
DESIGN AND IMPLENJUENTAT'ION

OF

AN EMBEDDED MULTIPROCESSOR SYSTEM, SAM-I1

by
Rodoslav Dervishev

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQllfREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in the School

of
Computing ~~lerrce

O Rodoslav S. Dervishev 1995
SIMON FRASER UNIVERSITY

October 1995

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Natrmi Library Biblictheque nationale 1*1 of Canada du Canada

Acquisitions and Direction des acquisitions et
Bibiqraphic Sewices Branch des sewices bibiiographiques

Your We Yolre referwe

Our We Mire relerence

The author has granted an
irrevocable non-exclusive f icence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in m y form or format, making
this thesis available to interested
persons.

L'auteur a accorde une licence
irr6vocable et non exclusive
perrnettant B la Bibliotheque
nationale du Canada de
reproduire, prgter, distribuer ou
vendre des copies de sa these
de quelque manibre et sous
quelque forme que ce soit pour
mettre des exernplaires de cette
these 5 la disposition des
personnes interessees.

The author retains ownership of L'auteur conserve la prcpri6t6 ddu
the copyright in hislher thesis. droit d'auteur qui protege sa
Neither the thesis nor substantial these. Ni la these ni des extraits
extracts from it may be printed or substantieis de celle-ci ne
otherwise reproduced without doivent 4tre irnprimes ou
hislher permission. autrement reproduits sans son -

autorisation.

ISBN 8-612-15858-1

Name:

Degree:

Title of Thesis:

Examining Committee:

Date Approved:

Rodoslav S. Dervishev

Master of Science

Design and Implementation of An Embedded
Multiprocessor System, SAM-I1

Dr. F. David Fracchia
Chair

Dr. Rick Hobson
Senior Supervisor

Dr. Sliivomir Pilarski
Supervisor

V - .
Dr. Glenn Chapman
Examiner

SIMON FRASER UNIVERSITY

PARTLAL COPYRIGHT LICENSE

1 hereby grant to Simon Fraser University the right to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Eraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed
withcut my written permission.

Tide of Thesis/Project/Extended Essay

Design and Implementation of An Embedded

Multi~rocessor Svstem, SAM-If.

Author:
(signature)

Rodoslav S. Dervishev

(name)

October 20, 1995

(date)

To my parents

iii

Acknowledgments

Acknowledgments

I thank Dr. Rick Hobson for his supportive supervision and help. Without his
ideas and comments, this thesis would not have been possible. I also thank Rick for
supporting me financially for the duration of the project, allowing me to concentrate
on the actual research.

I also thank Dr. Slawek Pilarski and Dr. Gleun Chapman for their careful
reading of my thesis and their comments that helped improve it

Thanks go to my friends and affiliates from the VLSI Lab Dr. Slawek Pilarski,
P.S. Wong, Don Smith, George Vodarek and Alicja Pierzynska for making the lab
such an exciting place to be at and to the people from Hardware Support Group
Peter Corps, Frank Manuel and Steve Nix for helping with equipment in times of
need.

Finally, I would like to thank Simon Fraser University and the School of
Computing Science for providing financial support for four semesters and thank all
faculty members, administrative personnel and students in the department, who
made my time at SFU such a rewarding and unforgettable experience.

Abstrnct

Abstract

The Structured Architecture Machine (SAM-11) board-level hardware and
system software design and implementation concepts are discussed. SAM-II is An
Embedded Multiprocessor Vector-Oriented Computer System based on a custom 32
bit RISC chip set designed at the VLSI and Computer Design Laboratory and
intended for low-cost array processing and computationally intensive applications.

The prototype is designed to accommodate up to five processing units
connected to a DS80C320 microcontroller based mother-board bus. FPGA based
logic is designed to implement bus control and processing units control interface
functions and also to realize selection, deselection and broadcasting interfacing
capabilities, allowing efficient access to the multiprocessor environment within a
single DS80C320 machine cycle. The use of the SJCP custom datafcontrol interface
incorporating interfacing and boundary-scan testing capabilities is also discussed in
the context of system hardware concepts, testing, and processing unit resource
access.

The custom use of The Small Computer System Interface (SCSI) Protocol for
efficient program, data, and control information transfer is discussed in detail.
Menu-driven front-end software provides multiprocessor system configuration,
system management, and program debugging capabilities. It also allows flexible
real-time access to and use of the system resources. Low-level system resource
management is realized by the mother-board monitor program built around a SCSl
interface driver communicating with the host in a way similar to the concepts of the
remote procedure call.

Discussion about the next generation system and alternative use and
applications of the system is also included.

Table of Contents

Table sf Contents

. .
Approval ... n ...
Dedication ... nl

Acknowledgments .. iv

Abstract . v

... Table of Contents vi
... List of Figures x List of Tables xi1

Chapter 1: Introduction 1
.. 1.1.Embedded Systems 1

.. 1.1 . 1. Architectural Concepts 1
................................. 1 . 1 . 2. Embedded Systems Interfacing 2

.............. 1.1 .3 . Embedded System Debugging and Trouble-Shooting 3
.................................... 1.1.4. SAM-I1 Embedded System 5

... 1 2 . Test Methods 6
.. 1.2.1. General Concepts 6

....................................... 1 2.2. Boundary-Scan Testing 8
................................... 1.2.3. Scan Paths Implementations 9

13 . Debugging Tools and Concepts PO
1.3.1. General Features ... 10
1 .3. 2. Debugger System Interfacing 12

........................ . 1.3.3. Simulators vs Target System Debugging 12
................................. 1 .3.4. Debugging ParaUe1 Programs 13

... 1.4. Objectives -14

Chapter 2: Hardware Design 1'7

Table of Contcrlrs

2.2. MicmmtroHer ... 20
2.2.1. System Design ... 20

* 1 . .. 2.2.5.1. Address Space ,
37 2.2. f . 2. SCSI protmol controller ,,

2.2.4.3. SJ Boards .. 23
2.2.1.4. System Clocks .. 25

2.2.2. Board Design .. 26

23. S J Processing Unit Board ... 27
2.3.1. SJ-board System Design 28

2.3. I . 1 . Microprocessor Module 28
r) 2.3.1.2. Memory Management 30
30 2.3.2. Board Design ...
32 2.4. Microcontroller S J Boards Interface

2.4.1. Physical Datapath ... 33
2.4.2. Microcontroller FPGA Design 34

34 2.4.2.1. LSB Address Latch
2.4.2.2. SCSl Protocol Chip Selection 34
2.4.2.3. READ. WRITE and ALE - 3 5

37 2.4.2.4. SJ Boards Selection
37 2.4.2.5. SAM 11 Bus ...

2.4.3. S J board FPGA Design 38
... 2.4.3.1. Decoding - 3 8

~ m n 00 2.4.3.~. Y-Register ... 30

.. 2.4.3.3. Counter 40
2.4.3.4. Bidirectional Addressmata Bus 40
2.4.3.5. Control Signals Generation, CTR-0 and CTR-1 40

Chapter 3: Software Design 42
3.1. Mic~ocontroller-Host Interface 42

..................................... 3.1.1. SCSI Interface Principles 42
................................ 3.1 . 1 . 1. SCSI Bus Configuration 43

3.1.1.2. SCSI Bus Phases and Phase Sequences 43
3.1.1.3. Command Description Block (CDB) 45

...................................... 3.1.2. SCf I Interface D,t;i.ders. 45
3.1.2.1. Host SCSI Driver 46

............................ 3.1.2.2. Microcontroller SCSI Driver 50
......... 3 . f .2.2. 1. Conven~ond Hard-Disk Drives Architecture 50

vii

Table of Contents

.............. 3.1.2.2.2. SAM I I SCSI-Bus Driver Architecture 52
.. 33 . System Software -55

3.2.1. Host Control Interface 56
............................. 3.2.2. Microcontroller Mcrnitor Program 59

.. 3.2.2.1. Architecture 59
............. 3.2.2.2. An Example of SAM I1 Command Execution - 6 2

............ 3.2.3. Softwse Development Tools and Program Debugging 64
........................... 3.2.3.1. SAM I1 Program Management 64

....................... . 3 .2.3. f 1. SAM II Executable Loading 65
.................... . 3.2.3.1 .2 SAM-I1 Executable Verification 65

..................... 3.2.3.1.3. SAM I1 Program Initialization 65
...................... 3 23.1.4. SAM I1 Program Termination 67

............................. 3.2.3.2. SAM I1 Debugger Concepts 68
........................... 3.2.3.2.1. Step-by-step Execution 70

............................ 3.2.3.2.2. Full-Speed Execution 71
..................... 3.2.3.2.3. Dual-Port Memory Monitoring 72

................................... 3.2.3.2.4. Breakpointing 72
......................... 3.2.3.2.5. Instruction Disassembling 73

.................. 3.2.3.2.6. Parallel Execution and Debugging 73
... 33 . Test Software 74

.................................. 3.3.1. Testing The Microcontroller 74
.............................. 3.3.1.1. Testing the Serial Interface 75
.............................. 3.3.1.2. Testing the SCSI Interface 75

3.3.1.3. Testing Microcontroller - SJ board Interface 77
... 3.3.2. Testing SJ boards 78

3.3.2.1. SAM-I1 Boundary Scan Testing Concept 78
3.3.2.2. Testing the Dual-Port Memory 79
3.3.2.3. Testing the Event Interface 80
3.3.2.4. Testing the SJCP External Program SRAM 80

................................ 3.3.2.5. Testing External DRAM 81
.. 3.4. Summary -82

Chapter 4: General Discussion 83
0- ... 4.1 ArchifRckrd ISSWS -03

.. 4.1 . 1 . Next Generation 83
4.1.2. System Interfacing .. 84

... 4.2. Sof twm Issues -85
............................... 4.2.1. Alternative System Applications 85

viii

Table of Con~em

4.2.2 Program and Data iManagement 86
.. 4.2.3. Parallel Debugging 88

................. 4.2.3. 1 . Deb~gger-Opemhg System Relationship 88
...................... 4.2.3.2. State- and Event-Driven Debuggers 89

............................ 4.2.3.3. SAM-II Debugging Concepts 30

.. 4 3 . Performance Issues 91
4.3.1.Technology .. 91
4.3.2. Component Integration 92

... 4.3.3. System interface -92
.. 4 3 . Conclusion 93

QS Appendix A: Microcontroller Printed Circuit Board , ,

Appendix B: S J Processing Unit Printed Circuit Board 97

Appendix C: Microcontroller FPGA Design Files 99
............................ Appendix C.1.1. PDS Design F i e r s i o n I 100

................ Appendix 42.1.2. PDS Design FieNersion I: Simulations 104
Appenrlix C.2.1. PDS Design F3eNersion XI 106
Appendix C.2.22: PDS Design Filflersion 11: Simulations 110

Appendix D: SAM Junior Processing Unit FPGA Design Files ... 11 2
............................ Appendix D.1.1. PDS Design Ffiflersion I 113

Appendix D.l.2. PDS Design FieNersion I: Simulations 117
.......................... Appendix D.2.1. PDS Design FileNersion II -119

Appendix D.2.2. PDS Design FileNersion II: Simulations 123

Appendix E: Memory Map of S JCP special function memory ... 125

Glossarye................m...e. 226

Bibliography .. 127

List of Figures

List of Figures

..................... Figure 1.1. Embedded System General Architecture - 1
...................... Figure 1.2. Host . Embedded System Configuration 2

............ Figure 1.3. Embedded System Trouble-Shooting Configuration 5
...................... Figure 1.4. SAM-II Embedded System Architecture 6
..................... Figure 1.5. Single-Chip Boundary-Scan Architecture 8

...................................... Figure 2.1. SAM-I1 Architecture 18
.. Figure 22: SAM-II Prototype -19

........................... Figure 23: Microcontroller Block-Diagram -21
............................ Figure 2.4. Microcontroller Board Layout -26

Figure2.5.SJ.boardBlockDiagram 29
Figure2.6.SJ.boardLayout .. 31

... Figure 2.77: Physical Datapath 33
Figure 2.8. Microcontroller FPGA-M Version-1 Logic Design 35

................................ Figure 2.9. Bus Control Signals Timing 36
................................ Figure 2.10. FPGA-S J Logic Diagram -39

Figure 3.1. SCSI Bus Configuration 43
........................... Figure 32. SCSI transaction phase sequence - 4 4

Figure 33: Calling ASP1 Manager 49
........................... Figure 3.4. Interupt Driven SCSI Bus Driver 51

Figure 3.5. SCSI Command Execution Through Disconnection -52
.......................... Figure 3.6. SAM I1 SCSI Driver Architecture -53
........................... Figure 3.7. Main Command Execution Loop -55
......................... Figure 38: Host Control Interface Main Loop -56

...................... Figure 3.k Microfontroller Monitor Architecture -60
Figure 3.10: Loading Executable Image into the S JCP External SRAM 63

........................... Figure3.11. SJCP Program StorageInterface 66

List of Figures

Figure 3.12. fiogram Iaitialiization Routine -57
Figure 3.13. SJCP Program Termination Routine 68
Figure 3-14: Step Execution Command Algorithm 70
Figure 3.15. Setting Fuli-Speed Execution Mode 71
Figure 3.16. SCSI: Bus Single Phase Test Algorithm 76

................... Figure 3.17. S JCP Boundary Scan-Chain Architecture 78
Figure 3.18. Testing the Event Intedace 80
Figure 3.19. DRAM Testing Algorithm 81
Figure 4.1. SAM-HI Architecture 83
Figure 4.2. Task-Switching and Data Transfer 87

............ Figore 4.3. Deadlock and Race Conditions Detector Algorithm 90

List of Tables

Eist of Tables

.................... Table I: Microcontroller Address Decoding Scheme -22
............................ . Table 2: SJ board Identification Version 1 -23
............................. . Table 3: SJ board identification Version 2 24

.................................. Table 4: System Clocks Configuration 25
................................ Table 5: System Configuration Jumpers 27

.................................... Table 6: Control Signals Decoding -30
Table7:SAMIIBusSignals .. 37

....................................... Tabk 8: CDB format fur SEND 45

...................................... Table 9: SCSI YO Request SRB -47
....................................... Table]LO= ASP1 Command Codes 48

.............................. Table 11: Load Executable eDB Format -57
.................................. Table 12: Option Codes Description -58

xii

Chapter 1 : !ntroductian

Chapter 1: Introduction

1.1. Embedded System

1.1.1. Architectural Concepts

Embedded Systems (Figure 1.1) represent a subclass of Computer Systems
with well-defined features [16, f 7, 181.

- Fixed Resources - The system resources, hardware and firmware, are fixed
and predefined. They do not increase or decrease during system operation. The way
the embedded system interacts with the surrounding environment is predetermined.

Users
usually computer subsystems

Embedded System 1

-1 Programs + Resources 4

I J

Figure 1.1: Embedded System General Architecture

w

- Programs - The programs and the coded algorithms do not change and remain
the same through the time of operation. In some cases though, part of the code could
be downloaded dynamically. For example in multiprocessor configurations, where
some of the processors are used as specialized coprocessor units, different code
p~~ -d be loaded dynamically depending on the particular request to the embedded
system. In any case though, the code related to the global system resource
management and interfacing is fixed and does not change.

Environment

- User - The users, which in general are subsystems of more complex

Chapter 1: Introduction

equipment are known and predefined along with the communication protocols.The
operator, if any, is getting access to the resources of the embedded system through a
directly accessibie termid or an interface unit.

- Environment - The environment where the embedded system performs some
control or data processing functions is predefined and finite. This is important to
guarantee stable system behavior.

- Data - The data going through the embedded system is the only thing that
changes during operation time.

These are the chmcteristics of a typical embedded system. Of course each
application would require features which would make the system unique but in one
form or another the general characteristics will be present.

If we have a Iook at a general purpose desktop computer, every subsystem
except the main CPU motherboard computational system represents an embedded
system with respect to the user. The hard disk controller for example is a typical
representative. The environment, the disk modules, is finite and predictable, the
resources are fixed, the firmware is unchangeable, performing predefined disk
control functions and servicing the host communication protocol.

1.1.2. Embedded Systems Interfacing

A general characteristic of an embedded system is that the user does not have
direct access to its resources. The interface is realized through the host standard or
custom built interfaces, Figure 1.2.

Figure 13: Host - Embedded System Configuration

Depending on the t h i n g requirements a d architecturd concepts the embedded
system could be C O M N ~ ~ to the host through standard external interfaces like RS
232, parallel ports or the Small Computer System Interface (SCSI), or it could be
plugged directly on the main CPU local bus. In case an external interface is used,

Terminal
User

Embedded
b System b s t 4 b

the data transfer complies to the corresponding interface communication protocol.
In some cases though it might be necessary to b d d a higher-level zr.rrnmunicatian
p i o t ~ o l on the top of the stmdard interface protocol suitable for the particular
application.

When an embedded system is attached to a host bus, it could be directly
memory mapped using shared memory to communicate with the host, or some more
complex protocol could be implemented. In any case shared memory is used to
communicate and transfer control information and data in both directions.

In general, we could have several levels of interfacing. Let's consider the case
of a multiprocessor embedded system where one of the processors is dedicated to
serve the host interface and the rest of the processors are engaged in data processing
activities. In this scenario, the first interface level is between the host computer and
the embedded system interface processor and the second interface level is between
the embedded system interface processor and the data processing processors. The
ultimate goal here is to be able to transfer data between the host and the data
processing processors. Sometimes a more complex interfacing concept is applied,
particularly when the number of processors in the embedded system increases.

Sometimes one needs to access the embedded system directly, particularly
during debugging. This is done usually by building local interfaces allowing direct
access to the embedded system resources. An interesting concept has been realized
in the Power PC 603 rnicroprocesssr [43! where dedicated pins in the
microprocessor package allow an external processor to get access to 603's resources
and monitor the system performance.

1.1.3. Embedded Systems Debugging and Trouble-Shooting

Obviously, with respect to the host compzter an embedded system represents a
a part of its computational resources regardless of the way it is interfaced. On
power-up the system resources are tested including all the embedded systems. The
embedded systems initialization procedures should perform local system test and
respond in a predefined way providing information about the extent and
accessibilitv and functionality of its local resources. The local testing routines
might invoive combinations of different board-level testing techniques and Built In
Self Tests (BIST) at the chip level. The purpose of a power-up self-test is to
determine what part@) of a presumably working subsystem are available.

A more interesting question is how to test and debug an embedded system in

Chapter 1 : Introduction

the process of integrating and building the prototype. The interesting part is that the
embedded system, not accessible directly, should be tested at board-level through
its inkrfaces which are dso under test developmnt.

Usually during trouble-shooting the designers are using a combination of
different debugging tools and mechanisms [45] in order to get the full picture of the
problem. One of the least expensive mechanism is ROM monitoring. The ROM
monitor allows to set break-points, control program execution, and access memory
and registers. A very popular tool is also the ROM emulator. It provides a low-level
debug control and is very flexible to use. We used the PROMICE ROM emulator to
emulate the microcontroller program storage during debugging.

Probably one of the most favorite tools is the In-Circuit Emulators (ICEs). The
ICE provides full execution control and sometimes bus monitoring and
performance analysis functions. The problem with the ICEs is that they could be
pet ty expensive and difficult to build particlilarly for chips wit?? high complexity
and high clock rates.

A fairly new approach which is getting more and more popular is to incorporate
an on-chip debugging hardware which could be a Background Debugging Mode
(BDM) or scan path implementation allowing program execution control and
registers and memory access. The IBM's 403GA Power PC JTAG scan path [45]
provides a serial link to the on-chip debugging hardware allowing to set
breakpoints, control execution and read and modify registers, memory and cache. A
very interesting concept has been realized in the Advanced Micro Devices' 29040
microprocessor. The 29040's on-chip debugger uses scan paths to access registers
and memory, and the hardware has been designed in such a way so that two 29040s
could work in tandem in a master-slave relationship. The master CPU is executing
the code normally. The trace CPU mirrors the master CPU's access addresses on its
address bus and they can be picked up by an external hardware and put into a trace
buffer.

Of course, we have to mention the traditional tools used during debugging:
probes, oscilloscopes, and logic analyzers. In the last years Hewlett-Packard and
Tektronix released logic analyzers with disassembling features.

In order to simplify the building and troubleshooting process, one wants to
have a direct access to the resources of the embedded system. The performance of
the interface through which the embedded system would be accessed in this case is
not of importance since a limited amount of control information is to be transferred.

Chapter 1 : Introduction

The important point is for this interface to be simple, reliable, and easy to build.

Figure 1.3: Embedded System Trouble-Shooting Configuration

The strategy accepted during SAM-I1 prototype development is shown in
Figure 1.3. Our 8-bit microcontroller, the Dallas DS80C320, has two on-chip serial
interfaces and requires very few external resources to build an RS 232 compatible
interface to connect the system to a standard ASCII terminal. From this point, we
just need to hook up the ROM emulator to get a minimal configuration of a working
system. The serial interface provides reliable and simple communication which is
vital during the trouble-shooting process. Using the serial communication link, we
started adding and troubleshooting the rest of the subsystems like the SCSI
interface, the interfacing iogic eic.

A typical application of this concept was the trouble-shooting of the SCSI
interface.The SCSI interface was dying during system operation sometimes causing
total communication failure without being able to continue to figure out what the
reason was. Using the direct serial communication we were able to monitor directly
the activities on the SCSI bus and in the system as a whole and solve the problem.

RS 232
I

SCSI
..,a1 .-.......-.-- ..- ill,*,

Host
system

Test RS 232
Terminal *

1.1.4. SAM-II Embedded System

Eml>edded
System

Even though SAM-I1 can be classified as an embedded system it has features
which are relevant to sewers afid stand-alone computers. Ttne overall system
configuration has five basic components, Figure 1.4. A host computer, PC or
workstation, used as a frontend interface, a high-performance SCSI bus connecting
the host with SAM-H, a DS80C320 based microcontroller, a microcontroller local
bus used to connect the SAM Junior (SJ) processing units, and the SJ processing
units.

