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Abstract 

This thesis considers the problem of joint optiniization of source and channel coding 

algorithms for communicatio~is over the additive white (;aussian noise (AWGN) and 

tlie Rayleigh fading channels. In the proposed system, the analog source signal is 

first co~npressed by a vector quantizer (VQ). The  output of the VQ (tlie VQ index) 

is mapped directly into a signal vector in the modulation signal space, and the signal 

vector is transmitted over a noisy channel. A receiver based on a nonlinear conditional 

estimate is used to reconstruct a replica of the source signal directly from the received 

signal. The main blocks to be optimized in the joint source and channel coder are the 

VQ encoder, tlie  napping fro111 the VQ index to the modulation constellation, the 

~nodiilation sonstellation, and tlie decoder structure. Subject to constraints on the 

average energy and bandwidth, the objective is to  mini~nize the mean-square error 

(?VISE) between the original and tlie reconstructed signal. 

Based on Bayes estimation theory, a soft decision vector quantizer (SDVQ) was 

developed. The  optimal decoder for this system computes the conditional ~riean of 

the source signal given the received channel signal. The output of such an opti- 

mal decoder is a linear combination of the VQ centroids for the SDVQ partition, in 

whish the weighting coefficients are nonlinear functions of the received signal. Several 

approximate i ~ ~ l p l e ~ ~ l e ~ l t a t i o ~ i s  a t  various channel SNR were also studied. An itera- 

tive algorithm is presented for the joint design of the VQ and the modulation signal 

set. The  algorithnl first opti~nizes tlie VQ codebook for a fixed signal set, and then 

optimizes the signal set for a fixed VQ codebook. Iterating these two steps imtil 

convergence occurs will provide at least a locally optimal solution to tlie probleni. 

The  algorithnl was used to design tlie VQ and signal constellation for a first order 

Gauss-Markov source operating in the AWGN and Rayleigh fading channels. The 

simulation results indicate that the system performance is significantly enhanced by 



the joint design, especially when the channel signal-to-noise ratio is low. The i ~ n -  

provement in the signal-to-noise ratio (SNR) for the reconstruc-ted signal can be up 

to 5 dB. 

Due to the constraints on the VQ encoder delay arid VQ complexity, the source 

coder c-an not remove all the redundancy in the source. The  residual redundant-y is 

 nodel led as a first order Markov process. We further developed a sequential decoding 

algorithm to exploit the residual redundancy in order to itliprove the performance in 

noisy channels without any bandwidth expansion. The simulation results show that 

significant improvement can be obtained by using the sequential decoding strategy, 

especially in a Rayleigh fading channel. 
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Chapter 1 

Introduction 

Since the i~itroductiori of digital cellular commu~lication about a decade ago, wireless 

c-onlmu~iicatio~is have experienced rapid growth. To improve the bandwidth efficiency 

in tlie mobile channel, new applications and approaches are being cleveloped at an 

unprecedented rate, especially in the area of digital speech transmission, modulation, 

and multiple access technologies. These progresses have been accelerated by the ad- 

vances of VLSI tecllnologies and tlie develop~nent and application of advanced digital 

conmiunication and signal processing techniques. Future generations of c-ellular and 

other forms of wireless com~~lu~ l i ca t io~ i s  will all use digital technologies. 

In the I;nited States, the FC( '  has opened up the existing cellular bands to es- 

sentially any technology that mobile connmunication providers want to use, as long 

as they continue to  meet the needs of mobile users. This means that the new digital 

systems will likely co-exist with the current analog FM AMPS system [I]-[2] which 

was developed in tlie 1970s by Bell Lab. Driven by tlie cost of new cell sites and tlie 

limited radio spectrum, any new digital cellular standard should provide improved 

capacity over the existing analog c-ounterpart. This call be achieved by adopting low 

bit rate speech coding, efficient digital modulation, and an effective error protec-tion 

scheme. 



If we look at the development of speech coding, we can see that the objective of 

speech coding has been to reduce the number of bits used to  represent the speech 

signal. Several speech coding standards have been developed over the decades. The 

Global System for Mobile (GSM) for European vehicular digital cellular was driver1 by 

the need for a co~mnon mobile standard throughout Europe and the desire for digital 

transmission compatible with data  privacy [:I]. The  13 kbit/s full rate speech coding 

algorithm used in GSM is based on a regular pulse-excited linear prediction coding 

algorithm which includes long term prediction. In addition to the 13 kbit/s sprecli 

coding rate, channel coding (half-rate convolutional coding plus cyclic redundancy 

c-heck) is also used, bringing the overall trans~nission bit rate of the full rate European 

digital cellular mobile telephone system to 22.8 kbit/s per user [4]. (;aussian-Minimu111 

Shift-Keying (GMSK) is used as the r~~odulat ion format. 

The  Northern American digital cellular standard, the IS-54 uses 8 kbit/s vector- 

sun1 excited linear prediction (VSELP) [5] as the speech coder and a rate 112 c-onvo- 

lutional coder as the cha~mel  coding scheme. The ~nodulation format is ~/4-shif ted 

QPSK. The i~mnunity to  co-channel interference for the chosen nlodulation is si~nilar 

to that in the 30 kHz analog FM. 

Other well-known speech coding standards include the C'CITT 16 kbits/s low- 

delay code excited linear prediction (LD-CELP) speech coding standard [6], which 

provides toll-quality over the public telephone lines, and the U.S. Department of De- 

fense 4.8 kbit/s speech coding standard FS-1016 [7], which is used for secure telephone 

c-o~~imunication. 

Advanced digital signal processing techniques are used to  achieve data  conlpressiori 

in the speech coding standards mentioned above [8]-[lo]. However, speech coding is 

usually designed for the noiseless channel. For the mobile radio channel, error-free 

trans~nission is not a practical design goal. In fact, the mobile channel often operates 



a t  error rates as high as 0.001 or 0.01 which overwllel~~ls ordi~iary speech c-oders. 

Typically, reasonable speech quality can be maintai~led at the 0.001 error rate, and 

tolerable quality a t  the 0.01 rate. While the search for lower bit rates to reduce 

tlie signal bandwidth drives new developments in speech coding, these new nlethods 

actually increase the relative importance of certain output bits of the speech coder 

and thus can intensify vulnerability to channel errors. 

Traditional channel coding techniques [Ill-[12], such as error correction or detec- 

tion, can be employed to protect the trarismitted signal from the effect of channel 

noise. ('hannel coding norrrlally requires an increase in tlie transmission bite rate, as 

well as introducing an additional processing delay incurred in the process of calculating 

the redundant bits and decoding the information bits. For mobile commu~lications, 

every bit allocated for channel coding implies sacrificing a bit that would otherwise 

help to improve the speech quality itself. Furthermore, error correction does not take 

into a(-count the characteristics of the speech coder. This oversight can lead to an 

inefficient use of the system power and bandwidth. We can obtain some i~ispiration 

from the c-on~municat io~~ theory in order to  design a jointly optimized so lme and 

channel coding system. 

Generally speaking, digital conm~unication theory deals with two problems: ( 1 )  

SOUTCC coding, whose purpose is to nlini~nize the nunher  of bits used to represent the 

signal, subject to  a pre-determined fidelity requirement; and (2) channel codzng, whose 

purpose is to  ensure that the bits used to represent the signal are received correc-tly 

despite the existence of various types of interference over the channels. The basis 

of c o ~ ~ m ~ u n i c a t i o n  theory, which provides solutions to  these two problems, was pre- 

senteded by Shannon in two remarkable papers published in 1948 and 1953 [1:3]-[14]. 

Shannon proved that source and channel coding could, in principle, be separated. As 



a result, tlie traditional design philosophy for digital conimunication systenis involv- 

ing analog sources corisists of three independent steps: design a source coder which 

satisfies the required coriipression ratio subject to the quality requirement; choose a 

suitable niodulation scheme for the channel; and if necessary, design and i~nple~i ient  a 

forward error correction (FE(:) schenie as the channel coder [IT,]. The basic- assunip- 

tion for separating source and c-hannel coding is that they both operate 011 sequences 

that are irifinitely long. In many practical communic-ation systems, it is impossible to 

process infinitely long sequences due to the limitations caused by the encoder delay 

and co~~iputat ional  co~nplexity. I11 this dissertation we consider the problem of joint 

source and clia~inel coding operating in the noise and fading channels. 

1 1 Literature Review 

The issue of joint optimization of source and channel coding can be traced back 

to [16]-[18]. Fine [16] formulated the source-channel coding design problem as a 

joint optiniization problem and gave the necessary conditions for an optimum digital 

en(-oder-decoder pair for transmission of co~itinuous amplitude data  over a digital 

c.1iannel. The  model he considered was general enough to  include a digital systenl 

operating over a noisy disc-rete-alplialwt c-liannel. This work was extended by Gibson 

and Fisher to include delayed encoding in the same systeni [20]. 

Kurtenbacli and Wintz [17] considered the proble~n of designing a scalar quantizer 

for a binary symmetric cliaunel. The  optimum quantization levels and reco~istruction 

values were determined for fixed codewords assigned to tlie quantization levels. It was 

found that the optinium quaritizer depends on the probability density function (pclf) 

of the input signal arid the cliannel transition matrix. The  mean squared error (MSE)  

metric was used as the optirriization criterion. Farvardin and Vaishampaya~i [19] 



extended Kurtenbach's work by introducing a coristraint condition on the quantizes 

threshold in order to guarantee convergence. Furthermore, they solved the proble~ii 

of the optimization of codeword assignment using a simulated-anneali~ig algorithm. 

They observed that not all the available codewords were used for tra~is~ilissio~i in the 

optimal system. 

As opposed to tlie rather restrictive systems considered in [16] and [17], Wolf and 

Ziv [18] considered the optirnizatio~i of a very general co~lmlunication system based on 

the MSE criterion and derived the opti~iial  encoder-decoder structure for this syste~n.  

111 addition, they showed that for any given encoder, the optimal decoder is one that 

calculates the conditio~ial meal1 of the source signal given the received signal. Though 

very usef~il and relevant to  the current study, Wolf and Ziv do not tell us how to  select 

tlie most appropriate encoder. 

Some of the more recent work in the area of combined source and channel coding 

are presented in [21]-[B]. Modestino and Daut [%I] considered tlie tra~is~nissiorl of still 

images through noisy channels. They demonstrated that in comparison to the u~icodetl 

transmission, corivolutional coding, when applied according to  the characteristic of 

the sotirce signal, can dramatically improve tlie quality of the recoristructed images. 

These inlprovements were obtained by reducing the rate of tlie source coder ( t1111s 

increasing tlie distortion introduced by tlie source coder), and using the available 

bandwidth for channel coding to combat tlie channel noise. Kumazawa et. al. ['L'L] 

extended Kurtenbach's work [17] to include vector quantization. They introduc-ecl 

channel transition probability matrices to represent the effect of channel noise and 

chcussed the problem of VQ design in a noisy channel. A similar study was conducted 

by Farvardiri [U] .  The  key difference between [22] and [23] is that the latter also 

considered the optimization of the index assig~mlent. 



An important step toward robust vector quantization in noisy channels is index as- 

signment optimization. For a vector quantizer with a fixed set of reproduction vec-tors. 

the performance in a noisy cl~annel can be improved by optimizing the assignment 

of channel symbols (binary indices) to reproduction vectors. The  codervectors (re- 

production vectors) can be considered as points in an Euclidean space. Intuitively, 

indices which differ in as few bit positions as possible should be assigned to points 

which are close in the Euclidean space. 

One of the first papers to demonstrate the importance of index assign~nent for 

scalar quantization was written by Rydbeck and Sundberg [24]. The problem of 

optimal index assign~nent for scalar quantization was considered by Farvardin and 

Vaishampayan [19]. Algorithms for improving the index assignment for a vector quan- 

tizer with a fixed codebook were introduced by De Marca et.  al. [XI-1261. A locally 

optimal solution based on a binary switching algoritlm was introduced by Zeger 

and Gersho [27]-[28] and was called Pseudo-Gray coding because of its similarity to 

the well known Gray code. An efficient procedure for testing the perfornlance of a 

bit assignment strategy was recently proposed by Knagenhjelm [29]. An alternative 

approach for solving the combinational problem generated by the bit assignment op- 

t i~nization is based on simulated annealing [30]. Kleijn and Sukkar [:3 11 proposed a 

source-dependent channel coding tecl~nique based on the simulated annealing in whic-11 

redundancy was introduced by having cllannel codewords which are not transmitted. 

but may be received. 

Hagenauer, Seahardri and Sundberg [32] analyzed the effect of digital transmis- 

sion errors on a family of variable-rate sub-band speech coders. Since different error 

sensitivities correspond to various source coders, a family of rate-compatible punc- 

tured convolutional coders with flexible unequal error protection capacities are used 

to match the speech coders. I11 a Rayleigh fading channel with differential phase shift 



keying (DPSK) modulation. a 5 dB i~nprovement in channel SNR can be obtained 

by using 4 levels of error protection. This gain is obtained without requiring extra 

bandwidth. 

The generalized Lloyd algorithm was used by Dunham and Gray [:3:3] and Ayanoglu 

and Gray [:I41 to design joint source and channel trellis and predictive trellis waveform 

c-octers for a variety of distortion criteria. They demonstrated that system perfornianc-e 

c-odd be significantly improved by jointly designing a trellis-based source and channel 

coding scheme, as opposed to tandenling a trellis vector quantizer (VQ) optimized for 

a clear chan~lel and a trellis coded modulation scheme. 

