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Abstract 

We investigate the structure of transitive, untwisted, superlinked finite covers whose kernels 

are central in their automorphism groups. We i~troduce the concept of an extended conju- 

gate system for a pair (W, K), where W is a permutation strllcture and K is a finite abelian 

group. This concept allows us to  characterize the given class of finite covers for structures 

W which satisfy a fairly general condition; further, the irreducibility of such a cover is 

equivalent to a simple condition on a corresponding extended conjugate system. Finally, we 

consider structures with strong types, for which there is a much simpler characterization. 
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Chapter 1 

Introduction 

Among the topics currently attracting much interest from model theorists is the investi- 

gation of covers of countable No-categorical structures. The main reason for this interest 

is the connection between covers and the programme of cataloguing all countable totally 

categorical structures. Zil'ber's Ladder Theorem ([8, Theorem 7.21) tells us that any such 

structure is built up from a strictly minimal set by a finite sequence of finite and affine 

covers; so to complete the programme, what is needed is a better understanding of covers. 

Our focus will be on finite covers. Intuitively, a finite cover of a structme W is obtained in 

two steps. First we replace each element of W with a finite set, producing a free cover (whose 

only relations are those inherited from ?V). Yext we expand the free cover by (possibly) 

adding new relations which induce no new structure on W. The general problem, one which 

seems quite difficult, is to describe completely the finite covers of a given structu~e. 

A few specific examples have been studied in detail, most notably the case where W is 

the projective space of the countably infinite dimensional vector space over the field of size 

two (see 11, 91). The general situation is somewhat reduced in 14, 5, 61 by decomposing finite 

covers into simpler ones. Furthermore, both Ivanov 1101 and Evans 14, 51 have made progress 

using a notion of universal cover: the former classifies finite covers of highly homogeneous 

structures, and the latter considers structures which have a so-called graphic triple of types. 

Yet in spite of this work, much more must be done to bring the complete solution within 

reach. 

In this thesis we take another nibble. We concentrate on finite covers that are transitive 
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and untwisted, with finite central kernels. The definitions of these properties arc given in 

Chapter 2, along with th3 formal definition of a finite cover. Since the structures of intcrcst 

are No-categorical, we prefer to think in terms of permutation groups. 

In Chapter 3 we present the crucial tool for our investigation, the extended conjugate 

system. This idea is really just an extension of the conjugate systems that Evans studies 

in the context of locally transiti~e finite covers (see [ 5 ] ) .  Under a fairly general ;~wnnp- 

tion on W, we show that every transitive, untwisted finite cover of Mi with finite central 

kernel is uniquely determined by its extended conjugate system. Futhermore. we present ;I 

condition on the extended conjugate system which is equivalent to the irreducibility of thc 

corresponding cover. 

We add a stronger assumption on W in the final chapter, namely that W has a strong 

type. In this situation, every extended conjugate system is determined uniquely by a small 

part of itself, the conjugate system as defined by Evans. Applying this to the material i n  

Chapter 3, we get a slight improvemer*t of Evans' result in [5]. 

Although the presentation is fairly self-contained, it is assumed that the reader is well- 

versed in the usual model-theoretic concepts, for example those found in [3]. In addition, 

knowledge of the basic concepts of general topology and permutation group theory would 

certainly be an asset. 

As for notation, we use the capital Roman letters W and M both for structures axid 

their bases; the context will clarify this ambiguity. Other sets are assigned the letters X or 

Y. The set of n-tuples and the set of finite sequences of elements from X are denoted by 

Xn and X<", respectively, and P(X)  denotes the power set of X.  We reserve the letters 

G and H for groups, all of which will be permutation groups. Finally, Sym(X) denotes 

the symmetric group on the set X, and Aut(W) denotes the automorphism group of the 

struct-are W. Remaining notation will be defined as we go along. 

This thesis owes a particular debt to the work of Evans [4, 51, which supplied both the 

background and the inspiration, 



Chapter 2 

Background 

Our a i ~ n  in this chapter is to  transform the intuition behind the concept of a finite cover 

into a formal definition. It should be clear that when we speak of a structure W, we are 

not interested in any particular language; what concern us are the relations on W that are 

0-definable. When CV is No-categorical, these are exactly the relations that are invariant 

under Aut(W) (see [7: Corollary 7.3.43). So we want our definition to express a relationship 

between automorphism groups. This definition will be given in Section 2.2. 

First we review some well-known results about permutation groups. 

2.1 Permutation Groups and Structures 

A perrnutation group G on a set X is just a subgroup of the symmetric group Sym(X). 

Such a group naturally partitions X into orbits: the G-orbit of a point x E X is the set 

[xj = {gx : g E G). We say that G is iransitzve on X if it has only one orbit, and regular on 

S if in addition no g E G \ { lx) has a fixed point in X. The stabilizer in G of a set Y C X 

is the subgroup GI- = {g E G : Vy E Y ( g y  = y)}; when G = Sym(X), we use the notation 

Sym (X / Y 1 for t.his stabilizer. 

More generally, if H is any group acting on X via a group homomorphism 

q : H -+ Sym(X), we can similarly define the stabilizer in H of a set Y C X and the H-orbit 

of a point x E X. H acts transitively (resp. regularly) if its image under 7 is transitive 

(resp. regular) on X. The action is faithfib if 7 is injective. 



Sote that any permutation group G on a set X has a natural action on S. givcn hy 

~ ( x o ?  - - . . xn-1) = (gxo- - - - .g~,-~) for g E G. 30:. . . , xn-1 E S. Similarly. G has a ~lat,ural 

action on P(X)? given by g Y  = {gy  : y E Y) for g E G, Y C: X. Ilihen we speak of G acting 

on these sets. we aln-a>-s refer to the natural actions. 

There is a standard topology on S y m ( X ) ,  defined in terms of its stabilizers. IVc take as 

a basis of open sets all cosets of stabilizers of finite tuples from X, i.c. the sets g - Synl(S/n), 

where g E Sym(X), &X<"'. One of the useful features of this topology is that i r  ~ i c k s  out 

the automorphism groups of first-order structures on X. 

Proposition 2.1 (i) A sequence (fn) converges to f in Szjm(X) if and onlg i f  for art,!, 

x E X, f,x = f x  for dl suficientl? large n, ie: (f,) converges pointwise to f. 

(ii) Sym(X) is a Polish group: ie: a separable completely metrizable topological group. 

(iii) A subgroup of Sym(X) i s  closed z .  and only zf i t  is the automorphism group of sorrw 

first-order stmctur-e on X .  

Proof: (i) If (f,) converges to f in Syrn(X) then for any x E X, f - Sym(X/x) is an o p c ~  

neighborhood of f ;  so eventually f,, E f - Sym(X/x); that is, fnx = f x  for d l  sufficicritly 

large n. 

Conversely, suppose (f,) converges pointwise to f .  Given any opcn neighborhood IJ 

of f ,  there is some 7i E XCW such that f - Sym(X/a) C U .  But since 6 has finite length, 

fnE = fa for all sufficiently large n. So 6, E f . Sym(X/a) C U for large n. 

(ii) Using (i) it is easy to  show that Sym(X) is a topological group. We get a countable 

dense subset by choosing for each pair &,6 E X<w of the same length a permotathi yaC c 
Syrn(X) which maps a to  b. Finally, if we enumerate X as rco, q :. . . , we can clcrivc thc  

given topology on Sym(X) from the following complete metric: 

0: if g = h 
49, h) = 

1/2~, if i is minimal such that gxi # hxi or f lzi # h-'x,. 

(iii) This is (2.6) horn 121. 

We have already observed that the automorphism group tells us all we need to know 
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about an No-categorical structure. Kow we know. which permutation groups are indeed au- 

tomorphism groups. Stripping away the extraneous information, we are led to the following 

definition, due to Evans [5!. 

Definition 2.2 A permutation structure is a pair (W, G), where W is a non-empty set and 

G is a closed subgroup of Sym(W). W is called the base and G is called the aulom~rphzsm 

group of the permutation structure. The structure is irreducible if its automorphism group 

has no proper closed subgroups of finite index. In practice, we will denote the automorphism 

group by Aut(W), and we will refer to the permutation structure simply as W. 

Ey the Ryll-Nardzewski Theorem 17, Theorem 7.3.11, a first-order structure is 

No-categorical exactly when its automorphism group has only finitely many orbits on n- 

tuples, for each n E w. Thus, it makes sense to define No-categoricity of permutation 

structures. Although the assumption of No-categoricity is needed to guarantee that a per- 

mutation structure corresponds to a unique (up to interdefinability) first-order structure, we 

will not make this assumption unless explicitly stated. We do, however, assume the count- 

ability of all permutation structures (i.e. the base is always assumed to have cardinality 

No). 