*
r

User
Terminal

Chapter 1 : Introduction

With respect to the host the rnicrocontroller is a typical embedded system. Its
resources, the program and hardware are fixed, the host is defined and finite, the
environment, the SJ-boards, is finite ;and predictable. The Infomation transferred
through the SCSI is a mixture of data and commands to the microcontroller.

Figure 1.4: SAM-II Embedded System Architeeture

The uniqueness is coming from the presence and status of the SJ-boards which
are active microprocessor subsystems. Tbe SJ-boards are embedded with respect to
the rnicrocontroller. The data transferred through the SCSI to the microcontroller
now can be interpreted as data or executable code. In this sense the SJ computing
environment could be considered as a remote vector arithmetic server. By replacing
the SCSI with an Ethernet or ATM interface, SAM-I1 can be connected to a network
and used as a remote server by remote hosts running array processing applications.

r

Host

1.2. Test Methods

SCSI
I I I - ~

Data

1.2.1. General Concepts

Microcontroller
.I,ll ... SJ-boards

During the process of system development and later during system operation
we have several levels of testing which naturally form a hierarchy of testing
procedures: chip or component level test, board-level test and system level test.

Local Bus
)

DataPrograms

At the lowest level we have chip-level test. The chip tests are conducted in two
stages. First the chips are tested after manufacturing on special analyzing
equipment and after that they are tested as a part of a real system. From a system
development point of view we are interested in chip-level test where the chips are a
part of functional system. Different chips are tested in different ways, for example
the CPUs are tested differently from the memories, but the general method is to
supply an input test sequence and check the response. Unfortunately, this might not

Chapter 1 : Introduction

be good enough since the chip is a part of a system and its output might be
influenced by the other components. Also, with advances in the microelectronic
lechnofogy it became possible to accommodate a number of fairly independent
functional units, sometimes with a high-level of complexity like memories register
files, ALUs, interface systems etc. on a single chip. In this case we want to have a
better understanding of what is going on in the chip particularly when we are
building a prototype. This imposes the necessity of special on-chip hardware for
performing or providing the means to test chip functionality.

Embedded BIST circuitries are becoming very popular. Special on-chip
circuity is designed to perfom; eump!ete chip functionality test. The BXST circuit is
interfaced to provide some control if necessary and to check the result of the test.
The BISTs are fast, very convenient when there are many chips to be tested, and
they save main CPU time during the testing routine. Sometimes it is not possible or
not necessary to design complete BIST circuits and other approaches should be
used. A new technique called Boundary-Scan allows access to control points inside
the chip and chip boundaries [25] and it simplifies the integration of different test
mechanisms at chip- and board-level. A variation of Boundary-Scan is used in
SAM-II [23] and we will discuss it in the following sections.

Board-level tests use the results from chip-level tests to verify chip
f.Jnctiondity and they have more te de with intercomponent interactions, signd
propagation, power distribution, and timing problems. They are testing the way the
components interact and how their interaction affects overall board functionality.
Board-level testing is not a trivial problem and a lot of interesting points could be
discussed here. One of the problems we encountered during SAM-I1 prototype
development was connected with the power distribution. The signals on the SCSI
bus, for example, turned out to be very sensitive towards the board power
distribution and power serge at one place even on different board due to invalid
operation happened to affect them causing SCSI communication failure.

The system-level tests are testing the overall system functionality. They are
usually a set of testing routines providing the system test control algorithm and
checking system resources availability and access. Sometimes rhe results from the
system tests are used by the operating systems, monitor programs and device
drivers during system operation.

Chapter 1 : Introduction

112. Boundary-Scan Testing Principles

One approach, which swim to be responding pretty well b the requirements of
the new technologies and getting an wide acceptance is the Boundary-Scan. It
requires little hardware resources, allows easy integration of chip-, board- and
system-level tests and it also can be combined with BIST techniques for automated
testing.

The idea of the Boundary Scan test is to connect all I/O pads under test, usually
the pads at the boundaries of the chips, in a scan chain [IEEE-Il49.1,24,25,28]. It
allows access to each individual chip but at the same time certain pads could be
bypassed during testing to shorten the scan path. The technique could be used
successfully at chip- board- and system-level and it also allows sample testing
making possible to test control points on the board at a certain instant of time.
Boundary Scan can be used to test points inside the chip as well as to conduct
external tests on points between different chips' YO pads.

Test Access Port (TAP)

Figure 1.5: Single-Chip Boundary-Scan Architecture

The single-chip Boundary-Scan Architecture submitted by JTAG to IEEE in
1988 for a standard review is shown in Figure 1.5. Four additional pins are

Chapter 1 : Introduction

necessary to configure the chip in a standard testing mode and for interfacing
purposes - Test Data Input (TDI), Test Data Output (TDO), Test Mode Select
VMS) Test Clock fTCK). TDI m d TDO pins dlow the chip to receive and
send data fromito other chips. TMS and TCK are used to configure the chip for
testing. These four pins constitute the Test Access Port (TAP).

The Instruction Register is used to store the test mode to be used and to select
one of the possible data paths from the Boundary Scan-Chain, Bypass Register and
user defined registers. The Boundary Scan-Chain can be used for internal as well as
external tests.

1.2.3. Scan Paths Implementations

The Boundary-Scan testing concept undergoes continuous development and
different variations are coming out sometimes in combination with other
approaches. Texas Instruments has released a chip set compatible with the IEEE-
1149.1 standard [28] allowing long chains to be broken into several shorter ones,
easier to manage. There are several methods which integrate the Boundary Scan
concept with BIST techniques for automated board-level testing 124, 261. Also an
interesting design [27] has been implemented using Boundary Scan to test for
interconnection and power supply problems using on-chip amplifiers.

A standard JTAG/IEEE- 1 149.1 boundary scan interface has been incorporated
into the Power PC 602 and 603 microgrocessors to facilitate board-level testing
[43]. Besides for testing purposes the standard JTAG port can be used to access a
special interface that allows an external processor to read or write memory or any of
the 603's internal registers.

The AMD's 29040 microprocessor has a JTAG scan-path based debugging
hardware allowing to modify registers, memory and cache 1451. The
microprocessor does not have dedicated pins to access the scan chains but rather the
hardware has been designed in such a way so that two microprocessors could run in
tandem in master-trace relationship.

ARM'S ARM-7 microprocessor's JTAG scan-chain based debugger [45] allows
to modify registers and memory, set hardware breakpoints and also the JTAG port
can be used for RUMless boot-up and as a? out@ serial port to ddve an extima!
device.

Intel's Pentium and P6 microprocessors also have on-chip JTAG scan-path

Chapter 1 : Introduction

debuggers.

A vaxiatiw, of Boundary Scan has k e n realized in &be SAM-Junior Co~ftrd
Processor (SJCP) and used in implementing SAM-I1 testing strategy. The scan
chains provide the means to integrate chip- and board-level testing and also they are
used for interfacing purposes as well, allowing access to the SJCP internal
resources.

13. Debugging Took and Concepts

Development of a program debugging system is an essential part of the system
development process. In case of building a prototype the debugger serves two major
purposes. First it is essential to be able to write correct programs and second in our
case when the software development tools are not completely debugged we want to
be able to verify syntactical and logical correctness of the programs used in the
system testing procedures. Also, the debugger can be used for low-level resource
manipulation t y initializing memory blocks or performing some hardware
configuration tasks.

13.1. General Features

A conventional debugging system [29, 311 performs tasks in two main areas -
program management and program environment management. Also it can perform
some real time source code manipulation. In the program management area the
debugger controls the overall program execution and some of the following or
similar options are generally available:

- Stepping - it allows to step through the program a specified number of
instructions one or more at a time. One might also be able to initialize the program
counter.

- Breakpointing - it is used to suspend program execution at specified location
and observe the program status. Usually one is able to edit the breakpoint table in
real time. Some debuggers have a breakpoint counter associated with each
breakpoint showing how many times a certain breakpoint has been encountered. An
interesting feature is the so called programmable breakpoint. There is an expression
associated with each breakpoint and a particular breakpoint is valid if the
expression is true at this particclar point of execution.

- Run - it allows the program to run N1-speed and stop at any moment.

Chapter 1: Introduction

- Tracing - It allows information about all procedures and data structures or
statements to be reprkd as !&e prog-ram executes.

- Continue - it starts program execution or resumes it after a breakpoint or a
step.

- GoTo - it moves the execution pointer to a certain statement.

- Return - it moves the execution point to the exit point of the current
procedure.

The above options provide the user with the necessary means to control the
execution program flow. Beside that one needs tools to manage the program
environment, to handle variables, data structures, procedure arguments etc. which
directly affects the control flow.

- Environment Control Options - these are used to initialize the environment
before or during a program execution. It provides scope to the debugger for
identifying variables and statements.

- Stack - it allows to manipulate the stack, printing the current status of the
stack or a traceback of certain number of stack frames.

- Symbolic Access Options - these options allow to refer to variables, tables or
elements of arrays.

- Arguments - gives access to the arguments of an active procedure.

- Evaluate - it allows to evaluate a certain expression from the program.

- Assign - it assigns a value of expression to a name.

- Return - allows to set a return value from a procedure and moves the
execution pointer to the exit point of the procedure.

Some debuggers dm haye the tools examine the source c d e or the history of
the program execution.

- Find - locates a line in the source file.

Chapter 1 : Introductioil

Developing the software on the target system looks to be the straightforward
way to go but, sormeiimes it might lioi be 'uie imxi efficient one, paiiieiihrly wheii
we are talking about embedded system software development. In the last years
simulators are becoming more and more popular. They provide a stable
environment for program developers and basically full control over all the aspects
of program developme~lt znd Mxgging process. A special simulation tool, Basic
RISC Architecture Timer (BRAT) [43], was designed to serve the purposes of
Power PC microprocessors based software development and performance
estimation. BRAT has been used for performance modeling of a number of Power
PC microprocessors, it provides what-if analysis capabilities and sufficient accuracy
&ring simulation. As fit. as debugging is concerned it allows to watch the state of
the system cycle by cycle, to run certain number of cycles, backtrack certain
number of cycles, run to certain address or instruction etc. BRAT provides both
command line and windowed user interface.

13.8, Debugging Parallel Programs

Debugging parallel programs involves aspects of a new range of problems
relevant to distributed and parallel computation The problems have to do with data
consistency when the parallel processes are r~nning in a shared memory or there is
an active interprocess data exchange and also, with the so called race and deadlock
conditions between processes running in parallel. There are several ways to
g~armt,~,~ precess sy_n_cb~on~zation. One way is to use timestamps where a
timestamp is associated with every shared data item. Another way is to use
semaphores controlling the access to specific data items.

Using process synchronization techniques or not, debugging a parallel program
could represent a challenge and requires additional attention and tools. A common
approach is to replay the program execution. But, the program might have been
written nondeterministicly or to have race conditions in which case we might get
different results for different runs. One way to handle this is to trace the program
execution by recoding all the access to the shared data and use the trace later to
reproduce the program execution. Many debuggers are recording all the traces but it
coufd he a prub1em sc)metimes; the trace could be in order of tens of Mbytes. There
are. algorithms presented [32] which can decrease the trace length by 2 - 4 orders of
rnagninrde recording only certain critical ria-

Also, the debugger might incorporate race condition detectors. These detectors
work in different ways depending on the data consistency protocols used. They

Chapter 1 : Introduction

migk keep track of &e times';amps of the shzed data or the state of the programs or
semaphores.

It is very difficult to create a universal algorithm because data consistency in
general is not just a software problem. Data consistency protocols reflect the
architecture of the macl-iine, for example if we have a cache at each processor or
not. If we have a shared memory and no cache, there is only one copy of the data in
the memory and the consistency protocol would have to take care only of the
memory. If we have a cache at each processor and distributed memory then things
are getting more complicated because we have several copies of the same data in
the memory md in the cache.

A very optimistic exampze would be considering a multiprocessor system with
refatively independent processing units. In this case, we only need to be able to
address the different units dynamically and debug every single executable image as
in cafe of uniprocessor system.

1.4. Objectives

fn the attempts of researchers and engineers to build more and more powerful
systems here are two fundamental approaches: distributed computation where
more autonomous computer systems usually connected in a network are used to
work in pdiel on a csmin application, and multiprocessor systems where the
processing units are connected with high-speed buses or specialized interface
networks. A muitipmessor system could be interfaced as a specialized server
connected to a network, it might provide its own front-end interface or some more
complex interface mechanism might be used. Usually the multiprocessor data
processing environment is accessed by the user through a specialized interface
conuoller(s) handling the interface protocol and managing the multiprocessor
environment. The particular implementation of the multiprocessor environment, the
hardware and software interfacing concept, the system software etc. depends on the
target application of the system, performance requirements, selected chip set and
most probably on the price requirements if it is intended for the market.

IZ- -,,- L:--r3,.- -E ---,,L '
I Irc; rrr& k j a u v o w UUT I G ~ W IS the implementation of a multiprocessor

computer system, SAM-11, based on a custom 32-bit vector-oriented RISC chip set
intended for low-cost array processing applications. The system is not meant to
compete at this point with the commercially available supercomputers, rather we
are looking fur solutions to certain architectural, interfacing and system software
questions, which would let us in the future build a competitive product.

Considering &e chipset and system architecture potentially large space
requirements, it would not be possible to attach the system to an existing host's
local bus and it should be accessed through m external interface as an embedded
system. Also our intention is to make the system accessible by different platforms
regardless of the vendor and operating system, which would not restrict the user
with respect what kind of host computer to use. Considering these factors and the
system performance requirements, we chose to use the SCSI interface which
provides a good performance, it is available on most commercial workstations, and
would allow the system to be interfaced as a conventional SCSI device.

Right now here is no off-the-sheif controiier which would handle the SCSI bus
data transfer and provide the access to the multiprocessor environment and we
need to build a specialized interface controller (a motherboard) which would
handle the SCSI bus protocol and manage the multiprocessor environment. We also
need to design an on-board interface logic generating the proper processing unit
interface control signals.

The processing units are based on a custom 32-bit chip set. Two of the system
components, the control processor and memory manager, just came from the
foundry and have not been fully tested yet. The chips have been tested
independently under ideal conditions on a specialized testing equipment but the
question is how they will behave as a part of a real system. The system will also
serve as a test-bed for ksthg aid verifying the Functionality of the system
components working independently and together as a vector-arithmetic processor.
The processing unit board will also need an on-board interface logic allowing the
processing unit to be attached to the motherboard and to be interfaced
independently and in combination with other processing units.

The SCSI was originally designed to interface hard-disk drive systems and the
protocol reflects hard-disk data transfer requirements. A major research point in the
project is how to design and use the SCSI to interface a custom built embedded
system efficiently. This might involve the design of our own protocol on top of the
SCSI protocol.

The system software will consist of two major parts: a front-end system
interface software running on the host computer and an embedded system monitor
software running on the motherboard and probably partially on the processing units.
The host software will provide the user interface and will handle the SCSI bus data
transfers. The embedded system monitor will be handling the SCSI bus operations

Chapter 1: Introduction

too and it will also perform the multiprocessor environment resource management.

An essential part of the system development process will be the implementation
of a debugging system. The debugger would provide a low-level system resource
management, the ability to load programs and data and to execute programs in
different modes. It will also allow us to verify the accuracy of the current compiler
software which has not been tested completely yet.

Here is the summary of our objectives in the project:

* Design and development of a DS80C320 based motherboard

* Design and development of an SJ-chip-set-based processing unit board

* Verifying that SJCP and SJMI can work together

* Design of a FPGA-based motherboard-parallel processing units interface
logic

* Embedded system SCSI interface hardware and firmware deveiopment

* System and test software development

* Embedded system debugger development

Chapter 2: Hardware Design

Chapter 2: Hardware Design

2.1. SAM-II Architecture

SAM-I1 (Structured Architecture Machine - 11) is an embedded multiprocessor
vector-oriented computer system intended for low-cost may processing
applications. It develops further the concepts and the ideas in the first
implementation of the Structured Architecture Machine, SAM-I [46] and is a
stepping stone towards the development of a massively parallel computer system.

The prototype (Figure 2.1, Figure 2.2) is designed to accommodate up to five
processing units based on a custom 32-bit vector oriented RISC chip set. Each
processing unit could have up to 64 Mbytes of four-stage interleaved system
DRAM and 64 kwords of high-level 64-bit-wide microcode SRAM used as the
CPU external program storage. The microcode is loaded dynamically, which gives
some flexibility to the system.

The system could be configured to work as an MIMD (Multiple Instruction
Multiple Data) machine in which case the processing units execute independent
code or as an SIMD (Single Instruction Multiple Data) computer where one of the
processing units plays the role of a program manager broadcasting instructions to
the other four data management units through a specialized instruction-pipe
interface. The pipe interface has not been implemented yet and right now the
processing units program execution is controlled directly by the microcontroller.

The processing units are attached to a motherboard (microcontroller) and each
one maps to 256 locations of the motherboard CPU directly accessible memory and
can be accessed in a single microcontroller stretched machine cycle. FPGA based
logic is designed to perform the necessary bus control and control interface signals
generation. Without the pipe interface, the microcontroller plays the role of a
program manager and all five units can be used to process data.

Usually in multiprocessing applications there is an intensive data transfer
among the processing units during a program execution. A special software and/or
hardware support is necessary to guarantee real-time data consistency in case of
shared data applications. A special network system will be designed to interconnect
directly the processing units data memory systems to handle data exchange and data
consistency.

Chapter 2: Hardware Design

SCSI Bus 1

I SCSI htmfa~e - SCSI ~nterface I
1 HOST I (Microcontroller

.-------
I
I I

Processing Unit 0 E
l
I
I
I

I N i I I

Processing Unit 1 I

i E j I I

I
I

I * I

A SJ System FPGA 4 j
I I

I

I

j P j
I T !

Processing Unit 2
I

I
I I SJ System FPGA
I
I
I I

I
1

I
I I

Processing Unit 3 I I
I
I

0 ,
I

w SJ System FPGA 4 j
I
I

i E I

I I

I
I I

I I

I I

I I
I
I
I Processing Unit 4
I I I

Figure 2.1: SAM-XI Architecture

The embedded system is interfaced with the host computer through a fast SCSI
interface. From the host's point of view, SAM-11 is a conventional SCSI device
hooked on the SCSI bus and al l data transfers between the host and the embedded

Chapter 2: Hardware Design

system use the SCSI bus protocol. In this relationship the microcontroller serves
two main purposes. First it is a dedicated SCSI driver handling the data exchange
on the SCSI bus =d second it perfoms the necessary SAM41 system management
functions including system configuration, program management, and data
management.

Figure 2.2: SAM-I1 Prototype

The host and the embedded system interact through a request-driven
communication. The host sends a request to the embedded system which could be
anythmg from performing a test to executing a program and the embedded system
serves the request and sends the result back. The requests and results are transferred
by means of SCSI transactions. The iecjiiests we ckissifieri in four areas - system
test, system configuration, program management, and data management. With
respect to the application program SAM-11 could be seen as a vector-arithmetic
coprocessor accessed through the operating system using conventional system calls.

Chapter 2: Hardware Design

I

The embedded state of SAM-I1 mkiprmessor imposes the necessity of a
specialized microcontroller to service the embedded system-host interface and to
control certain activities on the SJ-boards. From the host's point of view, SAM-I1 is
a conventional SCSI device hooked-up to the SCSI bus and this determines pretty
much a client-server relationship, the host sends the request, the microcontroller
serves it and sends the result back, if any.

With respect to the host, the rnicrocontroller should be able to serve requests in
the following areas:

- System test - this would involve testing different system memories like the
external microcode storage, external DRAM and on-chip memory and register files,
testing separate functional units and inter- s ystem-component interfaces.

- Program/Data loading and Verification - one of the major functions the
micrwcmtroller should perform is loading and verifying executables and data into
the S J boards.

- Program management - the microcontroller should be able to control the
program execution full-speed, step-by-step, stop execution etc.

Microcontroller also has some monitoring functions concerning the overall
system performance. In general, we might have several executables residing in the
microcode storage at the same time, some of them system programs, some of them
user applications. The monitor should be able to load executables at the proper
locations, to sWstop one or another module and to be able to recognize when a
certain module has finished. In other words, all the basic functions a conventional
operating system would have.

The custom SJ chip set, designed at SFU's VLSI and Computer Design
Laboratory, provides excellent hardware support for the implementation of the
above functions. Some of these features are hardware-supported boundary-scan
testing capabilities and quite straight-forward control interface. The SJ-boards are
part of the microcontroller address space and a certain function on a certain board
(Processing Unit) is triggered by addressing a specific location. The list of the
functions is given in the Appendix.

23.1. System Design

The microcontroller is based on Dallas DS80C320 microprocessor, which is an
enhanced version of Intel's 8051, capable of running at higher speeds with an

Chapter 2: Hardware Design

additional serial port, data pointer, and timer. This makes it very suitable for
building embedded systems since, we have on-chip serial interface and we need few
external resources to b ~ i l d a minimal-configuration working system. This is
important when it comes to building prototypes, one needs a reliable connection to
the external world to be able to monitor the state of the system in the process of
development. The block diagram of the microcontroller is shown in Figure 2.1.

DALLAS

I

I
SJ-BOARD CONNECTOR

SRAM I 32Kx8
EPROM
64Kx8

L

INT t MICROCONTROLLER-SJ BUS

I

$331 BUS

I 1

Figure 23: Microcontroller Block-Diagram

2.28181. Address Space

B A A A A 4 4 4 A

The microcontroller has separate program and data address spaces. This is
typical for many computer systems but as our research showed it could be a reason

I . PSEN
A[& 151
AD [0:7]
R/W 3

ALE I I

V V

Chapter 2: Hardware Design

for some undesired effects to take place. Addressing separate spaces generally
results in changing high-oder bits of the address when switching from one space to
another, pdcuia ly bits which me used in decoding different components ofthe
system. This could cause glitches on the decoding lines and respective
malfunctioning. By changing the program location, one could get different system
behavior. These kind of problems are very difficult to figure out since, they might
appear only in combination with other events taking place on the boards.

