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Abstract

We investigate the structure of transitive, untwisted, superlinked finite covers whose kernels
are central in their automorphism groups. We introduce the concept of an extended conju-
gate system for a pair (W, K'), where W is a permutation structure and K is a finite abelian
group. This concept allows us to characterize the given class of finite covers for structures
W which satisfy a fairly general condition; further, the irreducibility of such a cover is
equivalent to a simple condition on a corresponding extended conjugate system. Finally, we

consider structures with strong types, for which there is a much simpler characterization.
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Chapter 1

Introduction

Among the topics currently attracting much interest from model theorists is the investi-
gation of covers of countable Ro-categorical structures. The main reason for this interest
is the connection between covers and the programme of cataloguing all countable totally
categorical structures. Zil'ber’s Ladder Theorem ([8, Theorem 7.2]) tells us that any such
structure is built up from a strictly minimal set by a finite sequence of finite and affine
covers; so to complete the programme, what is needed is a better understanding of covers.

Our focus will be on finite covers. Intuitively, a finite cover of a structure W is obtained in
two steps. First we replace each element of W with a finite set, producing a free cover (whose
only relations are those inherited from W). Next we expand the free cover by (possibly)
adding new relations which induce no new structure on W. The general problem, one which
seems quite difficult, is to describe completely the finite covers of a given structure.

A few specific examples have been studied in detail, most notably the case where W is
the projective space of the countably infinite dimensional vector space over the field of size
two (see |1, 9]). The general situation is somewhat reduced in [4, 5, 6] by decomposing finite
covers into simpler ones. Furthermore, both Ivanov [{10] and Evans [4, 5] have made progress
using a notion of universal cover: the former classifies finite covers of highly homogeneous
structures, and the latter considers structures which have a so-called graphic triple of types.
Yet in spite of this work, much more must be done to bring the complete solution within
reach.

In this thesis we take another nibble. We concentrate on finite covers that are transitive
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and untwisted, with finite central kernels. The definitions of these properties are given in
Chapter 2, along with thz formal definition of a finite cover. Since the structures of interest.
are Ng-categorical, we prefer to think in terms of permutation groups.

In Chapter 3 we present the crucial tool for our investigation, the extended conjugate
system. This idea is really just an extension of the conjugate systems that Evans studies
in the context of locally transitive finite covers (see [5]). Under a fairly general assump-
tion on W, we show that every transitive, untwisted finite cover of W with finite central
kernel is uniquely determined by its extended conjugate system. Futhermore, we present a
condition on the extended conjugate system which is equivalent to the irreducibility of the
corresponding cover.

We add a stronger assumption on W in the final chapter, namely that W has a strong
type. In this situation, every extended conjugate system is determined uniquely by a small
part of itself, the conjugate system as defined by Evans. Applying this to the material in
Chapter 3, we get a slight improvemert of Evans’ result in [5].

Although the presentation is fairly self-contained, it is assumed that the reader is well-
versed in the usual model-theoretic concepts, for example those found in [3]. In addition,
knowledge of the basic concepts of general topology and permutation group theory would
certainly be an asset.

As for notation, we use the capital Roman letters W and M both for structures and
their bases; the context will clarify this ambiguity. Other sets are assigned the letters X or
Y. The set of n-tuples and the set of finite sequences of elements from X are denoted by
X™ and X<“ respectively, and £(X) denotes the power set of X. We reserve the letters
G and H for groups, all of which will be permutation groups. Finally, Sym(X) denotes
the symmetric group on the set X, and Aut(W) denotes the automorphism group of the
structure W. Remaining notation will be defined as we go along.

This thesis owes a particular debt to the work of Evans [4, 5], which supplied both the
background and the inspiration.



Chapter 2

Background

Our aim in this chapter is to transform the intuition behind the concept of a finite cover
into a formal definition. It should be clear that when we speak of a structure W, we are
not interested in any particular language; what concern us are the relations on W that are
0-definable. When W is Rg-categorical, these are exactly the relations that are invariant
under Aut(W) (see [7, Corollary 7.3.4]). So we want our definition to express a relationship
between automorphism groups. This definition will be given in Section 2.2.

First we review some well-known results about permutation groups.

2.1 Permutation Groups and Structures

A permutation group G on a set X is just a subgroup of the symmetric group Sym(X).
Such a group naturally partitions X into orbits: the G-orbit of a point £ € X is the set
[x] = {9z : ¢ € G}. We say that G is iransitive on X if it has only one orbit, and regular on
X if in addition no g € G\ {1x} has a fixed point in X. The stabilizer in G of aset Y C X
is the subgroup Gy = {g € G : Vy € Y(9y = y)}; when G = Sym(X), we use the notation
Sym(X/Y) for this stabilizer.
More generally, if H is any group acting on X via a group homomorphism

n: H — Sym(X), we can similarly define the stabilizer in H of aset Y C X and the H-orbit
of a point x € X. H acts transitively (resp. regularly) if its image under 7 is transitive

(resp. regular) on X. The action is faithful if 7 is injective.
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Note that any permutation group G on a set X has a natural action on X", given by
9(xo,-.. ,Tn-1) = (9Z0,-.. .gTn—1) for g € G, zg,... ,zp-1 € X. Similarly, G has a natural
action on (X), given by g¥ = {gy: y € Y} forg € G, Y C X. When we speak of G acting
on these sets, we always refer to the natural actions.

There is a standard topology on Sym(X), defined in terms of its stabilizers. We take as
a basis of open sets all cosets of stabilizers of finite tuples from X, i.e. the sets g - Sym(.X/a),
where g € Sym(X), aeX <. One of the useful features of this topology is that it picks out

the automorphism groups of first-order structures on X.

Proposition 2.1 (i) A sequence {f,) converges to f in Sym(X) if and only if for any
z € X, fox = fz for all sufficiently large n, ie: (f,) converges pointwise to f.
(ii) Sym(X ) is a Polish group, ie: a separable completely metrizable topological group.
(iii) A subgroup of Sym(X ) is closed if and only if it is the automorphism group of some

first-order structure on X.

Proof: (1) If (f,) converges to f in Sym(X) then for any z € X, f-Sym(X/z) is an open
neighborhood of f, so eventually f, € f-Sym(X/z); that is, foz = fx for all sufficiently
large n.

Conversely, suppose {f,) converges pointwise to f. Given any open neighborhood U
of f, there is some @ € X<“ such that f-Sym(X/a) C U. But since @ has finite length,
fr@ = fa for all sufficiently large n. So f, € f - Sym(X/a) C U for large n.

(ii) Using (i) it is easy to show that Sym(X) is a topological group. We get a countable
dense subset by choosing for each pair @,b € X< of the same length a permutation 9ai €
Sym(X) which maps @ to b. Finally, if we enumerate X as zg,z],..., we can derive the

given topology on Sym(X) from the following complete metric:

0, ifg=~h

d(97 h) = i
1/2%, if i is minimal such that gx; # hz; or gz, £ b,

(iii) This is (2.6) from [2]. I

We have already observed that the automorphism group tells us all we need to know
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about an Ng-categorical structure. Now we know which permutation groups are indeed au-
tomorphism groups. Stripping away the extraneous information, we are led to the following

definition, due to Evans [5]

H

Definition 2.2 A permutation structure is a pair (W, G), where W is a non-empty set and
G is a closed subgroup of Sym(W). W is called the base and G is called the automorphism
aroup of the permutation structure. The structure is irreducible if its automorphism group
has no proper closed subgroups of finite index. In practice, we will denote the automorphism

group by Aut(W), and we will refer to the permutation structure simply as W.

By the Ryll-Nardzewski Theorem [7, Theorem 7.3.1], a first-order structure is
No-categorical exactly when its automorphism group has only finitely many orbits on n-
tuples, for each n € w. Thus, it makes sense to define Ng-categoricity of permutation
structures. Although the assumption of Np-categoricity is needed to guarantee that a per-
mutation structure corresponds to a unique (up to interdefinability) first-order structure, we
will not make this assumption unless explicitly stated. We do, however, assume the count-
ahility of all permutation structures (i.e. the base is always assumed to have cardinality
Ng).

Given a permutation structure W, a subset X C W, and a set Y on which Aut(W) acts,
we denote by Aut(X/Y') the group of permutations of X which extend to automorphisms
of W fixing Y pointwise. In particular, Aut(W/Y) is the stabilizer of Y in Aut(W). For
a finite sequence Yi,...,Y, we write Aut(W/Yy,...,Yn) = N, Aut(W/Y;), and for a
singleton {y} we write Aut(W/y) = Aut(W/{y}). If X is a finite subset of W, an n-type
over X in W is an Aut(W/X)-orbit on W". When W is Ry-categorical, this corresponds to
the set of realizations of a model-theoretic n-type over X in W (see [7, Corollary 7.3.3]).

2.2 Finite Covers

Adding new relations to an Rg-categorical structure corresponds to passing to a proper closed
subgroup of its automorphism group. So it should be clear how to express the concept of

finite cover in the context of permutation structures. Again we take the definition from [5].
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Definition 2.3 A finite cover of the permutation structure W consists of a permutation

structure M together with a finite-to-one surjection 7 : M — W such that
(i) the fibres M(w) = n~(w), w € W, form an Aut(M )-invariant partition of M;

(ii) the induced restriction map p : Aut(M) — Sym(W), given by p(g)w = n(gn~!(w))
for g € Aut(M), w € W, has image Aut(W).

When f € Aut(W) and ¢ € Aut(M) are such that p(g) = f, we say that f is the restriction
of g to W, and ¢ is an extension of f.