Given a permutation structure W, a subset X W, and a set Y on which Aut(W) acts, 

we denote by Aut(X/Y) the group of permutations of X which extend to automorphisms 

of W fixing Y pointwise. In particular, Aut(W/Y) is the stabilizer of Y in Aut(W). For 

a finite sequence Yl,. . . ,Y, we write Aut(W/fi,. . . , Y,) = Aut(W/x), and for a 

singleton (y) we write Aut(U7/y) = Aut(W/{y}). If X is a finite subset of W, an n-type 

over X in it' is an Aut(W/X)-orbit on Wn. When W is No-categorical, this corresponds to 

the set of realizations of a model-theoretic n-type over X in W (see [7, Corollary 7.3.31). 

2-2 Finite Covers 

Adding new refations to an &-categorical structure corresponds to passing to a proper closed 

subgroup of its auto;norphism group. So it should be clear how to express the concept of 

finite cover in the context of permutation structures. Again we take the definition from [5]. 



Definition 2.3 A finite cover of the permutation structure W consists of a permutatioli 

structure M together with a finite-to-one surjection n : M + W such that 

(i) the fibres M(w) = n-'(w), w E W, form an Aut(M)-invariant partition of A{; 

(ii) the induced restriction map p : Aut(M) + Sym(W), given by p(g)w = ~ ( ~ n - ' ( w ) )  

for g E Aut(M), w E W, has image Aut (W). 

When f E Aut(W) and _a E Aut(M) are such that p(g) = f ,  we say that f is the restriction 

of g to  W, and g is an  extension of f .  

The kernel of a finite cover n : M + W is just the kernel Aut(M/W) of the correspond- 

ing restriction map p. If this is finite, the cover is superlinked; if it is trivial, the cover is 

trivial. Given w E W, we call Aut(M(w)/w) the fibre group above w and Aut(M(w)/W) 

the binding group above w. Note that the binding group is always a normal subgroup of 

the fibre group; the cover is untwisted if, for all w E W, the fibre group is the same as the 

binding group. A transversal of the cover is a map a : W -+ M such that a(x) E M(x) for 

each x E W. 

Example 2.4 A vector space covering its projective space provides an easy illustration of 

these concepts. Explicitly, consider an No-dimensional vector space V over a finite field 

Fq, remove the origin to get M = V \ { O : ,  and let W be the corresponding projective 

space consisting of the 1-dimensional subspaces of V. For the automorphism groups we set 

Aut(M) = GL(V), the group of all non-singular linear transformations of V, and Aut(W) = 

PGL(V), the quotient of GL(V) by its center. Mapping each non-zero vector to the subspacc 

that it spans produces a finite cover n : M -+ W with fibres of size q - 1. The kernel, the 

fibre groups and the binding groups are all isomorphic to F i ,  the multiplicative group of 

Fq. In particular, this cover is both superlinked and untwisted. 

We end this section with three easy lemmas that appeared in [5 ] .  They will be uscful 

in Chapter 3, when we restrict our attention t o  finite covers that are transitive, untwisted, 

and srrperlinkeb. 

Lemma 2.5 The kernel of a q  irreducible, superlinked finite cover n : M -+ W is central 

in A u t f . ) .  



Proof: Let K be the kernel of the cover, and let N be the centralizer of K in Aut(M). We 

want to show that AT = Aut(M). Now N is the kernel of the natural group homomorphism 

F : Aut(M) -+ Aut(K) which sends g E Aut(M) to the map 

h I-+ ghg- l  (h E K ) .  

So N has finite index in Aut(M), since Aut(M)/N is isomorphic to the (finite) image of F. 

It is easy to see that N is closed: it contains the limit of each of its convergent sequences. 

The irreducibility assumption now implies that N = Aut(M). 17 

Lemma 2.6 Suppose n : M -+ W is a transitive finite cover with central kernel. Then 

Aut(M/a, W) is trivial for any a E M .  

In particular, if n : M -+ W is an untwisted, transitive finite cover with central kernel 

K, then K acts faithfully and regularly on each fibre. Furthermore, given w E W, each 

f E Aut(W/w) has a unique extension in Aut(M/M(w)). 

The third and final result of this section uses the fact that the restriction map of any 

finite cover is closed and continuous (see [5, Lemma 1.11). 

Lemma 2.7 If Aut(W/w) is irreducible for each w E W then every finite cover of W is 

untwisted. 



Chapter 3 

Main Results 

From now on we concentrate exclusively on finite covers that are transitive, untwisted and 

superlinked, with central kernels. Part of the motivation for studying this class of covers 

comes from the following conjecture, which appeared in [5 ] .  Here, AU~'(W/X) denotes the 

intersection of the closed subgroups of finite index in Aut(W/X), where X is a finite subsct 

of the structure W. 

Conjecture 3.1 Let W be a countable, irreducible No-categorical structure, and suppose 

that for every finite X 5 W ,  AU~'(W/X) is of finite index in  Aut(WlfX). Then there is 

a natural number r such that the kernel of any irreducible superlinked finite cover of W is 

generated by a set of size no greater than r .  

We know that the kernel of any irreducible superlinked finite cover .rr : M -+ W is central; 

further, if W is transitive then by passing to an Aut(M)-orbit on M we can always find 

a transitive irreducible finite cover of W with the same kernel as T. So at least when the 

stabilizer in Aut(W) of an element of W is irreducible, the situation reduces to determining 

the possible finite central kernels of transitive, untwisted finite covers. 

We will obtain a partial answer to the conjecture, for W such that 

where tp(u,v) denotes the 2-type of (u,v) f w2 over the empty set, i.e. the Aut(W)-orbit 

of (u, v). In the process, we will characterize the transitive, untwisted, supcrlinked finite 
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covers (with central kernels) of such structures W. 

3.1 Extended Conjugate Systems 

Let W be a transitive permutation structure, and suppose that 7r : M + W is an untwisted, 

transitive, superlinked finite cover with central kernel K. By Lemma 2.6, any automorphism 

f of W which fixes a point x E W has a unique extension f̂  t Aut(M) fixing the fibre M(x) 

pointwise. If f also fixes y t W then there is a unique a E K with the same action on M(y) 

as fl As in [5, Section 3.21, this defines for each pair (s, y) t W2 a map 

with the following properties. 

Proposition 3.2 The maps q5x,y are continuous homomorphisms satisfying: 

n 

Proof: Given x, y E 14' and f ,  g E Aut(W/x, y), let f and 5 be the unique extensions of f 

and g in Aut(M/M(x)), so that f$ acts on M(y) as q5x,(f)q5x,y (9). But 75 E Aut(M/M(x)) 

extends f9 ,  i-mxe acts on M(Y) as 4z,y(f9). SO 4x,,(f9) = 4 X j Y ( f  )4x,,(g), and 4 X I Y  is a 

homomorphism. 

N e d  suppose f E Aut(W/x, y) and g E Aut (W) have extensions f̂  E Aut(M/M(x)) and 

5 E Aut(M). Then 6 Aut(M/M(gx)) extends gfg-l, and so has the same action as 

&,gY (9f 9-I ) on M(gy). It follows that 4gxlgy (gf g-I ) = &bx,y (f )F1 - +x,y (f ), since K is 

central in Aut ( M ) .  This proves (i). 

For (ii), suppose f E Aut(W/x, y, z )  has extension f^ E Aut(M/M (x)). Then 
n 

$z,y(f)-lf^ E Aut(M/M(y)) also extends f ,  hence acts on M(z) as q5y,z(f). So f acts on 

A#(,) as  both 4x,y (f )+y,Z (f)  and &,,(f ), and the result follows. 

It remains to prove continuity. For this, we need only show that the kernel of q5x,y is 

closed. So consider any sequence (f,) E Ker4x,y with limit f .  Let & E Aut(M/M(x)) 

extend f, for each n, and enumerate W as wo, wl, . . . . Since for each m the sequence 
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(f,(w,)) is eventually constant and the fibre M(w,) is finite, we can find a chain of succes- 
A 

sive subsequences (fo,,) 2 ( fl,n) > . . . of (K) such that, for each rn E w and a E M (w,,), 
A A 

(f;n,n(a)) is a constant sequence. So (f,,,) is a subsequence of (f,) converging to somr 

f ^ ~  Aut(M/M(z), M(y)) which restricts to f .  So we must have &,(f) = 1, i.e. f is in the 

kernel of #J,,~. El 

In some sense, the homomorphisms & y  tell us how the cover 7r : M + W behaves with 

respect to  pairs of points in W .  But in general, we need more information to characterize 

the cover. 

