal connections within the striate cortex have been suggested to mediate 

gamma band oscillations (e.g., Gray and Singer, 1989), Gilbert (1995) suggests that it is not 

clear first, whether such oscillations result in binding or segmentation, and second, whether these 

oscillations are merely an epiphenomenon. That is, gamma band oscillations and dynamic 



changes in receptive field properties may both be the result of synaptic changes within the 

horizontal connections. 

Evidence of more widely distributed coherences, among visual regions of the macaque 

monkey, were found in a study by Bressler, Coppola and Nakamura (1993). In this study the 

subjects were trained to either press or ignore a bar in response to particular visual stimuli. 

Coherences in several frequency bands ranging from 12.5 Hz to 87.5 Hz, were computed 

between signals recorded from electrodes placed in a number of regions, including striate, 

prestriate, parietal and motor cortices. In the press condition, significant increases in coherence 

were found between striate and motor areas immediately preceding and following the actual 

response, and between striate and parietal areas in the interval between stimulus onset and 

response onset. In the ignore condition the striate-motor coherence was absent, while the 

striate-parietal coherence was similar to that in the press condition. Thus, the increase in 

coherence, an indication of synchronized activity, between striate and motor regions was a 

function of whether or not a motor response was required, Mi le  the increase in striate-parietal 

coherence occurred in both conditions. The magnitude of the coherence increases was roughly 

inversely proportional to frequency: The largest increases occurred in the lowest frequency band 

centered on 12.5 Hz. This finding is consistent Ath the results of previous studies Ath humans 

that showed multi-regional coupling below 10 Hz in scalprecordings of averaged event-related 

potentials (Gevins, Morgan and Bressler, 1987). While coherence increases in the Bressler et 

at. (1993) study extended to the gamma band, there was no evidence of a relative increase in 

the gamma frequency band as had been suggested previously (e.g., Bressler, 1990). The 

authors concluded that the coherence increases were not the result of the appearance of the 

stimulus itself, but rather, appearing after stimulus onset, were the result of subjects' 

discrimination between the two different stimuli, and subsequent preparation to respond. They 

suggest that these coherence increases, appearing at multiple frequencies, reflect intercortical 

synchronization on multiple time-scales, affording cortical processing with a flexibility that m l d  

not be available were the coherence increases restricted to narrow frequency bands. They 

suggest further that the wide spatial distribution of the coherences indicates that such 

synchronization can take place between any cortical regions, and lends support to models of 

high-level functions such as perception and action that involve binding between multiple and 

wide-spread cortical regions. 

4.2 Studies of Visual Processes in Non-human Primates 

Much w r k  has been carried out in the investigation of the neuronal processes that are 

involved in object recognition and discrimination. Many of these studies have involved non- 



human subjects, notably the macaque monkey, upon Mich procedures such as singlecell 

recordings are more conveniently carried out. For this reason, some caution muld appear to be 

in order in applying these results to theorizing about human visual processes. With this caveat 

in mind, a number of studies will now be reviewed Mich bear on the questions of M a t  neuronal 

systems are involved in object recognition, and how these systems interact to produce the 

phenomenon of integrated perception. The purpose of reviewing such studies in the present 

context is twofold. First, it is to sketch out in broad terms a picture of Mich systems act in M a t  

way during visual perception, in order to suggest features that might be expected to be present in 

the results of the present study. Second, it is as to provide a point of reference for later 

discussions of the implications of the finding of the present study for the cortical dynamics 

associated with object discrimination in humans. These studies also collectively demonstrate the 

complexity of the visual system, and therefore the limited value of attempting any analysis of the 

visual system based on a reductionist approach. 

One perspective on the visual system suggests an analysis into a component involved 

with spatial properties of the stimulus and a component involved with stimulus features 

(Ungerleider and Mishkin, 1982; Mishkin, Ungerleider and Macko, 1983). According to this 

analysis, information flow within the visual system occurs within a dorsal parietal and a ventral 

temporal pathway, both originating in the primary visual cortex. The parietal pathway, directed 

towards parietal lobe components associated with spatial and motor activity, is involved in tasks 

related to the spatial location of objects in the visual field and spatial guidance of motor 

responses. The temporal pathway, directed t ~ r d s  the inferotemporal cortex, is associated with 

the analysis of visual form and pattern. Thus, the parietal pathway may be generally 

characterized as dealing with 'Mere' information regarding the stimulus, whereas the temporal 

pathway can be thought of as dealing with 'what' information. 

More recent appraisals have suggested that such an analysis may be insufficient to 

account for anatomical and functional evidence linking these pathways (Maunsell and Ferrera, 

1995). Anatomical evidence includes the finding of interconnections between the parietal and 

temporal pathways (Maunsell and Van Essen, 1983). Functional evidence includes the finding of 

extra-retinal signals in the visual cortex, related to functions such as eye position and movement 

(Anderson and Montcastle, 1983) and memory (Miyashita, 1988), suggesting that the temporal 

and parietal visual pathways may be specialized for extra-retinal signals similar to the way in 

Mich these pathways are specialized for signals of retinal origin. One study of memory effects 

in the visual system (Maunsell, Sdar, Nealey and DePriest, 1991) used a match to sample task 

A macaque monkey was presented with a sample stimulus, a visual grating with one of 4 

possible orientations, followed after a 600 to 800 ms interval by a similar test stimulus with one 

of the 4 orientations. The subject was trained to press a lever M e n  the test and sample 



orientations matched. A primary interest in this study was to determine how the cell responses 

were affected by the grating orientation for which the subject was looking. During the 

presentation of the test stimulus recordings were made from cells in V4 with receptive fields 

covered by the stimulus. While a majority of neurons responded to a particular test stimulus 

orientation irrespective of what stimulus had been presented as the sample, approximately 25% 

responded to a test stimulus orientation only when this orientation matched that of the sample 

stimulus. The authors suggest that these neurons are associated with a memory function in 

which the subject is remembering the orientation of the sample stimulus. Such cells are 

sensitive therefore, the authors propose, to the memory of a stimulus orientation, analogous to 

how the other tested cells are responding to stimulus orientation itself. In contrast neurons in 

area V1 showed relatively little effect of the orientation that the subject was seeking. The study 

next looked for evidence of spatial memory in cells in the parietal pathway, using moving dot 

patterns with 4 possible directions of motion. Cells were found that were sensitivity to direction 

of motion of the sample, but the effects were relatively weak in the middle temporal area (MT), 

and only somewhat stronger in later stages that included the medial superior temporal area 

(MST) and area 7a. Interestingly the authors found that the response of cells in area V4 of the 

temporal pathway, to direction of motion, were as strong or stronger as the response of the cells 

in the parietal pathway. Maunsell et al. (1991) concluded that the association between 

performance on behavioural tasks and particular visual areas may not be well predicted by the 

response properties of the neurons within the respective areas. In place of the 'whaihhere' 

functional distinction proposed by Ungerleider and Mishkin (1982), Maunsell and Ferrera (1995) 

suggest that a more accurate description may be one proposed by Goodale and Milner (1992): 

The temporal pathway may deal with object identification ('Mat'), M i le  the parietal pathway is 

concerned with visual guidance tasks involved Ath the guidance of visual behaviours ('how/). 

The complexity of the processing associated with visual perception is demonstrated also 

by studies shoving that feedback projections within the visual system are associated with higher 

level influences such as attention. In the macaque, for example, the receptive field of neurons in 

area V4 has been found to be sensitive to attention, Ath the size of the receptive field becoming 

restricted M e n  the animal is not attending to a stimulus (Mom and Desimone, 1985). In this 

study, it WE found that the feature specificity of cells in area V4 can also be modified by 

attention. Neurons that were sensitive to stimulus orientation when the animal was attending to 

the stimulus became insensitive to orientation when the animal was not attending. Mishkin 

(1993) points out that the dorsal and ventral visual pathways contain both feedforward and 

feedback projections, and that the feedback projections may have a function in stimulus attention 

and memory. Gilbert (1995) similarly suggests that feedback projections within the visual 

system provide an anatomical substrate for such influences, influences that may extend to the 



earliest levels of visual processing. In addition to such higher level influences on the visual 

system, Gilbert (1995) suggests that within the primary visual areas horizontal connections 

mediate higher-level effects such as context dependency. Cells within the striate cortex for 

example are interconnected by horizontal connections. Such connections, he suggests, enable 

individual cells to integrate information from extended cortical areas, and therefore from an 

extended portion of the visual field that, because of the visual topography of the striate cortex, is 

larger than the receptive field of individual neurons. Cells in the visual cortex are know to alter 

their functional specificity ~4th  changes in the sensory context within Mich a stimulus is 

presented (e.g., Kanisza, 1979). Such context dependency, Gilbert (1995) proposes, may be 

mediated by the horizontal connections within the primary visual areas. These horizontal 

connections have been found to target cells of similar functional properties such as, for example, 

orientation preference (Gilbert and Wiesel, 1989). Such findings, Gilbert (1995) suggests, call 

into question the notion of a neuronal receptive field. 

The influence on the visual system of higher level effects such as attention and memory, 

suggest Desimone, Miller, Chelaui and Lueschow (1995), is the result of feedback from the 

prefrontal cortex. Such feedback can have a priming effect on inferotemporal neurons, 

constituting a higher level influence on object recognition. The typically large number of objects 

in a visual scene requires selection processes that must function at all levels of the visual 

system. In early stages such processes involve pre-attentive functions involved with, for 

example, figureground separation, that serve to increase the saliency of anomalous shapes 

within the visual field. Complementing such relatively lowlevel processes are attentive and 

memory processes that are similarly engaged in the task of selecting subsets of the objects 

within the visual field. These memory processes consist of both automatic processes based on 

stimulus repetition that could bias a response towards novel stimuli, as well as cognitive 

processes involving W n g  memory that take part in the analysis of temporal sequences of 

stimuli. Miller, Li and Desimone (1993) investigated such memory processes in the visual 

system of a macaque monkey Ath a match to sample task similar to that used by Maunsell et al. 

(1991). Recordings were made from cells in the anteroventral portion of the inferotemporal 

cortex (IT), an area which has been associated with visual memory (e.g., Meuneir, Bachevalier, 

Mishkin and Murray, 1993). Subjects were presented repeatedly with initially novel sample 

stimuli with a different set of stimuli for each cell. Intervening stimuli were presented between 

each sample presentation. Between-trial analyses of recordings made during stimulus 

presentations revealed a number of findings. First, there was an expected response to the 

different stimuli. This finding w s  expected on the basis that cells in the IT cortex have been 

show to be responsive to stimulus features such as shape, texture and color (e.g., Tanaka, 

Saito, Fukada and Moryia, 1991). Second, in approximately one-third of the IT cells, a 



decrement in the response of the cells was found, with each successive sample presentation, 

demonstrating a familiarity effect. This response suppression effect lasted through 150 

intervening stimuli. The pattern was repeated when a second, new, sample stimulus was used. 

The authors refer to this process as an adaptive mnemonic filter, and suggest that it may 

activate orienting and attentional systems to favor novel stimuli. Desimone et al. (1995) propose 

that the memory functions within the IT may be associated with cells whose response does not 

change over presentations, while the IT neurons with declining responses may be those that 

have coded non-critical features of the stimulus. 

Miller et al. (1993) next examined short term memory effects in the anteroventral area of 

the IT cortex. In a variation of the original match to sample task, subjects were presented with a 

familiar sample stimulus, followed by from 1 to 6 test stimuli. Cell responses during the 

presentation of the final test stimulus showed a clear distinction between the case when the test 

stimulus matched or did not match the sample stimulus. Responses to matching test stimuli was 

suppressed relative to the responses for non-matching stimuli, even with 5 intervening stimuli 

corresponding to an interval of several seconds. This response suppression w found for 

approximately half of the tested cells. All tested cells showed a response preference related to 

stimulus features. The rapidity of these suppression effects, which occurred within 80 ms of 

stimulus onset, the authors claim argues against the cause being feedback from other areas, but 

suggests rather that a sensitivity to repetition may be intrinsic to the visual system. 

The findings of a related study (Miller and Desimone, 1994) suggest that these memory 

effects are not due to lowlevel comparison processes, since similar effects were found when test 

items are presented in a different size or location on the retina (Lueschow, Miller and Desimone, 

1993). Miller and Desimone (1994) addressed the question of whether the match suppression 

might be due to a voluntary, working memory process, or an automatic repetition detector. The 

paradigm in this study included trials presented as in the Miller et al. (1993) study, along with 

trials in which, as well as a possible match between sample and test stimuli, there might occur a 

match between test stimuli within a trial. If the response suppression mechanism involved a 

voluntary memory mechanism, then response suppression should be observed only for test 

stimuli that matched the sample and not to test stimuli that matched other test stimuli. If on the 

other hand response suppression is the result of a repetition sensitivity within the IT cortex then 

suppression should occur in both cases. As before subjects were trained to respond to matches 

between the sample and the final test stimulus. Responses were found to be equally well 

suppressed for both a match to sample and a match to an irrelevant test stimulus, supporting the 

view that the response suppression mechanism involves a sensitivity to repetition. However, a 

portion of the cells that showed significant memory effects were sensitive to fmtches to sample 

stimuli, but not to matches to test stimuli. 



Together, these findings indicate the existence of two short-term memory systems in the 

anteroventral regions of the IT cortex, suggest Miller and Desimone (1994), an automatic 

repetition-sensitive mechanism and a voluntary working memory system. The authors propose 

that this working memory might depend on priming of IT neurons by ventral pre-frontal cortex, 

with Mich the IT cortex is substantially interconnected. Evidence in support of this suggestion 

includes the findings of lesion studies shMng consequent performance decrements on matching 

to sample tasks (e.g., Mishkin and Manning, 1978). 

In summary, the results of these behavioural studies V4th macaque monkeys indicate the 

existence of two short-term memory processes in the visual system, a mechanism sensitive to 

stimulus repetition effects and involved in orienting to novel stimuli, and a process involved with 

maintaining in short ternmemory a representation of an attetxled-to object in the visual field. 

4.3 Generalizing to Humans 

There appear to be a number of reasons why the results of studies such as many of 

those cited above, that base their findings on vmk with non-human subjects, may only with 

limitations be generalized to humans. 

First, studies of object discrimination using non-human subjects w l d  in large part seem 

to make use of a single modality, involving primarily an analysis of the visual features of the 

object. In contrast, visual discrimination in humans can be relatively more complex. Both visual 

and auditory modalities can be involved, since humans have the option of making use of 

language related processes. Object discrimination by humans can involve a naming process, 

the retrieval of a label, along Ath an analysis of visual features. Furthermore, these modalities 

may interact. Auditory contextual cues for example can modify the processing of visual cues. 

The ubiquitous presence of interconnections between cortical areas in general and bebeen 

primary sensory areas in particular at least provides a substrate for such interactions to occur. 

Second, investigations of object discrimination processes can not reasonably be carried 

out in an intentional vacwm. For completeness sake, an analysis of the neuronal processes 

associated V4th object discrimination should entail consideration of the purpose for Mich the 

discrimination is occurring. In studies with human subjects, the manifold purposes associated 

with object discrimination in the real w d d  devolve primarily, although not exclusively, into the 

relatively simple goals associated with complying V4th experimental instructions. These goals, 

whatever their specific nature may be, can in no way be compared with those of non-human 

subjects, and in particular in view of the paradigms necessitated by single cell recordings. These 

different higher level influences such as intention on visual perception should be reflected in 

corresponding differences in neural activity. In both human and non-human subjects the effects 



of higher-level influences such as attention and memory on discrimination processes have been 

demonstrated. There wuld not appear to be any principled reason why these influences should 

not include the effects of factors such as intention, the goal or purpose for which the 

discrimination is occurring. It seems reasonable to conclude, on the basis of these factors, that 

caution should be exercised in generalizing from non-human to human subjects. 

4.4 Studies of Human Visual Processes 

One finding from studies of visual perception in non-human subjects that does appear to 

be applicable to human visual processes is the functional specialization of the visual system into 

featural and spatial processing systems. Evidence for a dorsal-ventral dichotomy in human 

visual systems has been found in both lesion studies, as well as in a series of functional imaging 

studies involving measurement of cerebral Mood flow using tracer compounds labeled with 

radioactive isotopes. 

An example of a lesion study involved ~VUO groups of patients, undergoing either left or 

right anterior temporal lobectomy (Hermann and Seidenberg, 1993). Patients were administered 

object recognition task involving face recognition, and spatial localization tasks involving line 

orientation. The patients performed the tasks immediately after the operations, and after an 

interval of 6 months. On both sets of tests a dissociation w s  found in patients' performance on 

the bm types of tasks. Patients demonstrated a significant loss in facial recognition ability, while 

gaining a concomitant improvement in line orientation performance. This pattern of performance 

was found to be similar for both groups of patients, those who had undergone the left and the 

right anterior temporal lobectomies. The results show deafly that the anterior temporal 

lobectomy had a specific effect on the object recognition system within the occipitotemporal 

region, while leaving the spatial perception system in the occipitoparietal region relatively 

unaffected. 

A lesion study by Newmbe and Ratcliffe (1987) made use of both case and 

postmortem data on 2 male subjects M o  had suffered brain trauma as young adults. Case 1 was 

injured at age 31 and died at age 70. Damage had occurred in the midsection of the right 

rolandic region, and the patient had scotomata in the left visual field. Case 1 was unable to 

perform cube counting and maze learning tasks but was able to recognize familiar faces and to 

perceive shadowed faces. Case 2 ws injured at age 29 and died at age 50. Damage had 

occurred in the right temporal lobe, and the patient had visual impairment of the left upper 

quadrant of the visual field. Postmortem examination revealed a cyst in the right temporal lobe. 

In contrast ~ 4 t h  case 1, case 2 was able to perform cubecounting and maze-learning tasks but 

was unable to recognize familiar faces or to perceive shadowed faces, a reversal of the 



visual system into dorsal and ventral components. Case 1 suffered damage to the rolandic 

region involving the parietal lobe, and thus areas associated with the dorsal visual pathway, and 

nevertheless was able to perform effectively on object recognition tasks, but not on spatial 

perception tasks such as maze learning. Case 2 on the other hand, suffered damage to the right 

temporal lobe, a region associated with the ventral visual pathway, and was able to perform the 

spatial perception tasks and unable to perform the object recognition tasks. 

A study using measurements of regional cerebral blood flow (rCBF) found that during a 

spatial task involving dot-location matching an increase in blood flow occurred in the lateral 

occipital and superior parietal cortical regions. Correspondingly, during a face matching task, a 

task involving featural rather than spatial properties of a stimulus, an increase in blood flow 

occurred within a zone including the lateral occipital and posterior temporal cortices (Haxby, 

Grady, H d t z ,  Ungerleider, Mishkin, Carson, Herscovitch, Schapiro and Rapport, 1991). 

Haxby and Howitz (1994) canied out measurements of changes in rCBF by positron 

emission tomography, while subjects performed dot location and face matching tasks. The 

spatial task was associated with selective rCBF increases in dorsal occipital, superior parietal, 

and intraparietal sulws cortex bilaterally and in dorsal right premotor cortex. In contrast the 

shape analysis task was associated with selective rCBF increases in the fusiform gyms in 

occipital and occipitotemporal cortex bilaterally and in a right prefrontal area in the inferior frontal 

gyms. Concurrently, decreases in rCBF were seen during both tasks, in auditory, auditory 

association, somatosenmy, and midcingulate cortices. 

Correlations between the values of normalized regional cerebral Mood flow (rCBF) within 

several cortical regions were found in a study by H m t z ,  Grady, Haxby, Schapiro, Rapport, 

Ungerleider and Mishkin (1992) using a spatial dot location task and a shape analysis face 

matching task During both types of tasks significant correlations were found betwen the 

changes in rCBF in the right hemisphere in an extrastriate occipital region, and in an inferior 

occipitotemporal area. The rCBF value in the extrastriate occipital region was similar in both 

types of tasks. The value of rCBF in the inferior occipitotemporal region however was higher 

during the face-matching task than during the dot-locat'lon matching task, supporting the view 

that the functional specialization of the inferotemporal region includes a sensitivity to object 

featural properties. 

A study exploring age-related changes of the dorsal-ventral visual system dichotomy 

was carried out by Grady and Haxby (1992). In order to measure rCBF, positron emission 

tomographic scans were performed on subjects in two age groups, a young group, with a mean 

age 27 years, and an old group, with a mean age of 72 years. Subjects were asked to perform 

an object perception task that involved face matching, and a spatial perception task that involved 



dot-location matching. Both age groups showed increases in rCBF values in occipitotemporal 

cortex during the object perception task, and in the superior parietal cortex during dot-location 

matching task Interestingly, the old subject group showed higher levels of rCBF in both regions, 

during both types of tasks, than did the young subject group. 

A cognitive behavioural study similarly found evidence in support of the object-spatial 

system dichotomy (Tresch and Sinnamon, 1993), by demonstrating selective interference 

betwen tasks associated with the WAY visual systems. A spatial perception task involved having 

subjects remember the location of a dot, while an object recognition task involved remembering 

the form of an object. Performance on the spatial memory task was found to be impaired when 

subjects were engaged in a second spatial task involving movement perception, but not when 

subjects were asked to perform an object recognition task Correspondingly, performance on the 

object recognition task vms impaired by a second task in this same category that involved 

discrimination, but not by a task involving spatial perception. 

The findings of lesion, rCBF and cognitive studies all support the notion that human 

visual systems, like those of non-human primates, can be usefully factored into two components: 

a dorsal occipito-parietal system supporting spatial perception and a ventral occipito- 

inferotemporal system supporting feature perception. 

The reviewed studies have generally made use of relatively elementary visual 

perception tasks. A study using a more complex visual task looked at whether a difference in 

scalp potential could be found corresponding to the difference betmen a self-generated mental 

image, and a mental image generated from a prior perception (Petsche, Lacroix, Lindner, 

Rappelsberger and Schmidt-Henrich, 1992). EEG amplitude and coherence were measured in 

WAY conditions, visualization of an abstract concept and visualization of a painting. In one task, 

subjects were asked to generate a mental image corresponding to an abstract concept, a task 

expected to involve thinking with images. In a second task subjects were asked to interpret a 

painting which they had previewed before the EEG recording session. This second task m s  

expected to engage thinking with language. EEG recordings were analyzed in terms of theta (4 

to 7.5 Hz), alpha (8 to 12.5 Hz), beta (13 to 18 Hz), beta 2 (18.5 to 24 Hz) and beta 3 (24.5 to 

31.5 Hz) frequency bands, using measures of amplitude and coherence. A complex pattern of 

amplitude and coherence changes was found. In the abstrad visualization task, amplitude 

decreases were found in all bands, at almost all electrode locations. Coherence increases 

included the left frontal and central regions in the beta 2 band, and right frontal, central, and 

temporal areas in the beta 3 band. Coherence decreases included the right frontal and temporal 

areas in the theta and alpha bands. In the painting interpretation task, amplitude decreases were 

found in the left hemisphere in the beta band, and in posterior regions in the beta 3 band. 

Coherence increases included the left frontal, central, temporal and parietal areas in the theta 



band, the left central area in the alpha band, and left frontal areas in the beta bands. Coherence 

decreases included the right anterior region in the alpha band, and the right posterior area in the 

beta ranges. These results indicated that the differences in mental processes associated Ath 

selfgenerated and perceptually-inspired mental images, were reflected most consistently in 

electrical changes over the frontal regions. The authors concluded that mental imagery involves 

connections between multiple brain regions, and conclude generally that creative, mental activity 

appears to be reflected in amplitude and coherence changes of the EEG between multiple 

cortical regions. 

Rappelsberger and Petsche (1988) similarly found that interregional coherence w s  

affected by a visualization task, mental rotation of a cube. Subjects, 13 male and 18 female 

right-handers, were s h m  a cube which they were then asked to visualize rotating. A pattern of 

coherences w s  found that involved multiple cortical areas. Theta band coherence increases 

were found in right parietal and right temporo-occipital areas in males, and in the left hemisphere 

in females. Alpha band coherence decreases were found in the left occipital region in males and 

in bilateral occipital areas in females. Beta band coherence increases occurred in right parietal 

and left temporo-occipital areas in males, and in left parietal areas and right temporooccipital 

areas in females. Coherence increases were found in all bands between left and right parietal 

areas in both males and females. The authors propose that degree of coherence between 

different brain areas may be related to functional couplings between these areas. In support of 

this view, Bust and Galbraith (1975) found that inter-fegional coherence w s  directly related to 

the density of connections between the regions. 

The results of these studies by PetSche et al. (1992) and Rappelsberger and Petsche 

(1988) have demonstrated that the dynamics of the neural processes undedying perceptual and 

cognitive tasks are reflected in changes in the pattern of correlations in the activity between 

multiple and Ade-spread cortical areas. 

4.5 Sbuctures and Sensitivities in the Visual Sysbm 

The association between behaviour involving object recognition and the occipital and 

temporal areas is supported by t w , ~  lines of evidence, ablation studies and single cell recordings. 

On the one hand, profound deficits on visual discrimination and recognition tasks has been 

shorn to result from ablation of the bilateral anterior IT cortex (e.g., Ungerleider and Mishkin, 

1982), and of area V4 (e.g., Schiller and Lee, 1991). On the other hand, populations of cells in 

the IT cortex have been found to be sensitive to shape discrimination. Cells in the anterior IT 

cortex have been  show^ to more sensitive to moderately complex shapes rather than to simple 

features. Such cells, for example, have been s h m  to respond to hand-like shapes (Gross, 



Rocha-Miranda and Bender, 1972), faces (Young and Yamane, 1992), and complex shapes not 

corresponding to familiar objects (Fujita, Tanaka, Ito and Cheng, 1992), as well as to be widely 

invariant to stimulus features such as position, size and color (e.g., Desimone, Albright, Gross 

and Bruce, 1984). 

Young (1995) suggests that an adequate analysis of visual pathways should involve 

consideration of the high degree of interconnectivity between the parietal and inferotemporal 

pathways. An analysis by Felleman and Van Essen (1991) for example shows that the visual 

system contains at least 32 systems interconnected by over 300 pathways. This analysis 

concentrates on connections and areas in which the connections terminate: the connections are 

considered to be ascending or descending depending on whether the connections terminate in 

cell-rich or cell-poor areas respectively. The result is necessarily a unidimensional hierarchical 

arrangement for the visual system, suggests Young (1992), that does not take into account the 

possibility of non-hierarchical configurations such as connections between the parietal and 

occipito-temporal streams. A topological analysis sensitive to such multidimensional 

configurations conducted by Young and Scannell (1993) found that the occipitotemporal regions 

comprise a hierarchical organization distinct from the dorsal pathway, a structural distinction 

consistent with the functional dichotomy proposed by Ungerleider and Mishkin (1982). 

At the same time Young (1995) suggests that a more complete analysis muld need to 

consider connections between these two visual pathways, as well as between these paths and 

other cortical areas. Evidence supporting such connections includes the presence, within the 

occipito-temporal stream, of a discontinuity between anterior and posterior IT cortex (Tanaka et 

al., 1991). The posterior IT is characterized by small receptive fields and a sensitivity to simple 

features, Mi le  the anterior IT is marked by relatively large receptive fields, and cells that are 

preferentially sensitive to more complex features. This discontinuity, Ywng (1995) proposes, 

suggests the presence of elaborate callosal connections at the anterior IT. Further, the existence 

of the many interconnections between the IT and parietal pathways suggests that the dorsal 

stream may have functions more extensive than simply foveation. On the other hand signaling 

into the IT regions involves inputs from many areas, such as the limbic system, in which lesions 

have been s h m  to result in discrimination and recognition deficits (Mishkin and Appenzeller, 

1987). 

While cells of the anterior IT cortex have been shown to respond to complex shapes 

such as hands and faces, a question remains as to what shape elements such cells are sensitive. 

Fujita et al. (1992) found that cells in the IT cortex are organized into modules, each of which is 

sensitive to a particular pattern element. These elements are suggested to form a set of basis 

functions into which more complex visual shapes can be analyzed. Fujita et al. (1992) estimate 

the number of such modules to be on the order of 1000, with a resulting very large number of 



possible combinations available to represent real-world objects. The response of such modules 

to real-wid objects w l d  be a population response, by a collection of cells within these 

mdules. Interestingly, Tanaka et al. (1991) showed that such cells may respond on an 

exclusive-or basis. Cells which for example respond to a T-shape may not respond when the T 

is presented in combination with other elements, such as for example within a cross shape. 

Thus, Such cells may respond to the simultaneous occurrence of one feature and the absence of 

a second feature. It may also be possible, in this example, that a crosssensitive cell exists that 

inhibits the response of the T-sensitive cell. such findings serve to underscore the complexity of 

recognition processes, and the limits of present knowledge about recognition mechanisms in the 

visual system. 

Such evidence illustrating the complexity of the visual system suggests that a 

reductionist approach to vision may not be appropriate. Van Essen and DeYoe (1995) propose 

that the visual system consists of parallel processing streams, with a divergingaverging 

architecture. In their view, the visual system consists of multiple concurrently-operating streams. 

These streams, extending the length of the visual system from the retina to the anterior areas of 

the inferotemporal cortex, may in some locations condense into local netwwks of relatively fewer 

paths. At other locations these streams may expand into networks of relatively greater numbers 

of paths, with multiple feedback paths throughout the system. This topography is suggestive of 

the convergence zone framewwk proposed by Damasio and Damasio (1993). The overall 

perspective then, is that elementary visual cues and their resulting transformed intermediate 

products interact within the visual system in creating relatively high level results such as motion, 

form and depth. In their view, cues such as velocity, binocular disparity and orientation all 

contribute to streams that cany out analyses of motion, form and depth. Van Essen and Deyoe 

(1995) base their view on anatomical data, such as the finding of approximately 30 distinct areas 

within the macaque visual system, with on the order of 10 inputs and 10 outputs to each area 

(Felleman and Van Essen, 1991). Such interconnections, they point out, are generally arranged 

in reciprocal pairs, arguing against simple hierarchical models of visual processing. On the basis 

of the finding that the connections within such pairs terminate in different cortical layers, such 

reciprocal pairs have been identified as corresponding to foll~ard and backward projections. 

Together, such findings allow the visual areas to be arranged into a network with a high degree 

of interconnectedness and complexity. 

4.6 Summary and Conclusions 

The findings of the studies reviewed in the previous section have underscored the 

complexity of the visual system. This complexity is demonstrated, for example, by the profuse 



feedback projections within the visual system that have been suggested to be involved in higher- 

level influences on visual perception. These influences include attentional effects (Mishkin, 

1993; Gilbert, 1995), a notion that is supported by the findings of attentional influences on the 

n?ceptive field of neurons in V4 (Moran and Desimone, 1985). In turn, attentional effects have 

been suggested to be indistinguishable from memory effects within the visual system (Desimone 

et al., 1995; Miller et al., 1993). The effects of still more ide-ranging feedback influences on 

the visual system have been fwnd in studies demonstrating the effects of prefrontal cortex on 

the ventral visual pathway, providing a mechanism for multiple memory systems within the 

inferotemporal cortex (Miller and Desimone, 1994). Along with feedback projections, horizontal 

interconnections within the primary visual cortex have been suggested to be involved in other 

higher level effects in the primary visual areas, as context dependency and feature 

integration (Gilbert and Wiesel, 1989; Gilbert, 1995). 

The clarity of the analysis of the visual system into a what-where dichotomy itself has 

been questioned (Young, 1995) on the basis several lines of evidence. These includes the 

complex neuroanatomy of, and the profuse interconnections betwen the twu pathways 

(Maunsell and Van Essen, 1983; Felleman and Van Essen, 1991), the finding of extrastriate 

signals vlvithin these areas related to higher level effects such as attention and memory (Maunsell 

et al., 1 991), the complex cell responses found in the inferotemporal cortex (Fujita et al., 1992; 

Tanaka et al., 1991; Young, 1992), and functional and anatomical discontinuities within the 

inferotemporal cortex (Tanaka et al., 1991). SIJ& led Maunsell et al. (1991) to 

suggest that the Mathhere functional description for the ventraldorsal dichotomy be replaced 

with a higher level description invdving an objed identificatiokspatial guidance distinction. 

Together, such findings suggest that a reductionist approah to the problem of object 

recognition may not be appropriate in view of the complexity of the interactions within and 

betmen the different areas of the visual system. Thus, it may f~ot  be possible, M e n  discussing 

a relatively higher level and more complex visual processes in organisms such as humans, to 

associate these processes with limited areas of the brain. Rather it appears appropriate to 

suggest that in humans visual perception, Mi le  invdving the inferntemporal cortex along with 

the primary sensory areas of the occipital cortex, can be expected to critically engage as ~ 1 1  

other areas, such as central and frontal cortices. 



5 A Model of Neural Processes in Object Discrimination 

The description presented here of the neural events which underlie object discrimination 

emphasizes the importance of the structure and time-evolution of interregional associations in 

the process of perception. It is proposed that the complex of neural events associated with 

visual discrimination can be usefully parsed into a model involving 3 interacting, and 

concurrently operating, functions: 

(1) feature discrimination, a stimulus driven process in which elementary features of the central 

representation of a visual image are identified on the basis of characteristics such as lines, 

forms, edges and colors. 

(2) feature binding, a process in which the elementary visual features that have been identified 

then undergo binding and transformation resulting in feature ensembles of increased 

complexity and dimensionality. This process of feature binding is guided by past learning, in 

the form of memory templates, based for example on the temporal or spatial cooccurence of 

visual elements. 

(3) matching or association, a model driven process in which features or feature ensembles over 

a range of scales of complexity are compared with existing memory templates. At the lowest 

levels of complexity such matching w l d  occur between the central representation of 

elementary visual features and hard-wired representations in the visual system, and can 

therefore be identified with the feature discrimination described in (1). At higher levels, 

feature ensembles w l d  be matched with correspondingly more complex memory templates 

that have been created through interactions between the individual and the environment that 

begin in eady stages of ontogenesis and continue throughout the life of the organism. At 

these higher levels, this matching process can be identified with the feature binding described 

in (2). 

Functions (1) and (2) thus represent points on a continuum rather than essentially unique 

operations, points that differ essentially in the complexity of the information packet being 

matched with existing memory templates. Furthermore, the carrying out of these functions might 

in turn involve multiple simultaneous operations that occur in parallel, a notion that is supported 

by the parallelism inherent in intracortical and intercortical signaling pathways. In the lower- 

level analyses of visual features for example, the retinotopic mapping of visual features within 

the primary visual areas allows analysis of elementary features in parallel. Demonstrations of 



elementary feature analysis within the primary visual areas date from the wrk of Hubel and 

Wiesel (1962, 1968) who found that within the primary visual areas information corresponding to 

visual stimuli is analyzed in terms of relatively local visual elements such as edges and oriented 

lines. At higher levels, the feature binding process might analogously involve the creation of 

multiple simultaneous, and to some extent orthogonal transformations, each of which wuld  then 

be available for comparison with existing memory templates. At all levels of complexity 

therefore, the comparison or association process might involve the simultaneous, parallel 

examination of a large population of associations. 

According to the model, there is not expected to be a clear distinction bemen the 

particular cortical systems associated with these three functions, in terms of the type of 

processing that is canied out. Specifically, there are not expected to be cortical systems 

dedicated exclusively to performing on the one hand the functions of elementary feature analysis 

and feature transformation, and on the other hand memoty matching. Rather it is suggested that 

the memory matching function is an operation that is inherent in the n e u m l  structures canying 

out feature identification and feature or feature ensemble transformation. Thus, the cells and 

neuronal groups in regions extending from the primary visual areas to the anterior inferotemporal 

cortex that have show sensitivities to features ranging in complexity from relatively simple to 

relatively complex respectively, can be considered, in this sense, to have encoded memories 

corresponding to such features and feature constellations, over time and as a result of 

interactions with the environment, or in the case of elementary visual elements, as result of 

genetic inheritance. 

It is proposed then, that image feature analysis and transformation and memory 

matching occur within the same n e u m l  region, for any given range of feature complexity, and 

that the relative extent of the cortical areas that are involved in these operations is dependent on 

the complexity of the information being processed. The more complex the information being 

processed the larger the extent of the associated cortical regions. It is proposed that su~~essful 

discrimination of visually complex depictions of real-wwld target objects embedded in a visually 

camouflaging matrix w i l l  eventually involve most cortical regions, including occipital, temporal, 

frontal and central. The three functions that have been proposed as components of the process 

of object discrimination are therefore suggested to represent functional rather than structural 

distinctions. Thus, for example, the operation of feature analysis might closely depend on 

finding a match in memory for a particular feature or group of features. In this broad concept of 

memory, the particular cells that have been demonstrated to have particular sensitivities, such 

as to elementary visual features in the primary visual cortex (Hubel and Wiesel, 19621, and to 

hands, faces, and other complex shapes in the anterior inferoternporal cortex (e.g., FuJita et al., 

1992), can be considered to owe this sensitivity to the nehwk of interconnections involving 



these cells with some associated cell population. Again, such a network can be though of as 

having encoded information about such stimulus features either through developmental 

experience, or as a result of geneticallyguided wiring. ~ l l  three of the processes proposed to be 

involved in object discrimination wuld  thus occur within the primary visual areas for relatively 

simple features, within the primary visual areas together with inferotemporal regions for more 

complex feature ensembles, and within these areas together ~ t h  frontal cortical regions for still 

more complex and higherdimensional transformations of the image elements. 

Importantly, it is proposed that during visual recognition this set of processes does not in 

general occur as a single-pass sequence, but rather, that visual discrimination of complex real- 

wr ld  objects typically involves multiple iterations of the three functions. Furthermore, when the 

eventual O~COme is successful discrimination, these multiple iterations will involve over time 

successively larger cortical areas, as increasingly more complex image feature transformations 

are involved. Thus, it is presently proposed that visual discrimination can involve repeated 

iterations of the processes of elementary feature identification, feature binding or transformation, 

and ensemble matching or association. 

TO illustrate, discrimination of a relatively simple target object from a visual background 

might first involve identification of elements of the image such as lines, edges and simple 

shapes in a process that wwld essentially invdve matching these visual ekments with existing 

memory templates. These templates wid be encoded as to elementary features 

within early visual cortical regions. once such relatively lowlevel matches have occurred, and 

correspondingly the elementary visual features have been identified, the features mould then be 

available to be bound together by being transformed to form more complex feature ensembles in 

a following iteration. As a part of this transformation, such feature ensembles m l d  be matched 

with prior learning, that is, with pre-existing memory templates encoded as sensitivities to more 

complex feature constellations. The existence of sum relatively wt'nplex feature sensitivities 

has been hypothesized by Fujita et al. (1992), W o  suggest that the inferotemporal cortex may 

contain regions sensitive to pattern partials that could as basis functions, combinations of 

which could then be assembled to create sensitivities to arbitrarily complex visual stimuli (Perrett 

and Oram, 1993). Successful visual discrimination will occur when this sequence of events 

results in a match in an iteration corresponding to a level of complexity of the feature ensembles 

that wu ld  be determined by a higher-level influence, such as the goal of the dscrimination task. 

Thus, if the goal is to detect simple line segments the iterations w ~ l l d  terminate at a relatively 

early iteration, corresponding to a relatively dimensionally simple feature efwmble. If howver 

the goal is to detect a more complex shape then the iterations wu ld  Proceed until a 

correspondingly more complex feature ensembles were created. If, within a given iteration, a 

sufficiently accurate match does not occur, then a subsequent iteration fhould take place. The 



results of the first iteration might in some way be able to modify the component processes in the 

second iteration in such a way that the probability of success on the next iteration is increased. 