The kernel of a finite cover 7w : M — W is just the kernel Aut(M /W) of the correspond-
ing restriction map p. If this is finite, the cover is superlinked; if it is trivial, the cover is
trivial. Given w € W, we call Aut(M(w)/w) the fibre group above w and Aut(M(w)/W)
the binding group above w. Note that the binding group is always a normal subgroup of
the fibre group; the cover is untwisted if, for all w € W, the fibre group is the same as the
binding group. A transversal of the cover is a map a : W — M such that a(z) € M(z) for
eachzc W.

Example 2.4 A vector space covering its projective space provides an easy illustration of
these concepts. Explicitly, consider an Np-dimensional vector space V over a finite field
F,, remove the origin to get M = V' \ {0}, and let W be the corresponding projective
space consisting of the 1-dimensional subspaces of V. For the automorphism groups we set
Aut(M) = GL(V), the group of all non-singular linear transformations of V, and Aut(W) =
PGL(V), the quotient of GL(V') by its center. Mapping each non-zero vector to the subspace
that it spans produces a finite cover w : M — W with fibres of size ¢ — 1. The kernel, the
fibre groups and the binding groups are all isomorphic to Fy, the multiplicative group of
F,. In particular, this cover is both superlinked and untwisted.

We end this section with three easy lemmas that appeared in [5]. They will be useful
in Chapter 3, when we restrict our attention to finite covers that are transitive, untwisted,

and superlinked.

Lemma 2.5 The kernel of any irreducible, superlinked finite cover m: M — W is central
in Aut(M ).
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Proof: Let K be the kernel of the cover, and let N be the centralizer of K in Aut(M). We
want to show that N = Aut(M). Now N is the kernel of the natural group homomorphism

F: Aut(M) — Aut(K) which sends g € Aut(M) to the map
hw ghg™! (h€K).

So N has finite index in Aut(M), since Aut(M)/N is isomorphic to the (finite) image of F.
It is easy to see that N is closed: it contains the limit of each of its convergent sequences.

The irreducibility assumption now implies that N = Aut(M). O

Lemma 2.6 Suppose w : M — W 1is a transitive finite cover with central kernel. Then

Aut(M/a,W ) is trivial for any a € M.

In particular, if # : M — W is an untwisted, transitive finite cover with central kernel
K, then K acts faithfully and regularly on each fibre. Furthermore, given w € W, each
f € Aut(W/w) has a unique extension in Aut(M/M(w)).

The third and final result of this section uses the fact that the restriction map of any

finite cover is closed and continuous (see [5, Lemma 1.1]).

-

Lemma 2.7 If Aut(W/w) is irreducible for each w € W then every finite cover of W is

untwisted.



Chapter 3

Main Results

From now on we concentrate exclusively on finite covers that are transitive, untwisted and
superlinked, with central kernels. Part of the motivation for studying this class of covers
comes from the following conjecture, which appeared in [5]. Here, Aut®(W/X) denotes the
intersection of the closed subgroups of finite index in Aut(W/X), where X is a finite subset

of the structure W.

Conjecture 3.1 Let W be a countable, irreducible Wy-categorical structure, and suppose
that for every finite X C W, Aut®(W/X) is of finite index in Aut(W/X ). Then there is
a natural number r such that the kernel of any irreducible superlinked finite cover of W 1is

generated by a set of size no greater than r.

We know that the kernel of any irreducible superlinked finite cover = : M — W is central;
further, if W is transitive then by passing to an Aut(M)-orbit on M we can always find
a transitive irreducible finite cover of W with the same kernel as 7. So at least when the
stabilizer in Aut(W) of an element of W is irreducible, the situation reduces to determining
the possible finite central kernels of transitive, untwisted finite covers.

We will obtain a partial answer to the conjecture, for W such that
(Vz,y,2z € W)(3w € W)(tp(w, z) = tp(w, y) = tp(w, 2)), (3.1)

where tp(u,v) denotes the 2-type of (u,v) € W2 over the empty set, i.e. the Aut(W)-orbit

of (u,v). In the process, we will characterize the transitive, untwisted, superlinked finite
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covers (with central kernels) of such structures W.

3.1 Extended Conjugate Systems

Let W be a transitive permutation structure, and suppose that 7 : M — W is an untwisted,
transitive, superlinked finite cover with central kernel K. By Lemma 2.6, any automorphism
f of W which fixes a point z € W has a unique extension fe Aut(M) fixing the fibre M(z)
pointwise. If f also fixes y € W then there is a unique € K with the same action on M (y)

as f As in [5, Section 3.2}, this defines for each pair (z,y) € W2 a map
Ozy s Aut(W/z,y) - K
with the following properties.
Proposition 3.2 The maps ¢, are continuous homomorphisms satisfying:
(i) i f € Aut(W/z,y) and g € Aut(W) then ¢gz,0y(9f9™") = ¢ay(f);
(i) if f € Aut(W/z,y, z) then ¢oy(f)by:(f) = ba,(f)-

Proof: Given z,y € W and f,g € Aut(W/z,y), let fand g be the unique extensions of f
and g in Aut(M/M(z)), so that fg acts on M(y) as &zy(f)bzy(g). But Fg € Aut(M/M(z))
extends fg, hence acts on M(y) as ¢z y(fg). So ¢zy(f9) = Gzy(f)Pzy(g), and ¢z is a
homomorphism.

Next suppose f € Aut(W/x,y) and g € Aut(W) have extensions f € Aut(M/M(z)) and
g € Aut(M). Then §f§~! € Aut(M/M(gz)) extends gfg~", and so has the same action as
Ggz,0u(9fg71) on M(gy). It follows that ¢yz gy(9f9™1) = G2y ()T = ¢y (f), since K is
central in Aut(M). This proves (i).

For (ii), suppose f € Aut(W/x,y, z) has extension f € Aut(M/M(z)). Then
qbz,y(f)”lfe Aut(M/M(y)) also extends f, hence acts on M(z) as ¢y, .(f). So f acts on
M(z) as both ¢ y(f)dy,-(f) and ¢, .(f), and the result follows.

It remains to prove continuity. For this, we need only show that the kernel of Ory is
closed. So consider any sequence (f,) € Ker ¢z, with limit f. Let fn € Aut(M/M(z))

extend f, for each n, and enumerate W as wp,wi,.... Since for each m the sequence
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(fr(wm)) is eventually constant and the fibre M (w,,) is finite, we can find a chain of succes-
sive subsequences (ﬁ),n) D (ﬁ,n) 2. of (fAn) such that, for each m € w and a € M(wy,),
(fmn(a)) is a constant sequence. So (Fam) is a subsequence of (f,) converging to some
fe Aut(M/M(x), M(y)) which restricts to f. So we must have ¢, ,(f) =1, i.e. fisin the

kernel of ¢ 4. O

In some sense, the homomorphisms ¢, , tell us how the cover 7 : M — W behaves with
respect to pairs of points in W. But in general, we need more information to characterize
the cover.

Consider now any pair { f, g) of automorphisms of W, both mapping y to z, and suppose
f has fixed point w and g has fixed point . Again, f and g have unique extensions
fe Aut(M/M(w)) and g € Aut(M/M (z)). Since both f and § map the fibre above y onto
the fibre above z, their actions on M (y) must differ by a unique element of K.

So for each 4-tuple (w,z,y,2) € W* we get a map

PYw,zy,2 * Aut(W/w),, ., x Aut(W/z) — K,

Yz

where Aut(W/z),,,, denotes the coset of Aut(W/z,y) consisting of all f € Aut(W/z) such
that fy = z. Explicitly, ¥uwzy:(f,9) = @ € K if and only if @ and §~!f have the same
action on M(y), where fe Aut(M/M (w)) extends f and g € Aut(M/M(z)) extends g.
Using the product topology on Aut(W/w),, ,, x Aut(W/x)

is continuous; the proof is similar to the one given for the homomorphisms ¢ ;.

it is easy to show that 1y 1 4,2

Yz y—2?

Proposition 3.3 The continuous maps Y zy,. satisfy the following properties:

() i f € AwtW/w),,,, g € Aut(W/z),, ,, and k~'h € Aut(W/y,z) then
¢hw,kz,hy,hz(hfh-1, kgk_l) - 1/)w,z,y,z(fa g)¢y,z (k*lh):'

i) o f € Awt(W/w),,,, g € Awt(W/w),,,, h € Aut(W/w,y), and k € Aut(W/z,y)
then "/’w,z,y,Z(fh: gk) = "pw,z,y,z(f, g)¢w,y(h)¢’z,y (k)—l:'

(iﬁ) if fi c AUt(W/vi)yp—)z fO’I‘ 1 S i _<. 3 then 1/)v1,1)2,y,z(f1a f2)'l/)v2,v3,y,z(f27 f3) =
"/}vl,va,y,z(fl: f3);'
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(IV) "'ffl € AUt(W/w)sz) f2 € Aut(W/w)sz7 g1 € AUt(W/x)sz7 and g2 € Alu’t(W/m)zr—-)’u
then "/}w,z,y,z(fl 3 gl)d)w,z,z,v (f2’ 92) = ww,x,y,v(fol, 9291);

(V) sz E Aut(W/w)yp——)zlgyszz a'nd g E Aut(W/x)ylel,y2H22 then ¢'w,$,y2,22(fag) =
Yuw,zy,2 (F, 9)Pys w2 (971 f);

(VI) fo € AUt(W/w}yi—-)z and ) € Aut(w/m)yr——-)z then w’w,l‘,y,z(fv g)_—l = wm,w,y,z(gsf) =
"/}w,z,z,y(f—lyg—l);

(vil) if f € Aut(W/w,y) and g € Aut(W/z,y) then 'l,bw,m,y,y(f, g) = ¢w,y(f)¢z,y(9)~lf
(vili) if f € Aut(W/w, ), ,, then Yooy :(f, ) = uw(f);

(IX) ’l:f(l?,’Ul,... 2 V4, W1, ... 7w4’wia"' 77-051’?!1,--- 7y41yi>"' 7y£ € W and
fi € AUt(W/vi)yiHyi+1,y;'—>y;+1’gi € AUt(W/wi)z,_)yiahi € Aut(W/wi)yiHyi+l,g§ S
Aut(W/w))y s bi € Awt(W/w))y, ., ~for 1 < i < 4 (where ys = y1, y5 = 1,

g5 = g1, and gt = g1 ), then

4 4
H ¢Uiywi,yiyyi+1 (fu h‘i) ' H 'wwi,wiu,x,yiﬂ (higia gi-i-l) =

=1 =1

4 4
/ IV
H¢vi,w2,y;,y;+1 (fia hi) : H ww;,w£+1,m,y;+1 (higia gi+1)7

i=1 =1

orovided fifsfafi = lw.