Recently, Skinnemoen [35] described a novel approach for designing a joint source- 

channel coder, called modulation-organized vector quantization (MOR-VQ). It was 

assumed that the modulation set is known when designing the VQ. The  most impor- 

tant factor to increase the robustness is the choice of a good mapping from the source 

space to  the modulation space. A solution to  this problem is developed based on new 

ral network theory. It was found that the MOR-VQ provides significant robustness 

against noise while not sacrificing the performance in a noise free channel. MOR-VQ 

is very simple to design and does not require knowledge of the channel. 

All the work that we have made reference to so far is based on a fixed modulation 

system. One of the contr~butions of the present dissertation is in re-designing the 

modulation signal set according to  the mean squared error (MSE) criterion which is 

associated with the reconstructed source vector. 

The  majority of the work on modulation signal design is mainly concerned with 

~nininlizing the probability of error [%I-[40]. The  cost of error due to the c-ha~lnel 

noise is ~lsually assumed to be the same no matter what types of error occur. Such 

an assumption is not true since the different bits in a digitized source signal may 

represent different signal parameters and hence have different levels of sensitivity 



to  errors. Another assumption is that signals in the signal set are used with an 

equal probability. This assumption is also questionable since niost codewords in a 

practical source coding system do not occur with the same probability. As we know, 

the hISE criterion is usually used to measure tlie signal distortion, but stauclard 

~nodulation constellations such as QPSK and QAM are optimized to ~niinirnize tlie 

error probability. Generally, mini~nizing the error probability is not equivalent to 

rninirnizing the overall mean squared-error. Therefore, the overall distortion could be 

reduced by re-designing the modu la t io~~  constellations accordi~ig to the MSE criterion. 

Furthernnore, as we will see later, the structure of the optimunn source decoder is one 

that makes soft decision, riot a maxirnum likelihood receiver plus an inverse vector 

quantizer (VQ). 

Several studies have been carried out in designing signal sets in order to improve 

the MSE performance of zero-memory quantizers over a noisy channel. Wong, Steel 

and Sundberg [41] considered the problem of trarls~nittirlg P(:M signals by Q A M  

moddation format. They defined an error sensitivity factor to measure the effect 

of the hit error patterns on tlie re(-oustructed source signal. By allocating different 

energy to tlie tralnsmission of specific bits, it is possible to reduce the error probability 

for highly sensitive bits at  the expense of less sensitive bits, thus nnini~nizing tlie 

overall distortion. They reported that 1.85 dB iinnprovenlent in the charnriel SNR were 

obtained for QPSK modulation, as well as 3 to  5 dB irnprovennent for a weighted 

16-level and 256-level QAM c-onstellation. 

Contributions of the Thesis 

The ~ n a j o r  contribution of this dissertation is the develop~rne~nt of an iterative algo- 

rithm for the joint design of a vector quantizer and ~inodulation signal set in terms of 



the MSE optimization criterion [45]- [47]. A 11011-linear conditional est i~nator  ( the opti- 

I I ~ U I ~  receiver under tlie MSE criterion) is used as a receiver. The  results indicate that 

system perfor~na~lce on an additive white Gauss noise and Rayleigh fading c.hannel 

inlproves significantly with the joint design. especially when the charmel signal-to- 

noise ratio is low [48]. The  joint design algorithm mentioned above was also used for 

the Rayleigh fading channel [49]. It was found that only a moderate i~nprovetnent 

can be obtained by symbol-by-symbol decoding algorithm. However, tlie overall sys- 

tern performance can be further i~nproved by using a sequential decoding strategy to 

exploit the residual correlation in the codervectors of the VQ [SO]. 

Our approach to the modulation design is related to Farvardi~i and Vaisha~n- 

payan's work on joint source and channel coding [44]. In their system, the source 

encoder was assumed to be a VQ, the channel encoder was a linear tra~lsformatiori 

from the source space to the ~nodulation space and the decoder was also a linear 

transformation from the channel space to the source space. (:onstraints 011 the energy 

arid bandwidth are i~nposed on tlie trarisrnitted signal, arld tlie encoder arid decoder 

mappings are jointly optimized under the MSE criterion. This decoder struc-ture, 

which is an approxi~nation of the optimal decoder for the case of low channel SNR, is 

inherently sub-optimal, especially in the high channel SNR region. However, be(-ause 

of the linearity, Farvardiri and Vaishampayan were able to adopt a semi-analytical 

approach in the joint source and c-hannel coding design. This is in contrast to an 

algorithmic approach presented in this thesis. Note, however, that the decoder con- 

\idered in this study is based on tlir optimal conditional estirnate receiver rather than 

its approxi~nate i~nplernerltation in low SNR channel-linear receiver in [44]. 

The  idea to jointly optitnize the source and chanriel coding algorithm developed in 

this dissertation is similar to  the 11011-linear optimization technique proposed by Lloyd 

[42]. However, the original Lloyd's algorithm cannot be directly applied to design a 



vector quantizer, since its implennentation requires integrating tlie sour(-e pdf over an 

irregular multi-dime~isiorial Euclidean space. 111 order to overrome this probleni, a 

training sequence-based approach was introduced by Linde, Huzo a ~ i d  (;ray, wliic-11 

did not require the pdf of the source [4:3]. A generalized Lloyd iteration procedure 

was used in this thesis for joint source and channel coding design 

1.3 Organization of the Thesis 

This thesis is part it ioried into eight chapters. The  optimum performance bound is 

described in Chapter 2.  The vector representation of signal and noise is introduced in 

( 'hapter 3. Two noisy channel models which are extensively used in the thesis are also 

described. A joint VQ-modulation design based on a traditional hard dec-ision receiver 

is given in Chapter 4. This includes tlie design of a robust channel optimized vector 

quantizer, tlie optimization of the modulation constellation, and the opt i rnizat io~~ of 

de~nodulation, all under the MSE criterion. The  opti~rium soft decision receiver, in 

terms of the MSE criterion, is derived in Chapter 5 .  This receiver makes a c-onditional 

expectation of the source signal given the received signal. The  co~istrainted gradient 

search algoritllnl is used to design the modulation co~~stellation. In (jhapter 6, a 

sequential re(-onstruction technique is developed to exploit the redundancy of the 

VQ output.  Two applications of our joint source and c-hannel coding teclinique are 

provided in Chapter 7: the design of the joint source and cha~lnel coding over a 

Rayleigh fading channel, and the trar~srnissio~l of a speech signal's line spectrum pair 

(LSP) over such channels. Finally, conclusions about this research are drawn and 

some suggestions for further work are presented in (jhapter 8. 



Chapter 2 

A Performance Bound for Joint 

Source and Channel Coding 

The purpose of this chapter is to present an overview of topics in information the- 

ory related to the subjects of data  compression and tra~is~nission. The perfor~nance 

t ~ o ~ i n d s  for joint source and channel coding systems will be presented. The c-hapter 

starts with an overview of rate-distortion theory, which establishes a bound 011 tile 

~ l i i n i ~ l i u ~ n  rate required to obtain a particular fidelity, followed by a brief review of the 

channel capacity, which determines the ~naxiulum rate at  which the information can 

be transmitted over a channel with an arbitrarily sniall probability of error. Based 

on the source rate distortion functio~i and the chan~lel capacity, the best performance 

achieved by the joint source and channel coding system can be bounded by setting the 

channel capacity equal to  the rate given by the rate distortion theory for a particular 

fidelity. Such bounds will be derived in Section 2.3 and used as a reference for the 

performance of the proposed sys te~n.  

Rate distortion theory just tells us the mini~nunl  rate required to encode the source 

satisfing the requirement on the distortion, but it does not show how to design a prac- 

tical system to encode the source signal. We could use quantization theory to find the 



best possible representation of a signal a t  a given data  rate. The objective here is to 

find an opt i~nal  set of variables (generally called the reproduction alphabets or code- 

words) to represent the source signal and the corresponding regions associated with 

these codewords in the source signal space, according to a given distortion measure. 

Rate Distortion Theory 

This section presents some basic concepts on the source compression. Fur a c-omplrtr 

discussion on the subject of the rate distortion theory, please refer to [ 5 3 ] .  

Let I1 be a memoryless discrete source which generates synibols fro111 a countable 

set I/ E [a, ,  az , .  . . , ah.] with probabilities P ( a l ) ,  P ( a 2 ) ,  . , P ( a K ) .  The  entropy of 

this source is defined as 

1 
H (IJ) = C P(a ; )  log - 

i=l  P (a i )  

It can be shown that if the code rate R for the source is no less than the entropy 

H( lJ ) ,  perfect recorlstruction is possible. The  objective of an . tficient source coder 

is to operate a t  a rate as close as possible to the entropy of the source, within the 

complexity constraint. 

For a continuous-amplitude source, the entropy of the source is defined as 

H (u )  = - p(u) log p(u)du 

where p(u)  is the probability density function of the source. Generally, it is impossible 

to  reconstruct perfectly a continuous source with a finite rate code. In order to 

reproduce a source replica at  the output,  a certain amount of distortion must be 

accepted. Rate distortion theory gives the ni inimu~n rate R for a given distortion D. 

Rate distortion theory is based on ~ninimizing the mutual information between 

the input and output for a given distortion requirement. The  object to  be optimized 



is the conditional probability of the output for the given input variables. The ~ n i i t ~ ~ a l  

information measures the amount of information that one random variable contains 

about another random variable. It is the reductio~i in the ~mcertainty of one random 

variable due to the knowledge of the other. Rilattlematically, the n l u t ~ ~ a l  inforrna- 

tion I ( l i ,  V) is the relative entropy between the joint distribution and the produc-t 

distribution, i.e., 

P(lJ, V) 
I(U, V) = 7 P(lJ ,  V )  log 

l i  v P( [J )P(V)  

Similarly, the nlutual information of a continuous source is defined as 

We introduce a distortion fu~lc t io~i  d (u ,  v),  which measures the cost of representing the 

s y r ~ b o l  i~ by its reproductiorl u.  The squared error distortion is defined as d(u,  u )  = 

( u  - u)' and is the most popular distortion measure due to its simplicity. 

For an independent, identically distributed (i.i.d) source with a probability distri- 

bution P(lf)  and a distortion measure D,  a rate distortion function R ( D )  is clefinetl 

Note that the ~ninirnization considers all possible conditional distributions P(VIf1) for 

which the joint distribution P(lJ ,  V )  = P( l J )P (VIU)  satisfies the expected distortion 

constraint. Fro111 a practical viewpoint, the rate-distortion functiou for a coutinli- 

ous source is defined as the mininlum bit rate required to code a signal at a given 

distortion. 

The  derivation of the rate distortion function is, unfortunately, an unsolved prob- 

lem in Inany practical situations. Explicit expressions can be obtained for only a 

small number of source probability density functions and distortion measures. For 



a continuous Gaussian source using the squared error distortion measure, the rate 

distortion function can be expressed explicitly [ 5 2 ]  as: 

See Fig. 2.1. 

Norrnulized distortion 

Figure 2.1: Rate distortio~i function for a Gaussian source 

Since a mean squared-error larger than the signal variance can be avoided by 

simply decoding zero, the distortion is always less than the signal variance. We ran 

re-write equation (2 .5 )  to express the tlistortion in terms of the rate 

D ( R )  = g22-2R (2 .6 )  

Therefore, increasing the rate by one bit reduces the expected distortion by 6 dB. 

Now we consider the rate distortion function for a first order Gauss-Markov source. 

This source model is used in the thesis for designing a soft decision vector quantizer. 
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A first order Gauss-Markov source is characterized by 

u,, = P U ~ L - I  + e , ~  (2.7)  

where p is the normalized correlation coefficient, and e,,'s are independent, and iden- 

tically distributed white (;aussian rand0111 variables. The auto(-orrelation matrix for 

a source vector u = [u l ,  u ~ ,  . . . , uL] formed fro111 the Gauss-Markov source is given by 

This matrix is symnietric and positive definite, therefore, there exits a set of L orthog- 

onal eigenvectors e l ,  e l , .  . . . e~ and a correspo~ldent set of L nou-negative. eigenvalurs 

X I ,  Xl.. . . , XL. A new sour(-e vector ii (-an be formed by an orthogonal transfor~n as 

follows: 

T u = Q  u ,  

where Q is a matrix consisting of the L orthogonal eigenvectors e l ,  e Z , .  . . , e ~ .  The c-o- 

variance matrix of the transform vector u is A = E[QTuuTQ]  = diag{A1,  X2,. . . , AN). 

The  components of ii are uncorrelated with variances equal to the eigenvalues. Since 

the average mutual information and average squared distortion are preserved in the 

orthogonal transform, the problem of encoding u with the squared distortion mea- 

sure is equivalent to encoding u with the same distortion measure. Finally, the rate 

distortion function can be described parametrically in terms of 8 by [53] 



and 

1 1 A, 
R,,t(8, L )  = - max[O, log, -1, bits/per source sa~nple  

8 
(2.10) 

L i=, 2 

where the parameter 0 is limited to  0 < 6 5 A,,,,,. Note that tlie rate distortion bound 

can be approached arbitrarily closely by coding a long sequences of data  samples, i.e., 

with vector quantization. 

2.2 Channel Capacity 

The  chan~iel capacity determines the maximu111 number of distinguishable signals that 

can be reliably transmitted over a channel. Mathematically, the channel capacity is 

where I ( l i ,  V) denotes the mutual information between two random variables and 

If and tlie I I ~ ~ X ~ I I ~ U I ~  is taken over all possible input distributions P(IJ) .  Shannon's 

ch nnel coding theorem tells us that all rates below the channel capacity I' are ob- 

tainable, i.e., information can be transniitted reliably over a channel a t  all rates up 

to the channel capacity. 

The channel capacity for a continuous channel is defined as 

where p(u) is the source pdf. ( h e r a l l y ,  a continuous channel has some coristraint 

c-onditions on the input probability distribution p(u),  the 111ost common constraint is 

the average power constraint 



The capacity of a continuous chaunel is the maximum value of the average mlltual 

information over all probability distributions on the input subjected to  the specific- 

c-onstraint. 