Jumper-configurable, we could have 32k or 64k of program memory. The
jumper turns odoff the A1 5 address line. We have been using PROMICE firmware
development tool to emulate our program storage. The PROMICE ROM emulator
could be connected to a PC through the standard serial or parallel interfaces and
accessed and controIled through a command-line interface. Several PROMICE
devices, each emulating 8-bit-wide memory, could be connected in parallel to
emulate wider ROM storage of up to 5 12 kwords deep.

The data address space is divided among the system data SRAM, the SCSI
protocol controller, and the SJ boards. The prototype could accommodate up to five
SJ boards each corresponding to 256 bytes of addressable memory. The decoding
scheme is shown in Table 1.

Table 1: Micmcontroller Address Decoding Scheme

I I

I 1 O I SCSI protocol controller

Partial decoding is used. For our purposes 32k of SRAM is enough although,
considering maximum-size SJ executable of 512k would complicate the loading
pmtocol. But in any case we couldn't have more than 64k.

I I

23.1.2. SCSI protocol controner

1

We are using the AMD Enhanced SCSI-Bus Interface Controller Arn33C93A.
It has 32 addressable registers and it is located directly on the CPU bus. The chip is
configured to take advantage of the multiplexed addreddata bus. The register
address is latched internally at the falling edge of ALE and if the chip is selected a

1 Sf boards

Chapter 2: Hardware Design

read or write operation takes place.

DMA and intempt h d n g are disabled and data transfer takes place by
polling the status bits. This approach was adopted primarily because during
building the prototype we wanted the software to run predictably and reliably. Even
when something goes wrong it should keep running to report the state of the system.
The choice also fits very well with the request-driven initiator-target relationship
between the microcontroller and the host imposed by the SCSI bus protocol. In this
way the system components' priorities are determined entirely by the software
which is preferable during the trouble-shooting procedure.

Of course other solutions are possible. An interrupt handling approach would
require a different software architecture. The request-driven communication still
could be preserved but in general we will need interprocess communication
mechanism between the different subroutines working on the completion of a single
request. The software details are discussed in later sections.

2.2.63. S J Boards

The prototype is designed to accommodate up to five boards. Each board has a
unique 3-bit ID which is jumper-configurable.

In the first decoding scheme implementation, the address lines A 1 1 , A 12 and
A13 were used as SJ board ID bits, Table 2. They were passing directly to the SJ
boards to be compared with the ID jumpers. The selection of a particular board was
taking place dynamically within the timing of the current instruction. There are two
special combinations, one selects all boards which means that the following activity
read/write will take place on all boards and the other prohibits any activities on any
of the boards. Sometimes though at procedure calls or during changing address
spaces, we observed glitches on some of the lines. Usually the glitches were small
but there was a possibility that sometimes they might get big enough to cause a
trouble.

Table 2: S J board Identification - Version 1

A12/D1 I AIl/DO Function

0 0 No one bard is selected

X X Unique SJ board ID

1 1 All boards are selected

Chapter 2: Hardware Design

In the second implementation the access to a particular board is divided in two
parts. First the board is selected and after that its space is accessed in subsequent
instructions. me bard ddress is passed over the data bas using DO, Dl, and D2
data lines. The result of the comparison with the ID jumpers is latched and used to
enable the board for subsequent operations until the board is deselected. Once
selected the board is accessible as a conventional memory location. The A13, A12
and A1 1 address lines are used to choose different selection options, Table 3. This
scheme avoids eventual glitching problems, since the actual board access is
separate in time from the board selection. Note the broadcast feature, which permits
special subsets of the boards to be selected.

Each SJ board is mapped to 256 addressable locations of DS80C320 data
memory. The first 128 addresses are used to access the SJCP scan chains and for
control purposes. A complete list of the available functions is given in the
Appendix. The second 128 addresses are used to access an SJCP internal SRAM
block. The access to any location takes place within the timing of a single stretched
data memory access instruction.

%bie 3: SJ board identification - Version 2

All SJ boards have a common reset line controlled by the system reset. Each SJ
board has a dedicated interrupt line which is connected directly to one of the
interrupt inputs of Dallas microprocessor. The interrupts are currently disabled and
the handling is done by polling.

The physical interface between each board and the microcontroller is realized
through pairs of FPGAs which perform decoding and bus control functions. The
details are discussed in the following sections.

A13

1

1

1

1
-

0

0

A12

1

1

0

0

0
I

0

A l l

1

0

1

0

1

0

Selection Function

Select all unit; data bus ignored

Select upper half units; data bus ignored

Select lower half units; data bus ignored

Select single unit; D2, Dl, DO have the unit ID

Select FPGA location

NOP ; A7-A0 have a selected-board location

Chapter 2: Hardware Design

2.2.1.4. System CPwh

Clock generation is critical for poxper system ,~erformance, We are using a
Cypress CY7B992 Programmable Skew Clock Buffer (PSCB) to generate the
necessary clock sequences. PSCB is capable of generating four clock sequences
with possible relative shift of +/-I80 degrees. One is used as clock input for
DS80C320 and SCSI chips and two others are providing PHIl and PHI2 clock
sequences for the SJ boards. The skews are jumper-configurable, Table 4.

As we found out the relative tirning between PHI1, PHI2 and the
microcontroller clock is decisive for the proper system performance. PHI1 and
PHI2 should be shifted at 90 degrees. This provides four equal time intervals timing
different activities in the SJCP machine cycle. In reality though the situation is
different, the time intervals could differ by as much as 40% with respect to the
reference clock. The reasons for this are the PSCB resolution, ringing on the clock
lines, propagation delays and different rising and falling times.

Table 4: System Clocks Configuration

At the same time PHIl and PH2 should be synchronized with the DS80C320
bus control signals like READ, WRITE and particularly ALE. ALE triggers a finite
state machine in SJCP which is going through 16 states (8 states for internal DPM
access). Everything should be timed precisely in order for the data transfer to
complete correctly.

Jumpers

The tuning of the system clocks goes through two stages. First, we tune the
skew between PHI1 and PHI2 to be as close to 90 degrees as possible. Second, we
tune ALE by shifting appropriately the microcontroller system clock.

Function

The microcontroller system clock has no effect on the functionality of the SCSI
intefface.

1F0, IF1

2FO,2F1

3FO,3F1

4FO,4F1

Jumpers fixed (Open) Reference Clock

DALLAS System Clock, respectively
controlling ALE, READ and WRITE timing

SJ System Clock, PHI 1

SJ System Clock, PHI2

Chapter 2: Hardware Design

2.2.2. Board Design

We me using Four layer Printed Circuit Boards. The first for& layers are
signal layers while the second and third layers are power and ground layers
respectively. The microcontroller board is shown in Figure 2.2. Table5 shows the
function of each jumper.

HEX INV JMPR-0 PSCB
CRYSTAL

JMPR-3
TERMINATORS

I2321 I SCSICON 1 0 RESET
I I I I

Figwe 2.4: MicmntroUer Board Layout

Dedicated POWER and GROUND layers help to reduce noise, crosstalk, and
short circuit effects on the board. Also, it seems that one of the problems we
encounter is associated with power distribution. That's why it is very important to

Chapter 2: Hatdwarc Design

supply as much independent power to each component as possible.

Table 5: System Contiguration Jumpers

MPR-1 1 Program Storage Configuration Jumper. OFF - 32k. ON - 64k

Jumper

/ IMPR-2 i SCSI Reset Line Configuration Jumper.
OFF - reset from the SCSI bus, ON - system reset

Function

I JMpR-3 1 SCSI Intempt Configuration Jumper.
OFF - SCSI intempt disabled, ON - SCSI intempt enabled

JMPR-0 1 Clock Configuration Jumpers. See Table 3.

The SCSI terminators are powered by the HOST, in our case by the PC through
&e cable. According to the SCSI specification, terminators should *be powered by
the SCSI bus but if necessary, local power could be supplied through a jumper.

The SJ boards attach to the microcontroller mother-board through pairs of 96-
pin connectors. On the prototype we have five pairs of connectors. Each pair has a
separate interrupt line- Since the interrupts are disabled, dl boards have the same
priority or the priority is determined by the order of polling. If the intempts are
enabled CONNECTOR-0 has the highest priority, this is where the Program
Management Unit (PMU? will be plugged, and CONNECTOR-4 has the lowest
priority.

2.3- SJ Processiirg Vnit Board

SAM II Processing Unit (PU) is based on a custom 32 bit vector-oriented chip-
set designed at SFU. The chipset consists of:

- SJCP - 32-bit one-stage pipelined vector-oriented microprocessor employing
&bit-Wide high-fevd m i a w d e . It is czp&!e of exewtisg up to 4
microoperations per dock cycle at peak performance.

- SIMI - 32-bit fwr-stage interleaved memory management unit. It can handle
up to 64 Mbytes of interleaved memory organized in four banks.

Chapter 2: Hardware Design

- SJNI - 32-bit network controller, it is intended to handle direct data transfer
between the Rocessi~g Units for eff cient 2t12y mmipiilatim.

- SJFP - Floating-Point Unit.

- SJIVUISJOVU - instruction pipe control units.

Depending on its functions in the system each PU could be either a Program
Management Unit (PMtf) or a Data Management Unit (DMU). The PMU performs
program-execution control functions, It broadcasts vector-algorithm instructions
through an instruction-pipe interface. The DMUs are engaged only in data
processing activities. h principle, the system could have one PMU and many
DMUs. The prototype is designed to accommodate five boards altogether, one PMU
and four DMUs.

23.1. SJ-board System Design

At the time we stamzed building the prototype, only SJCP and SJMI chips were
available so we were able to build a minimal configuration of SJ computing system
consisting of the microprocessor module and data storage manager. The block
diagram is shown in Figure 2.3. On the board we have reserved space for the rest of
the system components and also we have intercomponent-interface pad arrays to
connect the new componenl to the system.

23.1.1. Microprocessor Module

AH the activities on the SJ-board are controlled by SJCP control processor.
SJCP has 64k-word external microprogram storage. In hture versions the
micropro&ram storage might be on-chip. The microinstruction is 64 bits wide but
actually SfCP is using onfy 56 bits. The other 8 bits (so called Y field) are specific
for the Floating-Point Unit. The loading of the Microprogram memory takes place
ttuough the SJCP internal scan-chains. First, seven bytes are written consecutively
into the instruction scan chain while the eighth byte is put on the Y BUS from
the on-board FPGA. After that all eight bytes are strobed into the microprogram
store at the address prdoaded in he SJCP internal address scan-chain. In execution
d e , the rnicropmgm~ store is ~mImes*jr. ei;&!eb h i reading, ii is writable
only during loading. We call this a read-mostly memory.

Access to SJCP m w r c e s is possible through an eight-bit addresddata bus and
a couple of control signals, CTR-0 and CIR-1, which specify the RD or WR

Chapter 2: Hardware Design

operation to take place. The operation could be a conventional data transfer or it
cwld trigger a certtn ac?ivi?y in SJCP. The lower eigh!: address bits me latched in a
on-chip address register during ALE and subsequently decoded to determine the
se1ected function. The decoding of the control signals is shown in Table 6.

FPGA

P

1 - REFRESH 1-

I Y B U S ,
T D A

MICROCODE

SRAM

I SI-BOARD CONNECTOR I

Figure 25: S J-board Block Diagram

DATA

DRAM

The generation of the control signals is not a trivial problem and it is discussed
in detail in the next section. It is done through a pair of FPGAs which also perform
bus control and d d i n g functions. Due to a shortage of IIO pins on SJCP, the
microcontroller's three bus control signals were encoded into the two CTRl and
GIRO signals.

Chapter 2: Hardware Design

Table 6: Control Signals Decoding

ALE

0

1

SJCP i ected with the Memory Manager (SJMI) by a 32-bit bidirectional
bus (SJ BUS) which is used to transfer data between the two modules during
program execution. SJMI is controlled by two instruction fields called source (S
field) and destination (D field). SJCP stops when active REFRESH is detected, this
happens when SJMI performs a DRAM refresh, and resumes when REFRESH goes
away.

CTR-0

0

0

SJCP has 166 32-bit words of internal dual-port SRAM used as data storage or
in data transfer operations between SJCP and SJMI, SJCP and the microcontroller,
and SJMI and the microcontroller. This dual-port memory takes 128 addresses of
DALLAS address space and a 3-bit bank register is used to access different 128-
byte banks.

Operation

READ

NOP

23.1.2. Memory Management

SJMI can handle up to 64 Mbytes of interleaved DRAM organized in four
banks, two even and two odd, each 32 bits wide. It has on-chip refresh logic with a
programmable refresh cycle. In the prototype we are using four 4 Mbyte SIMM
modules for a total of 16 Mbytes.

During instruction execution, the source and destination fields of each
microinstruction are passed from the microprogram storage to SJMI and other
coprocessors dong the S and D buses to specify the source and destination of the
data transfer, if any.

23.2. h a r d Design

The board layout is shown in Figure 2.4. It is again a four-layer printed circuit

Chapter 2: Hardware Design

board. The first and forth layers are signal layers while the second and third layers
are power and ground layers respectively.

The SJ-board connects to the microcontroller board by means of a pair of 96 pin
connectors. CONNECTOR-0 is used to attach the board to the microcontroller bus
while CONNECTOR-1 will be used for inter-process communications. It has three
SJ ID configuration jumpers specifying the unique address of a particular board.
The boxes drawn with a dashed line show the places reserved for the Instruction-
Pipe Unit, Floating-point Unit, and the ~etwork~ontroller.

Figure 2.6: SJ-board Layout

The clock buffers are used to buffer and invert the PHI1 and PHI2 system
c10f:ks coming from e PSCB on the microcontroller board through
CONNECTORRO.

The board architecture could be improved along several lines. If we rotate the
SJCP and SJMI modules in 180 degrees, this would shorten the addresddata bus

Chapter 2: Hardware Design

traces between the FPCA and SKB minimizing the ringing and crosstdk. We also
can improve the system clock propagation delays, if we keep the SJCP clock inputs
close to the bus connectors.

When we started designing the board, we used the SJCP and SJMI pin layout.
diagram given to us by the manufacturer. It was not until the board was ready for
manufacturing, when we found out that actually we had the mirrored image of the
pinout. At this point we had two alternatives: to redesign the board or to solder the
SJCP and SJMI on the back side of the board. We chose the second one mainly for
timing reasons. This will be fixed in later implementations.

2.4. Microcontroller - SJ Boards Interface

The microcontroller is facing the problem of how to interface efficiently
multiple Processing Units. Some multiprocessor systems with large number of PUS
have several levels of local buses even some custom networking which in any case
involves buffering. In our case, each PU represents 256 bytes of directly
addressable memory and all the transactions take place within one stretched
microcontroller machine cycle. But even though the prototype has only five PUS,
we still need to consider such factors like bus-lines overloading and signal
propagation delays, and of course the timing.

In general, the basic functions the microcontroiler-SJ-boards interface should
be able to perform are:

- AddressData Bus Control - The microcontroller and the SJ-boards are on the
same physical bus. The interface logic should be able to control the direction of the
bus depending on which device is driving it. Usually the bus is driven from the
microcontroller towards the SJ boards. Only when we have a read from a particular
PU, the bus direction is reversed. This is done to prevent the five SJ boards driving
the bus at the same time, which would result in a short on the bus lines.

- Decoding - The SJ boards are in the microcontroller address space together
with the SRAM and SCSI protocol chip. The interface logic should be able to
identify each board uniquely in order to avoid bus co~tests and to generate the
proper set of control signals. The decoding is done in two stages (see below please).

- Control Signals Generation - From one side we have the DS80C320 bus and
on the other side the SJCP external interface. The interface logic should perform the

Chapter 2: Hardware Design

necessary decoding and conversions in order to generate the proper control
sequences.

2.4.1. Physical Datapath

The interface logic is realized through a pair of FPGAs, one on the
microcontroller board, which I will refer to as FPGA-M and one on each SJ board,
FPGA-SJ. FPGA-M performs partial decoding and bus control functions and
FPGA-SJ completes the decoding process and generates the necessary control
signals. Since the FPGAs have limited internal resources and limited number of
external inputs, the functions should be distributed evenly between them.

Microcontroller
FPGA-M

FPGA-SJ s SJ

CONNECTORS A FPGA-SJ

S

FPGA-SJ s SJ

Figure 2.7: Physical Datapath

The DS80C320 bus goes to FPGA-M and after that it directly connects to

33

Chapter 2: Hardware Design

as many as five FPGA-SJ units, which expands the bus into five separate buses,
Figure 2.5.

As far as the dataflow is concerned, the FPGAs are playing simply a buffering
role. The bus is driven normally towards the SJ boards and only during a decoded
read it reverses its direction.

2.4.2. Micrwontrder FPGA Design

We have been using Intel's and Altera's FX740 coming in 68 pin PLCC
package having four Configurable Function Blocks (CFB) each containing ten
macrocells aid having a pin-to-pin deiay of IOns. In the first implementation,
FPGA-M performed some partial decoding of the address while the DS80C320 bus
control signals passed through in the original timing. In the second version,
improved design by Dr. Rick Hobson, we generated our own bus control signals
under state-machine control. Both designs will be discussed and compared where
relevant. The logic diagram of the first version is shown in Figure 2.8. The
PLDSShell file and the simulations are given in the Appendix.

2.4.2.1. LSB Address Latch

DALLAS has multiplexed addressldata bus. First the LSB of the address is put
on the bus and after that the same bus is used for data transfer. For the proper
system fiincticnality we need to stare the ESB of the address for a subsequent use in
data transfer operations which could be an instruction fetch from the
microcontroller program storage or data transfer tolfrom the microcontroller data
storage or the SCSI chip (LSB is also latched in FPGA-SJ and internally in SJCP
for addressing and operation decoding purposes). Eight macrocells in the FPGA-M
are organized as an eight-bit register. According to the DS80C320 specification, the
LSB of the address should be latched at falling edge of ALE (active high). Since the
data is getting strobed into the macrocell-D-flip-flops at the rising edge of the D-
flip-flop-ACLK-input, ALE should be inverted. The macrocell-drivers are
permanently on, the LSB-address-lines are never floating a d they are stable by the
time of the data transfer.

2.4.2.2. SCSI Protocol Chip Selection

We are using A1 5 and A 14 address lines to divide the data address space among
32k of SRAM, the SJ boards and the SCSI Protocol Chip (see Table 1). In order to
enable the SCSI chip data bus drivers, both CS-SCSI and RDM'R should be active

Chapter 2: Hardwm Design

at the same time (see Figure 2.6 for CS-SCSI logic).

/READ
/ W R I T E
ALE

AlS*/A14

Figure 2.8. Microcontroller FPGA-M Version-1 Logic Design

READ, -
/WRI?'E,~ --
ALE *-

2.4.23. READ, WRITE and ALE

In the first implementation the control signals READ, WRITE and ALE are
passed through FPGA-M directly to the FPGA-SJs on the SJ boards where they are
used to generate the corresponding control sequences on the selected board@). In
this case FPGA-M serves only as a buffer. The control signals reach the SJCP UO
interface in the original timing. We had some difficulties tuning the relative timing

Y

L

a

a

1 /ALE
vcc

ACLK

?i~

I I
/ 8

8
/ &

IEAC

8
/ - /

*A14*READ
/

/

Chapter 2: Hardware Design

between the micr~controller bus control signals and the SJCP clocks. Most of the
time the interface was working fine but sometimes we had to retransfer the data
several. times. We were n d sure what the problem was but io avoid potential
problems the control signals logic was redesigned.

In the second implementation, we take the original bus control signals and one
of the system clocks and use a state-machine control logic to generate a new set of
control signals timed better with the SJCP clocks, Figure 2.9.

New ALE 2 2

Figure 2.9: Bus Control Signals Timing

In order to be able to accommodate the new control signals in one machine
cycle, the machine cycle is stretched by 8 clocks. Two goals are pursued here. First
ALE is delayed to align it better with the SJCP interface logic clock. This would
guarantee correct data transfer. Second, the two original signal sequences we have
are NOP-ALE-RD-NOP and NOP-ALE-WR-NOP, see Table 6 for the coding
scheme. All the transitions involve only one bit change, except the transition from
W R to NOP where we have to change both bits. This might cause an ALE glitch
and misfiring of the SJCP interface state-machine. That's why RD has been added
momentarily between WR and NOR Instead of having WR-NOP we have WR-RD-
NOR The intermediate RD state does not cause any problems.

Chapter 2: Hardware Design

2.4.2.4. SJ Boards Selection

High A15 and A14 select the SJ boards. In order to be able to identify uniquely
five PUS, we need three more bits. In the first implementation we are passing
through A1 3, A12 and A1 1 gated with the product of AlS*Al4 to the FFGA-SJ and
use them to D a particular board, see Table 2.

Because of timing, propagation delays, and address space change reasons, we
were getting glitches on some lines. In order to avoid this, in the second
implementation, we use A1 3, A12 and A1 1 only to encode the type of selection
(Table 3), broadcasting, single board selection etc., and the actual ID code is passed
on the data bus. DO, Dl, and D2 are compared with the jumpers and the result is
latched. In subsequent board access operations the high-order address bits. (A13,
A12 and A1 1) are set to zero.

As an output from FPGA-M, we get two groups of signals. The first group
consists of A[O:7] and CS-SCSI used on the microcontroller board and second
includes A13, A12, A1 1, A/D[O:7), READ, WRITE and ALE.

The second group together with the system reset line (RESET), the interrupt
line @lX) and the two clock signals PHI-1 and PHI-2 constitute a bus going to
each SJ board, which we called SAM I1 Bus, see, Table 7.

The RESET signal is generated by the reset logic and is driven towards the SJ
boards.

Table 7: SAM 11 Bus Signals

I Signals I Direction I Function I
- - - - - -

I A13, A12, A l l I I towards SJ board 1 SJ b o d IDnD function select I
I I

/ bidirectional I bidirectional addressldata bus
1 I READ, WRITE, ALE towards SJ b~mi I control signals

, 1
I

1 RESET
f t

system reset signal

SJ board interrupt signal

SJ board clock signals
1

I towards SJ board

INTR

PHIJ, PHI2

towards DALLAS

towards SJ board

Chapter 2: Hardware Design

The INTR is coming directly from SJCP to the corresponding connector and
from the connectors all interrupt signals are going to dedicated DS80C320 interrupt
Inputs.