Proof: We will prove only (i),(ii),(iv), and (ix); the rest are easy.

Suppose f, g, h, k satisfy the hypotheses of (i). Let fe Aut(M/M(w)) and
§ € Aut(M/M(z)) extend f and g, let h,k € Aut(M) be extensions of h and k such
that £~k € Aut(M/M(y)), and write @ = Yhy ke hyhe(AfRL, kgk™). Then hfh™' €
Aut(M/M(hw)) extends hfh™! and kgk— e Aut(M/M (kz)) extends kgk™1, so
Efq\‘lic\”lli;ﬁz_l acts on M (hy) as a. Conjugating by %, we see that Q\‘l/l;'lfzfacts on M(y) as
o (since 'k fixes M (y) pointwise). Conjugating now by g1, it follows that k~1hfg! acts
on M(z) as a. But %1k acts on M (z) as ¢y .(k1h), so f?l acts on M (z) as ¢y, (k™ h) ey,
and g1 f acts on M(y) as ¢, (k7 h)la. Thus, @ = Yy :(f, 9)¢y,-(k~1R), proving (i).
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Next suppose f, g, h, k satisfy the hypotheses of (ii), and let f € Aut(M/M(w)), g €
Auwt(M/M(z)), h € Aut(M/M(w)), and k € Aut(M/M(z)) extend f,g,k, and k, respec-
tively. Then E‘lﬁlﬁz acts on M(y) as y,¢y .(fh, gk), hence so does G- 1Fhk!, since
k fixes y. The result follows, since g~'f and hk~' act on M (¥) as Yuzy,:(f,9) and
buw,y(R)bey (k)" respectively.

For (iv), suppose fi, f2,91, g2 satisfy the hypotheses, and let ﬁ € Aut(M/M(w)) and
9; € Aut(M/M(z)) extend f; and g; (1 = 1,2). Then 'g}_lfz acts on M (2) as ¢y ¢ 2 0(f2, g2)
and ﬁ maps M (y) onto M(z), so (§2§1)_1(f’;]?1 = ﬁl(ﬁglﬁ)ﬁ acts on M(y) as
¢w,z,2,v(f2192)§11?1a which in turn acts on M(y) as Yuw z,z0(f2, 92)Vw zy,z(f1,91)- Since
faf1 € Aut(M/M(w)) extends fpf; and Gogi € Aut(M/M(z)) extends gogi, we thus have
Yw,zyo(fof1,9201) = Yw,ay,(F1, 91 )Vwz,20(f2, 92).

Finally, assume the hypotheses of (ix), and for 1 < i < 4 write a; = Yy, w, i yiy: (fir i),
Bi = Ywiwisr,zyics (Rigis git1), O = wvi,wé,yé,y£+1(fi’h;)7 and 3, = ¢1u;,w1’;+l,a:,y£+1(h’;g;)g;-}.l))
and let f;, gi, hs, g}, h, have extensions f; € Aut(M/M(v;)), gi,hi € Aut(M/M(w;)) and
;]\’i,l’{’i € Aut(M/M(w))), respectively. Then for each ¢, 'g\;'_l_llli;,@ acts on M(z) as (3,
SO ’gﬁlﬁia{g} acts on M(z) as o;0;. But «; and /ﬁz—lﬁ have the same action on M(y;),
and g; maps M(z) onto M(y;), so 'g;;ll’l\zia{g} and @Tﬁﬁ,ﬁ:ﬁ;@ have the same action on
M(z). Thus, 2774-11 ﬁ’g} acts as @;8; on M(z). Multiplying these factors together shows that
Z]‘flﬁﬁﬁﬁﬁl and H?zl «;f3; have the same action on M(z), so ﬁ;ﬁ;ﬁfl acts on M(y1)
as [[i; @i [I—, Bi- Similarly, fufsfaFr acts on M(y}) as [T, @i [T, Bi- So we get the
desired result by noticing that fyfsfaf1 isin K. O

Propositions 3.2 and 3.3 motivate the following definition.

Definition 3.4 Let W be a transitive permutation structure and let K be a finite abelian
group (with discrete topology). An eztended conjugate system for (W, K) is a pair (&, W)
such that

o &= {(¢;y:z,y € W) is a system of continuous homomorphisms ¢, : Aut(W/z,y) -

K satisfying Properties (i) and (ii) of Proposition 3.2;

oV = (Pyzy,:w,z,Y,z € W)isasystem of continuous maps Y,z 4,2 : Aut(W/w)szx

Aut(W/z), .. — K satisfying Properties (i) through (ix) of Proposition 3.3.

y—z
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The extended conjugate system corresponding to a transitive, unitwisted, superlinked finite

cover m: M — W (with central kernel) is calied its associated extended conjugate system.

Note that we can rewrite the properties in Proposition 3.3 in terms of ¥ alone, for
example by using ¥z z4,(f,1w) in place of ¢, ,(f). Then given ¥ we can recover ® by
defining ¢ y(f) = Yz,2yy(f,1w). So the ® in this definition is somewhat redundant. We
include it for two reasons: first, for notaticnal simplicity, and second, to show explicitly the
connection between this concept of an extended conjugate system and Evans’ concept of a
conjugate system in [5].

Compared with the others, Property (ix) of Proposition 3.3 at first seems rather com-
plicated. In the context of a transitive, untwisted, superlinked finite cover 7 : M — W with
central kernel K, it says that if f € Aut(M/W) is a product of automorphisms of M, each
pointwise fixing some fibre of 7, then facts as the same element of K on every fibre. Since
Aut(M/W) = K, this is trivially the case (in fact, property (ix) is true for every m € w, not
just for m = 4). In the next section, where we construct a transitive, untwisted, superlinked
finite cover from a given extended conjugate system for (W, K), we will need Property (ix)

to guarantee that K is indeed the kernel (cf. Lemma 3.15).

3.2 The Characterization

In the previous section we showed how to associate an extended conjugate system with
any transitive, untwisted, superlinked finite cover with central kernel. For structures W
satisfying (3.1), there is a converse result. That is, given any extended conjugate system
(®, ¥) for (W, K), where K is finite abelian, there is a unique (up to isomorphism) transitive,
untwisted, superlinked finite cover m : M — W with central kernel K and associated
extended conjugate system (@, ¥). We begin with the uniqueness assertion.

First we need to define the concept of an isomorphism between finite covers of a struc-
ture W. We say that permutation structures M and M’ are isomorphic if there is a bijec-
tion p : M — M’ which carries Aut(M) to Aut(M’), in the sense that the induced map
A : Aut(M) — Sym(M’) defined by A(f) = ufu~! for f € Aut(M) is a group isomorphism
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between Aut(M) and Aut(M’). The pair (p, ) is called a permutation structure isomor-
phism; since A is induced by p, we will often refer to such an isomorphism simply as p. An
isomorphism of finite covers m : M — W and #' : M’ — W is a permutation structure
isomorphism u : M — M’ such that «'y = =.

Now fix W satisfying (3.1) and suppose 7 : M — W and «' : M’ — W are transitive,
untwisted, superlinked finite covers with the same central kernel and the same associated
extended conjugate system. Formally, we assume that there is an isomorphism 7 from the
kernel K of 7 to the kernel K’ of ' such that ¢4, ,,, , = M ¢,y,. and ¢y, = 1¢z y for every
w,z,y,2 € W, where (&, %) = (foy), (buzgss)) and (&, 7) = ((#h,), (W ay,.)) are the
extended conjugate systems associated with m and 7', respectively. We want to construct
an isomorphism (g, A) between these covers such that A extends 7.

Note that if such an isomorphism exists, then for any a € K we have ua = n(a)u. Since
K acts regularly on each fibre in M, u will therefore be completely determined if we know
how it maps a single point in each fibre. Fixing transversalsa : W — M and o’ : W — M’
we will construct g by determining u(a(x)) for every z € W.

For any fixed z € W, we should be able to find an isomorphism p = p, which maps a(z)

to a/(z). In fact, if it exists, pu, is uniquely determined as follows:

Given y € W, pick w € W such that tp(w, z) = tp(w, y) and pick f € Aut(W/w)
such that fz = y. Let € Aut(M/M(w)) and f € Aut(M’/M'(w)) extend f,
and let 8 € K be such that fa(:r) = Ba(y). Then we define

pz(a(y)) = n(B) " fd' ().

It is easy to see why we must define p.(a(y)) this way. For if p, does exist, then umfp; ! also
extends f and fixes M’(w) pointwise, so we must have pgfus! = f, and thus p.(a(y)) =
fuzf—la(y) = fpzﬁ‘la(z) = n(ﬂ)“lfa' (z). We claim that p, is indeed an isomorphism.

Lemma 3.5 For any z € W, p, is a well-defined bijection from M onto M.

