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ABSTRACT 

Quantum wires fabricated from semiconductors have stimulated tremendous interest 

among physicists because of their novel one-dimensional properties and potential device 

applications. This thesis presents theoretical studies of the electronic properties of quantum 

wires. 

The first project of this thesis is a numerical study of many-body effects in quantum 

wires. For the purpose of the calculations, we introduce a model of Coulomb-confined quan- 

tum wires, in which electrons are confined by Coulomb interactions. Based on the density 

functional theory of Hohenberg, Kohn and Sham, the electronic structure of a Coulomb- 

confined quantum wire is calculated by solving self-consistently the Schrodinger and Poisson 

equations that describe the electrons. The calculations show that many-body effects are im- 

portant in quantum wires of this type, and that the exchange and correlation energies should 

be included to  obtain qualitatively accurate results. 

The second project is on correlations between interacting parallel quantum wires. It is 

motivated by an experimental observation of apparent energy level locking in two parallel 

quantum wires. We simulate a system of two parallel quantum wires numerically, using 

the Coulomb-confined model and the density functional theory. The calculated electronic 

structure clearly shows that transverse energy levels lock together in pairs when the two 

wires have similar widths. The energy level locking is a novel effect of Coulomb interactions 

between the quantum wires and of the density of states singularities that are characteris- 

tic of one-dimensional electronic systems. Several new methods for detecting such effects 

experimentally are suggested. 

The last project of this thesis is the establishment and solution of a realistic model of 

gated quantum wires, which is closely related to device applications. This model incorpo- 

rates the properties of semiconductor donors and surfaces, and quasi-equilibrium consider- 

ations. Using the Green's function method, a general solution of the electrostatic potential 

has been obtained within the model. In particular, the depletion and pinchoff voltages 

are calculated analytically, and the calculated results agree well with experimental mea- 

surements. This model and its analytic solution provide both a general theoretical tool 

for studying gated semiconductor devices and important information for improving device 

performance. 
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Chapter 1 

Introduction 

1.1 General Background 

Physicists have long been interested in low-dimensional systems. However, only in recent 

decades have modern technologies made it possible to realize systems that exhibit reduced 

dimensionalities, and made studies of these systems feasible. 

The dimensionality of a system is not an absolute feature, but depends on the physical 

process being considered. In studying an electronic system, for example, its dimensionality 

usually involves comparisons between its physical dimensions and the Fermi wavelength of 

electrons. When one physical dimension of a three-dimensional system becomes comparable 

to  the Fermi wavelength, the energy levels associated with that dimension become quantized 

and the system becomes effectively two-dimensional. Similarly, effectively one- or zero- 

dimensional systems arise when two or three physical dimensions of a three-dimensional 

system become comparable to the Fermi wavelength. 

In recent decades, low-dimensional systems have attracted much attention. These sys- 

tems include electrons on liquefied noble gases [I], in intercalated graphite [2], in bicrystals 

[3], in high temperature superconductors [4], in transition metal dichalcogenides [5], in poly- 

acetylene [6 ] ,  and in other layered and chain-like crystals and molecules [7]. In particular, a 

great deal of work has been devoted to the studies of semiconductor structures that exhibit 

low dimensionalities. [8, 9, 101 

With molecular beam epitaxy (MBE) [ll] or organo-metallic chemical vapor deposition 

(OMCVD) [12], it is now possible to fabricate heterostructures [8] that consist of different 

layers of semiconductors with thicknesses on the 10 nm scale. In such a heterostructure, a 



two-dimensional electron gas (2DEG) is realized when some semiconductor layer is appropri- 

ately doped with donors. With modern confining techniques [13], the 2DEG can be further 

confined laterally t o  a region with dimensions on the 100 nm scale. This laterally confined 

heterostructure, which is usually called a nanostructure [9, 101, provides a typical one- or 

zero-dimensional system of electrons. Because of the rich variety of possible combinations 

of materials, geometries, and external fields, the low-dimensional semiconductor structures 

display many extraordinary properties, which have stimulated tremendous interest among 

physicists in their novel physics and possible device applications. [8, 9, 101 

The semiconductor structures can be divided into three major categories: 

r Two-dimensional systems. These systems refer to  the 2DEGs in heterostructures that  

have no lateral confinement. Typical examples are quantum wells [8], which have 

one semiconductor layer sandwiched between two layers of a different semiconductor. 

The energy levels of these systems are quantized in the normal direction which is 

perpendicular t o  the heterostructure layers. Electrons or holes can move freely in 

a plane that  is parallel to  the layers. Interesting features of these systems include 

transitions of electrons between the quantized levels [14], coupled quantum wells [15], 

and the quantum Hall effect [16, 171. 

r One-dimensional systems. These systems refer to the 2DEGs in heterostructures which 

are further confined in one lateral direction. [9,10] The energy levels are thus quantized 

in both the normal direction and the direction of the lateral confinement, and electrons 

can move freely only in the third direction. Such systems are usually called quantum 

wires. Interesting features include conductance quantization [18, 191, electronic cor- 

relations between quantum wires [20], quantum transmission resonances [21, 22, 231 

and random telegraphic signals [24]. 

Zero-dimensional systems. These systems are also based on the 2DEGs in heterostruc- 

tures but the 2DEGs are confined in both lateral directions. [lo] The energy levels are 

thus quantized in three dimensions, and electrons can not move freely in any di- 

rection. Such systems are usually called quantum dots. Interesting features include 

Aharonov-Bohm effect [25], Coulomb blockade [26], and interference phenomena be- 

tween quantum dots in chains [27, 281 and arrays [29, 301. 

This thesis is about quantum wires-the one-dimensional electronic systems based on 

semiconductor heterostructures. It presents theoretical studies of the electronic structure 



of the ground state of quantum wires [31], of the correlation effects between interacting 

parallel quantum wires [32, 33, 341, and of the electrostatic confinement of electrons in 

realistic quantum wires [35]. 

Here is the outline of this thesis. In the following sections of this chapter, we make 

a general review of the fabrication of quantum wires, their experimental properties, and 

the corresponding theoretical studies with emphasis on those that are closely related to  

the topics of this thesis. After this chapter, we concentrate on numerical studies, which 

are covered in three chapters. Chapter 2 describes the basis of the numerical calculations. 

Chapter 3 presents the calculated electronic structure and discussion of the many-body ef- 

fects in quantum wires. Chapter 4 presents numerical studies of the correlation effects in 

two parallel quantum wires and their experimental implications. Then we concentrate on 

analytic studies, establishing a realistic model of quantum wires in Chapter 5 and perform- 

ing the relevant calculations in Chapter 6. An overall summary of this thesis is given in 

Chapter 7. 

In this thesis, we only consider quantum wires that are based on GaAs-A1,Gal-,As 

heterostructures. This is because most quantum wires fabricated and studied experimentally 

are of this type. For quantum wires fabricated from other semiconductors [9] the physics 

can be similar. Therefore, many of the conclusions and techniques discussed in this thesis 

can also be applied to the quantum wires which are based on materials other than GaAs 

and A1,Gal-,As. 

1.2 Fabricat ion 

For most quantum wires, the fabrication process can be divided into two steps. In the first 

step, a 2DEG is realized in a semiconductor heterostructure which is grown with MBE [ll] 

or OMCVD [12]. In the second step, the 2DEG is further confined laterally using various 

confinement techniques. We will discuss these two steps separately. 

1.2.1 2DEGs in Heterostructures 

It is now possible to use MBE or OMCVD to produce a perfect crystal on a substrate by 

depositing a single monolayer at  a time. By abruptly changing the species being deposited, 

one can create a material interface which is atomically flat and has extremely low concentra- 

tions of impurities and defects. [ll, 121 With such a remarkable control of material growth, 



semiconductor heterostructures consisting of multiple layers can be produced easily. 

A typical modulation-doped [36] heterostructure is shown in Fig. l . l ( a ) .  The layers 

from bottom to  top are a semiconductor substrate, GaAs channel, undoped A1,Gal-,As, 

Si-doped A1,Gal-,As, and GaAs cap, respectively. The layer thicknesses of the GaAs cap, 

Si-doped A1,Gal-,As, and undoped A1,Gal-,As are t,, td, and t, , respectively, which are 

typically on the 10 nm scale. A 2DEG is present a t  the interface between the layers of 

the GaAs channel and undoped A1,Gal-,As, a t  a distance L = t, + td + t ,  from the top 

surface. In this modulation-doped heterostructure, the 2DEG is spatially separated from 

the Si donors. The undoped A1,Gal-,As layer, which is usually called a spacer, is used t o  

decrease scattering of electrons of the 2DEG by the Si donors. The GaAs cap layer is used t o  

make the system more stable. For convenience of our discussion, we choose the coordinate 

frame in such a way that  the z-axis points from the top surface into the heterostructure. 

To see how the 2DEG is formed, let us look a t  the energy band structure shown in 

Figure l . l (b) .  Note that  the valence and conduction band edges of GaAs locate within 

the band gap of the A1,Gal-,As, which results in the conduction band offset AE,. The 

electrons donated by the Si donors in the doped A1,Gal-,As layer can be trapped in some 

localized states associated with the Si donors. However, because of the small binding energy 

(-6 meV) of the localized states, electrons can easily be excited t o  the conduction band 

of A1,Gal-,As. These excited electrons can transfer to the GaAs channel layer t o  occupy 

conduction band states of the GaAs to  lower their energies. These electrons can also transfer 

t o  the surface of the GaAs cap layer to occupy the surface states. (The energy difference 

between the conduction band minimum and the energy of surface states a t  z = 0 is called 

the surface Schottky barrier, which is denoted by QSsb.) Because the ionized Si donors left 

in the Si-doped A1,Gal-,As layer have positive charges, they attract electrostatically the 

electrons that  have transferred to  the GaAs channel layer. This attraction confines the 

electrons t o  the interface a t  z = L and thus makes the electrons form a 2DEG. At the 

same time, the space charges that are present cause all energy bands t o  bend within the 

heterostructure, as shown in Figure l . l (b).  

The quality of a 2DEG depends on a few basic parameters such as the effective mass 

of the electrons m*, electron mobility p,  electron mean free path I ,  Fermi velocity VF, and 

area electron density n. In the GaAs-A1,Gal-,As heterostructure, m* = 0.067me, which 

corresponds to  the effective mass of electrons a t  the bottom of GaAs conduction band. The 

electron mobility is a very important parameter. It is defined as the ratio of the average 



undoped AlGaAs 

GaAs channel 

substrate 

qncc- 

E A  band offset 

Figure 1.1: (a) A typical GaAs-A1,Gal-,As heterostructure with a 2DEG present a t  the 
z = L interface. (b) The band structure of the heterostructure along the z-axis. The system 
is in equilibrium with the Fermi energy chosen to  be zero. The conduction and the valence 
bands are bent due to  the presence of the space charges. 



drift velocity of an electron in an external electric field 

where the negative sign appears because the electron drift in the direction opposed t o  that  

of the electric field F. Thus, the electric current density can be expressed as 

where n is the density of electrons. Relating the electron mobility to  the scattering of 

electrons, we find 
e r  

p = -  
m*' 

where T is the effective scattering time, which is the relaxation time for the electron distri- 

bution. Correspondingly, the electron transport mean free path is given by 

A high-quality 2DEG requires both large values of the electron mobility and correspondingly 

large values of the electron mean free path. 

For general reference, we list in Table 1.1 the typical parameter values for 2DEGs as well 

as for GaAs-A1,Gal-,As heterostructures. The values of the electron mobility and mean free 

path are for low temperatures ( T S 1  K).  Note that the electron mobility is lo4  - lo6 cm2/Vs, 

which is very large. This is because of the small effective mass of the electron and the large 

electron scattering time. For the 2DEG in a GaAs-A1,Gal-,As heterostructure, phonon 

scattering is low at  low temperatures, the scattering by Si donors is much reduced by the 

spacer, and the interface scattering is negligible because of the smooth GaAs-A1,Gal-,As 

interface realized with MBE or OMCVD [ll, 121. 

1.2.2 Lateral Confinement 

The second step in fabricating quantum wires is to  apply a lateral confinement to  the 2DEG 

in the GaAs-A1,Gal-,As heterostructure. Many lateral confinement techniques [13] have 

been used in laboratories. In the following discussion, however, we focus only on the four 

major confinement techniques: selective etching, split gates, ion implantation, and selective 

epit axy. 

In applying the lateral confinement, a surface patterning process is always involved. 

The most widely used patterning techniques are electron-beam lithography [37], ion-beam 



Table 1.1: Typical parameter values for 2DEGs and GaAs-A1,Gal-,As heterostructures. 
(Refer t o  Ref. [9].) The electron mobility and mean free path are for low temperatures 
( T g  K).  

Others 

scattering time 
electron mobility 
area density 
Fermi wave vector 
Fermi wave length 
Fermi energy 
Fermi velocity 
mean free path e = V F T  10' - lo4 nm 
dielectric constant E 12.5 
band gap of GaAs 4 1.42 eV 
conduction band offset AEc -0.2 eV 
z-directional energy spacing AEz -0.04 eV 
surface Schottky barrier @ S S ~  -0.8 eV 
binding energy of shallow donors Eb -6 meV 

lithography [38], and optical lithography [39]. To produce a surface pattern, one deposits on 

the substrate surface a thin layer of some particle- or optical-sensitive resist material, which 

is usually a polymer material such as poly-methyl methacrylate (PMMA). Then a selected 

area of the resist is exposed to  highly focused beams of electrons, ions, or photons, which 

cause a chemical or structural change in the exposed area. For a positive resist, the exposure 

causes a bond breaking in the selected area of the resist, and the exposed area is washed 

away later by the developer. For a negative resist, the exposure induces cross-links between 

polymer chains and the unexposed area will be washed away. The resist that  remains on 

the substrate provides the pattern which is ready to  be used in the following techniques. 

Selective Etching 

This technique produces a lateral confinement of the 2DEG in the GaAs-A1,Gal-,As het- 

erostructure by selectively removing its top layers with chemical reactions. [40] A conven- 

tional approach is the deep mesa method [41, 42, 431 where the heterostructure is etched 

deeply down to  the GaAs channel layer with only the central region not etched (Fig- 

ure 1.2(a)). Wide Hall bars are usually fabricated in this way. However, for quantum 



wires with widths below 1 pm, the deep mesa method is not reliable because the mobility 

of electron is degraded significantly by the exposed side walls. 

A newer approach is the shallow mesa method [44,45, 46, 471, which achieves the lateral 

confinement by etching away only a thin layer of the GaAs cap (Figure 1.2(b)). The shallow 

mesa requires that  the 2DEG be sensitive to  the thickness of the cap layer. That is, electrons 

of the 2DEG should be depleted from the interface, except in the central region above which 

the cap layer is not etched. With the shallow mesa, it is possible to  fabricate quantum wires 

with the confinement widths below 100 nm. [46] 

Split Gates 

This technique, which was first introduced by Thornton et al. [48] and Zheng et al. [49], 

uses two metallic strips on top of the heterostructure that work as gates. When a sufficiently 

negative bias (relative to  the 2DEG) is applied to  the gates, the 2DEG is depleted from the 

regions under the gates, leaving a central channel undepleted as shown in Fig. 1.2(c). The 

gate separations are typically on the 100 nm scale, and the width of the confined 2DEG can 

be even smaller. The split-gate technique does not degrade the electron mobility because the 

confinement is achieved by a smooth electrostatic potential. Also, the confinement width of 

the electrons can be changed conveniently by simply varying the gate voltage. Because of 

these advantages, quantum wires fabricated with the split-gate technique have been widely 

used in experimental studies [18, 19, 20, 22, 241. 

To attach the metallic gates to  the heterostructure, a fabrication procedure known as 

lift-ofl[50] is usually used. With a resist (PMMA) covering the central region of the het- 

erostructure surface after the patterning process, a layer of metal (such as Au, P t ,  or Ti) 

is evaporated onto the patterned surface. By dissolving the remaining resist, the metal on 

top of the resist is carried away (lifted off), and thus two metallic gates are formed on the 

heterostructure. 

In patterning the resist (PMMA), electron-beam lithography is the best choice for pro- 

ducing a high resolution pattern. However, the electron-beam writing is very slow and thus 

the patterning process takes a relatively long time (compared to  ion-beam lithography and 

optical lithography). To reduce the exposed surface area, quantum wires fabricated with the 

split-gate technique usually have a short length [18, 19,201, which is comparable t o  the gate 

separation. These short split-gate quantum wires are also called point contacts or quantum 

constrictions. An important advantage of the short quantum wires is that  they have less 
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Figure 1.2: Cross-sections of quantum wires fabricated with the major confinement tech- 
niques. (a) Deep mesa selective etching. (b) Shallow mesa selective etching. (c) Split-gate 
technique. (d) Combination of split-gate technique and shallow mesa. (e) Ion implantation. 
(f) Selective epitaxy. 



impurity scattering than long wires and therefore can display the confinement effect more 

clearly in experiments (see the next section). In theoretical studies, however, it is convenient 

for us t o  consider model quantum wires that are infinitely long; This simplification does not 

change qualitatively the basic properties of the quantum wires that  are the topic of this 

thesis. 

It is worth mentioning that the split-gate technique can have two interesting modifica- 

tions. One [51] combines the split-gate and selective etching techniques: The heterostruc- 

ture is first etched with shallow mesa then is covered by a layer of metal to  work as gate 

(Fig. 1.2(d)). The other approach [39, 52, 531 uses a patterned organic or inorganic insu- 

lator as a gate dielectric to  increase the separation between the gate and the 2DEG. This 

corresponds t o  replacing the unetched part of the cap in Fig. 1.2(d) by a dielectric. 

Ion Implantation 

This technique [38, 54, 55, 561 uses focused ion beams to  implant high-energy ( ~ 1 0 0  keV) 

ions (such as Ga, Si, or Be) to  induce crystal damage and doping in a well-controlled region. 

The ion exposure is always followed by sample annealing t o  activate the implanted ions 

and expand the damaged region. In quantum wires, a high dose of ions is implanted on 

both sides of the central region. Because the electron mobility is drastically reduced in 

the region implanted with ions, the electrons of the 2DEG are effectively confined t o  the 

central region, as shown in Fig. 1.2(e). With the ion implantation technique, it is possible t o  

fabricate quantum wires even narrower than 100 nm [55, 561. However, this technique has 

some uncertainty in the confinement width because the expansion range of the implanted 

ions after annealing is hard to  control. Because the confined electrons of the 2DEG can be 

very close t o  the implanted ions, the electron mobility is definitely affected. 

Selective Epitaxy 

In contrast t o  the above techniques, the selective epitaxy accomplishes the heterostructure 

growth and the lateral confinement a t  the same time. [57] This technique is now widely used 

in fabricating quantum wires. [58, 59, 60, 61, 62, 631 Its fabrication process involves several 

steps. First, a strip pattern is developed on a GaAs substrate with a (100) surface, and the 

pattern is masked with an insulator such as SiOz. (See Fig. 1.2(f).) Then, with OMCVD 

or MBE, GaAs is grown on the unmasked region to  produce a triangular prism which has 



the (111) facet sidewalls. (This is because the growth in the (100) direction is much faster 

than in the (11 1) direction.) The next step is to  grow a thick layer of A1,Gal-,As on the 

GaAs triangular prism, followed by a very thin ( ~ 5  nm) layer of GaAs. Finally, a doped 

A1,Gal-,As layer and a GaAs cap layer are grown. In such a structure 2DEG is formed 

in the zigzagged GaAs layer between the two A1,Gal-,As layers. By properly choosing the 

doping level and the thickness of the doped A1,Gal-,As layer, electrons can be confined t o  

the top corner of the GaAs layer and thus a quantum wire is realized. With this technique, 

i t  is possible t o  fabricate quantum wires with widths as small as 10 nm. 

Besides the above techniques, other confinement methods such as intrinsic strain [64], 

lateral p-n junctions [65], gates in the 2DEG plane [66], and holographic illumination [67] 

have also been used to  fabricate quantum wires. 

According t o  above discussion, we can see that the width of the confined 2DEG is 

typically on the 100 nm scale. However, the Fermi wavelength of the 2DEG in GaAs- 

A1,Gal-,As is typically 40 nm (see Table 1.1). Because the confinement width is comparable 

t o  the Fermi wavelength, the energy levels of the 2DEG in the confinement direction are 

quantized. Therefore, quantum wires are quasi-one-dimensional electronic systems. 

1.3 Experimental Properties 

In this section, we focus on the transport properties of quantum wires that  are closely related 

t o  the topics of the theoretical studies of this thesis. However, for general reference, other 

major experimental properties are outlined a t  the end of this section. 

Generally speaking, the transport properties of an electronic system are determined 

t o  a large extent by the electron scattering mechanisms involved. For a quantum wire, all 

temperature-dependent scattering (such as phonon scattering) at low temperatures ( T I 1  K) 

is negligibly small and therefore the transport properties are only determined by impurity 

(dopant) scattering and boundary scattering. The competition between the impurity and 

boundary scatterings results in three transport regimes of the quantum wire. In the difisive 

regime, the mean free path of electrons which depends on the impurity scattering is much 

smaller than the width of the quantum wire, and thus impurities are the dominant factor 

in the scattering. In the ballistic regime, on the other hand, the mean free path of the 

electrons is much larger than the width of the quantum wire, and thus boundary scattering 



is the dominant factor. When the mean free path and the width of the quantum wire are 

comparable, the system is between the ballistic regime and the diffusive regime, and this 

regime is often called quasi-ballistic regime. 

From the diffusive regime to the ballistic regime, quantum wires display many interest- 

ing transport properties. [9, 101 In the diffusive regime, the systems are disordered and are 

associated with localization, a concept first discussed by P. W. Anderson [69]. The disor- 

dered systems are characterized by a large electron backscattering produced by impurities, 

which involves quantum mechanical interference effects. [70] In this research field, several 

sophisticated theoretical techniques, such as scaling [71] and field theoretical methods [72], 

have been developed. There are many introductory reading [73, 74, 751 and review articles 

[70, 71, 76, 771 on various aspects of the disordered systems. 

This thesis, however, is closely related to  the ballistic transport properties of quantum 

wires. As described in the last section, the typical widths of quantum wires are on the 

100 nm scale, while the mean free path of electrons a t  low temperatures (T j l  K) is typically 

lo2  - lo4  nm (see Table l . l ) . l  Therefore, it is quite possible to  realize quantum wires whose 

widths are smaller than the mean free path of electrons, i.e., in the ballistic regime. Now 

we review the major ballistic transport properties of quantum wires. 

1.3.1 Conductance Quantization 

Conductance measurement is an important experimental method in studying quantum wires. 

Fig. 1.3(a) shows a schematic top view of the typical layout for conductance measurements 

on a split-gate quantum wire. The lightly shaded areas represent gate bars which have a 

width on the 1 pm scale. The heavily shaded areas represent the split gate with both the gate 

separation and width on the 100 nm scale. Boxes 1 and 2 with cross signs inside represent 

the ohmic contacts that are the source and drain of the 2DEG, respectively. (Note that  

experimental measurements usually use four terminals, but the two terminals for measuring 

current are not shown in Fig. 1.3(a).) When a sufficiently negative gate voltage Vg, i.e., the 

voltage between the gates and the 2DEG, is applied, electrons of the 2DEG are confined 

laterally as shown in Fig. 1.3(b). (Note that this is a case of a short quantum wire.) At 

the same time, if a voltage Vsd is applied between the source and drain of the 2DEG, an 

'The mean free path of confined electrons is somewhat smaller than that  for a true 2DEG because the 
confined electrons have a lower Fermi energy and because fabrication of confined electron systems inevitably 
introduces defects into the systems. 



Figure 1.3: (a)  The typical layout for conductance measurements on the split-gate quantum 
wires. Boxes 1 and 2 are the ohmic contacts with the source and drain of the 2DEG, 
respectively. Vg is a negative voltage applied between the gates and the 2DEG. Vsd is a 
voltage applied between the source and drain. (b) The confined 2DEG is indicated by 
shading. 

electric current Isd will flow from the source to  the drain. By measuring Isd and Vsd a t  low 

temperatures (TI1 K),  one can evaluate the conductance G and the resistance R of the 

short quantum wire through r 

Low-temperature conductance measurements were first performed by van Wees et al. 

