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Abstract

This thesis considers the problem of joint optimization of source and channel coding
algorithms for communications over the additive white Gaussian noise (AWGN) and
the Rayleigh fading channels. In the proposed system, the analog source signal is
first compressed by a vector quantizer (VQ). The output of the VQ (the VQ index)
is mapped directly into a signal vector in the modulation signal space, and the signal
vector is transmitted over a noisy channel. A receiver based on a nonlinear conditional
estimate is used to reconstruct a replica of the source signal directly from the received
signal. The main blocks to be optimized in the joint source and channel coder are the
VQ encoder, the mapping from the VQ index to the modulation constellation, the
modulation constellation, and the decoder structure. Subject to constraints on the
average energy and bandwidth, the objective is to minimize the mean-square error
(MSE) between the original and the reconstructed signal.

Based on Bayes estimation theory, a soft decision vector quantizer (SDVQ) was
developed. The optimal decoder for this system computes the conditional mean of
the source signal given the received channel signal. The output of such an opti-
mal decoder is a linear combination of the VQ centroids for the SDVQ partition, in
which the weighting coefficients are nonlinear functions of the received signal. Several
approximate implementations at various channel SNR were also studied. An itera-
tive algorithm is presented for the joint design of the VQ and the modulation signal
set. The algorithm first optimizes the VQ codebook for a fixed signal set, and then
optimizes the signal set for a fixed VQ codebook. Iterating these two steps until
convergence occurs will provide at least a locally optimal solution to the problem.
The algorithm was used to design the VQ and signal constellation for a first order
(Gauss-Markov source operating in the AWGN and Rayleigh fading channels. The

simulation results indicate that the system performance is significantly enhanced by
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the joint design, especially when the channel signal-to-noise ratio is low. The im-
provement in the signal-to-noise ratio (SNR) for the reconstructed signal can be up
to 5 dB.

Due to the constraints on the VQ encoder delay and VQ complexity, the source
coder can not remove all the redundancy in the source. The residual redundancy is
modeled as a first order Markov process. We further developed a sequential decoding
algorithm to exploit the residual redundancy in order to improve the performance in
noisy channels without any bandwidth expansion. The simulation results show that
significant improvement can be obtained by using the sequential decoding strategy,

especially in a Rayleigh fading channel.
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Chapter 1

Introduction

Since the introduction of digital cellular communication about a decade ago, wireless
communications have experienced rapid growth. To improve the bandwidth efficiency
in the mobile channel, new applications and approaches are being developed at an
unprecedented rate, especially in the area of digital speech transmission, modulation,
and multiple access technologies. These progresses have been accelerated by the ad-
vances of VLSI technologies and the development and application of advanced digital
communication and signal processing techniques. Future generations of cellular and
other forms of wireless communications will all use digital technologies.

In the United States, the FCC has opened up the existing cellular bands to es-
sentially any technology that mobile communication providers want to use, as long
as they continue to meet the needs of mobile users. This means that the new digital
systems will likely co-exist with the current analog FM AMPS system [1]-[2] which
was developed in the 1970s by Bell Lab. Driven by the cost of new cell sites and the
limited radio spectrum, any new digital cellular standard should provide improved
capacity over the existing analog counterpart. This can be achieved by adopting low
bit rate speech coding, efficient digital modulation, and an effective error protection

scheme.



If we look at the development of speech coding, we can see that the objective of
speech coding has been to reduce the number of bits used to represent the speech
signal. Several speech coding standards have been developed over the decades. The
Global System for Mobile (GSM) for European vehicular digital cellular was driven by
the need for a common mobile standard throughout Europe and the desire for digital
transmission compatible with data privacy [3]. The 13 kbit/s full rate speech coding
algorithm used in GSM is based on a regular pulse-excited linear prediction coding
algorithm which includes long term prediction. In addition to the 13 kbit/s speech
coding rate, channel coding (half-rate convolutional coding plus cyclic redundancy
check) is also used, bringing the overall transmission bit rate of the full rate European
digital cellular mobile telephone system to 22.8 kbit /s per user [4]. Gaussian-Minimum
Shift-Keying (GMSK) is used as the modulation format.

The Northern American digital cellular standard, the 1S-54 uses 8 kbit/s vector-
sum excited linear prediction (VSELP) [5] as the speech coder and a rate 1/2 convo-
lutional coder as the channel coding scheme. The modulation format is 7/4-shifted
QPSK. The immunity to co-channel interference for the chosen modulation is similar
to that in the 30 kHz analog FM.

Other well-known speech coding standards include the CCITT 16 kbits/s low-
delay code excited linear prediction (LD-CELP) speech coding standard [6], which
provides toll-quality over the public telephone lines, and the U.S. Department of De-
fense 4.3 kbit/s speech coding standard FS-1016 [7], which is used for secure telephone
communication.

Advanced digital signal processing techniques are used to achieve data compression
in the speech coding standards mentioned above [8]-[10]. However, speech coding is
usually designed for the noiseless channel. For the mobile radio channel, error-free

transmission is not a practical design goal. In fact, the mobile channel often operates



at error rates as high as 0.001 or 0.0l which overwhelms ordinary speech’ coders.
Typically, reasonable speech quality can be maintained at the 0.001 error rate, and
tolerable quality at the 0.01 rate. While the search for lower bit rates to reduce
the signal bandwidth drives new developments in speech coding, these new methods
actually increase the relative importance of certain output bits of the speech coder
and thus can intensify vulnerability to channel errors.

Traditional channel coding techniques [11]-[12], such as error correction or detec-
tion, can be employed to protect the transmitted signal from the effect of channel
noise. Channel coding normally requires an increase in the transmission bite rate, as
well as introducing an additional processing delay incurred in the process of calculating
the redundant bits and decoding the information bits. For mobile communications,
every bit allocated for channel coding implies sacrificing a bit that would otherwise
help to improve the speech quality itself. Furthermore, error correction does not take
into account the characteristics of the speech coder. This oversight can lead to an
inetficient use of the system power and bandwidth. We can obtain some inspiration
from the communication theory in order to design a jointly optimized source and
channel coding system.

Generally speaking, digital communication theory deals with two problems: (1)
source coding, whose purpose is to minimize the number of bits used to represent the
signal, subject to a pre-determined fidelity requirement; and (2) channel coding, whose
purpose is to ensure that the bits used to represent the signal are received correctly
despite the existence of various types of interference over the channels. The basis
of communication theory, which provides solutions to these two problems, was pre-
senteded by Shannon in two remarkable papers published in 1948 and 1953 [13]-[14].

Shannon proved that source and channel coding could, in principle, be separated. As



a result, the traditional design philosophy for digital communication systems involv-
ing analog sources consists of three independent steps: design a source coder which
satisfies the required compression ratio subject to the quality requirement; choose a
suitable modulation scheme for the channel; and if necessary, design and implement a
forward error correction (FEC) scheme as the channel coder [15]. The basic assump-
tion for separating source and channel coding is that they both operate on sequences
that are infinitely long. In many practical communication systems, it is impossible to
process infinitely long sequences due to the limitations caused by the encoder delay
and computational complexity. In this dissertation we consider the problem of joint

source and channel coding operating in the noise and fading channels.

1.1 Literature Review

The issue of joint optimization of source and channel coding can be traced back
to [16]-[18]. Fine [16] formulated the source-channel coding design problem as a
joint optimization problem and gave the necessary conditions for an optimum digital
encoder-decoder pair for transmission of continuous amplitude data over a digital
channel. The model he considered was general enough to include a digital system
operating over a noisy discrete-alphabet channel. This work was extended by Gibson
and Fisher to include delayed encoding in the same system [20].

Kurtenbach and Wintz [17] considered the problem of designing a scalar quantizer
for a binary symmetric channel. The optimum quantization levels and reconstruction
values were determined for fixed codewords assigned to the quantization levels. It was
found that the optimum quantizer depends on the probability density function (pdf)
of the input signal and the channel transition matrix. The mean squared error (M5E)

metric was used as the optimization criterion. Farvardin and Vaishampayan [19]



extended Kurtenbach’s work by introducing a constraint condition on the quantizer
threshold in order to guarantee convergence. Furthermore, they solved the problem
of the optimization of codeword assignment using a simulated-annealing algorithm.
They observed that not all the available codewords were used for transmission in the
optimal system.

As opposed to the rather restrictive systems considered in [16] and [17], Wolf and
Ziv [18] considered the optimization of a very general communication system based on
the MSE criterion and derived the optimal encoder-decoder structure for this system.
In addition, they showed that for any given encoder, the optimal decoder is one that
calculates the conditional mean of the source signal given the received signal. Though -
very useful and relevant to the current study, Wolf and Ziv do not tell us how to select
the most appropriate encoder.

Some of the more recent work in the area of combined source and channel coding
are presented in [21]-[28]. Modestino and Daut [21] considered the transmission of still
images through noisy channels. They demonstrated that in comparison to the uncoded
transmission, convolutional coding, when applied according to the characteristic of
the source signal, can dramatically improve the quality of the reconstructed images.
These improvements were obtained by reducing the rate of the source coder (thus
increasing the distortion introduced by the source coder), and using the available
bandwidth for channel coding to combat the channel noise. Kumazawa et. al. [22]
extended Kurtenbach’s work [17] to include vector quantization. They introduced
channel transition probability matrices to represent the effect of channel noise and
discussed the problem of VQ design in a noisy channel. A similar study was conducted
by Farvardin [23]. The key difference between [22] and [23] is that the latter also

considered the optimization of the index assignment.



An important step toward robust vector quantization in noisy channels is index as-
signment optimization. For a vector quantizer with a fixed set of reproduction vectors,
the performance in a noisy channel can be improved by optimizing the assignment
of channel symbols (binary indices) to reproduction vectors. The codervectors (re-
production vectors) can be considered as points in an Euclidean spa(‘.é. [ntuitively,
indices which differ in as few bit positions as possible should be assigned to points
which are close in the Euclidean space.

One of the first papers to demonstrate the importance of index assignment for
scalar quantization was written by Rydbeck and Sundberg [24]. The problem of
optimal index assignment for scalar quantization was considered by Farvardin and
Vaishampayan [19]. Algorithms for improving the index assignment for a vector quan-
tizer with a fixed codebook were introduced by De Marca et. al. [25]-[26]. A locally
optimal solution based on a binary switching algorithm was introduced by Zeger
and Gersho [27]-[28] and was called Pseudo-Gray coding because of its similarity to
the well known Gray code. An efficient procedure for testing the performance of a
bit assignment strategy was recently proposed by Knagenhjelm [29]. An alternative
approach for solving the combinational problem generated by the bit assignment op-
timization is based on simulated annealing [30]. Kleijn and Sukkar [31] proposed a
source-dependent channel coding technique based on the simulated annealing in which
redundancy was introduced by having channel codewords which are not transmitted.
but may be received.

Hagenauer, Seahardri and Sundberg [32] analyzed the effect of digital transmis-
sion errors on a family of variable-rate sub-band speech coders. Since different error
sensitivities correspond to various source coders, a family of rate-compatible punc-
tured convolutional coders with flexible unequal error protection capacities are used

to match the speech coders. In a Rayleigh fading channel with differential phase shift



keying (DPSK) modulation, a 5 dB improvement in channel SNR can be obtained
by using 4 levels of error protection. This gain is obtained without requiring extra
bandwidth.

The generalized Lloyd algorithm was used by Dunham and Gray [33] and Ayanoglu
and Gray [34] to design joint source and channel trellis and predictive trellis waveform
coders for a variety of distortion criteria. They demonstrated that system performance
could be significantly improved by jointly designing a trellis-based source and channel
coding scheme, as opposed to tandeming a trellis vector quantizer (VQ) optimized for
a clear channel and a trellis coded modulation scheme.

Recently, Skinnemoen [35] described a novel approach for designing a joint source-
channel coder, called modulation-organized vector quantization (MOR-VQ). It was
assumed that the modulation set is known when designing the VQ. The most impor-
tant factor to increase the robustness is the choice of a good mapping from the source
space to the modulation space. A solution to this problem is developed based on neu-
ral network theory. It was found that the MOR-VQ provides significant robustness
against noise while not sacrificing the performance in a noise free channel. MOR-VQ
is very simple to design and does not require knowledge of the channel.

All the work that we have made reference to so far is based on a fixed modulation
system. One of the contributions of the present dissertation is in re-designing the
modulation signal set according to the mean squared error (MSE) criterion which is
associated with the reconstructed source vector.

The majority of the work on modulation signal design is mainly concerned with
minimizing the probability of error [36]-[40]. The cost of error due to the channel
noise is usually assumed to be the same no matter what types of error occur. Such
an assumption is not true since the different bits in a digitized source signal may

represent different signal parameters and hence have different levels of sensitivity



to errors. Another assumption is that signals in the signal set are used with an
equal probability. This assumption is also questionable since most codewords in a
practical source coding system do not occur with the same probability. As we know,
the MSE criterion is usually used to measure the signal distortion, but standard
modulation constellations such as QPSK and QAM are optimized to minimize the
error probability. Generally, minimizing the error probability is not equivalent to
minimizing the overall mean squared-error. Therefore, the overall distortion could be
reduced by re-designing the modulation constellations according to the MSE criterion.
Furthermore, as we will see later, the structure of the optimum source decoder is one
that makes soft decision, not a maximum likelihood receiver plus an inverse vector
quantizer (VQ).

Several studies have been carried out in designing signal sets in order to improve
the MSE performance of zero-memory quantizers over a noisy channel. Wong, Steel
and Sundberg [41] considered the problem of transmitting PCM signals by QAM
modulation format. They defined an error sensitivity factor to measure the effect
of the bit error patterns on the reconstructed source signal. By allocating different
energy to the transmission of specific bits, it is possible to reduce the error probability
for highly sensitive bits at the expense of less sensitive bits, thus minimizing the
overall distortion. They reported that 1.85 dB improvement in the channel SNR were
obtained for QPSK modulation, as well as 3 to 5 dB improvement for a weighted

16-level and 256-level QAM constellation.

1.2 Contributions of the Thesis

The major contribution of this dissertation is the development of an iterative algo-

rithm for the joint design of a vector quantizer and modulation signal set in terms of



the MSE optimization criterion [45]-[47]. A non-linear conditional estimator (the opti-
mum receiver under the MSE criterion) is used as a receiver. The results indicate that
system performance on an additive white Gauss noise and Rayleigh fading channel
improves significantly with the joint design. especially when the channel signal-to-
noise ratio is low [48]. The joint design algorithm mentioned above was also used for
the Rayleigh fading channel [49]. It was found that only a moderate improvement
can be obtained by symbol-by-symbol decoding algorithm. However, the overall sys-
tem performance can be further improved by using a sequential decoding strategy to
exploit the residual correlation in the codervectors of the VQ [50].

Our approach to the modulation design is related to Farvardin and Vaisham-
payan’s work on joint source and channel coding [44]. In their system, the source
encoder was assumed to be a VQ, the channel encoder was a linear transformation
from the source space to the modulation space and the decoder was also a linear
transformation from the channel space to the source space. Counstraints on the energy
and bandwidth are imposed on the transmitted signal, and the encoder and decoder
mappings are jointly optimized under the MSE criterion. This decoder structure,
which is an approximation of the optimal decoder for the case of low channel SNR, is
inherently sub-optimal, especially in the high channel SNR region. However, because
of the linearity, Farvardin and Vaishampayan were able to adopt a semi-analytical
approach in the joint source and channel coding design. This is in contrast to an
algorithmic approach presented in this thesis. Note, however, that the decoder con-
sidered in this study is based on the optimal conditional estimate receiver rather than
its approximate implementation in low SNR channel-linear receiver in [44].

The idea to jointly optimize the source and channel coding algorithm developed in
this dissertation is similar to the non-linear optimization technique proposed by Lloyd

[42]. However, the original Lloyd’s algorithm cannot be directly applied to design a



vector quantizer, since its implementation requires integrating the source pdf over an
irregular multi-dimensional Euclidean space. In order to overcome this problem, a
training sequence-based approach was introduced by Linde, Buzo and Gray, which
did not require the pdf of the source [43]. A generalized Lloyd iteration procedure

was used in this thesis for joint source and channel coding design.

1.3 Organization of the Thesis

This thesis is partitioned into eight chapters. The optimum performance bound is
described in Chapter 2. The vector representation of signal and noise is introduced in
Chapter 3. Two noisy channel models which are extensively used in the thesis are also
described. A joint VQ-modulation design based on a traditional hard decision receiver
is given in Chapter 4. This includes the design of a robust channel optimized vector
quantizer, the optimization of the modulation constellation, and the optimization of
demodulation, all under the MSE criterion. The optimum soft decision receiver, in
terms of the MSE criterion, is derived in Chapter 5. This receiver makes a conditional
expectation of the source signal given the received signal. The constrainted gradient
search algorithm is used to design the modulation constellation. In Chapter 6, a
sequential reconstruction technique is developed to exploit the redundancy of the
VQ output. Two applications of our joint source and channel coding technique are
provided in Chapter 7: the design of the joint source and channel coding over a
Rayleigh fading channel, and the transmission of a speech signal’s line spectrum pair
(LSP) over such channels. Finally, conclusions about this research are drawn and

some suggestions for further work are presented in Chapter 8.
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Chapter 2

A Performance Bound for Joint

Source and Channel Coding

The purpose of this chapter is to present an overview of topics in information the-
ory related to the subjects of data compression and transmission. The performance
bounds for joint source and channel coding systems will be presented. The chapter
starts with an overview of rate-distortion theory, which establishes a bound on the
minimum rate required to obtain a particular fidelity, followed by a brief review of the
channel capacity, which determines the maximum rate at which the information can
be transmitted over a channel with an arbitrarily small probability of error. Based
on the source rate distortion function and the channel capacity, the best performance
achieved by the joint source and channel coding system can be bounded by setting the
channel capacity equal to the rate given by the rate distortion theory for a particular
fidelity. Such bounds will be derived in Section 2.3 and used as a reference for the
performance of the proposed system.

Rate distortion theory just tells us the minimum rate required to encode the source
satisfing the requirement on the distortion, but it does not show how to design a prac-

tical system to encode the source signal. We could use quantization theory to find the

11



best possible representation of a signal at a given data rate. The objective here is to
find an optimal set of variables (generally called the reproduction alphabets or code-
words) to represent the source signal and the corresponding regions associated with

these codewords in the source signal space, according to a given distortion measure.

2.1 Rate Distortion Theory

This section presents some basic concepts on the source compression. For a complete
discussion on the subject of the rate distortion theory, please refer to [53].

Let U be a memoryless discrete source which generates symbols from a countable
set U € [ay,az,---,ax] with probabilities P(a1), P(a;), -, P(ak). The entropy of
this source is defined as

S 1

H(U) =3 P(a;)log e

1=1

(2.1)

It can be shown that if the code rate R for the source is no less than the entropy
H(U), perfect reconstruction is possible. The objective of an .tficient source coder
is to operate at a rate as close as possible to the entropy of the source, within the
complexity constraint.

For a continuous-amplitude source, the entropy of the source is defined as

H(u) = = [ p(u) log p(u)du (2.2)

where p(u) is the probability density function of the source. Generally, it is impossible
to reconstruct perfectly a continuous source with a finite rate code. In order to
reproduce a source replica at the output, a certain amount of distortion must be
accepted. Rate distortion theory gives the minimum rate R for a given distortion D).