Proof: We must show that the definition of p;(a(y)) does not depend on the choice of w € W
and f € Aut(W/w),,,,- The fact that p; is a bijection will then be obvious.
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So suppose we also have v € W and g € Aut(W/v),,,,. Let g € Aut(M/M(v)) and
g € Aut(M'/M'(v)) extend g, and let v € K be such that Ja(z) = va(y). Then G fa(z) =
'Y*lﬁa(x) 50 "/)v,w,z,y(f: g) = ’7—1ﬂ= hence ¢":,-,w,z,y(f1 g) = 77(7)—177(:8) 50 b'_lfal(m) =
n{~) " *n(B)d'(z). The result follows, since K’ is central in Aut{M’). O

Lemma 3.6 For any z,w € W and f € Aut(W/w), if f € Aut(M/M(w)) and f €
Aut(M' /M'(w)) extend f then pefusld (z) = fd'(z).

Proof: This is immediate from the definition of y;. O

Lemma 3.7 For any z,y € W there is some o € K such that p, = n{a)py. In particular,
if f € Aut(W) then pefuz' = pyfuy’.

Proof: Let a € K satisfy pga(y) = n(a)d’(y), and consider any z € W. Using (3.1) we
can find w € W such that tp(w,z) = tp(w,y) = tp(w, z); thus, there are automorphisms
f € Aut(W/w),,,, and g € Aut(W/w), ,,. As usual, let Fe Aut(M/M(w)) and f €
Aut(M'/M'(w)) extend f, let g € Aut(M/M(w)) and g € Aut(M'/M’'(w)) extend g, and
let 3,7 € K satisfy fa(z) = Ba(y) and ga(y) = va(z). Then fa'(a:) = n(a)n(B)a’ (y) and
9fa(z) = Bra(2), so pza(z) = n(B) 'n(y)'gfa'(z) = n(a)n(y) "G (y) = n(e)pya(z).
Since z € W was arbitrary, puz = n(a)p,. O

So the bijections u, all have the same induced map A : f»—) uzfu; 1. It remains to show
that A maps Aut(M) onto Aut(M’).

Lemma 3.8 Given f € Aut(W ) and w € W there are g,h € Aut(W) such that f = gh, g
fires w, and h fires someu € W.

Proof: Let v = f~lw and choose u satisfying tp(u,v) = tp(u,w). Then we can find

h € Aut(W/u) mapping v to w, so that g = fh™! € Aut(W/w). O

Lemma 3.9 For everyx € W, (i, A) is an isomorphism.
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Proof: We must show that A(f) € Aut(M’) whenever f € Aut(M), and that each f €
Aut(M’) is in the image of .

By the previous lemma, any ]? € Aut(M) can be written as a product 'g‘ﬁ, where g €
Aut(M/w) and he Aut(M/u) for some w,u € W, and any f € Aut(M’) can be written as
a product gh, where § € Aut(M’/w') and 1 € Aut(M'/u') for some w',u’ € W. It suffices
then to consider automorphisms which have a fixed point in W.

So suppose f € Aut(M/w), where w € W. Since there is some « € K such that af fixes
M(w) pointwise, and since A(af) = n{a)A( f), we can assume that f ¢ Aut(M /M (w)). Let
fe Aut(M’/M’(w)) have the same restriction to W as f. Then from what has already been
proved, )\(f)a'(y) = ,uyf,u;la’(y) = fa'(y) for every y € W, and so /\(f) =fe Aut(M).

Similarly, if f € Aut(M’ /w) acts on M'(w) as n(c), then f = )\(f), where f € Aut(M/w)

has the same restriction to W as f and acts on M (w) as . O

We have proved the following result.

Theorem 3.10 Let W be any permutation structure satisfying Property (3.1). Then every
transitive, untwisted, superlinked finite cover of W with central kernel is determined up to
isomorphism by its associated extended conjugate system. That is, if m : M — W and
7' : M' - W are transitive, untwisted, superlinked finite covers of W with central kernels K
and K' and associated estended conjugate systems ((¢zy), (Yw,zy,2)) and (($y), (¥iy 2y o))
respectively, and if there is an isomorphismn : K — K' such that ¢, , = ¢z and ¢y, o, =
Mw,z,y,z for dlw, z,y,z € W, then there is an isomorphism of finite covers (u, A) : M — M’
such that \ extends 1.

Example 3.11 Let W be the countable, homogeneous local order. So W has base (JN|0, 27)

and a single binary relation R defined by:
zRyifandonlyif 0<y—z<7mor0< (y+27) —z <.

Given any finite cyclic group K of order n, following [4, Chapter 5] we get a transitive,
untwisted, superlinked finite cover 7 : M — W with central kernel K and trivial extended
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conjugate system by setting

M = U N [0,2m)) + 2kx]
k=0

and

7(q+ 2kn) =qfor g€ QN [0,27),0 < k < n,

where the structure on M consists of a single binary relation R’ defined by:
zRyifandonlyif 0<y—z<mor0< (y+2nm)—z <.

On the other hand, there is another obvious transitive, untwisted, superlinked finite cover of
W with central kernel K and trivial extended conjugate system: its base is W x K and its
automorphism group is Aut(W) x K, where K acts on itself by left multiplication. Provided
n is at least two, these two covers are not isomorphic, since only the first is irreducible. So
the conclusion of Theorem 3.10 fails for this W. Of course, W does not satisfy (3.1), but
for any pair z,y € W there is a w € W such that tp(w, z) = tp(w, y).

Analyzing the proof of Theorem 3.10, we note that Property (3.1) is used only in the
proof of Lemma 3.7; for the rest it is enough to assume that for any z,y € W there is
some w € W such that tp(w, z) = tp(w,y). So with a little more work we get the following

corollary.

Corollary 3.12 Let W be a permutation structure with a finite number m cf 3-types, and
suppose that for any x,y € W there is a w € W such that tp(w,z) = tp(w,y). If K is
a finite abelian group of order n then any extended conjugate system (®,¥) for (W,K) is
the associated system of at most (up to isomorphism) nm transitive, untwisted, superlinked

finite covers of W with central kernel K.

Proof: Consider any two transitive, untwisted, superlinked finite covers 7 : M — W and =’ :
M’ — W with central kernel K and associated extended conjugate system (®, ¥). (Formally
we should assume that the kernels of 7 and 7’ are isomorphic to K via isomorphisms which
send their associated systems to (@, ¥), but we prefer to keep notation as simple as possible.)

By the proof of the theorem, fixed transversals a : W — M and o’ : W — M’ provide us
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with bijections u, : M — M’ for each £ € W, which are isomorphisms provided Lemma 3.7
holds.

We can measure the extent to which Lemma 3.7 fails for 7 and n’ as an m-tuple of
elements of K. Given any triple (z,y,z) € W3, let v;,. € K be such that p,a(z) =
Vz,y,2080 (2), where pra(y) = ad/(y) and pya(z) = Ba'(z). An easy (but very tedious)
calculation shows that v, 4 . depends only on the 3-type of the triple (z,y,2), i.e. vsz ry 1= =
Yz,y,z for any f € Aut(W). So with each 3-type in W we have associated an element of K.
Since W has exactly m 3-types, this associates with = and 7’ an m-tuple of elements of K,
which is the identity in K™ if and only if Lemma 3.7 holds.

Now suppose we have nm-+1 transitive, untwisted, superlinked finite covers m; : M; — W
(0 < j £ nm) with central kernel K and associated extended conjugate system (®, ¥), and
fix transversals a; : W — M;. We must find j # k such that 7; and m are isomorphic. For
any pair (i,7) we get bijections bl s M; - M and a corresponding m-tuple ¥ € K™. It
is enough to show that %% = f‘yj’kﬁi’j whenever 0 < i, j,k < nm; then since K™ has only
nm elements, there are j,k such that 0 < j < k < nm and 3% = 3%7, hence 49* is the
identity and each p,g;k (x € W) is an isomorphism.

Let z,y € W and pick w € W and f € Aut(W/w),,,,. For eachilet fie Aut(M;/M;(x))
extend f and let ]aai(m) = 8;a;(y), where §; € K. If 0 < 4,7,k < nm then

WFuPaily) = pi*67! Paylz)
= 67'6;ul"a;(y)
= 67 fFar(z)
= pfai(y).
Since z and y were arbitrary, u,?;’kp,fgj = yi’k whenever x € W and 0 < 1¢,3,k < nm.
Now let z,y,z € W and for each i,j write p2/a;(y) = a®a;(y), Pl ai(z) = Bhia;(z)
and ufc’ja.;(z) = qi’g,,zai’jﬁi’jaj(z). For any 1, j, k we have o* = a3k and pEk = pikah

j’k i!j j’k i’j
j

since ,ué’k = uy ug’ and [l.—;;:k = py My, SO

pta(z) = pgpe(2)
= 7;',’§’Zaj,k ﬂj,k,.y;';’gl ’Zai'j B4 ay(z)

kA hd bk ghk
= Y2y Vay, 0 B ak(z),
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ik ik ij . - ik _ ik ;
hence 3y, = 12y, V< y..- But again z,y, z were arbitrary, so 3% = 57%5%J_ as required. [J

Turning now to the existence question, we again fix a permutation structure W satisfy-
ing Property (3.1), a finite abelian group K, and an extended conjugate system (@, %) =
({Pz,y) (Yw,zy,2)) for (W, K); we seek a transitive, untwisted, superlinked finite cover = :
M — W with central kernel K and associated conjugate system (&, ¥).

It is clear what we should use for the base of M and the map n. For we know that
K must act regularly and faithfully on each fibre of such a cover, so we just let M be the
disjoint union | |, ;- M(v), where for each v € W, M(v) is a set on which K acts regularly
and faithfully. Then K has an obvious action on M, so we can identify it with a subgroup
of Sym(M). What is not so obvious is how to construct the rest of Aut(M).

