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Abstract 

Activity in research relating to the compression of digital speech signals has increased 

markedly in recent years due in part to rising consumer demand for products such 

as digital cellular telephones, personal communications systems, and multimedia sys- 

tems. 

The dominant structure for speech codecs at rates above 4 kb/s is Code Excited 

Linear Prediction (CELP) in which the speech waveform is reproduced as closely as 

possible. Recently, however, harmonic coding has become increasingly prevalent at 

rates of 4 kb/s and below. Harmonic coders use a parametric model in an attempt to 

reproduce the perceptual quality of the speech signal without directly encoding the 

waveform details. 

In this thesis, we address some of the challenges of harmonic coding through the 

development of a new speech codec called Spectral Excitation Coding (SEC). SEC is 

a harmonic coder which uses a sinusoidal model applied to the excitation signal rather 

than to the speech signal directly. The same model is used to process both voiced 

and unvoiced speech through the use of an adaptive algorithm for phase dispersion. 

Informal listening test results are presented which indicate that the quality of SEC 

operating at 2.4 kb/s is close to that of existing standard codecs operating at over 

4 kb/s. 

The SEC system incorporates a new technique for vector quantization of the 

variable dimension harmonic magnitude vector called Non-Square Transform Vector 

Quantization (NSTVQ). NSTVQ addresses the problem of variable-dimension vector 

quantization by combining a fixed-dimension vector quantizer with a set of variable- 

sized non-square transforms. We discuss the factors which influence the choice of 

transform in NSTVQ, as well as several algorithm features including single-parameter 



control over the tradeoff between complexity and distortion, simpler use of vector pre- 

diction techniques, and inherent embedded coding. Experimental results show that - 
NSTVQ out-performs several existing techniques in terms of providing lower distor- 

tion along with lower complexity and storage requirements. Results are presented 

which indicate that NSTVQ used in the Improved Multiband Excitation (IMBE) en- 

vironment could achieve equivalent spectral distortion while reducing the overall rate 

by 1000-1250 bits per second. 
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Chapter 1 

Introduction 

Research directed towards the compression of digital speech signals has a history 

stretching back several decades. In the last few years, however, there has been a 

flourish of activity in this area. While the bandwidth available for communications 

using both wireless and wireline channels has grown, consumer demand for services 

utilizing these channels has consistently outpaced growth in channel capacity. Fur- 

thermore, the availability of low cost/high performance digital processing hardware 

has made it possible to use increasingly complex algorithms while maintaining real- 

time compression rates. Emerging applications such as digital cellular telephones, 

personal communications systems, and multimedia systems all benefit by conserving 

either bandwidth for transmission applications or media space for storage applications, 

hence the need for speech coding. 

Until recently, the dominant structure for speech codecs has been Code Excited 

Linear Prediction (CELP). CELP coders are waveform coders which use analysis-by- 

synthesis to reproduce as closely as possible the speech waveform. At rates above 

4 kb/s, CELP coders are still dominant, however for rates below 4 kb/s harmonic 

coding has become increasingly prevalent. 

Harmonic coders use a parametric model in which speech is synthesized using a 

sum-of-sinusoids approach. The sinusoids have frequencies which are harmonics of 

the fundamental (pitch) period of the talker. Because harmonic coders do not try to 

reproduce details of the speech waveform, which may be unimportant perceptually, 

they can perform better than waveform coders at very low rates when there are not 

enough bits for accurate waveform matching. 



CHAPTER 1. INTRODUCTION 

Thesis Objectives 

Harmonic coders bring a new set of challenges to the field of speech coding. In this 
, 

thesis we address some of these challenges through the development of a new speech 

codec called Spectral Excitation Coding (SEC). SEC is a harmonic coder which uses 

a sinusoidal model applied to the excitation signal rather than to the speech signal 

directly. The same model is used to process both voiced and unvoiced speech through 

the use of an adaptive algorithm for phase dispersion. Informal listening test results 

are presented which indicate that the quality of SEC operating at 2.4 kb/s is close to 

that of existing standard codecs operating at over 4 kb/s. 

The most important contribution of this work is a new technique for vector quan- 

tization of the variable dimension harmonic magnitude vector called Non-Square 

Transform Vector Quantization (NSTVQ). NSTVQ addresses the problem of variable- 

dimension vector quantization by combining a fixed-dimension vector quantizer with 

a set of variable-sized non-square transforms. We discuss the factors which influence 

the choice of transform in NSTVQ and show that for typical speech coding applica- 

tions the Discrete Cosine Transform and Orthogonal Polynomial Transform are good 

choices. We show that NSTVQ has several advantages including single-parameter 

control over the tradeoff between complexity and distortion, simpler use of vector 

prediction techniques, and inherent embedded coding. Results are presented which 

show that NSTVQ out-performs several existing techniques in terms of providing 

lower distortion along with lower complexity and storage requirements. Experiments 

are provided which show that NSTVQ used in the Improved Multiband Excitation 

(IMBE) environment could achieve equivalent spectral distortion while reducing the 

overall rate by 1000-1250 bits per second. 

Thesis Organization 

Chapter 2 provides a brief introduction to linear prediction, with a focus is on the 

relationship between the linear prediction and the speech production model. Lin- 

ear prediction is an important component of the spectral excitation coding system. 

Chapter 3 presents the notation and concepts related to vector quantization which 

provide a background for the discussion of NSTVQ in Chapter 5. In particular, 
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the generalized Lloyd algorithm for VQ design is presented, which is used to train 

the NSTVQ codebooks. An overview of constrained vector quantization and vector 

transform quantization is also important background for the NSTVQ discussion. In 

Chapter 4, an overview of the current state speech coding research is presented with 

emphasis on waveform vs. parametric coding. The most widely used low-rate wave- 

form coder, CELP, is presented and contrasted with two well-known sinusoidal coders: 

sinusoidal transform coding (STC) and multiband excitation coding (MBE). In Chap- 

ter 5, a new method for vector quantization of variable length vectors is presented. 

The Chapter begins with a discussion of some well-known existing approaches to the 

variable dimension problem, followed by a detailed presentation of NSTVQ. Finally, 

a comparison of NSTVQ with existing methods is presented. Chapter 6 presents a 

new speech coding system, SEC. A general discussion of parameter estimation, quan- 

tization, and interpolation is followed by a detailed description of an existing 2.4 kb/s 

SEC system. The final Chapter, Chapter 7, contains a brief summary of the work 

presented this thesis. 



Chapter 2 

Linear Predict ion 

2.1 Introduction 

Linear prediction theory covers a large volume of material ranging from parameter 

estimation of linear systems to the adaptation of these systems under a wide variety 

of conditions. In particular, researchers in the fields of speech coding and speech 

recognition have made extensive use of linear prediction theory. 

In this chapter we focus on the application of linear prediction to speech coding. 

Our goal is to introduce the notation and basic concepts that are important later 

in the thesis. For further exploration there are many sources containing extensive 

material relating to linear prediction, for example [50, 36, 171. 

We start by introducing a general form of linear prediction in which values from 

one random process are estimated based on a set of observations from another random 

process. This is used, for example, in the prediction of spectral magnitude vectors 

for quantization. We then discuss the form of linear prediction used in speech coding 

with special emphasis on the relationship between the linear prediction coefficients 

and the coefficients of the all-pole digital filter used to model the vocal tract transfer 

function. 
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2.2 Prediction Overview 

Prediction applied to a random process is a procedure where past observations of the 

process are used to obtain an estimate of one or more future observations. Intuitively, 

it is apparent that knowledge of the past can help us predict the future. For example, 

if we watch someone flip a coin twenty times in a row and get heads each time, we 

might assume the coin was not fair and predict another head on the next toss! In 

the same way, knowledge of the underlying joint probability distribution of a random 

process can help us to infer future observations from past observations. When the 

prediction of the future observations are based on a linear operation on the previously 

observed samples, the prediction is said to be linear. 

The following section presents a formal derivation of the equations for doing op- 

timal (in a mean squared error sense) linear prediction. Part of the presentation is 

based on [50] and [17] . 

2.3 The Linear Prediction Model 

Suppose we want to predict the value which will be observed for a K-dimensional 

random vector y = [yl, . . . , yKIt using an observation of a N-dimensional random 

variable x = [xl, . . . , xNIt. If we want to use linear prediction, the vector y is estimated 

based on a weighted linear sum of the elements of x using 

where A is an KxN prediction matrix. 

Naturally, we would like to find the values A which will give us the "best" possible 

estimate of 9 according to some criterion. The error vector used in the minimization 

is 

If we use a mean squared error (MSE) criterion, our goal is then to find the elements 

of A which minimize the expected value of the square of the norm of eqn. (2.3) 
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Minimization of equation (2.4) can be approached in several ways. For example, using 

variational techniques, it is possible to set the derivative of E[l(e112] with respect to 

each element of A equal to zero and verify that the solution matrix AOpt gives a global 

minimum. Another useful approach makes use of the orthogonality theorem which is 

stated below; a proof of this theorem is provided in [17]. 

Theorem 2.1 A linear predictor = Ax is optimal in  the MSE sense if and only 

if the components of the error vector (which are themselves random variables) are 

orthogonal to the components of the observation vector. That is, if e = y - Ax, then 

We can now obtain an expression for the optimal (in the MSE sense) linear pre- 

dictor of the form given by (2.1) as follows 

where xet is an N x K  matrix whose nth row and kth column is given by xnek. Using 

Theorem 2.1, we know that the error is minimized when all components of the matrix 

defined by eqn. (2.7) are zero. This leads to the following system of equations, whose 

solution matrix A results in the optimal linear predictor 

The term E[xxt] is simply the autocorrelation matrix, R,,, for the random vector 

x. When the components of x are linearly independent, the autocorrelation matrix is 

positive definite and the optimal (MSE) solution matrix is given by 

Equation (2.9) gives an expression for the optimal prediction matrix for linear 

prediction of one random vector given another random vector. One application of 



C H A P T E R  2. L INEAR PREDICTION 7 

this expression presented in this thesis uses linear vector prediction to estimate the 

speech spectrum based on a linear combination of previous observed spectra. The 

most common use of linear prediction in speech coding, however, is the prediction of 

a current speech sample given a linear combination of past samples. The remainder 

of this chapter focuses on this application. 

2.4 Linear Prediction of Speech 

In speech coding, we often encounter a linear predictor of the form 

M 

in = x aixn-;. (2.10) 
i=l 

This is a specific case of eqn. (2.1) where K = 1 and N = M. The vector y becomes 

a scalar, x,, representing a sample at index n. The vector x consists of the past M 

observed samples, and the matrix A becomes an M-dimensional prediction vector 

a = [al7 . . . , aMIt. The elements of a are called the prediction coefficients. The error 

vector, which will be seen to be an important component in speech coding applications 

is given by 

A 

en = X n  - X n  (2.11) 
M 

- - xn - x aixn-i. (2.12) 
i=l 

Using eqn. (2.8), and assuming stationary X, we obtain a linear system of equa- 

tions for computing the optimal (in an MSE sense) prediction coefficients 

where v = (rl,  7-2, . . . r ~ ] ) ~ ,  and r j  = E[x,zc,-~]. The element in the ith row and jth 

column of R,, is given by R,,(i, j) = r(;-j)7 i = 1 . .  . M; j = 1 . .  . M. This system 

of equations is called the normal equations or Yule- Walker equations for the optimal 

linear predictor coefficients and can be written as 
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When the components of the vector x are linearly independent, the autocorrelation 

matrix Rxx is non-singular and the optimal linear prediction coefficients are given by 

-1 a = Rxx v (2.15) 

The autocorrelation matrix of a stationary random sequence has a Toeplitz structure I 

(elements along each diagonal are the same) which is exploited in many efficient coeffi- 

cient estimation algorithms, the most common being the Levinson-Durbin algorithm. 

2.4.1 Autocorrelation and Covariance Met hods 

Up to this point, we have considered the problem of linear prediction applied to 

stationary stochastic signals. Although speech is obviously not a stationary signal, 

a model of local-stationarity is often applied in which a short segment of speech is 

obtained by applying a window, w(n), n = 0 . . . N - 1, to a speech signal. The resulting 

segment is assumed to be a set of samples taken from an ergodic random process. In 

this case we can obtain an estimate of the underlying autocorrelation function for 

a speech segment through the use of time averaging. For a segment xo, . . . , XN-1, a 

commonly used estimate of the correlation between two samples separated by distance 

k is given by 
1 N-Ijl-1 

r .  = - 
3 C WnXnWn+lj1Xn+ljl- (2.16) 

N n=o 

When this estimate is used in place of rj in eqn. (2.14) to obtain the optimal set 

of linear prediction coefficients, the estimation procedure is called the autocorrela- 

tion method. Note that the autocorrelation matrix obtained from this method has a 

Toeplitz structure and therefore efficient algorithms such as Levinson-Durbin can be 

used to compute the coefficients. 

The fact that the autocorrelation method results in a Toeplitz matrix is a direct 

consequence of the finite length windowing, which sets samples outside the window 

to zero. Another approach is to avoid windowing completely. Instead, the signal 

is considered to be deterministic and a mean-squared error cost function is applied 

directly to the observed data over a fixed interval, 0 5 n < N - 1 according to 
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The approach for finding the optimal linear prediction coefficients through the mini- 

mization of eqn. (2.17) is called the covariance method1, which leads to the following 

system of equations 

where 4 ( i , j )  is given by 
n=N-i-I 

Note that the solution of eqn. (2.18) using eqn. (2.19) requires samples of x to be eval- 

uated within the the interval - M  5 n < N - 1 as compared with the autocorrelation 

method in which only samples within the interval 0 5 n < N - 1 are used. Unfor- 

tunately, the computation of the prediction coefficients using the covariance method 

requires the inversion of a non-Toeplitz matrix and therefore cannot be performed 

as efficiently as when using the autocorrelation method. Another advantage of the 

autocorrelation method is that an IIR filter using the prediction coefficients is guaran- 

teed to be stable; the same is not true for coefficients calculated from the covariance 

method. 

2.5 Linear Prediction and the Speech Production 

Model 

In many speech coding applications, compression is achieved through the use of a 

speech synthesis model. Typically, the model includes an excitation signal which is 

passed through an all-pole filter in order to synthesize speech. The motivation for 

the all-pole synthesis filter and its relationship to linear prediction requires a basic 

understanding of the way we produce speech. 

Figure 2.1 illustrates the structures used for speech generation in humans. Voiced 

speech is generated by forcing air from the lungs through the glottis. For voiced 

'Although the term covar~ance method is used extensively in speech coding literature, it has no 
relation to the usual meaning of "covariance" found in random process theory. 
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Figure 2.1 : Structures used in human speech generation. 

sounds, the glottis gives the signal a quasi-periodic structure by opening and closing 

at an interval known as the pitch period. This quasi-periodic signal then excites the 

vocal tract to create voiced speech. Unvoiced speech can be generated by forcing air 

through vocal tract while the glottis remains open resulting in a speech waveform 

which has no periodic structure. When the vocal tract is constricted, for example by 

pressing the tongue against the roof of the mouth, noise-like sounds are created called 

fricatives. Fricatives may be voiced, as in "zip", or unvoiced, as in "sip". Ploszve 

sounds are produced by sealing off the vocal tract to build up pressure which is then 

suddenly released, as in "pop". - Figure 2.2 gives examples of waveforms corresponding 

to (a) voiced speech, (b) unvoiced fricatives, (c) voiced fricatives, and (d) plosives. 

Several assumptions can be made in order to obtain a simplified parametric model 

for speech production. The air forced through the glottis creates a signal called the 

excitation signal. The excitation signal may be quasi-periodic (voiced speech), or 

noise-like (unvoiced speech)2. The vocal tract can be modeled as set of lossless cylin- 

drical acoustic tubes, each tube having a different resonant frequency. The transfer 

'Sometimes the excitation signal for voiced speech is itself modeled as a periodic pulse train 
passed through a glottal shaping filter. 
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(b) unvoiced fricative ' 1 

Figure 2.2: Typical speech waveform for (a) voiced, (b) unvoiced fricative, (c) voiced 
fricative, and (d) plosive. 

function of the vocal tract can then be represented as an Mth order all-pole IIR filter 

of the form 

This model is illustrated in fig. 2.3 which shows the excitation and speech signals for 

a typical voiced waveform. We now come to the relationship between the speech pro- 

duction model defined above and linear prediction. Using the filter transfer function 

A(z), the expression for the excitation signal at index n given the speech signal is 

Direct comparison of eqn. (2.21) and eqn. (2.12) shows that the excitation signal for 

the all-pole vocal tract model is nothing more than the error signal resulting from 

linear prediction applied to the speech signal, s. Clearly, linear prediction plays an 

important part in estimation of the speech production model parameters. 

It should be stated that several assumptions made in creating the speech produc- 

tion model defined above are not valid. For example, the vocal tract is clearly not built 
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1 - 
Iossless acoutic tubes 

--I-+-- 
excitation signal vocal tract model speech signal 

Figure 2.3: Simplified speech production model for a voiced sounds. The vocal tract 
is modeled as a series of lossless acoustic tubes which can be described by an all-pole 
filter. 

of cylinders, and does absorb some energy. More importantly, the nasal cavity can be 

used to eliminate energy at certain frequencies creating spectral "nulls" which cannot 

be modeled easily by an all-pole filter. However the assumptions greatly simplify the 

model parameter estimation and are therefore widely used in speech applications. 

2.6 Alternative Representation of the LPC Coeffi- 

cient s 

In speech compression applications which use linear prediction, it is generally required 

that a set of parameters representing the all-pole filter be quantized. Usually, direct 

quantization of the LPC coefficients is avoided due to the complexity required to 

ensure that the quantized filter is stable. The quantization properties of several 

alternative representations of the short-term filter have been studied in [4]. Two 

important representations are reflection coefficients (RC), and Line Spectral Pairs 

(LSP)3. Both these representations provide simple stability checks - the absolute 

value of all reflection coefficients must be less than or equal to one, and the line 

3The line spectral pairs are also called line spectral frequencies (LSF). 
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spectral pairs must be monotonically increasing in frequency. A detailed discussion of 

these and other alternative representations of the all-pole filter can be found in many 

references (see, for example, [36, 261). 

2.7 Conclusions 

In this chapter we have presented the general problem of linear prediction for the 

estimation of observations from one random process using a linear combination of 

observations from another random process. This form of linear vector prediction will 

appear later in this work for the purpose of quantizing spectral magnitude vectors. 

Linear prediction of speech samples was then presented with special emphasis placed 

on parameter estimation and the relationship between the prediction coefficients and 

the coefficients of an all-pole filter used to model the vocal tract. The excitation signal 

described here plays an important role in Spectral Excitation Coding. 



Chapter 3 

Vector Quantization 

3.1 Introduction 

Vector quantization (VQ) involves the mapping of an input set of points in k-dimensional 

Euclidean space onto a finite set of output points using a partitioning of the input 

space into regions called cells. Scalar quantization can be considered as a special case 

of vector quantization where the vector dimension, k, is one. Vector quantization 

is used extensively in image compression, speech recognition, and speech compres- 

sion. In this chapter we focus on the use of vector quantization for the purpose of 

data compression with emphasis on the terms and concepts used later in this thesis. 

In particular, the widely-used Generalized Lloyd Algorithm (GLA) for codebook de- 

sign is presented, as well as several sub-optimal VQ structures which are used in the 

Spectral Excitation Coder discussed in Chapter 6. 

The importance of vector quantization in speech compression can be attributed 

to three important advantages over scalar quantization 

1. Vector quantization takes advantage of both linear statistical dependence (corre- 

lation), and non-linear statistical dependence between vector elements in order 

to improve quantizer performance. 

2. Vector quantizers have extra freedom in choosing cell shapes compared with 

scalar quantization. 

3. Vector quantizers make possible the use fractional per-sample bit-rates. 
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Further discussion of these advantages and of vector quantization in general can be 

found in many sources, for example [17] and [35]. 

3.2 VQ Definitions 

A vector quantizer Q of dimension k and size N is a mapping defined by Q : Rk --+ 
C in which an input vector, x E Rk, is mapped into the finite set C, where C = 

{yI, ~ 2 , .  . . , yN), and Yi E R k .  Each vector in C is called a codevector, or codeword, 

and the set of N codevectors is called the codebook. The rate of the vector quantizer 

in bits per vector element (or bits per sample) is given by r = (log, N)/k. 

The mapping decisions are based on the partitioning of Rk into N regions, R;, i = 

1 . . . N,  called cells. The ith cell is defined as the subspace of Rk containing all vectors 

which are mapped by Q into yi. If the mapping of vector x into yi is indicated as 

then the region R; is defined by 

Because every input point is mapped onto a unique output point, it follows that the 

union of all cells is Rk and the intersection of R; and Rj is empty for i # j .  Cells 

which are bounded are called granular cells, and the set of all granular cells is called 

the granular region. Cells which are unbounded are called overload cells, and the set 

of all overload cells is called the overload region. Figure 3.1 shows an example of a 

two-dimensional vector quantizer illustrating the terms defined above. 