This next iteration could involve a re-analysis of the image for a new set of features that could 

then be used to create new feature ensembles. Alternatively, the next iteration could involve a 

re-transformation of the existing features to form new ensembles. Once again, the resulting 

features and feature ensembles would be available for matching with memory templates. 

Successful discrimination would result, if, over some number of iterations of this sequence, a 

match occurs between the feature ensembles and a pre-existing representation in memory. 

For the purpose of a more concrete illustration, imagine that the task is to view a 

monochromatic image composed of short, nonlinear line segments, within which is embedded a 

disjointed circle formed of similar short and nonlinear line segments. Such an image was used 

by Ullman and Shashua (1988) in their computational model of object discrimination. When 

initially viewd, this image w l d  trigger the discrimination process through which the individual 

line segments are detected and separated from the background. The discriminated line 

segments w l d  then be available to the transformation and binding operation. Through this 

operation, the various informational dimensions of the image elements, including elementary 

dimensions such as shape and length, as wll as higher order dimensions such as distributions of 

shape and length over the image, wwld be combined through some transformational function to 

form a feature ensemble. The feature ensemble w l d  then be matched against pre-existing 

memory templates. This ensemble w l d  represent a particular topographic organization of the 

elementary image features, such as for example, a complex curve. If the feature ensemble 

representing this complex curve did not find a matching memory template, a subsequent 

iteration wwld take place. This next iteration might invdve further transformations of the 

existing feature ensembles to create more complex feature bundles. If at some stage of these 

iterations, determined by influences from higher level regions, a successful match with a 

memory template did not occur, then a following iteration might invdve a resetting of this 

process, Mth again a re-transformation of the elementary image features into one or more novel 

feature ensembles. A new round of iterations of the transformational binding function would 

occur, again creating a sequence of successively more complex feature ensembles for matching 

with existing memory templates. Target discrimination w l d  occur when the result of these 

iterations a s  eventually a successful match between a feature ensemble and an existing 

memory template. 

More extensive versions of this sequence of events v4ll occur when the discrimination 

task is sufficiently challenging. In the scenario described above, the image features are 

transformed and bound into a single feature ensemble. Instead, in each iteration a population of 

ensembles might be created, each of which contains a to some degree orthogonal transformation 



of the original elementary features. This population wuld then be matched in parallel against a 

corresponding population of memory templates. The transformation products, the feature 

ensembles, of any one such iteration would then be selected on the basis of the goodness of the 

match between the ensembles and corresponding memory templates. Those feature ensembles 

that are able to make a sufficiently good match would then survive to the next iteration, to the 

next round of transformation and matching. Computational models of such processes exist, 

generally subsumed under the rubric of genetic algorithms. Approaches based on genetic 

algorithms, in which a population of transformations is evolved over some number of 

generations, have been s h ~  to be capable of searching complex problem spaces with an 

efficiency that can surpass that of more traditional search methods used in the application of 

distributed network models, such as for example gradient descent methods (Goldberg, 1989; 

Holland, 1975). 

In order for this evolutionary component of the proposed description of neuronal 

processes underlying object discrimination to make such a description a more economical one, 

two general conditions must be met. First, the task to be accomplished, in this case the 

generation of a feature ensemble that is able to find a match with an existing memory template, 

should be one which presents multiple competing, but only partially correct, solutions. Such 

tasks are referred to as having a solution space containing multiple local minima. Object 

discrimination would appear to be a clear example of such a task, in view of the large number of 

possible topographical configurations that are possible with even a modest set of elementary 

visual features. That is, even a relatively small number of features such as simple lines, 

orientation, and colors can interact to form a relatively large number of more complex shapes. 

Each of these shapes would represent a possible outcome of the transformational process, vrhile 

only a small subset m l d  succeed in finding a match in memory. Second, the substrate 

available to cany out the evolutionary program should be capable of massively parallel 

operations. This second condition would also appear to be wII satisfied, by the high degree of 

intemnectedness both within and between neuronal regions. 

What then are some possible mechanisms that could direct the process of 

transformation through which feature ensembles are created. Three possibilities are presented. 

The first possibility is that feature ensemble formation might be guided by internal 

heuristics that have evolved through environmental interactions. Such a heuristic might for 

example be based on the temporal or spatial cooccurrence of features. 

The second possibility is that the process of creating new transformations might be 

guided by the results of the previous iteration. Thus the previous iteration would result in some 

set of indices that would encode the characteristics of the mismatch or mismatches between 

feature ensembles and prior learning. These indices would then be available to serve as a 



correction or feedback signal that would cany information required to correct the previous 

transformation step, and possibly even the initial image segmentation step. 

This correction process is reminiscent of gradientdescent methods, such as the back- 

propagation algorithm, that have been developed to allow training to occur in neural netvrorks, 

the computational models of biological neuronal networks. In contrast with the original back- 

propagation algorithm which required non-local information in order to iteratively update the 

values of the analogs of synaptic strengths, versions have been developed that not only use only 

strictly local information in computing a synaptic strength update, but also are more flexible in 

that the node transfer function, the input-output characteristic of a neuron analog, is made an 

attribute of each node and thus can vary from node to node (e.g., Fausett, 1990). The question 

of how well or badly such computational models represent neural processes is not addressed 

here. Pertinent to the present discussion is that such models nevertheless do succeed in 

demonstrating flexible learning characteristics on the basis of only local information at each step 

of the learning process. 

What is required of such schemes however is that a correction or feedback signal be 

able to propagate back from a comparison stage, in which the actual and target outcomes are 

compared and a measure of the difference between the two is computed, t ~ r d s  intermediate 

and initial stages of analysis. This requirement for a feedback path in neural systems wwld 

appear to be well met by the numerous and ubiquitous back projections between and within all 

cortical regions. More specifically, in the present context of visual object perception, the 

occipitotemporal pathmy proposed by Ungedeider and Mishkh (1982) as a neural system for 

object discrimination, contains extensive f eed fmrd  and feedback connections between the 

primary visual areas of the occipital cortex, and the inferotemporal (IT) cortex. Further, as 

Desimone et al. (1995) point out, based on memory priming studies in monkeys (Miller and 

Desimone, 1994), extensive connections exist between the prefrontal and IT cortices. Such 

connections, they suggest, may serve to prime the inferotemporal cortex, and thus fundion as a 

higher-level influence on the visual analytic functions canied out in the IT cortices. 

A third possible mechanism by which the process of ensemble creation could be directed 

is energy relaxation. The direction taken by the transformations that create feature ensembles 

m l d  be one which, over the course of successive iterations, would tend to minimize the level of 

energy within the associated neuronal system. The mechanism of energy relaxation is discussed 

in the last Unit of this work In brief, it is proposed that the iterative process of feature 

transformation and binding is subserved by a self-organization of the pattern of in terd ica l  

signaling, a self-organization which has the effect of minimizing both the information content 

dthin the neuronal system involved in the discrimination process, that is the information required 

to describe the corresponding state of the system, and the level of energy within the neuronal 



system. It is proposed that the more organized the configuration of intercortical signaling, the 

less energy is required to maintain this configuration, on the straightforward basis that an 

element of signaling should require some increment of energy to cany out. 

The three possible mechanisms proposed as directors of the process of ensemble 

formation, learned heuristics, corrections by one iteration of the subsequent iteration, and energy 

relaxation, are not presented as mutually exclusive possibilities. Thus, the nature of the 

correction to the direction taken by one iteration by the results of a previous iteration can be 

thought of as decreasing the level of system energy. Both of these mechanisms operating in 

concert in this way may in turn, at least to some extent, invdve a learning process in which 

components of these mechanisms muld develop over the course of ontogenesis as a result of 

interactions between the individual and the environment. Furthermore, one m y  in which 

guidance for the direction taken by the feature transformations might be transferred from one 

iteration to the next is by means of a genetic algorithmic mechanism as described above, in 

which a process of selection operates on a population of transformation products, based on the 

degree of match between a feature ensemble and a corresponding memoty template. In turn, 

the degree of match between a feature ensemble and a memory template might be related to the 

energy level of the associated neuronal systems. Thus, it is suggested, the level of energy 

required to maintain an interregional signaling configuration corresponding to some degree of 

match between an ensemble and a memoty template w l d  be inversely proportional to the 

degree of match. The better the match, the less energy that w l d  be required to maintain the 

corresponding interregional signaling configuration. 

To summarize this description of the neuronal processes undedying visual 

discrimination, it is proposed that progressively, over a short interval of time prior to 

discrimination, an increasing proportion of the brain engages in cooperative activity. This 

activity can be characterized as a cortical self-organization in which the interchange of 

increasingly complex information occurs in successive iterations that continue until 

discrimination has been achieved. These iterations invdve operations that can be parsed, it is 

proposed, into a set of functions consisting of (1) feature analysis, a stimulus-driven process, in 

which elements of the image are identified; (2) feature binding, a process through which visual 

elements or lowr-level feature ensembles are transformed into higher level ensembles; and (3) 

memory matching, as existing memory templates are successively approximated in terms of the 

feature ensembles. It is suggested that these 3 functions represent only functional divisions of 

the neuronal processes that underlie object discrimination, and are not mutually distinct in terms 

of the underlying neuronal systems or the schedule on which these functions are carried out. 

This set of functions are carried, it is suggested, out within the same neuronal populations for 

any given level of complexity of the feature transformation. 



Thus, discrimination of a target object from an embedding visual matrix involves a 

process that may be viewed as successively approximating the results of prior learning 

represented by existing memory templates, in terms of a sequence of increasingly complex 

transformations of the elements of the central representation of retinal signals within the primary 

visual cortex, until the results of a transformation sufficiently well approximate information stored 

within existing memory templates. The corresponding cortical dynamics can be conceptualized 

as a process of selfaganization of the topological structure of the signaling between multiple 

cortical regions. The ultimate result of this self-organization is an emergent unitary percept. 

This description will be referred to as the Cortical Self-organization (CSO) model of the neuronal 

processes underlying visual discrimination. The CSO model is schematically diagrammed in 

Figure 16.1 

As a corollary intended to engage practical applications of the results of the present 

study, it is suggested that the changes in correlation that occur during the visual discrimination 

process can be summarized using information contained Mthin the two indices, correlation mean 

and correlation variance. It is proposed that these two measures can be combined to yield an 

overall summary index Wich Mll be referred to as a Discrimination Index. This index is 

suggested to be a measure of the degree to which a target object has been discriminated from 

an embedding visual context. Pradical application of the Discrimination Index might include its 

use as a real-time index of a subject's state of attention and level of performance on a task 

requiring visual perception. 

In this section the CSO model has been outlined, as a description of the neuronal events 

associated with visual discrimination. Particular elements of the CSO model will be tested in the 

present vmk, by attempting to find, associated Mth successful discrimination of a target object, 

particular characteristics of the EEG. These characteristics are outlined in the following section. 



5.1 Predictions 

A number of statements will be derived from the CSO model that are related to the 

experimental paradigm to be used in this study, and in particular to the kinds of analyses that will 

be performed on the resulting data. Such statements will involve characteristics of the scalp 

potentials that should be observable during visual discrimination. These statements will in turn 

be used to generate a number of specific predictions. 

The successive iterations of the operations of image element identification, 

transformation and matching, when building towards eventual discrimination, are suggested to 

involve successively larger extents of cortex. These cortical regions are expected to initially 

involve the primary visual cortex, along with inferotemporal areas, and to eventually involve 

larger cortical areas including frontal and central regions. The processes of feature binding and 

association, dealing with increasingly complex and multidimensional transformations of the 

features of the visual image, need to access memory templates located within correspondingly 

greater extents of cortex. In doing so, therefore, not only are more and more widely separated 

cortical areas involved, but also the exchange of information, the signaling, between these areas 

should become increasingly coordinated as this increasing number of cortical areas participate in 

common process. This common process, consisting of the analysis and binding of image 

elements and association of these elements with existing memory templates carried out in an 

iterated sequence, thus involves an increasing number of cortical areas exchanging increasingly 

complex information. The earlier events in this process, identification and transformational 

binding of elementary image elements may, it is suggested, be carried out by distinct cortical 

areas operating to some extent independently, and each associated with a particular set of 

dimensions of the data. The process of binding occurring within these separate cortical regions 

m l d  then be reflected in multiple centers of oscillatory activity whose frequency and phase 

characteristics w l d  be unique to each region. In terms of scalp potentials the observable effect 

muld be an aperiodic signal at each eledrode site with relatively low levels of association 

between sites. In the later stages of the object discrimination process there w l d  be an 

increase in the amount of inter-regional signaling which w l d  occur as the separate cortical 

regions engage in the attempt both, to mutually associate their feature ensembles, and to 

associate these ensembles with previously learned visual memories. As a consequence, the 

oscillatory activity associated with the separate cortical areas w l d  become increasingly 

synchronized. The result, it is suggested, should be an increasing level of association between 

the scalp potentials measured over these cortical areas. Thus, it is suggested, the effect of the 

inter-regional signaling is to mutually synchronize the oscillatory activity OCcuning within 

separate cortical regions. 



To summarize, the following neural events are proposed to occur over a short interval of 

time preceding the moment of discrimination. When a visual image is initially attended to, 

cortical areas within the primary visual cortex such as V1, that have been show to be invdved 

in elementary feature identification and discrimination, are expected to be active. Since a dear 

structural division between systems performing feature discrimination and feature transformation 

is not expected to exist, the primary visual areas engaged in feature analysis are also expected 

to be involved in relatively local, lowlevel transformations of the data, into relatively low 

dimensioned ensembles. At the same time such regions might be expected to be engaged in a 

relatively limited amount of mutual signaling or information interchange as the competition for 

cortical communications resources favors intra-regional rather than inter-regional signaling 

(Thatcher, Krause, and Hrybyk, 1986). The relatively independent nature of the activity within 

these cortical regions should result in mutually asynchronous field potentials amss the different 

cortical regions, and a correspondingly low level of association between the scalp electrical 

activity over these regions. Over time, and as the moment of discrimination approaches, the 

level of inter-regional signaling is proposed to increase. Multiple cortical regions engage in an 

increasing level of information exchange, corresponding to the increasingly complex, high- 

dimensioned feature transformations that are being created, and that involving increasingly 

greater neuronal populations within the respective regions. The result is an escalating level of 

mutual synchronization of the oscillatory activity occuning across these regions. 

Correspondingly, it is expected that potentials measured at multiple points on the scalp All be 

characterized by an increasing level of mutual association. 

Thus, imminently successful visual discrimination is distinguished from eventually 

unsuccessful image analysis by the involvement of increasingly larger cortical areas as the 

ultimately successful transformation or feature ensemble is able to find a match in terms of an 

increasing number of information dimensions, and hence in terms of the information stored in 

increasingly large and more numerous cortical areas associated with these higherdimensional 

transformations of the data. Through the mechanism of inter-regional signaling, the synchronous 

involvement of these ever larger and more numerous cortical areas then results in an ever 

increasing degree of correlation between the electrical field potentials associated Ath these 

regions, in some interval of time preceding discrimination. A very general analogy might be a 

network of coupled oscillators, Ath each oscillator representing the activity of one cortical area 

carrying out the process of feature binding through transformation. The coupling strength 

between the oscillators, representing the level of inter-regional signaling, muld thus increase as 

the moment of discrimination approaches. 

These elaborations of the CSO model allow a number of predictions to be made in the 

context of the paradigm used in the present study. It is suggested that, M e n  the perceptual task 



is to discover a camouflaged object embedded within a complex image, the associated EEG will 

show a number of characteristics that should observable during a short interval of time preceding 

the moment of discrimination. 

The magnitude of intercorrelations between all cortical areas is expected to increase with 

time during an interval preceding the moment of discrimination. Initially, these 

intercorrelations are expected to increase between areas associated with relatively low and 

moderate level visual feature analysis and transformation, the occipital and inferntemporal 

areas. Subsequently, these intercorrelations are expected to involve larger cortical extents, 

as the feature analysis and transformation processes result in increasingly complex feature 

ensembles that then require matching Ath @or learning within correspondingly larger areas 

of cortex. 

Averaged over time, the magnitude of intercorrelations is expected to vary approximately in 

inverse proportion to the physical distance betvreen the corresponding electrodes. 

Intercorrelations between cortical regions that are videly spatially separated are expected to 

increase more than correlations between cortical areas that are doser together. A 

consequence is that the variability in the magnitude of these intercorrelations is expected to 

decrease. 

These three characteristics are motivated by features of the CSO model, as well as by 

the results of pervious studies. The first of these characteristics , the increase in the magnitude 

of intemelations, has been suggested to be a consequence of the phenomenon that multiple 

regions of the brain engage in an increasing degree of reciprocal signaling as the moment of 

discrimination approaches. In alternative terms, during the interval preceding successful 

discrimination there should be an increasing rate of information interchange between cortical 

regions. The suggestion of the initial involvement of primary visual and inferotemporal regions is 

motivated in part by the results of lesion studies, primarily using macaque monkeys, that have 

defined the functional specializations of these areas in the process of object discrimination (e.g., 

Damasio, Damasio and Tranel, 1990; DeYoe and Van Essen 1988; Gilbert, 1992; Ungelleider 

and Mishkin, 1982). The suggestion that frontal areas are involved in the later stages of the 

object perception process is motivated in part by the results of studies demonstrating attention- 

related effects within the visual system as a result of communication between anterior 

inferntemporal and prefrnntal areas (Miller and Desimone, 1994), as well as the results of studies 

of EEG coherence during visual image interpretation (Petsche et al., 1992). 



The second characteristic, while not directly addressed by the CSO model, is 

nevertheless included since this feature is expected to be a prominent feature of the observed 

EEG associations. The inverse relationship between correlation and inter-regional distance, is 

predicted on the basis of studies of the neum-anatomy of the cortex. Braitenberg (1978) has 

pointed out that the cortex contains between 10 and 100 times as many short-axoned neurons 

that arborize in the immediate vicinity of the cell body, as long-axoned pyramidal cells whose 

axons reach lengths of upwards of several centimeters. This greater density of short 

connections within the cortex relative to longer connections, and the decreasing density of such 

connections with distance (Thatcher et at., 1986), should mean that correlations between 

electrode sites should decrease with increasing distance between the sites. 

The third characteristic, the relatively larger increase in correlations between widely- 

spaced regions relative to closely-spaced regions, is suggested to be a result of the importance, 

for visual discrimination, of communication not only within, but also between cortical regions. 

Communication, and hence the level of coordinated activity, within and between closely spaced 

cortical regions is expected to be significant in the initial stages of the visual discrimination 

process, reflecting ongoing analysis of perceptual elements of the central representation of the 

visual image by relatively local cortical regions. Over the duration of the discrimination process 

it is expected that the degree of coupling between these closely-spaced regions will not increase 

substantially. In contrast, communication, and hence the level of coordinated activity, among 

more widely-spaced cortical regions is expected to be relatively low at the start of the recording 

epoch, since visual elements have yet to undergo binding into more complex feature 

ensembles, and association with the correspondingly complex memory templates. At the 

moment of discrimination, image elements have been bound into feature ensembles that have 

been successfully matched with memory templates. This feature binding and memory matching 

are proposed to be indicated by an increase over time of the magnitude of correlations between 

relatively widely-separated cortical regions. The level of association between these regions is 

therefore proposed to increase substantially in order for discrimination to occur. As 

discrimination approaches, there should be a corresponding decrease in variability among 

interregional associations, since associations between closely-spaced regions change relatively 

little while associations between widely-spaced regions increase. 

While these predictions all deal with the topological aspects of the neuronal processes 

associated with visual discrimination, the study of correlations addresses a complementary 

issue, the issue of the dynamics of the interregional signaling associated with discrimination. 

Implicit in the search for correlates of visual discrimination in an analysis of betweemsignal 

associations is the idea that the pattern of associations preceding discrimination is based on 

oscillatory components of the recorded potentials. These oscillatory components, it is 



suggested, reflect the iterated nature of the neutonal processes associated with discrimination, 

that is, the successive iterations of the processes of feature analysis, transformation and 

memory matching that were outlined in the CSO model. 

Reber (1985) suggests as a definition of perception, that it consists of ''those processes 

that give coherence and unity to sensory input" (p. 527). In this study subjects will be presented 

with stimuli designed to encourage such perceptual unification to occur. Subjects will be s h ~  

highcontrast images containing target objects embedded within a visuallycomplex background. 

Subjects are expected to generally initially interpret such images only as patterns of random 

shapes. Over a short interval of time, and for at least a subset of the set of images presented, 

discrimination of the target objects from the background should occur. The neural processes 

associated with this discrimination should be reflected in EEG signals recorded concurrently with 

the stimulus presentation, particulatly when these signals are analyzed in terms of features that 

reflect the proposed underiying inter-regiond synchronization. These analyses will indude cross- 

correlation, coherence and mutual information. 



II Linear Analyses 



6 Cross-correlation analysis 

6.1 Introduction 

This experiment will try to find evidence in terms of cross-correlations related to the 

predictions that were made on the basis of the CSO model of object discrimination. First, the 

magnitude of correlations is expected to increase over time as the moment of discrimination 

approaches. Second, the size of correlations is expected to be approximately inversely 

proportional to inter-electrode distance. Third, correlations between distantly-spaced electrode 

sites are expected to increase more than correlations bewen closely-spaced sites. These 

predictions can be recast into the form of questions regarding the temporal and spatial features 

of the correlational structure of EEG signals recorded during a visual discrimination event. The 

primary question to be answered is, how do betweenchannel correlations change as a function 

of time, both before and after the moment of discrimination. A secondary question is, how do 

these correlations change as a function of distance betwen electrode sites. 

An experiment has been designed in order to try to answer these questions. In overview, 

the pattern of correlations between signals recorded from pairs of electrode sites will be 

compared for tho conditions. In the first, picture condition, subjects w i l l  be attempting to 

discriminate a target object that is visually embedded in a complex visual background. In the 

second, control condition, subjects will be looking at a fixation point on a neutral background. In 

the first case subjects will signal discrimination with an eye-blink In the second condition 

subjects will blink at a time of their choosing. In both cases signals will be recorded and 

analyzed from tho intervals of time. The first interval will be the 1 second interval preceding the 

eye-blink. The second interval will be the 1 second interval following the cessation of eye 

movements after the blink 

This procedure has been designed to provide subjects with the opportunity to engage in 

the neural events that are involved in the process of visual discrimination. Thus, the 

experimental stimuli consist of depictions of objects that are expected to be relatively familiar, 

such as birds and animals, and which if presented on their om, subjects could reasonably be 

expected to recognize immediately. These target objects, however, are embedded in a visual 

background that is intended to delay the onset of discrimination, by requiring subjects to attempt 

to discriminate betvveen the background and the target objects. Until such target-background 

discrimination has taken place, the embedded targets will not be perceived or identified as 

discrete objects. 

During the time that subjects are attending to the stimulus image, and when the outcome 

is successful discrimination, subjects are expected to automatically, that is, without conscious 



awareness of the process, organize the visual elements which together comprise the depiction of 

the target object and the visual context in such a way that the target becomes salient and distinct 

from the context. It is this process that is the focus of the present investigation. It is suggested, 

on the basis of pilot mrk, that significant portions of this process will occur over a short interval 

of time, on the order of a second, preceding the actual moment at which the target object is 

perceived. Finally, it is assumed that whatever neurophysiological events are involved in this 

object discrimination process, such events will to a significant degree be reflected in the 

electrophysiological activity that will be measured across the scalp, to the extent scalp 

measurements are able to access the electrical activity of the relevant neural generating 

structures. Correspondingly, it is acknowledged that the activity of cortical processes will be 

represented in the scalp electrical measurements to a greater extent than that of subcortical 

processes. 

In summary, the analysis of crosscorrelations in the present section is intended to 

answer the following questions. First, is there a significant increase with time in the magnitude of 

correlation? Second, is there a significant decrease in the magnitude of correlation Mth 

increasing distance? Third, is there a greater increase in correlation between more widely- 

spaced cortical regions than between closely-spaced regions? 

6.2 Method 

6.2.1 Subjects 

The subjects in this study consisted of 3 female and 3 male university undergraduates or 

graduates, ranging in age from 23 to 47, with a mean age of 33.5, and a standard deviation of 

10.8. All subjects are right-handed with English as their first language. Subjects have no know 

neurological disorders.  TIN^ of the subjects (1 male and 1 female) were paid for their 

participation. 

6.2.2 Materials and Procedure 

The stimuli are comprised of a set of 31 images, each of which depicts a target object, 

generally an animal or a bird, embedded within a complex visual matrix that is intended to have 

the effect of camouflaging the target. The example presented in Figure 6.1 shows a bird sitting 

in grass, with the shading and markings on the bird matching the pattern of the grass. Each 

image was constructed by first scanning a photograph of the appropriate scene, and then 

converting the scanned image into a monochromatic version with the original picture tones 

converted to 2 calues, black and white. The resolution of the monochromatic image is 100 pixels 



per inch. The result is a highcontrast version of the original picture. Scanning and conversion 

were done using PhotoStyler 2.0 @ by Aldus Publishing, an image processing program. The 

result for each picture was a bit-mapped file that was then stored on disk. In total, 31 stimulus 

pictures were constructed in this way. Appendix 2 shows the remaining 30 stimulus pictures. 

Figure 6.1 Typical stimulus picture 
This picture is one of the stimulus images presented to subjects in the picture condition. It shows 
a bird positioned approximately in the center of the picture, sitting in dried grass. The original 
photograph was scanned to convert it into a bit-mapped file, and the file was then converted into 
a highcontrast 2color black and Mi te  image (picture adapted from Frisch, 1973). 

There were two conditions in this experiment, a picture condition and a control condition. 

In both conditions, subjects were seated in a darkened room facing a computer monitor on Mich 

the stimuli were presented. The distance between the subject's head and the display screen m s  

approximately 60 cm, and the size of the stimulus picture on the screen was adjusted to 5 cm 

vertically, corresponding to a visual angle of approximately 4.8 degrees, by 6.7 cm horizontally, 

for a visual angle of approximately 6.4 degrees. 

In the picture condition subjects were instructed to maintain focus on a fixation point that 

remained constantly in view in the center of the display. Subjects were instructed to blink A e n  

they felt that they had discriminated an object in the image. Subjects were presented with the 

entire sequence of 31 images, one image at a time. Each image was show continuously for 8 

seconds, with an inter-trial interval that varied randomly between 10 and 20 seconds. Subjects 

were instructed to keep looking at the discriminated object after they had blinked. The difficulty- 

ofdiscrimination level varied from very easy to very difficult, estimated on the basis of subject 

debriefings. Subjects were able to discriminate the easy-to-recognize objects within 



approximately one second, while they were generally not able to discriminate the difficult objects 

at all. Subjects were presented with the entire set of 31 images twice in a continuous sequence, 

with only a normal inter-trial interval between sets. EEG recordings were made during the 8 

second interval that the stimulus images were presented. The start of the recording was 

synchronized with image onset. 

Following the presentation of the two sets of 31 stimulus images, a total of 20 control 

trials were recorded. No attempt was made to counterbalance the presentation schedule of 

control and picture trials across subjects. In the control condition, a diffusing screen was fixed 

over the monitor screen. This screen, consisting of a sheet of white paper large enough to cover 

the screen, had a fixation point marked on it in the same visual position as the fixation point on 

the monitor display. The diffuser did not allow any underlying shapes to be recognizable, but 

showed only a general brightening when the monitor display brightened. The length of this 

brightening interval was fixed at 8 seconds, the same duration for which the stimulus pictures 

were visible in the picture condition. Overall screen illumination was adjusted to create an 

approximately constant brightness level in the hu conditions. In this control condition subjects 

were instructed to blink at any time of their choosing, but within the time during which the diffuser 

brightened. EEG recordings were made during this 8 second brightening interval. The start of 

the recording was synchronized with the onset of the 8 second interval. Using this arrangement, 

20 control trials were recorded. The entire recording session of picture and control trials required 

approximately 45 minutes. 

A total of 20 channels in the 1020 system were recorded. This electrode topography is 

show in Figure 6.6. Electrode Fpz was used as the ground connection, and linked-ears were 

used as the reference. Recordings were made using the EEG amplifiers in a Nihon-Khoden 

model EEG-4217 EEG recording station. Amplifier outputs were routed to data collection 

software, Brainwave V1.l @ witten by Procet Engineering, through a National Instruments 

model ATM1064-F analog to digital conversion system. In the Nihon-Khoden machine, the high- 

pass filter setting was 3 Hz, the lowpass filter setting was 70 Hz (-3 dB points), and a 60 Hz 

notch-filter was used. The EEG data were digitized at 128 samples per second and each trial 

stored on disk as a separate ASCII file. Figure 6.3 shows a typical record of 8 seconds of EEG 

recorded at electrode Fpl from a subject in the picture condition. Figure 6.4 shows a single 

channel from this ensemble, electrode Fpl, illustrating the typical EEG features associated with 

an eye-blink 
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Figure 6.2 Electrode topography 
Data were recorded from these 20 electrodes which were located using the international 1020 
system. Electrode Fpz was used as the ground reference, and linked ears were used as the 
signal reference. 
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Figure 6.3 Typical wave-form ensemble 
These waveforms were recorded from subject 7 in the picture condition. The eye blink can be 
seen at approximately the center of the interval. The horizontal scale represents a time-interval 
of 8 seconds, digitized at 128 points per second, resulting in a total of 1024 points. 
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Figure 6.4 Typical eye-blink wave-form. 
Typical eye-blink signal (measured at electrode Fpl) from subject 7 in the picture condition, 
consists of a negative-spike, followed by a slow positive wave. The amplitude of the positive 
wave is typically minimal 1.5 seconds after the start of the spike. Thus, the eye-blink is defined 
as 1.5 seconds in duration. The 1 sec. intervals selected for analysis, labeled BBE (before-blink 
epoch) and ABE (after-blink epoch) are each subdivided into 4, 0.25 sec. time-windows. The 
end of the BBE, is 20 time points (0.156 seconds) before the start of the spike. The ABE starts 
at the end of the eye-blink. Sampling rate is 128 pointslsec. 

Data were recorded in 6 separate sessions, one session for each of 6 subjects. Data 

from one subject (6) were rejected after debriefing revealed that the subject had misunderstood 

and therefore not followed the instruction to blink only on discriminating the camouflaged object. 

The recording sessions were preceded by 3 pilot sessions, the aim of which had been to provide 

initial data to aid in hypothesis construction, as well as to perfect the recording paradigm and to 

verify the integrity of the recording equipment. Subject 5 had participated in one of the pilot 

sessions. In each experimental session there were 62 picture trials and 20 control trials. Trials 

were rejected if they were found to contain artifacts such as relatively sharp changes in potential 

that might be related to eye movements or general body movements, or if the start of the blink 

occurs too close to the beginning or too close to the end of the record. Specifically, trials were 

rejected if the blink occurred within 1.187 seconds of the start of the record, or within 2.5 

seconds of the end of the record. 

For both control and picture conditions, t\M, intervals within the data record were 

analyzed. The first interval is referred to as the before-blink epoch (BBE). The end of the BBE 

is defined as 24 data points (187 milliseconds) before the start of the eye-blink. The start of the 

eye-blink was defined as a negative going voltage change with a rate of change of at least 50 

microvolts in 31 milliseconds. The value of 24 data points was chosen with the intention of 

accounting for the reaction time between the discrimination event and the start of the blink. That 

is, the 24 data points corresponding to 187 ms were intended to exclude from the subsequent 



analysis potentials related to preparation for the eye blink. The BBE, defined as the 1 second 

interval preceding the end-point of the BBE, is divided into 4 time-windows, each 32 data points 

(0.25 seconds) long. These time windows are labeled 1 through 4, and are show in Figure 6.4. 

The length of a time-window was chosen as a compromise between adequate temporal 

resolution within a recording epoch on the one hand, and getting enough data points in each 

window for robust analytical results on the other hand. The primary type of analysis that will be 

performed on this data is correlation. If there are too few data points in a window then the 

betweenchannel correlations will be dominated by machine noise, at frequencies for which the 

period is much less than the number of points in the window. The lowest frequency that will be 

examined is 2 Hz. The window width of 0.25 seconds corresponds to a half cycle of a 2 Hz 

signal. While this window width should still allow a 2 Hz signal to be analyzed, it is estimated 

that a narrower window muld probably not be usable. Trials are rejected if they do not contain 

at least 4 such time-windows. This leads to the criterion that the blink must occur at least 1.187 

seconds after the start of the record (4 windows of 0.25 sec. each, plus 187 milliseconds for blink 

reaction time). The length of the before-blink epoch itself, 1 second, was chosen as a 

compromise between on the one hand including a sufficient number of time windows to get a 

good picture of what is happening before the blink, and on the other hand, not limiting the 

number of cases that muld be available to be analyzed. A longer before-blink epoch would 

have precluded a greater number of cases from being analyzed, those cases in which the blink 

occurred too close to the start of the record. 

The second interval that will be analyzed is referred to as the after-blink epoch (ABE). 

The ABE starts 1.5 seconds after the start of the blink, and has a duration of 1 second, and 

correspondingly 4 time-windows labeled 5 through 8, and show in Figure 6.4. The start of the 

ABE was defined to be 1.5 seconds following the start of the blink This definition was made on 

the basis of observations of multiple records of the blink waveform which indicated that 

significant electrical activity associated with the eye-blink, a lowfrequency rolling wave, was 

generally minimal after 1.5 seconds following the start of the negativegoing voltage spike. 

In sum, each trial was qualified on the basis of being free from artifacts, and containing 

at least 128 data points, equivalent to 1 second, both before and after the blink. From trials 

qualified in this way, the three midline channels, Fz, Cz, and Pz, were removed. The motive for 

this is that it seems reasonable that if there are no generating brain structures underlying these 

channels then signals from these channels would represent the summation of signals from 

adjacent channels. As such, these midline channels muld necessarily be correlated with 

adjacent channels, and muld therefore carry no independent information. Subsequent analysis 

was therefore canied out on the remaining 16 channels of the international 1020 system: Fpl, 

Fp2, F7, F3, F4, F8, T3, C3, C4, T4, T5, P3, P4, T6, 0 1  and 02. 



Next, the 1 second intervals of the BBE and ABE from each qualified trial were band- 

pass filtered to extract the 2 to 8 Hz frequency components. The lower frequency limit of 2 Hz 

was chosen in order to exclude from further analysis the effects of any lowfrequency artifacts 

that might yet be present in the recordings, and which might be generated by sources such as 

slow eye or facial muscle movements, or by respiration. Additionally, the length of the time- 

window, 32 data points, is equal to the period of a 4 Hz signal. In the 32 point time window there 

will be one-half cycle of a 2 Hz signal, and proportionately smaller fractions of a cycle of lower 

frequencies. These small fractions of a cycle for such lower frequencies wu ld  convey little 

information about the behaviour, such as correlation, of these low frequencies. In any event, 

there wu ld  be relatively little signal at frequencies below 2 Hz since the high-pass filter setting 

used for recording the data m s  set at 3 Hz (-3 dB). 

The higher frequency bands, alpha, beta and gamma, were not analyzed because of 

the findings of the pilot experiments, and because of the results of the numerical experiment 

outlined in Appendix 1. Pilot analyses on these higher frequency bands indicated that in fact 

there was little or no effect of picture condition on correlations when signals were filtered to 

extract alpha, beta and gamma band components. Furthermore, estimates of signal to noise 

ratio within the beta and gamma bands, as described in Appendix 1, indicated that the magnitude 

of correlation wu ld  be affected by the level of noise within these bands. The findings described 

in Appendix 1 are that correlations computed from data filtered to extract higher frequency 

components such as the beta and gamma band, are likely to be significantly affected by the 

signal-to-noise ratio within the recordings. Noise is defined here as electrical signals that are not 

generated by the subject, but rather originate either within the recording equipment or are picked 

up by capacitive and inductive coupling betwen the subject and the electrode wires connecting 

the subject with the recording equipment, and extraneous electrical wiring and equipment within 

the vicinity of the subject. If this noise has a time-varying component with a time-scale 

comparable to that of the data recording itself, then the magnitude of correlations computed from 

such data will include a component proportional to the noise level. This time-varying component 

in the computed correlations may mask or at least modulate any effect of the experimental 

manipulations. A conclusion of the results of Appendix 1 is that the effects, on magnitude of 

intercorrelation, of time-varying components of noise may not be separable from the effects of 

the experimental manipulation, at frequencies higher than the alpha band. Consistent with this 

finding, it has been pointed out gamma band signals may not be easily detectable on the scalp 

because first, such signals are greatly attenuated due to volume conduction through the skull, 

and second, these signals are confounded with scalp muscle activity (Bressler, 1990). 

The theta frequency band, as defined in the present study at 2 to 8 Hz, was not 

subdivided into smaller segments because of a phenomenon associated with narrowband 



filtering: narrow band-pass filtering can create spurious signals when the data contain rapid 

changes or spikes, even if such changes are of low amplitude: the spike events tend to become 

smeared out in time in inverse proportion to the width of the filter pass-band, generating spurious 

periodic signals over the length of the time-interval. Such spurious signals may have relatively 

less effect if the resulting data were being analyzed for amplitude or power, but they would have 

a significant effect if correlational analysis was used: these spurious signals would have the 

effect of essentially adding noise to the data and, as a result, affecting the magnitude of 

correlations computed from the data. 

The next step of the analysis was to compute crosscorrelograms for each condition, for 

each subject, for each trial, for each time window of the BBE and ABE, and for each of the 120 

possible pairs of time series using the recordings from the 16 electrodes. Each correlogram was 

computed by varying the lag between each pair of time series over the range of 8 to +8. One 

unit of lag corresponds to the inverse of the sampling rate, 7.8125 milliseconds. This range of 

lags was chosen on the basis of the results of analyses conducted on the pilot data. For each 

value of lag the correlation between the pair of time series is computed. An average cross 

correlogram was then computed for each subject, for each condition, for each epoch, for each 

window, and for each channel pair. This was done by averaging over the crosscorrelograms for 

individual cases for a subject. For each of these mean correlograms, 2 values were determined, 

the maximum value of correlation, and the value of lag at which the maximum correlation 

occurred. These steps are show in the following diagram: 



I for each subject, record 8 seconds. from 19 channels I 

I for each trial, remove mid-line channels Fz, Cz, Pz 
I 

I for each trial, locate eye-blink and time-windows I 
1 of BBE and ABE 

L 
I for each trial, create separate matrices for BBE and ABE: 1 

each matrix is 16 channels by 128 points (1 sec.) 
J 

I band-pass filter each matrix for 2 to 8 Hz 
4 

separate each matrix into individual time windows 
each 0.25 sec. (32 points) 

J 
I for each time-Andow, compute all possible cross-correlograms] 

using a lag of -8 to +8 
- 

I 
J 

for each crossorrelogram, find maximum correlation 
and corresponding value of lag 

1 
for each subject, condition, Andow and electrode pair, 

compute mean correlation and lag 
by averaging across all trials 

For each electrode pair an estimate was computed of the physical distance between the 

pair of electrodes. A simple Euclidean distance was computed based on a flat scalp geometry, 

resulting in a distance measure in arbitrary units. This flat scalp geometry consists of a 5 by 5 

matrix upon which electrode sites are positioned. Each electrode can thus be assigned a column 

number and a row number to indicate its location on this matrix. Distance is computed by taking 

the square root of the sum of the squared difference between the column numbers and the 

squared difference beheen the row numbers. The minimum distance of 1 corresponds to 

adjacent electrodes. The maximum distance between 2 electrodes is approximately 4.47 units. 