The dock signals, PHI-1 and PHIZ, are coming directly from the
Programmable-Skew-Clock-Buffer.

2.4.3. S J board FPGA Design

FPGA-SJ completes the SJ-board decoding procedure and generates the bus
and SJCP I/0 interface control signals.

2.4.3.1. Decoding

In the first implementation the A13, A12, and A11 address lines are compared
dynamically within the timing of the current instruction with the ID jumpers, Figure
2.10. The result of the comparison is used as a global enable signal to trigger
different activities in FPGA-SJ. When the result of the comparison is negative the
addresddata bus is driven towards SJCP and the control signals are in NOP state.

In the second version, impmvrd by Dr. Rick Hobson, the A1 3, A12, and A1 1
address lines are still used but for decoding the selection function, which might be
broadcasting, select lower half, select upper half etc. The actual ID code is
transferred over the data bus. The D2, Dl, and DO data lines are compared with ID
jumpers and the result is latched in a flip-flop. On selection the board stays selected
until it is deselected. This approach gives a little bit more addressing flexibility,
eliminates problems due to glitching and saves a little bit of address space if we
need it.

The external microprogram storage is 54 bits wide. The microprogram is loaded
one instruction at a time. Part of the instruction, 56 bits, is loaded through the SJCP
internal instruction scan-chain, seven bytes are written sequentially into the scan-
chain and strobed later into the microprogram storage. For the eight byte, we need
an external register accessible by the microcontroller. Since this byte belongs to the
so called Y field in the micmins+mction, we call this register the Y-register. Eight
macrocells in FPGA-SJ are organized as the eight-bit Y-register.

Chapter 2: Hardwate Oesign

ALE .

SEL

Figure 210: FPGA-S J Logic Diagram

Chapter 2: Hardware Design

Each SJ board takes 256 bytes of DALLAS address space. The LSB of the
address is used tCt access the SfCP resources or the Y registex One of these 256
addresses, LfB = OOH, is used to access the Y register (not dl 256 values are used
internally in SJCP).

2.4.33. Counter

In the first version, this was a real-time solution to a timing problem we might
have. During program step-by-step execution, we need to know how many clock
cycles we have before DRAM refresh in order to figure out if SJCP will be in
condition to execute the next step. During REFRESH, SJCP stops and will not
respond to a step request. As a matter of fact running at I6MHz, the probability of
stepping SJCP during a refresh is less than 1%. Eight macrocells are organized as
an eight-bit counter. The counter is reset by REFRESH and clocked by PHI-2.
b o w i n g how many cycles we have between two REFRESH signals and the current
value of the counter we could figure out how many clock cycles we have before the
next REFRESH. The counter is also used for testing purposes as an intermediate
buffer to read the Y register or the Y field of the microinstruction.

In the second implementation the counter is removed. The REFRESH signal is
connected to an DS80C320 input and used to reset a programmable on-chip timer.
The microcontroller checks the current value of the timer before doing a step. If
there are enough clock cycles left to do a step before the next REFRESH it goes
ahead, otherwise it waits. The number of clock cycles for a step can be calculated
from the microcontroller step instruction sequence.

2,43,4. Bidirectional AddredData Bus

Sixteen macrocells are organized as an eight-bit bidirectional tristate buffer
Figure 2.8. The bus direction is controlled by COMP-OUT and READ. Normally
the bus is driven towards SJCR Only on a read, it reverses its direction. On a read
the buses coming from SJCP and the counter are multiplexed. The multiplexer is
controlled by SEL.

2.435. Contfd Signals Genesalon, CTR-0 and CTjR-1

The external SJCP control interface consists of two control signals CTR-0 and
CTR-I. These two control signals determine the type of operation we have, see
Table 6. The control signals are function of several variables. They depend on
COMP-OUT, SEL, READ, WRITE and ALE. In more formal way we could write:

Chapter 2: Hardware Design

CTR-f = Fl(COMPOUT, SEL, READ, WRITE, ALE)
eTR-0 = FO(COMPOtrT, SEL, READ, W_RITE, ALE)

After performing the necessary operations, for the final set of equations we get:

C3R-I = KOMP-OUT + READ* WRITE + SEL
ccn?pccn?pO = COMP-OUT*(ALE + /WRfTE*/SEL)
The simulations and practical measurements showed that, the generation of the

control signals is correct. But in order for SJCP to function properly it should
receive the right set of control signals at the right time.

Because of a signal propagation delay we were observing a glitch on CTR-0
line. The problem was that there is delay between the time the address goes away
and the time COMP-OUT goes away. Ideally they should go away at the same time.
But, in practice COMP_OUT goes low !ater and for some time it is sctivl: during
the next ALE. That is why we were receiving a glitch on CTR-0 at the beginning of
the next ALE.

After observing the timing of the system clocks, we used PHI-2 to strobe the
control signals into D flip-flops. In this way we avoided the glitching without
affecting the relative timing.

Another problem we had was related with the relative timing between the
control signals and SJCP internal clocking. The control signals timing is determined
by the DALLAS CPU clock which doesn't necessarily have to agree with the SJCP
timing requirements. We had to shift the DALLAS clock in order to tune the control
signals generation timing and particularly ALE.

2.5 Summary

The board-level hardware implementation of SAM-11 took a little bit more than
a year. It should be noted that the SJ chip set designed at the VLSI Laboratory under
the leadership of Dr. Rick Hobson provides excellent hardware supported testing
and debugging features. I designed and populated the microcontroller and
processing unit printed circuit bards, debugged fully the microcontrdler and
nzwfially a e pmessing && &bugged khe SC,SI htp.&cp, hardwxe an_d fi_m~a_re, r----

&signed the first version of the FPGA-based interface and wrote a number of
t.esi%g and debugfig ~WM~S. Dr. Rick Hobson designed the second version of the
FPGX-based interfax Iqgic, partidly debugged the processing unit board and
wrote a number of processing unit testing routines.

Chapter 3: Software Design

Chapter 3: Software Design

3.1. Microcontroller-Host Interface

Using an embedded system as a vector arithmetic coprocessor imposes the
necessity of having a fast way to transfer data between the host and the embedded
system in order to achieve a reasonable system performance. From application
program point of view, the overall data processing time consists of several parts:

- time io i~&.isf&f arid i o d SAM 1'1 exwutztbie
- time to transfer the data from the host to the embedded system
- time to process the data
- time to transfer the result from the embedded system to the host.

One can see that there is a substantial data traffic going on between the host and
the embedded system, particularly when we are talking about processing big arrays
of data. Sometimes we don't really need to process any data but rather we perform
some system configuration, control or testing activities which involve data transfer
in both directions. In any case in order to create the feeling of real-time data
processing and control, we need a fast way to interface the embedded system. The
i d 4 case would be if we can transfer data at the speed of the local bus but with
increasing tl5e r;i;mber of processors, it wodd be difficult to accommdate tile
system in a standard PC box,

For interfacing purposes, we are using eight-bit-wide fast SCSI 2 interface. In
this case the embedded system is treated as a conventional SCSI device hooked up
on the SCSI bus, pretty much like a hard disk drive. SCSI 2 allows transfer speeds
of up to SMbytes/sec. The limitation on the transfer rates in our case is coming from
the microcontrolier clock rate which determines instruction execution times and
device driver timing respectively. Running at I6MHz we can get a transfer rate of
about 0.3Mbytedsec. Eventually if the code is optimized, we could get about
0.5-0.6 Mbytesfsec.

3.1.1. SCSI Interface Principles

SCSI stands for Small Computer Systems Interface and was originally designed
to interface block-oriented hard disk drives. Nowadays, SCSI is getting more and
more popular because of its reliability and speed and it is used to interface all h d s
of peripherals. Detailed discussion of SCSI specification can be found in the

Chapter 3: Software Design

specialized literature [I, 2, 31. Here, we will focus on points which are relevant to
hterfackg an emkddd system.

3,l.l.I. SCSI Bus Configuration

A typical SCSI bus configuration is shown in Figure 3.1. Up to eight devices
could be connected on the SCSI bus. We could have one or more host computer
system adapters and one or more peripheral controllers on the same SCSI bus.

I Host Computer P s t Computer

I Host Adapter I I Host Adapter I

SCSI BUS -
.

Peripheral Controller Peripheral Controller Peripheral Controller

4 peripheral
Device

1 peripheral
Device

Figure 3.1: SCSI Bus Configuration

Any twc devices connected to the SCSI bus can communicate. A peripheral
could communicate with a peripheral, host could communicate with another host
and a host could communicate with a peripheral. The devices capable of initiating a
transaction are called initiators. Usually the host adapters are initiators and the
peripheral controllers are targets. The initiator initiates the transaction by sending a
request to the target and after that the target controls all the activities and the
completion of the transaction.

3.1.1.2. SCSI Bus Phases and Phase Sequences

During a SCSI transaction the SCSI bus goes through several phases (states).
The phases follow a certain order depending on the configuration and type of
transaction.

Bus Free Phase - This phase indicates that no SCSI device is currently using the

Chapter 3: Software Design

bus.

Arbitration Phase - This is an optional phase which permits a device to gain
control of the SCSI bus as an initiator or a target. This phase is necessary when we
have more than one initiator on the bus.

Selection Phase - This phase permits an initiator to select a target to perform a
certain function.

Reselection Phase - This is an optional phase that permits a target to reconnect
to an initiator after the target has disconnected from the SCSI bus.

Command Phase - This phase allows the target to request the command
information from the initiator.

Data Phase - This is the data transfer phase.

Status Phase - During this phase the target requests that status informatioil be
sent from the target to the host.

Message Phase - This phase allows multiple messages to be sent in both
directions during any other phase.

An example of a SCSI transaction phase sequence is shown in Figure 3.2.

I Bus I Arbitration I Selection I Command 1 Data
Free

Figure 3.2. SCSI transaction phase sequence

Status

After the Bus Free phase all the initiators which want to take control of the
SCSI bus arbitrate for the bus. The initiator with the highest priority takes the bus
and gets into Selection phase to select the corresponding target. After the selection,
the target requests the command information during Command phase. The data is
transferred during the Data phase. After the data transfer, the target sends status
information and Command Completion message to the initiator. The Command

Command
Complete

Bus
Free

Chapter 3: Software Design

Complete phase completes the transacti~n and the bus gets into Bus Free phase.

3.1.13. Conunand Description Block (CDB)

After the selection, the initiator transfers to the target several bytes of control
information in a Command Descriptor Block (CDB), specifying the operation to be
performed. The CDB could contain up to 12 bytes. We are using Group 0 CDB of 6
bytes, this is determined by the host adapter, see Table 8.

Table 8: CDB format for SEND

The first byte specifies the operation. In this case the operation is SEND and the
data is supposed to be transferred from the initiator to the target. LUN is a three-bit
field specifying the Logical Unit Number of the target. Bytes 2, 3 and 4 specify the
length of the transfer. The last byte is reserved and is only used when we have
linked commands.

byte

0

1 1 ! LUN (unused = OO), Reserved (00) !

The format of the CDB has been designed to serve the purposes of hard disk
block data transfer. What we are interested in is the speed and reliability of SCSI
interface and we don't really need to stick with the conventions of hard disk black
data transfer protocols. We are using the fields in the CDB to transfer control
~ o m a t i o n relevant to SAM I1 functionality and activities. One should be careful
though, since some chips have embedded intelligence and they decode
automatically certain fields in the CDB on the receive.

Function

SEND operation code (OAh)

2

3

4

5

After receiving the CDB, the target decodes the operation, determines the data
transfer length and takes over the SCSI bus controlling all the activities around the
data transfer and transaction completion.

Transfer Length (MSB)

Transfer Length

Transfer Length (LSB)

Reserved (OO), Flag, Link

Chapter 3: Software Design

3.1.2. SCSI Interface Drivers

On the SCSI bus we have only two devices - the PC host adapter and SAM 11.
By default, the host adapter has the highest priority 7 and is configured as an
initiator. SAM II has the lowest priority 0 and could be configured as an initiator or
as a target but since the host adapter can only be an initiator, it is hooked to the bus
as a target.

3.1.2,1. Host SCSP Driver

On the PC side we have ADAPTEC AHA-1540 intelligent host adapter card
based on the Intel $085 microprocessor [4, 51. The AHA-1540 provides a
multitasking interface between PC/AT bus and SCSI bus supporting maximum
asynchronous SCSI rate of 2.0 Mbytes/sec and synchronous transfer rate of 5
Mbytedsec. The AHA-1540 is configured to use interrupt channel 11 and DMA
channel 5 with 10 Mbytes/sec burst data rate.

We are using the ASPI (Advanced SCSI Protocol Interface) [6] to access the
resources of AHA-1540 and to control the activities on the SCSI bus. The ASP1
provides a protocol to submit UO requests to the host adapter specific ASP1
manager. Usually, there is a separate ASP1 manager written for each host adapter
which is hiding the hardware from the application programs and SCSI drivers. Once
the ASPI manager is loaded it becomes a part of the operating system by
intercepting certain system calls (including DOS interupt 21H) and the SCSI drivers
integrate each type of SCSI device into the operating system through ASP1
independent of the installed hardware.

Special data structures called SCSI Request Blocks (SRB) are constructed by
drivers and application programs to access the services of the SCSI driver layer.
First the SRB is constructed in the application program address space and after that
a pointer to the SRB is passed as an argument to a subroutine calling ASPI. All
control information necessary to perform a certain SCSI operation correctly is put
together in the SRB. Different SCSI services (Commands) have different SRB
formats.

The SRB format for the SCSI UO Command is given in Table 9. The first byte
in the SRB is the Command Code, for performing an ID operation it is 02h.

The Status byte shows the status of the current SCSI transaction.

Chapter 3: Software Wign

The SCSI Request Flags specify the direction of the data transfer also, they
determine if the 1eng.h of the data transfer is to be checked.

Offset

00

01

02

03

04

08

09

I0

14

1 l5

17

19

21

23 ,
24

25

26

28
I 30

64

64+M

The Data Allocation Length is a four-byte field and gives the length of the data
transfer.

of bytes

0 1

0 1

0 1

0 1

04

0 1

01

04 .

01

02

02

02

02

01

01

0 1

02

02

Table 8: SCSi UO Request SM?

Description

Command Code = 02h

Status

Host Adapter Number 07h

SCSI Request Flags

Reserved For Expansion

Target ID OOh

LUN

Data Allocation Length

Sense Allocation Length (N)

Data Buffer Pointer (Offset)

Data Buffer Pointer (Segment)

SRB Link Pointer (Offset)

SRB Link Pointer (Segment)

SCSI CDB hngth (M)

Host Adapter Status

Target Status

Post Routine Address (Offset)

Post Routine Address (Segment)

RAW

W

R

W

W

W

W

W

W

W

W

W

W

W

R

R

W

W

W

R

34 / Reserved for ASP1 Workspace

M

N

SCSI Command Descriptor Block (CDB)

Sense Allocation Area

Chapter 3: Software Design

The place where the data is to be found for sending or to be stored on receiving
is given by the Data Buffer Pointer fields.

The Host and Target status bytes show the status of the Host Adapter and the
Target. The Target status byte is the byte sent by the Target at the end of the SCSI
transaction.

At the end of the SRB, we construct the SCSI Command Descriptor Block, in
our case it is a six-byte field.

The currently supported SCSI bus commands (SCSI driver services) are given
in Table 10.

Table 10: ASP1 Command Codes

Command Code b
Get Device Type I

Execute SCSI 110 Command

Abort SCSI 110 Command

Reset SCSI Device i Set Host Adapter Parameters

Reserved For Future Expansion

Reserved For Vendor Unique I

ASP1 allows linking SCSI requests by constructing several SRBs, each SRB
has a pointer to the SRB corresponding to the next command to be executed.

An example of calling the ASPI manager in order to execute a SCSI command
is given in Figure 3.3.

Chapter 3: Sofiwm Design

I Application Program
or Driver

Construct SRB v
t

Prepare Data Buffer

I Call ASP1 Manager 1 1

I

Yes

w

Application Program I or Driver

v

Figure 3.3: Calling ASP1 Manager

First the Application Program constructs SRB and prepares the Data Buffer
which could be reserving a space for the data to be received or filling the buffer with
data to be sent. After that it is calling the ASP1 Manager which sends the request to
the Intelligent Host Adapter. From this point, the SCSI transaction is processed
completely independent from the main CPU which continues with executing the
Application Program code. On the SCSI Command Completion, the Host Adapter
will transfer the data directly into the SRB and Data Buffer allocated address spaces
through DMA channel 5. Meanwhile the Application Program keeps checking the
status bytes in the SRB until the transaction completes or times out.

No v Execute SCSI Command

- SCSI transaction Completed
or TimeOut

Chapter 3: Softwane Design

3.1.2.2. Aaicrocontrskr SCSI Drives

The SCSI interface is built around the Advanced Micr~ Devices Enhanced
SCSI-Bus Interface Controller Am33C93A [7]. The SCSI Controller takes 32
locations of DALLAS addressable memory and the SCSI Bus operation is
controlled by writing commands and reading data and status information tolfrom
the SCSI-Bus Controller registers. With respect to the instruction set complexity,
the SCSI-Bus Controller can execute two types of commands: level I commands
performing low-level SCSI bus control, and level I1 or combination commands
realizing high level control. The combination commands radically reduce interrupt
handling responsibilities of the main processor.

One complete SCSI transaction consists of several stages. Usually, after each
stage an interrupt is generated to indicate the completion of the stage. During one
SCSI trmsaction, the rnicr~processor aust serve several interrupts before the
transaction is completed successfully. Depending on how the SCSI transaction is
managed - by handling interrupts or by polling status registers, the transaction is
atomic or it is interrupted by side activities, there are several approaches to design a
driver.

3.1.2.2.1. Conventional Hard-Disk Drives Architecture

Originally, SCSI was designed to serve the purposes of a high-speed Hard-Disk
data block transfer. In this particular case, the driver is managing a predictable and
passive device like the hard disk, everything is defined from the very beginning and
the driver is written as a devoted SCSI bus server. Also, on the SCSI bus we could
have several SCSI devices and sometimes a given transaction needs to be
interrupted for a while and resumed later. Under these conditions the
implementation of the drivers employing interupt handling is pretty straightforward
and resembles pretty much a big "CASE statement. Everything a driver has to do
when an interrupt comes is to recognize where in the SCSI transaction it is right
now and this will determine what to do next. Depending on the level of
implementation of the SCSI driver hardware and the chip set used we might have up
to a couple of hundred possible states. For example, if we want to write an intcrupt
driven driver for Am33C93A (this is an intelligent SCSI bus protocol chip), we
seed to be able to check for a b u t 150 different states.

The block structure of an interupt driven SCSI driver is given in Figure 3.4.
When an interupt comes the processor reads the Interupt Register and gets into the
Interupt CASE statement. After that it reads the Phase Register to determine the

Chapter 3: Software Design

phase where the current command has stopped and executes the corresponding
function.

Phase i CC-

r *
No

Figure 3.4: Interupt Driven SCSI Bus Driver

Obviously, the implementation is straightforward but this architecture has some
shortcomings. It is relatively slow since we have to do a certain amount of checking
even in the case when the interrupts are coming from the same transaction. Well,
this is not a big problem considering !hat the main delay is coming from the hard
disk mechanics. Also, code repetition is possible. Some optimization is possible
considering the requirements of the specific application. The main complications
are coming from handling exceptions and bus error states. In general this
architecture gives relatively good performance and it doesn't represent any
challenge from software design point of view.

t ,
f

Interupt pending

Yes

Phase 0 +
Phase 1

-
Phase k

t
function 01

+

Interupt 0 -
Interupt 1

Interupt N

-

Phase j - +

Phase 0
Phase 1

I

+
+

Chapter 3: Software Design

3.1.2.2,2. SAM I1 SCSI-Bus Driver Architectwe

In designing the SCSI driver we have taken into account several features
specific for our application. First we have only two devices on the SCSI bus, the
host adapter connected as an initiator and SAM I1 connected as a target. This
eliminaks the necessity of having Arbitration at the beginning of the SCSI
transaction since, we have only one device connected as an initiator and it can take
the bus any time it wants.

What we want from the SCSI interface is to transfer data at high speed. We
don't need all the features of the SCSI protocol related to interfacing hard disk
devices. We are interested in transferring data in both directions and for this purpose
we need only two commands Send data and Receive data. We will be using the
fields in the Command Descriptor Blocks to encode our own commands and to
define our own protocol as much as possible. We can not completely customize the
CDB because the host adapter and the AMD SCSI chip react automatically to
certain codes which is critical for the proper system performance. For example the
AMD SCSI chip might disconnect automatically from the SCSI bus on a Read after
the Selection.

Since we have only two devices on the SCSI bus, one initiator and one target,
there is no contest for the bus and the target doesn't need to disconnect from the
bus. Some of the hard disk operations take relatively long time and the target after
receiving the CDB disconnects from the bus allowing other devices to use it, while
it is executing the required command independently of the host adapter. After the
command is executed, it reconnects to the bus and completes the transaction,
Figure 3.5.

.
1 Execute the command I

Figure 3.5: SCSI Command Execution Through Disconnection

Selection and
CDB transfer

In our case we don't need to disconnect from the bus and we can complete the
transaction in one shot. Besides that, since the SCSI protocol is using hand-shaking

Reconnecting:
to the bus

Decoding
the command

Transfer data and
Completion

Discomectior
from the bus

Chapter 3: Software Design

we can accommodate all SAM II activities within the SCSI transaction without any

I

Abort SCSI Command I

I Receive I

Decode SCSI Command

Transfer-Data
I b

-

' Yes

i

No

Figure 3.6: SAM I1 SCSI Driver Architecture

Chapter 3: Software Design

complications or problems.