Consider now any pair (f, g) of automorphisms of W, both mapping y to z, and suppose 

f has fixed point w and g has fixed point x. Again, f and g have unique extensions 

f^ E Aut (M/M(w)) and 5 E Aut (M/M(x)). Since both f^ and g^ map the fibre above y onto 

the fibre above z, their actions on M(y) must differ by a unique element of K. 

So for each 4tuple (w, x, y, z) E w4 we get a map 

where Aut ( W / X ) ~ ,  denotes the coset of Aut(W/x, y) consisting of all f E Aut (W/x) such 

that f y  = z. Explicitly, $~,,,,,,,(f, g )  = a E K if and only if a and have the same 

action on M(y), where f̂  E Aut(M/M(u)) extends f and 5 t Aut(M/M(x)) extends g .  

Using the product topology on A~t (w/w)~ , ,  x Aut(w/~)~, , ,  it is easy to show that +w,x,y,z 

is continuous; the proof is similar to  the one given for the homomorphisms &,y. 

Proposition 3.3 The continuous maps +w,x,y,z satisfy the following properties: 
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95 = 91, and 9; = gi), then 

provided f4 f3 f2 fl = lW.  

Proof: We will prove only (i),(ii),(iv), and (ix); the rest are easy. 

Suppose f g, h, k satisfy the hypotheses of (i). Let 7 E Aut (MIM (w)) and 
A A 

5 E Aut(n/l/hf(x)) extend f and g, let h, k E Aut(M) be extensions of h and k such 
A A A- 

that k-'h € Aut(M/Id(y)), and write a = +hw,kx,hy,hz(hfh-l, kgk-'). Then hfh-' € 
A A 

Aut(hrl/A4jhw)) extends hfh-' and kgk-' E Aut(M/M(kz)) extends kglc-l, so 
--I- -- -In & A  

kg k-'h f h-' acts on M(hy) as a. Conjugating by ;, we see that g k-'h f acts on M(y) as 
A A,. 

a (since X-'g fixes M(y) pointwise). Conjugating now by F', it follows that k-'h f r1 acts 

on A$(=) as a. But F-'X acts on M(z) as +y,z(k-'h)l so 7ij-l acts on M(z) as c,hYtz(k-' h)-'a, 
--IA andg f a ~ t s o n h f ( y ) a s + ~ , , ( k - ~ h ) - ' a .  Thu~,a=$~,~,~,~(f~~)c,h~,~(k-~h),proving (i). 
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IVext suppose f ,  g, h, k satisfv the hypotheses of (ii), and let ? E Aut(M/A,f (w)) ,  5 E 

Aut(M/M(x)), g E Aut(M/M(w)), and g E Aut(M/M(z)) extend f ,  g, h, and k, rapcc- 
-1 -- 

tively. Then g - l ~ ' $  acts on M(y) as $w,x,y,,(fh,gk), hence so does g fhk-', since 

k fixes y. The result follows, since ~ ' f ^  and %-' act on M(y) as +w,w.r,ylr( f ,  g) and 

4w,y (h)4x,y (k)-l , respectively. 

For (iv), suppose fl ,  f2,gl,g2 satisfy the hypotheses, and let E Aut(M/M(w)) and 
-1 - ?i E Aut(M/M(x)) extend fi and gi (i = 1,2) .  Then g2 f 2  acts on M(z)  as $,,,,,,,(f2, gz) 

A -1 - 1  
and fi maps M(y) onto M(z), so (&$I)-'(.&f;) = gl (g2 fi) fl  acts on M(y) as 

-1- 
.IcIw,~,z,v(fi, 92191 f i ,  which in turn acts on M(y) as +w,z,,,,(fz, g ~ ) + ~ , ~ , ~ , , ( f l ,  91). Since 

.&f; E Aut(M/M(w)) extends fifl and && E Aut(M/M(x)) extends 9291, we thus havc 

?11w,~ ,~ ,v ( f2 f l ,  9291) = 'db,x,y,z(flt S I )@W,Z,Z , 'U(~~~ 92). 

Finally, assume the hypotheses of (ix), and for 1 5 i < 4 write ai = $vi,wi,yi ,yi.,. (fi, hi), 

fi = @wi,wi+,,X,sr+,(higil gi+l), a: = @ v i l w ~ , Y ~ , y ~ + ,  (fi, hi), and = +w~,w~+, ,x ,v~ , - ,  (hi$:, $:+I), 

and let fi, gi, hi, g:, h: have extensions 3 E Aut(M/M(vi)), ci, Li E Aut(M/M(wi)) 
-1 a , ,  Gi E Aut(M/M(w:)), respectively. Then for each i ,  gi+,hiFi acts on M(u) as 8, 

-1 "-1 so gi+ihiaiCi acts on M(x) as aiPi. But ai and hi fi have the same action on M(?j i ) ,  

-1 - -1 1 -A and ci maps M(x) onto M(yi), SO gi+lhi~igi  and gi+lhihY figi have the samc action on 
-1 

M ( x ) .  Thus, gi+l figi acts as aiPi on M(x). Multiplying these factors together shows that  
--inn-- A h n h  

g1 f4f3f2fi& and flL1 aiPi have the same action on M(x),  so f4f3 fi fi acts on M(yl)  
A n n -  

&S nt l  ai nfEl &. Similarly, f4 f3 f2  fl acts on M(y;) as n f = l  a: n t l  fi. SO we get thc 
h h h h  

desired result by noticing that f4f3 f2 fl is in K. El 

Propositions 3.2 and 3.3 motivate the following definition. 

Definition 3.4 Let W  be a transitive permutation structure and let K be a finite abclian 

group (with discrete topology). An extended conjugate system for (W, K )  is a pair (a, 9) 

such that 

0 @ = (&, : x, y E W )  is a system of continuous homomorphisms qisty : Aut(W/z, y j  -+ 
K satisfying Properties (i) and (ii) of Proposition 3.2; 

!I! = (+w,z,y,r : W,X, y,z t W) is asystemof continuous maps+w,x,v,z : Aut(W/w) v,+, x 

Aut(W/x),,, -+ K satisfying Properties (i) through (ix) of Proposition 3.3. 
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The extended conjugate system corresponding to  a transitive, untwisted, superlinked finite 

cover .rr : M -+ W (with central kernel) is called its associated extended conjugate system. 

Note that we can rewrite the properties in Proposition 3.3 in terms of ll? alone, for 

example by using $J , , , ,~ ,~  (f, 1w) in place of c,+,,~ (f ). Then given ll? we can recover @ by 

defining &,,( f )  = $J,,,,y,y if, 1 ~ ) .  So the in this definition is somewhat redundant. We 

include it for two reasons: first, for notational simplicity, and second, to show explicitly the 

connection between this concept of an extended conjugate system and Evans' concept of a 

conjugate system in [5]. 

Compared'with the others, Property (ix) of Proposition 3.3 at first seems rather com- 

plicated. In the context of a transitive, untwisted, superlinked finite cover n : M -+ W with 

central kernel K ,  it says that if f^ E Aot(M/W) is a product of automorphisms of M ,  each 
.A 

pointwise fixing some fibre of n,  then f acts as the same element of K on every fibre. Since 

Aut(M/W) = K, this is trivially the case (in fact, property (ix) is true for every m E w,  not 

just for m = 4). In the next section, where we construct a transitive, untwisted, superlinked 

finite cover from a given extended conjugate system for (W, K), we will need Property (ix) 

to guarantee that K is indeed the kernel (cf. Lemma 3.15). 

3.2 The Characterization 

In the previous section we showed how to associate an extended conjugate system with 

any transitive, untwisted, superlinked finite cover with central kernel. For structures W 

satisfying (3.1), there is a converse result. That is, given any extended conjugate system 

( a ,  9) for (W, K) ,  where K is finite abelian, there is a unique (up to  isomorphism) transitive, 

untwisted, superlinked finite cover n : M -+ W with central kernel K and associated 

extended conjugate system (a, 9). We begin with the uniqueness assertion. 

First we need to define the concept of an isomorphism between finite covers of a struc- 

ture W. We say that permutation structures M and M' are isomorphic if there is a bijec- 

tion p : M -+ hrlf which carries Aut(M) to Aut(Mf), in the sense that the induced map 

A : Aut(M) --+ Sym(llft) defined by X ( f )  = p f p-l for f E Aut (M) is a group isomorphism 
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between Aut(A4) and Aut(M'). The pair (p, A) is called a permutation strzlctu7-~: isomor- 

phism; since X is induced by p: we will often refer to such an isomorphisn simply as p. An 

isomorphism of finite covers n : 14.4 i W and n' : M' -+ W is a pernutation structure 

isomorphism p : hf -+ M' such that ntP = n. 

