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Abstract 

Low dimensional invariant manifolds of dynamical systems include fixed points, periodic 

solutions, connecting orbits and invariant tori. Considerable work has been done on the 

computation and bifurcation analysis of all these manifolds with the exception of the invari- 

ant tori. The importance of computing an invariant tori can be observed in the numerous 

dynamical systems including dissipative partial differential equations in which they occur. 

Tori appear mostly in the bifurcation sequence from a steady state to a chaotic solution. 

One is interested in following the torus to a breakdown and see what it bifurcates to. The 

results of this study can give us some insight into Ruelle Takens scenario of transition to 

turbulence in fluid dynamics. In this thesis we investigate the partial differential equation 

approach to compute invariant tori using orthogonal collocation discretization. We introduce 

an adaptive grid refinement scheme for several problems in order to  study the breakdown 

of the torus. We also implement the Hadamard graph transform approach which is used in 

computing attracting invariant manifolds. We find the results of this method to be similar 

to that of the collocation method. Finally, we did some visualization work using computer 

graphics to enable us observe the geometry and the flow on the torus, as well as help us in 

the study of the breakdown. 
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Chapter 1 

Introduction 

While a relatively complete theory has been developed for linear ordinary differential equa- 

tions, there is still a considerable work to be done for nonlinear systems of equations. One 

fairly successful method is the application of perturbation methods to weakly nonlinear 

problems. Poincard, in the late 19th century showed that this method does not always yield 

correct results in all cases, since the series used in such calculations sometimes diverge[GH]. 

He introduced geometry into the analysis to help in the study of nonlinear differential equa- 

tions. Until the mid-1970s the work has been mostly in the hands of pure mathematicians. 

Ruelle and Takens [RT] in 1971 introduced the importance of "strange attractors" in the 

study of turbulence. This then attracted the attention of scientists to this field of study. 

This geometric approach is now widely adopted in differential equations and has come to 

be known as Dynamical Systems. 

In this thesis we focus on this geometric approach and study the invariant tori. The 

computation of these objects have received considerable attention in recent years due to di- 

verse and numerous models in which they appear. Some of these models can be found in the 

models of chemical reactions, population dynamics, electric circuit theory, electrodynamics, 

fluid dynamics [MJ] etc. These models have dissipative properties and the evolution of their 

trajectories sometimes settle down to this finite dimensional invariant manifold. 

One major unresolved problem in bifurcation theory is that of understanding the tran- 

sition to chaos in dynamical systems (turbulence in fluids). One of the main sequence 

of bifurcation leading to chaos begins with one or more bifurcations of steady states, fol- 

lowed by a Hopf bifurcation to  a periodic orbit, then a Naimark-Sacker torus bifurcation 

(or possibly a period doubling cascade), and finally the appearance of a strange attractor 
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representing a turbulent flow [LW]. By a torustwe mean a non chaotic invariant set that is 

neither a steady state nor a periodic solution. Up to torus bifurcation in the sequence, the 

computation is straightforward and a fair amount of work has been done, and the sequence 

well understood. We concentrate on torus bifurcation. However, in completely integrable 

n-degree-of-freedom Hamiltonian systems, the Kolmogorov-Arnold-Moser(KAM) theorem 

explains the preservation of these n-frequency quasiperiodic motions under perturbations 

of the vector field. Various aspects of the collapse of KAM torus are clear enough. Only 

little has been understood of the collapse of a torus in dissipative non-Hamiltonian systems 

which leaves the transition to chaos still an important problem in nonlinear science. 

Some known results are as follows [KK]: 

Bifurcation from a 2-torus 

(a) Phase instability inducing a phase locking of the torus to a periodic solution. 

(b) Amplitude instability bringing about an oscillatory behavior leading to  a fractal- 

ization of the torus(chaotic attractor) 

(c) Doubling of the torus. 

Bifurcation from a btorus 

Phase locking to a 2-torus. 

In most cases a 2-torus is known to  have a generic property of phase locking to a periodic 

solution during its breakdown [TI. We conjecture that an invariant torus bifurcates at the 

point where one of its radial polar coordinates becomes zero. 

There have been several methods for computing an invariant torus of which the two 

recent popular ones are: the partial differential equation approach and the Hadamard graph 

transform approach. In the former approach the torus is parameterized in terms of a subset 

of the variables of the original dynamical system. The condition that the torus must satisfy 

the original system leads to  solving a system of first order hyperbolic partial differential 

equations with the same principal part and subject to periodic boundary conditions. The 

later ii based on the Hadamard graph transform technique developed in [F]. This approach 

was implemented by Edoh and Russell [ER] to compute invariant circles for maps as well 

as the Poincard of invariant tori. 

The partial differential equation approach was introduced by Dieci, et al. [DLRl] in 

which there were some standard problems: the type of discretization to  use, and how to 

solve the sparse matrix that is obtained after linearization and discretization. Dieci, et al. 
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used a leap-frog discretization scheme and showled second order convergence for the constant 

coefficient case. They used compactification to solve the linear system. Similarly, Dieci and 

Lorenz [DL] used the upwind discretization for the partial differential equation and showed 

stability and first order convergence for a model linear variable coefficient problem. Dieci 

and Bader [DB] used a first order discretization, specifically the upwind scheme and iterative 

methods to solve the linear system. They also used this iterative schemes as smoothers for 

their multigrid methods. With the multigrid methods, they use as many as 320 x 320 grid 

points for one of the numerical examples. The large number of mesh points used is due to 

the low order discretization scheme used to discretize the partial differential equations. 

In this thesis we use an 0(h4) collocation scheme to discretize the partial differential 

equations. We discretize our equations at Gauss points with cubic Hermite basis functions. 

For a model problem where the partial differential equation has constant coefficients, we 

prove the conditions for the existence, uniqueness and the accuracy of the numerical solution. 

Our collocation matrix has a sparse block structure, and we adopted the block LU and QR 

decomposition schemes by Wright [W] to solve the linear system and reduce the storage of 

our matrix considerably. In some of the numerical examples we introduced an adaptive grid 

refinement scheme in order to follow the torus breakdown. The results of this method show 

one successful use of collocation for hyperbolic PDEs. 

Our aim of computing an invariant torus is to follow it to its breakdown and determine 

what it bifurcates to. We realize that in this process the torus naturally loses its smoothness 

and becomes harder to compute. In the next approach we used the fact that a torus 

can be defined implicitly from an invariant circle under a PoincarC map. Restricting the 

computations of the whole torus to this invariant circle will naturally reduce the difficulty 

in the computations. 

In our second approach therefore we use a discrete version of the graph transform tech- 

nique used in the analytical work of Fenichel [F]. We perform a finite sequence of graph 

transform iterations, where each graph transform itself requires the solution of finitely many 

ODE boundary value problems (BVP). Each BVP is independent of the others and thus, 

they can be solved concurrently. We restrict the Hadamard graph transform technique to 

the Poincark cross-section of the torus. This technique has the advantage of been used to 

compute invariant circles of known discrete maps. We show how it relates to the Poincark 

map approach of van Veldhuizen[VVl]. We sketch a prove for the convergence and the 

uniqueness of the computed solution of this scheme when our functions are smooth enough. 
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In solving the BVP we use simple and multiple shooting with Newton and bisection methods. 

In the two schemes described above we used the method of simple continuation with a 

bifurcation parameter to follow the computation of the torus to its breakdown. In some prob- 

lems one can determine the initial approximation of the torus at the point of its Naimark- 

Sacker torus bifurcation. From our experience, we have seen that the Hadamard graph 

transform method has a larger domain of convergence than the collocation method. The 

relative difference in the results of both methods is about 0.01%. Our collocation method has 

a higher order of accuracy and more expensive than the Hadamard graph transform method. 

The Hadamard graph transform iteration takes on the average one graph transform step to 

converge when the invariant circle is exponentially attracting. 

In chapter two we state some properties of invariant manifolds and look at the bifurcation 

sequence 

Steady State + periodic solution + invariant torus + chaos. 

We focus on the background theory of the formation, dynamics, breakdown and the com- 

putations of invariant tori. We study how to extend this idea to higher and infinite dimen- 

sions. We did computations on some properties of the torus like the Lyapunov exponents. 

In chapter three we describe the Hadamard graph transform approach, and give sketch of 

a convergence proof for this numerical scheme, then illustrate the efficiency of the scheme 

with some examples. In chapter four we talk about the collocation algorithm and give a 

convergence proof for a model problem. We apply the scheme to some examples. In chapter 

five we do a comparison between the HGT and the PDE approaches. We also give some 

description of the visualization tools that has been used in the study of the breakdown of 

the torus. 

Finally, in chapter six we give some concluding remarks and our plans for future work. 



Chapter 2 

Background theory 

In the theory of dynamical systems, many problems of interest require understanding the 

dynamical features that evolve over long-time periods. The dynamical systems we con- 

sider in this thesis have parameters which change the qualitative structure of their solution 

branches as the parameters are varied. These changes are called bifurcations and the pa- 

rameter values at which they occur are called bifurcation values. Some of these dynamical 

systems are dissipative and their large time dynamics can exhibit a variety of behavior 

ranging from simple steady states, through moderately complex periodic or quasi-periodic 

behavior, to extremely complex chaotic behavior as the bifurcation parameter is varied. 

Thus, an accurate numerical approximation of evolution equations over long-time intervals 

is of importance. Much work has been been done on these long term steady states except 

the invariant torus and so our attention will be focussed on this steady state. 

In this chapter, we give background theories related to the dynamics and the computation 

of invariant manifolds specifically invariant tori for finite and infinite dimensional systems. 

We study the stability of solution branches for maps and flows by looking at the center 

manifold and the normal form theorems. They form the essential components of bifurcation 

theory. These theorems provide two systematic methods of simplifying equations and are 

used to  reduce the dimension of the system of equation and their forms. We also look 

at the computational methods for some dynamical properties of invariant tori such as the 

Lyapunov exponents. Most of this work is from the books of Guckenheimer and Holmes 

[GH], Marsden and McCracken [MM] and Wiggins [Wi]. 
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2.1 Systems of ordinary diffe~ent ial equations 

In this section we discuss invariant tori for finite dimensional maps and flows. Some of this 

material will be used for infinite dimension systems too. We start by considering a system 

of ordinary differential equations (ODES) of the form 

where t E R ,  x,  E R n  and f : R n  -t Rn. We also consider the discrete map 

where xk E R n  and F : R n  + Rn. It is assumed that the map F : R n  -+ R n  is a 

diffeomorphism. By diffeomorphism we mean: 

Definition 2.1.1 Let U E R n  and V E Rn .  Then a smooth map F : U -+ V is a 

diffeomorphism if it is invertible and if the inverse map F : V -+ U is also smooth. 

The system (2.1) is called an autonomous system. If the vector field f is time dependent, 

then (2.1) is called a non-autonomous system. The non-autonomous systems that we use in 

this thesis have vector fields that are time periodic with non-trivial period T > 0. They can 

always be converted to autonomous systems. Let xo be in the open set R in the R n ,  then, 

there is a unique solution x ( t )  of (2.1) with x (0 )  = xo if f is Lipshitz continuous at xo. 

Definition 2.1.2 A flow on R is a collection of maps q5t : St -t R defined for all t E R 

such that 

1. q50 is the identity, 

2. 4+, = q5toq5, for a l l t ,  s E R ,  

3. $4t(x) = f(q5t(x)) for all x E R,t E R .  

A semiflow on 52 is a collection of maps q5t : $2 -+ R defined for all t > 0,  and satisfying the 

3 conditions above for t, s 2 0. 

For a fixed to, the map is assumed to be a diffeomorphism if f is smooth enough. 

For the map (2.2), the solution { x k ,  k = 1, . . . , oo) is called its orbit. 
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2.1.1 Stability I 

In our computations we use a simple continuation method in a bifurcation parameter to 

follow the torus computations to its breakdown. In the process we perturb the bifurcation 

parameter variable in the vector field or the diffeomorphism and use the known computed 

torus to determine the unknown torus of the perturbed system. Let the initial and the 

boundary conditions be called the data for the system (2 .1)  or (2 .2) .  In numerical compu- 

tations the system and its data that is actually being simulated is a perturbed version of 

the system described in the state equation (2 .1)  or (2 .2) .  

We are then interested in determining when changes in the data and perturbations in 

the vector field or the diffeomorphism do change the qualitative structure of the solution of 

equation (2 .1)  and (2 .2) .  We give some definitions that determine when a solution is locally 

stable and a vector field f (diffeomorphism F) is structurally stable. We also determine 

when a set is said to be invariant with respect to (2 .1)  or (2 .2) .  

S tab i l i t y  of  so lut ions  

A solution is said to be stable if a nearby solution remains nearby under the dynamical 

system. They are the ones that can be easily observed experimentally. In that case a small 

perturbation in the data does not change the qualitative structure of the solution. In this 

section we try to examine the conditions under which a solution is said to be stable. 

Suppose the initial condition is perturbed then, in a flow, the following definition suffices 

to show whether a solution is stable or not. 

Def in i t i on  2.1.3 (Lyapunov Stability) The solution B( t )  of (2.1) is said to be stable (or 

Lyapunov stable) if, given 6 > 0, there exists a 6 = 6(c)  > 0 such that for any other solution 

y ( t )  of (2.1) satisfying IIjt(to) - y(to)ll < 6 ,  then Ila(t) - y(t)ll  < 6 for t > to,to E R .  The 

solution Z ( t )  is said to be unstable if it is not stable. Moreover, B( t )  is asymptotically stable 

if it is stable and 

lim I lZ( t)  - y(t)ll  = 0 .  
t+oo 

(2 .3 )  

Analogous definition for diffeomorphisms can be suitably defined by substituting xn, xO, 

y n  and for % ( t ) ,  %(to) ,  y ( t )  and y ( t o )  respectively. 
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Stability of vector fields and diffeomorphisms 

We now consider the stability of vector fields and diffeomorphisms. First we define what we 

mean by a perturbation of size r of vector functions. 

Definition 2.1.4 I f f  E C Z ( R n ) ,  r ,  k are two positive integers, k 5 r and r > 0, then g 

is a C k  perturbation of size r if there is a compact set K c Rn such that f = g on the set 

R n - K  andforal l ( i l ,  ..., i n )  withil+...+in = i < k we have I(di/dx;' . - . d ~ > ( f - ~ ) l  < r. 

If the conditions in the definition above are satisfied then the two vector fields or diffeo- 

morphisms are said to be "close" to the other. The two properties that determine this 

"closeness" are topological equivalence and structural stability. The equivalence of two 

diffeomorphisms can be defined as follows: 

Definition 2.1.5 Two C' maps F and G are ck equivalent or ck conjugate (k 5 T )  

if there exists a ck homeomorphism h such that h o F = G o h. C0 equivalence is called 

topological equivalence. 

This implies that h takes an orbit { F n ( x ) )  to an orbit { G n ( x ) )  and the other way round. 

A similar definition is given below for vector fields. 

Definition 2.1.6 Two C Z  vector fields, f, g are said to be ck equivalent ( k l  r )  if there 

exists a C k  digeomorphism h which takes orbits d f ( x )  o f f  to orbits & ( x )  of g, preserv- 

ing senses (orientation) but not necessarily pammetrization by time. If h does preserve 

pammetrization by time, then it is called a conjugacy. 

The case where h is a conjugacy, then for any x and tl there is a t2 such that h(4f1 ( x ) )  = 

$ t ( h ( x ) ) .  We now give the definition of structural stability: 

Definition 2.1.7 A map F E C ' ( R n )  (vector field f )  is structumlly stable if there is 

an r > 0 such that all C 1 ,  r-perturbations of F ( f )  are topologically equivalent to F (f). 

If a system is structurally stable, then any sufficiently close system has the same quali- 

tative behavior. Structural stability is not a generic property, that is, we can find structural 

unstable system which remain unstable under small perturbations and even continually 

change their topological equivalence class as we perturb them [GH]. One may therefore 

define the structural stability for a class of systems one is dealing with. By that we mean 



Chapter 2. Background theory 9 

Definition 2.1.8 suppose the vector field frg, ( F ,  G )  belong to some topological space B. 