Rate distortion theory is based on minimizing the mutual information between

the input and output for a given distortion requirement. The object to be optimized
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is the conditional probability of the output for the given input variables. The mutual
information measures the amount of information that one random variable contains
about another random variable. It is the reduction in the uncertainty of one random
variable due to the knowledge of the other. Mathematically, the mutual informa-
tion I(U,V) is the relative entropy between the joint distribution and the product

distribution, i.e.,

B , P(U,V) N
—IZIXV:P((/,V)log—P(U)P(V) (2.3)

Similarly, the mutual information of a continuous source is defined as

(u,v ://log dudv ' (2.4)

We introduce a distortion function d(u, v), which measures the cost of representing the
symbol u by its reproduction v. The squared error distortion is defined as d(u,v) =
(v —v)* and is the most popular distortion measure due to its simplicity.

For an independent, identically distributed (i.i.d) source with a probability distri-
bution P(I7) and a distortion measure D, a rate distortion function R(D) is defined

as
R(D) = min (U, V)

PIVIU)Y S, PUDP(YIUYUV)SD

Note that the minimization considers all possible conditional distributions P(V|U) for
which the joint distribution P(U,V) = P(U)P(V|U) satisfies the expected distortion
constraint. From a practical viewpoint, the rate-distortion function for a continu-
ous source is defined as the minimum bit rate required to code a signal at a given
distortion.

The derivation of the rate distortion function is, unfortunately, an unsolved prob-
lem in many practical situations. Explicit expressions can be obtained for only a

small number of source probability density functions and distortion measures. For
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a continuous GGaussian source using the squared error distortion measure, the rate

distortion function can be expressed explicitly [52] as:

llog,% 0<D<o?
RD)={ 2D “=V= (2.5)
0 D>a*
See Fig. 2.1.
35 T . v . v y :
3t 1
25+ 4

Rate distortion function, R(D)

0 02 0.4 0.6 08 1 12 14

Normalized distortion
Figure 2.1: Rate distortion function for a Gaussian source
Since a mean squared-error larger than the signal variance can be avoided by

simply decoding zero, the distortion is always less than the signal variance. We can

re-write equation (2.5) to express the distortion in terms of the rate
D(R) = o272k (2.6)

Therefore, increasing the rate by one bit reduces the expected distortion by 6 dB.
Now we consider the rate distortion function for a first order Gauss-Markov source.

This source model is used in the thesis for designing a soft decision vector quantizer.
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A first order Gauss-Markov source is characterized by

Uy = PUyp-—1 + e, (27)

where p is the normalized correlation coefficient, and e,’s are independent, and iden-
tically distributed white Gaussian random variables. The autocorrelation matrix for

a source vector u = [uy, Uz, - - -, ur) formed from the Gauss-Markov source is given by

[ 1 p L-1 |
p 1 L-2
p'Z p | L-3
E[uuT] = . . e . 2.8) .
i pL—l pL—Z 1 ]

This matrix is symmetric and positive definite, therefore, there exits a set of L orthog-
onal eigenvectors eq, ey, -. ey and a correspondent set of L non-negative, eigenvalues
Aty Az, AL A new source vector i can be formed by an orthogonal transform as

follows:
a=Q"u,

where Q 1s a matrix consisting of the L orthogonal eigenvectors e, e,,---,er. The co-
variance matrix of the transform vector 1 is A = E[QTuu? Q] = diag{\;, Az, -, An}.
The components of u are uncorrelated with variances equal to the eigenvalues. Since
the average mutual information and average squared distortion are preserved in the
orthogonal transform, the problem of encoding u with the squared distortion mea-
sure is equivalent to encoding u with the same distortion measure. Finally, the rate

distortion function can be described parametrically in terms of by [53]

L
Dope(0, L) = Z min[6, A;] (2.9)



and
1

Ropt(0,L) = 7

L
1 Aiy o ,
Z max|0, 3 log, ?], bits/per source sample (2.10)

=1

where the parameter 6 is limited to 0 < 8 < A,.«. Note that the rate distortion bound
can be approached arbitrarily closely by coding a long sequences of data samples, i.e.,

with vector quantization.

2.2 Channel Capacity

The channel capacity determines the maximum number of distinguishable signals that
can be reliably transmitted over a channel. Mathematically, the channel capacity is

defined as
C = max [(U,V),

) (2.11)
where I(U/, V) denotes the mutual information between two random variables {/ and
V and the maximum is taken over all possible input distributions P(U). Shannon’s
chonnel coding theorem tells us that all rates below the channel capacity ¢ are ob-
tainable, i.e., information can be transmitted reliably over a channel at all rates up

to the channel capacity.

The channel capacity for a continuous channel is defined as

C = max [(u,v)

——
NG
-
N

~—

p(u)

where p(u) is the source pdf. Generally, a continuous channel has some constraint
conditions on the input probability distribution p(u), the most common constraint is

the average power constraint

+oo |
/ u*p(u)du < P

— 00
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The capacity of a continuous channel is the maximum value of the average mutual
information over all probability distributions on the input subjected to the specific
constraint.

For a Gaussian noise channel with an average power P and noise variance N,, the

channel capacity is given by

. 1 P .
c:im&<1+ﬁj (2.13)

Now let us consider the problem of communication over a band-limited Gaussian noise
channel. Assuming that the bandwidth of the channel is M /2 and the spectral density
function is Ng/2. According to the Nyquist sampling theorem, wé can represent the
channel by its sample values if the sampling rate is larger or equal to M. If the
sampling rate is equal to M, we get M samples per second, and these M samples
can be considered as an M dimensional vector. The channel capacity of such an M
dimensional white Gaussian noise vector channel with a covariance matrix ‘—\éﬂI is given

by [52]

M 2P
(7 = - 1Og2(1

— 2.

If the source rate is R, the channel capacity must be larger than the source rate, i.e.,

M 2P ‘

For the source with a rate, R, the bit energy, Ej, is defined as

Submitting (2.16) into (2.15), and defining the spectral bit rate r = 2R/M as the

ratio of the source rate R over the channel bandwidth M/2, we have

E |
r < log,(1 + r—>) (2.17)
No ,
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Figure 2.2: Capacity of a baseband Gauss Noisy Channel

Fig. 2.2 shows the boundary described by inequality (2.17). In principle, we can
design a digital communication system for any point under the curve. The graph tells
ns that increasing the bit-rate per Hz increases the required energy per bit. This is
the basis of the energy/bandwidth trade-off in digital communication theory, where

increasing bandwidth at a fixed rate can reduce the power requirement.
2.3 Bounds for Joint Source and Channel Coding
Systems

We have discussed both the rate distortion function for a first order Gauss-Markov
source, which determines the minimum distortion for a given rate, and the channel

capacity function, which determines the maximum rate that can be transmitted over
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the channel. Therefore, the theoretically optimum performance for a first order Gauss-
Markov process operating in a white Gaussian noisy channel can be determined by
evaluating the rate-distortion function of the source at a rate equal to the channel
capacity. Suppose that an L dimensional signal vector is transmitted over an M
dimensional Gaussian noise channel. Let e,,, denote the average channel energy per
source sample, where e,,, = P/L. Using (2.14), the channel capacity per source

sample is given by

) bits per source sample (2.13)

Let the channel capacity given by (2.18) be equal to the rate-distortion function of
(2.10). By solving the resulting equation for €., the optimum performance is given

parametrically in terms of 8 by,

D,pe(6, L) meﬁ Ail (2.19)
and
N "\/[
€ang(0, L. M) = - fL Hmax [A:/0, 1)YM — 1) (2.20)
= =1

The channel SNR per bit is given by

€
SNR, = -2
No/2

Assuming the energy of the source signal is normalized, the synthesized source SN R,

is given by
l

SNVR, =
Dopt

Also let B = M/L represent a bandwidth expansion factor, which is the ratio of the
channel dimension to the source dimension. We then obtain the relationship between

the channel SNR and the synthesized source SNR, in terms of parameter 6, as
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L /M
SNR. =B ((H max|[A;/6, 1]) — l) (2.21)
=1

1

SNR, =
1 L minf6, A/]

(2.22)

Now, let us look at how to determine a bound for a joint source and channel
coding system based on (2.21) and (2.22). For a first order Gauss-Markov source, the
covariance matrix is given by (2.8). We can compute the eigenvalues of the covariance

matrix, also assuming that the eigenvalues are arranged in a descending order, 1.e.,

Ay > Ay > - > Ap. First, if we let 8 > max {1 = 1,2,--~,L}, we get

P\
SNR, = (- g )\i> =1
L =1

which is independent of the channel SNR; Second, if we let § < Ap, we have
L 1/M
SNR. =B ((H[&/G]) — 1)
1=1
and

SNR, = 1/6.

In the general case where \,, < 6 < ;1. We can express the channel SNR, SNVR,.,

and the synthesized source SNR, SNR;, in terms of the parameter § as

L /M
SNR.=B ( II [)\i/O]) —1

i=m+1

and
1

(L= m)f+ oo A

SNR, =

Now we consider the case of a continuous source. Let ®(w) denote the power
spectral density of a first order Gauss-Markov source, the bound for the joint source

and channel coding system can be obtained by applying a theorem on the asymptotic
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Figure 2.3: The spectral density function of a first order Gauss-Markov source with
p=10.9,

distribution of the eigenvalues of a Toeplitz form [54]. The bounds are given in terms

of the spectral density function ®(w) and 8 as:

S[VRC(H, B) =B (2# f_",,- max[0,log; ﬂeg]dw _ 1) (223)
and
1
SNR, = - 2.24
NR o J7, min[6, ®(w))dw (2:24)

For a first order Gauss-Markov source, the spectral density function is given by

1

¢ =
() 1 —2pcosw + p?

which is shown in Fig. 2.3.
When 6 > (1 — p)7%, we get
SNR, =1
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which is independent of the channel SNR SNR,.; When 8 < (1 + p)~%, we have
SNR.= B(#YB — 1)
and
SNR; =1/86.

In the general case where (1 4+ p)™2 < 0 < (1 — p)72, let wy be a particular value that

makes ®(w) equal to §. Then it can be shown that

1
1 —2pcoswy + p?

6

where wy can be expressed in terms of 8 as:

wy = cos” ! ——————-—1 + p2 _ 1/0
@ , 2 .

The corresponding synthesized source SNR, SN R;, is given by

T

SNR, = - - (2.25)
(0&)0 T Jwg T=2pcosw+p? dw)
and the channel SNR SN R, is given by
S[\[RC(H’ B) = B (2?1? fo“’e logzmdw _ 1) . (226)

A numerical method can be used to calculate the integral of equation (2.25) and
(2.26). Fig. 2.4 and Fig. 2.5 show the bounds for a source block length of L=2 and a
block length of infinity at different bandwidth expansion factors. We can see that in
the low channel SNR region, the difference in the synthesized signal SNR for different
bandwidth expansion factors is quite small, however, in the high channel SNR region,
the difference becomes significant. For example, in Fig. 2.4, at a channel SNR of 0
dB, the synthesized source SNR is 5.3 dB for B = 0.5 and 6.7 dB for B = 1, and the

difference in synthesized source SNR is just 1.4 dB. But when the channel SNR is 15
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Figure 2.4: The bound for the joint source and channel coding system. Block length
L is equal to 2. The source is a first order Gauss-Markov source with p = 0.9, the
channel is a Gaussian noisy channel with the bandwidth expansion factor B equal to

0.5 and | respectively.

dB, the synthesized source SNR is 14 dB for B = 0.5 and 21 dB for B = | and the
difference is 7 dB. The improvement in the synthesized source SNR is obtained at the
cost of the channel bandwidth efficiency.

We can observe a similar phenomenon in Fig. 2.4. Comparing Fig. 2.3 with
Fig. 2.4, we can see that with the increase of the code length, the synthesized source
SNR can be improved. For L=2, B=0.5 and the channel SNR equal to 15 dB, the
synthesized SNR is 14 dB; but for the same channel SNR and bandwidth factor, if
the block length L tends to infinity, the synthesized SNR is 17 dB. By increasing the
block length, we can get a 3 dB improvement in the synthesized source SNR. These

figures suggest that by coding a block of signal samples, i.e., vector quantization,
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Figure 2.5: The bound for the joint source and channel coding system. Block length L
is infinite. The source is a first order Gauss-Markov source with p = 0.9, the channel
is a Gaussian noisy channel with the bandwidth expansion factor B equal to 0.5 and
1 respectively.
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we can obtain a significant performance improvement. We will discuss the vector
quantization in detail in the next section.
The bounds derived in this section will be used in the following chapter as a

reference for the proposed system performance.

2.4 Vector Quantization

Rate Distortion theory does not tell us how to design a practical system to encode
the signal. In order to approach the rate-distortion function for the given source, we
cousider the joint quantization of a block of signal samples in this section. This type
of quantization is called vector quantization [56, 57].

A fundamental result of rate-distortion theory is that better performance can be
achieved by quantizing vectors instead of scalars, even if the source is memoryless.
A vector quantizer(VQ) will work even better if the signal samples are statistically
dependent.

A vector quantizer can be viewed as a mapping of the input signal vector into
a discrete number of output vectors in the k-dimensional Euclidean space R* in a
way that optimizes a given fidelity criterion, such aé the mean squared error. The
input signal is a k-dimensional vector x, and the output space is defined to be N
distinct points in R*. Denote the mapping by Q(x). The mean-squared error (MSE)

distortion is defined as

e = E{|lx = Q(x)|*} (2.27)
A k-dimensional, N-level VQ is defined by the partition set & = {Q;,Q,, -, Qn}
and the codebook C = {Cl,.C'), ---,cN}, where €; is a partition region and c; is the
corresponding centroid or codevector. The operation of the quantizer is to map every

point in §; into c;. Clearly, all of the Q; should be disjoint regions which cover the
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total input space
Qiﬂﬂj =& for 2 ‘714_],
and

N
U =%k
=1

where ® denotes an empty set. Using these facts, the mean-squared error associated

with the vector quantizer can be written as

N
=3 [ Ix - cilPa(x)x (228)
i=1 '
In order to find out the s and c¢;’s, we first assume that all the partition regions ;
are fixed in the source space. The corresponding codevector ¢; must then satisfy

o _ Jo xplx)dx
, Ja, p(x)dx

This expression states that each codevector ¢; should be the centroid of its associated

(2.29)

region. Equation (2.29) is called the centroid condition.
Next, we assume that the codevectors ¢;,z = 1,2,---, NV, are fixed. To minimize
the total MSE, an input signal vector should be assigned to the :-th partition ;

according to the nearest neighbor criterion:
RQx)=c¢ if |x—c|<|x—c;| forany:#j (2.30)

Since the pdf of the signal is unknown in many practical sources, direct analytical
calculation of the codevectors is usually impossible. However, if a set of input vectors
{x;,7 = 1,2,---,}, called the training set, is given, an iterative training procedure
known as the generalized Lloyd algorithm (GLA) [43] can be used to design a VQ
codebook. Starting from an initial set of codevectors, this algorithm iteratively uses
the centroid condition (2.29) and the nearest neighbor condition (2.30) to generate a

local VQQ codebook. The basic design steps are as follows:
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1. Set iteration counter m = 0 and choose an initial VQ codebook C°.

2. m=m+1. Cluster the set of training vectors into partition 2™ for the given
VQ codevectors by applying the nearest neighbor condition.

3. Compute the centroids or codevectors C™ according to the new partitions. For
the mean squared error distortion measure, the codevector ¢; is given by

=1 Y x
M x,€0, ’
where M; denotes the number of training vectors in ;.

4. Compute the average distortion. Check whether the convergence condition is
satisfied; If yes then stop; Otherwise go to step 2.

The algorithm will converge because the distortion will not increase in successive
iteration.

There are several ways to choose the initial codevectors. A well-known method
is to generate the codevectors with a VQ codebook size of K by perturbating the
codevectors of a codebook size of K/2, which was proposed by Linde, Buzo and Gray
[43], and generally is called the LBG algorithm. In this way, a VQ codebook size of
K can be designed starting from a one-vector codebook containing only the centroid
of the training set [43].

The complexity of the VQ design is much greater than that of scalar quantization.
A considerable amount of memory is also required for storing the VQ codebook.

Several methods can be used to reduce the complexity, such as multi-stage VQ, gain-

shape VQ, and tree-searched VQ [57].
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Chapter 3

Communication System Modeling

In this chapter we will consider the vector space description of communication sys-
tems. Although all communication channels are real waveform channels, it turns out
that the most efficient way to describe and interpret such channels is through vector
representation. Two types of the channel model used in this thesis are also introduced,

based on the vector representation.

3.1 Vector Representation of Signal and Noise

‘e first discuss the vector representation of the signal and noise [65]-[66]. For any set

of signals s;(¢), i =1, 2, ---, L, in the interval 0 < ¢ < T, with finite energy
Ei = / (Ot i=1,2,---, L, (3.1)

a set of M < L orthonormal functions ¢;(t), ¢2(t), ---, ém(t) can always be found

such that
M

Si(t) = Z 'S‘i771¢77l(t)3 1= 1721 Y L (32)

m=1

where

o = [ st (3.3
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The functions ¢,,(t), m =1,2,---, M, are orthonormal and can be constructed from
the s;(¢)’s through the Gram-Schmidt procedure [66].

[t is observed from equation (3.2) that once the functions ¢,,(t) have been deter-
mined, each waveform s,(t) is completely defined by its coefficients s;,,. We could
visualize each set of coefficients as an M-dimension vector and the collection of all
such vectors forms the signal constellation, defined in an M-dimensional signal space.
Each axis or coordinate in the signal space is associated with one of the orthogonal
functions. Therefore, the i-th signal s;(¢) is defined by the vector s;=[s;1, si2,- -, .siM]T
in the M-dimension signal space. Note that the energy in s,(¢) is related to its vector

coordinates as follows

M v ¢
E =) s, =sill* (3.4)

=1

A white Gaussian noise random process can also be represented by the orthonormal

representation as [66]
ny(t) = Z n;o;(t) (3.5)
J=1

where n; is a zero-mean stationary independent Gaussian variable with properties

T
n]:/ n(t)é;(t)dt (3.6)
0
and
No 5
E(nj-n,m): 2 T (.37)
0 otherwise

where Ng/2 is the power spectrum density function of the noise.

Noise terms in (3.5) for j > M exist in coordinates orthogonal to all coordinates
for j < M. These terms therefore have no affect on the coordinates in which the
signals are defined, and it is known that the terms are irrelevant to the optimum

receiver [66]. On dropping the irrelevant noise, we denote the relavent noise by
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M
n(t) =Y n;0,(t) (3.8)
1=1

3.2 Two Channel Models for Digital Communi-

cations

Traditionally, source coding is optimized for a given source signal, it is implicitly
assumed that this coder is transimitted over the noiseless channel. However, this is
not the case in physical channels. Typical communication channels such as telephone
lines, mobile radio links, microwave links, etc introduce various types of the noise and '
interference. We focus in this study on the additive white Gaussian Noise (AWGN)

channel and the Rayleigh flat fading channel.