In a typical signal compression application, a vector quantizer is used to encode a 

vector, x, by mapping x into a codevector index which is transmitted to the receiver. 

The receiver uses the index to obtain a quantized vector, xq. Note that the encoder 

must know the partitioning of the input space in order to determine the cell in which 

each input vector lies. The decoder, on the other hand, requires only the codebook 

and simply uses the index to look up the corresponding codevector. 

A distortion measure, d(x,xq), is used to measure the distortion or error due to 
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overload 
region 

Figure 3.1: Example of a vector quantizer with k = 2 and N = 8 

quantization and thus the performance of the quantizer. The distortion measure 

is called the 1, norm of the error vector x - x, and is commonly used in signal 

compression, in particular with m = 2. 

3.3 Nearest-Neighbour Quantizers 

As discussed in the previous section, a VQ encoder must know the partitioning of the 

input space in order to perform the mapping from input vector to cell index. For one 

important class of vector quantizers, the partitioning is completely determined by the 

codebook and the distortion measure. An encoder of this class is called a Voronoi 

or nearest neighbour (NN) vector quantizer. Nearest neighbour quantizers have the 

advantage of not requiring any explicit storage of the geometrical description of the 
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cells. Furthermore, nearest neighbour quantizers are optimal for a given codebook in 

the sense of minimizing the average distortion between the unquantized and quantized 

vectors. I 

The partition cell R; of a nearest neighbour quantizer is defined by 

R; = {X : d(x, yi) 5 d(x1yj), j = 1 . . . N ) .  (3.4) 

Equation (3.4) simply states that each cell in an NN quantizer consists of those vectors 

which are "closest" to the code vector for that cell, where "closest" is taken to mean 

resulting in the minimum distortion. Proving that eqn. (3.4) results in the optimal 

partition for a given codebook is straightforward and can be found in [17]. Note that 

when the distortion between an input vector and two or more codevectors is equal, 

the input vector is on a cell boundary and must be assigned to a unique codevector, 

for example the codevector with the minimum index. 

Equation (3.4) provides the rule for computing the optimal partitions given a 

codebook and distortion rule. Suppose we have the inverse problem: we want to 

compute the optimal codewords given the distortion rule and the partitions. The 

optimal codeword yi* for cell R; is called the centroid of R;, or cent(R;), and is 

defined to be that point in R; for which the expected value of the distortion between 

x E R; and yi* is minimized. This can be stated as 

yi* = cent(R;) if E[d(x, yi*) I X  E R;] 5 E[d(x, y)lx E R;) V y E R; (3.5) 

For example, when a squared error distortion measure is used, the centroid of region 

R; is the value of yi given by 

= E[xlx E R;] 

where fx(x) is the multivariate probability density function of the random vector 

x. Equations (3.4) and (3.5) form the basis of the vector quantizer design method 

presented in the next section. 
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3.4 Generalized Lloyd Algorithm for VQ Design 
\ 

In this section we consider the design of efficient nearest neighbour vector quantizers. 

The most commonly used design algorithm is a generalization of Lloyd's (Method 

I) algorithm [28], known as the Generalized Lloyd Algorithm (GLA) or the Linde- 

Buzo-Gray (LBG) algorithm [27]. The GLA starts with an initial codebook and uses 

an iterative approach to obtain a new codebook which has equal or lower average 

distortion. We start by considering the case where the statistics of the input random 

vector, x ,  are known. We then consider the case where these statistics are unknown 

but can be inferred from a sufficiently rich training set. 

3.4.1 GLA With Known Multivariate Probability Density 1 
I 

I Function 

Assume we have a k-dimensional random vector x with known multivariate proba- 

bility density function (pdf) f,(x). Given an initial codebook d m )  of size N, and a 

distortion measure d(x, y), the GLA uses iteration of the following steps to create a 

new codebook c ( ~ + ' )  ~ 
1. For each i = 1 . . . N, compute the optimal cell partition, Ri, using eqn. (3.4) 

(a tie breaking rule is required when the distortion between x and two or more 

codevectors is equal). 

2. Given R;, compute the codewords yi(m+') = cent(R;), i = 1 . . . N using eqn. 

(3.5). These new codewords form the new codebook, C("+') 

In practical applications, an analytical description of the pdf is generally not available 

and therefore codebook training is usually performed based on a sample distribution 

inferred from an empirical set of observations called the training sequence. 

3.4.2 GLA Based on a Training Sequence 

Assume that in place of a known pdf for x we have a training set 7 consisting of 

representative vectors xj, j = 1 . . . M .  
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Under some assumptions, we can use averaging over 7 to obtain estimates of f,(x) 

with probability one that our estimates approach f,(x) as M + oo l .  Based on this 

idea, we can once again apply the GLA, this time using averaging of the training set 

in place of the actual pdf. This leads to the following steps for the creation of a new 

codebook dm+') based on an initial codebook C(") of size N, a distortion measure 

d(x, y) ,  and a training set 7 consisting of M vectors 

1. Let R; be a set of vectors called a cluster. For each j = 1, .  . . , M assign training 

vector xj to cluster R; if and and only if d(xj, yi) 5 d(xj, yk)  V i # k (a suitable 

tie-breaking rule is required) 

(m+l) = cent(R;), 2. For each cluster computed in step 1, compute the codewords yi 

where i = 1 . . . N. The centroid for cluster R; is given by 

cent (Ri) = min d(xj, y;) 
Y i 

xj ERi  

These new codewords form the new codebook, dm+') 

These steps for codebook improvement are known as the Lloyd Iteration and form the 

core of the GLA. The complete GLA algorithm for codebook design using a training 

set can now be summarized as follows 

1. Set m = 1 and choose an initial codebook C1 

2. Given the codebook dm), perform the Lloyd Iteration to obtain an improved 

codebook C("+l) 

3. Compute the total average distortion D("+') where 

If ( ~ ( " 1  - D("+'))/D(") < t then stop. Otherwise set m = rn + 1 and go to 

step 2 

An important property of the GLA is that each successive iteration results in a code- 

book giving average total distortion less than or equal to that of the previous code- 

book. This is a direct result of the fact that step 1 of the Lloyd Iteration produces 

lfor example ergodic X and 7 a set of M observations of X 
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optimal partitions and step 2 produces optimal codebooks given those partitions and 

the training set 7. It should be noted, however, that the average distortion produced 
i 

by GLA-designed codebooks converges only to a local minimum; a different initial 

codebook can result in a different final codebook. For a discussion of algorithms 

related to initial codebook design, see [17]. 

Constrained Vector Quantization 

For many vector quantization applications, the use of a single codebook is impractical 

due to limitations in complexity or available storage. For example, consider a typical 

speech coding application: the quantization of tenth order linear prediction coefficients 

using three bits per coefficient. In this case, the optimal VQ structure would consist 

of a single codebook having N = 230 entries. Using 4 bytes per sample, the codebook 

would require 4 gigabytes of storage. The complexity required to search the codebook 

would also be prohibitive - on the order of N operations. A common approach for 

this problem involves modifying the structure of the optimal VQ in order to obtain 

a constrained or sub-optimal VQ. Many different constraints have been used; in this 

chapter, we focus on those structures relevant to work presented later in this thesis. 

3.5.1 Mean-Removed Vector Quantization 

A mean-removed vector quantizer is an example of a product code VQ. A product code 

VQ reduces the complexity involved in encoding an input vector x by decomposing x 

into a set of feature vectors which are then quantized separately (for more information 

on product codes in general, see [17]). 

Mean-removed vector quantizers are often used when the mean of the input vector 

set can be considered to be approximately independent of the vector shape. For exam- 

ple, when the log function is applied to signal vector components before quantization, 

the Euclidean norm of the signal vector, or signal level, becomes additive. In such 

cases, the mean of the log-signal vector is often removed prior to vector quantization. 

Figure 3.2 shows the structure of a mean-removed vector quantizer. The mean of 

the input vector x is first computed using rn = s[n],  where Ic is the vector di- 

mension. The vector mean is then quantized using a scalar quantizer resulting in an 
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index j corresponding to the quantized mean, m. The quantized mean is subtracted 

from each element of x to obtain the mean-removed vector x', which is then quantized . 
using a k-dimensional vector quantizer. 

............. 

emove 
CB 

Figure 3.2: Mean-Removed Vector Quantizer Encoder 

A method for training the mean-removed VQ of the form shown in fig. 3.2 (given 

in [17]) proceeds as follows: 

1. For each vector in the training set 7, compute the vector mean to create the 

mean training set M. 

2. Apply GLA to M to obtain a codebook for the mean scalar quantizer. 

3. For each vector in the training set T,  compute the vector mean and quantize it 

using the codebook obtained from step 2 to create a new training set 7-,. 

4. Apply GLA to 7-, to obtain the shape codebook. 

Separate quantization of the mean allows fewer bits to be used for the shape vector 

resulting in a smaller codebook requiring lower search complexity. 

3.5.2 Multi-Stage Vector Quantization 

Multi-stage vector quantization (MSVQ) is a technique which uses a cascade of code- 

books in which each codebook is used to quantize the error vector from the previous 
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codebook. Figure 3.3 shows the structure of a multi-stage vector quantizer encoder. 

The input vector x is quantized by a first-stage vector quantizer, Q1. The quantized 

Figure 3.3: Multi-Stage Vector Quantizer Encoder 

vector xl is subtracted from the input vector to form the first-stage residual vector el. 

The vector el now becomes the target search for the second-stage vector quantizer Q2, 

resulting in a second-stage residual vector e2. Quantization of each successive stage 

proceeds in a similar fashion. After quantization of ek-l by the Kth vector quantizer, 

the K optimal codevector indices are transmitted to the decoder. 

To see how MSVQ can be used to solve complexity/memory problems, consider 

the case of the optimal 30-bit VQ discussed in section 3.5 for tenth-order LP coef- 

ficients which required on the order of N = 230 operations for codebook searching 

and 4 gigabytes of storage using 4 bytes per sample. An alternative approach using 

a 30-bit MSVQ having 6 stages with 5 bits per stage would require on the order of 

6(25) = 192 operations for codebook searching and only 768 bytes of storage! Of 

course, the large structural constraint imposed by the MSVQ can often cause a sig- 

nificant drop in performance. To deal with this problem, several modifications to 

the basic MSVQ search and design algorithm have been suggested. In particular, the 

coefficients representing the short-term filter used in the Spectral Excitation Coding 

system discussed in section 6 are quantized using an MSVQ structure with an M-L 

search procedure described in [5] .  



CHAPTER 3. VECTOR QUANTIZATION 

3.6 Vector Transform Quantization 
, 

Vector transform quantization (VTQ) involves the application of a linear transfor- 

mation to a vector followed by a sub-optimal vector quantizer. Figure 3.4 shows a 

block diagram of a vector transform quantizer. An input vector x of dimension k is 

transformed using a transform matrix A. The elements of the transformed vector y 

are then grouped into L sub-vectors and each sub-vector is encoded using a separate 

VQ. When L = k, the quantizers are scalar and the procedure is called transform 

coding. The main advantage of transform coding is that it can minimize the penalty 

Figure 3.4: Vector Transform Quantizer Encoder 

associated with the use of sub-optimal VQ structures. For example, consider the case 

of a k-dimensional input vector x with highly correlated elements. A sub-optimal VQ 

consisting of k scalar quantizers obviously cannot take advantage of the intra-vector 

correlation. However, a decorrelating transform applied to x can be used to remove 

the correlation before scalar quantization resulting in a system with a performance 

gain over direct scalar quantization with no transform. A detailed evaluation of the 

performance gain of vector transform coding relative to scalar quantization can be 

found in [lo]. 
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It is important to note that when L = 1 (i.e., a transform followed by a k- 

dimensional vector quantizer), the performance of an optimal VTQ system is equiv- 

alent to that of an optimal VQ applied directly to the input random vector without 

transformation as long as the transform is invertible. To prove this, we must first 

show that for any optimal codebook, C, used to quantize a random variable, x ,  there 

exists another codebook, C', which gives the same distortion when used to quantize 

Ax, where A is an invertible transform. To complete the proof we must then show 

that C' is optimal for Ax. The first part of the proof is illustrated in fig. 3.5. Fig- 

ure 3.5(a) shows a system in which x is quantized using an optimal VQ codebook, 

C = {cl,. . . , cN). An equivalent system, shown in fig. 3.5(b), uses an invertible trans- 

formation matrix, A, followed by its inverse, A-', applied to x before quantization. 

Finally, in fig. 3.5(c), the inverse transform is combined with the VQ codebook to 

obtain a new codebook, C' = {A-'cl,. . . , A-lcN) . Because all three systems are 

identical, quantizing A x  using C' results in the same distortion as quantizing x using 

C. To complete the proof we note that C' must be optimal for Ax. If this were not the 

case, we could obtain a codebook for x using the argument given above which would 

result in lower distortion than C, violating the initial assumption that C is optimal. To 

summarize, the application of a single invertible transformation to a random vector 

cannot improve the minimum obtainable distortion for a full-complexity VQ. 

The remainder of this section presents some transforms which are relevant to the 

Non-Square Transform Quantization system discussed in chapter 5. 

3.6.1 The Karhunen-Loeve Transform 

The Karhunen-Loeve transform (KLT) is an orthonormal transform which has several 

important properties exploited in signal compression applications. In particular, the 

KLT 

1. completely decorrelates the elements of the transformed vector, and 

2. minimizes the mean squared error between an original vector and a vector ob- 

tained using an inverse transform with one or more of the transformed vector 

components set to zero. 
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Figure 3.5: Three equivalent vector quantizers. In (a), a random vector x is quantized 
directly using a VQ. In (b), an invertible transform is first applied to x followed by 
the inverse transform. In (c), the inverse transform is combined with the codebook. 
The quantization distortion in all three cases is identical. 

These two properties lead to two possible approaches for the derivation of the KLT. 

Using the first property, we can derive the KLT by finding a transform A which, when 

applied to a random vector x, will result in a transformed random vector y having 

a diagonal autocorrelation matrix (see for example [17]). In this section, however, 

we use a derivation based on the second property and having particular relevance to 

work later in this thesis. The derivation is based on that found in [47]. 

Given a zero-mean random vector x = [xl, x2,. . . , xNIt, we can represent x using 

where ai,i = 1. .  . N form a set of orthogonal vectors, and y;, i = 1 . .  . N are the 

coefficients given by 
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Our goal is to find the basis functions ai which will minimize the error between x and 

2, a truncated representation of x given by 

with M 5 N. The mean squared error due to truncation of basis functions is 

If we assume that the basis functions are orthonormal then 

t 0 i f i # j  ai aj = 
1 otherwise 

and eqn. (3.16) becomes 

We want to minimize eqn. (3.20) with respect to ai for each i subject to the constraint 

that aitai = 1. Using the method of Lagrange multipliers we obtain 

which leads directly to the eigenvalue problem 

where IN is the NxN identity matrix. The basis vector ai which minimize eqn. (3.20), 

then, are the eigenvectors of the autocorrelation matrix E[xxt], and the truncation 

error can be written completely in terms of the eigenvalues, Xi, as 
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Note that e is minimized by ranking the eigenvalues A; in descending order. 

We can now write the equation for KLT transform pair in matrix notation as 

and 

y = Atx (3.25) 

where the columns of A are the eigenvectors of the autocorrelation matrix of the 

random vector x. The derivation above shows that the KLT minimizes the error 

in representing x using a truncated set of basis functions; to show that the KLT 

decorrelates the vector in the transform domain, observe that 

E [yyt] = E [AtxxtA] (3.26) 

= A-'E[xx~]A (3.27) 

= diag[Al,. . . AN]. (3.28) 

While the KLT is important for theoretical work, it is often impractical for signal 

processing applications because of the fact that the basis functions depend on the 

autocorrelation matrix A, which usually cannot be predetermined. 

3.6.2 The Discrete Cosine Transform 

The discrete cosine transform (DCT) is often used in place of the KLT in practical 

systems for several reasons: 

It is an orthonormal transform with pre-determined basis functions. 

Fast algorithms are available for DCT computation. 

Under several criteria, the DCT performance approaches that of the KLT [47]. 

An extensive analysis of the DCT can be found in [47]. In this section we present the 

definitions of two forms of the DCT, the DCT-I and DCT-11. Both transforms are 
+. 

ort honormal. 

1 The ( N  + l )x(N + 1) DCT-I transformation matrix A has elements a,(n) defined 
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and the NxN DCT-2 transformation matrix has elements defined by 
N-1 (2n + 1)mr  

a m ( n ) =  (f) km E C O S [  2N 1 ,  m , n = 0  , . . . ,  N - 1  (3.30) 
n=O 

where 
- when i = 0 or i = N 

0 otherwise 

3.6.3 The Ort honormal Polynomial Transform 

The orthonormal polynomial transform (OPT) is obtained by constructing a set of 

discrete polynomials which are orthonormal over an interval n = 1 . . . N. Given the 

first two orthonormal polynomials, the remaining N - 2 polynomials can be found 

recursively. The equations for generating the basis functions are given below. 

The first two basis functions of the OPT are defined by 

and 

The remaining basis functions, am(n), m = 3 . . . N, n = 1 . . . N, can be found recur- 

sively using 

am(n) = ( a ~ ( n )  + a)am-1 (n) + &-2(n) (3.34) 

where 

and 

3.6.4 The Discrete Hart ley Transform 

The discrete hartley transform (DHT) was first introduced in [23] and more recently 

has been proposed in [6] because of its close relationship to the discrete Fourier trans- 

form and apparent advantage in handling real data. The basis functions for the NxN 

DHT are given by 
2mnr 2mnr 

am(n) = cos +sin m ,n  = 0 ,..., N - 1. (3.37) 



Chapter 4 

Speech Coding 

4.1 Introduction 

Speech coding generally refers to the process of reducing the number of bits required 

to adequately represent a speech signal in digital form for a given application. Most 

work in speech coding has been applied to speech signals having a typical telephone 

bandwidth of about 200 Hz to 3400 Hz. More recently, attention has been focussed 

on wideband coding of speech signals having a bandwidth of about 7 kHz. 

In the last few years there has been a marked increase in research activities cen- 

tered around speech coding driven mainly by several new voice communication ap- 

plications, for example digital cellular telephones, personal communications systems, 

and multimedia systems. In all cases, there is a need to conserve either bandwidth 

for transmission applications or media space for storage applications, hence the need 

for speech coding. 

Speech coding applications generally involve lossy compression where the recon- 

structed speech signal is not an exact replica of the original signal. The main goal of 

most coding systems is to minimize the audible distortion due to lossy compression 

under constraints such as bit-rate, coding delay, algorithm complexity, and robustness 

to transmission errors. 

In this chapter, we focus on speech coding applications which typically operate at 

bit-rates of about 16 kb/s and below. In particular, we discuss the two main classes of 

speech coding systems: waveform coders and parametric coders, and provide examples 

of each. 
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A good overview of recent advances in speech and audio compression can be found 

in [19]. For a more detailed presentation of current research, see [2], [3], and [25]. 

4.2 Waveform vs. Parametric Coding 

There are two main classes of algorithms used for speech coding: waveform coders 

and parametric coders. Waveform coders attempt to reconstruct a speech signal by 

trying to reproduce as closely as possible the time domain waveform. Parametric 

coders, on the other hand, attempt to re-create the sound of the original speech 

signal by specifying a set of parameters which can be used in conjunction with a 

model for signal generation. While the reconstructed signal from a parametric coder 

may sound like the original signal, the waveform may be different. Parametric coders 

are sometimes called vocoders, a contraction of voice coders. Figure 4.1 illustrates the 

difference between the time-domain signal produced by a waveform coder as compared 

to that of a parametric coder. The original speech segment is shown in fig. 4.l(a). 

The reconstructed signal using a waveform coder operating at 4 kb/s is shown in 

fig. 4.l(b), and the same signal reconstructed with a parametric coder operating at a 

similar rate is shown in fig.4.l(c). Although the output signal of the waveform coder 

matches the original signal much more closely than that of the parametric coder, 

subjective evaluations indicate that the perceptual quality of the two codecs used in 

this example are very similar. 

Figure 4.2 provides an overview of some existing standard speech compression 

systems. At rates ranging from 64 kb/s to about 8 kb/s, the majority of speech 

coding systems are waveform coders. Existing standards include Adaptive differential 

pulse code modulation (ADPCM) at 32 kb/s, low-delay code excited linear prediction 

(LD-CELP) at 16 kb/s [9], vector sum excited linear prediction (VSELP) at 8 kb/s 

[21], and the Department of Defense U.S. Federal Standard 1016 (FS 1016) operating 

at 4.6 kb/s [8]. Recently, parametric coding has gained prominence at rates below 

about 4 kb/s. The 4.15 kb/s Improved Multiband Excitation (IMBE) coder has been 

adopted by Inmarsat as a standard for satellite voice communications [15]. There is 

an interesting difference in the audible distortion for waveform coders as compared 

to parametric coders which is highlighted in fig. 4.2. As the bit-rate is reduced, 

waveform coders are generally perceived as becoming "noisier". Parametric coders 
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(a) original (unencoded) signal 

(b) signal reconstructed using a waveform coder 

(c) signal reconstructed using a parametric coder 

Figure 4.1: Example of Waveform Coding vs. Parametric Coding 

are often described as being "clean" even at low bit rates, however as the bit rate is 

reduced, the reconstructed speech tends to become robotic or unnatural. 