Then the flows f and g ( F  and G )  are said to be structumlly stable if there is a neighborhood 

N ( f )  o f f  (N(F) of F) in  B such that f and g ( F  and G)  are equivalent for every g (G) in 

N( f )  (N(F)). 

2.1.2 Invariant sets 

We are interested in the long term dynamics of equations (2.1) and (2.2). The long term 

solutions sometimes lie on invariant subsets like the invariant tori of Rn. In this section we 

determine the properties that these invariant sets possess and give some examples. 

The orbit q(p)  of (2.1) through p is defined as 

q(p)  := { x :  x = 4t(p),-oo < t < oo), (2.4) 

Note that if q belongs to q(p)  then q(q) = q(p). The w-limit set of an orbit q of (2.1) is the 

set of points in R n  which are approached along q with increasing time. To be precise, 

Definition 2.1.9 a point q belongs to the w-limit set or positive limit set w(7)  of an 

orbit q if there exists a sequence of real numbers { t k ) ,  tk + oo such that &(p)  + q as 

k -, oo. Or 

where q+(p) is q (p)  for which t is increasing in time and bar the denotes closure. 

A point q belongs to the a- limit set or negative limit set a ( q )  if there is a sequence of 

real numbers { t k ) ,  t k  + -oo as k + oo such that 4t,(p) + q as k -+ oo. S o  

where q-(p) is ~ ( p )  for which t is decreasing in time. 

Definition 2.1.10 The set M C R n  is called an invariant set of (2.1) if for anyp  E M ,  

the solution 4 t (p)  of (2.1) through p belongs to M for t E (-oo, w). M is called positively 

(negatively) invariant i f  for each p E M, 4t(p)  E M for t 2 0 ( t  5 0) .  A similar definition 

for maps is as follows: An  invariant set M for a map (2.2) on Rn is a set M C R n  such 

that F ~ ( x )  E M ,  for x E M for all k 2 1. 
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A set M C R n  is called a minimal set of (2.1) if it is non-empty, closed and invariant 

and has no proper subset which possesses these properties. We are interested in the long- 

term behavior of the dynamics on the invariant sets, so we focus on nonwandering sets. 

A point p is nonwandering for the flow q5t (resp. the map F )  if for any neighborhood 

U of p, there exists arbitrarily large t (resp. k > 0) such that 44U)  n U # 0 (resp. 

F k ( u )  n U # 0). A nonwandering set M is a collection of such points. A closed invariant 

set M is said to be indecomposable if for every pair of points x , y  in M and every c > 0, 

there are x,  xo, XI,. . . ,xk = y and t l , .  . . , tk > 1 such that the distance from +t,(xj-l) to 

x, is smaller than c. Some examples of invariant sets are given below. 

Equilibrium Points 

We define an equilibrium point xeq of (2.1) as the constant solution 

for all t. At this point f(xeq) = 0. An equilibrium point is the simplest nonwandering set 

of a dynamical system (2.1). The local stability of a nonlinear problem can be determined 

from definition (2.1.2) if we take x(to) = xeq. A second approach to determine the stability 

of a fixed point is to consider the eigenvalues of the Jacobian matrix of f  at  the equilibrium 

point xeq. If all the eigenvalues of the Jacobian at the equilibrium point, D f(xeq) have 

non-zero real part then the equilibrium point is said to be hyperbolic. Let the eigenvalues 

of D f(xeq) be given by A;, i = 1,. . . , n. If Re(&) < 0 for all i then xeq is asymptotically 

stable. If Re(&) > 0 for some i then xeq is unstable. 

For the map (2.2), an equivalent definition of a fixed point denoted by x* is given by 

Denote the eigenvalues of DF(x*) by m;, i = 1,. . . , n. The fixed point is said to be hyperbolic 

if lm;l # 1 for all  i. For hyperbolic fixed points, if [mil < 1 for all i then x* is asymptotically 

stable.. If Im;l > 1 for some i then x* is unstable. A necessary condition for flows or maps 

to be structurally stable is that all fixed points must be hyperbolic. 

Periodic Solutions 

A solution of (2.1) through the point xo is said to be periodic with period T if 
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for all t E R .  With exception of equilibrium~points, periodic solutions are the simplest 

invariant sets. Denote the periodic solution by y. The stability of a periodic solution is 

determined by its characteristic exponents or Floquet multipliers. Let y be a periodic 

solution of (2.1) which satisfies the condition &(x*) = # J ~ + ~ ( x * )  for any point x on the orbit 

of y. The linearized system around y is given by 

where D f(&(z*)) is the Jacobian matrix of f .  The fundamental matrix solution of this 

T-periodic system can be written as 

where a, Z, and R are n x n matrices. If @(O) = Z(0) = I then 

The eigenvalues of the constant matrix eTR are called the Floquet multipliers and the 

eigenvalues of R are called the characteristic exponents. The stability of the periodic solution 

can often be determined from the characteristic exponents or Floquet multipliers. A periodic 

solution is said to be stable if all the Floquet multipliers p; satisfy pi < 1 except for one 

with value equal to 1. A periodic solution is unstable if there are some that have absolute 

value greater than 1. An important map associated with a periodic solution is the PoincarC 

map 

The Poincarh map 

The PoincarC map is the discrete time system associated with an ordinary differential equa- 

tion (ODE). The construction of which results in the elimination of a t  least one of the 

variables of the system and thereby reducing the study of the ODE to  a lower dimensional 

system. Some of the advantages include: Numerically computed PoincarC maps in lower 

dimensional system (say dimension n 5 4) provide insight to the global dynamics of the 

system [Wi]. Many concepts in ordinary differential equations can be easily stated in the 

associated PoincarC map. A simple case is the the orbital stability of a periodic orbit of an 

ODE which can be reduced to the stability of a fixed point of the Poincard map. 

The construction of the PoincarC map requires some knowledge of the geometric structure 

of the phase space of the ordinary differential equation. We are interested in the Poincard 
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map of a system in which the phase space of the ODE includes periodic variables like in 

invariant tori. 

PoincarC map near a periodic orbit 

Consider the system 

x = ~ ( x )  X E R ~ ,  f : V + R n ,  (2.12) 

where f is C". Let xo E Rn be a point on the periodic solution of (2.12) (with period T )  

and let C be an n - 1 dimensional surface transverse to the vector field at  this point. By 

transverse we mean the vector dot product f (x) .n(x)  # 0 where n ( x )  is the normal to C 
at x .  Let V C C with x E V .  The Poincard map denoted P is given by 

P:V-c  (2.13) 

with 

x - B ( T ( x ) ,  X )  E C (2.14) 

where r ( x )  is the time of first return such that r ( x O )  = T and P(xo)  = xo. If f is time 

periodic and of a fixed period 2 . ~ 1 ~  = T then we have 

x = f ( x , t )  

which reduces to 
x = f ( ~ ,  e )  
8 = w .  

The Poincard cross-section in this case is given by 

C = { ( x ,  8)  E R" x slle=~,,}. 

If one can find a corresponding Poincard map P associated with the periodic solution then 

the eigenvalues of DP(x*)  are the characteristic multipliers. 

For the map (2.2) the orbit x0 E R n  is said to  be periodic of period k > 0 if F ~ ( x ' )  = xO. 

Invariant Tori 

A quasi-periodic solution can be expressed as a sum of periodic functions 

where 4; has minimum period T; and base frequency f;  := l / T ; .  
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Example 2.1.1 I 

x(t) = cos(2at) + c o s ( 2 ~ h t ) .  

A quasi-periodic solution with p base frequencies is called pperiodic where p is an im+eger. 

The solution can be considered to lie on a p-torus. To determine the nature of a flow on 

say a 2-torus we can use the concept of rotation numbers. 

In biological science this phenomenom arises in the study of suspensions of cells, each of 

which is oscillatory, with cell-cell communication occuring indirectly via release of substances 

into the surrounding medium. As a second example, consider a system of two pendulums of 

lengths l1 = l2 = 1 and masses ml = m2 = 1 in a gravitational field with acceleration due 

to gravity g = 1. Suppose the masses are connected by a weightless spring whose length 

equal to the distance between the points of suspension. Using Newton's law on the coupled 

nonlinear oscillators, we arrive at 

Making the substitution cj = q;, ci = q;, i = 1,2. we get the system of equations 

Using a change of variables (see [ADO] for details), we arrive at  a special case ( a  = 0, P = 1) 

of the canonical nonlinear oscillator with coupling 

where a and p are constants. To determine the nature of a flow on say a 2-torus we can 

use the concept of rotation numbers. 

Rotation Numbers 

A rotation numberdetermines a typical orbit structure on an invariant circle. We will focus 
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on the Poincarh map of a two-torus for a C 2  vector field. In this case it characterizes the 

qualitative features of a sufficiently differentiable flow on the torus. It is the average rotation 

of a point xo on the invariant circle under the iterates of the Poincard map of the torus. 

Definition 2.1.11 Let P be the Poincare' map of 9 = f ( e l ,  82) for which f (Ol,O2) is 

2~-periodic in both e l ,  O2 and defined by ~ ( 8 2 )  := &(0, 8 2 ) .  The rotation number of P ,  

denoted by p(P)  is defined as 

p(P) := lim Pn(02) 
lnl++m 

where n is an integer. 

Theorem 2.1.1 If the rotation number p(P) is well-defined, that is if the limit exists 

and is independent of the initial point O2 and furthermore, if P is a C 2  map, then 

0 p(P) is mtional if and only if P has a periodic orbit of some period. 

0 p(P) is irrational if and only if every orbit of P is dense on S f .  

In general let PA : S1 -. S1 be the Poincar6 map of 

where f is a C 2  2-periodic vector field. 

Theorem 2.1.2 The rotation number p(Px) is a continuous function of the pammeter 

A .  

Rotation numbers can also be used to determine the structural stability of a torus. 

Theorem 2.1.3 Consider the flow on the torus of a C 2  differential equation (2.1 9) that 

is &-periodic in x, where A is a (vector) parameter. For a fized value X = A,  the differential 

equation 

* = f(A,  x )  

is structurally stable if and only if it has mtional rotation number and all of its periodic 

orbits are hyperbolic. 
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Strange Attractor I 

A bounded steady state behavior that is not an equilibrium point, periodic solution, or a 

quasi-periodic solution is called a strange attractor, specifically, 

Definition 2.1.12 A strange attmctor is a geometrical object in the state space to which 

trajectories are attracted. 

An attractor for a flow 4t for PDEs is a subset X (generally assumed compact) of the state 

space with the following properties: 

X is invariant: &(X)  = X. 

X has a shrinking neighborhood V, i.e., there is an open set V 3 X with &(V) c V 

for t > 0 and such that $t(V) shrinks down to X as t - oo. 

The flow $t on X is recurrent (no part of X is transient) and indecomposable (cannot 

be split into two closed nonoverlapping invariant pieces). 

4t admits a finite number XI,  X2, . . . , X, of attractors, each of which is closed, bounded, 

and of zero volume. 

The set of initial states of x which are not in the basin of attraction of any one of the 

X's has zero volume. 

the set of initial states x which are in the basin of attraction of any one of the X;'s 

has volume zero. 

The result is that there are finitely many attractors whose basins of attraction fill up essen- 

tially all of the state space for a well behaved &. 

Lyapunov Exponents 

Lyapunov exponents are generalizations of characteristic multipliers, and they can be used 

to determine the stability of the invariant sets discussed so far. For a continuous-time 

system, the definition is as follows: 

Definition 2.1.13 Let xo E R n  and ml(t), mz(t), . . . , mn(t) be the eigenvalues of 

9t(xo), the fundamental solution matrix of (2.1). The Lyapunov exponents of xo are 

Xi := t+m lim Ilnlm,(t)l, t 
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whenever the limit exists. 

For discrete systems, we have the following equivalent definition: 

Definition 2.1.14 Let {xk)& be the orbit of an n-dimensional, discrete system (2.2).  

If ml(k), . . ., mn(k) are the eigenvalues of DF~(XO) then the Lyapunov numbers of xo are 

m; := lim ~m,(k)l ' l~,  i =  1, ..., n, 
k d o o  

(2.21) 

whenever the limit exists. 

Let XI, X2,. . . , A n  be the Lyapunov exponents of the system (2.1). An equilibrium point xo 

of (2.1) is stable if its Lyapunov exponents satisfy the condition An I I,. . . , I  XI < 0. 

A periodic solution is stable if X1 = 0 and An I,. . . I X2 < 0 and a k-periodic solution is 

stable if X I , .  . . , A k  = 0 and An,  5: . . . , I  Xk+1 < 0. Finally, a chaotic attractor has at  least 

one of its Lyapunov exponents equal zero and satisfies CrZl Xi < 0. 

Comput ing  Lyapunov exponents  

In this section we give a modified version of a method essentially due to  Karlheinz et 

al. [KUW] to compute the Lyapunov exponents of a continuous dynamical systems. This 

scheme is formulated in terms of the singular value decomposition (SVD) of matrices. Con- 

sider the nonlinear equation (2.1) with the variational equation 

where J = D f(x).  Let the SVD matrix decomposition of @ be 

To avoid exponentially increasing and decreasing diagonal elements of A define 

where E ,  = ln(u,), and 0;'s are the singular values of G. Taking the derivative of (2.24) we 

get 

E = A-'A = A - ~ U T U A +  A - ~ U ~ J U A  + vTV. (2.25) 

Since V is orthogonal 

vTV+VTv = 0 
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and to eliminate it in equation (2.25) we compute the sum 

Now let 

Equation (2.26) then reduces to 

The diagonal elements of (2.28) satisfy 

6 .  - y.. 
1 -  11, (2.29) 

while the off diagonal elements of (2.28) satisfy 

In order to reduce exponentially growing quantities in equation (2.30), we multiply through 

by 2 and replace the critical terms (%)2 by hij = exp(2(ri - r j ) ) ,  ( 1  < i, j  5 n, i # j )  to 

A = \ !,,+C,, hi 

i = j ,  

l - h j i  t' i > j .  
The differential equation for U is given by 

To get the values E; we solve the ODE system of equations 

x = f ( x )  

i = c ; ,  

u = U A  

with the initial values x(O), E(O), U ( 0 ) .  These conditions are chosen such that 
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Table 2.1: The results for different values of 6 at t = 10000. 

1. x(0)  is not an equilibrium point. 

6 

0.00 

2. the matrix U(0) = I. 

lyapunovl 

0.000100 

lyapunov2 

-1.999800 

The system (2.33) is solved from t = 0 to t = tout for several times such that tout 5 0.1. 

The matrix U is reorthogonalize each time. The integration is done to a total time of about 

T = 10000 depending on the problem. The Lyapunov exponents are then given by 

The scheme was applied to the example below. 

lyapunov9 

-0.003930 

Example  2.1.2 A system of two-coupled oscillators, 

lyapunov4 

-2.001679 

In table (2.1) the two zero and two negative Lyapunov exponents of the system when 

6 < 0.1 indicates the existence of an attracting invariant torus in this region. As 6 increases 
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one of the zero Lyapunov exponents becomes less than zero. This shows the existence of an 

attracting periodic solution among the solution of the system and possibly the disappearance 

of the invariant 2- torus. 

Dimension of limit sets 

In some cases the torus been computed may bifurcate to a strange attractor during the 

continuation process. One then needs reliable methods to determine when this happens. 

To distinguish between a chaotic attractor and other limit sets we introduce the concept 

of fractal dimension. A fractal dimension is that dimension that allows non-integer values. 

A set that has a non-integer dimension is called a fractal. A strange attractor has almost 

always a non-integer dimension while the dimension of a non-chaotic attractor is always an 

integer. 

In differential topology, the dimension of a manifold is the dimension of the Euclidean 

space that the manifold resembles locally. Let N(6) be the minimum number of volume 

elements needed to cover A where each volume element is of diameter 6. Now we are ready 

to define the dimension of A. 