[18] and Wharam et al. [19] independently on short split-gate quantum wires. Both groups 

observed that  the conductance and resistance display a series of plateaus as a function of 

the gate voltage. For illustration, we show in Fig. 1.4 typical resistance measurements on a 

short split-gate quantum wire measured by Sachrajda and collaborators a t  NRC. In Fig. 1.4, 

curve A is the resistance before the quantum wire is exposed t o  illumination, and curves 

B and C are the resistances after short and long illumination by a red light emitting diode 

(LED), respectively. At about Vg = -0.33 V, all of the resistances increase rapidly, which 

implies that  the electrons have been depleted from the regions below the gates. This gate 

voltage is called the depletion voltage. As the gate voltage increases negatively further, the 

curves display a series of plateaus at about h/2e2, h/4e2, h/6e2, etc. (After subtracting 



Figure 1.4: The resistance measurements on a split-gate quantum wire. Curves A, B, and 
C are the resistances of the quantum wire before illumination, after a short illumination, 
and after a long illumination, respectively. Data courtesy of Dr. Andrew S. Sachrajda and 
collaborators at the Institute of Microstructural Sciences, NRC, Canada. 

the resistances a t  zero gate voltage due to the ohmic contacts, the plateaus will match 

these values better.) Every resistance curve finally rises up dramatically, which means that 

electrons are completely depleted and the quantum wire is pinched off. The gate voltage at  

which this happens is called the pinch08 voltage or cut08 voltage. The pinchoff voltages for 

curves a, b, and c are -0.55 V, -0.86 V, and -1.33 V, respectively. 

The conductance or resistance curves of quantum wires can be affected by many factors. 

We list the major factors below. 

1. Illumination. As shown in Fig. 1.4, the resistance curves before illumination, after a 

short illumination, and after a long illumination are substantially different from each 

other. This is because illumination converts deep donors into shallow donors which can 

donate their electrons to the quantum wire. Thus it increases the density of electrons 

in the quantum wire. A quantitative discussion on this will be given in Chapters 5 

and 6. 



2. Temperature. It is observed [78] that  the resistance plateaus deteriorate gradually 

with increasing temperature, and that at  moderately high temperatures (T-5 K) the 

curves show a smooth behavior with the gate voltage. 

3. Wire length. Quantum wires that  display nice conductance plateaus are always very 

short, i.e., on the 100 nm scale. Experiments [79] have found that  long quantum wires 

(-1 pm) do not display clear plateaus, because of the large possibility of backscattering 

due t o  impurities and the sidewall roughness of the wires. In short quantum wires the 

backscattering is suppressed significantly. 

4. Impurities. Besides the backscattering, impurities can induce other conductance fea- 

tures of quantum wires, such as transmission resonances [22, 231 and time-dependent 

random telegraphic signals (RTSs) [24], even at  very low temperature (T-0.1 K). 

5. Magnetic field. Although the conductance quantization itself does not require the 

presence of any magnetic field, a magnetic field can significantly reduce the backscat- 

tering and thus suppress the fluctuations in the conductance plateaus a t  low temper- 

atures. [78] 

6 .  Gate geometry. The detailed features of the conductance curves, such as the flatness 

of plateaus and the sharpness of transitions between plateaus depend also on the 

geometric shape of the split gate. [21] This is because the geometric shape of the split 

gate influences the confining potential well of quantum wires. 

It is interesting to  note the similarity between the conductance quantization of quantum 

wires and the quantum Hall effect [16, 171. However, these are essentially different effects. 

The conductance quantization of quantum wires needs no magnetic field, while the quantum 

Hall effect requires a magnetic field. The conductance quantization of quantum wires is a 

property of ballistic transport, while the quantum Hall effect is associated with edge states 

and does not require the system to  be in the ballistic regime. Finally, the accuracy of 

the conductance quantization of quantum wires (typically 1%) is much lower than that  of 

the quantum Hall effect (typically The relatively lower accuracy for the conductance 

quantization of quantum wires is caused by both the ohmic connections that  form resistances 

in series with the measured quantum wire and scattering from residual defects as well as 

tunneling effects. [lo] Therefore, the physics in the conductance quantization of quantum 

wires must be different from that  in the quantum Hall effect. 



Figure 1.5: (a) The quantum wire has a uniform chemical potential (Fermi level) when 
= 0. (b) The chemical potential (Fermi energy) for electrons with f k is higher than 

that for electrons with -k when Vsd # 0. The net electric current between source and drain 
is given by the electrons in the heavily shaded region. 

In fact, the conductance quantization can be understood in terms of a simple quantum 

mechanical argument for a ballistic one-dimensional electronic system. [78] Consider a quan- 

tum wire in which electrons move freely in the y-direction (the longitudinal direction) and 

energy levels are quantized in the x-direction (the transverse direction). Thus, an electron's 

where El is the transverse energy level and k is the wavevector in the y-direction. When 

no voltage is applied between the source and drain, electrons have a uniform Fermi level as 

shown in Fig. 1.5(a). However, when a voltage Vsd is applied between the source and drain, 

the chemical potential (Fermi level) of electrons in the drain is lower than in the source by 

A E  = eVsd, as shown in Fig. 1.5(b). Therefore, there are more electrons moving from the 

source to  the drain (with f k )  than electrons moving from the drain to  the source (with 

-k). The net current at zero temperature is given by the electrons in the heavily shaded 

region in Fig. 1.5(b). 

In the ballistic regime, the total electric current between source and drain corresponds 



t o  the sum of contributions from all electrons in the heavily shaded region 

where Dl ( E )  is the density of states and vl(E) is the electron velocity for the l th  transverse 

energy level. For one-dimensional systems, the density of states is given by 

where the prefactor 2 comes from the spin degeneracy. The electron velocity is given by 

dEl(k) vl(E) = -. 
hdk 

Substituting Eqs. (1.8) and (1.9) into Eq. (1.7), the k-dependences of the density of states 

and the electron velocity cancel. Thus, 

where N ,  is the number of transverse levels populated by electrons. According t o  equa- 

tion (1.5), one obtains 

In conductance measurements, when the gate voltage becomes more negative after the 

depletion voltage is reached, the quantum wire narrows and the transverse energy levels rise 

relative t o  the Fermi energy. Thus the number of populated transverse levels N p  decreases. 

Each time N p  decreases by one, the resistance rises to  a new plateau. Finally, no transverse 

levels are populated by electrons and the quantum wire is pinched off. This analysis shows 

that  the conductance quantization is a signature of one-dimensional electronic systems in 

the ballistic regime. 

The conductance of quantum wires can be generally expressed in the form of a Landauer 

formula [80, 81, 82, 831 which is widely used in multi-channel transmission of waveguides 

where tnm presents the transmission probability amplitude from channel n t o  channel m. 

Detailed discussions of the Landauer formula have been given in the literature [84, 85, 861. 



The main complication for the realistic short wires is that the confining potential changes 

along the longitudinal direction rapidly. Therefore, the tunneling of evanescent states from 

one end of the short wire to the other would suggest a deviation from the exact quantization. 

Related to  this question, many theoretical models [87,88, 891 have been developed, involving 

solving the Schrijdinger equation with different assumed confining potentials. These works 

show that  the evanescent states tend to  erode the quantization, but clear conductance 

plateaus are present even in quantum constrictions with similar length and width. 

1.3.2 Correlations between Wires 

To explore the electronic correlations between parallel quantum wires, many systems of 

parallel quantum wires have been fabricated and studied experimentally. [20, 90, 91, 92, 931 

An important early experimental study was made by Smith et al. [20] on two short, parallel 

split-gate quantum wires. In their conductance measurements against the gate voltage (see 

Fig. 1.6), Smith et al. found that the total conductance shows successive "double" steps of 

4 e 2 / h .  Curve A, which was the first measurement after the fabrication of sample, clearly 

shows the double steps 4 e 2 / h  against gate voltage. Curves B, C, and D, which were later 

measurements, also show successive double steps 4 e 2 / h .  The single steps of 2 e 2 / h  occurring 

in curves B, C, and D near the pinchoff voltage have been explained as being due t o  the 

successive pinchoff of the two quantum wires. It was found that  the double steps 4 e 2 / h  of 

conductance occurred on different occasions when the relative widths of the two quantum 

wires had changed due to  the spontaneous rearrangement of charges in electronic traps in 

the device. Based on this fact, Smith et al. suggested that the double steps of 4 e 2 / h  imply 

that  the relative alignments of the transverse energy levels of the two quantum wires are not 

random but correlated. However, the reason for the correlation between the energy levels of 

the quantum wires was not known. 

The 4 e 2 / h  double steps of the conductance have also been observed in other systems of 

parallel quantum wires [91, 921. In a recent experimental study, Simpson et al. [93] developed 

a system of two parallel quantum wires with a similar geometry to  that  used by Smith et 

al. [20], but with independent voltage control of each gate. Simpson et al. compared the 

total conductance of the two quantum wires to  the sum of the two individual conductances. 

However, they found no evidence of alignments of the transverse energy levels of the two 

quantum wires. Therefore, the experimental situation a t  present is unclear. 

It is worth mentioning that the conductance behavior of two quantum wires in series has 



Figure 1.6: Conductance measurements on two parallel split-gate quantum wires against 
the gate voltage for different measurement situations. Curve A was the first measurement 
after the fabrication of sample. Curve B, which has been displaced by 0.2 V to  the left for 
clarity, was a measurement on the following day. Curve C, displaced by another 0.2 V to  
the left, was a measurement on another date. Curve D, displaced by another 0.2 V to  the 
left, was a measurement one month later. Data courtesy of Dr. Charles G. Smith. [20] 

also been explored by many experimental groups. [94, 95, 96, 97, 981. These experiments 

presented an anomalous (non-ohmic) resistance addition rule: the resistance of the series 

connection is smaller than the sum of the components. Such a behavior has been interpreted 

as being due to  adiabatic transmission [99], which allows the transverse modes to evolve 

along the wires without mixing. In the completely adiabatic situation, the total resistance 

of the two quantum wires in series is given by the largest resistance of the two quantum 

wires [100], just as the resistance of a single quantum wire is determined by its width a t  the 

narrowest point. However, a semiclassical electron collimitation e$ect [loo] is also believed 

to  play an important role in the phenomena. 

1.3.3 Other Properties 

The quantum wires used in the above ballistic transport studies are relatively clean sys- 

tems. However, many realistic quantum wires are in the quasi-ballistic regime and exhibit 



significant impurity effects. For examples, it was observed [22] that the conductance of 

quantum wires exhibits transmission resonances at large gate voltages. Theoretical studies 

[23, 101, 102, 103, 1041 showed that such transmission resonances can be explained by the 

electronic tunneling via a localized state that is associated with an attractive impurity in- 

side quantum wires. This situation is similar to  that of a double quantum barrier device 

where electrons are transmitted via a state localized in the intermediate region between the 

barriers. 

Many quantum wires display conductance "dips" (sharp reduction) [I051 or random 

telegraphic signals [24, 106, 107, 108, 1091. These effects are believed to  be associated with 

single impurities changing their locations or ionization states. 

Multiple impurity effects have been studied by several theoretical groups [110, 111, 112, 

1131. In a recent numerical study, Davies et al. [I131 used realistic screened ionized-impurity 

potentials t o  describe the background of a quantum wire, and found that  the quantization 

of the conductance breaks down when impurity scattering is getting strong. 

It has been found [21, 87, 88, 114, 1151 that the geometry of quantum wires can also 

affect the conductance of quantum wires significantly. For example, a quantum wire with a 

"cavity" inside shows transmission resonances which are similar to  those related to  impu- 

rities. Here the resonance features are associated with the localized states of the cavity in 

the quantum wire. 

Application of magnetic fields perpendicular to  the 2DEG of a quantum wire can in- 

troduce several interesting effects. [78] When the magnetic fields are moderate ( B S  1 T),  

fluctuations in the conductance plateaus are reduced because the magnetic fields reduce the 

impurity backscattering. When the magnetic fields are higher, the magnetic depopulation 

of subbands occurs. This effect produces progressively wider plateaus with well-quantized 

values, and smoothly makes the transition to  the quantum Hall regime. For large fields 

( B  > 4 T) ,  additional plateaus at odd integer multiples of e 2 / h  are observed because of spin 

splitting. Note that  the conductance quantization formula (1.11) should be valid for any 

type of subband structure. 

Besides transport properties, other experimental approaches have also been used t o  

study quantum wires, such as optical effects [116, 1171, and dielectric response and plasmons 

[39, 118, 119, 120, 1211. 



1.4 Theoretical Review 

Now we review briefly the theoretical studies of quantum wires. Because electrons in quan- 

tum wires are confined to a length scale that is comparable to  the Fermi wavelength, the 

energy levels that  are associated with the motion across the quantum wires are quantized. 

Therefore, quantum wires should be studied using quantum mechanics. 

1.4.1 General Description 

Consider a system of N confined electrons in a GaAs-AlXGal-,As quantum wire. The 

Schrodinger equation of the system is 

where {r) = (q,. , r N )  refer to  the coordinates of N electrons, and Qtotd({r)) and Etotal 

are the total eigenfunction and eigenenergy of the system, respectively. The total potential 

energy Vtotal({r)) can be expressed as 

where Vcrystd({r}), Vext({r)), and vnt({r)) are the contributions from the crystal potential 

which determines the band structure, from the external field which confines electrons, and 

from the electron-electron interactions, respectively. 

In practical studies, equation (1.13) is simplified using different levels of approxima- 

tion. The first level of approximation is the efective mass approximation [122, 1231, which 

is almost always used. In this approximation, the wavefunctions of the system are ex- 

pressed as products of Bloch wavefunctions that are associated with the crystal potential, 

and envelope wavefunctions that are associated with the slowly varying external potential 

and electron-electron interactions. In studying quantum wires, explicit treatment of the 

Bloch wavefunctions is usually not necessary (except for some phenomena such as optical 

absorption where the underlying Bloch wavefunctions are involved). The effects of the Bloch 

wavefunctions can be incorporated into the electron effective mass [122], and, as a result, we 

only need t o  deal with the envelope wavefunctions. Thus the Schrodinger equation becomes 



where Qenv({r)) and Eenv are the envelope wavefunction and its corresponding eigenenergy, 

respectively. Note that the effective mass m* corresponds to the value at  the conduction 

band minimum of GaAs. 

Generally speaking, it is not possible to solve the many-particle form of the Schrodinger 

equation (1.15) analytically because of the interaction term Knt({r)). An interesting excep- 

tion that is worth mentioning is the so-called Luttinger liquid model [124, 125, 1261, which 

describes strictly one-dimensional electronic systems that have a linear energy dispersion 

against wavevector. The Hamiltonian of the Luttinger liquid model is analytically solvable, 

and the excitations of electrons are more appropriately described by a picture of bosons 

instead of fermions. This model was first used to study the conductivity of one-dimensional 

organic solids [124], and was recently suggested [I271 for tunneling conductance of a quantum 

Hall state. Recently, some experiments [I281 suggested that ideal one-dimensional semicon- 

ductor quantum wires in the domain of low energy excitations may be Luttinger liquids. 

However, the experimental evidence [I281 is not clear enough and further experiments on 

such systems would be of interest. In this thesis, we will still use the Fermi liquid theory to  

study quantum wire systems. 

For convenience of calculations, we will approximate the many-particle form of the 

Schrodinger equation (1.15) by the single-particle form 

where Qenv(x, y, z) and Eenv are the effective envelope wavefunction and its corresponding 

energy for one particle. The many-particle effects are included (in a mean field approxi- 

mation) in the interaction term of the potential energy Knt(x, y, z). In other words, the 

potential energy Knt(x, y, z) should now include the regular Coulomb energy and the en- 

ergies of exchange and correlation. There are several treatments for the interaction term 

Knt(x, y, z ) ,  which form the second level-approximations. 

1. The Independent particle approximation. This approximation simply neglects the in- 

teraction term Knt(x, y, z) completely. The Schrodinger equation (1.16) can therefore 

be solved analytically for simple forms of Vext(x, y, z). It is possible to generalize 

this approximation slightly to include some effect of interactions by adjusting the ex- 

ternal potential term Vext(x, y, z). The independent particle approximation is useful 

for qualitative discussion, but its accuracy is not good and all of the information on 

interactions is lost. 



2. Thomas-Fermi method. While neglecting the energies of exchange and correlation, 

the Thomas-Fermi method [I291 includes the Coulomb energy but assumes that the 

kinetic energy relates to the local electron density. The Poisson equation can therefore 

be expressed in terms of the potential function and thus becomes easier to be solved. 

This method is particularly useful for calculating the ground-state density distribution 

of electrons if the density of electrons is slowly varying. 

3. The Hartree approximation. This approximation includes the direct Coulomb inter- 

action and treats the kinetic energy correctly but neglects the exchange-correlation 

energies. The Schrodinger equation is reduced to the single-particle form with the 

Coulomb interaction being expressed in the simplest mean field form. The screening 

effect of electrons is reflected by this approximation, and the accuracy of calculations is 

much improved. However, the Schrodinger equation in the Hartree approximation can 

only be solved numerically. For low-dimensional systems, the Hartree approximation, 

although often useful [130, 1311, can be inaccurate because the exchange-correlation 

effects tend to be stronger in low dimensions [132]. 

4. The Hartree-Fock approximation. This approximation improves the Hartree approxi- 

mation by including both the Coulomb interaction and the exchange interaction. It is 

appropriate for systems with a few electrons such as quantum dots. [133, 1341 

5.  The density functional theory. This theory 1136, 1371 includes completely the Coulomb 

interaction, and the exchange-correlation effects. In this theory, the many-particle 

Schrodinger equation reduces to a single-particle form by including the exchange- 

correlation energies in an effective potential energy, which is a functional of the electron 

density. However, numerical calculations are usually done in the local density approx- 

imation ( L D A ) ,  which relates the exchange-correlation energies to the local electron 

density. With similar calculation procedures to those used in the Hartree approxima- 

tion, the density functional theory is very powerful and provides much more accurate 

results. The main shortcoming of the density functional theory is that it works reli- 

ably only for the ground states of many-particle systems. [I381 More discussion of the 

density functional theory is given Chapter 5 and the Appendix. 



1.4.2 Analytic Studies 

Let us consider a quantum wire in which electrons can move freely in the y-direction but 

are confined in the a- and z-directions. In the independent particle approximation, the 

Schrodinger equation becomes 

where QlXkl ,  (x, y, z) and ElXkl ,  are the wavefunction2 and energy for eigen state (I,, k, l,), 

respectively. Here I, and 1, are the quantum numbers associated with the x-direction and 

z-direction confinements, respectively, and k is the wavevector of electron in the y-direction. 

Because Vext(x, z) is y-independent, the wavefunctions can be separated as 

where the transverse eigenfunction and eigenenergy ElXl ,  are solutions of 

However, equation (1.20) is still difficult to solve analytically because the external po- 

tential energy Vext(x, z) depends on the details of the lateral confinement and can be very 

complicated. Therefore, a third level of approximations is used to  simplify Vext(x, z). For 

examples, VeXt(x, z) can be taken to have a circular, rectangular, or other types of geometry 

[139], whichever is suitable for the realistic situation being considered. 

For quantum wires fabricated by laterally confining the 2DEGs in GaAs-A1,Gal-,As 

heterostructures (see Fig. 1.1), a convenient way is to discuss the energy quantization in 

the x- and z-direction separately. Qualitatively speaking, the z-direction confinement is 

related to  the conduction band offset, electrostatic attraction of the positive charges of the 

ionized donors, and mutual-screening of electrons. A widely used approximation for the 

z-dependent confining potential is a triangular well 

2Below we simplify the "envelope wavefunctions" as "wavefunctions" and omit the subscript "env". 
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where F is the electric field in the triangular well. Substituting equation (1.21) into (1.20), 

the wavefunctions obtained are Airy functions and the energy levels are [I351 

In a real quantum wire, however, the electric field varies along the z-axis (see Figure 1.1). A 

reasonable approximation for F is the average value of the real electric field over the region 

t o  which the electrons are confined. The average field can be taken as the value of the field 

a t  z' a t  which there are equal numbers of electrons with z < z' and z > z'. Thus, 

where n is the area density of electrons of the 2DEG. 

Combining equations (1.22) and (1.23), we can estimate the energy intervals between 

the quantized levels for the z-direction 

where we have used the parameter values given in Table 1.1. Note that  the energy spac- 

ing AE, is much less than the GaAs-A1,Gal-,As conduction band offset AE, N 0.2 eV. 

Therefore, the triangular well is a reasonably good approximation for low and moderate 

electron densities a t  which just one or two quantized levels associated with the z-direction 

are populated, which is the usual case for GaAs-A1,Gal-,As quantum wires. 

The x-direction confinement can be handled in a similar way. The simplest approxima- 

tion for V(x) is an infinite square well 

co, x F O  
0, O < x < a  

co, x > a  

where a is the characteristic width of the quantum wire. The corresponding wavefunctions 

and energy levels are 



where 1, = 1,2, - .  .. If we use a ~ 1 0 0  nm, the energy intervals between the quantized levels 

for the x-direction are typically 

Based on the above analytic discussion, we conclude that 

Because of this, the z-degree of freedom is effectively frozen out. Therefore, under normal 

conditions, we only need to consider the motion of electrons in the x and y directions. As we 

will see, this conclusion is important for our theoretical modeling for the numerical studies 

of quantum wires. 

However, in realistic quantum wires, the potentials that confine electrons laterally are 

similar to  neither the infinite square nor parabolic wells. In split-gate quantum wires, 

for example, the confining potential in principle should be found by solving the Poisson 

equation numerically within the heterostructure of a quantum wire ( z  > 0), with appropriate 

boundary conditions. [I311 Because numerical calculations are usually complicated, many 

theoreticians [141, 142, 143, 144, 145, 1461 have been trying to  formalize the confining 

potentials. Moreover, an analytic description of the confining potentials is very useful for 

experimentalists to  improve device performance, because the analytic description can reflect 

the effects of various parameters of quantum wires in a direct way. However, it turns out that 

the confining potentials depend on many factors of quantum wires, such as the conduction 

band offset, the surface Schottky barrier, and space charge distributions. We will come back 

to  discuss this issue with more details in Chapters 5 and 6. 

1.4.3 Numerical Studies 

When electron-electron interactions are taken into consideration, the electronic structure 

of quantum wires needs to be calculated numerically. To date many numerical studies of 

quantum wires have been made, using the Thomas-Fermi method [147, 148, 1491, in the 

Hartree approximation [130, 131, 150, 1511, in the Hartree-Fock approximation [152], and 

in the density functional theory [153]. 

In numerical studies of quantum wires, it is important to  note that the wave functions 

and the electron-electron interaction energy depend on each other. In other words, to solve 



the Schrodinger equation (1.16) we need to know Vnt(x, y, z ) ,  but Vnt(x, y, z) depends on the 

wave functions which should be obtained by solving the Schrodinger equation. An effective 

technique for dealing with such problems is that of self-consistent calculations. In a self- 

consistent calculation, one assumes a suitable form of Knt(x, y, z) as a trial function. With 

the assumed Knt(x, y, z) and the already known VeXt(x, y, z), which is determined by external 

conditions, equation (1.16) is solved numerically. Then, using the wavefunctions obtained 

by solving the Schrodinger equation, Vnt(x, y, z) is recalculated. With this newly calculated 

&(x, y, z)  the Schrodinger equation is solved again. Such iterations are repeated until both 

Vnt(x, y, z)  and the wavefunctions no longer change significantly. The stable Knt(x, y, z) and 

wavefunctions are therefore the numerical solution of the problem. 

Self-consistent calculations of the electronic structure were first performed by Laux and 

Stern [130] for a quantum wire based on Si-Si02 MOSFET, and later by several groups [131, 

150, 1511 for split-gate quantum wires that are based on GaAs-A1,Gal-,As heterostructures. 