This flat scalp model is sufficient for the purposes of the present analysis, since the only variable 

that is computed from the distance is the ordinal ranking of electrode pairs in terms of distance 

between members of a pair. 

The crossarrelation computations as well as all supporting functions were canied out 

using the data analysis program Simulnetm version 2.3. 



6.2.3 Analyses 

The predictions that correlation muld increase with time during the BBE, and decrease 

with increasing between-electrode distance, were tested using an analysis of variance of the 

intercorrelations. Correlation was analyzed, using a 2-factor within subjects analysis of variance. 

The two factors were time, and distance between electrodes. The variable time had 4 levels 

corresponding to the 4 time windows within each of the recording epochs. The variable distance 

had 120 levels corresponding to the 120 intercorrelations ranked according to between-electrode 

distance. The prediction, that over the interval preceding discrimination correlations between 

distantly spaced electrodes wuld increase more then correlations between more closely spaced 

electrodes, was tested by conducting separate 1-way within subject analyses of variance on the 

12 electrode pairs separated by the shortest distances and the 12 electrode pairs separated by 

the longest distances. 

Although no predictions were made at the outset regarding the behaviour of the value of 

lag, an exploratory analysis of lag was conducted. Lag m s  analyzed using a procedure identical 

to that employed for correlation, using a 2-way within-subjects analysis of variance. As for 

correlation, the two factors were time and distance, defined as for the analysis of cross- 

correlations. 

A similar analysis of variance was conducted for recordings in what will be termed the 

no-blink condition. The no-blink condition consists of the subset of trials in the picture condition 

in which subject failed to discriminate the camouflaged target object embedded in each stimulus 

image during the 8 second recording interval. It is predicted that the results in this condition will 

be very similar to those obtained in the contrd condition, in which subjects were instructed to 

blink at will while looking at a fixation point on a neutral screen. If the results in these tw 

conditions are similar then the validity of the control condition All be supported. 

For each of these analysis an estimate of effect size was computed. The measure used 

was omega-squared, as suggested by Keppel (1991, p. 63). The values of effect size may be 

interpreted using guidelines suggested by Cohen (1977): 

Effect Size Interpretation 

0.01 small effect 
0.06 moderate effect 
> 0.15 large effect 



6.3 Results 

6.3.1 Analysis of Correlation 

The three predictions made on the basis of the CSO model were confirmed by the 

results. Confirming the first prediction, there was one significant effect of time, in the picture 

condition in the BBE (F = 3.16, p = 0.027, effect size = 0.0003). Correlation increased over the 

duration of the BBE, from a value of 0.715 to 0.789. In contrast, in the control condition 

correlations remained relatively constant over the BBE, decreasing slightly and non-significantly 

from 0.740 to 0.719 (F < 1). Table 6.2 lists the mean correlations for each time Andow, 

averaged over all distances, that is, over all 120 possible paihse combinations of electrodes. 

These mean correlations as a function of time-Andow are graphed in Figure 6.5a. 

Confirming the second prediction, there were significant effects of distance in both the 

BBE and ABE, and in both the picture condition (BBE: F = 20.9, p < 0.0001, effect size = 0.1 1; 

ABE: F = 16.7, p < 0.0001, effect size = 0.085) and in the control condition (BBE: F = 27.3, p < 

0.0001, effect size = 0.1 1; ABE: F = 25.5, p < 0.0001, effect size = 0.10), Ath correlation 

decreasing Ath increasing distance in all cases. Correlation decreased from approximately 0.85 

for adjacent electrodes to approximately 0.6 for electrode pairs spaced furthest apart. These 

mean correlations as a function of inter-electrode distance are graphed in Figure 6.6a for the 

before-blink epoch and Figure 6.6b for the after-blink epoch. Table 6.1 shows the results of the 

analysis of variance, listing the values of F along Ath the corresponding values of probability 

and effect size. 

Confirming the third prediction, correlations between the 12 most closely-spaced 

electrode pairs increased from 0.836 to 0.856 over the BBE (F = 1.19, p = 0.317, effect size = 

0.0003). Over this same interval correlations between the 12 most distantly-spaced electrode 

pairs increased from 0.577 to 0.698 over the BBE (F = 2.89, p = 0.038, effect size = 0.003). 

Since these secondary analyses of variance were conducted on only subsets of the data upon 

which the original analysis of variance was conducted, it is not expected that the significance 

probabilities may need the corrections normally required M e n  multiple tests of significance are 

conducted on the same data. These results are show in Table 6.3, and graphed in Figure 6.7a 

for the picture condition and Figure 6.7b for the control condition. 



Table 6.1 Results of analysis of variance of intercorrelation 
The table shows the results of a two-MY Athin subjects analysis 0 

variance of crosscorrelogram maxima. Significant effects of distanc 
occur for all conditions and epochs. A significant effect of time OCCUrS i 
the before-blink epoch in the picture condition only. 

Condition Epoch Item Time Distance T x D 

Picture BBE F 3.16 20.9 1 .O 
P 0.027 <0.0001 0.53 
Effect 0.0003 0.11 0.0 

ABE F < 1 16.7 < 1 
P < 0.0001 
Effect 0.085 

Control BBE F < 1 27.3 c 1 
P < 0.0001 
Effect 0.11 

ABE F 1.27 25.5 < 1 
P 0.29 c 0.0001 
Effect 0.0 0.10 

Table 6.2 Mean intercorrelations 

The table shows crosscorrelation maxima averaged over all trials for hot 
conditions, and for each time window. 

Epoch Window Control Picture 

BBE 1 0.740 0.715 
2 0.739 0.737 
3 0.752 0.752 
4 0.719 0.789 

ABE 5 0.740 0.745 
6 0.749 0.737 
7 0.768 0.734 
8 0.730 0.755 



Table 6.3 Short vs. long intercorrelations 
The table shows crosscorrelation maxima, averaged over all trials, forth 
12 shortest inter-electrode distances, labeled Short, and the 12 longes 
inter-electrode distances, labeled Long. Only long distance correlation 
increase significantly from windows 1 to 4. 

Distance 

Wlndow Short Long 

1 0.836 0.577 
2 0.822 0.61 9 
3 0.833 0.651 
4 0.856 0.698 

F 1.19 2.89 
P 0.32 0.038 
Effect 0.0003 0.003 
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Figure 6.5 Correlation vs. time 
correlations are cross~orrelogram maxima averaged across all subjects, and across all 120 
possible paihse correlations. 
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Figure 6.6 Correlation vs. electrode spacing 
Correlations are crosscorrelogram maxima, averaged across subjects and across the 4 time 
windows of the before-blink epoch (a) and the after-blink epoch (b). Correlations are show for 
all 120 possible pairvlvise combinations of the 16 recorded electrodes. Each point on the graphs 
shows the correlation for a single pair of electrodes. Electrode pair 1 is part of the group of most 
closely spaced electrode pairs. Electrode pair 120 is part of the group of most distantly spaced 
pairs. 
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Figure 6.7 Short and long distance correlations 
Short distance correlations are averaged over correlations between the 12 electrode pairs 
separated by the shortest distance. Long distance correlations are averaged over correlations 
between the 12 electrode pairs separated by the longest distances. In the picture condition (a) 
long distance correlations increase significantly from time-window 1 to 4, while short correlations 
remain relatively constant. All other correlations remain relatively unchanged over the 4 time- 
windows of the respective epochs. 



6.3.2 Analysis of Lag 

There were no significant effects of time in the picture condition in either the BBE (F < 

I), or the ABE (F = 1.24, p = 0.30, effect size = 0.0). There were no significant effects of time in 

the control condition in either the BBE (F < l) ,  or in the ABE (F < 1). Table 6.5 lists mean lags 

for each time window, averaged over all 120 possible electrode pairs. These means are graphed 

in Figure 6.8. 

In the picture condition, there was a significant effect of distance in the BBE (F = 2.41, p 

< 0.0001, effect size = 0.008), with an increasing value of lag Ath distance, from approximately 

0.35 (2.73 ms) for short distances to 0.55 (4.30 ms) for long distances. A unit of lag corresponds 

to a time of 7.8125 milliseconds. Also in the picture condition, there was a significant effect of 

distance in the ABE (F = 1.67, p < 0.0001, effect size = 0.W), with a decreasing value of lag 

with distance, from approximately 0.23 (1.80 ms) for short distances to 0.04 (0.31 ms) for long 

distances. 

In the control condition, there was a significant effect of distance in the BBE (F = 1.46, p 

= 0.001, effect size = 0.002), with an increasing value of lag dth distance, from about 0.28 (2.19 

ms) for short distances to about 0.44 (3.44 ms) for long distances. Also in the control condition, 

there was a non-significant effect of distance in the ABE (F = 1.09, p = 0.243, effect size = 

0.0004), with a decreasing value of lag with distance, from approximately 0.16 (1.25 ms) for 

short distances to -0.06 (-0.47 ms) for long distances. There was a significant interaction 

between time and distance in the control condition in the BBE (F = 1.25, p = 0.001, effect size = 

0.003), resulting from the value of lag being higher in time-window 2 for long distances than for 

short distances. Figure 6.9 shows the values of lag as a function of distance for the BBE (a) and 

ABE (b). 

Summarizing the effects of time and distance on lag, there were no significant effects of 

time on the value of lag in either the control or picture conditions. In both the picture and control 

conditions, lag increased with distance during the BBE, and decreased with distance during the 

ABE. These results are listed in Table 6.4. 



Table 6.4 Results of analysis of variance of lag 
The table shows the results of a two-way within subjects analysis o 
variance of lags corresponding to crosscorrelation maxima. La 
increases significantly with distance in both epochs in the pictur 
condition, and decreases significantly in the before-blink epoch in th 
control condition. A significant interaction between time and distanc 
occurs in the before-blink epoch in the control condition. 

Condition Epoch Item Time Distance T x D 

Picture BBE F < 1 2.41 < 1 
P < 0.0001 
Effect 0.008 

ABE F 1.24 1.67 < 1 
P 0.30 < 0.0001 
Effect 0.0 0.004 

Control BBE F < 1 1.46 1.25 
P 0.001 0.001 
Effect 0.002 0.003 

ABE F < 1 1.09 < 1 
P 0.243 
Effect 0.0004 

Table 6.5 Mean lags 
The table shows lags corresponding to crosscorrelation maxima 
averaged over all trials. 

Epoch Window Control Picture 

ABE 5 -.046 -.213 
6 -.277 .409 
7 .A23 .344 
8 .I93 .433 
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Figure 6.8 Lag vs. time 
Lags are the values of lag corresponding to crosscorrelation maxima for each condition, 
averaged across subjects and across all 120 possible pairvlvise correlations. 
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Figure 6.9 Lag as a function of electrode spacing 
Lags correspond to crosscorrelogram maxima, averaged across subjects and across the 4 time 
windows of the before-blink epoch (a) and the after-blink epoch (b). Lags are show for all 120 
possible electrode pairs of the 16 electrodes that were recorded. Each point on the graphs 
shows the lag for one pair of electrodes. Electrode pair 1 is part of the group of most closely 
spaced electrode pairs. Electrode pair 120 is part of the group of most distantly spaced pairs. 

6.3.3 The No-blink Condition 

Magnitude of correlation in the no-blink condition is show in Figure 6.10 as a function of 

time, and in Figure 6.11 as a function of distance. The magnitude of correlations, averaged over 



all distances, was approximately 0.75. This value of correlation is consistent with the values of 

correlation measured in the control condition Correlation varied from approximately 0.85 at short 

distances to approximately 0.65 at long distances These values are consistent with long and 

short correlation magnitudes computed in the control condition. The results of the analysis of 

variance w r e  a significant effect of distance only (F = 100.4, p < 0.0001, effect size = 0.06). 

0.6 
0 4 8 12 16 20 24 28 32 

time-window 

Figure 6.10 Correlations vs. time, no-blink condition 
Correlations are crosscorrelogram maxima for the no-blink condition. Correlations vs. time 
window are computed for 2 groups of electrode pairs. Short and long correlations are computed 
between electrode pairs separated by 1, and more than 4 distance units respectively. 
Correlations are averaged across the 12 correlations Mthin each distance group, across cases, 
and across subjects. Limits indicate the range of values. 



distance 

Figure 6.1 1 Correlations vs. distance, no-blink condition 
Correlations are crosscorrelogram maxima for the n+blink condition, plotted as a function of 
inter-electrode distance, are averaged across all time-windows and across all subjects. 
Correlations are show for all 120 possible electrode pairs of the 16 electrodes that were 
recorded. Each point on the graphs shows the correlation for one pair of electrodes. Electrode 
pair 1 is part of the group of most closely spaced electrode pairs. Electrode pair 120 is part of 
the group of most distantly spaced pairs. 

6.4 Discussion 

6.4.1 Correlations 

The results of the crosscorrelation analysis are consistent with the predictions that were 

made, on the basis of the CSO model, for the behaviour of correlations in the interval preceding 

the moment of discrimination. Correlations were found to decrease with increasing inter- 

electrode distance, to increase with time approaching the moment of discrimination, and to 

increase more between widely-spaced electrodes than between electrodes that were close 

together. These findings will now be discussed in more detail. 

The observation that significant effects of time were found using theta band components 

but not, according to pilot analyses, in higher frequency bands, is consistent with similar findings 

in previous wrk Bressler et al. (1993) and Gevins et al. (1987) both observed interregional 

coherences that decreased in magnitude with increasing frequency, with the largest coherences 

occurring in the theta band. In a picture interpretation task, Petsche et al. (1992) similarly found 

large associations in the theta band, between regions including the occipital and temporal 

cortices. 



A number of significant effects of between-electrode distance on crosscorrelation mre  

found. In both the control and picture conditions correlations decreased with increasing inter- 

electrode distance. A similar effect was found by Thatcher et al., (1986) in their study of the 

spatial distribution of coherence and phase of resting EEG. The authors used their findings as 

evidence in support of a model of corticocortical connections involving short and long distance 

axonal connections. Relevant to the present finding, Thatcher et al. (1986) suggested that the 

decrease in coherence with increasing inter-electrode distance was the result of the decreasing 

density with distance, of short-axonal connections. At short inter-electrode distances, they 

suggest, coherence is mediated by shortdistance axonal connections between Golgi type II 

cells, also referred to as intemeurons, short-axoned neurons whose axons form dendrites in the 

immediate neighborhood of the cell body. The density of these connections between any two 

cortical regions decreases with the distance between the regions, causing a corresponding drop 

in level of coherence. At large inter-regional distances coherence, they suggest, muld be 

mediated instead by long-axonal connections between Golgi type I cells, long-axoned neurons 

with projections to relatively distant regions. The combined effect, they predicted, was that level 

of coherence should be an approximately quadratic function of distance, first decreasing with 

distance to reflect the diminishing effect of intemeurons with increasing distance, and later 

increasing to reflect the effect of long-axoned neurons. Confirming this suggestion, their finding 

was that coherence at first decreased rapidly with distance, and then leveled off at a non-zero 

magnitude. In the present study, while there is no evidence of a quadratic relationship as such 

between correlation and distance, it is nevertheless clear that correlation, while decreasing with 

distance, does not fall to zero at the largest distances. This finding might thus be interpreted as 

being generally consistent with the hypothesis that at the short distances correlation is mediated 

by short-axoned associations between Golgi type II neurons, while at long distances over which 

the effect of short axoned connections is presumably minimal, the non-zero value of correlation 

must be mediated by the effects of long-axoned associations between Golgi type I neurons. On 

the other hand, the non-zero value of correlation at long distances might reflect the effects of 

volume conduction. The results of the analysis of lag, discussed below, can be used to decide 

between these two possibilities. 

A number of effects of time on crosscorrelation were also found. In the present study, 

in the control condition there is a slight and non-significant decrease in correlation over the 1 

second epoch preceding the eye-blink, with most of the decrease occuning during the final 

quarter second of the epoch. In the picture condition, there is a significant increase in correlation 

over the 1 second interval before the eye-blink that signals discrimination. Furthermore in the 

picture condition there is a greater increase in correlation between electrode sites separated by 

longer distances than between those separated by shorter distances. Thus, although in the 



picture condition the patterns of changes with time are found for all inter-electrode distances, the 

most noticeable effects of the experimental manipulation are found in the correlations between 

the most widely separated sites. Summarizing this pattern, in the picture condition, there is an 

increase in correlations over the interval preceding discrimination that is greater between 

electrodes spaced far apart on the scalp relative to electrodes that are adjacent on the scalp. 

These findings are consistent with the hypothesis that, as the process of object discrimination 

proceeds towards the moment of discrimination, there is increasing coordination between the 

activities of ever more distantly separated brain regions, as a result, it is proposed, of reciprocal 

signaling between these regions, along corticocortical association tracts between Golgi type I 

neurons. 

A neuroanatomical basis for such reciprocal, inter-regional signaling is known to exist in 

the form of long axonal pathways connecting multiple regions of the cortex. These pathways can 

be functionally grouped into three categories: association tracts, commisures, and projection 

tracts, that together constitute the white matter of the brain (Diamond, Scheibel and Elson, 1985; 

Barr and Kieman, 1988; Niewnhuys, Voogd and van Huijzen, 1981). These connections will 

now be described in order to illustrate the high degree of connectivity that exists both within and 

between hemispheres, and between subcortical and cortical regions. 

Association tracts consist of bundles of axons that connect various regions within each of 

the cerebral hemispheres. Association tracts themselves may be classified generally into two 

groups on the basis of the length of the tracts. Short association fibers, also referred to as U- 

fibers, connect adjacent cortical gyri. Long association fibers connect more distant regions, and 

include three major tracts. The cingulum connects the frontal and parietal lobes with parts of the 

temporal lobe and with the parahippocampal gyrus. The uncinate fasciculus connects the 

anterior regions of the temporal lobe with the orbital gyms of the frontal lobe and with portions of 

the middle and inferior frontal gyri. A portion of the uncinate fasciculus known as the inferior 

occipitofrontal fasciculus connects the orbital and frontal gyri with the occipital lobe. Lastly, the 

arcuate fasciculus forms a path between the superior and middle frontal gyri with portions of the 

temporal lobe. A part of the arcuate fasciculus referred to as the superior longitudinal fasciculus 

connects areas of the frontal and occipital cortices. These association fibers are show 

schematically in Figure 6.12. 

Commisures are groupings of axons that form paths between homotopic areas in the two 

cerebral hemispheres. The two major commisural fiber bundles are the corpus callosum and the 

anterior commisure. The corpus callosum is composed of the genu anteriorly, and the body and 

the splenium posteriorly. The genu connects corresponding anterior cortical regions in the t m  

hemispheres. The body, h i c h  intersects association tracts and projection fibers in each 

hemisphere, provides one of the principal paths between corresponding regions of the left and 



right hemispheres. The splenium interconnects posterior cortical areas including the left and 

right occipital cortices. The anterior commisure is one of the bundles of fibers which provides a 

path between the left and right temporal lobes. These commisures are show schematically in 

Figure 6.13. 

Projection fibers are bundles of axonal fibers that connect regions of the cortical sheet 

with subcortical nuclei. In the medullary center, these projection fibers form the corona radiata, 

which links with many areas of the pyramidal cell layers of the cerebral cortex. In the subcortical 

regions the fibers of the corona radiata congregate in the internal capsule, canying fibers many 

of which function as a reciprocal signal pathway between the thalamus and the cerebral cortex. 

The internal capsule is divided into 5 parts: the anterior limb, the genu, the posterior limb, the 

retrolenticular fibers, and the sublenticular fibers. The anterior limb contains frontopontine fibers, 

as well as connecting the mediodorsal thalamic nucleus with the prefrontal cortex. The genu 

includes fibers originating in the ventral lateral nucleus of the thalamus, and projecting to motor 

and premotor areas of the frontal lobe. The posterior limb canies the middle thalamic radiation, 

which includes efferent fibers of the ventral posterior thalamic nucleus that project to the 

somesthetic region of the parietal lobe. The middle thalamic radiation canies as well other fibers 

that contribute towards creating a reciprocal signaling system between the thalamus and the 

association cortex of the parietal lobe. The retrolenticular fibers originate largely as efferent 

fibers of the lateral geniculate nucleus, and form the optic radiations which terminate in the 

primary visual area of the occipital cortex. The sublenticular fibers originate mainly in the medial 

geniculate nucleus, and continue as the auditory radiations to project to the auditory areas of the 

temporal lobe. These projection fibers are show schematically in Figure 6.14. 

Together, these three types of neural pathways are reasonable candidates to form the 

neuroanatomical basis of the correlations that have been found in the present study to exist 

between signals recorded between all areas of the cortex. In terms of volume, the bundles of 

fibers connecting the various cortical and subcortical regions occupy a substantial if not the 

major portion of the volume of the brain. Connectivity wuld  clearly appear to be of the essence 

in the functioning of the brain. It is suggested that the pattern of correlations found in the present 

study to be associated with visual discrimination, is directly made possible by this connectivity. 



Figure 6.12 Association Fibers 
The major association fibers, s h ~  schematically in this figure, interconnect cortical and 
subcortical regions within each of the hemispheres (Adapted from Diamond et al., 1985). 

Figure 6.13 Commisural Fibers 
Commisural fibers, show in this schematic presentation, connect homotopic regions of the lefl 
and right hemispheres (Adapted from Diamond et al., 1985). 



Figure 6.14 Projection Fibers 
The projection fiber systems showm here schematically connect subcortical nuclei with multiple 
and widespread cortical regions (Adapted from Diamond et al., 1985). 

As a final issue concerning methodology, in this experiment, the order of presentation 

was not varied between subjects. All subjects first recieved, twice over, the entire set of 31 

images, and then recieved the 20 trials of the control condition. There was no attempt to 

counterbalance the order of presentation. A consequence of this could be some measure of 

practice effect. In general, such a practice effect would mean that subjects had learned 

something during the initial presentations of the stimulus images, and that such learning muld 

then have influenced their performance in the control trials. It was initially conjectured howver 

that probably all that subjects would learn during the picture trials would be how to maintain their 

visual focus on the fixation spot for the eight second recording intervals. It is possible 

nevertheless that during the picture trials subjects might learn the behaviour of scrutinizing for 

possible hidden images whatever image was presented. Such scrutiny could then have been 

applied to the blank screen of the control condition, pemaps resulting in representations of 

objects being 'discovered' when none were being presented. In other words, it is possible that 

there might have occurred some measure of the phenomenon seen with participants in sensory 

deprivation experiments, in which neutral visual screens can provide a background for 

hallucinatory episodes. Counterbalancing by presenting some subjects with the control trials 

before the picture trials would have been able to deal with this question. 



6.4.2 Lags 

At the outset there were no predictions made concerning the behaviour of lag. Lag  as 

therefore analyzed from an exploratory perspective. There were no significant changes in lag 

with time in either condition or epoch. There were however significant changes in lag with inter- 

electrode distance. These effects are graphed in Figure 6.9a for the before-blink epoch and 

Figure 6.9b for the after blink epoch. 

In both picture and control conditions, lag was found to increase with increasing inter- 

electrode distance in the epoch preceding the blink Lag increased from approximately 0.35 (2.7 

ms) to 0.54 (4.2 ms) in the picture condition, and from approximately 0.28 (2.2 ms) to 0.43 (3.4 

ms) in the control condition. This increase in lag with distance before the blink is consistent with 

an explanation proposed by Thatcher et al. (1986). The authors computed, for resting EEG, 

coherence and phase, measures that are analogous to squared cross melat ion and lag. The 

authors suggested that if volume conduction were responsible for coherence then phase should 

not vary with distance, since volume conduction mechanisms involves relatively short time 

delays whose rate of change with distance is correspondingly small. If, on the other hand, 

coherence is mediated by axonal transmission along association and other tracts, then it is to be 

expected that lag should vary relatively more as a function of distance, increasing with distance, 

since axonal signal transmission involves timedelays that do increase significantly with distance. 

The present findings are consistent with this latter position, that the computed patterns of 

correlation must be primarily the result of axonal transmission, along association fibers, 

commisures and projection fibers, rather than by volume conduction. 

A contrasting result however was found in picture condition in the epoch following the 

blink, with lag decreasing with increasing inter-electrode distance. The value of lag decreased 

from approximately 0.23 to 0.04. This result might be interpretable in terms of a conjectured 

description of the relative level of synchronization within and between cortical areas. Thus, lags 

between closely-spaced regions remain relatively unchanged with time both prior to, and 

following discrimination. The magnitude of lags between more distantly-spaced regions, 

however, is different before and after discrimination, reflecting differences in the nature of 

interregional signaling between the before and after-blink epochs. Before discrimination, the 

visual analytic processes associated with the analysis of the image are associated with a 

relatively high level of interregional signaling between more widely-separated cortical areas, thus 

making manifest the timedelay effects associated with axonal transmission. Immediately 

following successful discrimination there is relatively less signaling between widely-separated 

cortical regions, so that the timedelay effects associated with axonal transmission would be 

relatively insignificant. Furthermore, the high degree of synchronization between distantly- 



spaced regions immediately following discrimination could result in the lag between such regions 

decreasing to values that are lower than those for more closely-spaced regions. Thus, before 

discrimination, as the visual image is being analyzed, the high level of interregional 

communication would be associated with distancedependent timedelays and therefore a 

relatively large value of lag. Once discrimination has occurred and synchronization between 

distant cortical regions has been established, the level of such inter-regional communication 

could decrease, lessening the impact of distancedependent delays, while the nowsynchronized 

activity between these distantly-spaced cortical regions wuld  be reflected in a low value of lag. 

The second significant finding with respect to lag was the interaction between time and 

distance following the blink in the control condition. The value of lag was higher for long 

distances than for short distances, but this difference was larger for early time-windows than for 

later time-windows in the before-blink epoch. Thus, for later time-windows, approaching the 

blink, the value of lag was approximately the same for short and long distances. For early time- 

windows however, the value of lag was higher for long than for short distances. This finding 

might be interpreted as reflecting some small amount of visual analysis occurring in the early 

time-windows preceding the blink in the control condition. The level of such visual analysis 

might be expected to decrease to even lower levels in a relaxation of visual attention 

immediately before the blink Overall then, this interaction might, it is conjectured, indicate the 

changing level of visual attention directed towards the neutral target and fixation point presented 

to subjects in the control condition. 

6.4.3 Correlation Before and After Discrimination 

Examination of the mean correlation for each time-window (Table 6.2) shows that a part 

of the increase in correlation that occurs prior to discrimination is still evident immediately 

following discrimination, after which the level of correlations drop to approximately pre- 

discrimination levels. A comparison of the levels of correlation immediately before and after 

discrimination might provide some evidence for the kinds of processes involved in the process of 

recognizing camouflaged objects. Correlations immediately following discrimination, 0.745, were 

intermediate in value between their initial levels at the start of the BBE, 0.715, and their levels at 

the end of the BBE, 0.789. To the extent that level of correlation may be related in a general 

way to type of neural processing, this finding might indicate that at least some, although not all, 

of the processes that were occuning just before discrimination were still in operation immediately 

after discrimination. As a first approximation functional description of the process of object 

discrimination, it might be conjectured that this process involves both a graphical and a lexical 

component. The graphical component would include those neural sub-processes involved with 



identifying visual elements of the image, transforming bundles of elements into feature 

ensembles, and associating those feature ensembles with pre-existing visual memories. These 

are a subset of the processes that could be reasonably be expected to be involved in visual 

discrimination. The lexical component of the process of visual discrimination would include 

those neural subprocesses involved in associating the emerging feature ensembles with pre- 

existing lexical memories, or in alternative terms, in retrieving a label for the discriminated 

object. 

It seems reasonable that while either or both of these components might be active 

immediately before discrimination, only sub processes other than those associated with labeling 

of the object should be active immediately following discrimination: once a label for the object 

has been retrieved the associated neural activities wuld  presumably no longer be required to be 

active. That is, in most instances of discrimination, if labeling is involved then it will occur 

immediately prior the moment of discrimination rather than immediately following discrimination. 

Since at least a portion of the increase in correlation just before discrimination is still present just 

after the blink, it might be concluded that not all of the increase in correlated activity occurring 

just before discrimination is associated with the lexical component. Rather, at least a portion of 

the increase in correlated activity just before discrimination should be expected to be associated 

with processes other than those associated with the lexical component of discrimination, and 

therefore associated with the graphical component. One tentative conclusion that might be 

drawn from these findings is that both a graphical and a lexical component may be involved in 

the discrimination process, or alternatively that both processes are involved in at least some 

trials and for some subjects. Other scenarios are possible, howver. An alternative conclusion 

would be that only the graphical component is involved, but that the sub-processes involved in 

this component are more active immediately before than immediately after discrimination. Still a 

third possibility is that the graphical component is active immediately before, while the lexical 

component is active immediately following discrimination, as subjects blink upon visually 

recognizing the stimulus image, but then afterwards seek to associate the image ~4 th  a label. 

Fdlowup debriefings of all subjects indicated that several of these possibilities, in fact, 

occurred. On some presentations subjects blinked after they had recognized the object and had 

a label for it, while on other presentations they blinked after only recognizing the visual image, 

and before a label was available. In those cases, subjects indicated that a label would 

sometimes become available after the blink. 

It might be concluded that the process of visual discrimination of a relatively complex 

image cannot be readily associated with either only a visual or only a lexical component. Rather, 

as subject debriefings indicated, the graphical component might occur first to be followed by the 

lexical component, or alternatively both of these components might occur together. In the 



present paradigm it was felt to be important that the attention of subjects not be directed towards 

labeling of the visual images, as it was felt that such direction would have an effect on the nature 

of the events preceding the eye-blink, and in fact might bias subjects towards wanting to label 

the stimulus images before-blinking to signify discrimination. In the procedure used in the 

present study, therefore, subjects were deliberately not debriefed after individual trials. W~th 

follow-up debriefings conducted after the end of the testing sessions, it was not possible to 

determine for each trial whether labeling had been involved: such debriefings suggested that 

subjects would have difficulty in recalling accurately the time-order of discrimination and labeling 

on individual presentations. In the present study, therefore, the neural processes associated with 

visual object discrimination will not be dissected into a graphical and a lexical component, but 

rather witl be considered only as a whole, consisting of a conglomerate of component sub- 

processes which are assumed to include a requisite graphical component and an optional lexical 

component. 

6.4.4 The No-blink Condition 

The validity of the control condition is supported by the results of the analysis of the no- 

blink condition, those trials in which subjects viewed a camouflaged object but failed to recognize 

it. The values of correlation in this condition are approximately equal to the corresponding levels 

of correlation in the control condition. This finding would suggest that as far as level of 

correlation is concerned, there is little difference between subjects simply looking at a blank 

screen as in the control condition, and subjects looking at a camouflaged object and not 

recognizing it as in the no-blink condition. It seems reasonable to infer from this that the results 

would not have been different if a complex but undiscriminable object, rather than a blank 

diffusing screen, had been used in the control condition. Thus, the results measured in the 

control condition appear to be reasonably independent of the type of neutral image used, 

supporting the validity of the control condition. 



7 Topographical Distribution of Correlations 

7.1 Introduction 

The findings of the correlation analysis were that intercorrelations increased significantly 

with time preceding the moment of discrimination, and that this increase with time w s  larger for 

electrode pairs separated by large distances than for pairs that were close together. The mrk of 

the present section is intended to identify the particular brain regions that were involved in this 

pattern of correlations. The present section therefore examines the topographical distribution 

over the scalp of the change in correlations, over the duration of the before-blink epoch. More 

particularly, the present section attempts to answer the following question: What is the 

topographical distribution of the differences, between the picture and control conditions, of the 

correlations between pairs of electrodes, in each of the 4 time-windows of the before- 

discrimination epoch? That is, having computed for each electrode pair the difference in 

correlations between the picture and control conditions, how are these differences distributed 

over the scalp? 

Correlation differences will be investigated, rather than absolute correlation values, in 

each of the conditions, because what is wnted is a reflection of the effect of the experimental 

manipulation on the distribution of correlations. Within the record of the before-blink epoch, 

there may be evidence of other effects, such as preparation for the eye-blink By examining 

correlation difference rather than absolute correlation it is intended that such effects, that are not 

related to the experimental manipulation, will be subtracted out. A second motivation for using 

correlation differences is the results of pilot mrk, which indicated that examining such absolute 

correlation values did not provide a clear picture of the topology of the correlated activity. 

Absolute correlation values in both conditions were found to be large, at approximately 0.6 to 

0.8, in relation to the corresponding betweekcondition differences, which were typically 

approximately 0.1, in a small subset of the 120 possible electrode pairs. 

7.2 Method 

A 2dimensional projection or map of the physical electrode positions over the scalp is 

used to display the betweenchannel correlations. This map is used to display the difference in 

magnitude of correlation between control and picture conditions, with a separate map for each of 

the 4 time windows of the before-blink epoch. This correlation difference i3q,k is computed for 

each pair of electrodes, i and k, as 



where T(.)i,k represents the intercorrelation between electrodes i and k. The magnitude of this 

correlation difference for a pair of electrodes is coded in terms of the thickness of a line joining 

the two electrodes. Negative correlation differences are show as gray lines, positive changes in 

correlation are shown as black lines. A positive difference indicates a higher correlation in the 

picture condition. A negative difference correspondingly indicates a higher correlation in the 

control condition. 

7.3 Results 

The topographical distributions of 6r, the changes in crosscorrelation between the 

picture and control conditions are shown in Figure 7.1 through Figure 7.5 for each subject, and in 

Figure 7.6 averaged across subjects. Table 7.1 lists the values of 6r averaged across subjects 

and sorted in order of increasing distance between electrode pairs. 

A number of general features may be immediately noted by examining Figure 7.6. First, 

between the 4 time-Andows there are clear changes in the topography of the values of 6r. 

Second, these changes progress from relatively little difference in time-window 1, to a large 

positive difference in time-window 4 indicating a greater degree of correlation, in time-window 4, 

in the picture than in the control conditions. Third, each of the 4 time-windows displays a unique 

pattern. These patterns are summarized as follows: 

1. Time-Andow 1 : there is relatively little difference between the picture and control conditions, 

with minor positive values over the right frontal (F8) and central (C4) areas, indicating little 

difference in correlation in all areas between the picture and control conditions. 

2. Time-window 2: the pattern now shows a greater positive value of correlation difference over 

the left hemisphere. Largest positive values occur over left anterior temporal (T3) and right 

occipital (02) areas. Somevhat smaller positive values are found over left occipital (Ol), left 

central (C3), left and right posterior temporal (T5, T6) and right parietal (P4). This pattern 

indicates a larger correlation in the picture than the control conditions between bilateral 

occipital areas and bilateral posterior temporal areas, and the left anterior temporal area. 

3. Time-window 3: the distribution of 6r values now shows a more bilateral distribution of 

positive values, localized over bilateral frontal (F7, F8) and right anterior temporal (T4) areas, 

with somewhat smaller values over the left frontal area (Fpl). This pattern indicates larger 



interhemispheric correlations, in the picture than in the control conditions, bemen bilateral 

frontal and temporal areas. 

4. Time-vdndow 4: the overall pattern now shows the involvement of all areas in large positive 

values of correlation difference, indicating a relatively larger correlation between all areas in 

the picture than the control conditions. There is a somewhat greater degree of correlation 

between left and right hemispheres than in the anterior-posterior direction. 



(a) time-window 1 (bl time-window 2 

(c) time-window 3 (d) time-window 4 

Figure 7.1 Topography of correlation differences, subject 4 
The graphs show the magnitude of the difference in correlations, between the picture and control 
conditions. Correlation differences are computed as r(picture) - r(contro1). Correlations are 
crosscorrelogram maxima, averaged across all trials for this subject. Line thickness is 
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation 
difference of 0.15. Correlation differences less than 0.03 are not show. Black lines indicate a 
positive difference, with a higher correlation in the picture than in the control conditions. Gray 
lines indicate a negative difference, with a higher relative correlation in the control condition. 



(a) time-window 1 (b) time-window 2 

(c) time-window 3 (d) time-window 4 

Figure 7.2 Topography of correlation differences, subject 5 
The graphs show the magnitude of the difference in correlations, between the picture and control 
conditions. Correlation differences are computed as r(picture) - r(contro1). Correlations are 
cross-correlogram maxima, averaged across all trials for this subject. Line thickness is 
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation 
difference of 0.15. Correlation differences less than 0.03 are not shorn. Black lines indicate a 
positive difference, with a higher correlation in the picture than in the control conditions. Gray 
lines indicate a negative difference, with a higher relative correlation in the control condition. 



(a) time-window 1 (b) time-window 2 

(c) time-window3 (d) time-window 4 

Figure 7.3 Topography of correlation differences, subject 7 
The graphs show the magnitude of the difference in correlations, between the picture and control 
conditions. Correlation differences are computed as r(picture) - r(contro1). Correlations are 
crosscorrelogram maxima, averaged across all trials for this subject. Line thickness is 
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation 
difference of 0.15. Correlation differences less than 0.03 are not show. Black lines indicate a 
positive difference, with a higher correlation in the picture than in the control conditions. Gray 
lines indicate a negative difference, with a higher relative correlation in the control condition. 



(a) time-window 1 (bl time-window 2 

(c) time-window 3 (d) time-window 4 

Figure 7.4 Topography of correlation differences, subject 8 
The graphs show the magnitude of the difference in correlations, between the picture and control 
conditions. Correlation differences are computed as r(picture) - r(contro1). Correlations are 
crosscorrelogram maxima, averaged across all trials for this subject. Line thickness is 
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation 
difference of 0.15. Correlation differences less than 0.03 are not show. Black lines indicate a 
positive difference, with a higher correlation in the picture than in the control conditions. Gray 
lines indicate a negative difference, with a higher relative correlation in the control condition. 



(a) time-window 1 (b) time-window 2 

(c) time-window 3 (dl time-window 4 

Figure 7.5 Topography of correlation differences, subject 9 
The graphs show the magnitude of the difference in correlations, beheen the picture and control 
conditions. Correlation differences are computed as r(picture) - r(contro1). Correlations are 
crosscorrelogram maxima, averaged across all trials for this subject. Line thickness is 
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation 
difference of 0.15. Correlation differences less than 0.03 are not shown. Black lines indicate a 
positive difference, with a higher correlation in the picture than in the control conditions. Gray 
lines indicate a negative difference, with a higher relative correlation in the control condition. 



(a) time-window 1 (b) time-window 2 

(c) time-window 3 (d) time-window 4 

Figure 7.6 Topography of correlation differences, average across subjects 
The graphs show the magnitude of the difference in correlations, between the picture and control 
conditions. Correlation differences are computed as r(picture) - r(contro1). Correlations are 
crosscorrelogram maxima, averaged across all trials and all subjects. Line thickness is 
proportional to magnitude of correlation difference. The thickest lines correspond to a correlation 
difference of 0.15. Correlation differences less than 0.03 are not show. Black lines indicate a 
positive difference, with a higher correlation in the picture than in the control conditions. Gray 
lines indicate a negative difference, with a higher relative correlation in the control condition. 



Table 7.1 Correlation change 
The correlation change, computed as r(picture) - r(control), is show for al 
possible pairs of the 16 electrodes and for each time-window of the before 
blink epoch. 

Time-window 

Channel 1 Channel 2 1 2 3 4 



Table 7.1 Correlation change 
(continued) 

Ti me-window 

Channel 1 Channel 2 1 2 3 4 



Table 7.1 Correlation change 
(continued) 

Time-window 

Channel 1 Channel 2 1 2 3 4 

7.4 Discussion 

In the picture condition correlations are more extensive, connecting more electrode sites, 

both within and between hemispheres, than in the control condition. This observation is 

consistent with the proposed description of correlated activity during visual discrimination, that 

the pattern of correlations should include an increasing number of cortical areas as the process 

of discrimination progresses to the moment of discrimination. Thus, substantial changes in 

correlation between the picture and control conditions occur between electrodes over almost all 

cortical regions. A number of observations might be made regarding the topographical 

distribution of the values of 6r. 