The Capacity dimension of A which is defined by 

lnN(6) .- lim - 
Dcap '- 6-0 ln(1/6) 

Another common dimension is the 

Lyapunov dimension of A given as follows: 

Let A;, i = 1,. . . , n be the Lyapunov exponents of an attractor A with 

X I  2 A2, 2, . . ,> An and j be the largest integer such that A1 + - - - + 2 0, then 

If no such j exists, DL is defined to be 0. For a 3-dimensional system with chaotics attractor 

with Lyapunov exponents A+ > 0 > A _ ,  DL = 2+ fi. - In this case DL satisfies the condition 

2 < DL < 3. 

2.1.3 Integral manifolds 

We define an integral manifold as follows: 
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Definition 2.1.15 A manifold S in (x,t)-#space of a system of ODES 

is an integral manifold if for any point P in S the solution x ( t )  of the equation through P 

is such that ( x ( t ) ,  t )  is in S for all t in the domain of definition of the solution x ( t ) .  

There has been some early attempts to represent an invariant torus as an integral man- 

ifold [HJ] and [CHI. In this section, we present some fundamentals results of the integral 

representation of an invariant torus. We describe three methods to determine integral man- 

ifolds two of which have been numerically investigated in chapters three and four. 

The idea here is that we have an invariant wo-periodic solution u ( t )  given by 

for the system 

x =  f(x).  

We want to determine the integral manifold for a perturbed equation 

where f *(x ,  t )  is periodic in t .  Let's assume that n - 1 of the characteristic exponents of the 

linear variational equation of (2.38) given by 

have negative real parts. 

The integral manifold of (2.38), given by 

in the ( t ,  x)-space is asymptotically stable. Introducing the coordinate transformation [HJ] 

where x E Rn and p E Rn-' , we have in the neighborhood 

given by 

(2.42) 

of S the solutions of (2.38) 
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where O(0,p) = O(lel), R(8,p) = O(lpI2) as Ip( -+ 0. From Floquet theory, a fundamental 

system of solutions of the linear equation is of the form 

p(e)eB*, with P(O+wo)=P(8) .  (2.44) 

If we let p(t) = P(0)b fz(t) with e = 1 + O(lp)) we get an equivalent system 

where O1(B,z) = O(lzl), Z(8,z) = 0(1zI2) as lzl -+ 0 with the eigenvalues of B having 

negative real parts. From [HI there is a positive definite matrix C = Jr eB"eBtdt such that 

any solution of the linear system 

i = Bz (2.46) 

with initial value on the ellipsoid z'Cz > 0 must enter the ellipsoid as t -, w. For co > 0 

sufficiently small, such that any solution of (2.46) with initial value on the set 

and 0 < c 5 co must enter this set for t -+ w. 

Consider the perturbed system 

where f8(t ,  x )  is bounded in the neighborhood of S then for a given c > 0 and E sufficiently 

small, the solution will still enter Us(c) as time increases and we will expect some kind of 

integral surface inside Ua(c). We describe three methods essentially due to Hale [HI, two of 

which we have implemented in chapters three and four. 

Met hod 1 (Levinson-Deliberto) 
If the perturbation term is wl-periodic in t, then we can define an annulus map as follows: 

Let Usi(c) := Ua(c) n {t = r) be the cross section Us(c) at t = r. If x ( t , q )  is the solution 

of the perturbed equation (2.48), then the Poincare map X(T, .) is a map of Us,(c) into the 

interior of 

UST(C) = USO(C)- (2.49) 

With the strong stability properties of the curve I', one would expect that 3 a curve I',, 

such that x( r ,  I',,) = I',, is an invariant curve with ro, = I'. If r = wo then x(kwl, I?,,,) 
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gives an invariant torus. This idea has been developed further in chapter three with the 

idea of Hadamard graph transform to compute invariant circles and tori. 

Method 2 (Sacker) 

In his approach he considered the equation 

where 8 E RP, x E Rq and all functions are periodic in 8 of period w. If 

is to be an integral manifold of (2.50) then R must satisfy the PDE 

dR 
- [~(8) ,  O(8, R)] - A(8)R = F(8, R), R(O + w) = R(8). 
08 

In the case where w, A are independent of 8, one can integrate along characteristics to  

compute an invariant torus of (2.50). When w(8) = 0, then the solution will not in general 

be as smooth as the coefficients in the equation. Since the usual iteration procedures involve 

a loss of derivatives, Sacker [S] introduces a Laplacian term and solves 

for p small and where As is the Laplacian operator. The solutions thus have as many deriva- 

tives as possible. In chapter four we solve the PDE (2.52) using collocation discretization 

but did not introduce the Laplacian term in (2.53). 

Met hod 3 (Krylov-Bogoliubou-Mitropolski) 

Krylov et al. defined a mapping of cylinders to cylinders such that the fixed points are 

the integral manifolds of (2.38), which for 6 = 0 reduce to S. These methods do not use any 

perturbation properties of the dependence of the perturbation terms upon t. 

Consider the equations 

aR t 800 where A is an E RnXn constant matrix, O(t, B,O, 0) = R(t,O, 0,O) = + = 0. We 

seek integral manifolds of (2.54) of the form p = f (t, 8, c) with f (t, 8 , ~ )  lying in a small 

neighborhood of p = 0 for 6 small. 
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If 8( t ,  to, 80, f )  is the solution of the equation 

and using the variation of constants formula, and the fact that e A ( t - t ~ )  -+ 0  for t -+ CCI we 

have 

The integral manifolds are the fixed points of the RHS of equation (2.56) above for a given 

f .  

2.1.4 Center manifolds 

The center manifold theorem provides a means for systematically reducing the dimension of 

the state space of a system without losing any information about the stability of a specific 

solution of the system. The center manifold theorem can be used to  analyze a bifurcation 

of a given type. 

Theorem 2.1.4 (Center Manifold Theorem for Flows). Let f be a C r  vector field on 

Rn vanishing at the origin (f(0) = 0 )  and let A = Df(0). Divide the spectrum of A into 

three parts, a,, a,, a, with 

< O  i f  XEa, ,  

= O  i f  XEa,,  (2.57) 

> O  i f  X E U ~ .  

Let the(genem1ized) eigenspaces of a,, a,, and a, be ES, EC, and E U ,  respectively. Then 

there exist C r  stable and unstable invariant manifolds WU and WS tangent to Euand ES 

at 0 and a Cr-' center manifold WC tangent to EC at 0. The manifolds Wu, WS and WCare 

all invariant for the pow o f f .  The stable and unstable manifolds are unique, but WC need 

not be [GH]. 

Assume that the unstable manifold of the system (2.1) is empty and let the system be 

transformed to the form: 
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( x ,  y )  E Rclx Rs. 

Assume that the matrices B and C have eigenvalues with zero and negative real parts 

respectively and that f ,  g, D f and Dg vanish at the origin. The following is the definition 

of the center manifold. 

Definition 2.1.16 An invariant manifold is called a center manifold for (2.58) at 0 if 

it can locally be represented as follows: 

for 6 suficiently small. 

The solution to 

u = B u  + f (u ,  h ( u ) )  

provides a good approximation to the flow (2.58) close to the origili. The next theorem 

illustrates the relationship between the flow (2.58) and (2.60). 

Theorem 2.1.5 (1) Suppose the zero solution of (2.60) is stable (asymptotically stable) 

(unstable); then the zero solution of (2.58) is also stable (asymptotically stable) (unstable). 

(2) Suppose the zero solution of (2.60) is stable. Then if ( x ( t ) ,  y ( t ) )  is a solution of (2.58) 

with (x(O), y ( 0 ) )  suficiently small, there is a solution u ( t )  of (2.60) such that as t - oo 

where y > 0 is a constant. 

To determine h ( x ) ,  we substitute it into the equation 

to get 

y = D h ( x ) [ B x  + f ( x ,  h ( x ) ) ]  = C h ( x )  + g ( x ,  h ( x ) ) .  (2.63) 

We then solve the quasi-linear partial differential equation 
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with the initial conditions h(0) = Dh(0) = 0 for R(x). The problem (2.64) may be difficult to 

solve for h(x )  so we approximate it to a desired accuracy by using its power series expansion. 

In this thesis we try two numerical methods to approximate the center manifold when it is 

a 2-torus. 

Since most of the systems we deal with contain a bifurcation parameter, we will extend 

the determination of center manifolds to these type of systems. We consider the extension 

of the system (2.58) to the form 

The center manifold of such a system is given by 

for 6 and 6 sufficiently small. Similarly the center manifold h(X, x) can be determined from 

the quasi-linear PDE 

The last case we consider is when our system includes an unstable manifold. Consider 

the equation 

Bxx + f ( A ,  x ,  Y ,  z )  [ f ) = [ CAY + ~ ( . , x , Y ; z )  ) z E RU (2.68) 

Exz + h(X, x ,  Y ,  z )  

where 

f ,  9 ,  h, D f ,  Dg, and Dh 

vanish at the origin. The matrix E has eigenvalues with positive real parts. The local center 

manifold can be represented by 

W C ( 0 )  = { ( x , y , z )  E Rc x R8 x Ru ly = h l ( x ) , z  = hz(x) ,  
(2.69) 

h;(O) = 0,  Dh;(O) = 0 , i  = 1,2) 

for x sufficiently small. The vector field restricted to the center manifold is given by 
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The center manifolds h l ( x ) ,  h 2 ( x )  can be determined from the system of quasi-linear partial 

differential equations 

N l ( h ( x ) )  = D h ( x ) [ C x  + f ( x ,  h (x ) ]  - E h ( x )  - g ( x ,  h ( x ) )  = 0. 
(2.71) 

N 2 ( h ( x ) )  = D h ( x ) [ C x  + f ( x ,  h ( x ) ]  - E h ( x )  - g(x ,  h ( x ) )  = 0. 

Similar results exists for maps. 

2.1.5 Normal forms 

A normal form is one of the tools that provides a basis for the study of the qualitative 

properties of flows near a bifurcation point. At this point on the center manifold one can 

find coordinate transformations which simplify the analytic expression of the vector field. 

The normal form is a way of eliminating the nonlinearity in a system. The resulting vector 

fields are called the normal forms. The dimension of an infinite system can be reduced 

using the center manifold theory and the resulting system simplified using the normal form 

theorem. For example an invariant torus in an infinite dimension can be determined using 

this idea of reducing the dimension with center manifold theory and simplifying the resulting 

system using the normal form theorem. We start with the normal forms at a fixed point 

and do a coordinate transformation in the neighborhood of this fixed point. Note that if 

the fixed point is not at  the origin a translation can be done to translate it to the origin. 

Consider the vector field 

x = f ( x ) ,  x  E R n  (2.72) 

with f E C r ,  r > 4 and with a fixed point at the origin. Linearize (2.72) about the fixed 

point to get 

= D f ( 0 ) x  + p ( x )  (2.73) 

and then make the transformation 

x = T v  

to convert D f ( 0 )  to the Jordan canonical form J .  Using this transformation equation (2.73) 

becomes 

v = J v  + F ( v ) .  (2.75) 

Expanding the non-linear term F ( v )  in (2.75) we get 
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where F;(v) represents the ith order term. Torsimplify the term F2(v) we introduce the 

transformation 

v = Y + h 2 ( ~ )  (2.77) 

where h2(y) is second order in y .  Equation (2.76) then reduces to 

Each nonlinear term 

F k ( y + h 2 ( ~ ) )  2 s k S r - l  

can be expressed in the form 

Equation (2.78) becomes 

where E ( x )  are the modified order O(lylk) terms. For small y the matrix (I + Dh2(y))-' 

exists and can be represented in a series expansion 

Substituting this in (2.79) we get 

We simplify equation (2.82) by looking for h2(y) such that 

One can solve this by choosing an appropriate linear vector space with a linear operator 

defined on it [W]. We describe the new problem in this linear space. Define the basis of the 

linear vector space as (x l ,x2 , .  . . , x,) E R n .  Let ( y l , y z , .  . . , yn)  be the coordinates with 

respect to this basis and let the coefficients of this basis be monomials of degree k. 
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Denote the set of vector-valued monomials of degree k by Hk. Define the linear operator 

We choose a complement Gk for L j ( h k ( y ) )  in Hk so that 

Theorem 2.1.6 Normal Form Theorem. 

By a sequence of analytic coordinate changes, equation (2.76) can be transformed into 

where F { ( y )  E Gk, 2 5 k 5 r - 1, and Gk is a space complimentary to L J ( H k ) .  Equation 

(2.86) is said to be in a normal form 

and a standad basis in R given by 

Let 

The matriz associated with L J is 

/ - l o  0 1 0  0 

- 2 - 1 0  0 1 0  

0 - 1 - 1  0 0 1 

0 0 0 - 1 0  0 

0 0 0 - 2 - 1  0 

\ o  0 1 0 - 1 - 1  
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Finding two vectors that are orthogonal to the cobumns vectors above, one can then determine 

the normal form. 

The normal forms for vector fields with parameters and also maps can be determined in 

a similar way. 

2.1.6 Local bifurcations 

We have seen in the introductory chapter that one of the main sequence of bifurcations 

leading to an invariant torus begins with one or more bifurcations of steady states, followed 

by a Hopf bifurcation to periodic orbit, then a Naimark-Sacker torus bifurcation. ie. 

Steady State -+ periodic solution + invariant torus. 

In this section we analyze the Hopf bifurcation theorem which plays a major role in this 

bifurcation sequence for both flows and maps. 

If the Jacobian D f of (2.1) at the point xo has eigenvalues with zero real parts then it 

is said to be nonhyperbolic. Let equation 

x = f (x, A) (2.90) 

have a hyperbolic equilibrium point for X = 0 at xo = 0. As X varies the implicit function 

theorem can be used to determine the flow near this point a s  a smooth function of A.  

A term that is used to describe bifurcation is co-dimension. The co-dimension of an 

I-dimensional submanifold of n-space is (n  - 1). A transversal intersection of manifolds in 

n-dimensional space is one for which the tangent spaces of the intersecting manifolds span 

n-dimensional space. Let C1 and C2 be two submanifolds. Then the co-dimension of 

El n E, is the sum of the co-dimensions of C1 and C2 if their intersection is transversal. 

The co-dimension of a bifurcation is the smallest dimension of a parameter space which 

contains the bifurcation in a persistent way (It is the number of degenerate conditions that 

are satisfied at  a particular bifurcation). Below are some examples of the normal forms of 

co-dimension one bifurcations of equilibrium points. 

Saddle-node bifurcation 
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Transcritical bifurcation 

Pitchfork bifurcation 

Hopf bifurcation 

Let a ,  b, c, d and w be some constants. Then the normal form of a Hopf bifurcation is given 

bv 

In polar coordinates this reduces to  

Theorem 2.1.7 Hopf bifurcation for flows 

Suppose that the system x = f ( x ,  A ) ,  x  E R n ,  X E R has an equilibrium (xo ,  X o )  at 

which the following properties are satisfied: 

0 (a) Dx f (q, X o ,  ) has a simple pair of pure imaginary eigenvalues and no other eigen- 

values with zero real parts. 

Then (a) implies that there is a smooth curve of equilibm ( x ( X ) ,  A )  with x(Xo) = xo. The 

eigenvalues p(X),  p (X)  of Dx f ( x ( X ) ,  X o )  which are imaginary at X = X o  vary smoothly with 

A. If, moreover, 

then there is a unique three-dimensional center manifold passing through (xo,  X o )  in R n  x R 

and a smooth system of coordinates (preserving the planes X = constant) for which the Taylor 

expansion of degree 3 on the center manifold is given by (2.91). If a # 0, there is a surface 

of periodic solutions in the center manifold which has quadratic tangency with the eigenspace 

of p(Xo), P(Xo)  agreeing to second order with the pamboloid 
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If a < 0,  then these periodic solutions are stabte limit cycles, while if a > 0,  the periodic 

solutions are repelling. 