On Power-up the SCSI Pro~ocol Controller is configured for asynchronous data
transfer, DMA channel signals are negated and the internal register address is
latched at falling edge of ALE. There is no explicit Target configuration, its status
on the SCSf bus depends entirely on the commands it executes.

The SCSI transaction goes through three major stages: Selection,
Data-Transfer and Commaad-Completion. First the SCSI Protocol Controller is set
to wait to be selected by the host adapter. If the Selection is successful, the driver
decodes the SCSI c~mmarrd to be executed, Send or Receive, and the SAM I1
operation to be performed. Actually, the term SAM fI operation stands for a pretty
complex piece of software and will be discussed later. For now, with respect to the
SCSI bus functionality, it is important only to point out that, while the
microcontroller performs certain activities the host adapter is hanging waiting for a
rep1 y by the target.

The SCSI command to be executed specifies the direction of the data transfer.
Send for the microcontroller means that, the microcontroller should send data to the
host adapter. Usually, the microcontroller first executes a SAM XI operation and
after that sends the result back to the host adapter within the timing of the current
SCSI transaction. In case of Receive, the microcontroller first receives the data and
after that does any data processing.

If the Transfer-Data stage has completed successfully, the microcontroller
completes the SCSI transaction by sending Status and Command-Complete
messages.

The successful completion of each stage is monitored by polling the SCSI
Protocol Controller status registers. If a certain stage fails, the transaction is aborted
and eventu&y repeated by the host adapter later.

The polling and the fact that we need to use a small arsenal of SCSI bus
commands allows us to construct the driver to follow the natural timing of the SCSI
transaction. This makes it faster rdfcaHy sifnp1ifies its architecture. At the
same time it allows us to eliminate all time constraints and to accommodate all
micmontroller activities w i t h the timing of the current SCSI transaction.

Chapter 3: Sofiwslle Design

The system software allows the end-user to get access to SAM I1 resources to
perform different configuration and testing functions or to do certain data-
processing operations. It consists of two major components - the Host Control
Interface and the MicrocoatroUer Monitor Program, Figure 3.7.

The Host Control Interface is running on the host computer and its task is to
accept the user commands, to encode them and to send them over the SCSI bus to
the Microcontroller for execution. After that it waits for the Command Completion
and reports the result.

HOST
1

$ I i

I Encode User Command 1 t

Display Result
I

Result Present No
Send User Command -

-
SCSI - 2 f 4

ti* 4 User Command Request I Send Result to Host

I Decode User Command I

Execute User Command

EMBEDDED SYSTEM

Chapter 3: Software Design

The Micmontr01ler Monitor Program receives commands over the SCSI
interfaw, decodes them, executes them and sends results back to the host computer,
The command execution takes place within the current SCSI transaction.

The Host-Embedded System communication is command driven and the
concept is very close to the idea of the Remote Procedure Call. The system should
serve commands in the areas of System Configuration, System Testing, Program
aid Data management and Data Processing.

3.2.1. Host Control Interface

The Host Control Interface performs two basic functions - User Interface and

I (j Construct SRB /

I

Display Results -
Option-N .

Fignre 3& Host Control Ioterface Main Loop

Chapter 3: SoAware Design

High-level Control. It is a menu-driven hierarchically organized system, Figure 3.8.
Each menu could have several options and some options could be links to
corresponding submenus.

After an option has been selected the request processing goes through the same
routine. The program constructs the corresponding SRB (SCSI Request Block) and
calls ASP1 which on its behalf calls the low-level SCSI drivers and the request is
sent for processing over the SCSI bus to the microcontroller. After the request has
been served, the control flow goes to the same menu or to the main menu one level
up. The last option in each menu is Exit or Up.

Each option in the menu system has a unique binary code. This code is encoded
in the CDB and is transferred over the SCSI bus along with other relevant control
information to the Microcontroller. The Microcontroller is using it to fire up certain
function(s). It is important to note that this code system is different and independent
from the SCSI Standard Specification code system.

In the SCSI Bus Protocol, the operation code is the first byte in the CDB, the
rest of the bytes are used to transfer other control information. In our case, we are
using two standard SCSI operations - Send and Receive. We preserve the first byte
in the CDB for the SCSI operation code, this is important for the ASP1 software and
the SCSI bus hardware, but we use the rest of the bytes to implement our own
control protocol. An example format of a CDB used to transfer files into the SJCP
external program storage is given in Tabie i 1.

Table 11: Load Executable CDB Format

~ y t e I Code j Function
I
I SCSI status

I I

I I I

i 2 Mh / Load Executable opcode I user definable

0
r I

OAh I SEND opcode 1 reserved

1

Bytes 0,1 and 5 are preserved for the Standard SCSI Specification applications.
Byte 2 contains the Load Executable opcode which tells the Microcontroller that

XXX00000B

1

user definable

user definable

I

LUN specification / reserved

3
1

X f Total number of packets

5

f t

Wn System iieid reserved

Current number of packet 4 X

Chapter 3: Software Design

what is comiilg is a part of a file to be loaded into the SJCP external. program
storage. Bytes 3 and 4 contain the total number of packets to be transferred and the
number of the current packet respectively. For this particular operation the length of
the packet is fixed and we don't need to transfer the number of bytes in a packet.
The different commands might have different CDB formats. This approach allows
us to accommodate our control protocol into the Standard SCSI Bus Protocol

-

without affecting the system performance.

Table 12: Option Codes Description

Function Description

Select all units. The microcontroller selects all processing units for
subsequent operations.

System Test. The microcontroller tests the system memories and sends the
result to the Host.

Executable verification. The microcontroller keeps an image of the loaded
executable in its data SRAM. It verifies the image in its SRAM with the
executable in the SJCP external program storage and sends the result to the
Host. Basically it sends back the number of mismatches. Currently this option
is disabled.

Step-by-step Program Execution. The Microcontroller controls the execution
of the instruction pointed by the SJCP Program Counter and returns the
address of the next tmt"~ctim to 5e executed and the instruction itself. If the
program is running full-speed it stops the Microprocessor and executes the
first instruction in the program.

Full-speed Program Execution. The Microcontroller sets SJCP into full-speed
program execution mode.

Read 128 bytes (1 bank) of SJCP Internal Dual-Port Memory. The
Microcontroller reads the specified bank in the SJCP internal Dual-Port
Memory and sends it to the Host.

Load SJCP Executable. An SJCP executable file is loaded into the SJCP
external microprogram storage. The file is transferred in packets of 128 bytes.
First the whole file is transferred into the DALLAS data storage and after that

storage. The address scan-chain is loaded with 0 to p in t the first instruction
in the program. Cmnt iy this option is disabied.

Switch to terminal control. The microcontroller exits the SCSI driver and
switches to a terminal software connecting the embedded system to an
externat ASCII terminal via the serial interface. SCSI is ignored.

Chapter 3: Software Design

I
1 Table 112: Option Codes Description

Select lower half units. The microcontroller selects the lower half of the units.
Currently there could be four DMUs in the lower half.

I
@tioncode I Function Description

I OAh I Select a single unit.

08h Select upper half units. The microcontroller select the upper half of the
processing units. Currently there could be only one PMU in the upper half

I
OBh

OCh

ODh

The currently supported options are described in Table 12. The addition of new
options is pretty straightforward, one just needs to keep track of the uniqueness of
the option codes.

Deselect all selected units.

h a d HEX record. The executable program is processed transferred over the
SCSI one HEX record at a time. The executable record is transferred and
loaded into the SJCP external program memory at the specified location. This
allows to load programs anywhere in the memory and there is no need to keep
the whole image in the microcontroller SRAM.

Initialize a new program. The microcontroller initializes a new program for
execution. This is necessary because we could have several programs in the
SJCP external program storage. It initializes the starting address and clears
the execution flag.

OEh

3.2.2, Microcontroller Monitor Program

Select a DPM bank. The microcontroller selects the DPM bank specified by
the user in the currently selccted processing units. The bank will be used in all
subsequent operations until it is changed explicitly.

3.2.2.1. Architecture

Write a DPM bank. This The microcontroller writes the received data into the
currently selected DPM bank starting from the address specified by ihe user.

Usually, the monitor programs represent a set of routines dealing with memory
management, interface communication and the servicing of different system state
exceptions. It is also possible for the monitors to have a hierarchical architecture
where at the bottom we have a set of basic routines dealing directly with the
hardwares organized in a kernel, and on the top of the kernel some more

Chapter 3: Software Design

sophisticated system management or communication tools are developed.
Regardless of the differences, the conventional monitors have two common features
- they are kennel based and they use intempt handling.

System Configuration n
Target Selection and Transfer m
I SCSI Command Decoding I

Receive I Send

1 Decode SAM II Command 1

Decode SAM 11 Command i N o +
v

Execute SAM 11 Command . Last Block

~~ 39: &licmn&oHer Monitor Architec~e

It should be noted that for systems with certain level of complexity this is the

Execute SAM 11 Command

wly approach. But sometimes eonsidering the specific characteristics of the system,

60

I

Chapter 3: Software Design

one might be able to simplify the architecture and to build more efficient and fast
monitoring software.

During the development of SAM I1 Monitor Program we have considered
several factors. First the Embedded System is connected to the Host by dedicated
SCSI Bus Interface. This means that the priorities are fixed from the very beginning
and we can communicate through atomic SCSI transactions without having any
device disconnected from the bus at any particular moment during the transaction.

Second, the explicit initiator-target relationship between the Host and the
Microcontroller determined by the SCSI bus Protocol imposes a certain pattern in
khe Host-Microcontroifer communication, The presence of a pattern allows us to
predict the activities on the SCSI Bus.

The decision to employ status-bytes polling instead of interupt handling made
possible to fit ths SAM II c o r n a d execution within the timing of the current SCSI
transaction, using interupt handling this would be pretty difficult to do, and it was
pretty convenient during the system debugging.

Finally, the idea of a command driven Microcontroller-Host communication fits
very well with the principles of the SCSI Bus Protocol.

As a result of this we managed to build the Microcontroller Monitor around the
SCSI Interface driver. The Monitor is looping infinitely in the relevant
chronological order through the stages of the SCSI transaction and accommodates
the execution of a particular SAM I1 command within the timing of the current
SCSI transaction Figure 3.9.

On Power-Up the Monitor performs system configuration activities. First, it
initializes the SCSI and serial interfaces and after that it performs system test,
testing the microcontroller memory space, FPGAs and SJCP external and internal
me~ories. The results from the tests are stored at the beginning of the data memory
and they can be requested at any time. Also the memory tests can be repeated at any
time on request by the Host.

After the System Configuration, the Monitor is looping infinitely through the
C* basic SCSI Biis stages - Selection, Data Transfer Commmb Completion.
From SCSI Bus Protocol point of view, we are using two standard commands -
Send and Receive. Usually, Receive is used to transfer executable and data files
from the Host to the Micmontroller and Send is used to get the results or system

Chapter 3: Software Design

parameters back or simply to fire certain activities in SAM-11.

During tibe Selection stage SAM-!! is se!wted by the Host md the six CDB
bytes are transferred from the Host to the SCSI Protocol Controller on the
Microcontroller board. After the stage is completed the Monitor decodes the SCSI
command by testing the first byte in the CDB.

If the command is Send, the Monitor decodes the SAM-I1 command by testing
the command code in the third byte in the CDB, which can be one of the Option
Codes from Table 12 and executes the corresponding command. After the command
is executed it transfers the result back to the Host during the Data Transfer stage. On
Receive, first it transfers the data and after that executes the SAM-I1 command. In
any case a decoding is taking place to determine what SAM-I1 activity is supposed
to be performed, followed by an execution.

When the corresponding SMM-I1 command has been executed, the Monitor
completes the current SCSI transaction and goes back to Selection stage waiting for
Target Selection.

The currently supported SAM-I1 commands are given in Table 12. In order to
illustrate the nature of the activities going on in SAM-11 we will describe the
execution of one of the commands.

3.2.2.2. An Example of SAM-II Command Execution

As an example of a SAM-11 command execution, we will discuss the first
variation of loading of an executable image into the SJCP External Program
Storage. This was used at the initial stages of system debugging. The loading goes
through two stages. First, the executable image is transferred from the Host hard-
disk into the Microcontroller data memory. The image is transferred in packets of
128 bytes each. When the last packet is transferred the image is loaded into the
SJCP External Program Storage. The Microcontroller data memory is byte oriented
while the SJCP Program Storage is $-byte word oriented. One SJCP microprogram
word is stored in eight consecutive bytes in the Microcontroller Memory. The
transfer from the Microconmller memory into the SJCP Program Storage takes
ptace through the SJCP b e d Scan-Chains.

The Monitor keeps receiving and storing packets into the Microcontroller data
memory until it detects that the last packet has been transferred. When the last
packet has been received, it means that we have the whole executable image in the

Chapter 3: Software Design

Microcontroller data memory and the loading into the SJCP Program Storage could

i I Target Selection I

Data Transfer

Last Packet I

1Y u I Set SJCP Address and Instruction Output Drivers I

Set SJCP Program Storage Counter I
i

1 b a d SJCP Address Scan-Chain I

Load SJCP Instruction Scan-Chain
I

Strobe the Microinstruction into

I

Yes V
Last Microinstruction

No

Increment SJCP Microinstruction Counter

F i 310: Loading Exec~itabIe Image into the SJCP External SRAM

Chapter 3: Software Design

begin. The concept of having the whole executable image in the Microcontroller
SRAM before loading limits the length of the h a g e to 32kbytes or 4k8-byte-words
but it simplifies the loading and executable verification protocols. Also, in the
process of building the prototype it is good to have the image permanently in the
micmontrdfer SRAM for testing, reloading and verification purposes, it eliminates
the SCSI traffic.

The loading takes place through the SJCP internal scan-chains. During the
loading procedure we are using two of them - the address scan-chain, two bytes
long and the instruction scan-chain eight bytes long. The address scan-chain is
loaded with the address of the next microinstruction to be loaded by writing
consecutiveiy two bytes, MSB first, into an address corresponding to the address
scan-chain. In the same fashion we are loading the next microinstruction to be
loaded by writing consecutively eight bytes into an address corresponding to the
instruction scan-chain. The scan-chain output drivers are set driving towards the
external SRAM permanently. The microinstruction is strobed into the external
SRAM by writing to a specific address which triggers the generation of a strobe
pulse. After that, we check if this was the last instruction to be loaded. If it is not we
increment the microinstruction counter and the procedure repeats, otherwise we
complete the transaction and message for successful loading is sent to the Host.

When the loading procedure is completed, the Monitor is ready to accept new
commands.

3.2.3. Software Development Tools and Program Debugging

In order to take advantage of SAM I1 computational resources, we need to be
able to develop and execute SAM I1 programs. In other words we need tools to
allow us to write, to debug, to execute and to do some program and data
management operations in SAM I1 environment. We have a package which outputs
SAM 11 HEX file (the source code is written in rnicroAPL). From this point we need
to convert the HEX file into a SAM I1 executable, to load the executable, to manage
its execution, start and termination, and of course we need to be able to debug it.
Right now the program management and debugging tools are tightly coupled but
later -with the expansion of the system most probably they will separate and become
more autonomous.

3.23.1. SAM I1 Program Management

The program management utilities include loading and verification of the

Chapter 3: Software Design

executable and program start and termination. These utilities allow us to manage
the program execution from the beginning to successful completion and to proceed
reliably after that with other activities if any.

3.2.3.1.1. SAM-Il Executable Loading

We discussed the first implementation of our loading procedure in the previous
section. Currently, the executables are loaded one HEX record at a time. The HEX
records are independent units. They have all the necessary information for the
record to be processed correctly, this includes the starting address and the number
of instructions to be processed.

I 3.2.3.1.2. SAM-II Executable Verification

This utility allows us to verify the loaded executable with the image in the
Microcontroller Data Memory. This is necessary to make sure that we have the
executable file loaded correctly into the SJCP Program Storage. The reading of the
SJCP external SRAM takes place through the SJCP internal scan-chains. The 64-bit
microinstruction is read by reading consecutively 8 bytes from the address
corresponding to the SJCP instruction scan-chain. These 8 bytes are compared with
the corresponding 8 bytes from the microcontroller image. The mismatch counter is
incremented on a byte mismatch. When all microinstructions are processed, the
counter is sent over the SCSI to the Host. If the counter is zero, the program
executior; can start otherwise the program shwdd be reloaded. This option was very
usefid during initial system debugging.

3.2.3.1.3. SAM-II Program Initialization

The conventional way to start a program execution is to load the Program
Counter with the address of the desired routine and after that the execution can start.
The differences are coming from the way you load the Program Counter and the
way you interface the Program Storage. The SJCP Program Storage is Interfaced
(Figure 3.12) through the SJCP internal scan paths.

The Prcgram Counter is not directly accessible and the address of the first
instruction to be executed is loaded into the Address Scan-Chain. The Program
Counter and the Address Scan-Chain are multiplexed, the multiplexer is contrdied
by a Trap signal. The Program Counter is 16 bits wide but only 13 bits are coming
from the Instruction Scan-Chain to be used eventually in the construction of the
next address, on Jump or Call the lower three bits are cleared.

Chapter 3: Software Design

Serial 16 bit Input

ADDRESS SCAN-CHAIN
I I

16 bits I I

Other Inputs 13 bits

ADDRESS LOGIC

16 bits

PROGRAM COUNTER

16 bits

4 16 bits

I ADDRESS BUS DRIVERS I I INSTRUCTION BUFFER

$ 16 bits + 56 bits

Figwe 3.11: S JCP Program Storage Interface

After the SJCP is stopped, the Address Scan-Chain is loaded with the address
of the first instruction to be executed, Figure 3.13 (the Trap is set and the
multiplexer selects the Address Scan-Chain). The first instruction should be either
Jump or Call in order to initialize the Program Counter. After executing one step,
we set the Execution Flag, a byte in the microcontroller memory, to show that the
first instruction has been executed and the Programming Counter has been
initialized. The Execution Hag is used also by Step-by-step, Full-Speed and
Loading routines. We clear the Trap to select the Program Counter and with this the
exwition can proceed Stepby-Step or Fdl-Speed.

Using the start-up algorithm from Figure 3.13 imposes certain limitations. The
first instruction to be executed should be a Jump. The new address is constructed by
using only 13 bits from it as the most significant bits and clearing the three least
significant bits. This means that, the second instruction should be at address

Chapter 3: Software Design

location with the three least significant bits zero,

Stop SJCP I
Load the address of the first instruction I into the Address Scan-Chain

I Execute One

Set Execution Flag +
Clear Trap Lr'

Figure 3.12: Program Initialization Routine

A more general way to start a program is by using the stack. The
microcontroller writes the first address into a system area in the SJCP internal
SRAM (the Dual-Port Memory) and after that it starts a start-up routine running on
SJCP using the algorithm from Figure 3.13. The routine takes the address from the
Dual-Port Memory, puts it onto the stack and executes a RETURN instruction. The
RETURN instruction loads the Program Counter with the stack value which
effectively starts execution of the program at the specified address.

32.3.1.4. SAM I1 Progrann Tenraination

We need some way to signal the system that the program has completed and to
show the state of completiw. For this purpose, we can use a system interupt.

Chapter 3: Software Design

Set the hterupt Line *
Figure 3.13: S JCP Program Termination Routine

At the end of each program, we attach a program termination routine,
Figure 3.14. This routine writes into byte 0, bank 0 of the SJCP Dual-Port Memory
the Intempt Code which shows the program has completed. It also shows the state
of completion if we have more than one. After that, it sets the Interupt Line and
goes to an infinite loop. Whenever appropriate, the Microcontroller will poll the
Interrupt Line, will detect there is an interrupt pending, will read byte 0 bank 0 and
will take the appropriate actions, stop SJCP etc.

3.2.3.2. SAM I1 Debugger Concepts

Debugging tools are necessary to write efficient and correct programs. With
respect to the level of programming we have different types of debuggers, some
debuggers work on assembly code interfacing directly to the hardware, others work
on high-level language sowce codes. and some have both features. As an example,
we will have look at "CodeWatch" f29] an interactive source-level debugger
features:

- Controlling Program Execution
- Breakpointing
- Stepping
- Tracing

- Examining the Source Program
- Environment Control
- Symbolic Access

Chapter 3: Softwar\: Design

- Action Lists
- Macro-Facility
- Command Fifes

"CodeWatck" is a pretty complex debugger supplying its own conln~tu~d
language but the functions it performs can be grouped in two major areas - Program
Execution Control and Environment Management.

In designing a debugging tool, one should consider the underlying hardware,
the hardware-supported debugging capabilities, the control interface and the
programming language. There are several features specific for SAM-II systen~.
First, SAM I1 is a multiprocessor and we need to be able to debug a program
running in multiprocessor environment. Second, SAM I1 is an embedded system
and this raises the question of interfacing the system during debugging. Third, the
SJCP internal register files are not directly accessible and the interface should take
place through the Dud-Port Memory. This imposes the aecessity of inrorprating
code into the executable program which copies the register files into the Dual-Port
Memory for subsequent reading by the Microcontroller. It should be noted that,
SJCP provides excellent hardware-supported program-control capabilities.

The SAM-I1 debugging system although far from being sophisticated has most
of the general features of a conventional debugger. Of course the implementation
decisions reflect the machine architecture and machine code organization. The
debugger has the following program control options:

- Load and Verify - these options allow to load a new program and verify the
image. On reloading, the program environment is initialized. The verification of the
image was necessary because at certain point we had problems with reliably
accessing the SJCP program storage and/or external interface. Verifying the image
makes sure that the program is correctly loaded and it is also used for testing
purposes. Right now Load and Verify are independent but they can be combined.

- Step and Breakpoints - these options allow to step one or several instructions
at a time. The global control is provided by the front-end interface but depending on
the responsibility distribution between the microcontroller and the host two
implementations are possible. The first one is when execution control is provided
hv -I -=- hest == in which case trhe host sends RxW-!ike requests h:cugh &be SCS! to the
microcontroller for each single instruction. The microcontroller still maintains the
program environment but the execution pointer is handled by the host. The second
way is when the micmontrotler perfoms low-level execution control, handling the

Chapter 3: Software Design

execution pointer, and it just sends the result to the host at the breakpoints. The
second variation is faster but the first one is more suitable for tracing.