Now fix W satisfying (3.1) and suppose .rr : M -+ W and n' : &I' -+ iilr are transitive, 

untwisted, superlinked finite covers with the same central kernel and the same associated 

extended conjugate system. Formally, we assume that there is an isomorphism q from thc 

kernel K of .rr to  the kernel Kf  of nf such that t,bk,z,y,r = qt,bliw,x,y,z and &, = 714,~~ for every 

W,X, Yt  E Wt where (at  *) = ((&z,y>, (t,bw,x,y,z)) and (a', * I )  = ((4k,y), ($L,x,y,z)) are tile 

extended conjugate systems associated with 7r and n', respectively. We want to construct 

an isomorphism (p: A) between these covers such that X extends q. 

Note that if such an isomorphism exists, then for any ar E K we have p a  = q(a)p. Since 

K acts regularly on each fibre in M ,  p will therefore be completely determined if we know 

how it maps a single point in each fibre. Fixing transversals a : W -+ M and a' : W -+ Ad', 

we will construct p by determining p(a(x)) for every x E W. 

For any fixed x E W, we should be able to find an isomorphism p = p, which maps a ( z )  

to  af(x). In fact, if it exists, p, is uniquely determined as follows: 

Given y E W, pick w E 14' such that tp(w,x) = tp(w, y) and pick f E Aut(W/w) 

such that f z = y. Let f^ E Aut(M/M(w)) and f E Aut(M'/M1(v)) extend f, 

and let ,b' E K be such that f^a(x) = Pa(y). Then we define 

.-. 
It is easy to  see why we must define p,(a(y)) this way. For if p, does exist, then p, f p, ' also 

A - 
extends f and fixes Mf(w)  pointwise, so we must have p, fp;' = f ,  and thus p,(a(y)) = - 
~pxf='a(Y) = f pXfl-'a(x) = q@)-' f a' (z). We claim that pz is indeed an isomorphism. 

Lemma 3.5 For any x E W, p, is a well-defined bijection fi-om M onto Mi. 

Pmofr We must show that the definition of p, (a(y)) does not depend on the choice of w E W 

and f E A u t ( W l ~ ) - ~ .  The fact that p, is a bijection will then be obvious. 
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So suppose we also have v E W and g E AU~(W/V),,~. Let c E Aut (M/M(v)) and 

E Aut(M'/Mt(v)) extend g, and let y E K be such that Ta(x) = ya(y). Then r l f ^a (x )  = 

y-lPa(ra(x) so $v,w,x,y(f, 9) = ~ ~ ' 4 ;  hence ~L,w,x,y(f,  9) = v(Y)-'v(P) so F 1 b ' ( x )  = 

ri(--i)-lq(ljc)a'(x). The result follows, since K' is central in Aut(M1). El 

Lemma 3.6 For any xi w E W and f E Aut(W/w), if f^ E Aut(Mj'M(w)) and 7 E - 
Aut(Mt/Mt(w)) extend f then pXf;L;'a1(x) = f al(x). 

Proof.- This is immediate from the definition of p,. 

Lemma 3,7 For any x, y E W there is some a E K such that p, = q(a)py. In  particular, 
A 

?fft  Aut(W) then p,f;L;' = pyfp;'. 

Proof: Let a E K sztisf3r p,a(y) = q(a)a1(y), and consider any z E W. Using (3.1) we 

can find w E W such that tp(w, x) = tp(w, Y) = tp(w, 2); thus, there are automorphisms 

f E Aut(W/w),,, and g E A~t(W/zu)~++,. As usual, let f̂  E A u t ( M / ~ ( w ) )  and 7 E 

Aut(hff/A#'(w)) extend f ,  let E Aut(M/M(w)) and 5 E Aut(M1/M'(w)) extend g, and - 
let 0, E K satisfy f^a(x) = ,f?a(y) and ca(y) = ya(z). Then f al(x) = q(a)l)(/3)a'(y) and 

&x) = Bra (4 ,  so p .44 = B F 1 1 5 '  = 5 = V(~)P&).  

Since z E W was arbitrary, p, = q(a),+ 

A h 

So the bijections p, all have the same induced map X : f e p, f p;' . It remains to show 

that X maps Aut ( M )  onto Aut ( M I ) .  

Lemma 3.8 Given f E Aut(ljF?'f and w E there are g, h E Aut(W) such that f = gh, g 

f i e s  w 2  and h fies some u E W. 

Pmofi Let v = f-'ur and choose u satisfying tp(u,v) = tp(u,w). Then we can find 

h E Aut(F.t7/u) mapping 2.2 to w, so that g = fh-' E Aut(W/w). 

Lemma 3.9 For every x E W, (p,, A) is an isomorphism. 
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- 
Proof: We must show that X ( f 3  t Aut(M1) whenever f̂  E Aut(hl),  and that each / E 

Aut(M1) is in the image of A. 

By the previous lemma; any f̂  E Aut(M) can be written as a product $xi;, where $ E 

Aut(M/w) and E Aut(M/u) for some w, u E W ,  and any FE Aut(M1) can be written as 

a product & where 9 E Aut(M1/wl) and h E Aut(M1/d) for some wl, u' E W .  It suffices 

then to  consider automorphisms which hzve a fixed point in W 

So suppose f̂  t Aut(M/w), where w E W. Since there is some a E K such that a? fixa 
A 

M(w) pointwise, and since X ( a  f )  = rl(a)X(f?, we can assume that f̂  E Aut(hl/hf(w)). Let 

7~ Aut(M1/M'(m)) have the same restriction to W as fl Then from what has already heen 
A 

proved, X(f?aljy) = pyfp;la'(y) = for every y E W ,  and so X(f? = TE Aut(M). 

Similarly, if TE Aut(Mf/w) acts on Mf (u )  as ~ ( u ) ,  then F = ~ ( f ? ,  where f̂  E Aut(M/ur) 

has the same restriction to W as ?and acts on M(w) as a. 

We have proved the following result. 

Theorem 3.10 Let W be any permutation structure satisfying Property (3. I ) .  Then every 

transitive, untwisted, superlinked finite cover of W with central kernel is determined up lo 

isomorphism by i ts  associated extended conjugate system. That is, if n : M -F W and 

T' : &I' + W are transitive, untwisted, superlinked finite covers of W with central kernelu K 

and K' and associated &ended conjugate systems ((dx,y) (+w,x,y,r)) and ((d:,y) (d&,z,v,z)) 7 

respectively, and if there is an isomorphism 71 : K -+ K' such that +LTy = qq5z,v and $ J : , ) , ~ , ~ , ~  - - 

q$w,,,y,z for all m, x, y, z E W ,  then there i s  an isomorphism of finite covers (p, A) : M -+ M' 

such that X extends 77. 

Example 3.11 Let W be the countable, homogeneous local order. So W has bme Qf7[0,2n) 

and a single binary relation R defined by: 

x R y  if and only if 0 < y - x  <.rr  or 0 < (y-t- 2 ~ )  - x < n. 

Given any finite cyclic group K of order n, following [4, Chapter 51 we get a transitive, 

untwisted, superIinked finite cover r : M -+ W with central kernel K and trivial extended 
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conjugate system by setting 

n- 1 

M = U [(Q rl [0, la)) + 2kn] 
k=O 

and 

r (q+2kn)  = q for q E Q n  [O,27r),O 5 k < n,  

where the structure on M consists of a single binary relation R' defined by: 

xR'y if and only if 0 < y - x < n or 0 < ( y  + 2nn) - x < n. 

On the other hand, there is another obvious transitive, untwisted, superlinked finite cover of 

W with central kernel K and trivial extended conjugate system: its base is W x K and its 

automorphism group is Aut(W) x K ,  where K acts on itself by left multiplication. Provided 

n is at least two, these two covers are not isomorphic, since only the first is irreducible. So 

the conclusion of Theorem 3.10 fails for this W. Of course, W does not satisfy (3.1), but 

for any pair x, y E W there is a w E W such that tp(w, x) = tp(w, y). 

Analyzing the proof of Theorem 3.10, we note that Property (3.1) is used only in the 

proof of Lemma 3.7; for the rest it is enough to assume that for any x, y E W there is 

some w E W such that tp(w, x) = tp(w, y). So with a little more work we get the following 

corollary. 

Corollary 3.12 Let W be a permutation structure with a finite number m of %types, and 

suppose that for any x, y E IV there is a w E W such that tp(w, x) = tp(w, y). If K is 

a finite abetian group of order n then any extended conjugate system (@, 9) for (W, K )  is 

the associated system of at most (up to  isomorphism) n m  transitive, untwisted, superlinlced 

finite covers of IV with central kernel K .  