3.2.1 Additive White Gaussian Noise Channel

An additive white Gaussian noisy (AWGN) channel is the most commonly used chan-
nel model in the analysis of communication systems. Such a channel model is ap-
propriate when thermal noise is a dominant noise source in the system. As its name
suggested, the power spectral density function of the white noise is a constant, inde-
pendent of the frequency, and equal to Ny/2. The noise amplitude has a Gaussian
probability density function (pdf):

1 n’n

p(n) = N E eXP(—TO) (3.9)

where n is the vector representation of the channel noise, and nT is a transpose vector
of n. In such a channel, the noise component adds linearly along with the desired

signal. The transmitted and the received signals can be described in a vector format

r=s-+n
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where s denotes the transmitted signal, n denotes the channel noise contribution and

r denotes the received signal. The received signal r also has a Gaussian distribution.

3.2.2 Rayleigh Fading Channel

In the mobile channel, the signal can enter the receiver via more thau one path.
The effect of the multipath is caused by the reflection and scattering from buildings,
trees and other obstacles. The received signal is the sum of the signals with different
amplitudes and phases. It is plausible to assume that the phases of the scattered
signals -are uniformly distributed between 0 and 27 and the amplitudes and phases
are statistically independent of each other. Since the number of the scattered signals
is quite large, the quadrature components have Gaussian distributions according to
the central limit theorem. As a result, the envelope, a, defined as the square root of

the norm of the quadrature components, has a Rayleigh probability density function

[68], [69]

az

202

pla) = = exp(—7=) (3.10)

where o is the noise power of the quadrature components.
If the receiver or transmitter is in relative motion, the received signal also experi-
ences a Doppler shift. The Doppler shift fp is equal to [69]

v
fp = —cosa

A

where v is the velocity at which a vehicle is moving, A is the wavelength of the
electromagnetic wave, and « is the spatial angle between the direction of arrival of
the wave and the direction of the vehicle motion.

Assume that the power of the received signals is uniformly distributed in the range

—7 < a <, ie., the pdf of « is given by

1
pla) = 5
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for a mobile station with an omnidirectional mobile antenna, the power spectrum of

the multipath fading channel is given by [67]

. 2711/2
_ W [, _ U= £) .
P(f) - 27rf7"» [1 - '31 (‘3.11)
where Wy is a constant, f,, = v/A is the maximum Doppler frequency shift. By

taking the inverse Fourier transform of the spectrum function (3.11), we obtain the

autocorrelation function of the fading channel as
p(1) = BJo(27 fpT) (3.12)

where B is a constant, Jo(.) is the Bessel function of the first kind and the zero order.
The autocorrelation is shown in Fig. 3.1. There is a rapid decorrelation, showing that

space diversity can be implemented at the mobile end to reduce the fading effect.
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Figure 3.1: The normalized autocorrelation function of the signal for Rayleigh fading
channel
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Since every two dimensions of an M dimensional vector can be viewed as a quadra-
ture amplitude modulation (QAM) symbol, it is convenient to treat the M dimensional
signal as a complex vector with M/2 components. In this way, the received signal

over the Rayleigh fading channel can be expressed as
r'=G's"+n" (3.13)

where G™ = dial[g], g5, ~Ghy2) 1s a diagonal matrix, its diagonal element g7 is a zero
mean, complex, Gaussian fading process, n™ is a zero-mean, M /2 dimensional complex
Gaussian noise vector with a covariance matrix of —A./z‘lI, and s* is the transmitted

complex signal.

3.3 Formulation of the Joint Source and Channel

Coding Design Problem

Applying the concept of finite dimensional representation of signal and noise, the
general communication models we want to explore are shown in Fig. 3.2 and Fig.3.3
respectively. The source is a zero-mean stationary random process. Let x be a k-
dimensional vector derived from the random source with a pdf p(x). The vector x is
represented by a VQ codeword chosen from the set {cy, .,cn}, where N is the size
of the codebook. Assuming ¢; was chosen, then the index ¢ is mapped directly into the
modulation signal points s;. The set of s;, ¢ = 1,..., N forms the signal constellation.
The dimension of this constellation, M, is an important design parameter as it is
proportional to the bandwidth of the communication channel [15]. The modulated
signal s; is transmitted over an additive white Gaussian noise channel (AWGN), as
shown in Fig. 3.2, or a Rayleigh fading channel, as shown in Fig. 3.3. In a vector
notation, the noise waveform is represented by an M-dimensional Gaussian random

vector n. The different components of n are independent and identically distributed
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(i.i.d), each having a zero mean and a variance of Ny/2. The received signal y is

Noise

n
X < s, y

Source vVQ Modulator »O— Receiver

Y

">

Figure 3.2: General communication system model in the AWGN channel.

Fading
Gain Noise
) G n
X (‘7 S’. y
Source > vQ » Modulator Receiver —

Figure 3.3: General communication svstem model in the Rayleigh fading channel.

simply the sum of the transmitted signal s; and the noise vector n in the AWGN
channel or the sum of the faded signal by the fading channel Gs; and the noise vector
n. Given the signal y, the decoder will provide the “best” estimate of the original
signal x. This estimate, denoted by X, is then delivered to the final destination.

The problem we want to solve is to minimize the per sample MSE, 1 E(|lx — %||*),
by appropriately selecting the source VQ encoder, the modulation signal constellation
and demodulator, subject to constraints in the average transmitting signal energy
and the channel bandwidth. It should be pointed out that the choice of the receiver
structure is included in the optimization process, which gives us a maximum degree

of freedom to design an optimal communication system.

34




Chapter 4

Joint Optimization Based on the

~

Signal Detection Receiver

Traditionally, a source coder such as vector quantizer (VQ) is designed for a noise-
less channel. The resulting approach is called a source optimized vector quantization
(SOVQ). The performance of SOVQ /degrades significantly in the presence of trans-
mission errors. In noisy channels, the received index may differ from the transmitted
one and, as a result, the reproduction vector may be a poor representation of the
original source vector. In this chapter, we consider the problem of joint optimization
of source and channel coding with a conventional maximum likelihood (ML) receiver.
The system is composed of a VQ, a modulator, and an ML receiver. The objectiveis to
design an optimal VQ, modulation constellation, and receiver which will minimize the
average distortion between the source vector and its replica at the receiver. An itera-
tive optimization strategy is used to design the VQ, the modulator, and the receiver,
while maintaining constraints on the signal energy and transmission bandwidth.
One method toward the robust vector quantization in the noise channel is to opti-
mize the VQ codebook for the given channel transition probabilities. This approach

leads to a channel optimized vector quantizer (COVQ) [22], [23]. In a traditional



communication system, an ML receiver is used to obtain an index from the demodu-
lated data. However, the ML receiver is not optimal under the criterion of the mean
squared-error (MSE). We use a generalized Bayes receiver as the demodulator that
minimizes the overall MSE.

This chapter is organized into eight sections as follows. In Section 4.1, a general
communication system model is described. The design steps for the channel optimized
VQ are reviewed in Section 4.2, followed by a discussion on the VQ index assignment,
using simulated annealing. Optimizationof the modulation constellation is discussed
in Section 4.4. The optimal Bayes receiver in terms of the MSE criterion is developed
in Section 4.5. An iterative optimization algorithm for the joint optimization of the
source and channel coding is then introduced based on a straightforward extension
of the Lloyd algorithm. In Section 4.7 numerical results are presented for the perfor-
mance of the jointly optimized system for a first order Gauss-Markov source. These
results are compared with the performance of standard communication systems with a
SOVQ and using different modulation schemes such as quadrature phase shift keying
(QPSK) and the trellis-coded modulation (TCM) for 8-phase shift keying (PSK).
Finally a summary is provided, and several possible improvements are discussed in

Section 4.3.

4.1 System Structure

The general diagram of the communication system is shown in Figure 4.1. Let x be a

Mo
">

Source vQ

[

!
Modulator —>& Demod 1 vQ

|

1}

Figure 4.1: Communication system model with a transmission probability £(;/¢)
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k-dimensional vector derived from a random source with a probability density function
(pdf) p(x). A k-dimensional N-level vector quantizer (VQ) is defined by a codebook
C ={ci,i =1.2,---, N} consisting of N k-dimensional reconstruction vectors ¢; and
the partition set & = {,;,i = 1,2,---, N} of the k-dimensional Euclidean space RX.
The vector quantizer is actually a mapping, @(.), from the k-dimensional Euclidean
space RX into a finite reconstruction vector space {C}. A VQ is said to be optimal

with respect to a distortion measure d if the average distortion

D = - Bld(x, Q) (1)

is minimized over all possible partitions € of R¥ and reproduction codebooks C. The

necessary conditions for optimality for a noise-free channel are

0 = {x:d(x,c;) <d(x,c;)} for any j (4.2)

c; = arg min, { E[d(x,2) | x € ]} z € KX (4.3)

Equation (4.2) gives the so-called nearest-neighbor condition, while (4.3) is the cen-
troid condition. The necessary conditions specified by Equations (4.2) and (4.3) do
not lead to an analytical solution for the optimum codebook and partition. However,
an iterative algorithm can be used to design a locally optimal vector quantizer as in
the work of Linde, Buzo, and Gray (LBG) [43].

In many applications, a source vector is quantized and then transmitted over a
noisy communication channel. The source compression system uses a vector quantizer
(VQ) to map an input signal vector X into its corresponding codevector ¢;. The index
of the corresponding codevector, ¢ is directly mapped into a modulation signal vector

s;. Then s; is transmitted over a noisy channel. The received signal is the sum of the
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modulation signal s; and the channel noise n. In a conventional system, as shown by
Fig. 4.1, the received channel symbol y is quantized into a received index, j, according
to a decision rule. The information transmitted to the user is then X = c;. Due to the
channel noise, the received index j may differ from the transmitted index :, creating
a relatively large distortion due to a poor representation of the original signal vector
by ¢;. The channel state transition probabilities P(j/2) can be used to represent the

effect of the channel notse.

4.2 Channel Optimized VQ

As shown in [23] and [70], channel noise may significantly degrade the performance
of a source optimized VQ. Assuming some knowledge of the noise statistics, a better
alternative is to optimize the VQ for a given noisy channel. This approach leads to the
concept of a channel optimized vector quantizer (COVQ) introduced by Kumazawa et
al and Farvardin et al [22], [23]. Farvardin and Vaishampayan researched the structure
of the COVQ in detail in [70]. Let P(j|¢) be the channel transition probability from
index ¢ to index j, which depends on the modulation signal set. The average distortion
is then given by

].N
D=

N .
£ 2 Y P [ Ik = eslPpx)dx (4.4

=1 7=1

The optimum VQ should minimize the average distortion for a given VQ codebook
size N and channel transition probabilities P(j]z).

First, assuming that the VQ partition, €2, is given, the necessary condition for the
optimal codebook C can be found by setting the derivative of the average distortion

(4.4) with respect to c; to zero, 1.e.,
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Correspondingly, the optimal codevector c; is

o _ TN PG) fo, xp(x)dx
’ th P(jl) fn p(x)dx

When a training sequence X,,, (m = 1,2,---, ) is given, a discrete version of equation

(4.6)

(4.6) is given by
= P(]|7’) Em:meQ. Xm
iN=1 P(]“)"h‘

where m; denotes the number of training sequences belonging to the i-th partition Q,

Cj=

(4.7)

Next, we must determine the optimum partition €; for the given VQ codebook C.

The average distortion (4.4) can be re-written as

1 N N
=32/, (z (3l8)x - cjul) p(x)dx (48)
Note that all the terms inside the bracket of equation (4.8) are positive and so is the
probability density function p(x). The only variable quantity is the integration region
Q. Consequently, the average distortion is minimized by selecting the decision region
); to include only those points of x for which the term inside the bracket is minimum.
This process leads to the following optimum partition:
N N
0 = {x S PR el < X P /mil =l for i } (49)
A modified GLA procedure can be used to design a COVQ based on (4.7) and (4.9).
The design algorithm for the COVQ is as follows:
1. Set iteration counter m = 0. For the given channel transition probabilities
P(ji), VQ codebook size N, and training sequences, choose an initial VQ codebook
C° and a threshold e.

2. m = m+ 1. Cluster the set of training vectors into a partition ™ for the given

VQ codevectors by applying the modified nearest neighbor condition (4.9).
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3. Compute the VQ codebook of the m-th iteration, C™, according to the new
partition 2. For the mean squared error distortion measure, the VQ codevector ¢;
is given by.equation (4.7).

4. Compute the average distortion D™ resulting from the m-th iteration. Check
whether the convergence condition is satisfied, i.e. if Q"ETD_T-_—]J < €. If yes, then stop;
otherwise go back to step 2. Since the average distortions in successive iterations are
non-increasing, the training process is guaranteed to converge.

The design result of the source optmized VQ could be used as an initial codition
for design of the channel optmized VQ. When used in a noisy channel, a channel

optimized VQ usually achieves better performance than a source optimized VQ. It~

could provide up to 1.5 dB improvement in the synthesized source SNR [23].

4.3 Optimal Index Assignment

In this section we consider the problem of how to assign the VQ indices to the modula-
tion signals for a given source coder VQ [23]. The objective is to minimize the average
distortion D of (4.4) over the set of all possible index assignments, i.e., optimizing
the VQ-modulation mapping. Rydbeck and Sundberg [24] presented one of the first
papers to demonstrate the importance of index assignment for scalar quantization.
The problem of optimal index assignment for scalar quantization was also considered
by Farvardin and Vaishampayan [19]. An algorithm for improving the index assign-
ment for a vector quantizer with a fixed codebook was introduced by De Marca et
al [25], [26]. A locally optimal solution based on a binary switching algorithm was
introduced by Zeger and Gersho [27], [28] and called Pseudo-Gray coding to acknowl-
edge its similarity to the wéll known Gray code. For small values of N, optimization

can be accomplished simply by trying all the possible permutations of the N indices.
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The number of computations increases very quickly with N, making an exhaustive
search impractical even for moderate NV values. An alternative approach for solving
the combinatorial problem generated by the bit assignment optimization is based on
the simulated annealing algorithm [30]. A detailed description of this algorithm can
be found in {73]. In this section, the minimization technique is based on simulated
annealing [74]. The basic idea of the simulated annealing algorithm is to randomly
perturb the state of the system at each iteration of the algorithm. The algorithm
unconditionally accepts perturbations that reduce the distortion and probabilistically
accepts perturbations that increase the distortion.

In the context of our current study, the algorithm works as follows. Assume that
we begin by arbitrarily labeling the modulation points and storing them in an array
E of size M x N; E = (sq,82,-+-,sn). Also, let F be a permutation matrix of size
M x M. Then any mapping of VQ codevectors to the modulation points can be

described in terms of the F and E matrices as follows:
Smod = FE

The simulated annealing algorithm will attempt to find the permutation matrix F
that minimizes the distortion D of (4.4). Here, the average distortion is considered
as a function of the permutation matrix D(F). In the simulated annealing language,
F represents the current state of the system. The evolution from the current state F

to a new state F’ is obtained by using a “perturbation” defined by
F' = BF

where B is a randomly generated permutation matrix that contains only two non-zero
elements. Multiplying F by B is thus equivalent to swapping the mapping for two

indices.
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The steps in the simulated annealing algorithm are :

1) For the m-th iteration, define an abstract system “temperature” T,,. The initial
temperature T, is usually relatively high. Also randomly arrange an initial state, F,
from the given modulation constellation.

2) Randomly choose a perturbation matrix B of the state F and compute the
energy variation 6D = D(F) — D(F').

a) if 6D < 0, replace F by F', go to step 3.

b)if §D > 0, replace F by F’ with probability exp(—é6D/T,,) and go to step 3.

3) If the number of energy drops exceeds a prescribed number or if the number of
unsuccessful perturbations (perturbations not resulting in drops of energy) exceed a
prescribed threshold, go to step 4. Otherwise, go back to step 2.

4) Lower temperature T;,. If a stable state has been reached, stop and F is the
optimal assignment we need; otherwise go back to step 2.

A particular perturbation algorithm is used to change the state of the system in
order to reduce the number of computations required to evaluate the average distor-
tion [19]. In step 2, the perturbation of the state is implemented by selecting two
components of an index vector b randomly and by permuting them. For instance
b’ = (9,4,6,8,2) is a perturbation of b = (9,8,6,4,2) in which the second and the
fourth elements in the state vector are altered. This choice of perturbation allows
us to move from any state to any other state in a finite number of perturbations.
In step 2 (a), 6D < 0 corresponds to a decrease of the distortion and therefore it is
accepted because the goal is to minimize the distortion. On the other hand 6D > 0
corresponds to an increase of the distortion, a probabilistic decision is made whether

or not to accept the trial perturbation, and the probability of acceptance decreases
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exponentially with the temperature, i.e.,

Prob(accept) =
(accept) {1 6D <0

as suggested by Farvardin [23]. In the beginning when the system is “hot”, almost all
perturbations (whether they reduce or increase the distortion) are accepted. However.
as the temperature is reduced, those perturbations that cause an increase of the
distortion will be accepted with diminishingly small probabilities. This process allows
the algorithm to climb out of local minima when the temperature is high in the
hope that as the system is cooled the state falls to.the global minimum. In the
limited case , lim,,—0o Ton = 0, the system is no longer able to escape from the global .
minimum. The ability of the system to move from the state of higher distortion
guarantees that the algorithm avoids non-optimal global minima. It can be shown
that if the initial melting temperature Tp is large enough, the simulated algorithm
guarantees convergence to the global minimum in probability with a cooling schedule
described by T,, = ¢/log(m + 1) [74]. Since this cooling schedule is very slow, a
faster cooling schedule such as T,, = aT,,—1 , where 0 < a < 1, has been used in
practical applications of simulated annealing algorithm. If the cooling speed is too
fast(corresponding to a very small o) we may have not the sufficient perturbations.
On the other hand, if « is near to 1, the cooling schedule is too slow. We find
empirically that a = 0.9 is a good compromise between the sufficient perturbations

and the cooling speed.

4.4 Optimization of the Modulation Constella-

tion

From equation (4.4) we can see that the overall system distortion depends on both

the source coder, i.e., the VQ codebook C and partition §2, and the channel transition
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probability P(j(¢). The transition probability is also related to the modulation signal

constellation as shown by
= [ y/endy (4.10)
GJ
where ©; is the j-th detection partition region associated with the signal s; in the
modulation signal space. Therefore, the overall system distortion can be further re-

duced by appropriately designing the modulation signal sets. To realize this objective,

let us express the overall system distortion as

lNN

ZZPP (712 ||c,—c,||2 (4.11)

'zl]l

where c; denotes the transmitted codeword, c; denotes the reconstruction codeword,
and P(j|7) denotes the transition probability that the demodulator chooses ¢; when c;
is sent. The demodulation can be thought of as a partition of the M-dimension signal
space into N regions @ = {0,,0,...., On}. For the AWGN channel, the transition

probability P(j|i) can be expressed by

PN = [, rogesnoy Iy — sy (4.12)

where M is the dimensional number of the modulation signal. It is necessary to

impose a constraint condition on the average energy:

Prg Z Plsq||. (4.13)

We want to find the optimal modulation signal constellation to minimize the average
distortion under the constraint condition (4.13). In formulating the optimization
problem with a constraint, this constraint can be incorporated using a Lagrange
multiplier.