Figure 4.2: Overview of Standardized Speech Coding Systems 

4.2.1 Variable-Rate Speech Coding 

An important goal in the design of voice communication networks and storage sys- 

tems is to maximize capacity while maintaining an acceptable level of voice quality. 
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Conventional speech coding systems use a fixed bit rate regardless of factors such as 

local speech statistics, transmission channel conditions, or network load. One method 

of maximizing capacity while maintaining an acceptable level of speech quality is to 

allow the bit rate to vary as a function of these factors. Variable rate speech coders 

exploit two important characteristics of speech communications: the large percent- 

age of silence during conversations, and the large local changes in the minimal rate 

required to achieve a given speech reproduction quality. 

Variable rate coders can be divided into three main categories 

source-controlled variable rate coders, where the coding algorithm determines 

the data rate based on analysis of the short-term speech signal statistics. 

network-controlled variable rate coders, where the data rate is determined by 

an external control signal generated by the network in response to traffic levels. 

channel-controlled variable rate coders, where the data rate is determined by 

the channel state information (such as estimated channel SNR) 

The first two categories were defined in [20]. Channel controlled variable rate coders 

are used in systems where a fixed aggregate rate is divided between the speech coder 

and the channel coder under the control of a channel state estimate with the objective 

of optimizing the speech quality for the end user [Ill. 

Embedded coders form one important sub-category of network-controlled variable 

rate speech coders; the concept is briefly discussed here in order to provide background 

for work presented later in this thesis. 

An embedded speech codec produces a fixed rate bit stream in which lower rate 

substreams are "embedded" in the bit stream of the higher rate substreams. The 

encoder state (filter memories, etc.) is determined by the lowest rate substream, 

hence transmitter and receiver will have the same state even if the bits used only for 

the higher rate substreams are dropped by the network. Figure 4.3 shows a block 

diagram of an embedded coder, which produces e-bit codewords. The input signal, s, 

is processed by the encoder to create a fixed bit stream containing e bits. In response 

to network traffic conditions, a network controller reduces the rate by dropping d bits 

from the bit stream, leaving c = e - d bits, After transmission through the network, 

d filler bits, which carry no information, are added to the bit stream so that e bits are 
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passed to the decoder. If the embedded coder is properly designed, the speech quality 

at the decoder will be close to that obtained by using a fixed rate c bit coder. 

Figure 4.3: Embedded Coder Block Diagram 

Pulse Code Modulation (PCM) quantization provides a straight forward example 

of embedded coding. If all but the c most significant bits are stripped from an e- 

bit PCM codeword and replaced with zeros at the decoder, an output signal can be 

obtained which is close to the output of a fixed rate c bit PCM encoder. The degree 

to which the quality of an embedded lower rate encoding can approach the quality 

of a fixed rate coder operating at the same rate depends on the codec structure and 

on the choice of quantizers; usually there is some degradation associated with the 

constraint imposed by the embedded codec structure. 

More information on embedded coding and variable-rate speech coding in general 

can be found in [20, 1 11. 

4.3 Code-Excited Linear Prediction 

One of the most important speech coding systems in use today is code-excited linear 

prediction (CELP). CELP was first proposed as a high-complexity algorithm in [48], 

however, today CELP generally refers to a class of coders having the following key 
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features:' 

0 Speech is synthesized by passing an excitation signal though some form of long- 

term synthesis filter (defined below) followed by an LPC-based synthesis filter. 

0 The excitation signal is vector quantized using an analysis-by-synthesis tech- 

nique where the best excitation vector is selected by passing candidate vectors 

through the synthesis filters and comparing the output with original speech 

using a perceptually weighted error criterion. 

The purpose of the long-term synthesis filter in CELP is to model the long-term 

correlation left in the speech signal after LPC filtering. The form of the long-term 

synthesis filter, or long-term predictor, is given by 

where p is the pitch period. The predictor coefficients, bk, are often called the tap 

gains. The values of the tap gains can be computed by minimizing the squared error 

where N is the minimization frame length and c(n) is the prediction residual signal 

obtained by passing the output of the short-term filter, e(n), through the long-term 

filter, B(z), according to 

The value of the pitch period, p, in the minimization of eqn. (4.2) is usually found 

using open-loop pitch estimation techniques. In many current CELP systems, the 

long-term filter approach has been improved upon by using an adaptive codebook 

which is searched by jointly optimizing the tap gains and pitch period. An adaptive 

codebook is a set of vectors consisting of time-shifted segments of previous excitation 

samples. The codebook is searched to find the set of L consecutive vectors whose 

weighted sum best matches the target excitation signal e(n). The L weights are 

l A  good survey on the history and development of the CELP algorithm can be found in [19]. 
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analogous to the long-term filter tap gains. Typically, single tap and three tap long- 

term filters or adaptive codebooks are used in CELP applications; in [34], five and 

seven tap adaptive codebooks were shown to improve the performance of a 2.4 kb/s 

CELP system. 

Figure 4.4 shows a diagram illustrating the analysis-by-synthesis nature of the 

CELP algorithm for subframe n. For each index in the excitation codebook, a candi- 

date excitation codevector c, is gain-scaled and passed through a long-term synthesis 

filter designed to add periodicity to the excitation signal. Alternatively, the long-term 

synthesis filter can be replaced by an adaptive codebook, in which case the gain-scaled 

excitation codevector is added to the gain-scaled adaptive codebook vector. The re- 

sulting vector, ii,, is passed through the LPC synthesis filter l/A,(z) to form the 

synthetic speech vector 5,. The vector 5, is then subtracted from the clean speech 

vector s, and the error signal is weighted using a perceptual weighting filter W,(z). 

The norm of the weighted error vector is then computed. An index selector keeps 

track of the error norms associated with each excitation codevector, and selects the 

codevector resulting in the minimum norm for transmission to the decoder. For a typ- 

ical CELP system, the transmitted parameter set consists of the excitation codebook 

index, the long-term filter tap gains and pitch period, (or in the case of an adaptive 

codebook, the codebook index), the excitation gain, and the LPC coefficients (or re- 

lated coefficients such as line spectral pairs). Note that the perceptual weighting filter 

is only used for analysis in the encoder and therefore its parameters do not need to 

be transmitted to the decoder. 

There have been many modifications to the basic CELP structure shown in fig.4.4 

since its introduction. One of the most important was the decomposing of the filtering 

into zero-input and zero-state responses in order to significantly reduce the complexity 

of the algorithm. Further complexity reductions have been developed which focus on 

the structure of the excitation codebook, for example the use of sparse, overlapped 

codes. Other algorithm developments include modification of the adaptive codebook 

structure in order to allow fractional pitch periods. 

One system which incorporates these and other modifications to the basic CELP 

algorithm is the Department of Defense FS 1016 CELP codec [S]. FS 1016 operates 

at an encoding rate of 4.6 kb/s, with an extra 200 b/s set aside for synchronization, 

error correction, and future algorithm modifications. Table 4.1 summarizes the bit 
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Figure 4.4: Code-Excited Linear Prediction Block Diagram 
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Table 4.1: Bit Allocations for the FS 1016 CELP codec operating at 4.6 kb/s. 

PARAMETER 
Envelope LSPs 
Adaptive CB Index 
Adaptive CB Gain 
Stochastic CB index 
Stochastic CB Gain 
Tot a1 

allocation for the codec. Once per 30 ms frame, a set of 10 linear prediction coefficients 

representing the short-term filter are converted into line spectral pairs and quantized 

with 32 bits using nonuniform scalar quantizers. The adaptive codebook allows 256 

possible non-integer delays ranging from 20-147 samples. Every even subframe, delays 

are delta searched and coded with a 6-bit offset relative to the previous subframe. The 

adaptive codebook gain is encoded using 5 bits each subframe. The complexity of the 

stochastic codebook search is greatly reduced through the use of codebook structure 

with the following features: 

a sparse structure (77% of the entries are zero) 

Bit Allocation 
34 

8-6-8-6 
5x4 
9x4 
5x4 

ternary valued samples (-1, 0, $1) 

Rate (bps) 

1133 
933 
667 
1200 
667 

4600 

overlapped codewords (each consecutive codeword shares all but two samples 

with the previous and next codewords). 

These constraints make it possible to use fast convolution and fast energy computation 

by exploiting recursive end-point correction algorithms. A 512 entry codebook is used 

requiring 9 bits per subframe for the encoding of the codebook index. The stochastic 

gain is encoded with 5 bits per subframe. 

The CELP structure has also been proposed in recent years for for variable-rate 

speech coding. Usually, frame classification is used to dynamically alter the parameter 

bit-rates. An algorithm known as QCELP [24] uses energy-based classification of each 

input speech frame to determine the bit rate. In [29], a codec capable of operating in 

either source or network controlled mode is presented which uses frame classification 

based on the normalized autocorrelation coefficient. Another CELP-based approach 

taken in [44] at tempts direct phonetic classification of speech segments. 
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Sinusoidal Coding 

In recent years CELP algorithms have become dominant at  rates above 4 kb/s. At 

lower rates, however, CELP systems suffer from large amounts of quantization noise 

due to the fact that there are not enough bits to accurately encode the details of the 

waveform. As an alternative, an important class of parametric coders called sinusoidal 

coders has emerged. Sinusoidal coding is a parametric coding method whereby speech 

synthesis is modeled as a sum of sinusoidal generators having time-varying amplitudes 

and phases. The general model used in sinusoidal coding for the synthesis of a frame 

of speech is given by 

L 

i ( n )  = Al (n) cos [wl (n)n + q$] n = no ,..., n o + N - 1  
1=1 

(4.4) 

where L is the number of sinusoids used for synthesis in the current frame, Al(n) 

and wl(n) specify the amplitude and frequency of the lth sinusoidal oscillator, and 

specifies the initial phase of each sinusoid. Note that the amplitude and frequency of 

each oscillator may vary with the index n. 

In order to encode speech, a sinusoidal coder analyzes a speech frame to determine 

the number of sinusoids required for signal reconstruction. For each sinusoid, the 

frequency, amplitude and phases are estimated. The transmitted parameter set for 

a single frame, therefore, consists of L, Al(no), wl(no), and 41, for 1 = 1 . .  . L. The 

decoder then uses interpolation between the parameters of the previous frame and the 

current frame to obtain all values required for eqn. (4.4). Floating-point simulations of 

sinusoidal coding using unquantized parameters and various parameter interpolation 

methods have shown that both voiced and unvoiced speech reconstructed using eqn. 

(4.4) is indistinguishable from the original [37]. 

The parameter set required for sinusoidal coding of speech is exceedingly large for 

speech coding applications at 4 kb/s and below. The most common modification to 

the synthesis model given by eqn. (4.4) for reducing the required parameter set is to 

assume that the frequencies of the sinusoids for a given frame are integer multiples of 

the lowest frequency (called the fundamental or pitch frequency). In this case, we do 

not need to transmit the number of sinusoids, L, or the frequency of each sinusoid, 

wr (no). Instead we need only transmit the fundamental frequency wo(no), which leads 

to a large reduction in the required bit rate. The synthesis model for harmonic coding, 
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then, is given by 

L 

a(,) = x ~ l ( n )  cos(lwo(n)n + $[) n = no.. .no + N - 1. 
1=1 

(4.5) 

Because the frequencies in such a system are harmonics of the fundamental frequency, 

this special case of sinusoidal coding is known as harmonic coding. Although harmonic 

coding is obviously well-suited for the reconstruction of near-periodic signals typical of 

voiced speech, it is unclear how well unvoiced speech can be synthesized by the model 

of eqn. (4.5). An analysis of this problem was performed in [39] using the Karhunen- 

Loeve expansion for noise-like signals [51]. The results showed that the harmonic 

model was valid for unvoiced speech provided that the fundamental frequency used is 

less than approximately 100 Hz. 

There are several issues which must be addressed by all harmonic coding systems. 

1. Parameter estimation: Methods must be developed which will provide good 

estimates of the fundamental frequency, harmonic magnitudes, and harmonic 

phases. In fact, for most low bit-rate systems there are not enough bits available 

for phase encoding and other estimation methods, for example phase prediction, 

must be used. 

2. Voicing Detection: Because pitch estimation methods may return meaning- 

less values during unvoiced speech, there must be some way of measuring the 

level of voicing in order to ensure that enough harmonics will be used for ade- 

quate representation of unvoiced sounds. Furthermore, when phase values are 

not transmitted, it is essential to randomize the phases during unvoiced sounds 

in order to obtain noise-like signals. 

3. Parameter Interpolation: During synthesis, the parameter values must evolve 

smoothly from frame to frame in order to prevent artifacts, therefore methods 

for interpolating the model parameters must be defined. 

In the following sections, we present two well-known harmonic coding systems: sinu- 

soidal transform coding (STC) and multi-band excitation coding (MBE). In partic- 

ular, we focus on the approaches used in each of these codecs to address the issues 

of parameter estimation, interpolation, and special handling of unvoiced speech. It 
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should be noted that the main quantization problem in harmonic coding involves 

quantization of the harmonic magnitudes. Presentation of this subject is left for 

chapter 5 in the context of Non-Square Transform Vector Quantization. 

4.4.1 Sinusoidal mansform Coding 

Sinusoidal transform coding (STC) is a sinusoidal coding technique developed by 

McAulay and Quatieri [39, 381. It has been applied to several signal processing appli- 

cations such as time-scale and pitch-scale modification [40], and two-talker separation 

[46]. For speech coding at low bit-rates, STC uses a harmonic model for speech 

synthesis [37]. 

STC Parameter Estimation 

In STC, the pitch period, wo, is found using an MSE minimization technique in which 

a closest fit is performed between a speech signal represented by a set of spectral 

coefficients measured at an arbitrary set of frequencies, and an estimate of that signal 

represented by coefficients evaluated at harmonically related frequencies. The goal is 

to find the phase and fundamental period which result in the best fit. We begin by 

representing the speech segment, s(n), n = -N/2. .  . N/2, to be synthesized as a sum 

of (possibly) aharmonic 

We would like to obtain 

sinusoids 
L 

s(n) = x Ale li(nwl +el )I 

an estimate of this waveform using the harmonic model 

where wo is the fundamental frequency, K is the number of harmonics in the speech 

bandwidth, A(w) is the is the vocal tract envelope, and cjk, k = 1. .  . K are the har- 

monic phases. Assuming for the moment that we know in advance ~ ( w ) ,  we would 

like to find the values of 4k and wo for which the mean squared error between eqns. 

(4.6) and (4.7) is minimized. The MSE evaluated over the N + 1 samples of s(n) can 

be written as 
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The first term of eqn. (4.9) is the power in the measured signal, P,, and is independent 

of wo and $hk. The second term of eqn. (4.9) can be written as 

By substituting eqn. (4.7) into the third term of eqn. (4.9) we can obtain the approx- 

imation 
N / 2  K 

which is valid for (N  + 1 )  >> 2.rr/wo. This condition is met in STC by first obtaining a 

coarse pitch estimate and using an analysis window size which is two and a half this 

estimate for refined pitch analysis. If we define the short-time Fourier Transform of 

we can rewrite eqn. (4.9) using eqns. (4.9) - (4.12) as 

To minimize eqn. (4.13) with respect to the harmonic phases, q5k, k = 1 . . . K, we 

want to maximize the second term. If S(kwo)  = ske(j*k) where Sk is the harmonic 

magnitude at w = kwo and is the phase, then the second term is maximized when 

the exponent of e is zero, or q5k = y5k7 k = 1 . . . K. In other words, the harmonic model 

phases which minimize the mean squared error criterion are simply the measured 

phases obtained by evaluating eqn. (4.12) at the harmonic frequencies. 

Using the optimal phases, the resulting MSE can be expressed in terms of wo as 

Because the pitch affects only the second and third terms of eqn. (4.14), we can obtain 

an estimate for the optimal pitch value by evaluating 
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over all possible pitch periods. Several enhancements to this procedure which result 

in improved pitch estimates are discussed in [37]. 

In the procedure given above for computing the optimal (MSE) fundamental fre- 

quency for the harmonic model, it is assumed that the spectral envelope, ~ ( w ) ,  is 

known in advance. In STC, the spectral envelope is evaluated by using a peak pick- 

ing procedure applied to S(w), the short-time Fourier transform of the input speech 

frame. The procedure is known as the Spectral Envelope Estimation Vocoder (SEE 

VOC) algorithm [45]. Given an average pitch estimate, the SEEVOC algorithm finds 

the largest peak of S(w) in each harmonic interval and records the magnitude and 

frequency of that peak. Each subsequent interval is defined based on the location of 

the previous peak. When no peak is found, the value of S(w) at the bin center is used. 

The envelope A(w) is then obtained using piecewise constant interpolation between 

the estimated spectral peaks. It should be noted that the pitch estimation algorithm 

in STC requires an estimate of the spectral envelope, and the spectral envelope esti- 

mation procedure requires an estimate of the pitch. 'This problem is overcome in STC 

by using a coarse pitch calculation to compute an initial spectral envelope estimate. 

The optimal pitch value is then computed by minimizing eqn. (4.15), and finally a 

refined spectral estimate is computed using the SEEVOC algorithm and the optimal 

pitch. 

STC Voicing Detection 

Voicing detection in STC is based on the idea that if the current speech frame is voiced, 

the harmonic model should result in a reasonably good estimate. The signal-to-noise 

ratio (SNR) of the harmonic fit is calculated using 

N/2 
zn=-N/2 Is(n) I 2  SNR = N,, 

zn=-N/2 - S ( n )  l 2  

where Ljg is the optimal pitch value which minimizes p(&) given by eqn. (4.15). An 

expression for the probability of voicing, P, , given eqn. (4.17) was derived heuristically 
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[37] and is given by 

1 SNR > 13 dB 

Pv(SNR) = { :(SNR-4) 4 dB 5 SNR 5 13 dl3 (4.18) 

SNR < 4 dB 

When STC is applied to low bit-rate speech coding, a minimum-phase model 

is used for the spectral harmonics [41] which requires no phase information to be 

transmitted to the receiver. To handle the case of unvoiced speech or partially voiced 

speech, a random phase component is added to all harmonic phases above a cutoff 

frequency, w, defined by 

wc(Pv) = TP,. (4.19) 

STC Parameter Interpolation 

In STC, parameter interpolation is inherent in the overlap-add algorithm used for 

speech synthesis. For each frame the model parameters are estimated, quantized, and 

transmitted to the decoder. The decoder then uses eqn. (4.7) to synthesize speech 

over a duration of 2N where N is the number of samples per frame. Successive frames 

of synthetic speech are then overlapped by N samples, weighted using a symmetric 

triangular window of length 2N, and added together to create the decoded speech 

signal. 

4.4.2 Multi-band Excitation Coding 

Multi-band excitation (MBE), first proposed by Griffin and Lim [22], is a speech cod- 

ing technique in which the speech signal is represented by a combination of harmonic 

sinusoids and noise-like signals. A key feature of MBE is the use of a set of binary, 

frequency-dependent voicing decisions which control the type of signal used for syn- 

thesis in each frequency band. An algorithm based on MBE called Improved MBE 

(IMBE) has been adopted by Inmarsat as a standard for satellite voice communica- 

tions [15]. 
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MBE Parameter Estimation 

In section 4.4.1 we saw that the fundamental frequency was estimated in STC by min- 

imizing the MSE between a signal represented by a set of sinusoids at unconstrained 

frequencies, and a signal represented by harmonic sinusoids. The minimization pro- 

cedure assumed a known spectral envelope. In MBE, an MSE criterion is also used, 

but in this case the error is measured between the spectrum of an original speech 

segment, and the spectrum of an ideal synthetic speech segment which is periodic. 

Unlike STC, the MBE approach assumes that the speech segments are obtained using 

symmetric window functions which are not in general rectangular. The derivation 

of the equations used in MBE to obtain the optimal spectral magnitudes, spectral 

phases, and pitch period are presented below. Note that the presentation is based 

on the MBE algorithm proposed in [22] ; some important modifications were made for 

the IMBE implementation [15], in particular to the spectral magnitude estimation 

procedure. 