Proof Consider any two transitive, untwisted, superlinked finite covers 7r : M -+ W and .rr' : 

Af' --+ W with central kernel K and associated extended conjugate system (@, 9). (Formally 

we should assume that the kernels of rr and K' are isomorphic to K via isomorphisms which 

send their associated system to  (@, 9 ) ,  but we prefer to keep notation as simple as possible.) 

By the proof of the theorem, fixed transversals a : W -+ M and a' : W -+ M' provide us 
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with bijections px : M + LW for each x E W ,  which are iso~norphisms provided Lemnla 3.7 

holds. 

We can measure the extent to  which Lemma 3.7 fails for n and T' as an m-tuple of 

elements of K. Given any triple (2, y, z) E W3,  let T , , ~ , ~  E K be such that p 4 2 )  = 

yx,y,zafla'(z), where p,a(y) = aa'(y) and pya(z) = ,Baf(z). An easy (but very tedious) 
- calculation shows thzt Y ~ , ~ , ,  depends only on the 3-type of the triple (x, y, z) , i.e. -y,,, j?,, jr .- 

yx,y,z for any f E Aut(W). So with each 3-type in W we have associated an element of K.  

f ince W has exactly ;m 3-types, this associates with n and d an m-tuple of elements of K, 

which is the identity in Km if and only if Lemma 3.7 holds. 

Now suppose we have n m t l  transitive, untwisted, superlinked finite covers .rrj : Ati -+ k V  

(0 5 j 5 nm) with central kernel K and associated extended conjugate system (a, Q ) ,  and 

fix transversals a i  : W -+ Mi. We must find j # k such that; q and nk are isomorphic. For 
. . 

any pair (i, j )  we get bijections p$' : Mi + Mj and a corresponding m-tuple TzJ E KT". It 

is enough to  show that yiyk = ?jlkyij whenever 0 5 i, j, k < nm; then since K" has only 

n m  elements, there are j, k such that 0 5 j < k < n m  and = pO%j, hence pjlk is thc 

identity and each pik (I E W) is an isomorphism. 

Let x, y E W and pick w E W and f E AU~(W/W),,~. For each i let f7 E Aut(Mi/Mi(z)) 

extend f and let f?ai(x) = &ai(y), where 6, E K. If 0 5 i, j , k 5 nm then 

Since x and y were arbitrary, p;kp$i = p:'k whenever x E W and 0 5 i ,  j ,  k L: nm. 

Now let x, y,z E W and far each i, j write p$jai(y) = ai~jaj(y),  # o i ( ~ )  = p'7jaj(z) 
. . 

i j  - .  . .  
and & ar(z) = y$&azJpJaj(z). For any i, j ,k  we have = ajfkai*j and p i p k  = ~ j f ~ l j i y j  

i k -  j,k i j  i k -  j k  i .  since Cr,' - p, p; and - p; &, SO 
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i , A  y.>k ?z?! 
hence -,,z,~,~ = z,y,z y,r .  But again z, y, z were arbitrary, so yilk = yj,kyijj, as required. 0 

Turning now to the existence question, we again fix a permutation structure W satisfy- 

ing Property (3.1): a finite abelian group K, and an extended conjugate system (@, P) = 

((&,>2 (&,z,y,z)) for (W, K); we seek a transitive, uxitwisted, superlinked finite cover T : 

444 i tV with central kame: X and associated conjugate system (a, q). 
It is clear what we should use for the base of M and the map T. For we know that 

K must act regularly and f?jthfulIy on each fibre of such a cover, so we just let M be the 

disjoint union UVEW M ( v ) ~  where for eacb v E W, M(v) is a set on which K acts regularly 

and faithfully. Then K has an obvious action on M, so we can identify it with a subgroup 

of Sym(llf). What is not so obvious is how to construct the rest of Aut(M). 

Let S = UvEW Aut(W/v). Given f E S with fixed point u E W, there should be exactly 

one in Aut(A4) extending f and fixing M(v) pointwise. It will be enough to determine 

each of these automorphiims p, since together with K they must generate all of Aut(M) 

(by Lemma 3.8). 

We will need a fixed reference point x f W and a transversal function a : W -+ M. In 

addition, for each y E W we fix uy E Ur such that tp('~ly, x) = tp(%, y) and Icy E Aut(W/uy) 

such that Jiyz = y, making sure that k, = lw. Since there is not yet any structure on the 

fibres of T ,  we should be able to demand that @'a(s) = a(y) for each y E W. Then there 

is only one possible way to define extensions of the autornorphisms in S: 

Let f E S have &ed point 21 E W. Given y E W, let z = f y  and choose w E W 

such that tp(ur, x) = tpjur, y: = t p ( q  z) and g, h E Aut(W/w) such that gx = y 

and h y  = 2. Then for any ct f K s e  define 

Properties jiiij and jiv) of Proposition 3.3 guarantee that this definition does not depend 



on the choice of w, g and h: given another suitable triple wl, gl, h', we have 

Lemma 3.13 For any v E W and f E Aut(W/v), p is a well-defined permutation of 11.1. 

which preserves the partition of M into fibres, restricts to f on W ,  commutes with every 

element of K ,  and jixes the fibre M(v) pointwise. 

Proof: To see that f̂ Y fixes M(v) pointwise, choose w E W  such that tp(w, x) = tp(w, v) 

and g E Aut(W/w) such that gx = v, and let h = l w .  Then since &,,w,v,v(f, l w )  = 1 = 
A 

~uv,W,x,v(kv, g)$um,W,Z,u(ICV7 lWg)-', we have f "(aa(v)) = aa(v) for each cr E K, as required. 

The remaining assertions are obvious. 

Let G be the subgroup of Sym(M) generated by {f̂Y : v E Wand f E Aut(W/v)} together 

with K. Clearly every permutation in G preserves the partition of M i ~ t o  fibres and restricts 

t o  an automorphism of W, since this is true for the permutations generating G. We want 

to use G as the automorphism group of M y  but first we must check that it is closed. 

-v 
Lemma 3.14 If v E W and f t Aut(CV/v) then f = (f̂Y)-'. 
Pmfi Given y and z = f y in W, let w E W ,  g E Aut(W/w),,, and h E Aut(W/w)u,+,. 

Then by Property (vi) of Proposition 3.3, 



CHAPTER 3. MAIN RESULTS 

Lemma 3.15 The stabilizer of W in G is K. 

A 

Proof: By the previous lemma, any g E G can be written as a product a fgm - . - f;U1, where 
A 

a E K and fi E Aut(W/vi) for 1 5 i _< m. SO it suffices to show that fgm - .  2' E K 

whenever f, - .  fl = lw.  We do this by induction on m. 
h 

For the base step we prove the result for m = 4; since by direct computation 1% = lM 

for any v E W, this base step implies the result for 1 _< m 5 3. Fix yl, yi E W, and 

let yi+l = fiyi and yiil = fiyi for 1 5 i 5 4, so that 35 = yl and y: = yi. Next 
I choose wi,w; E W, gi E A~t(W/wi),,+~,, hi E Aut(W/~i ) , ,~~+~,  gi E Aut(W/~i),,~;, and 

hi E Aut(W/w:)y:,y;+l for 15 i 5 4 ,  and let wg = wl, w$ = wi, gg =g l ,  h5 = hl, gk =g i ,  
A 

and hk = hi. Then f p .  . -  acts on M(yl) as 

h. .)-I 
= n @vij~i ,yiXvi+l (fit hi) n @u,+, , w i + l , ~ , ~ i + I  (hi+lt gi+l)$up,+, , ~ i , ~ . ~ i + l  tgz 

i=l i=l 

and - - - f;Y1 acts on M(y;) as 

Using property (ix) of Proposition 3.3, we see that - - .  f;"' acts as the same element of 

K on both M(yl) and M(Y;). Since yl and yi were arbitrary, fp . - f;Y1 E K.  

Before proceeding with the induction, note that g z l v  = 3s whenever gl, 92 E Aut(W/v). 

For by what we have already proved, if g3 = (9zg1)-' then 333 belongs to  K and fixes 

M(v) pointwise, so (g~lv)-lij?j'~ = 333 = l ~ ,  since K acts faithfully on M(v).  
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Now suppose the result holds for m = r 2 4 and let fi t Aut(W/vi) (I < i < r+l) satisfy 

fT+i - - - fi = 1 ~ .  By Lemma 3.8, we can write fT fT-1 = gTgT-l, where 9,' t Aut(W,/v,+,) 

and gT-1 t Aut(W) fixes some vl-l E W. Applying the base step to g , ~ ~ l g ; l ~  fr-l ,  we 
--++1--v:-1 A 

get ag, gTW1 = f~.(?;' for some a E K. Let f: = fi and v: = vi for 1 5 i < r - 2, 
I - I 

fT-1 - gr-1, fi = fT+lgT, and vT = vT+l. Then by the induction hypothesis, 

So the result holds for m = r t 1. 0 

Lemma 3.16 G is a closed subgroup of Sym(M). 

