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Abstract 

The machine recognition of faces is useful for many commercial and law enforcement 

applications. Two typical examples would be security systems and mug-shot match- 

ing. A real-time method which has been developed in the last few years is the eigenface 

method of recognition. The eigenface method uses the first few principal components 

(the eigenfaces) of the database images to characterize the known faces. Images are 

classified by their weights, the weights are found by projecting each image onto the 

eigenfaces. 

The goal of this thesis was to improve the recognition of faces by using color. We 

started by looking at the limitations of the eigenface method as applied to grey-scale 

images. Next, color ratios, chromaticities and color band normalized images were 

used. Images were compared using both the eigenface method and doing a direct 

picture-to-picture comparison. Last but not least, a method was developed using 

color which would correct for illumination direction when there are gross differences 

in illumination between two images. 

For similar images, ie. images in which there was little variation in head size, ori- 

entation or illumination, the eigenface method with grey-scale images performed very 

well with a recognition rate of 95%. Of the color representations that were tried, only 

color band normalized images performed as well as the eigenface method for grey-scale 

images. When there was a gross change in the illumination the performance of the 

eigenface method declined to a recognition rate of 73%. Correcting for the illumina- 

tion differences through the use of color allowed reliable recognition independent of 

illumination. 
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Chapter 1 

Introduction 

People can distinguish thousands if not millions of faces. We can identify faces under 

a myriad of conditions-with changes in color and direction of illumination, at dif- 

ferent distances, from different perspectives, with changing facial expressions or with 

cosmetic differences such as haircuts and makeup. Complete recognition involves high 

cognitive functions, taking into account such features as color, context, characteristic 

movements and voice. Ultimately, machine vision seeks to duplicate this complex 

process. To date, no system exists which can do all of these things. We are seeking 

an analytic method for face recognition. 

This thesis addresses one small portion of the problem, the identification of frontal 

face images taken under varying illuminations, using image processing techniques. The 

face size and position do not vary from image to image. The goal of this thesis was 

to test whether the use of color could improve face recognition. 

Turk and Pentland [25, 241 have developed a near real-time face recognition tech- 

nique for grey-scale images which they call eigenfaces. The eigenface method has 

been used as the metric against which all other techniques are compared. The start- 

ing point for my work was an exploration of the limitations of this method. I found 

that the eigenface method works well when applied to images with a fixed head lo- 

cation, size and orientation, and when there is a limited variation in the illumination 

conditions under which the pictures were taken. It does not work as well when the 

changes in illumination are more pronouced, for example when one side of the face is 
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quite heavily shaded. 

Color provides additional information that we may be able to exploit to improve 

recognition. Work has been done which shows that if an object is colorful enough 

then color alone can be used to identify it. The limited colors seen in the face make 

it unlikely that color can be used as the only identifying characteristic-although it 

could perhaps be used to segment a database of face images. A color image of a face 

contains both color and shape information, the shape information being implied by 

the changes in pixel intensity. The properties of color may be exploited to obtain 

quasi-invariant descriptors of the shape. Color edges, chromaticities and color band 

normalization emphasize different aspects of the image; all three representations will 

be used for recognition. 

When we compare two images of a face, differences in the illumination conditions 

will change the information in the image. Any method which does a comparison be- 

tween images will break down unless the change in illumination is taken into account. 

Color can be used under certain conditions to correct illumination differences, so that 

the comparison can be made between images with equivalent lighting conditions. 

1 .  Goals 

The goal of this thesis was to test whether the use of color could improve face recog- 

nition by machines. The specific goals were: 

1. to determine the limitations of the eigenface method 

2. to test whether color alone is a sufficient basis on which a face database could 

be segmented. This was done using color angle invariants. 

3. to see whether color can be used to improve the eigenface method. This was 

done by using the eigenface method on chromaticity, color ratio and color band 

normalized images. 

4. to use color to improve recognition rates under grossly varying illumination 

conditions. 
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1.2 Thesis Outline 

1. Introduction 

In this introductory chapter, the problem of face recognition is described and 

a brief outline of the work contained in this thesis given. This chapter also 

describes the layout of the thesis itself, including a summary of its contents. 

Goals and Approach 

Thesis Outline 

2. Literature Survey 

Chapter 2 surveys some of the previous work that uses principal component 

analysis for face recognition. A brief survey of color representation and color 

constancy is also included. 

Using Eigenvectors for face representation and recognition 

Eigenfaces for Recognition 

0 Color 

3. The Eigenface Method 

Chapter 3 describes the eigenface method developed by Turk and Pentland. 

Experimental work is done with Turk and Pentland's original data. The goal of 

this chapter is to explore the limitations of the method. 

The Eigenface Method 

The Data Set 

Experimental Results 

4. Color and Face Recognition 

Chapter 4 explores some of the ways in which color might be used in conjunction 

with the eigenface method. 
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The Data Set 

0 Color Angle Invariants 

Color Representations 

- Color Band Normalization 

- Chromaticity 

- Color Ratios 

Experimental Results 

5 .  Color and Changing Illumination 

Chapter 5 describes the relationship between a single-colored object and its 

shape. It also shows how this relationship can be used to correct for illumination 

differences in images of the same single-colored object. 

Properties of color images of surfaces under multiple illuminants 

Adjusting for changing illumination 

6. Illumination Correction and Faces 

Chapter 6 describes the application of the relationship developed in chapter 5 

to face images and presents results of test of the methods developed. 

Implementation 

Data Set 

Comparison of Methods 

Experimental Results 

7. Discussion 

In chapter 7 the work is summarized and discussed. 



Chapter 2 

Literature Survey 

2.1 Face Recognit ion 

There are many problems which fall under the heading of face recognition, each with 

its own technical challenge. Chellappa et al. [4] divide the application of face recog- 

nition into three categories: 

1. applications which require matching one face image to another face image 

2. applications for finding or making a face image which is similar to one which is 

remembered 

3. applications for generating a face image from data (for example, computerized 

aging for identifying missing children and reconstruction of the face for the 

identification of remains). 

We will addressing only techniques which fall into the first category. Typical appli- 

cations of the first category are mug-shot matching or security systems. Mug-shot 

matching has the advantage of having good image quality with images taken under 

controlled conditions. A security system may not present the same amount of control 

as the mug-shot case. 

In general, two approaches are taken to mug-shot matching. The first applies 

a global transform to the entire image. The second bases its recognition on features 
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extracted from the image. The work contained in this thesis uses the global approach. 

2.1.1 Using Eigenvectors 

Sirovich and Kirby [20] have developed a representation for a face image in which the 

face is characterized by a relatively low-dimensional vector. Using the Karhunen- 

Loeve expansion (also known as Principal Component Analysis) they show that 

roughly 40 numbers are 

115 to within 3% error. 

where y is the original 

needed to characterize a single face image from a data set of 

The error E is defined to be 

image and vN is the reconstruction of the image using N 

eigenvectors. They claim that, in principle, any collection of face images could be 

represented by a small set of numbers for each face image and a small set of eigenvec- 

tors. 

Hallinan [lo] has taken the use of Principal Component Analysis (PCA) one step 

further and developed a model for the face which explains the illumination conditions 

under which an image is taken. The model splits the variations in image intensity due 

to illumination into images which combine linearly (boundary images). PCA is applied 

to the boundary images and the resulting eigenvectors are used to approximate an 

arbitrary range of lighting conditions. Hallinan reports that the first five eigenvectors 

consistently represent five common lighting conditions. For example, the oth basis 

represents the contribution made by frontallambient lighting. 

Cheng et al. [5]  have developed a method for face recognition which uses Singu- 

lar Value Decomposition (SVD) and thresholding of eigenvalues. The average face is 

calculated using three images of a person's face (the training set). The eigenvectors 

and eigenvalues are determined for this average face by SVD. Thresholding is used 

to discard those eigenvectors with eigenvalues close to zero. Feature vectors are cal- 

culated by projecting each of the training set images for a person onto that person's 



CHAPTER 2. LITERATURE SURVEY 7 

eigenvectors. The feature vector used to identify person A is the average of all the 

feature vectors calculated for person A. A new image to be identified is projected 

onto the eigenspace spanned by the feature vectors and identification is made using 

the Frobenius norm. The authors report a 100% recognition rate for a database of 8 

people, using eight pictures for each person. Further work would be needed to show 

whether this method would work well with a large face image database. 

2.1.2 Eigenfaces 

Turk and Pentland [24] have used the results of Sirovich and Kirby as the basis of their 

eigenface recognition method. The eigenface method is used both to recognize and to 

find a face in a scene. Turk and Pentland's starting premise was that if 40 eigenvectors 

are needed to characterize the facial information of 115 people, fewer should be needed 

to recognize them. The details of how to find the eigenvectors (which Turk and 

Pentland call eigenfaces) are described in chapter 3. Once the eigenfaces have been 

found, each image in the database is projected onto the eigenfaces, producing a vector 

of weights. These weights form a face-class vector and are used to identify the face. 