- Tracing - enables recording the execution steps into a file for later
examination.

- Disassemble - during stepping or breakpointing the next instruction to be
executed is disassembled ,and displayed on the screen.

SAM-II is an embedded system and this affects the way the program
environment is handled. Some of the functions are performed by the
microcontroller and some by the host. The microcontroller maintains a set of
functional flags reflecting the program execution status. This infomation is
necessary when the program is switching execution mode between step,
breakpointing and hll-speed.

3233.1. Step-by-Step Execution

This utility allows us to step through a program one instruction at a time. In this
way we can trace the program to monitor how the Program Counter is changing and
also to observe the next instruction to be executed, hence partial verification.

/ Execution Flag 1 yes
No

i

Execute Start-Up Routine

I
Execute One Step L-r'

f I i

Send the next instruction 1 andits address back ,
i

Fignre M4: Step Exeation Command Algorithm

Chapter 3: Soflwnrt: Design

SKP has hardware support for step execution. In step mode, the next
instruction is executed by writing to a specific address location within the
microcontroller address space. The step execution starts always with the first
instruction of the program. The step-by-step execution routine first checks the
execution flag to get the current state of the program, Figure 3.15. If the program
has just been loaded it executes the start-up routine, if the program is already in
step-by-step execution it executes one step and returns the Program Counter and
next instruction to be executed. At any p i n t the step execution mode can be
switched into full-speed,

In both execution modes, full speed and step-by-step, the program execution
begins with the start-up routine. This is because the Program Counter is not directly
accessible and it should be initialized under program control.

3.23.2.2. Fuli-Speed Execution

This utility sets full-speed execution mode, Figure 3.16. The mode is set by
writing to a specific address. The hll-speed execution mode can be set at any time
during step-by-step mode or at the initial program start up.

I Execute Start-up Routine I I Clear Execution Flag I

I Set Full-Speed Execution I

Figure 3.15: Setting Full-Speed Execution Mode

If the Execution Flag is set, the program is already in Step mode, the Execution
Hag is cleared and then Full-Speed Exaution mode is set If the Exemtion Hag is

Chapter 3: Software Design

cleared, the program hzs just beer1 loaded or it is running full-speed, we execute the
start-up routine and afte; that we set Full-Speed Execution mode. This is done to
guarantee system stability during switching between the two modes.

3.2.3.23. Dud-Port Memory Monitoring

The SJCP internal register files are not directly accessible by the
microcontroller. The SJCP internal Dual-Port Memory is used as an intermediate
buffer to get an access to the dat~ in the SJCP internal register files or the external
DRAM, The SJCP executables should contain routines for transferring data into the
Dual-Port Memory from the SJCP internal register files or DRAM and the timing
synchronization with the ~icrocontroller can be achieved using the SJCP external
intempt lines. The SJCP's Dual-Port Memory is in the rnicrocontroller data address
space and it is accessed as a conventiond memory.

3.2.3.2.4. Breakpointing

Breakpointing allows to interrupt the program execution at certain check points
in order to perform execution flow control. There are two ways to realize
breakpointing. One can use step mode with address check before each step. When a
breakpoint address is reached, the Microcontroller stops program execution and
performs the necessary actions. The other way is to replace the breakpoint
instmction with an SJCP executable routine to service the breakpoint. This routine
i n f m s the Microconuoiier &at a breakpoint is reached and it can take the
appropriate actions. In this way the breakpointed program can run full-speed
between the breakpoints.

Depending how the responsibilities between the microcontroller and the host
are distributed with respect to program execution control, we have two alternatives.
The first one is when the microcontroller handles the breakpoint table and controls
the program execution between the breakpoints. The host only sends a request for a
breakpoint execution and waits for the result The other approach is to let the host
handle the breakpoint table and program execution. In this case the host sends to the
microcontroller Step-by-step execution requests, where every request requires a

/T T sepaate SLSI transaction. The host is responsible for the execution pointer. The
first approach is faster since it does not need that intensive SCSf communication
between the breakpoints, but the second gives a little bit more flexibility and
removes some complexity from the microcontroller software.

Chapter 3: Software Design

In step or breakpoint mode, the next instruction to be executed or the breakpoint
instruction respectively is disassembled allowing the user to verify the program
control flow. The instruction disassembly is done on the host. It makes it easier to
trace program execution and it is useful in verifying the compiler correctness (the
software development tools have not been tested completely yet).

3.2.3.2.6. Parallel Execution and Debugging

The different activities on the processing units are triggered by writing into
specific W m s e s . If we haw more &an m e unit selected at certain moment and
execute some function, this function will be executed on all selected units
simultaneousfy. The programs in different processing units are completely
independent as far as their status is concerned. The status of the programs stays the
same regardless of any changes on the seiection mode of the processing unit, until it
is changed explicitly.

The functions executed on the processing units are executed in atomic manner
in their entirety and they are completely independent from each other. The parallel
execution and debugging of programs residing on different processing units is done
by selecting the corresponding units and executing the corresponding program
execuriun cumands.

For example, if we want to execute programs in step mode in the lower four
processing units, first, we select the lower four units and after that we start
executing stepexecution commands. The commands will be applied to all four
units simultaneously. If at some point we want to see the status information of a
particular unit we select this unit and read the relevant information.

The front-end interface is running on Windows 3.1. The commands are
wansferred over the SCSI in atomic fashion and they are completely independent
regardless if they are going to a single unit or to several processing units running in
parallel. We could have an open window for each unit and control the processing
~,-;t A-nm 1 1 ~ 1 1 1 diuuxb~t .-am whdows. This dlows us to trace 2nd disphy dl the re!evant
information for all processing units at the same time. We also can step the
processing units one after the other. This feature would be pretty convenient in
debugging programs with data exchange among the processing units during
program execution for detecting deadlock conditions or to time the processing units
in the data exchange.

Chapter 3: Software Design

ParaOlel programs can be run in all three modes: step-by-step, breakpoint and
fuli-speed execution. it is dso posdbk to run different processing units in different
mode, for example one unit in step mode and another in breakpoint or full-speed
mode.

33. Test Software

The testing software is a collection of routines which perform tests on different
system components like system memories, interfaces and component resources.
The testing process cm be divided into two stages - system components testing in
the process of system development and routine system check performed at power-
up or at any time a user wants to make sure that all system resources are functional
and accessible.

In the process of system integration, each component is tested separately and in
conjunction with the other system components. The testing has two goals, first it
verifies the hardware functionality, signal levels and timing and second it performs
high-level logic test. During this type of testing one component could require
several routines for testing different features and properties of the component. The
number of routines could be quite big, for example the complete testing collection
for SAM II consists of a couple of hundred routines.

Once the system is built, a system resource testing is performed at power-up or
at any time a user thinks it is appropriate to check the system functionality. This is a
high-level logic test, testing system resource functionality and accessibility and it
doesn't require human interaction.

At board level, SAM II consists of two major hardware components - the
Microcontroller and the SJ Processing Unit. In the following sections we discuss
the approaches and strategies in component and board-level testing of these
components and the system in its entirety.

Tie Microcontroller has three major subsystems to be tested - the
microprocessor module including the microprocessor and system-clock circuit, the
memory system and the interface system.

Chapter 3: Software Design

The Microcontroller integration starts with building the system clock circuit.
Once we have the clock rate tuned, we can plug in the program memory emulator

the inicr~pimessoi. As a iesu'ri, we have a minimal ~o~lfiguratioli mnning
system. The functionality of the system is checked by measuring and observing the
behavior of the components.

Once able to run programs, we can keep building up and testing the system
gradually component by component.

33.1.1. Testing the Serial Interface
I

The micn\cont,oUer h a or? chip serial interface and it takes few external
resources to build an RS 232 compatible serial interface. The hardware
functi~nality is tested by generating 2400 Hz output signal. This is achieved by
configuring the serial interface for 8 bit data transfer plus one start (active high) and
me stop (active low) bits a d writing cmiinnclusly 55H into the output port.

Once we are convinced that the serial interface is operational we write several
routines to perform data transfer between the Microcontroller and the Host acting as
a Terminal. At 2400 bitslsec it takes about 4ms to transfer one byte. If the Terminal
isn't fast enough, a hand-shaking protocol might be necessary to prevent loss of
information. This is the case when you use a 16 MHz 286 machine as a terminal and
try to write a server in C using printf() system calls.

33.1.2. Testing the SCSI Interface

The SCSI is the major Host-Microcontroller Interface used for fast data transfer
in both directions. There are two types of testing routines involved. First the SCSI is
debugged and tested in the course of system development. As a multiphase bus
protocol it requires additional end-user interface with high reliability to monitor the
SCSI status at every phase of completion. The serial interface is used for this
purpose. Once the SCSI has been debugged, a power-up routine tests to check the
embedded system functionality. This check can be done at any time the user wants.
h g e ~ e d once debugged SCSI is a pretty reliable interface.

Tne SCSI Prtocd Zontr-oiler represents 32 bytes of the micrwontmliet
addressable memory. SCSI transactions are performed by writing SCSI commands

1 into the SCSI Protocol Controller command registers. Each command could start

I and complete one or more SCSI bus phases. The SCSI bus status before and after

Chapter 3: Software Design

each command is sent over the serial port to the Terminal Unit.

MicrocontroUer

Read SCSI Status

I Execute SCSI Command 1.4p--------

(Read S C S ~ ~ P ~ Q U S I

Successful Completion

I
Nos

[Abort Transaction]

RS 232 Terminal

---.-...----.-.-- - l I C
Receive SCSI Status

Display SCSI Status s

SCSI Host

Figure 3.16: SCSI Bus Single Phase Test Algorithm

The SCSI Bus transaction cycle is being debugged phase by phase (Figure 3.17)
in the right phase sequence until a complete transaction is executed successfully.
The SCSI transaction takes place between the Microcontr011er and the Host and, an
independent third party, the Terminal, is used to monitor the SCSf Bus status at
different con4ml points in the SCSI transaction. The same procedure is applied to
trouble-shoot a data transfer in bdh directions,

Chapter 3: Software Design

i On power-up the Host is performing an initialization procedure to check the
functionality of the SCSI devices on the SCSI Bus. The Host sends a request to each
SCSI device to get its configuration parameters used in the subsequent transactions
with this device. The purpose of this test is to make sure that the SCSI interface is
working properly. -the test involves data transfer in both directions. The test is
successful if the data has been transferred successfully. If the transaction fails, the
interface is not operational and it should be debugged in the way described in the
previous paragraphs.

SCSI Bus functionality can be tested at any time by the user by resetting the
system. Sometimes, reset is necessary also when a transaction fails. If a transaction
fails, because of the hand-shaking nature of the protocol, at least one of the sides
will keep hanging on the bus infinitely and the bus should be rzset to make it usable
again. Assuming working software the transaction would fail only on a major
hardware fdure.

33.1.3. Testing The Microcontr011er - SJ boards Interface

The Microcontroller - SJ board Interface is realized through a pair of FPGAs. It
has two major goals - generation of the right control signals at the right time and
providing the data at the right place and time (bus control).

The interface is tested by writing and reading in an infinite loop to/from an
address belonging to a corresponding SJ board. The Microcontroller FPGA should
generate the right ID bits, should repeat RD, WR and ALE control signals and
should repeat the data bus as well during ALE and WR.

The FPGA-SJ generates the control signals and buffers the data bus at its input
and output. The accessibility of the Y register in the FPGA-SJ is tested by writing1
reading tdfrom it and also by observing the output pins. This is primarily hardware
test by observation.

In case, we want to chexk a p in t which is inside the FPSA, ian external pin is
assigned to it to make it accessible. If the FPGA resources are not enough to be
~.eas~i~-ned, it is tested hi -.

Chapter 3: Software Design

33.2. T d g The SJ boards

The SJCP incorporates a variation of the boundary scan testing concept to
facilitate the chip and board-level testing.

,. External SRAM L Instruction Scan Chain -
Address Scan Chain

I L

I A

+ Data Bus Scan Chain
I
Control Logic - v v and State Machines

t t
I

- I/O Data Shift Register 4- Address Register Bus Control

/ 8
1

control Signals

Figure 3.17: S JCP Boundary Scan-Chain Architecture

The SJCP scan-chain architecture 1231 consists of three scan chains - a 56 bit
external SRAM (SJCP program storage) instruction scan chain, a 16 bit external
SRAM address scan chain and a 32 bit data bus scan chain, Figure 3.18.

Each scan chain corresponds to a certain address and is interfaced through an
8-bit VO data shift register under state machine control. On a write into a particular
scan chain one writes to the corresponding address as many bytes as the length of
the scm chain. 011 a read, there is a shag read from the corresponding address
which causes the scan chain to advance 8 bits and move the first byte into the I/O
data shift register and after that the actual reads are following. A single read or write
access takes 16 clock cycles and can be fit within a single stretched DS80C320

Chapter 3: Sofiwm Design

memory access instruction. The scan chains provide a convenient way to test the
boundaries of the chip as well as the interconnections between SJCP and external
p g m i SiOI3ge.

Most of the Boundary Scan testing implementations are using external
hardware control and interface support according to the IEEE standard. They have
dedicated pins for control and access. In SJCP the scan chains are part of the chip
interface circuitry and they are accessed through the SJCP I/O interface without any
additiond pins. This is saving hardware resources and pins in the package and also
makes scan chains manipulation fast and pretty straightforward.

11 the current implementation the S C ~ chains are used and controlled externally
by the microcontroller during the test or interface operations. Since the scan chain
control logic is on-chip though, it is possible in later versions to design and include
on-chip self-test control capabilities. The on-chip BIST circuitry would test the
l m d resmrces and stme the result in a glace aecessibie by the microcontroller.
Everything the microcontroller should do is to read the results of the tests from each
processing unit and report them to the host. This idea is particularly attractive when
the number of the processing units increases.

33.2.2. Testing the DuaLPort Memory

The Dual-Port Memory takes 128 bytes of the microcontroller directly
addressable address space. Since we are using custom chips direcdy corning from
the foundry which have not been tested completely, this test has two purposes -
testing the memory functionality and the size of the accessible memory.

The routine is testing the memory byte by byte and in blocks of 128 bytes. A
given block is selected by preloading the block base address into the SJCP block
base address register and a byte within a block is accessed as a conventional
memory location within the corresponding 128 byte frame. The test writes the LSB
into the current memory location, writes a constant value different from any of the
test vectors into the next location in order to clear the value on the data bus and
reads and verifies the content of the current memory location. The random write is
necessary since we test the memory byte by byte and if we do read immediately
after write we might actually read what is on the data bus instead of the memory
ce3. The test stops when a ve&kitim fails. me res~1t of CLtie test is ifie m m k r of
blocks and the number of bytes in the last block of sequentially accessible memory.
The software can be dynamically reconfigured in such a way so that it can work
with any size (at least one biock long) of operational Dual-Port Memory.

Chapter 3: Software Design

33.23. Testing the Event Interface

The event interface consists of SJCP interrupt line (output), flags which are
triggered by writing to specific locations and M-bus, a message input lines which
can be monitored by S JCP executables.

Figure 3.18: Testing the Event Interface

SJCP DALLAS

The interface is tested by infinite hmd-shaking so the changes on the signal
lines can be seen on the scope, Figure 3.19.

............ lu,.. / 11,~.

33.2.4. Testing the SJCP External Program SRAM

Polling Interupt line

The external program storage is tested in two stages. First we test the SJCP
external program SRAM boundary. The SJCP Boundary is tested by loading
different test vectors into the instruction and address scan chains. After that ihe chip
boundary is tested and verified using a digital scope for each vector. The scan
chains themselves are tested by writing and reading to/from them. This test does not
require any hardware approaches and is performed entirely by software.

v
................ ...;,,, Setting DPM Hag

Once the boundary is tested, we test the program storage. In previous sections,
we discussed loading an SJCP executable into the SJCP external Program Storage
and also the verification of a . already loaded program. The testing of the Program
Storage (external SRAM) involves these two procedures. First the Program Storage
is loaded with test vectors and after that it is read to verify that the corresponding

Chapter 3: Software &sign

memory locations contain the correct values.

Since the microcontroller does not have access to the data-path hardware, the
trouble-shooting process is entirely under SJCP program control. The
microcontroller is used to trigger one or another preloaded testing routine.

SJCP Microcontroller

Reading DRAM into
Dual-Port Memory

...-..... lile Reading Dual-Port Memory
into DALLAS SRAM i I

..................,,,, Display Content of
Dual-Port Memory

Dual-Port Memory

Figure 3.19: DRAM Testing Algorithm

The first thing to be tested is the 32 bit SJ bus between SJCP and SJMI used to
transfer commands and data in both directions. This is done by writing a program
involving communication between SJCP and SJMI and observing the behavior of
the SJ bus. Once we are convinced that the SJ interface is operational, we execute a
test routine which actually outputs valid DRAM data and addresses. It allows us to
check the logic levels on the address and data buses for different test vectors.

During the DRAM test, the microcontroller plays primarily a supervisory role.
The microcontroller is loading a DRAM testing procedure into the SJCP program
storage. It might also provide some other information, like test vectors for example,
using the dual-port memory and starts the test routine. The communication between
the microcontroller and the DRAM test routine is realized through the dual-port
memory.

Chapter 3: Software Design

The process running on SJCP could simply read the DRAM into the DPM but it
also could do some preprocessing involving other hardware resources. For example
one of the tests we are running outputs the check-sum of the data in the DRAM.
This is an example of test response compaction, where instead of verifying every
single test vector, the test vectors are preprocessed and a single result vector is
output.

In order to avoid eventual timing problems, the two processes might need
additional synchronization. For example, when the microcontroller is reading the
dual-port memory it might have to stop SJCP. This shouldn't really matter since
SJCP has synchronization logic, but we found out that sometimes SJCP behaves
abnormally when the microcontroller is reading the DPM and SJCP is running full-
speed. Problem-avoiding strategy is a good idea to apply anytime it is possible, until
the system is fully tested.

3.4. Summary

The development of the system software started from the very begining along
with the debugging of the hardware. Many of the hardware debugging and testing
routines, with small modifications, were used in the implementation of the system
software. I developed the SCSI interface embedded system and h~st 's drivers, the
microcontroller monitor built around the SCSI interface driver, the menu-driven
front-end interface, the SAM-I1 debugging system and wrote a number of testing
and initialization procedures. Dr. Rick Hobson designed his own monitor allowing
him to access the system through a serid interface using a standard ASCII terminal.
He also wrote a number of processing unit testing routine and was helping with
whatever was necessary throughout the whole project.

Chapter 4: Genetnl Discussion

Chapter 4: General Discussion

4.1 Architectural Issues

4.1.1. Next Generation

SAM-11 develops further the concepts of the first implementation of the
Structured Architecture Machine, SAM-I, and is a stepping stone towards the
development of a massively parallel computer system. Our main objective was to
b d d arr eabedded mii1tiprctcessor and get practical knowledge and experience of
how to design a multiprocessor system, how to interface efficiently an embedded
system, how to design an embedded system software architecture etc.

The solutions to the a-hve probiems will help with further component
integration and development of the next generation system. With the current chip
set, each processing unit takes one board and if we want to put together for example
64 units, we have to interconnect and interface 64 boards. This would take a lot
space for the eventual performance gain, interfacing 64 units through an external
interface would obviously increase system access times affecting the overall system
performance and finally signal propagation delays particularly system clock
synchronization will require special attention. The way to go is to further integrate
the components.

Fignre 4.1: SAM-ILI Architecture

Chapter 3: General Discussiorl

In the next generation machine, all SJ components SJCP, SfMI, SJNI, FPU and
the Instruction Pipe will k integrated Into a single chip. This would make ~ s s i b k
ta accommodate an array of up to four or eight processors on a single board Figure
4.1. The b o d can be plugged directly on the CPU local bus minimizing the
interfacing delays. In this case special logic will be necessary to handle interrupts
and DMA data transfer. In order to make the board accessible by all systcn;
applications, it should be interfaced through the operating system. If we want to
increase the number of processors, we have to build the system in a separate box
and interface it as an embedded system.

4.12. System interfacing

Currently, SAM-If is interfaced through an 8-bit-wide SCSI 2 interface with
certain limitations on the data transfer speeds coming primarily from the
microcontroller clock rate affecting directly the speed of the bus and also from the
Advanced SCSI Protocol Interface (ASPI) used by the application software to
interface the system. One way to improve the situation is to use 32-bit SCSI 3
interface and use 32-bit microcuntroller to interface the multiprocessor
environment.

A good question would be trow to interface a high-number of processors, for
example 64 or 128. With dl components integrated and using surface-mount
technology, it would be possible to build bclxds with 8 even 16 processors running
under the same clock a r k , timing. Each board could be designed as an independent
SCSI device. We can attach seven of these boards to the host's SCSI interface and
get a system wit! 1 18 processors.

An interesting idea is to use the system as a vector arithmetic server. If the SCSl
is replaced with Ethernet or ATM interface, the system could be connected to a
network a d used as a remote server. A special software accessing directly the
Ethernet cards on the hosts should be developed to interface the system efficiently.
One way to avoid the development of a complex software interface tools would be
to connect the system to a standard SCSI interface of a workstation connected to a
netwerk. Then everything we need is s Ommn intercepting h e requests to the
particular SCSI interface. The system could be accessed through the operating
system using either remote procedure calls by applications running on remote
macfiines or by remote logon to the server workstation.

Chapter 4: General Discussion

The currently running system software provides the basic tools to interface and
manage the system resources= The architectural principles were adopted during and
in accordance with the requirements of the prototype development process. We
wanted to have reliable md fiexible toois which would allow us to work in a not
very stable environment. In the next versions the software will be refined and in the
folfowing sections, we wiff discuss the principles and some possible ways to go in
future implementations.

Originally, SAM system was designed for fast hardware interpretation of APL
language. APL (A Programming Language) is a language specially designed to
reflect the requirements of array processing applications. A multiprocessor
hardware interpreter built around APL could be expected to outperform general
purpose computers as far as may processing applications are concerned.