Let S = {J,cw Aut(W/v). Given f € S with fixed point v € W, there should be exactly
one f" in Aut(M) extending f and fixing M (v) pointwise. It will be enough to determine
each of these automorphisms ]?'“', since together with K they must generate all of Aut(M)
(by Lemma 3.8).

We will need a fixed reference point £ € W and a transversal functiona: W — M. In
addition, for each y € W we fix u,, € W such that tp(uy, z) = tp(uy,y) and ky € Aut(W/uy)
such that kyr = y, making sure that k; = 1w . Since there is not yet any structure on the
fibres of w, we should be able to demand that /kj;”a(z:) = a(y) for each y € W. Then there

is only one possible way to define extensions of the automorphisms in S:

Let f € S have fixed point v € W. Given y € W, let z = fy and choose w € W
such that tp(w, ) = tp(w.y, = tp(w, 2) and g,h € Aut(W/w) such that gz =y
and hy = z. Then for any a € K we define

ft (aa(y)) = ai’éé'v,w,ygz(f ) h)“f:"uy,w,:r,y(kya 9)"/)uz,w,z,z(kz; hg)-la(z).

Properties (iii) and (iv) of Proposition 3.3 guarantee that this definition does not depend
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on the choice of w, g and h: given another suitable triple w’, ¢’, h’, we have

Yo y,2 (> B Yy oy (Rys 6 Vo, o, (Bzs B g
= w'v,w,y,z (fa h)"!;'w,w’,y,z (h: hl)] hbuy,w,m,y(kyv g)¢’w,w',m,y (Qa gl)}
[ w2,z (K R .2 (hg, B g")])
= [Wrwpe(f W)Vuyw2y(ky, 9)%u, w0,:(kz hg) 7]
(w2 (s B Vs 2,595 Vw22 (hg, B g') 71
= Yowy(f, Vuy,wzy(ky 9w,k hg)

Lemma 3.13 For anyv € W and f € Aut(W/v), f” is a well-defined permutation of M
which preserves the partition of M into fibres, restricts to f on W, commutes with every

element of K, and fizes the fibre M(v) pointwise.

Proof: To see that f" fixes M (v) pointwise, choose w € W such that tp(w,z) = tp(w,v)
and g € Aut(W/w) such that gz = v, and let h = 1y. Then since ¥y 4 0o(f,1w) =1 =
Yy w,2,0(Fvs )Wy w,2,0(kv, lwg) ™}, we have f”(aa(v)) = aa(v) for each a € K, as required.

The remaining assertions are obvious. [

Let G be the subgroup of Sym(M) generated by {f‘” :v € Wandf € Aut(W/v)} together
with K. Clearly every permutation in GG preserves the partition of M into fibres and restricts
to an automorphism of W, since this is true for the permutations generating G. We want

to use G as the autdmorphism group of M, but first we must check that it is closed.
Lemma 3.14 Ifv € W and f € Aut(W/v) then f‘\lv = (f)L.

Proof: Given y and z = fyin W, let w € W, g € Aut(W/w),,,, and h € Aut(W/w)
Then by Property (vi) of Proposition 3.3,

yrz’

—

v ——
f—1 a(z) = "!:’v,w,z,y(f—ly h~1)¢uz,w,z,z(kz’ hg)"/)uy,w,:t,y(kys h——lhg) la(y)
= Woap(F )V, wry(kys 9)us w,z,2 (k20 hg) ] aly)
= () tal2).
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Lemma 3.15 The stabilizer of W in G is K.

Proof: By the previous lemma, any g € G can be written as a product af};[" “e- Afl, where
a € K and f; € Aut(W/v;) for 1 < i < m. So it suffices to show that f};lm A{’l e K
whenever f,,--- fi = 1lyw. We do this by induction on m.

For the base step we prove the result for m = 4; since by direct computation v, =1 M
for any v € W, this base step implies the result for 1 < m < 3. Fix y;,y; € W, and
let yiy1 = fiys and yj,, = fiy, for 1 < 4 < 4, so that y5 = y; and y; = y;. Next
choose w;, w; € W, g; € Aut(W/w;),,,,,, hi € Aut(W/wi)y, ..., 9 € Aut(W/w;)zHyé,
h; € Aut(W/wg)y;'__W;Jrl
and hf = h{. Then f;*--- fi* acts on M(y:) as

and

for 1 <1i <4, and let ws = wy, w = wi, g5 = g1, hs = h1, g5 = g},

1 4 4
-1
H wvi Wi YisVitl (fiv hi) H "/}uyi Wi, T, Y (kyi ) gi) H "/)uyiﬂ Wi T, Yit1 (kyi+1 ’ higi)
i=1 i=1 i=1

4 4
-1
= H ¢Ui,wi,yi,yi+1 (fi’ h'i) H 'll)uyl-_H Wit 1T Yi+1 (kyi+1 » Gitl )1/)uy‘_+1 YWiH T, Yit 1 (kyi+1 s hzgz)

=1 i=1

4 4
= H Vs wiys wis (Fi i) H Y wip1,z9i01 (RiGis Git1),

=1 =1

and f2*--- f acts on M(y}) as

4 4 4
7 / ! _I\—1
H wﬂntﬂbyi,yﬁﬂ (fi’ hi) H ’wbuyé,w;,z,y; (k A gi) H ¢u!f§+1 ’wg’z’y‘g+1 (ky£+1 ’ higi)
i i=1 i=1

i=1

4 4
— Y ’ 1 =1
- H wviywi:yi-yéﬂ (fi’ hi) H w"y§+1 Wi L1TYig (ky£+1 ’ gi“"l)w“yiﬂ WHEY g (ky£+1 ’ h'igi)
i=1

i=1
4 4
— / v
= H wvi,w;,y;,y;+1 (fi, hz) H ww;,w£+1,m,y£+1 (higi7 gi+1)'
=1 i=1

Using property (ix) of Proposition 3.3, we see that ]‘Z"* e A{“ acts as the same element of
K on both M(y;) and M(y},). Since y; and 3, were arbitrary, f4-- - e K.

Before proceeding with the induction, note that §2¢1" = g5} whenever g1, g2 € Aut(W/v).
For by what we have already proved, if g3 = (g2g1)~" then g3g5g? belongs to K and fixes

M (v) pointwise, so (g2g1°) 19597 = 959597 = 1m, since K acts faithfully on M (v).
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Now suppose the result holds for m = r > 4 and let f; € Aut(W/v;) (1 < i < r+1) satisfy
fr+1--- fi = lw. By Lemma 3.8, we can write f,fr—1 = grgr—1, where g, € Aut(W/v,41)
and gr_; € Aut(W) fixes some v,_, € W. Applying the base step to g ' g7 fr fr_1, we

r+1’\v'lr—1 o A’ur

get agr g, = f? f:’:‘ll for some o € K. Let f{ = fiand v} = v; for 1 <i < r — 2,

+—1=gr—1, J+ = fr+19r, and v} = v,1;. Then by the induction hypothesis,

TUrs1 Tur _ PUrsi-w +1Av,'._1 TVr—2 N Y
i A=l e S R it =af - ) €K

So the result holds for m=r+1. O

Lemma 3.16 G is a closed subgroup of Sym(M ).

Proof: Suppose that ( ];;l) is a sequence in G converging to f € Sym(M). Let (f,) be the
corresponding sequence in Aut(W), with limit f € Aut(W). Since f can be written as a
product of maps in § = |J,cy Aut(W/v), there is some g € G extending f. So we can
assume without loss that f = 1y ; otherwise we just consider the sequence (ﬁj‘“l) with
limit fg—!.

Throwing away a finite number of terms in the sequence and multiplying through by an
element of K if necessary, we can further assume that for some fixed v € W, every }':L fixes
M (v) pointwise. Then by Lemma 3.15, fn = f;’j for each n, since both ﬁl and ﬁ‘{ restrict to
fn and fix M(v) pointwise.

Given y € W, let m be large enough that f,, fixes y for every n > m. Picking w € W such
that tp(w, z) = tp(w, y), we have J?;La(y) = ﬁ{a(y) = Yowyy(fr, Iw)a(y) = dvy(fr)aly) for
n > m. Since the sequence (¢, y(frn)) converges to ¢, ,(lw) = 1 by continuity, it follows
that f;, fixes M (y) pointwise for all sufficiently large n, hence so does f So fr— 1m € G.
C

We are now justified in defining Aut(M) = G. Note that the extensions in Aut{M) of
any f € S fixing v € W are exactly the maps af” for o € K. So the next result is clear.

Lemma 3.17 7w : M — W is a transitive, untwisted, superlinked finite cover with central

kernel K.
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All that is left is to check that = : M — W has the correct associated extended conjugate

system.
Lemma 3.18 (&, V) is the associated extended conjugate system of the cover m: M — W.

Proof: We have to show that for any vi,ve,y,2 € W, if f; € Aut(W/vi)y,_)z for i = 1,2
then (}2’2)“1 /}’1 acts on M(y) as ¥y, 1y.4.2(f1, f2). Let w € W satisfy tp(w, z) = tp(w,y) =
tp(w, z) and pick g € Aut(W/w),,,, and h € Aut(W/w),,,,. Then

(Fo) ' fPay) = [Wuswy,:(F2r B)Wuy w2y (kys 9)Pus .,z (kzy hg) 17
[Wos w2 (13 B) Wy 0,2 (B §) s 0,0, (ks Rg) " a(y)
Yoy w,9,2(F1, B) s w,g,2(f2, ) Pa(y)
= Puuy,2(f1, f2)aly),

by Property (iii) of Proposition 3.3. O

The following characterization summarizes the results of this section.

Theorem 3.19 Suppose that (®,V) is an ertended conjugate system for (W, K), where
W is a permutation structure satisfying Property (3.1) and K is a finite abelian group.
Then there is a unique (up to isomorphism) transitive, untwisted, superlinked finite cover

w: M — W with central kernel K and associated extended conjugate system (P, ¥).