When a new image is to be identified, it is also projected onto the eigenfaces. The 

resulting weight vector is compared to the face-class vectors and identified as the 

person whose face-class vector is closest in Euclidean distance. Faces are discriminated 

from non-faces based on the distance between the new image and face space; if the 

new image is too far away it must not be a face. 

Experiments were conducted on a database of 2592 images of 16 people. Each 

person's picture was taken with all combinations of three different head sizes, three 

different head orientations and three different illumination directions. The images 

were then put into a 6-level pyramid. Turk and Pentland have chosen to use 7 of a 

possible 16 eigenvectors, one for each person in their data set. These 7 eigenvectors 

encode approximately 80% of the available information. They report that the eigen- 

face approach is robust under changes in illumination but that it degrades when there 

are changes in size or orientation. 
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Pentland et al. [15] have extended the capabilities of the eigenface system in 

several ways. The database size has increased to 7562 images of approximately 3000 

people and is annotated with additional information about sex, race, age and facial 

expression. For several people the database contains many images with different facial 

expressions, hair styles, etc. Twenty eigenfaces were calculated from a randomly 

chosen subset of 128 people. 

A recognition rate of approximately 95% was achieved when the method was tested 

using 200 selected images. Recognition accuracy as function of race was also tested 

with recognition rates of 90%, 95% and 80% for white, black and Asian males re- 

spectively. In addition to recognition, the authors also addressed interactive database 

search. Asked for images of certain types (ie. adult Hispanic males) the system 

presents images which fit this criteria in groups of 21. The user can choose any one 

of these images, and the system will present the 21 images which are most similar to 

it. The similarity search uses the eigenface descriptors. 

The authors took two approaches to multiple views of the same person. The first 

was to pool all of the images and build a set of eigenfaces which would represent all 

images from all views. The second built a separate eigenspace for each characteristic 

view; this is known as view-based eigenfaces and seems to work better than pooling 

all images from all views. 

The eigenface technique was also extended to describe and encode facial features. 

The eyes, nose and mouth were detected in the same way as faces were detected using 

eigenfaces. On a limited data set (45 people, 2 views per person), recognition was 

tested using eigenfaces only, eigenfeatures only and the two combined. With a low 

number of eigenvectors, eigenfeatures performed better than eigenfaces. Combining 

the two techniques produced only a slight improvement over eigenfeatures alone. 

Tistarelli [23] has used a space-variant descriptor with the eigenface method. Peo- 

ple foveate on those parts of an object which contain the most interesting features. 

Tistarelli has mimicked the foveation of the eye with a vision system based on a retina- 

like space-variant CCD sensor like that used by Sandini and Dario [19]. The sensor 
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is fixated at three distinct points on the face and the resulting images are used to 

compute the eigenfaces. Projecting each of the three images back onto the eigenfaces 

gives a vector of descriptive triplets. Each known person in the database is repre- 

sented by this vector of triplets and an unknown individual is identified by finding 

the minimum Euclidean distance between the vectors of triplets in the database and 

the vector of triplets for the image we wish to identify. The author reports a 100% 

recognition rate for a training set comprised of seven people. Further work would be 

needed to assess whether space-variant eigenfaces could scale up for use with a larger 

data set. 

2.2 Color 

The human eye has the ability to see colors as relatively constant under changes of 

illumination. This is not true for color pictures taken with a camera; a red sweater will 

not appear to be the same red in two images if the images were taken under different 

illuminations. Having the computer "see" the color of the sweater as the same color for 

images taken under different illuminations is the goal of color constancy. Intuitively it 

seems that color should be able to help the computer recognize a face. We will need to 

determine whether this is true, and to do so an illumination independent description 

of the colors in the face image must be used. 

How do we describe color? In the classic "desert island" experiment, colors are 

described as having hue, lightness and chroma [2, pp. 18-19]. Suppose that someone 

who knows nothing about color is on a desert island surrounded by colored pebbles. 

To while away the time, the person decides to arrange the pebbles by their color 

in some logical way. How might they do this? First the pebbles are divided into 

two piles, one chromatic, the other achromatic. The achromatic pile is sorted by its 

lightness, ie. into all the shades from black to white. The chromatic pile is then sorted 

by hue, or into piles of what we commonly think of as red, yellow, blue etc. Each of 

these piles is then ordered by lightness. At this point the person notices that some 
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pebbles which the same hue and lightness are different. This difference is the third 

descriptor of color, the chroma. The chroma describes how much color each stone 

has. 

The von Kries model of chromatic adaptation can be described as a diagonal 

linear transform between sensor responses for sensor responses under two different 

illuminations. This model will not work for wide-band sensors; however, if the sensor 

response functions are first transformed to a more narrow-band sensor basis then the 

von Kries model is acceptable for color constancy [7]. 

Finlayson et al. 161 have used this result to show that color angle invariants are 

sufficient to recognize objects if the objects are colorful. Color angles are invariant 

when a linear diagonal transformation is sufficient to describe the relationship between 

two images taken under different colors of illumination, which is the case when the 

sensors are sufficiently sharp. Under these conditions a change in the color of the 

illumination will induce a change in the length of the red, green and blue vectors, but 

the angle between the vectors remains the same. 

If an object is colorful then color alone can be used to recognize it. Swain and 

Ballard [22] have shown that under controlled illumination, objects can be identified 

solely on the basis of the histogram of their colors. Under varying illuminations 

their method deteriorates and they recommend that correction for color constancy be 

applied before processing. Finlayson and Funt [8] have extended the work by Swain 

and Ballard by histogramming of same-band color ratios. Color ratios are shown to 

be invariant to changing illuminations. 

Petrov [17] has suggested that all perceived surface colors can be described as a 

set of nine-dimensional 3x3 matrices. He defines the color C of a surface a as linear 

function C a0 = a,  where C is a 3x3 matrix and a0 is a white surface with the same 

shape as a. This equation assumes a fixed illumination. 
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Petrov [16] uses this definition of color to relate an image to the real world. Here 

the world is viewed as having three distinct characteristics: shape, described by the 

normal of the surface, ii (as a function of x and y ) ;  color, C ,  as described above; 

and illumination. Illumination consists of two components, Ho, which is attributable 

to three chromatic light sources and hd to diffuse lighting. These characteristics are 

related to the image P by the equation 

Petrov uses Equation 2.1 to solve for the shape of the object. 

Petrov and Kontsevich [18] use Petrov's description of color and its relationship to 

a surface to define the properties of color images of surfaces under multiple illurninants. 

In this work, the sensor response is 

M is nine-dimensional, 3x3 matrix which linearly maps the shape of the object to the 

receptor response. This work will be discussed in more detail in chapter 5 .  



Chapter 3 

The Eigenface Met hod 

The eigenface method of face recognition assumes that faces can be recognized by 

how different they are from an "average face". Consider a set of NxN images. Each 

NxN image is a point or vector in N2 space. However, face images are very similar 

and should produce a small cloud of points in this very large space. The eigenface 

method uses the difference from an average face to emphasize differences rather than 

similarities. What we would like to do is find a small set of basis vectors which 

represent a face subspace of our image space. The application of principal component 

analysis (PCA) reduces the number of required basis vectors to a very small number. 

The eigenface approach was motivated by work done on image compression by 

Sirovich and Kirby [20]. In this work they showed that, by using PCA, they could 

reconstruct approximately 98% of the image data found in 115 face images from only 

40 eigenvectors. The amount of lost information was determined by 

where 9 is the original image and vN is the reconstruction of the image using N eigen- 

vectors. Turk and Pentland investigated the possibility that even fewer eigenvectors 

are sufficient to identify a face, using seven of the sixteen possible eigenvectors in their 

work. (Their data set was comprised of images of sixteen people.) 
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3.1 The Eigenface Method 

Let r be an NxN face image. We will view r as a vector of length N2. Let our training 

set be comprised of M images; rl, r2, . . . ,rM. Each of the faces in the training set 

is assumed to be centered, to be the same size, and to have the same orientation and 

illumination. The average face image, 8, is 

and a; = r; - 8 the deviation of face image i in the training set from the average 

face image. An N2xN2 matrix A can be formed with the @;'s as its columns. 

We are looking for a few (<< N2) basis vectors which preserve most of the information 

given by the variation in the vectors of A. Principal component analysis will give us 

this information [12]. 

What is principal component analysis? Let x be a vector of length N. Principal 

component analysis first looks for N-vector al such that lall = 1, aTx has maximum 

variance and 
T al x = a11x1 + a 1 2 2 2  + ... + Q I N X N .  

It next looks for a linear function arx which has maximum variance and is uncorre- 

lated with ayx. The third principal component as ,  is similarly found by looking for a 

linear function aTx which has maximum variance and is uncorrelated with ayx and 

aTx. The kth such derived vector is the kth principle component. The kth  principal 

component of A is given by maximizing 

and subject to 
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Another way of mathematically describing the same basis vectors is as the eigen- 

vectors of the covariance matrix of A. By definition the covariance matrix C = AAT. 