For a Gaussian noise channel with an average power P and noise variance No,  the 

c-hannel capacity is given by 

1 
(' = ; 2 log, (1 + -&) 

Now let us consider the problem of c-ommunication over a band-limited Gaussian noise 

channel. Assuming that the bandwidth of the channel is M/2 and the spectral density 

function is No/2. According to the Nyquist sampling theorem, we can represent the 

channel by its sample values if the sampling rate is larger or equal to M .  If the 

sampling rate is equal to M ,  we get M sanlples per second, and these M samples 

can be considered as an M dimensional vector. The  cha~lnel capac,ity of such an M 

dimensional white Gaussia~r noise vector channel with a c,ovariance matrix 91 is given 

If the source rate is R, the cha~lnel capacity  nus st be larger than the source rate, 

For the source with a rate, R, the bit energy, Eb, is defined as 

D 

Submitting (2.16) into (2.15), and defining the spectral bit rate 7% = 2R/M as tlle 

ratio of the source rate R over the channel bandwidth M/2,  we have 



Channel S N R  Eb/No 

Figure 2.2: Capacity of a baseband Gauss Noisy C%annel 

Fig. 2.2 shows tlie boundary described by inequality (2.17). I11 principle, we can 

cirsig~i a tligital c-onlm~inic-ation systeni for ally point uncler the c-urve. The  graph tells 

11s that increasing the bit-rate per Hz increases the required energy per bit. This is 

tlie basis of the energy/bandwidth trade-off in digital communicatio~i theory, where 

i~icreasing ba~idwidth a t  a fixed rate can reduce the power requirement. 

2.3 Bounds for Joint Source and Channel Coding 

Systems 

We have discussed both the rate distortion function for a first order Gauss-Markov 

source. which determines the rnirli~nurn distortion for a given rate, and the channel 

capacity function, which determines the ~naxi tnum rate that can be tra~lsnlitted over 



the channel. Therefore, the theoretically optimum performance for a first order Gauss- 

Markov process operating in a white Gaussian noisy (-hannel can be deterrniried by 

evaluating the rate-distortion function of the source at  a rate equal to the channel 

c-apacity. Suppose that an L dirne~isional signal vector is transmitted over an iW 

dimensional Gaussian noise channel. Let e,,,,, denote the average channel energy per 

source sample, where e,,, = P I L .  IJs i~ig (2.14), the c-hannel capacity per source 

sample is given by 

M %Lea,, 
(I = log,( 1 + --- ) bits per source sample 

2L M No 

Let the channel capacity given by (2 .18)  be equal to the rate-distortion function of 

(2.10). By solving the resulti~ig equation for e,,,, the optimum performance is given 

pararnetrically in terms of 0 by, 

arid 

The  channel SNR per bit is given by 

Assulni~ig the energy of the source signal is normalized, the synthesized source SNR, 

is given by 

Also let R = M I L  represent a bandwidth expansion factor, which is the ratio of the 

clla111ie1 dimension to  the source dimension. We then obtain the relationship between 

the channel SNR and the synthesized source SNR, in terms of parameter 0, as 



Now, let us look a t  how to determi~ie a bound for a joint source arid channel 

coding system based on (2.21) and (2.22). For a first order Gauss-Markov sour(-e, the 

covariance matrix is given by (2.8). We can co~npute  the eigenvalues of the covarianc-e 

matrix. also assuming that the eigenvalues are arranged in a descending order, i.e., 

A1 > A z  > - .  > AL. First, if we let 8 > max {A;, i = 1 ,2 , .  . . , L } ,  we get 

which is independent of the channel SNR; Second, if we let 8 < A L ,  we have 

In the general case where A,,, < 8 < A,,,+1. We can express the channel SNR, ,S!VR,, 

arid the synthesized source SNR, SNR, ,  in terms of the parameter 8 as 

Now we consider the case of a continuous source. Let @(w)  denote the power 

spectral density of a first order Gauss-Markov source, the bound for the joint source 

and channel coding system can be obtained by applying a theorem on the asymptotic- 



Figure 2 . 3 :  The spectral density function of a first order Gauss-Markov source with 
p = 0.9. 

distributiori of the eigenvalues of a Toeplitz form [54]. The  bounds are given in terms 

of the spectral density function @(w) and 0 as: 

and 

For a first order Gauss-Markov source, the spectral density function is given by 

1 
@(w) = 

1 - 2pcosw + p2 

which is shown in Fig. 2.3. 

When 0 > (1  - p)-" we get 

S N R ,  = 1 



which is independent of the channel SNR SiVRc; When 0 < (1  + p)-', we have 

S N R ,  = ~ ( 6 ~ ' ~  - 1) 

and 

In the general case where (1  + p)-' < 0 < (1 - ,I)-', let be a particular value that 

makes @ ( w )  equal to 8. Then it can be shown that 

where we can be expressed in terms of 0 as: 

The correspo~iding synthesized source SNR, SNR, ,  is given by 

and the clia~ir~el S N R  SIYRc  is giver1 by 

A numerical nlethod can be used to  calculate the integral of equation (2.25) and 

(2.26). Fig. 2.4 and Fig. 2.5 show the bounds for a source block length of L=2 and a 

block length of infinity at  different bandwidth expansion factors. We can see that in 

the low channel SNR region, the clifference in the synthesized signal SNR for different 

I>andwidth expansion factors is quite small, however, in the high channel SNR region, 

the difference becomes significant. For example, in Fig. 2.4, a t  a channel SNR of 0 

dB, the syntl~esized source SNR is 5.3 dB  for B = 0.5 and 6.7 dB for B = 1, and the 

difference in synthesized source SNR is just 1.4 dB. But when the channel SNR is 15 
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Figure 2.4: The  bound for the joint source and channel coding system. Block length 
L is equal to 2. The  source is a first order Gauss-Markov source with p = 0.9, the 
c-hannel is a Gaussian noisy channel with the handwidth expansion factor B equal to 
0.5 and 1 respectively. 

dB,  the synthesized source SNR is 14 dB for B = 0.5 and 21 dB for B = 1 and the 

difference is 7 dB. The improvement in the synthesized source SNR is obtained at the 

c-ost of the channel bandwidth efficiency. 

We can observe a s i~ni lar  phenomenon in Fig. 2.4. Comparing Fig. 2.3 with 

Fig. 2.4, we can see that with the increase of the code length, the synthesized soiirc-e 

SNR can be improved. For L=2, B=0.5 and the channel SNR equal to 15 dB, the 

synthesized SNR is 14 dB; but for the same channel SNR and bandwidth factor, if 

tlie block length L tends to infinity, the synthesized SNR is 17 dB. By increasi~lg the 

block length, we can get a 3 dB irnproveme~lt in the synthesized source SNR. These 

figures suggest that by coding a block of signal samples, i.e., vector quantization, 
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Figure 2.5: The  bound for the joint source and channel coding system. Block length L 
is infinite. The  source is a first order Gauss-Markov source with p = 0.9, the channel 
is a Gaussian noisy channel with the bandwidth expansion factor B equal to 0.5 and 
1 respectively. 



we can obtain a significant performance improvement. We will disc-uss the vector 

quantization in detail in the next section. 

The  bounds derived in this section will be used in the following chapter as a 

reference for the proposed system performance. 

2.4 Vector Quantization 

Rate Distortion theory does not tell us how to design a practical system to encode 

the signal. 111 order to approach the rate-distortion function for the given source, we 

consider the joint quantization of a block of signal samples in this section. This type 

of quantization is called vector quantization [56, 571. 

A fundamental result of rate-distortion theory is that better performance can be 

achieved by quantizing vectors instead of scalars, even if the source is nnemoryless. 

A vector quantizer(VQ) will work even better if the signal sarnples are statistirally 

ciependent . 

A vector quantizer can be viewed as a mapping of the input signal vector into 

a discrete number of output vectors in the k-dimensional Euclidean space Sk in a 

way that optimizes a given fidelity criterion, such as the mean squared error. The 

input signal is a k-dimensional vector x ,  and the output space is defined to be ,Y 

distinct points in 92% Denote the  napping by Q(x).  The mean-squared error (MSE) 

distortion is defined as 

e = E{IIx - &(x)1I2) (2.27) 

.4 k-dimensional, N-level VQ is defined by the partition set Cl = ( 0 ,  , (I2, . . . , Qn, ) 

and the codebook C = {cl.  cr,  . - .  , c N ) ,  where R, is a partition region and c, is the 

corresponding c-entroid or codevector. The  operation of the quantizer is to map every 

point in R, into c,. Clearly, all of the R, should be disjoint regions which cover the 



total input space 

n i n n 3  =9 for i f  j ;  

and 

where 9 denotes an empty set. IJsing these facts, the mean-squared error associated 

with the vector quantizer can be written as 

In order to find out the 0:s arid ti's, we first assume that all the partition regions 0; 

are fixed in the source space. The corresponding codevector c; must then satisfy 

This expression states that each codevector c, should be the centroid of its associated 

region. Equation (2.29) is called the centroid conditioiz. 

Next, we assume that the codevectors c, .  i = 1 ,  %,.. . , N, are fixed. To ~ninimize 

the total MSE, an input signal vector should be assigned to the i-th partition $1, 

according to the nearest neighbor criterion: 

Q(x) = ci if Ix - cil < I X  - cjl for any i # j (2.30) 

Since the pdf of the signal is unknown in many practical sources, direct analytical 

c-alculation of the codevectors is usually impossible. However, if a set of input vectors 

{xj, j = 1,2, - - - , ), called the training set, is given, an iterative training procedure 

know11 as the generalized Lloyd algorithm (GLA)  [43] can be used to design a VQ 

codebook. Starting from an initial set of codevectors, this algorithm iteratively uses 

the centroid condition (2.29) and the nearest neighbor condition (2.30) to generate a 

local VQ codebook. The basic design steps are as follows: 



1. Set iteration counter 712 = 0 and clioose an initial VQ codebook CO. 

2. rn=m+l.  Cluster the set of training vectors into partition W f o r  the given 

VQ codevectors by applying the nearest neighbor condition. 

3. Compute the centroids or codevectors C"' according to  the new partitions. For 

the mean squared error distortion measure, the codevector c; is given by 

where Mi denotes the number of training vectors in Oi. 

4. Compute the average distortion. Check whether the convergence condition is 

satisfied; If yes then stop; Otherwise go to step 2. 

The  algorithm will converge because the distortion will not increase in successive 

iteration. 

There are several ways to  choose the initial codevectors. A well-known method 

is to generate the c-odevectors with a VQ codebook size of K by perturbating the 

c-odevec-tors of a codebook size of K / 2 ,  which was proposed by Linde, Buzo and (;ray 

[43], and generally is called the LBG algorithm. In this way, a VQ codebook size of 

K can be designed starting from a one-vector codebook containing only the centroid 

of the training set [43]. 

The conlplexity of the VQ design is rnuch greater than that of scalar quantization. 

A considerable amount of rnernory is also required for storing the VQ codebook. 

Several methods can be used to reduce the complexity, such as multi-stage VQ, gain- 

shape VQ, and tree-searched VQ [57]. 



Chapter 3 

Communication System Modeling 

In this chapter we will consider the vector space description of com~nunication sys- 

tems. Although all communication channels are real waveform channels, it turns out 

that the rnost efficient way to describe and interpret such channels is through vector 

representation. Two types of the channel model used in this thesis are also introduced, 

based on the vector representation. 

3.1 Vector Representation of Signal and Noise 

We first discuss the vector representation of the signal and noise [65]-[66]. For any set 

of signals .si(t), i = 1, 2, . . . , L, in the interval 0 < t < T, with finite energy 

a set of M 5 L orthonormal functions q!~(t), 42(t) ,  . . . ,  ~ $ ~ ( t )  can always be found 

such that 
M 

si(t)= .si.,,q!~,,,(t), i =  1,2 ; . . ,L  
111=1 

where 



The functions &,(t) ,  7 7 ~  = 1,2,. . . , iM. are orthonornnal and can be constructed from 

the s,(t)'s through the Gram-Schmidt procedure [66]. 

It is observed from equatio~l (3.2) that once the fun(-tions Q,,,(t) have been deter- 

mined, each waveform .s,(t) is completely defined by its coefficients s,,,,. We could 

visualize each set of coefficients as an M-dimension vector and the collection of all 

such vectors forms the signal constellation, defined in an M-dimensional signal space. 

Each axis or coordinate in the signal space is associated with one of the orthogonal 

functions. Therefore, the i-th signal .c,(t) is defined by the vector s,=[.cZl, s , ~ ,  . . . , . s , ~ ] ~  

in the M-dinlension signal space. Note that the energy in .s,(t) is related to its vector 

coordinates as follows 

A white Gaussian noise random process can also be represented by the orthonormal 

representation as [66] 

where T L ]  is a zero-11lea11 stationary independent Gaussian variable with properties 

and 

E(71jr~,n) = 
0 otherwise 

where No/2  is the power spectrurn density function of the noise. 

Noise terms in ( 3 . 5 )  for j > 1Z.I exist in coordinates orthogonal to all coordinates 

for j I M. These terms therefore have no affect on the coordinates in which the 

signals are defined, and it is known that the terms are irrelevant to the optinlurn 

receiver [66]. On dropping the irrelevant noise, we denote the relavent noise by 



3.2 Two Channel Models for Digital Communi- 

cat ions 

Traditionally, source coding is optimized for a given source signal, it is implicitly 

assumed that this coder is transimitted over the noiseless channel. However, this is 

riot the case in physical channels. Typical communication channels such as telephone 

lines, mobile radio links, microwave links, etc introduce various types of the noise and 

interference. We focus in this study on the additive white Gaussian Noise (AWGN) 

channel and the Rayleigh flat fading channel. 