3.3 Irreducibility

Our motivation for studying the class of transitive, untwisted, superlinked finite covers with
central kernels was in part due to Conjecture 3.1, since the irreducible superlinked covers at
the heart of the conjecture belong to this class. Given the characterization in Section 3.2, it
would therefore be nice to have a condition which picks out exactly those extended conjugate
systems whose corresponding covers are irreducible. We assume throughout this section that
W is irreducible, in addition to satisfying Property (3.1), since non-irreducible structures

cannot have irreducible finite covers.
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Closely related to irreducibility is the concept of a split cover. We say that a finite cover
m: M — W with kernel K splits if there is a closed subgroup H < Aut(M) such that
H.-K = Aut(M) and HNK =1, i.e. H is a closed complement to K in Aut(M).

Lemma 3.20 Let W be an irreducible permutation structure satisfying Property (8.1), and
suppose w : M — W is a transitive, untwisted, superlinked finite cover with central kernel K
and associated ertended conjugate system (®,V) = ({¢z,y), (Yw,zy,z2)). Then m is irreducible
if and only if for any non-trivial surjective group homomorphism 1 : K — A, the transi-
tive, untwisted, superlinked finite cover n’ : M’ — W with central kernel A and associated

extended conjugate system n(®,¥) = ((Ndzy), (NMw,z,y,2)) is non-split.

Proof: Given n we can easily describe n’ using . By uniqueness, if N = Kern then M’
is the permutation structure consisting of the N-orbits on M, with automorphism group
Aut(M)/N (corresponding to the action of Aut(M) on M’), and 7’ : M' — W is the
restriction of = to M’. Suppose that this cover splits, say H' is a closed complement to
the kernel K/N in Aut(M)/N. Let H be the inverse image of H' under the quotient map
Aut(M) — Aut(M)/N, so that H' = H/N. Then HN K = N and H - K = Aut(M) since
(HNK)/N =(H/N)N(K/N)= N/N and (H - K)/N = (H/N) - (K/N) = Aut(M)/N, so
H is a proper subgroup of finite index in Aut(M) (note that Aut(M)NK = K # N since n
is non-trivial). Furthermore, H is closed since the quotient map is continuous. So 7 is not
irreducible.

Conversely, if Aut(M) has a proper closed subgroup H of finite index then the restriction
to W of H is all of Aut(W), thus H - K = Aut(M). So if n: K — K/N is the quotient
homomorphism, where N = H N K, then H/N is a closed complement to the kernel K/N

of the corresponding cover ' : M' —» W. O

So to get an irreducibility condition for extended conjugate systems we need only find out
which systems correspond to split covers. Since these covers are in some sense degenerate,

the solution should somehow be related to the degeneracy of extended conjugate systems.

Definition 3.21 An extended conjugate system (®,%) = ((¢zy), (Yw,zy,2)) for (W, K) is
degenerate if there are continuous homomorphisms ¢, : Aut(W/z) — K for z € W such
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that
(i) if f € Aut(W/z) and g € Aut(W) then ¢gy,(9f9™ ) = duw(f);

and g € Aut(W/z) then

Yz

(i) if f € Aut(W/w),,,
¢’w,:1:,y,z(f’ g) = ¢w(f)~l¢m(g)¢y(g*1f)'

The system (®, ) is fully non-degenerate if for any non-trivial surjective homomorphism

n: K — A, the system 7(®, ¥) is non-degenerate.

Theorem 3.22 Suppose W is an irreducible permutation structure satisfying Property 3.1
and m: M — W is a transitive, untwisted, superlinked finite cover with central kernel K

and associated extended conjugate system (®,¥). Then
(i) = splits if and only if (2, ¥) is degenerate;

(ii) = s irreducible if and only if (®,¥) is fully non-degenerate.

Proof: By Lemma 3.20 it suffices to prove (i).

So suppose that 7 splits, say H is a closed complement to K in Aut(M). Then each
f € Aut(W) has a unique extension fin H. This provides us with an obvious definition of
the maps ¢, : Aut(W/z) — K, namely if f € Aut(W/z) then ¢,(f) is the unique element
of K with the same action as f on the fibre M (z).

These maps ¢, are homomorphisms since f; = ffq\ for any f,g € Aut(W); they are
continuous since Ker ¢, = p(H)ps(y)) is a closed subgroup of Aut(W), where p is the re-
striction map. Given f € Aut(W/z) and g € Aut(W) we have (gT\g‘l) = §fg!, so
boe(9f9™1) = 6:(£)F = ¢(f). Finally, if (f,g) € Aut(W/w),,, x Aut(W/z),,, then
b (f)1 f € Aut(M/M(w)) and ¢5(9)~'5 € Aut(M/M(z)), so g-1f = §-1F acts on M(y)
as Yu zy.:(f,9)dw(f)dz(g) ™!, hence Yu 2y :(f,9) = duw(f) '¢z(g)dy(g7 ). So the maps
¢ satisfy the properties of Definition 3.21, and (®, ¥) is degenerate.

For the converse we assume that (®, ¥) is degenerate, say ¢, : Aut(W/z) = K (z € W)
is a system of homomorphisms satisfying (i) and (ii) in Definition 3.21. Given w € W
and f € Aut(W/w), there is a unique F* € Aut(M) extending f and acting on M(w) as
¢w(f). If f also fixes z € W then ¢w(f)_lf‘” acts on M(z) as ¢y 2(f) = Ywwz(f,1w) =
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uw(f)Lo(f), so f“’ = f‘“ Thus, for each f € § = [J,ew Aut(W/w) we can define
fe Aut(M) to be the unique extension of f acting as ¢y, (f) on M(w) for some (every)
fixed point w € W of f. Let H be the subgroup of Aut(M) generated by the maps f for
f € 5. We claim that H is a closed complement to K in Aut(M).

Clearly H- K = Aut(M), since every f € Aut(W) has an extension in H by Lemma 3.8.
It is slightly harder to show that H N K = 1. Consider any fm --- fl € HN K, where f;
fixes some v; € W for each i. Writing f; = ¢y, (i)™ f; € Aut(M/M(v;)), we must show
that fm - fi = Gupn(fm) L+ doy (f1) 7). Let z,y1 € W, and for 1 < i < m let i1 = fis,
so that ymy1 = y1. Now pick w; € W and g;,h; € Aut(W/w;) such that gix = y; and
hiy; = yiy1 for 1 < i < m, and let wp4; = wy and gme1 = g1 Then as in the proof of

Proposition 3.3, frn - - j?l acts on M (yy) as

m m
H "/)viswi:yi;yi-{-l (fn h'i) H ¢wi,wi+1,$,yi+1 (higia gi-l-l)

=1 i=1

= H(bvi (fi)—ld’w,- (hi)¢yi (h;_lfi)q!’wi (higi)—1¢Wi+l (gi+1)¢m(9¢_.:1higi)

=1

= I ¢w () by (b fi)ba 9t igi)
i=1

= H¢Ui (fi)_lfﬁz(gi-lhi_lfigi)¢z(9i_-f}1hi9i)

=1

= H(pvi(fi)_l‘bz(g;}-llfigi)
=1
= 6u(gi fm- - ig)) [T b (F) 7" = ] s (F) 7Y,
=1 1=1

since frm---fi = lw. But y; was arbitrary, 50 f - fi = dun(frm)™" o b0, (f1)7), as
required.

It remains to show that H is closed. Let (f;l) be any sequence in H with limit f~ €
Aut(M), and for each n let f, be the restriction of fn to W. Without loss of generality
we can assume that (f,) has limit 1y. Given w € W, we can find m € w such that
fn € Aut(W/w) for every n > m. Then Fo= ﬁ;ﬂ for such n, so f, acts on M(w) as &w(fn);
since ¢,, is continuous and (f,) has limit 1y, eventually ﬁl fixes M(w) pointwise. Since

this is true for every w € W, we have fz 1pm € H. So H is closed. O



CHAPTER 3. MAIN RESULTS 27

The image of an extended conjugate system (®, ¥) for (W, K), denoted by Im(®, ¥),
is the subgroup of K generated by the union of the images of the maps ¥y, z4,.. Since
the quotient map n : K — K/Im(®, ¥) produces a (trivial) degenerate conjugate system
n(®, ¥), a necessary condition for the full non-degeneracy of (®, ¥) is that Im(®, ¥) = K.
If the stabilizer of a point in W is irreducible then this condition is also sufficient, for in this
case a degenerate system must have trivial image (the only continuous homomorphism with
domain Aut(W/z) and finite image is the trivial map). Combining this with the previous

theorem produces the following result.

Corollary 3.23 Let W, n: M — W, K, and (?,V) be as in Theorem 3.22, and suppose
that Aut(W/z) is irreducible, for ¢ € W. Then

(i) = splits if and only if Im(®,¥) = 1;
(ii) w is irreducible if and only if Im(®,¥) = K.

This brings us back to our starting point, answering Conjecture 3.1 for structures W

satisfying Property (3.1) in which the stabilizer of a point is irreducible.

Corollary 3.24 Let W be a permutation structure satisfying the hypotheses of Conjec-
ture 3.1. Suppose in addition that W satisfies property (3.1) and that Aut(W/z) is irre-
ducible, for x € W. Then there is an r € w such that the kernel of any irreducible superlinked

finite cover of W is generated by a set of size at most r. -

Proof: Since W is Rgp-categorical, it has only finitely many 2-types. So there is an m; € w
such that for any z,y € W, Aut®(W/z, y) has index at most m; in Aut(W/z,y). Let mg € w
be the number of 4-types in W. We will prove the result with r = m3ms.