Consequently, C is a real symmetric matrix and can be factored into C = QAQT, 

where the columns of Q are the orthonormal eigenvectors and A contains the eigen- 

values of C [21, pp. 290-2971. Turk and Pentland call the eigenvectors eigenfaces 

because they resemble ghostly faces. 

Once we have the eigenfaces, a k ,  face classes are defined for the images in the 

training set. Face classes are specified by a vector R;, 

0; = [wl,w2, .- . ,wMI],  

where each wk = a:@; and MI < M .  MI refers to the number of eigenfaces with 

which we have chosen to do our recognition. Fewer than M eigenfaces may be used 

because principal component analysis preserves most of the information in the first 

few eigenfaces. For example, choosing MI to be 7 preserves approximately 80% of our 

image information. wk is just a projection of @; onto the kth eigenface basis vector. 

To identify a face r, we find the face class which minimizes the Euclidean distance 

&k = Il(0 - n k ) l 1 2  

where R = [wl, w2, ..., w,,] with wk = a:(r - \II) and Rk is the vector describing the 

kth face class. 

The computation of the eigenvectors of the covariance matrix is prohibitively ex- 

pensive because the covariance matrix is N2xN2. A fast way to find the eigenvectors 

of C is to compute them from the eigenvectors of matrix L = ATA [24]. To find the 

eigenvectors of the covariance matrix using L, let v = the eigenvectors of L. Then, 

L v  = Xv 

A ~ A V  = xv 

A A ~ A ~  = AXv 

C A v  = XAV. 

If a are the eigenvectors of C, where C = AAT, then a = Av and we can calculate 

the eigenfaces by first finding the eigenvectors of L, which is computationally a much 

simpler problem. 
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Summarized Procedure 

Collect a set of N face images for known individuals. 

Calculate the NxN matrix L, find its eigenvectors and eigenvalues and choose 

the M' eigenvectors with the highest eigenvalues. 

Calculate the eigenfaces using the eigenvectors of L and the mean adjusted face 

images in the training set. 

0 For each known individual calculate the face class vector Clk 

0 For each new face to be identified calculate its image vector R and find the 

distance between R and each of the face classes. 

Implement at ion 

I implemented the eigenface method of face recognition in C using the image process- 

ing package hzps[13]. The code used by Turk and Pentland was available over the 

network but would not run at our installation since their code depended heavily on 

other in-house software which was not available over the network. I chose to rewrite 

the program using locally available software. S-PLUS [ll], a math package, was used 

to find the eigenvectors of the correlation matrix L. 

I encountered two main problems while implementing the method. The first was 

a problem with rounding errors. As the values of the eigenvalues of the covariance 

matrix decreased so did the length of the eigenvectors. After normalizing the eigen- 

vectors the smallest of these basis vectors was no longer orthogonal. I got around this 

problem by checking the length of each eigenvector and discarding those which were 

too short. The second problem was finding a system which would run the experiments 

reliably. While running, each experiment required approximately 3 Meg of RAM but 

this memory was not constantly held-it was allocated and freed as needed. If some- 

one else was on the system and used that memory in the short time that it was free 

then the experiment would abort and I would be forced to start over again. 
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Each experiment consisted of trying to identify all 432 face images with each 

of the 27 possible training sets of sixteen people. This is equivalent to trying to 

identify 11,664 face images. The pared down code produced an output file giving the 

"recognized" face for each image. On a Sun SS10-41 approximately 2 images were 

processed per second, while on a Sun SparcLX the rate decreased to approximately 1 

image per second. 
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3.2 The Data Set 

The data set used for these experiments consisted of 432 images, 27 images each of 

sixteen people. Each person's picture was taken with three head sizes (large, medium 

and small), three head orientations (upright, tilted to the left, and tilted to the right) 

and with three illuminations (light along the optical axis, at 45 degrees to the optical 

axis and at ninety degrees to the optical axis). The work originally done by Turk 

and Pentland placed the 432 images into a six-level pyramid1 giving them more than 

2500 images. The second level of the pyramid was available on the Internet and this 

is what I used for my experiments. Figure 3.1 (from [24]) shows all 27 images for one 

person in the data set. 

Each training set consisted of 16 images, one for each person in the data set. All 16 

images in the training set had the same head size, orientation and lighting. Figure 3.2 

(from [24]) shows an example of the training set consisting of large upright heads 

illuminated along the optical axis. I evaluated the data in five different ways: 

1. original images, 

2. images scaled by a gaussian with cr = 100. Let I ( x ,  y) be a face image. Then 

the scaled image, S(x ,  y ),will be 

3. images scaled (Equation 3.1) by a gaussian with cr = 50, 

4. images with the background masked out and 

5. images cropped with the center of the image positioned at the tip of the nose. 

The scaling, masking and cropping were all used to get rid of some of the background 

information. Turk and Pentland apply a gaussian to the images to mimic the effect 

An image pyramid consists of a set of images where the dimensions of the image at each level is 
half that of the level below it. At level 0 the image is N x M ,  at level 1 it is N / 2 x M / 2 ,  at level 2 it 
is N / 4 x M / 4 ,  etc. 
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Figure 3.1: The 27 images for one person in the data set 
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Figure 3.2: Training Set Example 

of foveation by reducing the intensity of the background pixels. Figure 3.3 shows an 

example of one face cropped and masked. 

Masking and cropping were done to verify the recognition rates for faces only. 

Initially, my experiments were made with data which had been scaled by a gaussian 

with sigma = 50. While the overall recognition rates were similar to those reported by 

Turk and Pentland, the breakdown of the results made me wonder whether the results 

were from recognizing the face or the background. Principal component analysis is 

not invariant to translation, rotation or scaling and so the large variations in the 

placement of the face in the image were removed by centering the cropped images on 

the tip of thc nosc. 

3.3 Experimental Results 

In all experiments, seven of the possible 16 eigenfaces were used. Each experiment 

consisted of comparing all 432 faces to each of the 27 possible training sets. The 

experiments were run five times, once for each type of image data. The results for all 

five runs can be found in Tables 3.1- 3.3. These results include only the recognition 
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Figure 3.3: Original, Masked and Cropped Images 
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Table 3.1: Recognition Rates (in %) for Varying Illumination 

Small 

83.7 

Original 
Gaussian(a=100) 
Gaussian(a=50) 

Masked 
Cropped 

Table 3.2: Recognition Rates (in %) for Varying Face Size 

Original 
Gaussian(a=100) 
Gaussian(a=50) 

Masked 
Cropped 

Overall 
93.5 
92.8 
89.8 
76.5 
78.4 

Small 
25.0 
25.7 
24.3 
12.5 
15.2 

Large 
87.1 
85.4 
80.6 
68.4 
66.7 

Overall 
34.0 
32.4 
28.1 
12.2 
18.9 

rates for faces which varied from the training set by one variable, so that the effect 

of varying each variable could be determined. The results reported in Tables 3.1- 

3.3, Figure 3.4 and Figure 3.5 do not include the recognition of the faces that were 

already in the training set. In all cases, the members of the training set were identified 

correctly and I felt that excluding these numbers would give a clearer picture of the 

reliability of the method. Figure 3.6 shows the same results as Figure 3.5 but includes 

the recognition of the training set members in the percentages as in the original results 

reported by Turk and Pentland. 

The first experiment was run using data which had been scaled by a gaussian with 

a = 50 (Equation 3.1). The results were interesting when broken down by head size 

(See Figure 3.4). As you can see from Figure 3.4, the rate of recognition increased 

as the size of the head decreased when the illumination or orientation of the face was 

varied. As we will see a little later, this trend of increased recognition as head size 

decreased was true for all experiments when the illumination or orientation varied. 

Med 
93.4 
93.1 
89.6 
77.4 
78.5 

Large 
28.5 
27.1 
23.9 
12.1 
18.4 

Med 
48.6 
44.4 
36.1 
11.8 
22.9 
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Table 3.3: Recognition Rates (in %) for Varying Face Orientation 

Gaussian(a=50) 
Masked 

I oa 

9C 

80 

70 
% 

60 
Correctly 

50 
Identified 

40 

30 

20 

10 

0 

Overall Large Med 
63.2 
57.3 
39.6 
7.9 
18.4 

Small 
95.1 
92.0 
78.5 
15.6 
28.1 

Varying Varying Varying 
Illumination Size Orientation 

Face Size: 

I Large 

Medium 

Small 

Figure 3.4: % of Images Correctly Identified (Excluding Training Set Data) 
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The results shown in Figure 3.4 for varied head size were as expected. It is reasonable 

that a training set comprised of medium faces will have a better chance of recognizing 

either a large or a small face than does a training set comprised of large faces of 

recognizing a small face or vice versa, and the results showed that this was indeed 

true. 

I next ran the experiments on original data and with the data scaled by a gaussian 

with a = 100 (Equation 3.1). Both of these experiments provided more background 

information than the images scaled with a = 50. If the background was indeed being 

recognized as I hypothesized, then the recognition rate should improve. It did. 