A general observation is that the distribution of 6r varies profoundly between time- 

windows. Accepting the hypothesis that the neuronal activity underlying object discrimination is 

periodic in nature, then the time-scale of this neuronal activity can be roughly estimated as being 

no greater than the time interval from one time window to the next, 250 ms. This interval can be 



compared with the finding in pilot m r k  that significant changes in correlation -re found only in 

the lowest frequency range of 2 to 8 Hz. These pilot results suggest that the period of the 

processes accessed by the correlation measurements is not much less than 125 ms, the period 

of an 8 Hz signal. While these pilot results should be confirmed by replication, it muld appear 

that the periodicity of the neuronal events associated with discrimination lie within the range of 

from 125 ms to 250 ms. 

A second observation can be made with respect to the possible duration of the events 

associated with object discrimination. Examination of Figure 7.6 suggests that the significant 

activity occurs between time-windows 2 and 4. This observation suggests that the subset of the 

neuronal events associated with object discrimination that are accessed by the correlation 

measurements occur within an interval of less than 1 second. On many trials, however, subjects 

did not blink to signal discrimination until some seconds after stimulus onset. At least 2 

possibilities might account for this extra time between stimulus onset and discrimination. First, it 

might be that on some trials subjects needed the extra time to orient to the part of the image 

containing the camouflaged object. It was clear from debriefings that subjects were generally 

able to comply with the instruction to attend to the fixation point at all times. Subjects might 

therefore have been shifting their attentional focus to different parts of the image, while staying 

on the fixation point. A second possibility is that neuronal events contributing to the eventual 

discrimination, a fuse as it were, occur prior to time-window 2, but are characterized by relatively 

low values of correlation. This might be the case if, for example, such events involved relatively 

independent activity in neuronal populations smaller in cortical extent than the several square 

centimeters accessed by a single electrode. This second possibility is consistent with the CSO 

model. According to this model, a component of the process of discrimination involves analysis 

of lowlevel stimulus features, in correspondingly local cortical regions, and with a 

correspondingly low level of interregional signaling. 

A third general observation is that the specific features of these distributions of 6r vary to 

some extent with subject. This might be interpreted as indicating that subjects are complying 

with experimental instructions to varying degrees, or alternatively that subjects are following 

instructions, but that in so doing are nevertheless exhibiting to some extent unique pattems of 

correlated neural activity. In spite of this, to some extent, subject-specific nature of the pattems 

of correlations, the overall findings are that striking commonalties in the differences between the 

control and picture conditions do exist. 

Examining Figure 7.6, a progression of events is deafly indicated. In the first time- 

window, 1, there is relatively little difference between picture and control conditions in terms of 

level of correlated activity. 



In time-window 2 the activity evolves to include occipital and posterior temporal areas 

bilaterally, as well as the left anterior temporal area. This pattern in time-window 2 might be 

attributable to bm effects. The first is the operation of the ventral visual pathway identified by 

Ungerteider and Mishkin (1982) as the primary cortical system involved with the process of 

object recognition. This pathway involves the occipital and inferotemporal cortices. The second 

effect is the accessing of a lexical associate or label for the object. As stated above, debriefing 

indicated that such naming prior to discrimination occurred for most subjects on some of the 

trials. This naming process would then be expected to involve speech and language, and 

therefore the participation of the sensory language area consisting of the auditory association 

cortex located in the left temporal region and adjacent parietal areas. Subjects were all right- 

handed and thus their language areas were most probably situated in the left temporal regions. 

These observations are consistent with the findings of the study by Petsche et al. (1992) which 

also found significant theta band coherences involving the left temporal region. 

In time window 3, the pattern of correlations shifted to involve interbemispheric 

connections between frontal and temporal areas. This shift towards the involvement of frontal 

areas might be conjectured to indicate memory access processes associated with the frontal 

regions. At the same time, the correlations between occipital and temporal areas prevalent in 

time-window 2 are relatively diminished. The change in topography between time-windows 2 

and 3 suggests a progressive sequence of events within the discrimination process. There might 

be an alternative explanation, however, in terms of the hypothesized recurrent nature of the 

discrimination process. This recurrent activity is proposed to involve successive cycles of a 

process that consists of feature analysis, feature transformation, and memory matching. On the 

basis of pilot analyses, the frequency of this periodicity is estimated to lie between 4 and 8 Hz, 

the frequency band that was used in the present analysis. The corresponding range of periods is 

therefore between 125 and 250 ms. It might be that the duration of the time-windows in the 

present analysis, 250 ms, is interacting with the periodicity of the neuronal activity involved in the 

discrimination process. In effect, these time-windows act like a stroboscope, preferentially 

presenting glimpses of portions of underlying neuronal activity that is synchronized with the 

period of the time-windows. Since the timing of the time-windows is not synchronized with such 

neuronal activity, the overall effect might be a 'beat' effect, an apparent frequency to the 

observed activity equal to the difference between the frequencies of the time-windows and the 

neuronal processes. While clearly this conjectured scenario is itself based on conjectures, the 

result of these effects would be that the apparent neuronal events within one time window would 

appear to be anomalously distinct from the activity in other time-windows. 

In the final time window, 4, the pattern of correlations involves, as predicted by the CSO 

model, most cortical regions, and with somewhat more profuse correlations between than within 



hemispheres. These observation of time-window 4 suggest that successful discrimination of 

complex visual images, depicting real-world objects, eventually needs to involve the correlated 

activity between all cortical regions, including occipital, frontal, temporal, parietal and central 

areas, and require significant levels of interregional signaling both within and between 

hemispheres. 

In summary, these findings are generally consistent with the CSO model. During the 

task of object discrimination using visually complex, non lexical images, an increase in the 

degree of coupling is observed between almost all regions of the brain, both between and within 

hemispheres. The evolving pattern of interregional associations can be interpreted as an index 

of the rate of information interchange or signaling between multiple and relatively local cortical 

centers of coordinated activity, which over the course of the discrimination process increase in 

extent to include increasingly greater proportions of the cortex, in an iterated process of 

matching increasingly complex feature ensembles with the stored results of prior learning. When 

the elementary features of the stimulus are bound and transformed into a construct with which a 

sufficiently accurate memory match is possible, the elementary and discrete features of the 

stimulus may be said to have been transformed and bound into a unitary percept. 

Examining Figure 7.1 through Figure 7.6, it is clear that there is a great deal of variability 

in the pattern of correlation differences across subjects. While all regions of the brain are 

connected by substantial levels of correlation, the time window at which the overall maximum 

amount of intercorrelation occurs varies between window 2 and window 4. There are at least t\nro 

possible explanations for these observations, one having to do Ath the experimental paradigm, 

and the other having to do with deeper issues of inter-individual variability. 

One possibility is that some portion of the variability is due to the fact that for each 

subject, the correlations represent a mean across trials with the underlying EEG signals aligned 

on the onset of the blink. That is, the location of the time windows is referenced to the eye blink. 

It appears possible that subjects, while attempting to comply with instructions, nevertheless did 

not always Mink immediately after the target object was discerned. In that case, the peak of the 

correlations muld appear at different time before the blink itself. Any individual variability in this 

reaction time wwld then show up as differences in the location of the maximum intercorrelations 

with respect to the blink 

A more interesting possibility is that the observed differences are attributable to inter- 

individual differences in neural function during the task of camouflaged object discrimination. 

Thus, it is possible that the differences in the pattern of intercorrelations observed in Figures 7.1 

through 7.5 reflect corresponding differences in the way that different subjects' brains are wired. 

While at the behavioural level a common level of performance is observed, this performance 

may be subserved by significantly different neural organization, both in terms of 'hard-wired' 



interregional connections, and in terms of how these connections transiently organize during task 

performance. 

This issue recalls that one of Edelman's (1989) foundational postulates for his Theory of 

Neuronal Group Selection is that there does not exist, in any sufficiently complex neuronal 

System, a precise point-t~-point wiring scheme. Rather, he observes, there is evident a 

significant degree of individual variability in the configuration of neuronal interconnections. This 

variability in turn provides the substrate that allows the process of neuronal group selection to 

"differentially amplity" particular variants within neuronal populations. As stated earlier, Edelman 

(e.g . , 1 989) suggests that neuronal groups, circuits composed of multiple interconnected 

neurons, are an appropriate level to consider neuronal systems. Such neuronal groups are seen 

to be highly variable in terms of their internal Aring configuration. Further, such variablity 

extends to intergroup, and eventually to interregional connection patterns. On a general level it 

is obvious that commonalities in interregional connectivity do exist, as evidenced by anatomical 

structures such as commisures, tracts and projections. When patterns of connectivity are 

examined on ever more detailed levels, correspondingly greater degrees of inter-individual 

variability are observed. Edelman (e.g., 1989) suggests that there exists competitive activity 

among neuronal groups, activity that leads to a process of selection in which some groups 

survive and function at the expense of other groups. Importantly, it is the nature of an 

individual's interactions with the environment that determines the evolution of such neuronal 

groups. Those groups are selected for whose activity is reinforced as a result of such 

environmental interactions. As such interactions can be guaranteed to be, in detail, highly 

variable between individuals, the pattern of connectivity within neuronal groups will 

correspondingly be variable. Furthermore, and as suggested by the present results, such 

variability may extend to interregional signaling configurations. Again, while on a gross level, 

patterns of anatomical connections are relatively, although perhaps not absolutely, constant 

across individuals, patterns of interregional signaling may be strongly dictated by intragroup 

Aring. For different individuals performing a common task, the same pattern of large-scale 

anatomical connections may thus support a wide range of patterns of signalling between cortical 

regions, because of the individually-specific patterns of small-scale connectivities within and 

between neuronal groups. 

In sum, the present findings are consistent with Edelman's (e.g., 1989) foundational 

proposition that environmental interactions determine the selection of neuronal groups and 

therefore the fine structure of neuronal connectivity. 



8 Topographical Distribution of Net Correlations 

8.1 Introduction 

This section will attempt to answr the following question. For each of the 4 time- 

windows of the before-blink epoch, to what extent is the oscillatory activity at each of the 

electrode sites related to the oscillatory activity at all other electrode sites in terms of cross- 

correlation? In other wrds, for each time-window and for each electrode site, what is the 

average correlation between the signal from that electrode, and the signals from all other 

electrode sites? According to the predictions made at the outset of this study, successful 

discrimination should ultimately involve communication between all cortical regions, and 

therefore a high level of correlation between the signal at any one electrode site and the signals 

at all electrode sites. The existence of the numerous tracts, commisures and projections 

interconnecting all cortical regions provides a physiological substrate for such communication to 

occur. 

8.2 Method 

The average correlation difference Sr; for each electrode k is computed, for each of the 

4 time windows of the before-blink epoch, by averaging over the correlations between that 

electrode and all 15 other electrodes: 

where n is the total number of electrodes - 1, and the sum is taken over i (# k) = 1 to n. 

For each of the 4 time-windows the result is a set of 16 numbers, each of which specify the mean 

correlation a single electrode and the 15 other electrodes. 

8.3 Results 

Figure 8.1 shows the distribution of St' for a typical subject, subject 5. Figure 8.2 shows 

the distribution of St' averaged over subjects. In these figures the diameter of the circles at each 

electrode position is proportional to the value of Sf .  A circle diameter equal to the grid spacing in 

the figures corresponds to a value of 61' of 0.12. A filled circle at an electrode position 

represents a positive value of St', and thus a greater average correlation in the picture than in the 

control conditions between that electrode and all other electrodes. Empty circles represent 

corresponding negative values of St'. All figures are draw to the same scale. These 

correlations are listed in Table 8.1. A substantial difference can be seen in the distribution of 6r' 

between each of the 4 time windows. This distribution will be outlined for each time window. 



1. Time-window 1 : there are net negative values of 61' over most areas, with only small positive 

values over the left temporal area (T3, T5). 

2. Time-window 2: positive values of 61' occur mainly in the left hemisphere. The largest 

positive values are found over the left fronto-temporal (T3), and the left central (C3) areas. 

Smaller positive values are found over the occipital areas bilaterally (01, 02), and the left 

posterior temporal area (T5). Negative values occur over all other regions. 

3. Time-window 3: Positive values of 6I' are distributed more bilaterally in this time-window, 

with the largest positive values over left frontal (F7), and the right fronto-temporal (F4, F8, 

T4) areas. 

4. Time-window 4: Positive values of 61' occur over all regions. Largest positive values are 

found over the left fronto-temporal and central (F3, T3, C3), and right fronto-temporal (T4) 

areas. 



(b) time-window 2 (a) time-window 1 

(c) time-window 3 (dl time-window 4 

Figure 8.1 Topography of net difference correlations, subject 5 
The graphs show the distribution over the scalp of the net difference correlations for each 
electrode site, for subject 5. Difference correlations are computed for each pair of electrodes as 
r(picture) - r(contro1). The net difference correlation for any one electrode is the sum of the 
correlation differences between that electrode and all 15 other electrodes, divided by 15. Circle 
diameter indicates the magnitude of the net difference correlation. A diameter equal to the size 
of the map grid corresponds to a value of 0.12. Empty circles indicate a negative net difference 
correlation, and filled circles indicate a positive value. 



(a) time-Andow 1 (b) time-Andow 2 

(c) time-Andow 3 (d) time-Andcw 4 

Figure 8.2 Topography of net difference correlations, average across subjects 
The graphs show the distribution over the scalp of the net difference correlations for each 
electrode site, averaged across subjects. Difference correlation is computed for each pair of 
electrodes as r(picture) - r(contrd). The net difference correlation for any one electrode is the 
sum of the correlation differences betwen that electrode and all 15 other electrodes, divided by 
15. Circle diameter indicates the magnitude of the net difference correlation. A diameter equal 
to the size of the map grid corresponds to a value of 0.12. Empty circles indicate a negative net 
difference correlation, and filled circles indicate a positive value. 



Table 8.1 Average correlation difference 
The average correlation difference is computed for each electrode and eac 
time window by calculating the difference correlation between an electrod 
and all other electrodes, and dividing the result by 15. Difference correlation 
are computed by subtracting the correlation in the control condition from th 
correlation in the picture condition. 

Time-Window 

Channel 1 2 3 4 

8.4 Discussion 

The results of this analysis of the distribution of average correlation differences, 6t,  are 

generally consistent with the results of the previous analysis, the distribution of intercomelation 

differences. The present results demonstrate that object discrimination involves, in a short time 

interval preceding the moment of discrimination, the progressive involvement of various cortical 

areas, with dear differences in the distribution of 61' between each of the 4 time windows. In 

time-window 1, there is little difference in average correlation between the picture and control 

conditions, at any of the electrodes. In time-window 2 the left fronto-temporal and central areas, 

along with the occipital areas bilaterally and the left posterior temporal areas, all show the largest 

positive values of 6t,  indicating a relatively larger correlation in the picture than in the control 

condition, between these areas and all other cortical areas. This observation, consistent with the 

results of the previous analysis, the distribution of correlation differences, suggests that within 

time window 2 the neuronal systems that are operating may include the ventral occipital- 

inferotemporal visual processing pathway, and the sensory language area in the left temporal 

region. In time-window 3, a more generally bilateral pattern of small positive values of 61' 

indicates an increasing level of communication between frontal and temporal areas in the left 



and right hemispheres. In time-window 4, and also consistent with the results of the analysis of 

correlation differences, the topographic distribution of average correlation differences similarly 

indicates that visual discrimination eventually involves increases in correlation between all areas 

of the cortex. This evolving pattern of average correlation differences supports the prediction of 

the CSO model that object discrimination should involve progressively larger cortical extents, 

beginning with the occipital and temporal regions, and ultimately spreading to include most 

cortical regions. 



9 Mutual Information Analysis 

9.1 Introduction 

There are bo motives for considering mutual information as a measure to be 

investigated in the present study of visual discrimination. The first motive involves the 

conceptualization, briefly mentioned earlier, of the neural processes during perception as 

involving a changing pattern of information interchange between cortical systems. Mutual 

information more directly than correlation addresses this issue of information interchange. 

Mutual information, like correlation, is a measure which is defined for a pair of variables. In 

informational terms, mutual information is a measure of how much information about one 

variable can be predicted by making a measurement of the second variable. In terms of the 

EEG time series that are the subjects of analysis in the present study, the mutual information 

between two time series, each recorded from one electrode, is an estimate of how much 

information about one of these time series is available from the second time series. The 

suggestion is now made that by extension, mutual information, calculated for each of the 4 time 

vindows of the before and after-blink epochs, for each pair of electrodes, is related to the rate of 

information transfer between the cortical areas accessed by those electrodes. 

The second motive involves the nature of mutual information as a statistic. Pearson 

product-moment correlation, used in the computation of cross-wrrelations, estimates the 

strength of linear relationship between bm variables. In the present context, when computed for 

the signals from a pair of electrodes, this measure of correlation, or more precisely the square of 

the correlation, is a measure of the extent to which the signal at one of the electrodes can be 

predicted by means of a linear function of the signal measured at the second electrode. In 

contrast, the mutual information function estimates the strength of a general relationship 

between two variables, without the restriction of linearity. Again in the present context, when 

computed for the signals from a pair of electrodes, mutual information would be a measure of 

the degree to which the signal at one electrode could be predicted by means of an arbitrary, and 

not necessarily linear, function of the signal from the second electrode. By comparing the results 

of the mutual information analysis with the results of the correlation analysis, it may be possible 

to estimate the extent to which the relationship between the activity of the different cortical 

regions can be considered to be reasonably well modeled by a linear process. A practical 

limitation in this respect is that the two measures, correlation and mutual information, are not 

equivalent in terms of the number of samples of data they require to produce stable results. In 

particular, because of the way in which mutual information is calculated, as described in the 

following section, it would appear that a greater number of data points is needed in order to 



calculate a stable estimate of mutual information, as compared with the number needed for a 

stable estimate of correlation. 

9.2 Method 

The concept of mutual information can be developed in terms of the concept of entropy. 

Entropy is a measure of the average amount of information that is available from a single 

measurement of a variable. Entropy, and mutual information, have their origins in information 

theory (Shannon, 1948), and for this reason discussions of these quantities involve the concept 

of a message. A message, in terms of measurements made of a dynamical system, can be 

considered to be equivalent to the range of a set of values, a range within which the 

measurements made on such a system may lie. Consider a system a variable of which 

produces any one of n different messages, or equivalently n ranges of values. Furthermore, 

each of these messages, or ranges of values of the variable, has a probability pi of occurring. 

The entropy of such a system, as estimated by the measurements made of the variable, is 

defined as 

In concrete terms, and applied to the time-series of the EEG, each of these messages is 

some range of values of the voltage measurement. Consider for example that the total range of 

voltage measurements is -80 microvolts to +80 microvolts. This total range can be divided into 

a number of sub-intervals, such as for example 8, 10 microvolt intervals, starting with 8 0  to -70 

microvolts, and ending with +70 microvolts to +80 microvolts. The EEG time-series is then 

binned by assigning each data point of the time-series to one of these 10 intervals or bins. This 

process essentially constructs a discrete frequency distribution from the time-series data 

samples. In terms of the definition of entropy, each one of these 10 intervals is one possible 

message from the system being measured. Next, a probability pi is assigned to each of these 

intervals or messages. This probability is, for each interval, the probability that the time-series 

has a voltage value within the interval. The result now is the discrete probability distribution for 

the original time-series. Next, each of these probabilities is multiplied by the logarithm of the 

probability, forming the products pi log pi. Finally, these products are summed over the total 

number of intervals, in this example, 10. The result is an estimate of the entropy of the system, 

the average amount of information derived from a single measurement made on the system. 

When the logarithm is taken to base 2, the units of entropy are bits. 

Mutual information is defined in terms of entropy (Fraser and Swinney, 1986; Gray, 

1990). Consider 2 systems S and Q, each generating messages Si and qk as above. A value of 

entropy can be defined for both of these systems, H(S) and H(Q). Next, the concept of entropy 



can be extended to include the case Mere a pair of measurements, (si, qk) is made 

simultaneously from these tm systems. The joint entropy, H(S, Q) is the amount of information 

available from this single pair of measurements of systems S and Q. The notion of joint entropy 

can be developed in terms analogous to those used for the entropy of a single system. The pairs 

of measurement (si, qk) are first binned. Continuing the example above, each of the individual 

measurements from systems S and Q are placed into intervals of 10 microvolts, beginning with 

the -80 to -70 microvolt interval and ending with the 70 to 80 microvolt interval. These separate 

intervals are combined to form a discrete joint frequency distribution of n by n bins. The first bin 

for example contains those measurements for which messages q and qk both fall within the 

range of -80 to -70 microvolts, and so on. As before, for each of these bins a probability pi& is 

computed, creating a discrete joint probability distribution for the pair of time series. Finally, the 

sum of the products of these probabilities and their logarithms is accumulated. The joint entropy 

of systems S and Q is then 

Mutual Information is then defined in terms of the individual entropies of systems S and 

Q, and their joint entropy, as the sum of the individual entropies minus their joint entropy: 

In the present analysis, all logarithms are taken to base 2, so that the resulting values of 

mutual information represent the number of bits of information that can be predicted about one 

time series, from a measurement made on a second time series. 

A partial limitation in applying mutual information to the present data is that, in order to 

form a reasonable estimate of the discrete frequency distributions for the variables, more data 

points may be needed than are required in order to compute the corresponding Pearson 

correlation. 

The mutual information computations as well as all supporting functions were carried out 

using the data analysis program Simulnetm version 2.3. 

9.3 Results 

The three predictions made on the basis of the CSO model were generally confirmed by 

the results. Partially confirming the first prediction, there was one, marginally significant, effect 

of time, and this occurred in the picture condition in the BBE (F = 2.24, p = 0.08, effect size = 

0.0002). Mutual information increased over the duration of the BEE, from 0.690 bits to 0.728 

bits. In contrast, in the control condition mutual information remained relatively constant over 

the BEE, decreasing slightly and non-significantly from 0.685 bits to 0.673 bits (F < 1). Table 9.2 



lists the mean mutual information values for each time Andow, averaged over all distances, that 

is, over all 120 possible pairvise electrode pairs. These values as a function of time-Andow are 

graphed in Figure 9. la. 

Confirming the second prediction, there were significant effects of distance in both the 

BBE and ABE, and both in the picture condition (BBE: F = 15.5, p < 0.0001, effect size = 0.08; 

ABE: F = 18.1, p < 0.0001, effect size = 0.09) and in the control condition (BBE: F = 24.6, p < 

0.0001, effect size = 0.10; ABE: F = 19.6, p < 0.0001, effect size = 0.08) conditions, Ath mutual 

information decreasing Ath increasing distance in all cases. Mutual information decreased from 

approximately 0.78 bits for adjacent electrodes to approximately 0.61 bits for electrode pairs 

spaced furthest apart. These values of mutual information as a function of inter-electrode 

distance are graphed in Figures 9.2a for the before-blink epoch and Figure 9.2b for the after- 

blink epoch. Table 9.1 shows the results of the analysis of variance, listing the values of F along 

Ath the corresponding values of probability and effect size. 

Confirming the third prediction, in the picture condition, the values of mutual information 

between the 12 most closely-spaced electrode pairs increased from 0.776 bits to 0.808 bits over 

the BBE (F = 1.71, p = 0.17, effect size = 0.001). Over this same interval the values of mutual 

information between the 12 most distantly-spaced electrode pairs increased from 0.596 bits to 

0.652 bits (F = 2.25, p = 0.086, effect size = 0.002). Since these secondary analyses of variance 

were conducted on subsets of the data upon which the original analysis of variance was 

conducted, it is not expected that the significance probabilities may need the corrections 

normally required when multiple tests of significance are conducted on the same data. These 

results are show in Table 9.3, and graphed in Figure 9.lb. 



Table 9.1 Results of analysis of variance of mutual information 
The table shows the results of a -way Whin subjects analysis o 
variance of mutual information. Significant effects of distance occur fo 
all conditions and epochs. A marginally significant effect of time occurs i 
the before-blink epoch in the picture condition only. 

Condition Epoch Item Time Distance T x D 

Picture BBE F 2.24 15.5 < 1 
P 0.08 < 0.0001 
Effect 0.0002 0.08 

- --- - 

ABE F 1.79 18.1 < 1 
P 0.15 < 0.0001 
Effect 0.0001 0.09 

Control BBE F < 1 24.6 1.01 
P < 0.0001 0.1 1 
Effect 0.10 0.W1 

ABE F 1.22 19.6 < 1 
P 0.31 < 0.0001 
Effect 0.0 0.08 

Table 9.2 Mean mutual information 
The table shows mutual information, averaged over all trials. 

Epoch Window Contrd Picture 

BBE 1 0.685 0.690 
2 0.693 0.671 
3 0.692 0.709 
4 0.673 0.728 

ABE 5 0.692 0.688 
6 0.673 0.679 



Table 9.3 Short vs. long mutual information 
The table shows mutual information, averaged over all trials, for the 1 
shortest (Short) and the 12 longest (Long) between electrode distances 
Mutual information between longdistance electrode pairs increase mor 
from windows 1 to 4 than mutual information between shortdistanc 
electrode l airs. 

Distance 

Window Short Long 

F 1.71 2.25 
P 0.17 0.08 
Effect 0.001 0.002 



(a) mutual information averaged over all distances 
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(b) mutual information for short and long inter-electrode distances, picture condition 
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Figure 9.1 Mutual information vs. time 
(a) Mutual information vs. time window in the before and after-blink epochs. Mutual information 
values are averaged amss all 120 possible electrode pairs, across cases and across subjects. 
There is a marginally significant increase in mutual information between time windows 1 and 4 in 
the picture condition. (b) Short distance mutual information values in the picture condition are 
averaged over the 12 electrode pairs separated by the shortest distance. Long distance values 
are averaged over the 12 electrode pairs separated by the longest distances. Long distance 
mutual information values increase significantly from time-window 1 to 4, Wile short distance 
values remain relatively constant. 



(a) before-blink epoch 
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(b) after-blink epoch 
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Figure 9.2 Mutual information vs. interelectrode distance 
Mutual information decreased significantly with distance for both the before-blink epoch 
(windows 1 to 4) and after-blink epoch (windows 5 to 8), and in both the picture and control 
conditions. Mutual information values are averaged across subjects and across the 4 time 
windows of the before-blink epoch (a) and the after-blink epoch (b). Values are show for all 120 
possible electrode pairs of the 16 electrodes that were recorded. Each point on the graphs 
shows the mutual information for one pair of electrodes. Electrode pair 1 is part of the group of 
most closely spaced electrode pairs. Electrode pair 120 is part of the group of most distantly 
spaced pairs. 



9.4 Discussion 

The values of mutual information varied in much the same way, as a function of time 

and inter-electrode distance, as the values of correlation. First, mutual information increased, 

although only marginally significantly, over the 1 second interval preceding discrimination. In 

terms of the interpretation of mutual information as an estimate of the number of bits of 

information that can be predicted about one process from a measurement on a second process, 

these results could be restated as an increase, over the before-blink epoch, in the rate of 

information exchange beheen the cortical systems accessed by the recorded electrodes. 

Second, mutual information decreased with increasing inter-electrode distance. Third, mutual 

information not only increased with time up to the moment of discrimination, but increased by a 

greater amount for more distantly spaced electrode pairs than for more closely spaced pairs. All 

of these findings are in accord with the predictions made on the basis of the CSO model for the 

expected behaviour of interregional associations. 

Given this similarity between the results of the c~osscorrelation analysis and the mutual 

information analysis, one conclusion that can be tentatively draw is that the relationship 

between the signals recorded from pairs of electrodes appears to be well modeled as a linear 

function. That is, the findings of the mutual information analysis are reasonably consistent with 

the conclusion that the activity of the cortical system accessed by any one electrode is at least 

approximately linearly related to the activity of any other such cortical system. 



10 Coherence Analysis 

The intent of this section is to repeat the analysis that was canied out using cross- 

correlation and lag, using alternative measures of association, coherence and phase. 

Coherence, in general terms, is a measure of association, which can be computed for a pair of 

time histories; that is, the frequency domain analog of squared cross-wrrelation. More 

particularly, coherence is the crosscorrelation between two complex Fourier power spectra that 

are computed for two time series; that is, the cross spectral density (CSD), averaged over some 

range of frequencies. As such, coherence is an estimate of the amount of shared power, or 

variance, within that frequency range, between the two time series. In alternative terms, 

coherence represents the proportion of the power, or variance, within some specified frequency 

band, in one time series that can be accounted for by a linear function of the other time series 

(Otnes and Enochson, 1972, 1978). In these terms, the analogy with squared crosscorrelation, 

the proportion of the variance of one variable that can be accounted for by a linear function of a 

second variable, becomes evident. While crosscorrelation is defined in the time domain, 

coherence is analogously defined in the frequency domain. The second statistic that will be 

computed is phase, a measure analogous to lag that represents an estimate of the difference in 

phase angles between the periodic components within the two time-series, averaged over some 

range of frequencies. 

One motivation for using coherence and phase analysis in the present study, since 

crosscorrelation and phase have already been computed, is to attempt to connect some of the 

present results with the results of earlier studies that have used coherence and phase analysis of 

the EEG. 

EEG amplitude and coherence changes related to the different thinking processes 

involved in the visualization of an abstract concept and the interpretation of a painting were 

found in a study by Petsche, Lacroix, Lindner, Rappelsberger and Schmidt-Henrich (1992). This 

study investigated the question of vhether changes in brain function muld be found 

corresponding to the difference between a self-generated mental image and a mental image 

generated from a prior perception. In one task, subjects were asked to generate a mental image 

corresponding to an abstract concept, a task expected to involve thinking with images. In a 

second task, subjects were asked to interpret a painting viewed before the recording session, a 

task expected to engage thinking with language. EEG recordings were analyzed using measures 

of amplitude and coherence. 



A complex Pattern of coherence changes was found. In the abstract visualization task, 

coherence increases included the left frontal and central regions, and right frontal, central, and 

temporal regions in the beta bands. Coherence decreases included the right frontal and 

temporal areas in the theta and alpha bands. In the painting interpretation task, coherence 

increases included the left frontal, central, temporal and parietal areas in the theta band, the left 

central area in the alpha band, and left frontal areas in all beta bands. Coherence decreases 

included the right anterior region in the alpha band, and the right posterior area in all beta bands. 

These results were interpreted as suggesting that the differences in mental processes associated 

with selfgenerated and perceptually-inspired mental images were reflected most consistently in 

activity over frontal regions, and that mental imagery involves connections between multiple, 

widespread, cortical regions. 

Rappelsberger and Petsche (1988) had similarly found that EEG coherence and 

amplitude changes were affected by a mental visualization task, cube rotation. Subjects were 

show a cube which they were then asked to visualize rotating. A complex pattern of coherence 

increases was found that included all cortical regions, but that vms to some extent different for 

males and females. However, a finding common to both females and males was a coherence 

increase in all frequency bands between left and right parietal areas. The authors suggest that 

degree of coherence between cortical regions may be related to functional couplings between 

these areas. 

Thatcher et al. (1986) computed coherence and phase for resting EEG's recorded from a 

sample of 189 children with ages from 5 to 16 years. They found that coherence decreased 

approximately quadratically with increasing inter-electrode distance, while lag increased 

approximately quadratically with increasing distance, results Mich led the authors to conclude 

that EEG coherences were determined mainly by axonal rather than volume conduction. 

In terms of the present study, it is expected that coherence and phase should show the 

same dependence on inter-electrode distance, since again, the inter-regional associations are 

proposed to be determined primarily by the effects of axonal conduction, and not by volume 

conduction. It is expected as well that the behaviour of coherence and phase should generally 

echo that of cmsscorrelation and lag, since cmsscorrelation and lag analyses, like coherence 

and phase analyses, are based on the behaviwr of oscillatory signal components. In particular, 

it is expected that coherence should increase with time over the before-blink epoch, reflecting 

increasing synchronization, and hence increasingly similar power spectra, between signals 

recorded over multiple cortical regions. It is expected that phase should increase with inter- 

electrode distance, reflecting the fact that the obsewed inter-regional associations are the result 

of signal transmission along axons, with the associated relatively large change in level of 



association with distance, rather than as a result of volume conduction with correspondingly 

small rate-of-change of association with distance. 

One partial limitation in applying coherence and phase analysis to the present data is the 

relatively limited number of data points, 32, available in each time-window. This small number 

of points results in a power spectrum with a correspondingly limited number of discrete frequency 

points. It is know (Otnes and Enochson, 1972) that cross spectral density estimates are 

distributed approximately as chi-squared variables, with a standard error of estimate given by e = 

1 I Jn, where n is the number of individual frequency values averaged over in computing the 

CSD. Thus, in the present case, the 32 data points in the original time-series are used to 

generate 16 discrete frequency values in the CSD. Standard e m  is then 25%. In the previous 

analysis of crosscorrelation, correlation varied as a function of time by approximately 10% (from 

approximately 0.5 to 0.61). Using these values as a rough guide, and assuming that the 

magnitude of the coherence effect is of the same order as the magnitude of the crosscorrelation 

effect, it is predicted that it may not be possible to detect the time-related variation in 

coherence, and consequently, in phase. Under the same assumption, the distance-related 

variation in coherence should be detectable. Crosscorrelation varied as a function of distance 

by approximately 60% (from approximately 0.8 to 0.2). 

10.2 Method 

The procedure used in this coherence and phase analysis duplicated exactly the 

procedure that MIS used earlier in the crosscorrelation and lag analysis, except that coherence 

and phase computations were substituted for the crosscorrelation and lag computations. 

The coherence computation first involves computing complex Fourier spectra for the 

time series, X(f) and Y(f). Next, from these Fourier spectra, the following quantities are 

computed: 

Power spectral density of X(f): Gx(f) = (2 I n) IX(f)l2 

Power spectral density of Y(f): Gy(f) = (2 I n) IY(f)l2 

Cross power density: 

where I . I denotes the absolute value and denotes the complex conjugate. From the cross 

power density, the cospectra, Cxy(f), and quadspectra, Qxy(f) are computed using the relation 

The cospectra and quadspectra represent, respectively, the real and imaginary 

components of the cross power density. Next, coherence, y, and phase, 0, are computed for 



each frequency component. Coherence is computed by dividing the squared absolute value of 

the cross power density by the power spectral densities of the two time series, a normalizing 

operation. Phase is computed by calculating the inverse tangent of the ratio of the 

quadspectrum to the wspectmm. 

+(f) = arctan (Qxy I Cxy) 

Finally, smoothed values of coherence and phase are computed, by averaging over a 

range of n frequency components. 

Coherence = (1 I n) C. yi 

In the present case, the average was computed over the 2 to 8 Hz frequency range. The 

resulting value of coherence represents the average crossamelation between the power spectra 

of the two time series, normalized by dividing by the respective power spectral densities for the 

tvro individual time series. The values of phase are specified in degrees. 

The coherence and phase computations as well as all supporting functions were carried 

out using the data analysis program Simulnetm version 2.3. 

In terms of coherence, there were significant effects of distance in both the BBE and 

ABE, and in both the picture (BBE: F = 22.8, p < 0.0001, effect size = 0.11; ABE: F = 22.6, p < 

0.0001, effect size = 0.11) and control (BBE: F = 32.6, p < 0.0001, effect size = 0.13; ABE: F = 

30.0, p < 0.0001, effect size = 0.12) conditions, with coherence decreasing with increasing 

distance in all cases. Coherence decreased from approximately 0.75 for adjacent electrodes to 

approximately 0.5 for electrode pairs spaced furthest apart. These mean correlations as a 

function of inter-electrode distance are graphed in Figures 10.la for the before-blink epoch and 

10.1 b for the after-blink epoch. Table 10.1 shows the results of the analysis of variance, listing 

the values of F along with the corresponding values of probability and effect size. Table 10.2 

shows the corresponding values of mean coherence for each condition and time window. 

In terms of phase, there were a number of small but significant effects of distance. In 

the picture condition phase decreased in the before-blink epoch from 2.33 degrees for short 

distances to 0.34 degrees for long distances (F = 1.92, p < 0.0001, effect size = 0.005). In the 

control condition phase decreased in the before-blink epoch from 1.90 degrees to 1.09 degrees 

(F = 1.41, p = 0.002, effect size = 0.002), and increased in the after-blink epoch from 1.69 



degrees to 2.80 degrees (F = 1.49, p = 0.0005, effect size = 0.002). There were no significant 

effects of time on the magnitude of phase. These results are show in Table 10.3. 

Table 10.1 Results of analysis of variance of coherence 
The table shows the results of a two-way within subjects analysis o 
variance of coherence. Significant effects of distance occur for al 
conditions and epochs. 

Condition Epoch Item Time Distance T x D 

Picture BBE F < 1 22.8 1 .O 
P < 0.0001 0.21 
Effect 0.11 0.0 

ABE F 1.93 22.6 < 1 
P 0.13 < 0.0001 
Effect 0.0001 0.11 

Control BBE F < 1 32.6 1.2 
P < 0.0001 0.013 
Effect 0.13 0.002 

ABE F < 1 30.0 1.1 
P <0.0001 0.19 
Effect 0.12 0.0009 

Table 10.2 Mean coherence 
The table shows mean coherence for each time-window, averaged ove 
all trials. 
-- 

Epoch W~ndow Contrd Picture 
BBE 1 0.626 

2 0.604 
3 0.612 
4 0.616 

ABE 5 0.618 
6 0.621 
7 0.632 
8 0.62 



Table 10.3 Results of analysis of variance of phase 
The table shows the results of a W w a y  within subjects analysis o 
variance of phase. Phase decreased significantly with increasing distanc 
in the picture and control conditions in the before-blink epoch, an 
increased significantly with distance in the control condition in the after 
blink epoch. 

Condition Epoch Item Time Distance T x D 

Picture BBE F e 1 1.92 1.05 
P < 0.0001 0.24 
Effect 0.005 0.0009 

ABE F 1.05 1.10 < 1 
P 0.37 0.22 
Effect 0 0.0006 

Control BBE F 1.25 1.41 < 1 
P 0.29 0.002 
Effect 0 0.002 

ABE F < 1 1.49 c 1 
P 0.0005 
Effect 0.002 



(a) before-blin k epoch 
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(b) after-blink epoch 
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Figure 10.1 Coherence vs. interelectrode distance 
Coherence values are averaged across subjects and across the 4 time windows of the before- 
blink epoch (a) and the after-blink epoch (b). Values are show for all 120 possible electrode 
pairs of the 16 electrodes that were recorded. Each point on the graphs shows the coherence for 
one pair of electrodes. Electrode pair 1 is part of the group of most closely spaced electrode 
pairs. Electrode pair 120 is part of the group of most distantly spaced pairs. 

10.4 Discussion 

Averaged over all time-windows within an epoch, coherence varied significantly with 

inter-electrode distance. For both the before and after-blink epochs, at short inter-electrode 



distances, corresponding to adjacent electrode positions, coherence magnitude w s  

approximately 0.75, while at the longest inter-electrode distances coherence dropped to 

approximately 0.5. These findings are consistent with the findings of Thatcher et al. 1986), who 

similarly found, in resting EEG, an inverse relationship between between-electrode distance and 

coherence. Examining Figures 10. l a  and 10.1 b the change in coherence with distance appears 

to be approximately quadratic. This observation is only approximate however, since a simplified 

distance metric was used, based on a flat-scalp model, and intended only for ordinal ranking of 

electrode pairs in terms of distance. Nevertheless, this observation is at least generally 

consistent with Thatcher et al.'s (1986) results, similarly showing a quadratic relationship 

betwen coherence and distance. The present results are thus generally consistent with 

Thatcher et al.'s (1986) view of EEG associations, based on axonal rather than volume 

conduction. 