All of these calculations were in the Hartree approximation. The typical calculated electronic 

structure was given by the calculation of Laux et al. [131]. This calculation demonstrated 

that  the lateral confining potential resembles a parabola but with a flattened bottom, which 

implies that  there is a strong self-screening of the electrons in the quantum wire. When 

the gate voltage becomes more negative, the number of the populated transverse levels 

decreases gradually until the quantum wire is pinched off. This calculation also showed that  

the energy spacings of the quantized levels in the x-direction (due to  the lateral confinement) 

are typically below 5 meV, while the energy spacings of the quantized levels in the z-direction 

(due t o  the attraction of the positively charged ionized donors) are much larger. This agrees 

with the conclusion obtained from our analytic discussion above. 

Because of the omission of exchange-correlation effects, the Hartree approximation is not 

accurate enough t o  describe some features of quantum wires correctly. In early studies [132], 

the exchange and correlation energies were found to  be very important in low-dimensional 

systems. Therefore, the exchange and correlation effects should play an important role in 

quantum wires which are low-dimensional systems. Here it is interesting t o  mention that  

recent numerical studies [133, 1341 show that the many-body effects are comparable t o  the 

Hartree energy in quantum dots. 

Some numerical studies have been made of quantum wires beyond the Hartree approxi- 

mation. Using the Hartree-Fock approximation, Nakamura et al. [I521 studied the exchange 

interaction in a restricted basis and found the exchange interaction t o  be quite strong. 



Recently, Ravaioli et al. [I531 took both the exchange and correlation interactions into 

account in their numerical calculation. However, their main focus was on studying the cou- 

pling effects of parallel quantum wires by inspecting the behavior of wavefunctions, while 

the relation between many-body effects and the electronic structure was not sufficiently 

investigated. 

It should be mentioned that ,  in solving the Poisson equation in the above numerical 

studies, different boundary conditions have been used for the exposed surface of split-gate 

quantum wires. The proper choice of the boundary conditions at  the exposed surface is 

a difficult issue because this involves the complicated surface properties, which are very 

complicated. An interesting discussion of this has been giveil recently by Chen et al. [149]. 

We will return to  the problem of the boundary conditions in Chapter 6. 



Chapter 2 

Basis of Numerical Calculations 

This chapter provides the basis for the numerical calculations to  be presented in the next two 

chapters. In this chapter, we first introduce the Coulomb-confined quantum wires, which 

are the model used in our numerical calculations. Then we apply the density functional 

theory t o  electrons in a Coulomb-confined quantum wire, and obtain the equations based 

on which the numerical caIculations are performed. Finally, we describe the procedures of 

the self-consistent calculation as well as important numerical techniques that  are used in 

the programming. 

2.1 Coulomb-Confined Quantum Wires 

The structure of a single Coulomb-confined quantum wire is shown in Fig. 2.1. In such a 

structure, electrons are donated by a uniform ribbon of donors that is infinitely long in the 

y-direction and has a width w. The donated electrons are confined to  the xy-plane (called 

the electron plane), which is separated from the donor ribbon by a distance d. The whole 

system is embedded in a uniform dielectric and is charge-neutral. In this system, electrons 

are confined in the x-direction (the lateral direction) because of the attractive Coulomb 

interactions between the electrons and the donor ribbon. 

A Coulomb-confined quantum wire can be regarded as an idealization of a realistic 

quantum wire that  is realized in a GaAs-AlXGal-,As heterostructure. The electron plane 

in the Coulomb-confined quantum wire represents the GaAs-AlXGal-,As interface a t  which 

a 2DEG is formed in the realistic quantum wire (refer to  Fig. 1.1 and Fig. 1.2). Correspond- 

ingly, the donor ribbon represents the ionized donors in the doped A1,Gal-,As layer, and 
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Figure 2.1: The schematic structure of a single Coulomb-confined quantum wire. The donor 
ribbon is infinitely long in the y-direction and has a width w. Electrons donated by the 
donors are confined to  the xy-plane, which is separated from the donor ribbon by a distance 
d. The whole system is embedded in a uniform dielectric and is charge-neutral. 

the separation d between the electron plane and the donor ribbon reflects the thickness of 

the undoped A1,Gal-,As spacer in the realistic quantum wire. 

Here we should make a remark regarding the model of Coulomb-confined quantum wires. 

In realistic GaAs-A1,Gal-,As quantum wires, the ionized donors are in fact present within 

the whole region of the doped A1,Gal-,As layer instead of only in a central region. However, 

when electrons are confined laterally in the realistic quantum wires, the electrostatic effect 

of the ionized donors far away (1x1 >> w) on the confined electrons is effectively cancelled 

by that  of surface or interface electrons far away (1x1 >> w). For example, in a quantum 

wire fabricated with shallow mesa (see Fig. 1.2(b)), the electrostatic effect of the ionized 

donors under the etched surface is effectively cancelled by that  of the electrons a t  the etched 

surface. Similarly, in a split-gate quantum wire (see Fig. 1.2(c)), the effect of the ionized 

donors under the gate is effectively cancelled by that of the electrons a t  the interface of 

the gate and GaAs cap layer. (More discussion of this issue will be given in Chapters 5.) 

In other words, the ionized donors that affect the confined electrons are only those in the 

central region. This is why we have used a donor "ribbon" in our model to  represent the 

ionized donors (plus surface or interface electrons, to  be exact) in the realistic quantum wire. 



Note, however, that  it should be possible to  fabricate quantum wires in which the donors 

are indeed confined to  a ribbon in space as we have assumed, although, t o  our knowledge, 

this has not been done to  date. 

Another remark is about the electron plane in the Coulomb-confined quantum wire. In 

realistic quantum wires, electrons are not constricted t o  an ideal plane but can be present 

within a short range ( N  5 nm [131]) in the z-direction. The electron distribution within this 

short range in the z-direction can be obtained by using a triangular potential well which has 

been described in Sec. 1.4. Based on both the relationship (1.29) of our analytic discussion in 

Sec. 1.4 and previous numerical calculations [131], the energy spacings between the quantized 

energy levels in the x-direction are much smaller than those between the quantized energy 

levels in the z-direction. This means that ,  in normal situations, we only need t o  consider 

the quantized energy levels in the x-direction, because different quantized energy levels in 

the z-direction are involved only when the electron density is very high ( n  > 1012 ~ m - ~ ) .  

When we discuss the situations in which the density of electrons is not very high, we can 

neglect the dependence of electrons on the z-direction and simply assume that the electrons 

are confined t o  a plane. 

In numerical studies, the model of Coulomb-confined quantum wires has several advan- 

tages. First, this model avoids the practical complication that the lateral confinement of 

electrons is affected by many factors in realistic quantum wires. For example, in a split-gate 

quantum wire, the lateral confinement of electrons involves the properties of donors, the 

surface Schottky barrier, the conduction band offset, geometrical parameters, and external 

factors such as illumination. Studies of the effects of these factors are certainly important, 

and are the central topic of Chapters 5 and 6, but directly including all of these factors would 

make numerical calculations very cumbersome. The model of Coulomb-confined quantum 

wires can be viewed as a simple way of representing the net effect of all of these realistic 

factors. In this way, the numerical calculations are much simplified. The second advantage 

of the Coulomb-confined model is that the model can mimic the realistic processes of varying 

the gate voltage in split-gate quantum wires by changing the linear density of the donors 

and electrons while keeping the whole system to  be charge-neutral. The numerical results 

calculated within the Coulomb-confined model can therefore be used to  understand quali- 

tatively the experimental properties observed in realistic split-gate quantum wires. Finally, 

with the simple physical picture provided by the Coulomb-confined model, we can more 

easily concentrate on some complicated but intrinsic properties of quantum wires, such as 



the many-body effects. 

2.2 Application of the Density Functional Theory 

The density functional theory developed by Hohenberg, Kohn, and Sham [136,137] provides 

an accurate treatment of the many-body effects that influence the ground state properties of 

inhomogeneous electronic systems. (The general formalism of the Hohenberg-Kohn-Sham 

density functional theory is described in the Appendix.) In the Hohenberg-Kohn-Sham 

density functional theory (referred to as "the density functional theory" below), the effective 

Schrodinger equation for an electron in a Coulomb-confined quantum wire is 

where X€Jek(x, y) and Eel, are the eigenfunction and eigenenergy, respectively, m* is the 

effective mass of electron, and Veff [n; x] is the effective potential energy which is a functional 

of the electron density n(x). (Note that our system is uniform in the y-direction.) The 

effective potential energy Veff[n; x] is given by 

where Vc(x) is the Coulomb energy (also called Hartree energy), and pxc[n] is given by 

where Exc[n] is the total exchange and correlation energy of the system. 

According to Kohn and Sham [137], Exc[n] can generally be expanded as 

When the electron density n(r)  varies slowly in space, we can omit all the gradient terms 

and keep only the first term in Eq. (2.4), that is, 

Substituting Eqs. (2.3) and (2.5) into Eq. (2.2), we obtain 



The above treatment of omitting all gradient terms in Eq. (2.4) is called the local density 

approximation (LDA). The local density approximation has been very successful in studying 

the ground state properties of many-body systems, such as atoms, molecules, and crystalline 

solids. [I571 We will use the local density approximation in our calculations. 

It is interesting to  note that, if we neglect Exc[n] completely, the effective potential 

energy contains only the Coulomb energy V,(x). This treatment is the so-called Hartree 

approximation. 

In the local density approximation, the exchange-correlation energy becomes a function 

of position. For convenience of discussion, E,, is usually separated as 

where E ,  and E ,  correspond to the exchange energy and correlation energy per electron, 

respectively. After doing this, Eq. (2.6) can be written as 

and 

are contributions of the exchange and correlation energies to  the effective potential energy 

Veff (x), respectively. 

In the local density approximation, once the electron density is known, the contributions 

of the exchange and correlation energies to the effective potential energy Veff(x), as displayed 

in Eq. (2.8), can be calculated. For a 2DEG, E, has the following analytic form [154] 

in which a& = 4 ~ ~ ~ ~ h ~ / ( m * e ~ )  is the effective Bohr radius, where E is the dielectric constant 

and m* is the effective mass of electron, and r ,  = a/a&,  where a = l / ( ~ n ) l / ~  corresponds 

t o  the average radius of the space occupied by each electron. Note that  the energy unit of 

Eq. (2.11) is the effective Rydberg, which is defined as 1 Ryd* = m * e 4 / 2 ( 4 n ~ ~ o h ) 2 .  If we 

use E = 12.5 and m* = 0.067 me,  which are the values for a GaAs-A1,Gal-,As quantum 

wire, then a& = 98.7 (A) and 1 Ryd* = 5.83 x (eV). 



The correlation energy E ,  for 2DEGs has been calculated numerically by various authors 

such as Jonson [155], and Tanatar and Ceperly [156]. The numerical results given by these 

authors are similar. In our calculations, we use the correlation energy calculated by Tanatar 

where 

The coefficients are a0 = -0.3568, a1 = 1.1300, a2 = 0.9052, and a3 = 0.4165, which are 

fitted in the range 1 < r ,  < 50. For 2DEGs in GaAs-A1,Gal-,As quantum wires, the 

electron density n(x) is typically in the range of 10'' - 1012 ~ m - ~ ,  which corresponds t o  

lo2  (A) < a < lo3 (A), or 1 < rS  < 10. Therefore, Eq. (2.12) is valid for the quantum wire 

systems. 

For the Coulomb-confined quantum wire shown in Fig. 2.1, the area density of donors is 

described by 

where a is a positive constant. Therefore, the Coulomb energy Vc(x, y) can be calculated 

directly from 

where we have chosen Vc(x) to  be zero a t  x = f co. After performing the integration over 

y', Eq. (2.15) becomes 

dx' {n(xf) ln[(x - x ' ) ~ ]  - nd(x1) ln[(x - x ' ) ~  + d2]) . (2.16) 

With both the exchange-correlation energy ex, and the Coulomb energy Vc(x) known, 

the effective potential energy Veff(x) can be calculated from Eq. (2.8) and therefore the 

effective Schrodinger equation (2.1) can be solved. Considering that  our system is uniform 

in the y-direction, the two-dimensional Eq. (2.1) can be reduced to  the one-dimensional 

form 



with 

and 

where El  and Q l ( x )  are the eigen transverse energy level and eigenfunction, respectively, 

and k is the wave vector in the y-direction. 

At zero temperature, the area electron density n ( x )  relates t o  the transverse wavefunc- 

tions through 

where EF is the Fermi energy, and the prefactor 2 is for the spin degeneracy. After perform- 

ing the summation over k, Eq. (2.20) becomes 

If we integrate over x on both sides of Eq. (2.21), we obtain 

where 17 is the linear density of electrons along the y-direction. Eq. (2.22) can be used t o  

determine the Fermi energy E F  once 7 is known. Note that ,  because the Coulomb-confined 

quantum wire is overall charge neutral, 

7 = wa. (2.23) 

Therefore 7 is determined if w and a are given. 

2.3 Programming 

For a single Coulomb-confined quantum wire, there are three independent model parameters: 

the area donor density a, the width of the donor ribbon w, and the separation d between 

the donor ribbon and the electron plane. These three model parameters are the inputs 

for the program. The two constant parameters involved are the dielectric constant E and 



the effective mass of electron m*. In our calculations, they are chosen to  be E = 12.5 and 

m* = 0.067 me,  which correspond to the values for a GaAs-A1,Gal-,As quantum wire. 

Our numerical calculations are performed using the self-consistent technique. This tech- 

nique can be described by the following calculation steps. 

1. Choose an initial trial function for the electron density n ( x ) .  For example, we can use 

the donor density n d ( x )  as a trial function for n ( x ) .  

2. Calculate the Coulomb energy V c ( x )  from Eq. (2.16) using the trial function for n ( x ) .  

3. Calculate the exchange energy ~ , ( n ( x ) )  from Eq. (2.11) and the correlation energy 

c , (n (x ) )  from Eq. (2.12) using the trial function for n ( x ) .  

4. Substitute the calculated V c ( x ) ,  ~ , ( n ( x ) ) ,  and c C ( n ( x ) )  into Eq. (2.8). Obtain the 

effective potential energy V&(x) .  

5. Solve the Schrodinger Eq. (2.17) using the calculated Vef i ( x ) .  Obtain the transverse 

energy levels Ee and wavefunctions Qe. 

6.  Obtain the Fermi energy EF from Eq. (2.22) using the calculated transverse energy 

levels Ee . 

7 .  Calculate the electron density n ( x )  from Eq. (2.21) using the calculated Fermi energy 

EF,  transverse energy levels Ee, and wavefunctions Qe. 

8. Determine the degree of consistency between the trial and calculated electron densities 

n ( x ) .  If a sufficient agreement has been achieved, terminate the calculation and output 

results. Otherwise, choose another trial function for n ( x )  and go back t o  step 2. 

There are many criteria for determining the degree of consistency in step 8. The crucial 

point is, if a sufficient agreement is achieved, the "new" calculated n ( x )  in step 7 should be 

sufficiently close to  the "old" n ( x )  that  was used in steps 2 and 3. That  is, the solution is 

self-consistent. In our calculations, we use the following criterion 

where 6 is the accuracy required for a calculation. If Eq. (2.24) is satisfied, then the calcu- 

lation is completed. In our calculations, 6 is chosen to  be 0.01 or less. 



Note that  in the last step of the above calculation cycle, it is usually not a good idea t o  

use the "new" calculated n(x) in step 7 as the trial function n(x) for the next iteration of 

the calculation. Using directly the "new" calculated n(x) can result in strong "oscillations", 

which keep the calculation from approaching to  the self-consistent solution. A better way 

t o  choose a "next" trial function is to  combine the "new" calculated n(x) in step 7 and the 

"old" n(x)  that  was used in steps 2 and 3, that  is, 

where 0 < r < 1. Using a small r can avoid oscillations in the iteration procedure efficiently. 

In programming, we have used several numerical techniques t o  improve the calculation 

performance. 

r In this calculation project, a major task is to  solve the Schrodinger Eq. (2. IT), which is 

a quadratic differential equation. For this purpose, we implement the NAG Subroutine 

D02FEF, which provides solutions for such a differential equation with both its eigen 

values and eigen functions. Based on many numerical tests, we found that  the most 

efficient way t o  implement the Subroutine D02FEF is t o  use the zero-value boundary 

conditions, i.e., the eigen functions are zero at  the boundaries of x. However, in order 

t o  use the zero-value boundary condition without introducing significant errors, we 

need t o  solve the equation in a sufficiently large calculation range [-X, XI for x. (We 

are only interested in the bound states whose wavefunctions are exponentially small 

for large 1x1.) However, when X is too large, the solutions given by the Subroutine 

D02FEF are not reliable. We found that  the optimized calculation range is X N 

5w, which ensures both reliable solutions of the differential equation and a sufficient 

accuracy. 

r The second consideration concerns eliminating metastable states. For this purpose, 

we use from time to  time a large T in Eq. (2.25) deliberately to  "kick" the iterations 

out of the metastable state if it occurs. We also use different initial trial functions for 

n(x) for the same calculation point (i.e., a set of given model parameters) and verify 

if the final solutions are the same. Once we have obtained such a reliable solution 

for a particular calculation point, which must be the self-consistent solution, we use 

this solution as the initial trial function for the next calculation point whose model 

parameters change only slightly. In this way, we can make sure that  all of the solutions 

are not associated with metastable states. 



Finally, to  save calculation time, we have used an algorithm that  automatically adjusts 

the point density of the arrays used. In other words, the spatial density of the points 

used in the calculations is determined according t o  the rate of variation of the relevant 

function in that  local region. The more rapidly the relevant function changes, the more 

points are taken in that  region. This algorithm significantly decreases the execution 

time of many calculation tasks, such as the calculation of Eq. (2.16) for the Coulomb 

energy. (Note that  the integration function in Eq. (2.16) has a singularity.) 

The calculation program was coded in FORTRAN 77. For a single Coulomb-confined 

quantum wire, each calculation point takes about 30 minutes to  finish (assuming that  the 

program runs with one processor on a Silicon Graphics computer a t  Simon Fraser Univer- 

sity). For two parallel quantum wires, the calculation time is increased several times because 

of the subtle effect of charge balance between the two quantum wires. 



Chapter 3 

Single Coulomb- Confined 

Quantum Wires 

This chapter presents the calculated ground-state electronic structure of single Coulomb- 

confined quantum wires. In the first section, we study the many-body effects in the Coulomb- 

confined quantum wires by comparing the electronic structures calculated using the density 

functional theory and in the Hartree approximation. In the second section, we give a 

qualitative discussion of the bound states in the Coulomb-confined quantum wires, and of 

the implications of the nature of the bound states for the calculated results. The third section 

focuses on the dependence of the electronic structure of the Coulomb-confined quantum wires 

on the model parameters. Most of the results presented in this chapter have been published 

in Ref. [31]. 

3.1 Many-Body Effects 

3.1.1 Density Functional Calculations 

Fig. 3.1 shows typical results of calculations for a single Coulomb-confined quantum wire 

using the density functional theory. The model parameters used for this calculation are: 

w = 200 nm, d = 20 nm, and 77 = 2 x lo5  cm-'. Fig. 3 . l (a)  shows the lateral profiles of the 

effective potential energy Veff(x), Coulomb energy Vc(x), and p,(x) and pc(x), which are 

the contributions of the exchange energy and correlation energy t o  Veff(x) (see Eqs. (2.8), 

(2.9) and (2.10)), respectively. The Fermi energy is EF = -0.96 meV, and the three lowest 



Figure 3.1: Typical calculated results for a single Coulomb-confined quantum wire using 
the density functional theory. The model parameters are: w = 200 nm, d = 20 nm, and 
7 = 2 x lo5 cm-l. (a) The curves are the effective potential energy Vefl(x), the Coulomb 
energy Vc(x), and the contributions of the exchange and correlation energies p,(x) and 
pc(x), respectively. The Fermi energy EF and the three lowest transverse levels are also 
shown. (b) The density functional wavefunctions of the three lowest transverse levels. 



transverse energy levels are El = -1.22 meV, E2 = -1.02 meV and Eg = -0.65 meV. The 

density functional wavefunctions of the three lowest transverse energy levels are shown in 

Fig. 3.l(b). 

As shown in Fig. 3.l(a), the Fermi energy is located between the second and the third 

transverse energy levels. This means that only the two lowest transverse levels (also called 

subbands) are populated by electrons. Fig. 3.l(b) shows that  the density functional wave- 

functions of the three lowest transverse energy levels are clearly confined t o  the immediate 

vicinity of the donor ribbon, i.e., -w/2 < x 5 w/2. Therefore all of the populated states 

are strongly bound. 

It is interesting to  note that  the Coulomb energy Vc(x) in this density functional cal- 

culation is positive everywhere, while the exchange and correlation energies are negative 

and large. The exchange and correlation energies are so strong that  in fact they provide 

the potential well that  confines electrons laterally. Because of this strong attraction due 

t o  the exchange and correlation effects, electrons are bound so tightly to  the central region 

of the potential well that  the Coulomb energy Vc(x), which includes both electron-donor 

and electron-electron Coulomb interactions (see Eqs. (2.15) and (2.16)), is overall positive. 

The lateral confinement of electrons is thus provided by the exchange and correlation ener- 

gies. This result shows that  the exchange and correlation effects are very important in the 

Coulomb-confined quantum wire. 

3.1.2 Hartree Calculatioils 

Fig. 3.2 shows typical results of the calculation in the Hartree approximation for the same 

model parameters as are used in Fig. 3.1. Fig. 3.2(a) shows the lateral profile of the Coulomb 

energy V,(x), the Fermi energy EF = 0.135 meV, and the three lowest transverse energy 

levels El = -0.086 meV, E2 = 0.077 meV, and E3 = 0.133 meV. The Hartree wavefunctions 

for the three lowest transverse energy levels are shown in Fig. 3.2(b). In this calculation the 

electrons were taken to  be confined to the range 1x1 < 1000 nm by choosing zero boundary 

conditions on the wavefunctions at  x = f X = f 1000 nm. 

As we can see, the electronic structure calculated in the Hartree approximation is entirely 

different from the one calculated using the density functional theory. The potential well and 

the transverse energy levels from the Hartree calculation are very shallow compared to  those 

from the density functional calculation. The Hartree wavefunctions of levels 2 and 3, which 

are populated, extend significantly beyond the region of the potential well -w/2 5 x < w/2, 



Figure 3.2: Typical results calculated in the Hartree approximation. The model parameters 
are: w = 200 nm, d = 20 nm, and 7 = 2 x lo5  cm-l. (a) The profile of the Coulomb energy 
Vc(x), the Fermi energy EF,  and the three lowest transverse energy levels. Note that the 
slight asymmetry of Vc(x) near x = 0 is due to the limited numerical accuracy. (b) The 
Hartree wavefunctions of the three lowest transverse energy levels. 
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Figure 3.3: The area densities of electrons from the density functional and Hartree calcula- 
tions with comparison to  the fixed area density of donors. 

which means that  these two populated levels are not strongly bound. Such states will be 

referred t o  as L'weakly bound states". These remarkable differences between the calculated 

electronic structures are because the strong exchange and correlation effects are not taken 

into account in the Hartree approximation. This is why the Hartree potential well is very 

shallow and its confinement of the electrons is very weak. 

The difference between the density functional calculation and the Hartree calculation are 

also reflected in the calculated lateral distributions of electrons. Fig. 3.3 displays the lateral 

distributions of electrons corresponding to the density functional and Hartree calculations, 

and compares them with the fixed area density of donors. This figure indeed shows that  

a considerable number of electrons spread beyond the region of the potential well in the 

Hartree calculation, while the electrons are very tightly confined t o  the central regions for 

the density functional calculation. 

Based on the above comparison, we conclude that the exchange and correlation effects 

are very important for the Coulomb-confined quantum wire. The many-body effects must 

be included in the calculations, and the Hartree approximation is not adequate for this 

case. Our numerical results for the Coulomb-confined quantum wire provide new evidence 

that  many-body effects tend to  be stronger in low-dimensional systems, as was proposed in 



previous theoretical studies [132]. 

3.2 Bound States 

Let us now turn our attention temporarily to  discussing an important issue that  is associated 

with the nature of the bound states, because this helps one understand the implications of 

our numerical results. 