Next, I ran the experiment on the masked data. While I was masking the images I 

noticed that the faces were not uniform in their placement in the images. There were 

gross differences between heads of the different orientations and sizes. Faces for which 

only illumination varied were not uniform in placement but the differences were quite 

small (a reference point was within 5 or 6 pixels). Because of these two considerations 

cropped images were centered on the tip of the nose. 

Figure 3.5 shows the overall recognition rates for all five methods. The results 

clearly identify that the background information is used to help identify faces for the 

original images and images scaled with a gaussian. This can be seen in the decreasing 

recognition rate as the amount of background information decreases, that is, as one 

moves from the original image to images scaled with a gaussian with a = 100 to images 

scaled with a gaussian with a = 50 to the masked images. The increase in recognition 

from the masked to the cropped images is due to the centering of each face and shows 

quite clearly that principal component analysis is not invariant to translation. The 

minimal improvement in recognition rates when going from masked to cropped images 

for varying illumination is due to the small variation in the placement of the face 

within the image when only the illumination varied. The much larger improvement 

in recognition rates when going from masked to cropped images for varying size or 

orientation is due to the large variation in the placement of the face within the image. 

Table 3.1 shows both the overall recognition rates and the recognition rates bro- 

ken down by the size of face for variation in illumination. For all experiments, the 

recognition rate increases as the size of the face moves from large to small. This is 
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Figure 3.5: % of Images Correctly Identified (Excluding Training Set Data) 

expected since masking or cropping a large face removes more of the background (ie. 

hair or shirt) than masking or cropping a small face. 

Table 3.2 shows the overall recognition rates and the recognition rates broken down 

by face size for variation in size. For all 5 experiments, a medium face recognized its 

neighbors better than a large face recognized a small one or vice versa. 

Table 3.3 shows the overall recognition rates and the recognition rates broken 

down by face size for variation in face orientation. Once again, the recognition rate 

increases as the size of the face moves from large to small. 

Figure 3.6 shows the overall recognition rates for all 5 methods when the recog- 

nition of the faces in the training set is included in recognition data. The trends in 

Figure 3.6 are the same as those shown in Figure 3.5 although the overall recognition 

rates are much higher. This was included for comparison purposes only because this 

is the method of reporting chosen by Turk and Pentland. 
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Figure 3.6: % of Images Correctly Identified (Including Training Set Data) 

Discussion 

This work implements work previously done by Turk and Pentland on face recog- 

nition using cigcnfaccs. This mcthod is fast and my experiments gave comparable 

results. However, a careful examination of these results illustrated the limitations of 

the eigenface method of recognition when identifying a face which differed from the 

known face in the training set by size, illumination or orientation. This work does 

not show how many faces could be reliably identified or how well the method would 

work if these three parameters were controlled. 

When the eigenface method of face recognition was used to recognize faces which 

varied in size or orientation the recognition rates were very poor and would not be 

acceptable in any practical application. If a reliable technique was found which could 

overcome the principal components7 variance with translation of the face, it might 

be possible to  recognize these images in log polar space. Tistarelli [23] has used an 

activelspace-variant sensor for eigenface recognition of faces but does not deal with 

the issue of face translation. 
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The recognition rates for varying illumination were much better than those for 

varying size and orientation and with further work it may be possible to improve the 

recognition rates for varying illumination. One possible extension would be to use 

color. 

Overall, the eigenface method of face recognition suffers from the same constraints 

from which any image-to-image method of recognition suffers. To get reliable recog- 

nition the two images of the same object must be from the same camera angle, have 

the same illumination, be the same size in the image, etc. When one thinks about it 

this is not surprising. Let A and B be two images of the same object with B part 

of the training set and let A 21 B. Subtracting another image such as the average 

face, IZr, from both A and B and projecting both A - IZr and B - IZr must maintain 

this quasi-equality in order for Euclidean distance to be used. Murase and Hayar [14] 

show that for two images used to compute the eigenspace, the closer the projections 

are in the eigenspace, the higher the correlation between the two images. 



Chapter 4 

Color and Face Recognition 

In chapter 3 we looked at the eigenface method in some detail. The work presented 

in this chapter is an exploration of some of the ways in which color might be used in 

conjunction with the eigenface method. The hope is that the addition of color will 

improve the recognition rate. 

There seems to be some evidence that color is useful for object recognition. Wurm 

et al. [27] have shown that color improves object recognition by measuring the recog- 

nition response rate. Wurm et al. were not able to show that "color is a distinctive 

feature that can be traded off with shape or texture features". They concluded that 

color and shape act additively, not interactively. 

4.1 Data Set 

The data set used for the experiments presented in this chapter consisted of 135 

images, nine images each of fifteen people. All images were taken with a Sony 3-CCD 

DXC-930 color camera, attached to a Parallax 24-bit frame grabber card installed 

on a SUN SparcLX workstation. Figure 4.1 shows the fifteen people used to build 

the data set. For each person, pictures were taken using all combinations of three 

illumination directions (from the left, from the right and from the left and the right) 

and three colors of illumination (white, blue and orange). The light sources for all 

images were halogen lamps. The blue and orange illuminations were generated by 
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Figure 4.1: People used to build Data Set 

placing a colored filter in front of the camera lens. The spectral characteristics of the 

colored filters can found in Barnard's thesis [I]. Figure 4.2 shows all nine images for 

one person in the data set. The directional changes in the illumination are not readily 

apparent in the images because the lamps were shone from beside the person onto the 

opposing wall. The light reflected from the wall effectively produced a diffuse light 

source, limiting the amount of shading shown on each face. Shining the lamps directly 

at a person's face blinded them, producing many interesting facial contortions but few 

reproducible pictures. 

When the eigenface method was used for recognition, each training set consisted 

of fifteen images - one from each person in the data set. All fifteen images in the 

training set were taken under the same lighting conditions. Figure 4.1 shows the 

training set used to test the recognition rates for grey-scale images. 
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Figure 4.2: Illuminations used for testing 



Color Angle Invariants 

Recent work done by Finlayson et al. [6] has shown that color angle invariants are 

sufficient to recognize classes of objects for which there are distinct color characteris- 

tics. 

Consider 11, a 3xN color image. If the response of our sensors is sufficiently sharp 

where I2 is the set of sensor responses under a different illumination than Il and D 

is a linear diagonal transform [3]. We can think of the change in illumination as a 

change in the length of the red, green and blue vectors. If this is so, then the angles 

between the red, green and blue vectors must be invariant to changes in illumination. 

Normalizing each of these vectors reduces D to the identity matrix. 

The range of color seen in faces is limited, skin tones range from white to brown. 

Eye color, while more distinctive, comprises a very small part of the face image. 

Consequently color angle invariants would probably not be sufficient for identifica- 

tion but could allow us to segment our face database into smaller subclasses. Such 

segmentation could limit the search and reduce the time needed for identification. 

Experimental Results 

To test whether color angle invariants could be used to segment a face database, I tried 

to recognize two people, one with light pink skin and blue eyes, the other with brown 

eyes and skin. An area around the right eye was segmented out from the database 

images, the hope being that eye color would provide additional color cues. Color angle 

invariants were able to distinguish between these two people 75% of the time for the 

images shown in Figure 4.3. I was hoping for better results than this since the two 

people whose images were chosen have such a large difference in coloring. Based on 

this results, it appears unlikely that color is a sufficient basis on which to segment a 

database of face images. 
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Figure 4.3: Eyes used to test Color Angle Invariance 

Color Represent at ions 

Whenever images are compared, either directly or by some other methodology such 

as eigenfaces, it is important that all images appear to taken under the same illu- 

mination. Sirovich and Kirby [20] account for illumination intensity differences in 

grey-scale images by adjusting the pixel values relative to a set patch from the cheek. 

Normalizing a grey-scale image to length one will have the same effect. It is important 

to note that this normalization accounts for only a global intensity variation, it does 

not deal with changes in illumination color or direction. With color images both the 

illumination color and intensity must be accounted for. Three color respresentations 

that might account for illumination color changes are presented in this section. 

4.3.1 Color Band Normalization 

Normalizing two color images of the same object taken under different colors of illu- 

mination will not produce images which are approximately the same, the differences 

in the color bands will be preserved. As outlined in section 4.2.1, when the camera 

sensors are sufficiently sharp, a change in illumination color can be thought of as a 

change in the length of the red, green and blue vectors [3]. Therefore, normalizing 

each band should give us images for which the differences in color and intensity are 
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corrected. Changes in illumination direction will not be corrected for by this method 

and will be dealt with in chapters 5 and 6. 

Using band normalized images for eigenface recognition should produce results at  

least as good as the results achieved with grey-scale images-better if color helps the 

recognition process. 

4.3.2 Chromaticity 

An image is formed by the interaction between the sensor, incident light and re- 

flectance of the surface. If the surface is lambertian then this relationship for the ith 

sensor is described by 

where S is the spectral power density function, R the spectral reflectance function 

and v the response function of the sensor. S, R and v are functions of the wavelength 

A. An eye or camera has three sensors, usually described as red, green and blue. 

The International Commission on Illumination (Commission International de 

llEclairage, or CIE) describes color using chromaticity coordinates x, y and z [2], 

where x, y and z are defined as 

Here 

with 
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Figure 4.4: Face as seen in chromaticity space 

2 ,  y and 2 are the sensor response functions for the 2" 1931 CIE standard observer. 

