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Abstrnct 

Abstract 

The Structured Architecture Machine (SAM-11) board-level hardware and 
system software design and implementation concepts are discussed. SAM-II is An 
Embedded Multiprocessor Vector-Oriented Computer System based on a custom 32 
bit RISC chip set designed at the VLSI and Computer Design Laboratory and 
intended for low-cost array processing and computationally intensive applications. 

The prototype is designed to accommodate up to five processing units 
connected to a DS80C320 microcontroller based mother-board bus. FPGA based 
logic is designed to implement bus control and processing units control interface 
functions and also to realize selection, deselection and broadcasting interfacing 
capabilities, allowing efficient access to the multiprocessor environment within a 
single DS80C320 machine cycle. The use of the SJCP custom datafcontrol interface 
incorporating interfacing and boundary-scan testing capabilities is also discussed in 
the context of system hardware concepts, testing, and processing unit resource 
access. 

The custom use of The Small Computer System Interface (SCSI) Protocol for 
efficient program, data, and control information transfer is discussed in detail. 
Menu-driven front-end software provides multiprocessor system configuration, 
system management, and program debugging capabilities. It also allows flexible 
real-time access to and use of the system resources. Low-level system resource 
management is realized by the mother-board monitor program built around a SCSl 
interface driver communicating with the host in a way similar to the concepts of the 
remote procedure call. 

Discussion about the next generation system and alternative use and 
applications of the system is also included. 
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Chapter 1 : !ntroductian 

Chapter 1: Introduction 

1.1. Embedded System 

1.1.1. Architectural Concepts 

Embedded Systems (Figure 1.1) represent a subclass of Computer Systems 
with well-defined features [16, f 7, 181. 

- Fixed Resources - The system resources, hardware and firmware, are fixed 
and predefined. They do not increase or decrease during system operation. The way 
the embedded system interacts with the surrounding environment is predetermined. 

Users 
usually computer subsystems 

Embedded System 1 

-1 Programs + Resources 4 

I J 

Figure 1.1: Embedded System General Architecture 

w 

- Programs - The programs and the coded algorithms do not change and remain 
the same through the time of operation. In some cases though, part of the code could 
be downloaded dynamically. For example in multiprocessor configurations, where 
some of the processors are used as specialized coprocessor units, different code 
p~~ -d be loaded dynamically depending on the particular request to the embedded 
system. In any case though, the code related to the global system resource 
management and interfacing is fixed and does not change. 

Environment 

- User - The users, which in general are subsystems of more complex 
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equipment are known and predefined along with the communication protocols.The 
operator, if any, is getting access to the resources of the embedded system through a 
directly accessibie termid or an interface unit. 

- Environment - The environment where the embedded system performs some 
control or data processing functions is predefined and finite. This is important to 
guarantee stable system behavior. 

- Data - The data going through the embedded system is the only thing that 
changes during operation time. 

These are the chmcteristics of a typical embedded system. Of course each 
application would require features which would make the system unique but in one 
form or another the general characteristics will be present. 

If we have a Iook at a general purpose desktop computer, every subsystem 
except the main CPU motherboard computational system represents an embedded 
system with respect to the user. The hard disk controller for example is a typical 
representative. The environment, the disk modules, is finite and predictable, the 
resources are fixed, the firmware is unchangeable, performing predefined disk 
control functions and servicing the host communication protocol. 

1.1.2. Embedded Systems Interfacing 

A general characteristic of an embedded system is that the user does not have 
direct access to its resources. The interface is realized through the host standard or 
custom built interfaces, Figure 1.2. 

Figure 13: Host - Embedded System Configuration 

Depending on the t h i n g  requirements a d  architecturd concepts the embedded 
system could be C O M N ~ ~  to the host through standard external interfaces like RS 
232, parallel ports or the Small Computer System Interface (SCSI), or it could be 
plugged directly on the main CPU local bus. In case an external interface is used, 

Terminal 
User 

Embedded 
b System b s t  4 b 



the data transfer complies to the corresponding interface communication protocol. 
In some cases though it might be necessary to b d d  a higher-level zr.rrnmunicatian 
p i o t ~ o l  on the top of the stmdard interface protocol suitable for the particular 
application. 

When an embedded system is attached to a host bus, it could be directly 
memory mapped using shared memory to communicate with the host, or some more 
complex protocol could be implemented. In any case shared memory is used to 
communicate and transfer control information and data in both directions. 

In general, we could have several levels of interfacing. Let's consider the case 
of a multiprocessor embedded system where one of the processors is dedicated to 
serve the host interface and the rest of the processors are engaged in data processing 
activities. In this scenario, the first interface level is between the host computer and 
the embedded system interface processor and the second interface level is between 
the embedded system interface processor and the data processing processors. The 
ultimate goal here is to be able to transfer data between the host and the data 
processing processors. Sometimes a more complex interfacing concept is applied, 
particularly when the number of processors in the embedded system increases. 

Sometimes one needs to access the embedded system directly, particularly 
during debugging. This is done usually by building local interfaces allowing direct 
access to the embedded system resources. An interesting concept has been realized 
in the Power PC 603 rnicroprocesssr [43! where dedicated pins in the 
microprocessor package allow an external processor to get access to 603's resources 
and monitor the system performance. 

1.1.3. Embedded Systems Debugging and Trouble-Shooting 

Obviously, with respect to the host compzter an embedded system represents a 
a part of its computational resources regardless of the way it is interfaced. On 
power-up the system resources are tested including all the embedded systems. The 
embedded systems initialization procedures should perform local system test and 
respond in a predefined way providing information about the extent and 
accessibilitv and functionality of its local resources. The local testing routines 
might invoive combinations of different board-level testing techniques and Built In 
Self Tests (BIST) at the chip level. The purpose of a power-up self-test is to 
determine what part@) of a presumably working subsystem are available. 

A more interesting question is how to test and debug an embedded system in 
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the process of integrating and building the prototype. The interesting part is that the 
embedded system, not accessible directly, should be tested at board-level through 
its inkrfaces which are dso under test developmnt. 

Usually during trouble-shooting the designers are using a combination of 
different debugging tools and mechanisms [45] in order to get the full picture of the 
problem. One of the least expensive mechanism is ROM monitoring. The ROM 
monitor allows to set break-points, control program execution, and access memory 
and registers. A very popular tool is also the ROM emulator. It provides a low-level 
debug control and is very flexible to use. We used the PROMICE ROM emulator to 
emulate the microcontroller program storage during debugging. 

Probably one of the most favorite tools is the In-Circuit Emulators (ICEs). The 
ICE provides full execution control and sometimes bus monitoring and 
performance analysis functions. The problem with the ICEs is that they could be 
pet ty expensive and difficult to build particlilarly for chips wit?? high complexity 
and high clock rates. 

A fairly new approach which is getting more and more popular is to incorporate 
an on-chip debugging hardware which could be a Background Debugging Mode 
(BDM) or scan path implementation allowing program execution control and 
registers and memory access. The IBM's 403GA Power PC JTAG scan path [45] 
provides a serial link to the on-chip debugging hardware allowing to set 
breakpoints, control execution and read and modify registers, memory and cache. A 
very interesting concept has been realized in the Advanced Micro Devices' 29040 
microprocessor. The 29040's on-chip debugger uses scan paths to access registers 
and memory, and the hardware has been designed in such a way so that two 29040s 
could work in tandem in a master-slave relationship. The master CPU is executing 
the code normally. The trace CPU mirrors the master CPU's access addresses on its 
address bus and they can be picked up by an external hardware and put into a trace 
buffer. 

Of course, we have to mention the traditional tools used during debugging: 
probes, oscilloscopes, and logic analyzers. In the last years Hewlett-Packard and 
Tektronix released logic analyzers with disassembling features. 

In order to simplify the building and troubleshooting process, one wants to 
have a direct access to the resources of the embedded system. The performance of 
the interface through which the embedded system would be accessed in this case is 
not of importance since a limited amount of control information is to be transferred. 
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The important point is for this interface to be simple, reliable, and easy to build. 

Figure 1.3: Embedded System Trouble-Shooting Configuration 

The strategy accepted during SAM-I1 prototype development is shown in 
Figure 1.3. Our 8-bit microcontroller, the Dallas DS80C320, has two on-chip serial 
interfaces and requires very few external resources to build an RS 232 compatible 
interface to connect the system to a standard ASCII terminal. From this point, we 
just need to hook up the ROM emulator to get a minimal configuration of a working 
system. The serial interface provides reliable and simple communication which is 
vital during the trouble-shooting process. Using the serial communication link, we 
started adding and troubleshooting the rest of the subsystems like the SCSI 
interface, the interfacing iogic eic. 

A typical application of this concept was the trouble-shooting of the SCSI 
interface.The SCSI interface was dying during system operation sometimes causing 
total communication failure without being able to continue to figure out what the 
reason was. Using the direct serial communication we were able to monitor directly 
the activities on the SCSI bus and in the system as a whole and solve the problem. 

RS 232 
I 

SCSI 
..,a1 .-.......-.-- ..- ill,*, 

Host 
system 

Test RS 232 
Terminal * 

1.1.4. SAM-II Embedded System 

Eml>edded 
System 

Even though SAM-I1 can be classified as an embedded system it has features 
which are relevant to sewers afid stand-alone computers. Ttne overall system 
configuration has five basic components, Figure 1.4. A host computer, PC or 
workstation, used as a frontend interface, a high-performance SCSI bus connecting 
the host with SAM-H, a DS80C320 based microcontroller, a microcontroller local 
bus used to connect the SAM Junior (SJ) processing units, and the SJ processing 
units. 

* 
r 

User 
Terminal 
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With respect to the host the rnicrocontroller is a typical embedded system. Its 
resources, the program and hardware are fixed, the host is defined and finite, the 
environment, the SJ-boards, is finite ;and predictable. The Infomation transferred 
through the SCSI is a mixture of data and commands to the microcontroller. 

Figure 1.4: SAM-II Embedded System Architeeture 

The uniqueness is coming from the presence and status of the SJ-boards which 
are active microprocessor subsystems. Tbe SJ-boards are embedded with respect to 
the rnicrocontroller. The data transferred through the SCSI to the microcontroller 
now can be interpreted as data or executable code. In this sense the SJ computing 
environment could be considered as a remote vector arithmetic server. By replacing 
the SCSI with an Ethernet or ATM interface, SAM-I1 can be connected to a network 
and used as a remote server by remote hosts running array processing applications. 

r 

Host 

1.2. Test Methods 

SCSI 
I I I - ~  

Data 

1.2.1. General Concepts 

Microcontroller 
.I,ll ......................................... SJ-boards 

During the process of system development and later during system operation 
we have several levels of testing which naturally form a hierarchy of testing 
procedures: chip or component level test, board-level test and system level test. 

Local Bus 
) 

DataPrograms 

At the lowest level we have chip-level test. The chip tests are conducted in two 
stages. First the chips are tested after manufacturing on special analyzing 
equipment and after that they are tested as a part of a real system. From a system 
development point of view we are interested in chip-level test where the chips are a 
part of functional system. Different chips are tested in different ways, for example 
the CPUs are tested differently from the memories, but the general method is to 
supply an input test sequence and check the response. Unfortunately, this might not 
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be good enough since the chip is a part of a system and its output might be 
influenced by the other components. Also, with advances in the microelectronic 
lechnofogy it became possible to accommodate a number of fairly independent 
functional units, sometimes with a high-level of complexity like memories register 
files, ALUs, interface systems etc. on a single chip. In this case we want to have a 
better understanding of what is going on in the chip particularly when we are 
building a prototype. This imposes the necessity of special on-chip hardware for 
performing or providing the means to test chip functionality. 

Embedded BIST circuitries are becoming very popular. Special on-chip 
circuity is designed to perfom; eump!ete chip functionality test. The BXST circuit is 
interfaced to provide some control if necessary and to check the result of the test. 
The BISTs are fast, very convenient when there are many chips to be tested, and 
they save main CPU time during the testing routine. Sometimes it is not possible or 
not necessary to design complete BIST circuits and other approaches should be 
used. A new technique called Boundary-Scan allows access to control points inside 
the chip and chip boundaries [25] and it simplifies the integration of different test 
mechanisms at chip- and board-level. A variation of Boundary-Scan is used in 
SAM-II [23] and we will discuss it in the following sections. 

Board-level tests use the results from chip-level tests to verify chip 
f.Jnctiondity and they have more te de with intercomponent interactions, signd 
propagation, power distribution, and timing problems. They are testing the way the 
components interact and how their interaction affects overall board functionality. 
Board-level testing is not a trivial problem and a lot of interesting points could be 
discussed here. One of the problems we encountered during SAM-I1 prototype 
development was connected with the power distribution. The signals on the SCSI 
bus, for example, turned out to be very sensitive towards the board power 
distribution and power serge at one place even on different board due to invalid 
operation happened to affect them causing SCSI communication failure. 

The system-level tests are testing the overall system functionality. They are 
usually a set of testing routines providing the system test control algorithm and 
checking system resources availability and access. Sometimes rhe results from the 
system tests are used by the operating systems, monitor programs and device 
drivers during system operation. 
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112.  Boundary-Scan Testing Principles 

One approach, which swim to be responding pretty well b the requirements of 
the new technologies and getting an wide acceptance is the Boundary-Scan. It 
requires little hardware resources, allows easy integration of chip-, board- and 
system-level tests and it also can be combined with BIST techniques for automated 
testing. 

The idea of the Boundary Scan test is to connect all I/O pads under test, usually 
the pads at the boundaries of the chips, in a scan chain [IEEE-Il49.1,24,25,28]. It 
allows access to each individual chip but at the same time certain pads could be 
bypassed during testing to shorten the scan path. The technique could be used 
successfully at chip- board- and system-level and it also allows sample testing 
making possible to test control points on the board at a certain instant of time. 
Boundary Scan can be used to test points inside the chip as well as to conduct 
external tests on points between different chips' YO pads. 

Test Access Port (TAP) 

Figure 1.5: Single-Chip Boundary-Scan Architecture 

The single-chip Boundary-Scan Architecture submitted by JTAG to IEEE in 
1988 for a standard review is shown in Figure 1.5. Four additional pins are 
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necessary to configure the chip in a standard testing mode and for interfacing 
purposes - Test Data Input (TDI), Test Data Output (TDO), Test Mode Select 
VMS) Test Clock fTCK). TDI m d  TDO pins dlow the chip to receive and 
send data fromito other chips. TMS and TCK are used to configure the chip for 
testing. These four pins constitute the Test Access Port (TAP). 

The Instruction Register is used to store the test mode to be used and to select 
one of the possible data paths from the Boundary Scan-Chain, Bypass Register and 
user defined registers. The Boundary Scan-Chain can be used for internal as well as 
external tests. 

1.2.3. Scan Paths Implementations 

The Boundary-Scan testing concept undergoes continuous development and 
different variations are coming out sometimes in combination with other 
approaches. Texas Instruments has released a chip set compatible with the IEEE- 
1149.1 standard [28] allowing long chains to be broken into several shorter ones, 
easier to manage. There are several methods which integrate the Boundary Scan 
concept with BIST techniques for automated board-level testing 124, 261. Also an 
interesting design [27] has been implemented using Boundary Scan to test for 
interconnection and power supply problems using on-chip amplifiers. 

A standard JTAG/IEEE- 1 149.1 boundary scan interface has been incorporated 
into the Power PC 602 and 603 microgrocessors to facilitate board-level testing 
[43]. Besides for testing purposes the standard JTAG port can be used to access a 
special interface that allows an external processor to read or write memory or any of 
the 603's internal registers. 

The AMD's 29040 microprocessor has a JTAG scan-path based debugging 
hardware allowing to modify registers, memory and cache 1451. The 
microprocessor does not have dedicated pins to access the scan chains but rather the 
hardware has been designed in such a way so that two microprocessors could run in 
tandem in master-trace relationship. 

ARM'S ARM-7 microprocessor's JTAG scan-chain based debugger [45] allows 
to modify registers and memory, set hardware breakpoints and also the JTAG port 
can be used for RUMless boot-up and as a? out@ serial port to ddve an extima! 
device. 

Intel's Pentium and P6 microprocessors also have on-chip JTAG scan-path 
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debuggers. 

A vaxiatiw, of Boundary Scan has k e n  realized in &be SAM-Junior Co~ftrd 
Processor (SJCP) and used in implementing SAM-I1 testing strategy. The scan 
chains provide the means to integrate chip- and board-level testing and also they are 
used for interfacing purposes as well, allowing access to the SJCP internal 
resources. 

13. Debugging Took and Concepts 

Development of a program debugging system is an essential part of the system 
development process. In case of building a prototype the debugger serves two major 
purposes. First it is essential to be able to write correct programs and second in our 
case when the software development tools are not completely debugged we want to 
be able to verify syntactical and logical correctness of the programs used in the 
system testing procedures. Also, the debugger can be used for low-level resource 
manipulation t y  initializing memory blocks or performing some hardware 
configuration tasks. 

13.1. General Features 

A conventional debugging system [29, 311 performs tasks in two main areas - 
program management and program environment management. Also it can perform 
some real time source code manipulation. In the program management area the 
debugger controls the overall program execution and some of the following or 
similar options are generally available: 

- Stepping - it allows to step through the program a specified number of 
instructions one or more at a time. One might also be able to initialize the program 
counter. 

- Breakpointing - it is used to suspend program execution at specified location 
and observe the program status. Usually one is able to edit the breakpoint table in 
real time. Some debuggers have a breakpoint counter associated with each 
breakpoint showing how many times a certain breakpoint has been encountered. An 
interesting feature is the so called programmable breakpoint. There is an expression 
associated with each breakpoint and a particular breakpoint is valid if the 
expression is true at this particclar point of execution. 

- Run - it allows the program to run N1-speed and stop at any moment. 
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- Tracing - It allows information about all procedures and data structures or 
statements to be reprkd as !&e prog-ram executes. 

- Continue - it starts program execution or resumes it after a breakpoint or a 
step. 

- GoTo - it moves the execution pointer to a certain statement. 

- Return - it moves the execution point to the exit point of the current 
procedure. 

The above options provide the user with the necessary means to control the 
execution program flow. Beside that one needs tools to manage the program 
environment, to handle variables, data structures, procedure arguments etc. which 
directly affects the control flow. 

- Environment Control Options - these are used to initialize the environment 
before or during a program execution. It provides scope to the debugger for 
identifying variables and statements. 

- Stack - it allows to manipulate the stack, printing the current status of the 
stack or a traceback of certain number of stack frames. 

- Symbolic Access Options - these options allow to refer to variables, tables or 
elements of arrays. 

- Arguments - gives access to the arguments of an active procedure. 

- Evaluate - it allows to evaluate a certain expression from the program. 

- Assign - it assigns a value of expression to a name. 

- Return - allows to set a return value from a procedure and moves the 
execution pointer to the exit point of the procedure. 

Some debuggers dm haye the tools examine the source c d e  or the history of 
the program execution. 

- Find - locates a line in the source file. 
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Developing the software on the target system looks to be the straightforward 
way to go but, sormeiimes it might lioi be 'uie imxi efficient one, paiiieiihrly wheii 
we are talking about embedded system software development. In the last years 
simulators are becoming more and more popular. They provide a stable 
environment for program developers and basically full control over all the aspects 
of program developme~lt znd Mxgging process. A special simulation tool, Basic 
RISC Architecture Timer (BRAT) [43], was designed to serve the purposes of 
Power PC microprocessors based software development and performance 
estimation. BRAT has been used for performance modeling of a number of Power 
PC microprocessors, it provides what-if analysis capabilities and sufficient accuracy 
&ring simulation. As fit. as debugging is concerned it allows to watch the state of 
the system cycle by cycle, to run certain number of cycles, backtrack certain 
number of cycles, run to certain address or instruction etc. BRAT provides both 
command line and windowed user interface. 