Since we choose the zero of the potential energy at  x = f co, a bound transverse level 

must have a negative energy eigen value. This fact raises the question: do the positive 

energies of levels 2 and 3 in Fig. 3.2(a) mean that  unbound levels are populated by electrons 

in the Hartree approximation? 

Before answering this question, one should note that  the above numerical calculations are 

done in a finite range of x,  i.e., -X 5 x < X ,  and using zero-value boundary conditions on 

the transverse wavefunctions at  x = f X. Hence the numerical results correspond rigorously 

t o  the Coulomb-confined quantum wire suggested in Fig. 2.1 only when X -+ co. But when 

X -+ oo, all populated levels must be bound, even in the Hartree approximation. This 

statement can be proved by contradiction: 

Suppose that  some populated levels were not bound for X -+ co. Then a finite 

amount of charge per unit length of the wire would be completely removed from 

the wire and go away to infinity. Then there would be a net positive charge (say 

Aq) per unit length of the system consisting of the donor ribbon and electrons 

that  are bound to  it. Then the total electrostatic potential would contain a term 

that  is proportional to  Aq ln 1x1 when 1x1 approaches infinity. Therefore if there 

were populated unbound levels, then the quantum wire would be contained in a 

potential well with very soft but infinitely high walls. But such a infinitely high 

potential well has NO unbound levels a t  all. So we have a contradiction and 

the initial assumption that there are unbound populated levels is not correct. 

Therefore, all populated levels must be bound. 

Based on this argument, the Hartree numerical results that  levels 2 and 3 have positive 

energy eigenvalues means that ,  in the Hartree approximation, these levels are weakly bound 

states and their positive energies must be caused by the finiteness of X and the zero-value 

boundary conditions. 



Figure 3.4: The five lowest transverse levels (solid lines) and the Fermi energy (dotted 
line) from the Hartree calculations using different X. The model parameters used are: 
w = 200 nm, d = 20 nm, and 17 = 2 x lo5 cm-l. 

To investigate the effect of the finiteness of the range of the calculations, we repeated the 

Hartree calculations using the same model parameters but with different values of X. The 

results are shown in Fig. 3.4. When X is increased, the Fermi energy and all of the transverse 

energy levels decrease monotonically albeit quite slowly. The dependence of energies on X 

shows again that  levels 2 and 3 are only weakly bound. Because the wavefunction of such a 

weakly bound level has a considerable amplitude well outside of the region [-w/2, w/2] of 

the potential well, using a finite calculation range and the zero-value boundary conditions 

has a significant effect on the wavefunction of this level, and thus on the calculated energy. 

When X is increased, electrons are allowed to  distribute within a larger range and thus 

the repulsion between the electrons is reduced. Hence the electrostatic energy (as well as 

the kinetic energy) becomes lower and the potential well becomes deeper and all energy 

levels become lower. The very slow decrease of the energy levels with increasing X when 

X is large (X > 1000 nm) implies that  levels 2 and 3 are extremely weakly bound and their 

wavefunctions spread over a range much larger than [-w/2, w/2]. This analysis tells us that  

if some weakly bound states are populated, the calculation results are not reliable because 

they depend on the value of X. 



When using the same model parameters as used in Fig. 3.4 to  do the same calculations 

in the density functional theory, we found that the calculated Fermi energy and energy 

levels are quite stable relative to  different values of X.  This is because, in the density 

functional calculations, the exchange and correlation energies are included and, as a result, 

the populated energy levels are strongly bound for the model parameters used. However, 

it should be pointed out that, even in the density-functional calculations, weakly bound 

states can be populated when the spatial distance between the electron plane and the donor 

ribbon is large enough, or the linear electron density of the quantum wire is very high. Such 

effects will be seen in the calculations presented in the next section. 

3.3 Effects of the Model Parameters 

3.3.1 Linear Density of Electrons 

The dependence of the calculated1 electronic structure of the Coulomb-confined quantum 

wires on the linear density of electrons is shown in Fig. 3.5. Fig. 3.5(a) shows the Fermi 

energy and the five lowest transverse levels against the linear electron density 1;1 ranging 

from 0.5 x lo5 cm-I to  8 x lo5 cm-'. Fig. 3.5(b) shows the values a t  x = 0 of the 

effective potential energy V&, Coulomb energy V,, and the contributions of the exchange 

and correlation energies p, and p,. The width of the donor ribbon is w = 200 nm and the 

separation between the electron plane and the donor ribbon is d = 20 nm. 

In Fig. 3.5(a), all of the populated levels are well below zero. This means that  the 

populated levels are tightly bound2 and thus the numerical results are reliable. Note that ,  

however, when the linear density of electrons is increased further beyond 8 x lo5 cm-l, 

the 5 th  transverse level will become populated. According t o  Fig. 3.5(a), this level has a 

positive energy and therefore must be weakly bound. This shows that  weakly bound states 

can be populated when the linear density of electrons is sufficiently high, even in the density 

functional theory. 

An interesting feature shown in Fig. 3.5(a) is that  whenever the Fermi energy crosses a 

transverse level, the curve of the Fermi energy tends to  follow the curve of the level that  has 

just been crossed by EF. This happens when the linear density is equal t o  1.3 x lo5  cm-l, 

'From now on, all numerical results are from density functional calculations. 
2Because this is a Coulomb system and the potential energy is chosen to be zero a t  infinity, bound states 

have negative eigenenergies. Note, however, that some very weakly bound states (discussed below) have 
positive energies in the present calculations because the calculations were performed in a finite range of x. 



Figure 3.5: The dependence of the electronic structure on the linear density of electrons. 
For this calculation w = 200 nm, d = 20 nm and X = 1000 nm. (a) Fermi energy and the 
five lowest transverse levels. (b) The energy values a t  x = 0 for Vefl, V,, p, and p,. 



3.6 x lo5  cm-', and 6.6 x lo5 cm-'. This effect reflects the singularities of the density of 

states a t  the Fermi energy when EF coincides with an energy level. Because the quantum 

wire is a quasi-one-dimensional system, the density of states is generally described by 

and a t  the Fermi energy 

(Note that  Eq. (3.2) can be obtained directly from taking a derivative with respect t o  EF 

of Eq. (2.22).) Therefore, when EF is just above the bottom of a subband, the density of 

states D(EF)  is very large so that increasing the number of electrons can only raise the 

Fermi level slightly. Also because of these singularities, the curves of the transverse energy 

levels change their slopes when the Fermi level crosses a transverse level. 

Another interesting feature is that ,  all transverse energy levels first decrease and then 

increase in energy while q increases. This behavior results from the competition between 

the Coulomb energy and the exchange-correlation energy. According to  Eq. (2.11), r, o: 

-n1I2. The correlation energy rc also increases negatively with n, but slower than r,. (See 

Eq. (2.12).) The Coulomb energy has no strict power-law dependence on the electron density, 

because the electron density appears in the integral in Eqs. (2.15) and (2.16). However, 

when all populated transverse levels are tightly bound, electrons distribute mainly within 

the potential well and thus approximately Vc o: n. At low electron densities, the exchange- 

correlation energy dominates the Coulomb energy. As we have seen, the exchange-correlation 

energy confines electrons so tightly that the Coulomb energy is overall positive. Because 

the exchange-correlation energy dominates the Coulomb energy a t  low densities, increasing 

7 results in further lowering of all transverse levels. However, when the electron density is 

increased sufficiently, the Coulomb energy becomes more important, thus causing the energy 

curves to  become flat and then to  rise gradually. The curves in Fig. 3.5(b) reflect the general 

trends of the changes in the different energies with 7. Note that  the curves in Fig. 3.5(b) 

can only reflect the energy changes roughly, because they are the values a t  x = 0 and the 

energies always oscillate near x = 0 (see Fig. 3.1). Finally, it should be mentioned that  the 

kinetic energy always increases with 7.  



Figure 3.6: The lateral distributions of electrons for different values of 7 when w = 200 nm, 
d = 20 nm, and X = 1000 nm. Curves 1, 2, 3, and 4 correspond t o  7 being 2 x lo5 cm-', 
4 x lo5 cm-l, 6 x l o 5  cm-l, and 8 x lo5  cm-l, respectively. 

Fig. 3.6 shows the lateral distributions of electrons for 7 equal t o  2 x lo5  cm-l, 4 x 

lo5 cm-', 6 x lo5  cm-', and 8 x lo5 cm-l, which correspond to  the curves numbered 

with 1, 2, 3, and 4, respectively. (Note that the electron densities n are typically on the 

10'' cm-2 scale.) The small oscillatory structures near z = 0 are associated with the 

numbers of subbands populated by electrons. Referring to  Fig. 3.5(a), for curves 1, 3, and 

4, the number of populated transverse levels are 2, 3, and 4, respectively. For curve 2, with 

7 = 6 x lo5 cm-l, the third level is populated but is close to the Fermi energy, and therefore 

this curve still shows a two-peak but flattened structure. 

3.3.2 Effects of Distance 

The typical behavior of the various energies against the distance d between the donor ribbon 

and the electron plane is shown in Fig. 3.7. For this calculation, the width of donor ribbon 

is w = 200 nm and the linear electron density is 2 x lo5  cm-'. Fig. 3.7(a) shows the 

variations of the Fermi energy and of the five lowest levels for d from zero t o  60 nm. In 

this figure, we observe how the strongly bound levels 4 and 5 become weakly bound when 

d becomes large enough. For these model parameters, the Fermi energy increases with d a t  



Figure 3.7: The energy behavior against d. The model parameters are w = 200 nm, 7 = 
2 x lo5 cm-l , and X = 1000 nm. (a)  Fermi energy and the five lowest transverse levels. (b) 
The values a t  x = 0 of V&, V,, p, and p,, as well as the Fermi energy. 



Figure 3.8: The dependence of the transverse energy levels and Fermi level on the distance 
d for w = 200 nm, 17 = 3 x lo5 cm-', and X = 1000 nm. 

almost the same pace as the occupied levels and therefore the Fermi energy does not cross 

any level in the regime in which only strongly bound levels are occupied. In Fig. 3.7(b), 

we plot the x = 0 values of the Coulomb energy, exchange energy, correlation energy, and 

total effective potential energy, and the Fermi energy against d. While the exchange and 

correlation energy values are very insensitive to  the variation of d, the Coulomb energy 

value changes significantly. The Fermi energy tracks the effective potential energy VeE quite 

closely, which indicates that  the kinetic energy is not sensitive to  the value of d. 

For a comparison, we display in Fig. 3.8 the energy dependence on d with w = 200 nm 

but a higher linear density 17 = 3 x lo5 cm-l. Notice that  the Fermi energy crosses the third 

level when d = 36 nm. As the separation increases further, the third level becomes weakly 

bound because its energy is above zero. Its wavefunction extends well beyond the region of 

the positive ribbon and is similar to  that of level 3 in Fig. 3.2b. (See footnote 2 on page 46.) 

3.4 Summary 

The main results obtained in this chapter can be summarized as follows: 



1. The exchange and correlation effects are very important in the Coulomb-confined 

quantum wires. The Hartree approximation is not adequate for such systems and 

numerical calculations should be done using the density functional theory. 

2. The numerical results are reliable if all populated transverse energy levels are tightly 

bound states. 

3. All of the electrons are tightly bound within the effective potential well a t  low linear 

electron densities and small separations between the donor ribbon and the electron 

plane. However, some weakly bound transverse levels can be populated by electrons 

a t  high densities and/or large separations. 

These conclusions are useful for our further numerical studies of the electronic structure 

of two parallel quantum wires to  be presented in the next chapter. 

Before finishing this chapter, it is necessary to  make a few remarks. First, the numerical 

results presented in this chapter are based on the exchange-correlation energy calculated by 

Tanatar and Ceperly [156]. We have also used the exchange-correlation energy of Jonson 

[155], and the results agree very well with those using the Tanatar and Ceperly's values. 

Second, the Hartree calculations have been successful in previous numerical studies of gated 

quantum wires [130,131]. The reason is that the electron density in the gated quantum wires 

(typically n N 10" ~ m - ~ )  is much higher than the electron density in the Coulomb-confined 

quantum wires (typically n N 10l0 ~ m - ~ ) .  Our calculations have shown that  the Coulomb 

energy tends to  be more important a t  high electron densities. The comparison between the 

exchange and correlation effects and the Coulomb energy for high electron densities deserves 

further studies. Finally, the present numerical method is applicable only t o  the situations 

in which all populated levels are tightly bound states. To study situations when weakly 

bound states are populated, i.e., when the electron density or the separation between the 

electron plane and the donor ribbon is sufficiently large, a new numerical approach should 

be developed. The latter project is interesting because it describes the transition regime 

from quasi-one-dimensional to  quasi-two-dimensional systems. 



Chapter 4 

Two Parallel Quantum Wires 

In studying quantum mechanical systems it is often illuminating to  view them as composed 

of subsystems, weakly or strongly coupled together. When a pair of energy levels belonging 

to  two such subsystems approach each other, an energy level crossing or anti-crossingoccurs, 

as illustrated in Fig. 4. l(a)  and Fig. 4. l(b),  respectively. Simple level crossings happen when 

the matrix elements of the Hamiltonian that are responsible for the hybridization between 

the states of the subsystems vanish, often for reasons of symmetry. On the other hand, anti- 

crossings occur because quantum hybridization between the subsystems becomes important 

in near-degenerate situations. The hybridization opens an energy gap, lifting the incipient 

level degeneracy. For example, the band gaps that control the electronic properties of 

crystalline solids can be viewed as manifestations of energy level anti-crossings. 

However, energy level crossings and anti-crossings are not the only possibilities in near- 

degenerate situations. As will be demonstrated in detail below, a third type of behavior is 

also possible, namely, energy level locking. This new phenomenon is illustrated in Fig. 4.l(c). 

Energy level locking may be thought of as the opposite of anti-crossing. That is, instead of 

nearly degenerate energy levels "repellingn each other, they lock together. In this chapter, 

we will show that  the energy level locking can occur in two parallel Coulomb-interacting 

quantum wires, and that this new phenomenon is a characteristic of Coulomb-coupled quasi- 

one-dimensional fermionic systems. 

The calculations of this chapter are based on the density functional theory and the self- 

consistent calculation technique described in Chapter 2. In the first part of this chapter, we 

first present the results of calculations for two similar parallel quantum wires which display 

the energy level locking, and then investigate the reason for this novel effect. In the second 



Figure 4.1: The behavior of energy levels in near-degenerate situations. (a) Crossing. (b) 
Anti-crossing. (c) Locking. 

part, we present results of calculations for two dissimilar parallel quantum wires. Finally, we 

summarize the numerical results and discuss their experimental implications. The results 

presented in this chapter have been published in references [32, 33, 341. 

The structure of two parallel Coulomb-confined quantum wires is shown in Fig. 4.2. This 

structure is similar to  that of the single quantum wire shown in Fig. 2.1, but now the system 

has two parallel donor ribbons A and B. These ribbons donate electrons t o  the electron plane 

and thus themselves become two strips of positive charge. For the two parallel quantum 

wires, there are six model parameters: the width w, and area donor density a, for donor 

ribbon A, the width wb and area donor density ub for donor ribbon B, the separation s 

between the two ribbons, and the distance d between the donor ribbons and the electron 

plane. (Note that  the two donor ribbons are in the same plane.) These six parameters are 

the inputs of the calculations. The formalism and the procedure used in the calculations 

are the same as described in Chapter 2, except that Eq. (2.14) should be replaced by 

u,, if -s/2 - w, < x < -s/2 

a b ,  if s /2  5 x < s /2  + wb (4.1) 

0, otherwise 

where a, and a b  are the area donor densities for ribbons A and B, respectively. 



donor ribbons 
7. A 

Figure 4.2: Schematic drawing of two parallel Coulomb-confined quantum wires. Electrons 
are confined t o  the xy-plane. The donor ribbon A has a width w, and area donor density 
a,, and the donor ribbon B has a width wb and area donor density ab.  The two ribbons 
have a separation s and an offset distance d from the electron plane. The whole system is 
embedded in a uniform dielectric and is charge-neutral. 

4.1 Similar Quantum Wires: Energy Level Locking 

The calculated electronic structure of two similar parallel quantum wires is shown in Fig. 4.3. 

The model parameters used are w, = 190 nm, wb = 200 nm, s = 200 nm, and d = 20 nm. 

The donor densities in the two ribbons are kept the same a, = a b  = a, which is the abscissa 

of this calculation. (Since the system is charge-neutral overall, a can also be regarded as 

an electron filling parameter.) The solid lines are the six lowest transverse energy levels, 

and the dashed line is the Fermi energy. The energy levels are labeled A or B, according to  

whether they belong primarily to  wire A or B, respectively, as determined by inspection of 

the calculated wavefunctions. 

In Fig. 4.3, when the Fermi energy rises up through the lower of a pair of adjacent 

energy levels with increasing g, the (algebraic) slope of the lower energy curve of the pair 

increases while that  of the upper curve decreases. Thus the two corresponding energy levels 

are brought closer together. Levels 3 and 4 lock together a t  the Fermi energy, while the 

gap between levels 5 and 6 narrows by a factor of about 5. These are clearly effects of 

energy level locking. The energy level locking is associated with the Fermi energy crossing 



Figure 4.3: The calculated results of two similar parallel quantum wires. The used model 
parameters are w, = 190 nm, wb = 200 nm, s = 200 nm, and d = 20 nm. The six 
lowest transverse levels (solid lines) and Fermi energy (dotted line) against the uniform 
donor density o. Energy levels are labeled A and B according t o  which wire they belong 
principally to. Arrows indicate anti-crossings. 

the corresponding levels. Note that the locked levels tend t o  remain together and that  the 

sequence of the locked levels remains unchanged throughout. As we can see in Fig. 4.3, the 

locked level belonging to  wire B is always lower than the locked level belonging to  wire A. 

The energy level locking is caused by a charge imbalance that  occurs between the two 

quantum wires when a transverse level begins to fill. The origin of the charge imbalance is 

the E - ' / ~  density of states singularity at the bottom of a subband (see Eq. (3.1)), which is a 

characteristic of quasi-one-dimensional systems. When the Fermi energy rises up through a 

transverse level El, because of the density of states singularity, most of the added electrons 

go into subband t .  Thus the wire to  which Ee mainly belongs acquires an excess of electrons, 

and a charge imbalance occurs. Such a charge imbalance, through the Coulomb interaction, 

shifts the self-consistent electrostatic potential and thus the transverse energy levels of the 

wire with the excess (deficiency) of electrons upwards (downwards) significantly, favoring 

energy level locking. Energy levels that lock together do not separate immediately when the 

Fermi energy rises above them, because their density of states singularities almost coincide, 



which inhibits further changes of the charge differential. 

Some features of the electronic structure shown in Fig. 4.3 can be understood qualita- 

tively as a competition between a charge imbalance and inter-wire quantum hybridization. 

The inter-wire quantum hybridization acts to  separate the adjacent levels, and thus opposes 

energy level locking. In Fig. 4.3, the separation between levels 3 and 4 and the separation 

between levels 5 and 6 narrow markedly when the Fermi energy crosses them. This implies 

that  the charge imbalances are the dominant factor. However, the energy gap between levels 

5 and 6 remains fairly large. This is because inter-wire quantum tunneling and therefore 

hybridization is more significant for higher levels. 

4.1.1 Charge Imbalance 

To show that  a charge transfer does occur when a transverse level begins t o  fill, we present the 

following qualitative argument. Consider the situation where all populated levels are tightly 

bound, so that  the wavefunction overlaps between the different wires are negligible. For 

convenience of discussion, we assume initially that  the potential wells of the quantum wires 

remain unchanged although the area donor density a (i.e., the electron filling parameter) 

increases. In other words, the Fermi energy EF varies with a but transverse energy levels 

are independent of a. 

Consider the ratio of the numbers of electrons in wires A and B as a function of a 

where N,(a) and Nb(a)  are the nurnbers of electrons in wires A and B a t  a,  respectively. 

According t o  Eq. (2.22), Na(a) and Nb(u) can be expressed by 

and 

where L is the length of the quantum wires, v,(a) and m ( a )  are the linear densities of 

electrons in wires A and B, respectively, and Eta and Ee, are the transverse levels belonging 

t o  wires A and B, respectively. Note that the Fermi energy EF is a function of a. 



wire A wire B 

Figure 4.4: Schematic energy level structure of a pair of parallel wires. The horizontal axis is 
the  longitudinal wave vector k and the vertical axis is the subband energy Elk. The parabolic 
curves are the four lowest subbands. The shaded regions indicate that  the corresponding 
states are populated by electrons. 

Suppose when a = 00, EF(ao) = E3. Thus the ratio of the numbers of electrons in wires 

A and B is 

where the populated transverse levels are El ,  which belongs to wire B, and E2, which belongs 

t o  wire A. Suppose that when a increases from a0 by a small amount A a ,  the Fermi energy 

increases by a small amount A E  so that it locates above level 3 but still below level 4, as 

shown in Fig. 4.4. Then, a t  a = a0 + A a ,  the numbers of electrons in wires A and B are 

respectively. The last term in Eq. (4.7) is due to  level 3, which is a new populated transverse 

level. The other two terms containing A E  in Eqs. (4.6) and (4.7) are associated with the 2nd 

and 1st levels, respectively. Because A E  is very small, the term due t o  level 3 in Eq. (4.7) 



dominates the other terms. Keeping to the lowest order in A E ,  the ratio of the numbers of 

electrons becomes - 

This equation implies that  a charge imbalance occurs when a new transverse level begins to  

fill. 

If a increases further so that EF rises above level 4, another term due t o  level 4 should 

be added to  the expression of r 

where A E '  = EF(ao + A a )  - E4. In similar parallel wires, because El N E2 and Eg N E4, 

the last two terms in Eq. (4.9) tend to cancel each other. Because of this cancellation, when 

a increases, further differential charging is inhibited and thus the locked levels tend t o  stay 

together. 

Obviously, the above qualitative argument also applies to  situations when higher levels 

(such as levels 5 and 6) are crossed by the Fermi energy. 

The above argument is clearly oversimplified because in reality the electrostatic poten- 

tials and thus the transverse energy levels are actually affected by the charge imbalance and 

move in response t o  it .  Suppose that wire A is deficient in electrons. This means that  wire 

A has an excess of positive charge due to donors, which corresponds to  A a  of the donor 

density. The change of the electron potential energy of wire A is mainly due to  the excess 

donors of ribbon A because it is much closer than ribbon B. Then, according t o  Eq. (2.15), 

the change of the potential well of wire A at  the well center (x = -s/2 - wa/2) can be 

estimated through 

which gives us a negative correction to the electron potential energy. This means that  the 

potential energy and thus the transverse energy levels of wire A are decreased. In a similar 

way, we can show that  the potential and the transverse energy levels of wire B are increased 

correspondingly. These electrostatic level shifts are responsible for the energy level locking. 

The above qualitative considerations are reflected in our self-consistent numerical results 

which provide accurate quantitative values for the electron ratio r .  In Fig. 4.5, we display 



Figure 4.5: Calculated electron number ratio r between the wires. ro = wa/wb = 0.95 
corresponds t o  perfect charge balance. The solid line is a guide t o  the eye. 

our self-consistently calculated ratio r for the range of a in which the Fermi energy crosses 

the 5th and 6th transverse levels. Notice that ro = wa/wb = 0.95 corresponds t o  perfect 

charge balance between the wires, because we use w, = 190 nm and wb = 200 nm for 

this calculation. Fig. 4.5 shows that r oscillates about ro = 0.95. Its drop near a = 

1.8 x 10" cm-2 and rise beginning a t  a = 2.0 x 101•‹ cm-2 are due to  the 5th and 6th 

transverse levels beginning to fill, respectively. 

4.1.2 Energy Level Anti-crossing 

A charge imbalance occurring due to high levels induces an electrostatic potential that  acts 

like an "external field" on lower levels. This charge imbalance can cause the corresponding 

pairs of lower levels to  lock together or even anti-cross. In Fig. 4.3, when level 5 begins 

to  fill, level 3 and 4 are brought together significantly. On the other hand, levels 1 and 2 

anti-cross twice (indicated by the arrows), corresponding t o  the Fermi energy crossing level 

5 and 6, respectively. 