Using chromaticity should give us a "flat" color description of the face. As can be 

seen in Figure 4.4 a few values describe much of the facial area. The original image 

used to build Figure 4.4 can be found in Figure 4.2. Chromaticity has gained us a 

more stable color description at the expense of the shading (shape) information. 

For the actual testing a pseudo-chromaticity space was used with x E r / ( r  + g + b) 

and y E g/( r  + g + b). All r ,  g and b values have been corrected for camera offset. In 

an ideal world, an image taken with the lens cap on will consist solely of zero value 

pixels. In reality, the pixel values range from zero to approximately twenty-two, with 

an average value of about thirteen. This noise is commonly referred to as the camera 

offset and has been corrected for by subtracting the average in each band from the 

color image and then setting all negative-valued pixels to zero. 

4.3.3 Color Ratios 

Finlayson and Funt [8] have shown that the histogramming of color ratios works well 

for identifying objects under uncontrolled illumination. Color ratios are the ratios 

of neighboring same band pixels. The ratio of two values x and y, can be found by 
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Figure 4.5: Face as seen in ratio space 

solving either x/  y , or exp(log(x) - log(y )). I convolved the log of the color image with 

a gradient mask to build the ratio images. As can be seen in Figure 4.5 the ratios are 

the edges of color change. The original image used to build Figure 4.5 can be found 

in Figure 4.2. 

4.4 Experimental Results for Grey-scale, Chro- 

maticity, Ratio and Band Normalized Images 

Image recognition experiments were run for grey-scale, chromaticity, ratio and band 

normalized versions of the data set using the eigenface method and a picture-to- 

picture comparison. A picture-to-picture comparison identifies a face r by finding 

the image of the known person (from the database) which minimizes the Euclidean 

distance between it and F. The eigenface method also "recognizes" by looking for 

the minimum Euclidean distance. In all experiments, the training set or database 

of known people was formed by taking one image of each person from the data set 

described earlier. All images in the training setldatabase were taken under the same 

illumination. Table 4.1 gives the recognition rates for each of the methods. When 
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Table 4.1: Recognition Rates (in %) 

I Picture to Picture I Eiaenface 
Grey-scale 
Normalized rgb 
Ratios 
Chromaticitv 

using the eigenface method the number of eigenvectors used was adjusted so that 

approximately 80% of the available information was encoded in each case. For the 

grey-scale images seven eigenvectors were used; for chromaticities, nine; for color 

ratios, eleven; and for color band normalization, eight. 

The color ratio images gave the worst results; people were recognized only 43% 

of the time. This is not all that surprising since the ratio images are essentially line 

images and even a small variation in head position could produce a mismatch of lines 

between two images of the same person. Chromaticities did a little better with a 

recognition rate of 53% using eigenfaces and 68% when compared picture-to-picture. 

These recognition rates for chromaticities are still very poor when compared to those 

obtained using grey-scale or band normalized color images. 

Both the grey-scale and band normalized color images performed very well for both 

the picture-to-picture comparison and eigenfaces. Looking only at  recognition rates 

does not give us a complete sense as to how well the grey-scale or band normalized 

color would scale up for use on a larger database. These numbers in themselves mean 

little, what is important is the relative distance between an image we wish to identify 

and the correct database image versus the distance between the image to be identified 

and all of the wrong database images. One means of representing this information is 

as ratios. 

An example of how ratios are found is shown in Figure 4.6. It shows the relative 

placement of an image that we wish to identify, r, and the database images (for 

a small database of size four). I' is recognized as TSl because it is closest to r, 
unfortunately this is wrong. TS2 is the correct image. For image r the worst case 
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Figure 4.6: Relative position of image I? to a database of known images; worst case 
ratio = d l / d 2  

ratio is d l / d 2 .  The median of the wrong answer ratios is d3 /d2 .  In order to assess 

whether one method was superior to another, the mean and standard deviation of the 

worst case ratios (closest wrong answer/correct answer) was calculated. The mean 

and standard deviation of the median of all wrong answer ratios was also calculated. 

Figure 4.7 shows the mean distance ratios for the worst case and median case 

results. As you can see, the worst case distance ratios are similar for the picture- 

to-picture comparison of both the grey-scale and color band normalized images. The 

eigenface grey-scale median distance ratio is better than that for the grey-scale picture- 

to-picture comparison or either of the normalized color band methods. The worst 

case distribution for grey-scale images using the eigenface method has the best result, 

having both the largest mean and highest value at one standard deviation below the 

mean. The large standard deviation for the grey-scale eigenface ratios is caused by 

skew. This can be seen by comparing the mean (10.14) and the median (8.66) of the 

median sample. The mean and standard deviation for the distance ratios of the wrong 

answers for all four methods can be found in Table 4.2. 
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Figure 4.7: Mean Distance Ratios for Worst and Median Case Results 

Table 4.2: Mean and Standard Deviation for Distance Ratios 
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Discussion 

The hope was that the addition of color to the eigenface method would clearly improve 

recognition for images taken under similar directions of illumination. Unfortunately, 

this was not so. Grey-scale and color band normalized images gave comparable recog- 

nition rates but the distance ratio distribution for the grey-scale eigenface met hod was 

the best, it had the largest mean for both the worst case and median of the wrong 

answers. Under controlled conditions Pentland, Moghaddam and Starner [15] have 

achieved a recognition acuracy of 95% for a database of approximately 3,000 people. 

(Their images were taken with controlled illumination, scale and position-the eyes 

were accurately aligned in the picture taking process.) From this we know that the 

grey-scale eigenface method will scale up for use with a large database. Color band 

normalized recognition should be useable with a larger database but there is no evi- 

dence which suggests that it would do a better job than that already being done with 

grey-scale images. 



Chapter 5 

Colour and Changing Illurninat ion 

The color representations in chapter 4 were applied to images in which the direction 

of illumination was approximately constant (the changes in direction were small and 

barely discernable to the eye). Under these illumination conditions the use of color 

did not improve face recognition rates. In this chapter we investigate the use of color 

for images of faces illuminated from different directions. 

The eigenface method essentially compares two images-the distance between two 

images will be reflected in the distance between their projections onto face space 

(as outlined in chapter 3). Therefore, when there is a gross change in the lighting 

conditions from one image to another, the distance between the two images and 

between their projections onto face space should increase. If this change is large 

enough it seems reasonable that, without correction for the differences in illumination 

direction, recognition rates would fall. 

Under the appropriate conditions, color information may be used to correct for 

differences in illumination. Assume for a moment that we have two images of the 

same single color matte object, Il and 12, where the only difference between the two 

images is that they were taken under different illuminations, with no image differences 

due to changes in scale, translation or rotation. Then, according to Petrov [18], if Il 

is an image of sufficient rank (where the image color rank is the rank of the matrix 

M shown in Equation 2.2) it can be transformed by a 3x3 matrix to look as if it were 
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taken under the same illumination as I2.l Petrovs' work will be explained in the next 

section. 

5.1 Properties of color images of surfaces under 

multiple illuminants 

The following description of the relationship between sensor responses and surface 

normals is a paraphrasing of the basic definitions and relations used by Petrov and 

Kontsevich [la]. Let us first look at a simplified case. Suppose that we have a 

small lambertian patch illuminated by a single light source such as the one shown in 

Figure 4.1. The orientation of the surface can be described by its unit normal, n', 

and the reflectance by the spectral reflectance function, R(X). The incident light is 

described by the unit direction vector, q', and the spectral power density function, 

S(A). Now suppose that this patch is "seen" by a trichromatic sensor such as an eye 

or a colour camera, with response sensitivities vi ( A ) ,  where i = 1,2,3. The response 

of the ith sensor to the view of the patch is given by 

This equation can be rewritten as 

where each element of M, mij, is 

These equations are valid for all surface orientations as long as the single color matte 

surface is externally lit. The need for external lighting can be explicitly expressed [26] 

'This work was drawn to the author's attention by Graham Finlayson. 
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Figure 5.1: Illumination 

Another way of saying this is that the surface normals and the sensor responses 

are linked by a linear transformation. 

What if we have more than one lamp illuminating the scene? Then, assuming that 

the sensor responses are linear and not saturated, the response to the more complex 

illumination is equal to the sum of the responses to each of the individual light sources. 

In this case, M will be equal to the sum of the M's for each of the light sources. 

There is one more fact to keep in mind; the distribution of light corresponding to 

any set of light sources can be emulated by three chromatic light sources [18]. Let 

L;, i = 1,2,3, be such a set of chromatic light sources. Then any other light source is 

just a linear transform of L. 