The Hopf bifurcation of a periodic solution to an invariant torus in a flow can be consid- 

ered as the Hopf bifurcation of a fixed point to a periodic solution under a Poincard map. 

Below is the corresponding Hopf bifurcation theorem for maps. 

Theorem 2.1.8 Hopf bifurcation for maps 

Let f x  : R2 + R be a one-parameter family of mappings which has a smooth family of 

fixed points x (X)  at which the eigenvalues are complex conjugates p(X), p(X) .  Assume 

0 (a) Ip(Xo)l = 1 but pj(X0) # 1 for j = 1,2,3,4. 

Then there is a smooth change of coordinates h so that the expression of hfxh-' in polar 

coordinates has the form 

h fxh-'(r, 8 )  = ( r (1  + d(X - X o )  + ar2),  8 + c + br2) + higher order terms. (2.95) 

(Note: p complex and (b) imply larg(p)l = c and d are non-zero.) If, in addition, 

then there is a two-dimensional surface C (not necessarily infinitely diflerentiable) in 

R2  x R having quadmtic tangency with the plane R~ x {Ao) which is invariant for f .  If 

C n(R2  x { A ) )  is larger than a point, then it is a simple closed curve. 

In the Hopf bifurcation theorems above the signs of the coefficients a and d determine the 

direction and the stability of the bifurcating periodic orbits and c and b give asymptotic 

information on rotation numbers. 
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2.2 Systems of partial differential equations 

We hope to extend the numerical algorithms developed in this thesis for computing an 

invariant torus to those that arise in infinite systems. By an infinite dimension we mean 

a system that corresponds to a PDE written in terms of Fourier or eigen modes. In this 

section we discuss some background theory and some extension of the theory discussed in 

finite dimensional systems to PDEs. 

The field of dynamical systems generated by PDEs has in recent years grown rapidly. 

The notions from the theory of finite-dimensional dynamical systems have penetrated deeply 

into the theory of infinite-dimensional systems and partial differential equations. The evolu- 

tion equations of these PDEs are now been investigated from the standpoint of the theory of 

dynamical systems. These equations include the Navier-Stokes equation (NVS), Magneto- 

hydrodynamics equations and reaction-diffusion equations. One common feature is the 

theory of turbulence arising in a dynamical system approach to identify turbulence with 

the long time dynamics of the solutions of the Navier Stokes equations. Among the latest 

achievements, it has been established that in the case of two-dimensional Navier Stokes equa- 

tions there is a global attractor which has a finite dimension. Further examples constructed 

in the 2-dimensional Navier Stokes equation indicate that, under suitable conditions, the di- 

mension of the attractor can be arbitrarily large. This indicates that the long-time dynamics 

of the Navier Stokes equations may involve many different degrees of dynamical complex- 

ity. It has been shown that the invariant sets and attractors are bounded in 3-dimensional 

Navier-Stokes equations and have finite Hausdorff (and fractal) dimension[TR]. 

The bifurcation in partial differential equation has been observed in the Navier-Stokes 

equations, chemical reactions Kopell-Howard [KH] and population dynamics. Some early 

works of Ruelle Takens indicate that under some smoothness assumptions on the vector 

fields the bifurcations yielding, periodic solutions and invariant tori in ODES can be applied 

to some dissipative PDEs. Further bifurcations to higher dimensional stable tori can also 

be observed leading to a strange attractor which is abundant on k - tori (k 2 4). 

2.2.1 Bifurcation theorems for partial differential equations 

In application to partial differential equations, the key assumption is that the semi-flow 

defined by the equations be smooth in all variables for t > 0. One determines that for 

partial differential equations the vector fields generating the flows are usually not smooth 
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functions on any reasonable Banach space. Huwever, for certain parabolic type of PDEs 

some of the Hopf bifurcation theorems for ODES can be pushed through [IO]. We will see 

that if the spectral condition of Hopf's theorem are fulfilled, then indeed a periodic solution 

will develop. One hypothesis needed is analyticity of the solution in t. In this section we 

look at some other conditions necessary for the bifurcation to periodic solutions. 

Consider a system of evolution equations of the general form 

dx 
- = Xx(x) with x(0) given 
dt 

and XA a densely defined nonlinear operator on a Banach space B, which depends on a 

parameter A. We want the flow 4t for each fixed t and X to be a CCOO mapping on the 

Banach space B (note that 4t is only locally defined in general). We assume the following 

properties are valid for the flow: 

+t is defined on an open subset of R +  x B, R+ = { t  E R I t  2 0); 

q5t+S = g5t o 4, (where defined); 

&(x) is separately continuous in (t,x) E R +  x B.  

Two assumptions that the flow must satisfy are: 

Assumption 2.2.1 (Smoothness) 

Assume that for each fixed t ,  $t is a CCOO map of (an open set in) B to B. 

With these conditions and the assumption for the flow, 4(t) can be defined as a smooth 

semigroup. We can expect smoothness in X and t for t > 0. This is the nonlinear analogue 

of "analytic sernigroups" and holds for "parabolic type" equations. 

Assumption 2.2.2 (Continuation) 

Let q&(x) for f ied  x lie in a bounded set in B for all t for which 44x)  is defined. Then 

+t(x) as defined for all t 2 0. 

This guarantees that the only way an orbit can fail to be defined is if it tends to infinity in 

a finite time. 

Let us assume that the origin 0 is a fixed point of c$t ie. q5t(0) = 0 for all t >_ 0. Let 

at = D&(O) denote the FrCchet derivative of q5t for a fixed t at x = 0 with generator DX(0).  

The linear semi-group Gt under suitable conditions is the exponential of the spectrum of 

DX(0). The spectrum therefore determines the stability type of (2.97). 
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Hypotheses 2.2.1 (On the spectrum) r 

Assume we have a family 4: of smooth nonlinear semigroups defined for X in an interval 

about 0 E R . Suppose &(x), is jointly smooth in t ,x ,  A,  for t > 0. Assume: 

1. 0 is a fixed point for &(x); 

2. for X < 0,  the spectrum of 'P:(x) is contained in D = { z  is Complex : lzl < I), where 

'P: = DzdJ:(x)l,=o; 

3. for X = 0 (resp. X > 0 )  the spectrum of 'P:(x) at the origin has two isolated simple 
- 

eigenvalues p(X) and p(X) with Ip(X)I = 1 (resp. p(X) > 1 )  and the rest of the spectrum 

is in D and remains bounded away from the unit circle. 

4. (& ) IP (~ ) I~~=0  > 0 (the eigenvalues move steadily across the unit circle). 

Under these conditions we have the bifurcation to periodic orbits, the stability of which is 

determined from Marsden [MM]. 

Theorem 2.2.1 Under the above hypotheses, there is a fixed neighborhood U of 0 in B 

and an 6 > 0 such that q$(x) is defined for all t > 0 for X E [-E,C] and x E V .  There 

is a one-pammeter family of closed orbits for &(x) for X > 0,  one for each X > 0 varying 

continuously with A. They are locally attracting and hence stable . Solutions near them are 

defined for all t > 0. There is a neighborhood U of the origin such that any closed orbit in 

U is one of the above orbits. 

One can generalize the theorem to the case where the system depends on many pa- 

rameters with multiple eigenvalues crossing or to a system with symmetry. It can also be 

extended to the bifurcation to an invariant torus. If b:(x) is smooth in t ,  A, x for t > 0 then 

the PoincarC map for the closed orbit will be well defined and smooth and after we reduce 

to finite dimensions via the center manifold theorem. 

Ruelle Takens theory of turbulence has related the qualitative theory of differential 

equations to turbulence in fluids. The theory is based on some concrete mathematical 

conjectures about the Navier Stokes equations which are only supported by indirect evidence 

[SG]. And to apply the theorem above to this problem a l l  we need to do is to show that the 

semiflow of the Navier Stokes equation is smooth. In Marsden and McCracken [MM] it is 

shown that the Navier-Stokes equations in dimension 2 and 3 define a smooth local semiflow 

on Sobolev space. 
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There is a unique correspondence between a'given boundary and internal forcing data 

and the predicted motion, when the Reynolds number is small. Also at small Reynolds 

number, there exists a unique solution, determined by the data after the initial conditions 

have died away. 

2.2.2 Projections 

The results obtained so far are in infinite dimension and in order to reduce them to a lower 

dimension, we consider the following methods of reduction, 

1. the use of the center manifold theory to reduce the problem to  the center manifold 

[Cl, [MMI, [HKWI; 

2. the use of inertial manifolds; 

3. a discretization method such as the Galerkin method where one expands the solution 

in an eigenfunction, then truncate the expansion and substitute it into the PDE to  

get a system of ODES for the coefficients. 

2.3 Strange Attractors and Turbulence 

The mathematical object which accounts for turbulence is an attractor or 

a few attractors, of reasonably small dimension, embedded in the very-large 

dimensional state-space of the fluid system. Motion on the attractor depends 

sensitively on the initial conditions, and this sensitive dependence accounts for 

the apparently stochastic time dependence of the fluid. [SG] 

This approach assumes that turbulence is to be understood within the framework of 

Navier-Stokes equations. There is no global existence theorem for solution of the initial 

value problem for Navier-Stokes equations. The fluid system is regarded as a mechanical 

system with friction and mathematically, its motion is viewed as governed by a first-order 

in time differential equation on a state space. The phenomenon understanding turbulence 

is finite dimensional though the state space for the fluid is infinite dimensional. 

Some stability properties in R~ of the Navier-Stokes equations are in [MM]. 
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Table 2.2: Models of the transition to turbulence 



Chapter 3 

The ODE methods 

In this chapter we present a numerical method to compute invariant circles for maps and 

differential equations. It is an application of the Hadamard graph transform (HGT) for 

computing attracting invariant manifolds. We perform a sequence of graph transforms, 

where each transform requires the solution of finitely many ODE boundary value problems 

in the differential equation case. The HGT iteration is seen to converge after one iteration 

when the invariant circle is exponentially attracting. We give a convergence proof for our 

algorithm and apply it to three problems. 

We start by giving some basic theories related to our computations. As we have seen 

in the introductory chapter, the computation of nonwandering sets or manifolds have been 

a major concern in the area of dynamical systems. One such important low dimensional 

manifold is the invariant torus, which can be defined implicitly from an invariant circle 

under the PoincarC map. In bifurcation analysis, one is frequently interested in following a 

torus to its breakdown. During the process of its computations, the torus naturally loses 

its smoothness and become harder to compute as we vary a bifurcation parameter. Instead, 

computing an invariant circle of the torus one can thereby reduce the complexity of the 

computation of the torus. 

In [ACHM], a direct iteration was used to  compute the invariant circles of discrete maps. 

One of the recent methods used to compute invariant circle for maps and differential equa- 

tions is the Poincar6 map approach of van Veldhuizen[VVl] and Kevrekidis et al.[KASP]. 

The method of van Veldhuizen uses a polygon to approximate the invariant circle. His algo- 

rithms then require the use of a large number of mesh points. The algorithm of Kevrekidis 

uses the Newton-Raphson method to find a fixed point of a nonlinear mapping in a finite 
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dimensional space that results from the discretization of the problem. The algorithm suffers 

from the undesirable convergence properties of Newton's method but can work well provided 

the Jacobian exits. 

In the Hadamard graph transform approach each transform step involves solving a num- 

ber of ode boundary value problems. One advantage of this approach is that each boundary 

value problem is independent of the others, and they can be solved concurrently. The 

Hadamard graph transform technique as implemented in this work bears some similarities 

to the Poincard map approach. 

3.1 The Shooting method for BVPs 

This is an initial value method for solving boundary value problems (BVP). It is relatively 

an easy method for solving two-point boundary value problems but has stability problems. 

These problems are alleviated by methods like multiple shooting, the stabilized march and 

the Riccati methods [AMR]. 

3.1.1 Simple shooting for linear problems 

In this section we describe the shooting method for the general linear two-point BVP of the 

form 
U' = A(x)u + q(x), a < z < b, u E Rn 

( 3 4  
B,u(a) + Bbu(b) = P 

with general solution 

U(X) = U(x)s + ~ ( x ) ,  a < x 5 b 

where U(x) := U(x; a)  is a fundamental matrix solution, s E Rn a parameter vector and 

v(t) a particular solution. The particular solution v(x) satisfies 

with the initial condition 

v(a) = a 

for some a E Rn. The n columns of the fundamental matrix solution can be determined 

from the variational equation 
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We determine the parameters s by substituting (3.2) into the boundary conditions of equa- 

tion (3.1) to obtain 

which can be written as 

Qs = P 

where b = /3 - Pav(a) - Bbv(b) Q := Ba + Bbv(b). 

If BVP (3.1) has a unique solution then Q is nonsingular, and s is well defined by (3.5). 

The solution obtained by this method depends on the discretization and the roundoff errors. 

The discretization error is bounded by 

where To1 is the tolerance given to the IVP integration routine which controls the local error 

in the solution v(t) and U(t)K x 1. The shooting method will in general give appropriate 

global discretization errors if the BVP is well-conditioned ie. when K is not too large. 

Simple shooting for nonlinear systems 

Consider the nonlinear differential equation 

subject to the boundary conditions 

Denote the solution of (3.8) by u(x, s)  which satisfies the initial condition 

Our problem then reduces to that of finding s* which solves the nonlinear algebraic equations 

Below we describe a Newton's method to solve the algebraic equations for s*. Let 

F(s) := g(s, u(b; s)) = 0. (3.10) 
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and the fundamental matrix solution of (3.8) be given by 

U(x) can be determined from 

where 
a f A(%) = A(x, s) z -(x, u(x; s)). au 

If so is the initial guess, then the sequence s l ,  s2,. . . is obtained from 

where 1C, solves the linear system 

with G' defined by 

G1(s) := - aG(s) = Ba + Bb,(b) as 
where 

Ba = a d w ,  
Ow 7 Bb = 

a d w ,  v) at w = s ,  v = U(b;s) 
a v  

(3.14) 

As mentioned earlier, the simple shooting method is not very robust and its numerical 

results cannot always be trusted. Some of the reasons are as follows: 

(1) The IVPs integrated in the process could be unstable, even when the BVP is well- 

conditioned ie. 

(a) There could be a propagation of roundoff errors by the initial value integrator. A 

rough estimate for the bound on this error is of order cMeL(b-a) where L = max, llA(x)11 

and c~ is the machine precision. 

(b) There could be discretization errors. 

(2) For non-linear problems a problem arises when shooting with initial values for which 

the exact solution does not exist on the whole interval [a,b]. 
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3.1.2 Multiple shooting for nonlinear problems 

For a description of multiple shooting algorithm for linear problems see [AMR]. A basic 

solution to the problems above is to reduce the length of the integration interval [a,  b ] .  We 

divide the interval to  form the mesh 

II = { a  = x 1  < x 2  < < X N + ~  = b).  (3.15) 

Consider equation (3.8) in the subinterval ( x ; ,  i = 1, . . . , N with the initial condition 

u(x; )  = 3; 

and solution denoted by 

u ( x )  := u;(x;  s ) .  

Let 

U ; ( X ; + ~  : s ; )  = ~ ; + l  1 5 i 5 N 

and g(s l ,  uN(b,  s N ) )  = 0. We define 

and solve a set of nN nonlinear algebraic equations F ( s )  = 0 for s*. Let 

where U ; ( z )  = Ui(x; xi, s ; )  is the n x n fundamental solution defined by 

with A(x)  = A(x; s ) ,  Ba = Ba(s)  and Bb = Bb(s)  defined as in simple shooting. The rest 

of the process is the same as in single shooting for nonlinear problems using the Newton's 

method. 
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3.2 Numerical Formulation I 

The basic dynamical system we consider is that of the form 

where f : Rn - Rn, and has a solution denoted by &(xo). Assume (3.20) has a periodic 

solution and xo a point on it with period T. Let C be an n- 1 dimensional surface transverse 

to the vector field at  xo with an open set V c C and x E V. The Poincard map denoted 

P : V + C is defined by P(x)  := ~ ( T ( x ) ,  x )  E C where r (x)  is the time of first return such 

that r(xO) = T and P(xo) = xo[W]. If f is time periodic and of a fixed period T = 2nlw 

then (3.20) can be written as 

x = f (x, t)  (3.21) 

which can be reduced to 
x = f(x,8) 

e = w .  