An alternative approach, using the systein as a vector arithmetic server, would
take advantage of the fast hardware interpretation and also give interfacing
flexibiIity making the system accessible by any general purpose language.

In any application involving may processing, the array processing part comes
at the end to performing generic or combination of generic operatioas like addition,
multiplication, division etc. on the arrays of data. The idea is to develop a set of
generic array processing routines loaded into the SAM processing units
microprogram storages at power up time. After that, an application instead of
running the array processing part on the main CPU would do a system call to the
operating system providing the data and the operation code. In this way the system
can be accessed by any general purpose language through the operating system.

The set of generic routines could still be written in the assembler language,
which we have been using so far to develop programs. Once the routines are
developed, they can be put in a RUM replacing the current microprogram SRAM,
or in the microcontroller EPP,OM loaded iDto the microprogram SRAM on power-
up or they can be stored on the host hard disk and load them through the SCSI at
system p w e r up,

In this scenario, the micmontroller should assume a little more responsibilities
concerning program and data nianagement and particularly in array processing

Chapter 3: General Discussion

cammm-ds execution. The generic routines could be organized also in macro
operators andfor the miawontroller could perform some parsing on more con~plex
rndY- prwess~g cOKHTlzl&.

From an application's point of view the system is interfaced through the
operating system. A set of resident routines intercepting one or more interrupts is
loaded at power-up. The routines are in the role of custom SCSI drivers mediating
the data transfer between the application and the microcontroller through the SCSl
interface. The application puts all source and destination data and comm,md
information into a data structure and does the corresponding system call. The
pointer to the structure can be stored into the CPU registers before the system call or
into a system shared memory if the resident routines are fully integrated with the
operating system.

This concept is applicable for SAM-111 as well as when the system is directly
plugged en the bus. -is t h e b5e cc-ntm! inf~rmation cm be written into memory
locations occupied by SAM-111 which does not require the interupt handlers to be
fulfy integrated with operating system.

42.2 Program and Data Management

Besides servicing the SCSI interface, the microcontroller has to assume certain
SAM-IP resources management responsibilities and particularly program and data
management during system operation.

In the SJCP microprogram storage we might have several active programs and
routines, soze of them application-oriented, some of them system-oriented
handling I70 data transfers for example. The microcontroller should keep track of
the state of any one of these routines in every board and it should be able to perform
real-time task-switching whenever necessary without affecting the system
performance. This is not really a multitasking operating system paradigm, the task-
switching is caused either by the application program in case of data exchange or by
the host. The return from a task would be like return from a procedure call. From a
user point of view the system is unithreaded and the main thread is the application
program. Some of the questions to be researched are: How the task will be
switched? In what timing and sequence and would it be possible to put all the
control informzition in the application program or the misrocentroller would need to
have some high priority control capabilities?

Some of the routines in the microprogram storage will be dealing with data and

Chapter 4: General Discussion

memory management Supposed that at certain point the application program needs
to get rid of some data or to input or output some paaid results. In this case the
application program should be stopped and system routines should be called to
perfom the requested operations. For this purpose, we will need two processes, one
running on SJCP and the other on the microcontroller.

SJCP
Application Program

I Store intempt code 1
] and control informatioa 1

Assert interupt line I
I

Microcontroller
Monitor

System Routine I I

Figure 4.2: Task-Switching and Data Transfer

Chapter 3: Gened Discussion

Let's consider the case when the application has some partial results to output.
One way is to use hand-shaking on the interupt lines to synchronize the processes
and negotiate over the data k s f e r , Figure 4.2. In this particular case the
microcuntroller switches the tasks on request by the application. It starts the system
routine, negotiate the data transfer parameters and performs the operation.

The Microcontroller could read and store the application program pointer at the
intempt point and resume the application by it restoring the return point but this
wwfd require a termination routine at the end of the system routine. Another way is
for the application to put its pointer on the stack and the return instruction of the
system routine will resume the application.

Note that in this case the application has all the information necessary to initiate
the data transfer. But it might happen that resource management operations be
performed without the knowledge of the application in case of system resource
limitations for example. More sophisticated approaches for resource ma~lagement
in embedded systems is definitely one of the hot topics for future research.

4.23, Parallel Debugging

A parallel debugger should be able to perform all the basic functions a
sequeiitid debuggef em perfom1 phs functions relevant to muitiprocessing
program execution and particularly with it should cope with shared data consistency
and exchange and process race and block conditions. The particular design and
implementation depends on the two generic aspects of the system - system software
and hardwane.

423.1. Debugger-Operating System Relationship

A very important point is the relationship between the debugger and the
operating system. In some systems the debugger is completely integrated with the
operating system as it is the case with most of the "C" debuggers running on UNlX
workstations. This is a g d approach when the operating system is debugged and
stable. This approach allows direct access to the operating system data structures
and the abiiicy to monitor and control the state of the program.

The researchers working on Amoeba adopted a different approach 2361. The
debugger is separate from the kernel which allows modification of the operating

Chapter 4: General Discussion

system while using the same debugging tools, assuming the interface with the
kernel is preserved. In this case the debugger is more independent but most
probably some perfozmance trade-off should be made since the program state is still
monitored through the operating system.

An interesting concept is realized in Parasight - a high-level debugger 1381.
Special programs called "parasites" are linked dynamically with the source at
dynamically created stub places. All debugging functions like dumping a trace of
h e stack or program state etc. are performed by these parasite programs. This
makes the debugging completely independent of the operating system but it affects
the performance as well. Anyway, during debugging, we don't care much about
perfomace.

4.2.3.2. State-Driven and Event-Driven Debuggers

Depending on the way Be program execution is monitored we could have
event-driven and program-state-driven debuggers. The events can be anything like
sending a message to another process, creating a task, reaching a breakpoint, divide
by zero etc. The conventional procedure-call stubs are replaced and any time a
procedure call is made, a message is sent to a higher-level client process. The
program execution resumes after the reply by the client process. The event records
are saved in log files and used for program execution replay. High-level processes
ax monitoring the events and control the debugging.

The debugger for Warp is a typical state-driven one [39]. There is a separate
process keeping track of the state and execution point of each processing unit
process. The process state is used to control the debugging procedures. The state
debuggers require access to the program state areas through the operating system or
directly accessing the hardware if possible.

Most of the time though, just keeping track of the events or program state might
not be enough and the debuggers should have capabilities to control the program
execution as well as to monitor the events in the system.

The cumnt SAM-II debugger is a state driven one. We keep track of the
p r o p execution point by reading directly the program counter and the
wicminst,wti=:: from &.be comspfidhg p:wesshg unit. Next rersiom will have to
include some event tracing capabilities to be able to monitor more complex
PrngfamS-

Chapter J: General Discussion

-en thinbg h t the SAM-!! dehgger design, we have to consider two
factors - the system architecture and the type of the application programs to be
executed on the system. For now, the program and data management tools are
separate from the debugger and we could assume that this trend will be preserved.

Store interupt code and
Record the event

,w .-----...----------.------.-..-
1-1 I Check for :eadl&k 1

H, Initiate data transfer

Store intenrpt cade and

'- - - - - - - - ---#/, Update causality graph
Check for deadlock

Record the event

Figure 43: Deadock and Race Conditions Detector Algorithm

The system will be used to mn array processing applications. We could expect
that there will be intensive data exchange among the processing units passing

Chapter 4: General Discussion

partial results and data to each other. In general we can assume that one processing
unit would want to send data to another processing unit and receive data from a
third etc. The debugger will have to keep-&ck of the execution points of all three
processes and the events of data transfa The possible complication here is an
eventual deadlock condition if each process is waiting for another one.

The debugger should be able to keep track of the execution points and states of
all three processes and also to create a truthful picture of the events. The execution
points and program states can be obtained from the processing units CPU registers
and microcontroller system areas respectively-

The processing units shouid inform the microcontroiier about the pending data
transfers. One way is to use the interrupt mechanism or just to store certain control
data into the system areas in the dual-port memory to be read by the
microcontroller. The Microcontroller uses the information to build a causality graph
for detecting deadlock conditions Figure 4.3.

The debugger controls the program execution in step or breakpoint mode. At
the same time the processes running on the processing units are passing messages to
the microcontroller through the SJCP dual-port memory informing the debugger
about upcoming events. The debugger is using the information to construct a
causality graph for detecting deadlocks and race conditions. Note that in this
implementation, the SJCP application executables should include code performing
the message passing. This c d e codd be inserted at compile time or by the
debugger during loading.

The algorithm illustrates a concept which could be expanded to handle shared
data consistency as well.

4.3. Performance Issues

43.1. Technology

technology is om of the f x t m which affects directly the overall system
performance by defining the maximum possible program execution rate. The
current chip set is designed in 1.2 u tecirnoiogy running at 15 M E . The CPLT is
capable of executing one microinstruction per clock cycle which means 15 MIPS
assuming no memory access penalties. Using better technology would make
possible to design the chip set to run at 4-0 even 60 MHz which would increase

Chapter 4: General Discussion

It should be noted that, a single SAM processor module is not inknded to
compete one-on-one with commercial superscaler processors. But, it is expected
tfi* an may of rhese relatively cheap processors could be competitive.

I 43.2. Component Integration

I The current system consists of several separate components - the
1 microprocessor, the memory manager, the floating point unit and the network
1 interface. A11 these components are connected through an external board-level bus.
i
I inkrzoapnent data transfer will have to cross chip boundaries which basicaif y

would require an extra clock cycle, or several clock cycles if you want to increase
the cluck rate, fur intercomponent data exchange. Integrating the components in a
single chip would eliminate the boundaries-crossing penalty and make possible to
increase the clock rate.

43.3. System interface

The overall data processing time is equal to the time to transfer and load the
program and data into the processing units plus the time to execute the program and
plus the time to get the results back, These times could be in different proportions
hut in my case in order to fake %I! advmtage of the optimized embedded
coprocessor one needs a fast way to transfer data in both directions.

In the current implementation, we are using fast SCSI 2 interface. We managed
to get a transfer rate of 0.3 Mbytedsec (about a 80kwordslsec). Let's suppose, we
want to multiply two arrays of lOOxlOO words. This means we have to transfer
20000 plus 10000 result words which would take approximately 0.4 sec. For now
let's ignore the loading time. It is going to take lo6 multiplications to multiply two
100x100 arrays. Assuming three clocks plus one per multiply, we get 4* 1 o6 clocks.
Further assuming four processing units with 20 MHz clock, no interprocess
communication and no memory delays we get an execution time of 0.05 sec. As one
can see the interface overhead is an order of magnitude bigger than the actual
execution time!? This simple example illustrates the importance of the system
:-+ ,,&,,,e A,-,,-. in getting pe;-fommce i -zdts .

The situation can be improved in several ways. Using SCSI 3, 32 bit 20 MHz
synchronous data transfer with DMA, the transfer rate can be increased up to 40

Chapter 4: General Discussion

times which would decrease the interface overhead from G.4 sec to 0.01 sec. The
transfer rate can be improved further, if the data is transferred directly from tbe host
hard drive to the embedded system.

There is an idea to connect local hard drives to the system but one still would
need to transfer data from the host unless there is a way to generate or provide data
focally.

4.4. Conclusion

We implemented the SAM-lf prototype system capable of accommodating up
to five processing units and interfaced through a standard SCSI 2 interface. We built
and debugged the mottierboard and processing unit hardware and developed the
basic system resource management and program debugging software tools.

We met the objectives stated at the beginning of the project and here is the
summary of our results:

* built and debugged a microcontroller printed circuit board performing basic
system management and interfacing functions

* built and debugged a processing unit printed circuit board performing
program management and data processing functions

* fully teskd and verified the function&@ of SJCP and SJklI and that they can
work together

* implemented an FPGA-based motherboard-parallel processing unit interface
logic

* built and debugged the microcontroller SCSI hardware and firmware

* developed a system software allowing t%e user to efficiently interface and
work with the system

* developed a debugging tool with basic program management and debugging
capabilities

VaIuab1e practical knowledge and experience has been gathered to support a
possible next generation SAM flI prototype implementation.

Chapter 4: General Discussion

We obtained experience on how to interface an embedded system through high-
pedomance interfaces like SCSI, how to design the interface and interface drivers
for efficient data transfer and how to approach the interface design for efficient
debugging and testing.

We learned how to design and interface a multiprocessor environment, how to
design boards capable of accommodating several processing units. This will be very
helpful in possible later implementaions with high number of processors.

We gathered practical experience on how to handle clock distribution, signal
propagation delay as well as power distribution at chip and board-level problems.
This will be very usehi particularly in the further component integration and next
board-level implementations.

Very valuable experience has been gathered on how to approach the design of
and how to develop embedded system and front-end software, how to integrate the
different software components, and how to design the software to be easy to
expand.

Finally, we learned how to design an embedded system state-driven program
debugging tools allowing real-time program debugging, how to distribute the
functions between the host and the embedded system for optimal system
perfomance.

Appendix A: Microcontr011er Printed Circuit Board

Appendix A: Microcoatroller Printed Circuit Board

This Appendix contains the scaled layouts of the Microcontroller Printed
Circuit Board (PCB) layers. The board has four layers altogether.

The Microcontroller PCB was designed using EZ-Board PCB design package
and was manufactured by OMNI GRAPHICS Inc. The Appendix contains the
original layouts. Some minor changes have been made to the board during the
trouble-shooting process.

ii.3 Layer 3fGround

A.2 Layer 21Power

..... *. *
+ -.. ,
i :::' ! f.., , -..
3 0

. 0 *..-.*.*. - -. - - -.
a,. *.. - * + -- -.. , * * , *. . * a = ..* -.., -. ,-. ,, - * - a*. . .

Appendix B: SJ Processing Unit Printed Circuit Board

Appendix B: S J Pmessing Unit Printed Circuit Board

This Appendix cuniahs the scaled layouts of the SAM Processing Unit PCB
layers. The board has four layers altogether.

Tfie Processing Unit PCB was designed using EZ-Board PCB design package
d was mufxmd by OMNI GRAPHICS Inc- The Appendix contains b e
original layouts. Some minor changes have been made to the board during the
trouble-shooing process.

B.1 Layer ?/Signal

..\ppendia B: SJ Processing Unit Prinicd Crcuit Boxd

B.2 Layer 2/Power

L - - 9

B 3 Layer 3/Ground

Appendix C: Microcontroller FPGA Design Files

Appendix C: Microcontroller FPGA Design Files

This appendix contains the microcontroller FPGA PLDShell Plus (.PDS)
design files.

The first and second improved versions of the FPGA-based interface logic
design fifes are given dong with the simulation signal wave forms. The logic was
designed and simulated using PLDShell Plus FPGA design software.

Appendix C: Microcontroller FPGA &sign Files

;Chip specification: iFX74-0 68-pin PLCC
CHIP FPGAM iFX740-68

;PIN AND MACROCELL ASSIGNMENTS

;Bidirectional address/data bus buffer
;I 6 macrocells are organized as an 8-bit bidirectional buffer
;---Micrwontroller side
;------Output addresddata macrocells
;------The macrocells are driving the bus during a READ
PIN 40 a D f O
PXN 41 ADII
PIN 42 AD12
PIN 43 AD13
PIN 44 AD14
PIN 45 AD15
PIN 46 AD16
PIN 47 AID17

;------Input address/data pins
;------The macrocells' pins are used as an input during a WRITE or ALE
PIN 43 PAD10 P1NFBK
PIN 41 PAD11 PINFBK
BIN 42 PAD12 P ~ ~ K
PIN 43 PAD13 ? ~ ~ K
PIN 4 4 PAD14 PINFBK
PIN 45 PADE PINFBK
PIN a ~ m 1 6 PINFBK
PIN 47 PAD17 PINFBK

;--SJ Processing Unit side
;----Outgut addreddata macrocells
;---The macroce'lls are driving the SJ bus during a WRITE or ALE
PIM 23 ADO0
PIW 22 m 0 1
PIN 14 AD02
BIN 12 AD03
PIN 13 AD04

Appendix C: Microcontroller FPGA Design Files

P!N 10 AD05
PIN 11 AD06
FIN 9 AD07

;------Input addresddata pins
;------The macrocells' pins are used as an input during a READ
BIN 23 P A D O PINFBK
PIN 22 PAD01 PINFBK
PIN 14 PAD02 PINFBK
PIN 12 PAD03 PINFBK
PIN 13 PAD04 PINFBK
PIN 10 R4D85 BINEBK
PIN 11 PAD06 PINFBK
PIN 9 PAD07 PINFBK

;LSB address register
;8 macrocells are organized as 8-bit register to store
;the LSB of the address at ALE
PIN 63 A 0 7
PIN 61 A 0 6
PIN 64 A 0 5
PIN 60 A 0 4
PIN 62 A 0 3
PIN 58 A 0 2
PIN 59 A01
PEN 57 A 0 0

:5 macrocells are used to input the five most significant bits of the address
PIN 39 A115
PIN 2 A11 2
PIN 3 AT13
PIN 4 A114
PIN 5 A11 1

Appendix C: Microcontroller FPGA Design Files

;3 macrocells are used to input the bus control signals READ, WRITE and ALE
PIN 48 ALE1
PIN SO
PIN 49 /RDI

;SCSI chip-select output
PIN 3 1 /CSSCSX

;3 macrocells are used to ou 1tpx
;towards the processing units
PIN 26 /RDO
PIN 25 fWRO
PIN 24 ALE0

kt the three bus c

EQUATIONS

;Bus control signals buffering
FmO = RDf
WRO = WWI
ALE0 = ALE1

;%bit bidirectional buffer
;---addresddata transfer direction control
ADO[O:7].TRST = RiDI
PS>I[O:7].TRST = RDI*AX1 S*AIl4

;---Towards the processing unit
ADO[G:7] = PADI[O:7]

;---Towards the microcontroller
AD1 [0:7] = PADO[O:7]

;LSB of the address latching
AO[O:7f .ACLK = /ALEX
AO[&'ir j.TRST = VCC
A0[0:7].D := PADI[O:7]

;SCSI chip-select signal generation
CSSCSI = A11S1/M14

Appendix C: Microcontroller FPGA Design Files

;PP'oeessing units ID bits generation
A011 = AI15*AII4*AIlf
A012 = A!!S*RI!4*A!!2
A013 = AflS*AI14*AT13

Appendix C: MicrocontroIler FPGA Design Files

Appendix C.1.2: BDS Design Filflemion I : Simulations

I FP€W-H.HST <Esc> to Exit

Appendix C: Microcontroller FPGA Design Files

<F1> for Helr

FPGCI-H . HST <Esc> t o Exit

Appendix C: Microcontroller FPGA Design Files

;Chip specification: iEX740 68-pin PLCC
CHIP FPGAM iFX740-48

;PIN AND MACROCELL ASSIGNMENTS

;PHI2 has a good phase for falling edge of ale, and rd, wr.
PIN 19 PHI2 input ; use for synchronous timing.

NODE Q[2:0] reg ; for sj state machine.
NODE ADSEL crnbfbk

;f10 addressldata macrocells
PfN [40:47] AD[O:7] pinfbk

;Latch for the LSB of the address
PEN 63 A07 regfbk
PIN 61 A06 regfbk
P N 64 A05 regfbk
PnT 60 A04 regfbk
PIN 62 A03 regfbk
PIN 58 A02 regfbk
PIN 59 A01 regfbk
PIN 57 A00 regfbk

;Input the MSB of the address
PIN 39 A115
PIN 2 A112
PIW 3 A113
PIN 4 AX14
PIN 5 A111

;Sf Ii> bus output
PIN 8 A011 reg
PIN 7 A012 reg
PlN 6 A013 reg

Appendix C: Microcontroller FPGA Design Files

;---state transitions.
IDLE := MEM -> BO
;SJSEL := MEM -> BO
;+ SJHLD -> SJSEL
BO := VCC -> Bl
B1:= VCC -> B2
B2 := VCC -> 333
B3 := VCC -> B4
B4 := VCC -> B5
B5 := RDI*/WRI -> B5 + WlRI*/RDI: -> B6
B6 := WFU -> B6 ; stay here to avoid a second ale pulse.

EQUATIONS

Q[2:O].CLKF = /PHI2 ; state machine clock.

;Bus control signals output
RDO = (B4+B5)*RDI
'NRDLY = WRI*(Bl+B2+B3+B4+B5+B6)
WRO = WRDLY
ALE0 = BO+Bl *WRI ;extend ale for write but assert wr half way.

;Bidirectional addressldata bus
;---control
ADOENA := VCC
AI)OENA.RSTF = RDI*B3 ; shut off just before fpga-sj starts to drive.
ADOENA.ACLK = ALE1
ADsj [O:'f] .TRST = ADOENA
AD[O:'f].TRST = RDI*SJ

;---towards the processing unit
;-----output the address in sjsel so it will be stable when aleo goes &positive.
;-----then we don't have to delay ale in fpgaxs.
adsel = Wmem*idle
ADsj [O:'l] = ad[O:7].io*/adsel+ ao[0:7].fb*adsel

Appendix C: Microcontro11er FPGA Design Files

;---towards the microcontroller
AD[0:7] = ADsj[O:7].io

;Latching the LSB of the address
AO[O:7].ACLK = /ALE1
AO[O:7].TRST = VCC
A0[0:7].D := AD[O:7].io

;Selecting the SCSI
CSSCSI := SCSI
CSSCSIACLK = /ALE1 ; clock scsi chip sel to avoid addr transients.

;PMU/DMU n> bits generation
A01 1 := AIll*sj
A012 := AI12*sj
A013 := AI13*sj
AOf 11 : 13l.ACLK = /ALEI

Appendix C: Microcontroller FPCA Design Files

Appendix C.2.2: PDS M g n FWkrsion TI: Simulations

<Esc> to Exit -

Appendix C: Microcontroller FPGA Design Files

Appendix D: SJ Processing Unit FPGA Design Files

Appendix D: S J Processing Unit FPGA Design Files

This appendix contains the processing unit FPGA PLDShell Plus (.PDS) desigll
files.