So far we know that, under certain conditions,the surface normals and the sensor 

responses are linked by a linear mapping, and that this mapping is dependent on 

the illumination. It seems reasonable that if a linear mapping exists between two 

illuminations, then there also exists a linear mapping between two images of the same 

unicolour object, assuming that the only thing to change is the illumination. 

Is there any work which supports this conjecture? Petrov [16] uses a image taken 

under trichromatic lights to derive the shape of the object from the colour picture. 

The basis of this work is the equation 
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Here x and y are the coordinates in the image P; n' is the normal of the surface as 

a function of x and y; Ho and hd are the characteristics of the illumination with Ho 

attributable to the three chromatic light sources and hd to any diffuse lighting; C is 

the colour matrix which Petrov defines as the mapping which occurs when a white 

surface is substituted in the image for the corresponding coloured one. He uses this 

equation as the basis of the work in which he solves for n'. 

Assuming we have two images of the same single colour object taken under different 

nondiffuse illuminations then n', C and hd (if it exists) are all constants. As long as 

one of the two images was taken under three chromatic light sources, say Ho, then we 

know that there must exist a linear mapping from Ho to HI, the other illumination. 

Therefore, there should be linear mapping from Po (x, y ) (taken under Ho) and PI (x, y ) 

(taken under HI). In the work which follows this linear mapping will be referred to 

as M. 

Preliminary results when adjusting for chang- 

ing illumination 

If the conjecture outlined in the previous section holds, we should be able to transform 

an image (S) of a single-color object taken under one illumination to its image taken 

under another illumination (D), by multiplying S by the 3x3 matrix M. This assumes 

that S was taken under three chromatic light sources. (An image which is taken under 

three chromatic light sources is defined as having a colour rank of three [18]. In such 

an image the response in each colour band is independent of the others.) 

5.2.1 Picturesofan Egg 

To test the method on a single-color object two pictures, both rank-3, were taken of 

an egg (Canada Grade A white). Figure 4.2 shows eggl, the egg illuminated by a 

faint red light, a faint white light and daylight and egg2, the egg illuminated by red 

light, yellow light and daylight. M was estimated in two ways. 
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Figure 5.2: Egg; eggl and egg2 are images of the same egg taken under different 
illuminations; 1 is the transformed eggl with M calculated using 3 points; 2 has M 
calculated using a least squares fit; in 3 and 4 eggl was smoothed before transforma- 
t ion 
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Initially M was determined by taking the pixel values from three arbitrary points 

well separated on the egg surface from both of the egg images. Three linear vector 

equations were solved to find M. For example, the equation needed to find the vector 

[ml, m2, m3IT which will transform a pixel in eggl to the value of the red element of 

a pixel in egg2 is 

where [ri, gi, bi], i = 1,2 ,3  is the value of the ith pixel chosen from eggl and [ri , rb, r;lT 

are the red values of the three pixels chosen from egg2. 

As you can see from Figure 4.2 picture 1, the transformed (SM) egg image appears 

to be very speckled. If you look at the pixel values of eggl and egg2, you will see that 

the inherent bumpiness of the egg shell causes the pixel values to fluctuate slightly - 

the image of the surface is not smooth. Using three arbitrary points on this bumpy 

surface makes M unstable and it is this instability which causes the transformed egg 

to appear speckled. Small differences from one pixel to the next are greatly magnified 

when M is applied. Smoothing the original images improved the appearance of the 

transformed images a little but not much. 

To overcome the problem of errors in M due to the noisy data, a least squares 

method was developed which uses all the pixels over a relatively large region of the 

image. Figure 4.2 pictures 2, 3 and 4 show eggl transformed by an M which has been 

calculated using a least squares fit of a 65x65 pixel patch of the egg shell from eggl and 

egg2. So instead of a direct solution to a system of three equations in three variables, 

the squared error is minimized for the highly overdetermined system of 652 equations. 

Figure 4.2 picture 2 shows the transformation using the original images, picture 3 

shows the transformation after the original images have been smoothed using a 2x2 

averaging mask and picture 4 shows the transformation after the original images have 

been smoothed using a median filter. 

While looking at  the images gives an intuitive sense for how well the transformation 

works, a more objective measure is also needed. The sum of squares of the difference 

between a pair of images is used as the distance measure. Table 4.1 gives the results 
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Table 5.1: Distance between images when M is calculated from 3 arbitrary points 

Table 5.2: Distance between images when M is calculated using a least squares fit 

(egg1 - egg2)2 
(egg1 - e9glT)2 
h.@ - e.4.dT )2  

when M is calculated using three arbitrary points and Table 4.2 the results when M 

is calculated using a least squares fit. The transformed image of eggl will be shown 

as egglT in the tables. 

When using three arbitrary points, only the images smoothed by a median filter 

produced an M which transformed eggl to a small distance away from egg2. This 

transformed image is still too speckled to give a visually pleasing image to the eye. 

When the least squares fit was used to calculate M the transformed eggl was much 

closer to egg2 than to the original image of eggl. 

unsmoothed 
0.078 
0.176 
0.096 

(egg1 - egg2)2 
(egg1 - W I T ) 2  
(egg2 - egglT)2 

5.2.2 Pictures of an Ellipsoid 

Speculation that the roughness of the egg shell was the cause of the instability in M led 

to taking the picture of a white painted wood ellipsoid. Figure 4.3 shows from left to 

right; S(ource), the ellipsoid illuminated by yellow, green and daylight; D(estination), 

the ellipsoid illuminated by red, green and daylight; and ST(ource transformed), S 

after the transform matrix M has been applied. 

M was found using a least squares fit between the pixel values of a 89x159 rectangle 

clipped from the images of S and D. The results of transforming S can be seen on 

smoothed with average 
0.075 
0.168 
0.083 

unsmoot hed 
0.078 
0.111 
0.053 

smoothed with median 
0.101 
0.104 
0.026 

smoothed with average 
0.075 
0.108 
0.046 

smoothed with median 
0.101 
0.080 
0.027 
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Figure 5.3: Ellipsoid: S(ource) , D (Destination), ST (ourse transformed) 

Table 5.3: Distance between ellipsoid images 

I I offset intact I offset removed 

the righthand side of Figure 4.3. Visually, the match between D and sT is very good. 

Removing the image offset from S and D before calculating M did not appreciably 

change ST to the eye. 

Once again the more objective measure of the match was found by taking the sum 

of squares of the difference between a pair of normalized images. The distance results 

between the pairs of images is listed in Table 4.3 and D and ST are clearly much closer 

to each other than S and D or S and ST. This distance measure clearly shows that 

the matrix M does transform the image of the ellipsoid seen under one illumination 

(S) to the image that is seen under another illumination (D). 



Chapter 6 

Illumination correct ion and faces 

A technique to correct for illumination differences between two images of the same 

single-color object was presented in chapter 5. For most people, the majority of the 

face image is a picture of essentially a single-color object-the skin. Hopefully, we 

can use the illumination correction technique to correct the database images so that 

we are doing a comparison of images that appear to be taken under approximately 

the same illumination. 

6.1 Implementation 

6.1.1 Procedure 

Collect a set of N images for known individuals (the database) 

For each new face to be identified 

- Calculate Mi, for i = l...N, the transform matrix for the ith known indi- 

vidual 

- Find the distance between the new face and each of the transformed known 

individuals 
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6.1.2 Finding M 

Doing a least squares fit between images of arbitrary people can be difficult. Ideally, 

we want the fit to be done between a patch of a single-color object illuminated by 

all three chromatic lights in one image and another equal-sized patch taken under a 

different illumination in the other. For most people, the skin comprises the greatest 

area of a single color. Even finding an equal sized patch of skin for an arbitrary person 

can be problematic-how do you guarantee that you have skin? For face images I 

hand-segmented out equal sized patches of skin. In general, I found that the forehead 

gave the best patch for men while the patch needed to come from the chin or cheek 

for women. 

Is there a way to calculate a usable M using the entire image? Doing so would 

avoid any segmentation problems. Let S be a rank-3 image of an object and D be 

another image of the same object taken under different illumination conditions than 

S. The only difference in images S and D is the change induced by the change in 

the illumination. We want to calculate M such that the Euclidean distance between 

S M ,  the transformed S image, and D is minimized. Using the minimization of the 

squared error, ISM - Dl2, 

M = Q-IP, 

where Q = STS and P = STD. The derivation of this formula is given in Appendix 

A. 

Both of the above approaches were used to find M in the work that follows. 

6.1.3 Using Eigenfaces to Reduce Computational Costs 

The Eigenface Method presented in chapter 3 can be used to reduce the computational 

cost of calculating S M .  It is based on the assumption that the approximation 

where I is an image of a face, E; the eigenfaces, n the number of eigenfaces and c; 

the weight calculated by projecting I onto E;, is sufficient for recognition. 
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Finding the distance between transformed images means solving ISM - D 1 2 ,  where 

S is an image from the database, M is the transform matrix and D is the new 

face which we wish to identify. If we use the eigenface approximation as given in 

equation 6.1 for S 

where (EiQ-l) can be precalculated directly from the eigenfaces and (EiD) needs to 

calculated only once for each new face. If the approximation in Equation 6.1 is suf- 

ficient to replace the database images, we can significantly reduce the computational 

costs and time involved in finding the distance between an incoming image and each 

of the known faces which make up our database. 