Proof: Suppose that (K) is a sequence in G converging to j t Sym(M). Let (f,) be thc 

corresponding sequence in Aut(W), with limit f E Aut(W). Since f ran be written as a. 

product of maps in S = UVEw Aut(W/v), there is some g E G extending f .  So we can 
- 

assume without loss that f = lw; otherwise we just consider the sequence ( fn5-l) with 

limit 7~-l . 
Throwing away a finite number of terms in the sequence and multiplying through by an 

element of K if necessary, we can further assume that for some fixed li E W, cvery f,, fixcs 
h * 

M(v) pointwise. Then by Lemma 3.15, f;, = f,Y for each n ,  since both f;, and fl restrict to 

f, and fix M(v) pointwise. 

Given y E W, let m be large enough that fn fixes y for every n 2 m. Picking w E W such - h 

that ~ P ( w ,  X) = ~ P ( w ,  Y), we have fna(y) = f,Ya(~) = $v,w,y,y(fn, 1 ~ ) a ( g )  = $v,y(fn)a(~) for 

n 2 m. Since the sequence (&,,y(fn)) converges to $v,y(lW) = 1 by continuity, it follows 

that f;, fixes M(y) pointwise for all sufficiently large n ,  hence so does 7. So 7 = Inn i G. 

E 

We are now justified in defining Aut(M) = G. Note that the extensions in Aut(M) of 

any f E S fixing v E W are exactly the maps ap for a E K .  So the next result is clcar. 

Lemma 3.17 n : M -+ W is a transitive, untwisted, superlinked finite cover with centrnl 

kernel K. 
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All that is left is to  check that T : M -+ W has the correct associated extended conjugate 

system. 

Lemma 3.18 ( a ,  6 )  is the associated extended conjugate system of the cover T : M -+ W. 

Proof: We have to  show that for any vl, v2, y, z E W, if fa E Aut(W/~i)~,,  for i = 1,2 

then ( 9 ) - ' z l  acts on M(y) as $v'vl,v2,y,z(fl, fi). Let w E W satisfy tp(w,x) = tp(w, y) = 

tp(w, r )  and pick g E A u t ( w / ~ ) , , ~  and h E Aut(w/~)~ , , .  Then 

by Property (iii) of Proposition 3.3. 

The following characterization summarizes the results of this section. 

Theorem 3.19 Suppose that ( a ,  6) is an extended conjugate system for (W, K), where 

W is a permutation structure satisfying Property (3.1) and K is a finite abelian group. 

Then there is a unique (up to isomorphism) transitive, untwisted, superlinked finite cover 

T : M + W with central kernel K and associated extended conjugate system (@, \k). 

3.3 Irreducibility 

Our motivation for studying the class of transitive, untwisted, superlinked finite covers with 

central kernels was in part due to Conjecture 3.1, since the irreducible superlinked covers at 

the heart of the conjecture belong to this class. Given the characterization in Section 3.2, it 

would therefore be nice to have a condition which picks out exactly those extended conjugate 

systems whose corresponding covers are irreducible. We assume throughout this section that 

W is irreducible, in addition to satisfyng Property (3.1), since non-irreducible structures 

cannot have irreducible finite covers. 
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Closely related to irreducibility is the concept of a split cover. We say that a finite cover 

n : M -+ W with kernel K splits if there is a closed subgroup H 5 Aut(M) such that 

Y . K = Aut(M) and H f l  K = 1, i.e. H is a closed complement to K in Aut(A4). 

Lemma 3.20 Let W be an irreducible permutation structure satisfying Property (3. I ) ,  and 

suppose n : M -+ W i s  a transitive, untwisted, superlinked finite cover with central kernel K 

and associated extended conjugate system ( a ,  9 )  = ((&,), ($J,,,,~,~)). Then n is irreducible 

if and only i f  for any non-trivial surjective group homomorphism r] : K -+ A, the transi- 

tive, untwisted, superlinked finite cover n' : M' -+ W with central kernel A and associated 

extended conjugate system q(@, 9) = ( (714~,~) ,  ( I J I$ , ,~ ,~ ,~) )  is  non-split. 

Proof: Given q we can easily describe sir' using n. By uniqueness, if N = Kerq then M' 

is the permutation structure consisting of the N-orbits on h1, with automorphism group 

Aut(M)/N (corresponding to the action of Aut(M) on M'), and n' : M' -+ W is the 

restriction of n to M'. Suppose that this cover splits, say H' is a closed complement to 

the kernel K I N  in Aut(M)/N. Let H be the inverse image of H' under the quotient map 

Aut(M) -+ Aut(M)/N, so that H' = HIN. Then H n K = N and H - K = Aut(M) since 

(H  n K ) / N  = (HIN) n (KIN) = N/N and (H K ) / N  = (HIN) - (KIN) = Aut(M)/N, SO 

H is a proper subgroup of finite index in Aut(M) (note that Aut(M) n K = K # N since q 

is non-trivial). Furthermore, H is closed since the quotient map is continuous. So n is not 

irreducible. 

Conversely, if Aut(M) has a proper closed subgroup H of finite index then the restriction 

to  W of H is all of Aut(W), thus H - K = Aut(M). So if 7 : K -+ K I N  is the quotient 

homomorphism, where N = H n K, then H / N  is a closed complement to the kernel KIN  

of the corresponding cover n' : M' -+ W. 

So t o  get an irreducibility condition for extended conjugate systems we need only find out 

which systems correspond t o  split covers. Since these covers are in some sense degenerate, 

the solution should somehow be related to the degeneracy of extended conjugate systems. 

Definition 3.21 An extended conjugate system (a, Q) = ((q5,,y), ($J,,,,,,~)) for (W, K) i~ 

degenerate if there are continuous homomorphisms 4, : Aut(W/x) -+ K for x E W such 



that 

(i) if $ E Aut(W/x) and g E Aut(W) then q5p(gfg-1) = q5w(f); 

(ii) if f 6 AU~(W/W)~,, and g E AU~(W/X)~,, then 

~w,x,y,*(f,9) = 4w(f )-l4x(9)4y(g-lf 1. 

The system (a, YI) is fully non-degenerate if for any non-trivial surjective homomorphism 

lj, : K -+ A, the system q(@, YI) is non-degenerate. 

Theorem 3.22 Suppose W is an irreducible permutation structure satisfying Property 3.1 

and 7t. : M -+ W is a transitive, untwisted, superlinked finite cover with central kernel K 

and associated extended conjugate system (a, V!). Then 

(i) n splits if and only if (a, 9 )  is degenerate; 

(ii) .~r is imducible if and only if (@, YI) is fully non-degenerate. 

Proof: By Lemma 3.20 it suffices to prove (i). 

So suppose that T splits, say H is a closed complement to K in Aut(M). Then each 

f E Aut(W) has a unique extension F i n  H. This provides us with an obvious definition of 

the maps 4, : Aut(W/x) -+ K, namely if f E Aut(W/x) t h ~ n  4,( f )  is the unique element 

of K with the same action as Ton  the fibre M(x). 
h A 

These maps 4, are homomorphisms since f g  = fg  for any f ,  g E Aut(W); they are 

continuous since Ker4, = p(HM(,)) is a closed szbgroup of Aut(W), where p is the re- - 
striction map. Given f E Aut(W/z) and g E Aut(W) we have (gfg-l) = cy?', so 

+gx(9fs-1) = c4,(f IF' = &(f ). Finally, if (f, g) E A u t ( w / ~ ) ~ , ,  x A u t ( w / ~ ) ~ , ,  then 
A 

&,( f )-If̂ E Aut(M/M(w)) and t$z(g)-lc E Aut(M/M(x)), so 9-I f = F1f^ acts on M(y) 

as .ic,w,x,p,z(f) g)4w (f Mz(g)-', hence $w,x,y,z(f, 9) = &(f )-'4x(g)dy (9-' f 1- SO the maps 

c$x satisfy the properties of Definition 3.21, and (@, 9) is degenerate. 