13.8, Debugging Parallel Programs 

Debugging parallel programs involves aspects of a new range of problems 
relevant to distributed and parallel computation The problems have to do with data 
consistency when the parallel processes are r~nning in a shared memory or there is 
an active interprocess data exchange and also, with the so called race and deadlock 
conditions between processes running in parallel. There are several ways to 
g~armt,~,~ precess sy_n_cb~on~zation. One way is to use timestamps where a 
timestamp is associated with every shared data item. Another way is to use 
semaphores controlling the access to specific data items. 

Using process synchronization techniques or not, debugging a parallel program 
could represent a challenge and requires additional attention and tools. A common 
approach is to replay the program execution. But, the program might have been 
written nondeterministicly or to have race conditions in which case we might get 
different results for different runs. One way to handle this is to trace the program 
execution by recoding all the access to the shared data and use the trace later to 
reproduce the program execution. Many debuggers are recording all the traces but it 
coufd he a prub1em sc)metimes; the trace could be in order of tens of Mbytes. There 
are. algorithms presented [32] which can decrease the trace length by 2 - 4 orders of 
rnagninrde recording only certain critical ria- 

Also, the debugger might incorporate race condition detectors. These detectors 
work in different ways depending on the data consistency protocols used. They 



Chapter 1 : Introduction 

migk keep track of &e times';amps of the shzed data or the state of the programs or 
semaphores. 

It is very difficult to create a universal algorithm because data consistency in 
general is not just a software problem. Data consistency protocols reflect the 
architecture of the macl-iine, for example if we have a cache at each processor or 
not. If we have a shared memory and no cache, there is only one copy of the data in 
the memory and the consistency protocol would have to take care only of the 
memory. If  we have a cache at each processor and distributed memory then things 
are getting more complicated because we have several copies of the same data in 
the memory md in the cache. 

A very optimistic exampze would be considering a multiprocessor system with 
refatively independent processing units. In this case, we only need to be able to 
address the different units dynamically and debug every single executable image as 
in cafe of uniprocessor system. 

1.4. Objectives 

fn the attempts of researchers and engineers to build more and more powerful 
systems here are two fundamental approaches: distributed computation where 
more autonomous computer systems usually connected in a network are used to 
work in pdiel on a csmin application, and multiprocessor systems where the 
processing units are connected with high-speed buses or specialized interface 
networks. A muitipmessor system could be interfaced as a specialized server 
connected to a network, it might provide its own front-end interface or some more 
complex interface mechanism might be used. Usually the multiprocessor data 
processing environment is accessed by the user through a specialized interface 
conuoller(s) handling the interface protocol and managing the multiprocessor 
environment. The particular implementation of the multiprocessor environment, the 
hardware and software interfacing concept, the system software etc. depends on the 
target application of the system, performance requirements, selected chip set and 
most probably on the price requirements if it is intended for the market. 

IZ- -,,- L:--r3,.- -E ---,,L ' 
I Irc; rrr& k j a u v o  w UUT I G ~ W  IS the implementation of a multiprocessor 

computer system, SAM-11, based on a custom 32-bit vector-oriented RISC chip set 
intended for low-cost array processing applications. The system is not meant to 
compete at this point with the commercially available supercomputers, rather we 
are looking fur solutions to certain architectural, interfacing and system software 
questions, which would let us in the future build a competitive product. 



Considering &e chipset and system architecture potentially large space 
requirements, it would not be possible to attach the system to an existing host's 
local bus and it should be accessed through m external interface as an embedded 
system. Also our intention is to make the system accessible by different platforms 
regardless of the vendor and operating system, which would not restrict the user 
with respect what kind of host computer to use. Considering these factors and the 
system performance requirements, we chose to use the SCSI interface which 
provides a good performance, it is available on most commercial workstations, and 
would allow the system to be interfaced as a conventional SCSI device. 

Right now here is no off-the-sheif controiier which would handle the SCSI bus 
data transfer and provide the access to the multiprocessor environment and we 
need to build a specialized interface controller (a motherboard) which would 
handle the SCSI bus protocol and manage the multiprocessor environment. We also 
need to design an on-board interface logic generating the proper processing unit 
interface control signals. 

The processing units are based on a custom 32-bit chip set. Two of the system 
components, the control processor and memory manager, just came from the 
foundry and have not been fully tested yet. The chips have been tested 
independently under ideal conditions on a specialized testing equipment but the 
question is how they will behave as a part of a real system. The system will also 
serve as a test-bed for ksthg aid verifying the Functionality of the system 
components working independently and together as a vector-arithmetic processor. 
The processing unit board will also need an on-board interface logic allowing the 
processing unit to be attached to the motherboard and to be interfaced 
independently and in combination with other processing units. 

The SCSI was originally designed to interface hard-disk drive systems and the 
protocol reflects hard-disk data transfer requirements. A major research point in the 
project is how to design and use the SCSI to interface a custom built embedded 
system efficiently. This might involve the design of our own protocol on top of the 
SCSI protocol. 

The system software will consist of two major parts: a front-end system 
interface software running on the host computer and an embedded system monitor 
software running on the motherboard and probably partially on the processing units. 
The host software will provide the user interface and will handle the SCSI bus data 
transfers. The embedded system monitor will be handling the SCSI bus operations 
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too and it will also perform the multiprocessor environment resource management. 

An essential part of the system development process will be the implementation 
of a debugging system. The debugger would provide a low-level system resource 
management, the ability to load programs and data and to execute programs in 
different modes. It will also allow us to verify the accuracy of the current compiler 
software which has not been tested completely yet. 

Here is the summary of our objectives in the project: 

* Design and development of a DS80C320 based motherboard 

* Design and development of an SJ-chip-set-based processing unit board 

* Verifying that SJCP and SJMI can work together 

* Design of a FPGA-based motherboard-parallel processing units interface 
logic 

* Embedded system SCSI interface hardware and firmware deveiopment 

* System and test software development 

* Embedded system debugger development 
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2.1. SAM-II Architecture 

SAM-I1 (Structured Architecture Machine - 11) is an embedded multiprocessor 
vector-oriented computer system intended for low-cost may processing 
applications. It develops further the concepts and the ideas in the first 
implementation of the Structured Architecture Machine, SAM-I [46] and is a 
stepping stone towards the development of a massively parallel computer system. 

The prototype (Figure 2.1, Figure 2.2) is designed to accommodate up to five 
processing units based on a custom 32-bit vector oriented RISC chip set. Each 
processing unit could have up to 64 Mbytes of four-stage interleaved system 
DRAM and 64 kwords of high-level 64-bit-wide microcode SRAM used as the 
CPU external program storage. The microcode is loaded dynamically, which gives 
some flexibility to the system. 

The system could be configured to work as an MIMD (Multiple Instruction 
Multiple Data) machine in which case the processing units execute independent 
code or as an SIMD (Single Instruction Multiple Data) computer where one of the 
processing units plays the role of a program manager broadcasting instructions to 
the other four data management units through a specialized instruction-pipe 
interface. The pipe interface has not been implemented yet and right now the 
processing units program execution is controlled directly by the microcontroller. 

The processing units are attached to a motherboard (microcontroller) and each 
one maps to 256 locations of the motherboard CPU directly accessible memory and 
can be accessed in a single microcontroller stretched machine cycle. FPGA based 
logic is designed to perform the necessary bus control and control interface signals 
generation. Without the pipe interface, the microcontroller plays the role of a 
program manager and all five units can be used to process data. 

Usually in multiprocessing applications there is an intensive data transfer 
among the processing units during a program execution. A special software and/or 
hardware support is necessary to guarantee real-time data consistency in case of 
shared data applications. A special network system will be designed to interconnect 
directly the processing units data memory systems to handle data exchange and data 
consistency. 
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Figure 2.1: SAM-XI Architecture 

The embedded system is interfaced with the host computer through a fast SCSI 
interface. From the host's point of view, SAM-11 is a conventional SCSI device 
hooked on the SCSI bus and al l  data transfers between the host and the embedded 
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system use the SCSI bus protocol. In this relationship the microcontroller serves 
two main purposes. First it is a dedicated SCSI driver handling the data exchange 
on the SCSI bus =d second it perfoms the necessary SAM41 system management 
functions including system configuration, program management, and data 
management. 

Figure 2.2: SAM-I1 Prototype 

The host and the embedded system interact through a request-driven 
communication. The host sends a request to the embedded system which could be 
anythmg from performing a test to executing a program and the embedded system 
serves the request and sends the result back. The requests and results are transferred 
by means of SCSI transactions. The iecjiiests we ckissifieri in four areas - system 
test, system configuration, program management, and data management. With 
respect to the application program SAM-11 could be seen as a vector-arithmetic 
coprocessor accessed through the operating system using conventional system calls. 
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The embedded state of SAM-I1 mkiprmessor imposes the necessity of a 
specialized microcontroller to service the embedded system-host interface and to 
control certain activities on the SJ-boards. From the host's point of view, SAM-I1 is 
a conventional SCSI device hooked-up to the SCSI bus and this determines pretty 
much a client-server relationship, the host sends the request, the microcontroller 
serves it and sends the result back, if any. 

With respect to the host, the rnicrocontroller should be able to serve requests in 
the following areas: 

- System test - this would involve testing different system memories like the 
external microcode storage, external DRAM and on-chip memory and register files, 
testing separate functional units and inter- s ystem-component interfaces. 

- Program/Data loading and Verification - one of the major functions the 
micrwcmtroller should perform is loading and verifying executables and data into 
the S J boards. 

- Program management - the microcontroller should be able to control the 
program execution full-speed, step-by-step, stop execution etc. 

Microcontroller also has some monitoring functions concerning the overall 
system performance. In general, we might have several executables residing in the 
microcode storage at the same time, some of them system programs, some of them 
user applications. The monitor should be able to load executables at the proper 
locations, to sWstop one or another module and to be able to recognize when a 
certain module has finished. In other words, all the basic functions a conventional 
operating system would have. 

The custom SJ chip set, designed at SFU's VLSI and Computer Design 
Laboratory, provides excellent hardware support for the implementation of the 
above functions. Some of these features are hardware-supported boundary-scan 
testing capabilities and quite straight-forward control interface. The SJ-boards are 
part of the microcontroller address space and a certain function on a certain board 
(Processing Unit) is triggered by addressing a specific location. The list of the 
functions is given in the Appendix. 

23.1. System Design 

The microcontroller is based on Dallas DS80C320 microprocessor, which is an 
enhanced version of Intel's 8051, capable of running at higher speeds with an 
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additional serial port, data pointer, and timer. This makes it very suitable for 
building embedded systems since, we have on-chip serial interface and we need few 
external resources to b ~ i l d  a minimal-configuration working system. This is 
important when it comes to building prototypes, one needs a reliable connection to 
the external world to be able to monitor the state of the system in the process of 
development. The block diagram of the microcontroller is shown in Figure 2.1. 
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Figure 23: Microcontroller Block-Diagram 

2.28181. Address Space 
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The microcontroller has separate program and data address spaces. This is 
typical for many computer systems but as our research showed it could be a reason 
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for some undesired effects to take place. Addressing separate spaces generally 
results in changing high-oder bits of the address when switching from one space to 
another, pdcuia ly  bits which me used in decoding different components ofthe 
system. This could cause glitches on the decoding lines and respective 
malfunctioning. By changing the program location, one could get different system 
behavior. These kind of problems are very difficult to figure out since, they might 
appear only in combination with other events taking place on the boards. 

Jumper-configurable, we could have 32k or 64k of program memory. The 
jumper turns odoff the A1 5 address line. We have been using PROMICE firmware 
development tool to emulate our program storage. The PROMICE ROM emulator 
could be connected to a PC through the standard serial or parallel interfaces and 
accessed and controIled through a command-line interface. Several PROMICE 
devices, each emulating 8-bit-wide memory, could be connected in parallel to 
emulate wider ROM storage of up to 5 12 kwords deep. 

The data address space is divided among the system data SRAM, the SCSI 
protocol controller, and the SJ boards. The prototype could accommodate up to five 
SJ boards each corresponding to 256 bytes of addressable memory. The decoding 
scheme is shown in Table 1. 

Table 1: Micmcontroller Address Decoding Scheme 

I I 

I 1 O I SCSI protocol controller 

Partial decoding is used. For our purposes 32k of SRAM is enough although, 
considering maximum-size SJ executable of 512k would complicate the loading 
pmtocol. But in any case we couldn't have more than 64k. 

I I 

23.1.2. SCSI protocol controner 

1 

We are using the AMD Enhanced SCSI-Bus Interface Controller Arn33C93A. 
It has 32 addressable registers and it is located directly on the CPU bus. The chip is 
configured to take advantage of the multiplexed addreddata bus. The register 
address is latched internally at the falling edge of ALE and if the chip is selected a 

1 Sf boards 
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read or write operation takes place. 

DMA and intempt h d n g  are disabled and data transfer takes place by 
polling the status bits. This approach was adopted primarily because during 
building the prototype we wanted the software to run predictably and reliably. Even 
when something goes wrong it should keep running to report the state of the system. 
The choice also fits very well with the request-driven initiator-target relationship 
between the microcontroller and the host imposed by the SCSI bus protocol. In this 
way the system components' priorities are determined entirely by the software 
which is preferable during the trouble-shooting procedure. 

Of course other solutions are possible. An interrupt handling approach would 
require a different software architecture. The request-driven communication still 
could be preserved but in general we will need interprocess communication 
mechanism between the different subroutines working on the completion of a single 
request. The software details are discussed in later sections. 

2.2.63. S J Boards 

The prototype is designed to accommodate up to five boards. Each board has a 
unique 3-bit ID which is jumper-configurable. 

In the first decoding scheme implementation, the address lines A 1 1 ,  A 12 and 
A13 were used as SJ board ID bits, Table 2. They were passing directly to the SJ 
boards to be compared with the ID jumpers. The selection of a particular board was 
taking place dynamically within the timing of the current instruction. There are two 
special combinations, one selects all boards which means that the following activity 
read/write will take place on all boards and the other prohibits any activities on any 
of the boards. Sometimes though at procedure calls or during changing address 
spaces, we observed glitches on some of the lines. Usually the glitches were small 
but there was a possibility that sometimes they might get big enough to cause a 
trouble. 

Table 2: S J board Identification - Version 1 

A12/D1 I AIl/DO Function 

0 0 No one bard is selected 

X X Unique SJ board ID 

1 1 All boards are selected 
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In the second implementation the access to a particular board is divided in two 
parts. First the board is selected and after that its space is accessed in subsequent 
instructions. me bard ddress is passed over the data bas using DO, Dl, and D2 
data lines. The result of the comparison with the ID jumpers is latched and used to 
enable the board for subsequent operations until the board is deselected. Once 
selected the board is accessible as a conventional memory location. The A13, A12 
and A1 1 address lines are used to choose different selection options, Table 3. This 
scheme avoids eventual glitching problems, since the actual board access is 
separate in time from the board selection. Note the broadcast feature, which permits 
special subsets of the boards to be selected. 

Each SJ board is mapped to 256 addressable locations of DS80C320 data 
memory. The first 128 addresses are used to access the SJCP scan chains and for 
control purposes. A complete list of the available functions is given in the 
Appendix. The second 128 addresses are used to access an SJCP internal SRAM 
block. The access to any location takes place within the timing of a single stretched 
data memory access instruction. 

%bie 3: SJ board identification - Version 2 

All SJ boards have a common reset line controlled by the system reset. Each SJ 
board has a dedicated interrupt line which is connected directly to one of the 
interrupt inputs of Dallas microprocessor. The interrupts are currently disabled and 
the handling is done by polling. 

The physical interface between each board and the microcontroller is realized 
through pairs of FPGAs which perform decoding and bus control functions. The 
details are discussed in the following sections. 
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Selection Function 

Select all unit; data bus ignored 

Select upper half units; data bus ignored 

Select lower half units; data bus ignored 

Select single unit; D2, Dl, DO have the unit ID 

Select FPGA location 

NOP ; A7-A0 have a selected-board location 
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2.2.1.4. System CPwh 

Clock generation is critical for poxper system ,~erformance, We are using a 
Cypress CY7B992 Programmable Skew Clock Buffer (PSCB) to generate the 
necessary clock sequences. PSCB is capable of generating four clock sequences 
with possible relative shift of +/-I80 degrees. One is used as clock input for 
DS80C320 and SCSI chips and two others are providing PHIl and PHI2 clock 
sequences for the SJ boards. The skews are jumper-configurable, Table 4. 

As we found out the relative tirning between PHI1, PHI2 and the 
microcontroller clock is decisive for the proper system performance. PHI1 and 
PHI2 should be shifted at 90 degrees. This provides four equal time intervals timing 
different activities in the SJCP machine cycle. In reality though the situation is 
different, the time intervals could differ by as much as 40% with respect to the 
reference clock. The reasons for this are the PSCB resolution, ringing on the clock 
lines, propagation delays and different rising and falling times. 

Table 4: System Clocks Configuration 

At the same time PHIl and PH2 should be synchronized with the DS80C320 
bus control signals like READ, WRITE and particularly ALE. ALE triggers a finite 
state machine in SJCP which is going through 16 states (8 states for internal DPM 
access). Everything should be timed precisely in order for the data transfer to 
complete correctly. 

Jumpers 

The tuning of the system clocks goes through two stages. First, we tune the 
skew between PHI1 and PHI2 to be as close to 90 degrees as possible. Second, we 
tune ALE by shifting appropriately the microcontroller system clock. 

Function 

The microcontroller system clock has no effect on the functionality of the SCSI 
intefface. 

1F0, IF1 

2FO,2F1 

3FO,3F1 

4FO,4F1 

Jumpers fixed (Open) Reference Clock 

DALLAS System Clock, respectively 
controlling ALE, READ and WRITE timing 

SJ System Clock, PHI 1 

SJ System Clock, PHI2 
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2.2.2. Board Design 

We me using Four layer Printed Circuit Boards. The first for& layers are 
signal layers while the second and third layers are power and ground layers 
respectively. The microcontroller board is shown in Figure 2.2. Table5 shows the 
function of each jumper. 

HEX INV JMPR-0 PSCB 
CRYSTAL 

JMPR-3 
TERMINATORS 

I2321 I SCSICON 1 0 RESET 
I I I I 

Figwe 2.4: MicmntroUer Board Layout 

Dedicated POWER and GROUND layers help to reduce noise, crosstalk, and 
short circuit effects on the board. Also, it seems that one of the problems we 
encounter is associated with power distribution. That's why it is very important to 
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supply as much independent power to each component as possible. 

Table 5: System Contiguration Jumpers 

MPR-1 1 Program Storage Configuration Jumper. OFF - 32k. ON - 64k 

Jumper 

/ IMPR-2 i SCSI Reset Line Configuration Jumper. 
OFF - reset from the SCSI bus, ON - system reset 

Function 

I JMpR-3 1 SCSI Intempt Configuration Jumper. 
OFF - SCSI intempt disabled, ON - SCSI intempt enabled 

JMPR-0 1 Clock Configuration Jumpers. See Table 3. 

The SCSI terminators are powered by the HOST, in our case by the PC through 
&e cable. According to the SCSI specification, terminators should *be powered by 
the SCSI bus but if necessary, local power could be supplied through a jumper. 

The SJ boards attach to the microcontroller mother-board through pairs of 96- 
pin connectors. On the prototype we have five pairs of connectors. Each pair has a 
separate interrupt line- Since the interrupts are disabled, dl boards have the same 
priority or the priority is determined by the order of polling. If the intempts are 
enabled CONNECTOR-0 has the highest priority, this is where the Program 
Management Unit (PMU? will be plugged, and CONNECTOR-4 has the lowest 
priority. 