Phase w s  found to decrease with distance in the before-blink epoch in both conditions, 

and to increase in the after-blink epoch in the control condition. It was expected that phase 

should increase with distance regardless of whether interregional correlations were founded on 

axonal signaling or volume conduction. An explanation that can be suggested for the observed 

decreases in phase with distance is that the accuracy of the phase computation was 

compromised because of the limited number of data points that w available within each time 

window. A replication of this study should attempt to increase the number of available data 

points. One way in which this might be done is to increase the sampling rate of the EEG signals 

from the present value of 128 points per second to a value of 256 points per second. This 

strategy should help to the extent that it provides new data points that are sufficiently 

independent of the existing data points. 



1 1 Topographic Distribution of Coherence Differences 

11.1 Introduction 

Inspection of Figure 10.la and 10.lb reveals differences between coherences in the 

picture and control conditions, but mainly for electrode pairs separated by the longer inter- 

electrode distances, and with a higher value of coherence in the picture than in the control 

conditions in the before-blink epoch, and the reverse in the after-blink epoch. A t-test was 

computed to test these observations. The t-tests were computed for the longestdistance 10% of 

the coherences in both the before and after-blink epochs. The results confirmed the 

observations. In the before-blink epoch, the mean coherences for picture and control conditions 

were 0.521 and 0.500 respectively, with a corresponding value of t of 2.95 (p = 0.004). In the 

after-blink epoch, the mean coherences for picture and contrd conditions were 0.499 and 0.510 

respectively, with a corresponding value of t of -1.72 (p = 0.05). On the basis of the significance 

of these differences, topographic distributions were plotted, of the difference in coherence 

between picture and contrd conditions. 

11.2 Method 

These topographic distribution plots were constructed in exactly the same way as those 

for intercorrelation in Section 10. Coherence differences were displayed using a 2dimensional 

projection or map of the physical electrode positions over the scalp. This map was used to 

display the difference in magnitude of coherence between control and picture conditions, with a 

separate map for each of the 4 time A n d m  of the before-blink epoch. This coherence 

difference is computed for each electrode k, as 

The magnitude of this coherence difference for a pair of electrodes is coded in terms of 

the thickness of a line joining the tvm electrodes. Negative coherence differences are show in 

gray, positive changes in coherence are show in black A positive difference indicates a higher 

value of coherence in the picture condition. A negative difference correspondingly indicates a 

higher coherence in the contrd condition. 

11.3 Results 

The topographical distributions of 6y, the changes in coherence between the picture and 

control conditions, are show in Figure 11.1 averaged across subjects. There are dear 



differences in the topography of the values of 6y between the 4 time windows, with unique 

patterns in each window. These patterns may be summarized as follows: 

1. Time-window 1 : Relatively moderate level associations exist between left fronto-temporal 

regions and a range of other areas including frontal and temporal regions bilaterally. 

Associations are also found between left temporal and left occipital areas. 

2. Time-window 2: Widespread and strong levels of association exist between left fronto- 

temporal areas, and bilateral prefrontal, occipital and parietal areas. 

3. Time-window 3: Moderate to strong associations occur betwen left frontal and anterior 

temporal areas, and bilateral prefrontal , frontal and occipital areas. 

4. Time-window 4: Moderate level associations are relatively localized in extent, between left 

and right frontal and anterior temporal areas. 



(a) time-window 1 (b) time-window 2 

(c) time-window 3 (d) time-window 4 

Figure 11.1 Topography of coherence differences, average across subjects 
The graphs show the magnitude of the difference in coherence, between the picture and control 
conditions. Coherence differences are computed as y(picture) - y(contro1). Coherences are 
averaged across all trials and all subjects. Line thickness is proportional to magnitude of 
coherence difference. The thickest lines correspond to a coherence difference of 0.15. 
Coherence differences less than 0.03 are not show. Black lines indicate a positive difference, 
with a higher coherence in the picture than in the control conditions. Gray lines indicate a 
negative difference, with a higher coherence in the control condition. 

1 1.4 Discussion 

The pattern of coherence over the 4 time-windows of the before-blink epoch shows a 

greater involvement of the left hemisphere, and in particular of the left fronto-temporal region, 

which appears to be a focus of association: In general, other cortical areas appear to be 

preferentially associated with the left fronto-temporal region than with each other. The 

beginnings of this pattern are evident in time window 1, and become particularly evident in time 

window 2. In the following time windows 3 and 4 the pattern of association becomes more 

bilateral, with a less evident focus on the left fronto-temporal area, as connections develop 



between bilateral prefrontal, frontal and occipital areas in time window 3, and between bilateral 

frontal and anterior temporal regions in time-window 4. 

In general, the topographic distributions of coherence differences somewhat resembles 

those of intercorrelation differences, in showing a strong association between bilateral occipital 

and left temporal areas. Again, these findings are consistent with the ventral visual pathway 

proposed by Ungerleider and Mishkin (1982). A clear difference between the coherence 

distribution and the intercorrelation distribution occurs in time-window 4. In time-window 4 

coherence shows a relatively moderate, relatively localized level of association, while 

intercorrelation showed a widespread and high level of association. Crosscorrelation is 

proportional to the cross-product between sample voltage values, while coherence is proportional 

to the cross-product between sample frequency components. A high value of cross-correlation 

together Ath a low value of coherence for a pair of time-series might imply that, while multiple 

frequency components w r e  present in common in both of the time-series and at the same 

phase angles, leading to a large value of correlation, the relative amplitudes of these 

components w r e  sufficiently different between the two time series to result in a low value of 

coherence. This is of course only a conjecture, and other possibilities are possible, for example 

involving some sort of interaction with the relatively high standard error of estimate of the 

coherence. A replication using a higher sampling rate might provide results which could 

distinguish between these possibilities. A higher sampling rate All reduce the standard error of 

estimate of coherence, since more data points All be available for analysis within each time 

window. 



12 The Discrimination Index 

12.1 Introduction 

This section will deal with the question of whether the information regarding the changing 

pattern of correlations with time in the before-blink epoch can be summarized as an index that 

can indicate the extent to which an object within a target object has been discriminated from its 

background. 

Such an index, which will be referred to here as the Discrimination Index, will be 

constructed by making use of two sources of information about the correlations in the before- 

blink epoch. First, this index muld need to take account of the overall value of correlation 

between all cortical areas. The mean correlation, computed over all electrode pairs for each 

time window, can be used to summarize this effect. Second, this index muld need to be 

sensitive to the fact that, during successful discrimination, not only does the magnitude of 

correlations, averaged over all cortical regions, increase, but also the proportion of the cortex 

connected by these correlations increases. The variance in the correlations, computed over all 

electrode pairs, can be used to summarize this second effect. To elaborate this connection 

between correlation variance and proportion of cortex connected by significant levels of 

correlation, the present findings show that at the start of the before-blink epoch, correlations 

between closely-spaced regions are substantial relative to correlations between more distantly 

spaced areas. Thus, only a portion of the cortical regions is connected by substantial 

correlations. As time proceeds towards the moment of discrimination, the correlations between 

the closely-spaced regions remain relatively constant, while correlations between distantly 

spaced regions increase in magnitude, and in this way increasing the proportion of the cortex 

that is connected by correlations of substantial magnitude. 

12.2 Method 

For both the picture and control conditions, and for each time-window, tm statistics are 

computed The first statistic is the mean correlation, calculated over all 120 electrode-pairs, for 

each time window. This value is then averaged over all trials for all subjects. The second 

statistic is the corresponding variance in the correlations over these 120 electrode pairs, also 

computed for each time window. Again, the resulting value is averaged over all trials for all 

subjects. Finally, for each time window and for both conditions, the ratio of these t m  statistics is 

computed. This ratio is the Discrimination Index, defined as the ratio of the mean correlation to 

correlation variance computed over all possible electrode pairs. 



12.3 Results 

In the before-blink epoch, the Discrimination lndex increased from 9.51 to 16.9 (77.7%) 

in the picture condition, and decreased from 12.8 to 11.2 (12.5%) in the control condition. In the 

after-blink epoch, the Discrimination lndex increased from 9.51 to 16.9 (11.1%) in the picture 

condition, and decreased from 11.8 to 11.2 (5.1%) in the control condition. Correlation mean, 

correlation variance, and the Discrimination lndex are listed for each time window in Table 12.1. 

Figure 12.1 shows correlation variance for each time window, averaged across subjects. Figure 

12.2 shows the Discrimination lndex for each time-window, averaged across subjects. 

The change in both the mean and variance of the correlations appears to be an 

approximately quadratic change with time, with the rate of change of this index increasing with 

time window. As Figure 6.5 and Figure 12.1 illustrate, in the picture condition mean correlation 

increases while correlation variance decreases. In contrast, in the control condition mean 

correlations decrease while correlation variance increases. As show in Figure 12.2, the ratio of 

these two quantities, the discrimination index therefore increases, approximately quadratically 

with time. 

Condition 
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time-window 

Figure 12.1 lntercorrelation variance 
lntercorrelation variance is computed for each condition and time-window by calculating the 
variance over all 120 possible intercorrelations, and then averaging the result across all cases 
and subjects. 
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Figure 12.2 Discrimination lndex 
The Discrimination lndex is computed for each condition and time-window by calculating the 
ratio of intercorrelation mean to intercorrelation variance. 
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Table 12.1 Discrimination lndex 
The table shows correlation mean and variance, computed over all 12 
electrode pairs, and the Discrimination lndex for each time window. 

Mean Variance Discrimination Index 

Epoch Wlndow Control Picture Control Picture Control Picture 

BBE 1 0.740 0.715 0.578 0.0752 12.8 9.51 
2 0.739 0.737 0.622 0.0717 11.9 10.3 
3 0.752 0.752 0.562 0.0552 13.4 13.6 
4 0.719 0.789 0.642 0.0467 11.2 16.9 

ABE 5 0.740 0.745 0.627 0.0635 11.8 11.7 
6 0.749 0.737 0.615 0.070 12.2 10.5 
7 0.768 0.734 0.537 0.0616 14.3 11.9 
8 0.730 0.755 0.652 0.0581 11.2 13.0 

12.4 Discussion 

The Discrimination lndex increases approximately quadratically mith time in the picture 

condition, in the 1 second interval preceding discrimination. In view of this clearly defined 

change, the index appears to be able to effectively summarize the information contained in the 

mean and variance of the intercorrelations, and therefore offers what muld appear to be an 

effective measure of the degree to which a target has been discriminated from the background. 

The Discrimination lndex uses information about both the magnitude and spatial 

variability of intercorrelations. These two sources of information in turn access t w  general 



features of brain function that are observed to occur during visual discrimination. In brief, 

correlation mean accesses information regarding the finding that intercorrelations increase over 

a short interval of time preceding the moment of discrimination. Correlation variance in turn 

accesses information regarding the finding that within this time interval intercorrelations between 

vridely-spaced electrode pairs increases more than correlations between more closely-spaced 

electrode pairs. The magnitude of the correlations is suggested to be related to the degree to 

which oscillatory components of brain activity, averaged across the entire brain, are 

synchronized. This magnitude increases over the 1 second preceding discrimination, implying a 

corresponding increase in the degree of synchronization of the oscillatory activity, averaged 

across all cortical regions. The spatial variability of the correlations is a consequence of the 

finding that, over the before-blink epoch, intercorrelations between dosely-spaced regions 

increase relatively little Mi le  intercorrelations between more distantly-spaced regions increase 

relatively more. Thus the values of distantly-separated intercorrelations approach the values of 

intercorrelations between dosely-spaced regions, with the result that the variability in correlations 

computed across all distances, decreases over the before-blink epoch. An alternative way of 

conceptualizing the variance in correlations is as a measure of the proportion of the cortex that is 

engaged in significant, mutuallycorrelated activity. While in this situation correlation mean and 

variance are thus only partially independent, these two measures each contribute information 

that is useful in constructing the Discrimination Index. 



Ill Nonlinear Analyses 



13 Neural Network Analysis 

13.1 lnboduction 

As a matter of terminology, the phrase neural network is used in this thesis to refer to 

computational models of biological netvmrks. To distinguish between these two cases, the 

biological nebmrks will be referred to as neuronal nehmrks, while the artificial networks will be 

referred to simply as neural netvmrks. 

Two related questions are addressed in this section. First, can the neuroelectric activity 

recorded in the picture and control conditions be discriminated using a neural nemrk-based 

classifier? Specifically, can a neural network classifier distinguish between the signals recorded 

in the picture condition from those recorded in the control condition? A related question is, can 

an automated process be found that can reliably distinguish between these two conditions and in 

this way provide an objective indicator of whether an individual has been able to successfully 

discriminate a target from a camouflaging background? 

One such indicator has already been discussed, the Discrimination Index. The 

Discrimination Index, the ratio of crosscorrelation mean to crosscorrelation variance, was 

show to increase significantly over an interval spanning the 1 second prior to recognition, in the 

picture condition, but not in the control condition. The present section will attempt to 

demonstrate an alternative to the Discrimination Index. This alternative, a neural network 

classifier, has a number of advantages. 

The first advantage is that a neural network-based classifier operates without the 

constraints of an a priori model of the basis upon which the classification is to be performed. 

The Discrimination lndex on the other hand is designed to make use of information related to 

intercorrelations. The model implicitly adopted by the Discrimination lndex is thus one which 

posits that differences between the picture and control conditions are to be found in the between- 

channel correlations. In contrast, the neural nebmrk classifier to be applied in the present 

section will operate without such restrictions. The classifier will make use of all possible features 

in the data in attempting to cany out the classification of the neuroelectric signals into one of the 

two categories, picture and control. 

The second advantage is computational efficiency. Once the neural netvmrk has been 

trained by being presented with a sufficient number of exemplars of the two categories to be 

discriminated, a relatively small amount of computation is required to test and classify a novel 

exemplar. This advantage muld be particularly important in possible uses of this approach in 

real-time applications where the network could rapidly discern that an individual has successfully 

discriminated a given target. 



13.1 .I Neural Networks as Analytic Techniques 

Neural Network programs were inspired in part by network theories of how storage of 

information and learning occur in the brain. One such theory is that of Donald Hebb (Hebb, 

1949). According the Hebb's theory, learning and memory are phenomena which result from the 

strengthening of the synaptic connections between simultaneously active neurons: "When the 

axon of cell A is near enough to excite a cell 6 ... A's efficacy, as one of the cells firing B is 

increased." (Hebb, 1949). Repeated stimulation of some particular network of neurons 

eventually results in permanent changes in the strengths of the interconnections between the 

neurons within this network. The result is that a memory trace has been laid down, or relatedly, 

that learning has occurred. 

The development of neural network models was inspired in part by such learning and 

memory functions of the brain. In general terms, the brain receives data from its environment. 

On the basis of this data, the brain is then able to induce rules pertaining to that environment, or 

to form internal representations of some of the features of that environment. These rules, or 

representations, then allow the brain to make predictions about a future state of affairs of the 

environment, on the basis of data about current conditions. Predictive ability in turn is related to 

probability of survival, conferring an evolutionary advantage on an organism which is able in this 

way to anticipate future conditions based on past experience. Neural networks, as computer 

simulations of such a rule-inducing system, similarly learn the rules, or features, embedded in 

examples presented to the network in training. 

In a typical application, a neural network configuration may consist of three layers of 

nodes. An input layer containing a number of nodes equal to the number of elements in a 

predictor vector, provides a connection point, allowing the predictor vectors to be supplied to the 

network. Variable-strength couplings, the network weights, connect the input layer with the 

second, hidden layer. These input-to-hidden layer weights are modified over the course of the 

network training phase using some rule, such as the back-propagation algorithm. As a result, 

after training, the hidden layer nodes represent a set of features abstracted by the network from 

the bolus of training exemplars. A second set of weights, also modified during the training 

process, connects the hidden layer with the output layer. The nodes of the output layer thus 

each receive a unique weighted combination of the internal features stored in the hidden layer. 

In the training phase, neural network is trained by presenting it with a series of 

exemplars. Each exemplar consists of a pair of vectors, a predictor vector, and a criterion 

vector representing the outcome or outcomes associated with that predictor. The predictors will, 

typically, be the values of a number of independent variables. The criterion, or target outcomes, 

associated with each such predictor will correspondingly represent the values of one or more 



dependent variables. As a concrete example, predictors might represent recordings of brain 

electrical activity. The associated target outcomes could then be a code representing a 

corresponding behavioural response, or experimental condition such as a cognitive or perceptual 

task. Using a training rule such as back-propagation, the neural network attempts to minimize 

the difference between the actual outcome or output of the network, and the target outcomes 

coded within each of the training facts. In order to accomplish this goal, over the training 

session, the network develops an internal representation of the features present in the training 

examples. One limitation that can also be an advantage in applying neural netmrks to such 

pattern analysis tasks is that these internal feature representations do not necessarily correspond 

to obvious features of the data. The positive side of this behaviour is that these internal 

representations may, given sufficient training, come to represent features of the predictor vectors 

which are more efficient in performing the pattern analysis task than those features presumed to 

be significant on the basis of beforehand assumptions. In any event, these internal 

representations are distributed in the network weights, and are summarized in terms of the 

activation values of the hidden nodes: For each hidden node, these activation values are the 

weighted sums of the outputs of the previous layer, the weightings being the network weight 

values. 

As training proceeds, the learning progress of the network can be periodically tested by 

presenting it with a series of test exemplars, while recording the resulting test errors. The set of 

test exemplars is generally created by sampling without replacement from the initial pool of 

training exemplars. Test error is the difference between the actual network outcomes and the 

target outcomes coded in the test exemplars. The size of this test emr is an indication of how 

well the network has abstracted the significant features in the training exemplars, or in other 

words, how well the network has learned. When test error is seen to have reached a minimum, 

the netwrk is considered to have been optimally trained. At this point, the network can be put to 

work, by presenting it with a set of exemplars for vrJhich there is no known outcome. The network 

will then generate an output for each of these unknown exemplars, on the basis of the 

information that the network has abstracted over the course of the training phase. These outputs 

are the network's predicted outcomes for each of the exemplars. 

An advantage that neural networks have over other signal classification techniques is 

that no a priori model needs to be adopted. With Fourier analysis, for example, the a priori 

model is that the sought-after discriminability is present in the frequency and phase components 

of the data. Similarly, with classification techniques based on crosscorrelation or coherence the 

initial assumption is made that the features upon which successful classification can be made 

involve correlations or coherences. With neural networks, there need not exist any preconceived 

notion about what aspects of the data are important for doing the classification. The data are 



presented to the network, and the network takes on the problem of determining what dimensions 

or features in the data hold the key to discriminability. The network's internal, distributed 

representation of the data, coded in terms of the network wights, contains the discrimination 

criteria. As stated earlier, this feature of neural networks is a Wedged swrd. While this 

internal representation of the data may be more effective than preconceived criteria in terms of 

performing the data analysis, these discrimination criteria that the network has developed can 

not be easily accessed. That is, a network user may not be able to relate the network's wights 

or hidden node activation values to physical features in the data. 

The power of neural networks as function approximators, or as classifiers, derives from 

the ability of neural networks to function as nonlinear analyzers. This ability in turn is in part the 

result of the nonlinear transfer function generally adopted for the simulated neurons. Without a 

nonlinear transfer function, neural networks would be reduced to performing only as linear 

analyzers. We might consider the behaviour of a nemrk d th  only an input and an output layer 

of simulated neurons or nodes, and d th  only linear transfer functions for each node. With such 

linear transfer functions the output of any node is linearly proportional to the input to the node. 

Such a network would only be able to present to the output nodes linear combinations of the 

values present at the input nodes. Next, consider added to this netwrk a third, hidden layer 

containing nodes that also have linear transfer functions. The input to each hidden node is a 

linear combination of the inputs. The output of each hidden node is still this linear combination 

of inputs, albeit in general scaled by some numeric factor. Each output node in turn receives 

inputs from these hidden nodes, and thus receives several of the linear combinations of network 

inputs represented by each of the hidden nodes. Having a linear transfer characteristic, each 

output node linearly combines these incoming combinations. This 'linear combination of linear 

combinations' of the input signals is, by the definition of linearity, simply another linear 

combination, of the original network inputs. No matter how many layers a neural network had, if 

all nodes were linear, the overall network could do no more than generate outputs which were 

linear functions of the inputs. 

When the hidden layer nodes are given nonlinear, rather than linear, transfer functions, 

the output of a hidden node becomes a nonlinear function of the signals received from the input 

nodes. The implication of this statement is that the way that a hidden node responds to any 

particular signal from any one input node now depends on the signals coming to that hidden 

node from all other input nodes. The nonlinear transfer function implies that interactions 

beheen the effects of the input signals are now possible. It is the complexity inherent in these 

interactions that is responsible for the rich, and sometimes chaotic behaviour that neural 

networks have been show to have. In terms of their performance as classifiers, neural nemrks 

owe to this nonlinear transfer function that ability to discriminate between classes of input vectors 



that are non-linearly related. Straightforwardly, a neural netmrk can discriminate between two 

sets or classes of inputs that are separated by a nonlinear decision boundary in the variable 

space of the inputs, because the netmrk can form a correspondingly nonlinear decision 

boundary, by generating at its outputs nonlinear combinations of the data presented to its inputs. 

Experience has show that real-world data sets more often than not are characterized by such 

nonlinear relationships among the subgroups within the data. 

13.1.2 EEG Signal Analysis Using Neural N e M r k s  

In this section are reviewed several of the studies that have been canied out to date that 

have demonstrated the effectiveness of neural network systems in the classification and 

categorization of EEG data. Although much of the theoretical m r k  underlying neural networks 

predates the work leading to the development of other nonlinear methods such as chaos-analytic 

techniques, the application of neural netvlrorks to the classification of EEG signals is relatively 

more recent. To date, relatively few studies have been carried out in this area. 

Gabor and Seyal (1 992) applied a multi-layer back-propagation neural netvmrk to the 

problem of recognition of interictal epileptiform spike-wave patterns in the EEG, in a study using 

5 epileptic subjects. EEG recordings were made from 8 pairs of channels including all scalp 

areas. The neural netmrk used for the data analysis included 1 input node for each of these 8 

EEG channel pairs, 8 hidden nodes and 1 output node. In order to decrease the computational 

load on the network, EEG data was preprocessed by calculating and using only the slopes of the 

spike events for each of the 8 channels. The training and testing vectors corresponded therefore 

to the spatial distribution of the rates of change of spike voltage. An average of 94.2% of the 

waves were classified correctly, with 20.9% false-positive classifications. These results, the 

authors suggest, provide evidence that a neural network-based pattern classifier can perform 

effectively in the identification of epileptiform transients in the EEG. They conclude that the 

network's inherent properties of being able to learn features across training examples, and of 

being able to generalize this learning to novel instances, were properties that allowed the 

nehwrk to identify mveforms h i c h  differed from the training patterns but that still maintained 

the spatio-temporal characteristics of epileptiform waveforms. 

Jando, Siegel, Horvath and Buzaki (1993) similarly used a multi-layer neural network to 

classify epileptiform EEG activity. In their study, spike-wave activity was recorded over 12 hours 

from the neocortex of rats that had been bred to exhibit epileptic symptoms. Neural network 

configuration was optimized by conducting a parametric study of numbers of input and hidden 

neurons. It was found that a network of 16 input and 19 hidden neurons was most efficient in 

terms of classification error rate achieved after a fixed number of iterations. One output neuron 



was used, corresponding to a discrimination between two conditions, epileptiform versus non- 

epileptiform input. The authors analyzed both the raw time-series, as well as Fourier 

transformations of the raw data including both amplitude and phase. Each time series consisted 

of 12 seconds of recorded EEG data, digitized at 100 samples per second, and selected visually 

to represent one of the tw data conditions. The training set consisted of 469 time-series 

corresponding to spike-wave activity, and 1,133 time-series of non-spike-wave activity. The 

authors chose to analyze each time series using a time-window containing 16 data points, and 

sliding across the time-series in steps of one data point. At each step, the 16 data points were 

presented to the neural network input nodes. 

The netwrk correctly classified 96% of epileptiform events, and misclassified 30% of 

non-epileptiform events. The authors suggest that this performance demonstrates the power of 

a non-linear analytic technique such as a neural network to find correspondingly non-linear 

relationships between dependent and independent variables. Techniques limited to utilizing only 

linear relationships are prone, they suggest, to committing false-positive misclassification. 

Training speed was found to be higher when the netwrk was supplied with Fourier transformed 

data than when it was supplied with raw data. This finding suggests that the distinguishing 

features between the epileptiform and control conditions consisted of amplitude and phase 

differences of periodic components within the data. As Smith (1993) has pointed out, doing 

some of the m r k  that the network muld otherwise have to do by preprocessing the data usually 

results in improved training. 

EEG waveforms were classified according to sleep stage using a multi-layer network 

(Grozinger, Kloppel and Roschke; 1993). The goal in this study was to train the network to 

classify samples of EEG recorded during sleep as corresponding to REM or NREM periods. 

EEG recordings at electrode Cz were made from subjects during sleep. The EEG records w r e  

digitized at 100 samples per second, and separated into 6 frequency ranges, 0.5 to 3.5 Hz, 3.5 to 

7.5 Hz, 7.5 to 15 Hz, 15 to 25 Hz, 25 to 45 Hz and 0.5 to 45 Hz. Power within each band was 

computed and used as one component of the netwrk input vector, forming training and testing 

vectors of 6 components. Correspondingly the network was composed of 6 input nodes, one for 

each component, 4 hidden nodes and 1 output node. Raw data for each exemplar consisted of 

2048 data points, with data from one night used for the training exemplars and data for a 

subsequent night used for the testing exemplars. A total of 1300 training and testing exemplars 

were used. Following a training phase, testing results were an average of 89% of exemplars 

correctly classified as either REM or NREM. The authors point out that conventional EEG 

analysis to determine sleep stage requires additional recordings of electrooculographic and 

electromyographic potentials. The results using the neural network demonstrate that such 

classification can be accomplished using only scalp EEG recordings. 



The event related P300 response in patients with multiple sclerosis (MS) was 

distinguished from the P300 in a normal control group using a multi-layer neural network (Slater, 

Wu, Honig, Ramsay and Morgan, 1994). Characteristically, amplitude of the P300 response has 

been show to be sensitive to stimulus probability, increasing for rare stimuli, while latency has 

been found to be linked to task difficulty, increasing for example with increasing difficulty of 

stimulus discrimination. While P300 characteristics have been found to be altered in patients 

with MS, with, in particular, an increase in latency, such alterations are too subtle, the authors 

point out, to allow them to be used in clinical diagnosis. An oddball paradigm was used to elicit 

the P300, with infrequent target audio tones interspersed with frequent standard tones of a 

different pitch. Recordings of P300 components were made to the target tones at electrode sites 

Fz, Cz and Pz. Averages were formed over 100 recordings each containing 256 data points. 

Training and testing exemplars were then formed by uniformly sampling 25 points from each of 

these averaged recordings. A set of 101 training exemplars was formed in this way for each of 

the three electrodes, 51 from the MS group and 50 from the control group. Testing data 

consisted of 10 MS and 10 control exemplars for each electrode. Three identical neural 

networks were used in the analysis, one for each electrode. Each network consisted of 25 input 

nodes, corresponding to the 25 exemplar data points, 8 hidden nodes and 2 output nodes. Final 

scoring was done on the basis of a 2 out of 3 majority rule. An exemplar was categorized 

according to whatever classification was assigned to that exemplar by at least 2 of the 3 

networks. Classification accuracy when the performance of each network was considered 

separately was found to be 85% at Cz, and 80% at both Fz and Pz. Using the majority rule, 

classification accuracy was 90%. The authors point out the difficulty with using neural networks 

that the basis of the classifications is generally not easily available. On the other hand, they 

suggest, if network performance indicates an effective ability to distinguish between disease and 

control conditions, then the network is nevertheless useful as a tool for clinical diagnosis. 

The diagnostic capability of neural networks has also been used to classify subjects as 

depressive, psychotic or normal (Kloppel, 1994b). EEG recordings were made from 18 subjects, 

6 depressives, 6 psychotics and 6 normal controls. Recordings were made from 16 scalp 

electrodes, over an interval of 30 minutes. Preprocessing consisted of reducing 4 second 

segments of the EEG record to 6 values, representing spectral power levels in the delta, theta, 

alpha 1, alpha 2, beta 1 and beta 2 frequency bands. Artifacts were eliminated by setting to zero 

those data points identified as artifactual, and linear interpolation was then used to bridge the 

surrounding data points. Neural network was examined after training on data from varying 

numbers of subjects. After training on data from only one subject, the network was able to 

classify unlabelled data segments from that same subject with an accuracy of 80%. After 

training on two or more subjects, classifying data segments belonging to any one subject, 



dropped to 66%. The network was thus able to recognize data belonging to the subject on which 

the network had been trained. However, the netmrk was only marginally well able to generalize 

this knodedge to the classification of data from other subjects. 

A different type of network, a Learning Vector Quantizer (LVQ), has also been used in a 

number of studies involving EEG classification. The LVQ is a self-organizing network, 

comprised of mutually interconnected nodes, in comparison with the multi-layer back- 

propagation network which is organized in hierarchically connected layers. The LVQ does not 

require feedback in order to learn. Such feedback is required by networks using the back- 

propagation training algorithm, in the form of the target criterion values that form part of each of 

the training exemplars. The LVQ is thus in the class of unsupervised networks, in comparison 

with multi-layer networks which are classed as supervised networks. Vectors representing sets 

of data points are presented to the LVQ. After a number of such presentations the LVQ is able 

to place a vector into one of several categories. This function is similar to that performed by 

traditional statistical cluster-analysis techniques. 

An LVQ applied to the classification of EEG wiveforms was used to predict laterality of 

hand movement (Pfurtscheller, Flotzinger, Mohl and Peltoranta, 1992). A total of 30 channels of 

EEG data were recorded from 3 subjects prior to voluntary right or left hand movements. Each 

channel was referenced to the weighted average of 5 surrounding channels. Subjects were 

asked to press a micfoswitch with either a left or right finger and for a specified duration. 

Direction and duration were indicated by cues presented in succession on a computer monitor. 

Subjects were asked to initiate the movement following the duration cue, and EEG recordings 

were made during the interval between the direction and duration cues. Recording terminated 

approximately 0.5 seconds before the start of movement. Training data consisted of single trial 

records of event-related desynchronization, in the 8 to 10 Hz and 10 to 12 Hz frequency bands. 

Trials were selected manually to use only those which showed clear and artifact-free alpha 

activity. In a training phase, the LVQ was allowed to self-organize, a process analogous to the 

pattern-formation which occurs in multi-layer neural network weights. After training, the LVQ 

could significantly well predict side of hand movement, with an accuracy of 85%, 74% and 64% 

respectively for the three subjects. The authors claim that this finding is the first demonstration 

that EEG signals can be classified without the use of averaging. They point out that by not using 

averaging, the problem of dealing with a statistically nonstationary signal is avoided. The results 

do however confirm the findings of averaged potential studies that signals related to the 

preparation for finger movement are available for several seconds prior to the start of 

movement. 

An LVQ netmrk was also used to perform on-line EEG classifications (Flotzinger, 

Kalcher and Pfurtscheller, 1993). Subjects were instructed to press a microswitch with either left 



or right index fingers as indicated by a direction cue presented visually on a computer monitor, 

and upon an initiate-movement cue presented 1 second later. Training vectors w r e  formed 

from EEG recordings made during this 1 second interval betwen the presentation of the 

direction cue, and prior to actual movement, from channel pairs C3Cz and C4-Cz. The LVQ 

vas trained to predict laterality of movement prior to the actual movement itself. The goal of the 

study was to have the network predict laterality without any movement actually occurring. The 

network was first trained, and then used to predict side of movement. The network's prediction 

was displayed on the computer monitor as feedback to the subject. In the later stages of the 

prediction phase the microswitch was removed so that network's predictions w r e  made solely on 

the basis of pre-movement EEG's. After training, the LVQ was found to be able to correctly 

predict side of movement between 59% and 86% of the time, both with the microswitch present, 

and without the microswitch. Such on-line prediction is made possible, the authors suggest, by 

the operating speed of the LVQ, which they suggest is higher than that of a multi-layer neural 

network. 

13.1.3 Summary and Discussion 

Neural networks, both of the multi-layer and LVQ types, have been demonstrated to be 

effective as pattern classifiers. Using multi-layer networks, this classification ability has been 

applied to the problem of recognizing epileptic spike-waves in humans (Gabor and Seyal, 1992) 

and in rats (Jando, Siegel, Horvath and Buzaki, 1993), classifying stages of sleep (Grozinger et 

al, 1993), recognizing the effects of multiple sclerosis on event-related potentials (Slater et al., 

1994), and distinguishing normal, depressive and psychotic subjects (Kloppel, 1994b). LVQ 

networks have been used to classify movement-related potentials to predict the laterality of 

finger movement (Pfurtscheller et al, 1992; Flotzinger et al, 1993). 

One reason that neural networks are effective in dealing with EEG data may be that 

neural network classifiers are examples of nonlinear techniques. In particular, it has been 

suggested that the success of neural networks as categorizers is probably due in part to the 

ability of neural networks to function as nonlinear discriminant analyzers. Webb and Low  

(1990) report on theoretical results involving layered nonlinear feed-forward adaptive networks 

that demonstrate why such networks are effective at performing classification tasks. The authors 

show that this discriminatory ability is a result of the first half of the network, from input nodes to 

hidden nodes, performing a nonlinear transformation of the input data into a feature space, 

defined by the hidden units, in which the discrimination should be easier. The second half of the 

netmrk, from the hidden to the output nodes, then executes a linear transformation aimed at 

minimizing the mean-square error to a set of given output patterns. In short, neural networks are 



capable of performing nonlinear discriminant analysis. The brain, as a distributed, nonlinear 

dynamical system, is probably not effectively describable or analyzable using purely linear 

methods. Reasonably, the analysis of such a nonlinear system should require the application of 

correspondingly nonlinear methods, examples of which have been discussed in this section. A 

comprehensive overview of the application of neural networks to the analysis of EEG data can 

be found in Kloppel (1994a). 

13.2 The Hypothesis 

It is suggested that the exemplars representing the control and picture conditions of the 

present study will be distinguishable to varying degrees, depending on the time-window. In 

particular, and on the basis of the results of the crosscorrelation analysis, it is suggested that 

there should be an increasingly effective discrimination over the 4 time-windows of the before- 

blink epoch. Furthermore, and again on the basis of the crosscorrelation analysis results, it is 

proposed that the data from the 4 time-windows of the after-blink epoch will be relatively less 

discriminable. 

The ability of the probabilistic network to discriminate between picture and control 

condition using data from the time-windows of the before-blink epoch will depend, it is 

suggested, on features of the data that are related to the increasing level of organization of the 

intercortical signaling over the course of this epoch. 

13.3 Method 

The approach that will be used in this analysis is neural network classification of the data 

within a moving time window, swept across two 1 second intervals of the recorded EEG. The 

first interval is the 1 second epoch preceding the eye-blink by which subjects signal the target 

discrimination event. The second interval is the 1 second epoch Wich begins after the cessation 

of artifacts associated with the blink, 1.5 seconds after the start of the eye-blink artifact. EEG 

recordings made during these epochs in both the picture and control conditions will be used to 

construct network exemplars. The network will then be asked to learn to distinguish between 

exemplars corresponding to these two conditions. 

13.3.1 The Neural Network 

The general type of neural netwrk used in this study is a form of the probabilistic 

network, developed by Specht (1990), the generalized regression neural network (GRNN) 

(Specht, 1991; Wasserman, 1993). In general terms, the GRNN, like the back-propagation 

neural network, is able to approximate any functional relationship between input and output. The 



folloAng description All be based on the network being used as a classifier; that is, to learn to 

place test exemplars into one of 2 or more categories. 

Structurally, the GRNN resembles the back-propagation neural network. The GRNN has 

a number of inputs equal to the number of predictor values in the training or testing exemplars. 

The input nodes of the GRNN, like those of a back-propagation network, are merely connection 

points to which the elements of the test exemplars are applied, one at a time. The GRNN has a 

number of hidden units equal to the number of training exemplars. There is one hidden unit for 

each training exemplar. Unlike the back-propagation network then, the GRNN does not require 

an estimate of the number of hidden units to be made before training can begin. Finally, the 

GRNN has a number of outputs equal to, if the GRNN is used as a classifier, the number of 

categories being discriminated. More generally, the number of outputs of the GRNN is equal to 

the number of criterion variables being predicted. 

The GRNN however differs functionally from the back-propagation neural network. First, 

there is no counterpart to the iterated back-propagation network training phase. Instead, the 

entire training matrix is installed in the GRNN, as the weights between the input and hidden 

layers. In more detail, the weights between the input nodes and each hidden node represent a 

single training exemplar. Thus, the weights between the input layer and hidden node 1 are the 

components of the predictor part of training exemplar 1. Recall that each exemplar consists of 

two parts. The first part consists of the predictor values representing the values of the variables 

being used to predict some outcome, while the second part consists of the criterion values 

representing the values of the variables being predicted. The equivalent of training with the 

GRNN thus takes no more time than is required to load the training file into working memory. 

This scheme is in direct contrast Ath back-propagation networks which must iteratively apply a 

heuristic, such as the method of steepest descent, to adjust the values of the input node to 

hidden node weights. The testing phase of the GRNN also differs significantly from that of the 

back-propagation netvmk In order to describe the GRNN testing phase it is useful to first state 

what the outputs of the GRNN represent. W~th the GRNN used as a classifier, the outputs of the 

GRNN are the probabilities that the test exemplars belong to the categories being discriminated. 

The GRNN implements a procedure for estimating the probability of a test exemplar vector given 

a set of training exemplars, based on the principle of Bayesian classification. The GRNN will in 

fact approach an optimum Bayesian classifier given a large enough number of training 

exemplars (Wasserman, 1993). 

The algorithm used for GRNN testing may be described as follows. In the training phase 

the entire set of training exemplars is loaded into the network, with the components of each of 

the exemplars becoming the weights between the input nodes and one hidden node 

corresponding to that exemplar. The testing phase begins with a testing exemplar being applied 



to the input nodes. Each hidden node will thus receive the product, and more precisely the 

vector dot-product, of the testing exemplar and the training exemplar corresponding to that 

hidden node. This vector dot-product is a direct measure of the collinearity, or in general terms 

the similarity, between the test vector and a training vector. Other similarity measures can also 

be used, such as the sum of squares of the difference between the components of the test and 

training vectors. This latter measure of collinearity is used in the present analysis. 

Each hidden node then performs a non-linear transformation on this dot-product. While 

in the back-propagation network the transformation generally involves the sigmoidal function, in 

the case of the GRNN the corresponding transformation involves the exponential function. The 

meaning of this transformed dot-product is that it represents the probability of obtaining the 

particular testing exemplar, given a probability density function with a mean equal to the mean of 

the training exemplar, and standard deviation defined by a parameter referred to as smoothing 

(generally, smoothing is the only parameter than needs to be selected when using the GRNN). 

Straightforwardly then, the GRNN computes at each hidden node the probability of the current 

test exemplar, given the existence of the training exemplar corresponding to that hidden node. 