Here it is necessary to  point out that exact level degeneracies do not occur in a system of 

two parallel quantum wires. The reason is that the density functional equations defining the 



Table 4.1: A comparison of the characteristic differences between energy level anti-crossings 
and lockings. 

Anti-crossings Lockings 
single-particle effect many-particle effect 

opening an energy gap reducing the energy gap 
caused by wavefunction overlap caused by a charge imbalance 

level sequence switches no level sequence switches 
occur in all dimension occur in one dimension 

transverse energy levels in our model are effectively one dimensional, and discrete energy 

levels of one-dimensional systems are never degenerate [158]. 

In quantum mechanical systems, energy level anti-crossings are very common, such as 

producing energy gaps in crystalline solids. However, energy level lockings are novel phe- 

nomena. The characteristic differences between anti-crossings and lockings are outlined in 

Table 4.1. 

In a particular system, energy level anti-crossings and lockings may coexist. The resul- 

tant  electronic structure depends on the competition between these two effects. In most 

situations, the effect of energy level locking is very weak. Our numerical calculations have 

demonstrated for the first time that the energy level locking can be the dominant effect in 

some systems, namely, two parallel quantum wires. Further exploration for the energy level 

locking would be of much interest. 

4.1.3 Effect of Wire Separation 

An interesting question is how the inter-wire separation s affects the energy level locking 

in two similar parallel quantum wires. To study this, we have calculated the electronic 

structure of two similar quantum wires with different wire separation s. The numerical 

results are shown in Fig. 4.6. The parameters used are w, = 190 nm, wb = 200 nm, d = 

20 nm, and a, = at, = 2.0 x 101•‹ cm2, which correspond to  the locking of levels 5 and 6 in 

Fig. 4.3. In Fig. 4.6(a), the solid lines are the eight lowest levels and the dotted line is the 

Fermi energy. On the right side of this figure, the solid lines ending with solid circles and 

the dashed lines ending with open circles correspond to  the energy levels of isolated wires 

A and B (each of them is charge-neutral), respectively. 

Compared to  the gaps between the corresponding levels of the isolated wires, we observe 



Figure 4.6: (a)  Transverse energy levels (solid lines) and Fermi energy (dotted line) against 
the inter-wire separation s. The solid lines and the dashed lines a t  the right hand side 
of the figure correspond t o  the energy levels of isolated wire A and B, respectively. (b) 
Wavefunctions of the four lowest levels when s = 100 nm. Parameters used for both (a)  and 
(b) are w, = 190 nm, wb = 200 nm, d = 20 nm, and a, = at, = 2.0 x lo1' cm2. 



strong effects of energy level locking for large wire separation. When s is small, however, 

the inter-wire tunneling becomes strong, which causes the energy levels t o  become well 

separated because of wavefunction hybridization. To illustrate the role of the tunneling 

when s becomes small, we show in Fig. 4.6(b) the wavefunctions of the lowest four levels 

for s = 100 nm. It can be seen that all wavefunctions have considerable amplitudes in both 

wires. In Fig. 4.6(a), the lower pairs of levels show more tendency to  lock together, because 

the electrons of the lower levels experience a higher effective barrier between wires. Here 

we should point out that  levels 3 and 4 are closer than levels 1 and 2 for large s, because, 

a t  this particular value of a, the order of levels 1 and 2 is reversed (check the wavefunction 

or refer t o  Fig. 4.3). 

It is interesting to  note that ,  in Fig. 4.6, even for the large wire separation s of 800 nm, 

the gaps between the paired levels of the two interacting wires are still much smaller than the 

gaps between the corresponding levels of isolated wires. Thus the energy level locking found 

in the present model is a quite long-range effect. The reason for this is that  the Coulomb 

energy cost of the charge transfer between infinite parallel wires depends logarithmically on 

the distance between the wires (for large s ) ,  and is thus insensitive to  the wire spacing. On 

the other hand, the tunneling between wires that opposes the energy level locking decreases 

exponentially as s increases. 

Finally, it is necessary to  point out that the system of two parallel quantum wires that  

we consider is not equivalent to  two isolated quantum wires, even when the wire separation is 

infinitely large. The reason is that the two parallel quantum wires are correlated so that  the 

whole system has a uniform Fermi energy, even when the wire separation is infinitely large. 

In experimental devices this comes about because both wires are connected electrically to 

the same 2DEG that  can transfer electrons between the two wires. (See Fig. 1.3.) On the 

other hand, two isolated quantum wires are both charge-neutral and thus can have different 

Fermi energies. This is why the energy levels of two correlated quantum wires for large s 

are quite different from their corresponding levels in the two isolated quantum wires. 

4.2 Dissimilar Quantum Wires 

The electronic structures of dissimilar quantum wires are quite different from those of similar 

quantum wires. In Fig. 4.7, we present the calculated electronic structures for two situations 

in which the ratio of the widths of the two quantum wires are different. For Fig. 4.7(a), 



Figure 4.7: The electronic structures of dissimilar parallel quantum wires. (a) w, = 50 nm 
and wb = 200 nm. (b) w, = 100 nm and wb = 200 nm. Other parameters are s = 200 nm 
and d = 20 nm, and a, = a b  = a. The solid lines are the few lowest transverse energy 
levels, and the dotted line is the Fermi energy. The levels are labeled A or B according to 
which wire they primarily belong to. 



w, = 50 nm and wb = 200 nm. For Fig. 4.7(b), w, = 100 nm and wb = 200 nm. Other 

parameters are s = 200 nm, d = 20 nm, and a, = ab = a for both calculations. In Fig. 4.7, 

the solid lines are the few lowest transverse energy levels, and the dotted line is the Fermi 

energy. The levels are again labeled A or B according to  which wire they primarily belong 

to. 

Generally speaking, in dissimilar parallel wires, the transverse levels of the two wires are 

well separated from each other. When the Fermi energy crosses a transverse level, an abrupt 

charge imbalance occurs for the same reason as in similar wires. The charge imbalance can 

significantly "twist" the curves of transverse energy levels, but is not sufficient to  lock two 

levels together. The level twists are seen when the Fermi energy crosses the 3rd and 4th 

levels in Fig. 4.7(a), and the 3rd, 4th, and 5th levels in Fig. 4.7(b). It is interesting to  note 

that  energy levels belonging to  different wires are twisted in opposite ways. This is because 

the two wires have an excess and deficit of electrons, respectively, and thus their energy 

levels are affected by the charge imbalance in different ways. Moreover, the level twists of 

wire B are not as significant as those of wire A because wire B is much wider. 

However, when a pair of levels happen to be close when the Fermi energy crosses them, 

they can be squeezed together significantly by the charge imbalance. This is reflected in the 

crossing between levels 4 and 5 (indicated by an arrow) in Fig. 4.7(b). This energy crossing, 

however, is a case of anti-crossing instead of level locking, because the level sequence reverses. 

In this case, the charge imbalance narrows the energy gap a t  the anti-crossing, but the levels 

then separate quickly. 

Another way to  study two dissimilar wires is by varying the donor density of one wire 

while fixing the donor density of the other wire. Such a case is shown in Fig. 4.8. Here, at, 

is varied while a, is fixed a t  1.5 x 101•‹ cm2. The parameters used here are w, = 190 nm, wb 

= 200 nm, s = 200 nm, and d = 20 nm. When ab increases, the Fermi energy also increases 

for the most part. To keep the Fermi energy the same in both wires, some electrons must 

transfer from wire B to  wire A. These excess electrons cause wire A t o  have a net negative 

charge, and thus its energy levels rise with increasing at,. On the other hand, because 

wire B is deficient of electrons, its levels fall. Since the levels in wire A increase with the 

Fermi energy, their trajectories are similar to that of the Fermi energy. The Fermi energy is 

therefore unlikely t o  cross the levels of wire A. In other words, the Fermi energy can cross 



Figure 4.8: a b  is varied while a, = 1.5 x 101•‹ cm2. The parameters are w, = 190 nm, 
wb = 200 nm, s = 200 nm, and d = 20 nm. Levels are labeled A or B according to  which 
wire they primarily belong to. 

4.3 Summary and Experimental Implications 

Based on above discussion, we summarize the conditions for energy level locking as follows. 

1. The system should be quasi-one-dimensional and consist of parallel subsystems with 

Coulomb interaction. 

2. The subsystems should be similar. 

3. The separation between the subsystems should be large enough for tunneling between 

F them to be weak. 

ii It should be noted that the quasi-one-dimension condition is essential for energy level 
L 

locking. To see this, let us consider a quasi-two-dimensional system, such as a system of 

double quantum wells. Because there is no density of states singularity in two-dimensional 

systems, corresponding to Eq. (4.7), we now have 

m*A 
ANb= - C A E ,  

rh2 t .Et<EF 

where A N b  is the variation of the number of electrons in well B, and A is the total area of 

the quantum wells. Eq. (4.11) implies that all populated levels contribute to A N b  equally. 



In other words, the newly populated level that  dominates the filling of electrons in two 

parallel quantum wires does not have a dominant effect, and thus causes no strong charge 

imbalance between the subsystems. Therefore, generally speaking, no energy level locking 

will occur in quasi-two-dimensional systems. 

The energy level locking effect can have significant experimental implications. As was 

mentioned in Chapter 1, in the pioneering measurement of two parallel quantum wires done 

by Smith et al. [20], the total conductance shows successive double steps of 4e2/h. It was 

suggested that  these double steps of conductance result from non-random alignments of the 

wire subbands, and thus imply some correlation between the two quantum wires. Using 

the energy level locking effect, double steps can be easily explained. Since the transverse 

levels lock in pairs, the Fermi level crosses two transverse levels a t  almost the same time. 

Because each new populated level contributes a single step 2e2/h to  the conductance, the 

total conductance of two parallel wires will show a series of double steps. Note that ,  however, 

our numerical calculations show that  the energy level locking effect requires the similarity 

of the two quantum wires. But the relative widths of the two quantum wires used by Smith 

et a!. have not been mentioned in their paper [20]. 

It is also worth considering a recent experimental measurement made by Simpson et 

al. [93] on two parallel quantum wires. In this work, Simpson et al. compared the total con- 

ductance of two quantum wires to the sum of the two individual conductances, but found no 

significant difference between these. They therefore excluded the possibility of correlations 

between parallel quantum wires. However, their experiment used special situations in which 

the two quantum wires can be quite dissimilar. Therefore, this experiment is not sufficient 

t o  establish whether there is some correlation between similar quantum wires or not. 

In principle, it should be possible to detect the energy level locking in two similar parallel 

quantum wires by comparing the total conductance of the two wires to  the sum of the 

conductances of the two individual wires. However, such an experiment must be done with 

a high accuracy because the effect of energy level locking can be very subtle. 

Considering that  it is now possible to  tune independently several gate voltages applied 

t o  quantum wire devices [93, 159, 160, 1611, we suggest another possible way t o  detect the 

energy level locking effect experimentally. When one tunes one side gate voltage while fixing 

the other, the widths of plateaus of the total conductance change. Based on our theoretical 

studies, we know that  the locked levels tend to stay together. This feature should make 

the width of a plateau (for double steps) relatively insensitive to  the variation of the gate 



voltage when the plateau width is close to the maximum. This is because the maximum 

width of the plateau corresponds to  the smallest separation of the two levels, which is the 

situation of energy level locking. 

Besides using the transport properties, other experimental methods such as excitation 

spectra measurements [39, 1171 can in principle be used t o  verify the existence of energy 

level locking in two similar parallel quantum wires. 

Finally, it should be pointed out that the realistic samples used in experimental mea- 

surements [20, 931 are always short gated quantum wires. In the realistic systems, electrons 

confined between the gates share the same Fermi energy with the electron reservoirs of source 

and drain, and therefore charge imbalance can be easily achieved by transferring electrons 

from or to  the reservoirs. Also, the lateral confinement of electrons in the gated quantum 

wires tends t o  be stronger than in the Coulomb-confined systems, and thus the quantum 

hybridization that competes with level locking should be less important. Therefore, it is 

reasonable t o  expect that energy level locking should occur in the gated quantum wires that  

have similar widths. 

In conclusion for this chapter: We have presented a theoretical study demonstrating that  

energy level locking should occur in similar parallel quantum wires. The energy level locking 

is driven by a charge imbalance associated with the onset of filling of transverse energy 

levels with electrons. This novel phenomenon is qualitatively different from the anti-crossing 

behavior that  is typical of nearly degenerate energy levels in quantum systems. These results 

should stimulate further experimental and theoretical studies of this phenomenon. 



Chapter 5 

Split-Gate Quantum Wires: 

Definition of the Model 

We now focus on discussing the realistic split-gate quantum wires, i.e., quantum wires 

that  are fabricated with the split-gate technique. As described in Chapter 1, the split- 

gate quantum wires have the important advantages of relatively high electron mobilities 

and of allowing one to  vary the confining potential by tuning the gate voltage. Because 

of these advantages, the split-gate quantum wires have been widely used in experimental 

studies [18, 19, 20, 22, 241 and may eventually have applications in switches, transistors, 

and sensors. 

Consider the typical split-gate quantum wire whose cross-section is shown in Fig. 5.1. 

(It is useful t o  compare Fig. 5.1 with Fig. 1.1 in Chapter 1.) For convenience of discussion, 

we assume that  the quantum wire is infinitely long in the direction perpendicular t o  the 

paper. The layers from the top are the GaAs cap, the Si-doped A1,Gal-,As, the undoped 

AlXGal-,As spacer, and the GaAs channel. The thicknesses of the GaAs cap, the Si-doped 

AlXGal-,As, and the undoped A1,Gal-,As spacer are t,, td, and t,, respectively. On top of 

the GaAs cap are two metallic gates with a spatial separation w. When a sufficient negative 

voltage is applied t o  the gates, electrons are confined laterally to  the central region a t  the 

L = t, + t d  + ts interface, as shown in Fig. 5.1. The coordinate frame is chosen in such a 

way that  the exposed surface of the GaAs cap is the z = 0 plane, and the lateral direction 

is along the x-axis. 
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Figure 5.1: The cross-section of a typical split-gate quantum wire and the coordinate frame 
chosen for calculations. 

An essential question about this split-gate quantum wire is how to determine the po- 

tential that confines the electrons laterally in the presence of a gate voltage. Here, we need 

to  distinguish two related concepts. One is the external confining potential or bare confin- 

ing potential, which does not include the screening by the 2DEG and depends on external 

conditions.' The other concept is the self-consistent confining potential or screened confining 

potential, which is the sum of the external confining potential and the 2DEG self-screening. 

The self-consistent confining potential determines the electronic energy levels of the wire 

quantitatively, but it has to be calculated numerically using the self-consistent procedures 

described in Chapter 2. Such numerical calculations are complicated, and the effects of the 

various properties of the quantum wire are not clearly reflected in the calculations. On the 

other hand, if the 2DEG is completely depleted, it is possible to obtain a general analytic 

form of the external confining potential which can provide a lot of insight into realistic 

quantum wires. In particular, based on this external confining potential, the depletion and 

'The external conditions refer to the factors not belonging to the 2DEG, such as the gate separation, 
layer thicknesses, applied gate voltage, etc. 



pinchoff voltages (refer to  Fig. 1.4 and the relevant text in Chapter 1) can be calculated 

analytically, which is very useful for experimentalists to improve device performance. 

However, the external confining potential (simplified as "confining potential" in following 

text) depends on many factors such as the details of the donors, surfaces and interfaces, and 

on whether the system is in equilibrium or not. Therefore, a model must be established t o  

describe these properties. 

Based on the assumptions of complete ionization of all donors, a uniform potential on 

the exposed surface, and overall system equilibrium, Davies [144, 1461 suggested a model 

and calculated the confining potential of quantum wires with the Green's function method. 

However, his assumptions are oversimplified. Because of the complete ionization of all of 

the donors that  was assumed, his model could not describe the effects of illumination on 

quantum wires. The assumption of the uniform potential on the exposed surface ceases t o  be 

valid when a non-zero gate voltage is applied, because the surface electrons are very localized. 

Moreover, the overall system equilibrium does not always hold because of the high energy 

barrier that  is involved in quantum wires. Due to these limitations, the qualitative results 

obtained within Davies' model do not agree with experimental measurements satisfactorily 

[144]. (We will have more discussion on this in the next chapter.) 

In this chapter, we will establish a new model of split-gate quantum wires which incorpo- 

rates the crucial properties of donors, surfaces and interfaces, and considerations of system 

equilibrium that  apply in different situations. In each of the following sections, we first 

present a feature of our model and then provide explanations and arguments in support for 

that  feature. Most of the results presented in this chapter have been published in Ref. [35]. 

5.1 Feature I: Donors 

The first feature of our model incorporates the following properties of the donors: 

1. The Si donors in the doped A1,Gal-,As layer are uniformly distributed. Electrons 

can be trapped in both the shallow levels and deep levels of the Si donors. 

2. Electrons in the shallow levels can be easily excited to  the conduction band, because 

the binding energy for the shallow levels is small. 

3. Electrons in the deep levels can be excited to  the shallow levels or t o  the conduction 

band by illumination. 



In fabricating quantum wires, it is possible to  ensure that  almost all the Si atoms in 

the doped A1,Gal-,As layer take the Ga sites and are thus donors of electrons. In this 

theoretical study, we assume that all of the Si donors are uniformly distributed in the doped 

A1,Gal-,As layer. 

The Si donors are associated with two kinds of localized states: the shallow levels and the 

deep levels. We now review the properties of these two kinds of localized states separately. 

5.1.1 Shallow Levels 

In A1,Gal-,As, the three electrons in the outmost shell of G a  atoms or A1 atoms join the 

five electrons in the outmost shell of As atoms to  form the tetrahedral chemical bonds of 

the zincblende-type crystal. When a Si atom replaces a G a  or A1 atom, there will be an 

extra electron at  the Si site because the Si atom has four electrons in its outmost shell. 

This extra electron is called a donated electron. Because the valence band of A1,Gal-,As is 

completely filled, the donated electron has to  occupy the conduction band. However, after 

donating an electron, the Si donor is associated with a positive charge +e. This charge can 

at tract  the electron into a series of hydrogenic-like bound states, which are called shallow 

levels. In the effective mass theory [122], neglecting central cell effects, the energies of the 

shallow levels are given by 

m*e4 - 1 m* - 
Es(n) = - 2 ( 4 r ~ ~ ~ h n ) 2  (E)  (Ryd), n = l , 2 , 3 ,  - - . ,  

where m* is the effective mass of electron, E is the dielectric constant, and 1 Ryd = 13.6 eV. 

The shallow levels of a Si donor have very small energy spacings. To see this, we define 

the binding energy of the shallow levels as 

For A1,Gal-,As, as long as x < 0.45, the r valley (at the center of the first Brillouin zone) 

is the lowest one of the conduction band, and the effective mass of electrons in the valley 

is m* = 0.067 me. For the A1,Gal-,As used in quantum wires, x N 0.3 usually, so we 

should use m* = 0.067 me. If we take the dielectric constant for A1,Gal-,As and GaAs to  

be E = 12.5, we obtain that  Eb = 5.83 meV. Such a binding energy of shallow Si donors has 

been verified by various experiments [162, 1631.~ 

I 'In reality both rn* and E depend weakly on z in A1,Gal-,As. i 



Because of the small binding energy of the shallow levels, electrons can be easily excited 

from the shallow levels t o  the conduction band. In following discussion, we will neglect the 

binding energy of the shallow levels because it is much smaller than other relevant energy 

parameters such as the surface Schottky barrier (assb ~ 0 . 8  eV) and the GaAs-A1,Gal-,As 

conduction band offset (AE, ~ 0 . 2  eV), as shown in Table 1.1 in Chapter 1. 

5.1.2 Deep Levels 

In A1,Gal-,As, when x > 0.2, electrons can be trapped by Si donors in other kinds of 

localized states that are associated with much larger binding energies. These levels are called 

deep levels. (For a recent review see [164].) It is now generally accepted [165, 166, 167, 1681 

that  the deep levels are associated with a local lattice distortion which is usually called a 

DX center. The microscopic structure of a DX center has been suggested [I681 as shown 

in Fig. 5.2(a). On the left hand side is the undistorted lattice structure of a Si atom and 

its neighbors in A1,Gal-,As. On the right hand side is a distorted DX center, where one 

bond between Si and As is broken and the Si atom moves toward the interstitial site. (It is 

widely believed [I641 that  electron transfer occurs between deep donors so that  they exist as 

pairs DX+ and DX- of positively and negatively charged ions. Since these pairs are charge 

neutral overall, in this thesis we will treat such deep donors as if they were un-ionized.) 

According t o  Ref. [166], the relationship between the deep levels and shallow levels can 

be described by the energy diagram in Fig. 5.2(b). The two parabola-like energy curves 

correspond to  a shallow level and a deep level, as indicated in the figure, as functions of a 

configuration coordinate which represents the lattice distortion. A stable deep level corre- 

sponds to  the minimum point A of the right-hand curve, which involves a lattice distortion 

KO. A stable shallow level corresponds to  the minimum point C of the left-hand curve, 

which involves no lattice distortion. The deep level is lower in energy than the shallow level. 

In Fig. 5.2(b) one can see three major processes. In the process of photon absorption, an 

electron is excited from point A to  point B by absorbing a photon (hv 2 1.0 eV) [169] while 

the lattice distortion is unchanged. However, the system at  point B is not stable. The lat- 

tice distortion transforms into phonons and disappears, which corresponds to  a relaxation 

of the system from point B to  point C, which is labeled relaxation. In the process of thermal 

distortion, an electron transfers from point C to  point A, which involves crossing an energy 

barrier A E  N 0.1 eV [I651 and introducing the lattice distortion KO. At low temperatures 

(T < 1 K),  however, the thermal distortion is suppressed because there are not sufficient 
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Figure 5.2: The relationship between the shallow levels and deep levels. (a) The microscopic 
structures of the undistorted lattice (left) and a DX center (right), as per reference [168]. 
(b) A shallow level and a deep level as functions of the configuration coordinate, and the 
three relevant processes of photon absorption, relaxation, and thermal distortion, as per 
reference [166]. 



phonons present to  overcome the energy barrier. It is found that the thermal distortion from 

the shallow levels to the deep levels is significant only when T > 100 K. [I701 The above 

picture of the deep levels and shallow levels is well supported by many experiments such 

as persistent-photoconductivity, thermal emission, and deep level transient spectroscopy 

(DLTS). [165, 166, 167, 169, 1701 

According to  the first property of Feature I of our model, in the doped layer of the 

quantum wire, we have 

Ntotal = Ns -k Nd, (5.3) 

where Ntotal, Ns, and Nd are the total concentration of donors, and the concentrations of 

donors in the shallow levels and in the deep levels, respectively. Note that  according to  

Feature I the ionized3 donors are included here in Ns. In principle, Ntotal is known from 

fabrication information but Ns and Nd are undetermined. Because electrons in the deep 

levels can be excited to  the shallow levels or to  the conduction band by illumination, N, and 

Nd are changed when the sample is illuminated. The uncertainty of N, makes i t  difficult to  

analyze the quantum wire, because Ns determines the number of donated electrons as well 

as spatial charge density. However, we will develop a method to  calculate N, within our 

model in the next chapter. 

5.2 Feature 11: Surfaces and Interfaces 

Feature I1 incorporates the following properties of surfaces and interfaces in the split gate 

quantum wire into the model: 

1. The Fermi level of the exposed GaAs surface is pinned a t  the surface states within the 

band gap. The surface states are localized. 

2. The interface Schottky barrier between GaAs and metallic gates depends on the gate 

metal. 

3. The GaAs-A1,Gal-,As interfaces induce an abrupt conduction band offset, which 

depends on the A1 composition in A1,Gal-,As. 

3Note that  we treat deep donors as un-ionized species througthout this work as discussed on page 73. 



5.2.1 GaAs Surfaces 

Generally speaking, semiconductor surfaces are quite complicated because of the rich variety 

of possible combinations of bulk materials, lattice reconstructions, and surface contamina- 

tions. (For a general review see [171].) Fortunately, we only need t o  deal with the properties 

of the exposed GaAs surfaces in the split-gate quantum wire shown in Fig. 5.1. The ex- 

posed surface in the quantum wire is usually the GaAs(100) surface for reasons related to  

the growth method that  uses MBE or OMCVD [ l l ,  121. 