Let s(n) be an input speech signal, and w(n) be a real symmetric window which is 

non-zero only over the interval - N  5 n 5 N. The spectrum, Sw(w),  of the windowed 

input speech signal, s(n)w(n), can be obtained using the Fourier transform 

For the harmonic synthesis model of the form shown in eqn. (4.5), the spectrum of 

the windowed synthetic speech signal, gw(w), is given by 

where W(w) is the Fourier transform of the window function w(n), M = [f J where 

P is the pitch period in samples, and wo = F. 
We now define the error signal, €(Ak, wO), as the difference between the windowed 

synthetic speech spectrum and the windowed input speech spectrum 

We would like to determine the values for Ak which minimize eqn. (4.22). We first 

make the assumption that the window function spectrum, W(w), is orthonormal with 
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respect to shifts by kwo, that is 

1 a 1 i f k = l  
- J W*(W - ~ ~ w ~ w , ) w ( w  - lu0)dw = 
27~ -, 0 otherwise 

Expanding eqn. (4.22) and making use of the orthonormal window assumption, we 

get 

Taking the derivative of eqn. (4.24) with respect to Ak and setting the result to zero 

yields the equation for the optimal values for Ak 

It is straightforward to transform the complex weights Ak, k = -M . . . P - M + 1 into 

a set of harmonic magnitudes and phases. 

Substitution of eqn. (4.25) into (4.24) leads to ca(wo), the spectral error given the 

optimal harmonic weights as a function of the fundamental frequency 

Because the use of eqn. (4.26) directly is computationally complex, a more efficient 

approximation for ca(wo) was presented in [22]. The approximation includes a cor- 

rection factor designed to remove an inherent bias in (4.26) for selecting longer pitch 

periods resulting from more densely sampled spectral envelopes. 

MBE Voicing Determination 

As in STC, the MBE algorithm makes voicing decisions based on how well the har- 

monic model fits the observed data. However, an important feature of MBE is the use 

of a separate voicing decision for each spectral band. For a frequency band defined 

by wl 5 w < wg, the normalized MSE between the model spectrum and observed 

spectrum is given by 
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When c b  is below a given threshold, the synthetic spectrum is close to the input 

speech spectrum for that band, and thus the band is declared voiced. It should be 

noted that the performance of the MBE algorithm is strongly dependent on correct 

voicing decisions, and in the IMBE implementation several heuristic rules are used to 

adapt the threshold for various spectral characteristics [15]. 

MBE Parameter Interpolation 

Figure 4.5 shows an example of the window positioning for speech synthesis in MBE. 

An analysis window is applied to overlapping frames of speech in order to obtain 
(i) (4 (4 the parameter set {Ak , w0 , dk ) representing the spectral magnitudes, fundamental 

frequency, and voicing decisions for frame i .  Synthesis frame i is reconstructed using 

the signal synthesized with parameters from analysis frame i - 1 weighted by the syn- 

thesis window w,(n), and parameters from analysis frame i weighted by the synthesis 

window w,(n - N), where 0 < n < N. 

In MBE, the voiced and unvoiced components of the reconstructed speech signal 

are synthesized separately. The unvoiced signal for analysis frame i is synthesized by 

taking the Fourier transform of a white noise sequence, applying a spectral weighting 

function based on interpolated values of Af) for unvoiced bands (the weight for voiced 

bands is set to zero), and finally taking the inverse Fourier transform to obtain a time 

domain waveform, u("(n). The synthesized unvoiced waveform is then obtained by 

where ~ ( ~ - ' ) ( n )  and ~ ( ~ ) ( n )  are the unvoiced signals for frames i - 1 and i respectively. 

For voiced speech, the synthesis is performed on a harmonic by harmonic basis in 

the time domain. To explain voiced synthesis in MBE, we first define the following 

parameters: 

N the synthesis frame length 

w the fundamental frequency estimated for frame i 
M(;) the number of harmonics used for synthesis in frame i (a function of w t ) )  

~ f )  the magnitude of the kth harmonic estimated for frame i (given by 1 A!)/) 

the phase of the kth harmonic estimated at frame i (given by a r g [ ~ t ) ] )  

d the voicing decision for harmonic k in frame i .  d t )  = 1 when the kth 

harmonic of frame i lies in a band declared voiced; otherwise dt)  = 0 
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u 
Synthesis frame (i) 

Figure 4.5: MBE Synthesis Window Positioning 
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For harmonic k of the synthesized speech signal, there can be several reconstruc- 

tion possibilities. If d f - l )  = 0 and d f )  = 0,  then there will be no voiced harmonic 

component with frequency kwo in the reconstructed signal. If df- ' )  = 1 and d f )  = 0, 

then the voiced signal component with frequency kwo is given by 

(i-1) s,(n) = w , ( n ) ~ f - ' )  cos [w!-"nk + q5k ] 0 5 n < N .  (4.29) 

If d t - l )  = 0 and d t )  = 1, then the voiced signal component with frequency kwo is 

given by 

s,(n) = w,(n - N ) B ~ )  cos [wt )nk  + 4f)]  0 5 n < N. (4.30) 

(i-1) When dk = 1 and d f )  = 1, and the fundamental frequency has changed significantly 

from previous frame to the current frame, then the voiced signal component with 

frequency kwo is given by 

(i- 1 )  
sV2(n )  = w,(n)Bk cos [w!-"nk + i f - ' ) ]  

w,(n - N ) B ~ )  cos [wt 'nk + +!)')I 0 5 n < N. (4.31) 

The final condition takes care of the case where the previous and current harmonics 

are declared voiced, and the change in fundamental frequency is small. When this 

occurs, it is advantageous to obtain a smoothly evolving waveform by appropriately 

interpolating the parameters. In this case, the voiced signal component with frequency 

kwo is given by 

~ ~ ( 7 2 )  = ~ B ~ ( ~ ) c o s [ O ~ ( ~ ) ] ,  0 5 72 < N (4.32) 

(i-1) ( i )  where Bk(n) = (1  - a)Bk + aBk , and cr = ( n ) / N .  There are several approaches 

possible for obtaining the interpolated phase function Ok(n). One approach shown 

in section 6.5.5 preserves phase and instantaneous frequency continuity at the frame 

boundaries requiring cubic interpolation. The approach taken by Griffin and Lim in 

[22] uses quadratic interpolation which preserves phase continuity at frame boundaries 
f 

by allowing a small discontinuity in frequency, Aw. The equations used are 

(i) (2-1) ( i -1)  - wt)]p k N  4 = 4 - 0 - b o  2 
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where 0 5 n < N. Note that eqn. (4.35) gives sets A w  to the smallest possible value 

which, when used in eqn. (4.34) will guarantee phase continuity at the boundary 

samples n = 0 and n = N. 

As in STC, when MBE is used for low rate speech coding, the phase information, 

cjk ,  is not transmitted to the receiver. Instead, it is replaced by a predicted phase, t+hk 
using 

Using a synthesis model based only on predicted speech can result in too much phase 

coherence giving the reconstructed speech a "buzzy" quality. To avoid this, the IMBE 

algorithm includes a mechanism for adding random noise to the phases of the upper 

voiced harmonics in proportion to the percentage of bands declared unvoiced. 



Chapter 5 

Non-Square Transform Vector 

Quantization 

5.1 Introduction 

In recent years, several techniques for speech coding at rates of 4 kb/s and lower have 

emerged requiring quantization of spectral magnitudes at a set of frequencies which 

are harmonics of the fundamental pitch period of the talker [15, 42, 491. Because the 

pitch period is time-varying, the number of components to be quantized changes from 

frame to frame making it difficult to directly take advantage of the benefits of vector 

quantization due to practical limits on codebook storage requirements and volume 

of training material. For example, an optimal variable-dimension vector quantizer 

consists of a set of fixed-dimension codebooks, one for each possible vector dimension. 

The encoding algorithm simply matches the input vector dimension with the code- 

book having the corresponding dimension. Because each codebook must be trained 

independently using a sufficiently large training set, the size of the overall training set 

can be excessively large, especially for spectral magnitude quantization applications 

which may require sixty or more codebooks for optimal variable dimension vector 

quantization. 

Several techniques have been developed to avoid the difficulties associated with 

quantization of variable dimension vectors. The Inmarsat Multiband Excitation 

(IMBE) codec [15] uses a complicated encoding scheme with variable bit assignments 
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and hybrid scalar/vector quantization. In [7], Brandstein presented a method which 

uses a fixed-order all-pole model to represent the variable length spectral magnitude 

vector. Recently, a technique called Variable Dimension Vector Quantization (VDVQ) 

[14] has been proposed and shown to perform better than the IMBE quantization 

scheme and all-pole modeling. 

In this chapter, we present a quantization technique called Non-Square Transform 

Vector Quantization (NSTVQ) [31, 32, 331, which addresses the problems associated 

with variable-dimension vector quantization by combining a fixed-dimension vector 

quantizer with a variable-sized non-square transform. Although the NSTVQ approach 

is a general one which can be applied to any variable-dimension vector quantization 

problem, we focus here on its application to the problem of harmonic magnitude quan- 

tization for speech compression. Experimental results are presented which compare 

the performance of the proposed NSTVQ approach with that of all-pole modeling, 

VDVQ, and IMBE magnitude quantization. 

This chapter is organized as follows: first, we present the details of three ap- 

proaches which have been used recently in harmonic coding systems for quantization 

of the variable dimension spectral magnitude vector. Next, an overview of NSTVQ 

is presented followed by an analysis of the effect of the transform choice on NSTVQ 

performance. A brief complexity/storage requirement analysis is then presented, fol- 

lowed by a performance evaluation in which NSTVQ is compared to the three existing 

procedures discussed earlier in the chapter. 

5.2 Existing Approaches 

Several methods have been proposed in current harmonic coding systems for handling 

the quantization of variable length vectors. In this section, we examine three of the 

most well-known approaches: the IMBE hybrid scalar/vector quantization scheme, 

all-pole modeling, and variable dimension vector quantization. 

5.2.1 IMBE Hybrid Scalar/Vector Quantization 

In the IMBE system, 128 bits are used to encode each speech frame of 20 ms. Of these, 

45 bits are reserved for error correction leaving 83 bits for parameter encoding. The 
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Parameter No. of bits 
Fundament a1 Frequency 8 
Voicing Decisions b, ( 3  5 b 5 12) 
Spectral Magnitudes 75 - b 

Table 5.1: Bit Allocation for the IMBE Coder 

fundamental frequency is encoded with 8 bits, and the binary voicing decisions are 

encoded with b bits where b is the number of bands and depends on the fundamental 

period. The remaining bits are used for harmonic magnitude quantization. Because 

b can range from 3 to 12, the number of bits available for magnitude encoding ranges 

from 63-75 bits. Table 5.1 summarizes the parameter bit allocation for IMBE. 

In IMBE, the spectral magnitudes are not quantized directly; instead vector pre- 

diction is used to obtain prediction residuals which tend to have lower variance and 

therefore can be encoded with fewer bits. Because the vector from the previous frame 

may have a different number of components from the vector of the current frame, 

the prediction method must use interpolation. Let L(-1)  and L ( 0 )  be the number of 

harmonics for the previous and current frames respectively. The prediction residual 

vector, Tl, I = 1 . .  . L(O), is given by 

where M l ( 0 )  is the estimated magnitude for the lth harmonic of the current frame and 

M,(-1) is the quantized magnitude for the 1" harmonic of the previous frame. The 

value of kl  depends on the quantized fundamental frequencies for the previous and 

current frames according to 

kl = $0 ( 0 )  
do( -1 )  - 

When L ( 0 )  > L ( - 1 ) ,  there will be more harmonic magnitudes in the current frame 

than in the previous frame, and the following assumption is used in eqn. (5.2) 

( - 1 )  = q 1 -  for 1 > L(-1) .  (5.3) 

In other words, when a spectral magnitude is required from the previous frame for a 

harmonic which does not exist, the last harmonic magnitude is used in its place. 
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Once the prediction residual vector for the current frame is computed, the L(0) 

elements are grouped into 6 consecutive blocks, with each block containing J; samples 

where the value of J; is selected to meet the following constraints 

Each block is then transformed using a DCT transform of length J;, and the first (DC) 

coefficient of each block is vector quantized using a gainlshape vector quantizer with 

6 bits for the gain and 10 bits for the shape. The higher order coefficients from each 

DCT block are then quantized using scalar quantizers where the number of bits used 

for each quantizer is calculated based on the remaining bits available for magnitude 

encoding, and the number of DCT coefficients to be quantized. 

Note that the use of vector quantization in the IMBE encoding algorithm is limited 

to quantization of the DC values of each block of the log-magnitude residual vector 

given by eqn. (5.2). The quantization methods presented in the next two sections 

take advantage of the vector quantization more extensively. 

5.2.2 All-Pole Modeling 

The most popular approach to date in dealing with variable dimension spectral mag- 

nitude quantization involves fitting a fixed-order all-pole model to the spectral magni- 

tude samples. The model coefficients can then quantized using a fixed-dimension VQ. 

The all-pole method is used in STC [37] as well as several other systems including 

[7, 53, 161. 

We start by defining an all-pole model, H(w), as 

where G is the filter gain and M is the filter order (number of poles in the all pole 

model). We then define a distortion function which gives the error between the input 

speech spectrum, S(w), and the model spectrum, H(w), as 
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The filter coefficients {ak}E, are obtained by minimizing d[H(w), S(w)] with respect 

to ak for each k. It can be shown [36] that the minimization leads to the following 

system of equations 
M 

akRi-k = -Ri 1 5 i 5 M 

where 

The optimal gain, G, can then be calculated using 

The set of M linear equations in M unknowns in eqn. (5.9) is identical to eqn. (2.13) 

from chapter 2 except that the autocorrelation matrix is computed using eqn. (5.10). 

Again, efficient algorithms for computation of {ak)El are available which exploit the 

Toeplitz nature of the autocorrelation matrix. 

When applying all-pole modeling to the problem of spectral magnitude quantiza- 

tion in harmonic coders, the continuous spectrum of the input speech signal, S(w), is 

only available at a discrete set of harmonically related frequencies. In this case, the 

distortion criterion given by eqn. (5.8) can be made discrete according to 

where L is the number of harmonics and wo is the fundamental frequency. Minimiza- 

tion of eqn. (5.12) again leads to eqn. (5.9) except that the autocorrelation coefficients 

are defined in terms of the discrete frequencies as 

The procedure for quantization of a set of harmonically related spectral magni- 

tudes, { S ( ~ W ~ ) } ~ ~ ,  using all-pole modeling can be summarized as follows: 

Compute the autocorrelation coefficients, Rk, k = 0 . . . M ,  according to eqn. 

(5.13). 

Using the Levinson-Durbin algorithm, compute the optimal model coefficients, 

ak, k = 1 . . . M, according to eqn. (5.9). 
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Using the values of ak, compute the optimal gain, G, according to eqn. (5.11). 

0 Quantize G using a scalar quantizer, and quantize the M-dimensional vector 

a = [al, . . . , aM] using any of the well-known LPC quantization methods (for 

example MSVQ quantization of the corresponding LSP coefficients). 

For a good spectral fit, the number of frequency points must be large when com- 

pared to the order used for the all-pole model[7]. This constraint is clearly not met 

in the case of high-pitched speakers when typical model orders of 10 to 16 are used. 

In order to solve this problem, interpolation between the known spectral magnitude 

samples is performed. In [37] cubic interpolation is used; linear interpolation in the 

log domain is used in [7]. Figure 5.1 illustrates the problem associated with high- 

pitched speakers. In fig. 5.l(a), the actual harmonic magnitudes (x) and underlying 

spectral envelope (solid line) are shown for a speaker with a fundamental frequency 

of wo = 0 . 1 ~  (P = 20 samples). Superimposed on this plot is a dashed line indicating 

the spectrum obtained using loth order LPC modeling with the actual harmonic mag- 

nitudes used in eqn. (5.13). The modeled harmonic magnitudes which are samples of 

the model spectrum at the harmonics of wo are also shown (0). In fig. 5.1 (b), the same 

plot is shown except that a total of 70 samples obtained using linear interpolation 

between the logarithm of the actual magnitudes was used in eqn. (5.13). It is clear 

from the plot that the although the model spectra using the actual and interpolated 

samples are different, the interpolation procedure results in a significant improvement 

when the error between the actual and modeled harmonic magnitudes is considered. 

An alternative approach to interpolation which has been used to address the prob- 

lem of all-pole modeling applied to high-pitch speakers was presented in [13]. Here, a 

discrete Itakura-Saito distortion measure was used to find the optimal model coeffi- 

cients. In this case, no closed-form solution for the coefficients exists, and the optimal 

values are found using an iterative procedure. 

5.2.3 Variable Dimension Vector Quantization 

In [14], a new method for quantization of the spectral magnitude vector was presented 

called Variable-Dimension Vector Quantization (VDVQ). In VDVQ, the vector quan- 

tizer codebook consists of a set of fixed-length vectors, each having N elements. Each 
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Figure 5.1 : Actual speech spectrum (solid) and LPC-10 modeled spectrum (dashed) 
with actual and modeled harmonic magnitudes indicated for a speaker with a pitch 
period of 20 samples. In (a), no interpolation was used before modeling; in (b), 70 
interpolated magnitude samples were used. 
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codebook vector can be considered to represent a spectrum sampled at N frequen- 

cies, w, = $. The distortion between a variable-length candidate spectral magnitude 

vector x = (x[l] . . . x(L)lt and the ith codebook vector y; = (y;[l] . . . y;[N])t is given 

where L is the number of harmonics in x. The function k(1, wo) uses the harmonic 

number 1 and the fundamental frequency wo, to find the index, n, for which - lwo 

is minimized. In other words, eqn. (5.14) gives the mean squared error between the 

candidate magnitude x[l] at each frequency lwo and the codevector magnitude y;[n] 

corresponding to the frequency closest to lwo. 

In [14], VDVQ is used in an IMBE codec to replace the IMBE quantization method 

presented in 5.2.1. The variable dimension spectral magnitude vectors are encoded 

using a total of 30 bits. The fixed dimension codevectors of length N = 128 are split 

into two 10-bit codebooks corresponding to frequency ranges of 64Hz 5 f 5 1500Hz 

and 1500Hz 5 f 5 3600Hz respectively. A 2-dimensional, 10-bit VQ is used to encode 

the mean signal level (in dB) in each frequency range. Note that the lower frequency 

range is purposely made smaller in order reduce distortion over the perceptually more 

important lower frequencies. 

5.3 NSTVQ System Overview 

The remainder of this chapter presents NSTVQ, an alternative to the three methods 

described in the preceding sections. The presentation of NSTVQ is followed by a 

performance evaluation in which NSTVQ is compared to IMBE spectral magnitude 

quantization, all-pole modeling, and VDVQ. 

5.3.1 System Block Diagram 

In a typical harmonic magnitude encoding application, a frame of speech data is 

analyzed in order to extract a pitch period, k:), and a harmonic log-magnitude vector 

y(i) of dimension N ( ~ )  where i is the frame index. The number of harmonics extracted, 

and thus the dimension, is usually a simple function of k!). For example, only the 
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spectral magnitudes for harmonic frequencies between 64 Hz and 3600 Hz may be 

considered perceptually important in a spectral domain speech coder. 

The NSTVQ encoder we propose for quantization of the log-magnitude vector at 

frame i is shown in figure 5.2(a). The vector dimension N ( ~ )  is used by the switch to 

(a) NSTVQ Encoder 

index - 
N 

(b) NSTVQ Decoder 

Figure 5.2: Block diagram of the Non-Square Transform Vector Quantization 
(NSTVQ) (a) encoder and (b) decoder. 

select from a set of L non-square transformation matrices which are fixed and known 

at both the encoder and decoder. The selected matrix, Bl, is called the forward 

transformation matrix and has dimension N(~)XM where M is the fixed dimension 

of the vector quantizer. The variable-length log-magnitude vector y(i) is transformed 

into a fixed-length vector z ( ~ )  using the operation 

The M-dimensional vector z ( ~ )  is then quantized using a standard fixed-length vector 

quantizer. The codebook index and input vector dimension must be transmitted to 
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the decoder, which is shown in figure 5.2(b). Note that for spectral domain coders, 

the input vector dimension can be derived from the pitch period which is always 

transmitted to the decoder, therefore no extra bits are required for vector dimension 

transmission. At the decoder, the codebook index is used to obtain the quantized fixed 

dimension vector 2:). The vector dimension N(') is then used to select the optimal 

inverse transformation matrix A[. Finally, the quantized log-magnitude vector y!') of 

dimension N ( ~ )  is obtained using the operation 

When the dimension of the vector y(i)  is larger than the fixed length vector dimen- 

sion M,  there will in general be distortion between the original and reconstructed vec- 

tors even when the fixed-length vectors are not quantized. The distortion due to this 

dimension conversion is called modeling distortion. Under some conditions detailed 

below, the forward transformation matrix which minimizes the modeling distortion 

is simply the transpose of the inverse transformation matrix for the corresponding 

vector dimension. 

There are several advantages of the NSTVQ method over existing methods. These 

advantages are summarized below and will be discussed in more detail in this chapter. 