2.3- SJ Processiirg Vnit Board 

SAM II Processing Unit (PU) is based on a custom 32 bit vector-oriented chip- 
set designed at SFU. The chipset consists of: 

- SJCP - 32-bit one-stage pipelined vector-oriented microprocessor employing 
&bit-Wide high-fevd m i a w d e .  It is czp&!e of exewtisg up to 4 
microoperations per dock cycle at peak performance. 

- SIMI - 32-bit fwr-stage interleaved memory management unit. It can handle 
up to 64 Mbytes of interleaved memory organized in four banks. 
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- SJNI - 32-bit network controller, it is intended to handle direct data transfer 
between the Rocessi~g Units for eff cient 2t12y mmipiilatim. 

- SJFP - Floating-Point Unit. 

- SJIVUISJOVU - instruction pipe control units. 

Depending on its functions in the system each PU could be either a Program 
Management Unit (PMtf) or a Data Management Unit (DMU). The PMU performs 
program-execution control functions, It broadcasts vector-algorithm instructions 
through an instruction-pipe interface. The DMUs are engaged only in data 
processing activities. h principle, the system could have one PMU and many 
DMUs. The prototype is designed to accommodate five boards altogether, one PMU 
and four DMUs. 

23.1. SJ-board System Design 

At the time we stamzed building the prototype, only SJCP and SJMI chips were 
available so we were able to build a minimal configuration of SJ computing system 
consisting of the microprocessor module and data storage manager. The block 
diagram is shown in Figure 2.3. On the board we have reserved space for the rest of 
the system components and also we have intercomponent-interface pad arrays to 
connect the new componenl to the system. 

23.1.1. Microprocessor Module 

AH the activities on the SJ-board are controlled by SJCP control processor. 
SJCP has 64k-word external microprogram storage. In hture versions the 
micropro&ram storage might be on-chip. The microinstruction is 64 bits wide but 
actually SfCP is using onfy 56 bits. The other 8 bits (so called Y field) are specific 
for the Floating-Point Unit. The loading of the Microprogram memory takes place 
ttuough the SJCP internal scan-chains. First, seven bytes are written consecutively 
into the instruction scan chain while the eighth byte is put on the Y BUS from 
the on-board FPGA. After that all eight bytes are strobed into the microprogram 
store at the address prdoaded in he SJCP internal address scan-chain. In execution 
d e ,  the rnicropmgm~ store is ~mImes*jr. ei;&!eb h i  reading, ii is writable 
only during loading. We call this a read-mostly memory. 

Access to SJCP m w r c e s  is possible through an eight-bit addresddata bus and 
a couple of control signals, CTR-0 and CIR-1, which specify the RD or WR 
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operation to take place. The operation could be a conventional data transfer or it 
cwld trigger a certtn ac?ivi?y in SJCP. The lower eigh!: address bits me latched in a 
on-chip address register during ALE and subsequently decoded to determine the 
se1ected function. The decoding of the control signals is shown in Table 6. 

FPGA 

P 

1 - REFRESH 1- 

I Y B U S ,  
T D A  

MICROCODE 

SRAM 

I SI-BOARD CONNECTOR I 

Figure 25: S J-board Block Diagram 

DATA 

DRAM 

The generation of the control signals is not a trivial problem and it is discussed 
in detail in the next section. It is done through a pair of FPGAs which also perform 
bus control and d d i n g  functions. Due to a shortage of IIO pins on SJCP, the 
microcontroller's three bus control signals were encoded into the two CTRl and 
GIRO signals. 
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Table 6: Control Signals Decoding 

ALE 

0 

1 

SJCP i ected with the Memory Manager (SJMI) by a 32-bit bidirectional 
bus (SJ BUS) which is used to transfer data between the two modules during 
program execution. SJMI is controlled by two instruction fields called source (S 
field) and destination (D field). SJCP stops when active REFRESH is detected, this 
happens when SJMI performs a DRAM refresh, and resumes when REFRESH goes 
away. 

CTR-0 

0 

0 

SJCP has 166 32-bit words of internal dual-port SRAM used as data storage or 
in data transfer operations between SJCP and SJMI, SJCP and the microcontroller, 
and SJMI and the microcontroller. This dual-port memory takes 128 addresses of 
DALLAS address space and a 3-bit bank register is used to access different 128- 
byte banks. 

Operation 

READ 

NOP 

23.1.2. Memory Management 

SJMI can handle up to 64 Mbytes of interleaved DRAM organized in four 
banks, two even and two odd, each 32 bits wide. It has on-chip refresh logic with a 
programmable refresh cycle. In the prototype we are using four 4 Mbyte SIMM 
modules for a total of 16 Mbytes. 

During instruction execution, the source and destination fields of each 
microinstruction are passed from the microprogram storage to SJMI and other 
coprocessors dong the S and D buses to specify the source and destination of the 
data transfer, if any. 

23.2. h a r d  Design 

The board layout is shown in Figure 2.4. It is again a four-layer printed circuit 
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board. The first and forth layers are signal layers while the second and third layers 
are power and ground layers respectively. 

The SJ-board connects to the microcontroller board by means of a pair of 96 pin 
connectors. CONNECTOR-0 is used to attach the board to the microcontroller bus 
while CONNECTOR-1 will be used for inter-process communications. It has three 
SJ ID configuration jumpers specifying the unique address of a particular board. 
The boxes drawn with a dashed line show the places reserved for the Instruction- 
Pipe Unit, Floating-point Unit, and the ~etwork~ontroller. 

Figure 2.6: SJ-board Layout 

The clock buffers are used to buffer and invert the PHI1 and PHI2 system 
c10f:ks coming from e PSCB on the microcontroller board through 
CONNECTORRO. 

The board architecture could be improved along several lines. If we rotate the 
SJCP and SJMI modules in 180 degrees, this would shorten the addresddata bus 
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traces between the FPCA and SKB minimizing the ringing and crosstdk. We also 
can improve the system clock propagation delays, if we keep the SJCP clock inputs 
close to the bus connectors. 

When we started designing the board, we used the SJCP and SJMI pin layout. 
diagram given to us by the manufacturer. It was not until the board was ready for 
manufacturing, when we found out that actually we had the mirrored image of the 
pinout. At this point we had two alternatives: to redesign the board or to solder the 
SJCP and SJMI on the back side of the board. We chose the second one mainly for 
timing reasons. This will be fixed in later implementations. 

2.4. Microcontroller - SJ Boards Interface 

The microcontroller is facing the problem of how to interface efficiently 
multiple Processing Units. Some multiprocessor systems with large number of PUS 
have several levels of local buses even some custom networking which in any case 
involves buffering. In our case, each PU represents 256 bytes of directly 
addressable memory and all the transactions take place within one stretched 
microcontroller machine cycle. But even though the prototype has only five PUS, 
we still need to consider such factors like bus-lines overloading and signal 
propagation delays, and of course the timing. 

In general, the basic functions the microcontroiler-SJ-boards interface should 
be able to perform are: 

- AddressData Bus Control - The microcontroller and the SJ-boards are on the 
same physical bus. The interface logic should be able to control the direction of the 
bus depending on which device is driving it. Usually the bus is driven from the 
microcontroller towards the SJ boards. Only when we have a read from a particular 
PU, the bus direction is reversed. This is done to prevent the five SJ boards driving 
the bus at the same time, which would result in a short on the bus lines. 

- Decoding - The SJ boards are in the microcontroller address space together 
with the SRAM and SCSI protocol chip. The interface logic should be able to 
identify each board uniquely in order to avoid bus co~tests and to generate the 
proper set of control signals. The decoding is done in two stages (see below please). 

- Control Signals Generation - From one side we have the DS80C320 bus and 
on the other side the SJCP external interface. The interface logic should perform the 
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necessary decoding and conversions in order to generate the proper control 
sequences. 

2.4.1. Physical Datapath 

The interface logic is realized through a pair of FPGAs, one on the 
microcontroller board, which I will refer to as FPGA-M and one on each SJ board, 
FPGA-SJ. FPGA-M performs partial decoding and bus control functions and 
FPGA-SJ completes the decoding process and generates the necessary control 
signals. Since the FPGAs have limited internal resources and limited number of 
external inputs, the functions should be distributed evenly between them. 

Microcontroller 
FPGA-M 

FPGA-SJ s SJ 

CONNECTORS A FPGA-SJ 

S 

FPGA-SJ s SJ 

Figure 2.7: Physical Datapath 

The DS80C320 bus goes to FPGA-M and after that it directly connects to 

33 
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as many as five FPGA-SJ units, which expands the bus into five separate buses, 
Figure 2.5. 

As far as the dataflow is concerned, the FPGAs are playing simply a buffering 
role. The bus is driven normally towards the SJ boards and only during a decoded 
read it reverses its direction. 

2.4.2. Micrwontrder FPGA Design 

We have been using Intel's and Altera's FX740 coming in 68 pin PLCC 
package having four Configurable Function Blocks (CFB) each containing ten 
macrocells aid  having a pin-to-pin deiay of IOns. In the first implementation, 
FPGA-M performed some partial decoding of the address while the DS80C320 bus 
control signals passed through in the original timing. In the second version, 
improved design by Dr. Rick Hobson, we generated our own bus control signals 
under state-machine control. Both designs will be discussed and compared where 
relevant. The logic diagram of the first version is shown in Figure 2.8. The 
PLDSShell file and the simulations are given in the Appendix. 

2.4.2.1. LSB Address Latch 

DALLAS has multiplexed addressldata bus. First the LSB of the address is put 
on the bus and after that the same bus is used for data transfer. For the proper 
system fiincticnality we need to stare the ESB of the address for a subsequent use in 
data transfer operations which could be an instruction fetch from the 
microcontroller program storage or data transfer tolfrom the microcontroller data 
storage or the SCSI chip (LSB is also latched in FPGA-SJ and internally in SJCP 
for addressing and operation decoding purposes). Eight macrocells in the FPGA-M 
are organized as an eight-bit register. According to the DS80C320 specification, the 
LSB of the address should be latched at falling edge of ALE (active high). Since the 
data is getting strobed into the macrocell-D-flip-flops at the rising edge of the D- 
flip-flop-ACLK-input, ALE should be inverted. The macrocell-drivers are 
permanently on, the LSB-address-lines are never floating a d  they are stable by the 
time of the data transfer. 

2.4.2.2. SCSI Protocol Chip Selection 

We are using A1 5 and A 14 address lines to divide the data address space among 
32k of SRAM, the SJ boards and the SCSI Protocol Chip (see Table 1). In order to 
enable the SCSI chip data bus drivers, both CS-SCSI and RDM'R should be active 
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at the same time (see Figure 2.6 for CS-SCSI logic). 

/READ 
/ W R I T E  
ALE 

AlS*/A14 

Figure 2.8. Microcontroller FPGA-M Version-1 Logic Design 

READ, - 
/WRI?'E,~ -- 
ALE *- 

2.4.23. READ, WRITE and ALE 

In the first implementation the control signals READ, WRITE and ALE are 
passed through FPGA-M directly to the FPGA-SJs on the SJ boards where they are 
used to generate the corresponding control sequences on the selected board@). In 
this case FPGA-M serves only as a buffer. The control signals reach the SJCP UO 
interface in the original timing. We had some difficulties tuning the relative timing 
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between the micr~controller bus control signals and the SJCP clocks. Most of the 
time the interface was working fine but sometimes we had to retransfer the data 
several. times. We were n d  sure what the problem was but io avoid potential 
problems the control signals logic was redesigned. 

In the second implementation, we take the original bus control signals and one 
of the system clocks and use a state-machine control logic to generate a new set of 
control signals timed better with the SJCP clocks, Figure 2.9. 

New ALE 2 2 

Figure 2.9: Bus Control Signals Timing 

In order to be able to accommodate the new control signals in one machine 
cycle, the machine cycle is stretched by 8 clocks. Two goals are pursued here. First 
ALE is delayed to align it better with the SJCP interface logic clock. This would 
guarantee correct data transfer. Second, the two original signal sequences we have 
are NOP-ALE-RD-NOP and NOP-ALE-WR-NOP, see Table 6 for the coding 
scheme. All the transitions involve only one bit change, except the transition from 
W R  to NOP where we have to change both bits. This might cause an ALE glitch 
and misfiring of the SJCP interface state-machine. That's why RD has been added 
momentarily between WR and NOR Instead of having WR-NOP we have WR-RD- 
NOR The intermediate RD state does not cause any problems. 
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2.4.2.4. SJ Boards Selection 

High A15 and A14 select the SJ boards. In order to be able to identify uniquely 
five PUS, we need three more bits. In the first implementation we are passing 
through A1 3, A12 and A1 1 gated with the product of AlS*Al4 to the FFGA-SJ and 
use them to D a particular board, see Table 2. 

Because of timing, propagation delays, and address space change reasons, we 
were getting glitches on some lines. In order to avoid this, in the second 
implementation, we use A1 3, A12 and A1 1 only to encode the type of selection 
(Table 3), broadcasting, single board selection etc., and the actual ID code is passed 
on the data bus. DO, Dl, and D2 are compared with the jumpers and the result is 
latched. In subsequent board access operations the high-order address bits. (A13, 
A12 and A1 1) are set to zero. 

As an output from FPGA-M, we get two groups of signals. The first group 
consists of A[O:7] and CS-SCSI used on the microcontroller board and second 
includes A13, A12, A1 1, A/D[O:7), READ, WRITE and ALE. 

The second group together with the system reset line (RESET), the interrupt 
line @lX) and the two clock signals PHI-1 and PHI-2 constitute a bus going to 
each SJ board, which we called SAM I1 Bus, see, Table 7. 

The RESET signal is generated by the reset logic and is driven towards the SJ 
boards. 

Table 7: SAM 11 Bus Signals 

I Signals I Direction I Function I 
- - - - - - 

I A13, A12, A l l  I I towards SJ board 1 SJ b o d  IDnD function select I 
I I 

/ bidirectional I bidirectional addressldata bus 
1 I READ, WRITE, ALE towards SJ b~mi I control signals 

, 1 
I 

1 RESET 
f t 

system reset signal 

SJ board interrupt signal 

SJ board clock signals 
1 

I towards SJ board 

INTR 

PHIJ, PHI2 

towards DALLAS 

towards SJ board 
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The INTR is coming directly from SJCP to the corresponding connector and 
from the connectors all interrupt signals are going to dedicated DS80C320 interrupt 
Inputs. 

The dock signals, PHI-1 and PHIZ, are coming directly from the 
Programmable-Skew-Clock-Buffer. 

2.4.3. S J board FPGA Design 

FPGA-SJ completes the SJ-board decoding procedure and generates the bus 
and SJCP I/0 interface control signals. 

2.4.3.1. Decoding 

In the first implementation the A13, A12, and A11 address lines are compared 
dynamically within the timing of the current instruction with the ID jumpers, Figure 
2.10. The result of the comparison is used as a global enable signal to trigger 
different activities in FPGA-SJ. When the result of the comparison is negative the 
addresddata bus is driven towards SJCP and the control signals are in NOP state. 

In the second version, impmvrd by Dr. Rick Hobson, the A1 3, A12, and A1 1 
address lines are still used but for decoding the selection function, which might be 
broadcasting, select lower half, select upper half etc. The actual ID code is 
transferred over the data bus. The D2, Dl, and DO data lines are compared with ID 
jumpers and the result is latched in a flip-flop. On selection the board stays selected 
until it is deselected. This approach gives a little bit more addressing flexibility, 
eliminates problems due to glitching and saves a little bit of address space if we 
need it. 

The external microprogram storage is 54 bits wide. The microprogram is loaded 
one instruction at a time. Part of the instruction, 56 bits, is loaded through the SJCP 
internal instruction scan-chain, seven bytes are written sequentially into the scan- 
chain and strobed later into the microprogram storage. For the eight byte, we need 
an external register accessible by the microcontroller. Since this byte belongs to the 
so called Y field in the micmins+mction, we call this register the Y-register. Eight 
macrocells in FPGA-SJ are organized as the eight-bit Y-register. 
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ALE . 

SEL 

Figure 210: FPGA-S J Logic Diagram 
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Each SJ board takes 256 bytes of DALLAS address space. The LSB of the 
address is used tCt access the SfCP resources or the Y registex One of these 256 
addresses, LfB = OOH, is used to access the Y register (not dl 256 values are used 
internally in SJCP). 

2.4.33. Counter 

In the first version, this was a real-time solution to a timing problem we might 
have. During program step-by-step execution, we need to know how many clock 
cycles we have before DRAM refresh in order to figure out if SJCP will be in 
condition to execute the next step. During REFRESH, SJCP stops and will not 
respond to a step request. As a matter of fact running at I6MHz, the probability of 
stepping SJCP during a refresh is less than 1%. Eight macrocells are organized as 
an eight-bit counter. The counter is reset by REFRESH and clocked by PHI-2. 
b o w i n g  how many cycles we have between two REFRESH signals and the current 
value of the counter we could figure out how many clock cycles we have before the 
next REFRESH. The counter is also used for testing purposes as an intermediate 
buffer to read the Y register or the Y field of the microinstruction. 

In the second implementation the counter is removed. The REFRESH signal is 
connected to an DS80C320 input and used to reset a programmable on-chip timer. 
The microcontroller checks the current value of the timer before doing a step. If 
there are enough clock cycles left to do a step before the next REFRESH it goes 
ahead, otherwise it waits. The number of clock cycles for a step can be calculated 
from the microcontroller step instruction sequence. 

2,43,4. Bidirectional AddredData Bus 

Sixteen macrocells are organized as an eight-bit bidirectional tristate buffer 
Figure 2.8. The bus direction is controlled by COMP-OUT and READ. Normally 
the bus is driven towards SJCR Only on a read, it reverses its direction. On a read 
the buses coming from SJCP and the counter are multiplexed. The multiplexer is 
controlled by SEL. 

2.435. Contfd Signals Genesalon, CTR-0 and CTjR-1 

The external SJCP control interface consists of two control signals CTR-0 and 
CTR-I. These two control signals determine the type of operation we have, see 
Table 6. The control signals are function of several variables. They depend on 
COMP-OUT, SEL, READ, WRITE and ALE. In more formal way we could write: 
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CTR-f = Fl(COMPOUT, SEL, READ, WRITE, ALE) 
eTR-0 = FO(COMPOtrT, SEL, READ, W_RITE, ALE) 

After performing the necessary operations, for the final set of equations we get: 

C3R-I = KOMP-OUT + READ* WRITE + SEL 
ccn?pccn?pO = COMP-OUT*(ALE + /WRfTE*/SEL) 
The simulations and practical measurements showed that, the generation of the 

control signals is correct. But in order for SJCP to function properly it should 
receive the right set of control signals at the right time. 

Because of a signal propagation delay we were observing a glitch on CTR-0 
line. The problem was that there is delay between the time the address goes away 
and the time COMP-OUT goes away. Ideally they should go away at the same time. 
But, in practice COMP_OUT goes low !ater and for some time it is sctivl: during 
the next ALE. That is why we were receiving a glitch on CTR-0 at the beginning of 
the next ALE. 

After observing the timing of the system clocks, we used PHI-2 to strobe the 
control signals into D flip-flops. In this way we avoided the glitching without 
affecting the relative timing. 

Another problem we had was related with the relative timing between the 
control signals and SJCP internal clocking. The control signals timing is determined 
by the DALLAS CPU clock which doesn't necessarily have to agree with the SJCP 
timing requirements. We had to shift the DALLAS clock in order to tune the control 
signals generation timing and particularly ALE. 