The more similar the testing and training exemplar are, or in alternative terms the more nearly 

collinear they are, the greater will be the resulting probability of that testing exemplar occurring, 

given the training exemplar. 

These individual probabilities next need to be combined in order to generate the desired 

output of the GRNN. This output is the probability of the current test exemplar given all of the 

training exemplars. This combining is performed in the hidden to output connections of the 

GRNN. The transformed output of each hidden node is connected to each output node. As in 

the back-propagation network, these connections between the hidden and output nodes contain 

weights. However, and again in contrast with the back-propagation network, these weights in the 

GRNN are not trained, but rather are assigned values. These values are dummy codes 

representing the category of each of the hidden nodes. Recall that each hidden node represents 

one training exemplar, and that this exemplar belongs to one of the categories being 

discriminated. The dummy codes between a hidden node and all the output nodes are 1 for the 

output node which represents the same category as the training node, and 0 for all other output 

nodes. As an example, if there are two categories, A and B, being discriminated, the GRNN will 

have 2 output nodes, node A and node B. Let us assume that hidden node 1, representing 

training exemplar 1, belongs to category A. The weight between hidden node 1 and output node 

A will be 1, and the weight between hidden node 1 and output node B will be 0. The effect of this 

coding is to connect only hidden and output nodes of the same category, with the result that an 

output node of a particular category will receive inputs only from hidden nodes of the same 

category. That output node then simply sums these individual inputs. While each of these 



inputs from the hidden nodes represents the probability of the current test exemplar given a 

particular training exemplar, this sum at an output node represents the probability of the current 

testing exemplar given all of the training exemplars in one category. Finally, in order to generate 

an output which represents the actual probability, the value at each output node is normalized by 

dividing by the sum of all hidden node outputs. 

Thus, for this 2 category example, the value generated by the network at output node 1 

is the probability that the currently-applied test exemplar belongs to category A. The value at 

output 2 is the probability that the testing exemplar belongs to category 6. 

This technique of combining the probability density functions of individual exemplars of a 

category to approximate the probability density function of the category is due to Parzen (1962). 

Parzen showed that with a sufficient number of exemplars of a class, the result will approach the 

true probability density function of the category. 

An advantage that the GRNN has over the neural network and the genetic network is the 

single pass nature of the algorithm. Training and testing can typically be several orders of 

magnitude faster for the GRNN than for the neural or genetic networks. A potential limitation is 

that, since all training examples are stored in mrking memory, the size of the training data set is 

limited by the amount of available memory. 

Algorithm 

The following algorithm describes the testing phase of the GRNN. 

Symbols: 

Xi the j-th test exemplar vector 

U j the i-th training exemplar vector 

h j probability of test exemplar xi given the probability of a training exemplar, uj. 

cr smoothing parameter; defines the standard deviation of the PDF 

ck output corresponding to category k 

For each test exemplar Xi 

1 For each training exemplar uj 

1 .  Estimate the probability of xi given the probability of uj: 

hj = exp[- (xi - ujlT(xi - uj) / 281 



2 Compute the sum over all probabilities: 

3 For each output (category) Q 

3.1 Compute sum(2), the sum over hj for all category k training exemplars: 

3.2 Compute the probability of Xi by dividing sum(2) by sum(1): 

The value of Q now represents an estimate of the probability of test exemplar xi given all 

training exemplars from category k. 

The implementation of the generalized regression neural network function and all 

supporting operations utilized in the present analysis were performed using the data analysis 

program Simulnetm version 2.3. 

13.3.2 Training and Testing Exemplars 

Exemplar vectors used to train and test the network all have the same format. These 

vectors xi consist of two parts, a predictor portion comprised of n components pj and a criterion 

portion comprised of m components ck 

In the present application, there is 1 criterion component, a dummy code denoting the 

category membership of the exemplar. The predictor component of each exemplar is created as 

follows. From the data for each subject and for each trial, two sets of data are extracted. The 

first set is a matrix containing the 16 channels of 128 data points each, corresponding to the 1 

second interval preceding the blink. The second set is a matrix containing the 16 channels of 

128 data points each corresponding to the 1 second interval following the blink. Each of these 

matrices is then converted into a vector, by concatenating all 16 channels, placing them end-to- 

end. These vectors thus consist of 128 x 16 or 2048 components. The first 128 components 

thus correspond to channel 1 (Fpl), and the last 128 components correspond to channel 16 (02). 

One such vector is created from each trial for each subject. These vectors form the predictor 

sections {pl, ... p,) of each of the exemplars. The criterion dummy code that is added as a final 

element to each exemplar labels the exemplar as corresponding to the picture or to the control 



conditions. There were 54 control condition exemplars and 42 picture condition exemplars, for a 

total of 96 exemplars. 

13.3.3 Jackknifed Classification 

In order to make optimal use of the available number of exemplars, a jackknifing 

classification procedure was chosen. Each one of the 96 exemplars was in turn removed from 

the total set of exemplars. The remaining 95 exemplars were used to train the neural network, 

while the single withheld exemplar was then applied to the network for classification. The 

resulting score assigned to that exemplar by the network, the probability of obtaining that 

exemplar given the existence of the other 95 exemplars, w s  recorded. This procedure was 

repeated for all 96 exemplars. The result was a set of 96 scores, one for each exemplar, 

denoting the probability that the exemplar belonged to one of the two categories. Next, the 

effectiveness of the network in carrying out this classification was computed. A t-test of 

significance was computed on the two groups of scores, the group of scores for control condition 

exemplars and the group of scores for picture condition exemplars. The resulting numerical 

value of t is equal to the difference in the means of the two groups divided by the pooled 

standard deviation computed over both groups. The value of t is therefore an index of the 

relative difference between the two groups as estimated by the network. 

13.4 Results 

For each of the 8 time-windows, and for each of the 96 exemplars that were tested, 

(representing the 96 trials, 54 from the picture condition and 42 from the control condition), a 

score was generated by the network. Each of these scores represents the probability, as 

computed by the network, of that exemplar occurring, given the probability density functions for 

each of the two categories (control and picture), constructed using the other 95 exemplars. The 

nebmrk scores for each of the 8 time-windows are s h o ~  in Table 13.1. 

The results of the t-tests for the difference in netwmk scores for the control and picture 

conditions are show in Table 13.2 for the before-blink epoch, and in Table 13.3 for the after- 

blink epoch. For the before-blink epoch, the values of t increase monotonically from time- 

windows 1 to 4. A significant value of t in time window 4 (t = -2.828, p = 0.003) indicated that the 

network was able to significantly well classify exemplars as belonging to either the control or 

picture conditions on the basis of the EEG recorded during the final 0.25 seconds preceding the 

blink. For the after blink epoch, non-significant values of t occurred in time windows 5, 7 and 8, 

indicating that the network was not able to classify exemplars into the two categories on the 

basis of EEG recorded during these windows. A significant value of t did however occur in time- 



window 6 (t = -1.745, p = 0.042), indicating significantly effective classification of exemplars on 

the basis of EEG from this window. These results are graphed in Figure 13.1. 



Table 13.1 Generalized Regression Neural Network Scores 
Each score represents the probability, computed by the network, of the occurrence of th 
corresponding exemplar, given the probabilities of the other exemplars, that is, given th 
probability density functions for the control and for the picture conditions, computed using th 
other 95 exemplars. The Group label is coded as 0 for the control condition, 1 for the pictur 
condition. 

Trial Group 1 2 3 4 5 6 7 8 



Table 13.1 Generalized Regression Neural Network Scores 
(continued) 

Trial Group 1 2 3 4 5 6 7 8 

.0006 ,0321 .0221 .I39 .748 .0205 .51 .0414 

.46 .22 .0947 .0708 .0747 .I43 .596 ,404 



Table 13.2 T-test Results for Network Scores 
The values of t are computed for the two groups of scores, corresponding to the control an 
picture conditions, for time-windows 1 to 4 of the before-blink epoch, and 5 to 8 of the after 
blink epoch. The control group contains 54 scores, and the picture condition contains 4 
scores, for a df of 94. In the before-blink epoch, t values increase from time-windows 1 to 4 
A significant value of t in time-window 4 indicates that the network was able to significant1 
well distinguish between the exemplars of the picture and control conditions, on the basis o 
EEG recorded during the final 0.25 seconds preceding the blink. In the after-blink epoch, 
values are not significant for windows 5, 7 and 8, indicating that the network could not fin 
differences between the picture and control conditions in these time-windows. Only window 
shows a significant value of t, indicating that in time-window 6 the network was able t 
significantly well classify exemplars as to category. 

Wlndow Student's t p (1-tailed) Mn (control) Var (control) Mn (picture) Var (picture) 

1 .548 .293 .204 .063 .234 .079 
2 .474 .318 .264 .091 .295 .I15 
3 - 1 .04 .I51 .317 .091 381 .088 
4 2.517 .0067 .325 .06 .465 .089 
5 .371 .356 .323 .053 .343 .096 
6 2.021 .023 .346 .lo7 .493 .I47 
7 -.317 .376 .335 .063 .318 .07 
8 .538 .296 .319 .066 .348 .077 



-1 L 
1 2 3 4 5 6 7 8 

time-window 

Figure 13.1 Generalized Regression Neural Network classification results 
The figure shows the values of t resulting from t-tests conducted on the GRNN scores for the two 
sets of exemplars, representing the picture and control groups. Separate t-tests were conducted 
for scores for each of the time windows of the before-blink epoch (windows 1 to 4) and the after- 
blink epoch (windows 5 to 8). The highly significant value of t in window 4 indicates that the 
GRNN was able to accurately classify exemplars representing the picture and control groups into 
their respective categories. In turn, this result indicates that data in time-window 4 provided a 
clear basis upon which the hm groups could be distinguished. 

13.5 Discussion 

Over the time-windows of the before-blink epoch, classification accuracy of the network 

increased almost monotonically, reaching a highly significant level in time window 4, and a 

significant level in window 6. These results indicate that the GRNN was able to accurately 

classify exemplars representing the picture and control groups into their respective categories 

using data from time-windows 4 and 6. In turn, these results indicates that data in time-window 

4, and to a lesser extent time-window 6, provided an effective basis upon which the picture and 

control groups could be distinguished. 

These results, within the before-blink epoch, imply that data from the two conditions 

contain features that are increasingly dissimilar as the moment of visual discrimination, signaled 

by the blink, approaches. Applying the results of the previous correlation analyses, it is 

suggested that these distinguishing features are related to the increasing level of organization of 

the signals over the time-windows of the before-blink epoch. 



These neural network classification results are thus consistent with the results of the 

crosscorrelation, coherence and mutual information analyses, all of which indicated that 

interregional synchronization increased during the before-blink epoch. In the after-blink epoch, 

only time-window 6 showed a significant value of t, which however was smaller than the value of 

t found for time-window 4. The network was thus able to discriminate between picture and 

control conditions on the basis of the EEG recorded during time-window 6. This discrimination 

was however less effective than that which the network was able to accomplish using time 

Andow 4. A possible explanation for the finding of a significant classification in time window 6 is 

that during this interval subjects were re-focusing their attention the target images in the picture 

conditions, an event that would therefore be associated with an EEG that was different from that 

associated with the corresponding time window in the control condition. In the control condition 

there was no such image on which subjects could re-focus. Thus, during time-window 6 the re- 

focusing on the target image would have created a short-lived state of increased cortical 

organization. 

As an extension of the present work, it is proposed that an experiment could be designed 

in which subjects would not blink to indicate discrimination. Instead, subjects would be asked 

after every trial whether they had been able to recognize the camouflaged target object. Trials 

would then be separated into two groups, those in which a discrimination event occurred, and 

those in which discrimination did not take place. A shorter presentation interval for each image 

would be used. Based on the results of the present study, it is expected that presentation 

interval could be shortened to about 2 seconds. As in the present study, individual images would 

be presented more than once. Those images that are not discriminated on a first presentation 

might be decoded on a subsequent presentation. Network exemplars would be constructed from 

EEG recordings made during each of these 2 second presentation intervals. Again, as in the 

present study, the GRNN would be asked to learn to discriminate between exemplars 

representing intervals during which discrimination occurred from those representing intervals for 

Mich discrimination did not occur. If this proposed experiment shows that the netwrk can 

discriminate between these two cases, a further experiment would be carried out. This further 

experiment would be similar in intent to the first proposed extension, with the difference that the 

neural network classification would be performed on-line. That is, the netwnrk would be asked to 

indicate the presence of a recognition event with a short time delay after the event actually 

occurs. It is estimated, based on the experience of the present study, that a generalized 

regression network running on a 486DX or better processor should be capable of classifying one 

or tw seconds worth of data within a few milliseconds. This experiment would also be used to 

determine the minimum number of data points that are required in a real-time situation, for the 

network to accurately detect the target discrimination event. The present results suggest that the 



major features differentiating the picture and control conditions are found within the last 0.25 

seconds prior to the eye-blink by which subjects signaled discrimination. If such an experiment 

has a successful outcome, it will have demonstrated that it mu ld  be practical to try to design 

human-machine interfaces in which an observer mu ld  be able to signal detection of a 

camouflaged target within the time required to collect the minimum required number of data 

points. Significantly, such a signal m u l d  not involve a motor response from the observer, 

opening the door to potential areas of application in which a motor response is not practical or 

even available. 



14 Correlation Dimension Analysis 

14.1 Introduction 

The correlation dimension is an estimate of the complexity of a dynamical system. More 

precisely, the correlation dimension represents a lower bound on the number of variables that 

are required to adequately model a dynamical system (Farmer, Ott and Yorke, 1983). In relation 

to the area of study addressed by the present mrk,  it is suggested that a prototypical example of 

such a system is the organization of intercortical signaling underlying perceptual and cognitive 

processes. An analysis of the correlation dimension computed for EEG recorded during epochs 

of dissimilar types and scales of perceptual and cognitive activity therefore is expected to show 

an effect of these dissimilarities, reflected in differences in the computed estimates of correlation 

dimension. 

In providing a context for this analysis, the following brief review includes studies that 

represent several areas of application of measures of dynamical complexity (correlation 

dimension, symbolized as d2) and sensitivity to initial conditions (Lyapunov exponents). These 

areas include the relationship between these measures and the effects of task and of pathology. 

Arising from such studies are a number of issues related to methodology, and to the general 

applicability of these nonlinear analytical measures to analysis of neuroelectric signals. In 

addressing these general issues of applicability, the following review includes studies involving a 

variety of independent variables whose scope exceeds the area of visual perception that is the 

particular focus of the present mrk. 

14.1.1 The Effect of Task 

Correlation dimension has been found to index task complexity, showing a larger value 

for more complex cognitive tasks relative to less complex tasks. The comparative effect on 

correlation dimension of mathematical tasks versus a rest condition was examined using five 

subjects in 3 eyesciosed conditions, resting, serial addition by 2's, and serial subtraction by 7's 

(Rapp, Bashore, Martinerie, Albano, Zimmerman and Mees, 1989). A resting condition preceded 

and followed each arithmetic condition. The first finding was that the average value of 

correlation dimension across all resting conditions was found to be 3.9, Mi le  for both of the 

arithmetic tasks the value was 4.8. The second finding \n/as that the increase in dimensionality 

from a preceding rest period to an arithmetic task was greater for the subtraction task than for 

the addition task. This finding suggests, according to the authors, that the subtraction condition 

involves the relatively more complex task. 



Similar results were found by Nan and Jinghua (1988) in a study of relative hemispheric 

involvement in a mental arithmetic task. Correlation dimension was calculated for recordings 

made of scalp potentials at several electrode sites before, during and after the arithmetic task. 

Three subjects participated in this study, one left-handed and bm right-handed. Scalp potentials 

were measured at six electrode sites, FP1, FP2, T3, T4, 0 1  and 02. For all subjects correlation 

dimension was significantly affected by task for temporal recordings only. For the left-handed 

subject the right temporal area showed an increase in dimensionality during the arithmetic task, 

while the left temporal area showed no change in dimensionality. For both of the right-handed 

subjects the opposite pattern was observed: During the arithmetic task the left temporal area 

showed an increase in dimensionality while the right temporal area showed no effect. Following 

the arithmetic task, correlation dimension for the affected temporal areas returned to pre-task 

levels. In sum, both prior to and following the mental arithmetic task, dimensionality estimates of 

the electrical activity at both temporal areas were approximately equal. During the arithmetic 

task however, dimensionality increases were found in the recordings from temporal areas 

contralateral to subjects' handedness. 

Estimates of correlation dimension for alpha frequency components of the EEG were 

computed for 6 subjects in an eyesclosed condition (Basar, Basar-Eroglu, Roschke and Schult, 

1990). Simultaneous recordings were made at 4 midline sites, vertex, parietal, occipital and 

frontal. Signals were filtered at 5 to 15 Hz. Overall, correlation dimension at each of the 4 sites 

varied between 5.5 and 7.5. It has been demonstrated however that frequency filtering can have 

an effect on the value of correlation dimension. Badii, Broggi, Derighetti, Ravani, Ciliberto, 

Politi, and Rubio (1988) for example found that correlation dimension increases with filtering. 

Intuitively, averaging wuld  have an effect on the geometric properties of the phase-space 

attractor, thus affecting value of the corresponding dimensionality estimate. While the authors 

concluded that the dimensionality estimates showed a convergence in value across the 

measured sites, such convergence might reflect the effects of the common filtering process. 

Basar et al. (1990) suggest nevertheless that for similar initial conditions EEG activity, as 

reflected in the phase-space attractor and hence correlation dimension, is reproducible. 

Using an analysis of the coherence of the EEG, Basar et al. (1990) found support for the 

view that alpha EEG contains a deterministic, task-related component. While coherence is not 

in the class of nonlinear techniques discussed in the present Unit, the following description 

illustrates the value of applying both linear and nonlinear techniques to an analysis application. 

Recordings were made from 5 subjects at electrode sites Cz, P3, P4, 0 1  and 02, against an 

earlobe reference. Subjects were instructed to attend to an 800 ms light-intensity step stimulus 

presented every 2 seconds, with missing stimuli. Subjects were asked to predict and count the 

occurrences of the missing stimuli. In the easy condition, every fourth stimulus was missing. In 



the difficult condition every 4 to 7 stimuli were missing. The paradigm also included an eyes 

closed control condition. Recordings were made beginning 1 second before the missing 

stimulus, and included the evoked response to the missing stimulus. In the easy condition alpha 

EEG produced in the interval between 300 and 1000 ms prior to the missing stimulus m s  phase 

coherent between separate missing stimulus events. These EEG segments were correlated to 

the extent that the subjects were able to mentally track the missing stimulus. In both the difficult 

and control conditions there was significantly less phase coherence between alpha responses to 

the missing stimulus, a result consistent with the observation that in the difficult condition 

subjects had relatively more difficulty in tracking the missing stimulus events. These findings, 

the authors suggest, indicate the finding of a coherent brain state during which frequency 

components in the alpha range were phase-locked to an external signal. 

Basar et al. (1990) propose that these alpha coherences support the results of the 

correlation dimension analysis, that the EEG reflects a deterministic cognitive process, and more 

particularly in their study, an attentional process. Subjects who could attend to the missing 

stimuli sufficiently well demonstrated their attentiveness in terms of alpha-range EEG signals 

that were phase-locked to the stimuli being attended. The authors note as we11 that correlation 

dimensions measured across the 4 sites showed very different patterns over the time-span of the 

recording. They point out that different recording locations may show entirely different patterns 

of activity, when examined using measures such as correlation dimension and spectral analysis. 

For this reason, they suggest, such measures are usefully combined with other techniques, such 

as inter-trial phasecoherence. 

Correlation dimension has also found to increase relative to a resting condition during a 

sequence-learning task (Gregson, Britton, Campbell and Gates, 19911. Correlation dimension 

was computed for EEG data recorded from 6 subjects in 4 conditions, an eyes-closed resting 

condition, and three light-stimulus prediction conditions. Recordings were made from electrode 

pairs 0 1  to 02, and F3 to F4. Subsequent inspection of the apparent amount of noise in the 

records led the authors to use only the 0 1  and 0 2  recordings for analysis. The three prediction 

conditions differed in terms of the relative probabilities of the light stimuli, ~4 th  the third 

prediction condition being the most difficult. Multiple estimates of the correlation dimension were 

computed for the recorded EEG. Although there was considerable variability in the 

dimensionalities both vrJithin and across subjects, there was an overall increase in dimensionality 

from the resting condition (d2 = 8.0) to the prediction conditions (d2 = 9.3, 8.8 and 8.1), and with 

no significant difference among the prediction conditions themselves. 

Effects of task complexity were also found in a partial replication of Gregson et al. 

(1991), but using different electrode positions, Fpl to P1 and Fp2 to P2 (Gregson, Campbell and 

Gates, 1992). Each dimensionality value was computed by averaging correlation dimensions for 



30 samples for each subjectchannel combination. Again differences were found between the 

eyesclosed condition (d2 = 7.75) and the light-prediction conditions (d2 = 8.3). An effect of task 

difficulty was also found, with a higher correlation dimension for the most difficult prediction 

condition (d2 = 8.37) than for the tvlro less difficult prediction conditions (d2 = 8.3 and 8.27). The 

authors note that although there appears to be support for the notion that correlation dimension 

increases with task complexity, there is at the same time, and as in their previous experiment, a 

great deal of variability in the dimensionality values both within and across subjects. In sum, 

estimates of dimensionality using data from occipital recordings showed a difference between 

task and rest conditions only, while estimates using fronto-parietal recordings showed an 

additional effect of task complexity. The topography of the values of correlation dimension 

muld appear to contain useful information about the distributional characteristics of neuronal 

system complexity within and between tasks. 

Both Gregson et al. (1991) and Gregson et al. (1992) muld appear to be relatively 

methodologically sounder studies of the correlation dimension, in that multiple values of 

correlation dimension were computed for a single subject-trial combination. This procedure 

allows an estimate to be made of the stability across subjects and across trials of the correlation 

dimension value. These studies found substantial variability in the value of dimensionality, a 

finding that may help to explain the divergent estimates of dimensionality apparent when 

comparing results across studies. 

In a -part study, dimensionality estimates were computed in relation to first, a variety 

of different tasks, and second, degree of hypnotizability (Ray, Wells and Elbert, 1991). In the 

first part of the study, 12 subjects were engaged in 6 tasks, consisting of visualization tasks, 

tactile sensory tasks, an observation task, and a verbal alliteration task. Dimensionality was 

found to be highest for the visualization tasks (d2 = 5.2 to 5.4), followed by the tactile and 

observation tasks (d2 = 4.7 to 4.8) and lowest for the verbal task (d2 = 4.4). In the visualization 

task dimensionality was approximately equal for frontal, parietal and temporal channels. All 

other tasks showed a lower dimensionality for frontal than for frontal and temporal channels. 

These spatial differences might be related, the authors suggest, to the dissimilar processes that 

might occur in the one case during the visualization tasks which involve internally directed 

attention, and in the second case during the tasks which require some interaction with the 

external environment. 

In the second part of the study, estimates of dimensionality were related to degree of 

hypnotizability. A pool of 600 subjects was screened to select a group of 60 which was further 

screened to form a high and a lowhypnotizability group. Subjects underwent a protocol 

consisting of a baseline period followed by battery of tasks including imagery, spatial 

manipulation, mental arithmetic, and a Strwp naming task, followed by hypnotic induction, then 



a repeat of the tasks, then removal of the trance state, and ending with a second baseline period. 

No difference in dimensionality was found between the high and low hypnotizables during the 

baseline periods (d2 = 5.2). Following the induction procedure however there was a significant 

difference between the tvm groups. High hypnotizables showed a higher dimensionality (d2 = 

5.5) than low hypnotizables (d2 = 5.2). Fourier analysis of theta activity revealed an interaction 

between state and hypnotizability. Prior to induction, high hypnotizables showed more theta 

activity than low hypnotizables. This difference disappeared following induction. This double 

dissociation cllrould appear to indicate that different processes are tapped by the nonlinear 

correlation dimensionality analysis, and the linear Fourier analysis. The nonlinearity of brain 

dynamics thus may not be fully describable in t e n s  of a linear model such as Fourier analysis, 

but instead requires the contribution of nonlinear descriptors such as fractal dimensionality. 

Corroborative findings of higher dimensionality estimates during visualization come from 

2 studies of the effect of task on correlation dimension, and alpha and beta power (Lutzenberger, 

Elbert, Birbaumer, Ray and Schupp, 1992). These studies were intended to extend the results 

of previous studies (e.g., Ray et al. 1991) by involving several modalities, and by using Fourier 

analysis. 

The first study tested the effect of task on dimensionality and both alpha and beta power, 

by engaging subjects in tasks involving tactile perception (determining the smoothest of a 

selection of sandpapers), vision (observing a double pendulum swinging), and imagery 

(imagining a past emotional experience). EEG recordings were made over 16 second intervals 

producing 2048 data points. A significant effect of task was found on all measures. Correlation 

dimension and both alpha and beta power increased monotonically from the visual perception 

task, to the tactile perception task, to the mental visualization task. The alpha powr  results, 

higher alpha power in the visualization than in the perception tasks, are consistent with previous 

findings that alpha power is higher during tasks involving inmmrdlydirected attention than during 

tasks in which attention is directed outwardly (Ray and Cole, 1985). The higher dimensionality 

for the visualization task suggests that this task is associated with a relatively more complex 

neural dynamical state than the tvm perception tasks. 

In the second study the finding from the first study of dissimilar effects of visual 

perception and mental visualization was reexamined, but using the same object as the referent 

for both conditions. In the frontal areas only, a higher dimensionality was found for the visual 

imagery condition than for the perception condition. Both alpha and beta power showed 

increases in the visualization condition, mainly in parietal, but also in frontal areas. The finding 

of a difference in dimensionality between object perception and visualization in frontal areas is 

consistent with the results of metabolic examinations showing increased frontal metabolism 

during thinking as compared with perceiving (Roland, 1982). Lutzenberger et al. (1992) suggest 



that dimensionality analysis complements traditional techniques of EEG analysis, which in their 

view are atheoretical and descriptive. 

A study of correlation dimension and its relationship to intelligence (Lutzenberger, 

Birbaumer, Flow, Rockstroh and Elbert, 1992) found evidence of such a relationship, but only 

during rest and not during task performance. Subjects were tested for intelligence using the 

Catell culture fair intelligence test. Subjects were divided on the basis of the test results into a 

low IQ group (a mean IQ of 84.4), and a high IQ group (a mean IQ of 118.2). Subjects were then 

engaged in 2 task conditions. In the first condition, EEG's were recorded from subjects during a 

no-insttuction rest period. In the second condition, which f o l l m d  the rest period, EEGs were 

recorded while subjects engaged in a mental imagery task Data samples of 2048 points were 

recorded, over an interval of 20.48 seconds. Estimates of d2 were computed for each sample. 

Dimensionality, which the authors viewed as indicative of relative complexity of neuronal 

activity, was found to be higher for the high IQ group than for the low IQ group. This difference 

was significant during the resting condition in the parietal region, but was not significant during 

the imaging condition. A significant correlation between IQ and dimensionality was found at 

electrode Pz, with dimensionality accounting for about a quarter of the variance in IQ. 

Interestingly, measures of power in the delta, theta, alpha and beta ranges showed no difference 

between the IQ groups. As an explanation for these findings the authors propose that in the 

resting condition, higher IQ subjects manifest a greater number of simultaneously active 

neuronal assemblies, and thus a higher dimensionality, than low IQ subjects. In the imaging 

condition, task requirements impose equal restrictions on the 2 groups in terms of the number of 

activated cell assemblies, leading to a smaller difference in dimensionality between the groups. 

The effect of processing load was investigated by computing estimates of d2 and 

measuring alpha power for EEG's recorded from 12 subjects during no-task eyes open and eyes 

dosed conditions (Pritchard and Duke, 1992). Blocks of eyes open and closed conditions were 

repeated 4 times. The authors prefer the term dimensional complexity for their measure, in view 

of what they see as the limitations in the available EEG data with respect to the correlation 

dimension algorithm. These limitations include first, violations of requirements for an unlimited 

amount of noise-free data, and second, for a statistically stationary dynamical process. 

Dimensional complexity was found to be lower in the eyes closed than in the eyes open 

condition. The increased dimensional complexity in the eyes open condition was found to be 

well accounted for by the data from the occipital channels. A similar and inverse pattern was 

found for alpha power which decreased in the eyes open relative to the eyes closed condition. 

Finally, across the 4 blocks of eyes open and eyes closed tasks, dimensional complexity 

decreased, while alpha power increased. These results were interpreted as indicating that 

dimensional estimates may be useful in a relative sense, as an indicator of processing load. The 



authors point out however that dimensional estimates may not be valid in an absolute sense. 

The EEG signal may not fulfill the requirement of representing a stationary process, although 

there appears to be no generally accepted criterion for determining when a shift in stationarity of 

the EEG occurs. The non-stationarity of the EEG muld appear to be indicated by the finding 

that dimensionality changed across the 4 identical condition blocks. 

14.1.2 The Effect of Pathology 

A number of studies have explored the relationship between nonlinear measures such as 

correlation dimension and Lyapunov exponents and organic pathological conditions, principally 

epilepsy and Creutzfeld-Jakob disease. 

Comparing states of arousal with epileptic seizure activity, Babloyantz and Destexhe 

(1986) found correlation dimension values to be lowest for epileptic activity and REM sleep, 

higher for stage 2 and 4 sleep, and highest for wakefulness. Estimates of the correlation 

dimension were computed for wakefulness, REM, stage 2 and stage 4 sleep in a normal subject, 

and an epileptic seizure event in an epileptic subject. For the wakefulness condition, the 

computation was not able to produce a bound on the correlation dimension, suggesting a high 

value of dimensionality. A similar result was encountered for the REM sleep condition. For both 

stage 2 and stage 4 sleep, correlation dimension was computed to have a value of between 4 

and 5. For the epileptic seizure events, recordings were made of the differential signal bebeen 

frontal and parietal regions, and between the vertex and temporal regions. The same results 

were found for all channels: correlation dimension for epileptic seizure activity was found to be 

approximately 2. A similar pattern of results was found for the correlation dimension computed 

using data recorded from the limbic cortex of a rat, during rest, locomotion and an epileptic 

seizure induced by kindling (Pijn, Van Neerven, Noest and Lopes da Silva, 1991). For the rest 

and locomotion conditions dimensionality was found to be unbounded and high. For the seizure 

condition a dimensionality of between 2 and 4 were computed. 

These distinctions between wakefulness, sleep and pathology have been explored using 

a number of different nonlinear measures (Gallez and Babloyantz, 1991). Several nonlinear 

analyses were applied to EEG recorded during wakefulness with eyes dosed, stage 4 sleep, and 

Creutzfeld-Jakob coma. The first measure involved calculation of Lyapunov exponents, 

indicators of sensitivity to initial conditions and hence the presence of deterministic chaos. The 

second method involved computation of Kdmogorov entropy, a measure of the rate at Mich 

new information is produced, or the mean time for which a signal can be predicted. The third 

method used calculation of attractor dimensionality, an estimate of generating system 

complexity. Attractor dimensionality was estimated using the correlation dimension and b m  



other related measures of dimensionality based on Lyapunov exponents, the Kaplan-Yorke and 

the Mori conjectures. 

There were three main findings. First, the number of positive Lyapunov exponents was 

highest for the wakefulness condition, and lowest for the coma and sleep conditions. The greater 

the number of positive exponents, the greater is the sensitivity of the system to perturbations, 

and therefore the more chaotic the underlying generating system. The authors interpreted their 

findings to mean that the higher chaotic level in the wakefulness condition make possible a 

greater variety of behaviours. Second, metric entropy w s  found to be higher during 

wakefulness than during deep sleep. The greater the metric entropy, the greater the rate at 

which the system is producing information, or in alternate terms, the less predictable it is. The 

authors relate this finding to the greater rate of information processing during wakefulness 

relative to deep sleep. The third finding was that bounded, and similar, values of dimensionality 

were computed by the correlation dimension, and by estimates of dimensionality based on 

Lyapunov exponents. The bounded dimensionality values indicate, the authors proposed, the 

presence of strange attractors during the phases of brain activity which were studied. The 

convergence in dimensionality values produced by the three methods that were used wuld  

indicate that estimates of dimensionality are at least to some extent robust in the face of 

alternative computational approaches. 

The authors note however that typically there is a great deal of variance in the 

dimensionality values even using the same estimator with different data samples, and suggest 

that experimental situations should be arranged to provide a clear distinction between the types 

of tasks that are used, and thus between the associated neural activities. They emphasize that 

dimensionality estimates are most effective when used to distinguish between the effects of 

different types of task requirements, rather than when used as indicators of absolute complexity 

of neural dynamics. 

Correlation dimension, Lyapunov exponent, and autocorrelation estimates were 

computed for EEG recorded during an epileptic seizure in a single subject study (Frank, 

Lookrnan, Nerenberg, Essex, Lemieux and Blume, 1990). In contrast with Babloyantz and 

Destexhe (1986), Frank et al. (1990) were able to obtain a longer-term recording of a seizure, 

lasting approximately 75 seconds, and including both absence and grand-ma1 events. The 

authors estimated the stationarity of the record by looking at the variance of different portions of 

the entire recording, along principal component axes. They suggest that what they refer to as 

dynamical nonstationarity - changes in the dynamical properties of the record - wuld  be 

indicated by different variances along the different dimensions, and between the different 

portions of the record. No evidence of this was found and the authors conclude that their signal 

record was statistically stationary. Correlation dimension was found to have a bounded value of 



5.6, consistent with the presence of a strange attractor in the dynamics underlying the epileptic 

activity. The first Lyapunov exponent was 1, consistent with the computed decay rate of the 

autocorrelation function, and suggesting a chaotic component to the underlying dynamics. 

Essentially the same results were obtained with the same subject after a 3 month interval. 

These findings support the position, the authors conclude, that the neural dynamics 

during an epileptic seizure are deterministicaly chaotic, a determination that could not be made 

without the calculation of Lyapunov exponents. The authors point out that the ubiquitous 

myoelectric noise contamination of EEG records wuld  have an effect on both the computation 

both of dimensionality and Lyapunov exponents. They can see no solution to this problem other 

than intracranial recording. 

In an investigation of the association between nonlinear measures and alcohol 

consumption, Palus, Dvorak and David (1992) found an inverse relationship between blood 

alcohol level and dimensionality. The authors studied the effect of alcohol intoxication on tvro 

measures, the correlation dimension, and a measure which they term linear complexity. Linear 

complexity they defined as the negative inverse of the sum of the logarithms of the eigenvalues. 

The authors found that both of these measures were well correlated with level of blood alcohol. 

Both measures decreased in magnitude with increasing blood alcohol. Intuitively, since linear 

complexity is a function of the number of significant eigenvalues, it wu ld  seem reasonable that 

this measure show index system complexity in a similar manner to the correlation dimension. 

14.1.3 Methodological Issues 

In a study which focused on methodology, Destexhe, Sepulchre and Babloyantz (1988) 

compared several techniques for computing the correlation dimension of an EEG recording, the 

standard Grassberger - Procaccia algorithm, a hybrid of this algorithm with singular value 

decomposition aimed at reducing the noise components in the data, and a multichannel version 

of Grassberger - Procaccia method in which data from multiple channels, rather than from only 

one channel, is analyzed. The authors computed correlation dimension during a number of 

conditions including CreutzfeldJakob seizure (d2 = 3.7 to 5.4), alpha (d2 = 6.1 to 7.4), deep 

sleep (d2 = 4.4 to 4.5), and epileptic seizure (d2 = 2.03 to 2.05). They concluded that the results 

of these three methods agree only if the value of correlation dimension is less than 4. It may be 

obsetved that in some of the reviewed studies this requirement is not met. Destexhe et al.3 

(1988) results suggest that correlation dimension may not be a robust estimator, unless the 

conditions under which it is calculated are carefully and completely specified. 

The study by Dvorak and Siska (1986) w r k  points up some of the difficulties involved in 

estimating the correlation dimension. Correlation dimension estimates were computed for EEG 



recordings were made at sites 01, 0 2  and C4 using adult male subjects in 3 conditions: vigilant 

eyes dosed, relaxed eyes open, and mental arithmetic (subtracting by 13's d o m  from 1000). 

The pattern of dimensionality changes was found to be different at the occipital and central sites. 

At 02, dimensionality was low (d2 = 5.7) for the eyes dosed, and equally high (d2 = 6.5) for both 

relaxed eyes open and arithmetic task conditions. At C4, dimensionality was highest in the eyes 

closed (d2 = 5.5), medium in the eyes open relaxed (d2 = 5.3), and lowest in the arithmetic task 

condition (d2 = 4.7). The authors studied the effect of signal stationarity, and of filtering. Using 

a sample of 1,000 points from a record of 15,000 points, they found that correlation dimension 

varied with the ordinal position of the sample in the entire record (d2 = 3.8 to 5.5). Filtering the 

entire record with a 30 Hz lowpass filter reduced both the absolute values of dimensionality, and 

the variability with respect to sample ordinal position (d2 = 3.8 to 4). 

These results may be summarized in terms of four conclusions. First, the results 

support, generally, other findings (e.g., Nan and Jinghua, 1988, Rapp et al., 1989) of 

dimensionality changes with cognitive task Second, the findings support the observation in 

other studies that scalp location interacts with the relationship bemen dimensionality and task 

condition. Third, they point up the sensitivity of the correlation dimension estimate to signal pre- 

processing. Fourth, the variability of the dimensionality estimates using the unfiltered data muld 

appear to support the contention that the EEG is a statistically nonstationary signal, reflecting a 

nonstationarity in the underlying dynamics. 

Rapp et al. (1989) also surveyed the use of the correlation dimension in the analysis of 

EEG recordings by different groups, and present a rationale for using the correlation dimension. 

The authors suggest that, in comparison with other statistics, the correlation dimension uses 

more of the information present in a time-series such as the EEG. The correlation dimension, 

they suggest, is therefore a more robust characterization of the behaviour of such a system. 

Rapp et al. (1989) also compared the standard computational procedure for the correlation 

dimension with a hybrid method combining the Grassberger - Procaccia algorithm with singular 

value decomposition, an idea Wich was presented by Broomhead and King (1986). The matrix 

of vectors formed by embedding the time-series in a phase-space is filtered by means of the 

singular value decomposition. Only the most significant components are then used to generate 

an estimate of the original matrix, Mich is then used in the conventional Grassberger - 
Procaccia computation. The result is a uniform redistribution of noise among the retained 

components, which form the basis of an embedding phase-space of reduced dimensionality. 

The latter feature enhances the robustness of the Grassberger - Procaccia computation, while, 

since only a reduced matrix is analyzed, reducing the computational ovehead. 

The authors note however the variability in published dimensionality estimates for a 

variety of experimental conditions. They describe some of the difficulties associated with the 



dimensionality computation which may be the cause of the variance in published dimensionality 

estimates. Besides issues such as selection of algorithm parameter values (e.g., lag, maximum 

embedding dimension), data collection variables (e.g., sampling rate), they suggest that the EEG 

is generally not a statistically stationary signal. In other words, statistical properties of the EEG 

may change significantly over the course of a recording session. The effect of such 

nonstationary behaviour on the correlation dimension is, they state, not completely understood. 