3.2.1 Additive White Gaussian Noise Channel 

An additive white Gaussian noisy ( AWGN) channel is the most c o ~ n ~ r i o ~ d y  i~sed c-ban- 

riel model in the analysis of cornmu~!ication systems. Such a channel model is a p  

propriate when thermal noise is a dominant noise source in the system. As its nalne 

suggested, the power spectral density function of the white noise is a constant, inde- 

pendent of the frequency, and equal to No/2 .  The noise amplitude has a Gaussian 

probability density function (pdf):  

where n is the vector representation of the chan~lel noise, and nT is a transpose vector 

of n. In such a channel, the noise component adds linearly along with the desired 

signal. The  transmitted and the received signals can be described in a vector fostnat 



where s denotes the transmitted signal, n denotes the channel noise contribution and 

r denotes the received signal. The  received signal r also has a C;aussian distribution. 

3.2.2 Rayleigh Fading Channel 

In the mobile channel, the signal can enter the receiver via more than one path. 

The  effect of the ~nul t ipath is caused by the reflection and scattering from buildings, 

trees and other obstacles. The  received signal is the sum of the signals with different 

amplitudes and phases. It is plausible to assume that the phases of the scattered 

signals are uniformly distributed between 0 and 2n and the amplitudes and phases 

are statistically independent of each other. Since the nurnber of the scattered signals 

is quite large, the quadrature components have Gaussian distributions according to 

the central limit theorem. As a result, the envelope, a ,  defined as the square root of 

the norm of the quadrature components, has a Rayleigh probability density fu~ict io~i  

where u2 is the noise power of the quadrature components. 

If the receiver or t rans~nit ter  is in relative motion, the received signal also experi- 

ences a Doppler shift. The  Doppler shift fD is equal to [69] 

where v is the velocity a t  which a vehicle is moving, X is the wavelength of the 

electromagnetic wave, and cu is the spatial angle between the direction of arrival of 

the wave and the direction of the vehicle motion. 

Assume that the power of the received signals is uniformly distributed in the range 

-n < cu 5 n,  i.e., the pdf of cu is given by 



for a mobile station with an omnidirectional mobile antenna, the power spectrum of 

the multipath fading channel is given by [67] 

where Wo is a constant, f,, = v/X is the maximum Doppler frequency shift. By 

taking the inverse Fourier transform of the spectrum function (3.1 l ) ,  we obtain the 

autocorrelation function of the fading channel as 

where B is a constant, J o ( . )  is the Bessel function of the first kind and the zero order. 

The  autocorrelation is shown in Fig. 3.1. There is a rapid decorrelation, showing that 

space diversity can be implemented at the mobile end to reduce the fading effect. 

Figure 3.1: The normalized autocorrelatio~l function of the signal for Rayleigh fading 
channel 



Since every two dimensions of an M dimensional vector (-an be viewed as a quadra- 

ture amplitude modulation (QAM) symbol, it is convenient to  treat the M di~nensional 

signal as a complex vector with M/2  components. 111 this way, the received signal 

over the Rayleigh fading channel can be expressed as 

where G* = dinl[g;, 9;. ..ghl,] is a diagonal matrix, its diagonal element g: is a zero 

mean, complex, C;aussian fading process, n* is a zero-mean, 12.112 di~nensional c-onlplrx 

Gaussian noise vector with a covariance matrix of $1, and s* is the transmitted 

conlplex signal. 

3.3 Formulation of the Joint Source and Channel 

Coding Design Problem 

Applying the concept of finite di~nensional representation of signal and noise, the 

general communication models we want to explore are shown in Fig. 3.2 and Fig.3.3 

respectively. The  source is a zero-mean stationary random process. Let x be a k-  

di~nensional vector derived from the randonl source with a pdf JI(X). The vector x is 

represented by a VQ codeword chosen from the set {cl,  . . . , c ~ ) ,  where N is the size 

of the codebook. Assurning c, was chosen, then the index i is mapped directly into the 

~nodulation signal points s,. The set of s,, z = 1,. . . , N forms the signal constellation. 

The  dimension of this constellatio11, M ,  is an important design parameter as it is 

proportional to  the bandwidth of the comnlunication channel [15]. The modulated 

signal s, is transmitted over an additive white Gaussian noise channel (AWGN), as 

shown in Fig. 3.2, or a Rayleigh fading channel, as shown in Fig. 3.3. In a vector 

notation, the noise waveform is represented by an M-dimensional Gaussian random 

vector n. The  different conlponents of n are independent and identically distributed 



(i.i.d), each having a zero nlean and a variance of No/? .  The received signal y is 

Noise 

I n 

Figure 3.2: General communicatio~i system nlodel in the AWGN channel. 

Source 

Figure 3.3: General corn~nu~iication s:-stem 11iode1 in the Rayleigh fading channel. 

Receiver 

Fading 
Gain Noise 

simply the sum of the transmitted signal s, and the noise vector n in the AWGN 

- 4 
X - 

channel or the sun1 of the faded signal by the fading chan~iel Gs; and the noise vector 

n. Given the signal y,  the decoder will provide the "best" estimate of the original 

signal x. This estimate, denoted by x, is then delivered to the final destination. 

VQ 

Receiver Source 

The  problem we want to  solve is to  minimize the per sa~nple  MSE, ; E ( ~ [ x  - kllL), 

4 
Ci - 

by appropriately selecting the source VQ encoder, the ~nodulation signal constellation 

Ci - 

Modulator 
x - 

and demodulator, subject to co~lstraints in the average transmitting signal energy 

Modulator 

VQ 

arid the channel bandwidth. It should be pointed out that the choice of the receiver 

structure is included in the opti~nization process, which gives us a maximum degree 

of freedom to  design an optimal co~n~nun ica t io~ l  system. 



Chapter 4 

Joint Optimization Based on the 

Signal Detect ion Receiver 
. 

Traditionally, a source coder such as vector quantizer (VQ) is designed for a noise- 

less channel. The  resulting approach is called a source optimized vector quantization 

(SOVQ). The performance of SOVQ degrades sig~lificantly in the presence of trans- 

mission errors. In noisy channels, the received index may differ from the trarlsnlittrd 

one and. as a result, the reproduction vec-tor may be a poor representation of the 

original source vector. I11 this chapter, we co~~s ide r  the problem of joint optimization 

of sottrc-e and channel coding with a conventiorlal maximum likelihood (ML) receiver. 

The  system is composed of a VQ, a modulator, and an ML receiver. The  objective is to 

design an optimal VQ, nlodulation constellation, and receiver which will mini~nize the 

average distortion between the source vector and its replica a t  the receiver. An itera- 

tive opti~nization strategy is used to design the VQ, the ~nodulator,  and the receiver. 

while ~naintaining cor~strai~l ts  on the signal energy and transmission bandwidth. 

One method toward the robust vector quantization in the noise channel is to opti- 

mize the VQ codebook for the given channel transition probabilities. This approach 

leads to a charmel optimized vector quantizer (COVQ) [Z], 1231. In a traditional 



communication system, an ML receiver is used to obtain an index from the de~nodll- 

lated data. However, the ML receiver is not optimal under the criterion of the mean 

squared-error (MSE).  We use a generalized Rayes receiver as the demodulator that 

nii~ii~nizes the overall MSE. 

This chapter is organized into eight sections as follows. In Section 4.1, a general 

c - o n l m ~ i c a t i o  system nlodel is described. The design steps for the channel optimized 

VQ are reviewed in Section 3.2,  followed by a discussion on the VQ index ass ig~l~nrn t  

using simulated annealing. Optinlizationof tlie modulation c-onstrllation is disc-ussed 

in Section 4.4. The  optimal Bayes receiver iu terms of the MSE criterion is developed 

in Section 4.5. An iterative opt i~nizat io~i  algorithm for the joint optinlization of the 

source and clia~mel coding is then introduced based on a straightforward extension 

of the Lloyd algorithm. 111 Section 4.7 numerical results are presented for the perfor- 

mance of the jointly optimized systeni for a first order Gauss-Markov source. These 

results are compared with the performance of standard conmlunicatiori systems with a 

SOVQ and ~ls ing different ~nodulation schemes such as quadrature phase shift keying 

(QPSE;) and the trellis-coded nlodulatiou (T( 'M)  for 8-phase shift keyiug (PSE;) 

Finally a slinlmary is provided, and several possible improvements are discussed in 

Section 4.8. 

4.1 System Structure 

The general diagram of tlie c-o~nrn~inic-ation system is shown in Figure 4.1. Let x 1~ a 

I N o w  

I n 
I 
I 

VQ Source Modulator Dernod VQ' 

Figure 4.1: (:ommunication system model with a tra~lsmission probability P ( j / i )  



k-di~nensional vector derived from a random source with a probability derlsity function 

(pdf )  p ( x )  A k-dimensional 1%'-level vector quantizer (VQ) is defined by a codebook 

C = {c,, i = 1.2, . . . . N )  consisting of N k-dimensional reconstructio~l vectors c, and 

the set R = { a , ,  i = 1.2, - .  . , !V) of the k-dimensioual Euclidean space 31k. 

Tlie vector quantizer is actually a mapping, Q(.), from the k-dinlensional Euclidean 

space ?Rk into a finite reconstruction vector space {C). A VQ is said to  be optimal 

with respect to a distortion measure d if the average distortion 

1 
D = - E W ,  Q(x>>l k ( 4 4  

is ~nirii~nized over all possible partitions R of 31k and reproduction codebooks C. The 

necessary c-ondi t ions for optirnali ty for a noise-free channel are 

0; = { x  : d(x ,  c , )  < d(x ,  c , ) )  for any j (4.2) 

c; = arg minz{E[d(x, z) I x E a;]) z E gk (4.3)  

Equation (4.2) gives the so-called nearest-neighbor condition, while (4.3) is the (.en- 

troid condition. The necessary conditions specified by Equations (4.2) arid (4.3) do 

not lead to an analytical solution for the optimum c-odebook and partition. However, 

an iterative algorith~n can be used to design a locally optilnal vector quantizer as in 

the work of Linde, Buzo, and Gray (LBG) [43]. 

111 many applications, a source vector is quantized and the11 transmitted over a 

noisy c-ommunication c-hannel. The source compression system uses a vector quantizer 

( V Q )  to map an iup~ l t  signal vector x into its corresponding codevector c,. The index 

of the corresponding codevector, L is directly mapped into a nlodulation signal vector 

s,. Then s, is trarisrnit ted over a noisy channel. Tlie received signal is the sum of the 



nlodulation signal s, and the channel noise n. In a conventional systern, as shown by 

Fig. 4.1, the received channel symbol y is quantized into a received index, j, according 

to a decision rule. The  information transmitted to the user is then 2 = cc,. Due to the 

channel noise, the received index j may differ from the transmitted index z, creating 

a relatively large distortion due to  a poor representation of the original signal vector 

by c,. The channel state transition probabilities P ( j / i )  can be used to represent the 

effect of the channel noise. 

Channel Optimized VQ 

As shown in [23] and [70], channel noise may significantly degrade the perfornlance 

of a source optimized VQ. Assurning some knowledge of the noise statistics, a better 

alternative is to optimize the VQ for a given noisy channel. This approach leads to the 

concept of a channel optimized vector quantizer (COVQ) introduced by Kumazawa et 

al and Farvardin et  a1 [Z], [ 2 3 ] .  Farvardin and Vaisharnpayan researched the structure 

of the COVQ in detail in [70]. Let P ( j l i )  be the channel transition probability from 

index i to index j ,  which depends on the modulation signal set. The average distortion 

The  optimum VQ should minimize the average distortion for a given VQ codebook 

size N and channel transition probabilities P(j1i).  

First, assuming that the VQ partition, 0, is given, the necessary condition for the 

optimal c,odebook C can be found by setting the derivative of the average distortion 

(4.4) with respect to cj to  zero, i.e., 



(:orrespondingly, the optimal codevector c, is 

When a training sequence x,,,, (m = 1,2, . . . , ) is given, a discrete version of equation 

(4.6) is given by 

wliere 7rt; denotes tlie nu~nber of training sequences belo~iging to the i-tli partition 0, 

Next, we must determine the optimum partition 0, for the given VQ codebook C. 

The average distortion (4.4) can be rewritten as 

Note that all the ternis inside the bracket of equation (4.8) are positive and so is the 

probability density function p(x). The only variable quantity is tlie integration region 

( 1 ; .  Consequently, the average distortion is mininlized by selecting the decision region 

0 ;  to include only those points of x for which the term inside the bracket is minimum. 

This process leads to the following optimum partition: 

A modified G L A  procedure can be used to design a COVQ based on (4.7) and (4.9). 

The design algorithm for the COVQ is as follows: 

1. Set iteration counter 7rt = 0. For the given channel transition probabilities 

P ( j l i ) ,  VQ codebook size N, and training sequences, choose an initial VQ codebook 

C0 and a threshold E .  

2. n t  = 7rt + 1. Cluster the set of training vectors into a partition am for the given 

VQ codevectors by applying the modified nearest neighbor condition (4.9). 



3. Compute the VQ codebook of the m-th iteration, C"', according to  the new 

partition a"'. For the mean squared error distortion measure, the VQ codevector c, 

is given by equation (4.7). 

4. ( 'ompute the average distortion Dnl resulting fro111 the m-th iteration. ('heck 

nm-um-1 
whether the convergence condition is satisfied, i.e. if 1 , 1 < 6 .  If yes, then stop; 

otherwise go back to step 2. Since the average distortions in successive iterations are 

non-increasing, the training process is guaranteed to  converge. 

The  design result of the source optmized VQ could be used as an initial codition 

for design of the channel optmized VQ. When used in a noisy channel, a channel 

optimized VQ usually achieves better performance than a source optimized VQ. It 

could provide up to 1.5 dB improvement in the synthesized source SNR [23]. 