For the converse we assume that (@, 9) is degenerate, say 4, : Aut(W/z) -+ K (x E W )  

is a system of homomorphisms satisfying (i) and (ii) in Definition 3.21. Given w E W 

and f E Aut(W/w), there is a unique Tw E Aut(M) extending f and acting on M ( w )  as 

+w(f ). If f also fixes E W then ~ ( f  )-'TW acts on M(x) as 4w,Z(f) = ~w,w.x.x(f, 1 ~ )  = 
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h 

&(f)-14x(f), so f̂ " = fx .  Thus, for each f E S = UWEw Aut(W/w) we can define 

f̂  E Aut(M) to be the unique extension of f acting as +,(f) on M(w) for some (every) 

fixed point w E W of f .  Let H be the subgroup of Aut(M) generated by the maps 7 for 

f E S. We claim that H is a closed complement to K in Aut(M). 

Clearly H .  K = Aut(M), since every f E Aut(W) has an extension in H by Lemma 3.8. 

It is slightly harder to  show that H n K = 1. Consider any Fm. . . E H n K, ,where fi 

fixes some vi E W for each i. Writing f; = 4, (fi)-' f; E Aut(M/M(vi)), we must show - - 
that f m  . . fi = b, (fm)-' . . . 4vl  (fi)-l. Let X, yl E W ,  and for 1 < i 5 m let yi+l = figil 

so that ym+l = yl. NOW pick Wi E W and gil hi E Aut(W/wi) such that gjzt: = yi and 
h. . -  . 

~ Y S  - YZ+I for 1 < i I m, and let Wm+l = w1 and gm+l = gl. Then as in the proof of - - 
Proposition 3.3, fm - - .  fl act;.; on M(yl) as 

required. - 
I t  remains to show that H is closed. Let (f,) be any sequence in H with limit f F- 

Aut(M), and for each n let fn be the restriction of fl, to W. Without loss of generality 

we can assume that (f,) has limit lw. Given w E W, we can find r r ~  E w such that 

fn E Aut(W/w) for every n > m. Then f;, = for such n, so f;, acts on M(w) ar &,(f,'); 

since 4, is continuous and (fn) has limit lw, eventually f;, fixes M(w) pointwisc. Sincc 

this is true for every w E W, we have f= lM E H. So H is closed. U 
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The image of an extended conjugate system (aEt, Q) for (W, K) ,  denoted by Im(@, Q), 

is the subgroup of K generated by the union of the images of the maps &,,x,y,,. Since 

the quotient map r] : K -+ K/Im(@, Q) produces a (trivial) degenerate conjugate system 

q(G, @), a necessary condition for the full non-degeneracy of (@, Q) is that Im(@, Q) = K. 

If the stabilizer of a point in W is irreducible then this condition is also sufficient, for in this 

case a degenerate system must have trivial image (the only continuous homomorphism with 

domain Aut(W/x) and finite image is the trivial map). Combining this with the previous 

theorem produces the following result. 

Corollary 3.23 Let W, n : M W, K, and (a, Q) be as i n  Theorem 9.22, and suppose 

that Aut(Wlx)  is  irreducible, for x E W .  Then 

(i) n splits i f  and only i f  Im(@, Q) = I; 

(ii) n is  irreducible i f  and only i f  Im(@, Q) = K .  

This brings us back to our starting point, answering Conjecture 3.1 for structures W 

satisfying Property (3.1) in which the stabilizer of a point is irreducible. 

Corollary 3.24 Let W be a permutation structure satisfying the hypotheses of Conjec- 

t t m  3.1. Sup;lose i n  addition that W satisfies property (3.1) and that Aut(W/x) i s  irre- 

ducible, for x E W. Then there is an T E w such that the kernel of any irreducible superlinked 

finite cover of W is generated by a set of size at most r.  - 

Proof: Since W is No-categorical, it has only finitely many 2-types. So there is an ml E w 

such that for any x, y E W ,  AU~'(W/X, y) has index at most ml in Aut(W/x, y).  Let m2 E w 

be the number of 4-types in W. We will prove the result with r = mfm2. 

By the previous corollary, it suffices to show that for any finite abelian group K ,  the 

image of any extended conjugate system (a, Q) = ((4x,y), ($w,x,y,z)) for (W, K )  is generated 

by a set of size at most m:mz. Given s, y E W, Ker q5xly contains AutO(w/x, y), thus it 

has index no greater than rnl in Aut(W/x, y). So the image of any q5x,y has size at  most 

ml. It foiiows from Property (ii) of Proposition 3.3 that for any w, x, y, z E W, the image 

of $w,x,y,z has size no greater than mf. But +w,x,y,z and $ J ~ ~ , ~ ~ , J ~ , ~ ~  have the same image 

for f E Aut(W) (by Property (i) of Proposition 3.3), so the union of the images of the 
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maps &,,z,y,r has size at  most mTmz. This proves what we want, since this union generates 

Im(@,9). 0 



Chapter 4 

Structures with Strong Types 

Most of our results have been presented in a way that closely parallels [5], in which Evans 

characterizes the (locally transitive) untwisted, irreducible, superlinked finite covers of tran- 

sitive No-categorical structures with strong types. There the fundamental concept is that of 

a conjugate system for a triple (W, K ,  R), where R is a 2-type in the permutation structure 

W and K is a finite abelian group. Although our characterization applies to a more general 

class of structures, it also seems to use more information to  describe each cover, so it is not 

obvious that we have improved [5, Corallary 3.91. Our goal in this chapter is to show that 

we have indeed generalized Evans' result. 

Definition 4.1 (i) Let M, be a permutation structure with 2-type R, and let K be a finite 

abelian group. A conjugate system for (W, K,  R) is a system of continuous homomorphisms 

q5w,z : Aut(W/w, S) --+ K, where jw, z) E R,  satisfying Properties (i) and (ii) of Propo- 

sition 3.2. As in Section 3.1, we associate a conjugate system for (W, K, R) with each 

transitive, untwisted, superlinked finite cover .rr : M -+ W with central kernel K. 

(ii) A strong type over a transitive structure W consists of a non-constant map p which 

assigns to  each finite subset X 5 W a 1-type pjX over X in such a way that 

r if Y X then pjX G ply; 

if f E Aut(CV) then pl f X  = f ( p i x ) .  

The associated 2-type of a strong type p is the type R = {(w, x) E W2 : w E pl {x} } .  
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Note that this definition of a conjugate system for (W, K, R) is slightly more general 

than in [5j: we do not require that the maps +x,y : A u t ( W / ~ , g )  -+ be surjective. A cover 

.rr : M -+ W whose associated conjugate system for (W, Aut ( M I  W) , R) consists of surjective 

maps is said to  be locally transitive with respect to R. 

Clearly every transitive structure with a strong type satisfies (3.1), so the results of 

Chapter 3 apply. We will show that  if W is a (not necessarily No-categorical) transitive 

permutation structure with a strong type p and associated 2-type R, and if K is a finite 

abelian group, then every conjugate system for (W, K, R) extends uniquely to an extended 

conjugate system for (W, K).  Since we are not assuming that W is No-categorical, this leads 

to  a direct improvement of [5, Corollary 3.91. 

The proof will be given in two steps. First we will show how to extend a conjugate 

system (&, : (w, x) E R) for (W, K, R) to  a system <P = (&y : x, y E W) satisfying 

Proposition 3.2. 

Lemma 4.2 If X is a finite subset of W,  f E Aut(W) and w E pl(X U f X) then them am 

g E Aut(W/X) and h E Aut(W/w) such that f = hg. In particular, h and f fix the same 

elements of X. 

Proof: Since w E p[ f X  we have f -'w E p i x ,  so w and f -'w are in the same type over X. 

Thus we can find g E Aut(W/X) mapping f-lw to w, so that h = fg-I E Aut(W/w). 0 

So there is clearly only one possible way to extend (&, : (w, x) E R) to  a: 

Given 2, y E it' and f E Aut (W/z, y), choose v E {x, ?;) and w E pl {x, y, v, f v). 

By Lemma 4.2 we can find g E Aut(W/x, y, v-) ,and h E Aut(W/x, y, w) such that 

f = hg. Then we define 

Note that  the  maps $,,,, 4w,y, h,,, are b e a d y  known, since (w, x), (w, Y), (v, x), (v, Y) E 

R. 

Lemma 4.3 For each x, y E W, #x,y is well-defined. 
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Proof: We must show that the definition of & (  f )  does not depend on our choice of v, w, g, 

and h. Keeping v and w fixed, it is easy to see that the definition does not depend on g and 

h. For if we pick another pair g' E Aut(W/x, y, v), h' E Aut(W/tc, y, w) such that f = g'h', 

then the two definitions of ~ $ ~ , ~ ( f )  differ by 

Suppose now that we have another pair v' E p / {x, y) and w' E p I {x, y, v', f v' j .  