Nonstationarity of the EEG is also addressed by Jansen (1991). He suggests that, while 

there is evidence for the chaotic nature of the EEG, that, in other words, the EEG is a reflection 

of an underlying nonlinear dynamical system, the EEG does not meet the requirements that 

would allow measures such as dimensionality or Lyapunov exponents to be calculated. In 

particular, he notes, these measures make the assumption that the signal being analyzed is a 

reflection of a system which has evolved through its asymptotic region and has converged to a 

pattern of behaviour which is statistically stationary. The question of whether this is the case for 

the EEG, he suggests, appears to be unanswerable. 

It should be noted howver that some authors, for example, Rapp et al. (1989) refer to 

the dimensionality estimate as the correlation index, rather than correlation dimension, in 

recognition of the EEG's nonstationarity. They suggest, with Gallez and Babloyantz (1991), that 

the dimensionality estimate is therefore best used in a comparative sense, as an index of the 

difference in brain dynamical complexity across tasks, rather than as an absolute measure of 

brain dynamics. 

Mayer-Kress and Layne (1987) computed correlation dimension for existing data 

obtained from a number of sources, and compared their results with those of other studies. The 

data represented the conditions of resting eyes open and dosed, sleep stages II and IV, REM 

sleep, petit-ma1 seizures, anesthesia, and verbal memory, visual memory, abstraction and ward 

association tasks. In most cases, the values of correlation dimension were associated with 

uncertainties in the values that were on the same order of size as the dimensionality estimates 

themselves. The exception was the awake, eyesclosed, resting condition. The authors 

concluded that in general correlation dimension cannot be effectively computed due, they 

suggest, to the nonstationary nature of the EEG, and due to the formal data requirements of the 

correlation dimension computation procedure. They propose that correlation dimension should 

be used only in a comparative sense, with subjects acting as their o w  controls. 

A critical analysis of the use of the Lyapunov exponent with EEG data is presented by 

Principe and Lo (1991). The authors computed Lyapunov exponent for EEG recorded during 

stage II sleep. They concluded that the range of values which they calculated (2 to 4) represents 

only an order of magnitude estimate for the following reasons. First, the EEG is statistically 

nonstationary. Second, the Lyapunov exponent algorithm which they used and which is the only 



one so far available (due to Wolf, Swift, Swinney and Vastano 1985) requires knowiedge of the 

generating dynamical system that is unavailable in the case of the EEG. The authors do point 

out however that the positive sign of their computed values is consistent with the view that the 

EEG reflects a deterministically chaotic rather than a stochastic dynamical process. 

In summary, both correlation dimension and Lyapunov exponents have been used to 

analyze EEG recordings made in a number of different sets of conditions, involving both clinical 

and non-clinical subject groups, and a number of different task conditions. The consensus wuld 

appear to be that, because of data limitations such as the statistically non-stationary nature of 

the EEG, correlation dimension can best be viewed as an index of relative, rather than absolute, 

system complexity. Correlation dimension appears to increase with task complexity, and in tasks 

such as mental visualization relative to resting conditions. The positive values calculated for 

Lyapunov exponents suggest that the EEG reflects a chaotic generating system. Again 

however, EEG nonstationarity on the one hand and unavailability of easily-applied algorithms on 

the other hand, suggest that caution should be applied in interpreting the findings as indicating 

the presence of chaos in the EEG. 

14.2 The Hypothesis 

The present experiment is aimed at finding out Wether changes in cognitive and 

perceptual processes can be found to be reflected in corresponding changes in the correlation 

dimension computed for time series recordings of EEG. Estimates of the correlation dimension 

will be computed for EEGs recorded during two condition. In the first (picture) condition, subjects 

inspecting an image containing a camouflaged target object are able to discriminate the target 

from the background, signaling the discrimination event with an eye-blink. In the second 

(control) condition subjects blink at will Wile fixating on a neutral screen. It is expected that the 

neuronal events over a short interval preceding discrimination will be reflected in a higher value 

of correlation dimension than the neuronal events that are associated with spontaneous eye- 

blinks Wile fixating on the neutral screen. This hypothesis is made on the basis of the results of 

the crosscorrelation analysis, Wich demonstrated that over a 1 second epoch preceding 

discrimination there was evidence of significant changes in the configuration of interregional 

association. It is this change in the pattern of interregional communication that is proposed to 

responsible for a higher value of correlation dimension, relative to the control condition. The 

results of the crosscorrelation analysis showed that over the 1 second epoch preceding the blink 

in the control condition there was a relatively less change in the pattern of interregional 

association. 



14.3 Method 

14.3.1 Preprocessing 

The following operations were canied out on the recordings from every subject and 

every trial, and for both control and picture conditions. First, the 1 second (128 points) intervals 

representing the before-blink epoch and the after-blink epoch were isolated from the matrix of 

data for each trial. The result was, for each trial, a pair of matrices, each 128 time-points by 16 

channels. No other transformations were performed on the data. Next, each of these matrices 

was used to construct a phase-space attractor in a 16dimensional space. The dimensionality of 

each of these attractors was then computed, as the estimates of correlation dimension. The 

construction of the phase-space attractor and the comelatian dimension computation are 

described in the following section. 

14.3.2 Correlation Dimension 

Correlation dimension represents an estimate of the lower bound on the number of 

variables that are involved in the dynamical behaviour, or evolution over time, of a multivariate 

system. The computation of correlation dimension involves first the construction of a phase 

space attractor. This attractor is essentially a graph plotted on a multidimensional set of axes. 

The axes represent the various dimensions of the multivariate system. Each point on the 

attractor represents the value, at a particular time, of each of these dimensions, and thus 

represents the state of the multivariate system at that time. Once the attractor has been 

constructed, its dimensionality can be computed. This dimension will in general have a non- 

integer value. Attractors with such non-integral values of dimensionality are referred to as 

strange attractors. Algorithms have been developed that allow attractor dimensionality to be 

computed. One of the easiest to apply is the Grassberger-Procaccia algorithm (Grassberger and 

Procaccia, 1983). 

The present analysis makes use of a multiple time-series version (e.g., Destexhe et al., 

1988) of the Grassberger-Procaccia algorithm. The original single time-series version of this 

algorithm was intended to provide a means by which a dimensionality estimate could be 

computed when data from only a single variable of the multivariate system under study was 

available. This algorithm was based on a result demonstrated by Takens (1980) showing that a 

number of dynamical properties of the undedying system are preserved M e n  the time series is 

used to reconstruct a multidimensional phase-space attractor. In particular the dimensionality of 

the multivariate process is represented as the dimensionality of the attractor, when a number of 

conditions are met. These conditions raise a number of problematical issues vhen the method is 



applied to real data. In the standard algorithm a single time series is used to generate a phase 

space attractor for which dimensionality can then be computed. This process involves 

embedding the time series in a phase space of suitable dimensionality. T w  key parameters are 

involved in this embedding. The first is the choice of embedding dimension. Schaffer, Truty and 

Fulmer (1988) suggest a value of at least 2m + 1, where m is the hypothesized value of 

dimensionality of the attractor. Since m is not know beforehand, prudence dictates a large 

value of embedding dimension. The larger this value however the more demanding are the data 

requirements. As embedding dimension increases, the number of data points that are required 

to construct the attractor correspondingly increase. The second key parameter involved in 

embedding the phase space attractor is lag. The lag parameter is used in the selection of sets of 

points from the time series to serve as the coordinates of individual points on the attractor. 

While with an unlimited quantity of noise-free data the choice of lag is not critical, Ath a limited 

number of noisy data points the value of lag can be critical. In particular dimensionality in such a 

real case will vary with the value of lag. 

These limitations of the Grassberger-Procaccia algorithm are circumvented in the 

present approach of using the records of multiple variables, that is EEG channels, from the 

neuronal generating system. This approach is of course only possible when multiple time series 

are available. Using this method, the embedding process is eliminated. The starting point for 

this approach is the matrix of data points, organized as m data points by p channels. The phase 

space attractor is created by simply taking the p data points corresponding to a single time point, 

and then using these data points as the coordinates of a single point on the attractor in a p 

dimensional phase space. The process is repeated for all m time-points in the original data 

matrix. Once the attractor has been created, the correlation integral C(r) is computed. For each 

of a series of values of a parameter r, the correlation integral is the probability of finding an 

attractor point within a distance r of a given reference point also on the attractor. This probability 

is averaged over a number of points on the attractor, n. In the present case, n is equal to the 

total number of points on the attractor, m. Thus, 

n 

C(r) = lim Iln2 2 H{r - lxi  - xjl) ... eqn 14.1 

where Xi is a vector representing a reference point and xj is a vector representing any other point 

on the attractor, n is the number of points on the attractor that are averaged over, r is the 

distance from a reference point, 1.1 denotes the modulus, and H is the Heaviside function defined 

... eqn 14.2 



The Heaviside function thus simply counts the number of pairs of points that are separated by a 

distance less than r. Once the correlation integral has been evaluated for a range of values of r, 

the correlation dimension, d2, is computed as 

d2 = In C(r) 1 In r ... eqn 14.3 

The correlation dimension computation was canied out using the data analysis program 

Simulnetm version 2.3. 

14.4 Results 

The estimates of correlation dimension were found to be significantly larger for the 54 

trials from the picture condition than for the 42 trials from the control condition, but only for the 

before-blink epoch and not for the after-blink epoch. Correlation dimension estimates are shown 

for all trials in Table 14.1, and in Figure 14.1 for the before-blink epoch, and Figure 14.2 for the 

after-blink epoch. 

For the before-blink epoch, the mean values of d2 were highly significantly different 

between the picture and control conditions. The mean correlation dimensions were 5.44 for the 

control condition and 5.96 for the picture condition. The resulting value of t  was 2.24 (p = 0.014). 

For the after-blink epoch, the mean values of d2 were only marginally significantly different 

between the control and picture conditions. The mean correlation dimensions were 5.86 for the 

control condition and 6.32 for the picture condition. The resulting value of t was 1.55 (p = 0.063). 

The means are show in Figure 14.3, and the results of the t-tests are s h m  in Table 14.2. 



Table 14.1 Correlation Dimension Estimates 
Each correlation dimension value represents an estimate of the relative complexity o 
the dynamical system underlying the EEG measurements during that trial. The Grou 
label is coded as 0 for the control condition, 1 for the picture condition. BBE indicate 
the before-blink epoch. ABE indicates the after-blink epoch. 

Trial Group BBE ABE 



Table 14.1 Correlation Dimension Estimates 
(continued) 

Trial Group BBE ABE 



Table 14.2 T-test Results for Correlation Dimensions 
The values of t are computed for the tw groups of scores, corresponding to the control an 
picture conditions, for the before-blink epoch and the after-blink epoch. The control grou 
contains 54 scores, and the picture condition contains 42 scores, for a df of 94. In the before 
blink epoch, mean correlation dimension for the picture condition was highly significant1 
larger than for the control condition. In the after-blink epoch, mean correlation dimension fo 
the picture condition was only marginally significantly larger than for the control condition. 

Epoch Student's t probability Mn (control) Var (control) Mn (picture) Var (picture) 

before blink 2.24 0.014 5.44 1.07 5.96 1.52 
after blink 1.55 0.063 5.86 1.76 6.32 2.51 

control: white 
picture: black 

Cases 

Figure 14.1 Correlation dimension estimates for the before-blink epoch 
The figure shows the cmelation dimension estimates for each of the 96 cases. Cases 1 to 54, 
shown in Mite, represent the control condition. Cases 55 to 96, shown in black, represent the 
picture condition. The mean correlation dimension for the picture condition is significantly higher 
than for the control condition. 



control: white 
picture: black 

Cases 

Figure 14.2 Correlation dimension estimates for the after-blink epoch 
The figure shows the correlation dimension estimates for each of the 96 cases. Cases 1 to 54, 
shown in Mite, represent the control condition. Cases 55 to 96, show in black, represent the 
picture condition. The mean correlation dimension for the picture condition is marginally 
significantly higher than for the control condition. 



bbe abe 

0 control 

0 picture 

Figure 14.3 Mean correlation dimensions 
The figure shows the mean of the currelation dimension estimates for the control and picture 
conditions, for the 1 second epoch preceding the blink signaling discrimination (the before-blink 
epoch, BBE), and for the 1 second epoch starting after the cessation of blink artifacts (the after- 
blink epoch, ABE). There is a highly significant difference in d2 between the control and picture 
conditions in the BBE, and a marginally significant difference in d2 between conditions in the 
ABE. 

14.5 Discussion 

There was a significant difference in d2 b e h e n  conditions in the 1 second interval 

preceding the eye-blink by which subjects signaled discrimination, with a larger value of 

dimensionality in the picture than in the control conditions. The larger value of d2 in the picture 

condition, preceding discrimination, supports the hypothesis made at the outset, that the neural 

processes occuning over a short interval preceding discrimination m l d  be reflected in a higher 

value of correlation dimension than the corresponding processes associated with gaze-fixation 

on a neutral screen. This proposal was made on the basis of the crosscorrelation results which 

showed that over the 1 second epoch preceding discrimination there were profound changes in 

the configuration of interregional signaling, changes which it vws proposed would result in a 

higher relative value of d2 in the picture condition. In the 1 second interval following the eye- 

blink, there was a corresponding marginally significant difference, with again a larger value of 

dimensionality in the picture than in the control conditions. There were no predictions made at 

the outset in regards to this difference. Such a finding might be explainable however as 

indicating that following the eye-blink in the picture condition the re-fixation on the discovered 



target image are associated with a relatively more complex dynamical behaviour in terms of the 

configuration of interregional signaling. Thus, following the blink in the picture conditions, 

subjects would re-fixate on the presented image and the discovered target object, and continue 

with some degree of visual analysis of the image. In contrast, following the blink in the control 

condition the re-fixation on the fixation point within a neutral screen would be associated Ath 

relatively less complex dynamical behaviour. 

Another finding, for which no hypothesis had been initially advanced, was the result that 

values of d2 were higher, although not significantly, in the 1 second epoch following the blink 

than in the 1 second epoch preceding the blink It could be conjectured that this finding is a 

reflection of a progression of more varied, less cognitively focused, visual analyses of the 

presented image following the blink than before the blink Thus, it is suggested that over the 1 

second interval before the Mink subjects were engaged in a relatively cognitively focused search 

for the camouflaged target object. Over the course of the 1 second interval following the blink 

however, it is suggested that subjects would engage in a more varied sequence of cognitive 

tasks, starting with, for example, visually refocussing on the discovered target image, and 

proceeding to retrieving memory templates representing memory associations with the target 

object. As an alternative explanation, it might be possible that the after-blink epoch included 

neuronal processes associated with the termination of the eye-blink These neural processes. 

which muld occur only at the start of the epoch, would be followed by processes associated with 

more perceptually-oriented processing of the visual image, would then result in a relatively more 

complex pattern of dynamical behaviour in the aft er-blink epoch. 

The finding of a difference in the estimate of correlation dimension between conditions 

and between epochs suggests that the estimate of correlation dimension as computed in the 

present analysis is a sensitive index of the quality of the neuronal activity underlying perceptual 

and cognitive events. One issue that must be addressed is the implications of the finding of a 

fractional value of dimension for the question of vrhether or not the neuronal system in question 

is behaving chaotically. 

There are two points to be raised. First of all, computation of correlation dimension by 

itself does not speak to this question. The determination of the presence of chaotic dynamics 

would depend of the computation of a measure such as Lyapunov exponents, a measure that 

indexes the degree of sensitivity displayed by the dynamical system to changes in initial 

conditions, and to perturbations generally. In the present analysis no such index was computed, 

and therefore no statement can be made regarding the possible presence of a chaotic dynamic 

component to the behaviour of the relevant neuronal systems. The second point concerns the 

meaning of the computed values of what has been referred to as the correlation dimension. 

Recalling the discussion presented earlier regarding the data requirements of a correlation 



dimension computation, it is probably more appropriate in the present case to refer to the 

computed values as estimates of a correlation index. Correlation index is, then, appropriately 

treated as a measure of the relative complexity of the corresponding dynamical systems, rather 

than as measures of absolute dimensionality (Rapp et al., 1989; Gallez and Babloyantz, 1991; 

Mayer-Kress and Layne, 1987). 

Thus, the present findings of estimates in the region of from 5.44 to 6.32 may only with 

caution be interpreted as indicating that the corresponding neuronal dynamics can be adequately 

described in terms of between 5 and 6 variables. A statement regarding the absolute level of 

dimensional complexity would probably require a greater number of data points for the 

computation than are available in the present analysis. Smith (1992) for example suggests that 

for an estimated dimension of 5, an RMS emr  of 0.1 would require on the order of 5000 data 

points. What would appear to be safely concluded from the present results is that the cortical 

dynamics underlying a short interval preceding the moment of discrimination are, on average, 

significantly more complex than the dynamics underlying the corresponding interval in the 

control condition. 



IV Discussion 



15 Summary of Findings 

The paradigm used in the present study has addressed the question of the neuronal 

basis of visual discrimination, and through this the issue of the neural events associated with 

visual feature binding. This paradigm has been designed to present subjects with images 

constructed in such a way that, initially, the central representations of image features are visually 

unorganized and an intended target object is unperceived. Preceding successful discrimination, 

these representations, it is suggested, undergo a process of transformation that involves binding 

or integration of the representations into feature ensembles, as a result of which a unified 

percept is constructed through association of these feature ensembles with information contained 

within existing memory templates. Discrimination and, it is suggested, this process of feature 

binding and association, is observed to be associated with an increasing level of synchronization 

between increasingly spatially-extended cortical regions. More particularly, the findings of the 

present study, using three different measures of association, support the conclusion that, as the 

moment of visual discrimination approaches, the process of discrimination involves the 

coordinated activity of both more, and more widely separated cortical regions, involving the left 

hemisphere preferentially, and including occipital, temporal, central and frontal cortical regions. 

The findings of the crosscorrelation analysis were that in the picture condition, 

correlations increased over a short time interval preceding the moment of discrimination, while in 

the control condition, correlations remained relatively constant over a short interval preceding 

the voluntary eye-blink In both picture and control conditions, and in the time intervals both 

before and after the blink, correlations decreased with increasing distance between electrodes. 

Finally, in the picture condition, correlations increased by a greater amount between a subset of 

widely separated electrode positions than between more closely spaced positions. This subset of 

electrode positions included scalp areas over occipital, temporal and frontal regions. Significant 

effects on lag were found only as a function of distance, with an increase in lag with inter- 

electrode distance prior to discrimination in both the control and picture conditions, and a 

decrease in lag with increasing distance prior to the blink in the control condition. 

Coherence analysis showed that for a subset of electrode pairs coherence was higher in 

the picture condition than in the control condition. Consistent with the results of the cross- 

correlation analysis, this subset of electrodes included areas over occipital, temporal and frontal 

regions, with a greater involvement of the left hemisphere. In both conditions, the value of 

coherence was an approximately inverse quadratic function of inter-electrode distance, 

supporting the view (Thatcher et al., 1986) that EEG coherences are the result of axonal, rather 

than volume conduction. 



The pattern of changes of mutual information was similar to that for crosscorrelation. 

Mutuai information decreased with increasing inter-electrode distance. Mutual information 

increased with time up to the moment of discrimination, and increased by a greater amount for 

more distantly spaced electrode pairs than for more closely spaced pairs. These findings 

suggested that the rate of information exchange between cortical systems increased with time up 

to the moment of discrimination. One conclusion that can be dram from the similarity in the 

results of the crosscorrelation and the mutual information analyses is that the relationship 

between the activity at different cortical regions appears to be reasonably linear. 

The findings of these linear analyses were supported by the results of the nonlinear 

analyses. Correlation dimension was found to be higher for the picture condition than for the 

control condition. This finding reflects, it is suggested, the relatively more complex time- 

evolution of the interregional signaling configuration in the picture condition. That is, it was 

observed that there was a greater change in the pattern of interregional signaling, as indicated by 

interregional associations, over the 1 second interval preceding the eye blink, in the picture than 

in the control condition. 

Based on these findings of a robust difference between picture and control conditions on 

a variety of linear and nonlinear measures, it was expected that a neural network classifier would 

be able to distinguish between the EEG recordings of the 1 second before-blink epoch for the 

picture and control conditions. It was in fact found that a generalized regression neural network 

could significantly well perform this discrimination. 

The predictions made at the outset on the basis of the cortical self-organization model of 

visual discrimination were that (1) interregional associations should increase, over a short 

interval preceding discrimination, involving wide extents of cortex, rather than only particular 

regions, (2) the strength of association should vary inversely with interregional distance, (3) the 

strength of association should increase preferentially bemen widely separated cortical regions, 

and (4) these associations should be based on oscillatory signal components. The present 

findings w l d  appear to be in general accord with these predictions. 



16 A Neural Basis for Object Discrimination 

The correlational activity studied in the present work was analyzed using oscillatory 

features within the recorded electrical activity. These features, which may include both periodic 

and aperiodic components, reflect corresponding oscillatory characteristics in the activity of the 

neural processes underlying visual discrimination. These oscillatory characteristics, it is 

proposed, in turn, reflect reciprocal information transfer or signaling between multiple cortical 

regions. This proposal is made on the basis of the follovAng argument. Two ways in which 

oscillatory activity can arise is first, relaxation phenomena, and second, reciprocal signaling 

between subsystems with a positive value of gain. An example of a relaxation phenomenon 

leading to oscillatory activity is the sum-and-fire characteristic of a neuron. Reciprocal signaling 

in the simplest case can consist of feedforward and feedback paths connecting multiple 

subsystems. Such connections, together with the time delays inherent in any dynamical system, 

and the f o ~ r d  gain in the connected subsystems form a network that has the potential for 

exhibiting a rhythmic pattern of activity involving the connected systems. These three elements, 

gain, reciprocal connections, and delay, are all represented in neuronal systems. Signaling 

between cortical regions occurs along the profuse corticxxortical and cortico-thalamic 

connections that have been described. Such information interchange, for example along arcuate 

fibers between cortical regions, along projection fibers between cortical regions and subcortical 

centers such as the thalamus, and along commisures between the left and right hemispheres, is 

the first requirement for the generation of rhythmic activity. The second requirement is similarly 

met in that timedelays are inherent in neural function, and are the result of synaptic and axonal 

transmission delays. Finally the gain function is likewise an inherent property of neurons. On 

the level of individual neurons, gain or amplification is represented in terms of the signal 

regeneration properties of axons, and the sum-and-fire behaviour typical of neurons. 

A potential result of such reciprocal signaling, along association fibers with inherent 

delays, between the neuronal grwps comprising disparate areas of the brain, can thus 

reasonably be expected to be an oscillatory pattern of activity. A direct reflection of this activity 

is the observed oscillatory nature of EEG signals found over all cortical areas. This oscillatory 

pattern may contain both periodic and aperiodic components. Stated more generally, the 

frequency of this oscillatory activity may change over time in a complex way. A neuronal basis 

for such a changing pattern of frequencies could be that the frequency that is observed at any 

time over any cortical region is the result of signaling within a network comprised of some 

particular number of components such as cortical microcolumns. As the size and configuration 

of this netmrk change over time, so would the associated timedelays, and thus the frequency 

associated with this dynamic configuration would also change from moment to moment. 



It might be suggested that the band-pass filtering used to preprocess the data prior to 

analysis would inevitably emphasize such periodic activity. While band-pass filtering can make 

such periodic activity more easily observable, filtering alters the characteristics of the activity 

relatively minimally when the passband of the filter is sufficiently wide, relative to the center 

frequency of the passband. On the other hand, methods such as analysis of EEG components 

that rely on averaging over many stimulus or response registered recordings, do impose a 

transformation on the original signals. Notably, the results of the averaging process present a 

distorted picture of both the magnitude and the temporal structure of the averaged signals. The 

point here is that in the present study the oscillatory activity that forms the basis of the 

subsequent correlational analysis was present in the original recorded EEG, and was not created 

by the techniques used to preprocess the signals. In contrast with features such as EEG 

components, the observed periodic activity should be a direct reflection of the behaviour of 

underlying neuronal systems, and as such should be a reasonable basis upon which to construct 

a description of the neurophysiological events associated with visual discrimination. 

The discrimination of representations of complex real-world objects from a visually 

complex background is seen in the present study to invdve the correlated activity between most, 

rather than between only a few, cortical regions. This correlated activity, it is suggested, is the 

result of interregional signaling involving bilateral occipital, temporal, central, parietal and frontal 

areas. The neuronal activity associated with object discrimination is found to be an oscillatory 

pattern, with frequencies predominantly in the theta band, and with a correlation between the 

different brain areas that changes in a distinct way over the 1 second interval preceding the 

moment of discrimination. First, mean correlation, averaged over all electrode pairs, increases. 

Second, spatial variability in the correlation, computed over all electrode pairs, decreases. The 

implications of these observations together is first, that over the course of the before-blink 

epoch, there is an increased level of coupling betvreen neuronal regions, and second, that the 

magnitude of this increase in coupling is approximately proportional to the distance separating 

the neuronal regions. In sum, visual discrimination is characterized by coupling increases 

between most neuronal regions, but with a greater coupling increase between distantly spaced 

regions. 

The neurophysiological processes associated with visual discrimination are thus 

associated Mth relatively little change in coupling between closely spaced regions. The level of 

coupling between such regions, indicated by a correlation of 0.75, is already substantial. At the 

start of the discrimination process, these regions, according to CSO model, cany out relatively 

independent and lowlevel analyses of stimulus features. According to the model, successful 

visual discrimination requires that in addition the coupling between distantly spaced sites also 

increases, as increasingly complex feature transformations are generated through associations 



formed between correspondingly larger extents of cortex. Over the interval preceding 

discrimination, crosscorrelations between such distantly spaced sites are seen to increase from 

approximately 0.2 to 0.4. If the magnitude of the correlation coefficient is assumed to reflect the 

degree of coupling between cortical regions, then mean coupling strength between these regions 

increases by on the order of 1W%, between the beginning and end of the 1 second interval 

preceding discrimination. 

These observations can be interpreted as supporting the CSO model of object 

discrimination. That is, it is predominantly the increase in coupling strengths between distantly 

spaced cortical regions that mediates the process of visual discrimination. Correlations between 

closely spaced regions are indicators of the ongoing relatively local processing that transforms 

primary stimulus features and lower level ensembles into more complex feature ensembles. 

Such ensembles can be conceptualized as being in effect particular configurations of 

interregional signaling by means of which the central representation of the features of the visual 

image are transformed and bound. Visual discrimination is only able to occur when image 

features have been bound or transformed into a sufficiently complex, multidimensional 

transformation of the original retinal representation of the image, that then matches a pre- 

existing memory template. Such feature transformation or binding is in turn indicated by the 

increase in the magnitude of correlations, as discrimination approaches, between relatively 

widely separated cortical regions. 

According to the CSO model then, a unitary percept, which in the present study is a 

discriminated target object, is the emergent product of a process of self-organization of the 

signaling configuration between a set of neuronal collectives. This self-organization, it is 

proposed, involves signaling, in successive iterations, betvreen multiple and bide-spread cortical 

regions, that canies out a recursive sequence of transformations of the original retinal 

representation of the stimulus. Through these transformations the elementaly features of this 

retinal representation are successively bound by being transformed into successively more 

complex feature ensembles, which as part of this transformation process are compared with 

successively more complex memory templates. The transformation process is in this way 

guided by the influence of existing memory templates. In essence, therefore, the processes of 

transformation and template matching are not separable. 

To this description an additional feature is added, one that while not addressed by the 

present findings nevertheless allows the task of visual discrimination to be canied out with a 

computationally simple approach. Computational simplicity, it is proposed, translates into an 

economy of description given an inherent attribute of neuronal signaling pathways. This attribute 

is the high degree of interconnectivity both bithin and between neuronal regions, an 



interconnectivity which in turn implies the possibility of a correspondingly high degree of 

functional parallelism in terms of intra and intercortical signaling. 

In any one iteration this functional parallelism inherent in cortical signaling, it is 

suggested, can support a population of simultaneous featpre ensemblecreating transformations. 

This in turn muld result in the simultaneous creation of a corresponding population of feature 

ensembles, that is a population of coexisting, simultaneously active configurations of 

interregional signaling. Out of this population of available ensembles that may be generated in 

any given iteration, the ensembles that survive to become the features entering into the next 

round of transformation and memory matching are those that result in a sufficiently accurate 

match with existing templates. This description of these successive iterations might thus be 

conceptualized as representing an analog of Dadnian evolution, in Wich not organisms, but 

interregional signaling configurations are evolved. This evolution takes place within an 

environment in which fitness corresponds to a successful match between a feature ensemble 

and an existing memory template. An evolutionary model of this sort is an instance of the 

genetic algorithmic approach to the task of searching for global minima within complex problem 

spaces. Genetic algorithms have show a competitive advantage in situations in vrhich such 

exploration of a problem space is made difficult by the presence of multiple distracting local 

minima, and in which the possibility exists for multiple operations to occur in parallel (Goldberg, 

1989; Holland, 1975). The CSO model is schematically diagrammed in Figure 16.1. 
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Figure 16.1 The Cortical Self-Organization Model 
According to the model, it is proposed that in an iterated sequence, the brain chronically and 
automatically cames out a process of transformation and binding of the population of n features, 
by means of which a population of p feature ensembles are created. Feature ensembles are in 
effect specific configurations of interregional signaling through which sets of features are 
transformed and bound. By matching each of the p ensemble against the population of m 
existing memory templates, the p ensembles are rated for fitness. On the basis of this fitness 
rating a subpopulation of the p ensembles is selected to act as the population of initial features 
in a subsequent iteration. This subpopulation consists of ensembles that most closely matched 
existing memory templates. This process continues iteratively until a sufficiently accurate match 
occurs betwen a feature ensemble and a memory template. The winning ensemble represents 
the particular configuration of interregional signaling by which the central representation of visual 
image features is successfully matched with a memory template. The driving force for this 
process is proposed to be a mechanism involving energy relaxation. The more closely an 
ensemble matches a memoly template the less energy is required to maintain the configuration 
of interregional signaling corresponding to that ensemble. The ultimately winning ensemble thus 
represents the particular inter-regional signaling configuration associated with a minimum energy 
state of the associated neuronal system. 

While the term computation has been used for expository convenience in the preceding 

discussion it must be emphasized that the CSO model does not propose that the various 

transformational processes occumng during visual discrimination involve some sort of 

manipulation of symbols according to computational rules, a perspective associated with the 

Artificial Intelligence approach to the modeling of cognitive behaviour (e.g., Minsky, 1968). 

Rather, the CSO makes the assumption that all such transformations take place in an asymbolic, 

fully distributed fashion (McClelland and Rumelhart, 1988), making use of the substrate of dense 

anatomical pathwiys that exists, subserving cortical communication. 

At the start of this transformation and matching process, the corresponding memory 

templates muld conceivably consist of elements such as edges, orientations and colors. At 

some lowest level such elements may be hard-wired into the visual system (e.g., Hubel and 



Wiesel, 1962). At some higher level, these templates would arise as a result of interactions 

between the individual and the environment in early development. As this process continues, 

such memory templates could represent more complex feature constellations including, for 

example, complex shapes such as the sensitivities to pattern partials hypothesized to exist in the 

inferotemporal cortex (Fujita et al., 1992; Perrett and Oram, 1993). This sequence of iterations 

would only terminate when a match occurs between the results of a stage of feature 

transformation and an existing memory template. At a particular level of iteration, that wuld be 

determined by high-level considerations such as intention, the purpose for which the particular 

discrimination is being conducted. Thus, if the intention is to discriminate a particular line 

orientation or elementary shape, the iterations might terminate after relatively few iterations. If, 

however, the purpose of the discrimination task is, as in the present study, to detect a complex 

depiction of a real-world object such as an animal or a bird, then a correspondingly greater 

number of iterations might be required. At the termination of the iterations, the corresponding 

network of interregional signaling may be thought of as having self-organized into a configuration 

that allows a successful match to occur between the highest level feature ensembles that 

correspond to the goal of the discrimination task, and existing memory templates. At this point, 

behaviourally, the target object has been successfully discriminated from its visual context. 

The phenomenon of visual discrimination can be considered to be an instance of the 

more general process of induction, or theory formation. A rule or unified model is induced from 

initially apparently isolated data fragments. Such model construction underlies enterprises such 

as scientific theorizing; it underlies as well the ubiquitous phenomenon of camouflaged target 

discrimination. Both of these examples may, on different occasions, involve both conscious and 

nonconscious components. Thus, Kekule is reported to have discovered the structure of the 

benzene molecule in a flash of insight while boarding a bus. In a fundamentally similar way, a 

subject in the present study discovers the identity of a camouflaged target when the target 

appears to suddenly pop out after a period of visual inspection. While a pattern of evolution of 

interregional association through cortical self-organization is proposed to underlie the 

phenomenon of visual discrimination, such cortical self-organization should in fact serve as the 

ground of theory formation in general. 



17 Cortical Self-Organization 

17.1 Interregional Signaling Topologies 

In this section the present findings will be discussed in relation to possible configurations 

of intercortical signaling underlying object discrimination, and how these configurations may 

evolve during perceptual integration. A primary finding of the present study is that immediately 

before the point of discrimination, multiple cortical regions, including bilateral occipital, temporal, 

central, frontal and prefrontal, showed evidence of mutually synchronous activity. At least tw 

general configurations could serve as a basis for such associations. First, these associations 

might be attributable to the influences of a common source driving each of the several cortical 

regions. Second, the interregional associations might be interpreted as an increase in the level 

of mutual coupling among these regions. 

The first possibility involves driving of the oscillatory activity vithin multiple cortical 

regions by a common source. This mechanism m l d  require extensive connections between all 

cortical regions and a common neuronal hub, or pacemaker. Such connections might be 

provided by, for example, the projection fibers of the corona radiata that connect thalamic 

efferents with the cortex. Arguments have been made both in support of and in opposition to this 

view. On the one hand, as Bressler (1995) has suggested, a neuronal substrate for a pacemaker 

might include the large-scale pathways that have been found to project from non-specific nuclei 

within the thalamus to multiple and widespread cortical target areas (Goldman-Rakic, 1988, 

1992). On the other hand, it has been pointed out that beyond the optic chiasm, there is a 

segregation of optic afferents to the tm hemispheres, and that therefore there is no common 

input to the tm hemispheres which could act as a driving source (Engel, Konig, Kreiter, Schillen 

and Singer, 1992; Llinas, Grace, and Yarom, 1991; Steriade, Cum Dossi, Pare and Oakson, 

1991). It has also been proposed that multiple sources of activity synchronized with small 

relative phases must be driven by a common source, because of the effects of transmission 

delays (Ts'o, Gilbert, and Wiesel, 1986). However, the findings of Engel et al. (1991), in a study 

of intercdumnar coherence in the visual system of the cat, suggest othervrise. These findings 

showed that reciprocal signaling between cortical regions can result in synchronized activity 

among these regions with a zero relative phase delay, in the presence of transmission delays of 

up to several milliseconds. In support of these findings, simulations canied out by Konig and 

Schillen (1991) have show that synchronized activity with a zero phase delay can be achieved if 

conduction delays are not greater than one-third of the period of the oscillatory activity. Results 

such as these, suggesting that a small relative phase angle does not necessarily imply a 

pacemaker driving source, are consistent with the second possible mechanism that could 



account for the increased level of coupling among multiple cortical regions, a non-hierarchical 

network of mutual interconnections. 

This second possibility involves reciprocal corticwxrtical (Engel, Konig , Kreiter and 

Singer, 1991) and cortico-thalamic (Edelman, 1989) signaling. The present findings are 

consistent with the view that at the start of the 1 second epoch preceding discrimination the 

frequencies of the activity at the various cortical regions may be relatively dissimilar, as each 

region operates in relative autonomy. The result of such autonomy would be the observed low 

values of interregional association. As the moment of discrimination approaches, an increasing 

level of interregional signaling would result in multiple cortical regions becoming increasingly 

coupled. This, in turn, would result in mutual entrainment of the activity at these regions, which 

would then be reflected in the observed increasing level of interregional association. 

These two contrasting positions can be very approximately modeled in terms of multiple 

functional units interconnected by the two topologies. In the first case, this topology consists of 

relatively weak coupling strengths between all units, with the exception of relatively strong level 

of coupling between these units and a central or hub unit acting as a common driving source. 

This configuration MI1 be referred to as the hub topology, and is diagrammed in Figure 17.la. In 

the second case, the topology consists of inter-unit couplings with relatively equal strengths, and 

with no preferentially strong couplings to a common unit that could function as a pacemaker. 

This arrangement will be referred to as the distributed topology, diagrammed in Figure 17. Ib. In 

both cases units have the capability to oscillate in any one of a number of distinct modes, with 

the frequency and phase associated with each mode being a function of the signals received 

from other units through the inter-unit couplings. 

In both of these prototypical topologies, each of these units can be conceptualized as 

itself consisting of a network of processing units. The result is a recursive structure, with the 

network configuration repeating at different spatial scales. In particular, each unit might be 

considered to consist of a recurrently connected network, a configuration that constitutes a 

dynamical system with a potential for a rich set of behaviours (e.g., Ermentrout, 1994). These 

behaviwrs, and their corresponding encapsulation in terms of phase space attractors, can range, 

depending on inter-unit coupling parameters, from static states, corresponding to point attractors, 

through oscillatory behaviwr with various combinations of frequencies, corresponding to limit 

cycles, to chaotic behaviour descri bable by a phase space attractor with a fractal dimension and 

with a positive Lyapunov exponent, commonly termed a strange attractor (e.g., Moon, 1987, p. 

23). These potential classes of behaviour, characteristic of each of the coupled units, can in turn 

give rise to a corresponding range of dynamical behaviours in the network comprised of the 

interconnected individual units. Experimental observations of simultaneous coherences at 

multiple frequencies during cognitive tasks is suggested by Bressler et al. (1993) as providing 



cortical information processing with a degree of flexibility in perceptual tasks not available from 

oscillatory behaviour over a more limited range of time-scales. On purely theoretical grounds, 

Churchland (1995) has proposed that such recurrent neural netwrks, with the ability to operate 

on information in a recursive manner, inherently posses the behavioural flexibility to account for 

such phenomena as figureground discrimination, and ambiguous-figure resolution. 

In the proposed model topologies, each of the individual units has, in addition to the 

inputs from other units or from the pacemaker, a perturbing noise input. This noise input wuld  

have the capability to modulate the frequency of the oscillatory activity of individual units. 

Figure 17.2 shows a simplified schematic diagram of some of the connections that comprise the 

visual system. The double-headed arrows in the figure indicate reciprocal connections. A more 

complete functional connection diagram of the visual system is presented by Van Essen and 

DeYoe (1995). In their more complete diagram of functional interconnections within the visual 

system, and as is suggested by Figure 17.2, the topology of the visual system muld appear to 

be well modeled as a distributed rather than as a hub configuration. On the other hand, some 

combination of these two topologies is also a possibility. A diagram such as that presented by 

Van Essen and DeYoe (1995) is intended to model a particular subset of the functions in visual 

perception, those involved in the processing of visual features. A wider perspective on the issue 

of visual perception might identify as well functions not directly concemed with such processing, 

but concemed with global modulation of neural states, for example by processes associated with 

attention and arousal. Such global functions might be well modeled by a configuration 

resembling a hub rather than a distributed topology. In any event, each of these tw possible 

topologies can be associated kith particular predictions. These predictions will be discussed in 

the following section. 



(a) hub topology (b) distributed topology 

Figure 17.1 Prototypical inter-regional signaling topologies 
These netmrk configurations consist of discrete nodes interconnected by strong (solid lines) or 
weak (dashed lines) links. Each node itself consists of a recurrent netwrk structure. The hub 
topology is characterized by relatively strong connections between all processing units and a 
single central unit, Ath relatively weaker connections between the processing units themselves. 
The distributed topology is characterized by relatively equal strength connections between all 
processing units. 