After the split-gate quantum wire is fabricated, the exposed GaAs surface is usually 

contaminated by oxygen or other atoms. [I721 Many experimental studies [173, 1741 of 

contaminated GaAs surfaces show that the surface Fermi energy is pinned a t  the surface 

states within the forbidden gap when the surface is covered by a fraction of monolayer of 

adatoms. In other words, the location of the Fermi energy relative t o  the band edges is 

independent of concentration of donors in the bulk GaAs. This surface behavior is called 

the Fermi-level pinning effect. Experiments 11731 show that the pinning position of the 

Fermi energy is insensitive to the types of adatoms. It is thought [173, 1751 that  the surface 

states a t  the contaminated surfaces are associated with the adatom-induced surface defects. 

The surface states are very localized, which can be understood from the fact tha t  energies 

of the surface states have a small dispersion. [173, 1741 

An important parameter related to  the exposed surface is the surface Schottky barrier, 

which is defined as the energy difference between the conduction band minimum and the 

surface states 

Q s s b  = E c b m  - E s u r f .  (5.4) 

In n-type GaAs, some of the donated electrons transfer t o  the surface states and the pos- 

itively ionized donors cause energy bands to bend in the GaAs. (See Fig. 5.3(a).) Based 

on experimental measurements [176, 177, 1781, the surface Schottky barrier for the n-type 

"exposed" GaAs(100) surface is approximately QSsb = 0.8 eV. For the split-gate quantum 

wire shown in Fig. 5.1, although the GaAs cap is not doped, the Si-doped A1,Gal-,As layer 

makes the exposed surface behave like a n-type GaAs surface. Therefore, in our calculations 

that  follow, we will use Qssb = 0.8 eV as the value of the surface Schottky barrier for the 

exposed GaAs(100) surface of the quantum wire. 
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Figure 5.3: A comparison between (a) the surface Schottky barrier of a n-type GaAs and 
(b) the interface Schottky barrier between a metal and the n-type GaAs. 

5.2.2 Metal-GaAs Interfaces 

Metal-semiconductor interfaces have been studied for a long time and are well understood. 

(For a general review see [171].) An important parameter for metal-semiconductor interfaces 

is the interface Schottky barrier. For n-type GaAs, it is defined as the energy difference 

between the conduction band minimum of the GaAs and the Fermi level of the metal, 

Note that  the Fermi level of the metal locates within the band gap of GaAs, as shown in 

Fig. 5.3(b). The metal-GaAs interface is associated with interface states or metal-induced 

gap states (MIGS), which are caused by the Bloch wavefunctions in the metal extending 

into the GaAs [179]. Electrons donated from the n-type GaAs can therefore be trapped by 

the interfaces states, and the energy bands are bent in the GaAs correspondingly, as shown 

in Fig. 5.3(b). 

There is a strong similarity between the interface Schottky barrier and the surface Schot- 

tky barrier. They are both associated with electronic states within the band gap, and can 

cause band bending when electrons are trapped by the states within the band gap. There- 

fore, the relevant theoretical analysis can be the same. However, the values of the interface 



Schottky barrier and the surface Schottky barrier for n-type GaAs are not necessarily the 

same, because the mechanisms that  cause the two kinds of energy barriers are not the same. 

In particular, there has been no generally accepted model for surface states a t  contaminated 

semiconductor surfaces, and this problem is still in process of investigation. For a detailed 

picture, see Ref. [171]. 

It has been found that  the interface Schottky barrier depends on the contact metal. In 

Table 5.1, we list the experimental values of the interface Schottky barriers for different 

metals on the n-type GaAs(100), based on both current-voltage and capacitance-voltage 

measurements [180, 181, 1821. For most metals, the values of interface Schottky barriers 

from the I/V and C/V measurements are quite similar. Here, it is worth mentioning that  

good agreement has been achieved between theoretical calculations [I831 and experimental 

measurements for some interface Schottky barriers. 

Table 5.1: Interface Schottky barriers for various metals on n-type GaAs(100). All values 
are in eV. 

5.2.3 GaAs-AlGaAs Interfaces 

Metal 
I/V 
C/V 

The interfaces between GaAs and Al,Gal-,As introduce abrupt discontinuities of the energy 

bands. (For a recent review, see Ref. [184].) In studying quantum wires, we only need to  

consider the conduction band offsets at  the GaAs-A1,Gal-,As interfaces because the valence 

band is completely filled and is thus irrelevant to the properties of the quantum wires that  

are discussed in this thesis. 

There are many experimental measurements [185, 186, 1871 of the conduction band off- 

sets a t  the GaAs-A1,Gal-,As interfaces. It is found that  the conduction band offset AE, 

depends on the A1 composition z of the A1,Gal-,As, and the dependence is approximately 

linear when x < 0.45. For most GaAs-A1,Gal-,As quantum wires, x - 0.3. Correspond- 

ingly, we will use LIE, = 0.2 eV in relevant calculations. 

Ag Au Pd Cu A1 Ti P b  Bi Fe Mg 
0.90 0.89 0.91 0.96 0.85 0.83 0.80 0.77 0.72 0.62 
0.89 0.87 0.93 0.96 0.84 0.83 0.91 0.79 0.75 0.66 



5.3 Feature 111: Equilibrium Considerat ions 

Feature I11 of our model consists of assumptions about the different equilibrium and non- 

equilibrium situations that  can occur in quantum wires: 

1. When the quantum wire is in absolute equilibrium, there are three different equilibrium 

regimes. 

2. We assume that  electrons on both sides of the spacer layer are always in equilibrium 

because the spacer energy barrier is small. However, the surface energy barrier is so 

high that  the Fermi energy of surface electrons can be different from the Fermi energy 

of the rest of the electrons in the system. 

3. We assume that  the whole system is in absolute equilibrium after the quantum wire 

has just been fabricated or has just been illuminated a t  zero gate voltage. 

4. When the gate voltage varies, the number of surface electrons is conserved. 

5.3.1 Absolute Equilibrium 

Absolute equilibrium means that  the Fermi energy is uniform within the whole system of 

the quantum wire. Under the conditions of absolute equilibrium, we identify three different 

equilibrium regimes a t  zero gate voltage. The energy band structures for these three equi- 

librium regimes are shown in Fig. 5.4. The curves corresponds to  the bottom of conduction 

band along the z-axis. Note that  we have neglected the binding energy of the shallow levels 

as per Feature I. 

Three Equilibrium Regimes 

In equilibrium regime A (Fig. 5.4(a)), the shallow Si donors everywhere in the doped layer 

are ionized, but no 2DEG is present a t  the z = L interface. This means that  all of the 

electrons donated by the shallow donors have transferred to  the 2 = 0 plane to  fill the surface 

or interface states. This lowers the system's energy because the conduction band edge of 

the GaAs channel layer is higher than the surface and interface energy levels. Due to  this 

transfer of electrons, the conduction band is bent in the GaAs cap and doped A1,Gal-,As 

layers. The electrons accumulated at  the z = 0 plane effectively form a "capacitor7' with 

the positively ionized donors. Therefore, the conduction band in the undoped A1,Gal-,As 



Figure 5.4: The energy band structures for the three equilibrium regimes when the quan- 
tum wire is in absolute equilibrium at zero gate voltage. (a) Equilibrium regime A. (b) 
Equilibrium regime B. (c) Equilibrium regime C. 



and the GaAs channel layers remains flat. Equilibrium regime A occurs when the shallow 

donor density is very low and the layer thicknesses t ,  and t d  are small. 

In equilibrium regime B (Fig. 5.4(b)), the shallow donors everywhere in the doped layer 

are ionized and a 2DEG is present a t  the z = L plane. Now the curved conduction band 

within the doped A1,Gal-,As layer has a minimum point M which divides the whole doped 

layer into two parts, with thicknesses tl and t 2 ,  respectively. Because the electric field a t  

point M is zero, one may consider all of the donated electrons from the region t o  the left 

of point M t o  transfer to  the z = 0 plane to  form one "capacitor", while all of the donated 

electrons to  the right of point M transfer to  the z = L plane t o  form another "capacitor". 

These two "capacitors" have no interaction with each other because each screens itself com- 

pletely. This consideration enables us to  discuss each "capacitor" separately. Equilibrium 

regime B occurs when the shallow donor density is moderate. 

Equilibrium regime C (Fig. 5 . 4 ~ )  is the most complicated one. It differs from regime B 

by the presence of an un-ionized region in the doped layer. In this un-ionized region, the 

shallow levels of the donors line up with the system's Fermi level and electrons in this region 

are not ionized (i.e., the electrons can be regarded as being bound to  the shallow donors.). 

Correspondingly, the whole doped A1,Gal-,As layer is divided into three parts. The one on 

the left hand side forms one "capacitor" with the z = 0 electrons, the one on the right hand 

side forms another "capacitor" with the 2DEG, and the one in the middle is charge-neutral 

with a flat conduction band. Equilibrium regime C occurs when the shallow donor density 

is very high or the doped layer is very thick. 

Identification of the Equilibrium Regimes 

In calculating the confining potential of a split-gate quantum wire, it is important t o  know 

which of the equilibrium regimes the system is in when the quantum wire is in absolute equi- 

librium at  zero gate voltage. However, the equilibrium regimes under the exposed surface 

and under the gates can be different from each other because the GaAs surface Schottky 

barrier @,,I, and the metal-GaAs interface Schottky barrier QiSb can be different (see Fea- 

ture 11.). This makes theoretical studies somewhat more complicated. Here we provide the 

criteria for identifying the equilibrium regimes under the exposed surface (1x1 < w/2). The 

identification of the equilibrium regimes under the gates (1x1 > w/2) can be done in a similar 

way. 

Let N ,  be the critical shallow donor density that divides regimes A and B, and No be the 



Figure 5.5: (a) The critical situation between equilibrium regimes A and B. (b) The critical 
situation between equilibrium regimes B and C. 



one that  divides regimes B and C. At N,, the conduction band bottom in the GaAs channel 

layer lines up exactly with the system's Fermi level, which also lines up with the surface 

energy levels. (See Fig. 5.5(a).) Considering that  the width of the exposed surface, i.e., the 

gate separation (w>100 nm), is much larger than the thickness the cap layer (t, N 10 nm), 

we can neglect the edge effects of the "capacitor" formed by the surface electrons and the 

ionized donors in the doped layer. Thus, 

in which the left side gives the total amount of band bending in the cap and doped layers. 

Note that  the two band offsets a t  z = t, and z = L cancel each other. For a particular 

quantum wire, t,, td, and Qssb are known, and therefore the critical shallow density N, can 

be calculated from Eq. (5.6) directly. 

When Ns = Np, the minimum point M of the curved conduction band in the doped layer 

just touches the Fermi energy, as shown in Fig. 5.5(b). Therefore, 

e2 Np t2 
-(t,t2 + 2) = AE, - AE,, 

E E o  2 

where Eqs. (5.7) and (5.8) correspond to  the bottom of the conduction band at  point M, 

being equal to  the Fermi levels of the surface states and the 2DEG, respectively. In the 

above three equations, Np, t l ,  and t2 are the three unknown parameters to  be solved for. 

Note that  AE, is the energy difference between the 2DEG Fermi energy and the bottom of 

the conduction band a t  z = L (refer to Fig. 5 . 4 ~ ) .  Typically AE, N 40 meV. 

At this critical shallow donor density, the corresponding area density of surface electrons 

a t  z = 0 is 

up = Nptl, (5.10) 

and the area density of the 2DEG a t  z = L is 

For a particular quantum wire, we can identify its equilibrium regime by comparing 

its actual shallow donor density N, to  its critical values N, and No, which are calculated 



Table 5.2: The criteria for identifying different equilibrium regimes under the exposed sur- 
face a t  zero gate voltage. 

Equilibrium regime By shallow donor density Ns By 2DEG density no 
A Ns < Ncr no = O 

above. However, as a part of NtOtal, Ns is usually not known directly. On the other hand, the 

2DEG area density no a t  zero gate voltage can readily be determined experimentally from 

transport measurements. (The density of the 2DEG is usually measured from edge state 

backscattering experiments [190, 1911 a t  various gate voltages, and no can be obtained by 

extrapolating the 2DEG densities at  non-zero gate voltages to  zero gate voltage.) Therefore, 

it is more convenient to  work in terms of the comparison between np and no. The conditions 

for different equilibrium regimes under the exposed surface are listed in Table 5.2. 

Note that ,  by replacing the surface Schottky barrier Qssb by the interface Schottky barrier 

Qisb in Eqs. ( 5 . 6 )  and (5.7), we can calculate the critical parameters for the equilibrium 

regimes under the gates. 

Determination of Ns 

The shallow donor density N,  can be calculated from the measured no, the area density of 

2DEG a t  zero gate voltage, through the relationship between Ns and no. The relationship 

between Ns and no depends on which the equilibrium regime the quantum wire is in a t  zero 

gate voltage. 

If the quantum wire is in equilibrium regime B (refer to  Fig. 5.4(b)), then the shallow 

donor density Ns is obtained by solving the following equations 

e2 NS t ;  e2Ns t 2  
-(tctl  2) - - (k t2  + 2, = Qssb + AE,, 

EEo EEo 2 
t l  + t2 = td, 

Nst2 = no, 

where t l  and t 2  have been shown in Fig. 5.4(b). These equations are based on the condition 

that  the surface Fermi energy level is equal to  that  of the 2DEG. Note that ,  with Ns and t i  

evaluated from above equations, we can also calculate the area density of electrons a t  the 



exposed surface through 

00 = N d l ,  

which is assumed to  be uniform at  zero gate voltage. This result will be used in calculating 

the pinchoff voltage in Chapter 6. 

If the quantum wire is in equilibrium regime C (refer to  Fig. 5.4(c)), then N, should be 

calculated from 

e2 Ns t2 
-(t,t2 + 2)  = AE, - AE,, 

EEo 2 

where only Ns and t2 are not known in the above two equations. Note that  the first equation 

comes from the fact that  the Fermi level of the 2DEG is equal t o  the energy level of the 

shallow donors in the un-ionized region in the doped layer. (See Fig. 5.4(c).) Similarly, 

because of the equality of the Fermi level of the surface states and the energy level of 

shallow donors in the un-ionized region, we have 

which gives t l .  Therefore, we can calculate the area density of surface electron a t  zero gate 

volt age through 

00 = N d l ,  (5.19) 

and the thickness of the un-ionized region in the doped layer through 

5.3.2 Partial Equilibrium 

As shown in Fig. 5.4, energy barriers due to  the surface Schottky barrier and the spacer 

separate the electrons of the 2DEG from those at  the exposed surface, and those in the 

un-ionized region. Considering that conductance measurements [18, 19, 20, 22, 241 are 

performed a t  very low temperatures (T 5 1 K) ,  we face the question whether or not we 

should consider the whole system to be in absolute equilibrium. 

To answer this question, we suppose that there are Fermi-level differences between the 

electrons in the different regions in a quantum wire (see Fig. 5.6(a)), and estimate the flux 

of electrons across the energy barriers. If the flux crossing an energy barrier is so large 



that  the electron densities on both sides of the barrier can change quickly, then we should 

consider that  electrons on both sides of the barrier to  be in equilibrium. On the other 

hand, if the flux is so small that  it has almost no effect on the electron densities on the 

appropriate time scale, then we should assume that  electrons on both sides of the barrier 

can have different Fermi energies. At low temperatures, the thermal activation of electrons 

is negligible. Therefore, we only need to investigate the flux of electrons due to  tunneling 

through the energy barriers. 

For the purpose of this analysis, let us consider an arbitrary one-dimensional energy 

barrier which separates two electron gases. (See Fig. 5.6(b).) The Fermi energy difference 

between the two electron gases is A E .  Now let us calculate the electron flux that  tunnels 

through the energy barrier because of the Fermi energy difference A E .  (For a general review 

of calculations of tunneling fluxes, see Ref. [188].) 

Since we are only interested in qualitative estimates, we will calculate, for simplicity, the 

tunneling fluxes assuming that  the electrons on either side of the barrier are ideal electron 

gases. (See Fig. 5.6(b).) The electron energies can then be written as 

where E, and k, are the energy and wavevector for the z-direction, and Ell and k l l  are the 

energy and wavevector for the direction parallel to the barrier, i.e. perpendicular t o  the 

z-direction. 

For the state (k,, k l l )  on the left side with k, > 0, the electron flux per k, state tunneling 

through the energy barrier is 

where T(E,) is the transmission probability for an electron with energy E, t o  tunnel the 

energy barrier, and jo(k,) is the incoming flux for a k, state. For free electrons, jo(k,) can 

Therefore, the total tunneling flux per unit area is given by 

which includes contributions of all electrons with energies between EF 

Fig. 5.6(b). 

(5.24) 

A E  and EF in 



arbitrary energy barrier 

Figure 5.6: (a)  A non-equilibrium situation for a quantum wire with the electrons in differ- 
ent regions having different Fermi energies. (b) An arbitrary tunneling energy barrier for 
calculating the tunneling flux. 



The most common approximation for the transmission probability T(E,) is the semi- 

classical WKB form 

T(E,)  = exp[-2I(EZ)], (5.25) 

2m(V(z) - E,) 

ii2 7 

which depends only on E,. However, when the Fermi level difference is much smaller than 

the height of the energy barrier relative to  the Fermi level, i.e., A E  << Vo - EF,  we can use 

the following approximation 

Correspondingly, equation (5.24) becomes 

where we have used d2kll = ( ~ r n / h ~ ) d ~ ~ ~  = ( r r m / h 2 ) d ~ .  From equation (5.28), we can see 

that  the tunneling current depends on the transmission probability T(EF),  the Fermi energy 

EF, and the energy difference A E  between the Fermi energies of the two electron gases. 

Now we use equation (5.28) to  estimate the tunneling currents in a quantum wire. (Note 

that  the electron mass m in equation (5.28) should be replaced by the effective mass of 

electron m*.) The typical parameter values we can use for this estimate are Qssb = 0.8 eV, 

A E c  = 0.2 eV, t ,  = 10 nm, td = 40 nm, t, = 20 nm, N, = 0.5 x 1018 ~ m - ~ ,  and m* = 

0.067me. Approximately, we can use t l  N 25 nm and t2 N 10 nm, t o  describe the energy 

barriers. 

In Fig. 5.6(b), the surface electrons have a higher Fermi energy than electrons in the un- 

ionized region in the doped layer by A E .  Considering that  the surface energy barrier consists 

of the cap layer and the left side of the ionized doped layer, the transmission probability for 

the surface energy barrier is estimated to  be T(EF)  N 10-18, which is very small. 

For surface electrons, their energy range AESwf is very small (typically AEsud < 0.1 eV). 

Therefore, all of the surface electrons can tunnel through the surface energy barrier because 

the states with the same energies on the other side of the barrier are empty. Thus, A E  = 

AE,. On the other hand, because the Fermi energy here is relative t o  the lowest energy of 

surface states, EF = AEsurf effectively. If we use AESurf = 0.1 eV, then J N 10-lo ~ m - ~ s - ' .  

Considering that  the surface density of electrons is typically a N 1012 ~ m - ~ ,  the tunneling 



flux through the surface energy barrier is negligible. Therefore, we should not consider the 

surface electrons t o  be always in equilibrium with the rest in the ~ y s t e m . ~  

Similarly, we can estimate the tunneling flux through the spacer energy barrier. For the 

spacer energy barrier J N 10"cm-~s-', which is much larger. Considering the area density 

of the 2DEG is typically n N 1011 cmd2, the electrons on the two sides of the spacer energy 

barrier should reach equilibrium in seconds. Therefore, we should treat electrons in the 

un-ionized region as always being in equilibrium with the 2DEG. 

It should be pointed out that  the above values of electron flux in quantum wires are 

rough estimates because the surface electrons and the electrons bound t o  donors in the un- 

ionized region are both localized. However, these estimates give us a general idea of the 

scales of the tunneling fluxes of electrons in the quantum wire. 

According to  above discussion, quantum wires are generally in partial equilibrium. That 

is, the Fermi energy of the 2DEG is the same as that  of the electrons in the un-ionized region 

(if the un-ionized region is present), but is different from that  of the surface electrons. 

However, there are two special situations for which we have reasons t o  consider the whole 

system as being in absolute equilibrium. One situation is after the sample has just been 

fabricated and no gate voltage has been applied. This is based on the consideration that  

the high-temperature ( T ~ 5 0 0  K)  fabrication process provides the conditions necessary for 

the whole system to  reach equilibrium. The other situation is after the quantum wire has 

just been illuminated, because the electrons excited by illumination have sufficient energy to  

cross the surface energy barrier, which helps the system t o  approach equilibrium. In these 

two situations, the assumption of absolute equilibrium is the starting point for our analytic 

calculations. 

41n fact, m* of a surface electron should be larger than 0.067me of the GaAs conduction band. Considering 
that m* appears in the exponential expression of the transmission probability D ( E p ) ,  the tunneling flux 
should be even smaller. 



Chapter 6 

Split-Gate Quantum Wires: 

Calculations 

In the first part of this chapter, we set up a general framework for calculating the potential 

function in the split-gate quantum wire based on the model defined in Chapter 5. Within this 

framework, we are able to  study band bending, the boundary contribution (the consequence 

of the gate voltage), the effect of illumination, and the confining potential of the quantum 

wire quantitatively. In particular, analytic expressions for the depletion and pinchoff voltages 

before and after illumination are obtained. In the second part, we take several real split-gate 

quantum wires as examples for calculating the depletion and pinchoff voltages, and compare 

the calculated results with experimental measurements. Most of the results presented in this 

chapter have been published in Ref. [35]. 

6.1 General Framework 

Consider the split-gate quantum wire shown in Fig. 5.1. Because the system is uniform 

in the y-direction, the potential function is independent of y. Let vtotd(x, z)  be the total 

potential function of the system. (The subscript "total" is used to  distinguish this potential 

function from others that  will appear later.) Thus the total potential energy of an electron 

is -eptOtal(x, z) .  Now our objective is to  calculate ytotd(x, z) within the quantum wire, i.e., 

in the half space z > 0. 

Let ptota(x,z) be the total charge density in the quantum wire, i.e., for z > 0. The 



relation between qtotal(x, Z)  and ptotal(x, z) is described by the Poisson equation 

where E is the dielectric constant of the quantum wire. Generally speaking, to  solve Eq. (6.1) 

in the half space z > 0, we need to know both the total charge density ptotal(x, z) and the 

boundary conditions a t  the z = 0 boundary plane. 

First, let us consider the boundary conditions of the quantum wire. Because the potential 

in the metallic gate is uniform, the potential distribution on the interface between the gate 

and the GaAs cap, i.e., for 1x1 2 w/2 and z = 0, can be regarded as known. However, the 

potential distribution on the exposed surface, i.e., for 1x1 < w/2 and z = 0, is not known. 

What we know about the exposed surface is that the total number of surface electrons 

is conserved and the surface states are localized (Feature 11). In view of this feature of 

the boundary conditions, we use the following strategy to  solve this problem. We assume 

that  the potential distribution on the exposed surface can be described by some analytic 

expression which contains some unknown coefficients. Thus the potential distribution on 

the z = 0 plane is completely "known" and the potential function in the half space z > 0 

can be found by solving Eq. (6.1). Then, using the potential function that  is the solution, 

we determine the unknown coefficients based on the surface properties given in Feature 11. 

For convenience of calculations, we choose the potential just inside the GaAs cap adjacent 

t o  the gates to  be zero. That is, 

where z = O+ means in the GaAs cap and 1x1 > w/2 under the gates. Note that  the zero 

value of potential chosen here is different from that we have used in Chapter 5, where the 

zero potential is chosen a t  the Fermi energy of the system. (See Fig. 5.4 and Fig. 5.5.) The 

zero potential condition (6.2) is more suitable for our present calculations because it enables 

us t o  discuss the potential function without always involving the interface Schottky barrier. 

Because of the presence of the interface Schottky barrier aiSb a t  the gate-GaAs interface 

(Feature II), the potential energy of an electron a t  the Fermi level in the gate is -aisb, 
according to  the zero potential condition (6.2). To express this explicitly, 

where (1x1 > w/2, z = 0-) means within the gates. 