Let us first construct another unconstrained problem with the target function

D = kD + 4(3 Psill — Puy)

=1
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where v is a Lagrange multiplier. It can be shown easily that

D’:N

11_11

*——C’I —_—— — S, d + P 1 [)av
[, magwergg Iy - siay wz il = Puug)

The optimal constellation s; can be obtained by setting the derivatives of D' with
respect to s; to zero

oD’
o, =0

Actually, the decision space partition @= {0,0,, ... ,On} is related to the modula-
tion signal constellation sj,s,...,sy. Because no analytical expression for the decision
partition is available, we resort the GLA strategy, i.e., assuming the decision partition
region O is fixed. As a result, we find the optimal necessary condition for s;, i.e.,

l p .
[/ B —Sfllﬁydy] le, — el

i=1

Z [/1 (No) % ”P(——HY —sil® )dY} lle; —cl’si +yPisi = 0 (4.14)

J=1

Now if we define

al 1
68 |3 [ ooy sy | e, —el?, (1)

i . . ‘
Th’AZ/ ——_:f”L‘P(—VOHy —si||))dylle; — cil)?, (4.16)

where ¢; is an M-dimension vector, and 7; is a scalar, we obtain

&= (i — Py)si
and the optimal modulation signal vector is given by

i

S, = —
m — Py

(4.17)

45



Substituting equation (4.17) into the constrained condition (4.13) we can determine

the corresponding Lagrange multiplier v

N 2

1|&: ]
S P, (4.18)
= (n: — Py)? !

If we use equation (4.18) to determine the Lagrange multiplier v, we get an nonlinear
equation of 2N-order. Correspondingly we have 2N Lagrange multipliers v;, : =
1,2,..., N, which means that we need to test a total of 2N modified signal vectors
to determine the best candidate. This method is not very efficient.

Alteratively, we can use a constrained gradient-search algorithm to determine the
optimal constellation as Foschini did in the optimization of signal constellation under -
the criterion of minimum error detection probability [39]. To describe this approach.

it is convenient to introduce a vector presentation

S

S2

SN

L p

where S is an NM x 1 vector. The channel signal-to-noise ratio per bit SNR. is

defined as
Prwg

%‘1 log, N

SNR. =10

where %Q denotes the spectral density of the channel’s additive white noise. Let

s(m)

1
S~(2m)

Sm =

(m)
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denote an NM dimension modulation signal vector obtained at the mth step of the

iteration process. A conventional unconstrained gradient search algorithm can be

described by

oD
Sm = Sm - K
. *os,.
where p is a positive step size, and ;S[r)n 1s the gradient of D with respect to S,,.

The energy of S,, will increase or decrease with the iteration number m unless an
energy constraint condition is incorporated. To satisfy the constraint on the energy
condition, the signal vectors are re-normalized at each step. The signal vector S,, is

updated according to

) oD
S7n+] = Sm - ,u‘as bl (4.19)
and
P )
Spt1 = e —S (4.20)
J ilil Pillsm-i-l“l i

A heuristic discussion on the convergence of the constrained gradient-search algorithm
can be found in Foschini’s paper [39].

When we use the constrained gradient-search optimization algorithm to solve for
the optimal signal constellation, we need to determine the gradient of D with respect
to S,,. The gradient can be written as

oD
dS.,

= &' — 1iS; (4.21)

Two factors prevent us from using (4.21) to evaluate the gradient directly. First,
obtaining an analytic expression for the source VQ partition Q is difficult. Although
we can determine, in principle, the N disjoint source partitions from the nearest
neighbor condition, in general, analytical expressions of the partition boundaries can

not be found for arbitrary source distributions. The second factor is related to the
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calculation of a numerical integration over an N-dimension volume. It is generally
believed that only two- or three-dimensional integral can be efficiently solved by a
numerical method. If the dimension of the integral is over four, it is advantageous
to use the Monte-Carlo simulation method to evaluate the integration. Therefore, it
1s useful to find a numerical method to determine the optimal constellation without
resorting to an exact analytic description on the partitions Q;,Q,,...,Qy.

What we need to do is to find a way to calculate the integrals in equation (4.15)

and (4.16). It is easy to see that

PO = || geen(— gy =iy (822
E{y(/9)} = /@ mt‘)gewp(—]violly —s5]|))ydy, (4.23)

where P(j|¢) denotes the transition probability and E{y(j/i)} denotes the conditional
mean of the received signal under the condition that the output of the demodulator
is J while the index z i1s transmitted. When the Monte-Carlo simulation is used to
estimate the transition probability, an empirical version of (4.22) is adopted
N 1 . .
PG =5 20 (4.24)
t g0,
Similarly, an empirical counterpart of (4.23) is
L 1 .
E{y(j/0} =+ > ¥ (4.25)
N i€0;
where N, denotes all the experiment data, and ©; denotes the decision region associ-
ated with the j-th modulation signal point s;. It is easy to show that the estimates
of P(j|i) and E{y(j/i)} are unbiased. For the unbiased estimate, the variance is a
good measure of the estimated performance [75]. Generally speaking, the variance is

reduced in proportion to 1/N;.
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Table 4.1: Transition probability by simulation and numerical method

Probability | Theory Value | Simulation Result
P(1/1) 0.848878 0.847942
P(2/1) 0.072464 0.0721237
P(3/1) 0.006194 0.005338
P(4/1) 0.072464 0.071915

Table 4.2: Condition mean by simulation and numerical method

Condition Mean | Theory Value | Simulation Result
z(1/1) 0.981241 0.983191
y(1/1) 0 0.002563
r(2/1) 0.028737 0.002746
y(2/1) 0.051888 0.051912
z(3/1) 0 0.00748
y(3/1) 0.001976 0.002713
z(4/1) -0.028737 -0.028297
y(4/1) 0.051885 0.052515
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To investigate the numerical accuracy of the Monte-Carlo simulation, let us look
at a simple system in which four codewords are transmitted using a QPSK modula-
tion constellation. The experimental parameters are as follows. The channel SNR is
7 dB, and 150,000 random numbers were used to get the estimated value of the tran-
sition probability (4.24) and the conditional mean (4.25). The simulated annealing
algorithm was used to optimize the VQ index assigned to the modulation constella-
tion. The results are shown in Tables 4.1 and 4.2. Note the theoretical values of the
transition probability and conditional mean are obtained by using a two-dimensional
numerical integration method [76].

Using the Monte-Carlo simulation method we need not depend on the analytical
expressions of the VQ partitions £ and the decision regions ®@. Therefore the tech-
nique is very suitable for designing an arbitrary N point modulation constellation in

an M-dimension signal space.

4.5 Demodulation Optimization

As we see from equation (4.4), the overall system distortion is also a function of the
channel transition probability P(j|i). The channel transition probability P(j|¢) itself
is determined by the rule of the demodulator. Therefore, the average distortion D
can also be reduced by appropriately optimizing the decision rule in the demodulator.
In this section, we develop an optimal demodulator to minimize the MSE distortion.

Optimizing demodulation is well-known in signal detection theory [65]-[66] and
is accomplished if the minimization of error probability is used as an optimization
criterion. This criterion leads to an maximum likelihood (ML) receiver if the priori
probabilities of the source are equal. In the joint source and channel coding system,

the MSE, instead of the bit error probability, is used as the optimization criterion due



to different error bits corresponding to various distortions [65]. The average distortion

can be expressed as

N N
D=3 PP(jli)d,; (4.26)

=1 3=1

where d;; is the cost of choosing index j when the codeword 7 is transmitted. In our
case

dij = |lei — c1*

Since no redundancy is introduced, the output of the source coder is directly mapped
into the modulation signal point. Replacing the transition probability by an integral

of the conditional pdf, we have

1

N N 1
D= / P———erp(—
>/, (z el

=1 (7o)

y—awmQ—cmﬂdy (4.27)

Note that every item in the parentheses is positive. If we want to minimize the
distortion, we should assign y to the region §2; in which each item in the bracket is

the minimum. Let us define a decision function [;(y) as

: 1 1 .
I = T ar —_— — 8 2 i 112 WA
i(y) ;P BAE copl= 7 lly = sillDle: = el (4.28)

[t is simple to show that the optimum decision rule is given by:
it L(y)<Iluly) form=12,... N then ye€ Q; (4.29)

The receiver described by equation (4.28) and equation (4.29) is called the generalized
Bayes receiver in the signal detection theory literature [65]. In fact, the ML receiver
is just a special case of the general Bayes receiver. That is, if we define the distortion

cost d;; as follows

e
dﬁz{ o (4:30)

1 otherwise

for every correct decision the cost is zero and for every error decision the cost is equal

to one. Also assume that the apriori probability for each signal is the same, i.e.



P=— for ¢:=1,... N
Then, the decision rule can be expressed as [65]

if |ly—sil?><|ly—s;||* for j=1,2,...,N, then y e

4.6 An Iterative Optimization Procedure for the

Source and Modulation Constellations

We have‘ shown in the previous two sections how to optimize the V@ and the modu-
lation constellation separately. In this section, a strategy for jointly optimizing these
two subsystems is discussed. Once again, an algorithmic approach is adopted. The
algorithm is essentially a general form of the Lloyd algorithm. The key steps are

summarized below.

1. For the given continuous source, design an N-level VQ for a noiseless chan-
nel using the Linde-Buzo-Gray(LBG) algorithm, or source optimized VQ [43].
Choose also a standard modulation constellation. These initial VQ and modu-

lation systems will be updated in each iteration of the design process.

2. For the given modulation scheme, optimize the VQ partitions and the index

mapping according to the procedure outlined in sections 4.3 and 4.4.

3. For the given VQ partitions and mapping, optimize the modulation constellation

according to section 4.5.

4. Test whether or not the convergence has occurred. If so, declare the current VQ
encoder and the modulation constellation as being jointly optimal. Otherwise

go back to step 2.
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It should be pointed out that the overall system distortion is non-increasing at
every iteration. Consequently, the iterative procedure will always converge, at least
to a local minimum. Since only a local optimal solution is guaranteed by this design
procedure, it is therefore important to choose an appropriate initial VQ and modu-
lation signal set. Both the convergence rate and the performance of the final system
can be improved substantially if the initial state of the design process is set properly.
We tound empirically that a standard QAM signal set and a VQ codebook optimized

for a noiseless channel are an appropriate choice for the algorithm initialization.

4.7 Performance Results

We vresent in this section the simulation results for our jvointly optimized source-
channel coding system. These results are obtained for a first order Gauss-Markov
source for a variety of channel signal-to-noise ratios and bandwidths. Comparisons are
made against the standard systems consisting of a source optimized vector quantizer
(SOVQ) and using a QAM or trellis-coded modulation (TCM).

The source is assumed to be modeled by a zero-mean, first-order, Gauss-Markov

random process. This source is represented by the equation
Ui = pUi—1 + €;

where e; is an independent, and identically distributed Gaussian process with variance
E{e?} = (1 — p*), and p is the normalized correlation coefficient between successive
samples. If we want u, to have some sort of characteristic of the speech signal, then a
typical value of p is 0.9. The channel is modeled as a stationary, independent, vector

(Gaussian random process of dimension M with a covariance matrix %QI, where I 1s



an M x M identity matrix. The channel SN R, per bit is defined as following

P
SNR. = 10log,, v———
10 2 log, N

For the purposes of comparison, we consider two simple communication systems in
which a source optimized VQ is used as a source coder. It is assumed that the source
encoder rate and the source vector dimension is the same as that use in the jointly
optimized system. In these two systems, the index of the VQ is directly mapped into
a modulation signal point and then transmitted over an AWGN channel. For the first
reference system, a standard QAM signal constellation is used as the modulation.
In order to maintain the same bandwidth with the optimized signal constellation,
a J-fold Cartesian product of the QPSK signal constellation is used. The receiver
consists of a conventional maximume-likelihood receiver followed by a source decoder
that maps the decoded index back to its corresponding centroid. The simulated
annealing optimization algorithm is employed to find the best mapping from the VQ
index to the signals in the modulation signal sets. In our second reference system, we
use the trellis-coded-modulation (TCM) with an 8-PSK constellation. Soft decision
Viterbi decoding algorithm is used for the TCM decoding.

The design of the optimal source and channel coding system according to the
presented procedure requires the knowledge of channel SNR. Strictly speaking, we
should design the optimal modulation and VQ codebook for every possible channel
SNR condition, which requires channel SNR estimation and coordination between the
transmitter and the receiver. An alternative method is adopted to avoid channel SNR
estimation. We choose a fixed channel SNR of 5.5 dB as a design parameter, since it
gives a good compromise between the system performance .t the high channel SNR
and the low channel SNR. Otherwise, if the designed SNR is too high or too low, the

loss due to the channel mismatch will become larger. The resultant system is then



applied in a variety of SNR values to evaluate the system performance.

Figures 4.2 and 4.3 present the VQ codebook constellation and the correspond-
ing modulation signal constellation for the codebook size N = 16, the block length
k=2, and the signal dimension M = 2. Figures 4.4-4.9 present the optimal sys-
tem performance compared with the QAM and TCM systems. These figures show
that the jointly designed system provides significant improvement when the channel
SNR is less than 8 dB. For instance, in Figure 4.6, when the channel SNR is 6 dB,
the source codebook size N is 256, the block length k is 2, the 3-dimension optimal
modulation system has 3.5 dB gain in source SNR compared to a traditional system
that uses 4-fold QPSK modulation. The source SNR improvement decreases with the
VQ codebook size decreasing. For the same channel SNR, when the codebook size is
N = 16, we obtain just about 1 dB improvement. If we examine the figures in the
higher channel SNR region, we will find an interesting phenomenon. The conventional
QAM modulation system is better than the optimized system in this region. The phe-
nomenon can be explained as follows. When we optimize the modulation constellation
in terms of the MSE criterion. the Euclidean distance between the modulation signal
points corresponding to the smaller source distortion is decreased. In this way, the
optimized system is quite robust to the decision errors caused by the channel noise.
However, at high channel SNR, this strategy has the disadvantage that more signal
energy is needed to distinguish the modulation signal points with smaller Euclidean
distances. It should be pointed out that this phenomenon is due to the mismatch in
the channel SNR with respect to the designed SNR.

We can also see that the TCM system is better than the proposed system in the
high channel SNR region since the TCM system combines the channel coding and
modulation to increase the Euclidean distance of the modulation signal. Therefore,

it can combat the channel noise without extra bandwidth. At receiver, it uses a soft



ded

decision Viterbi decoding algorithm [77] as the demodulation scheme. This scheme
chooses the most likely transmitted sequence based on the received sequence.

We also studied the effect of the dimension of modulation signal on the optimized
gain for a fixed VQ source coder. Figs. 4.7-4.9 present the results. It is found that
the optimized gain increases with the increase of the modulation signal dimension,
but the rate of increasing decreases. For instance, when the codebook size N is equal
to 256, the VQ dimension k& is equal to 2, the channel SNR is 6 dB, and the dimension
of the modulation signal increases from 2 to 4, the optimized gain is 2.5 dB. However,
the optimized gain is only 1 dB for the same source encoder if the dimension M
changes from 6 to 8. Using high dimension signal constellation will result in better
performance but it increases the complexity of the modulation system. We should

trade-off between the system complexity and the performance improvement.

4.8 Conclusions

In this chapter, we considered the problem of joint optimization of source and channel
coding with a hard decision receiver. The source signal is compressed by a VQ and the
VQ index is directly mapped into a signal point in the modulation constellation. The
objective is to design an appropriate VQ and modulation constellation to minimize the
average distortion between the source vectors and its corresponding reproduction at
the receiver. The strategy we used is to optimize the encoder, the modulator, and the
demodulator iteratively while maintaining constraint conditions on the signal energy
and transmission bandwidth. A hard decision rule that minimizes the overall system
MSE is derived from the generalized Bayes receiver. It turns out the receiver depends
not only on the channel statistics but also on the source character. A constrained

gradient search algorithm is introduced to optimize the modulation constellations in
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Figure 4.2: A 2-dimension VQ codebook constellation. VQ codebook size N = 16,
block length k = 2, Source AR with coefficient p = 0.9
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Figure 4.4: Comparison amongst various combined source and channel coding sys-
tems. The modulation signal dimension M is 4. Curve 2 is the performance curve of
the jointly optimized system. Curve | corresponds to the case where 2 QPSK symbols
are used to represent an index in the VQ codebook. Curve 3 is similar to curve 1
except that 2 trellis-code 8PSK symbols are used instead. VQ codebook size N = 16,
block length k=2, Source AR-1 with p=0.9
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Figure 4.5: Comparison amongst various combined source and channel coding system.
The total number of dimension M in the signal space is 6. Curve 2 is the performance
curve of the jointly optimized system. Curve 1 corresponds to the case where 3 QPSK
symbols are used to represent an index in the VQ codebook. Curve 3 is similar to
curve 1 except that 3 trellis-code 8PSK symbols are used instead. VQ codebook size
N = 64, block length k=2, Source AR-1 with p=0.9
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Figure 4.6: Comparison amongst various combined source and channel coding system.
The total number of dimension M in the signal space is 8. Curve 2 is the performance
curve of the jointly optimized system. Curve | corresponds to the case where 4 QPSK
symbols are used to represent an index in the VQ codebook. Curve 3 is similar to
curve 1 except that 4 trellis-code 8PSK symbols are used instead. VQ codebook size
N = 256, block length k=2, Source AR-1 with p=0.9
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terms of MSE criterion. We also considered the problem of VQ index assignment and
used the simulated annealing algorithm for the optimization of the VQ index assign-
ment. An iterative optimization algorithm for jointly optimizing source and channel
coding was developed based on a straightforward extension of Lloyd algorithm. Sim-
ulation results show that the joint design of source and channel coding improves the
system performance significantly, especially at the low channel SNR regions.

From estimation theory [65], we know that the optimal receiver in terms of the
MSE criterion should be a conditional mean of the source given the received signal.
We will consider the problem of joint design of VQ and modulation constellation based

on this result.



Chapter 5

Joint VQ and Modulation Signal
Design Based on the Conditional

Estimate

The problem of the joint optimization of source and channel coding with a maximum
likelihood receiver was considered in Chapter 4. In this chapter we go further to
consider the problem of the joint design of the V() and modulation constellations in
a system that uses a “soft decision” decoder. Note that in a conventional system, it
is implicitly assumed that the output of the demodulator is one of the V codebook
entries. In this case, the design procedure aims to optimize the VQ codebook and the
corresponding partition in order to achieve the best representation of the source vector
at the receiver. However, there is no reason to constrain the output of demodulator
to be one of thé codevectors. This chapter introduces a “soft decision” decoder which
uses a linear combination of the VQ codevectors to reconstruct the source signal. The
weighting coefficients used in the reconstruction process depend on the Euclidean
distance between the received signal vector and the modulation signal constellation

(in the modulation signal space). They also depend on the channel statistics.
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The objective is to suitably design the VQ, the modulation scheme, and the de-
coder structure in order to minimize the over all system distortion subject to the
constraints on the signal energy and bandwidth. This chapter is organized as follows.
We derive in Section 5.1 the optimum MSE decoder for a given source encoder (VQ)
and a channel encoder (signal constellation) pair. This is followed by a derivation of
the optimum VQ encoder for a fixed modulation constellation. In Section 5.3, the
necessary conditions for optimality about the modulation constellation are derived
for a fixed VQ. A constrained gradient-search optimization algorithm is introduced
to find the optimal constellation. In Section 5.4, an iterative algorithm is presented
to jointly optimize the source and channel coding. Numerical results for a first order
(Gauss-Markov source are also shown. Finally, a summary of the chapter is given in

-

Section 5.5.

5.1 The Decoder Design

The block diagram of the communications system to be investigated is shown in Fig.