2.5 Summary 

The board-level hardware implementation of SAM-11 took a little bit more than 
a year. It should be noted that the SJ chip set designed at the VLSI Laboratory under 
the leadership of Dr. Rick Hobson provides excellent hardware supported testing 
and debugging features. I designed and populated the microcontroller and 
processing unit printed circuit bards, debugged fully the microcontrdler and 
nzwfially a e  pmessing && &bugged khe SC,SI htp.&cp, hardwxe an_d fi_m~a_re, r---- 

&signed the first version of the FPGA-based interface and wrote a number of 
t.esi%g and debugfig ~WM~S. Dr. Rick Hobson designed the second version of the 
FPGX-based interfax Iqgic, partidly debugged the processing unit board and 
wrote a number of processing unit testing routines. 
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3.1. Microcontroller-Host Interface 

Using an embedded system as a vector arithmetic coprocessor imposes the 
necessity of having a fast way to transfer data between the host and the embedded 
system in order to achieve a reasonable system performance. From application 
program point of view, the overall data processing time consists of several parts: 

- time io i~&.isf&f arid i o d  SAM 1'1 exwutztbie 
- time to transfer the data from the host to the embedded system 
- time to process the data 
- time to transfer the result from the embedded system to the host. 

One can see that there is a substantial data traffic going on between the host and 
the embedded system, particularly when we are talking about processing big arrays 
of data. Sometimes we don't really need to process any data but rather we perform 
some system configuration, control or testing activities which involve data transfer 
in both directions. In any case in order to create the feeling of real-time data 
processing and control, we need a fast way to interface the embedded system. The 
i d 4  case would be if we can transfer data at the speed of the local bus but with 
increasing tl5e r;i;mber of processors, it wodd be difficult to accommdate tile 
system in a standard PC box, 

For interfacing purposes, we are using eight-bit-wide fast SCSI 2 interface. In 
this case the embedded system is treated as a conventional SCSI device hooked up 
on the SCSI bus, pretty much like a hard disk drive. SCSI 2 allows transfer speeds 
of up to SMbytes/sec. The limitation on the transfer rates in our case is coming from 
the microcontrolier clock rate which determines instruction execution times and 
device driver timing respectively. Running at I6MHz we can get a transfer rate of 
about 0.3Mbytedsec. Eventually if the code is optimized, we could get about 
0.5-0.6 Mbytesfsec. 

3.1.1. SCSI Interface Principles 

SCSI stands for Small Computer Systems Interface and was originally designed 
to interface block-oriented hard disk drives. Nowadays, SCSI is getting more and 
more popular because of its reliability and speed and it is used to interface all h d s  
of peripherals. Detailed discussion of SCSI specification can be found in the 
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specialized literature [I, 2, 31. Here, we will focus on points which are relevant to 
hterfackg an emkddd system. 

3,l.l.I. SCSI Bus Configuration 

A typical SCSI bus configuration is shown in Figure 3.1. Up to eight devices 
could be connected on the SCSI bus. We could have one or more host computer 
system adapters and one or more peripheral controllers on the same SCSI bus. 

I Host Computer P s t  Computer 

I Host Adapter I I Host Adapter I 

SCSI BUS - 
. 

Peripheral Controller Peripheral Controller Peripheral Controller 

4 peripheral 
Device 

1 peripheral 
Device 

Figure 3.1: SCSI Bus Configuration 

Any twc devices connected to the SCSI bus can communicate. A peripheral 
could communicate with a peripheral, host could communicate with another host 
and a host could communicate with a peripheral. The devices capable of initiating a 
transaction are called initiators. Usually the host adapters are initiators and the 
peripheral controllers are targets. The initiator initiates the transaction by sending a 
request to the target and after that the target controls all the activities and the 
completion of the transaction. 

3.1.1.2. SCSI Bus Phases and Phase Sequences 

During a SCSI transaction the SCSI bus goes through several phases (states). 
The phases follow a certain order depending on the configuration and type of 
transaction. 

Bus Free Phase - This phase indicates that no SCSI device is currently using the 
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bus. 

Arbitration Phase - This is an optional phase which permits a device to gain 
control of the SCSI bus as an initiator or a target. This phase is necessary when we 
have more than one initiator on the bus. 

Selection Phase - This phase permits an initiator to select a target to perform a 
certain function. 

Reselection Phase - This is an optional phase that permits a target to reconnect 
to an initiator after the target has disconnected from the SCSI bus. 

Command Phase - This phase allows the target to request the command 
information from the initiator. 

Data Phase - This is the data transfer phase. 

Status Phase - During this phase the target requests that status informatioil be 
sent from the target to the host. 

Message Phase - This phase allows multiple messages to be sent in both 
directions during any other phase. 

An example of a SCSI transaction phase sequence is shown in Figure 3.2. 

I Bus I Arbitration I Selection I Command 1 Data 
Free 

Figure 3.2. SCSI transaction phase sequence 

Status 

After the Bus Free phase all the initiators which want to take control of the 
SCSI bus arbitrate for the bus. The initiator with the highest priority takes the bus 
and gets into Selection phase to select the corresponding target. After the selection, 
the target requests the command information during Command phase. The data is 
transferred during the Data phase. After the data transfer, the target sends status 
information and Command Completion message to the initiator. The Command 

Command 
Complete 

Bus 
Free 
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Complete phase completes the transacti~n and the bus gets into Bus Free phase. 

3.1.13. Conunand Description Block (CDB) 

After the selection, the initiator transfers to the target several bytes of control 
information in a Command Descriptor Block (CDB), specifying the operation to be 
performed. The CDB could contain up to 12 bytes. We are using Group 0 CDB of 6 
bytes, this is determined by the host adapter, see Table 8. 

Table 8: CDB format for SEND 

The first byte specifies the operation. In this case the operation is SEND and the 
data is supposed to be transferred from the initiator to the target. LUN is a three-bit 
field specifying the Logical Unit Number of the target. Bytes 2, 3 and 4 specify the 
length of the transfer. The last byte is reserved and is only used when we have 
linked commands. 

byte 

0 

1 1  ! LUN (unused = OO), Reserved (00) ! 

The format of the CDB has been designed to serve the purposes of hard disk 
block data transfer. What we are interested in is the speed and reliability of SCSI 
interface and we don't really need to stick with the conventions of hard disk black 
data transfer protocols. We are using the fields in the CDB to transfer control 
~ o m a t i o n  relevant to SAM I1 functionality and activities. One should be careful 
though, since some chips have embedded intelligence and they decode 
automatically certain fields in the CDB on the receive. 

Function 

SEND operation code (OAh) 

2 

3 

4 

5 

After receiving the CDB, the target decodes the operation, determines the data 
transfer length and takes over the SCSI bus controlling all the activities around the 
data transfer and transaction completion. 

Transfer Length (MSB) 

Transfer Length 

Transfer Length (LSB) 

Reserved (OO), Flag, Link 
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3.1.2. SCSI Interface Drivers 

On the SCSI bus we have only two devices - the PC host adapter and SAM 11. 
By default, the host adapter has the highest priority 7 and is configured as an 
initiator. SAM II has the lowest priority 0 and could be configured as an initiator or 
as a target but since the host adapter can only be an initiator, it is hooked to the bus 
as a target. 

3.1.2,1. Host SCSP Driver 

On the PC side we have ADAPTEC AHA-1540 intelligent host adapter card 
based on the Intel $085 microprocessor [4, 51. The AHA-1540 provides a 
multitasking interface between PC/AT bus and SCSI bus supporting maximum 
asynchronous SCSI rate of 2.0 Mbytes/sec and synchronous transfer rate of 5 
Mbytedsec. The AHA-1540 is configured to use interrupt channel 11 and DMA 
channel 5 with 10 Mbytes/sec burst data rate. 

We are using the ASPI (Advanced SCSI Protocol Interface) [6] to access the 
resources of AHA-1540 and to control the activities on the SCSI bus. The ASP1 
provides a protocol to submit UO requests to the host adapter specific ASP1 
manager. Usually, there is a separate ASP1 manager written for each host adapter 
which is hiding the hardware from the application programs and SCSI drivers. Once 
the ASPI manager is loaded it becomes a part of the operating system by 
intercepting certain system calls (including DOS interupt 21H) and the SCSI drivers 
integrate each type of SCSI device into the operating system through ASP1 
independent of the installed hardware. 

Special data structures called SCSI Request Blocks (SRB) are constructed by 
drivers and application programs to access the services of the SCSI driver layer. 
First the SRB is constructed in the application program address space and after that 
a pointer to the SRB is passed as an argument to a subroutine calling ASPI. All 
control information necessary to perform a certain SCSI operation correctly is put 
together in the SRB. Different SCSI services (Commands) have different SRB 
formats. 

The SRB format for the SCSI UO Command is given in Table 9. The first byte 
in the SRB is the Command Code, for performing an ID operation it is 02h. 

The Status byte shows the status of the current SCSI transaction. 
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The SCSI Request Flags specify the direction of the data transfer also, they 
determine if the 1eng.h of the data transfer is to be checked. 

Offset 

00 

01 

02 

03 

04 

08 

09 

I0 

14 

1 l5 

17 

19 

21 

23 , 
24 

25 

26 

28 
I 30 

64 

64+M 

The Data Allocation Length is a four-byte field and gives the length of the data 
transfer. 

# of bytes 

0 1 

0 1 

0 1 

0 1 

04 

0 1 

01 

04 . 

01 

02 

02 

02 

02 

01 

01 

0 1 

02 

02 

Table 8: SCSi UO Request SM? 

Description 

Command Code = 02h 

Status 

Host Adapter Number 07h 

SCSI Request Flags 

Reserved For Expansion 

Target ID OOh 

LUN 

Data Allocation Length 

Sense Allocation Length (N) 

Data Buffer Pointer (Offset) 

Data Buffer Pointer (Segment) 

SRB Link Pointer (Offset) 

SRB Link Pointer (Segment) 

SCSI CDB hngth (M) 

Host Adapter Status 

Target Status 

Post Routine Address (Offset) 

Post Routine Address (Segment) 

RAW 

W 

R 

W 

W 

W 

W 

W 

W 

W 

W 

W 

W 

W 

R 

R 

W 

W 

W 

R 

34 / Reserved for ASP1 Workspace 

M 

N 

SCSI Command Descriptor Block (CDB) 

Sense Allocation Area 
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The place where the data is to be found for sending or to be stored on receiving 
is given by the Data Buffer Pointer fields. 

The Host and Target status bytes show the status of the Host Adapter and the 
Target. The Target status byte is the byte sent by the Target at the end of the SCSI 
transaction. 

At the end of the SRB, we construct the SCSI Command Descriptor Block, in 
our case it is a six-byte field. 

The currently supported SCSI bus commands (SCSI driver services) are given 
in Table 10. 

Table 10: ASP1 Command Codes 

Command Code b 
Get Device Type I 

Execute SCSI 110 Command 

Abort SCSI 110 Command 

Reset SCSI Device i Set Host Adapter Parameters 

Reserved For Future Expansion 

Reserved For Vendor Unique I 

ASP1 allows linking SCSI requests by constructing several SRBs, each SRB 
has a pointer to the SRB corresponding to the next command to be executed. 

An example of calling the ASPI manager in order to execute a SCSI command 
is given in Figure 3.3. 
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I Application Program 
or Driver 

Construct SRB v 
t 

Prepare Data Buffer 

I Call ASP1 Manager 1 1 

I 

Yes 

w 

Application Program I or Driver 

v 

Figure 3.3: Calling ASP1 Manager 

First the Application Program constructs SRB and prepares the Data Buffer 
which could be reserving a space for the data to be received or filling the buffer with 
data to be sent. After that it is calling the ASP1 Manager which sends the request to 
the Intelligent Host Adapter. From this point, the SCSI transaction is processed 
completely independent from the main CPU which continues with executing the 
Application Program code. On the SCSI Command Completion, the Host Adapter 
will transfer the data directly into the SRB and Data Buffer allocated address spaces 
through DMA channel 5. Meanwhile the Application Program keeps checking the 
status bytes in the SRB until the transaction completes or times out. 

No v Execute SCSI Command 

- SCSI transaction Completed 
or TimeOut 
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3.1.2.2. Aaicrocontrskr SCSI Drives 

The SCSI interface is built around the Advanced Micr~  Devices Enhanced 
SCSI-Bus Interface Controller Am33C93A [7]. The SCSI Controller takes 32 
locations of DALLAS addressable memory and the SCSI Bus operation is 
controlled by writing commands and reading data and status information tolfrom 
the SCSI-Bus Controller registers. With respect to the instruction set complexity, 
the SCSI-Bus Controller can execute two types of commands: level I commands 
performing low-level SCSI bus control, and level I1 or combination commands 
realizing high level control. The combination commands radically reduce interrupt 
handling responsibilities of the main processor. 

One complete SCSI transaction consists of several stages. Usually, after each 
stage an interrupt is generated to indicate the completion of the stage. During one 
SCSI trmsaction, the rnicr~processor aust  serve several interrupts before the 
transaction is completed successfully. Depending on how the SCSI transaction is 
managed - by handling interrupts or by polling status registers, the transaction is 
atomic or it is interrupted by side activities, there are several approaches to design a 
driver. 

3.1.2.2.1. Conventional Hard-Disk Drives Architecture 

Originally, SCSI was designed to serve the purposes of a high-speed Hard-Disk 
data block transfer. In this particular case, the driver is managing a predictable and 
passive device like the hard disk, everything is defined from the very beginning and 
the driver is written as a devoted SCSI bus server. Also, on the SCSI bus we could 
have several SCSI devices and sometimes a given transaction needs to be 
interrupted for a while and resumed later. Under these conditions the 
implementation of the drivers employing interupt handling is pretty straightforward 
and resembles pretty much a big "CASE statement. Everything a driver has to do 
when an interrupt comes is to recognize where in the SCSI transaction it is right 
now and this will determine what to do next. Depending on the level of 
implementation of the SCSI driver hardware and the chip set used we might have up 
to a couple of hundred possible states. For example, if we want to write an intcrupt 
driven driver for Am33C93A (this is an intelligent SCSI bus protocol chip), we 
seed to be able to check for a b u t  150 different states. 

The block structure of an interupt driven SCSI driver is given in Figure 3.4. 
When an interupt comes the processor reads the Interupt Register and gets into the 
Interupt CASE statement. After that it reads the Phase Register to determine the 
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phase where the current command has stopped and executes the corresponding 
function. 

Phase i CC- 

r * 
No 

Figure 3.4: Interupt Driven SCSI Bus Driver 

Obviously, the implementation is straightforward but this architecture has some 
shortcomings. It is relatively slow since we have to do a certain amount of checking 
even in the case when the interrupts are coming from the same transaction. Well, 
this is not a big problem considering !hat the main delay is coming from the hard 
disk mechanics. Also, code repetition is possible. Some optimization is possible 
considering the requirements of the specific application. The main complications 
are coming from handling exceptions and bus error states. In general this 
architecture gives relatively good performance and it doesn't represent any 
challenge from software design point of view. 

t ,  
f 

Interupt pending 

Yes 

Phase 0 + 
Phase 1 

- 
Phase k 

t 
function 01 

+ 

Interupt 0 - 
Interupt 1 

Interupt N 

- 
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Phase 0 
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I 
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3.1.2.2,2. SAM I1 SCSI-Bus Driver Architectwe 

In designing the SCSI driver we have taken into account several features 
specific for our application. First we have only two devices on the SCSI bus, the 
host adapter connected as an initiator and SAM I1 connected as a target. This 
eliminaks the necessity of having Arbitration at the beginning of the SCSI 
transaction since, we have only one device connected as an initiator and it can take 
the bus any time it wants. 

What we want from the SCSI interface is to transfer data at high speed. We 
don't need all the features of the SCSI protocol related to interfacing hard disk 
devices. We are interested in transferring data in both directions and for this purpose 
we need only two commands Send data and Receive data. We will be using the 
fields in the Command Descriptor Blocks to encode our own commands and to 
define our own protocol as much as possible. We can not completely customize the 
CDB because the host adapter and the AMD SCSI chip react automatically to 
certain codes which is critical for the proper system performance. For example the 
AMD SCSI chip might disconnect automatically from the SCSI bus on a Read after 
the Selection. 

Since we have only two devices on the SCSI bus, one initiator and one target, 
there is no contest for the bus and the target doesn't need to disconnect from the 
bus. Some of the hard disk operations take relatively long time and the target after 
receiving the CDB disconnects from the bus allowing other devices to use it, while 
it is executing the required command independently of the host adapter. After the 
command is executed, it reconnects to the bus and completes the transaction, 
Figure 3.5. 

. 
1 Execute the command I 

Figure 3.5: SCSI Command Execution Through Disconnection 

Selection and 
CDB transfer 

In our case we don't need to disconnect from the bus and we can complete the 
transaction in one shot. Besides that, since the SCSI protocol is using hand-shaking 

Reconnecting: 
to the bus 

Decoding 
the command 

Transfer data and 
Completion 

Discomectior 
from the bus 
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we can accommodate all SAM II activities within the SCSI transaction without any 

I 

Abort SCSI Command I 

I Receive I 

Decode SCSI Command 

Transfer-Data 
I b 

- 

' Yes 

i 

No 

Figure 3.6: SAM I1 SCSI Driver Architecture 
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complications or problems. 

On Power-up the SCSI Pro~ocol Controller is configured for asynchronous data 
transfer, DMA channel signals are negated and the internal register address is 
latched at falling edge of ALE. There is no explicit Target configuration, its status 
on the SCSf bus depends entirely on the commands it executes. 

The SCSI transaction goes through three major stages: Selection, 
Data-Transfer and Commaad-Completion. First the SCSI Protocol Controller is set 
to wait to be selected by the host adapter. If the Selection is successful, the driver 
decodes the SCSI c~mmarrd to be executed, Send or Receive, and the SAM I1 
operation to be performed. Actually, the term SAM fI operation stands for a pretty 
complex piece of software and will be discussed later. For now, with respect to the 
SCSI bus functionality, it is important only to point out that, while the 
microcontroller performs certain activities the host adapter is hanging waiting for a 
rep1 y by the target. 

The SCSI command to be executed specifies the direction of the data transfer. 
Send for the microcontroller means that, the microcontroller should send data to the 
host adapter. Usually, the microcontroller first executes a SAM XI operation and 
after that sends the result back to the host adapter within the timing of the current 
SCSI transaction. In case of Receive, the microcontroller first receives the data and 
after that does any data processing. 

If the Transfer-Data stage has completed successfully, the microcontroller 
completes the SCSI transaction by sending Status and Command-Complete 
messages. 

The successful completion of each stage is monitored by polling the SCSI 
Protocol Controller status registers. If a certain stage fails, the transaction is aborted 
and eventu&y repeated by the host adapter later. 

The polling and the fact that we need to use a small arsenal of SCSI bus 
commands allows us to construct the driver to follow the natural timing of the SCSI 
transaction. This makes it faster rdfcaHy sifnp1ifies its architecture. At the 
same time it allows us to eliminate all time constraints and to accommodate all 
micmontroller activities w i t h  the timing of the current SCSI transaction. 
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The system software allows the end-user to get access to SAM I1 resources to 
perform different configuration and testing functions or to do certain data- 
processing operations. It consists of two major components - the Host Control 
Interface and the MicrocoatroUer Monitor Program, Figure 3.7. 

The Host Control Interface is running on the host computer and its task is to 
accept the user commands, to encode them and to send them over the SCSI bus to 
the Microcontroller for execution. After that it waits for the Command Completion 
and reports the result. 

HOST 
1 

$ I i 

I Encode User Command 1 t 

Display Result 
I 

Result Present No 
Send User Command - 

- 
SCSI - 2 f 4  

ti* 4 User Command Request I Send Result to Host 

I Decode User Command I 

Execute User Command 

EMBEDDED SYSTEM 
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The Micmontr01ler Monitor Program receives commands over the SCSI 
interfaw, decodes them, executes them and sends results back to the host computer, 
The command execution takes place within the current SCSI transaction. 