4.3 Optimal Index Assignment 

In this section we consider the problem of how to  assign the VQ indices to the modula- 

tion signals for a given source coder VQ [Z]. The objective is to ~ninimize the average 

distortion D of (4.4) over the set of all possible index assignments, i.e., optimizing 

the VQ-modulation mapping. Rydbeck and Sundberg [24] presented one of the first 

papers to  demonstrate the importance of index assignment for scalar quantization. 

The  problem of optimal index assignment for scalar quantization was also considered 

by Farvardin and Vaishampayan 1191. An algorithm for improving the index assign- 

ment for a vector quantizer with a fixed codebook was introduced by De Marca et 

a1 [25], [26]. A locally optimal solution based on a binary switching algorithm was 

introduced by Zeger and Gersho [27], [28] and called Pseudo-Gray coding to acknowl- 

edge its similarity to  the well known Gray code. For small values of N, optimization 

can be accomplished simply by trying all the possible permutations of the N indices. 



The number of computations increases very quickly witti N ,  ~iiaking an e x h a ~ ~ s t i v r  

searc-h impractical even for moderate !V values. An alternative approach for sol viug 

tlie c-ombinatorial problem generated by tlie bit assign~tie~it optimization is based on 

the simulated annealing algorithm [:30]. A detailed description of this algorithm can 

be follrid in [7:3]. In this section, the minimization technique is based on simulated 

arinealing [74]. The basic idea of the sirtidated annealing algorithm is to randomly 

the state of the system at each iteration of the algorithnl. The algorith~ii 

unco~iditionally accepts perturbations that reduce the distortion and probabilistic-ally 

accepts perturbations that increase the distortion. 

111 the context of our current study, the algorithm works as follows. Assume that 

we begin by arbitrarily labeling the modulation points and storing the111 in an array 

E of size iM x N ;  E = (sl, s2, .  + . . s N )  Also, let F be a permutation matrix of size 

'2.I x IM. Then any mapping of VC) c-odevectors to tlie modulatiorl points can Iw 

described in terriis of the F and E matrices as follows: 

The  simulated a~inealing algorithm will attempt to find the permutation matrix F 

that rrii~ii~nizes tlie distortio~i D of (4.4). Here, the average distortion is considered 

as a fllnc-tion of tlie perriiutation tiiatrix D(F).  In tlie si~tiulated armealing language, 

F represents the current state of tlie system. The evolution from the current state F 

to a new state F' is obtained by using a "perturbation" defined by 

where B is a rando~nly generated permutation matrix that contains only two non-zero 

elements. Multiplying F by B is thus equivalent to  swapping the mapping for two 

indices. 



The steps in the simulated annealing algorithm are : 

1 ) For the m-th iteration, define an abstract systern "temperature" T,,,. The initial 

temperature To is usually relatively high. Also randomly arrange an initial state,  F, 

from the given modulation c-onstellation. 

2) Randomly choose a perturbation matrix B of the state F and c-ompute the 

energy variation 6 0  = D(F) - D(F1).  

a )  if SD 5 0, replace F by F', go to step 3. 

b)if SD > 0, replace F by F' with probability exp(-SDJT,,,) and go to step 3. 

3) If the number of energy drops exceeds a prescribed number or if the nunlber of 

u~isuccessful perturbations (perturbations not resulting in drops of energy) exceed a 

prescribed threshold, go to step 4. Otherwise, go back to step 2. 

4)  Lower temperature T,,,. If a stable state has been reached, stop and F is the 

optimal assig~lment we need; otherwise go back to step 2. 

A particular perturbation algorithm is used to change the state of the system in 

order to reduce the number of cornputatioris required to evaluate the average distor- 

tion [19]. In step 2, the perturbation of the state is implemented by selecting two 

c-onlponents of an index vector b randomly and by permuting them. For instance 

b' = (9 ,3 ,6 ,8 ,2)  is a perturbation of b = (9 ,8 ,6 ,4 ,2)  in which the second and the 

fourth elements in the state vector are altered. This choice of perturbation allows 

us to  move from any state to any other state in a finite rlunlber of perturbations. 

In step 2 (a) ,  SD 5 0 corresponds to  a decrease of the distortion and therefore it is 

accepted because the goal is to minimize the distortion. On the other hand 6 D  > 0 

c-orresponds to an increase of the distortion, a probabilistic decision is made whether 

or not to accept the trial perturbation, and the o rob ability of acceptance decreases 



expo~imtially with the temperature, i.e., 

as s~lggested hy Farvardiu [ 2 3 ] .  In the beginning when the system is "hot". almost all 

perturbations (whether they reduce or increase the distortion) are accepted. However. 

as the temperature is reduced, those perturbations that cause an increase of the 

distortion will be accepted with dimi~iishingly s~ilall probabilities. This process allows 

the algorithm to clirnb o i ~ t  of local minima when the temperature is high in tlir 

hope that as the system is cooled the state falls to  the global minimum. I11 the 

limited case , lim,,,,, T,,, = 0, the sys te~n is no longer able to escape from the global 

rniuinium. The  ability of tlie system to  move from tlie state of higher distortion 

guarantees tliat tlie algorithm avoids lion-optimal global minima. It can be shown 

tliat if tlie initial ~nel t ing temperature To is large enough, the simulated algorith~ii 

guarantees convergence to tlie global mini~num in probability with a cooling sclierl~dr 

described by T,,, = C /  log(m + 1)  [74]. Since this cooling scliedule is very slow. a. 

faster c-ooling schedule such as T,,, =.crT,,,-I , where 0 < cr < 1, has been used in 

practical applications of simulated annealing algorithm. If the cooling speed is too 

fast(correspo11ding to  a very small 0) we may have not the sufficient perturbations. 

On the other hand, if cr is near to 1, the cooling schedule is too slow. Wr find 

empirically that a = 0.9 is a good compromise between tlie sufficient perturbations 

and the c-ooling speed. 

4.4 Optimization of the Modulation Constella- 

tion 

From equation (4.4) we can see tliat the overall system distortion depends on both 

the source coder, i.e., the VQ codebook C and partition 52, and the channel transitiou 



probability P(j1 i ) .  The transition probability is also related to the niodulation signal 

c-onstellation as shown by 

where 0, is the j - th  detection partition region associated with the signal s, in the 

modulation signal space. Therefore, the overall system distortion can be further re- 

duced by appropriately designing the modulatior~ signal sets. To realize this objective, 

let us express the overall system distortion as 

where c; denotes the t rans~nit ted codeword, cj denotes the reconstruction codrword, 

and P ( j  l i )  denotes the transition probability that the demodulator chooses cj when c; 

is sent. The  demodulation can be tllought of as a partition of the M-dimension signal 

.space into .V regions O = (01, 02, .  . . . O N ) .  For the AWGN channel, the transition 

probability P(j1i)  can be expressed by 

where ;I4 is the dinlensional r~umber of the modulation signal. It is necessary 

i~ilpose a corlstraint condition on the average energy: 

N 

We want to find the optimal ~llodulation signal cor~stellatio~i to  minimize the average 

tlistortion under the co~lstraint condition (4.13). 1x1 formulating the opti~nization 

problem with a constraint, this constraint can be incorporated using a Lagrange 

Let us first construct another uncor~strained problem with the target function 



where y is a Lagrange multiplier. It can be shown easily that 

The optimal constellation st can be obtained by setting the derivatives of D' with 

respect to st to zero 

8"' --  - 0 
as,  

Actually, tlie decision space partition O= { e l ,  0 2 , .  . . , O N )  is related to the nludula- 

tion signal constellatio~l sl, SL ..., S N .  Because 110 analytical expression for the decision 

partition is available, we resort the GLA strategy, i.e., assuming the decision partition 

region O is fixed. As a result, we find the optimal necessary condition for s,, i.e., 

Now if we define 

where (, is an i2.l-dimension vector. and 7, is a scalar, we obtain 

and the optimal modulation signal vector is give11 by 



Substituting equation (4.17) into the constrained condition (4.13) we car1 determine 

the corresponding Lagrange multiplier 7 

If we use equation (4.18) to determine the Lagrange multiplier y ,  we get an nonlinear 

equation of 2N-order. Correspondingly we have 2 N  Lagrange nlultipliers y,, 1 = 

1,2,. . . , N ,  which means that we need to test a total of 2 N  ~nodified signal vectors 

to determine the best candidate. This method is not very efficient. 

Alteratively, we c-an use a corlstrai~red gradient-search algorithm to determine the 

optimal co~lstellation as Fosc-hini did in the optimization of signal constellation under 

the criterion of min i rnu~~ l  error detection probability [39]. To describe this approach. 

it is convenient to introduce a vector presentation 

where S is an NM x 1 vector. The  channel signal-to-noise ratio per bit S N R ,  is 

defined as 

where denotes the spec-tral density of the clraonel's additive white noise. Let 



denote an NM dimension modulation signal vector obtained at tlie rnth step of the 

iteration process. A co~iveritional urico~istrairied gradient search algorithm can be 

described by 

(3 D wliere p is a positive step size, and is the gradient of D with respect to S,,,. 

The energy of S,,, will increase or decrease with the iteration nurnber rn unless an 

energy co~istraint condition is incorporated. To satisfy the coristrai~lt on the energy 

condition, the signal vectors are re-normalized a t  each step. Tlie signal vector S,,, is 

updated according to 

and 

A heuristic discussion on the convergence of the constrained gradient-search algorith~n 

can be found in Foschini's paper [:39]. 

When we use the co~istrained gradient-search optimization algorithm to solve for 

the opt i~nal  signal constellatio~~, we need to determine the gradient of D with respect 

to S,,,. The gradient can be written as 

Two factors prevent us from using (3.21) to evaluate the gradient directly. First, 

obtaining an analytic expression for the source VQ partition fl is difficult. Although 

we can determine, in principle, tlie N disjoint source partitions from the nearest 

neighbor condition, in general, analytical expressions of the partition boundaries can 

not be found for arbitrary source distributions. The  second factor is related to the 



calculation of a numerical integration over an N-dimension volume. It is generally 

I~elieved that only two- or three-dimensional integral can be efficiently solved by a 

~iunlerical method. If the dimension of the integral is over four, it is advantageous 

to use tlie Monte-Carlo sitnulation method to evaluate the integration. Therefore, it 

is useful to find a numerical method to determine the optimal co~lstellation without 

resorting to an exact analytic descriptiorl on the partitions i l l ,  a 2 , .  . . , (IN. 

What we need to do is to  find a way to calculate the integrals in equation (4.15) 

and (4.16).  It is easy to see that 

where P( j  li) denotes the transition probability and E  { y ( j / i ) )  denotes the conditional 

mean of the received signal under the condition that the output of the demodulator 

is j while the index i  is transmitted. When the Monte-(:arlo simulation is 

estimate the transition probability, an e~npirical version of (4.22) is adopted 

Similarly, an enlpirical counterpart of (4.23) is 

where Nt denotes all the experiment data,  and O, denotes the decision region assocl- 

ated with the j - th  modulation signal point s,. It is easy to  show that the estimates 

of P ( j ( i )  and E { y ( j / i ) )  are unbiased. For the unbiased estimate, the variance is a 

good measure of the estimated performance [75]. Generally speaking, the variance is 

reduced in proportion to l / N t .  



Table 3.1: Transition probability by simulation and numeric-a1 nlethod 

I Probahilitv I Theorv Value I .'i'in~ulation Result I 

Table 4.2: ( h d i t i o n  mean by simulation and numerical method 

I Condition Mean I Theorv Value I Simulation Result 1 



To investigate the numerical accuracy of the Monte-('arlo simulation, let 11s look 

at a simple system in which four c-odewords are transnlittetl using a QPSK niodula- 

tion constellation. Tlie experimental parameters are as follows. Tlie c-hannel SNR is 

7 dB, arid 150,000 random numbers were used to get the estinlated value of the tran- 

sition probability (4.24) arid the conditional mean (4.25). The simulated aririeali~ig 

algorithm was used to optinlize the VQ index assigned to the ~nodulation constella- 

tion. The results are shown in Tables 4.1 and 4.2. Note the theoretical values of the 

t ra~ls i t io~i  probability and c-onditioual mean are obtained by using a two-dimensional 

numerical integration nietliod [76]. 

I isi~ig the Monte-Carlo simulation method we need not depend on the a~ialytical 

expressions of the VQ partitions $2 and the decision regio~is O .  Therefore the tech- 

nique is very suitable for designing an arbitrary N point nlodulatio~l corlstellatio~i in 

an M-dimension signal space. 

Demodulation Optimization 

As we see froni equation (4.4), the overall system distortion is also a functiori of the 

c-hannel transition probability P ( _ I ~ [ ) .  The channel tra~lsition probability P(jlz) itself 

is deternlined by the rule of the demodulator. Therefore, the average distortion D 

can also be reduced by appropriately optimizing the decision rule in the demodulator. 

I11 this section, we develop an optinial denlodulator to rnini~nize the MSE distortion. 