5.1. Remember that a vector representation of signals is used in this thesis. The source

Noise

X < s y .
Source vQ Modulator Receiver [—>

o>

Figure 5.1: A general communication system model.

in Fig. 5.1 is a zero-mean stationary random process. Let x be a k-dimensional vector
derived from the random source. The pdf of x is p(x). The vector x is represented
by a VQ codevector chosen from the set {cy,...,cn}, where N is the codebook size.
Assuming that the codevector c; is chosen, then its index ¢ is mapped directly into the

modulation signal point s;. The set of s;, 7 =1,..., N, forms the signal constellation.
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The dimension of this constellation, M, is an important design parameter as it is
proportional to the bandwidth of the communication channel [15]. The modulated
signal s; i1s transmitted over an additive white Gaussian noisy channel (AWGN) with a
power spectral density of Ny/2. In vector notation, the noise waveform is represented
by an M-dimensional Gaussian random vector n. The different components of n are
independent and identically distributed (i.i.d), each having a zero mean and a variance
of No/2. The received signal y is simply the sum of the transmitted signal s; and the
noise vector n. Given the signal y, the decoder should provide the “best” estimate of
the original signal x. This estimate, denoted by X(y), is then delivered to the final
destination.

The performance of the above system is measured in terms of the (per sample)
mean squared error (MSE) between the original and the reconstructed signal. Let
p(x,y) denote the joint probability density function of x and y. Then the average

distortion can then be written as

b= %E(“x**(Y)Hz) = %//llx—i(y)llzp(x’y)dxdy (5.1)

where k is the dimension of the source vector x. The problem we want to address is
how to design the VQ codebook, the modulation signal constellation, and the decoder
structure in order to minimize the average distortion while satisfying the constraints
on the average signal energy and bandwidth. In this section, we first look into the
optimization of the decoder for a fixed VQ and modulation scheme.

According to the Bayesian estimation theory [65], the optimum decoder under the
minimum MSE criterion should compute the conditional mean of the source vector x
given the received signal y. In other words

x(y) = Elxly) = fy) [xpbopty )dx (5.

i
8
—
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where p(x), p(y) are the pdf of x and y respectively, and p(y|x) is the conditional
pdf of y given x. Let ;, 2 = 1,2,---, N, denote the ith partition in the VQ, and
p(n) be the pdf of the Gaussian noise vector n. Then it can be shown that (5.2) can

be rewritten as
TN, Peplyls:)

x(y) = , (5.3
Y, Palyls) !
where
L ly — sill” -
p(ylsi) = puly —s:) = (Nom )72 exp(—T) (5.4)
is the conditional pdf of y given that s; was transmitted,
x)d
¢, = Jn. X0 (5.5)
Ja, p(x)dx
is the VQ’s centroid, and
P = / p(x)dx (5.6)
Q,

is the probability that the source signal lies in (2;.

5.3) depicts the structure of the optimal decoder for a given c;, (2

Equation (
and s;. The optimal decoder generates a signal that is a weighted sum of centroids
for the VQ partitions. The weighting coefficients are exponential functions of the
distance between the received signal and the modulation signal points. Because of
these exponential functions, the optimal decoder in (5.3) is inherently nonlinear. In
the limiting case when the channel is noiseless, i.e. when Ny = 0, only the exponential
function p(y|s;) is non-zero (assuming s; is sent). This means that X(y) = c; - the
output one would expect for a noise-free channel.

The decoder given in Fig 5.1 can be called a soft decision decoder since it operates
directly on the unquantized received signal y. Therefore, we call the vector quantizer

based on a soft decision as a soft decision vector quantizer (SDVQ). In contrast, a hard

decision decoder consists of a decision device (or in that matter a quantizer) followed

69



ln
> sl y q ) cl A
Source » VQ » Modulator »&)- Receiver s vg p—>x

Figure 5.2: Communication system with a Hard Decision Device

by a source decoder structure in (5.3); see Fig. 5.2. However in this case, the decoder
structure in (5.3) operates on the output ¢ of the decision device, rather than directly
on the received signal y. This means the pdf’s p(y|s;), : = 1,..., N in (5.3) should be
replaced by the conditional probabilities P(g|s;)’s. The hard decision decoder, though
perhaps more practical, is in general inferior to the soft decision decoder. However,
the degradation in performance is practically zero at the high channel signal-to-noise
ratio region. This stems from the fact that at large SNR, the conditional probability
P(q = s;/s;) will tend to be | and other conditional probabilities will tend to be 0.
(‘onsequently, the output of the decoder structure in (5.3) is simply ¢; - approximately
the same output we would get from a soft decision decoder for large channel SNR.
The channel optimized vector quantizer (COVQ) discussed in Chapter 4, and [22],
[19] falls into the category of the hard decision decoder.

To compare SDVQ with COVQ, we note that the transition probabilities can be

expressed as
Pl = [ paly = s)dy
e]
where 0;, j = 1,2,..., N, are the decision regions in the modulation signal space. By

comparing equation (5.3) with the following equation (4.6)

c = YL P fo, xp(x)dx
PR PG fo, p(x)dx

it is apparent that the COVQ centroids can be obtained from the optimal decoder of

our SDVQ by replacing the pdf py(y — si) by their average values over the decision

region ©;. The SDVQ receiver becomes equivalent to the COVQ receiver if py(y —s;)
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is uniform over ©; and the decision regions have equal volumes.

Finally, before leaving this section, we would like to provide a suboptimal decoder
for operation in the low channel SNR region. To proceed, we note that the conditional
pdf pn(y — s;) in (5.4) can be expanded as a Taylor series around the point y = s;.

Retaining only the first term in the expansion, we have

2
pu(y —si) = pu(y)(1 + vs?y)
iv0

and
f(y) ~ iz Bie + (2/No) Bz Pressly
y L+ (2/No) 5N PisTy

where s7 is the transpose of the signal vector s;. Since the mean of the source signal

is zero, i.e. YN, Pic; = 0, and Nio N PsTy << 1 for the low channel SNR, this

means that X(y) can be written as

x(y)=G-y (5.7)
where
9 N .
(G=—) Pcs; 5.8)
‘VO =1 (

In other words, the optimum MSE decoder is approximately linear for the low channel

SNR condition. This result is attributed to Gardner [71].

5.2 Optimization of the VQ Partitions

We consider in this section the problem of how to design the optimal soft decision
vector quantizer for a given modulation scheme and communication channel. The
decoder is assumed to be the optimal decoder given in (5.3). There are two key steps

in the design process

1. determine the optimal partitions Q;,2 = 1,2,--- N in the VQ,
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2. assigning the VQ codewords to the channel signal vectors s;,t = 1.2,--- /N,

Below is a detailed description of the design process.

First we show how to determine the optimal VQ partitions for a given modulation
constellation and mapping from the VQ index to the modulation signal vector. The
channel is assumed to be an AWGN channel and the decoder is the optimal decoder
given in (5.3).

Like in the design of a source optimized VQ by the LBG algorithm [43], we assume
a set of initial centroids for the VQ, {c;,7 = 1,---, N}, is given. Moreover, we assume
that the centroid c; is mapped to the modulation signal vector s;. This implies that

after substituting (5.3) into (5.1), the average distortion D can be expressed as

1 X N Pcipu(sm —s; +n) |
D=~ / / _ =1 114 m 1 2 d / 5.9
k 121 Qm { n “x i\;l Pipll(sm —8; + n) H Pn(n) n p(x»)(x ( ’ )

where Q,,.,m = 1.---, N, denotes the VQ partitions. For the VQ encoder design, we
have to impose an energy constraint during the optimization. Specifically, we set the

average energy as

aug = Z Pm”Sm ‘ (510)
m=1
and the objective function is
D Zi] R‘cil)n(sm s; + Il
/ / [pS N II 2pn(n)p(x)dndx
m=1 =1 PiPn(sm —s; + n

N
+9 (Z Pollswl* - Ew> (5.11)

m=1

where P,, is the probability that s,, is transmitted and v > 0 is a positive Lagrange

multiplier. Equation (5.11) can be rewrittern as following

Zj'il PiCiPn(Sm s; + n 2}
1 dn + k Sm dX— E“
Tk ’;1/ {/ I iAil Pipu(sm —si+n H Pu(n) Vllsm| T Euvg
(5.12)
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Since each inner integral term

 pa(m)dn + Erllsnl?  (5.13)

;o / I SN, Pcipn(sm —s;+n
m n ;V:I Hpn(sm -8 + n)

in the above equation is non-negative, this implies the average distortion is a minimum

if we adopt the following partitioning rule for the VQ :
xeW, it L, <I; for all j#m (5.14)

The partitions defined by (5.13) and (5.14) depend on the initial centroids ¢y, ..., cn,

which in turn depend on the partitions according to the following

o _ Jo, xp(x)dx
T o )

[t should be evident at this point that the optimal centroids and partitions can be
obtained, in principle, by re-iterating (5.13) and (5.15) until convergence occurs. This
approach, generally known as the generalized Llyod algorithm [42], was first suggested
in [43] for designing vector quantizers for the noiseless channels. Convergence is
guaranteed since the distortion can either decrease or remain the same at each step
of the iteration. However due to the nature of iterative optimization, the algorithm
can not guarantee to generate a global optimum solution .

As we see from equation (5.13), the VQ partitions Q,,,m = 1,2,---, N, are related
to the Lagrange multiplier 7. Because an analytical method to determine 5 is not
available, a numerical method is adopted to find the multiplier 4. In the beginning,
we assume that + is equal to zero, then get the VQ centroids and compute the corre-
sponding modulation signal energy. This is followed by checking whether the energy
constraint condition is satisfied. If yes, then stop; otherwise update the multiplier
according to the equation: vYnew = Yoia + 90, where 4 is a fixed step-size, and repeat the

partition of the VQ and the computation of the signal energy.
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For a joint source and channel coding system. the VQ indices are mapped into
the modulation signal vectors for transmission. As in Chapter 4, we use a simulated
annealing algorithm to optimize the VQ indices mapping.

Once the optimal mapping is found, the design process returns to the determi-
nation of the optimal VQ partitions for the given mapping. If, as a result, there is
no reduction in distortion, the design process stops. Otherwise it goes back to the

optimization of the VQ index mapping.

5.3 Optimization of the Modulation Constella-

tion

The distortion in (5.9) is a function of the VQ partitions {{,,,m =1,---, N} and
the modulation constellation {s,,,m =1,---, N}. We showed in Section 5.2 how to
optimize the VQ partitions for a given modulation constellation. In this section, the
problem of optimizing the modulation constellation for a given VQ is considered.
We assume that the VQ partitions and the VQ-Modulation mapping are fixed when
dealing with the optimization of the modulation constellation.

The average distortion for the system can be written as

Z P _lsm=s 2 |2
C;€e 0 o
b= Z / / = 1Sm —S; + 0 |j2 Pn(n)P(X)dndx (:).l())
m=1 PB —0—

where a Gaussian pdf is substituted into equation (5.9). Once again we should consider
the energy constraint, see equation (5.10):
(wg - Z Pm”S'm
m=1
Due to the difficulty to find the optimum modulation constellation by an analytic

approach, a constrained gradient-search algorithm is again used to determine the
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optimal constellation, see Chapter 4 for detailed discussion. In the current application.
the algorithm will provide us with at least a local optimum solution. This stems
from the fact that the distortion can never increase in each iteration and the average
distortion is bounded by zero. Also, it should be noted that the partial deviative of

the average distortion D with respect to the modulation signal vector s; is given by

[ISm —8; +11(1?

oD Z 21 1 PcTe No 1
ds] / / [Sm =S, + 12

2
——— i8m —8, +1)|2
m=1 P N, _Pemzo,rh
= 1 € ° ( i]il Pie Mo

[ISr =S +102

! _I8m=8,+ny? B
{Z Pie ~o (Ci - Cj)} Pje Mo (sm —8; + l’l) p(x)pll(n)idan-*_

1=1

_lsm=s,+n|?
}-\i PiCTe No 1 »
xT L=l i (7 17)
q 1Sm -8, + 102 < 2\ 2 9
I N p - N _ISm=S,41
i=1 43¢ i=1 P,-e No

N N usy-si4ng? s, -s4ny?
Z Z € No e No c; P Pi(s; — s;) ¢ p(X)pn(n)dxdn
=1 [{=1

The computation of the partitial derivative (5.17) is implemented by the Monte Carlo

simulation.

5.4 Joint Source-Modulation Optimization and Nu-

merical Results

We discussed in the last two sections how to optimize individually the VQ and the
modulation constellation. In this section, a strategy of jointly optimizing these two
subsystems will be discussed. Once again, an algorithmic approach is adopted. The

algorithm used is essentially a general form of the Lloyd algorithm (GLA). For the



given modulation scheme, we first optimize the VQ partitions and the mapping ac-
cording to the procedure outlined in Section 5.3, and then optimize the modulation
constellation according to Section 5.4 for the given VQ partitions and mapping; Iterate
these two steps until the convergence occurs.

The design procedure described above was applied to a first order Gauss Markov
source. The correlation coefficient between successive samples is set to 0.9. The
corresponding numerical results are shown in Figs 5.3 through Figs. 5.11 for different

VQ size N, signal space dimension M, and VQ rate R, defined as

o _ loss (V)

3 - (5.18)

Table 5.1 summarizes the values of the various parameters used in these figures. For
each set of system parameters, we also include in the same figure the upperbound on
performance, as well as the performance of the corresponding reference system.

Each reference system is constructed as follows. For given N, M, and R,. we first
design the optimal VQ for the AR-1 source in a noiseless channel, using the GLA
algorithm [43]. Then from the value of N and M, determine the most appropriate
basic QAM constellation. The Cartesian product of the basic constellation M/2 times
with itself results in a M dimensional constellation with N points. For example, let
N = 256 and M = 4. Then the most appropriate basis constellation is a 16QAM
constellation. Alternatively, one can use 16PSK. The decoder in the reference system
is assumed to perform hard decision decoding, i.e., it will determine the most likely
transmitted VQ codeword from the received signal y. It should be pointed out the
simulated annealing algorithm is used to find the optimal VQ-modulation mapping
for the reference system.

For comparison, we also show the bounds for the joint source and channel coding

system. These bounds are derived according to the information theory, see Chapter 2
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for a detail discussion. We show in Figures 5.3-5.5 that the performance of our systems
as a function of the channel signal to noise ratio, Eqsuy/No, in dB. The difference in
these three figures are the number of codewords, N, in the VQ. The performance

measure 1s the reconstructed source signal-to-noise ratio, defined as

E(x[*)

SNR; = m

(5.19)

The modulation schemes in these figures all have a bandwidth efficiency of n = 2
bits/sec/Hz. The system optimization was performed at a channel SNR of 5 dB.
The resultant systems were then used over the entire SNR range. The reason why we
chose 5 dB SNR value as an optimization parameter is that it gives a good compromise
between the performance in the high SNR and the low SNR regions. Otherwise, if the
designed SNR is too high or too low, the overall distortion due to the mismatch of the
channel SNR will increase. It should be pointed out the chioce of the designed channel
SNR value is related to the source and channel model. For example, we select 5 dB
as a design channel SNR value for a first order Gaussian-Markov source in AWGN
channel. However, for the same source model but a Rayleigh fading channel, we select
17 dB as a designed channel SNR; see Chapter 7. Similarly, for the same channel but
different sources, the design SNR would be different. Note that in principle we can
optimize the system at every channel SNR. However this would require an adaptive

system with SNR estimation at the receiver. Three observations are made :

1. The larger N is, the better the synthesized signal-to-noise ratio (SSNR) achiev-
able. The value of N apparently does not have a strong influence at the lower

channel SNR region.

2. The proposed systems significantly outperform the reference (or standard) sys-

tems at the lower SNR region. For example, at the channel SNR equal to 2 dB,
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the gain in SSNR is roughly 2 dB in each of the 3 figures. This clearly illustrates

the benefit of joint source and channel coding.

3. At low channel SNR (below 5 dB), the performance curves of our systems run
roughly parallel to the bound of the joint source and channel coding system. The
difference in SSNR ranges from 5-7 dB. At higher channel SNR, our performance
curves deviate from the bound. This is due to the fact that only a relatively

small number of codewords are used in the VQ and modulator.

Figures 5.6-5.8 differ from the previous three figures only in the rate of the source
coder. Here the source rate is R, = 2. We notice that increasing the source rate brings
a tremendous improvement in the maximum SSNR. For example, if we compare Figs
5.3 and 5.6, we see the maximum SSNR increases by about 3 dB when the source rate
is doubled.

Fig. 5.9-5.11 is similar to Figs 5.6-5.83 except that the signal space dimensions are
different. In comparing these two figures, we see that at large SNR, the size of the
signal space has no effect on the system performance. However, at lower SNR like 0
dB, we see that the system in Fig. 5.9 performs significantly poorer than that in Fig.
5.6. This is as expected since the signal space dimension is larger in Fig 5.6 than in
Fig. 5.9.

In comparing Figs 5.4, 5.7, 5.10 and Figs 5.5, 5.8, 5.11, we can once again confirm

the following findings :

1. The most effective way to increase the maximum SSNR is to increase the source
rate. Increasing the signal space dimension or the number of codewords has

relatively little or no improvement to the maximum SSNR.

o

Large signal space dimension is required for the low channel SNR region. In-

creasing the source rate has no effect for this operating region.
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Fig. No. Codebook Block Source Dimension Bit/Dimension SNR.n Ref. System
Size N Lengthk | log, N/k | Signal Space M For Design
Fig. 5.3 16 4 1 4 1 5dB 2XQPSK
Fig. 5.4 64 6 1 6 1 5dB 3XQPSK
Fig. 5.5 256 8 1 8 1 5dB 1XQPSK
Fig. 5.6 16 2 2 4 1 5dB 2XQPSK
Fig. 5.7 64 3 2 6 1 5dB 3XQPSK
Fig. 5.8 256 1 2 3 1 5dB IXQPSK
Fig. 5.9 i6 2 2 2 2 7dB 16-QAM
Fig. 5.10 64 2 3 2 3 12dB 64-QAM
Fig. 5.11 256 2 4 2 4 19dB 256-QAM

Table 5.1: Summary of the system parameters used in the different figures. Note that
the second last column are the channel SNRs at which optimization are performed.
For illustration purpose, Figs. 5.12 and 5.13 show the VQ constellations and
modulation constellations for systems optimized at different channel SNRs. It is in-
teresting to point out that at low channel SNR, the number of distinct VQ codewords
in the optimized system may be smaller than the initial codebook size N. For ex-
ample, the number of distinct VQ codewords at a channel SNR of 2 dB is only 11,
although the initial codebook contained 16 vectors. This situation may be explained
by the fact that the optimal system trades the clean channel performance (SSNR)
for better performance in the noisy environment: for a smaller number of centroids
the performance in clean channel conditions degrades, but at the same time the dis-
tances between the signal points in the modulation space increase and this approach
may lead to better performance at low channel SNR. A similar observation was made
earlier in [19]. When trying to increase the number of centroids by centroid splitting,
the new centroids remain very close to the existing ones and the system tends to
converge to the same number of centroids and same average performance as in the

initial optimized design.
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Figure 5.3: Performance of a joint source and channel coding system with N = 16
VQ codewords, £ = 4 V) dimensions, a source rate of B, = 1, and a signal space
dimension of M = 4. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.
The solid curve shows the results for the reference system where 2 X QPSK is used

as the modulation format.
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Figure 5.4: Performance of a joint source and channel coding system with N = 64
VQ codewords, k = 6 VQ dimensions, a source rate of R, = 1, and a signal space
dimension of M = 6. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.
The solid curve shows the results for the reference system where 3 X QPSK is used

as the modulation format.
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Figure 5.5: Performance of a joint source and channel coding system with N = 256
VQ codewords, k = 8 VQ dimensions, a source rate of B, = 1, and a signal space
dimension of M = 8. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.
The solid curve shows the results for the reference system where 4 X QPSK is used
as the modulation format.
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Figure 5.6: Performance of a joint source and channel coding system with N = 16
VQ codewords, k = 2 VQ dimension, a source rate of R, = 2, and a signal space
dimension of M = 4. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.
The solid curve shows the results for the reference system where 2 X QPSK is used
as the modulation format.
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Figure 5.7: Performance of a joint source and channel coding system with N = 64
VQ codewords, & = 3 VQ dimension, a source rate of R, = 2, and a signal space
dimension of M = 6. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.