It is clear that this is an electrostatic problem with the Dirichlet boundary conditions 

a t  the z = 0+ plane. Using the Green's function method [189], the solution of Eq. (6.1) for 

z > 0 can be conveniently expressed as 

where 

is the contribution from spatial charges and 

is the contribution from the z = 0+ boundary. Here r = (x,  y, z), r' = (x', y1,z'), and 

G(r ,  r') is the Green's function, which is the solution of 

vI2G(r,  r') = - 4 ~ 6 ( r  - r'), 

G( r ,  r') I,r=o+ = 0. 

Using the image charge method [189], it is easy to  find that 

1 - 1 
G ( r ,  r') = 

[(x' - x)2 + (y' - y)2 + (2' - z)2]1/2 [(XI - x ) ~  + (y' - y)2 + (z' + Z)2]1/2 ' 
(6.9) 

Correspondingly, 

which appears in the second term in the expression of cptotal(x, z). Because the boundary 

potential distribution vtotal(x, z = O+) is "known", the total potential function vtotd(x, Z) 

for z > 0 can be calculated directly from Eqs. (6.4), (6.5) and (6.6) once we determine 

~total(2,  2). 

Here we should point out that the conduction band within the quantum wire has offsets 

a t  the two GaAs-A1,Gal-,As interfaces. (See, for example, Fig. l . l (b).)  In the absence of 

electrostatic potentials, the bottom of the conduction band within the quantum wire can 

be expressed as 

i f O < z < t ,  

if t ,  < z < L 

i f z 1 L  



where AEc is the band offset and L = t, + td + t,. This means that  the total energy of 

an electron in the region t, < z < L is -evtOtal(x, z )  + AE, effectively, instead of just 

-evtotal(x, z). However, for electrons of the 2DEG a.t z = L, the potential energy is still 

-evtOtal(x, z) because the two band offsets at  z = t, and z = L cancel each other. 

6.1.1 Spatial Charge Distributions 

Before performing detailed calculations, it is useful to  make a general analysis of the distri- 

butions of spatial charges in the quantum wire. 

Generally speaking, the spatial charges consist of the positive charges of the ionized 

donors in the doped layer and the negative charges of the 2DEG. If the quantum wire is 

in equilibrium regime B (Fig. 5.4(b)) at  zero gate voltage, the distributions of the spa- 

tial charges can be of the three different types shown in Fig. 6.1. In the first situation 

(Fig. 6. l(a)) ,  the shallow donors everywhere in the doped layer (t, < z < t ,  + td) are ionized 

and a 2DEG is present everywhere at  the z = L interface. This situation occurs when the 

gate voltage is above the depletion voltage. When the gate voltage is between the depletion 

voltage and the pinchoff voltage, the 2DEG is depleted from under the gates and is confined 

to  the central region of the quantum wire. This is the second type of the spatial charge 

distribution (Fig. B.l(b)). The third situation (Fig. 6.l(c)) occurs when the gate voltage 

is below the pinchoff voltage, so that the 2DEG is completely depleted from the z = L 

interface. 

If the quantum wire is in equilibrium regime C a t  zero gate voltage, the spatial charge 

distribution can be one of the six different types, which are shown in Fig. 6.2. The greater 

complexity seen here is due to  the presence of an un-ionized region in the doped layer. In the 

first situation (Fig. 6.2(a)), the un-ionized region is infinite, being present for all x. When 

the gate voltage decreases sufficiently but is above the depletion voltage, the un-ionized 

region shrinks t o  the central region in the doped layer while the 2DEG is still present a t  

the whole z = L interface. This corresponds t o  the second situation (Fig. 6.2(b)). When 

the gate voltage decreases further, the spatial charge distribution in general can be one of 

the two possibilities: a finite un-ionized region is present but the 2DEG is confined to  the 

central regions (Fig. 6.2(cl)), or the un-ionized region disappears while the 2DEG is still 

present a t  the whole z = L interface (Fig. 6.2(c2)). Which of Fig. 6.2(cl) and Fig. 6.2(c2) 

occurs depends on the parameters of a particular quantum wire. In the fourth situation 
1 
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Figure 6.1: A cross-sectional description of the three different types of spatial charge distri- 
bution corresponding to equilibrium regime B. (a) The 2DEG is not confined laterally above 
the depletion voltage. (b) The 2DEG is confined to the wire region between the depletion 
and pinchoff voltages. (c) The 2DEG is absent below the pinchoff voltage. 
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Figure 6.2: A cross-sectional description of the six different types of spatial charge distri- 
bution according to  equilibrium regime C. (a)  An infinite un-ionized region and an infinite 
2DEG. (b) An finite un-ionized region and an infinite 2DEG. ( c l )  A finite un-ionized re- 
gion and a confined 2DEG. (c2) A completely ionized doped layer an infinite 2DEG. (d) A 
completely ionized doped layer and a confined 2DEG. (e) A completely ionized doped layer 
with an absent 2DEG. 



when the gate voltage is below the pinchoff voltage, the 2DEG is completely depleted from 

the z = L interface and the only spatial charges are the positive charges in the whole doped 

layer, which is the fifth situation (Fig. 6.2(e)). 

Here we need to  make a remark. In the above analysis of the spatial charge distributions, 

we have not considered that the equilibrium regimes under the exposed surface and under 

the gates a t  zero gate voltage can be different (see Sec. 5.3.1). This difference can indeed 

occur because the surface Schottky barrier Qssb and the interface Schottky barrier Qisb are 

not equal in general. If we take this into consideration, there will be more different types 

of spatial charge distribution. However, the purpose of our analysis of the spatial charge 

distribution is to  provide a general picture for the evolution of spatial charges with the gate 

voltage. Moreover, for the real quantum wires we will consider later, the values of Qssb and 

Qisb are very close together, and therefore the difference in the equilibrium regimes is not 

significant. 

For convenience of discussion, we split the total charge density into three parts 

where pl(x, z) corresponds to  a uniform distribution of positive charges in the whole doped 

layer (t, < z < t, + td), p2(x,y) contains the corresponding negative charges in the un- 

ionized region (when appropriate to  cancel the over-counted amount of the positive charge 

in pl(x,  z) ) ,  and p3(x, y)  corresponds to the the negative charges of the 2DEG. Substituting 

Eq. (6.12) into Eq. (6.5), we obtain 

where 

pcl(x,z)  = 

~ c 2 ( 5 7  z) = 

9 c 3 ( x , 4  = 

where pcl(x, z)  descibes the effect 

pc2(x, z )  of the negative charges in 

of the positive charges in a wholly ionized doped layer, 

the un-ionized region if they are needed to  cancel the ef- 

fect of the over-counted positive charge in yCl(x, z), and pc3(x, z) describes the self-screening 

effect of the 2DEG. 



Correspondingly, the confining potential, which will mean the external confining poten- 

tial, is given by 

~conf(x,  2) = VCI(X, 2) + ~ c 2 ( x ,  z) + ~ b ( x ,  z), (6.17) 

which does not include pc3(x, z), the self-screening effect of the 2DEG. 

6.1.2 Depletion and Pinchoff Voltages 

Because of the presence of the 2DEG and the possible un-ionized region in the doped layer, it 

is not possible to  obtain a general analytic solution for the total potential function. However, 

it is possible to  calculate the depletion voltage and the pinchoff voltage of the quantum wire 

analytically. 

Let us now relate the depletion and pinchoff voltages to  the potential function Vtotal(x, z). 

Recalling that  the gate voltage Vg is applied between the gate and the 2DEG (see Fig. 1.3), 

Vg measures the energy difference between the Fermi levels in the gate and in the 2DEG. 

That  is, 

- eVg = EF(gate) - EF(2DEG), (6.18) 

where EF(gate) and EF(2DEG) are the Fermi levels in the gate and the 2DEG, respectively. 

Note that  the applied gate voltage is negative, i.e., Vg 5 0. 

At the depletion voltage Ifdep, electrons of the 2DEG are just depleted from under the 

gates. In other words, the Fermi level of the 2DEG is almost the same as the energy value 

of the potential well when 1x1 -+ oo, which is just the bottom of the conduction band of 

GaAs a t  (1x1 -+ oo, z = L). (See Fig. 6.3.) According to  Eq. (6.18), the depletion voltage 

Vdep satisfies 

- eVdep = -@isb + e(j'total(lx1 -+ 00, z = L), (6.19) 

where --aisb and -eptotal(lxl -+ oa, z = L) are equal to  the Fermi levels in the gate and of 

the 2DEG, respectively. 

At the depletion voltage, the 2DEG and the un-ionized region (if it occurs) are localized 

to  the central regions of the quantum wire and therefore have no electrostatic effect on a 

position that  is infinitely far away, i.e., 1x1 -. oa. This is because the Green's function 

vanishes as G N l / x 2 .  Therefore, in calculating ptOtal(lxI -+ oo, z = L), the result would 

not change if we can take p2(x, z) = 0 and p3(x, z) = 0. This consideration will be used 

below. 



gate 

GaAs I 

undoped AlGaAs 1 
GaAs 

Figure 6.3: The spatial charge distribution and the band structure at the depletion voltage. 
(a)  The cross-sectional view of a possible spatial charge distribution. The 2DEG is confined 
to  the central region and a finite un-ionized region is present in the doped layer. (b) 
Schematic profile of the z = L potential well that confines electrons. The shaded area shows 
the confined electrons. (c) The band bending in the z-direction for 1x1 + oo, i.e., along the 
dashed line shown in (a). 
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Figure 6.4: The spatial charge distribution and the band structure a t  the pinchoff voltage. 
(a)  The cross-sectional view of the spatial charge distribution a t  the pinchoff voltage. The 
shallow donors are ionized everywhere in the doped layer and no 2DEG is present. (b) The 
profile of the z = L potential well with no electrons present. (c) The band bending in the 
z-direction for x = 0. 



At the pinchoff voltage Vpinch, electrons are just completely depleted from the z = L 

interface. (See Fig. 6.4.) In other words, the Fermi energy of electrons is equal to  the lowest 

energy value of the z = L potential well a t  the pinchoff voltage. Therefore, the pinchoff 

voltage measures the energy difference between the Fermi level in the gate and the bottom 

of conduction band a t  the point (x = 0, z = L) , which has the lowest potential energy a t  

the z = L interface. Thus, 

where -eptot,l(x = 0, z = L) is the potential energy a t  (x = 0, z = L). 

At the pinchoff voltage, because the 2DEG is completely depleted and the shallow donors 

in doped layer are ionized everywhere, pz(x, z) = 0 and p3(x, z)  = 0. Therefore, ptotal(x = 

0 , ~  = L )  and Vpinch can be calculated analytically. See detailed calculations below. 

6.1.3 Band Bending 

As mentioned above, the conduction band is bent in the z-direction within the quantum 

wire, which is an important phenomenon. The band bending is mainly caused by spatial 

charges in the quantum wire. For convenience of discussion, we define the amount of band 

bending due to  the spatial charges as 

Note that  the boundary conditions, which are related to  the applied gate voltage, also 

causes some band bending, especially for 1x1 5 w/2. However, the band bending due t o  the 

boundary conditions is combined with the effect, of lateral confinement due t o  the boundary 

conditions, and it is not convenient to separate these two effects. Therefore, we will consider 

pb(x,  Z) as a whole, which will be studied in detail in the next section. In this section we 

focus on the band bending due t o  the spatial charges. 

When 1x1 -+ oo, because of the boundary condition given by Eq. (6.2) and the relation- 

ship dG/dz'  N l / x 3  given by Eq. (6.10), pb(lxl -+ oo,z) vanishes according t o  Eq. (6.6). 

Therefore, the difference between the conduction band bottoms a t  (1x1 -+ oo, z = O+) and 

(1x1 -+ o;), z = L) is 

+ [-eptotal(x, = 0 )] - [-eptotal(x, z = L)] = eqc(x, z = L) = Ebend(x), (6.22) 



which is completely due to the spatial charges because the boundary effect for 1x1 -+ oo 

vanishes. 

The amount of band bending Ebend(x) due t o  the spatial charges (referred to  as "band 

bending" below) is a very useful concept. For example, using Eq. (6.22), the depletion 

voltage given by Eq. (6.19) becomes 

(Referring t o  the band structure in Fig. 6.3(c), this equation is obvious.) On the other hand, 

the pinchoff voltage given by Eq. (6.20) becomes 

where Ebend(x = 0) is the amount of band bending for x = 0 and eqb(x = 0, z = L) is the 

boundary contribution for (x = 0, z = L) a t  the pinchoff voltage. Therefore, we need to  

calculate Ebend(x = 0) a t  the pinchoff voltage and Ebend(lxl i 00) a t  the depletion voltage 

for the quantum wire before and after illumination. 

Before Illumination 

First, let us calculate Ebend(x = 0) a t  the pinchoff voltage. At the pinchoff voltage, because 

all the shallow donors in the doped layer are ionized and no 2DEG is present, p2(x, z) = 0 

and p3(x, z)  = 0. Therefore, the total charge density ptOtal(x, z)  for z > 0 is 

where N ,  is the shallow donor density which has been determined in Sec. 5.3.1. Note that  

the charge density depends only on z. This means that  the amount of band bending a t  the 

pinchoff voltage before illumination is independent of x. 

Substituting Eq. (6.25) into Eq. (6.5) and performing the integral, we obtain 



which depends on z only. Note that vtotal(x, 2) is linear with z in the cap layer, parabolic 

in the doped layer, and constant in the spacer layer and the 2DEG channel layer. Thus, 

according t o  Eq. (6.21), the amount of band bending for x = 0 at  the pinchoff voltage is 

where 

Note that  such a result has been obtained in Chapter 5 directly (see Eq. (5.6)) by considering 

the positively ionized doped layer and surface electrons as a "capacitor". 

At the depletion voltage, both the 2DEG and the possible un-ionized region are localized 

to  the central regions of the quantum wire. Because the finite 2DEG and the un-ionized 

region have no electrostatic effect at  a position that is infinitely far away, i.e., 1x1 + m ,  we 

can take p2(x, Z) = p3(x, Z )  = 0 when calculating Ebend(lxI -+ m )  a t  the depletion voltage. 

Effectively, we have the same spatial charge density as given by Eq. (6.25), and therefore 

the amount of band bending should be the same. That is, 

After Illumination 

After illumination, the shallow donor density is increased in the illuminated region in the 

doped layer because a percentage of the deep donors in this region are transformed into 

the shallow donors (Feature I). It is reasonable to  assume that  the illuminated region is the 

region of the doped layer that  is under the exposed surface, i.e., 1x1 5 w/2. Therefore, the 

charge density a t  the pinchoff voltage after illumination becomes 

eN,', if x I. lw/2l and t, < z < t, + td 

P ~ ( x , z ) = P ~ ( x , ~ ) =  eN,, i f x > I w / 2 l a n d t c < z < t , + t d  (6.30) 

0, otherwise 

where N,' is the shallow donor density after the illumination and thus N,' > N,. Note that  

N,' should be determined in the same way as N, is, through the measured 2DEG density in 

the quantum wire after illumination. 

In principle, we can perform similar calculations for the amounts of band bending after 

illumination as we did before illumination. However, because p~,,,l(x, Z) is now dependent 



on both x and Z, the calculation for a general form of &td(x, Z) after illumination becomes 

very complicated. Since we only need to know the amount of band bending for x = 0, we 

can calculate &t,l(x = 0, z )  directly. Substituting Eq. (6.30) into (6.5) and performing the 

integral, we obtain 

where a1 and a 2  are two factors depending only on the relative ratio L/w 

and higher order terms in L/w are neglected. (If we take L = 70 nm and w = 300 nm for 

typical split-gate quantum wires, then a1 = 0.15 and a2 = -0.03, which are much less than 

1. The higher order terms about L/w are even smaller and therefore it is sufficient to  keep 

only a1 and a 2 . )  Therefore, the total amount of band bending for x = 0 a t  the pinchoff 

voltage after illumination is 

where 

Since the shallow donor density in region of the doped layer under the gates, i.e., for 1x1 > 
w/2, has not been changed by illumination, the amount of the band bending Eiend(IxI 4 m )  

a t  the depletion voltage after illumination remains unchanged. That  is, 

We have now calculated the amounts of band bending for x = 0 a t  the pinchoff voltage 

and for 1x1 = oo a t  the depletion voltage both before and after illumination. The results are 

summarized in Table 6.1. 

6.1.4 Boundary Contribution 

The potential function due to  the boundary contribution, i.e., pb(x,  z), provides the poten- 

tial well a t  z = L that  confines the 2DEG laterally. To see that ,  consider the total potential 



Table 6.1: The amounts of band bending for 1x1 + cc a t  the depletion voltage and for x = 0 
a t  the pinchoff voltage before and after illumination. 

distribution within the quantum wire a t  the pinchoff voltage before illumination. The po- 

tential due to  spatial charges, which is given by Eq. (6.26) is independent of x. Therefore, 

the lateral confinement for electrons at  z = L must come from the boundary contribution. 

To calculate the boundary contribution pb(x, z), we need to  determine the potential 

distribution on the exposed surface (1x1 < w/2, z = O+). Considering the symmetry of the 

quantum wire, the potential function should be even in x. Thus the potential function a t  

the exposed surface can be generally expressed as 

for 1x1 -+ 00 at Vdep 
for x = O at Vpinch 

where { a k )  are a series of constant coefficients. In calculations, we need to  keep a t  least two 

terms in expansion (6.37) so that the surface potential can be kept continuous a t  x = f w/2. 

If we keep the first two terms in Eq. (6.37) and remember that  the potential immediate under 

the gates has been chosen to  be zero, this yields 

before illumination after illumination 
Eo Eo 
Eo Eb[1 - (a1 + az)(N,' - Ns)/N,'] 

where Vo is a voltage constant and will be determined later using surface properties. 

Substituting Eq. (6.38) into equation (6.6) and performing the integral, the boundary 

contribution is 

(w + 2x)2 + 4z2 + z2 - x2)6(x, z) + xzln (w - 2 ~ ) ~  + 4z2 - Wz], (6.39) 

where 

is just the angle that  is subtended by the exposed surface a t  the point (x,  2). It is easy t o  

verify that ,  when z = O+, Eq. (6.39) reduces to the expression (6.38). 



Figure 6.5: A Three-dimensional representation of the potential energy -evb(x, z) due to 
the boundary contribution for z > O+. Used parameters are w = 100 nm and eVo = 1 
(arbitrary unit). 

To visualize the effect of the boundary contribution, we present a three-dimensional 

plot of the potential energy -eyb(x, z) in Fig. 6.5. For a fixed z, we can see the profile of 

-evb(x, z) along the x direction. Note that the larger L is, the more shallow the confining 

potential well becomes. 

In particular, we are interested in the central point (x = 0, z = L) and the boundary 

contribution at this point is 

2 vo 4L2 w 2L 
~ ~ ( 0 ,  L) = --[(I + 7) arctan - - -1. 

2L w 

This result can be written as 

vbm L) 

where 
0 

is a geometrical factor which depends only 

-) arctan - - -1 
w2 2L w 

on the ratio Llw. 

With both v,(x, z) and qb(x, z) known at the pinchoff voltage, it is possible to  calculate 

the electron distribution a ( x )  on the exposed surface (1x1 < w/2, z = 0) at the pinchoff 

voltage. For this purpose, we write total potential function for 1x1 < w/2 in the whole space 



where the expression for z < 0 is based on the consideration that  the z < 0 half space 

(outside of the quantum wire) has the same boundary condition as Eq. (6.38) but has 

no spatial charges. Therefore, the surface electron density u(x) a t  the exposed surface 

(1x1 < w/2, z = 0) can be calculated through 

where we have used Eq. (6.44). Substituting q,(x, z)  in Eq. (6.26) and qb(x,  z)  in Eq. (6.39) 

into Eq. (6.45), we obtain 

where the first and the second terms are due to qc(x,  z) and and pb(x, z), respectively. 

Now the voltage constant Vo can be determined by the conservation of the total number 

of surface electrons (Feature 11). In other words, the linear electron density on the exposed 

surface is independent of the gate voltage. Therefore, 

where a0 = Nstl is the area density of surface electron a t  zero gate voltage, which have been 

calculated in Sec. 5.3.1. Substituting Eq. (6.46) into (6.47) and performing the integral, we 

obtain 

Note that  tl should be determined from the calculation procedures described in Sec. 5.3.1. 

Note that  for situations after illumination, Ns in above equations should be replaced 

with N,', which is the shallow donor density after illumination. 

Here it is appropriate to  comment on the earlier work of Davies [I441 who was the first 

t o  study the boundary contribution to the potential of a quantum wire using the Green's 

function method. Davies considered only the leading term in the expansion (6.37) of the 

surface potential. However, this approximation is not adequate since it yields a discontinuous 



potential along the surface at  x = f w / 2 .  As a consequence, the integral of the surface 

electron density diverges. By retaining also the second term of the expansion (6.37), we 

obtain a continuous surface potential and a finite integrated surface electron density. This 

enables us to  use the conservation of the the surface electron a t  the exposed surface to  

evaluate Vo. 

6.1.5 Summary 

We now summarize the main results we have obtained in this chapter. 

Using the Green's function method, the total potential function within the quantum 

wire can be generally expressed as the sum of the contribution of spatial charges and the 

boundary contribution 

vtotal(5, 2) = vc(x, z)  + ~ b ( x ,  z) ,  (6.49) 

where 

For convenience, the contribution of the spatial charges can be split into three parts 

with yC1(x, z) + pc2(x, Z) and yc3(x, z) corresponding to  the total positive charge in the 

doped layer and the negative charge of the 2DEG, respectively. The external confining 

potential can therefore be written as 

The external confining potential is provided mainly by the boundary contribution, which 

where 
w - 22 w + 22 

8(x, z) = arctan --- + arctan - 
2 z 22 ' 

if we use a parabolic potential on the exposed surface. The spatial charges in the doped layer 

affect the confining potential when an un-ionized region is present, or after the quantum 



wire has been illuminated. At the pinchoff voltage before illumination, the x-dependence of 

the total potential is given by yb(x, z). 

The depletion voltage and the pinchoff voltage can be calculated analytically using the 

known parameters of the quantum wires. From Eqs. (6.23), (6.29), and (6.36), the depletion 

voltages of a split-gate quantum wire before and after illumination are given by 

where 

The depletion voltage is not affected by illumination. 

From Eqs. (6.24), (6.28), and (6.41), the pinchoff voltage before illumination is 

where 

From Eqs. (6.24), (6.34), and (6.41), the pinchoff voltage after illumination is 

N,' - Ns 
- eVpinch = E)  I + ey;(x = 0, Z = L) - @isby (6.60) *,' 

where 
e2 N,' 1 

= - - - - @ , i d  CEO + t i ) ,  (6.61) 

and 

where Vd is the voltage constant after illumination. 

6.2 Calculations for Real Samples 

We will take four real split-gate quantum wires as examples for calculating the depletion 

and pinchoff voltages before and after illumination. Here the crucial thing is to  determine 

the shallow donor densities Ns before illumination and N,' after illumination. According to  

the discussion in Sec. 5.3.1, Ns and NL can be calculated from the corresponding values of 



Such calculations will be made for sample I. However, for many samples no after illumination 

is not known. In this case, we use the total donor density NtOtal for N,', which corresponds 

t o  the case of saturated illumination. Such calculations are made for samples 11, I11 and IV. 

6.2.1 Sample I 

The depletion voltage and the pinchoff voltage of a quantum wire before or after illumination 

can be calculated analytically if the corresponding 2DEG densities no a t  zero gate voltage 

are measured. Such calculations follow the following procedure: 

1. Calculate the critical density np as described in Sec. 5.3.1. 

2. Identify the equilibrium regime at zero gate voltage by comparing the measured no to  

np according to  Table 5.2. 

3. Determine the shallow donor density N, (before illumination) or N,' (after illumination) 

using the measured no as described in Sec. 5.3.1. 