In this case, the n - 1 dimensional surface is given by C := {(x,B) E R n  x S1ls=e,}. The 

set {pk(x)  = 4to+kT(x, to), k = 1,2, ...} is the corresponding orbit. We assume that P 

is homeomorphic. A fixed point of the Poincard map corresponds to a T-periodic solution 

of the ODE system. When the solution of (1.2) is two-periodic, then the Poincard map 

possesses an invariant curve, ie., an invariant curve 7 in Rn such that P y  c y. Note that 

the flow &(x, to) of (3.21) with x 6 7 and t E (0, T] determines its invariant 2-torus of 

(3.21). The solutions of the differential eqliation lying on the torus correspond to solutions 

of the Poincard map on the invariant circle. 

When considering the Hopf bifurcation of an ordinary differential system from a periodic 

solution to an invariant torus, under the Poincard map, one can reduce it to a simpler bifur- 

cation problem from a fixed point to an invariant circle. At the point of Hopf bifurcation, 

the plane II containing the invariant curve can be determined from the eigenvectors of the 

two eigenvalues that cross the unit circle. At the bifurcation point, the plane II is then the 

center manifold. The essential action of the system (3.21) takes place in this plane which 

actually gives a detailed asymptotic information about the plane. Perturbation techniques 

can be used to compute the Euclidean projection of such invariant circles in this plane close 

to the Hopf bifurcation point in the parameter space. Below, we assume there is a nonlinear 
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coordinate transformation such that the plane &is spanned by the first two coordinates in 

Rn. For some x, E Rn there exists such a nonlinear coordinate transformation as follows: 

Assumption 1.1 (Radial coordinates)[vv2] 

In the annular neighborhood of the curve y the nonlinear coordinate transformation 

is a smooth invertible map, with ~ ( 8 )  > 0, v E Rn-2, and 8 E S1. In particular, the Jacobian 

matrix of the transforming map should be invertible with uniformly bounded inverse along 

y.  The curve 7 can then be described by 

We assume that the projection of the invariant curve y 

in khe plane ll looks like a curve. We define the radial distance d , ( x , 7 )  = I(p,v)( as the 

Euclidean length of (p, v). 

We can also generalize this transformation to the case where we have a Hopf bifurcation 

to y = (ylrUy2U . . . Uyq) invariant circles. Let the corresponding planes be denoted by 

II = (111 UI12U . . . UIIq). In the new coordinate system, equation (2.26) becomes 

3.2.1 The Hadamard graph transform approach 

In this section we outline a new approach to compute the invariant circle for maps and 

differential equations. This method is an application of the graph transform method de- 

veloped in Fenichel [F]. It is a tool for obtaining a (locally) attracting invariant manifold. 

The approach then works for attractive and repellent curves but not for those with mixed 

attractivity. One performs a sequence of graph transforms (iterations), where each graph 
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transform itself requires the solution of finitely many (BVP) for each point 8 E S1. We 

assume that the projection of the invariant curve 7 in the plane II can be parameterized by 

We choose a mesh 

n,, := {0 = el 5 e2 5 . . . 5 ON) = 27r) 

Define R; := R(B;), i = 1,. . . , N and ROld(B) the initial approximation to 7. Let { P R ~ ' ~ ) ~ ~  

be the image of the points {R4ld)El under the Poincard map P. If the curve 7 is attract- 

ing(repelling) then the sequence of points PnR,, n = 1, ..., oo(-oo) for i = l ,  2, ..., N gets 

closer to the curve 7. However, they will converge to a single point on 7 if it contains a fixed 

point of the PoincarC map. In the Poincarb map approach the points are equi-distributed 

after each map of {R:~). The basic algorithm consists of 2 parts: 

compute the images of the old mesh points. 

project the old mesh onto { P R ~ ~ ~ ) ~ ,  to get the new mesh points. 

If K is defined as the composition of the PoincarC map P and the projection map then 

this approach results in solving the set of equations 

Van Veldhuizen[VVHl] solves (3.29) using simple iteration with piecewise polynomial in- 

terpolation projection whiles Kevrekidis et al.[KASP] use the Newton-Raphson iteration 

with spline and finite element interpolation. In the Hadamard graph transform approach 

we introduce the HGT step H which is similar to K and solve (3.29) using simple iteration. 

We start by defining the projection operators U, V and W by 

We see that they project the state space S1 x R Q  x ~ ~ - 9 - l  onto S1, RQ and Rn-9-' 

respectively. Define the PoincarC map P by 

where T > 0 and 11, = 11,O is the PoincarC cross-section. Assume that the manifold 7 is 

locdy  attracting in positive time. ie. if the flow &(B, r, 11,) is sufficiently close to 7 then the 
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distance of 448, T, $) to  y tends to zero as t 4 00. Let ~ ( t )  = R(O(t)), with ~ ( 0 )  = ROld 

and if y is globally attracting then the longterm behavior of (3.26) is given by 

We solve the boundary value problem B V P ( ~ ,  ROld) 

to determine a and Rnew(e) such that 

V(do(a, Rold(a), $')) = Rold(a). 

The Hadamard operator H T  applied to ROld is defined by 

(H'R"'~)(~) := V(&(a, ~ " ~ ( a ) ,  $O) = ~ " ' ~ ( ( e ) ,  r ) .  (3.36) 

Let Rnew := H T ~ ' l d  be the new approximation to R and H T  be one Hadamard iteration. 

Under appropriate assumptions, the iteration Rn+' = HTRn converges linearly to the fixed 

point R. In the case where one component of $ E S1, say E S1 we get an invariant 

torus and T can be chosen as 27~. This is illustrated in the numerical example 4. The 

B V P ( ~ ,  R0ld) for the ej values in the discrete mesh ej E Oh c S1 are independent of each 

other at each point a. This allows us to parallelize our code. We can assign N B V P ( ~ ,  Roid)s 

to N processors. No communication is necessary provided the functions f,  g, h and ROld are 

available locally. We solved the B V P ( ~ ,  ROld) using simple and multiple shooting with 

bisection and Newton's method. The algorithm is as follows: 

1. Choose 

(a) initial values { R ; ~ ~ } ; N = ~ .  The mesh is distributed such that (8,) are equi-distributed 

with respect to  arclength, 

(b) a tolerance 6, 

(c) maximum number of iterations M,,,,,. 
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2. Build the interpolant ( I { R P ' ~ ) ~ ~ )  using e.g. a periodic cubic spline. 

3. Compute the Poincard map P&(B;(O), ~ 0 ' ~ ( 8 ; ( 0 ) ) ,  +O) = (&, i , +O) 

i = 1,. . . , N by integrating the differential equation in the B v P ( ~ ,  Rold) (3.33) (using 

say a standard integrator like RKF45 or ODE). 

4. For each Oj, 1 5 j 5 N find gk and 8k+l such that gk 5 Bj 5 9k+l. Identify B1 with 

ON+l. 

5. Solve the B V P ( ~ ,  R0ld) using bisection for the first Hadamard iteration and Newton's 

method for subsequent iterations to determine ( H ~ R O ' ~ ) ( ~ ~ ) ,  j = 1, . . . , N .  

6. If Number of iterations > M,,, or 

max;=l,...,N lRnew - Roldl 5 to1 update ROld and exit; else go to 2. 

3.2.2 Convergence analysis 

In this section we prove the convergence of the Hadamard graph transform algorithm. The 

results of which are for attractive invariant curves and are from the work of Hale [HI and 

van Veldhuizen [VV2]. To determine 7 in principle, we have to perform an infinite sequence 

of graph transforms (iterations) where each graph transform itself requires the solution of 

infinitely many BVPs of each point in 8 E S. Our algorithm performs a finite number of 

iterations (HGT) and solves finitely many BVPs. This introduces an error in our numerical 

approximation scheme for the invariant curve 7.  We give the convergence rate for our 

algorithm and the conditions for a unique solution. If the HGT contracts then we can indeed 

obtain an attracting invariant manifold which does persists under small perturbations. In 

the case of differential equations the error in computing the Poincad map is assume negligible. 

The convergence analysis is done in the coordinate system described below. Let the 

invariant curve 7 be defined by 

Hale has proved rigorously that for a simple curve 7 there always exist a vector not in the 

set of all tangents vectors to 7.  In the neighborhood of 7 one can generalize this to the 

following coordinate system around 7 and define 
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as an orthonormal coordinate system for each 0 PE [O,2r] along the invariant curve y. Let 

the coordinates be periodic in 0 of period 22 with # 0, 0 < 0 < 2 r  and one of the 

e;(O)'s equal to 

The orthogonal coordinate system (3.38) becomes (v,  $1, $2, . . . , We do a coordinate 

transformation x -t (8, p), where p = col(pl, p2, . . . , pn-' ) given by 

and Z(B) an n x (n - 1) matrix with orthonormal column vectors $2,. . This 

transformation is well defined. In addition, all columns of Z(8) are orthogonal to the vector 

$(8). With the new coordinate transformation the invariant curve is given by 0 -+ (8,O). 

In R2 the matrix Z reduces to the normal vector to the curve 7. The distance dt(x; 7 )  of 

the vector x to 7 is given by the Euclidean norm llpll. Now we give some conditions under 

which the B v P ( ~ ,  ROld gives a unique solution. 

 emm ma 3.2.1 The (BVP) (~ ,  RO '~ )  (3.33) has a unique solution iff the system (3.34) 

has a unique solution. 

Proof : Suppose a = a(@ is the unique solution of (3.34) and let 

This implies 

The converse has been proved in [DLRZ]. 

Assume that the mapping a! = 4 8 )  defined in (3.34) is orientation preserving (ie. one- 

to-one and onto) and suppose that H'R = R. The manifold 

is invariant under + [DLR22]. 

If the invariant curve y is attracting in the forward time then there exists a constant 

0 < x < 1 such that for all x in the neighborhood of 7 
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and a constant Cd 2 1 such that the following relation hold 

Let I  be an interpolation operator in the Banach space of continuous functions on 

[0,2n) with the norm IIIII. The norm 1 1 . 1 1  is the supremum norm of functions. Unlike in 

the case of [VV2], the norm of I  is considered over only a fixed grid. The approximation 

I { H X ; ) ~ ~  to 7  is done by interpolating with abscissae as 8. We let I  be a piecewise 

polynomial interpolation operator. If I7 = 7' then the operator I  converges as follows: 

I { H " x ; ) ~ ,  - 7' as n - CQ. Define the interpolation error as IlI7' - 711. Let {RT):,  

be the fixed point of the set of equations 

Assume the points on the polygon are well ordered and close to 7 ,  with x ,  in the interior. 

Assume that the restriction of P to 7  is a homeomorphism so the images Px; are nicely 

ordered along 7 .  Then this implies that for vertices close to 7  their images are close to 7 .  

;Lemma 4.2: For { x i ) E l  close enough to y 

Proof: The radial distance between Hx; and 7  can be estimated as follows: 

In [VV2], van Velhuizen showed that if H is a convex set map and if the radial distance 

of I { x ; } z l  from 7  is at  most 6 then the iterates of I { X ; ) ~ ~  under H satisfy this property. 

And from lemma 4.2 we have the following condition 

Theorem 3.2.1 If xllIllCd < 1 and if the interpolation error is suficiently small, then 

the radial distance from points in this neighborhood to 7 is bounded by 

And if I  is a piecewise linear interpolation operator then the Hadamad gmph t m n s f o m  

itemtion converges to I7 with a convergence factor 5 k,  where Cdx  < k < 1 .  
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For the proof see [VV2]. I 

We used a classical periodic cubic spline operator. In view of this theorem (3.2.1) the 

error in this met hod is 0 (l8;+, - 0; 1 4 ) .  Since we don't need a nonuniform mesh, higher order 

piecewise interpolation schemes can be used without much problems. 

3.3 Numerical examples 

While we apply our numerical scheme to four low dimensional problems to illustrate its 

robustness. The algorithm can be extended to problems in higher dimension. The first 

example is a simple rigid map which is used to show the accuracy of the method with two 

different piecewise polynomial interpolation operators. The second example is the delayed 

logistic map and the last two are the van-der Pol equation and a system of two-coupled 

oscillators. In the last two examples the Poincard map is not known explicitly and has 

to be determined during the process. The computations were done on a SUN SPARC 20 

workstations and the 3-dimensional pictures produced on a Silicon Graphics Iris Indigo 2 

Extreme. 

3.3.1 Simple problem 

This example is used to  illustrate the accuracy of the method with respect to different 

piecewise interpolation operators. We chose a simple map F given by 

with 0 5 K < 1 and a E (0 '2~1.  The invariant circle in this case is a unit circle and is 

I Number of mints I Piecewise linear inter I Cubic spline I 

Table 3.1: The comparison of the accuracy of the cubic spline interpolation and the piecewise 
linear interpolation 
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attractive. The circle map FI, is a rigid rotathn over the angle a and with a rotation 

number a / 2 x .  

The results indicate that, the order of accuracy for cubic spline interpolation is 0 ( h 4 )  

while that for piecewise linear interpolation is 0 ( h 2 ) .  The aim of this work is show that 

these results agree with the theoretical results indicated in theorem (3.2.1) .  And we are yet 

to show that is the case. The error estimates depends on how one choses the center x, and 

the accuracies given above are about optimal. 

3.3.2 Delayed logistic map 

This is a population model that has been investigated in great details by Aronson et 

al.[ACHM]. If we let Nn be the population density in the nth generation and let a be a 

parameter reflecting the growth rate then the model is given by 

Set; xn = Nn-1, yn = Nn,  to get 

The map Fa has fixed points ( x * ,  y*) = (0,O) and %(I, 1) .  The linearise map at the origin 

has eigenvalues 0 and a thus for values of a > 1 it is a saddle. The eigenvalues of the 

linearised map at + ( l ,  1) are X l V 2  = $ ( l  f d m )  and the fixed point y ( l ,  1) is stable 

for 1 < a 5 2. For a 2 the eigenvalues are complex conjugates. At a = 2,  AX = 1 with 
d xIX(a)la=2 = 1 and the condition (2.96) of theorem (2.1.8) is satisfied. Thus at a = 2 ,  

the fixed point losses its stability and spawns an invariant circle via a Hopf bifurcation. It 

is known that for values of a > 2.177 the invariant curves are topologically circles but no 

longer differentiable [vvl]. We were able to follow the circle up to a = 2.270 using a simple 

continuation in a. Since the origin is a saddle, the outer most figure shows that we are 

approaching a homoclinic orbit. The first initial guess for this problem is not that difficult 

since we know the point of Hopf bifurcation. Van Veldhuizen computes invariant curves 

up to a = 2.18 and requires 1044 points to be able to compute the invariant circle at a = 

2.18, whereas our method required 50 points to get similar results. The results of the HGT 

method is shown in figure 1. 
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3.3.3 The van der Pol oscillator I 

This equation serves as a simple mathematical model of a self-excited system. The unforced 

oscillator consists of a periodic motion which varies from sinusoidal to nearly discontinuous 

as a bifurcation parameter is varied. We are interested in the forced oscillator in which the 

motion is quasiperiodic. It has been used to model electric circuit with a triode valve and 

in math biology. The equation is given by 

Under the transformations [GH] p(x) = x3/3 - x y = x + ap(x), we get 

We use bisection and later Newton's iteration in our computations. The Hadamard graph 

transform is used to compute a torus that is obtained as result of a Hopf bifurcation. Let 

K = P/2a and a = (1 - w2)/a. The invariant curves for the K values 0.38, 0.385,0.387,0.389 

and 0.390 with a = 0.55 and a = 0.4 are shown in figure (3.2). See [GH] for the importance 

of these parameters. These results indicate how the radius of the invariant circles grows 

from zero. 