1. The fixed vector dimension M can be used to trade modeling distortion for 

complexity reduction. When M < N the technique becomes equivalent to 

generalized least-squares estimation and therefore is optimal in the sense of 

minimizing the squared error. When M > N, the modeling error is guaranteed 

to be zero. 

2. Because fixed-length vectors are being quantized, vector prediction can be used 

in a straight-forward manner without requiring vector interpolation. 

3. NSTVQ fixed length vectors have the property that for any value of L < M, 

the first L coefficients of the length M vector are themselves the optimal length 

L vector when orthonormal transforms are used. This introduces the possibility 

of using NSTVQ for embedded coding. 

In the following sections, we present the details of the NSTVQ system. 
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5.3.2 Choice of an Inverse Transform 

In this section, we derive the relationship between the forward and the inverse trans- 

form. Let y be a vector of length N, where N is variable and A the corresponding 

inverse matrix in eqn. (5.16). Note that for clarity, the frame index (i) and the ma- 

trix index I are dropped from the following discussion. We start by assuming the 

NxM matrix A known and find a fixed length M-dimensional vector z which can 

be used to compute an estimate of y using the transformation y, = Az. For any 

given A, our goal is to minimize the mean squared error distortion criterion Dm with 
1 respect to z where Dm (y,  y,) = I Iym - y1I2. It can be shown that the vector zopt 

which minimizes Dm (y, y,) is obtained as the solution to the following set of linear 

equations: 

( A ~ A ) Z , , ~  = (5.17) 

A solution to this equation can always be found regardless of the rank of A using 

one of the linear algebra techniques for inverting ill-conditioned matrices, for example 

Singular Value Decomposition (SVD). However, there are two important cases where 

we can obtain an explicit solution. 

In the first case N 2 M and A is of rank M (ie. the M columns of A are 

linearly independent). Now the MxM matrix ATA is of full rank, and therefore has 

an explicit inverse which gives a unique solution vector zopt: 

In the second case, N < M and A is of rank N (ie. the N rows of A are linearly inde- 

pendent). Now eqn. (5.17) is under-determined and therefore has no unique solution. 

One particular solution vector, z,;,, is interesting because it has the minimum norm 

of any vector in the solution set. It can be shown that 

Another important solution for the case of N < M can be obtained by truncating 

the last M - N columns of A to create a square NxN matrix. We can then solve for 

the first N elements of zopt using eqn. (5.18), and set the last N - M elements to 

zero. These zero-padded elements of zOpt are irrelevant to the reconstruction of 9 and 

therefore should be ignored during vector quantizer training and codebook searching. 
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Both approaches produce a solution vector which results in zero distortion, however 

the performance after vector quantization of zopt will in general be different. In fact, 

it was found experimentally that the zero-padded solution works well when combined 

with vector quantization. 

One further restriction on A can be made in order to reduce the complexity in- 

volved in computing the optimal solution vector zopt. If the columns of A are or- 

thonormal, then a general solution for zOpt can be written as 

A is defined as 

where a; are orthonormal column vectors and 0 is an Nx(M - N) all zero matrix. 

The last two relations give the choice for the forward transform: B = AT. 

The dimension conversion from N to M can also be viewed in terms of generalized 

least-squares curve fitting by considering the vector y to be an N-dimensional signal 

which is modeled using a sum of M weighted basis functions (the orthonormal columns 

of A). The vector z is a linear projection of y onto an M-dimensional subspace. When 

M < N,  a modeling distortion, Dm, is introduced due to dimension reduction. Using 

this formulation, it can be shown that the choice of the inverse matrix indicated above 

is equivalent to optimal (MSE) curve fitting using the basis functions defined by the 

columns of A. 

5.3.3 Vector Quantizer Design for NSTVQ 

The non-square transformation derived in section 5.3.2 converts a variable-length 

vector y into a vector z which can be encoded using a fixed-dimension VQ. The 

quantized fixed-length vector z ,  is then transformed into the quantized variable length 
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We trained our vector quantizers using the generalized Lloyd algorithm (GLA) 

presented in chapter 3. A training set of size L consists of fixed length vectors z~ and 

corresponding vector lengths Nl, where 1 = 1 . . . L. Given an initial codebook of size 

K with entries ck, k = 1 . . . K, we encode the training set by assigning each vector, zl 

to partition Si if D,(zr, c;) is minimum over all codebook entries. The centroid rule 

for computing the new kth codebook entry ctk is given by 

where zl[n] is the nth element of the lth training vector. pl [n] are the components of 

a vector which eliminates zero-padded elements from the distortion calculation, and 

are defined as 
1 if n 5 min(N, M) 

~ l b l  = 
0 otherwise 

5.4 Choosing the Transformation Matrices 

in NSTVQ 

In section 5.3.3 we showed that the total distortion of an NSTVQ system is made up 

of modeling distortion (Dm) due to dimension conversion, and quantization distortion 

(D,) due to the VQ. In this section, we show that the choice of transform affects both 

components of the total distortion. Results comparing the performance of several 

transforms in terms of minimizing each type of distortion are presented. 

5.4.1 Reducing the Modeling Distortion 

In section 5.3.2, we derived the equations which use a transformation matrix A to 

compute the fixed length vector zOpt from the variable length vector y using a mean 

squared error criterion. It can be shown for stationary stochastic signals that the basis 

functions (columns of A) which minimize the modeling error are given by the columns 

of the Karhunen-Loeve Transform (KLT) matrix. In fact, the KLT is often derived in 

exactly this way by determining the set of basis functions which minimize the MSE 

between a signal and its representation using a truncated set of basis functions (see 

section 3.6.1). 
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To see how the KLT can be used to minimize the modeling distortion, consider a 

set of vectors to be quantized using an NSTVQ system. At frame i, the input vector 

y; is formed by taking N; samples from a discrete stationary stochastic process SI 
where 1 = N;, and N; can take on one of L possible values. In other words, the input 

to the NSTVQ system consists of a set of variable dimension vectors where vectors 

of the same dimension are formed from the same stationary stochastic source. To 

minimize the NSTVQ modeling distortion for this case, each matrix Al (see fig.5.2) 

should be formed using the first M basis functions of the KLT computed from the 

statistics of random process Sl.  

When the set of vectors to be quantized consist of speech spectral magnitudes, we 

cannot assume that vectors of similar dimension are formed from the same underlying 

stationary stochastic process. The KLT, therefore, cannot be used directly as in the 

previous example. However, if we assume that the the underlying processes are locally 

stationary, we can estimate the statistics at each frame and use these estimates to 

compute KLT-based transforms. Of course, the changing st atistical estimates imply 

that the basis functions would have to be transmitted to the receiver every frame 

making KLT-based transforms impractical in real-world systems. A better solution 

is to find a set of basis functions which are fixed and therefore known at both the 

encoder and decoder. 

We examined the effect of transform choice on the modeling error by evaluating the 

spectral distortion between original and modeled speech spectra using various trans- 

forms and various values of M. We tested the first and second forms of the discrete 

cosine transform (DCT-I and DCT-11), a transform made from orthogonal polynomial 

basis functions (OPT), and the discrete Hartley transform (DHT). Details for these 

transforms are given in section 3.6. All the transforms tested are orthonormal and 

therefore matrix inversion during the NSTVQ procedure was avoided. We included 

the KLT-based transform (KLTB) discussed above as a reference. The autocorrela- 

tion function used to compute the KLTB transform was estimated each frame using 

the biased estimate 
1 N-lkl-1 

where y[n] is the nth element of the log-magnitude vector and N is the vector dimen- 

sion. 
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The results obtained from a large speech database are shown in figure 5.3. As 

Figure 5.3: Spectral Distortion due to NSTVQ modeling versus fixed vector dimension 
M for various orthonormal transforms. 

expected, the modeling distortion approaches zero for all transforms as the fixed 

vector dimension M approaches N,,,, the maximum vector dimension in the test set 

(for our data N,,, = 55). Although the local statistical estimate given by eqn. (5.31) 

is quite crude, the KLTB transform still performed better than any other transform 

for all values of M except for M = 10 where the polynomial-based OPT gave the 

lowest modeling distortion. In fact, the OPT produced lower modeling distortion 

than any other transform (except KLTB) for all values of M ,  although for M > 20 

the DCT-I1 performance was very close to that of the OPT. It is interesting to note 

that the DCT-I1 performs significantly better than the DCT-I for small M. For the 

DCT-11, the elements of A from eqn. (5.21), a;[n] for n = 1 . . . N, are given by: 

2 I (2(n - 1) + l ) r ( i  - 1) 
a;[n] = (-)zC; cos 

N 2N 

where C; = 1 when i # 1, and Ci = I/& when i = 1. 
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5.4.2 Embedded Coding Property of NSTVQ 

When orthonormal column vectors are used in A, the nth element of the fixed length 

vector zOpt is given by 
T zopt[n] = a n  y (5.33) 

and therefore depends only on the nth basis function. Furthermore, the value of M 

can be reduced by simply truncating the basis functions a; for i > M. Because of 

this property, for any value of L < M, the first L coefficients of the length M vector 

zopt are themselves the optimal length L vector when orthonormal transforms are 

used. This introduces the possibility of using NSTVQ for embedded coding. For 

example, consider a speech codec in which the fixed length vector zopt is split into two 

segments of length MI and M2, and quantized with two separate vector quantizers. 

A network transmitting data from this codec could drop the bits associated with 

the upper segment during network congestion. In this case, the receiver would be 

reconstructing the variable-length vector using a fixed-length of M = MI rather than 

M = MI + M2. The truncated fixed-length vector would be the optimal vector in 

terms of minimizing the squared error for NSTVQ with M = MI. 

5.4.3 A Multi-Source Coding Formulation 

Even when the modeling distortion is zero (i.e. M > N,,, where N,,, is the maxi- 

mum allowable input vector dimension), the performance of the VQ in NSTVQ can 

be improved by the choice of the transforms. This is not an obvious statement and 

in order to justify it we will introduce a multi-source coding model. 

A block diagram of the model is shown in figure 5.4. The model consists of 

independent stationary random sources which produce sample vectors z t )  at each time 

instant t = iT where i is a positive integer. The statistics for each random source are 

given by the multivariate density functions fzn(zn). At each time instant, t = iT, the 

switch selects for input to the encoder the sample vector z t )  with probability p,. For 

simplicity, we will drop the time index i. Because the random vectors zn, n = 1..N 

are stationary and independent, the multivariate pdf for the random vector x (see 

figure 5.4) is given by 
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switch 

random 
generators 

Figure 5.4: Block diagram of a source model consisting of multiple sources of random 
vectors with independent statistics. At each time instant t = iT a source z, is selected 
by the switch with probability p,. 

We will now define a source encoder which is a generalization of NSTVQ called 

Vector Multi-Transform Quantization (VMTQ). Our goal is to determine the effect of 

a set of orthonormal transforms on vector quantizer performance. The basic structure 

of VMTQ is shown in figure 5.5. At each time instant t = iT, the input vector x ( ~ )  

is classified by a process recognizer in order to choose a transform A, from of a 

set of orthonormal transforms. The time superscript (i) is dropped in the following 

discussion for clarity. The selected transform is applied to the input vector x to 

obtain the transformed vector y. The transformed vector is then quantized using a 

VQ common to all transforms. The transmitted parameters are the classification index 

and the index of the optimal vector quantizer codevector. An alternate system could 

avoid the use of transforms completely by using a unique VQ for each possible class 

of input variable, however this is often impractical due to huge storage requirements. 

Note that for the case of N = 1, MVTQ reduces to Vector Transform Quantization 

(VTQ) [lo], except that split VQs would typically be used rather than the single VQ 

shown in figure 5.5. For the case of a single full-complexity VQ, it is well-known 

that VTQ cannot achieve a coding gain over a system with no transform which uses 

a full complexity VQ to directly encode the input vectors. For a proof, see section 
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Figure 5.5: Basic structure of a Vector Multi-Transform Quantization encoder. 

3.6. Looking at this result from another point of view will help to illustrate the idea 

behind VMTQ. Vector quantization asymptotic theory [IS] states that the minimum 

MSE distortion for an N-point VQ, D(N), applied to the source y is given by 

where k is VQ dimension, C is constant for a given N and k, and 1 1  f y ( ~ ) l l ~ / ( ~ + ~ )  is 

the Lkl(k+2) order norm of fy(y).  The L, norm of a continuous function is defined as: 

The performance of a VQ, then, depends on the probability density function (pdf) of 

the input variable. If f,(x) is the pdf of the random vector x ,  and y = A x  where A 

is an invertible matrix, then it can be shown that 

where J ( A )  is the jacobian of the transformation A. If A is orthonormal, J ( A )  = 1 

and eqn. (5.37) reduces to 

fY(y)  = fX(ATy) (5.38) 

Substituting eqn. (5.38) into (5.36) shows that the L, norm is invariant to the or- 

thonormal transformation. This leads to the same result given in 3.6: applying a 
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single orthonormal transformation to a random vector will not improve the minimum 

obtainable distortion for a full-complexity VQ. 

When N > 1, however, a set of N transforms in MVTQ can be used to obtain a 

coding gain for signals described by the model shown in figure 5.4. Referring to figure 

5.5, we recall that the pdf of x is given by eqn. (5.34). Assuming perfect classification 

in which input vectors belonging to the same class are transformed using the same 

orthonormal transformation, and making use of eqn. (5.37), the pdf of the transformed 

vector y is given by 
N 

Although the application of the orthonormal transforms to each class of input vector 

cannot change the norm of each individual density function, f,, (z,), the fact that the 

transforms are different can change the norm of the overall density function, fy(y). 

It is important to note that any performance improvements obtained due to the 

change in f,(y) come at the expense of the rate required to transmit the classification 

index. However, for some applications, the classification information is already avail- 

able at the receiver. For example, when the VMTQ model is applied to quantization 

of harmonic spectral magnitude vectors, one approach is to use the vector dimension 

to indicate the class. In this case, the vector dimension can be derived from the pitch 

period which must in any case be transmitted to the receiver. In other applications, 

the class of input vector presented to the encoder may vary slowly, and therefore the 

classification index need not be transmitted every frame. 

The method by which a coding gain can be obtained using a VMTQ system with 

classification information available at the receiver is is best illustrated by the following 

example. 

Consider the VMTQ system shown in fig. 5.6. The input vector to the encoder, x 

consists of vectors of dimension 2 taken with equal probability from two zero-mean, 

unit-variance Markov-I processes zl  and z2 with correlation coefficients pl and p2 

respectively. Examples of the corresponding pdfs, f,, (zl) and fz,(z2) are shown as 

contour plots in fig. 5.7(a) and fig. 5.7(b) for pl = 0.8 and p2 = -0.8. The pdf of x, 

which is input to the VMTQ system is shown in 5.7(c). The two transforms, KLTl 

and KLT2 are obtained by computing the KLT for each of the two input processes. 

In this example, we assume perfect classification which is indicated in the figure by 
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Figure 5.6: Example of a multiple transform VTQ system with two Markov-I inputs. 

Figure 5.7: Joint probability density functions for (a) Markov-I process with p = 0.8, 
(b) Markov-I process with p = -0.8, and (c) process obtained by selecting vectors 
from (a) and (b) with equal probability. 
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the connection between the two switches. Figure 5.8 shows the pdfs for the vectors zl 

and 22 after the KLT transformations which are now identical to the pdf for y. It is 

Figure 5.8: Joint probability density function after KLTB transformation for a 
Markov-I process with p = 0.8, a Markov-I process with p = -0.8, and a process 
obtained by selecting vectors from each source with equal probability. 

obvious from comparison of figures 5.7(c) and 5.8 that the use of multiple transforms 

has resulted in a pdf which can more easily be quantized by an optimal VQ. This can 

be shown analytically by computing the covariance matrices for x and y in terms of 

the correlation coefficients of 21 and z2. Using the fact that the k / ( k  + 2 )  norm of 

a Gaussian pdf is proportional to the kth root of the determinant of the covariance 

matrix [18, 101, we can show that 

where GVmtq is the coding gain obtained due to the use of multiple transforms when 

the classification index is assumed available at the receiver. Looking at eqn. (5.40) it 

can be seen that for the VMTQ system described above, performance improvement 

over direct VQ can be obtained when the correlation coefficients differ in sign. For 

the special case of pl = -p2 eqn. (5.40) reduces to 

G~~~~ = /'. 1 - p l  

In order to test the theoretical result given in eqn. (5.41), a large training set 

of vectors with dimension 2 was obtained by selecting with equal probability from 
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two Markov-I sources with pl = -p2.  The vectors were then used to train a single 

2 bit VQ (1 bit per sample) VQ, and the total MSE distortion, Dl was measured. 

Next, the same training set was transformed with the multiple transform VTQ system 

described above with the classification index assumed known at the receiver. The 

resulting VQ performance, Dm, was then measured and the experimental coding gain, 

GVmt, = D/ Dm, was compared to the theoretical result given by eqn. (5.41) for various 

correlation values. The coding gains are plotted for each correlation coefficient in fig. 

5.9 which indicates that the experimental and theoretical results match quite closely. 

-e- experimental 
++ theoretical 

correlation coeficient 

Figure 5.9: Comparison of theoretical vs. experimental coding gain vs. p for an 
VMTQ system with two Markov inputs and KLT transforms. The VMTQ classifica- 
tion index is assumed to be available at the receiver. 
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5.4.4 Reducing the Quantization Distortion 

Based on the discussion in the previous section, we see that to maximize the cod- 

ing gain based on a multi-source formulation we should group the input vectors into 

classes with similar statistics and then design a separate transform matrix for each 

class. NSTVQ applied to speech coding applications can be considered as a VMTQ 

system where the classification is made based on the dimension of the input spectral 

magnitude vector. While this classification is handy in that it eliminates the prob- 

lems associated with variable dimension vector quantization, it is likely not the best 

way to select input vectors with similar underlying statistics. However, test results 

show that even when the classification is based only on vector dimension, the VMTQ 

structure still provides some coding gain. This test can be done by comparing the 

MSE distortion for NSTVQ using a transform such as the DCT-I1 with an NSTVQ 

system which uses the identity transform (i.e. no transform). If the set of DCT-I1 

transforms alter the statistics of the input speech spectra in such a way as to make 

the VQ more efficient, this will be reflected as a coding gain (the classification index 

is simply the vector dimension and need not be transmitted to the receiver). 

Figure 5.10 shows the results of this experiment for various bit rates where the 

coding gain is obtained by dividing the NSTVQ distortion using no transform by the 

distortion obtained when using the DCT-11. The fixed-dimension M was set to be 

equal to the maximum dimension in the input data set for this experiment to ensure 

zero modeling error. From the figure we can see that the coding gain due to the 

multiple transforms ranges between about 1.25 and 1.35 for the rates shown. 

We now present experimental results which compare the performance of the trans- 

forms discussed in section 5.4.1 from the point of view of reducing quantizer distortion. 

Using the environment described in section 5.6.1, we compared the NSTVQ distortion 

due only to the vector quantizer for various transforms. Because modeling distortion 

is not considered here, any performance differences in quantizer distortion must be 

due to the VMTQ structure of NSTVQ. The results are shown in figures 5.11 and 

5.12. In figure 5.11, the quantizer distortion versus M is shown for low-rate quanti- 

zation (18 bits/spectrum). In this case, the lowest distortion is obtained when using 

DCT-I basis functions. The DCT-11, OPT, and DHT perform similarly, especially for 

higher values of M. It is interesting to note that the KLTB transform, which was the 
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Figure 5.10: Experimental coding gain of NSTVQ due to the VMTQ structure for 
various bit rates. 
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best performer in terms of reducing the modeling distortion, is the worst performer in 

terms of reducing quantizer distortion. This clearly highlights the fact that the two 

roles of the transform in NSTVQ discussed above can have conflicting requirements 

for distortion minimization. 

0 10 20 30 40 50 60 

Fixed Dimension (M) 

Figure 5.11: Spectral Distortion due to a low-rate (18 bits/spectrum) quantizer versus 
fixed vector dimension M for various orthonormal transforms. 

Figure 5.12 shows the quantizer distortion versus M for high-rate quantization (66 

bits/spectrum). At this rate, the distortion is almost zero for all transforms when the 

dimension of the quantizer is small. For most values of M, the DCT-I once again gives 

the lowest distortion although performance of the DCT-11, OPT, and DHT is very 

close. Only for M > 40 and high-rate quantization does the KLTB perform slightly 

better than the other transforms in terms of minimization of quantization error. 

5.4.5 Reducing the Total Distortion 

The previous two sections have shown that the set of transforms in NSTVQ impact 

both the modeling distortion and quantization distortion in different ways. This 
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0 10 20 30 40 50 60 

Fixed Dimension (M) 

Figure 5.12: Spectral Distortion due to a high-rate (66 bits/spectrum) quantizer 
versus fixed vector dimension M for various orthonormal transforms 
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indicates that the best choice for the transforms may depend on the fixed vector 

dimension M. When M is small, the modeling distortion will dominate the total 

distortion and we will want to choose a transform which will minimize the modeling 

error. For large M,  and low-rate, the modeling distortion is negligible and any coding 

gain will come from the VMTQ structure of NSTVQ. In this case, we will want to 

choose a transform which will minimize the quantization distortion. 