By the previous corollary, it suffices to show that for any finite abelian group K, the
image of any extended conjugate system (®,¥) = ((¢z,y), (Yw,z,,2)) for (W, K) is generated
by a set of size at most m}my. Given z,y € W, Ker ¢, contains Aut®(W/z,y), thus it
has index no greater than m; in Aut(W/z,y). So the image of any ¢, has size at most
m. It follows from Property (ii) of Proposition 3.3 that for any w,z,y,z € W, the image
of Yy z,y,. has size no greater than m%. But v 5y, and Yy sz, 5y, 52 have the same image

for f € Aut(W) (by Property (i) of Proposition 3.3), so the union of the images of the



CHAPTER 3. MAIN RESULTS 28

maps Y,z y,. has size at most m%mg. This proves what we want, since this union generates
Im(®, V). O



Chapter 4

Structures with Strong Types

Most of our results have been presented in a way that closely parallels [5], in which Evans
characterizes the (locally transitive) untwisted, irreducible, superlinked finite covers of tran-
sitive Rg-categorical structures with strong types. There the fundamental concept is that of
a conjugate system for a triple (W, K, R), where R is a 2-type in the permutation structure
W and K is a finite abelian group. Although our characterization applies to a more general
class of structures, it also seems to use more information to describe each cover, so it is not
obvious that we have improved [5, Corallary 3.9]. Our goal in this chapter is to show that

we have indeed generalized Evans’ result.

Definition 4.1 (i) Let W be a permutation structure with 2-type R, and let K be a finite
abelian group. A conjugate system for (W, K, R) is a system of continuous homomorphisms
dwr : Aut(W/w,z) — K, where (w,z) € R, satisfying Properties (i) and (ii) of Propo-
sition 3.2. As in Section 3.1, we associate a conjugate system for (W, K, R) with each
transitive, untwisted, superlinked finite cover 7 : M — W with central kernel K.

(i1) A strong type over a transitive structure W consists of a non-constant map p which

assigns to each finite subset X C W a 1-type p|X over X in such a way that
e if Y C X then p|X C p|Y;
e if f € Aut(W) then p|fX = f(p|X).

The associated 2-type of a strong type p is the type R = {(w,z) € W2 : w € p|{z}}.

29
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Note that this definition of a conjugate system for (W, K, R) is slightly more general
than in [5]: we do not require that the maps ¢z, : Aut(W/z,y) — K be surjective. A cover
7w : M — W whose associated conjugate system for (W, Aut(M /W), R) consists of surjective
maps is said to be locally transitive with respect to R.

Clearly every transitive structure with a strong type satisfies (3.1), so the results of
Chapter 3 apply. We will show that if W is a (not necessarily Rg-categorical) transitive
permutation structure with a strong type p and associated 2-type R, and if K is a finite
abelian group, then every conjugate system for (W, K, R) extends uniquely to an extended
conjugate system for (W, K). Since we are not assuming that W is Ro-categorical, this leads
to a direct improvement of [5, Corollary 3.9].

The proof will be given in two steps. First we will show how to extend a conjugate
system (¢y, 5 : (w,z) € R) for (W,K,R) to a system ® = (¢, : =,y € W) satisfying

Proposition 3.2.

Lemma 4.2 If X is a finite subset of W, f € Aut(W ) and w € p|(X U fX) then there are
g € Aut(W/X ) and h € Aut(W/w) such that f = hg. In particular, h and f fix the same

elements of X.

Proof: Since w € p|fX we have f~lw € p|X, so w and f~!w are in the same type over X.
Thus we can find g € Aut(W/X) mapping f'w to w, so that h = fg~! € Aut(W/w). O
So there is clearly only one possible way to extend {(¢y z : (w,z) € R) to ®:

Given z,y € W and f € Aut(W/z,y), choose v € p|{z,y} and w € p|{z,y,v, fv}.
By Lemma 4.2 we can find g € Aut(W/z,y,v) and h € Aut(W/z,y, w) such that
f = hg. Then we define

¢:r.,y(f) = d’w,z(h)#l¢w,y(h)¢v,m(g)w1¢v,y(g)-

Note that the maps ¢y z, Pw,y, Pv,z, v,y are already known, since (w,z), (w,y), (v,z), (v,y) €
R.

Lemma 4.3 For each z,y € W, ¢, is well-defined.
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Proof: We must show that the definition of 9, ,.(f) does not depend on our choice of v,w, g,
and h. Keeping v and w fixed, it is easy to see that the definition does not depend on g and
h. For if we pick another pair ¢’ € Aut(W/z,y,v), ¥’ € Aut(W/z,y,w) such that f = g'K/,
then the two definitions of ¢, ,(f) differ by

Gw,z(9'9 " )Pwy(997) Doz (997 ) buz(997Y) = bup(d 9 Nbwu(ggTH) T = 1.

Suppose now that we have another pair v € p | {z,y} and v’ € p | {z,y,?, fv'}.
We can assume that (v/,w’) “refines” (v,w), in the sense that v' € p | {z,y,v,w, f 1w}
and w' € p | {z,y,v,w,?, fv, fv'}; otherwise we just work with a common refinement
v" € pl{z,y,v,w, v, W', flw, flw'} and w” € p | {z,y,v,w, v, W', V", fv, fv/, fv"'}. If we
can use the same pair (g, h) with both (v,w) and (v, w’) to define ¢, ,(f) then we will get
the same result, since the definitions will differ by ¢u 1 (h)Pw w(h) 1 dw 4 (g) P »(g) ™1 = 1.
So we will be done if we can find g € Aut(W/z,y,v,v') and h € Aut(W/z,y, w,w') such
that f = hg. Picking g1 € Aut(W/z,y,v) -1, ,,, We have v',g1v' € p | {z,y,v,w}, so we
can find g; € Aut(W/z,y, v, w) mapping g1v' to v'; hence w', gog1 f ' € p | {z,y,v,w,v'}
and there is some g3 € Aut(W/z, y, v, w,v’) mapping gog1 f 1w’ to w’. The maps g = g3g291
and h = fg~! have the required properties. I

Lemma 4.4 The system ® = (¢, : z,y € W) satisfies Proposition 3.2.

Proof: Properties (i) and (ii) are easy to prove using the corresponding properties of {(¢y s :
(w,z) € R). Assuming the maps ¢, , are homomorphisms, it is also easy to prove continuity.
For given a sequence (f,) in Aut(W/z,y) with limit 1y and an element w € p | {z,y},
eventually f, € Aut(W/x,y,w), so by Property (ii) and the continuity of ¢, 5 and ¢y,
be(fa) = dunlfa) Sy (fn) has limit 1.

The hard part is showing that the maps ¢, , are homomorphisms. Fix z,y € W and let
S, f2 € Aut(W/z,y). We must show that ¢, (f2f1) = ¢z y(f2)dz(f1). We consider two

cases.

Case1. There arev,w € W such thatv € p | {z,y} andw € p | {z,y,v, fiv, fov, f5 *v, f5 w}.
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Choose g1,92 € Aut(W/z,y,v) and hy,hy € Aut(W/z,y, w) such that f; = hig;, i = 1,2.
We can do this in such a way that g, ' f» fixes w. For if we pick g} € Aut(W/z,y,v) map-
ping fz_l'w to w then gjw, fow € p | {z,y,v, w}, so there is some g5 € Aut(W/z,y,v,w)
mapping ghw to fow, and go = gigh, ho = fag,' have the required properties. Since
(w, 95 'w), (g5 w, ), (95 'w,y) € R, we have

2

¢z,y(f2)¢z,y(f1) = H[¢w,m(hi)"1¢w,y(hi)¢ﬂ,m(gi)—1¢v,y(gi)]

i=1

= Gur1u2(92 h292) By, (97 hage)bua(h1) T buy(ha)du2(9192) T duy (9192)

= [bua(97 " f2) " by g0 (92 F2) by (97 1 F2) 6100 (97 F2) )
[Buc(h1) T by (h1)boz(9192) 7 oy (9192)]

= Gualgy faf107" ) Buy(er ' f2f107 ) buo(9192) T buy(g192)

= ¢uyl9s f2f192)-

But we already know that @ satisfies Property (i) of Proposition 3.2, 50 ¢z y(f2)¢zy(f1) =
¢Ixy (f2f1 ) M

Case 2. Otherwise.

Picku € p | {z,y},v € p| {z,4,u, fiu, fou, f; 1u} and w € p | {z,y,u,v, fou, f2fru, fiu, frv}.
Then there is some g € Aut(W/z,y,u, fou, fofiu, f2u) mapping fov to w, and so v € p |
{z.y,u, fiu, 9f2u, (9f2) " u, (9f2) 'v} since g fov = w € p | {z,y,9f2u, gf2 fru, (9f2)%u, v, v},
We can therefore apply Case 1 to the pair f1, gf2 to get ¢z y(gf2f1) = bz,y(9S2)Pzy(f1). Fur-
Ly, g lw}and p | {z,v,%, fafiw, gu,g" u, g ' w},
so we can apply Case 1 to the pair f,h and the pair fofi,h, giving us ¢z (hf2) =

Ozy(R) Pz y(f2) and @z y(hfafi) = Gzy(h)dy(fafi). We get the desired result by com-
bining these three equations. O

thermore, wisin both p | {z,y,u, fou,gu,g”

The second step is to extend P to an extended conjugate system (®, ¥) for (W, K'). Using
the properties of Proposition 3.3 we can again see that there is only one possibility for the
maps Yy g,z For if u € p | {w,z,y,2} then (assuming tp(w,y) = tp(w, z) and tp(z,y) =
tp(z,2)) we can find s € Aut(W/w,u),,, and ¢t € Aut(W/z,u),,,, so that Pyzy,. is
completely determined from ® by applying Properties (ii), (v) and (vii) to ¥y z,y,.(9,t).
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More precisely, we have the following definition:

Given w,z,y,z € W, f € Aut(W/w),,,, and g € Aut(W/z),, ,,, choose u € p |
{w,z,y,2}, s € Aut(W/w,u),,,, and t € Aut(W/z,u),,,,. Then we define:

Yuzy(f9) = ¢w,y(5#1f)¢z,y(g_lt)¢w,u(3)¢m,u(t—1)¢u,y(t_13)-
Lemma 4.5 For each w,r,y,z € W, 2y . s well-defined and continuous.