6.1.4 Checking for translation problems 

Anytime you do a picture-to-picture comparison, translation of the object from one 

image of the object to another will cause problems. Principal component analysis is 

also not invariant to translation. To avoid problems due to object translation between 

images, the correlation between the images of the same subject was maximized. The 

correlation between two images, f (x, y )  and g(x, y) is defined [9] to be (discrete case) 

for x = 0,1,2, ..., M - 1 and y = 0,1,2, ..., N - 1. The correlation can be found in 

where * denotes the complex conjugate for both equations 6.2 and 6.3. The correlation 

check was implemented using the Fourier routines in hips[l3] and applied prior to 

recognit ion. 
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Figure 6.1: Rank 3 Images of Composer Busts 

Data Set 

Two sets of data were used to test the conjecture that an image of an object taken 

under three chromatic light sources can be linearly transformed to an image of the 

object under some other illumination. The first data set was a set of eight busts of 

famous composers, which provided true single colored objects, the second a set of 

fifteen students and staff in the department. 100 watt incandescent bulbs were used 

to illuminate the subjects. All pictures were taken with a Sony 3-CCD DXC-930 color 

camera and a Parallax 24-bit frame grabber card attached to a Sun Sparc LX. 

The database for the busts consisted of eight rank-3 images of composers. The 

data set which was used to test for recognition consisted of twenty-four pictures, three 

of each composer. Figure 6.1 shows the rank-3 images of the busts of the composers. 

These rank-3 images were used as the database of composers, that is, the images 

against which all comparisons were made. Each of the busts in the database was 

illuminated by three 100 watt bulbs; green from the left, blue from the right and red 

from below and in front. 
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Figure 6.2: Busts: additional illumination 

Three additional pictures were also taken of each bust; illuminated from the left 

with white light, illuminated from the right with white light, and illuminated by the 

fluorescent room light. The room lighting has a decidedly reddish tinge. An example 

of these three illuminations can be seen in Figure 6.2. 

The database of faces consisted of fifteen rank-3 images. The data set used to test 

recognition consisted of forty-five pictures, three of each person. Figure 6.3 shows 

the rank-3 images of the faces which were used as the database or training set of 

faces. Once again, each of the faces appears to be illuminated by red, green and 

blue light. I was not able to take rank-3 pictures of everyone using the three colored 

lights. Illuminating a pale face with the three colors gave good results. People with a 

darker skin color did not produce a rank-3 image when illuminated by the bulbs so, 

instead I took three images under white lights (from the three different directions) and 

combined the red bands from each of these three images to produce the rank-3 training 

set image (ImageTank3 = [&mage1&mage&mage3]). Figure 6.4 shows an example of the 

three images which were combined to produce one rank-3 image. These three images 

were also used as a data set to test for recognition. 

I found that it was very difficult to build a good database of face images of real 

people. People move constantly. It was the rare soul who could sit still for more than 

a couple of minutes. One of the reasons that taking each picture was so slow was 

that in order to save each picture the image had to be sent over the network. Taking 

pictures on video would have greatly simplified this task; however, the necessary tools 

were not available. 
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Figure 6.3: Rank 3 Images of Faces 
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Figure 6.4: Faces: additional illuminations 

Comparison of Methods 

Each experiment consisted of comparing the data images to the database images. 

Comparisons were made for both grey-scale and color images. Grey-scale images were 

compared picture-to-picture and using the eigenface method of recognition. Color 

images were compared picture-to-picture between the transformed training set image 

and the data image and picture-to-picture between the transformed training set image 

approximated using eigenfaces and the data image. A4 was calculated for both the 

busts and the faces as described in Appendix A. For the face database, M was also 

calculated with a least squares fit between patches of skin. 

While the recognition rates give us some idea of how well the technique is working, 

the most interesting thing is not the recognition rates but is rather the clustering 

characteristics of the distance between the image we wish to identify and the images 

in the database. Looking only at recognition rates for such a small sample size tells 

us very little about how the method would scale up for a larger &abase or da.ta. set. 

So, what characteristics do we want our comparison to have? 

Ideally, we would like the image we want to identify to be much closer to the 

correct matching image than to any of the other images in the database. The distance 

values do not in themselves mean much. We are really interested in the ratio of 

the distance between the database images and the image to be identified, and the 

distance between the correct database image and the image to be identified. The 

correct database image will always have a ratio of 1. Figure 6.5 shows a typical 
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Grey-scale: 
eigenface method 

Grey-scale: 
plcture to picture 

Color: ei enfaces 
for dat%ase 

Color: 
plcture to picture 

Correct Database Image 
Range of Incorrect Images 

Distance Ratio (distance / correct distance) 

Figure 6.5: Distance Ratios for Brahms 

case, the distance ratios between the image of Brahms illuminated from the left and 

the database images. As you can clearly see the best performance in this case was 

achieved when the transformed color database image was compared directly to the 

incoming image of Brahms. All incorrect images from the database were far away 

from the correct image. Using eigenfaces to approximate the transformed color image 

SM also gave a correct result, however, the resulting cluster of ratios are quite close 

to the correct image ratio of one. The grey-scale image of Brahms illuminated from 

the left was not recognized correctly by either the picture-to-picture comparison or 

the eigenface method. 

While this example does not show the distribution of values for all of the images we 

used to test for recognition, it does give an idea of the way distance values clustered in 

the different experiments. To get an understanding of the expected range of incorrect 

distance ratios I looked at two things, the distribution of the worst case wrong values 

(ie. the wrong answer with the lowest ratio) and the distribution of the median case of 

the wrong answers. These distributions are characterized by their mean and standard 

deviation. 
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6.4 Experimental Results 

Busts 

Recognition rates for the composer busts are given in Table 6.1. The transformed 

Table 6.1: Recognition Rates (in %) for Busts 

Method Recognition Rate 
Grey-scale Picture to Picture 

Eigenfaces 

Ei~enfaces for SM 

color images gave the best results-all twenty-four data images were recognized. Using 

eigenfaces to approximate the transformed color image gave as good a recognition rate 

(79%) as the grey-scale picture-to-picture comparison. Grey-scale eigenfaces did not 

do as well as any of the other methods (67%). When using eigenfaces to recognize 

either grey-scale or color images, the recognition rates increased as the number of 

eigenfaces used increased. In Table 6.1 the reported recognitions are for five of the 

possible eight eigenfaces. These five eigenfaces encoded approximately 84% of the 

available information. I chose to use five because the eigenface method as reported in 

chapter 3 used seven of a possible fifteen, and these seven also encoded just over 80% 

of the available information. 

Figure 6.6 shows the mean and standard deviation for the worst case ratios and 

median case ratios from each experiment. The means and standard deviations for 

these distance ratios can be found in Table 6.2. 

For the worst case, the picture-to-picture comparison using transformed color im- 

ages was the only method which had a clear separation between the correct and 

incorrect images from the database. Using eigenfaces to approximate the transformed 

color images or doing a grey-scale picture-to-picture comparison produced values less 

than one that were within one standard deviation of the mean. For grey-scale images 

using the eigenface method, the worst case standard deviation predicts that images 
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Figure 6.6: Mean Distance Ratios of Busts for Worst and Median Results 

may be recognized incorrectly. 

When we look at the median of the incorrect answers we see that in all cases 

there was an improvement over the worse case. Only eigenfaces for grey-scale images 

had values which fell to one within one standard deviation of the mean. Using the 

eigenface method to build the color database images or doing a picture-to-picture 

comparison with grey-scale images produced only a small gap between the correct 

answer and one standard deviation from the mean. Once again the color picture-to- 

picture comparison produced the best results, with a large gap between the correct 

Table 6.2: Mean and Standard Deviation for Distance Ratios of Busts 

Grey-scale 

Transformed Color 

Method 

Picture to Picture 
Eigenfaces 

Picture to Picture 
EigenfacesforSM 

Worst Case 
Mean 
1.16 
1.55 
1.95 
1.06 

Median 
SD 

0.19 
0.72 
0.39 
0.09 

Mean 
1.28 
2.05 
2.29 
1.18 

SD 
0.25 
1.05 
0.49 
0.10 
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answer at one and the values within one standard deviation of the mean. 