These points are illustrated in figures 5.13 and 5.14. Figure 5.13 shows the total 

distortion (modeling and quantization) for M = 10 at rates ranging from 18-66 

bits/spectrum. For all but the lowest rates, the quantizer distortion is very small and 

the total distortion is dominated by the modeling distortion. As expected from the 

results given in section 5.4.1, the OPT out-performs the other transforms. Figure 

5.14 also shows the total distortion but this time for M = 30. In this case, the total 

distortion is a combination of modeling and quantizer distortion. At low rates, the 

advantage of the KLTB at reducing modeling distortion is canceled by its relatively 

poor performance with respect to quantizer distortion. A similar situation occurs with 

the DCT-1, which achieves low quantizer distortion at the expense of high modeling 

distortion. At high rates, the quantizer distortion becomes less of a factor and the 

transforms which give low modeling distortion, for example the KLTB, perform better. 

Based on the results above, it is clear that for the transforms evaluated, the 

best choices for practical quantization of spectral magnitude data using NSTVQ with 

typical values of M are the DCT-I1 and OPT. For applications which achieve low- 

complexity though the use of very small values of M,  the best choice of transform is 

the OPT. 

We now look at the impact of the fixed dimension M on the total distortion for the 

DCT-I1 transform. Figure 5.15 shows the modeling, quantizer, and total distortion for 

the DCT-I1 versus the fixed dimension M when NSTVQ is used to quantize speech 

spectral magnitudes using a rate of 30 bits/spectrum. Increasing the value of M 

reduces the modeling distortion at the expense of the quantizer distortion. Looking 

at the total distortion curve, it is clear that there is little performance to be gained by 

increasing M beyond about 30. In fact, the distortion for M = 20 is only about 0.15 

dB higher than the minimum distortion at this rate. This result is significant because 

lowering M results in no increase in rate, but reduces the complexity of the VQ and 

the storage memory required. For example, in the next section it will be shown that 
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Figure 5.13: Total Distortion for M = 10 versus number of bits/spectrum for various 
transforms. 
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Figure 5.14: Total Distortion for M = 30 versus number of bits/spectrurn for various 
transforms. 
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a full-search VQ with M = 20 requires approximately one third the peak complexity 

and storage of a similar VQ with M = 55. 

0 10 20 30 40 50 60 
Fixed Vector Dimension (M) 

Figure 5.15: NSTVQ distortion for 30 bits per spectrum versus fixed dimension M 
for the DCT-I1 transform: (i) modeling distortion, (ii) quantizer distortion, (iii) total 
distortion 

5.5 Complexity and Storage Requirements 

For each N-dimensional spectral vector, y ,  the NSTVQ algorithm requires an NxM 

linear transformation (z = ATy), quantization using an M-dimensional VQ (z, = 

Q(z)), and finally an MxN inverse transformation (y, = Azq). For a K-stage 

MSVQ configuration using 6 bits per stage, the number of floating point operations 

for NSTVQ in the worst case (peak) complexity is in the order of 

where M is value used for the NSTVQ fixed-dimension, and N,,, is the maximum 

number of harmonics which can appear in a spectral magnitude vector. The first term 
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in eqn. (5.42) represents the complexity required for the codebook search, the second 

term gives the complexity for the forward and inverse transformations, and the third 

term is an estimate of the complexity required to compute the DCT transformation 

matrix (assuming linear interpolation from a table of cosine values). Note that the 

complexity varies linearly with M. The number of words required for storage in 

NSTVQ is given by 

Sn,tvq = K ( ~ ~ ) M  + L (5.43) 

where L is the number of entries in the cosine interpolation table. 

For comparison, the complexity estimates above were compared with similar esti- 

mates for VDVQ. For the same MSVQ configuration, the complexity of VDVQ is in 

the order of 

Cvcivq = ~ ( 2 ~ ) ~ r n a x  (5.44) 

and the number of words required for codebook storage is 

where Nvdvq is the dimension of the VDVQ codebook. 

Comparing eqn. (5.44) and eqn. (5.42) shows that the NSTVQ system incurs a 

fixed overhead of approximately 5MNma, operations due to the non-square transform. 

However, the complexity of the NSTVQ codebook search is K ( ~ ~ ) M  rather than 

K(2b)Nma, as in VDVQ. As shown in section 5.4.5, the value of M in NSTVQ can 

be significantly lower than N,,, with only a small drop in performance. For large 

codebooks typical in harmonic coding applications, the difference between N,,, and 

M can result in large complexity reductions for NSTVQ. For example, using values of 

b = 10, M = 30, N,,, = 70, L = 128 and Nvdvq = 128, we computed the complexity 

and storage requirements of NSTVQ and VDVQ for K = 1 . . .4. The results are 

plotted in figures 5.16 and 5.17. The plots indicate that the NSTVQ algorithm 

requires approximately half the complexity and one quarter the storage requirement 

of VDVQ for this configuration. It is expected that the overhead due to the non-square 

transform in NSTVQ can be reduced through the use of fast DCT transforms. 
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1 2 3 
Number of Codebook Stages (10 bitslstage) 

Figure 5.16: Complexity estimates for NSTVQ and VDVQ using an MSVQ structure 
with 10 bitslstage 

Number of Codebook Stages (10 bitslstage) 

Figure 5.17: Storage estimates for NSTVQ and VDVQ using an MSVQ structure with 
10 bitslstage 



CHAPTER 5. NON-SQUARE TRANSFORM VECTOR QUANTIZATION 83 

5.6 Evaluation of NSTVQ Performance 

In order to evaluate the NSTVQ method for spectral magnitude quantization, we 

compared the objective performance of NSTVQ with three other methods: all-pole 

modeling [7], the combination scalar/vector quantization scheme of IMBE [15] and 

the direct VQ approach of VDVQ [14]. 

5.6.1 Evaluation Environment 

For all methods, the spectral log-magnitudes to be quantized and the associated pitch 

periods were obtained exactly as specified in the IMBE standard. A set of 40,000 

vectors was used for training the quantizers, and a set of 12,000 vectors outside the 

training set was used for evaluation. For the comparison with IMBE we implemented 

a version of NSTVQ with predictive vector quantization (NSTPVQ) which uses vec- 

tor prediction to exploit inter-vector correlations. Prediction is made simpler with 

NSTVQ because the quantized vectors are of fixed length. Other methods which use 

vector prediction, including IMBE, must use interpolation prior to prediction. 1 
The distortion criterion used to evaluate performance is the root mean square spec- I 

tral distortion (SD) . The spectral distortion between the unquantized and quantized 

harmonic magnitude vectors, m and m, is given by: 

where il and i2 are chosen such that only harmonics within the frequency range of 

interest are included in the distortion calculation. 

Unless otherwise stated, all tests used multi-stage vector quantizers (MSVQ) with 

M-L search [5] and trained using the Generalized Lloyd Algorithm (GLA). Using 11 

stages with 6 bits/stage, For each stage, we were able to obtain results for systems 

ranging from 6-66 bits/spectrum. 

5.6.2 Comparison with All-Pole Modeling and VDVQ 

We first compared NSTVQ to an all-pole modeling technique (LPC-10) similar to the 

algorithm used in [7] (see section 5.2.2), and to VDVQ [14] (see 5.2.3). We quantized 
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the LPC-10 model coefficients using a 24 bit multi-stage VQ (MSVQ) for the 10 LSP 

values and a 6 bit scalar gain quantizer. VDVQ uses two 10 bit mean-removed VQs 

with vector dimensions of 47 and 68 to encode harmonics lying in the range 64-1500 Hz 

and 1500-3600 Hz respectively, and another 10 bit VQ to encode the means (actually 

the log-gains). Splitting the spectrum in this way may improve subjective quality by 

using more bits to encode the lower frequency harmonics, but objective performance 

is often reduced. Because of this, we kept the comparison with VDVQ fair by using 

exactly the same spectral splitting and mean-removal, with NSTVQ using M = 20 

and M = 25 applied to each half-spectrum respectively. Table 5.2 shows the results 

of this comparison. The results indicate that for both male and female speakers the 

I 
NSTVQ system out-performed the LPC-10 system by approximately 1.7 dB. NSTVQ I I 

Table 5.2: Spectral Distortion (dB) for LPC-10, VDVQ and NSTVQ (30 bits per 
spectrum). 

also obtained 0.2 db lower distortion than VDVQ, but given that the results may 

vary depending on the speech data used for the test, we consider the performance of 

VDVQ and NSTVQ comparable. 

5.6.3 Comparison with IMBE Scalar/Vector Quantization 

METHOD 
LPC-10 
VDVQ 
NSTVQ 

The next test compared IMBE scalar/vector quantization with NTSVQ. For this test 

we applied NSTVQ to the entire spectral range of 64-3600 Hz without splitting. We 

used a 6 bit per stage MSVQ structure with M-L search [5]. By training 11 stages and 

dropping the stages sequentially, we were able to obtain results for systems ranging 

from 6-66 bits/spectrum. The same structure was used for our predictive system, 

NSTPVQ. IMBE uses vector prediction and a variable bit assignment scheme which 

obtained an average rate of 66 bits/spectrum on our test data. Figure 5.18, shows 

that performance equivalent to 66-bit IMBE can be obtained using 46-bit NSTVQ, 

or 41-bit NSTPVQ. An IMBE codec with NSTVQ magnitude quantization could 

FEMALE 
4.42 
2.94 
2.76 

MALE 
5.05 
3.58 
3.34 

BOTH 
4.73 
3.25 
3.05 
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save 20-25 bitslframe, or 1000-1250 bps. Furthermore, the NSTVQ system shows a 

smooth drop in performance as the number of bits per spectrum is reduced. 

7 I I I I I I 

I 

0 10 20 30 40 50 60 70 

Number of Bits 1 Spectrum 

Figure 5.18: Spectral distortion vs. number of bits per spectrum for (i) NSTVQ 
and (ii) NSTPVQ. IMBE spectral magnitude quantization using an average of 66 
bits/spectrum is indicated with an asterisk. 

The NSTVQ variable dimension vector quantization technique has been incorpo- 

rated in the 2.4 kb/s spectral excitation coding (SEC) system discussed in chapter 

6. This system scored within 0.1 MOS points of the IMBE standard operating at 

4.15 kb/s, and within 0.1 MOS points of the 4.8 kb/s FS 1016 CELP codec[8]. 

5.7 Summary 

Motivated by the problems encountered when encoding variable length vectors such 

as harmonic magnitudes, we have introduced a quantization technique called NSTVQ 
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which uses a variable-size non-square transform combined with a fixed dimension vec- 

tor quantizer. The technique is shown experimentally to out-perform all-pole modeling 

and obtain performance comparable to the best existing procedure, VDVQ. We have 

also shown that significant bit-reduction potential is possible if NSTVQ were to be 

used in place of the IMBE magnitude quantization scheme. Furthermore, NSTVQ 

is shown to require lower complexity and fewer storage words than VDVQ for some 

typical quantizer configurations. The performance of NSTVQ is also shown to de- 

grade gracefully as the bit rate is reduced, making it a good candidate for very low 

bit rate systems. Other advantages associated with NSTVQ include the ability to 

trade distortion for complexity reduction by adjusting a single parameter, the fact 

that vector interpolation is not necessary when using vector prediction, and the fact 

that embedded encoding is inherent in the technique. 



Chapter 6 

Spectral Excitation Coding of 

Speech 

6.1 Introduction 

In this chapter, we present a new harmonic coding system called Spectral Excitation 

Coding (SEC) [30, 121. In chapter 4, two harmonic coding systems (STC and MBE) 

were presented which use a sinusoidal model applied directly to the speech signal. In 

SEC, the sinusoidal model is applied to the excitation signal obtained by passing the 

speech through a short-term linear prediction filter. In the receiver, the excitation 

signal is synthesized using the sinusoidal model and then passed through the short- 

term synthesis filter to obtain the reconstructed speech. The SEC system also differs 

from STC and MBE in that the harmonic model parameter analysis is performed 

more frequently. In STC and MBE, typical parameter update rates are 20 ms - 30 ms, 

while in SEC typical update rates are 5 ms - 15 ms. There have been other systems 

which use a harmonic model applied to the residual, for example Time Frequency 

Interpolation (TFI) [49]. Unlike SEC which uses the harmonic model for all sounds, 

TFI uses uses a CELP codec for encoding unvoiced sounds, and the equivalent of a 

sinusoidal model applied to the excitation signal for encoding voiced sounds. 

There are several advantages in using the excitation signal for harmonic modeling 

as opposed to the speech signal. For example, in speech coding systems operating 

at rates between 2400 bps and 4800 bps, a large percentage of the rate is devoted to 
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quantization of the harmonic magnitudes. Usually, the number of bits required for 

the encoding of each spectral magnitude vector makes optimal vector quantization 

impractical. As discussed in chapter 3, one approach to this problem is to use sub- 

optimal vector quant izers. By quantizing the spectral envelope separately using the 

coefficients of an LPC filter, we are employing such a strategy. The decoupling of 

the spectral envelope from the spectral shape is justified by the speech production 

model in which the glottal excitation signal is considered to be independent of the 

vocal tract shape. Furthermore, there are many existing algorithms for quantization 

and interpolation of linear prediction coefficients and related parameters which have 

been improving over several years and can be directly utilized in an excitation-based 

harmonic coder. 

The chapter is organized as follows. We first present a general description of a 

speech coder based on harmonic modeling of the excitation signal. The notation and 

concepts relating to parameter estimation, quantization, and interpolation in SEC are 

then discussed. Finally, the specific details of a 2.4 kb/s SEC floating point simulation 

are presented, along with a performance evaluation. 

6.2 Excitation-Based Harmonic Coding Overview 

Figure 6.1 shows a block diagram of a general speech coder based on harmonic mod- 

eling of the excitation signal. At the encoder, LPC analysis is performed on the input 

speech signal s(n) in order to determine the LP coefficients, {a;; i = 1 . . . Ml,,), where 

Ml,, is the filter order. The coefficients are quantized and interpolation is used to ob- 

tain a time-varying short-term filter A(z,  n). The input speech signal is then passed 

through the short-term filter in order to obtain the unquantized residual signal e(n). 

Pitch analysis is performed on e(n) to obtain the fundamental frequency wo, and 

spectral analysis is used to obtain the spectral magnitudes, { M k ;  k = 1 . .  . K(wo)), 

and the spectral phases, (q5k; k = 1 . . . K(wo)). The number of harmonics to be used 

for synthesis, K(wo),  is a function of the pitch period.' The fundamental period and 

spectral parameters are quantized and transmitted to the decoder. 

'Although the maximum harmonic number for a given fundamental frequency is given by [$I, 
often K(wo)  can be set to a lower value without significantly reducing the perceptual quality of t i e  . , 

reproduced signal. 
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decoder 

Figure 6.1: Block Diagram of a General Excitation-Based Harmonic Coder 

At the decoder, the fundamental period, spectral magnitudes, and spectral phases 

are used to synthesize the quantized excitation signal i (n )  on a sample-by-sample 

basis according to the following synthesis equation 

where ik (n)  is a function of &(n), ~ ~ ( n ) ,  and Jk(n). The quantized excitation signal 

is then passed through the short-term synthesis filter in order to obtain the quantized 

speech signal in. 

The description of the general excitation-based harmonic coder above highlights 

the three key issues which are addressed in the following sections: 

1. generation of the unquantized excitation signal 

2. estimation of the fundamental frequency 

3. estimation and quantization of the excitation spectrum 



CHAPTER 6. SPECTRAL EXCITATION CODlNG OF SPEECH 90 

Generation of the Unquant ized Excitation 

Signal 

The short-term filter is used in the encoder to compute the unquantized (or ideal) 

excitation signal from the input speech signal. It is the unquantized excitation signal 

on which the subsequent harmonic model analysis is performed. In the decoder, the 

quantized (or reconstructed) excitation signal is passed through the inverse short-term 

filter in order to synthesize the output speech signal. 

In speech coding systems which make use of a short-term filter, the input speech is 

typically organized into frames and subframes. Once per frame, the filter coefficients 

are computed using LPC analysis and quantized. Each subframe, the short-term filter 

residual signal is quantized. In most speech codecs, the short-term filter coefficients 

are updated once per subframe using linear interpolation in order to avoid abrupt 

changes in the filter response. While interpolation is important, there is no reason 

to couple the subframe structure with the interval over which the short-term filter 

remains fixed. As long as the update interval is fixed at both the transmitter and 

receiver, any arbitrary interval may be used. In the SEC system, we separate the issue 

of short-term filter interpolation from the subframe structure. The remainder of the 

section discusses the generation of the excitation signal and the motivation behind 

the choice of the coefficient update interval and analysis window length. 

Figure 6.2 shows the procedure for the generation of a single frame of unquantized 

excitation, e(n), defined over the interval 0 5 n < N. In order to compute the LPC 

coefficients, a Hamming window of length L, is centered over the first sample for 

which the excitation signal is to be generated, and multiplied with the input speech 

signal to form the windowed analysis frame. The tenth order all-pole filter coefficients 

are then calculated using the autocorrelation method of LPC parameter estimation 

(see section 2.4.1). The LPC coefficients are converted to Line Spectral Pairs (LSPs) 

and vector quantized. The procedure is then repeated, this time with the analysis 

window centered over the start of the next excitation frame at n = N. 

The generation of the excitation signal is computed using the following filtering 

operation with the time varying coefficients updated every Lint samples 
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Figure 6.2: SEC Short-Term Filter Coefficient Estimation and Interpolation 
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The time varying LP coefficients ii;(n) are obtained using linear interpolation of the 

corresponding line spectral pairs. Line spectral pair interpolation was chosen because 

direct interpolation of the linear prediction coefficients can result in unstable synthesis 

filters. Furthermore, quantization of the short-term filter coefficients is performed 

using line spectral pairs. It was shown in [4] that line-spectral pair interpolation 

performed no worse than interpolation in several other domains. If we define the 

conversion from LPC to LSP coefficients using the operation LPC[e], then the set of 

equations used to obtain the interpolated linear prediction coefficients,&;(n), 0 5 n < 
N are given by 

( n )  = L P C [ ~ ; ( ~ ) ]  

&(n) = ~; (O)( I  - a) + l i ( ~ ) a  
Lint n 

a = -- (21-J + 1) 
2N Lint 

where &(o) and i i ( ~ )  are the quantized LSP coefficients obtained from LPC analysis 

centered on samples n = 0 and n = N respectively. Equation (6.5) ensures that the 

values for &,(n) used within any interpolation interval are based on line spectral pairs 

interpolated at the interval center. 

There are two parameters which must be specified for the generation of the unquan- 

tized residual as outlined above: the analysis window length, L,, and the interpolation 

interval, L,,t (refer to fig. 6.2). 

6.3.1 Choice of Analysis Window Length, L, 

The choice of L, must be made carefully in low-rate coding systems where the frame 

length may be as large as 40 ms. In many applications which involve LPC estimation, 

frames lengths of about 20 ms are typically used in order to avoid smeared spectral 

estimates due to violation of the local stationarity assumption. If L, is set too small, 

however, some of the speech signal will not be included in the LPC analysis because 

the analysis frames will not overlap. In order to choose the best value for L, in a low- 

rate environment, the following experiment was performed. A set of speech segments 

sampled at 8 kHz was analyzed and filtered according to eqn. (6.2) for various values 

L,. The frame size was set at 240 samples (30 ms) and Lint was fixed at 12 samples 

(see section 6.3.2). The prediction gain of the filter was then estimated by computing 
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for each value of L, 

SNR(L,) = 10 log 10 

where N is the frame length. The results were averaged over many frames and plotted 

in fig. 6.3. The plot shows that the maximum prediction gain occurs when the analysis 

Analysis Frame Length (samples) 

Figure 6.3: Short-term filter prediction gain vs. SEC analysis window length for a 
frame length of N = 240 samples. 

windows are approximately 360 samples (45 ms) for a frame length of 240 samples 

(30 ms), implying an overlap of about 120 samples (15 ms). Listening tests were 

conducted which confirm the objective results shown in fig. 6.3. 
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6.3.2 Choice of Interpolation Interval, Lint 

The interpolation interval, Lint, defines the number of samples for which the short- 

term filter coefficients in eqn. (6.2) remain fixed. To maintain the smoothest pos- 

sible transition between the short-term filters defined for each analysis frame, the 

filter coefficients should be interpolated on a sample-by-sample basis corresponding 

to Lint = 1. Every interpolated set of LP coefficients, however, requires a conversion 

from line spectral pairs to linear prediction coefficients which can make sample-by- 

sample interpolation exceedingly complex. In order to find a value for Lint which 

avoids unnecessary complexity, the experiment defined in subsection 6.3.1 was re- 

peated, this time with L, fixed at 360. The prediction gain was measured for various 

values of Lint and the results were averaged over many frames and plotted in fig. 6.4. 