We can assume that (v', w'j "refines" (v, w), in the sense that v' E p I {x, y, v, w, f -'w) 

and w' E p I {x, y,v,w,v', fv, fv'); otherwise we just work with a common refinement 

v " ~ p 1  {x,y,v,w,v',w', f-'w, f - ' w ' ) a n d w " ~ p I  {x,y,v,w,v',w',~", fv, fv', fv"). Ifwe 

can use the same pair (g, h) with both (v, w) and (v', w') to define then we will get 

the same result, since the definitions will differ by ~w~,w(h)~w~,w(h)-l~u~,u(g)~v~,v(g)-l = 1. 

So we will be done if we can find g E Aut(W/x, y, v, v') and h E Aut(W/x, y, w, w') such 

that f = hg. Picking gl E Aut(W/z, y, v)~-,,,, we have v', g1v1 E p I {x, y, v, w), so we 

can find 92 E Aut(W/x, y, v, w) mapping glvl to  v'; hence w', g2gl f -'w' E p I {x, y, v, w, v') 

and there is some 93 E Aut(W/x, y, z,, w, v') mapping 92g1 f-'w' t o  w'. The maps g = 939291 

and h = fg-' have the required properties. 

Lemma 4.4 The system @ = (q5,,y : x, y E W) satisfies Proposition 3.2. 

Pmo5 Properties (i) and (ii) are easy to prove using the corresponding properties of (q5w,x : 

(w, x) E R). Assuming the maps #,,y are homomorphisms, it is also easy to  prove continuity. 

For given a sequence (fn) in Aut(W/x, y) with limit lw and an element w E p I {x, y), 

eventually jn E Aut(W/x, y, w), so by Property (ii) and the continuity of 4w,x and c$,,~, 

&,,(fzx) = 4w,r(fn)-14w,y(fn) has limit 1. 

The hard part is showing that the maps +x,y are homomorphisms. Fix x, y E W and let 

f i ,  f2 E Aut(W/x, y). 1% must show that 4x,y(f2fi) = r$,,y(f2)$x,y(fl). We consider two 

cases. 
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Choose gl,g2 E Aut(W/x,y,v) and hi ,  ha E Aut(U7/x, y, W) such that fi = higi, i = 1.2. 

We can do this in such a way that 9;' f2 fixes w. For if we pick gi E Aut(W/z, y, v) map- 

ping fL1w to w then ghw, f2w E p I {o, y,v,w), so there is some E Aut(E7/z,y, v , w )  

mapping gbw to f2w, and 92 = g;g;, ha = f2gz1 have the required properties. Since 

But we aheady know that  @ satisfies Property (i) of Proposition 3.2, so 4,,y(f2)4z,y( f l )  = 

4x,,(f2fl)- 

Case 2. Otherwise. 

The second step is t o  extend iP t o  an extended conjugate system (a, 9) for (W, K). Using 

the properties of Proposition 3.3 we c m  again see that there is only one possibility for the 

maps 'firw,,>y,z. For if u E p j {w,z, y , ~ )  then (assuming tp(w, y) = tp(w, 2) and ~ P ( x , Y )  = 

tp(x,z)) we can h d  s E A ~ t ( W / w , u ) ~ ,  and t E Aut(W/x,~)~,, ,  90  that $w,x,u,z is 

completely determined from @ by applying Properties (ii), (v) and (vii) to $w,X,,, ,  (3, t ) .  
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More precisely, we have the following definition: 

Lemma 4.5 Fbr each w: z,y: z E W ,  &,z,y,, is well-defined and wntznuous. 

Proof: It is easy to see that the definition of q3w,,,y,z(f,g) does not depend on our choice 

of s and t, provided v is fixed. On the other hand, given another ut E p I {w, x, y, z )  and 

a map k E Aut (W/w, s, y:  zj,,,,, let s' = k-'sk and t' = k-ltk; then a simple calculation 

shows that we get the same result for @w,,,y,r(f , 9) whether we use ut, st, t' or u, s,  t in the 

definition. 

Continuity is obvious since z+bw:,,y,z is a product of continuous maps. (Note that we 

can use the same u,s , t  to define .J.lw,l,y.L(f,g) for every pair f E Aut(W/w),,,, g E 

A ~ t ( w x ) ~ : . )  0 

Lemma 4.6 The system !I? = {@w,z,y,z : w, Z, y, z E W) satisfies Properties (2)-(ix) of 

Proposition 3.3. 

Proof: The proofs of (ii) and (vi) are trivial. Properties (vii) and (viii) are clear since we can 

pick s = t in the definitions of +w,,y,y (f , g) and &,,s,y,z (f, f ), respectively, and Property (v) 

is clear since we can use the same u E p 1 {w, x, yl, 21, y2,22}, s E Aut(W/w, u) ylctzl, yzrz2 

f E A u t ( i l ' l ~ . " ) ~ ~ , + ~  l,mctz2 define both dW,Z,Y1,Zl ( f  7 g) and +w,l,yz,z2 (f 9). If we use 

u. s1. s2 to define &l,~2,y,l(ff. f2). u. s2, s3 to define q3,,,v3,y,z(fi, j3) and u, sl, ss to define 

t.;., .1.3.y,- (fir fsj- where u E p I {al, m, ~ 3 %  y, t) and si E Aut(W/vt, u)~,, for 1 < i I 3, 

thttxx (iii) is obvio~s. SLx!dy3-' (iv) is obvious if we use u, sl, tl to define $+,,,,y,z(fl, gl), 

t t .  SZ. f2 to define ww.zs,t.f f2. a) and u, ~ 2 ~ 1 ,  t2tl to define q!~,,,,~,~(f2 fi, gzgl), where u E 

p i (w.x.~. i. r ) ,  sl E A u t ( R ' / ~ . u ) ~ , ,  tl E Aut(W/x, u),,, sz E Aut(W/w, u),,, and 

t2 E Aut (Hr/z. u)~,,.  This leaves to be proved Properties (i) and (ix). 

For (i) let f E A u t ( i % - ~ ~ ! ) ~ ,  and g E Aut (W/x),, , and suppose k-' h E Aut ( W/ y , z )  ; 

we want to show that  ~ ~ ~ ~ ~ , ~ + ( h f h - ' ,  kgk-' ) = lCl,,,,y,,( f ,  g)4y,z (k-'h). The proof is 
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divided into three cases. 

Case 1. k = h. 

Let u E p 1 {M, hw, x: y: z). Then by Lemma 4.2 we can find ht E Aut(W/w, y, z) 

and hz E Aut(W/y,t,u) such that h = h2hl. Next pick s E A u t ( W / ~ , u ) ~ + + ~  and 

t E Aut (W/I ,  u),, and let sf = h2sh;' E Aut(W-/hw, u) y,+,. Then 

Case 3. Otherwise. 

By Cases 1 and 2, 

as required. 
I It remains to  prove (ix). So suppose x: z?i; wi, wb, yi, yi7 fi, gi , 9:; b, hi (1 < i < 4) satisfy 

the given hypotheses. Then we can choose u E p I {x, vi, wi, w:, yi, yi : 1 _< i < 4)  and 

ki E Aut(W/~i? u),,,_~,+.+~+~ ~i E Aut(W/wi 7 u)2++yi 7 ti E A~ t (W/wi :u )~+ .+~ ,+ , :  3: E 

Aut (W/~i ,  u ) -~ ,  < E Aut(w/w:, - Using U, ki, ti to define $v,,w,,v;,vj, 1 (fi, hi), 

a, tisi, si+l to define @~z,~l_ls,y,+L (hgir gi+l): U. kii 6 to define $v;,w~y:,g~, , (.fi, hi), and 
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and similarly, 

We have accomplished our goal. 

Theorem 4.7 If W i s  a transitive s tmckre  with a strong type p and associated 2-type R 

then given a finite abelian group K ,  every conjugate system for (W, K, R) has a unique 

extension to an extended conjugate system for (W, K ) .  
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Using the obvious definitions of degeneracy and full non-degeneracy for conjugate sys- 

tems (as in Definition 3.21), it is clear that a conjugate system for (W, K, R) is fully non- 

degenerate if and only if its unique extension to an extended conjugate system for (W, K) is 

fully non-degenerate. So in the present context, the results of Chapter 3 simplify as follows. 

Corollary 4.8 Let W be a transitive structure with a strong type p and associated 2-type 

R, and let K be a finite abelian group. Then there is  a one-to-one correspondence between 

conjugate systems f o r  (W, K, R) and transitive, untwisted, superlinked finite covers of W 

with central kernel K .  Further, such a cover is irreducible i f  and only if its corresponding 

conjugate system is fully non-degenerate. 
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