The Host-Embedded System communication is command driven and the 
concept is very close to the idea of the Remote Procedure Call. The system should 
serve commands in the areas of System Configuration, System Testing, Program 
aid Data management and Data Processing. 

3.2.1. Host Control Interface 

The Host Control Interface performs two basic functions - User Interface and 

I ( j Construct SRB / 

I 

Display Results - 
Option-N . 

Fignre 3& Host Control Ioterface Main Loop 
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High-level Control. It is a menu-driven hierarchically organized system, Figure 3.8. 
Each menu could have several options and some options could be links to 
corresponding submenus. 

After an option has been selected the request processing goes through the same 
routine. The program constructs the corresponding SRB (SCSI Request Block) and 
calls ASP1 which on its behalf calls the low-level SCSI drivers and the request is 
sent for processing over the SCSI bus to the microcontroller. After the request has 
been served, the control flow goes to the same menu or to the main menu one level 
up. The last option in each menu is Exit or Up. 

Each option in the menu system has a unique binary code. This code is encoded 
in the CDB and is transferred over the SCSI bus along with other relevant control 
information to the Microcontroller. The Microcontroller is using it to fire up certain 
function(s). It is important to note that this code system is different and independent 
from the SCSI Standard Specification code system. 

In the SCSI Bus Protocol, the operation code is the first byte in the CDB, the 
rest of the bytes are used to transfer other control information. In our case, we are 
using two standard SCSI operations - Send and Receive. We preserve the first byte 
in the CDB for the SCSI operation code, this is important for the ASP1 software and 
the SCSI bus hardware, but we use the rest of the bytes to implement our own 
control protocol. An example format of a CDB used to transfer files into the SJCP 
external program storage is given in Tabie i 1. 

Table 11: Load Executable CDB Format 

~ y t e  I Code j Function 
I 
I SCSI status 

I I 

I I I 

i 2 Mh / Load Executable opcode I user definable 

0 
r I 

OAh I SEND opcode 1 reserved 

1 

Bytes 0,1 and 5 are preserved for the Standard SCSI Specification applications. 
Byte 2 contains the Load Executable opcode which tells the Microcontroller that 

XXX00000B 

1 

user definable 

user definable 

I 

LUN specification / reserved 

3 
1 

X f Total number of packets 

5 

f t 

Wn System iieid reserved 

Current number of packet 4 X 
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what is comiilg is a part of a file to be loaded into the SJCP external. program 
storage. Bytes 3 and 4 contain the total number of packets to be transferred and the 
number of the current packet respectively. For this particular operation the length of 
the packet is fixed and we don't need to transfer the number of bytes in a packet. 
The different commands might have different CDB formats. This approach allows 
us to accommodate our control protocol into the Standard SCSI Bus Protocol 

- 

without affecting the system performance. 

Table 12: Option Codes Description 

Function Description 

Select all units. The microcontroller selects all processing units for 
subsequent operations. 

System Test. The microcontroller tests the system memories and sends the 
result to the Host. 

Executable verification. The microcontroller keeps an image of the loaded 
executable in its data SRAM. It verifies the image in its SRAM with the 
executable in the SJCP external program storage and sends the result to the 
Host. Basically it sends back the number of mismatches. Currently this option 
is disabled. 

Step-by-step Program Execution. The Microcontroller controls the execution 
of the instruction pointed by the SJCP Program Counter and returns the 
address of the next tmt"~ctim to 5e executed and the instruction itself. If the 
program is running full-speed it stops the Microprocessor and executes the 
first instruction in the program. 

Full-speed Program Execution. The Microcontroller sets SJCP into full-speed 
program execution mode. 

Read 128 bytes (1 bank) of SJCP Internal Dual-Port Memory. The 
Microcontroller reads the specified bank in the SJCP internal Dual-Port 
Memory and sends it to the Host. 

Load SJCP Executable. An SJCP executable file is loaded into the SJCP 
external microprogram storage. The file is transferred in packets of 128 bytes. 
First the whole file is transferred into the DALLAS data storage and after that 

storage. The address scan-chain is loaded with 0 to p in t  the first instruction 
in the program. Cmnt iy  this option is disabied. 

Switch to terminal control. The microcontroller exits the SCSI driver and 
switches to a terminal software connecting the embedded system to an 
externat ASCII terminal via the serial interface. SCSI is ignored. 
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I 
1 Table 112: Option Codes Description 

Select lower half units. The microcontroller selects the lower half of the units. 
Currently there could be four DMUs in the lower half. 

I 
@tioncode I Function Description 

I OAh I Select a single unit. 

08h Select upper half units. The microcontroller select the upper half of the 
processing units. Currently there could be only one PMU in the upper half 

I 
OBh 

OCh 

ODh 

The currently supported options are described in Table 12. The addition of new 
options is pretty straightforward, one just needs to keep track of the uniqueness of 
the option codes. 

Deselect all selected units. 

h a d  HEX record. The executable program is processed transferred over the 
SCSI one HEX record at a time. The executable record is transferred and 
loaded into the SJCP external program memory at the specified location. This 
allows to load programs anywhere in the memory and there is no need to keep 
the whole image in the microcontroller SRAM. 

Initialize a new program. The microcontroller initializes a new program for 
execution. This is necessary because we could have several programs in the 
SJCP external program storage. It initializes the starting address and clears 
the execution flag. 

OEh 

3.2.2, Microcontroller Monitor Program 

Select a DPM bank. The microcontroller selects the DPM bank specified by 
the user in the currently selccted processing units. The bank will be used in all 
subsequent operations until it is changed explicitly. 

3.2.2.1. Architecture 

Write a DPM bank. This The microcontroller writes the received data into the 
currently selected DPM bank starting from the address specified by ihe user. 

Usually, the monitor programs represent a set of routines dealing with memory 
management, interface communication and the servicing of different system state 
exceptions. It is also possible for the monitors to have a hierarchical architecture 
where at the bottom we have a set of basic routines dealing directly with the 
hardwares organized in a kernel, and on the top of the kernel some more 
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sophisticated system management or communication tools are developed. 
Regardless of the differences, the conventional monitors have two common features 
- they are kennel based and they use intempt handling. 

System Configuration n 
Target Selection and Transfer m 
I SCSI Command Decoding I 

Receive I Send 

1 Decode SAM II Command 1 

Decode SAM 11 Command i N o  + 
v 

Execute SAM 11 Command . Last Block 

~~ 39: &licmn&oHer Monitor Architec~e 

It should be noted that for systems with certain level of complexity this is the 

Execute SAM 11 Command 

wly approach. But sometimes eonsidering the specific characteristics of the system, 

60 

I 



Chapter 3: Software Design 

one might be able to simplify the architecture and to build more efficient and fast 
monitoring software. 

During the development of SAM I1 Monitor Program we have considered 
several factors. First the Embedded System is connected to the Host by dedicated 
SCSI Bus Interface. This means that the priorities are fixed from the very beginning 
and we can communicate through atomic SCSI transactions without having any 
device disconnected from the bus at any particular moment during the transaction. 

Second, the explicit initiator-target relationship between the Host and the 
Microcontroller determined by the SCSI bus Protocol imposes a certain pattern in 
khe Host-Microcontroifer communication, The presence of a pattern allows us to 
predict the activities on the SCSI Bus. 

The decision to employ status-bytes polling instead of interupt handling made 
possible to fit ths SAM II c o r n a d  execution within the timing of the current SCSI 
transaction, using interupt handling this would be pretty difficult to do, and it was 
pretty convenient during the system debugging. 

Finally, the idea of a command driven Microcontroller-Host communication fits 
very well with the principles of the SCSI Bus Protocol. 

As a result of this we managed to build the Microcontroller Monitor around the 
SCSI Interface driver. The Monitor is looping infinitely in the relevant 
chronological order through the stages of the SCSI transaction and accommodates 
the execution of a particular SAM I1 command within the timing of the current 
SCSI transaction Figure 3.9. 

On Power-Up the Monitor performs system configuration activities. First, it 
initializes the SCSI and serial interfaces and after that it performs system test, 
testing the microcontroller memory space, FPGAs and SJCP external and internal 
me~ories. The results from the tests are stored at the beginning of the data memory 
and they can be requested at any time. Also the memory tests can be repeated at any 
time on request by the Host. 

After the System Configuration, the Monitor is looping infinitely through the 
C* basic SCSI Biis stages - Selection, Data Transfer Commmb Completion. 
From SCSI Bus Protocol point of view, we are using two standard commands - 
Send and Receive. Usually, Receive is used to transfer executable and data files 
from the Host to the Micmontroller and Send is used to get the results or system 
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parameters back or simply to fire certain activities in SAM-11. 

During tibe Selection stage SAM-!! is se!wted by the Host md the six CDB 
bytes are transferred from the Host to the SCSI Protocol Controller on the 
Microcontroller board. After the stage is completed the Monitor decodes the SCSI 
command by testing the first byte in the CDB. 

If the command is Send, the Monitor decodes the SAM-I1 command by testing 
the command code in the third byte in the CDB, which can be one of the Option 
Codes from Table 12 and executes the corresponding command. After the command 
is executed it transfers the result back to the Host during the Data Transfer stage. On 
Receive, first it transfers the data and after that executes the SAM-I1 command. In 
any case a decoding is taking place to determine what SAM-I1 activity is supposed 
to be performed, followed by an execution. 

When the corresponding SMM-I1 command has been executed, the Monitor 
completes the current SCSI transaction and goes back to Selection stage waiting for 
Target Selection. 

The currently supported SAM-I1 commands are given in Table 12. In order to 
illustrate the nature of the activities going on in SAM-11 we will describe the 
execution of one of the commands. 

3.2.2.2. An Example of SAM-II Command Execution 

As an example of a SAM-11 command execution, we will discuss the first 
variation of loading of an executable image into the SJCP External Program 
Storage. This was used at the initial stages of system debugging. The loading goes 
through two stages. First, the executable image is transferred from the Host hard- 
disk into the Microcontroller data memory. The image is transferred in packets of 
128 bytes each. When the last packet is transferred the image is loaded into the 
SJCP External Program Storage. The Microcontroller data memory is byte oriented 
while the SJCP Program Storage is $-byte word oriented. One SJCP microprogram 
word is stored in eight consecutive bytes in the Microcontroller Memory. The 
transfer from the Microconmller memory into the SJCP Program Storage takes 
ptace through the SJCP b e d  Scan-Chains. 

The Monitor keeps receiving and storing packets into the Microcontroller data 
memory until it detects that the last packet has been transferred. When the last 
packet has been received, it means that we have the whole executable image in the 
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Microcontroller data memory and the loading into the SJCP Program Storage could 

i I Target Selection I 

Data Transfer 

Last Packet I 

1Y u I Set SJCP Address and Instruction Output Drivers I 

Set SJCP Program Storage Counter I 
i 

1 b a d  SJCP Address Scan-Chain I 

Load SJCP Instruction Scan-Chain 
I 

Strobe the Microinstruction into 

I 

Yes V 
Last Microinstruction 

No 

Increment SJCP Microinstruction Counter 

F i  310: Loading Exec~itabIe Image into the SJCP External SRAM 
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begin. The concept of having the whole executable image in the Microcontroller 
SRAM before loading limits the length of the h a g e  to 32kbytes or 4k8-byte-words 
but it simplifies the loading and executable verification protocols. Also, in the 
process of building the prototype it is good to have the image permanently in the 
micmontrdfer SRAM for testing, reloading and verification purposes, it eliminates 
the SCSI traffic. 

The loading takes place through the SJCP internal scan-chains. During the 
loading procedure we are using two of them - the address scan-chain, two bytes 
long and the instruction scan-chain eight bytes long. The address scan-chain is 
loaded with the address of the next microinstruction to be loaded by writing 
consecutiveiy two bytes, MSB first, into an address corresponding to the address 
scan-chain. In the same fashion we are loading the next microinstruction to be 
loaded by writing consecutively eight bytes into an address corresponding to the 
instruction scan-chain. The scan-chain output drivers are set driving towards the 
external SRAM permanently. The microinstruction is strobed into the external 
SRAM by writing to a specific address which triggers the generation of a strobe 
pulse. After that, we check if this was the last instruction to be loaded. If it is not we 
increment the microinstruction counter and the procedure repeats, otherwise we 
complete the transaction and message for successful loading is sent to the Host. 

When the loading procedure is completed, the Monitor is ready to accept new 
commands. 

3.2.3. Software Development Tools and Program Debugging 

In order to take advantage of SAM I1 computational resources, we need to be 
able to develop and execute SAM I1 programs. In other words we need tools to 
allow us to write, to debug, to execute and to do some program and data 
management operations in SAM I1 environment. We have a package which outputs 
SAM 11 HEX file (the source code is written in rnicroAPL). From this point we need 
to convert the HEX file into a SAM I1 executable, to load the executable, to manage 
its execution, start and termination, and of course we need to be able to debug it. 
Right now the program management and debugging tools are tightly coupled but 
later -with the expansion of the system most probably they will separate and become 
more autonomous. 

3.23.1. SAM I1 Program Management 

The program management utilities include loading and verification of the 
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executable and program start and termination. These utilities allow us to manage 
the program execution from the beginning to successful completion and to proceed 
reliably after that with other activities if any. 

3.2.3.1.1. SAM-Il Executable Loading 

We discussed the first implementation of our loading procedure in the previous 
section. Currently, the executables are loaded one HEX record at a time. The HEX 
records are independent units. They have all the necessary information for the 
record to be processed correctly, this includes the starting address and the number 
of instructions to be processed. 

I 3.2.3.1.2. SAM-II Executable Verification 

This utility allows us to verify the loaded executable with the image in the 
Microcontroller Data Memory. This is necessary to make sure that we have the 
executable file loaded correctly into the SJCP Program Storage. The reading of the 
SJCP external SRAM takes place through the SJCP internal scan-chains. The 64-bit 
microinstruction is read by reading consecutively 8 bytes from the address 
corresponding to the SJCP instruction scan-chain. These 8 bytes are compared with 
the corresponding 8 bytes from the microcontroller image. The mismatch counter is 
incremented on a byte mismatch. When all microinstructions are processed, the 
counter is sent over the SCSI to the Host. If the counter is zero, the program 
executior; can start otherwise the program shwdd be reloaded. This option was very 
usefid during initial system debugging. 

3.2.3.1.3. SAM-II Program Initialization 

The conventional way to start a program execution is to load the Program 
Counter with the address of the desired routine and after that the execution can start. 
The differences are coming from the way you load the Program Counter and the 
way you interface the Program Storage. The SJCP Program Storage is Interfaced 
(Figure 3.12) through the SJCP internal scan paths. 

The Prcgram Counter is not directly accessible and the address of the first 
instruction to be executed is loaded into the Address Scan-Chain. The Program 
Counter and the Address Scan-Chain are multiplexed, the multiplexer is contrdied 
by a Trap signal. The Program Counter is 16 bits wide but only 13 bits are coming 
from the Instruction Scan-Chain to be used eventually in the construction of the 
next address, on Jump or Call the lower three bits are cleared. 
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Serial 16 bit Input 

ADDRESS SCAN-CHAIN 
I I 

16 bits I I 

Other Inputs 13 bits 

ADDRESS LOGIC 

16 bits 

PROGRAM COUNTER 

16 bits 

4 16 bits 

I ADDRESS BUS DRIVERS I I INSTRUCTION BUFFER 

$ 16 bits + 56 bits 

Figwe 3.11: S JCP Program Storage Interface 

After the SJCP is stopped, the Address Scan-Chain is loaded with the address 
of the first instruction to be executed, Figure 3.13 (the Trap is set and the 
multiplexer selects the Address Scan-Chain). The first instruction should be either 
Jump or Call in order to initialize the Program Counter. After executing one step, 
we set the Execution Flag, a byte in the microcontroller memory, to show that the 
first instruction has been executed and the Programming Counter has been 
initialized. The Execution Hag is used also by Step-by-step, Full-Speed and 
Loading routines. We clear the Trap to select the Program Counter and with this the 
exwition can proceed Stepby-Step or Fdl-Speed. 

Using the start-up algorithm from Figure 3.13 imposes certain limitations. The 
first instruction to be executed should be a Jump. The new address is constructed by 
using only 13 bits from it as the most significant bits and clearing the three least 
significant bits. This means that, the second instruction should be at address 



Chapter 3: Software Design 

location with the three least significant bits zero, 

Stop SJCP I 
Load the address of the first instruction I into the Address Scan-Chain 

I Execute One 

Set Execution Flag + 
Clear Trap Lr' 

Figure 3.12: Program Initialization Routine 

A more general way to start a program is by using the stack. The 
microcontroller writes the first address into a system area in the SJCP internal 
SRAM (the Dual-Port Memory) and after that it starts a start-up routine running on 
SJCP using the algorithm from Figure 3.13. The routine takes the address from the 
Dual-Port Memory, puts it onto the stack and executes a RETURN instruction. The 
RETURN instruction loads the Program Counter with the stack value which 
effectively starts execution of the program at the specified address. 

32.3.1.4. SAM I1 Progrann Tenraination 

We need some way to signal the system that the program has completed and to 
show the state of completiw. For this purpose, we can use a system interupt. 
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Set the hterupt Line * 
Figure 3.13: S JCP Program Termination Routine 

At the end of each program, we attach a program termination routine, 
Figure 3.14. This routine writes into byte 0, bank 0 of the SJCP Dual-Port Memory 
the Intempt Code which shows the program has completed. It also shows the state 
of completion if we have more than one. After that, it sets the Interupt Line and 
goes to an infinite loop. Whenever appropriate, the Microcontroller will poll the 
Interrupt Line, will detect there is an interrupt pending, will read byte 0 bank 0 and 
will take the appropriate actions, stop SJCP etc. 

3.2.3.2. SAM I1 Debugger Concepts 

Debugging tools are necessary to write efficient and correct programs. With 
respect to the level of programming we have different types of debuggers, some 
debuggers work on assembly code interfacing directly to the hardware, others work 
on high-level language sowce codes. and some have both features. As an example, 
we will have look at "CodeWatch" f29] an interactive source-level debugger 
features: 

- Controlling Program Execution 
- Breakpointing 
- Stepping 
- Tracing 

- Examining the Source Program 
- Environment Control 
- Symbolic Access 
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- Action Lists 
- Macro-Facility 
- Command Fifes 

"CodeWatck" is a pretty complex debugger supplying its own conln~tu~d 
language but the functions it performs can be grouped in two major areas - Program 
Execution Control and Environment Management. 

In designing a debugging tool, one should consider the underlying hardware, 
the hardware-supported debugging capabilities, the control interface and the 
programming language. There are several features specific for SAM-II systen~. 
First, SAM I1 is a multiprocessor and we need to be able to debug a program 
running in multiprocessor environment. Second, SAM I1 is an embedded system 
and this raises the question of interfacing the system during debugging. Third, the 
SJCP internal register files are not directly accessible and the interface should take 
place through the Dud-Port Memory. This imposes the aecessity of inrorprating 
code into the executable program which copies the register files into the Dual-Port 
Memory for subsequent reading by the Microcontroller. It should be noted that, 
SJCP provides excellent hardware-supported program-control capabilities. 

The SAM-I1 debugging system although far from being sophisticated has most 
of the general features of a conventional debugger. Of course the implementation 
decisions reflect the machine architecture and machine code organization. The 
debugger has the following program control options: 

- Load and Verify - these options allow to load a new program and verify the 
image. On reloading, the program environment is initialized. The verification of the 
image was necessary because at certain point we had problems with reliably 
accessing the SJCP program storage and/or external interface. Verifying the image 
makes sure that the program is correctly loaded and it is also used for testing 
purposes. Right now Load and Verify are independent but they can be combined. 