Faces 

The first question which needs to be addressed for faces is whether the illumination 

correction technique presented in chapter 5 will suffice for faces, because faces are 

not a single color. By visual assessment of the images shown in Figure 6.7, the 

transformation appears to work quite well when applied to faces. Regions where the 

color differs from the predominant color, such as the lip, eye and shirt colors are 

incorrect but overall the colors are quite close. 

database data 

Figure 6.7: DataBase, Data and Transformed Images 

For the picture-to-picture comparison of color images, M was calculated either 

from a patch of skin or from the entire image, as described in 6.1.2. Results will be 

presented for both of these calculations. Table 6.3 gives the recognition rates for each 

of the experimental methods and, once again, the picture-to-picture comparison of 

the transformed color images gave a 100% recognition rate. The grey-scale picture- 

to-picture comparison also gave very good results. Use of eigenfaces as a recognition 

method with grey-scale images or to build the transformed database color image 

degraded the rate of recognition to only 73%. In Table 6.3 seven of the possible fifteen 

eigenfaces were used to encode approximately 80% of the available information. 
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Figure 6.8: Mean Distance Ratios of Faces for Worst and Median Results 

The distance ratios for faces were much more spread out than for the busts. Fig- 

ure 6.8 shows the mean and standard deviation of the distance ratios for the worst case 

wrong values and the median case wrong values. The mean and standard deviation 

are also shown in Table 6.4. 

For the worst case, the picture-to-picture comparison of the transformed color 

images gave a clear separation between the correct and incorrect images from the 

database. This was true for both methods of calculating M. Using eigenfaces to ap- 

proximate the transformed color image produced a tight cluster of worst case distance 

Table 6.3: Recognition Rates (in %) for Faces 

Recognition Rates 
93 
73 
100 
100 
73 

Grey-scale 

Transformed Color 
Picture to Picture 

Met hod 
Picture to Picture 

Eigenfaces 
M from skin patch 

M from image 
Eigenfaces for SM 
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ratios which overlapped the the critical ratio of one. This indicates that in general 

there was very little difference in the distance ratios for the correct database image 

and the incorrect database images. Grey-scale images recognized by the eigenface 

method and by a picture-to-picture comparison both had values within one standard 

deviation of the mean which were less than one. 

The median of the incorrect answers for all of the color and grey-scale methods 

produced the expected ratio distributions - results greater than those of the worst 

case. The distributions for the grey-scale picture-to-picture comparisons are badly 

skewed. For the worst case the skew is caused by values much lower than the mean 

and for the median case the skew is caused by values greater than the mean. In general, 

all large standard deviations shown in Figure 6.8 and Figure 6.6 occur because of skew. 

Table 6.4: Mean and Standard Deviation for Distance Ratios of Faces 

Method 

Grey-scale 

Transformed Color 
Picture to Picture 

Worst Case 

Picture to Picture 
Eigenfaces 

M from skin 
M from image 

EigenfacesforSM 

Mean 
1.50 
1.90 
2.52 
1.85 
1.06 

Median 
SD 

0.60 
1.30 
0.75 
0.32 
0.08 

Mean 

8.0 
3.52 
3.10 
2.26 
1.22 

SD 
3.68 
2.14 
1.17 
0.43 
0.10 



Chapter 7 

Discussion 

This thesis examines one aspect of the problems encountered when machines attempt 

to recognize faces. Two general approaches are used when recognizing faces, using 

the entire image or extracting features from the image. This work has been limited 

to comparisons which are based on the entire image. The starting point was an 

examination of the eigenface method developed by Turk and Pentland [24]. Next, a 

number of methods were used to see if taking color information into account improves 

recognition. Finally, a method was developed which uses color to correct for varying 

directional illumination so that faces under such illuminations can be identified. 

Picture-to-picture comparison and eigenface methods rely on the inherent similar- 

ity which exists between two images of the same person. This, of course, assumes that 

the pictures are taken such that the face size, orientation and camera angle are the 

same. Relying on the similarities between two pictures has its drawbacks. A different 

hair style, a beard versus a moustache, in fact any large change from one image to 

another can cause methods which rely on whole image comparisons to fail. 

The eigenface method worked very well when applied to grey-scale images with a 

constrained head size and orientation. Similar results were achieved to those reported 

by Turk and Pentland [24] using their original data. Changes in head size or head 

orientation caused the method to fail. Changes in illumination did not degrade the 

results. However, the changes in illumination were small - there was no heavy shad- 

owing of the face. So, the eigenface method worked well with constrained head size, 
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orientation and with limited illumination changes. One of the most interesting results 

is that recognition rates increase as the image head size decreases. As head size de- 

creases small differences between face images become less apparent. Changes in facial 

expression have less of an impact on the similarity measure. Background information, 

if it remains constant, also aids recognition. It appears that the cluttered background 

of the original data contributed to the exceptional recognition rates reported by Turk 

and Pentland since masking or cropping their images reduced the recognition rates. 

In the real world you cannot depend on background information staying the same, 

even if the background is constrained to one color (ie. black or white) the clothes one 

wears change from day to day. 

The use of color as an additional characteristic did not improve recognition rates 

over those obtained with the eigenface method for grey-scale images. It was also 

shown that faces are not colorful enough to be identified using color or even to allow 

the segmentation of a face database by color. None of the three color representations 

presented improved recognitions rates over grey-scale images and only color band 

normalization performed as well as grey-scale images. Using color ratios and chro- 

maticities to represent the color images produced very poor recognition rates because 

of the lost shape information. The very good recognition rates obtained for both 

grey-scale and color band normalized images are due to the careful way in which the 

pictures were taken (to avoid changes in scale, rotation and translation). 

The changes in illumination in images from Turk and Pentland's data set were 

small enough that the entire face could be seen. A new data set was created to ad- 

dress illuminations for which part of the face is heavily shaded. The information is 

still there, the pixel values are just so low that the face shape is not visible to the eye. 

Applying a 3x3 transform matrix to a rank-3 image of a single-color object allows 

us to make a new image which mimics the effect that different illumination colors or 

direction would have produced. If our database of faces is composed of rank-3 images, 

we can transform our database images so that they appear to have been taken under 

the same illumination as the image that we wish to identify. Illumination-corrected 

database images, when compared picture-to-picture to an incoming image, always 

recognized the person correctly. This result in itself does not mean much because the 
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size of the database was quite small. More importantly, when the ratio of the distance 

to the wrong person to the distance to the right person is evaluated for images taken 

under a strongly directional illumination, only the illumination corrected database 

images give a clear separation between the right and wrong answers. Without illumi- 

nation correction grey-scale images compared picture-to-picture or via the eigenface 

method produce ratios whose range extends well into the region in which mistaken 

identities occur. These results indicate that color can be used to correct for severe 

illumination differences between two images of the same person. 

Recognition using whole images only works when all images of the same person 

are taken under the same conditions. Changing any one of the conditions will cause 

the method to fail. For example, two of the data sets which are used in this work are 

comprised of images of the same people taken approximately a month apart. While 

both sets of pictures were taken carefully, so that the size and placement of the head 

in the images would be the same, some differences still exist. In particular, both a 

haircut and forward rotation of the face caused recognition to fail when comparisons 

were made between the two data sets. This failure leads me to believe that practical 

application of any whole-image method would be limited. Segmentation could sepa- 

rate the hair from the face but the forward rotation of the face can not be dealt with 

easily. Either a 3-D description of the face or a set of features, perhaps eigenfeatures 

[15], which are invariant to the forward rotation must be extracted from the image. 

Actively moving a foveating camera so that images are only taken at points of 

interest may hold the key to reliable machine recognition. The human eye moves 

from point to point when recognizing an object. The amount of information received 

at each point is limited by the physical distribution of the receptors within the eye 

- at the centre the cones are packed very tightly giving a very high resolution while 

at the periphery the small number of cones provides a much coarser resolution. This 

act of foveation has been recreated in a camera by Sandini and Dario [19] and can be 

duplicated by converting a normal image to log-polar space. Representing images in 

log-polar space has the added advantage that changes in scale and rotation are seen 

as a translation. 

Fully duplicating the human recognition system is a very complex and difficult 
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problem. Solving domain specific applications such as mug-shot matching can be a 

first step toward a more general solution. An attractive feature of image processing 

methods is that they are fast and relatively well understood-they allow an analytic 

approach. Extending the solution to include other parameters such as changing illu- 

mination which may not occur in the limited domain of mug-shots, helps to extend 

this work. I have shown how color information can be exploited to overcome some 

of the problems inherent in recognizing a face seen under varying illumination colors 

and direction. 



Appendix A 

Deriving M 

Let S and D be color images of the same unicolor object for which all differences are 

due to a change in illumination. Furthermore, let S be a rank three color image. We 

want to find a transform matrix M ,  such that the euclidean distance between S and 

D?  
F ( M )  = ISM - Dl2 

is minimized. The distance is obviously minimized if both pictures appear to taken 

under the same illumination. For color images 

ISM - Dl2 =  trace(^^^^^^ - ~ M ~ S ~ D  + DTD). 

If Q = STS and P = STD, then 

and 

where i is the ith column vector (the comparison is only being done between bands 

of the same color). 

To find the M which minimizes ISM - Dl2, we take the derivative with respect to 

M .  Taking the derivative with respect to M means that we take the derivative with 

respect to each component of M and set it equal to 0. 
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Let 

and 

Q =  

Then, for i = 1, 

and 
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This can be rewritten as 

S 
-F(Ml)  = M:Q+QM, - 2 *  PI = 
SMl 

For M = [MI M2 M3],  

Therefore, 
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