Note that the prediction gain is plotted against the number of interpolation subframes, 

NILint, where N = 240 is the synthesis frame length. The results show that the use 

of coefficient interpolation results in an increase of about 1 dB in average prediction 

gain. About 90% of the increase in gain can be achieved using only 20 interpolation 

subframes corresponding to Lint = 12 for 240 sample frames. 

Fundamental Frequency Estimation 

In section 4.4, it was shown that a speech signal can be modeled using a bank of 

sinusoidal oscillators with harmonically related frequencies. A critical component of 

any harmonic-based model is the estimation of the fundamental frequency, or pitch, 

of the talker. In SEC, a time domain based pitch estimation method is used which 

includes an open-loop pitch estimator followed by a pitch tracking algorithm. It 

should be noted, however, that there is nothing inherent in the SEC algorithm which 

requires pitch estimation to be performed in the time domain; either of the frequency 

domain pitch estimation procedures presented in section 4.4 could be used. 

6.4.1 Open-Loop Pitch Estimation 

The pitch estimation procedure used in SEC is based on the SIFT method presented 

in [9] applied to the unquantized excitation signal discussed in section 6.3. A pitch 

estimate is obtained once per synthesis subframe by minimizing the following error 
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Number of Interpolation Subframes (N / Li,3 
N=240 samples 

Figure 6.4: Short-term filter prediction gain vs. number of coefficient interpolation 
intervals for a frame length of N = 240 samples. 
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criterion 

where L, is the pitch estimation window length, e ( n )  is the unquantized excitation 

signal, p is the pitch period, and y is a factor designed to account for changes in the 

short-term signal energy over time. The optimal value for y which minimizes eqn. 

(6.7) can be determined by taking the derivative of E ( p )  with respect to y leading to 

Substituting eqn. (6.8) into eqn. (6.7) gives the error criterion 

Equation (6.9) is minimized by maximizing the second term which is the square of 

the normalized autocorrelation function. For pitch period estimation we are only 

interested in positively correlated signal shifts, therefore it is better to minimize the 

normalized autocorrelation function directly. This leads to the the following equation 

for the optimal pitch period, popt 

where 

and pr and ph are the minimum and maximum possible pitch periods respectively. 

For 8 kHz sampled speech, pl = 20 and ph = 147 are used. Note that the estimation 

procedure described here obtains integer estimates for the pitch lag. It is possible to 

obtain sub-integer estimates by appropriately subsampling the signal before analysis. 

6.4.2 Pitch Tracking 

During initial testing of the pitch estimation algorithm described in the preceding 

section, it was found that several pitch doubling and pitch halving errors occurred 
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which produced artifacts in the synthesized speech. Analysis indicated that the worst 

errors from a perceptual point of view occurred within relatively long voiced regions. 

As a result, a pitch tracking algorithm was developed which attempts to identify voiced 

regions during which the pitch is changing slowly. When the algorithm determines that 

the pitch is being tracked during steady voicing, any large deviations in the estimated 

pitch period are assumed to be pitch errors, and the open loop pitch estimate is 

modified to be within close range of the previous pitch values. 

When the pitch tracker decides that the current speech segment is within a voiced 

region, it is said to be tracking the pitch. This decision requires all the following 

conditions to be true: 

The number of times the pitch has changed by less than Aptol in the past Nb 

subframes is less than Np 

The value of p(p) for the current subframe is greater than p,;, . 

The number of times that P(P) < ptol over the last Nb frames is less than N, 

where Aptol, Nb, Np, pmin, ptol, and N, are rate-dependent parameters which are 

obtained heuristically. The actual values used in the 2.4 kb/s implementation of the 

SEC system are defined in section 6.6.1. 

Figure 6.5 shows an example of how the pitch tracker smoothes the pitch contour 

during voiced speech. In fig.6.5(a), a speech segment containing only voiced speech 

is plotted. The pitch estimates without and with the pitch tracker are plotted in 

fig.6.5(b) and (c) respectively. The areas where the pitch tracker has corrected bad 

pitch estimates are shown in grey. 

Spectral Estimation and Quantization 

In section 6.2, eqn. (6.1) was given which defines the sample-by-sample synthesis of 

the excitation signal using the spectral magnitudes, spectral phases, and fundamental 

frequency, all functions of the sample index n. In this section we present a general 

method for spectral magnitude and phase estimation, along with a discussion of some 

issues relating to quantization and interpolation of the harmonic model parameters. 
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(a) Speech Signal 

1000 2000 3000 4000 5000 6000 7000 8000 9000 

(b) Pitch Estimate - No Tracking 

(c) Pitch Estimate - With Tracking 

Figure 6.5: Example of pitch contour obtained from voiced speech segment with and 
without the pitch tracking algorithm 
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6.5.1 Spectral Estimation 

In SEC, the spectral magnitudes and phases corresponding to the update sample 

n = no are estimated using frequency analysis of a segment of the unquantized ex- 

citation signal e(n) obtained by multiplying e(n) by a symmetrical window function 

centered on n = no. The goal of the analysis is to obtain a set of complex spectral 

coefficients, {Ak(no); Ic = 1 . . . K(wo(no))), from which the spectral magnitudes and 

phases may be directly obtained. 

In section 4.4.2, a method was presented for determining the optimal values of the 

spectral coefficients based on minimization of the error between the windowed syn- 

thetic spectrum and the windowed speech spectrum under the assumption that the 

analysis window was orthonormal with respect to shifts equal to multiples of the fun- 

damental frequency. In this section, we present a more general derivation for spectral 

coefficient estimation which does not require the orthonormality assumption. Fur- 

thermore, the error due to the orthonormality assumption in eqn. (4.25) is evaluated 

for various windows. Note that while s(n) is used to describe the input signal in the 

following derivation, in the SEC system it is the unquantized residual signal e(n) on 

which spectral analysis is performed. 

Let s(n) be an input signal, and w(n) be a real symmetric window which is non- 

zero only over the interval - N  <= n <= N .  The spectrum, S,,,(w), of the windowed 

input signal, s(n)w(n), is obtained using the short-time Fourier transform 

For a synthesis model based on the summation of a set of sinusoids having harmon- 

ically related frequencies, the spectrum of the windowed synthetic signal, SW(w),  is 

given by 
P-M+1 

S,(w) = x Ax W(w - kwo) (6.13) 
k=-M 

where W(w) is the Fourier transform of the window function w(n), M = L f  where 

P is the pitch period in samples, and wo = 9.  
We now define the error signal, €(Ak, w0), as the mean squared error between the 
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windowed synthetic speech spectrum and the windowed input speech spectrum 

( A ,  w )  = ' ISw(w) - C AkW(w - kw0)l2dw. 
27r -,T k=-M 

We would like to determine the values for Ak which minimize eqn. (6.14), however 

unlike in section 4.4.2, we will make no assumptions about the orthonormality of 

W(w). We are now in a position to determine the values for Ak which minimize eqn. 

(6.14). For notational convenience we first define 

and 

Next, we expand the square in eqn. (6.14) 

We now let Ak = ak + jbk and take the derivative of 6 with respect to ak and bk 

separately. Setting both partial derivatives to zero and solving for ak and bk we get 

and 

Next we add the real and imaginary parts ak and bk: 

By multiplying both sides of eqn. (6.20) by Wkk and moving Ak into the summation, 

we have a system of P linear equations: 
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We can write this system of equations in matrix form as 

where a = [A-M, A-M+~ , .  . . , AM], s = [S-M, S-M+I,. . . , SM], and 

The solution to the system of equations is 

It is clear from eqn. (6.23) that for a symmetric window W is a symmetric Toeplitz 

matrix and therefore can be efficiently inverted. Furthermore, the diagonal elements 

are window energy terms and are therefore non-zero. 

We can also see that if the window spectrum is orthogonal with respect to shifts 

by w = wo, then Wkl will be zero for k # 1. This reduces eqn. (6.24) to 

J-", SL(w) W(w - kwo)dw A - 2" 
k - ' 2" J_", W* (w) W(w)dw 

' 

This is the same equation derived in [22]. Furthermore, if the window spectrum is 

orthonormal, Woo = 1 and eqn. (6.26) reduces to eqn. (4.25). 

Comparing eqn. (6.26) with eqn. (6.20) shows that a non-orthogonal window causes 

energy at each harmonic to leak into the other harmonics, but because the window 

spectrum is known, this leakage can be taken into account in the calculation of the 

spectral coefficients. 

Pitch-Sized Rectangular Windows 

There is one special case where the orthogonality approximation used to derive eqn. 

(6.26) is perfectly valid: when w(n) is a rectangular window equal in width to the 

estimated pitch period. To prove this, we define our rectangular window as 

n 1 i f - M S n L P - M + l  n(-) = 
P 0 otherwise 
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where M = [$ j .  Now for the orthogonality condition to be satisfied, we want to show 

that 
1 7r -/ W * ( w ) W ( w -  kwo)dw = 0 (6.28) 

2lT -7r 

where W ( w )  = .F [ I I ( ; ) ] .  Using the frequency shifting property of the Fourier trans- 

form we can write W ( w  - kwo) = ejkwon.F [II(;)] . Now we apply Parsival's Theorem 

which states that if X I  ( w )  = .F [ x l ( n ) ]  and X 2 ( w )  = .F [ x 2 ( n ) ] ,  then 

This gives us the relation 

Using the definition of the rectangular window in eqn. (6.27), we can reduce the limits 

on the summation. Substituting wo = 9 and expanding the exponential we get 

Note that both the real and imaginary parts are summations over an integral number 

of periods of a sin or cos function, which is equal to zero. Therefore the spectrum of 

pitch length rectangular windows are orthogonal with respect to frequency shifts of 

kwo. 

It should be noted that this result is much stronger than the obvious statement 

that the P point Discrete Fourier Transform of a pitch-sized rectangular window is 

orthogonal with respect to frequency shifts of kwo, because the transform is a discrete 

delta function. The result derived in eqn. (6.31) states that the Fourier transform of 

w ( n ) ,  which is a continuous periodic function, is orthogonal. 

Furthermore, we can see now that if we choose to use eqn. (6.14) as our distortion 

criterion with pitch-sized rectangular windows, we can get the Ak values directly by 

computing pitch-sized DFTs. 

It should be stressed that although the use of pitch-sized rectangular windows 

makes the simplified eqn. (6.26) exact for periodic sequences, it is not the best choice 

for all applications. In MBE, for example, the pitch is found using a closed-loop search 
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case, it is best to have the error drop sharply at the optimal pitch period in order 

to avoid ambiguity in the pitch estimate. This requirement usually leads to longer 

windows with spectra having narrow main-lobes and lower side-lobes. Even though 

these windows may not be orthogonal, it still desirable to use the simplified estimation 

equation (6.26) in order to reduce the complexity of the estimation procedure. 

Error in Using Eqn. (6.26) for Non-Orthogonal Windows 

We now present some experimental results comparing the Ak estimation equation 

(6.24) to equation (6.26) which assumes orthogonal window spectra for rectangular 

and Hamming windows of various lengths. In the following discussion, the distortion 

criterion used is the root mean square spectral distortion (SD). The spectral distortion 

between two spectral estimates, {Ak}, and {Ak}, where k = 1 . .  . K and K is the 

number of harmonics is given by 

Figure 6.6 shows a plot of the spectral distortion due to the orthogonality as- 

sumption for various windows. The signal used for estimation was made periodic by 

concatenating P length segments of a random Gaussian signal. Because the value of 

P is known exactly, the general estimation from eqn. (6.24) always gives zero distor- 

tion. The distortion resulting from the use of eqn. (6.26) which assumes orthogonal 

windows is zero for pitch length rectangular windows as expected - otherwise it is 

non-zero. Note that for pitch length Hamming windows the error remains fairly con- 

stant because the window spectrum width and sidelobe height become smaller as pitch 

period increases, negating the effect of shifting by smaller amounts. However, for a 

fixed length (221 point) Hamming window or rectangular window, the error increases 

with increased pitch period because the window spectrum shifts become smaller but 

the window spectrum width and sidelobe height do not depend on pitch. Also, it is 

clear that for lower P, a fixed length Hamming window better satisfies the orthogo- 

nality assumption than a rectangular window of equal length, due to the much lower 

sidelobes of the Hamming window. However for larger P, the wider mainlobe of the 

Hamming window begins to dominate the error in the orthogonality assumption, and 

the rectangular window performs better. 
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Pitch Period 

Figure 6.6: Error in spectral coefficient estimation using the analysis window orthog- 
onality assumption 

Based on figure 6.6, it is clear that the using the orthogonality assumption to 

reduce the complexity of the spectral estimation procedure results in large spectral 

distortion for pitch periods greater than approximately 90 samples (11.25 ms), for all 

the non-orthogonal windows tested. 

Choice of the Window Function in SEC 

The choice of the spectral estimation window in SEC is strongly influenced by the fact 

that an open-loop pitch estimator is used. Because the pitch is obtained separately 

from the spectral estimate, it is it is important that the use of eqn. (6.24) does not lead 

to large estimation errors in the presence of small pitch errors. Several experiments 

were performed on speech and residual segments with hand-calculated pitch values in 

which spectral estimates were compared using a small range of pitch values centered 

on the actual pitch. The result of one such experiment is shown in fig. 6.7. In this 

experiment, periodic sequences with spectral shapes similar to those found in typical 

speech residual signals were generated for pitch values ranging from 20 to 140. For 

each pitch value, eqn. (6.26) was used to obtain spectral coefficient estimates for both 

the correct pitch and a pitch having an error of one sample. The distortion between 
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the two estimates is plotted against the correct pitch. The plot shows that pitch-sized 

50- 

10 - 

0 20 40 60 80 120 

Pitch Period 

Figure 6.7: Error in spectral coefficient estimation due to single sample pitch errors 
for various windows 

windows result in the lowest overall distortion when single sample pitch errors are 

made in the open-loop estimation. The distortion for the longer windows is large 

for low pitch periods due to the fact that the main lobe of these windows is very 

narrow when compared with the frequency difference between harmonics. This effect 

is illustrated in fig. 6.8, which plots the estimated spectral magnitudes and actual 

spectral magnitudes superimposed on the spectrum of the windowed synthetic signal. 

In fig. 6.8(a), the correct pitch is used and the estimated and actual magnitudes 

are identical. However, the spectrum for the signal windowed by the pitch-sized 

rectangular window is much smoother than that of the 221-sample Hamming window. 

In fig. 6.8(b) the effect of the difference between the window spectra is obvious due to 

a single sample pitch error. Because the pitch-sized rectangular window results in a 

smooth spectrum, the error in estimating the spectrum energy at incorrect harmonic 

frequencies is relatively small. For the longer Hamming window, however, estimation 

at the wrong frequency can result in large spectral energy estimation errors. Note that 
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Pitch-Length Rectangular 22 1 -pt Hamming 

0 Estimated Magnitudes 
x Actual Magnitudes 
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x Actual Magnitudes 

(a) No Pitch Error 

0 Esthnated Magnitudes 
x Actual Magnitudes 

(b) 1 Sample Pitch Error 

Figure 6.8: Error in spectral coefficient estimation due to single sample pitch errors 
for various windows 
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the errors tend to increase as the harmonic number increases due to the accumulation 

of the pitch error in determining the harmonic frequency. 

Based on these experiments, pitch-sized windows were chosen for spectral coeffi- 

cient estimation in SEC. Although pitch-sized Hamming windows performed as well 

as pitch-sized rectangular windows in terms of single-sample pitch errors, rectangular 

windows were chosen due to the fact that their orthonormal property allows the use 

of the simplified estimation eqn. (6.26) without any approximations. 

6.5.2 Magnitude Quantization 

Spectral magnitude quantization is a critical component in any harmonic coding sys- 

tem. For example, approximately 80% of the rate in the IMBE coder is dedicated to 

quantizing the spectral magnitudes. Because the spectral magnitude coefficients form 

a vector, it is natural to use vector quantization in order to lower the required bit rate. 

However, the length of the vector is dependent on the pitch period and thus changes 

from frame to frame, making direct vector quantization difficult. A new quantization 

procedure, NSTVQ, was introduced for this purpose (see chapter 5). 

In SEC, the spectral magnitude estimates are quantized every L, samples where 

L, is the number of samples in an excitation subframe, and is dependent on the codec 

rate. Let n = 0 be a sample over which the spectral analysis window is centered. The 

spectral magnitudes, Mk(n), used in eqn. (6.1) to synthesize the quantized excitation 

signal for 0 5 n < L, are given by 

where ~ ~ ( 0 )  and M~(L, )  are the quantized spectral magnitudes obtained using anal- 

ysis centered on update sample n = 0 and n = L, respectively. 

6.5.3 Phase Quantization 

In low bit-rate harmonic coders, there are generally not enough bits available for 

encoding the spectral phases directly. For example in SEC operating at a rate of 

2.4 kb/s, all the encoded harmonic phase information is contained in a single param- 

eter called the phase dispersion factor. Before discussing phase dispersion, however, 
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it is useful to present the general problem of phase encoding. Not only does it pro- 

vide background which is useful in understanding phase dispersion, but it may also 

be valuable in future SEC systems. For example, phonetic classifiers might be used 

to identify speech segments where phase information is more important in terms of 

perceptual quality than magnitude information, suggesting dynamic bit assignment 

between the spectral magnitude and spectral phase quantizers. 

Figure 6.9 illustrates a possible phase quantization met hod. First, spectral es- 

timation is performed using analysis windows centered on the first sample of each 

subframe of the unquantized excitation signal e(n). Subframes are L, samples long. 

The analysis centered over sample n = L, yields the fundamental frequency, wo(L,), 

and the set of measured phases, {4k(Ls)}. The fundamental frequency is quantized 

using a scalar quantizer giving bo(L,). The quantized fundamental frequency and 

phases from the previous analysis centered on sample n = 0 are then used to compute 

the set of predicted phases, {J~(L,) )  at  n = L, according to the prediction formula 

and the prediction residual phases to be quantized, {A4k(LS)), are obtained by 

The use of phase prediction residuals is designed to reduce the variance of the 

phase vector to be quantized. Based on eqn. (6.34) it is clear that the predicted 

phases will match the measured phases most closely during voiced segments when 

the signal is approximately periodic and the change in fundamental frequency is slow 

enough that a linear model provides a good fit. This is illustrated in fig. 6.10, 

which shows phase prediction residuals for a typical voiced and unvoiced segment 

of speech. In fig. 6.10(a), the input speech signal for each segment is plotted, and 

the corresponding unquantized residuals signals are plotted in fig. 6.10(b). Using a 

subframe length of 80 samples, the predicted phases were obtained by computing eqn. 

(6.34) and subtracted from the measured phases. The resulting prediction residuals 

are plotted in fig. 6.10(c). For the voiced segment, the predicted phases were very 

close to the measured phases for all but the uppermost harmonics. For the unvoiced 

segment, however, the predicted phases do not match the measured phase and the 

resulting prediction residual is large. 
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Figure 6.9: Harmonic Phase Quantization Using Prediction Residuals 
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Figure 6.10: Typical Phase Prediction Residuals for Voiced and Unvoiced Speech 
Segments 
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As was the case for spectral magnitudes, the phase residuals to be quantized, 

{A&(Ls)), form a variable dimension vector, and NSTVQ can once again be used 

to handle this problem. Another approach to phase quantization is motivated by 

listening tests which indicate that phases corresponding to lower frequencies are more 

important than those corresponding to higher frequencies. In this case, only the 

first few harmonic phases may be encoded using a fixed dimension vector quantizer. 

Regardless of the method used for phase quantization, it is necessary to define a 

distortion measure which provides a meaningful indication of the fit between two 

sinusoids operating at the same frequency but with different initial phase. One obvious 

approach is to apply the mean squared error criterion directly to the two phase values. 

Such an approach, however, fails to take into account the circular nature of phase 

resulting in MSE distortions which may not properly reflect the distortion in the 

underlying sinusoids. While it is possible to circumvent this poblem by modifying 

the MSE criterion to subtract multiples of 2~ until each distortion is between 0 and 

T, centroid computation using this modified criterion is not straightforward. 

Instead, we propose an alternate phase distortion measure which has a direct 

physical interpretation, does not suffer the ambiguities associated with MSE applied 

directly to the phase, and results in an unambiguous and easily computed phase 

centroid. 

Phase Distortion Measure 

Our approach is based on the fact that we are often interested in the phase of a signal 

because of the information it conveys about the temporal structure of that signal. 

Therefore, it makes sense to find a distortion measure between phase values which 

reflects the distortion in the time domain. 

We first define two time domain signals, x(t) and y(t), which are both periodic 

with period To and have identical spectral magnitudes (ie. they differ only in phase). 

We can represent these signals in the frequency domain as: 

and 

y(t) = C Ck cos(2~k fot + &) 
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where fo = l /To.  We define our distortion measure, D[x, y] to be the mean squared 

error between x(t) and y(t). 