- Step and Breakpoints - these options allow to step one or several instructions 
at a time. The global control is provided by the front-end interface but depending on 
the responsibility distribution between the microcontroller and the host two 
implementations are possible. The first one is when execution control is provided 
hv -I -=- hest == in which case trhe host sends RxW-!ike requests h:cugh &be SCS! to the 
microcontroller for each single instruction. The microcontroller still maintains the 
program environment but the execution pointer is handled by the host. The second 
way is when the micmontrotler perfoms low-level execution control, handling the 
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execution pointer, and it just sends the result to the host at the breakpoints. The 
second variation is faster but the first one is more suitable for tracing. 

- Tracing - enables recording the execution steps into a file for later 
examination. 

- Disassemble - during stepping or breakpointing the next instruction to be 
executed is disassembled ,and displayed on the screen. 

SAM-II is an embedded system and this affects the way the program 
environment is handled. Some of the functions are performed by the 
microcontroller and some by the host. The microcontroller maintains a set of 
functional flags reflecting the program execution status. This infomation is 
necessary when the program is switching execution mode between step, 
breakpointing and hll-speed. 

3233.1. Step-by-Step Execution 

This utility allows us to step through a program one instruction at a time. In this 
way we can trace the program to monitor how the Program Counter is changing and 
also to observe the next instruction to be executed, hence partial verification. 

/ Execution Flag 1 yes 
No 

i 

Execute Start-Up Routine 

I 
Execute One Step L-r' 

f I i 

Send the next instruction 1 andits address back , 
i 

Fignre M4: Step Exeation Command Algorithm 



Chapter 3: Soflwnrt: Design 

SKP has hardware support for step execution. In step mode, the next 
instruction is executed by writing to a specific address location within the 
microcontroller address space. The step execution starts always with the first 
instruction of the program. The step-by-step execution routine first checks the 
execution flag to get the current state of the program, Figure 3.15. If the program 
has just been loaded it executes the start-up routine, if the program is already in 
step-by-step execution it executes one step and returns the Program Counter and 
next instruction to be executed. At any p i n t  the step execution mode can be 
switched into full-speed, 

In both execution modes, full speed and step-by-step, the program execution 
begins with the start-up routine. This is because the Program Counter is not directly 
accessible and it should be initialized under program control. 

3.23.2.2. Fuli-Speed Execution 

This utility sets full-speed execution mode, Figure 3.16. The mode is set by 
writing to a specific address. The hll-speed execution mode can be set at any time 
during step-by-step mode or at the initial program start up. 

I Execute Start-up Routine I I Clear Execution Flag I 

I Set Full-Speed Execution I 

Figure 3.15: Setting Full-Speed Execution Mode 

If the Execution Flag is set, the program is already in Step mode, the Execution 
Hag is cleared and then Full-Speed Exaution mode is set If the Exemtion Hag is 
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cleared, the program hzs just beer1 loaded or it is running full-speed, we execute the 
start-up routine and afte; that we  set Full-Speed Execution mode. This is done to 
guarantee system stability during switching between the two modes. 

3.2.3.23. Dud-Port Memory Monitoring 

The SJCP internal register files are not directly accessible by the 
microcontroller. The SJCP internal Dual-Port Memory is used as an intermediate 
buffer to get an access to the dat~ in the SJCP internal register files or the external 
DRAM, The SJCP executables should contain routines for transferring data into the 
Dual-Port Memory from the SJCP internal register files or DRAM and the timing 
synchronization with the ~icrocontroller can be achieved using the SJCP external 
intempt lines. The SJCP's Dual-Port Memory is in the rnicrocontroller data address 
space and it is accessed as a conventiond memory. 

3.2.3.2.4. Breakpointing 

Breakpointing allows to interrupt the program execution at certain check points 
in order to perform execution flow control. There are two ways to realize 
breakpointing. One can use step mode with address check before each step. When a 
breakpoint address is reached, the Microcontroller stops program execution and 
performs the necessary actions. The other way is to replace the breakpoint 
instmction with an SJCP executable routine to service the breakpoint. This routine 
i n f m s  the Microconuoiier &at a breakpoint is reached and it can take the 
appropriate actions. In this way the breakpointed program can run full-speed 
between the breakpoints. 

Depending how the responsibilities between the microcontroller and the host 
are distributed with respect to program execution control, we have two alternatives. 
The first one is when the microcontroller handles the breakpoint table and controls 
the program execution between the breakpoints. The host only sends a request for a 
breakpoint execution and waits for the result The other approach is to let the host 
handle the breakpoint table and program execution. In this case the host sends to the 
microcontroller Step-by-step execution requests, where every request requires a 

/T T sepaate SLSI transaction. The host is responsible for the execution pointer. The 
first approach is faster since it does not need that intensive SCSf communication 
between the breakpoints, but the second gives a little bit more flexibility and 
removes some complexity from the microcontroller software. 
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In step or breakpoint mode, the next instruction to be executed or the breakpoint 
instruction respectively is disassembled allowing the user to verify the program 
control flow. The instruction disassembly is done on the host. It makes it easier to 
trace program execution and it is useful in verifying the compiler correctness (the 
software development tools have not been tested completely yet). 

3.2.3.2.6. Parallel Execution and Debugging 

The different activities on the processing units are triggered by writing into 
specific W m s e s .  If we haw more &an m e  unit selected at certain moment and 
execute some function, this function will be executed on all selected units 
simultaneousfy. The programs in different processing units are completely 
independent as far as their status is concerned. The status of the programs stays the 
same regardless of any changes on the seiection mode of the processing unit, until it 
is changed explicitly. 

The functions executed on the processing units are executed in atomic manner 
in their entirety and they are completely independent from each other. The parallel 
execution and debugging of programs residing on different processing units is done 
by selecting the corresponding units and executing the corresponding program 
execuriun cumands. 

For example, if we want to execute programs in step mode in the lower four 
processing units, first, we select the lower four units and after that we start 
executing stepexecution commands. The commands will be applied to all four 
units simultaneously. If at some point we want to see the status information of a 
particular unit we select this unit and read the relevant information. 

The front-end interface is running on Windows 3.1. The commands are 
wansferred over the SCSI in atomic fashion and they are completely independent 
regardless if they are going to a single unit or to several processing units running in 
parallel. We could have an open window for each unit and control the processing 
~,-;t A-nm 1 1 ~ 1 1 1  diuuxb~t .-am whdows. This dlows us to trace 2nd disphy dl the re!evant 
information for all processing units at the same time. We also can step the 
processing units one after the other. This feature would be pretty convenient in 
debugging programs with data exchange among the processing units during 
program execution for detecting deadlock conditions or to time the processing units 
in the data exchange. 
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ParaOlel programs can be run in all three modes: step-by-step, breakpoint and 
fuli-speed execution. it is dso posdbk to run different processing units in different 
mode, for example one unit in step mode and another in breakpoint or full-speed 
mode. 

33. Test Software 

The testing software is a collection of routines which perform tests on different 
system components like system memories, interfaces and component resources. 
The testing process cm be divided into two stages - system components testing in 
the process of system development and routine system check performed at power- 
up or at any time a user wants to make sure that all system resources are functional 
and accessible. 

In the process of system integration, each component is tested separately and in 
conjunction with the other system components. The testing has two goals, first it 
verifies the hardware functionality, signal levels and timing and second it performs 
high-level logic test. During this type of testing one component could require 
several routines for testing different features and properties of the component. The 
number of routines could be quite big, for example the complete testing collection 
for SAM II consists of a couple of hundred routines. 

Once the system is built, a system resource testing is performed at power-up or 
at any time a user thinks it is appropriate to check the system functionality. This is a 
high-level logic test, testing system resource functionality and accessibility and it 
doesn't require human interaction. 

At board level, SAM II consists of two major hardware components - the 
Microcontroller and the SJ Processing Unit. In the following sections we discuss 
the approaches and strategies in component and board-level testing of these 
components and the system in its entirety. 

Tie Microcontroller has three major subsystems to be tested - the 
microprocessor module including the microprocessor and system-clock circuit, the 
memory system and the interface system. 
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The Microcontroller integration starts with building the system clock circuit. 
Once we have the clock rate tuned, we can plug in the program memory emulator 

the inicr~pimessoi. As a iesu'ri, we have a minimal ~o~lfiguratioli mnning 
system. The functionality of the system is checked by measuring and observing the 
behavior of the components. 

Once able to run programs, we can keep building up and testing the system 
gradually component by component. 

33.1.1. Testing the Serial Interface 
I 

The micn\cont,oUer h a  or? chip serial interface and it takes few external 
resources to build an RS 232 compatible serial interface. The hardware 
functi~nality is tested by generating 2400 Hz output signal. This is achieved by 
configuring the serial interface for 8 bit data transfer plus one start (active high) and 
me stop (active low) bits a d  writing cmiinnclusly 55H into the output port. 

Once we are convinced that the serial interface is operational we write several 
routines to perform data transfer between the Microcontroller and the Host acting as 
a Terminal. At 2400 bitslsec it takes about 4ms to transfer one byte. If the Terminal 
isn't fast enough, a hand-shaking protocol might be necessary to prevent loss of 
information. This is the case when you use a 16 MHz 286 machine as a terminal and 
try to write a server in C using printf() system calls. 

33.1.2. Testing the SCSI Interface 

The SCSI is the major Host-Microcontroller Interface used for fast data transfer 
in both directions. There are two types of testing routines involved. First the SCSI is 
debugged and tested in the course of system development. As a multiphase bus 
protocol it requires additional end-user interface with high reliability to monitor the 
SCSI status at every phase of completion. The serial interface is used for this 
purpose. Once the SCSI has been debugged, a power-up routine tests to check the 
embedded system functionality. This check can be done at any time the user wants. 
h g e ~ e d  once debugged SCSI is a pretty reliable interface. 

Tne SCSI Prtocd Zontr-oiler represents 32 bytes of the micrwontmliet 
addressable memory. SCSI transactions are performed by writing SCSI commands 

1 into the SCSI Protocol Controller command registers. Each command could start 

I and complete one or more SCSI bus phases. The SCSI bus status before and after 
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each command is sent over the serial port to the Terminal Unit. 

MicrocontroUer 

Read SCSI Status 

I Execute SCSI Command 1.4p-------- 

( Read S C S ~ ~ P ~ Q U S  I 

Successful Completion 

I 
Nos 

[ Abort Transaction] 

RS 232 Terminal 

---.-...----.-.-- - l I C  
Receive SCSI Status 

Display SCSI Status s 

SCSI Host 

Figure 3.16: SCSI Bus Single Phase Test Algorithm 

The SCSI Bus transaction cycle is being debugged phase by phase (Figure 3.17) 
in the right phase sequence until a complete transaction is executed successfully. 
The SCSI transaction takes place between the Microcontr011er and the Host and, an 
independent third party, the Terminal, is used to monitor the SCSf Bus status at 
different con4ml points in the SCSI transaction. The same procedure is applied to 
trouble-shoot a data transfer in bdh directions, 
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i On power-up the Host is performing an initialization procedure to check the 
functionality of the SCSI devices on the SCSI Bus. The Host sends a request to each 
SCSI device to get its configuration parameters used in the subsequent transactions 
with this device. The purpose of this test is to make sure that the SCSI interface is 
working properly. -the test involves data transfer in both directions. The test is 
successful if the data has been transferred successfully. If the transaction fails, the 
interface is not operational and it should be debugged in the way described in the 
previous paragraphs. 

SCSI Bus functionality can be tested at any time by the user by resetting the 
system. Sometimes, reset is necessary also when a transaction fails. If a transaction 
fails, because of the hand-shaking nature of the protocol, at least one of the sides 
will keep hanging on the bus infinitely and the bus should be rzset to make it usable 
again. Assuming working software the transaction would fail only on a major 
hardware fdure. 

33.1.3. Testing The Microcontr011er - SJ boards Interface 

The Microcontroller - SJ board Interface is realized through a pair of FPGAs. It 
has two major goals - generation of the right control signals at the right time and 
providing the data at the right place and time (bus control). 

The interface is tested by writing and reading in an infinite loop to/from an 
address belonging to a corresponding SJ board. The Microcontroller FPGA should 
generate the right ID bits, should repeat RD, WR and ALE control signals and 
should repeat the data bus as well during ALE and WR. 

The FPGA-SJ generates the control signals and buffers the data bus at its input 
and output. The accessibility of the Y register in the FPGA-SJ is tested by writing1 
reading tdfrom it and also by observing the output pins. This is primarily hardware 
test by observation. 

In case, we want to chexk a p in t  which is inside the FPSA, ian external pin is 
assigned to it to make it accessible. If the FPGA resources are not enough to be 
~.eas~i~-ned, it is tested hi -. 
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33.2. T d g  The SJ boards 

The SJCP incorporates a variation of the boundary scan testing concept to 
facilitate the chip and board-level testing. 

,. External SRAM L Instruction Scan Chain - 
Address Scan Chain 

I L 

I A 

+ Data Bus Scan Chain 
I 
Control Logic - v v and State Machines 

t t 
I 

- I/O Data Shift Register 4- Address Register Bus Control 

/ 8 
1 

control Signals 

Figure 3.17: S JCP Boundary Scan-Chain Architecture 

The SJCP scan-chain architecture 1231 consists of three scan chains - a 56 bit 
external SRAM (SJCP program storage) instruction scan chain, a 16 bit external 
SRAM address scan chain and a 32 bit data bus scan chain, Figure 3.18. 

Each scan chain corresponds to a certain address and is interfaced through an 
8-bit VO data shift register under state machine control. On a write into a particular 
scan chain one writes to the corresponding address as many bytes as the length of 
the scm chain. 011 a read, there is a shag read from the corresponding address 
which causes the scan chain to advance 8 bits and move the first byte into the I/O 
data shift register and after that the actual reads are following. A single read or write 
access takes 16 clock cycles and can be fit within a single stretched DS80C320 
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memory access instruction. The scan chains provide a convenient way to test the 
boundaries of the chip as well as the interconnections between SJCP and external 
p g m i  SiOI3ge. 

Most of the Boundary Scan testing implementations are using external 
hardware control and interface support according to the IEEE standard. They have 
dedicated pins for control and access. In SJCP the scan chains are part of the chip 
interface circuitry and they are accessed through the SJCP I/O interface without any 
additiond pins. This is saving hardware resources and pins in the package and also 
makes scan chains manipulation fast and pretty straightforward. 

11 the current implementation the S C ~  chains are used and controlled externally 
by the microcontroller during the test or interface operations. Since the scan chain 
control logic is on-chip though, it is possible in later versions to design and include 
on-chip self-test control capabilities. The on-chip BIST circuitry would test the 
l m d  resmrces and stme the result in a glace aecessibie by the microcontroller. 
Everything the microcontroller should do is to read the results of the tests from each 
processing unit and report them to the host. This idea is particularly attractive when 
the number of the processing units increases. 

33.2.2. Testing the DuaLPort Memory 

The Dual-Port Memory takes 128 bytes of the microcontroller directly 
addressable address space. Since we are using custom chips direcdy corning from 
the foundry which have not been tested completely, this test has two purposes - 
testing the memory functionality and the size of the accessible memory. 

The routine is testing the memory byte by byte and in blocks of 128 bytes. A 
given block is selected by preloading the block base address into the SJCP block 
base address register and a byte within a block is accessed as a conventional 
memory location within the corresponding 128 byte frame. The test writes the LSB 
into the current memory location, writes a constant value different from any of the 
test vectors into the next location in order to clear the value on the data bus and 
reads and verifies the content of the current memory location. The random write is 
necessary since we test the memory byte by byte and if we do read immediately 
after write we might actually read what is on the data bus instead of the memory 
ce3. The test stops when a ve&kitim fails. me res~1t of CLtie test is ifie m m k r  of 
blocks and the number of bytes in the last block of sequentially accessible memory. 
The software can be dynamically reconfigured in such a way so that it can work 
with any size (at least one biock long) of operational Dual-Port Memory. 
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33.23. Testing the Event Interface 

The event interface consists of SJCP interrupt line (output), flags which are 
triggered by writing to specific locations and M-bus, a message input lines which 
can be monitored by S JCP executables. 

Figure 3.18: Testing the Event Interface 

SJCP DALLAS 

The interface is tested by infinite hmd-shaking so the changes on the signal 
lines can be seen on the scope, Figure 3.19. 

............ lu,.. / .............. 11,~.  

33.2.4. Testing the SJCP External Program SRAM 

Polling Interupt line 

The external program storage is tested in two stages. First we test the SJCP 
external program SRAM boundary. The SJCP Boundary is tested by loading 
different test vectors into the instruction and address scan chains. After that ihe chip 
boundary is tested and verified using a digital scope for each vector. The scan 
chains themselves are tested by writing and reading to/from them. This test does not 
require any hardware approaches and is performed entirely by software. 

v 
................ ...;,,, ...................... Setting DPM Hag 

Once the boundary is tested, we test the program storage. In previous sections, 
we discussed loading an SJCP executable into the SJCP external Program Storage 
and also the verification of a .  already loaded program. The testing of the Program 
Storage (external SRAM) involves these two procedures. First the Program Storage 
is loaded with test vectors and after that it is read to verify that the corresponding 
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memory locations contain the correct values. 

Since the microcontroller does not have access to the data-path hardware, the 
trouble-shooting process is entirely under SJCP program control. The 
microcontroller is used to trigger one or another preloaded testing routine. 

SJCP Microcontroller 

Reading DRAM into 
Dual-Port Memory 

...-..... lile Reading Dual-Port Memory 
into DALLAS SRAM i I 

..................,,,, Display Content of 
Dual-Port Memory 

Dual-Port Memory 

Figure 3.19: DRAM Testing Algorithm 

The first thing to be tested is the 32 bit SJ bus between SJCP and SJMI used to 
transfer commands and data in both directions. This is done by writing a program 
involving communication between SJCP and SJMI and observing the behavior of 
the SJ bus. Once we are convinced that the SJ interface is operational, we execute a 
test routine which actually outputs valid DRAM data and addresses. It allows us to 
check the logic levels on the address and data buses for different test vectors. 

During the DRAM test, the microcontroller plays primarily a supervisory role. 
The microcontroller is loading a DRAM testing procedure into the SJCP program 
storage. It might also provide some other information, like test vectors for example, 
using the dual-port memory and starts the test routine. The communication between 
the microcontroller and the DRAM test routine is realized through the dual-port 
memory. 
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The process running on SJCP could simply read the DRAM into the DPM but it 
also could do some preprocessing involving other hardware resources. For example 
one of the tests we are running outputs the check-sum of the data in the DRAM. 
This is an example of test response compaction, where instead of verifying every 
single test vector, the test vectors are preprocessed and a single result vector is 
output. 

In order to avoid eventual timing problems, the two processes might need 
additional synchronization. For example, when the microcontroller is reading the 
dual-port memory it might have to stop SJCP. This shouldn't really matter since 
SJCP has synchronization logic, but we found out that sometimes SJCP behaves 
abnormally when the microcontroller is reading the DPM and SJCP is running full- 
speed. Problem-avoiding strategy is a good idea to apply anytime it is possible, until 
the system is fully tested. 

3.4. Summary 

The development of the system software started from the very begining along 
with the debugging of the hardware. Many of the hardware debugging and testing 
routines, with small modifications, were used in the implementation of the system 
software. I developed the SCSI interface embedded system and h~st 's  drivers, the 
microcontroller monitor built around the SCSI interface driver, the menu-driven 
front-end interface, the SAM-I1 debugging system and wrote a number of testing 
and initialization procedures. Dr. Rick Hobson designed his own monitor allowing 
him to access the system through a serid interface using a standard ASCII terminal. 
He also wrote a number of processing unit testing routine and was helping with 
whatever was necessary throughout the whole project. 
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Chapter 4: General Discussion 

4.1 Architectural Issues 

4.1.1. Next Generation 

SAM-11 develops further the concepts of the first implementation of the 
Structured Architecture Machine, SAM-I, and is a stepping stone towards the 
development of a massively parallel computer system. Our main objective was to 
b d d  arr eabedded mii1tiprctcessor and get practical knowledge and experience of 
how to design a multiprocessor system, how to interface efficiently an embedded 
system, how to design an embedded system software architecture etc. 