Optimizing denlodulatio~i is well-known in signal detection theory [65]-[66] and 

is accomplished if the nlirlirnizatio~i of error probability is used as an optimizatiori 

c-riterion. This criterion leads to an niaxinlurn likelihood (ML) receiver if the priori 

probabilities of the source are equal. In the joint source and channel coding system, 

the MSE, instead of the bit error probability, is used as the optinlizatio~i criterion due 



to different error bits corresponding to various distortions [65]. The average distortio~i 

can be expressed as 

where dl, is the cost of choosing index J when the codeword z is transmitted. I11 our 

Since no redundancy is introduced, the output of the source coder is directly mapped 

into the ~nodulation signal point. Replacing the transition probability by an integral 

of the conditional pdf, we have 

Note that every item in the parentheses is positive. If we want to rnini~nize the 

distortion, we should assig~i y to the region R, in which each it,e~ii in the bracket is 

the minimum. Let us define a decision function I,(y) as 

It is siniple to show that the op t imu~n  decision rule is given by: 

if I ,  (y )  < I ( )  for 7n = 1,  2, . . . N then y  E R, (4.29) 

Tlie receiver described by equation (4.28) arid equation (4.29) is called the generalized 

Bayes receiver in the signal cletection theory literature [65] .  In fact, the M L  receiver 

is just a special case of the general Bayes receiver. That is, if we define the distortion 

w s t  d,, as follows 

0 i f i = j  
. di, = 

1 otherwise 

for every correct decision the cost is zero and for every error decision the cost is equal 

to  one. Also assume that the apriori probability for each signal is the same, i.e. 



Then, the decision rule can be expressed as [65] 

4.6 An Iterative Optimization Procedure for the 

Source and Modulation Constellat ions 

We have showrl in the previous two sections how to optimize the VQ and the modii- 

lation corlstellation separately. In this section, a strategy for jointly optimizing these 

two sulxystems is discussed. Once again, an algorithmic approach is adopted. The 

algorithm is essentially a general form of the Lloyd algorithm. The key steps are 

summarized below. 

1. For the given continuous soulre, design an N-level VQ for a uoiseless c-han- 

11e1 using the Linde-Buzo-Gray(LBC:) algorithm, or source optimized VQ [4:3]. 

('hoose also a standard modulation constellation. These initial VQ and modu- 

lation systems will be updated in each iteration of the design process. 

2. For the given modulation scheme, optimize the VQ partitions and the index 

mappi~lg according to the procedure outlined in sections 4.:3 and 4.4. 

3. For the given VQ partitions and mapping, optimize the ~nodulation constellation 

according to section 4.5. 

4. Test whether or not the convergence has occurred. If so, declare the current VQ 

encoder and the r~lodulatiorl constellation as being jointly optimal. Otherwise 

go back to step 2. 
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It should be pointed out that the overall system distortion is non-increasing at 

every iteration. Consequently, the iterative procedure will always converge, at  least 

to a local minimum. Since only a local optimal solution is guaranteed by this design 

procedure, it is therefore important to choose an appropriate initial VQ and modu- 

lation signal set. Both the convergence rate and the performance of the final system 

can be i~nproved substantially if the initial state of the design process is set properly. 

We found empirically that a standard Q A M  signal set and a VQ codebook opti~nized 

for a rioiseless c-hannel are an appropriate choice for the algorithm initialization. 

4.7 Performance Results 

We present in this section the si~nulation results for our jointly optimized source- 

channel coding system. These results are obtained for a first order Gauss-Markov 

source for a variety of channel signal-to-noise ratios and bandwidt'is. (:omparisons are 

made against the standard systems corisisting of a source opti~nized vector quantizrr 

(SOVQ) and using a Q A M  or trellis-coded modulation (T(:M). 

The source is assumed to be  nodel led by a zero-mean, first-order, Gauss-Markov 

random process. This source is represented by the equation 

where e, is an independent, and identically distributed Gaussian process with variance 

E { e ; }  = (1  - #),  and p is the nor~nalized correlation coefficient between successive 

samples. If we want u, to  have some sort of characteristic of the speech signal, then a 

typical value of p is 0.9. The  channel is modeled as a stationary, independent, vector 

Gaussian random process of dimension M with a covariance matrix ?I, where I is 



an iM x M identity matrix. The channel S N R ,  per bit is defined as following 

S N R ,  = lOlog,, pa" 2 log2 :v 

For the purposes of comparison, we consider two simple co~rin~unicatiori systems in 

which a source optimized VQ is used as a sourc-e coder. It is assumed that the sourc-e 

encoder rate and the source vector dimension is the same as that llse in the joiutly 

optimized system. In these two systems, the index of the VQ is directly mapped into 

a ~nodulation signal point and then transmitted over an AWGN channel. For the first 

reference system, a standard QAM signal constellation is used as the niodulation. 

In order to maintain the same bandwidth with the optimized signal constellation, 

a J-fold (:artesian product of the QPSK signal coristellatio~i is used. The  receiver 

consists of a conventional 111aximurn-likeliliood receiver followed by a source decoder 

that maps the decoded index back to  its corresponding centroid. The  simulated 

annealing optimization algorithm is employed to find the best mapping from the V Q  

index to the signals in the modulation signal sets. In our second reference system, we 

llse the trellis-c-oded-modulation (T( 'M)  with an 8-PSK constellation. Soft decision 

Viterbi ckcoding algorithm is used for the TCM decoding. 

The  design of the optimal source and channel coding system according to the 

presented procedure requires the knowledge of channel SNR. Strictly speaking, we 

should design the optimal modulation and VQ codebook for every possible channel 

SN R condition, which requires channel SN R estimation and coordination between the 

transmitter and the receiver. An alternative method is adopted to avoid channel S N K  

estimation. We choose a fixed channel SNR of 5 .5  dB as a design parameter, since it 

gives a good compromise between the system performance . ~ t  the high channel SNR 

and the low channel SNR. Otherwise, if the designed SNR is too high or too low, the 

loss due to the channel mismatch will become larger. The  resultant system is then 



applied in a variety of SNR values to evaluate tlie system performance. 

Figures 4.2 and 4.3 present tlie VQ codebook c-onstellation and the correspond- 

ing ~~iodulatiori  sig~ial co~lstellation for the codebook size N = 16, the block le~igtli 

k = 2,  and the signal dirnerlsio~i &\.I = 2. Figures 4.4-4.9 present the optimal sys- 

tern performance conlpared with the Q A M  and T( 'M systems. These figures sliow 

tliat tlie jointly designed system provides significant i~nprovement wlie~i the channel 

SNR is less than 8 dB. For instance, in Figure 4.6, when the channel SNR is 6 dB.  

tlie source codebook size .V is 256. the block length k is 2, the 8-dimension optimal 

modulation system has 3.5 d B  gain in source SNR compared to a traditional syste~ri 

that uses 4-fold QPSK modulation. The source SNR improvement decreases with the 

VQ codebook size decreasing. For the same channel SNR, when the codebook size is 

,V = 16, we obtain just about 1 dB  improvement. If we examine the figures in the 

Iiigher channel SNR region, we will find an interesting phenonleno~i. The conventioual 

Q A M  modulation systern is better than the optimized system in this region. The phe- 

nomenon can be explained as follows. When we optimize the ~nodulation constellation 

in ternis of tlie MSE criterion. the Euc-lidean distanc-e between the modulatio~i signal 

points corresporidi~ig to the smaller source distortion is decreased. In this way, the 

opti~nized system is quite robust to the dec-ision errors caused by the channel noise. 

However, a t  high channel SNR, this strategy has the disadvantage that more signal 

energy is needed to distinguish the ~nodulation signal points with smaller Euclidean 

distances. It should be pointed oilt tliat this phenomenon is due to the mismatc-11 in 

the c-hannel SNR with respect to the designed SNR. 

We can also see that the T('M systeni is better than the proposed system in the 

high channel SNR region since the TCM system co~nbines the chan~iel coding and 

modulation to increase the Euclidean distance of the ~nodulation signal. Therefore, 

it can combat the charinel noise without extra bandwidth. At receiver, it uses a soft 



decision Viterbi decoding algorithm [77] as the denlodillation sc-hen~e. This scheme 

chooses the most likely transmitted sequence based on the received sequence. 

We also studied the effect of the dimension of modulation signal on the optimized 

gain for a fixed VQ source coder. Figs. 4.7-4.9 present tlie results. It is found that 

the opti~nized gain increases with the increase of the modulation sig~lal dime~ision, 

hut the rate of iricreasi~ig decreases. For instance, when the codebook size N is equal 

to 256, the VQ di~ne~ision k is equal to 2, the channel SNR is 6 dB, arid the dimension 

of the n~odulation signal increases from 2 to 4,  the opti~nized gain is 2.5 dB. However, 

the optimized gain is only 1 dB for the same source encoder if the dimension 

changes from 6 to 8. LJsirlg high dimension signal constellation will result in better 

performance but it increases the complexity of the ~nodulation system. We should 

trade-off between the system co~nplexity and tlie performance improvement. 

4.8 Conclusions 

In this chapter, we considered tlie problem of joint opti~nization of source and cllannel 

c-oding with a hard decision receiver. Tlie source signal is compressed by a VQ and the 

V Q  index is directly mapped into a signal point in tlie nlodulation constellation. The 

objective is to design an appropriate VQ and modulation coristellation to rnini~rlize the 

average distortion between the source vectors and its corresponding reproduction at 

the receiver. Tlie strategy we used is to optirnize the encoder, the modulator, and the 

demodulator iteratively while ~naintaining constraint conditions on the signal energy 

and transmission bandwidth. A hard decision rule that ~ninimizes the overall systeni 

MSE is derived from the generalized Bayes receiver. It turns out the receiver depends 

not only 011 the channel statistics but also 011 the source character. A constrained 

gradient search algoritlml is introduced to optimize the ~nodulation co~lstellatioris in 



First component of VQ centroid 

Figure 4.2: X 2-dime~lsion VQ codebook constellation. VQ c-odebook size AV = 16, 
block length k = 2, Source AR with coefficient p = 0.9 



First component of the modulaaon signal 

Figure 4.3: A 2-dimension ~nodulation Constellation. VQ codebook size N = 16, 
I~lock length k = 2, Source AR-1 with p = 0.9 
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Figure 4.4: ('omparison a~nongst  various c-ombiued source and channel coding sys- 
tems. The modulation signal dimension M is 4. ( 'urve 2 is the performance curve of 
the jointly optimized system. (:urve 1 corresponds to the case where 2 QPSK sy~nbols 
are used to represent an index in the VQ codebook. Curve 3 is similar to curve 1 
except that 2 trellis-code 8PSK symbols are used instead. VQ codebook size i l i  = 16, 
block length k=2, Source AR-1 with p=O.S 
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Figure 4.5: ('omparison amongst various combined source and channel coding system. 
The  total number of dimension M in the signal space is 6. Curve 2 is the performance 
surve of the jointly optimized system. Curve 1 corresponds to the case where 3 QPSK 
sy~nbols are used to  represent an index in the VQ codebook. Curve 3 is similar to 
curve 1 except that 3 trellis-code 8PSK symbols are used instead. VQ codebook size 
.2' = 64, block length k=2.  Source AR-1 with p=0.9 



Figure 4.6: Cornparison amongst various combined source and channel coding system. 
The total number of dimensiori M in the signal space is 8. ( h r v e  2 is the performanc-e 
c-urve of the jointly optimized system. Curve 1 corresponds to the case where 4 QPSK 
symbols are used to represent an index in the VQ codebook. Curve 3 is si~nilar to 
c-urve 1 except that 4 trellis-code XPSK symbols are used instead. VQ codebook size 
1V = 256, block length k=2, Source AR-1 with p=0.9 
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Figure 4.7: Output  SNR changes with respect to  various channel SNR for different 
signal space diinension M. VQ codebook size N = 16, block length k=2,  Source 
AR- 1 with p=0.9 
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Figure 4.8: Output SNR changes with respect to various channel SNR for different 
signal space dirnetlsio~l M. VQ codebook size N = 64, block length k=2, Source 
AR- 1 with p=0.9 
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Figure 4.9: Output SNR changes with respect to various channel SNR for different 
signal space dimension M. VQ codebook size N = 256, block length k=2, Sourc-e 
AR-1 with p=0.9 



terms of MSE criterion. We also considered the problem of VQ index assignnient and 

used the siululated anllealing algorithm for the optinlizatioli of the VQ index assign- 

ment. An iterative optilnizatioli algorithm for jointly optimizing source and cllallnel 

coding was developed based on a straightforward extension of Lloyd algorithm. Sim- 

ulation results show that tlle joint design of source and cliarlnel coding improves the 

system performance significantly, especially a t  the low cllannel SNR regions. 

Froln estimation theory [65], we know that the optimal receiver in terms of the 

MSE criterion shoulcl be a conditional meall of the source give11 the received signal. 

We will colisidttr the problem of joilit design of VQ anc! ~ilodulation colistellatiou based 

on this result. 



Chapter 5 

Joint VQ and Modulation Signal 

Design Based on the Conditional 

Estimate 

The problem of the joint optimization of source and charmel coding with a rnaximi~m 

likelihood receiver was considered in ( 'hapter 4. 111 this chapter we go further to 

c-onsider the proble~n of the joint design of the VQ and ~nodulation constellations in 

a system that uses a "soft decision" decoder. Note that in a conventional system, it 

is i~nplicitly assumed that the output of the demodulator is one of the VQ codebook 

entries. In this case, the design procedure aims to optimize the VQ codebook and the 

c-orresponding partition in order to achieve the best representation of the source vector 

at  the receiver. However, there is no reason to constrain the output of demodulator 

to be one of the codevectors. This chapter i~ltroduces a "soft decision" decoder which 

tlses a linear combination of the VQ codevectors to reconstruct the source signal. The 

weighting coefficients used in the reconstruction process depend on the Euclidean 

distance between the received signal vector and the nlodulation signal constellation 

(in the modulation signal space). They also depend on the channel statistics. 



The objective is to suitably design the VQ, the niodulation scheme, and the de- 

coder structure in order to mininiize tlie over all systeni d i s tor t io~~ subject to the 

constraints on the signal energy and bandwidth. This chapter is organized as follows. 