4. Calculate the depletion voltage from Eq. (6.56). 

5. Calculate the pinchoff voltage before illumination from Eq. (6.58) and the pinchoff 

voltage after illumination from Eq. (6.60). (This step involves determining the voltage 

constant Vo using the conservation of the total number of surface electrons.) 

Sample I is a split-gate quantum wire fabricated and measured by Dr. Sachrajda and 

collaborators a t  the Institute of Microstructural Sciences a t  NRC. This sample is grown by 

MBE on a semi-insulating GaAs substrate, and its layers in sequence are a 65 nm GaAs 

buffer, 30 periods of GaAs/AlAs superlattice, 900 nm GaAs channel layer, 1.5 nm AlAs 

and 16 nm undoped A10.33G~.67A~ layers as the spacer, 40 nm Si-doped Alo.33Gao.s7As 

layer with the donor density of 1.1 x 10'' ~ m - ~ ,  and an 18 nm GaAs cap layer with normal 

surface (100). On top of the GaAs cap, two separate gate bars of titanium are applied using 

electron beam lithography. The gate bars have a spatial separation of 200 nm and a width 

of 200 nm. 

Analysis after growth shows that the thickness of the undoped A10.33G~.67A~ layer 

is 14.5 nm instead of the expected value of 16 nm. This suggests that all of the actual 

thicknesses should be reduced by 10% from their expected values. Correspondingly, the 

concentration of the Si donors in the doped Alo.33G~.s7As layer should be increased by 



Table 6.2: The sample parameters and relevant energy parameters used in the calculations 
for sample I. 

Type 
geometrical 

Description Notation Value Unit 
GaAs cap layer t c 16.2 nm 
doped Alo,33Ga~.s7As layer t d  36 nm 
total spacer layer t 8 15.75 nm 

energies 

I dielectric constant E 12.5 

gate separation w 200 nm 
surface Schottky barrier QSsb 0.80 eV 
interface Schottky barrier Qisb 0.83 eV 
conduction band offset AEc 0.20 eV 

others 

10% so as t o  preserve the nominal total number of donors. The sample parameters based 

on fabrication information are listed in Table 6.2. 

z-direction energy spacing A E, 0.04 eV 
effective mass of electron rn* 0.067 rn, 

The values of the relevant energy parameters are chosen as follows: Based on the surface 

properties of GaAs(100) (Feature I), the surface Schottky barrier is taken as Qssb = 0.80 eV. 

According t o  Table 5.1 in Chapter 5, the interface Schottky barrier between titanium (the 

gate metal of sample I) and GaAs is Qisb = 0.83 eV. The offset of the conduction band 

a t  the GaAs-A1,Gal-,As interface is taken as AE, = 0.20 eV. Finally, according t o  our 

discussion in Chapter 1, the energy level spacing due to  the z-direction confinement is 

typically AE, = 0.04 eV. Other parameters used are m* = 0.067 and E = 12.5. These 

parameters are also listed in Table 6.2. 

The measured resistance curves for sample I are displayed in Fig. 1.4 in Chapter 1. The 

three resistance curves correspond to the three conditions of sample I: before illumination, 

after a short illumination, and after a long illumination. By inspection of Fig. 1.4, the 

depletion voltages for curves A, B, and C are -0.33 V, -0.35 V and -0.37 V, respectively, 

and the pinchoff voltages for curves A, B, and C are -0.55 V, -0.86 V, and - 1.33 V, respec- 

tively. Corresponding to  these three conditions, the measured 2DEG densities no a t  zero 

gate voltage are 3.40 x lo1' ~ m - ~ ,  5.49 x 1011 ~ m - ~ ,  and 6.25 x 1011 ~ m - ~ ,  respectively. 

Based on the parameters listed in Table 6.2, the calculated critical values that  separate 

the equilibrium regimes of sample I are N ,  = 0 . 4 5 ~ 1 0 ~ '  crnw3, Np = 0 . 8 0 ~ 1 0 ~ '  ~ r n - ~ ,  and 

np = 6 . 0 3 ~ 1 0 ~ ~  ~ m - ~ .  Referring to  the criteria displayed in Table 5.2 in Chapter 5, the 



Table 6.3: The equilibrium regimes and calculated results for sample I. 

Parameter Notation Before ill. Short ill. Long ill. Unit 
equilibrium regime B B C 
shallow donor density N, 0.65 0.77 1.02 10'" cm-3 

t 1 30.79 28.87 24.03 nm 
t 2 5.21 7.13 6.11 nm 
t3 0 0 5.86 nm 

depletion voltage h e p  -0.34 -0.34 -0.34 V 
pinchoff voltage Vpinch -0.53 -0.80 -1.43 v 

Table 6.4: A comparison between the calculated and experimental results for the depletion 
and pinchoff voltages. 

Parameter Before ill. Short ill. Long ill. Unit 
experimental he,, -0.33 -0.35 -0.37 V 
calculated Vdep -0.34 -0.34 -0.34 V 
experimental Vpinch -0.55 -0.86 -1.33 V 
calculated Vpinch -0.53 -0.80 -1.43 V 

equilibrium regimes of sample I are B, B, and C for the conditions before illumination, after 

a short illumination, and after a long illumination, respectively. 

Following the procedure described at the beginning of this section, we made calculations 

for the conditions of sample I before illumination, after a short illumination, and after a 

long illumination, respectively. The calculated results are displayed in Table 6.3. 

In Table 6.4, we compare the calculated and experimental results for the depletion and 

pinchoff voltages for the three conditions: before illumination, after a short illumination, 

and after a long illumination. The calculated and the experimental results are in good 

agreement. Note that  the decrease of the experimental depletion voltage upon illumination 

can be explained by the fact that the gate bars are very narrow (see Fig. 1.3 in Chapter 1) 

and therefore some illuminating photons may penetrate into the regions under the gates 

and excite the deep donors there. 



6.2.2 Other Samples 

For some split-gate quantum wires, although their depletion and pinchoff voltages were 

determined from conductance measurements, the corresponding 2DEG densities no were not 

measured. (Usually the 2DEG density no before illumination is measured but the depletion 

and pinchoff voltages are measured after illumination.) In this case, we can not use the 

above calculation procedures because the information about no is missing. 

Experimentally, one is particularly interested in the pinchoff voltage of a quantum wire 

after illumination, because the pinchoff voltage before illumination is too low for the wire 

to  display many conductance plateaus. Therefore, quantum wires are often illuminated 

sufficiently to  bring the wires very close to the saturation condition of illumination, i.e., 

N,' x NtOtal. On the other hand, considering that illumination has a very small effect on the 

depletion voltage (because the wires are short), we can use the measured depletion voltage 

t o  determine the shallow donor density N, before illumination. Thus, it is possible to  

calculate the pinchoff voltage for the saturation condition of illumination without using any 

information on no. This approach is useful for many samples and the calculation procedures 

are: 

1. Calculate the critical densities N ,  and No as described in Sec. 5.3.1. 

2. Calculate N, using the measured depletion voltage from Eq. (6.56). 

3. Take N,' = Ntotal, where NtOtal is known from fabrication. 

4. Identify the equilibrium regime at  zero gate voltage. 

5. Calculate the pinchoff voltage before illumination from Eq. (6.58) and after illumina- 

tion from Eq. (6.60). 

Note that  the pinchoff voltage calculated through the above procedure corresponds t o  the 

saturated condition of illumination. 

We take three samples as examples for such calculations. Samples I1 and I11 are the single 

split-gate quantum wires that were used by van Wees et al. [18] and Wharam et al. [19], 

respectively, in the first studies of conductance quantization. Sample IV is a system of the 

two parallel quantum wires used by Smith et al. [20] in studying the correlations between 

parallel quantum wires. (The conductance curves measured by Smith et al. [20] are shown 

in Fig. 1.6 in Chapter 1. However, for our present purpose, we only need t o  concentrate 



Table 6.5: Parameters for samples 11, I11 and IV that are used in the calculations. 

Description Notation Sample I1 Sample I11 Sample IV Unit 
GaAs cap layer t c 20 10 10 nm 
doped A1,Gal-,As layer td 40 40 40 nm 
spacer layer t s 20 20 20 nm 
gate separation w 250 500 300 nm 
wire separation w s  N/A N/A 200 nm 
total donor density Ntota~ 1.33 1 .O 1.0 1018 cm-3 
measured depletion voltage Vdep -0.6 -0.5 -0.5 eV 

on curve A, which is the first measurement after sample fabrication.) In our theory, the 

calculations for two quantum wires can be done similarly to  that  for a single quantum wire, 

by appropriately changing the total charge density and the boundary conditions. 

The parameters for samples 11, 111, and IV are listed in Table 6.5. (Some of the param- 

eters for samples I11 and IV that were not mentioned in the original papers [19, 201 were 

kindly provided t o  us by Dr. Ford.) Note that, for sample 111, the widths of the exposed 

surfaces of the two quantum wires are the same wl = wz = w. The relevant energy pa- 

rameters used in the calculations for these three samples were the same as those listed in 

Table 6.2. 

The critical densities for sample I1 are N ,  = 0 . 3 4 ~  1018 cm-3 and Np = 0 . 5 9 ~  1018 ~ m - ~ .  

The critical densities for samples I11 and IV are the same: N ,  = 0.46 x 1018 ~ r n - ~  and 

Np = 0.76 x 1018 ~ m - ~ ,  because they have the same layer thicknesses. For the saturated 

illumination, NtOtd > Np for all samples and therefore they are all in equilibrium regime C. 

The calculated results for the three samples are shown in Table 6.6. Note that ,  since 

samples I11 and IV have the same values of t,, td, t,, and NtOtal, the corresponding values 

of t l ,  t l ,  and t3 (at  zero gate voltage) are equal as well. However, the calculated pinchoff 

voltages are different because samples I11 and IV have different gate separations. The 

significant difference between the calculated pinchoff voltages of samples I11 and IV implies 

that  the gate separation is an important factor in determining the value of the pinchoff 

volt age. 

The calculated pinchoff voltage for sample I11 is very close to  the measured result. We 

interprete this to mean that the measurement was carried out close to  the condition of 

saturated illumination. On the other hand, the large difference between the calculated and 



Table 6.6: The equilibrium regimes and calculated results for samples 11, I11 and IV. 

Parameter Notation Sample I1 Sample I11 Sample IV Unit 
equilibrium regime C C C 

t 1 18.0 28.5 28.5 nm 
t 2  4.0 4.9 4.9 nm 
t 3  18.0 6.6 4.9 nm 

calculated pinchoff voltage Vpinch -3.6 -3.3 -1.7 V 
measured pinchoff voltage vpinch -2.2 -3.4 -1.5 v 

measured Vpinch for sample I1 suggests that this measurement was carried out quite far away 

from the condition of saturated illumination. 

Finally, it should be pointed out that the sample parameters used in our calculations 

above should have some uncertainties. Due to the details of fabrication process, the real 

layer thicknesses of a sample are usually different from their expected values, typically by 

10%. (Such a difference has been corrected in our calculations for sample I.) The values 

of Qssb, Qisb and AE, used in the above calculations can also induce some errors. In 

obtaining the analytic expressions, we have made several approximations such as using a 

parabolic potential for the exposed surface and assuming that effects of illumination are 

confined to  the illuminated region. Moreover, all of the above samples are short quantum 

wires, while the analytic expressions used in the calculations are for ideal quantum wires 

that are infinitely long. Considering these factors, the above calculated results are in very 

satisfactory agreement with experiment. This also means that our electrostatic model works 

quite well for realistic split-gate quantum wires. 



Chapter 7 

General Remarks 

7.1 Thesis Summary 

This thesis has presented both numerical studies of the electronic structure of Coulomb- 

confined quantum wires, and analytic studies of the electrostatic potentials in realistic split- 

gate quantum wires. A summary with general comments on the whole thesis is given below. 

1. The model of Coulomb-confined quantum wires. This model was proposed as an ideal- 

ization of realistic quantum wires for the purpose of numerical calculations. It reflects 

the essential physical structure of realistic quantum wires, and represents the net ef- 

fect of many realistic factors. Within its simple picture, it becomes possible to  study 

numerically some complicated properties of quantum wires, such as the many-body 

effects. 

The model of Coulomb-confined quantum wires can be improved to describe realistic 

quantum wires in a more accurate way. (See below in the next section.) In fact, this 

model is very flexible and can be applied to quantum wires fabricated with various 

confinement techniques, such as selective etching, gating, ion implantation, and selec- 

tive epitaxy. (On the other hand, the more conventional direct numerical approach 

to  solve the Schrodinger and Poisson equations with boundary conditions is not suit- 

able for quantum wires fabricated by selective etching, ion implantation, and selective 

epitaxy, because the non-planar boundaries and complicated spatial charges make the 

calculations impossible.) Therefore, the Coulomb-confined model has many potential 

applications. 



2. Many-body effects. Within the Coulomb-confined model, we have calculated self- 

consistently the electronic structures of quantum wires using the density functional 

theory and the Hartree approximation. The numerical results show that  the many- 

body effects are important in the Coulomb-confined quantum wires, and that  the 

exchange and correlation energies should be included in the calculations in order to  

obtain qualitatively accurate results. Our calculations provide new evidence that  

many-body effects tend t o  be stronger in low-dimensional systems. 

Bound states. We have proved that, for any Coulomb-confined quantum wire, all pop- 

ulated states are bound. Our density functional calculations show that ,  a t  low linear 

electron densities and small separations between the donor ribbon and the electron 

plane, all of the electrons populate tightly bound states. However, a t  high densities 

and/or large separations, some weakly bound transverse energy levels can be pop- 

ulated by electrons. The numerical results of our present approach are not reliable 

when some weakly bound states are populated. Therefore, studies involving populated 

weakly bound states require a different approach. 

4. Energy level locking. Using the Coulomb-confined model and the density functional 

theory, we have studied numerically the electronic correlations between two parallel 

quantum wires. The calculated electronic structure shows that  transverse energy levels 

lock together in pairs when the two wires have similar widths and their separation is 

not too small. The energy level locking is associated with a charge imbalance and 

strong Coulomb interactions between the quantum wires. The charge imbalance is 

particularly significant when the Fermi level crosses a transverse energy level, because 

of the density of states singularities that are characteristic of one-dimensional fermionic 

systems. The energy level locking in similar parallel quantum wires has been predicted 

t o  be a quite long-range effect. However, this effect is much less likely to  occur in 

dissimilar parallel wires because of the different electronic structure of such systems. 

Energy level locking is a novel phenomenon and is the opposite of the usual energy 

level anti-crossings that  open energy gaps in quantum mechanical systems. 

The energy level locking effect can be used to  explain the double conductance steps 

observed in a pair of parallel quantum wires. Some experimental methods have been 

suggested for further detecting this effect in pairs of parallel quantum wires. 



5. The model of split-gate quantum wires. We have established a new electrostatic model 

of split-gate quantum wires. It incorporates the crucial properties of donors, surfaces 

and interfaces, and considerations of system equilibrium that  apply in different situa- 

tions. Explanations and arguments have been provided in support of the features of 

the model. 

6. Analytic calculations for split-gate quantum wires. Based on the model of split-gate 

quantum wires and using the Green's function method, a general solution for the 

electrostatic potential has been obtained. In particular, the depletion and pinchoff 

voltages of quantum wires before and after illumination have been calculated analyt- 

ically. Several samples of split-gate quantum wires have been taken as examples for 

calculations and the calculated results agree well with experimental measurements. 

Our electrostatic model of split-gate quantum wires and its analytic solution provide 

both a general theoretical tool for studying gated semiconductor devices and important 

information for improving device performance. 

7.2 Suggested Future Work 

Related t o  the theoretical studies of this thesis, further work listed below would be of 

interest. 

1. Complex Coulomb-confined quantum wires. This work would improve on the model of 

Coulomb-confined quantum wires by including a ribbon of electrons, which represents 

electrons at  the exposed surface, over the ribbon of donors. The whole system is still 

charge-neutral. The complex Coulomb-confined quantum wires are closer to  realistic 

quantum wires in structure. 

2. Many-body effects at high electron densities. Our numerical results in Chapter 3 show 

that  many-body effects are important in Coulomb-confined quantum wires a t  low 

and moderate electron densities. When the electron density is high, calculations are 

difficult because some weakly bound states are populated. Using the model of complex 

Coulomb-confined quantum wires, the potential well that  confines electrons in the 

electron plane becomes stronger. Therefore, it may be possible to  make calculations 

and study many-body effects at  high electron densities. 



3. Populated weakly bound states. The calculations in Chapter 3 show that weakly bound 

states can be populated in Coulomb-confined quantum wires when the electron density 

is sufficiently high or the distance between the ribbon of donors and the electron plane 

is sufficiently large. However, when a weakly bound state is populated, numerical 

calculations using the technique described in Chapter 2 are not reliable. Therefore, a 

different numerical approach is required to  study the electronic structure of quantum 

wires when weakly bound states are populated. 

4. Experimental exploration of the energy level locking eflect. It is important t o  detect 

energy level locking in parallel quantum wires experimentally in a unambiguous way. 

At the end of Chapter 4, we suggested some methods using transport and optical 

properties. 

5 .  Energy level locking in other systems. Because energy level locking is an effect of quasi- 

one-dimensional fermionic systems, this effect should also be observable in quasi-one- 

dimensional systems of "holes". Since the energy level locking effect is new, further 

general studies of this effect would be of much interest. 

6. Confining potentials of quantum dots. The electrostatic model presented in Chapter 5 

and the analytic calculations presented in Chapter 6 can be conveniently applied to  

quantum dots. Because the self-screening effect of electrons is absent when there are 

only one electron in the quantum dot, the confining potential of the quantum dot can 

be calculated analytically, which is certainly useful in studying the electronic structure 

of the quantum dot. 

7 .  Short split-gate quantum wires. Using the electrostatic model presented in Chapter 5, 

it may also be possible to  calculate the depletion and pinchoff voltages of short quan- 

tum wires analytically by using appropriate boundary conditions. Thus the effect of 

the length of quantum wires can be studied. 

8. Numerical calculations for split-gate quantum wires. Based on the external confining 

potential obtained in Chapter 6, it is possible to  calculate the electronic structure of 

split-gate quantum wires when electrons of the 2DEG (and even the un-ionized region) 

are present, for various gate voltages. Such calculations should be self-consistent and 

thus the calculation procedures described in Chapter 2 can be used. 



9. Properties of the un-ionized region. The calculations in Chapter 6 show that  an un- 

ionized region can occur in a realistic quantum wire. The presence of the un-ionized 

region can affect the migration of electrons (or even impurities) in the doped layer. The 

tunneling of electrons between the un-ionized region and the confined 2DEG would 

also be an  interesting topic. 

10. Improving the electrostatic model of split-gate quantum wires. The electrostatic model 

defined in Chapter 5 could be improved if one were to  understand in more detail how 

surface electrons react to  an external field, what determines the ratio between the 

densities of shallow donors and deep donors in the doped layer, and exactly how deep 

donors are affected by illumination. Numerical studies of tunneling effects in quantum 

wires would also be useful for improving the model. 

7.3 Device Applications 

The trend of semiconductor device technology has been to  develop ever smaller devices, in 

the interest of increased speed and lower cost. For this reason, quantum wires have a great 

potential for device applications [192, 193, 194, 195, 1961, such as in switches, transistors, 

sensors, and lasers. 

With further improvement in fabrication technology, it should be possible t o  control 

layer thicknesses of and sizes of gates of quantum wires more accurately. Then the main 

uncertain factors are the exposed surface, at  which electrons can be trapped and affected by 

the environment (surface adatoms), and donors, whose distribution between the deep levels 

and the shallow levels is difficult to  control, especially when illumination is involved. There 

are also impurity scattering and potential fluctuations due to  impurities [113], which can 

affect the characteristics of quantum wires significantly. 

Surface properties are very complicated, especially when surfaces are affected by the 

environment. [171]. In solving the problem of the exposed surface in a quantum wire, one 

possibility is t o  place another gate on the exposed surface, with this new gate being isolated 

from the split gate. (This would be a technological challenge considering the small length 

scale involved for the exposed surface.) If this can be achieved in fabrication, not only would 

the uncertainty due to  the exposed surface be eliminated, but also the lateral confinement 

of quantum wires would be more controllable. 



As to  the uncertainties due to  donors, many studies are needed to  understand quantita- 

tively the mechanisms by which shallow donors interchange with deep donors, the dynamic 

behavior of donors during sample fabrication, and the process of exciting deep donors to  

shallow donors by illumination. Therefore, one should carry out more general studies of 

donors in bulk semiconductors and apply the new research results achieved there to  the 

studies of quantum wires. 

It is always constructive to search for new methods of doping so that  the impurity 

(dopant) scattering of electrons is reduced. The application of the spacer layer in most 

current modulation-doped [36] samples is a typical example of this. However, there are other 

factors that  should be considered, such as the ease with which electrons can be donated by 

donors, effectively confined a t  the G ~ A S - A ~ ~ G ~ ~ - ~ A S  interface (the positive charges due t o  

ionized donors are needed), and the whole system can be kept in equilibrium (large energy 

barriers are not desirable). 

An interesting idea that  was introduced [I971 recently to improve control over the device 

is t o  use a "back gate voltage", which can control the density of the 2DEG independently. 

Thus, the split-gate voltage can be used to  provide only the lateral confinement for electrons, 

because the changes of the 2DEG density caused by the split-gate voltage can be eliminated 

by adjusting the back gate voltage. This is another example of improving the ability to  

control quantum wire devices. 

Because of the existing problems mentioned above, it will take some time before quantum 

wires reach the stage of commercial applications. Hopefully, this thesis will contribute to  the 

understanding of the characteristics of quantum wires and facilitate their device applications. 



Appendix: General Formalism of 

the Density Functional Theory of 

Hohenberg, Kohn and Sham 

Consider a system of N fermions in its ground state. According t o  Hohenberg, Kohn, and 

Sham [136, 1371, the total energy for the ground state of the system is a functional of the 

electron density n ( r )  

E [n] = T[n] t U[n] t Exc[n], (7.1) 

where T[n], U[n], and Ex,[n] are the total kinetic energy, Coulomb energy, and exchange 

and correlation energy of the system, respectively. The total Coulomb energy U[n] can be 

where the two terms correspond to  the potential energy due to  an external field and the 

Coulomb interations between the fermions, respectively. 

The variational form of Eq. (7.1) is 

with the Lagrange multiplier p determined by 

Eq. (7.3) implies 

and p is equal to  the chemical potential of the system for large N .  



Combining Eqs. (7.1), (7.2) and (7.5), one obtains 

where VeE[n; r] is the effective potential energy given by 

where V, is the Coulomb energy per electron 

Now consider a system of N fermions in which there is no interation between the fermions 

but each fermion has a potential energy VeXt(r) due t o  an  external field. In this situation, 

Eq. (7.6) becomes 

Since the fermions have no interactions, the many-particle wave function of the system 

is simply a Slater determinant of single-particle wave functions $\ ( r ) ,  which satisfies the 

Correspondingly, the electron density is given by 

where the summation is over the N lowest-lying orthonormal solutions of Eq. (7.10). Thus 

we have found a solution for Eq. (7.6) by solving Eqs. (7.10) and (7.11) instead. 

For a system of electrons, the effective potential energy VeA-[n; r] contains contributions 

from both the Coulomb energy and the exchange-correlation energy. However, t o  solve 

Eq. (7.6), one can take Veff[n; r] as an "external" potential energy and solve 

The wave functions given by Eq. (7.12) are called the density functional wave functions 

or Kohn-Sham wave functions [137]. In this way, the m a n ~ - ~ a r t i c l e  problem is effectively 

reduced to  a single-particle problem. 



The  above results are rigorous. In practice, approximations are usually used in calculat- 

ing the total exchange and correlation energy Exc[n] .  According to  Kohn and Sham [137], 

E,,[n] can be expanded as 

where E,, is the exchange-correlation energy per electron. If the electron density n ( r )  varies 

slowly in space, it is usual to  omit all the gradient terms and keep only the first term in 

Eq. (7.13). Correspondingly, the effective potential energy becomes a direct function of 

Such a treatment is called the local density approximation ( L D A ) .  The local density approx- 

imation has been very successful in studying the ground state properties of many systems, 

such as atoms, molecules, and crystalline solids [157]. 
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