The first and second improved versions of the FPGA-based interface and
control logic design files are given dong with the simulation signd wave forms.
The logic was designed and simulated using PLDShell Plus FPGA design software.

Appendix D: SJ Processing Unit FPGA Design Files

Appendix D.1.1: PDS Design FileNersion I

;Chip specofocation: iEX740 68-pin PLCC
CHIP FPGAN iFX740-68

;PIN AND MACROCELL ASSIGNMENTS

;Y Bus
;---Y register output enable
PIN 4 OE
;---IT register macrocelfs
PIN 5 YO
PIN 7 Y f
PIN 8 Y2
PIN 9 Y3
PIN 10 Y4
PIN f 1 Y5
PIN 12 Y6
PIN 13 Y7
;---Y register I10 pins
PIN 6 INYO PINFBK
PIN 7 INY 1 PINFBK
PIN 8 INY2 PINFBK
PIN 9 INY3 PINFBK
PIN 1 u my4 PINFBK
PIN f 1 INYS PINFBK
PIN 12 fNY 6 PINFBK
PIN '1 3 INY7 PINFBK

:SJCP control and addressldata bus
;--SJCP control signals: CTRO and CTR1
PIN 14 CTRO OUTPUT
PIN 22 CTRl OUTPUT
;---addresddata bus rnacroceb
PIN 23 UCO
PIN 24 UC1
PIN 25 UC2
PIN 26 UC3
PIN 27 UC4

Appendix D: SJ Processing Unit FPGA Design Files

PLY 28 UC5
PIN 29 UC6
--T A- rm 3u uc J

;---addresddata bus I/0 pins
PIN 23 IOUCO P ~ ~ K
PIN 24 fOtTCl PlNFBK
PIN 25 IOUC2 PINFBK
PIN 26 X(lfJC3 PIIWBK
PIM 27 IOUC4 PINFBK
PIN 28 IOUC5 PINFBK
PIN 29 IOLJC6 PINFBK
PIN 30 IOUC? BTNFFfK

;Microcontroller bus
;---microcontrulier bus control signals
PIN 36 RD INPUT
PDT 37 WR INPUT
PIN 38 ALE INPUT
;---microcontroller bus macrocells
Pm- 39 A D O
Prn4OADl
PIN 41 m 2
PIN 42 AD3
Pm 43 AD4
PIN 44 AD5
PIN 4 AD6
PIN 46 AD7
;---microcontroller bus I/0 pins
PIN 39 IOADO PlWE3K
PIN 40 XOADl PINEBK
PIN 41 iOAB2 PXPEBK
PIN 42 XUAD3 PINEB#
PIN 43 fOAD4 PPNmK
PIN 44 IOAD5 PINFBK
PIN 45 IOAD6 PMFBK
Pm 45 fOAD'7 P L W K

Appendix D: SJ Processing Unit FPGA Design Files

;ID address lines input pins
PIN 58 Af f PWFBK
PIN 59 A 12 TNFBM
PIN 60 A1 3 PINFBK

;Comparator and selection logic
PIN 5 COMP-OUT
PIN 31 SEL
PIN Y-SEL
PIN YC-SEL
PIN 48 I00

;]ID jumpers input pins
PIN 61 JMBO PINFBK
PIN 43 JMPl PINFBK
PIN 55 bMP2 PINFBK

;Counter
;---control
PW 19 CLK
PIN 2 REFRESH
;---counter macrocells
PIN 57 C8 REGFBK
PIN 58 CO REGFBK
PIN 59 Cl REGFBK
PIIV 00 C2 REGFBK
PIN 61 C3 REGFBK
PIN 62 C4 REGFBK
PIN 63 C5 REGFBK
PIN 64 C6 REGFBK
PIN 65 C7 REGFBK

EQUATIONS

;ID check
COM-P-OUT.CMB = [.IMP2,JMPl ,JMPO] =: [A13,A12,All]
COMP-OUT = A13*A12*All

;Y register selection at address O H
SELACLK = /(COMP-OUT*ALE)

Appendix D: SJ Processing Unit FPGA Design Files

SEL.D := DOAD 1 *DOAD2*DOAD3*DOAD4*/IOAD5*/IOAD6*AOAD7
1 0 0 A m K = !(COM?-OTIT*mE) L V V I L ---I

1OO.D := IOADO
Y-SEL = SEL*IIBO
YC-SEL = SEL*IOO

;Control signals generation
CTRO = COMP-OUT*(ALE + lWR*ISEL)
CRl= /COMP-OUT + RD*WR + SEL

;Bidirectional controVaddressldata bus control
UC[O:7] = IOAD[O:7]
UC[O:7] .TRST = COMPOUTWD

;Latching the data in Y register
YfO:7].D := IOAD[O:7]
Y [O:7].ACLK = /(COMP-OUT*Y-SEL*/WR)
Y [O:7] .TRST = OE

;Counter logic
C[O:8].CLKF = CLK
CEO: 81 .RSTF = REFRESH
C8.T := VCC
C0.T := (CO:+:INYO)*Y-SEL + C8*N-SEL
CI .T := (C 1 :+:INY l)*Y-SEL + C8*CO*N_SEL
C2.T := (C2:+:INY2)*Y-SEL + C8*CO*C 1 *N-SEL
C3.T := (C3:+:IWY3)*Y_SEL + C8*CO*C1 *C2*N_SEL
C4.T := (C4:+:INY4)*Y-SEL + CS*CO*Cl *C2*C3*NmSEL
C5.T := (CS:+:INYS)*Y-SEL + C8*CO*Cl *C2*C3*C4*N_SEL
C6.T := (C6:+:INY6)*Y_SEL + CS*CO*Cl *C2*C3*C4*C5*NEL
C7.T := (C7:+:INY7)*Y-SEL + C8*CO*Cl*C2*C3*C4*C5*C6*/YYSEL
21]0:8].TRST = G 1 -

Appendix D: SJ Processing Unit FPGA Design Files

Appendix D.l.2: PDS Design FileNersion I: Simulation

--
3 <F1> for Hel~

I013D3
PmXM
I m
I O m s
I O m
f i l l

<Esc> t o Exi t

Ucactor 6 <F1> f o r Help

. .-
I I I I I I I I I I I I I I I I I I T I I I I I I I I I I I I I I ~ I I I I I I I F ~ I I I I I I I I I I

FPGCI-SJV.HST <Esc> t o Ex i t

Appendix D: SJ Processing Unit FPGA Design Files

ihctor 8 <F1> for Helm

Appendix D: SJ Processing Unit FPGA Design Files

Appendix B2.1: PDS Design FileNersion II

;Chip specification: iFX740 68-pin PLCC
CHIP FPGAM iFX740-68

;PIN AND MACROCELL ASSIGNMENTS

;FPGA3S uses a local unit select bit for SJIIO,
;commands needed: set u (single addr or no addr)
;broadcast High and Low (need to single out pmu)
;broadcast all; local rdlwr, based upon unit #
;broadcast should work with local Y reg.

;Added new timing scheme, 95.04.17, rfh.
;bus turnaround is handled by FPGA2M (shuts off its own drive with a
;margin around the sjcp read.
;this design gates ale with ck2 to catch the low addr before
;the write line falls, which is too late.

;Y bus
;---control
PIN 4 OE input
;---macrocell s
PIN f6:!3] Y[O:7] regkk ; PII.'BK

;SJCP controUaddress/data bus
;---control signals macrocells
PIN 14 CTRO OUTPUT
PIN 22 CTR I OUTPUT
;---delay output to avoid driving ucbus when the address is coming out (tl).
PIN 3 1 CTRlZ CMBFBK
NODE CTR1Pl CMBFBK
NODE CTR 1 P2 CMBFBK
NODE (3TR1 P3 CMBFBK
NODE CTR 1 P4 CMBFBK
NODE CTROPl CMBFBK
x r f i n % - m n n n n -1 n P n x r
IVWUC L I KurL ~1Y5m-fsn,
NODE CTROP3 CMBFBK
;NODE CTROP4 CMBFBK
NODE TRSTCTL CMBFBK

Appendix D: SJ Processing Unit F W A Design Files

;---S JCP control bus macrocell s
PIN [23:30] UC[O:7] PINFBK

;Microcontroller bus
;---these have delayed timing from FPGA2M.
;---address should be stable when ale rising edge comes along.
PIN 36 /RD INPUT
BIN 3'7 /WR INPUT
PIN 38 ALE INPUT

;---Microcontroller bus macrocells -- ad goes to dallas.
PIN [39:46] AD[O:7] PINFBK

;ID address lines input
PIN [58:60] A[l 1: 131 INPUT

;Comparator
PIN 56 UNIT REG OUTPUT
PIN 57 Y-SEL REG OUTPUT

;D jumpers input
PIN 61 JMPO INPUT
PIN 53 JMPl INPUT
PIN 65 JMP2 INPUT

PIN 62 COMPOUT CMBFBK
PIN 64 RUNNING REG OUTPUT
PIN 5 BRDCST REGFBK OUTPUT

;Selection string definitions
STRING USEL 'A13'
STRING ALL 'A13*A12*All'
STRING UPPER 'A13*A12*/Ally
STRING LOWER 'A13*/A12*All'
STRING SINGLE 'A13*lA12*IAlly
SYdPu'G LOCAL ' lki3*ikl2"-All'
STRING SJ '/A13*/Al2*/All'
STRING YSEL '/ADO' ; MUST BE ADDRESS PHASE OF DATA BUS.
STRING RUN '/AD7*AD6*IADS*/AD4*/AD3*IAD2*AD 1 *ADO'
STRING STOP '/AD7*AD6*/AI)5*/AD4*/AD3*/AD2*/AD 1 *AM)'

Appendix D: SJ Processing Unit FPGA Design Files

;Unit selection equations
;---broadcast selection
BRKST := ALL+UPPER+LOWER ; use to prevent rd shorts.
BRDCST-ACLK = ALE*USEL ; don't wait for data, any broadcast address works.

;---comparison and unit selection
COMP-OUT-CMP = [AD[2:0]] == [JMP[2:0]]
UNIT := ALL+UPPER*JMP2+LOWER*/JMP2+SINGLE*COMPOUT
UNITACLK = l('iTSEL*WR)

;---Y register selection
Y-SEL.ACLK = ALE
Y-SEL := LOCAL*UNPT*YSEL

;---running mode
RUNN1NG.T := SJ*RUN*/RUNNING*UNIT + SJ*STOP*RUNNING*UNIT
RUNNING.ACLK = ALE

;Cont-rol signals generation
;---mp: ! 0, ale: 1 1, rd:QU, wr:Ol.
CTROPI = (ALE+WR)*SJ*UNIT
m o p 2 = CTaOPl
rn.OP3 = CTROP2
; CTROP4 = CTROP3
GIRO = CTROPi
C R I Z = (RD*/BRDCST+WR)*SJ*UNIT ; user uses Unit to select for broadcast.
CTR I PI = /CTR 1 Z ; delayed to avoid ale ghtch passing from wr to nop.
eTRIP2 = CTRlPl
m 1 P 3 =CTBlP2
CTRlP4 = CTR1P3
; €TRIP5 = CTR1P4
CTRl = m I P 1

Appendix D: SJ Processing Unit FPGA Design Files

;Bidirectional addressldata bus controt
;---towads SJCP
uC[O:7] = AD[O:7]*UNlT
TRSTCTL = (WR+ALE)*SJ*UNIT
UC[O:7].TRST = TRSTCTL ; shut off except for ale+wr.

;---towards the microcontroller
AD[O:7] = UC[O:7]*N_sel+ Y [O:7] *Y-sel
AD[O:7].TRST = RD*UNIT*/BRDCST ; activate for board selected read.

;Latching the data in the Y register
Y [O:7] := AD[O:7]
Y[O:7].ACLK = /(Y-SEL*WR)
Y[O:7].TRST = OE ; OE COMES FROM SJCP.

Appendix D: SJ Processing Unit FPGA Design Files

Appendix D.2.2: PDS Design FileNersion II: Simulation

<Ff > for H e l r

VIWIafXmfl2WS- .+El (Esc) t o Ex i t

Usaetor 4 1 <F1> for Help - I
CTRO I I n I

J
I
I t r I

Appendix D: SJ Processing Unit FPGA Design Files

Vr\RIE!KYwK!#Sn\m6(53s .XST <Esc> to Exit

Ajqmdk E: Memory Map of SJCF' special function memory

Appendix E: Memory Map of SJCP special function memory

Table 13: Memory Map of SJCP data and special function memory

I Not used in SJCR Used to access
FPGA registers.

Address Range

1
Scan chains selection. Strobes the
data inputs into the selected scan
chain.

Feature

SJCP external S U M bus control.

I 8x - Fx I Dual-Port Memory (DPM) block

f

5x Event interface antml.

4x

x = 0 - selects the Y register

Program execution control.

x = 0 - selects address scan-chain.
x = I - selects data scan-chain.
x = 2 - selects instruction scan-chain.

x = 0 - selects address scan-chain.
x = 1 - selects data scan-chain.
x = 2 - selects instruction scan-chain.

I r I I

x=O-OEon
x = 1 -0Eoff
x = 2 -WE strobe

x = 0 - executes a step.
x = 1 - Stopntrap SJCP.
x = 2 - Cleartrap.
K = 3 - R m &Id-speed.

K = 0 - sets DPM data flag.
K = 3 - Clears fRQ.

r = 3 - Loads DPM base address reg-
ister.

Glossary

ASP1
BIST
CDB
CF3
MLMD
PC
PCB
PCI
PDS
PLDShell Plus
POMICE
RISC
RPC
SAM-II
SCSf
S W
SJ
SJ BUS
SJCP
S m
SJNI

Advanced SCSI Protocol Interface
Built-In Self-Test
Command Descriptor Block
Configurable Functional Block
Multiple Instruction Multiple Data
Personal Computer
Prhteb Circuit Board
Peripheral Component Interconnect
Extension of the PLDShell Plus design file - .pds
FPGA design package provided by Intel
EPROM Emulator
Reduced Instruction Set Computer
Remote Procedure Call
Structured Architecture Machine - 11
Small Computer System Interface
Single Instruction Multiple Data
SAM Junior
SAM Junior Bus
SAM Junior Control Processor
SAM Junior Memory Interface
SAM Junior Network Interface

Bibliography

Bibliography

[1] Fujitsu Microelectronics Inc., "Fast track to SCSI"
Prentice Hall, Englewd Cliffs, NJ, 1991

[2f NCR Corporation, "Understanding the Small Computer Systems Interface"
Prentice Hall, Englewd Cliffs, NJ, 1990

[3] American National Standards Institute Inc., Small Computer S ys tem
Interface (SCSI)",
Ameficm National S+mb;irds hstittste, New York, 1986

f4] Adaptec Inc., "AHA- 154X Host Adapters Programming Guidey'
Adaptec Inc., Milpitas, CA, 1990

f 51 Adaptec Inc., "AHA- 154X Technical Reference Manual"
Adaptec Inc., Milpitas, CA, 1990

f6] Adaptec Inc., "Adavanced SCSI Protocol Interface (ASPI)"
Adaptec Inc., Milpitas, CA, 1990

f7] Advanced Micro Devices, bcEnhanced SCSI-Bus Interface Controller"
Advanced Micro Devices, Sunnyvale, CA, 1989

[8] Intel Corporation, "PLDshell Plus and PLDasm" User's Guide V3.1
htel Copration, Santa Clara, CA, 1993

[9] Dallas Semiconductor, "HKigS-Speed Micro" V 1.0 Draft Copy
Dallas Semiconductor, Dallas, TX, 1993

Bibliography

f 101 Grarnmar Engine Inc., "Promice Userman"
P------
UI~UIUIILU Enghe hc;., C O ~ U ~ ~ U S , OH, i 991

[l 11 Intel Corporation, "Advanced Information iFX740"
Intel Corporation, Santa Clara, CA, 1993

[12] Advanced Micro Devices, "Microcontrollers Data BooMHandbook
Advanced Micro Devices, Sunnyvale, CA, 1988

[13] Dallas Semiconductor, "DS80C320, High-speed Micro"
Dallas Semiconductor, Dallas, TX, 1993

[14] Advanced Micro Devices, "EPROM Products Data Book/Handbook"
Advanced Micro Devices, Sunnyvale, CA, 1994

[15] Micron Technology hc., "DRAM Data Book"
Micron Technology Inc., Boise, Idaho, 1992

[I61 Bogdan Lent, "Dataffow Architecture for Machine Control"
Research Studies Press Ltd., Taunton, Somerset, England 1989

1171 A.T. Kundig, "A Note on the meaning of Embedded Systems"
Embedded Systems: A New Approach to Their Formal Description
and Design. An Advanced Course. Zurich, Switzerland, Springer 1987

[18] D. Gajski, E VAhid, S, Nm-yan, J. Gong, "Specif catior. and Design of
Embedded Systems",
Prentice-Hall Inc., Englewood Cliffs, New Jersey: 1994

[19] J. Black, 'The System Engineer's Handbook",
Academic Press Inc., San Diego, California, 1992

Bibliography

Phoenix T~hiio~ogies Ltd., ''System BIOS for IBM K/XT/AT Computers
and Compatibles"
Addison-Wesley Publishing Company Inc., 1988

Leo d. Scanlon, "IBM PC XT/AT Assembly Language"
Simon&Schuster Publishing Company, NY, 1 985

Borland International, "Turbo C"
Borland International, Scotts Valley, CA, 1988

Richard E Hobssn, "Combining Boundary Scan with UO and other System
Functions to Reduce System Complexity",
-Microelectronics Journal, 23 (1 992) 179- 184

Wang, Laung-Terug, Marhoefer, Michael, and McCluskey, Edward J.,
"A Self-Test and Self-Diagnosis Architecture for Boards Using Boundary
Scans", Proceedings 1 st European Test Conference,
IEEE Press, April 1989, pp. 1 19-126

van Riessen, R.P., Kerkhoff, H.G., and Kloppenburg, A., "Design and
Implementation of a Hierarchical Testable Architecture Using the Boundary
Scan Standard", Proceedings 1 st European Test Conference,
IEEE Press, April 1989, pg. 1 12- 1 18

Tulloss, R.E., Yau, C.W., "BIST & Boundary Scan For Board Level Test:
The Program Pseudocode", Proceedings 1st European Test Conference,
IEEE -Press, April 1989, pp. 106- 1 1 1

van de Lagemaat, Dick, "Testing Multiple Power Connections with
Bo~ndary Scan", Proceedings 1 st European Test Conference,
IEEE Press, April 1989, pp. 127- 130

Bibliography

Texas Instruments, "ScoIpe Scan Path Suploort Devises", Product, Bulletin
Texas Instruments, Dallas, TX, 1990

Language Processor Inc., "CodeWatch, An Interactive Source-Level
Debugger"
Prentice Hal1,Englewood Cliffs, New Jersey, 1989

Ehud Shapiro, "Algorithmic Program Debugging"
The MIT Press, PhD Thesis, 1982

Borland International Inc. "Turbo Debugger"
Borland International Inc., Scotts Valley, CA, 1990

Robwrt H. Netzer, "Optimal Tracing and Replay for Debugging Shared
Memory Parallel Programs", Proceedings ACM/ONR Workshop on Parallel
and Distributed Debugging,
San Diego, California, 1993

M.Timmennan, F. Gielen, P. Lambrix, "High-Level Tools for debugging
Real-Time Multiprocessor Systems", Proceedings ACM/ONR Workshop on
Parallel and Distributed Debugging,
San Diego, California, 1993

J. May, F. Berman, "Panorama: A Portable Extensible Parallel Debugger"
Proceedings ACMlONR Workshop on Parallel and Distributed Debugging,
San Diego, California, 1993

C. Vdot, "Characterizing the Accuracy of Distributed Timestamps",
Proceedings ACM/ONR Workshop on Parallel and Distributed Debugging,
San Diego, California, 1993

Bibliography

f 361 I. Elshoff, "A Distributed Debugger for Amoeba",
Proceedings ACM/ONR Workshop on Parallel and Distributed Debugging,
Madison, Wisconsin, 1988, pp. 1 - 10

1371 C. Lin, R. Leblanc, "Event-Based Debugging of ObjecVAction Programs",
Proceedings ACM/ONR Workshop on Parallel and Distributed Debugging,
Madison, Wisconsin, 1988, pp. 23 - 34

1381 Z. A d , I. Gertner, "High-Level Debugging in Parasight"
Proceedings ACM/ONR Workshop on Parallel and Distributed Debugging,
Madison, Wisconsin, 1988, pp. 15 1 - 162

[39] B. Bruegge, T, Gross, "A Program Debugger for a Systolic Array"
Roceedings ACM/ONR Workshop on Parallel and Distributed Debugging,
Madison, Wisconsin, 1988, pp. 174 - 182

[M] R. Hobson, "High-Level Microprogramming Support Embedded in Silicon"
TEE Proceedings, Vol. 135, Pt. E, No. 2,1988, pp. 73 - 81

1413 R. Hobson, "An Outline of Objectives for the SAM-I1 Parallel Computer
Prototype"
8th International Symposium on Parallel Processing:
Parallel Systems Fair, April 1994, pp. 37 - 42

1421 J. Tomhson, "Avoid the Pitfalls of High-speed Logic Design"
Efectrunic Design Magazine, November 1989

f431 B- Burgess, N. Wah, I? Overen, D. Ogden, "The Power PC 603
Mirroprwmr"'
ACMICommUnications, June 1994 - Volume 37, Number 6, pp. 34 - 41

14.41 A. Poursepanj, '"The Power PC Performance Modelling Methodology"
ACM/Communications, June 1994 - Volume 37, Number 6, pp. 47 - 55

[45] Ray Weiss, Craig Haller, Nick Lethaby, "Special Report on Debugging
Embedded Systems"
Computer Design Magazine, July 1995, pp. 69 - 86

[46] R. Hobson, J. Hoskin, J. Simmons, R. Spilsbury, "SAM-I: a prototype
machine for dynamic, array-oriented programming languages"
IEE Proceedings-E, VoL 139, No. 4, July 1992, pp. 335- 347