We derive in Section 5.1 the optimum MSE decoder for a given source encoder (VQ)  

and a chan~iel encoder (signal constellation) pair. This is followed by a derivation of 

tlie optiniurn VQ encoder for a fixed ~nodulation constellation. In Section 5 . 3 ,  the 

necessary conditions for optirnality about the modulation constellatiori are derived 

for a fixed VQ. A constrai~ied gradient-search optimization algorithm is introduc-ecl 

to find the optimal constellation. In Section 5.4, an iterative algorithm is presented 

to jointly optimize the source and channel coding. Numerical results for a first order 

Gauss-Markov source are also shown. Finally, a summary of the chapter is given in 

Section 5 .5 .  

The Decoder Design 

The block diagram of the communications system to be investigated is shown in Fig. 

5.1. Remember that a vector represe~itation of signals is used in this thesis. The sour(-e 

Noise 

I n  

Figure 5.1: A general communication sys te~n model. 

in Fig. 5.1 is a zero-mean stationary randoni process. Let x be a k-dimensional vec-tor 

derived from the random source. The  pdf of x is p(x). The vector x is represented 

by a VQ codevector chosen from the set { c l , .  . . . c N ) ,  where N is the codebook size. 

Assuming that the codevector c,  is chosen, the11 its index i is mapped directly into the 

~nodulation signal point s,. The set of s,, i = 1, .  . . , N, forms the signal constellation. 

Receiver Source 
A - F x 

X 
w Modulator VQ 

5 . m 



The dimension of this constellation, M ,  is an inlportant design parameter as it is 

proportional to the bandwidth of the communication chan~iel [Is].  The modulated 

signal s, is transmitted over an additive white Gaussian noisy channel (AWGN) with a 

power spectral densit\. of No/2.  I11 vector notation, the noise waveforni is represented 

by an !M-dimensional Gaussian random vector n. The  different components of n are 

independent and identically distributed (i.i.d), each having a zero mean and a variance 

of N o / 2  The received signal y is simply the sum of the transmitted signal s, and the 

noise vector n. Given the signal y ,  the decoder should provide the "best" estimate of 

the original signal x .  This estimate, denoted by x(y), is then delivered to the final 

destination. 

The  performance of the above system is measured in terrns of the (per sample) 

mean squared error (MSE) between the original and the reconstructed signal. Let 

p ( x , y )  denote the joint probability density function of x and y .  Then the average 

distortion can then be written as 

where k is the dimension of the source vector x .  The problem we want to address is 

how to design the VQ codebook, the modulation signal constellation, and the decoder 

structure in order to minirnize the average distortion while satisfying the constraints 

on the average signal energy and bandwidth. I11 this section. we first look into the 

optimization of the decoder for a fixed VQ and modulation scheme. 

According to the Bayesian estimation theory [65], the optimunl decoder under the 

minimum MSE criterion should compute the conditional mean of the source vector x 

given the received signal y .  In other words 



where p(x) ,  p (y )  are the pdf of x arid y'respectively, and p(y1x) is the c-onditional 

pdf of y given x .  Let R,, i = 1,2, . . . , iV, denote the ith partition in the VQ, and 

p ( n )  be the pdf of the Gaussian noise vector n .  Then it can be shown that (5.2) can 

be rewritten as 

where 

1 
~ ( y l s i )  = P I ~ ( Y  - si)  = "XP(- 

I I Y  - sill" 
( N o r )  ;% 1 

is the conditional pdf of y given that s, was transmitted, 

is the VQ's centroid, and 

is the probability that tlie source signal lies in 0,. 

Eq~iation (5.:)) depicts the str~ic-t~ire of the optirnal decoder for a given c , ,  R, 

and s,. The opt i~nal  decoder generates a signal that is a weighted sum of centroids 

for the VQ partitions. The  weighting coefficients are exponential functions of the 

distance between the received signal and the modulation signal points. Because of 

these exponential functions, the optimal decoder in (5.3) is inherently nonlinear. 111 

tlie limiting case when the channel is noiseless, i.e. when No = 0, only the exponential 

function p(yls,) is non-zero (assunling .s, is sent). This means that x(y) = c, - tlie 

output one would expect for a noise-free channel. 

The decoder given in Fig 5.1 can be called a soft decision decoder since it operates 

directly on the unquantized received signal y. Therefore, we call the vector quautizer 

based on a soft decision as a soft deczszoit vector quantizcr (SDVQ). In contrast, a hard 

decision decoder consists of a decision device (or in that matter a quantizer) followed 
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Figure 5.2: C o ~ n m u n i c a t i o ~ ~  systern with a Hard Decision Device 

by a source decoder structure in (5.3): see Fig. 5.2. However in this case, the dec-oder 

structure in ( 5 . 3 )  operates on the output q of the decision device, rather than directly 

on the received signal y .  This means the pdf's p(yls,), z = 1 , .  . . , LV in ( 5 . 3 )  should be 

replaced by the conditional probabilities P(qls,)'s. The hard dec-ision decoder, though 

perhaps more practical, is in general inferior to the soft decision decoder. However, 

the degradation in perforniance is practically zero at  the high channel signal-to-noise 

ratio region. This stems from the fact that at  large SNR, the conditional probability 

P(q = s , /s , )  will tend to  be 1 and other c-onditional probabilities will tend to be 0. 

( 'onsequently, the output of the decoder structure in ( 5 . 3 )  is s i~nply c, - approximately 

the same output we would get from a soft decision decoder for large channel S N K .  

The  channel optimized vector quantizer (COVQ) discussed in Chapter 4, and [Z], 

[19] falls into the category of the hard decisiou decoder. 

To compare SDVQ with COVQ, we note that the transition probabilities can be 

exprrssed as 

- 

Source 

where O,, j = 1'2,  ..., N, are tlie decision regions in the ~nodulat io~i  signal space. By 

comparing equation (5.:3) with the following equation (4.6) 

VQ 
L 

it is apparent that the (:OVQ centroids can be obtained from tlie op t i~nal  decoder of 

our SDVQ by replacing the pdf p,,(y - s,) by their average values over the decision 

region (3,. The SDVQ receiver becomes equivalent to the (JOVQ receiver if p,,(y - s , )  

- c2 

Modulator Receiver 
4 - VQ' 

A - x 



is uniform over O, and the decision regions have equal volu~nes. 

Finally, before leaving this section, we would like to provide a suboptimal decoder 

for operation in the low channel SNR region. To proceed, we note that the conditional 

pdf pn(y - s t )  in (5 .4)  can be expanded as a Taylor series around the point y = s t .  

Retaining only the first term in the expansion, we have 

and 

where ST is the transpose of the signal vector si. Since the mean of the source signal 

is zero, i . .  EN, Pici = 0, and & xg, << 1 for the low cha1111e1 SNR, this 

nleans that x(y) can be written as 

where 

In other words, the optimum MSE decoder is approximately linear for the low channel 

SNR condition. This result is attributed to Gardner [71]. 

5.2 Optimization of the VQ Partitions 

\Ve consider in this section the problem of how to design the optimal soft decision 

~ ~ e c t o r  quantizer for a given modulation scheme and communication channel. Tlie 

decoder is assumed to be the optimal decoder given in ( 5 . 3 ) .  There are two key steps 

in the design process 

1 .  deter~nine the optimal partitions f l ; ,  i = 1,2 ,  . , N in the VQ, 



2. assigning the VQ codewords to the c-hatinel signal vectors .s,, i = 1.2, . . . , .Y 

Below is a detailed description of tlie design process. 

First we show how to determine the optinial VQ partitions for a given modillation 

c-onstellation and mapping from the VQ index to tlie ~liodulatiori signal vector. The 

channel is assumed to be an AWGN channel and the decoder is tlie optimal decoder 

given in (5.3). 

Like in tlie design of a source optimized VQ by tlie LBC: algorithm [43], we asslime 

a set of initial centroids for tlie VQ, {c,, i = 1, .  . , N ) ,  is given. Moreover, we assunle 

tliat the centroid c, is mapped to the ~~iodulatioti  signal vector s;. This implies tliat 

after substituting ( 5 . 3 )  into (5.1). the average distortion D can be expressed as 

1 c:V=I Picipn(sin - si + n)  
p(x)clx (5.9) 

m = l  i= 1 Pip11 (sin - si + n )  

wliere Ill,, , m = 1,  . . . , N. denotes the VQ partitions. For the VQ encoder clesign. w r  

have to  inlpose an energy constraint during the optimization. Specifically, we set the 

average energy as 
M 

and the objective function is 

wliere PI,, is the probability tliat s,,, is transmitted and y 2 0 is a positive Lagrange 

multiplier. Equation (5.11) can be rewrittern as following 



Since each inner integral tern1 

in the above equation is non-negative, this implies the average distortion is a minimum 

if we adopt the followi~ig partitioning rule for the VQ : 

x 1 if I ,  I ,  for all j # 7n 

The partitions defined by (5.13) arid (5.14) depend on the initial centroids c l ,  . . . , c , ~ ,  

which in turn depend on tlie partitions according to  the following 

C; = Sn, X P ( X ) ~ X  

Sn, p(x)dx  

It should be evident at  this point that the optimal centroids and partitions can be 

obtained, in principle, by re-iterating (5.13) arid (5.15) until convergence occurs. This 

approach, generally known as the generalized Llyod algorithm [42], was first suggested 

in [13] for designing vector quantizers for the noiseless cha~inels. Convergence is 

gi~aranteed since the distortion can either decrease or reniain the same a t  each step 

of the iteration. However due to the natiire of iterative optimization, the algorithm 

can not guarantee to generate a global optirnu~ii solution . 

As we see from equation (5.1:3), the VQ partitions O,,,, nt = 1,2,. . . , N, are related 

to the Lagrange multiplier y. Because an analytical method to determi~ie y is not 

available, a numerical method is adopted to  find the multiplier y. In the beginning, 

we assume that y is equal to zero, then get the VQ centroids and compute the corre- 

sponding modulation signal energy. This is followed by cliecki~ig whether the energy 

constrairit c-ondition is satisfied. If yes, then stop; otherwise update tlie multiplier 

according to the equation: y,,,, = y,ld + 6, where S is a fixed step-size, and repeat the 

partition of the VQ and the computation of the signal energy. 



For a joint source and channel coding system. tlie VQ indices are mapped illto 

tlie rnodulatio~i signal vectors for transmission. As in Chapter 4, we use a simulated 

annealing algorithm to optimize tlie VQ indices mapping. 

Once the optimal mapping is found, the design process returns to the determi- 

~iatiori of the optimal VQ partitions for the given mapping. If, as a resiilt, there is 

110 reduction in distortion, tlie design process stops. Otherwise it goes back to the 

optiniization of tlie VQ index mapping. 

Optimization of the Modulation Constella- 

tion 

The distortion in (5.9) is a function of tlie VQ partitions {R,,,, rn = 1, . . . , N }  arid 

the modulation constellatiori {s,,,, 7 n  = 1 , .  . . , '21). We showed in Section 5.2 how to 

optiniize tlie VQ partitions for a given modulation constellatio~i. 111 this section, the 

problem of optiniizing the modulatiori coristellation for a given VQ is considered. 

LVe assume that the VQ partitions and the VQ-Modulation mapping are fixed when 

dealing with the optimization of the modulation constellation. 

The average distortion for the systerii can be written as 

where a Gaussian pdf is substituted into equation (5.9). Once again we should corisicter 

tlie energy constraint, see equation (5.10): 

.M 

l l ~ ~ - - ~ , + 1 1 1 1 ~  
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Due to the difficulty to find the opti~liurn riiodulatio~i constellation by an analytic 

~n(n)p(x)dndx (5.16) 

approach, a constrained gradient-search algorithm is again used to  determine the 



optimal constellation, see (:hapter 4 for detailed discussion. I11 the ciirrent applic-ation. 

the algorithm will provide us with at  least a local optimum solution. This stems 

from the fact that the distortion can never increase in each iteration and the average 

distortion is bounded by zero. Also, it should be noted that the partial deviative of 

the average distortion D with respect to the modulation signal vector s, is given by 

The  colnputation of the partitial derivative (5.17) is implemented by the Monte Carlo 

simulation. 

5.4 Joint Source-Modulation Optimization and Nu- 

merical Result s 

We discussed in the last two sectioris how to optirnize individually the VQ and the 

~nodulation constellation. In this section, a strategy of jointly optimizing these two 

subsystems will be discussed. Once again, an algorithmic approach is adopted. The 

algorithni used is essentially a general form of the Lloyd algorithm (GLA). For the 



given modulation scheme, we first optimize the VQ partitions and the mapping a(-- 

cording to the procedure outlined in Section 5 . 3 ,  and then optimize the modi~lation 

constellation according to Section 5.4 for the given VQ partitions and mapping; Iterate 

these two steps until the convergence occurs. 

The  design procedure described above was applied to a first order Gauss Markov 

source. The correlation coefficient between suc-cessive samples is set to 0.9. The 

corresponding numerical results are shown in Figs 5.3 through Figs. 5.11 for different 

VQ size N ,  signal space dimension M, arid VQ rate R,, defined as 

Table 5.1 summarizes the values of tlie various parameters used in these figures. For 

each set of system parameters, we also include in the same figure the upperbound on 

performance, as well as the perforrriance of the corresponding reference system. 

Each reference system is constructed as follows. For given N ,  M,  and R,. we first 

clesign the optinla1 VQ for the AK-1 source in a noiseless channel, using the GLA 

algorithm [43]. Then from the value of LV and iM, determine the most appropriatr 

basic- QAM constellation. The (:artesian product of the basic constellation M / 2  times 

with itself results in a A4 dirliensional c-onstellation with N points. For example, let 

,V = 256 and M = 4. Then the most appropriate basis constellation is a 16QAM 

constellation. Alternatively, one can use 1 6PSK. The  decoder in the reference systrni 

is assumed to  perform hard dec-ision decoding, i.e., it will determine the 111ost likely 

trans~rlitted VQ codeworcl from the received signal y. It should be pointed out the 

simulated annealing algorithm is used to find the optimal VQ-modulation mapping 

for tlie reference system. 