The solutions to the a-hve probiems will help with further component 
integration and development of the next generation system. With the current chip 
set, each processing unit takes one board and if we want to put together for example 
64 units, we have to interconnect and interface 64 boards. This would take a lot 
space for the eventual performance gain, interfacing 64 units through an external 
interface would obviously increase system access times affecting the overall system 
performance and finally signal propagation delays particularly system clock 
synchronization will require special attention. The way to go is to further integrate 
the components. 

Fignre 4.1: SAM-ILI Architecture 
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In the next generation machine, all SJ components SJCP, SfMI, SJNI, FPU and 
the Instruction Pipe will k integrated Into a single chip. This would make ~ s s i b k  
ta accommodate an array of up to four or eight processors on a single board Figure 
4.1. The b o d  can be plugged directly on the CPU local bus minimizing the 
interfacing delays. In this case special logic will be necessary to handle interrupts 
and DMA data transfer. In order to make the board accessible by all systcn; 
applications, it should be interfaced through the operating system. If we want to 
increase the number of processors, we have to build the system in a separate box 
and interface it as an embedded system. 

4.12. System interfacing 

Currently, SAM-If is interfaced through an 8-bit-wide SCSI 2 interface with 
certain limitations on the data transfer speeds coming primarily from the 
microcontroller clock rate affecting directly the speed of the bus and also from the 
Advanced SCSI Protocol Interface (ASPI) used by the application software to 
interface the system. One way to improve the situation is to use 32-bit SCSI 3 
interface and use 32-bit microcuntroller to interface the multiprocessor 
environment. 

A good question would be trow to interface a high-number of processors, for 
example 64 or 128. With dl components integrated and using surface-mount 
technology, it would be possible to build bclxds with 8 even 16 processors running 
under the same clock a r k ,  timing. Each board could be designed as an independent 
SCSI device. We can attach seven of these boards to the host's SCSI interface and 
get a system wit! 1 18 processors. 

An interesting idea is to use the system as a vector arithmetic server. If the SCSl 
is replaced with Ethernet or ATM interface, the system could be connected to a 
network a d  used as a remote server. A special software accessing directly the 
Ethernet cards on the hosts should be developed to interface the system efficiently. 
One way to avoid the development of a complex software interface tools would be 
to connect the system to a standard SCSI interface of a workstation connected to a 
netwerk. Then everything we need is s Ommn intercepting h e  requests to the 
particular SCSI interface. The system could be accessed through the operating 
system using either remote procedure calls by applications running on remote 
macfiines or by remote logon to the server workstation. 
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The currently running system software provides the basic tools to interface and 
manage the system resources= The architectural principles were adopted during and 
in accordance with the requirements of the prototype development process. We 
wanted to have reliable md fiexible toois which would allow us to work in a not 
very stable environment. In the next versions the software will be refined and in the 
folfowing sections, we wiff discuss the principles and some possible ways to go in 
future implementations. 

Originally, SAM system was designed for fast hardware interpretation of APL 
language. APL (A Programming Language) is a language specially designed to 
reflect the requirements of array processing applications. A multiprocessor 
hardware interpreter built around APL could be expected to outperform general 
purpose computers as far as may processing applications are concerned. 

An alternative approach, using the systein as a vector arithmetic server, would 
take advantage of the fast hardware interpretation and also give interfacing 
flexibiIity making the system accessible by any general purpose language. 

In any application involving may processing, the array processing part comes 
at the end to performing generic or combination of generic operatioas like addition, 
multiplication, division etc. on the arrays of data. The idea is to develop a set of 
generic array processing routines loaded into the SAM processing units 
microprogram storages at power up time. After that, an application instead of 
running the array processing part on the main CPU would do a system call to the 
operating system providing the data and the operation code. In this way the system 
can be accessed by any general purpose language through the operating system. 

The set of generic routines could still be written in the assembler language, 
which we have been using so far to develop programs. Once the routines are 
developed, they can be put in a RUM replacing the current microprogram SRAM, 
or in the microcontroller EPP,OM loaded iDto the microprogram SRAM on power- 
up or they can be stored on the host hard disk and load them through the SCSI at 
system p w e r  up, 

In this scenario, the micmontroller should assume a little more responsibilities 
concerning program and data nianagement and particularly in array processing 
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cammm-ds execution. The generic routines could be organized also in macro 
operators andfor the miawontroller could perform some parsing on more con~plex 
rndY- prwess~g cOKHTlzl&. 

From an application's point of view the system is interfaced through the 
operating system. A set of resident routines intercepting one or more interrupts is 
loaded at power-up. The routines are in the role of custom SCSI drivers mediating 
the data transfer between the application and the microcontroller through the SCSl 
interface. The application puts all source and destination data and comm,md 
information into a data structure and does the corresponding system call. The 
pointer to the structure can be stored into the CPU registers before the system call or 
into a system shared memory if the resident routines are fully integrated with the 
operating system. 

This concept is applicable for SAM-111 as well as when the system is directly 
plugged en the bus. -is t h e  b5e cc-ntm! inf~rmation cm be written into memory 
locations occupied by SAM-111 which does not require the interupt handlers to be 
fulfy integrated with operating system. 

42.2 Program and Data Management 

Besides servicing the SCSI interface, the microcontroller has to assume certain 
SAM-IP resources management responsibilities and particularly program and data 
management during system operation. 

In the SJCP microprogram storage we might have several active programs and 
routines, soze of them application-oriented, some of them system-oriented 
handling I70 data transfers for example. The microcontroller should keep track of 
the state of any one of these routines in every board and it should be able to perform 
real-time task-switching whenever necessary without affecting the system 
performance. This is not really a multitasking operating system paradigm, the task- 
switching is caused either by the application program in case of data exchange or by 
the host. The return from a task would be like return from a procedure call. From a 
user point of view the system is unithreaded and the main thread is the application 
program. Some of the questions to be researched are: How the task will be 
switched? In what timing and sequence and would it be possible to put all the 
control informzition in the application program or the misrocentroller would need to 
have some high priority control capabilities? 

Some of the routines in the microprogram storage will be dealing with data and 
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memory management Supposed that at certain point the application program needs 
to get rid of some data or to input or output some paaid results. In this case the 
application program should be stopped and system routines should be called to 
perfom the requested operations. For this purpose, we will need two processes, one 
running on SJCP and the other on the microcontroller. 

SJCP 
Application Program 

I Store intempt code 1 
] and control informatioa 1 

Assert interupt line I 
I 

Microcontroller 
Monitor 

System Routine I I 

Figure 4.2: Task-Switching and Data Transfer 
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Let's consider the case when the application has some partial results to output. 
One way is to use hand-shaking on the interupt lines to synchronize the processes 
and negotiate over the data k s f e r ,  Figure 4.2. In this particular case the 
microcuntroller switches the tasks on request by the application. It starts the system 
routine, negotiate the data transfer parameters and performs the operation. 

The Microcontroller could read and store the application program pointer at the 
intempt point and resume the application by it restoring the return point but this 
wwfd require a termination routine at the end of the system routine. Another way is 
for the application to put its pointer on the stack and the return instruction of the 
system routine will resume the application. 

Note that in this case the application has all the information necessary to initiate 
the data transfer. But it might happen that resource management operations be 
performed without the knowledge of the application in case of system resource 
limitations for example. More sophisticated approaches for resource ma~lagement 
in embedded systems is definitely one of the hot topics for future research. 

4.23, Parallel Debugging 

A parallel debugger should be able to perform all the basic functions a 
sequeiitid debuggef em perfom1 phs functions relevant to muitiprocessing 
program execution and particularly with it should cope with shared data consistency 
and exchange and process race and block conditions. The particular design and 
implementation depends on the two generic aspects of the system - system software 
and hardwane. 

423.1. Debugger-Operating System Relationship 

A very important point is the relationship between the debugger and the 
operating system. In some systems the debugger is completely integrated with the 
operating system as it is the case with most of the "C" debuggers running on UNlX 
workstations. This is a g d  approach when the operating system is debugged and 
stable. This approach allows direct access to the operating system data structures 
and the abiiicy to monitor and control the state of the program. 

The researchers working on Amoeba adopted a different approach 2361. The 
debugger is separate from the kernel which allows modification of the operating 
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system while using the same debugging tools, assuming the interface with the 
kernel is preserved. In this case the debugger is more independent but most 
probably some perfozmance trade-off should be made since the program state is still 
monitored through the operating system. 

An interesting concept is realized in Parasight - a high-level debugger 1381. 
Special programs called "parasites" are linked dynamically with the source at 
dynamically created stub places. All debugging functions like dumping a trace of 
h e  stack or program state etc. are performed by these parasite programs. This 
makes the debugging completely independent of the operating system but it affects 
the performance as well. Anyway, during debugging, we don't care much about 
perfomace. 

4.2.3.2. State-Driven and Event-Driven Debuggers 

Depending on the way Be program execution is monitored we could have 
event-driven and program-state-driven debuggers. The events can be anything like 
sending a message to another process, creating a task, reaching a breakpoint, divide 
by zero etc. The conventional procedure-call stubs are replaced and any time a 
procedure call is made, a message is sent to a higher-level client process. The 
program execution resumes after the reply by the client process. The event records 
are saved in log files and used for program execution replay. High-level processes 
ax monitoring the events and control the debugging. 

The debugger for Warp is a typical state-driven one [39]. There is a separate 
process keeping track of the state and execution point of each processing unit 
process. The process state is used to control the debugging procedures. The state 
debuggers require access to the program state areas through the operating system or 
directly accessing the hardware if possible. 

Most of the time though, just keeping track of the events or program state might 
not be enough and the debuggers should have capabilities to control the program 
execution as well as to monitor the events in the system. 

The cumnt SAM-II debugger is a state driven one. We keep track of the 
p r o p  execution point by reading directly the program counter and the 
wicminst,wti=:: from &.be comspfidhg p:wesshg unit. Next rersiom will have to 
include some event tracing capabilities to be able to monitor more complex 
PrngfamS- 
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-en thinbg h t  the SAM-!! dehgger design, we have to consider two 
factors - the system architecture and the type of the application programs to be 
executed on the system. For now, the program and data management tools are 
separate from the debugger and we could assume that this trend will be preserved. 

Store interupt code and 
Record the event 

,w .-----...----------.------.-..- 
1-1 I Check for :eadl&k 1 

H, Initiate data transfer 

Store intenrpt cade and 

'- - - - - - - - ---#/, Update causality graph 
Check for deadlock 

Record the event 

Figure 43: Deadock and Race Conditions Detector Algorithm 

The system will be used to mn array processing applications. We could expect 
that there will be intensive data exchange among the processing units passing 
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partial results and data to each other. In general we can assume that one processing 
unit would want to send data to another processing unit and receive data from a 
third etc. The debugger will have to keep-&ck of the execution points of all three 
processes and the events of data transfa The possible complication here is an 
eventual deadlock condition if each process is waiting for another one. 

The debugger should be able to keep track of the execution points and states of 
all three processes and also to create a truthful picture of the events. The execution 
points and program states can be obtained from the processing units CPU registers 
and microcontroller system areas respectively- 

The processing units shouid inform the microcontroiier about the pending data 
transfers. One way is to use the interrupt mechanism or just to store certain control 
data into the system areas in the dual-port memory to be read by the 
microcontroller. The Microcontroller uses the information to build a causality graph 
for detecting deadlock conditions Figure 4.3. 

The debugger controls the program execution in step or breakpoint mode. At 
the same time the processes running on the processing units are passing messages to 
the microcontroller through the SJCP dual-port memory informing the debugger 
about upcoming events. The debugger is using the information to construct a 
causality graph for detecting deadlocks and race conditions. Note that in this 
implementation, the SJCP application executables should include code performing 
the message passing. This c d e  codd be inserted at compile time or by the 
debugger during loading. 

The algorithm illustrates a concept which could be expanded to handle shared 
data consistency as well. 

4.3. Performance Issues 

43.1. Technology 

technology is om of the f x t m  which affects directly the overall system 
performance by defining the maximum possible program execution rate. The 
current chip set is designed in 1.2 u tecirnoiogy running at 15 M E .  The CPLT is 
capable of executing one microinstruction per clock cycle which means 15 MIPS 
assuming no memory access penalties. Using better technology would make 
possible to design the chip set to run at 4-0 even 60 MHz which would increase 
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It should be noted that, a single SAM processor module is not inknded to 
compete one-on-one with commercial superscaler processors. But, it is expected 
tfi* an may of rhese relatively cheap processors could be competitive. 

I 43.2. Component Integration 

I The current system consists of several separate components - the 
1 microprocessor, the memory manager, the floating point unit and the network 
1 interface. A11 these components are connected through an external board-level bus. 
i 
I inkrzoapnent data transfer will have to cross chip boundaries which basicaif y 

would require an extra clock cycle, or several clock cycles if you want to increase 
the cluck rate, fur intercomponent data exchange. Integrating the components in a 
single chip would eliminate the boundaries-crossing penalty and make possible to 
increase the clock rate. 

43.3. System interface 

The overall data processing time is equal to the time to transfer and load the 
program and data into the processing units plus the time to execute the program and 
plus the time to get the results back, These times could be in different proportions 
hut in my case in order to fake %I! advmtage of the optimized embedded 
coprocessor one needs a fast way to transfer data in both directions. 

In the current implementation, we are using fast SCSI 2 interface. We managed 
to get a transfer rate of 0.3 Mbytedsec (about a 80kwordslsec). Let's suppose, we 
want to multiply two arrays of lOOxlOO words. This means we have to transfer 
20000 plus 10000 result words which would take approximately 0.4 sec. For now 
let's ignore the loading time. It is going to take lo6 multiplications to multiply two 
100x100 arrays. Assuming three clocks plus one per multiply, we get 4* 1 o6 clocks. 
Further assuming four processing units with 20 MHz clock, no interprocess 
communication and no memory delays we get an execution time of 0.05 sec. As one 
can see the interface overhead is an order of magnitude bigger than the actual 
execution time!? This simple example illustrates the importance of the system 
:-+ ,,&,,,e A,-,,-. in getting pe;-fommce i -zdts .  

The situation can be improved in several ways. Using SCSI 3, 32 bit 20 MHz 
synchronous data transfer with DMA, the transfer rate can be increased up to 40 
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times which would decrease the interface overhead from G.4 sec to 0.01 sec. The 
transfer rate can be improved further, if the data is transferred directly from tbe host 
hard drive to the embedded system. 

There is an idea to connect local hard drives to the system but one still would 
need to transfer data from the host unless there is a way to generate or provide data 
focally. 

4.4. Conclusion 

We implemented the SAM-lf prototype system capable of accommodating up 
to five processing units and interfaced through a standard SCSI 2 interface. We built 
and debugged the mottierboard and processing unit hardware and developed the 
basic system resource management and program debugging software tools. 

We met the objectives stated at the beginning of the project and here is the 
summary of our results: 

* built and debugged a microcontroller printed circuit board performing basic 
system management and interfacing functions 

* built and debugged a processing unit printed circuit board performing 
program management and data processing functions 

* fully teskd and verified the function&@ of SJCP and SJklI and that they can 
work together 

* implemented an FPGA-based motherboard-parallel processing unit interface 
logic 

* built and debugged the microcontroller SCSI hardware and firmware 

* developed a system software allowing t%e user to efficiently interface and 
work with the system 

* developed a debugging tool with basic program management and debugging 
capabilities 

VaIuab1e practical knowledge and experience has been gathered to support a 
possible next generation SAM flI prototype implementation. 
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We obtained experience on how to interface an embedded system through high- 
pedomance interfaces like SCSI, how to design the interface and interface drivers 
for efficient data transfer and how to approach the interface design for efficient 
debugging and testing. 

We learned how to design and interface a multiprocessor environment, how to 
design boards capable of accommodating several processing units. This will be very 
helpful in possible later implementaions with high number of processors. 

We gathered practical experience on how to handle clock distribution, signal 
propagation delay as well as power distribution at chip and board-level problems. 
This will be very usehi particularly in the further component integration and next 
board-level implementations. 

Very valuable experience has been gathered on how to approach the design of 
and how to develop embedded system and front-end software, how to integrate the 
different software components, and how to design the software to be easy to 
expand. 

Finally, we learned how to design an embedded system state-driven program 
debugging tools allowing real-time program debugging, how to distribute the 
functions between the host and the embedded system for optimal system 
perfomance. 
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Appendix A: Microcoatroller Printed Circuit Board 

This Appendix contains the scaled layouts of the Microcontroller Printed 
Circuit Board (PCB) layers. The board has four layers altogether. 

The Microcontroller PCB was designed using EZ-Board PCB design package 
and was manufactured by OMNI GRAPHICS Inc. The Appendix contains the 
original layouts. Some minor changes have been made to the board during the 
trouble-shooting process. 
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Appendix B: S J Pmessing Unit Printed Circuit Board 

This Appendix cuniahs the scaled layouts of the SAM Processing Unit PCB 
layers. The board has four layers altogether. 

Tfie Processing Unit PCB was designed using EZ-Board PCB design package 
d was mufxmd by OMNI GRAPHICS Inc- The Appendix contains b e  
original layouts. Some minor changes have been made to the board during the 
trouble-shooing process. 
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Appendix C: Microcontroller FPGA Design Files 

This appendix contains the microcontroller FPGA PLDShell Plus (.PDS) 
design files. 