Proof: 1t is easy to see that the definition of ¥y, 54 .(f,g) does not depend on our choice
of s and ¢, provided u is fixed. On the other hand, given another v’ € p | {w, z,y, 2} and
a map k € Aut(W/w,z,y,2) ., let s =k sk and t' = k™ 'tk; then a simple calculation
shows that we get the same result for ¥y sy .(f,g) whether we use v/,s',t' or u,s,t in the
definition.

Continuity is obvious since ¥y z,y,. is a product of continuous maps. (Note that we
can use the same wu,s,t to define ¥ 2y (f,g) for every pair f € Aut(W/w)y,_)z, g €
Auw(W/zx), ,,.) O

Lemma 4.6 The system ¥ = (Yo 14 : w,T,y,2 € W) satisfies Properties (i)-(iz) of
Proposition 3.3.

Proof: The proofs of (ii) and (vi) are trivial. Properties (vii) and (viii) are clear since we can
pick s = ¢ in the definitions of ¥y 244 (f, 9) and ¥y, z 4 .(f, f), respectively, and Property (v)
is clear since we can use the same u € p | {w,z,¥y1,21,y2, 22}, s € Aut(I/V/w,'u,)yl,_ﬂhyz,_,z2
and t € Aut(W/z, u)yl‘_i,zl’W_q}Z2 to define both ¥y 3,2, (f, 9) and Yy z 40,2, (f, g). If we use
u. 51,82 to define ¥y, 4, y.:(f1, f2). u, S2, 53 to define 1y, 4, 4..(f2, f3) and u, 51,53 to define
Veyesz(f1, f3), where u € p | {v1,v2,v3.9,2} and s; € Aut(W/v;,u),,,, for 1 <i < 3,
then (iii) is obvious. Similarly, (iv) is obvious if we use u,s1,%; to define ¥y z4.-(f1,91),
u.sp.t2 to define ¥y 4 - o(f2.92) and u, szs1,t2t; to define ¥y, ;4 (f2Sf1,9291), where u €
pi{w.r.y.2,v}, sy € Aut(W, w,u)y‘_)z, t; € Aut(W/z, u)y,_)z, sp € Aut(W/w,u),,,,, and
t> € Aut(W/z,u), ..

For (i) let f € Aut(W/u),,,,
we want to show that Uiz ayh(Rfh™ 1, kgk™) = Yy 2y, (S, 9)¢y,2(k"h). The proof is

This leaves to be proved Properties (i) and (ix).
and g € Aut(W/z),,,,, and suppose k~'h € Aut(W/y, 2);
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divided into three cases.

Case 1. k= h.

In this case the result is clear, since we car use hu, hsh™! and hth™! to define
Yhw b hyhz(RfR 1, hgh™!), where u € p | {w,z,y,2}, s € Aut(W/w,u)
Aut(W/z,u)

gz and t €
yF—)Z.

Case 2. k=1.

Let u € p | {w,hw,z,y,2}. Then by Lemma 4.2 we can find h; € Auwt(W/w,y,z)
and hy € Aut(W/y,z,u) such that h = hgh;. Next pick s € Aut(W/w,u)sz and
t € Aut(W/z,u) and let s’ = hashy' € Aut(W/hw,u) Then

y—rz Yz

Vhwzy:(RFR9) = Phwy((s) T R )02y (07 ) dhuwa (s )beult™ Vuy (')
= Guy(s T h1fRT )bz y (97 ) bwu(5)bru(t ™) buy(t hashy ")
= [Buy(s T )bwy(1) 7 bu,e(h1)]bzy (97 ) buwu(8)bzu(t™)

byt 8)Puy(h2) T buz(h2)]
= VPuzye(fr9)dy:(h1)dy,:(h2)
= Yuwzy(f)9)Pyz(h).

Case 3. Otherwise.

By Cases 1 and 2,

"x‘{)hw,kz,hy,hz(hfh_l’ kgk~l) = '@L'k-‘hw,z,y,z(k—lhfh—lky g) = ¢w,1‘,y,z (fv g)¢y,z (kn_l h),

as required.

It remains to prove (ix). So suppose z,v;, w;, W), ¥i, ¥!, fi> 9i, §%, hi, b, (1 <1 < 4) satisfy
the given hypotheses. Then we can choose v € p | {z,v;,ws,w},y;,y; : 1 < i < 4} and
ki € Aut(W’/vi,u)y_;,_)yﬂhy;_ﬁy,iﬂ, s; € Aut(W/w;,u) t; € Aut(W/w;,u)
Aut(W/wg,u)myz, t. € Aut(W/wi, u)yi’—’yiﬂ' Using u, k;, t; to define ¥y, w, 4 301 (fir i),

st €

Y YY1’ T2

" ! . H!
u, t‘isir Si-}‘l to dEﬁne ¢wi,wi+1,z,yi+1 (h’igh gi+1): u, ki’ ti to deﬁne "/’vi,w;,y;,yh 1 (f‘l) h’i)a and
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P N
u, t;s), $;4; to define 9,/

1 ¥¥

17 ! M
+l1z’y£+1(higi7gi+1), we can easily calculate

4 4
H ¢Uz‘ WL Yi+1 (f’h hz’) H "ljwz',wiﬂ WY+l (higi’ gi+1)

i=1 t=1
4

= [ L1Bu e (ki £) buse e (i £6) P 0 (ki) B (7 ) Puye (8K

i=1

4
’ Hk’f’wnz (Sa‘—lt;l higi)Pw; i1 = (9;11 8i41) P, (Li8:) D u (3;+11)¢u,z (letisi)]

i=1
4 4
= H[¢vi,yi (k,?lfi)¢vi,u(ki)] H{‘bwi,yi(hi_lti)ﬁbwi,w(Si_lt;lhigi)¢wi+1,z(g—;_.;.115i+1)]
1=1 =1
4 4
) H[¢wi,u(t;_l)qswi,u(tisi)¢wi+1,u(si_-}}1 ]H[¢u,yi (té—lki)‘bu,z(si_-{-lltis’i)]
i=1 i=1
4 4
= H[ﬁbvi,yi(ki_lfi)qﬁvi,u(ki)] H[d)u,yi(ti—lki)q&u,m(s-;klltisi)]
=1 i=1

4 4
= H[¢vi:yi (k;lfi)¢vi,u(ki)] H ¢u,-’t(5i_+11kisi)
i=1 i=1

4
= d’u,yl (k4k3k2k1) H ¢vi,yi(ki—lfi)¢vi ,U(ki)a

i=1
and similarly,
4

4
Y
H wvi,w;,yé,y§+l (f'h hi)
1=1

Vo
wwg,w§+1,:c,y;+l (h'ig'i,a gi+1)
1

=

4
= (bu,y'1 (k4k3k2kl)H¢vi,y£ (k;‘lfz,)qbvuu(k’l«)

=1

But ¢y o, (kakskaki) [Tiny by (ki ' fs) = @y 4, (fafsf2f1) = 1, so the result follows. O

We have accomplished our goal.

Theorem 4.7 If W is a transitive structure with a strong type p and associated 2-type R
then given a finite abelian group K, every conjugate system for (W, K, R) has a unique
extension to an extended conjugate system for (W, K).
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Using the obvious definitions of degeneracy and full non-degeneracy for conjugate sys-
tems (as in Definition 3.21), it is clear that a conjugate system for (W, K, R) is fully non-
degenerate if and only if its unique extension to an extended conjugate system for (W, K) is

fully non-degenerate. So in the present context, the results of Chapter 3 simplify as follows.

Corollary 4.8 Let W be a transitive structure with a strong type p and associated 2-type
R, and let K be a finite abelian group. Then there is a one-to-one correspondence between
conjugate systems for (W, K, R) and transitive, untwisted, superlinked finite covers of W
with central kernel K. Further, such a cover is irreducible if and only if its corresponding

conjugate system is fully non-degenerate.



Bibliography

[1] Gisela Ahlbrandt and Martin Ziegler, What’s so special about (Z /4Z)*?, Archive for
Mathematical Logic, 31 (1991), pp.115-132.

[2] Peter J. Cameron, Oligomorphic Permutation Groups, Cambridge University

Press, Cambridge 1990.
[3] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam 1990.

[4] David M. Evans, Splitting of finite covers of Ro-categorical structures, Preprint, Norwich

1993.
(5] David M. Evans, Finite covers with finite kernels, Preprint, Norwich 1994.

[6] David M. Evans and Ehud Hrushovski, On the automorphism groups of finite covers,
Annals of Pure and Applied Logic, 62 (1993), pp.83-112. -

[7] Wilfred Hodges, Model Theory, Cambridge University Press, Cambridge 1993.

(8] Wilfred Hodges, The structure of totally categorical structures, in Automorphisms
of First-Order Structures, eds. R. Kaye and H. D. Macpherson, Oxford University
Press, Oxford 1994.

[9] Wilfred Hodges and Anand Pillay, Cohomology of structures and some problems of
Ahlbrandt and Ziegler, Journal of the London Mathematical Society, 50 (1994), pp.1-
16.

[10] A. A. Ivanov, Finite covers, cohomology and homogeneous structures, Preprint,

Wroclaw 1993.

37