Figure 17.2 Reciprocal interconnections in the visual system 
This schematic diagram shows a few of the major connections that have been identified between 
cortical and subcortical regions involved in visual perception. Double-headed arrows indicate 
reciprocal connections. (Adapted from Edelman, 1989). 

17.2 Predictions From the Two Topologies 

The first prediction concerns the spatial variance, that is the instantaneous variance 

computed across multiple netwrk nodes, in the relative phases of the oscillatory activity at the 

processing nodes. In a distributed topology perturbed by noise, one mode of operation should be 



synchronous activity with some non-zero value of spatial phase variance. In contrast, a hub 

topology similarty perturbed by noise should show a smaller relative value of spatial phase 

variance. This suggestion is made on the basis of the argument that in the distributed topology, 

inter-node coupling would result in interactions at each node between signals arriving from other 

nodes and the perturbing noise inputs. These interactions could then propagate throughout the 

network along the inter-node links, resulting in higher level interactions. The result would be a 

relatively large value of spatial phase variance. In the case of the hub topology, noise 

perturbations would again interact with the signal from the hub at individual nodes. Howver, 

since with this topology inter-node coupling strength is low, these interactions would not 

propagate as readily, resulting in less higher-level interaction. The outcome would be a 

relatively smaller spatial phase variance. Thus, the higher level interactions within the 

distributed topology would result in a relatively more complex and nonlinear system behaviour, 

with a correspondingly greater spatial and temporal phase variance, in contrast with the hub 

topology. With the hub topology, the lower level of interaction would result in the relatively less 

complex and relatively linear behaviour, with a correspondingly smaller phase variance. An 

analysis of spatial phase variance would thus address the issue of the possible configuration of 

interregional signaling. A low value would be more consistent with the view that intercortical 

signaling can be modeled by a hub topology, with multiple cortical sites driven by a common 

pacemaker. A large value would be more consistent with a distributed topology, with 

synchronization of multiple sites mediated by their mutual interconnections. In order for it to be 

useful in discriminating between the two topologies however, the value of spatial phase variance 

would need to be calibrated using measurements on k n m  patterns of intercortical connections. 

Such measurements would also probably be best canied out using single cell recordings from 

multiple sites, rather than using the more spatially extended and diffuse measurements from the 

scalp. For these reasons, this prediction regarding phase variance can not be applied to the 

present results. 

The second prediction relates to the relative number of oscillatory modes associated with 

the two topologies. The hub topology would appear to have a single dominant mode of 

oscillation, in A i c h  all of the driven units oscillate in synchrony. In contrast, the distributed 

topology should be capable of exhibiting a wide range of oscillatory modes, with the particular 

mode being determined by the instantaneous distribution of inter-unit coupling strengths. A 

network of N recurrent networks, each with the potential for m dynamic modes of behaviour 

would itself have the potential, in the absence of additional constraints related to for example 

degree of connectivity and coupling strengths, for exhibiting Nm states or modes of behaviour 

(MacGregor, 1993; p. 303). Of these, only a subset of modes would be characterized by more- 

or-less synchronous activity among all units, similar to the dominant mode of the hub topology. 



Many other possible modes however would be characterized by relatively more complex 

behaviours, and corresponding more complex patterns of signaling between the coupled nodes. 

A robot simulation of insect gait patterns has show that such a system of coupled processing 

units will self-organize (e.g., Brooks, 1991; Chiel and Beer, 1993; Fetz, 1993). Self organization 

can be defined in the present context as follows. The system of coupled processing units will 

settle into stable ancl organized patterns of behaviour that are determined by interactions with the 

environment, that is, external inputs to the network, as well as by constraints directing mutual 

interactions between the coupled units, but importantly, without the necessity for a central 

controlling signal to direct this organization. Simulations of gait patterns such as those cited 

above find that with such a distributed signaling topology multiple operating modes are possible, 

with a particular mode selected by the nature of the interaction between the network and the 

environment. In summary, a hub topology should be characterized by a single dominant mode 

with all coupled units operating in synchrony, Wile a distributed topology should be 

characterized by multiple possible operating modes, only a subset of Wich would correspond to 

synchronous activity among the coupled units. This admittedly simplistic line of reasoning 

nevertheless suggests that the observation of synchronous activity among a netmrk of 

processing units, Wich in the present study corresponds to the observed high degree of 

correlation among multiple cortical regions prior to discrimination, implies a greater likelihood 

that the processing units are interconnected by a unimodal hub topology rather than a 

multimodal distributed topology. This conclusion may be dram only in the absence of additional 

constraints. 

As an example of such a constraint, an additional factor can be brought into this analysis 

of interregional signaling configurations, the notion of the energy within a coupled system. For 

the distributed topology, the various operating modes can each be associated with a particular 

level of energy. In the absence of additional requirements, this energy level should be a 

minimum for the totally synchronous mode. In such a case, this synchronous mode, with all 

coupled units operating in synchrony, would be the preferred state of the system. The system 

wuld  tend to relax into this minimum energy configuration. An analogy that can be draw from 

physics is the case of Rayleigh-Benard convection within a body of fluid receiving energy at the 

bottom and dissipating it at the top (e.g., Baker and Gdlub, 1990, p. 133). A simplified model of 

such convection dynamics was studied by Lorenz (1963) vho developed a system of three 

coupled ordinary differential equations: 



This highly simplified approximation has nevertheless been found to be capable of 

displaying a wide range of behaviours, from fixed points to limit cycles to deterministic chaos, 

depending on the values assigned to the system parameters o, R and B. In these equations the 

prime denotes a differential with respect to time, x corresponds to the intensity of the convective 

movement and y corresponds to the temperature difference beheen top and bottom of the mass 

of fluid. At low levels of energy input, heat transfer within the body of fluid occurs primarily by 

conduction. As the rate of energy input increases, a transition in the nature of the energy 

transfer mechanisms within the fluid occurs. Energy transfer eventually comes to involve, in 

addition to conduction, convection in the form of multiple local circulating systems of fluid, that 

is, convection columns. This transition, from an essentially stochastic process involving the 

relatively random, unorganized, motion of individual molecules, to an organized process 

involving a system of convection columns each consisting of large numbers of molecules 

moving in relative synchrony, is an example of the process of self-organization. At increasing 

levels of energy input, further transitions take place within this system. In these further 

transitions, not only does the number of convection columns increase, but increasing numbers of 

columns of different sizes occur simultaneously. At a sufficiently high level of energy input, the 

motion of the fluid becomes turbulent, or in alternate terms, chaotic. Even at high levels of 

energy input however, the phenomenon of intermittency can interrupt the chaotic regime. Limit 

cycles, that is intervals of predictable oscillatory behaviour, can occur, punctuated by erratic 

chaotic bursts (e.g., Peitgen, Jurgens and Saupe, 1992; p. 253). The driving force for the initial 

self-organization of the fluid into columns, and for the subsequent transitions, is minimization of 

the quantity of energy stored within the fluid. The amount of stored energy can be related to the 

temperature difference between the top and bottom of the body of fluid. By self-organizing, the 

dynamics of the body of fluid are able to effect the transfer of a relatively larger amount of 

energy from bottom to top, and thus minimize the amount of energy stored within the fluid. 

It is not suggested that cortical processes resemble fluid convection dynamics on any but 

the most general level. On this general level however, it is proposed that the multiple possible 

interregional signaling modes of a network of cortical systems coupled by a distributed signaling 

topology may, in analogy with a dynamical system such as that vvhich describes fluid convection, 

similarly evolve into a minimum configuration along a dimension equivalent to energy. With the 

constraint that the level of input to the neuronal system of this equivalent variable is not 

unlimited, the minimal system configuration should correspond to the fully synchronous mode. 

The principal characteristic of such a mode is synchronized activity among the coupled cortical 

regions. Furthermore, and again in analogy with convection dynamics, at increasing levels of 

equivalent input, modes more complex than the fully synchronous mode might occur. 



Some care must be taken in making the analogy beheen fluid convection dynamics and 

neuronal interregional signaling dynamics. The concept of energy minimization in the fluid 

convection case translates, it is suggested, into an equivalent variable in the neuronal signaling 

case, a variable that involves information. Thus, while the fluid is seen to self-organize in order 

to minimize the amount of stored energy, the neuronal signaling configuration can be 

conceptualized as self-organizing in order to minimize the amount of stored information. That is, 

the reason as it were for the interregional signaling configuration to self-organize wuld  be to 

minimize the amount of information that the associated neural system wu ld  need to deal Ath, 

essentially the amount of information that it wu ld  need to contain, by means of an appropriate 

organization of that information. 

A final consideration in comparing the two possible interregional signaling configurations 

is that, in the absence of additional constraints, of the two topologies the fully distributed 

configuration would appear to be the more economical description. In the fully distributed 

topology all nodes and links between nodes are hierarchically equal. In contrast, the hub 

topology presumes a W leve l  hierarchy, on the one hand the hub and its connections to all 

other nodes, and on the other hand the nodes and their interconnecting links. Thus, while the 

present findings appear to be generally consistent with both topologies, parsimony of description 

would suggest choosing the fully distributed model as the neuronal signaling configuration 

responsible for the present results. Constraints or requirements beyond those of absolute 

simplicity of description reasonably do exist: The complex of perceptual and cognitive functions 

involved in propelling an organism over the course of its span of existence is most reasonably 

supported by whatever neural signaling structures represent the most effective trade-off between 

reliability and efficiency. Such structures may involve the characteristics of a distributed 

topology for functions such as memory that are efficiently and robustly implemented by means of 

the sharing of information among multiple processing systems. In complement, such structures 

may involve the characteristics of a hub topology for functions related to global modulatory 

functions such as those related to attention and arousal. Both of these classes of functions 

should be involved in perceptualcognitive operations in general, and in the visual discrimination 

task of the present study in particular. 

Summarizing this discussion of how the present findings relate to the topography of the 

underlying intercortical signaling, the observation of synchronous activity among widespread 

cortical regions at recognition is consistent with both a hub and a distributed topology. The hub 

topology is preferred on the basis of the greater likelihood of fully synchronous operation with this 

configuration. This advantage is mitigated however by consideration of a relaxation mechanism 

within a distributed topology. W~th the constraint that the information input to the neuronal 

systems is not unlimited, this relaxation mechanism should favor the fully synchronous mode for 



the distributed topology. The distributed topology would also appear to be preferred on the 

grounds that it represents a simpler description of the underlying configuration of interregional 

signaling. Finally, a more realistic assessment of the diversity of functions required by tasks 

such as discrimination of camouflaged targets suggests that both topologies are reasonably 

involved. 

17.3 Perception as a Relaxation Phenomenon 

The idea that object perception can be conceptualized as a relaxation process, proposed 

by Tom Richardson (in conversation, 1995), suggests that the underlying neuronal processes can 

be considered as a dynamical system evolving towards a state corresponding to a minimum 

along some dimension. Dynamical systems can typically be considered as relaxing or evolving 

into a state of minimum energy. A non-trivial example of a dynamical system with a point 

attractor is a soap film. In conforming to the constraints imposed by a supporting wire-frame 

structure, the soap film adopts the surface configuration which corresponds to a minimum in the 

level of energy stored within the film, in terms of the forces associated primarily with surface 

tension. In an analogous way, the neuronal systems involved in object perception, constrained 

on the one hand by the information Whin the central representation of the visual stimulus, and 

on the other hand by the information stored within existing memory templates, might in a similar 

way be considered to relax or evolve into a state that corresponds to a minimum along some 

dimension. As stated earlier, this dimension need not be energy in the case of a neuronal 

system, but rather could be an equivalent variable such as information. Borrowing from 

statistical physics, the process of evolving to\nards an information minimum is equivalent to 

evolving towards a corresponding entropy minimum. By a definition of entropy, a decreasing 

value of entropy for a system implies that a decreasing amount of information is needed to 

describe the state of the system. This should in fact be the case in the present example of 

object discrimination. By way of a simple analogy, a netmrk of oscillators can be described in 

terms of fewer bits of inforrnation when the coupling between the oscillators is strong enough to 

entrain the frequencies of the individual oscillators, than when the coupling strength is low and 

the oscillators operate with relatively independent frequencies and phases. In a similar way, the 

state of a system comprised of multiple neuronal regions operating in synchrony should in 

principle be describable in terms of less information, that is fewer frequencies and phases, than 

the state of a system consisting of multiple neuronal populations operating relatively 

autonomously. A description of the latter system would involve a relatively greater number of 

frequencies and phases. 



Features of two of the views of visual perception that were discussed earlier, the RCI 

model and the convergence zone framework, can be encompassed by the proposal that 

perception involves a relaxation process, in which multiple cortical systems self-organize by 

relaxing into a state corresponding to a minimum along a dimension involving information. 

According to the RCI model, the process of perceptual categorization involves reentrant 

signaling between neuronal populations within a neural system that creates sensorycortical, 

limbocortical and corticocortical mappings at multiple scales. Such mappings may be viewed as 

neuronal configurations that implement transformational functions between sensory, cortical, and 

subcortical systems. The creation and evolution of these maps might be restated as the 

organization of discrete neuronal populations into functional nebmrks. Importantly, this 

organization is directed, not by some controlling device external to the neural system, but 

through interaction between the system and the environment, and by the degree to which the 

configuration of these mappings is successful in adapting the individual to the environment. This 

is a description of a process of self-organization in which, as larger networks are created out of 

more local structures, the information within the overall system might be seen to tend towards a 

minimum. In other words, the more highly organized the overall system comprised of these 

neuronal groups becomes, the fever bits of information are needed to describe the state of the 

system. 

In a generally similar way, the convergence zone framemrk suggests that discrete and 

widely separated neuronal populations organize through the mechanism of f e e d f o ~ r d  and 

feedback connections that link such populations with local control centers, the convergence 

zones. Again, this organization occurs, not as the result of an imposed directive from a higher 

level source, but as the result of a property inherent in the neuronal system itself: During 

perception, convergence zones encode a pattern of interconnections among multiple cortical 

regions, a pattern that captures the configuration associated with the perception. These zones 

then, in a sense, play back that code to reestablish the interconnection pattern during memory 

recall and recognition. The information needed to specify the state of this self-organized system 

is less, it is suggested, than the information needed to describe the system before it has self- 

organized. 

In general, statements about the neuronal basis of perception, such as the RCI model 

and the convergence zone framework, can be conceptualized, it is proposed, as being different 

perspectives on a common model, exemplified by the presently proposed cortical self- 

organization model. According to the CSO model, a coherent perception is the emergent result 

of a process of self-organization of a system comprised of multiple discrete neuronal 

populations, driven by a natural tendency, a relaxation process, which involves the minimization 

of a dimension such as information. 



To summarize the discussion thus far, it is suggested that object perception can be 

conceptualized as a relaxation process in Mich the pattern of interregional signaling between 

the components of the associated neuronal system relaxes towards a state of minimum 

information, and correspondingly, minimum entropy. The decreasing entropy level of this 

neuronal system corresponds to an increase in the level of organization of the associated 

components. While the analogy of fluid convection dynamics involves self-organization driven 

by energy relaxation, the case of neuronal interregional signaling dynamics involves a 

corresponding self-organization through information relaxation, a relaxation into an information 

minimum. 

It may be, however, that in the case of neuronal signaling, the hm variables, energy and 

information, can be considered to be related. Thus, the increasing degree of organization of the 

pattern of interregional signaling may correspond to a decreasing level of energy contained 

within the associated neuronal system. A possible mechanism for this correspondence can be 

suggested. Since a finite amount of energy is required to carry out an element of interregional 

signaling, a more organized and hence generally simpler signaling configuration should require 

less energy to sustain than a less organized and more complex pattern of signaling. 

Object discrimination might therefore be viewed as a tendency towards self-organization 

of multiple cortical systems, driven by the requirement of reducing the total energy within the 

system. Through this process of self-organization, the relatively high information content 

associated with the complex original retinal representation of the visual image is transformed 

into an integrated, discriminated, percept associated with corresponding information and energy 

minima. 

These statements form part of the CSO model of object discrimination. According to the 

model, object discrimination is subserved by a sequence of operations that occurs chronically 

and automatically within the neuronal systems associated with perceptual and cognitive 

processing, and Wich operate on primary sensory input initially, and in a recursive manner on 1 

the products of these operations themselves subsequently. Thus, it is proposed, visual 

discrimination entails an iterated process in Wich a sequence of transformations of the central 

representation of a visual image are used to successively approximate of the results of prior 

learning. This iterated process, creating a series of increasingly complex transformations, or 

feature ensembles, of the image elements, continues until a match occurs between the feature 

ensembles and information contained within existing memory templates. The sequence of these 

successive iterations can be considered as a process of self-organization occurring among 

multiple neuronal populations, driven by the requirement that the total amount of energy and 

information contained within this system is to be minimized. The result of this self-organization 

is an emergent unified perception, Wich in the present case is represented by the target object, 



successfully discriminated from its background. In equivalent information-theoretic terms, the 

associated neuronal system can be conceptualized as relaxing towards a state of minimum 

entropy. 

The view presented here of the network of neuronal functions associated with object 

discrimination is that of a dynamical system within which the pattern of interregional 

communication, driven by a mechanism of energy relaxation, is able to self-organize in order to 

coordinate the processing resources within multiple and widespread cortical regions. A 

consequence of this view of the process of cortical integration in terms of energy minimization is 

that it endows the process with a teleological component. A central coordinating device or 

structure is thus not required in order to direct the flow of events during the process of cortical 

integration in the direction of generating a unified percept. The principle of energy relaxation 

provides a natural driving force, and thus a direction, for the sequence of processes involved in 

generating such an integrated percept. 



18 Relating the Present Findings to Alternative Models 

In this section, a key feature of the results of the present study, the spatial extent of 

synchronization, will now be discussed in relation to tw models of visual perception. The first 

model is the reentrant cortical integration (RCI) model (Finkel and Edelman, 1989). The RCI 

model is an example of a model involving relatively distributed pattern of communication. The 

second model is Damasio and Damasio's (1993) convergence zone framework. This framework, 

in contrast with the RCI, is an example of a model that proposes a hierarchical system of 

interregional signaling. 

The present study found that immediately prior to the moment of discrimination, multiple 

cortical areas including bilateral occipital, temporal, central and frontal regions showed evidence 

of mutually coherent activity. As discussed earlier, this finding would appear to be more 

appropriately modeled by a distributed topology, and is thus more consistent with the reentrant 

cortical integration model than hith the convergence zone framework 

The convergence zone framework posits the existence of controlling neuronal 

collectives, the convergence zone, that function to organize multiple and hidespread cortical 

regions into a nemrk of nodes capable of operating in mutual synchrony. Such convergence 

zones in turn require the existence of feedforward and feedback paths between any one zone 

and multiple other cortical areas. Pathways that have been s h ~  to exist, connecting thalamic 

(Goldman-Rakic, 1988, 1992) and non-thalamic (Rolls, 1989) sources with multiple cortical 

areas, are generally limited in scope. Such pathways do not generally project from a single 

source to the vide range of cortical regions that are observed in the present study to be involved 

in coherent activity. Wider-scale projection systems have been found however. These include 

the identification of corticothalamic ascending and descending pathways between the 

intralaminar nucleus of the thalamus and all areas of the cortex (Llinas and Ribary, 1993). The 

convergence zone framework suggests that a large number of controlling regions may exist on 

many scales, each of which coordinates the activity of a collection of subordinate cortical areas. 

The activity of such individual controlling regions can, in turn, become synchronized by means of 

still higher order convergence zones. Such higher level zones would thus coordinate signaling 

among lower level zones. I 

In contrast with the convergence zone f rameW,  the reentrant cortical integration 

model does not require central controlling structures to direct the organization of multiple cortical 

regions into a topology capable of mutually coherent activity. According to the RCI model, 

coherent activity, and the consequent binding of stimulus features, is a result of the complex 

reciprocal signaling among these regions, termed reentry. In contrast with the convergence zone 

framework, the RCI model suggests that these multiple regions are interconnected in a non- 



hierarchical configuration. The RCI model, with an underlying distributed topology wuld, at 

least in this limited respect, appear to be a more economical explanation consistent with the 

present results. 

In summary, it is suggested that the present findings, primarily in terms of the observed 

wide extent of coherentlycoupled cortical regions, are to some extent more economically 

explained in terms of a description such as the reentry-based RCI model, than in terms of a view 

such as the convergence zone framewrk. It is suggested further that the interregional 

coherences observed in the present study are more consistent with a model involving inter- 

regional information interchange, similar to the reentry mechanism proposed by Edelman (1989), 

rather than with a model involving a common-source driving by central controlling structures. It 

must be acknowledged however that the present results do not appear to be useful in making a 

discrimination betwen these tm positions on grounds other than economy of description. Thus 

the present findings, particularly in terms of the topographic distribution of interregional 

associations, do not provide the level of spatial resolution that would be required to address the 

question of the existence of convergence zones. This question might howver be addressable 

using techniques such as MEG recording with dense sensor arrays. 

These conclusions, regarding the possible signaling topologies consistent with the 

present results, must be qualified by an important limitation that is to some degree inherent in 

the measurement paradigm used in the present study. By making measurements of scalp 

potentials there is a tendency to associate such potentials with generating structures located 

within immediately adjacent cortical regions. The validity of such an assumption rests in part on 

the physical proximity of such cortical sources to the scalp electrodes themselves. This 

proximity argues for the view that the effect of cortical sources will be represented in the scalp 

electrical activity preferentially with respect to the effects of subcortical sources. Reasonably, 

the effects of such subcortical sources must nevertheless represent some component of the 

potentials measured at the scalp, either relatively directly through volume conduction from 

subcortical regions to the scalp, or indirectly as a modulatory influence on cortical activity. For 

example, the observation in the present study that associations were maximal between 

oscillatory components in the theta frequency range hints at the possibility that interactions 

between cortical regions and the h i p ~ m p u s  may be involved (Miller, 1991; Basar, 

Schurmann, Basar-Eroglu and Demiralp, 1994). Miller (1991) for example suggests that theta 

activity may be the result of a corticohippocampal resonance, pointing out that the total 

transmission delay within a loop involving cortex and hippocampus is of the right order to result 

in a theta band periodicity. The function of this theta activity, he proposes, is to modulate the 

level of activation of networks of cortical cells in aid of feature binding and memory retrieval 

processes. In support of this notion, local negative potential excursions in the upper cortical 



layers have been associated with a lowering of cortical activation thresholds (Birbaumer, 

Lutzenberger, Elbert and Trevorrow, 1994), while EEG positivities have been suggested to 

reflect increases in activation thresholds (Mitzdorf, 1985). 

In order to try to estimate the effect of such noncortical generating structures on the 

basis of scalp potentials, essentially inferential techniques have been developed that generally 

make use of iterative optimization algorithms. Such algorithms attempt to infer the location, 

orientation and strength of one or more subcortical generators on the basis of an observed 

pattern of scalp potentials (e.g., Kertesz, 1994). These valuable techniques nevertheless suffer 

from the effects of the inverse problem: there is no unique solution in terms of the locations of 

subcortical generators corresponding to any observed topography of scalp potentials. Typically, 

therefore, source localization procedures make use of biologicallydriven constraints, in order to 

try to develop solutions which correspond to subcortical structures that have been hypothesized 

to exist on the basis of independent theoretical or empirical work. In any event, in the present 

study such source localization procedures have not been employed. For this reason any 

statements that are made here regarding intercortical connection topologies consistent with the 

present findings must acknowledge the fact that the effects of subcortical sources has not been 

estimated. The use of subcortical source localization procedures represents a possible direction 

for future extensions to the present work 



19 Perception and Awareness 

In general terms, the present findings show that visual object discrimination is associated 

with a transient wave of synchronization that sweeps out from the primary visual areas, and 

which eventually includes virtually all cortical regions, occipital, temporal, central and frontal. It 

is this synchronization transient, representing a momentary increase in the degree of coupling of 

these diverse cortical regions, that defines the discrimination event, as reflected in the subjective 

state of conscious awareness of the target object as an entity distinct from its background. 

Thus, on the basis of the present findings it might be suggested that it is only when 

sufficiently large and numerous areas of cortex are participating in synchronous activity that the 

phenomenon of conscious - that is, reportable - awareness of the discrimination of an object 

occurs. According to the CSO model, however, preceding such discrimination of a complex 

object there should be a sequence of precursor events involving over time a progressively more 

complex and multidimensional bundle of information about the central representation of the 

stimulus. Although not specifically tested in this study, introspection suggests that, beyond the 

very general awareness of elementary visual forms such as lines, colors and orientations, the 

neural events occurring during the discrimination process do not generally give rise to any 

conscious or reportable awareness of such intermediate feature ensembles. The effect does, 

however, vary with the stimulus. For some images, such a pogout effect occurs, while for 

others, the discrimination process is somewhat more continuous. 

One interpretation of this observation is that, for the stimuli for which the popout effect 

occurs, intermediate processing products do not exist, but rather than the discrimination process 

involves initial elementary visual feature analysis followed by a massively-parallel recursive 

memory-matching or search process. In such a case, there would be no feature-transformation 

products of intermediate complexity of which the subject could be aware. Rather, only when the 

memory search had succeeded in generating a successful match would conscious, reportable, 

awareness of the target occur. This suggestion is supported by the everyday observation that 

how, or even if, an object is perceived is largely determined by what one is prepared to see. 

These statements represent a possible modification of the CSO model. According to the 

model, object discrimination involves a relatively continuous process of successive iterations of 

a process involving feature analysis, transformation, and memory matching, creating 

successively more complex feature ensembles. According to the present discussion, object 

discrimination, in at least some cases, involves a somewhat discontinuous process of successive 

iterations of initial feature identification and relatively lowlevel binding of these features into a 

population of feature ensembles, followed by a massively-parallel memory search. An 

unsuccessful search would be followd by a rebinding of primary visual features into a new 



population of feature ensemble along new feature dimensions, with a subsequent memory 

search for a match to these new ensemble. In the present results there appears to be no 

evidence upon vhich to discriminate between one or the other of these hypotheses, other than 

the general observation that, for at least a subset of the stimuli, reportable awareness appears to 

be associated only with successful discrimination. 



20 Extensions 

A number of extensions of the present study suggest themselves. One extension that 

involves a modification of the present methodology would be to compute an on-line measure of 

association. This measure would indicate the relative degree of intercortical coupling. In the 

present paradigm, associations were measured both before and after the eye-blink In a follow 

up study, aimed for example at refining the discrimination signal itself, a measure of association 

could be computed for signals recorded only prior to discrimination. In this approach, an 

increase in association, detected using an appropriate algorithm, would then be used to turn the 

computer display off. The subject would immediately be asked whether discrimination had taken 

place, and the relative timing of the discrimination event and the offset of the display. This 

approach would have the advantage of not requiring some action on the part of the subject, such 

as the eye-blink, to s~gnal discrimination. This approach would have the associated benefit of 

eliminating the effect of the observed timing uncertainty between the increase in association and 

the eye-blink. 

A second extension would be to replace the on-line computation of a measure of 

association with a neural network associator. The neural network could be trained to associate 

characteristics of the EEG signals with the object discrimination event. This approach would 

have the advantage that a neural netvmrk can operate as a universal function approximator, 

making optimal use of EEG signal features. A neural nehwk wu ld  not be biased by any 

particular model of what the nature of the relationship between EEG signal characteristics and 

the object discrimination event should be. 

A third extension, discussed earlier, would involve the use of source localization 

techniques in order to try to estimate the effects of subcortical, such as for example, thalamic, 

sources. Ideally, such localization techniques would use information present over a window of 

time, such as the 0.25 second time-windows defined in the present &, rather than information 

from a single time-point. An alternative to localization techniques based on scalp measurements 

would be functional imaging techniques, such as for example magnetic resonance imaging or 

regional cerebral blood flow measurements within the present target discrimination paradigm. 

A fourth extension would be to repeat the present study using measurements of 

magnetic rather than electric fields over the scalp. Such MEG measurements have as one 
/ 

advantage an increased level of spatial resolution: In comparison with electric fields, magnetic 

fields interact minimally with the tissues that intervene between cortical and subcortical 

generators, and the scalp. The result is a smaller degree of bluning using magnetic rather than 

electric fields, in that such fields more accurately represent the topography of the undetiying 

generating structures, than do scalp potentials. 



21 Applications 

A number of areas of application of the results of this study suggest themselves. One 

area in which these results could be applied is in the design of human-machine interfaces. This 

area includes any application that requires a means of communication between a human being 

and a computerized system. Such a system might, for example, perform environmental 

monitoring, or facilitate interpersonal communication. The data analysis methodology used in 

the present study involved aligning the EEG time-segments on the blink by which subjects 

signaled the object discrimination event. A more general, and perhaps more powerful procedure 

wuld  be to continuously, that is, on an on-line basis, process the EEG signals to compute some 

measure of association such as intercorrelation, and then to look for increases in association 

between a subset of the 1020 electrode ensemble. According to the present results, such 

increases, between bilateral occipital, and frontcktemporal sites, should effectively index the 

occurrence of an object discrimination event. An alternative, as discussed earlier, wu ld  be to 

use a neural netwrk associator to indicate to moment of discrimination. The overall result 

wu ld  be that a person could signal discrimination of a target object from a camouflaging or 

distracting background in a non-verbal, non-motoric m y ,  through the sharp increase in 

magnitude of intercorrelation. Applications for this effect wuld  include tasks in which individuals 

are involved in scanning visuallycomplex or dynamic scenes, such as computergenerated 

displays, in search of particular objects or groupings of objects while ignoring a non-essential 

background. It should be possible to design such human-machine interfaces in such a m y  that 

an individual could to react to an object or constellation of object features on the display bithout 

producing an actual motor response. In this m y  it wu ld  be possible to eliminate the reaction 

times associated with generating such a response. 

Another general areas of applications might involve providing a channel of 

communication for persons with motor disabilities that make it difficult for them to generate 

responses to events in their environment based on muscle action. With appropriate training, it 

may be possible for persons to generate a discrimination response to a target object while 

ignoring potentially distracting non-target objects. In this respect an extension of the present 

paradigm m l d  be to look for differences in the evolution of the pattern of interregional 

associations in relation to differences in the visual features of the discriminated target objects. 

The question 6 be answred wu ld  therefore be, are there differences in the pattern of 

interregional associations, or in the time-evolution of this pattern, as a function of target features 

such as shape or color? An experiment designed to answer this question wu ld  represent yet 

one more possible extension to the present study. 



The present findings also suggest that the paradigm used in the present study may have 

applications within neurocognitive studies generally, as a means of generating a response 

corresponding to item discrimination. In the present study subjects were instructed to blink 

following onset of the conscious awareness of the identity of the target objects. It may be 

possible however that a similar large-scale coherence response might be found to be associated 

with only implicit, rather than explicit tests of recognition of a stimulus (for a review see 

Schacter, Chiu and Ochsner, 1993). 



Appendices 



Appendix 1 Effect of Noise on Correlation 

A l . l  Introduction and Method 

The issue has been raised in the literature that the observed magnitude of correlations 

are affected by the signal to noise ratio of the data. For example, Pijn, Vijn, da Silva, Van Emde 

Boas, and Blanes (1989) point out that the strength of a correlation between 2 sets of data is 

artificially decreased by the presence of random noise. To estimate the effect of random noise 

on the strength of correlation a numerical experiment was canied out using artificial data, to find 

the relationship between correlation and signal-to-noise ratio. Next, in order to measure the 

amount of noise in the experimental data that was due to EEG amplifier and to environmental 

sources, a dummy-input circuit to the EEG amplifiers used in the present study was constructed. 

This artificial input was intended to approximately model the subject for the purpose of assessing 

the amount of noise that was recorded as part of the experimental data. Using this dummy input, 

the output at all 16 channels was recorded. This recording was done immediately after data from 

subject 8 had been recorded. The RMS amplitude of the actual experimental data (excluding 

eye-blink waveforms) was measured, and the corresponding values of signal to noise ratio w r e  

computed for each session. 

The artificial data for the numerical experiment consisted of 10 pairs of vectors with each 

pair of vectors having a different signal-to-noise ratio. Each vector consisted of 32 data points, 

and consisted of one cycle of a sine wave with an RMS amplitude that was constant across all 

vectors, together with additive gaussian noise with an RMS amplitude that was adjusted for each 

pair of vectors In this way a different signal-to-noise level was created for each pair. This one 

cycle sine-wave in the 32 data points is equivalent, in the object discrimination data, to a 

frequency of 4 Hz. This frequency is the geometric mean of the frequency band used in the 

analysis of the object discrimination data, 2 to 8 Hz. Signal-to-noise ratios ranged between 0.25 

and 10. Correlations were then computed between each pair of vectors. 

In ordg to measure the noise level of the EEG amplifiers used in the present study, the 

dummy input was connected to the EEG amplifier inputs, in place of the scalp electrodes. The 

dummy input was a set of 19, 4.7 kilo-ohm resistors. One resistor, modeling the electrode to 

scalp resistance, was connected to each input of the head-box that was used in the experiment: 

16 resistors to the 16 channel inputs Fpl through 02, 2 resistors to the reference inputs, and 1 

resistor to the ground input. The other ends of all 19 resistors were connected together, and 

connected to a 5 foot length of insulated wire. The purpose of this wire was to approximately 

model the antenna effect of the body, in order to assess the common mode rejection capability 

of the amplifiers. This dummy input was constructed, connected to the head-box of the EEG 



machine, and a recording was made of the resulting outputs of the amplifiers. All machine 

settings were identical to those used in the study. In particular, filters were set to 3 Hz high-pass, 

and 70 Hz lowpass, and a total of 1024 data points was recorded at a sampling rate of 128 

points per second. The 3 midline channels, Fz, Cz and Pz were removed. The resulting matrix 

of 16 channels of 1024 data points was band-pass filtered to extract the 2 to 8 Hz frequency 

band. Standard deviation was then computed over the entire matrix. The result of this 

calculation is the RMS noise amplitude of the recording equipment. 

The noise level in the actual data recorded during the study was measured using the 

folloAng procedure. The data was first band-pass filtered to select the 2 to 8 Hz frequency 

band. The standard deviation was next computed over the matrix of 1024 points by 16 channels 

for a single trial, and averaged over 5 randomly selected trials from each session. The result is 

the RMS signal amplitude. Portions of the data containing eye-blink waveforms were excluded 

from the computation. 

A1.2 Results and Discussion 

The results of the numerical experiment showed that the magnitude of correlation was 

relatively unaffected when signal-to-noise ratio was greater than approximately 4. At a signal-to 

noise ratio of 1, correlation decreased to approximately 0.5. The results are show in Figure 

The RMS signal level in the experimental data was found to range between 1.1 micro 

volts (subject 6) and 2.1 micro volts (subject 7). RMS noise amplitude measured using the 

dummy load was 0.106 micro volts. This noise is some combination of intrinsic amplifier noise, 

together Ath environmental noise. The signal-t~oise ratio for subject 8 is accurate, since the 

machine noise measurements were made immediately after data from subject 8 had been 

recorded. The signal to noise ratios for sessions 1 through 7 must be considered to be 

approximate. The results for all sessions are shown in Table A1.l. Signal to noise ratios range 

from 10.4 for subject 6 to 19.3 for subject 7. 
, 

Table A1.l Signal-To-Noise Ratios with Theta Band Filtering 
Subject Signal (micro volts) Noise (micro volts) Signal-tonoise ratio 

4 1.75 0.106 16.5 
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Figure Al . l  Pearson productmoment correlation as a function of signal-to-noise ratio. 
Correlation was computed between two time series. In each of these, the signal component was 
a 1 cycle sine-wave. An independent noise component was added to each of these signals. 
This noise component had a gaussian distribution. The length of the time-series used in the 
analysis was 32 data points. 

The results of the numerical experiment indicate that signal-to-noise ratio does affect 

magnitude of correlation, and that the effect of noise becomes noticeable at signal-to-noise 

ratios of less than about 4. The computed estimates of signal-tonoise ratios for the recorded 

data suggest that external noise is not a problem in this study for data filtered at 2 to 8 Hz. 

In order to get an estimate of the signal to noise ratio for other frequency bands, the 

frequency distribution of the recorded data was examined by performing a Fourier analysis on 

the data. It was found that the resulting amplitude spectrum was well modeled by a l/f 

frequency distribution, over the frequency range of 2 to 64 Hz. That is, the amplitude of the 

frequency components within the data was found to be inversely proportional to frequency. 

Using this model, the RMS signal level within bands other than the 2 to 8 Hz band can be 

estimated. The RMS signal level in frequency bands other than the theta band should be 

roughly inversely proportional to the ratio between the mean geometric mean frequency of the 

theta band, 4 Hz, and the geometric mean of the other frequency bands. Using this approach, it 

is estimated that the resulting signal to noise ratios in the alpha band will be approximately 113 of 

the values for the theta band. For the beta band signal to noise ratio will be 116 of the theta band 

value, and for the gamma band signal to noise ratio Mll be 1/10 of the theta band value. The 



significance of these values is that for the alpha band the signal to noise ratio is marginally high 

enough to allow its effect on correlation to be ignored. For the beta and gamma bands however 

there can be expected to be a significant effect of signal to noise ratio on correlation. These 

effects of signal to noise ratio on correlation would of course be discountable if the level of noise 

did not vary significantly over the course of a recording. In that case, noise would have the 

effect of depressing the value of correlation, but this effect would be uniform over time and 

would thus not impair comparisons made between conditions, and between time-intervals. If on 

the other hand the level of noise were to change with time then such comparisons could no 

longer be canied out. It seems reasonable that the component of noise due to the amplifiers 

themselves should be relatively constant over the time-spans of the data recordings. The 

component of the noise that is due to external, environmental sources on the other hand can not 

reasonably be expected to remain constant over the time scale of the recordings. An overall, 

and conservative conclusion would appear to be that in the present study, using correlational 

analyses, theta, and to a somewhat lesser extent alpha, band filtering allows for minimal 

interaction between system noise and level of correlation. On the other hand filtering the data to 

attempt to extract beta and gamma band components is probably not appropriate when the 

resulting filtered data is subjected to correlational analysis. 



Appendix 2 - Stimulus Pictures 

Picture Credits 

All stimulus pictures used in this study were adapted from the original sources using the 

methodology outlined in the methods section in Unit 2. None of the items was used directly. 

Stimuli were adapted from the folloving sources: 

Picture Ada~ted From: 

1,8 Mooney and Ferguson (1 951 ) 
3 Porler (1 954) 
5 James (1989) 
2, 4, 6, 9, 10, 29 Fogden (1974) 
7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22,28 MacKay (1 990) 
21, 22, 23, 27 Hosking and MacDonnell(1979) 
24,26 Reedy (1973) 
25, 30 Frisch (1973) 



Figure A3.1 Stimulus pictures 
(1) horse's head; (2) pheasant; (3) face (4) plover chick (5) Dalmatian dog (6) moth 



Fiaure A3.1 (continued) Stimulus pictures 
(77 horses; (8)  facial (9) ptarmigan; (10) frog; (1 1) bear; (12) deer 



Figure A3.1 (continued) Stimulus pictures 
(13) eagle; (14) pack horses; (15) horse's head; (16) rabbit; (17) horse through trees; (18) horse 
and rider 



Fiaure A3.1 (continued) Stimulus pictures 
(16) face in rocks; (20)'face in rocks; (21) courser; (22) eagle; (23) oA; (24) fist 



Figure A3.1 (continued) Stimulus pictures 
(25) lamb; (26) rose in hand; (27) plover; (28) leopard; (29) heron; (30) tenrec 
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