By expanding the squared term, the integrand of the above equation can be written 

Whenever k # 1 in eqn. (6.39), the multiplication within the summations will produce 

four terms of the general form 

It is straight forward to show that2 

l/To JTo12 g(t)dt = o for k # I. 
-To12 

Stated differently, the integral of the product of two harmonic sinusoids over one 

period of the fundamental frequency is zero, regardless of the phase diflerence between 

the harmonics. 

Substituting eqn. (6.39) into eqn. (6.38), reversing the order of summation and 

integration, and eliminating terms which are zero by taking advantage of eqn. (6.42), 

we obtain 

Each one of the terms in the summation of eqn(6.43) is an integral of the form: 

2Using the trigonometric identity cos(a + P) = cos(a) cos(P) - sin(a)sin(P), g ( t )  can be trans- 
formed into an expression involving products of sinusoids having different but harmonically related 
frequencies and zero phase. 
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Dp(Q, J), then, is the mean-squared error distortion between two sinusoids of identical 

frequency and phases of 4 and 4 respectively, where C is the spectral magnitude of 

the sinusoids. This shows that the distortion is independent of frequency and depends 

only on the difference between the two phase values and the spectral magnitude. As 

expected, the following properties are observed: 

a the distortion approaches zero as the phase difference approaches zero 

a the distortion is maximum when the phase difference is .rr 

0 the distortion function is cyclical with a period of 2~ radians 

Figure 6.11 plots the distortion measure Dp($, 4) as a function of 64 = 4- 4 over the 

range 0 5 Sq5 5 2pi. 

Figure 6.11: Phase distortion Dp(q5, 4) as a function of 4 - 4 

We can now substitute eqn. (6.45) into eqn. (6.43) to get the final expression for 

the mean-squared error between x(t) and y(t). 
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If we consider sampled data with discrete period N,  all summations go from 0 to 

N - 1 rather than from 0 to m3. The distortion measure for sampled signals x[n]  and 

y [ n ]  is then: 

Centroid for VQ Design 

In this section we derive the centroid of a training set of phase values using the 

distortion criterion given by eqn. (6.47). Because the distortion for harmonic k is 

independent of both the magnitude and phase for harmonic 1 # k, we can simplify 

the following centroid computation by dropping the harmonic number subscript and 

considering each harmonic separately. 

Given a set of L phase values from a training set, 4(i), and the corresponding 

spectral magnitudes ~ ( ~ 1 ,  where i = 1 . . . L, we would like to compute a centroid 

phase 4* which minimizes the total distortion, Dt, given by 

i=l 

To minimize the distortion with respect to 6 ,  we take the 

and solve for 6 giving 

derivative, set it to zero, 

which leads to the following equation for computing the centroid: 

Note that the inverse tangent must be computed such that the resultant phase angle 

is in the correct quadrant (for example, in the C programming language, ATAN2 (x, y) 

should be used). 

3 ~ o t e  that for a real, discrete, periodic signal, there are only N / 2 +  1 unique harmonic phases due 
to the symmetry of the Discrete Fourier Transform, therefore summations to N - 1 can be replaced 
with summations to N/2 
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Analysis of eqn. (6.51) reveals some interesting properties. First, the centroid 

equation is only undefined (arctangent of zero) when all spectral magnitudes are zero 

and no unique centroid exists. Second, eqn(6.51) never uses phase values directly 

- they are always applied as arguments to sine and cosine functions. As a result, 

there is no ambiguity due to the circular nature of phase. For example, the distortion 

between two phase values which differ by a multiple of 27r will be zero without special 

handling. 

6.5.4 Phase Dispersion 

In low-bit rate harmonic coding systems, there are not enough bits available for phase 

encoding. One approach is simply to set the phase residual to zero and instead use only 

the predicted phase which is already available at both the transmitter and receiver. 

When this approach is used to encode speech, however, the resulting codec output 

sounds buzzy during unvoiced segments and sometimes sounds robotic or unnatural 

during voiced segments. If, on the other hand, the receiver randomly assigns values 

to the phase residuals using a uniform distribution between -T and T, the unvoiced 

speech sounds natural while the voiced speech sounds whispered or breathy. This 

suggests that it may be possible to use a voicing dependent model to replace direct 

quantization of the phase residuals. 

In SEC at low bit rates, quantization of phase residuals, A4k, is replaced by 

where hc is the cutoff harmonic (defined below), K(wo) is the number of harmonics for 

the current subframe, U[-a, a] is a uniform random variable defined over the interval 

- a . .  . a ,  and ,h' is a parameter which modifies the range of the randomized phase 

residual. 

Experimentally, it was found that a good approach for obtaining the cutoff fre- 

quency uses the fundamental frequency, wo, and is given by 

( [ ( D c D 1 ) ]  K(wo) otherwise (Dh-Dl)  
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where Dd is defined as the phase dispersion factor, and Dl and Dh are heuristically 

determined parameters. In SEC, D4 is computed using a frame classifier based on 

the normalized autocorrelation at the pitch lag given by eqn. (6.11); during strongly 

voiced frames, D4 is close to one, and during strongly unvoiced frames,. D4 is close to 

zero. Note that when quantization of the phase residuals is replaced with the model 

defined above, D6 must be quantized and transmitted to the receiver. 

During subjective testing using an SEC system with phase dispersion as defined 

above, the reconstructed speech for male speakers was often described as being too 

breathy indicating that the phase vector for male speakers contained too large a 

random component. Analysis showed that for male speakers, p(p) tends to be lower, 

probably due to the longer pitch periods. To improve subjective quality, the upper 

distortion limit Dh was made to be dependent on the pitch period according to 

where all constants were determined through experimentation. By substituting eqn. 

(6.54) into eqn. (6.53), it can be seen that the cutoff frequency is higher for lower 

pitch speakers resulting in fewer harmonics being randomized. Figure 6.12 illustrates 

the effect of the adaptive dispersion equation by plotting the fraction of randomized 

harmonics versus the dispersion factor for two different pitch values of 20 and 80. It 

can be seen, for example, that when the phase dispersion factor is 0.5, 70% of the 

phases are randomized for a high-pitched speaker with p = 20, but only 40% of the 

phases are randomized for a low-pitched speaker with p = 80. 

6.5.5 Phase Interpolation 

In SEC, the spectral phase estimates are obtained every L, samples where L, is the 

number of samples in an excitation subframe, and is dependent on the codec rate. Any 

interpolation method for obtaining the phase on a sample-by-sample basis according 

to eqn. (6.1) must ensure phase continuity at the subframe boundaries in order to 

avoid perceptual artifacts in the reproduced speech. As discussed in section 4.4.2, the 

MBE coder preserves phase continuity by allowing a small discontinuity in frequency 



CHAPTER 6. SPECTRAL EXCITATION CODING OF SPEECH 11 7 

I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Phase Dispersion Factor (D+) 

Figure 6.12: Effect of Pitch Period on Number of Randomized Harmonics using Adap- 
tive Phase Dispersion 

at the subframe boundaries. In SEC, a cubic interpolation method from [ I ]  is used to 

preserve both phase and instantaneous frequency at the subframe boundaries. 

Assume that at n = 0 we have an estimate for the spectral phase for each harmonic, 

$ k ( ~ ) ,  and the fundamental frequency, Go(0).  Similarly, at n = L,, the first sample 

of the next subframe, we have estimates given by 4 k ( L s )  and Go(L,). Our goal is to 

synthesize a signal over the range 0 5 n < L,  using eqn. (6.1) with interpolation of 

i k ( n )  such that the following conditions are met 

Equations (6.55) and (6.56) ensure phase continuity and equations (6.57) and (6.58) 

ensure frequency continuity. To satisfy these conditions we require a cubic interpolator 

for i k ( n )  of the form 

Bk(n) = a + bn + en2 + dn3. (6.59) 

Solving for the four unknown coefficients is straightforward using eqns. (6.55) to (6.58) 
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and yields the following phase interpolator 

6.6 Spectral Excitation Coding at 2.4 kb/s 

In this section we present the details of the spectral excitation coding system operating 

at 2.4 kb/s. The system is currently implemented in the C programming language as a 

general purpose computer floating point simulation. Informal listening tests indicate 

that the quality of SEC at 2.4 kb/s is very close to that of IMBE operating at almost 

twice the rate. 

6.6.1 System Description 

Figure 6.13 shows a block diagram of the 2.4 kb/s SEC system. Once each 30 ms frame, 

the speech spectral envelope is estimated using tenth order LPC analysis. Analysis is 

performed on speech segments obtained by multiplying the input speech signal with 

a 45 ms Hamming window. The coefficients are are converted to line spectral pairs 

and quantized once per frame using the tree-searched multi-stage vector quantization 

scheme presented in [5]. The 10 LSP coefficients are encoded using 24 bits each 

frame. We have found that using a 4-stage, 6 bitslstage, MSVQ with 8 candidates 

results in a robust VQ with low spectral distortion. The quantized coefficients are 

then transformed back into LPCs and used in the short-term filter which computes 

the excitation signal according to eqn. (6.2). The filter coefficients are updated using 

LSP interpolation every 2 ms (Lint = 16)4. 

The excitation signal is reconstructed at the decoder using eqn. (6.1) applied over 

5 ms subframes, giving 6 subframes per 30 ms frame. In order to reproduce the 

excitation signal at the decoder, estimates for three parameters are required once per 

subframe: the fundamental period (pitch) P, the phase dispersion factor D+, and the 

harmonic spectral magnitudes y. 

4When parameters in this section are given in terms in units of samples, a sampling rate of 8000 
kHz is assumed 
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Figure 6.13: Block Diagram of Low-Rate SEC System 

Table 6.1: Pitch Tracking parameters used in 2.4 kb/s SEC 

PARAMETER 
Nb 
NP 
Apt01 

Pmin 

Ptol 

NP 

Every subframe, the pitch period wo is estimated from the unquantized excitation 

signal using the autocorrelation-based method described in section 6.4.1. The pitch 

tracking algorithm of section 6.4.2 is used in an attempt to recognize and correct 

single subframe pitch errors. Table 6.1 gives the actual values used for the parameters 

defined in section 6.4.2. Although the pitch must be computed every 5 ms because it 

is required for estimation of the phase dispersion factor, it is quantized only once every 

15 ms using a 7-bit scalar quantizer. Values for unencoded subframes are obtained 

by linearly interpolating between quantized pitch values. 

Each subframe, the pitch period is used to compute the phase dispersion factor, 

D4, using the normalized autocorrelation given by eqn. (6.11). Vector quantization is 

VALUE 

16 subframes 
10 subframes 

4 
0.2 
0.4 
5 - 
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Rates (bps) 
800 

Pitch Period 
Phase Disp. Factor 
Exc. Gain 

Table 6.2: Bit Allocations for the 2.4 kb/s SEC Codec using a frame length of 240 
samples with 40 samples per subframe 

Updates 
1 

- 

Spectral Mags 
Tot a1 

used to encode the 6 values of D4 once per frame using a 6 bit VQ. 

Estimation of the excitation spectrum, y, is performed every 3 subframes (15 

ms). The excitation signal is windowed using a pitch-sized rectangular window and 

the magnitude spectrum is estimated using the Discrete Fourier Transform (DFT). 

Spectral estimates for intermediate subframes are evaluated by linearly interpolating 

between quantized log spectral magnitudes. For speech segments which are not peri- 

odic, the system uses a fixed value of P = 100, and the components of y are simply 

samples of the excitation spectrum taken at frequencies k F , / P  where F, is the sam- 

pling frequency. A new variable-length vector quantization method called Non-Square 

Transform Vector Quantization (NSTVQ) (see chapter 5) is used to transform y into 

a quantized, fixed length vector z,. Before quantization, the mean of the variable- 

length log spectra is removed and quantized separately using 6 bits every 15 ms. The 

remaining normalized vectors are quantized every 15 ms using NSTVQ with 8 bits. 

7 

1 (VQ) 
6 

The NSTVQ configuration in SEC uses the DCT-I1 transform and a fixed-dimension 

of M = 30. 

The excitation synthesis model used in SEC is shown in Fig. 6.14. The model is 

based on a bank of sinusoidal oscillators having frequencies which are integer multiples 

of a fundamental (pitch) frequency, wo(n). The index n is a sample index which shows 

that the fundamental frequency is time varying. The output of each oscillator is scaled 

PARAMETER 
Envelope LSPs 

8 

using a time varying gain factor Mk(n) where k  is the harmonic number. The phases 

which are applied to each oscillator can come from one of two sources: predicted 

phases or random noise. Switching between these two sources is controlled by the 

phase dispersion factor. 

Table 6.2 shows a summary of the bit allocations for the 2.4 kb/s SEC codec. 

BitsIUpdate 
24 

2 
6 
2 

467 
200 
400 

2 533 
2400 
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Figure 6.14: SEC Excitation Synthesis Model 

6.6.2 Performance Evaluation 

The performance of the 2.4 kb/s SEC system was evaluated using an informal Mean 

Opinion Score (MOS) test in which several speech codecs were used to encode 10 

sentences, 5 from male speakers and 5 from female speakers. For each sentence, an 

uncompressed (16-bit PCM) version was played followed by the output of each codec 
I 

being tested. The order of the codecs was randomized between sentences, and stereo 
I 

headphones were used in which the same signal was sent to both channels. The 
I 
I 

sentences used were specifically chosen for the purpose of codec evaluation by the I 

1995 IEEE speech coding workshop committee, and were not used as part of any SEC 

codebook training (for more details, see Appendix A). 

Fourteen participants took part in the informal MOS test and were asked to rate 

the quality of each speech sample using a scale from 1 to 5 representing a subjective 

quality of bad, poor, fair, good, and excellent. This provides a total of 140 ratings 

for each system. The uncompressed samples were always played first as a reference 

and were given a score of 5 in advance. Included in the test was the existing 2.4 kb/s 

LPC-lOe standard [52], the 4.15 kb/s IMBE standard[l5] (see section 4.4.2), and the 

FS 1016 4.6 kb/s CELP standard [8] (see section 4.3). 

Two SEC systems were included in the test. The first, SEC-v1, is a previous 

baseline system operating at 2.45 kb/s. The bit allocation for SEC-vl is given in 

table 6.3. The second system, SEC-v2, is an improved version which was summarized 
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1) Pitch Period 1 7 1 2 1 350 11 

II Phase Disp. Factor 4 
Exc. Gain 1 5  

Rates (bps) 
600 

Updates 
1 

PARAMETER 
1 Envelope LSPs 

Table 6.3: Bit Allocations for SEC-v1 using a frame length of 320 samples with 80 

BitsIUpdate 
24 

Spectral Mags 
Total 

samples per subframe. 

6 

Table 6.4: Mean opinion scores (MOS) results 

in table 6.2. As can be seen from the two tables, the improved version uses a VQ 

for quantization of the phase dispersion factor. The use of a VQ makes it possible 

to encode the dispersion factor every 40 samples rather than every 80 samples, while 

using only half the rate. Further improvements were made by reducing the frame 

length from 320 samples to 240 samples. As a result, the pitch period can be encoded 

at a lower rate, leaving more bits for spectral magnitude encoding. 

The results of the test are shown in table 6.4. The 2.4 kb/s SEC-v2 system scored 

within 0.1 MOS points of the FS 1016 CELP system operating at  4.6 kb/s, and within 

0.2 MOS points of the 4.15 kb/s IMBE standard. The MOS differences were consistent 

for both male and female speakers. The existing LPC-lOe standard performed poorly 

on these sentences, obtaining an MOS of 1.8. The results also indicate that the quality 

of the SEC algorithm was improved from the older baseline (SEC-v1) through the use 

of vector quantization of the phase dispersion factor, a shorter frame length, and a 

higher encoding rate for the spectral magnitudes. 

In an attempt to determine how SEC might be improved, several people were asked 

to judge the quality of the SEC-v2 system in informal interviews. The most common 

comment made was that the unvoiced sounds were often unnatural and sometimes 

4 600 
2450 

Variance 
System 
IMBE 
FS 1016 
S E C - ~ 2  
SEC-v1 
LPC-lOe 

Mean Opinion Score 
All 
0.57 
0.56 
0.57 
0.62 
0.57 

Rate (bps) 
4150 
4600 
2400 
2450 
2400 

Female 
3.5 
3.4 
3.3 
3.0 
1.8 

Male 
0.62 
0.59 
0.59 
0.63 
0.55 

All 
3.4 
3.3 
3.2 
3.0 
1.8 

Female 
0.53 
0.51 
0.52 
0.61 
0.59 

Male 
3.3 
3.2 
3.1 
3.0 
1.7 



CHAPTER 6. SPECTRAL EXCITATION CODING OF SPEECH 123 

annoying. It is possible that this problem may be alleviated through the development 

of a more sophisticated phase dispersion algorithm. A successful approach to unvoiced 

sound synthesis was recently reported in [43] in which separate spectral quantization 

codebooks were used for unvoiced sounds in combination with rapid updates of the 

RMS gain. 

6.7 Conclusions 

In this chapter, we have presented the details of a harmonic coding system called SEC 

which applies a sinusoidal speech production model to the short-term filter residual 

signal. The SEC system operating at 2.4 kb/s was shown to achieve a quality close 

to that of both the IMBE 4.15 kb/s standard and the 4.6 kb/s FS 1016 standard. By 

improving the main deficiency of the SEC system, the synthesis of unvoiced sounds, 

it is believed that the quality of SEC system can exceed that of the both the IMBE 

and FS 1016 standards. 



Chapter 7 

Conclusions 

The recent emergence of sinusoidal coders at rates of 2 kb/s to 4 kb/s has brought 

a new set of challenges to to the field of speech coding. We have addressed some 

of these challenges in a direct and practical way through the development of a new 

coding system called spectral excitation coding in which a harmonic synthesis model 

is applied to the excitation signal rather than the speech signal. In particular, we 

have developed new algorithms for phase quantization, adaptive phase dispersion, 

and open-loop pitch estimation combined with pitch tracking. A generalized form of 

the spectral magnitude estimation equation was developed which does not rely on the 

window spectrum orthogonality assumption. 

The most important contribution of this work is the development of NSTVQ, a 

new technique for vector quantization of the variable dimension harmonic magni- 

tude vector Results were presented which show that NSTVQ out-performs existing 

techniques in terms of providing lower distortion along with lower complexity and 

storage requirements. In particular, we provided experimental results which show 

that NSTVQ used in the Improved Multiband Excitation (IMBE) environment could 

achieve equivalent spectral distortion while reducing the overall rate by 1000-1250 bits 

per second. 

7.1 Suggestions for Future Work 

This section provides suggestions for further research into several areas covered in this 

thesis. 
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Investigate the possibility of using more sophisticated classifiers (rather than 

simply using the vector dimension) for NSTVQ. For example, a voiced/unvoiced 

classifier may be combined with the vector dimension classifier in order to select 

an appropriate transform. 

As discussed in Chapter 5, the optimal structure for variable dimension vector 

quantization, which uses one VQ for each possible input dimension, has an ex- 

ceedingly large storage requirement when used to quantize harmonic magnitude 

vectors. The NSTVQ system presented uses a single VQ. It would be interesting 

to investigate a compromise between these two extremes in which several VQs 

may be used in combination with NSTVQ. 

In Chapter 6, it was explained that the main deficiency with the SEC system was 

the synthesis of unvoiced sounds. Further investigation into more sophisticated 

phase dispersion models may yield substantial improvements to the SEC voice 

quality. 

Complexity reduction schemes should be investigated for both the application of 

the non-square transform in NSTVQ as well as the synthesis of unvoiced speech 

in SEC. 



Appendix A 

Mean Opinion Score (MOS) Test 

Details 

This appendix contains the details of the MOS testing including the actual sentences 

used, and the overall spectral characteristics of the sentences. 

The following ten sentences encoded with 16-bit PCM were used as input to the 

various speech codecs in the MOS tests. 

1. (female): The reasons for this dive seemed foolish now 

2. (male): He has never himself done anything for which to be hated. Which of us 

has. 

3. (female): It provides a frame for the sampling senses. 

4. (male): The feet wore army shoes in obvious disrepair. 

5. (female): He paused, then added, everything on a ship is a weapon. 

6. (male): Yes sir, she said. Is that definite? 

7. (female): What factors condition the degree of realization at various times and 

places? 

8. (male): All the while she sat there, her sinewy arms swirled before her chest. 

9. (female): Every movement she made seemed unnecessarily noisy. 
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10. (male): As a rule, the autistic child doesn't enjoy physical contact with others. 

Figure A.l shows the spectral characteristics of the speech data used for MOS 

testing. The estimate was obtained using averaging of overlapped short-time Fourier 

transforms across all speech files. 

I I I I I I I 

r v 

- 

I I I I I I I 

0 500 1000 1500 2000 2500 3000 3500 4000 

Frequency (Hz) 

Figure A.l: Spectral characteristics of the MOS speech material. 
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