The first and second improved versions of the FPGA-based interface logic 
design fifes are given dong with the simulation signal wave forms. The logic was 
designed and simulated using PLDShell Plus FPGA design software. 
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;Chip specification: iFX74-0 68-pin PLCC 
CHIP FPGAM iFX740-68 

;PIN AND MACROCELL ASSIGNMENTS 

;Bidirectional address/data bus buffer 
;I 6 macrocells are organized as an 8-bit bidirectional buffer 
;---Micrwontroller side 
;------Output addresddata macrocells 
;------The macrocells are driving the bus during a READ 
PIN 40 a D f O  
PXN 41 ADII 
PIN 42 AD12 
PIN 43 AD13 
PIN 44 AD14 
PIN 45 AD15 
PIN 46 AD16 
PIN 47 AID17 

;------Input address/data pins 
;------The macrocells' pins are used as an input during a WRITE or ALE 
PIN 43 PAD10 P1NFBK 
PIN 41 PAD11 PINFBK 
BIN 42 PAD12 P ~ ~ K  
PIN 43 PAD13 ? ~ ~ K  
PIN 4 4  PAD14 PINFBK 
PIN 45 PADE PINFBK 
PIN a ~ m 1 6  PINFBK 
PIN 47 PAD17 PINFBK 

;--SJ Processing Unit side 
;----Outgut addreddata macrocells 
;---The macroce'lls are driving the SJ bus during a WRITE or ALE 
PIM 23 ADO0 
PIW 22 m 0 1  
PIN 14 AD02 
BIN 12 AD03 
PIN 13 AD04 
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P!N 10 AD05 
PIN 11 AD06 
FIN 9 AD07 

;------Input addresddata pins 
;------The macrocells' pins are used as an input during a READ 
BIN 23 P A D O  PINFBK 
PIN 22 PAD01 PINFBK 
PIN 14 PAD02 PINFBK 
PIN 12 PAD03 PINFBK 
PIN 13 PAD04 PINFBK 
PIN 10 R4D85 BINEBK 
PIN 11 PAD06 PINFBK 
PIN 9 PAD07 PINFBK 

;LSB address register 
;8 macrocells are organized as 8-bit register to store 
;the LSB of the address at ALE 
PIN 63 A 0 7  
PIN 61 A 0 6  
PIN 64 A 0 5  
PIN 60 A 0 4  
PIN 62 A 0 3  
PIN 58 A 0 2  
PIN 59 A01  
PEN 57 A 0 0  

:5 macrocells are used to input the five most significant bits of the address 
PIN 39 A115 
PIN 2 A11 2 
PIN 3 AT13 
PIN 4 A114 
PIN 5 A11 1 
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;3 macrocells are used to input the bus control signals READ, WRITE and ALE 
PIN 48 ALE1 
PIN SO 
PIN 49 /RDI 

;SCSI chip-select output 
PIN 3 1 /CSSCSX 

;3 macrocells are used to ou 1tpx 
;towards the processing units 
PIN 26 /RDO 
PIN 25 fWRO 
PIN 24 ALE0 

kt the three bus c 

EQUATIONS 

;Bus control signals buffering 
FmO = RDf 
WRO = WWI 
ALE0 = ALE1 

;%bit bidirectional buffer 
;---addresddata transfer direction control 
ADO[O:7].TRST = RiDI 
PS>I[O:7].TRST = RDI*AX1 S*AIl4 

;---Towards the processing unit 
ADO[G:7] = PADI[O:7] 

;---Towards the microcontroller 
AD1 [0:7] = PADO[O:7] 

;LSB of the address latching 
AO[O:7f .ACLK = /ALEX 
AO[&'ir j.TRST = VCC 
A0[0:7].D := PADI[O:7] 

;SCSI chip-select signal generation 
CSSCSI = A11S1/M14 
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;PP'oeessing units ID bits generation 
A011 = AI15*AII4*AIlf 
A012 = A!!S*RI!4*A!!2 
A013 = AflS*AI14*AT13 
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Appendix C.1.2: BDS Design Filflemion I : Simulations 

I FP€W-H.HST <Esc> to Exit 
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<F1> for Helr 

FPGCI-H . HST <Esc> t o  Exit 
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;Chip specification: iEX740 68-pin PLCC 
CHIP FPGAM iFX740-48 

;PIN AND MACROCELL ASSIGNMENTS 

;PHI2 has a good phase for falling edge of ale, and rd, wr. 
PIN 19 PHI2 input ; use for synchronous timing. 

NODE Q[2:0] reg ; for sj state machine. 
NODE ADSEL crnbfbk 

;f10 addressldata macrocells 
PfN [40:47] AD[O:7] pinfbk 

;Latch for the LSB of the address 
PEN 63 A07 regfbk 
PIN 61 A06 regfbk 
P N  64 A05 regfbk 
PnT 60 A04 regfbk 
PIN 62 A03 regfbk 
PIN 58 A02  regfbk 
PIN 59 A01 regfbk 
PIN 57 A00 regfbk 

;Input the MSB of the address 
PIN 39 A115 
PIN 2 A112 
PIW 3 A113 
PIN 4 AX14 
PIN 5 A111 

;Sf Ii> bus output 
PIN 8 A011 reg 
PIN 7 A012 reg 
PlN 6 A013 reg 
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;---state transitions. 
IDLE := MEM -> BO 
;SJSEL := MEM -> BO 
;+ SJHLD -> SJSEL 
BO := VCC -> Bl  
B1:= VCC -> B2 
B2 := VCC -> 333 
B3 := VCC -> B4 
B4 := VCC -> B5 
B5 := RDI*/WRI -> B5 + WlRI*/RDI: -> B6 
B6 := WFU -> B6 ; stay here to avoid a second ale pulse. 

EQUATIONS 

Q[2:O].CLKF = /PHI2 ; state machine clock. 

;Bus control signals output 
RDO = (B4+B5)*RDI 
'NRDLY = WRI*(Bl+B2+B3+B4+B5+B6) 
WRO = WRDLY 
ALE0 = BO+Bl *WRI ;extend ale for write but assert wr half way. 

;Bidirectional addressldata bus 
;---control 
ADOENA := VCC 
AI)OENA.RSTF = RDI*B3 ; shut off just before fpga-sj starts to drive. 
ADOENA.ACLK = ALE1 
ADsj [O:'f] .TRST = ADOENA 
AD[O:'f].TRST = RDI*SJ 

;---towards the processing unit 
;-----output the address in sjsel so it will be stable when aleo goes &positive. 
;-----then we don't have to delay ale in fpgaxs. 
adsel = Wmem*idle 
ADsj [O:'l] = ad[O:7].io*/adsel+ ao[0:7].fb*adsel 
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;---towards the microcontroller 
AD[0:7] = ADsj[O:7].io 

;Latching the LSB of the address 
AO[O:7].ACLK = /ALE1 
AO[O:7].TRST = VCC 
A0[0:7].D := AD[O:7].io 

;Selecting the SCSI 
CSSCSI := SCSI 
CSSCSIACLK = /ALE1 ; clock scsi chip sel to avoid addr transients. 

;PMU/DMU n> bits generation 
A01 1 := AIll*sj 
A012 := AI12*sj 
A013 := AI13*sj 
AOf 11 : 13l.ACLK = /ALEI 
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Appendix C.2.2: PDS M g n  FWkrsion TI: Simulations 

<Esc> to Exit - 
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Appendix D: S J Processing Unit FPGA Design Files 

This appendix contains the processing unit FPGA PLDShell Plus (.PDS) desigll 
files. 

The first and second improved versions of the FPGA-based interface and 
control logic design files are given dong with the simulation signd wave forms. 
The logic was designed and simulated using PLDShell Plus FPGA design software. 



Appendix D: SJ Processing Unit FPGA Design Files 

Appendix D.1.1: PDS Design FileNersion I 

;Chip specofocation: iEX740 68-pin PLCC 
CHIP FPGAN iFX740-68 

;PIN AND MACROCELL ASSIGNMENTS 

;Y Bus 
;---Y register output enable 
PIN 4 OE 
;---IT register macrocelfs 
PIN 5 YO 
PIN 7 Y f 
PIN 8 Y2 
PIN 9 Y3 
PIN 10 Y4 
PIN f 1  Y5 
PIN 12 Y6 
PIN 13 Y7 
;---Y register I10 pins 
PIN 6 INYO PINFBK 
PIN 7 INY 1 PINFBK 
PIN 8 INY2 PINFBK 
PIN 9 INY3 PINFBK 
PIN 1 u my4 PINFBK 
PIN f 1 INYS PINFBK 
PIN 12 fNY 6 PINFBK 
PIN '1 3 INY7 PINFBK 

:SJCP control and addressldata bus 
;--SJCP control signals: CTRO and CTR1 
PIN 14 CTRO OUTPUT 
PIN 22 CTRl OUTPUT 
;---addresddata bus rnacroceb 
PIN 23 UCO 
PIN 24 UC1 
PIN 25 UC2 
PIN 26 UC3 
PIN 27 UC4 
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PLY 28 UC5 
PIN 29 UC6 
--T A- rm 3u uc J 

;---addresddata bus I/0 pins 
PIN 23 IOUCO P ~ ~ K  
PIN 24 fOtTCl PlNFBK 
PIN 25 IOUC2 PINFBK 
PIN 26 X(lfJC3 PIIWBK 
PIM 27 IOUC4 PINFBK 
PIN 28 IOUC5 PINFBK 
PIN 29 IOLJC6 PINFBK 
PIN 30 IOUC? BTNFFfK 

;Microcontroller bus 
;---microcontrulier bus control signals 
PIN 36 RD INPUT 
PDT 37 WR INPUT 
PIN 38 ALE INPUT 
;---microcontroller bus macrocells 
Pm- 39 A D O  
Prn4OADl 
PIN 41 m 2  
PIN 42 AD3 
Pm 43 AD4 
PIN 44 AD5 
PIN 4 AD6 
PIN 46 AD7 
;---microcontroller bus I/0 pins 
PIN 39 IOADO PlWE3K 
PIN 40 XOADl PINEBK 
PIN 41 iOAB2 PXPEBK 
PIN 42 XUAD3 PINEB# 
PIN 43 fOAD4 PPNmK 
PIN 44 IOAD5 PINFBK 
PIN 45 IOAD6 PMFBK 
Pm 45 fOAD'7 P L W K  
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;ID address lines input pins 
PIN 58 Af f PWFBK 
PIN 59 A 12 TNFBM 
PIN 60 A1 3 PINFBK 

;Comparator and selection logic 
PIN 5 COMP-OUT 
PIN 31 SEL 
PIN Y-SEL 
PIN YC-SEL 
PIN 48 I00 

;]ID jumpers input pins 
PIN 61 JMBO PINFBK 
PIN 43 JMPl PINFBK 
PIN 55 bMP2 PINFBK 

;Counter 
;---control 
PW 19 CLK 
PIN 2 REFRESH 
;---counter macrocells 
PIN 57 C8 REGFBK 
PIN 58 CO REGFBK 
PIN 59 Cl REGFBK 
PIIV 00 C2 REGFBK 
PIN 61 C3 REGFBK 
PIN 62 C4 REGFBK 
PIN 63 C5 REGFBK 
PIN 64 C6 REGFBK 
PIN 65 C7 REGFBK 

EQUATIONS 

;ID check 
COM-P-OUT.CMB = [.IMP2,JMPl ,JMPO] =: [A13,A12,All] 
COMP-OUT = A13*A12*All 

;Y register selection at address O H  
SELACLK = /(COMP-OUT*ALE) 
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SEL.D := DOAD 1 *DOAD2*DOAD3*DOAD4*/IOAD5*/IOAD6*AOAD7 
1 0 0  A m  K = !(COM?-OTIT*mE) L V V I L  ---I 

1OO.D := IOADO 
Y-SEL = SEL*IIBO 
YC-SEL = SEL*IOO 

;Control signals generation 
CTRO = COMP-OUT*(ALE + lWR*ISEL) 
CRl=  /COMP-OUT + RD*WR + SEL 

;Bidirectional controVaddressldata bus control 
UC[O:7] = IOAD[O:7] 
UC[O:7] .TRST = COMPOUTWD 

;Latching the data in Y register 
YfO:7].D := IOAD[O:7] 
Y [O:7].ACLK = /(COMP-OUT*Y-SEL*/WR) 
Y [O:7] .TRST = OE 

;Counter logic 
C[O:8].CLKF = CLK 
CEO: 81 .RSTF = REFRESH 
C8.T := VCC 
C0.T := (CO:+:INYO)*Y-SEL + C8*N-SEL 
CI .T := (C 1 :+:INY l)*Y-SEL + C8*CO*N_SEL 
C2.T := (C2:+:INY2)*Y-SEL + C8*CO*C 1 *N-SEL 
C3.T := (C3:+:IWY3)*Y_SEL + C8*CO*C1 *C2*N_SEL 
C4.T := (C4:+:INY4)*Y-SEL + CS*CO*Cl *C2*C3*NmSEL 
C5.T := (CS:+:INYS)*Y-SEL + C8*CO*Cl *C2*C3*C4*N_SEL 
C6.T := (C6:+:INY6)*Y_SEL + CS*CO*Cl *C2*C3*C4*C5*NEL 
C7.T := (C7:+:INY7)*Y-SEL + C8*CO*Cl*C2*C3*C4*C5*C6*/YYSEL 
21]0:8].TRST = G 1 -  
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Appendix D.l.2: PDS Design FileNersion I: Simulation 

-- 
3 <F1> for  Hel~ 

I013D3 ................ 
PmXM ................ 
I m  ................ 
I O m s  ................ 
I O m  ................ 
f i l l  

<Esc> t o  Exi t  

Ucactor 6 <F1> f o r  Help 

. .- . ................ 
I I I I I I I I I I I I I I I I I I T I I I I I I I I I I I I I I ~ I I I I I I I F ~ I I I I I I I I I I  

FPGCI-SJV.HST <Esc> t o  Ex i t  
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ihctor 8 <F1> for  Helm 
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Appendix B2.1: PDS Design FileNersion II 

;Chip specification: iFX740 68-pin PLCC 
CHIP FPGAM iFX740-68 

;PIN AND MACROCELL ASSIGNMENTS 

;FPGA3S uses a local unit select bit for SJIIO, 
;commands needed: set u (single addr or no addr) 
;broadcast High and Low (need to single out pmu) 
;broadcast all; local rdlwr, based upon unit # 
;broadcast should work with local Y reg. 

;Added new timing scheme, 95.04.17, rfh. 
;bus turnaround is handled by FPGA2M (shuts off its own drive with a 
;margin around the sjcp read. 
;this design gates ale with ck2 to catch the low addr before 
;the write line falls, which is too late. 

;Y bus 
;---control 
PIN 4 OE input 
;---macrocell s 
PIN f6:!3] Y[O:7] regkk ; PII.'BK 

;SJCP controUaddress/data bus 
;---control signals macrocells 
PIN 14 CTRO OUTPUT 
PIN 22 CTR I OUTPUT 
;---delay output to avoid driving ucbus when the address is coming out (tl). 
PIN 3 1 CTRlZ CMBFBK 
NODE CTR1Pl CMBFBK 
NODE CTR 1 P2 CMBFBK 
NODE (3TR1 P3 CMBFBK 
NODE CTR 1 P4 CMBFBK 
NODE CTROPl CMBFBK 
x r f i n % -  m n n n n  -1 n P n x r  
IVWUC L I KurL ~1Y5m-fsn, 
NODE CTROP3 CMBFBK 
;NODE CTROP4 CMBFBK 
NODE TRSTCTL CMBFBK 
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;---S JCP control bus macrocell s 
PIN [23:30] UC[O:7] PINFBK 

;Microcontroller bus 
;---these have delayed timing from FPGA2M. 
;---address should be stable when ale rising edge comes along. 
PIN 36 /RD INPUT 
BIN 3'7 /WR INPUT 
PIN 38 ALE INPUT 

;---Microcontroller bus macrocells -- ad goes to dallas. 
PIN [39:46] AD[O:7] PINFBK 

;ID address lines input 
PIN [58:60] A[l 1: 131 INPUT 

;Comparator 
PIN 56 UNIT REG OUTPUT 
PIN 57 Y-SEL REG OUTPUT 

;D jumpers input 
PIN 61 JMPO INPUT 
PIN 53 JMPl INPUT 
PIN 65 JMP2 INPUT 

PIN 62 COMPOUT CMBFBK 
PIN 64 RUNNING REG OUTPUT 
PIN 5 BRDCST REGFBK OUTPUT 

;Selection string definitions 
STRING USEL 'A13' 
STRING ALL 'A13*A12*All' 
STRING UPPER 'A13*A12*/Ally 
STRING LOWER 'A13*/A12*All' 
STRING SINGLE 'A13*lA12*IAlly 
SYdPu'G LOCAL ' lki3*ikl2"-All' 
STRING SJ '/A13*/Al2*/All' 
STRING YSEL '/ADO' ; MUST BE ADDRESS PHASE OF DATA BUS. 
STRING RUN '/AD7*AD6*IADS*/AD4*/AD3*IAD2*AD 1 *ADO' 
STRING STOP '/AD7*AD6*/AI)5*/AD4*/AD3*/AD2*/AD 1 *AM)' 
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;Unit selection equations 
;---broadcast selection 
BRKST := ALL+UPPER+LOWER ; use to prevent rd shorts. 
BRDCST-ACLK = ALE*USEL ; don't wait for data, any broadcast address works. 

;---comparison and unit selection 
COMP-OUT-CMP = [AD[2:0]] == [JMP[2:0]] 
UNIT := ALL+UPPER*JMP2+LOWER*/JMP2+SINGLE*COMPOUT 
UNITACLK = l('iTSEL*WR) 

;---Y register selection 
Y-SEL.ACLK = ALE 
Y-SEL := LOCAL*UNPT*YSEL 

;---running mode 
RUNN1NG.T := SJ*RUN*/RUNNING*UNIT + SJ*STOP*RUNNING*UNIT 
RUNNING.ACLK = ALE 

;Cont-rol signals generation 
;---mp: ! 0, ale: 1 1, rd:QU, wr:Ol. 
CTROPI = (ALE+WR)*SJ*UNIT 
m o p 2  = CTaOPl 
rn.OP3 = CTROP2 
; CTROP4 = CTROP3 
GIRO = CTROPi 
C R I Z  = (RD*/BRDCST+WR)*SJ*UNIT ; user uses Unit to select for broadcast. 
CTR I PI = /CTR 1 Z ; delayed to avoid ale ghtch passing from wr to nop. 
eTRIP2 = CTRlPl 
m 1 P 3  =CTBlP2 
CTRlP4 = CTR1P3 
; €TRIP5 = CTR1P4 
CTRl = m I P 1  
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;Bidirectional addressldata bus controt 
;---towads SJCP 
uC[O:7] = AD[O:7]*UNlT 
TRSTCTL = (WR+ALE)*SJ*UNIT 
UC[O:7].TRST = TRSTCTL ; shut off except for ale+wr. 

;---towards the microcontroller 
AD[O:7] = UC[O:7]*N_sel+ Y [O:7] *Y-sel 
AD[O:7].TRST = RD*UNIT*/BRDCST ; activate for board selected read. 

;Latching the data in the Y register 
Y [O:7] := AD[O:7] 
Y[O:7].ACLK = /(Y-SEL*WR) 
Y[O:7].TRST = OE ; OE COMES FROM SJCP. 
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Appendix D.2.2: PDS Design FileNersion II: Simulation 

<Ff > for  H e l r  

VIWIafXmfl2WS- .+El (Esc) t o  Ex i t  

Usaetor 4 1  <F1> for  Help - I ................ 
CTRO I ................ I n I 

J 
I 
I t r I 
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Vr\RIE!KYwK!#Sn\m6(53s .XST <Esc> to  Exit 
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Appendix E: Memory Map of SJCP special function memory 

Table 13: Memory Map of SJCP data and special function memory 

I Not used in SJCR Used to access 
FPGA registers. 

Address Range 

1 
Scan chains selection. Strobes the 
data inputs into the selected scan 
chain. 

Feature 

SJCP external S U M  bus control. 

I 8x - Fx I Dual-Port Memory (DPM) block 

f 

5x Event interface antml. 

4x 

x = 0 - selects the Y register 

Program execution control. 

x = 0 - selects address scan-chain. 
x = I - selects data scan-chain. 
x = 2 - selects instruction scan-chain. 

x = 0 - selects address scan-chain. 
x = 1 - selects data scan-chain. 
x = 2 - selects instruction scan-chain. 

I r I I 

x=O-OEon 
x =  1 -0Eoff  
x = 2 -WE strobe 

x = 0 - executes a step. 
x = 1 - Stopntrap SJCP. 
x = 2  - Cleartrap. 
K = 3 - R m  &Id-speed. 

K = 0 - sets DPM data flag. 
K = 3 - Clears fRQ. 

r = 3 - Loads DPM base address reg- 
ister. 



Glossary 

ASP1 
BIST 
CDB 
CF3 
MLMD 
PC 
PCB 
PCI 
PDS 
PLDShell Plus 
POMICE 
RISC 
RPC 
SAM-II 
SCSf 
S W  
SJ 
SJ BUS 
SJCP 
S m  
SJNI 

Advanced SCSI Protocol Interface 
Built-In Self-Test 
Command Descriptor Block 
Configurable Functional Block 
Multiple Instruction Multiple Data 
Personal Computer 
Prhteb Circuit Board 
Peripheral Component Interconnect 
Extension of the PLDShell Plus design file - .pds 
FPGA design package provided by Intel 
EPROM Emulator 
Reduced Instruction Set Computer 
Remote Procedure Call 
Structured Architecture Machine - 11 
Small Computer System Interface 
Single Instruction Multiple Data 
SAM Junior 
SAM Junior Bus 
SAM Junior Control Processor 
SAM Junior Memory Interface 
SAM Junior Network Interface 
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