3.3.4 Coupled oscillators 

In this example we look at the dynamics of 2-coupled planar oscillators which give rise to 

a system of ordinary differential equations in R4. For the uncoupled system each oscillator 

has a unique periodic solution that is attracting and the coupled product system has a 

unique invariant torus that is also attracting. The torus persists for weak coupling and 

contains 2-periodic solutions when the coupling is linear and conservative. However, the 

torus disappears for strong coupling. Our desire is to understand the phenomenon of its 

disappearance. 

The differential system is given by 
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With the parameterization x; = r;cos(9;) and y; r -r;sin(9;), i = 1,2  and 

A = rl[sin(dl + 92) - cos(Ol - 02)] we get 

Let a1 = a 2  = l.O,P1 = P2 = 0.55 and the coupling parameter 6 be our bifurcation 

parameter. The attracting limit circles of the uncoupled system is given by x? + y: = a;. If 

we define the invariant torus M by M := (81, 92, T(&, 02), r2(O1, 92)). then for the uncoupled 

system we have M = (g1,02, 1 , l ) .  

The differential equations in (3.57) can be converted to the form 

The value of T is 27r in this example. The torus has two period solutions, one of which is 

stable and the other unstable. A simulation with the bifurcation program AUTO shows 

that for 6 x 0.2605 there is a saddle-node like bifurcation of the unstable orbit on the torus 

[HDER2]. 

From 6 = 0 to 6 = 0.2600 we use the initid guess TI = 1, TZ = 1. We also use a simple 

continuation in 6 with A6 = 0.001 from 6 = 0.2600 to 6 = 0.2604. The results compares 

favorably with those of the pde approach of Edoh et al.[ERS] but differ with Deici et al.[DB] 

for values of 6 > 0.25(about). The Hadamard graph transform 

is more robust, 

use less mesh points, 

use less CPU time, 

has results which are much further in the direction of the breakdown of the torus, 

Some results are shown in figures 3,4,5,6 when we use 50 mesh points on each invariant 

circle. We realised that the results are similar to those when we use a higher number of 

mesh points. 



CHAPTER 3. The ODE methods 

Figure 3.1: The invariant curves for the delayed logistic map for the values of a as shown 
above. 

Figure 3.2: The invariant curves of the van der Pol oscillator for values of p as shown above. 
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Figure 3.3: The cross-section of the torus rl(O, &) and r2(d1,0) with 6 as shown above for 
pl = P2 = 0.55 and a1 = a 2  = 1.0. 

Figure 3.4: The cross-section of the torus ~ ~ ( 0 ,  92) and rl(O1, 0) with 6 as shown above for 
pl = P2 = 0.55 and a1 = a 2  = 1.0. 
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Figure 3.5: The flat surface of the torus T ~ ( O ~ , O ~ )  for 6 = 0.2601, P1 = p2 = 0.55. and 
a1 = a 2  = 1.0 where O1 is in the horizontal direction and O2 in the vetical direction. 

Figure 3.6: The flat surface of the torus r2(01,  02)  for 6 = 0.2601, P1 = P2 = 0.55. and 
a1 = a 2  = 1.0 where O1 is in the horizontal direction and O2 in the vetical direction. 
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Figure 3.7: The torus rl(O1, 02) for 6 = 0.2601, P1 = P2 = 0.55. and a1 = a2 = 1.0 

Figure 3.8: The torus r2 (01 ,02 )  for 6 = 0.2601, PI = P2 = 0.55. and a1 = a2 = 1.0 
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Figure 3.9: The flat surface of the torus T ~ ( O ~ , O ~ )  for b = 0.2601, P1 = p2 = 0.55. and 
a1 = a2 = 1.0 where O1 is in the horizontal direction and O2 in the vetical direction. The 
darker dots are the stable solution and the lighter dots are the unstable solution. 

Figure 3.10: The cylindrical view of the torus r1(01,02) for 6 = 0.2601, P1 = p2 = 0.55. and 
a1 = a 2  = 1.0. The darker dots are the stable solution and the lighter dots are the unstable 
solution. 



Chapter 4 

The PDE formulation 

A partial differential equation approach has been used recently in various contexts for com- 

puting invariant tori for systems of ordinary differential equations. We present an 0(h4)  

collocation method for solving these resulting nonlinear hyperbolic partial differential equa- 

tions with periodic boundary conditions. A convergence proof is given and numerical results 

for the method contrasted with those of some previously tested methods. We also introduce 

an adaptive grid refinement scheme and use it to study the torus breakdown. 

The purpose of this work is two fold. First, we consider a collocation discretization 

scheme for solving PDEs". Orthogonal collocation has been a popular method in areas such 

as chemical engineering ([Fl],[LP]), where it has primarily been used to solve elliptic and 

parabolic partial differential equations (e.g.,[PR],PW]). Here we consider it for hyperbolic 

PDEs with periodic boundary conditions. In particular, we show 0(h4)  convergence and 

stability of the algorithm for a class of linear model problems. We adapt a block LU 

decomposition scheme of Wright [W] which takes the sparse block structure of the resulting 

collocation matrices into consideration and reduces the storage. The numerical scheme is 

tested on two problems. The first is a simple first order linear partial differential equation 

for which we show that the collocation scheme has the predicted accuracy. The second 

involves the computation of an invariant torus and issues related to  the computation of 

such tori comprise the second major purpose of this paper. Here we propose the Hermite 

collocation method as a high order alternative for solving this problems. In particular we 

use a continuation in a bifurcation parameter to follow the torus for a coupled oscillator as 

it loses its smoothness. The results of our numerical scheme are compared with previous 

results for other numerical schemes. We show how to determine the cusp which characterizes 
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the loss of smoothness in the torus near breakddwn and how to refine the mesh around it 

using an adaptive scheme. 

We present the torus as agraph and parameterized it in terms of a subset of the variables 

of the original system. The condition that the torus is an invariant set for the original system 

leads to the solution of an equivalent system of first order PDEs with the same principal 

part and subject to periodic boundary conditions. This approach is used numerically in 

[DL11 where a leap-frog discretization scheme is selected and showed to be second order 

convergent for a constant coefficient problem. In [DLl], an upwind discretization for the 

partial differential equation is used and shown to be stable and first order convergent for 

the linear variable coefficient problem. In [DB] Dieci and Bader use a first order upwind 

scheme and iterative methods to solve the linear systems. They also use iterative schemes for 

smoothing with their multigrid methods, using as many as 320 x 320 grid points numerically. 

The large number of mesh points is necessary due to the low order convergence of the 

discretization scheme and because the torus becomes difficult to compute (see below). 

4.1 Spline approximation 

The basic tool that we need in this chapter is spline approximation to PDEs. We start with 

some definitions for splines approximation for ODEs and later extend some of these ideas to 

PDEs with periodic boundary conditions. Most of this work is from the books of Schumaker 

[Sc] and Archer et al. [AMR]. 

4.1.1 Spline approximation to ODEs 

Define the space of polynomials of order m by 

For a given interval [a, b], let 

be its partition and 
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the N + 1 subintervals of the partition. For a given positive integer m, define Pg(II)  the 

space of piecewise polynomials of order m with knots xl ,x2, . . . , X N  by 

Definition 4.1.1 

f : there exists polynomials po,pl,. . . , p ~  E Pm 
with f ( x )  = p i ( % )  for x E I ; , i=  0 ,..., N.  

If we let 

S m ( n )  = P$(II) n b], 

then we call Sm(II)  the space of polynomial splines of order m with simple knots at the 

points X I ,  x2, . . . , X N .  

Let m be a positive integer and A = ( m l ,  m2,. . . , mN) a vector of integers with 1 5 
m;  5 m ,  i  = 1,2,. .., N.  We call the space 

( s : there exits polynomials so, 31, .  . . , S N  i n  P,,, 

I such that s ( x )  = s ; ( x )  on I;, i = 0,1, .  . . , N,and 
S(Pm;  A; I I )  = 

D ~ S ~ - ~ ( X ; )  = Dj-ls;(x;) ,  j = 0, .  . . , m - 1 - m; 
(4.4) 

the space of polynomial splines of order m with knots X I ,  x2, . . . , X N  of multiplicities 

ml  , m2, . . . , mN. The vector of integers A controls the smoothness of the splines at the knots. 

0 a) m = m; there may be no relationship between 3;-1 and s; at the knot x; and 

possibly even a jump discontinuity at x;. 

0 b) m; < m the spline s and its first m - 1 - m; derivatives are all continuous across 

the knot x;. 

The space defined above is a Sobolev space. We define a Sobolev space as follows: let the 

classical Lebesgue space be defined by 

Definition 4.1.2 

,!,,[I] = { f : f i s  measurable on I  and 11 f [Ip < 00) 
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The Lebesgue space Lp[ I ]  is a Banach space for each 1 5 p 5 oo where I is an interval. For 

a positive integer r and a given 1 5 p 5 oo, we define the space of Sobolev space L;[I]  by 

Definition 4.1.3 

LL[I] = { f : Dr-' f E AC[I]  and Dr f E L p [ I ] ) ,  (4.7) 

with norm 
T 

where AC[I ]  is the space of absolutely continuous functions. 

Periodic Splines 

We use periodic spline functions in our numerical approximations and most discussions will 

be on these type functions. Most of the properties discussed above carry over to  the periodic 

case as well with some minor changes. 

We now define S(Pm,A,II)  the space of periodic polynomial splines of order m 

with knots at 3 1 , .  . ., X N  of multiplicity m l ,  m2, . . ., mN by 

( s : there exits polynomials s l ,  s2, . . . , S N  of order m so 

that s ( x )  = s ; ( x )  on I;, i = 1,2.. . . , N and 
Sp(Pm; A, n)  = 

D ~ - ~ S ; - ~ ( X ; )  = D ~ - ~ S ; ( X ; ) ,  j = 1,. . . , m  - m;  

( i = 1,2,. . ., N ,  where we take so = S N  

s E S(Pm; A,  11) : B ( b )  = s j (a)  
Periodic splines Sp(Pm; A; n)  = (4.10) 

j = O , l ,  ..., m -  1 

Tensor product splines 

The idea here is to  use spline functions to  approximate the solutions t o  PDEs. We construct 

a space of multi-dimensional splines by taking the tensor-product of a one-dimensional space 

of polynomial splines. 

If x E R P ,  then for each i = 1, . . . , p, define the interval [a;, b;], a positive m;  and the 

partition 
0 1 IIi = {a; = xi < X ;  < . . . < x?" = b;) (4.11) 
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of [a,, b;] such that I 

A; = ( m , , l , m ; , ~ ,  . . . , m , , ~ , ) ,  1 5 mi,, 5 m; j = 1,2, .  . ., N,.  (4.12) 

We define 

Definition 4.1.4 The space of tensor-product polynomial splines by 

. . . ' ( )}~l+Kl,mz+Kz,...m~+K~ S = 8 b 1 S ( P m i ;  A;; n;) = span(4'l ( X I ) ,  3 xP ,l=l,;2=l,...,,p=~ . (4.13) 

The space S is a linear space of dimension n;='=,(m; + K,). Each spline s in S is a function 

defined on the set 

H = ~ $ l [ a i , b i ] = { x = ( x 1 , x 2  ,..., x p ) : a , 5 x ; < b ; ,  i = l ,  ..., p} (4.14) 

The partition II  = 111 8 112 8 . . . 8 I I ,  divides H into smaller rectangles 

The theorem below shows that the tensor-product spline 

for any s C S is a smooth piecewise polynomial. 

Theorem4.1.1 I f s  E S ,  then f o r e a c h i =  1, . . . , p  a n d a n y f i x e d a j  5 x j  < b j ,  j =  

1,2 ,..., i -  l , i+ 1 ,..., p, 

Moreover, for all 0 5 i j  5 k j ,  j = 1,. . . , p  

where 

Pm = Pmi = (4.18) 

is the space of tensor-product polynonaials of order m = (ml , m2, . . . , m,). 

The exact smoothness of the splines s E S can be deduced from (4.16) since the partial 

derivatives 

exist and are continuous inside the subrectangles. The smoothness across the faces between 

two such subrectangles is controlled by the multiplicity vectors A1, A2, .  . . , A,. 
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4.1.2 Spline collocation for ODE boundary value problems 

In this section we show how one can use the method of collocation to solve boundary value 

ODES. Let X be a linear subspace of L,[D], 1 5 r 5 00, the space of square integrable 

functions on D, where D is some subset of the real line R or the real plane R x R .  Let 

L : XN+l -' be a linear operator on the ( N  + 1)-dimensional subspace 

of X ,  where the 4;'s are linearly independent functions. Consider the linear equation 

where b is a given function in X and let uc be the collocation approximation of (4.21) defined 

The  parameters c j  are determined by requiring u,(x) to  satisfy N + 1 conditions. These 

conditions include the boundary conditions and satisfying the ODE (4.21) a t  some points 

(the collocation points) in the interval [a, b]. This results in solving an ( N  + 1) x ( N  + 1) 

linear system of equations obtained from 

The function uc(x), if it exists, is said to  collocate b(x) a t  the points X I ,  x2,. . . , X N + ~  and 

is said to be the approximate solution obtained by the method of collocation. 

Example 4.1.1 Consider the boundary value problem 

Let &(x) = x(x - 1) and qb2(x) = x2(x - 1) then 
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Let the collocation approximate solution be givenjby 

To determine a1 and a2 we collocate the right-hand side of the first equation in (4.24) at 

x1 = 0 and 2 2  = 1 to get the linear system 

Solving we get a1 = 116, a2 = 113, and equation (4.26) becomes 

Two questions that we have to deal with when we want to improve on our results are: 

a) how to chose the functions 41, 42, . . . , 4N+1 

A good choice of the 4's are the spline functions. We will focus our analysis on the space of 

pol;nomial splines S(Pk, A, II) with the elements of A satisfying the condition 

For some knots 0 5 pl 5 p2 5,. . . , 5  pk 5 1, define the distinct points 

b) how to chose the knots pi, i = 1, ..., k 

The answer to this question will be given shortly. 

Consider a general (BVP) 

and define u := (u, ul, . . . , uq-') where u E RQ and define its collocation approximation 

u, on the mesh II. Each polynomial piece of u, defined on the interval [x i ,  xi+l] has k + q 

parameters to be determined and satisfies q marching constraints for u, across each mesh 

point, i.e. each polynomial piece in [x ; ,  

0 a) satisfies q boundary conditions 
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b) satisfies the ODE (4.30) at k points in each of the N + 1 subintervals of the mesh 

n. 

The total number of conditions to be satisfied in all the intervals is given by 

The collocation method then determines an approximate solution defined on [a, b] such that 

Normally the spline functions used are Hermite-type or B-splines basis functions. The basis 

functions in such cases have local support and satisfy the continuity conditions on uc while 

the collocation equations are satisfied later. With such basis functions, the linear system 

resalting from equation (4.33) and the boundary condition has a block banded matrix of 

the form, 

where V1,V2,"',VN E R kx(k+q)  and w1, w2 E R mx(k+q) .  

The collocation scheme has 0(h2)  convergence and when f is smooth enough one can 

get 0(h3) convergence. Moreover, collocating at Gaussian knots using a basis of piecewise 

cubic Hermite polynomials gives an 0(h4)  order of convergence for a second-order boundary 

value problem. 

4.1.3 Spline collocation for periodic PDEs 

The existence theorems for the collocation approximations to partial differential equations 

are some what harder to come by than for the collocation solutions to ordinary differential 
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equations. This happens because one does not mually recognize the image of the approx- 

imate u, under the linear operator L or the non-linear operator N even in the simplest 

case 

L = -a. (4.35) 

Thus the interpolatory capacities of Au, are not readily apparent in contrast to the ODE 

case. 