The solid curve shows the results for the reference system where 3 X QPSK is used
as the modulation format.
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Figure 5.8: Performance of a joint source and channel coding system with N = 256
VQ codewords, k = 4 VQ dimension, a source rate of R, = 2, and a signal space
dimension of M = 8. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.
The solid curve shows the results for the reference system where 4 X QPSK is used
as the modulation format.
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Figure 5.9: Performance of a joint source and channel coding system with N = 16
VQ codewords, k = 2 VQ dimension, a source rate of Ry = 2, and a signal space
dimension of M = 2. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.
The solid curve shows the results for the reference system where 16-QAM is used as
the modulation format.
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Figure 5.10: Performance of a joint source and channel coding system with N = 64
VQ codewords, £ = 2 VQ dimension, a source rate of B, = 3, and a signal space
dimension of M = 2. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.
The solid curve shows the results for the reference system where 64-QAM is used as
the modulation format.
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Figure 5.11: Performance of a joint source and channel coding system with N = 256
VQ codewords, & = 2 VQ dimension, a source rate of B, = 4, and a signal space
dimension of M = 4. Curve — - — represents the upper bound predicted by the rate
distortion theory. Curve * * shows the simulation results for the proposed system.

The solid curve shows the results for the reference system where 256-QAM is used as
the modulation format.
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Figure 5.12: VQ codebook constellation at different channel SNR. The source is a first
Gauss-Markov with a correlation coefficient of p=0.9. The various system parameters
are N =16, k=2and M = 2.
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Figure 5.13: Modulation constellations at different channel SNR. The system is the
same one in Fig. 5. 12.

We compare the performance of the SDVQ system with the linear receiver system
[44] in Figs. 5.14-5.15. It should be pointed out the both two systems are optimized
at the exactly channel SNR value. Fig 5.14 is corresponding to the case of the VQ
dimension k=8, the modulation signal dimension M =8, and the source rate R,=1.
Fig 5.15 is similar to Fig.14, except that the dimensionality of the modulation signal
dimension M is equal to 4. We can see that the performance of our SDVQ system is
almost identical to the linear receiver system in the low channel SNR region. How-
ever, the SDVQ system is superior to the linear receiver system about 1 dB in the
synthesized source SNR in the high channel SNR region. This is due to that the linear

receiver is just an approximate implementation of the optimum receiver at the low
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SNR channel.

Finally let us look at the performance of the SDVQ and the linear receiver systems
in the case of the channel SNR mismatch in Fig. 5.16 and 5.17. Both systems are
optimized at a 8 dB channel SNR and the resulting systems operate under different
channel SNR conditions. We can see that the SDVQ system is significantly better

=

than the linear receiver system. For example, see Fig. 5.17, when the channel SNR
is equal to 10 dB, the SDVQ system is over the linear receiver system about 4 dB in

the synthesized source SNR.
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Figure 5.14: Performance comparison of the proposed system with the linear receiver
system. Both system are optimized at the exact channel SNR. N = 256 VQ code-
words, k = 8 VQ dimensions, a source rate of R; = 1, and a signal space dimension
of M = 3. Curve — - — represents the upper bound predicted by the rate distortion
theory. Curve - - shows the simulation results for the proposed system. Solid line is
corresponding to the linear receiver system.
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Figure 5.15: Performance comparison of the proposed system with the linear receiver
system. Both system are optimized at the exact channel SNR. N = 256 VQ code-
words, k = 8 VQ dimensions, a source rate of B, = 1, and a signal space dimension
of M = 4. Curve — - — represents the upper bound predicted by the rate distortion
theory. Curve - - shows the simulation results for the proposed system. Solid line is
corresponding to the linear receiver system.
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Figure 5.16: Performance comparison of the proposed system with the linear receiver
system. Both system are optimized at a particular channel SNR. N = 256 VQ code-
words, k = 8 VQ dimensions, a source rate of R, = 1, and a signal space dimension
of M = 8. Curve — - — represents the upper bound predicted by the rate distortion
theory. (‘urve oo shows the simulation results for the proposed system. Curve * *
represents the performance of the reference system. Solid line is corresponding to the
linear receiver system.
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Figure 5.17: Performance comparison of the proposed system with the linear receiver
system. Both system are optimized at a particular channel SNR. N = 256 VQ code-
words, £ = 8 VQ dimensions, a source rate of R; = 1, and a signal space dimension
of M = 4. Curve — - — represents the upper bound predicted by the rate distortion
theory. Curve oo shows the simulation results for the proposed system. Curve * *
represents the performance of the reference system. Solid line is corresponding to the
linear receiver system.

5.5 Summary

We have presented in this chapter an iterative procedure to joint optimize source and
channel coding in terms of the criterion of the minimum mean-square error (MSE)
between the original and the reconstructed source signals. We applied this procedure
to design a combined codec for a first order Gauss-Markov source. The results indicate
that our codec significantly outperforms a conventional system. In addition, it is

observed that at low channel SNR, a modulation signal space with a large signal



dimension is needed for satisfactory performance. On the other hand for high channel

signal-to-noise ratio, the source rate should be increased for better performance.
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Chapter 6

Sequential Reconstruction of

Vector Quantized Signals

We described a symbol by symbol soft decision decoding algorithm that jointly opti-
mizes the VQ and the modulation signal set in Chapter 5. However, if the VQ output
indices are correlated, a block decoding technique can be used to further improve the
system performance.

Ideally, a VQ or source encoder should remove all the redundancy in the source.
However, due to the constraints such as the encoding delay and VQ complexity, suc-
cessive VQ indices are often correlated. In particular, if the source already has a
certain redundancy, the receiver could take advantage of this residual redundancy to
reduce the effect of the channel noise. The problem thus is how to design such a
receiver.

This chapter presents an optimal sequential decoding scheme for a joint source and
channel coding system operating in the AWGN channel. The minimum mean-square
error (MSE) between the original and the reconstructed source signals is used as the
optimality criterion. The system being investigated consists of a vector quantizer

(VQ) whose output indices are mapped directly into points in the modulation signal
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space. The modulation signal is then transmitted over an AWGN channel. A sequen-
tial decoder based on the Bayesian estimate is used to reconstruct the source signal
from the received signal samples. A recursive algorithm for implementing the block
soft decision receiver is introduced. Compared to the symbol by symbol decoding
technique presented in Chapter 5, it is found that sequential decoding significantly
improves the system performance when transmitting from a correlated source.

This chapter is organized into five sections. Section 5.1 provides a brief review of
previous work on detecting a Markov source based on the hard decision receiver, and
a study of the residual redundancy at the output of the source coder. By modeling the
VQ output as a first order Markov process, we derive in Section 5.2 a block decoder -
under the MSE criterion. In section 5.3, a recursive signal reconstruction procedure
is presented to implement block decoding. The simulation results on the performance
of the sequential decoding technique are presented in Section 5.4. Finally, a summary

of this chapter is given in Section 5.5.

6.1 Residual Redundancy

The decoder described in chapter 5 actually performs symbol by symbol soft decision
decoding, i.e., as soon as a signal sample is received, the decoder would reconstruct a
corresponding source signal sample, based solely on that particular received sample.
Such a decoder works well for a memoryless source; however, for sources with memory,
the performance can be further improved. Even if a very sophisticated compression
technique is used to try to remove the source redundancy, there will be some residual
correlation at the output of the source coder at different time instances. This residual
redundancy can be used by the receiver to provide error protection without bandwidth

expansion.
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By modeling the residual correlation as a first order Markov process, several au-
thors have considered the problem of detecting a correlated source over a noisy
channel. Devore [78] considered detecting a binary Markov source through a binary
symmetrical channel and gave necessary conditions for the optimal detectors. Sayood
and Borkenhagen [79] considered the problem of detecting a discrete Markov source
over a memoryless noisy channel in a joint source-channel DPCM image coding sys-
tem . Phamdo and Farvardin [30] considered the instantaneous maximum a posteriori
(MAP) detection of a discrete Markov source over noisy channels and its application
to the combined source-channel coding system. The main difference between [79] and
[80] is that the detector in {79] is suboptimum, hence, it is not a MAP detector. In [79]
only sequential detection was considered, i.e., the determination of the most probably
transmitted sequence given an observed sequence, while the objective of instantaneous
MAP detection is to determine the most probably transmitted symbol given the ob-
servations up to the current time. More recently, Gerlach developed a hard decision
receiver for combined speech extrapolation and error detection based on maximum a
posteriori probability of the source parameters [81]. The optimal receiver structures
resulting from the above papers were developed based on the signal detection theory.
However, as we proved in chapter 4, the optimal receiver under the MSE criterion
should make the conditional estimate. We first present a block decoding algorithm
to exploit the residual redundancy, then develope a recursive algorithm to implement
the optimal soft decision block decoding, which constitutes the main contribution
presented in this chapter.

Let us first review briefly the structure of the optimal symbol by symbol decoder
for a combined source and channel coding system. The communication system model
is shown in Fig. 6.1. Assume that x is a k-dimensional vector derived from a random

source. The vector x is mapped into a VQ codeword chosen from the set {c;,...,cn}.
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Figure 6.1: System model for symbol by symbol decoding

Assuming c; was chosen, then its index ¢ is mapped directly into the modulation signal
point s;. The set {sy,...,sy} forms the signal constellation.

In the channel, the transmitted signal is combined with additive Gaussian noise n.
Given the received signal y = s; + n, the decoder should provide the “best” estimate

of the original signal x. The soft-decision detector provides the estimate

. TN, Peip(ylsi
=1 Plp(ylsl)

The decoder described by (6.1) actually performs a symbol by symbol soft decision

(6.1)

decoding. Due to practical constraints such as the encoding delay and the VQ com-
plexity, the VQ indices at different time intervals are often correlated. This redun-
dancy can be modeled as a first order Markov process. For demonstration purposes,

we investigate the transition probability
P(c;|c;) = Prob(c; at time m | c; at time m-1) (6.2)

of the VQ codebook. The VQ codebook is designed by the SDVQ, see Section 5.2,
which is a modified version of the Generalized Llyod Algorithm (GLA). As input
data we used a first order Gauss-Markov source as well as the line spectral pair (LSP)
parameters of a speech signal. The simulation results are shown in Fig.6.2 and 6.3 for
different VQ parameters.

The two planar axes represent the VQ’s indices and the vertical axis represents the

transition probability. If the source is memoryless, the transition probability should
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Figure 6.2: Transition probability of a VQ codebook for an AR(1) source with coeffi-
cient p=0.9. Codebook size is N=64, and the vector dimension k=6.
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Z

Figure 6.3: Transition probabilities of the first stage in a 4-stage VQ codebook for
the LSP parameters of speech. Number of stages is 4. The codebook size is 64 for
each stage, and the vector dimension is 10.
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not depend on the previous index, i.e,
P(eile;) = P(ci) (6.3)

which means that the transition probabilities along the index j axis should be equal
to each other. It is clear from the figures that the vertical readings are not uniform
and this implies that redundancy is present at the VQ’s output. The next problem is
how to model this redundancy. In the previous studies [79] and [80], the VQ output
was usually modeled as a first order Markov process, since it is a good representation
of the source model and easy to perform mathematic analysis. In this thesis, we
adopt the same assumption for the VQ source output. It will be demonstrated later
in this chapter that this redundancy can be exploited at the receiver to provide error

protection against the channel noise.

6.2 The Block Decoder

We will derive the optimal block decoding algorithm under the MSE criterion. Referring

Noise

>

Source > VQ Modulator| Receiver f——»

Figure 6.4: System model for block decoding

to Figure 6.4, in order to describe the sequential decoding process, we need to intro-
duce a time index to describe the received signals and the reconstructed source signals
at different instants. Let us denote the modulator output at time m by w,,, and the
corresponding noise vector, and received vector by n,,, and y,, respectively. In ad-
dition, let the VQ codeword and the reconstructed source signal corresponding to

w,, be denoted by v,, and X,,. It should be clear that v,, € {ci1,...,cn}. and
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W,, € {s1,...,sn}. Now if we define

Ny = (ny,...,n),

YL =(y1,---.¥L)

where L is the block length, then the optimal block decoder computes the conditional

mean of the source given the received signal, i.e.,

v, P(VL)p(YLIVL)V,

Xu(Y1) = v, P(VL)p(YL|VL)

(6.5)

where P(V ) is the probability of the sequence of centroids (vy,...,vp), and p(Y|Vy)
is the joint pdf of all the y,’s conditioned on the source sequence (vq,...,vy). Note
that the summations in the above equation are taken over all possible L-length source
sequences. Comparing with the symbol by symbol decoder in (6.1), we see immedi-

.H) is simply a more general formulation of (6.1).

ately that (6

Because of the summations in (6.5), signal reconstruction by the block decoder
appears to be very complex. A brute force approach would require the decoder to
compute N terms for each of the summations, where N is the codebook size. Clearly
this is not feasible for any VQ of practical interest. Fortunately, by modeling the VQ's
output as a first order Markov process, the computation of (6.5) can be significantly
simplified. To develop a sequential decoding algorithm, let us first express the prob-
ability P(VL) as

PV, vilviit) (6.6)

u_' ;_—_] =

where P(v;|vi_1) is the transition probability from the previous state : — 1 to the
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current state . The conditional pdf p(Y .|V L) can be expressed as

L
p(YLIVL) = p(y1lvi) [] p(yilvi. va, ... vi), (6.7)

=2

If no coding is introduced in the modulation mapping,

p(¥ilvi, va, ..., vi) = ply:|vi)

we obtain a common modulation mapping strategy. But we can introduce a first order

conditional mapping for the modulation

p(Yi|V1»V2a---»Vi) ZP(Yilvi—laVi) (68)

which means that the received signal is related not only to the current input v; but
also to the previous input v,_;. Equation (6.8) describes an optimal modulation
mapping rule for the Markov source, which suggests that a coded modulation should
be adopted for the source with memory. In a traditional modulation system, a fixed
modulation or mapping is used to transmit a VQ index. This strategy is fine if the VQ
indices are independent to each other, i.e., no redundancy exits at the output of source
coder. However, as shown in Fig. 6.2 and Fig. 6.3, redundancy does exist even though
a sophisticated source compression scheme such as VQ is used. The redundancy can
be used to design a coded modulation scheme. Therefore, the optimal modulation
scheme should be a conditional mapping. The optimal mapping rule would thus have
a trellis structure. It is quite interesting to note that we could use the trellis coded
modulation (TCM) for a first order Markov source. It is quite clear that the TCM

can be derived from the transition probability of the Markov source.

6.3 The Sequential Decoding Algorithm

Now we want to develop a sequential decoding algorithm starting with equation (6.5)

by exploiting the properties of a first order Markov source. The combination of
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Figure 6.5: Trellis Coded Modulation for a first order Markov process
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the block decoder and the recursive procedure leads to a sequential decoder. Since
equation (6.5) is quite complicated, we will develop a recursive algorithm for the
numerator and denominator separately. Note that the denominator of equation (6.5)

can be written as

Q. = ZV,,, P(V'm)p(Ymivm)

(6.9)
= va va—l P(vm—l)p(ynllvmwvm—l)P(Vm—l)p(Ym—l|V7n—1)

Furthermore, let us define
f(vm) = Z P(Vm—l )p(Ym|vm~ V7n-1)P(Vm—1 )p(Ym—l ‘Vm—l)
Vm—l
then we have
f(vm) = Evm_l P(Vm )p(ym}vmavm—l)

va—z P(Vm—l lvm—‘l)p(ym—l lvm—l [} Vm—‘).)P(Vm—'Z )p(Ym—‘Z |V1n—2)

= Evm_] f(vm—l)P(vmlvm—l)p(Y'nL'Vmavmvl)
(6.10)

and
oGy = Zf(vm)v (611)
Vm

Note that the numerator of equation (6.5) is the vector:

b(vm) = ZV,,, P(Vm )p(Ym le )V!Il

- Evm va—l P(vm—l )p(y"L‘Vnu Vm—l)P(Vm—l )p(Ym—l 'Vm—l )(Vm—la vm)
(6.12)

Decomposing the equation (6.12), we get

va_l VjP(levm—l)p(ymlvmavm—l)P(Vm-l)p(Ym—l]Vm-—l) J <m
bj(vvvl) =

me(vm) ] =m
(6.13)

In the following, we develop a recursive formula for b;(v,,). As we know

bj(vm) = va_l P(Vm|vm—1)p(ymlvnnVm—l)
va—z VjP(vm—l|V2)p(ym—l|vm—laVm—‘Z)P(Vm—Z)p(Ym—‘Zle—‘Z)

106



Realizing that the last term is equal to b;(v,,_;) for j = 1.2,---,m — 2, we obtain

-

the following recursive formula

Z bm Vo - P Vi {Vin— m |V, Voo ) <m
bj(v.,n) — Vm—1 ( 1) ( I 1)p(y I 1) J (614)
Vm f(vm) J=m
Subsequently, we can express the components of the vector b(V,,) as
b = _bj(v,) J=12,....m (6.15)
\gi

Furthermore, it is straightforward to express the reconstructed signal vectors zy,...,.I

for an observation window of L in the form:

A b m o
%L =~ (6.16)

a”l

where the superscript L is deliberately introduced to emphasize the dependency of
the reconstructed signal vectors on the block length L.

The VQ output v,, represents a state in the Markov process, there are N such
state variables at any time m. Correspondingly, the term f(v,,) is a function of N
state variables v,,. The update of f(v,,) at any time m > 1 requires altogether
2N? multiplications; see second line in (6.10). At time m = 1, there are only N
multiplications required. Similarly, the term h;(v,,) is also a function of the state
variable v,,. Since the index j can vary from 1 to m, this means at time m, there are
altogether N values for v,,. The updating of f(v,,) and h;(v,,) at time m requires
altogether (m — 1)N? + N multiplications. Thus in summary, for a block length of
L, the updating of the f(v,,)’s and the h;(v,,)’s requires a total of N(L + 1) + (L —
1)(L + 4)N?/2 multiplications. For large N, this is approximately equal to (N L)?/2
multiplications for decoding L symbols, or equivalently a complexity of LN?/2 per
symbol. For the direct block decoding in terms of the equation (6.5), the VQ index v,,

has N states for each time interval m, therefore, the total number of states for L time
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intervals is NZ. The number of the multiplications for brute-force block decoding is
about 2NL/L. We can see that a significant reduction in complexity is obtained by
applying the sequential decoding algorithm: the complexity is reduced from 2NL/L
to LN?/2.