Consider the linear PDE 

L u ( x )  = b(x) ,  (4.36) 

with x E SP, p 2 2, u E Rq and the intervals [a;,b;] with the mesh 

n; = {a ;  = xio < xil < . . . < x ; ~ ,  = b;) (4.37) 

for i = 1 , .  . . , p .  Define the vectors 

such that all the m;j = k. The periodic spline space Sp(Pmi;  A;; H i )  is an M;- dimensional 

linear space, where 

and 

We define the space of tensor-product polynomial splines by 

where S is a linear space of dimension 

Let u i b e  a smooth spline piecewise polynomial defined by 

on the set 

H = @:=l[a;,b;] = { x =  ( x l , x z  ,..., x p ) : a ;  5 x; 5 b;, i =  1 ,..., p ) .  (4.44) 
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The partition ll = 111 8 112 @ . . . @  lIP subdivides H into smaller rectangles 

The partial derivatives 

exist and are continuous inside the subrectangles and the smoothness across the faces be- 

tween two such subrectangles is controlled by the multiplicity vectors A1,  A2,  . . . , Ap.  

Substituting u, into (4.36)  at the points x;j we get the collocation system 

If we let q = 1 and N1 = N2 = = N p  = N ,  then equation (4.47)  plus the boundary 

conditions has an associated collocation matrix of the form 

where A E I t M x M .  

4.2 Numerical formulation 

The basic dynamical system we consider is the autonomous system of equations 

x = F ( x , X ) ,  x  E R n ,  X E R 1 ,  (4 .49)  

where x := ( x l ,  22, ..., 5,) .  We assume for simplicity that a suitable re-parametrization can 

be found such that the system (4.49)  can be rewritten as 

where V and U are open sets in Rq and 

SP = {O = (01 ,02 ,  ..., Op) lOj  E ( R m o d  27r), j = 1 , .  . . , p ) ,  respectively, f : SP x Rq - RP 
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and g : SP x Rq - RP are smooth functions. A treatment of a general parametrization is 

given in [DL2]. Suppose further that the torus denoted by the manifold 

is invariant under the flow (4.50), implying that r(8) : U - V solves the PDE 

with periodic boundary conditions 

i =  1 ,..., q, j =  1 ,..., p[S]. 

This system of nonlinear hyperbolic equations can be solved using Newton method. If 

r0 denotes an initial approximation to 

r(e) = (rl(e), r2(e), ..., T,(O))~, then the next Newton iterate r1 (implicitly satisfying the 

boundary conditions (4.52)) satisfies 

where 

Rearranging, we get the linear first order hyperbolic system 

where 

,rO or0 
cO(e) = {x ae, v /P - Go} and bO(0) = {x - v /P)rO + go - GOrO. (4.55) 

j =I j=1 
ae, 
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In the case of a single two-torus (p = 2, q = I), this further reduces to 

where 

We shall discretize these equations using orthogonal collocation. 

4.2.1 Orthogonal collocation discretization 

In this section we give a basic formulation of orthogonal collocation method for solving hy- 

perbolic partial differential equations of the form (4.54) with periodic boundary conditions. 

In particular, we consider a p-dimensional Hermite cubic collocation discretization. Given 

a mesh 

n :o=e ;  < t ~ j <  ... <sf"+'=2r ,  j = l ,  ..., p, 

with h8; = 8;" - 88; and 8 = (81, 82,. . . , O,), a Hermite p-cubic collocation approximation to 

r(8) defined on the mesh is given by 

The standard cubic Hermite basis functions are given by 

0, 

Differentiating (4.57) gives 

other. 
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.Using collocation points (c:, € 2 , .  . . , E?) defined by 

we obtain the collocation equations 

In order to  write this in matrix form, define the 2 N j  x 2 N j  matrices C j  and B j ,  

and let 

M j  = 2 N j ,  M = I17=11Mj 

and (rc)mesh E I t M  be the coefficients of rc  in (4.57)  and (rc)c,ll  E R M  be the solution 

values at  the collocation points. From (4.57)  

From (4 .60)  

For the special case p = 2 and q = 1, (4.63)  becomes 

From (4.64) ,  

(2) = [ B l @ C 2 ] ( r c ) m e s h  and (2) = [ C 1 8 B 2 ] ( 4 ) m e s h -  
coll coll 

Defining F;,G E R M x M , i  = 1,2  and bc E R ~ ,  by 
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and substituting these into (4.61), we obtain the %near system of equations 

[FI (B1 8 C2) + F2 ' (C1 8 B2) - G. (C1 8 Cl)](rc)mesh = b c .  

The coefficient matrix has the sparse structure 

I 5 x 2  x 

2 x 2  x 

4.2..2 Stability and convergence analysis 

In this section we study the accuracy and numerical stability of the collocation algorithm 

for the linear case 

where A is a q x q constant matrix and we assume that 9 is a smooth function. The 

corresponding PDE system of (4.54) is 

with periodic boundary conditions. 

This case is analyzed in [DLR] for a finite difference scheme, where it is shown that 

(4.67) has a unique solution if 

where X(A) denote the eigenvalues of A. The analysis in this case follows [ERS]. 

The collocation system now has the form 
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Here, Ip denotes the q x q identity matrix and 6'j and Bj, j = 1,2,.  . . , p ,  are defined in 

(4.62). We rewrite (4.69) as 

Ac(rc)mesh = a c e  (4.70) 

Some basic properties of tensor products are summarized below. 

Lemma 4.1. The tensor product 63 satisfies 

Let 11141~ denote the Euclidean norm for u E I t M .  The following Lemma, whose proof 

parallels that in [RS], gives the eigen structure of B~c;'. 

Lemma 4.2. Let Bj and Cj  be defined in (4.62). Then 

(i) for each pair Bj and Cj there exists a nonsingular matrix Qj such that 

(zi) the eigenvalues of B,c;' are purely imaginary; 

(iii) there exists a constant a0 independent of the partition II such that 

Theorem 4.1. If (4.68) holds and (4.70) is a Hermite cubic collocation system of equations 

for (4.67) using a uniform mesh in each coodinate direction, then 

(i) (4.69) has a unique solution and 

(ii) the collocation algorithm is stable in the sense 

where a1 is a constant independent of the partition II. 

Proof. We rewrite (4.69) as 
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where I ( J )  denotes the M j  x Mi identity matrbt, j = 1,2,. . . , p  and (rc)cO1l is defined in 

(4.63). Using a similarity transform with T = I, @ (Q1 @ Q2 @ . . @ Q,), (4.72) becomes 

where - 
ic := T(rc)coll, ac := Ta,. 

The system (4.73) is block diagonal with q x q diagonal blocks given by 

The eigenvalues of DklrkZ,...,kp can be expressed as 

Thus A, is nonsingular, and (i) follows. 

In order to prove (ii), let 

where D has the simple form 

We rewrite A, as 

Since A, is nonsingular, from (4.70) 
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and therefore, I 

and 
1 1  (1, 8 D t A 8 f)-' 112 = ll(D 8 Iq + f 8 A)-l112 

(4.82) 
= maxi Il(dlIq + A)-'ll2 I K2 

for suitable constants K1 and K2 independent of the partition D. Now (ii) is proved by 

substituting equations (4.81)-(4.82) into (4.80) and noting that for a suitable constant K3 

To analyze the accuracy of the orthogonal collocation approximation to (4.67), we assume 

that the mesh is uniform, the step size h is the same in any coordinate direction and the 

eigenvalues of the matrix A satisfies the condition Re(X(A)) > 0 such that 

U ~ A U ~ R ,  for any u(0) E q ,  (4.83) 

where a0 is a constant and llullt2 = Ssp uTudR. 

Theorem 4.2. Suppose that (4.83) holds and that r(9) and rc(9) are the solution of (4.67) 

and the corresponding collocation system (4.  TO), respectively. Then them exists a constant 

a1 independent of the partition II such that 

Proof.  If e(0) := r(0) - r,(B), then from (4.67) 

where Q(0) = 0 at the Gauss points. 
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Multiplying (4.85) by eT(8) and integrating ib gives 

The error e(8) satisfies periodic boundary conditions, and we have 

so (4.86) gives kp eT Aedfl = ip eT!Pdfl. 

By Holder's inequality, we have 

Since r(8) is the unique solution of (4.67) and is smooth enough, standard arguments show 

(e.g., see [PR]) that 

MNL~ = o(h4)7 (4.89) 

and- thus, from (4.83), (4.87) - (4.89), 

which implies that 

a o ~ ~ e ~ ~ ~ 2  I 0(h4) .  1 

Remarks 

(i) Although the proof of Theorem 4.2 is given for the case of a uniform mesh and Hermite 

cubic splines, it also holds for non-uniform meshes where h represents the maximal step size. 

For orthogonal collocation method with kth order splines, the argument generalizes to give 

~ ( h ~ ~ )  accuracy. Also, recall that the leap-frog algorithm [DLR] gives 0(h2)  accuracy for 

a uniform mesh and O(h) for non-uniform meshes. 

-(ii) It has been noted that when the solution is sufficiently smooth Hermite cubic collo- 

cation has fourth-order accuracy in the norm I (  (1, for two-point boundary value problems 

[DS] and in the norm 1 1  - IIL2 for two-dimensional elliptic problems [PR]. Theorem 4.2 shows 

that the accuracy for this hyperbolic problem is the same as for two-dimensional elliptic 

problems. Numerical experiments indicate that this is an optimal estimate. 

(iii) The proof of stability is given under the assumption (4.83), which implies attractivity 

of the invariant manifold. 
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4.3 Numerical Results p 

In this section, we apply the collocation scheme described above to  two problems. While the 

numerical algorithm can in principle be used to  compute an n-dimensional torus, we restrict 

our examples to a 2-torus. The first example is chosen as an artificial linear hyperbolic partial 

differential equation with a known analytic solution in order to illustrate the high order 

accuracy of the algorithm. The second is a system of two-coupled oscillators. The solution 

set displays rich behavior [ADO] and is a challenging numerical problem [DLR]. The third 

example is the van der Pol equation. The collocation matrix (4.65) has a block structure for 

which we use the LU codes provided by [W] Wright. This ccnsiderably reduces the matrix 

storage requirements. The computations were done on a SUN Sparc 20 workstation and the 

figures were produced on an SGI Indigo 2 Extreme. 

4.3.1 A linear problem 

Consider the hyperbolic partial differential equation 

with analytic solution r = ~os (O~)s in (8~) .  This corresponds to  the case p = 2 and q = 1 in 

(4.53). Errors for orthogonal collocation with cubic Hermites and for the leap frog method 

are given in table 1 where the maximum error is taken over the mesh points. Here r,  is the 

numerical solution for the collocation method and  TI^ is the numerical solution for the leap 

frog method. 

I Mesh Points I Orthogonal Collocation I Leap Frog I 

Table 4.1: A comparison of the error for the orthogonal collocation and the leap frog schemes. 

The results in table 1 indicate that the orthogonal collocation and leap frog algorithms 

have convergence rates roughly 0(h4)  and 0(h2) ,  respectively. 
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4.3.2 Coupled oscillators I 

While a substantial amount of work has been done toward understanding free and forced 

dynamical behaviour of a single nonlinear oscillator, there has been recent interest in un- 

derstanding the dynamics of coupled oscillators. Coupled oscillators arise in models of oscil- 

lating organic reactions, neural networks, intestinal waves and in numerous other problems 

in biology, physiology and chemistry. 

Our second numerical example is a system of two-coupled nonlinear oscillators 

where 6 2 O,P1 > 0,P2 > 0 ,a l  > 0 and a 2  > 0. Introducing the parametrization x; = 

r;cos(8;) and y; = -risin(8;), i = 1,2 we get 

Each oscillator has a unique attracting periodic solution, and the uncoupled product system 

has a unique attracting invariant torus. The torus persists for a weak coupling and contains 

two periodic solutions when the coupling is linear and conservative. One of them occurs 

when the oscillators synchronize. It is stable and persists for all coupling strength. The 

other occurs when pl = p2 and the oscillators are ?r radians out of phase. It is unstable 

except on an open set in the frequency-coupling-strength plane and has a torus bifurcation. 

We refer to [ADO] for a motivation for the form of the coupling used in this example. 

We choose a1 = a 2  = 1.0 and let 6 be the bifurcation parameter. If the manifold M = 

(81, 62, rl(O1, 02), r2(01, 02)) denotes an invariant torus for the system then the uncoupled 

system has an invariant torus defined by MI := (81, 02, 1 , l ) .  The stable periodic solution is 

defined by the sub-manifold M2 = (8,8,1,1) where 8 = O1 = d2. We will focus visually on 

the representation of the projections rl  (41, B2) and r2(01, 82). 

In our computations we use simple continuation in 6. We use 40 equi-spaced mesh points 

in each direction and stop the Newton iteration when the maximum norm of the difference 
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between the two successive iterates is less than 1 W 8 .  

case 1 P1 # P 2 .  

The torus is computed using continuation from 6 = 0 using the known solution M1 as 

the initial value. We choose pl = 0.5, p2 = 0.4. The first continuation step size from 

X = 0 is A6 = 0.20. We then take continuation steps with A6 = 0.010 until reaching 

6 = 0.220. The resulting cross-sections T ~ ( O , O ~ )  and r2 (0 ,02 )  are shown in figures 4.1 and 

4.2, respectively. We also show the results for some intermediate values of 6 between 0 and 

the first continuation step mentioned above. 

case 2 pl = P2. 
In this case, the following symmetries on the torus can be directly verified from equation 

(4.93): 

Given r:(O1, 02) ,  we use the first symmetry condition above to get r;(O1, 82) and solve the 

equation 

for T ~ ( O ~ , O ~ )  and then obtain ~2 from the symmetry condition. We choose the parameter 

value Pl = P2 = 0.55 which is the one used in [DB] [DLR]. The first continuation step from 

X = 0 is A6 = 0.255, and subsequent continuation steps A6 = 0.001 are used until 6 = 0.258. 

The cross-sections r1  (0, 82) and r2 (0 ,  92) are shown in figures 4.3 and 4.4, respectively. For 

this example, the unstable periodic solution lies on the sub-manifold M3 = (8,O + K ,  T ,  T ) ,  

where T = TI = r2. These computations are very sensitive to the distribution of the mesh. 

An important feature is that the torus begins to lose smoothness and T ~ ( & ,  82) and ~ ~ ( 8 1 ,  02) 

start to develop cusp on them as the parameter 6 increases (see figures 4.5, 4.6,4.13, 4.14, 

4.15 and 4.16). Indeed, it is easy to obtain spurious solution behaviour when one considers 

a non-equal mesh distribution on a fixed grid. In one case, the tori were calculated up to 

6 = 0.264 with apparent success until it is observed that key intrinsic properties of the tori 

are not satisfied. 
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4.3.3 Adaptive method I 

In this section we introduce an adaptive scheme which refines the mesh around the cusp for 

case 2 (Dl = P2), allowing us .to follow the branch of the tori close to the torus breakdown. 

The idea is to  map the trace of the cusp to the &-axis and then redefine the mesh in the 82 

direction, refining near 82 = 0 and 27r. To illustrate the method, consider the equation 

Let the function t12 = p(Bl) be the trace of the cusp in (el, 82)-plane and 52 be defined as 

The mapping H : s2 - 52 is defined by 

and we have 

The PDE (4.96) in terms of the new variables ($, t )  is rewritten as 

The construction of the trace O2 = p(B1) is done as follows: We choose a constant Eo > 0 

such that if 
87. 

max 1 - l > E o  i = 1 ,  ..., N1, j=1 ,  ..., Nz, 
{Of Ji 1 &I2 

then we need to  construct the trace of the cusp; otherwise, we can assume the torus is 

smooth and the construction is unnecessary. To construct the trace, we only need to define 

p(9f) for i = 1, . . . Nl. For some fixed 0; , let @ be an extreme point satisfying 
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and t 

ar 
~(6':) = if I - ( B ; ,  &)I > Eo, else p(6';) is undefined. (4.101) 

a92 

We define ~(6'1) as the smooth periodic spline interpolation of the defined values of ~ ( 8 ; )  in 

(4.101). Equation (4.99) is tested at each continuation step t o  check the smoothness of the 

torus. The torus is nonsmooth or the cusp occurs only when (4.99) is satisfied. In this case, 

the mesh is redistributed such that more points are near the cusp. 