Since both the decoding delay and the complexity increase linearly with L, an
excessively large block size is clearly not desirable, nor is it necessary. Recall that
the VQ output can be modeled as a first order Markov process and each VQ index
represents a state of the Markov processes. According to the property of the Markov
processes, the next state is dependent only on the present state. On other hand, for
a homogeneous Markov process, the transition probability P(c;/c;) is independent of -
the time in which the transition occurs. Therefore the state transition matrix at time
m, P(m), can be expressed as

P(m)=P(1)" (6.17)

where P(1) 1s the single-step (conditional) transition probability matrix, defined as

P(1/1)  P(2/1) -+ P(N/1)

P(1/2) " P(2/2) --- P(N/2)
P(l) =

P(1/N) P(2/N) --- P(N/N)

and the ¢, j-th element of P(1) represents the probability of transferring at any time
m from state : to state j. As we know, a homogeneous Markov chain can reach a

steady-state probability matrix P after many transitions [82].

lim P(1)" =P (6.18)

m—o0

For our case, we can compare the norm of the difference of two consecutive transition
probability matrices and determine how long time the system needs to enter the

steady state. Fig. 6.6 shows the norm of the difference of two consecutive transition
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probability matrices as a function of the iteration number, where the norm is defined
as

N N

6(771,) = Z Z HP"I(Z*]) - Pm—l(i*]’)”2 (619)

=1 j3=1

Our experiments show that after 16 transitions, the transition matrix enters steady-
state. In other words, the Markov process has a memory span of about 16 symbols.
If a source has a memory span of L, symbols, then the block length L should be at

least L,. In our case, the reconstructed signal vectors X(I) in (6.16) will satisfy

m

m m

(M a2 (o) n>L,+m-—1 (6.20)

The above equation implies that except for an initial delay of L, symbol time, decoding
can be performed continuously, one symbol at a time, by only keeping and extending
all those state variables h,,(v,,) with an index m greater than L — L,. This is the

basis of our sequential decoder.

6.4 Simulation Results

In our experiments, the vector quantizer used in the sequential decoding soft decision
vector quantizer (SD-SDVQ) is the same as that used in the SDVQ system based
on symbol-by-symbol decoding (i.e., vector quantizer codebook optimization does not
account for sequential decoding). Obviously, the system is a sub-optimum SD-SDVQ,
but it is easy to implement and gives a good indication of the coding gain that can
be obtained by using the sequential decoding technique.

To demonstrate the advantages of sequential decoding over symbol-by-symbol de-
coding, such as the COVQ, SDVQ and SOVQ(LBG), Figs. 6.7-6.10 compare SD-
SDVQ to the COVQ, SDVQ and SOVQ(LBG) for different VQ source dimensions

and codebook sizes at rates of 1 bit/sample (Fig. 6.7-6.8) and 2 bits/sample (Fig.
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Figure 6.7: Performance of COVQ, SD-SDVQ, SDVQ and SOVQ(LBG) systems. The
rate is 1 bit/symbol. VQ codebook size M = 16, block length k=4. Source AR-I
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6.9-6.10), where a first-order Gauss-Markov source is used as input. The COVQ and
SDVQ systems were designed for an average SNR of 5 dB and the optimal modulation
constellation, described in section 5.5, is used to transmit the VQ indices. Simulated
annealing was used to optimize the index assignment for the COVQ, SDVQ and
SOVQ(LBG).

Figures 6.7-6.8 show that SD-SDVQ provides significant performance improvement
over other symbol-by-symbol decoding scheme, particularly in low channel SNR. For
example, in Fig. 6.8, at a channel SNR of 3 dB and a codebook size of 256, a vector
dimension k = 8, SD-SDVQ performance is better than SDVQ by about 1.2 dB, than
COVQ by about 2 dB and than SOVQ(LBG) by about 2.5 dB. We can see that the

SD-SDVQ provide the best performance in the all experiments.

6.5 Conclusions

We have derived in this chapter a sequential decoder for reconstructing vector-quantized
and digitally modulated signals transmitted over an AWGN channel. This decoding
algorithm has a computational complexity of LN?/2, where L is the observation win-
dow size and N is the size of the VQ codebook. The simulation results show that
the sequential decoding can improve the system performance over symbol-by-symbol

decoding, especially at low channel signal-to-noise ratio.



Chapter 7

Application of the Joint Source
and Channel Coding Algorithm

As we see from the previous chapters, joint optimization of source and channel coding
can bring about a significant improvement in the system perfonﬁance compared with
the traditional design method. Here in this chapter, we consider the application of
this coding philosophy to the mobile channel, which is characterized by the presence
of the Rayleigh fading. In addition, we will look at the the performance of the joint
codec in transmitting the line spectral pair (LSP) parameters of the speech signal over
the AWGN channel. The solutions to these two relatively more practical problems
constitute the main subjects of this chapter.

On the subject of joint optimization of source and channel coding over a Rayleigh
fading channel, once again, a decoder based on the conditional estimate is used to
reconstruct the source signal from the received signal and the channel state informa-
tion (CSI). We will present an iterative algorithm that jointly optimizes the VQ and
the modulation signal set in terms of the minimum MSE criterion. It will be shown
that a jointly optimized system based on average channel characteristics significantly

outperforms a reference system based on a VQ designed for the given source and
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a standard QAM modulation signal set. We also compared the performance of the
symbol-by-symbol decoding with the sequential decoding. It is found that the distor-
tion can be further reduced by the sequential decoding algorithm, especially in the
low SNR channel.

On the subject of transmitting LSPs over the AWGN chanuel, in a view of the real-
time implementation, a structured VQ is used to reduce the computational complexity
and storage capacity. We use a multi-stage VQ (MSVQ) to represent the LSP. To
take account of the properties of the human ear, a weighted mean squared-error
(WMSE) is used as the optimization criterion. The conditions for optimality under the
WMSE criterion are derived. It is found that the optimal receiver is still a conditional
estimator and the jointly optimized system can reduce the spectral distortion in the

noisy channel significantly.

7.1 Optimized Decoder Over the Rayleigh Fading
Channel

It is well known that the land/mobile radio channel exhibits Rayleigh fading. The
block diagram of the communication system over the Rayleigh fading channel is shown

in Figure 7.1. The source is a zero-mean stationary random process, and x is a k-

Fading
Gain Noise
G n
X C Sl y
Source vQ Modulator Receiver F—*

Figure 7.1: System model over Rayleigh fading channel

dimensional vector derived from the random source with the pdf p(x). The vector x
is mapped to a VQ codeword chosen from the set {ci,...,cn} according to a given

optimization criterion. Assuming the source vector is represented by c;, then its index
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¢ 1s mapped directly into the modulation signal point. Since every two dimensions of
s; can be viewed as a QAM symbol, it is thus most convenient to treat s} as a complex
vector with M/2 components. Let s7,, j = 1,2...., M/2, be the jt component of s},
then after transmission over the Rayleigh channel with additive white Gaussian noise,

the correspondingly received signal is

y; = g;s; +n;, (7.1)
where n7 and g7 are zero mean, complex Gaussian random variables representing the
fading gain and the additive Gaussian noise respectively, experienced by s7,. Since
interleaving/deinterleaving is usually used to combat fading, it is reasonable to assume
that ¢;’s are independent and identically distributed (i.i.d). The same is true for the
n;’s. Note that if the white Gaussian noise in the channel has a two-sided power

spectral density of N,/2, then the variance of the n!'s is N,/2. In addition, if the
variance of the fading gain g; is aj, then the symbol signal energy is

N

Ewg =3 Pilis|*o; (7.2)

=1
where P is the probability that s is transmitted. The channel signal-to-noise ratio
(SNR) is simply Em,g/N—,f. As in many other studies of the fading channel, we assume
perfect channel state information (CSI) is available at the receiver, i.e., the g;’s are
known at the receiver. It is not difficult to estimate these complex fading gains,
especially at slow fading rates. This may be done, for example, by inserting known
training symbols at regularly spaced intervals [83]. If the fading rate is, say f Hz, and
the baud rate is B Hz, then the spacing of training symbols should be at least B/(2f)
svmbols. The fade rate is usually small compared with the baud rate (around half
a percent in Digital Cellular, for example) and hence the overhead associated with
channel estimation is very small. Interpolation may be used to determine the complex

gains that affect the data symbols between training symbols.
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The received signal can be written in a matrix form as
y =G +n’ (7.3)
where G* = diag(g5, 93}, - - ,g}*w.z). For convenience, let us define a fading gain vector
g = 19795 -gm)" (7.4)

Given the received signal y* and the fading gain g*, the decoder should provide the
“best” estimate of the original signal x.

The MSE criterion is used to measure the distortion between the original and
the reconstructed source signals. Let p(x,y*|g*) denote the conditional joint density
function of x and y* given the fading vector g*. Then the average distortion can be

written as

— _l_ % * * 2 * * * * -
D=2 [ [ [Ix—xiy"g)lls(x,y7lg )dxdy p(g)dg

—
-1
N

~

where p(g*) denotes the pdf of the fading gain vector g*.
As shown in Chapter 5, the optimum decoder under the minimum MSE criterion
is one that computes the conditional expectation of the signal x given the received

signal y* and the fading gain g*. In other words

x(y".g") = Elxly",g'] = [ xp(x)p(y*x, g7)dx (7.6)

p(y*lg”)
where p(x) is the pdf of x, p(y*/x,g") is the conditional pdf of y* given x and g*.
Let Q;, :=1,2,---, N denote the ith partition in the VQ, and let py-() be the pdf of
the complex Gaussian noise vector n*. Since we assume that perfect CSI is available
at the receiver, it can be shown that (7.6) can be rewritten as

f\-];l P,-C,'p(y*lsf, g*)
N Pp(ysi,g)

x(y*,g") =
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where

*a* * * * % 1 ‘_G*s: 2
p(y'lsi,g") = pu(y" — G's]) = —-———e‘tp(‘_“l“\/—“—
Vo

= N ) (7.8)

is the conditional pdf of y* given that s is transmitted and the fading gain is g~,

_ Jg, xp(x)dx -
= 7

is the VQ’s clean channel centroid associate with the partition region 2;, and

P = /Q p(x)dx (7.10)

is the probability of occurrence of the :th codevector c; .

7.2 Optimization of VQ and Modulation Signal
Set for the Rayleigh Fading Channel

We first consider the problem of optimizing the VQ partitions for a given modulation
constellation and Rayleigh fading gain.

As in the AWGN channel, the GLA procedure is used again to find the optimal
VQ. Assumed that an initial VQ codebook, ¢;,;¢ = 1,---, N, is given. Furthermore,
assume that the codeword ¢; is transmitted by the signal vector sy. Therefore after
substituting (7.7) into (7.5), the average distortion D can be rewritten as

2

L, PiPeipn(G*(s}, —s7) + %)
i Pipu(G*(sy, — s7) + 0)

X —

(7.11)

1 & +o0
D_%vnglllm[_w '/g‘

pu-(n")p(g")dg p(x)dx

where Q;, i = 1,---, N, are the various partitions. Since each inner integral term

]m = / /
n‘ g‘

2

N Picipn-(G*(sz, —s}) +n* .
Z:_l Pn ( ( m 1) ) pn'(n*)p(g*)dg*dn (712)

x p—
Zzl\il Pipn:(G*(s;, —s7) + n*)
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in equation (7.12) is non-negative, the average distortion will be minimized if the

following partitioning rule is adopted for the VQ:
xe€Q, if L,<I; for all j#m (7.13)
The partitions defined by (7.12) and (7.13) depend on the VQ centroids c¢;....,cn,

which in turn depend on the partitions according to the following

c. = Ja, xp(x)dx
1 fn, p(x)dx

Therefore the optimal centroids and partitions can be obtained by iterating (7.12)

(7.14)

and (7.14) until convergence occurs. Convergence is guaranteed since the distortion
can either decrease or remain the same at each step of the iteration.

The mapping of the VQ centroids into the modulation signal points (index assign-
ment) has an important impact on the system performance. The simulated annealing
algorithm is used for optimizing the index assignment [23].

The distortion in (7.11) depends on the VQ partitions {Q,,,m = 1,---, N} and
the modulation constellation {s: ,m = 1,---, N}. Therefore, the average distortion
could be further reduced by optimizing the modulation constellation for a given VQ
partition.

Due to the inherent property of the nonlinear receiver it is quite difficulty to find

an analytical solution for the optimal modulation constellation, As in Chapter 5, we

still adopt the constraint gradient-search algorithm to find the optimal constellations.

7.3 Sequential Decoding over the Rayleigh Fad-
ing Channel

As we discussed in Chapter 6, the redundancy exits at the VQ output due to the

constraints on the VQ complexity, therefore a block decoding technique can be used
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to exploit the redundancy.

The optimal block decoder for the Rayleigh fading channel is given by

Y. P(VOMYiIVL GV,
X (Y;.G3) = L
LY LG = S V) (Y3 Ve, G

where P(VL) is the probability of the sequence of centroids (vq,...,vp),and p(Y7|VL,G7)
is the joint pdf of all the Y}’s conditioned on the source sequence (vy,...,vp) and
tl.le fading gain (g7,...,g7). Note that the summations in the above equation are
taken over all possible L-léllgtll source sequences.

Following a similar development of the sequential decoding algorithm for the

AWGN channel, we can express the reconstructed source vectors Xi,...,Xp for an

observation window of L in the form:
XTTL = (7'16)

where the superscript (L) is deliberately introduced to emphasize the dependency of
the reconstructed signal vectors on the block length L. Note the recursive formula for

by .. and «,, are related to the given Rayleigh fading gain matrix Gi.

7.4 Joint Optimization of Source and Channel Cod-
ing over Rayleigh Fading Channel

A strategy of the generalized Lloyd’s algorithm (GLA) can be used to jointly optimize
the VQ and modulation constellations over the Rayleigh fading channel. This strategy
first optimizes the VQ for the given modulation constellation, then optimizes the
modulation constellation for the given VQ. By iterating these two steps until the
convergence, a jointly optimized system is obtained.

The design procedure described above was applied to a first order Gauss-Markov

source signal. The correlation coefficient between successive samples is set to 0.9. The
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corresponding numerical results are shown in Figs 7.2-7.5 for the different VQ size N,

the signal space dimension M, and the VQ source rate R, defined as

_ logs(N)

R
k

(7.17)

The reference systems used for comparison in Figs. 7.2-7.5 are constructed as follows.
For given N, M, and R;, we first design the optimal VQ for the AR-1 source in a
noiseless channel, using the LBG algorithm [43]. Then from the value of N and M,
determine the most appropriate basic QAM constellation. The decoder in the ret-
erence system is assumed to perform hard decision decoding, i.e. it determines the
most likely transmitted VQ codeword from the received vector y* and the channel -
state information g*. The simulated annealing algorithm is used to find the optimal
VQ-modulation mapping for the reference system. As for sequential decoding, the
same VQ and modulation constellation designed for symbol by symbol decoding is
used. Neither VQ nor modulation constellation has been re-optimized for the sequen-
tial decoding strategy. Due to the homogeneous Markov property of the particular
VQ output, the decoding delay L, is équal to 16.

We show in Figs 7.2-7.8 the performance of our systems as a function of the channel
signal to noise ratio, E.,/No, in dB. Figs 7.2-7.4 are for a source rate of 1 bit/sample
while Figs. 7.5-7.7 are for a source rate of 2 bit/sample. The difference among Figs
7.2-7.4 (or Figs. 7.5-7.7) is the number of codewords N. The performance measure is

the reconstructed source signal-to-noise ratio (SSNR), defined as

E([x[*)

SSNR= ———
’ E(jx — %]?)

(7.18)

It should be pointed out that system optimization were performed at a channel SNR
of 17 dB. The resultant systems were then used over the entire SNR range. The

optimization point (at 17 dB) gives the best compromise between the performance
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in the high SNR and the low SNR regions. Note that in principle we can optimize
the system at every channel SNR. However this would require an adaptive system
which coordinates between the transmitter and the receiver. As observed from these
figures, the sequential decoder significantly outperforms the two reference systems.
For example, it can be seen from that, see fig. 7.2 and 7.4, with N = 16 and a channel
SNR of 10 dB, the gain in SSNR provided by sequential decoding is roughly 5 dB
compared to the hard decision decoder (conventional system) and 1.5 dB compared to
the symbol by symbol decoder. When N increases to 256, the performance advantage
(in SSNR) the sequential decoder has over the symbol by symbol decoder increases
to 2.4 dB at the same channel SNR. When the channel SNR decreases, the advantage
of using a sequential decoder becomes even more obvious.

To put the Rayleigh channel results in perspective, we show in Fig. 7.8 the per-
formance comparison with the pure AWGN channel. It is found that Rayleigh fading

causes a 15 dB degradation in the channel SNR.

7.5 Linear Prediction and Spectrum Information

In the earlier chapters, we evaluate the performance of the joint source and channel
coding through the use of a first order Gauss-Markov source. Now, we consider a
more practical application of our SDVQ technique in transmitting the line spectral
pairs (LSP) of a digitized speech signal.

LSP is a representation form of the linear prediction parameter of the speech signal.
Linear prediction is a very important and powerful signal processing technique used
in the speech analysis and speech coding. The basic idea behind the method is that
each input speech sample can be predicted by a linear combination of a finite number

of past input speech samples. Mathematically, the linear predictor is described by the

124



20 T T T

%% Sequence Decoding System
15

+++  Proposed System .

000  Reference System

Reconstructed Signal SNR

-10 ) L i )

5 10 15 20 25
Channel SNR Eb/NO

Figure 7.2: System Performance for vector dimension k=4, rate 1 bit/sample, and
signal space dimension M=4. Curve *** denotes the performance of sequential de-
coding, Curve +++ is the performance of the optimized system for symbol by symbol

decoding. Curve o0 o is for the reference system where 2XQPSK symbols is used as
the modulation format.
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Figure 7.3: System Performance for vector dimension k=6, rate 1 bit/sample, and
signal space dimension M=6. Curve *** denotes the performance of sequential de-
coding, Curve +++ is the performance of the optimized system for symbol by symbol
decoding. Curve o oo is for the reference system where 3XQPSK symbols is used as
the modulation format.
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Figure 7.4: System Performance for vector dimension k=8, rate 1 bit/sample, and
signal space dimension M=3. Curve *** denotes the performance of sequential de-
coding, Curve +++ is the performance of the optimized system for symbol by symbol

decoding. Curve oo o is for the reference system where 4XQPSK symbols is used as
the modulation format.
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Figure 7.5: System Performance for vector dimension k=2, rate 2 bit/sample, and
signal space dimension M=4. Curve *** denotes the performance of sequential de-
coding, Curve +++ is the performance of the optimized system for symbol by symbol
decoding. Curve oo o is for the reference system where 2XQPSK symbols 1s used as
the modulation format.

128



20 ¥ T

*¥x%%  Sequence Decoding System

15+ +++  Proposed System .