With a 40 x 40 mesh we are able to  reach 6 = 0.2601 with this strategy for = p2 = 0.55 

(see figure 4.5 and 4.6). For the same values Moore [MI get results up to  6 = 0.255 using the 

continuation step 0 6  2 0.001. His approach uses the fact that the projection of the vector 

field a t  any point on the torus in the normal direction is zero. His results are close to  our 

results. Again our results are the same as the results of Hadamard graph transform method 

of Edoh and Russell [ER2] (see figures 4.5, 4.6, 4.9 and 4.10). Dieci and Bader [DB] get 

results up t o  6 = 0.2627734375 using multigrid methods with 320 x 320 mesh. However, it 

is noted that for higher values of 6 our results differ from those of Dieci [BD]. Our results 

seems to  be reliable since they satisfy some properties of the differential equation for all 

values of 6. In figures 4.7 and 4.8 we see that our results for the final two values of 6 for the 

adaptive scheme satisfy the conditions that the radii r l  and r2 of the stable and unstable 

periodic solutions on the torus are the same at 6'2 = 0 and ~r on the cross-section 6'1 = 0. 

2.e. 

In figures 4.11 and 4.12 we show the cross-sections rl(O, d2) and r2(0, 02), respectively, for 

different values of 6 and PI = p2 = 0.50. The bifurcation diagram for this parameter value 

is shown in [ADO]. At 6 = 0.245 a third periodic solutions which is not on the torus begins 

to  bounce back and forth from the torus. The influence of this periodic solution might have 

caused- the invariant circles to  begin to cross one another a t  6 x 0.24. In [HDER] simulations 

with AUTO shows that there is a saddle-node like bifurcation between the unstable orbit 

on the torus and two other periodic solutions that were off the torus a t  6 x 0.2605. This 

may well explain why the invariant circles begin to  cross one another a t  around 6 x 0.255 

(see figures 4.5 and figure 4.6. Figures 4.13-4.16 show how far the torus has deformed at 

6 = 0.2601. 
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4.3.4 van der Pol equation I 

When the PDE approach was tried on this problem as in the HGT method we were only 

able to compute the torus for. the parameter value K = 0.38. 

Figure 4.1: The cross-section r1(0,02) with 6 as shown above for P1 = 0.50, ,B2 = 
0.4 and a1 = a2 = 1.0 using 40 mesh points. 

Figure 4.2: The cross-section r2(0,02) with 6 as shown above for P1 = 0.50, P2 = 
0.4 and a1 = a2 = 1.0 using 40 mesh points. 
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Figure 4.3: The cross-section r1 (0 ,02 )  with 6 as shown above for P1 = P2 = 0.55 and a1 = 
a2 = 1.0 using 40 mesh points. 

Figure 4.4: The cross-section f2 (0 ,02 )  with 6 as shown above for P1 = p2 = 0.55 and a1 = 
a2 = 1.0 using 40 mesh points. 
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Figure 4.5: The cross-section rl(O, 02)  with 6 as shown above for P1 = p2 = 0.55 and a1 = 
a2 = 1.0 using 40 mesh points with the adaptive scheme. 

Figure 4.6: The cross-section r2(0 ,  82) with 6 as  shown above for P1 = p2 = 0.55 and a1 = 
a2 = 1.0 using 40 mesh points with the adaptive scheme. 
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Figure 4.7: The cross-section T ~ ( O , O ~ )  and T ~ ( O , O ~ )  with PI = P2 = 0.55 6 = 
0.2595 and a1 = a 2  = 1.0 using 40 mesh points with the adaptive scheme. 

Figure 4.8: The cross-section r1(0 ,02)  and T ~ ( O , O ~ )  with P1 = P2 = 0.55, 6 = 
0.2601 and a1 = a 2  = 1.0 using 40 mesh points with the adaptive scheme. 
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Figure 4.9: The cross-section rl(O, 62) with 6 as shown above for P1 = p2 = 0.55 and c q  = 
a 2  = 1.0 using 40 mesh points with the method in [ER2]. 

Figure 4.10: The cross-section r2(0, 62) with 6 as shown above for P1 = p2 = 0.55 and cwl = 
a 2  = 1.0 using 40 mesh points with the method in [ER2]. 
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Figure 4.11: The cross-section rl(O, 82) with 6 as shown above for P1 = p2 = 0.50 and a1 = 
a 2  = 1.0 using 40 mesh points with the adaptive scheme. 

Figure 4.12: The cross-section r2(0, 82) with 6 as shown above for P1 = P2 = 0.50 and a1 = 
a 2  = 1.0 using 40 mesh points with the adaptive scheme. 
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Figure 4.13: The flat surface of the torus rl(O1, 02) for 6 = 0.2601 with PI = P 2  = 
0.55 and al = a2 = 1.0. where O1 is in the horizontal direction and 02 in the vetical 
direction. 

Figure 4.14: The flat surface of the torus T ~ ( O ~ , O ~ )  for 6 = 0.2601 with P1 = ,B2 = 
0.55 and cwl = a2 = 1.0. wbere O1 is in the horizontal direction and O2 in the vetical 
direction. 



CHAPTER 4 .  The PDE formulation 

Figure 4.15: The torus T ~ ( O ~ , ~ ~ )  for 6 = 0.2601 with P1 = P2 = 0.55 
and a1 = a 2  = 1.0. 

Figure 4.16: The torus r2(01,02)  for 6 = 0.2601 with = p2 = 0.55. 
and a1 = a 2  = 1.0. 



Chapter 5 

Comparison of the HGT and PDE 

met hods and torus visualization 

In this chapter we make a comparison between the HGT method and the PDE method. We 

also give a review of recent developments in the application of visualization to mathematics. 

We show how visualization can be used to help explain the breakdown mechanism of an 

invariant torus. 

5.1 Comparison of the methods 

In this section we compare the Hadamard graph transform approach with the Partial differ- 

ential equation approach. We make a comparison of their speed, the errors, the robustness, 

and some special features of each of the methods. 

In the computation of invariant tori, most numerical schemes depends on the attractivity 

of the torus. The HGT scheme has this dependence too. It only works for attracting and 

repelling invariant tori. However, the numerical scheme of the PDE approach for example, 

the collocation scheme does not depend on the attractivity of the torus. So the collocation 

scheme is applicable to  a wider class of invariant tori in this sence than the HGT scheme. 

The collocation scheme is be easily modified to determine the solution at any point on 

the torus once the solution at the mesh points and their derivatives have been computed. 

On the other hand, one will have to find an interpolation scheme to determine the solution 

at a point on the torus from the computed solution a t  the mesh points when using the 
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Hadamard graph transform approach. p 

The collocation scheme has 0(h4) convergence rate as compared to the HGT method 

whose convergence depend on the attractivity of the torus and the interpolations scheme. 

Both numerical schemes are parallelizable. The boundary value problems of the HGT 

method can be solved simultaneously while the linear system in the PDE method also 

can be solved by parallel solvers. 

Invariant submanifolds on the torus do influence the computations of the torus. It is 

easier to modify the HGT program to adaptively distribute mesh points around the invariant 

submanifold than the collocation method. 

Both methods can be extended to compute a higher dimesional torus. iA bad choice of 

the crosssection to be computed in the HGT method can lead to singularities. 

1 Number o f  mints I The collocation method I HGT method I 

Table 5.1: The cpu for the HGT and the PDE methods for a system of coupled oscillators 

The results in table (5.1) show that the HGT method uses less cpu than the PDE 

method. In some cases when the torus is exponentially attracting the HGT method takes 

far lesser cpu time to  converge than PDE scheme. 

5.2 Visualization 

Visualization is basically trying to give some meaning in a set of data. It can be defined as the 

study, the development, and the use of graphic representations and supporting techniques 

that facilitate the visual communication of knowledge - that make computer images speak to 

us [KKl] .  Those who benefit from the construction and viewing of an image of data include: 
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geologists, physicists, engineers, medical doctorst physiologists, mathematicians etc. And 

visualization specialists include among others computer scientists, system analysts, artists, 

computer graphics programmers and designers. In the past, commercial advertising has 

used graphics representation to sell out products and now scientists are beginning to use it 

to support their research. 

A general approach for doing visualization work on a data set is to have a goal and then 

find a visualization techniques to achieve that goal. Sometimes the goal can be misleading 

or it can used to carry false information. 

5.2.1 Visualization in dynamical systems 

Analysis and numerical simulation have been the usual tools in understanding dynamical 

systems. For example, numerical computations have provided inspiration for many sig- 

nificant discoveries about dynamical systems. Nonetheless, it is often difficult to directly 

compute and understand interesting aspects of the dynamics of the dynamical system. In 

recent years numerical analysis, symbolic computations, visualization, and the design inter- 

face that facilitate interactive exploration of the behavior of a system all have contributed 

to the study of dynamical systems. One can thus say that computer graphics has proven 

to have the potential to be an effective tool in the qualitative development of dynamical 

systems. Powerful desktops facilitate the development of more sophisticated tools in the 

exploration of more complex systems. 

The power of visualization in dynamical systems theory is dated as far back to PoincarC 

when he introduced geometry into the study of differential equations. Some recent develop- 

ments are in the theory of fractals, where the complexities of fractals objects are explained 

using computer graphics. Observers and researchers in this area have become excited over 

similarities between the properties of such sets and those of naturally occurring phenomena, 

such as growing plants, clouds, and coastlines. One application of fractals with computer 

graphics is in roadways where it has been used to analyze and compress images of roadway 

cracks. Further development in this area could lead to  ways of, enabling highway authorities 

to schedule repair programs more efficiently and to smoother travel for us all. 

In general, one can see that analysis alone is not sufficient to explain the intricate 

behavior of dynamical systems. With the presence of "cheapn computer power one can use 

numerical simulations, computations and computer graphics to formulate new hypotheses 

and conjectures. 
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Some recent mathematical software that have'been used in the study of dynamical sys- 

tems are DYNPAQ, KAOS, AUTO [DK], DSTOOL and XPPAUT. AUTO is a software for 

the continuation and bifurcation problems in ODES. DSTOOL finds solutions of dynamical 

systems and computes properties of solutions of dynamical systems like the Lyapunov expo- 

nents etc. XPPAUT is a tool for modeling dynamical phenomena. These software packages 

are capable of handling systems with simple invariant manifolds like fixed points, periodic 

solutions, and connecting orbits (homo/heteroclinic) etc. 

We now focus our attention on the computation and visualization of invariant manifolds. 

Much work has been done on the study of fractals, connecting orbits and fixed points (the 

trivial case). The rich mathematics of invariant tori is yet ,to be observed, using numerics 

and graphics tools. In our study of invariant tori we realised that numerical results are not 

sufficient to gain a full understanding of the behavior. In this case, visualization is essential 

to gain a qualitative understanding and to generate hypotheses which can be scrutinized 

by other methods (analysis, numerics). An early example of the application of computer 

graphics to the study of invariant tori is the work by Baxter et al [BES]. A much more 

sophisticated application of computer graphics is given by Kocak et al [KBBL]. 

We have seen that there is a need to develop a software that can simulate an invariant 

torus and bridge the gap in the bifurcation sequence from a fixed point through a periodic 

solution and then to an invariant torus and finally to a chaotic attractor (possibility). Our 

aim thus is to develop a package that can be used to follow a bifurcation sequence up to 

an invariant tori and then compute its essential features and properties. This package will 

include a graphical tool that can be used to visualize projections of the torus in two and 

three dimensions. We hope to  help researchers to study and to  understand the breakdown 

process of the invariant tori. 

So far we have used visualization to gain a qualitative understanding of the breakdown 

of an invariant torus in some specific examples. It has dowed some key features of the torus 

to be determined. An example is the invariant torus in a system of two coupled oscillators 

by Hepting et al. [HDERl], [HDER2], [EHR]. Computer graphics have been very useful in 

this case. The 3-dimensional projections of the Cdimensional torus has helped us to partly 

understand the breakdown process. We hope to follow the torus to  complete breakdown. 

Below are some diagrams of a 3-dimensional projections of an invariant tori of 2-coupled 

oscillators using Computer Graphics. 
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I 

Figure 5.1: The flat surface of the torus r l (e l ,  B 2 )  for 6 = 0.2601 and P1 = P 2  = 0.55. where 
el i s  in the horizontal direction and 82 in the vetical direction. 

Figure 5.2: The torus r2(e1,  02) for 6 = 0.2601 and PI = P2 = 0.55. 
The black and light dots on the torus indicate the stable and unstable periodic solutions 
respectively. 
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Figure 5.3: The two tori, rl(B1, 0 2 )  and r2(B1, B z ) ,  for p = 0.55. At the top are displayed the 
tori representing the invariant torus for 6 = 0.20 and at the bottom are the tori representing 
the invariant torus for 6 = 0.26. 



Chapter 6 

Conclusions 

In this thesis, we have been concerned with the analytical and the computational study 

of invariant manifolds in dissipative dynamical systems in both finite and infinite dimen- 

sional systems. Much of the work is on the computation of these manifolds and on the 

convergence of the numerical schemes in finite dimensional systems. The eventual goal is to 

obtain algorithms for computing invariant manifolds in both finite and infinite systems. We 

want to include these algorithms in existing software for the determination of solutions and 

bifurcations of dynarnical systems. We also looked at the smoothness and the invariance of 

the calculated invariant manifolds and studied the structural stability of our system under 

variation of a bifurcation parameter. 

The invariant manifolds that we considered are invariant circles and tori. We did not 

study the computations of these invariant manifolds in Hamiltonian systems since the be- 

havior of quasi-periodic solutions in this case is well understood. We did some theoretical 

work on the integral representation of invariant manifolds. Three met hods are discussed, 

two of which we investigated numerically in this thesis. We look at the center manifold the- 

ory and realised that the graph of the center manifold and of the stable (unstable) manifolds 

all solve a first order quasi-linear PDE. Since the graph of the invariant circles and tori also 

solves a first order quasi-linear PDE, we hope to extend the numerical algorithms for the 

computation of invariant circles and tori to that of center (stable and unstable) manifolds. 

We considered two algorithms for computing invariant circles and tori. The first is the 

PDE approach for the computation of invariant manifolds of autonomous finite dimensional 

systems ODES. In this approach these PDEs arise because the invariant surface can be 

described as a graph of a function which has to satisfy the ODE system. The PDEs that 
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we obtained are first order hyperbolic systems vtith the same principal part. We focussed 

attention on the discretization schemes for the PDEs and solved these discretized equations 

by using orthogonal collocation. This high order scheme have improved our results as we 

compare it to the results of some low order schemes. We prove convergence and stability 

of the collocation scheme for a model problem with constant coefficients. We show that 

our method is independent of the attractivity of the torus. The high order convergence of 

our method depends on the smoothness of the torus (geometry). We introduce an adaptive 

grid refinement scheme in some of the problems to allow for continuation close to the actual 

point of torus bifurcation. 

In the second approach we introduce a method based on the Hadamard graph transform 

technique of Fenichel. We use the fact that the torus can be defined implicitly by an invariant 

circle under the Poincard map. We use this method to compute the invariant circle for maps 

as well as the Poincard map of an invariant torus. This reduces the complexity of computing 

the torus in the regions of parameter values for which the torus begins to  break down and 

where things also begin to be interesting. We show how this method relates to  the PoincarC 

map approach of van Veldhuizen. This method can be easily pardelized. 

For my future work, I plan to  improve upon these numerical issues and hope to: 

1. remove the restriction we have on the parametrization in the PDE approach, 

2. apply these programs to a large variety of problems to see how robust they are, 

3. find better ways to solve the sparse linear system in the PDE approach, 

4. compute some three dimensional tori, 

5. extend our programs to systems in infinite dimension, 

6. modify the programs to compute center, stable and unstable invariant 

7. use collocation to solve the BVP in the HGT method. manifolds. 
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