Reference System

10

Reconstructed Signal SNR

1 1 1
0 S 10 15 20 25
Channel SNR Eb/NO

Figure 7.6: System Performance for vector dimension k=3, rate 2 bit/sample, and
signal space dimension M=6. Curve *** denotes the performance of sequential de-
coding, Curve +++ is the performance of the optimized system for symbol by symbol

decoding. Curve o0 o is for the reference system where 3XQPSK symbols is used as
the modulation format.
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Figure 7.7: System Performance for vector dimension k=2, rate 2 bit/sample, and
signal space dimension M=4. Curve *** denotes the performance of sequential de-
coding, Curve +++ is the performance of the optimized system for symbol by symbol
decoding. Curve oo o is for the reference system where 4XQPSK symbols is used as
the modulation format.
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Figure 7.3: Effect of Rayleigh fading on the system performance. The VQ codebook
size N = 64, block length & = 3, and a signal space dimension M = 6. The source
is AR-1 with p = 0.9. Curve +++ is the AWGN channel result. Curve *** is the
Rayleigh fading channel results.
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equation
K
a(n) =Y axu(n — k) (7.19)
k=1

By subtracting the predicted signal, u(n), from the current value, u(n), we obtain a

residual (or error) signal,
e(n) = u(n) — a(n) (7.20)

The coefficients is chosen to minimize the MSE of the prediction error, therefore the
partial derivative of the MSE with respect to each coefficient a; (2 = 1,2,---, K)

should be zero. Then, the following condition for optimality is found:
E{e(n)u(n—12)} =0 (7.21)

This equation is called the orthogonal principle in the linear prediction theory. It im-
plies that the prediction error should be orthogonal to the input data. By submitting

equ. (7.19), (7.20) into (7.21) we obtain the following linear equation
Ra=r, (7.22)

where R is the autocorrelation matrix,

r(0) r(l) r(K —1)
r(l) r(0) r(K —2)
r(2) r(1) r(K —3)
R =
| (K —1) r(K=2) - r(0) ]

a = [ay,ay, -, ak]7 is the linear prediction coefficients and r, = [r(1),7(2),- - (RO,

where r(:),7 = 1,2,,---, K, is the autocorrelation function of the signal u(n). The

equation (7.22) is called Yule-Walker equation. The autocorrelation matrix R is a
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positive, Toeplitz matrix. Due to its special structure a computational efficient pro-
cedure, Levison-Durbin algorithm [59]-[60], can be used to find the optimal prediction
coefficients. If the speech signal is passed through a filter with the optimal prediction
coeflicients, the residual sequence needs fewer bits of information to achieve a satis-
factory signal-to-noise ratio. Note the prediction coefficients are needed be quantized
and coded only at a rather slow frame rate, typically about 10-30 ms to reflect the
changing nature of the speech signal.

On the other hand, we can look at the LP( analysis of speech signal from the view
of signal spectrum. LPC analysis is to extract a set of parameters from the speech
signal which specifies the filter transfer function giving the best spectral match to the -
signal being encodered. The spectral density function of the speech signal is given by

0.2

Pl) = e

where the o2 is the variance of the prediction error signal, and A(e’) is the spectral
response of the linear filter. Such a filtering process is often referred to as spectral
flatting, since regardless of the spectral shape of the input speech signal, the spectrum
of residual sequence is substantially flat. Practically, a good estimate of the signal
spectral density can be obtained by the so-called model-based approach. For the
speech signal analysis 10 order predictor is usually adopted, such as VSELP [5], DOD
FS-1016 [7]. Figure 7.9 shows the linear prediction spectrum of a 20 ms segment of
voiced speech. A Hamming window was used to weight the speech data prior to the
linear prediction analysis. We can see from the figure that the spectral envelope of
the LPC filter frequency response contains a number of peaks at frequencies closely
related to the formant frequencies, the resonant frequencies of the vocal tract.

In low-bit rate speech coding algorithms such as CELP, the input speech spectrum

information is quantized and transmitted, along with other parameters to the receiver.
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Figure 7.9: Linear prediction spectrum and signal spectrum

Vector quantization of spectral parameters has attracted considerable attention for
the low bit rate speech coding. However, the application of spectral parameter vector
quantization has been limited in actual speech coding system due to the high VQ
computational complexity and the large distortion over noisy channels. The optimal

R-th order linear predictor is represented by:

]\" .
) = Z a,-z’
=1

where a; are the coefficients of the linear predictor. And the same predictor with

[

A(

quantized coeflicients a; is denoted by A(z). The line spectrum pairs (LSP), histori-
cally, is a popular one-to-one transformation of the LPC parameters that result in a
set of parameters which can be efficiently quantized while maintaining stability [34]-
[86]. Many good properties of LSP make it a good candidate for the presentation of

the speech signal spectral information. The first such property is monotonicity, which
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restricts each LSP in a vector to be larger than the previous LSP. Given the mono-
tonicity property, errors can be easily detected and corrected. The second desirable
property is its robustness towards error, which means that an error in any single LSP
do not propagate to other LSP.

By introducing a suitable structure in the VQ codebook, both the memory and
computational complexity required by a VQ can be reduced dramatically. These
techniques range from the multi-stage codebooks and group codebooks to overlaying
non-uniform binary tree structures on the codebook. In a multi-stage VQ (MSVQ)

system, an input LSP vector x is approximated by:
X =cP 4l 4ot i) (7.23)

where X is the quantization presentation of x, K is the number of stages, and c7*
is the m-th codevector from the j-th stage. The j-th stage codebook comprises of
L = 2% codevectors. The total bits for the MSVQ system are equal to b x K bits. A

sequential search procedure is traditionally used in MSVQ by selecting the j-th vector

such that the mean squared error

e = |lej1 — ¢l (7.24)

is minimized over all possible choices of j-th stage codebook c;, where e;_; is the
residual error up to j-1th stage. Since the minimization of MSE for overall stages is
not equal to the minimization of MSE for each stage, the sequential search procedure
is not the optimal search procedure. The sub-optimal search procedure will result in
the performance degradation.

Another answer to reduce the VQ complexity is to use group vector quantization
(GVQ). In GVQ, the vector to be quantized is divided into several sub-vectors where

an independent VQ is applied to each sub -vector. The only constraint placed on the

135



individual code book search is tilat the reconstructed vector for LSP is required to
be monotonically increasing from the first element to the last. Recently, the spectral
distortion near 1 dB has been obtained by using GVQ technique in a 24 bits/frame
system, where 12 bits were used to encode the the first 4 LSP parameters and the other
6 LSP parameters respectively [89]. As we see, a group VQ codebook is equivalent
to a multi-stage VQ where some vector components are forced to zero. The MSVQ
performance can be improved by iteratively optimizing the MSVQ codebook, as re-
ported by Chan, Gupta and Gersho [90]. MSVQ was previously studied in [91]. In [91]
several measures were utilized to improve the performance of the traditional MSVQ,
which include using a multiple search procedure in each stage search to approximate
the full-search codebook search, and jointly optimizing the MSVQ codebooks of total
stages.

The performance of traditional MSVQ degrades significantly in the presence of
transmission errors. In noisy channels, the received index may differ from the trans-
mitted index and as a result the reproduction vector may be a poor representation
of the original source vector. Due to the inherent structure of MSVQ codebook the
errors 1n the first several stages are very sensitive to the channel error, which leads to
very large distortion if an error occurs in the demodulator. As we see in chapter 5,
the optimal decoder should make a linear combination of the clean channel centroids

with weights depending on the received signal and the channel statistics.

7.6 Weighting Mean Squared-Error Criterion for
the LSP

Because of the different sensitivities of the human ear to various frequencies, a
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weighted mean-squared error (WMSE) distortion measure is usually used as an opti-
mization criterion in training the VQ for the LSP. The WMSE between the original

and the reconstructed signal is given by:

e = |(x = %)TW(x - %)

where W is a diagonal matrix whose elements may depend on x. For the LSP. the
perceptually based weighted matrix introduced in {92] is used. The weighted matrix
elements are given by:

i Di/ Dinaz 1.375 < D; < Dias
wi= g VD i (7.26)
u(f)D:i/V13T5Dner  D;i < 1.375

where

w(f) :{ 1, fi < 1000H = o

e (fi —1000) +1 1000 < f; < 4000H =

3000

fi denotes the i-th components of the LSP, D; denotes the group delay for f;, and
Dipar 1s the maximum group delay. The function u(D;) accounts for the specific
spectral sensitivity of each frequency f;. The group delay can be computed as the
gradient of the phase angle of the filter at a frequency corresponding to the i-th LSP
with the sampling rate being 8000 Hz.

The following spectral distortion measure is used to measure the performance of

the resulting LSP MSVQ codebook:

T ej‘lmu 2 1/2
dsp(A(2), A(z)) = {l/ 10log,, (M)} (7.28)

2r Jon |A(es2mw) |2
As for the optimization of the joint codec under the WMSE criterion, it can be
shown that the optimal decoder is once again the one that computes the conditional

expectation of the source given the received signal
X = E(x/y) (7.29)
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It is well known that there are two conditions that must be satisfied for the optimal
VQ. One is the partitions, and the other is the centroids. In the following, we will
address these two issues.

We first consider the optimal partition condition. For a given source, the decoder

in (7.29) and the given channel statistics, the overall WMSE can be expressed as

M
D= Z/ﬂ / [x - E(x/y = s: + n)]"Wlx - E(x /y = s, + n)] p(x)p(n)dndx
=1 O
[t can be proved that the optimal partitions are given by
xeQ if [ <1, for all 1#m (7.30)

where [, denotes a scalar

T
[m - / [X N Ef\iN] PiCiPn(Sm -8 + n)] W [ . Zf\%vl PiCiPn(sm —s; + n) p(n)dn
n Zi:] Pipn(sm — 8 + n) Zi:] Pipn(sm -8, + n)
On the other hand, the optimal centroids are given by
xp(x)dx
= Jo xplx)dx (7.31)

o, xp(x)dx
The optimal partitions specified by (7.30) depend on the VQ centroids ¢y, ¢, -+, cy,
which in turn are related to the partitions, see (7.31). Therefore the GLA procedure

can be used to design the optimal VQ until convergence occurs.

7.7 MSVQ LSP Codebook Design

There are several approaches to design the MSVQ codebook, such as sequential [37].
iterative [92] and joint optimization of the MSVQ [91]. In the sequential MSVQ design
algorithm, each stage VQ codebook is designed using a training sequence consisting of
quantization error vectors resulting from the previous stages. This training procedure

implicitly assumes that all the VQ codebooks in the the following stages are zero.
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Optimizing in this manner is clearly sub-optimal due to the correlation property of the
different stage errors. The iterative sequential design and simultaneous joint design
algorithms are concerned with designing MSVQ to minimize the overall WMSE. In
the iterative design, the other stage codebooks are assumed fixed and known, and the
objective is to design the current stage VQ codebook to minimize the overall WMSE.
Once an initial set of VQ codebooks are obtained, each stage can be re-optimized given
the other stage VQ codebooks. Thus, the overall weighted mean square error (WMSE)
is minimized rather than the WMSE for encoding the residual vector resulting from
the previous stage VQ. Generally speaking, the MSVQ codebook obtained from the
sequential design can be used as an initial codebook for the iterative optimization.
The MSVQ codebooks are designed by using the GLA algorithm to minimize
average WMSE based on a training sequence. The GLA consists of two steps, one is
to cluster the training sequence according to a given set of centroids (or codevectors),
and the other is to choose the centroids to minimize the distortion over the particular
partitions. We iterate these two steps until the convergency condition is satisfied.
For a sequential design algorithm, the current stage residual vector is obtained by
subtracting the previous stage reconstruction vectors from the original vector. The
residual vector is then quantized by the current stage VQ. A soft decision V() design
procedure based on the equation (7.30) and (7.31) is used to design the current stage
VQ starting with the first stage. A condition estimator is used as a source decoder to

obtain a reconstructed signal from the received channel signal.

7.8 Experimental Results

The first step toward MSVQ design is to collect a set of representative speech vectors.

This training set should include 50 to 1000 training vectors per code word. Here
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400,000 training vectors were used for the codebook design, and another set of 256,000
vectors were used for testing the performance of the resulting VQ codebook.

The use of soft decision VQ requires the knowledge of the noise pdf. For the AWGN
channel this pdf is completely determined by the channel SNR. Once again the SDVQ
system is designed for an average expected value of the channel SNR. When used on
a given channel, such a SDVQ may suffer some performance degradation due to the
noise level mismatch, still it will offer a significant advantage over other procedures.

The vector quantizer design used in sequential decoding soft decision vector quan-
tizer (SD-SDVQ) is the same as that used in the SDVQ system based on symbol-by-
symbol decoding (i.e., the vector quantizer codebook optimization does not account
for sequential decoding). Although this method will not lead to an optimum SD-
SDVQ, the system is easy to implement and gives a good indication of the coding
gain that can be obtained by using the sequential decoding technique.

The soft decision vector quantizer (SDVQ) and the channel optimized vector quan-
tizer ((COVQ), discussed in Chapter 4, were trained by using the same database as
that used for the source optimized vector quantizer (SOVQ) discussed in Chapter
2. The standard QPSK modulation signal set was used to transmit the MSVQ in-
dices. Each VQ index was mapped into a signal formed by concatenating a number
of QPSK symbols. For example for codebook size N = 256, each index was mapped
into a signal obtained by concatenating four QPSK symbols.

Figures 7.9 and 7.10 show the average spectral distortion comparison among
SOVQ, COVQ, SDVQ and SD-SDVQ for LSP quantization using two different MSVQ
structures. Both MSVQ systems use 24 bits for the quantization of speech LSP pa-
rameters. Fig.7.9 corresponds to the case of a 4 stage MSVQ with 6 bits per stage,
while Fig. 7.10 corresponds to the case of a 3 stage MSVQ with 8 bits per stage.

SDVQ shows the performance improvement over SOVQ and COVQ, particularly for
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Figure 7.10: Performance of SD-SDVQ, SDVQ, COVQ, and SOVQ (GLA) for quan-
tization of speech line spectral pairs (LSP). Four stages with 6 bits/stage were used.
The design SNR is 8 dB for SDVQ and COVQ.

the low channel SNR region. For example, at a channel SNR of 5 dB and for the
3-stage MSVQ, the average spectral distortion of SDVQ is about 0.35 dB less than
SOVQ and 0.15 dB less than COVQ. SD-SDVQ further improves the performance
by reducing the SD by about 0.15 dB with respect to SDVQ. For example, at a
channel SNR of 5 dB and for the 3-stage MSVQ, the average spectral distortion of
SDVQ is about 0.35 dB less than SOVQ and 0.15 dB less than COVQ. SD-SDVQ
further improves the performance by reducing the SD by about 0.15 dB with respect
to SDVQ.
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Figure 7.11: Performance of SD-SDVQ, SDVQ, COVQ, and SOVQ (GLA) for quan-
tization of speech line spectral pairs (LSP). Three stages with 8 bits/stage were used.
The design SNR is 8 dB for SDVQ and COVQ.
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7.9 Conclusions

We have presented in this chapter an iterative procedure for joint source and channel
coding optimization over a Rayleigh fading channel. We also developed a sequential
decoding algorithm for the fading channel. These approaches were applied to design
a combined source and channel coding system for a first order Gauss-Markov source.
The simulation results show that a significant improvement can be obtained compared
with the separately designed system, and that the sequential decoder can further
reduce the average distortion by exploiting redundancy in the VQ indices.

We also compared the performance of different multi-stage vector quantizer used
to represent the line spectral pair parameters of the speech signal. The multi-stages |
vector quantizers were designed by SOVQ, COVQ, SDVQ, and SD-SDVQ. A weighted
mean square error (WMSE) was used as the optimization criterion to design the
SDVQ. The simulation results show that soft decision vector quantizer has a smallest
spectral distortion among the source-optimized, the channel-optimized and the soft

decision vector quantizer for the LSP parameters.
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Chapter 8

Summary and Review

8.1 Summary

We have considered the problem of joint optimization of source and channel coding
for the AWGN and Rayleigh fading channels. In our system, the source signal is
compressed by a vector quantizer (VQ), the output of the VQ .i.e., its index, is
mapped directly into a signal vector in the modulation signal space and then it is
transmitted over a noisy channel. The optimization variables in the joint source and
channel coder are the VQ encoder, the mapping from the VQ index to the modulation
constellation, the modulation constellation and the receiver structure. The objective is
to minimize the mean-square error (MSE) between the original and the reconstructed
source signal, subject to constrains on the average energy and bandwidth.

Based on Bayesian estimation theory, a soft decision vector quantizer (SDVQ) was
developed. It is shown that the optimal receiver should calculate the conditional mean
of the source signal under the received signal. The output of the receiver is a linear
combination of the VQ centroids and the weighting coefficients are nonlinear function
of the received signal. Several approximations at various channel SNR were discussed.

An iterative algorithm is presented to jointly design the VQ and the modulation signal
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set. The algorithm first optimizes the VQ codebook for a fixed signal set, and then
optimizes the signal set for a fixed VQ codebook. Iterating these two steps until
convergence occurs will provide at least a local optimum solution to the problem.
The algorithm has been used to design the VQ and the signal constellation for a first
order Gauss-Markov source operating in the AWGN and Rayleigh fading channels.
The simulation results indicate that system performance benefits significantly from
the joint design, especially for the low channel SNR.

Due to the constraints on the VQ encoder delay and complexity, the source coder
can not remove all the redundancy in the source. The residual redundancy is modeled
as a first order Markov process. We further developed a sequential decoder algorithm
to exploit the residual redundancy to combat the channel noise without the bandwidth
expansion. The simulation results show that further improvement can be obtained by

using sequential decoding strategy, especially for the Rayleigh fading channel.

8.2 Critical Review of the Results and Further

Research

We have shown that the soft decision receiver based on the conditional estimate is
quite robust in the noisy channel and can improve the system performance when
compared to traditional receivers. However, the implementation of the conditional
estimate requires more computations than the traditional receivers since it deals typ-
ically with the computation of an exponential function. Complexity reduction for
the soft decision receiver based on conditional estimate may be a subject of further
research.

In this study, the receiver is optimized at the nominal channel SNR and the re-

sulting receiver is then tested in all channel conditions. By using this approach, we
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considered the channel mismatch introduced by the channel SNR. In practical sys-
tems one may encounter other types of mismatch, for example, mismatch of the noise
probability distribution (PDF), when a system designed for a given PDF (say AWGN)
is used on a channel with a different noise PDF. The efect of other types of mismatch
remains a subject for further study.

The next generation of mobile or personal communication system (PCS) will not
only provide voice, but also services such as fax and video. Obviously from a trans-
mission and transport point of view, we want to use a common modulation scheme
to transmit different kinds of information. This poses some difficulties to our existing
joint source and channel coding design approach, which is intended for a single service.
However, one possible remedy is to use the optimization procedure with a proper cost
function derived from the traffic intensity of the different services and their respective
distortion measures.

Part of the experimental results presented in the thesis were obtained on a first-
order Markov source and the typical source SNRs achieved by the proposed system is
about 5 dB. Such an SNR is too low for practical applications. There are two reasons
why the SNR is so low. First, the Markov source is only a theoretical model and it is
more difficult to encode than practical signals. Second, due to the limited computing
resources available during the thesis work, relatively low-rate vector quantizers were
used (the amount of computations required by a VQ increases exponentially with the
rate).

On the other hand, the results obtained for the quantization of LPC parameters
show spectral distortions in the range of 1-2 dB. These are practical values and the
improvements obtained by the proposed system are significant from practical point of
view. LPC quantization is an essential part of most modern speech coders. Extending

the work to include a full speech coder is a possible subject for future research. Modern
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speech coders use extensively vector quantization for encoding the excitation and the

gains, hence extending the work to include these blocks is relatively straightforward.
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