For comparison, we also show the bounds for the joint source and cha~lnel coding 

system. These bounds are derived according to the infor~nation theory, see Chapter 2 



for a detail discussion. We show in Figures 5.:3-5.5 that the performanc-e of our systetns 

as a function of the channel signal to  noise ratio, E,,,,/.V,,, in dB. The difference in 

these three figures are the number of codewords, .V, in the VQ. The performanc-e 

nleasure is the reconstructed source signal-to-noise ratio. defined as 

The  ~nodulatiori sche~nes in these figures all have a bandwidth efficiency o f  7 = 2 

bits/sec/Hz. The  system optimization was performed at a channel SNR of 5 dB. 

The resultant systems were then used over the entire SNR range. The  reason why we 

chose 5 dB  SNR value as an optimization parameter is that it gives a good compromise 

between the performance in the high SNR and the low SNR regions. Otherwise, if the 

designed SNR is too high or too low, the overall distortion due to the mismatr.h of the 

c-llannel SNR will increase. It should be pointed out the chioce of the designed channel 

SNR value is related to the source and channel model. For example, we select 5 tlH 

a:, a design c-hannel SNR value for a first order C:aussiati-Markov source in AW(;N 

channel. However, for the same source model but a Rayleigh fading channel, we select 

17 dB  as a designed channel SNR; see (3lapter 7. Similarly, for the same chatlriel but 

different sources, the design SNR would be different. Note that in principle we can 

optimize the system a t  every channel SNR. However this would require an adaptive 

system with SNR esti~nation a t  the receiver. Three observations are made : 

1. T h e  larger N is, the better the synthesized signal-to-noise ratio (SSNR) a(-Lev- 

able. The  value of N apparently does not have a strong irifluetlce a t  the lower 

channel SNR region. 

2. The  proposed systems significantly outperform the reference (or standard) sys- 

tems a t  the lower SNR region. For example, at  the channel SNR equal to 2 dB,  



the gain in SSNR is roughly 2 dB in each of the 3 figures. This clearly illustrates 

the benefit of joint source and channel coding. 

3. At low channel SNR (below 5 dB),  the performance curves of our systems run 

roughly parallel to the bound of the joint source and channel coding systeni. The 

difference in SSNR ranges from 5-7 dB. At higher channel SNR, our perforniance 

curves deviate from the bound. This is due to the fact that only a relatively 

srnall number of codewords are used in the VQ and modulator. 

Figures 5.6-5.8 differ from the previous three figures only in the rate of the source 

coder. Here the source rate is R, = 2. We notice that increasing the source rate brings 

a tremendous improvement in the ~naxirnurn SSNR. For example, if we compare Figs 

5.3 and 5.6, we see the maximum SSNR increases by about 3 dB when the source rate 

is doubled. 

Fig. 5.!1-.j.ll is similar to Figs 5.6-5.8 except that the signal space di~nensious are 

different. I11 c-omparing these two figures, we see that a t  large SNR, the size of the 

signal space has no effect on the system performance. However. at  lower SNR like 0 

dB, we see that the system in Fig. 5.9 performs significantly poorer than that in Fig. 

5.6. This is as expected since the signal space di~nension is larger in Fig 5.6 than in 

Fig. 5.9. 

In c-omparing Figs 5.4, 5.7, 5.10 and Figs 5.5, 5.8, 5.11, we can once again c-onfirui 

the following findings : 

1. The    no st effective way to increase the ~naxirnurn SSNR is to increase the source 

rate. Increasing the signal space dimension or the number of codewords has 

relatively little or no improvement to the nlaxi~nunl SSNR. 

2. Large signal space dirnension is required for the low channel SNR region. 111- 

creasing the source rate has no effect for this operating region. 



Table 5.1: Sunmlary of the system parameters used in the different figures. Note that 
the second last colurnn are the channel SNRs at which optimization are performed. 

For illustration purpose, Figs. 5.12 and 5.13 show the VQ constellatiorls and 

modulation constellations for systems opti~nized a t  different channel SNRs. It is in- 

teresting to point out that at  low channel SNR, the number of distinct VQ codewords 

in the optimized system may be smaller than the initial codebook size N. For ex- 

ample, the ~ i u ~ n b e r  of distinct VQ codewords a t  a channel SNR of 2 dB is only 11, 

although the initial codebook contained 16 vectors. This situation may be explained 

by the fact that the optimal system trades the clean channel performance (SSIVK) 

for brtter perfor~nance in the noisy enviro~lment: for a s~naller number of centroids 

the performance in clean channel conditions degrades, but at  the same time the dis- 

tances between the signal points in the modulation space increase and this approac-h 

may lead to better performance a t  low channel SNR. A similar observation was made 

earlier in [19]. When trying to  increase the number of centroids by centroid splitting, 

the new centroids remain very close to the existing ones and the systern tends to 

c-onverge to  the same number of c-entroids and same average perfornlance as in the 

initial optimized design. 
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Figure 5 .3 :  Performance of a joint source arid channel coding systern with ,V = 16 
VQ codewords, k = 4 VO dimensiotls, a source rate of R, = 1, arid a sig~lal spare 
dimension of M = 4. (:urve - . - represents the upper bound predicted by the rate 
distortion theory. ( 'urve * * shows the simulation results for the proposed system. 
The solid clirve shows the results for the reference system where 2 X QPSK is used 
as the n~odulation format. 
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Figure 5.4: Performance of a joint source and channel coding system with N = 64 
VQ codewords, k = 6 VQ dimensions, a source rate of R, = 1, and a signal space 
c~i~nension of hl = 6. Curve - . - represents the upper bound predicted by the rate 
ctistortion theory. Curve * * shows the simiiiatiou results for the proposed system. 
The  solid curve shows the results for the reference system where 3 X QPSE; is used 
as the modulation format. 
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Figure 5.5: Performance of a joint source and channel coding system with N = 256 
t r Q  codewords, k = 8 VQ dimensions, a source rate of R, = 1, and a signal space 
dime~ision of M = 8. Curve - - represents the upper bound predicted by the rate 
distortion theory. Curve * * shows the sitnulation results for the proposed system. 
The  solid curve shows the results for the reference system where 4 X QPSK is used 
as the modulation format. 
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Figure 5.6: Performance of a joint source and channel coding system with N = 16 
VQ c-odewords, k = 2 VQ dimension, a source rate of R, = 2, and a signal space 
dimension of 121 = 4. Curve - . - represents the upper bound predicted by the rate 
distortion theory. Curve * * shows the simulation results for the proposed system. 
The  solid curve shows the results for the reference system where 2 X QPSK is used 
as the ~nodulation format. 
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Figure 5.7: Performance of a joint source and channel coding system with N = 64 
VQ codewords, k = 3 VQ dimension, a source rate of R, = 2 ,  and a signal space 
di~nension of M = 6. Curve - . - represents the upper bound predicted by the rate 
clistortion theory. Curve * * shows the si~nulation results for the proposed system. 
The solid curve shows the results for the reference system where 3 X QPSK is used 
as the modulation format. 
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Figure 5.8: Performance of a joint source and channel coding system with N = 256 
VQ codewords, k = 4 VQ dimeusion, a source rate of R, = 2, and a signal space 
clime~ision of M = 8. Curve - - - represents the upper bound predicted by the rate 
distortion theory. Curve * * shows the simulation results for the proposed system. 
The  solid curve shows the results for the reference system where 4 X QPSK is used 
as the modulation format. 
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Figure 5.9: Performance of a joint source arid channel coding system with N = 10; 
VQ codewords, k. = 2 VQ dimension. a source rate of R, = 2, and a signal space 
dimension of M = 2. Curve - . - represents the upper bound predicted by the rate 
distortion theory. Curve * * shows the simulation results for the proposed system. 
The  solid curve shows the results for the reference system where 16-QAM is used as 

the nlodulatio~l format. 
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Figure 5.10: Performance of a joint source and channel coding systetn with N = 64 
VQ codewords, k = 2 VQ dimension. a source rate of R, = 3, and a sigrlal spa(-e 
dimension of '44 = 2. (:urve - . - represents the upper bound predicted by the rate 
distortion theory. Curve * * shows the simulation results for the proposed system. 
The solid curve shows the results for the reference system where 64-QAM is used as 
t lie ~noclulation format. 
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Figure 5.11: Perforrnance of a joint source and clla~iriel coding system with N = 256 
VQ codewords, k = 2 VQ dimension, a source rate of R, = 4, and a signal s p a - r  

dimension of :I4 = 4. (:urve - . - represents the upper bound predicted by the ratr  
distortion theory. ('urve * * shows the simulation results for the proposed system. 
The  solid curve shows the results for the reference system where 256-QAM is 11srd as 
the modulation format. 
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Figure 5.12: VQ codebook constellation at different channel SNR. The  source is a first 
Gauss- Markov wit 11 a correlation coefficient of p=0.9.  The various system parameters 
are N = 16, k = 2 and M = 2. 
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Figure 5.13: Modulation co~istellations a t  different channel SNR. The  systern is the 
same one in Fig. ;5. 12. 
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We compare the performance of the SDVQ system with the linear receiver system 

[44] in Figs. 5.14-5.15. It should be pointed out the both two systems are optimized 

a t  the exactly channel SNR value. Fig 5.14 is corresponding to the case of the VQ 

cliniensiou k=8 ,  the nlodulation signal dimension M=8, and the source rate R,=l.  

Fig 5.15 is similar to Fig.14. except that the dimensionality of the modulation signal 

dimension M is equal to 4. We can see that the performance of our SDVQ systenl is 

alniost identical to the linear receiver system in the low channel SNR region. How- 

ever, the SDVQ system is superior to the linear receiver system about l dB in the 

synthesized source SNR in the high channel SNR region. This is due to that the linear 

receiver is just an approximate implementation of the optimum receiver at  the low 

-5 0 5 

Channel SNR 4 dB 



SNR channel. 

Finally let us look a t  the perfor~nance of the SIIVQ arid the linear receiver systenis 

in the case of the cha~iriel SNR niismatch in Fig. 5.16 and 5.17. Both systerns are 

optimized at a H dB charmel SNR arid the resulting systems operate under different 

channel SNR conditions. We call see that the SDVQ system is sig~iificaritly better 

than the linear receiver system. For example, see Fig. 5.17, when the channel SNR 

is equal to 10 dB, the SDVQ system is over tlie linear receiver system about 4 dB in 

tlie synthesized source SNR. 



Figure 5.14: Performance connparison of the proposed systeni with tlie linear receiver 
system. Both system are optimized at tlie exact clia~mel SNR. N = 256 VQ code- 
words, k = 8 VQ dimensions, a source rate of R, = 1, and a signal space di~nensio~l  
of A4 = 8. Curve - . - represents the upper bound predicted by tlie rate distortion 
theory. ( h r v e  - - shows the simulation results for tlie proposed sys te~n.  Solid line is 
c-orrespondi~ig to tlie linear receiver system. 
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Figure 5.15: Performance comparison of the proposed system with tlie linear receivrr 
system. Both system are optimized a t  the exact channel SNR. N = 256 VQ code- 
words, A. = X VQ dimensions, a source rate of R, = 1, and a signal space di~nensio~i  
of .M = 3. ('iirve - . - represents the upper bound predicted by tlie rate distortion 
theory. ( 'urve - - sliows tlie simulation results for tlie proposed system. Solid line is 

c-orresponding to the linear receiver system. 
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Figure 5.16: Performance comparison of the proposed system with the linear receiver 
system. Both systern are optimized at a particular channel SNR. N = 256 VQ code- 
words, k = 23 VQ dimensions, a source rate of R, = 1,  and a signal space dirnensio~i 
of .2/l = 8. ('usve - . - represents tlie upper bound predicted by the rate distortio~i 
theory. ('urve oo shows the simulatiorl results for the proposed system. ( h r v e  * " 
represents the performance of tlie reference system. Solid line is corresponding to the 
linear re(-eiver system. 
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Figure 5.17: Performance comparison of tlne proposed system with the linear receiver 
system. Both system are optimized at a particular channel SNR. N = 256 VQ (-ode- 
words, k = 8 VQ dimensions, a source rate of R, = 1, and a signal space dimension 
of .I4 = 4. ('urve - . - represents the upper bound predicted by the rate distortion 
theory. ('urve oo shows the sirnnulation results for the proposed system. Curve * * 
represents the perfornnance of the reference system. Solid line is c-orresponding to the 
linear receiver system. 

5.5 Summary 

We have presented in this chapter an iterative procedure to  joint opt i~nize sour(-e and 

c-lnannel coding in terms of tlne criterion of the mininnunl mean-square error (MSE)  

between the original and the reconstructed source signals. We applied this procedure 

to design a combined codec for a first order Gauss-Markov source. The  results indicate 

that our codec significantly outperforms a conventional system. In addition, it is 

observed that a t  low channel SNR, a modulation signal space with a large signal 



dimension is needed for satisfactory performance. On the other hand for high c-liannrl 

signal-to-noise ratio, the source rate should be increased for better perfornlance. 



Chapter 6 

Sequential Reconstruction of 

Vector Quantized Signals 

We described a sy~iibol by synlbol soft decision decoding algorithm that jointly-opti- 

niizes the VQ and the modulation signal set in Chapter 5 .  However, if the VQ output 

indic-es are correlated, a I~lock decoding technique can be used to further improve the 

system perfornlance. 

Icleally, a VQ or sourre encoder sllould remove all the redundancy in the sour(-e. 

However. due to the constraints such as the encoding delay and VQ coniylexity, s ~ l r -  

cessive VQ indices are often correlated. In particular, if the source already has a 

certain redundancy, the receiver could take advantage of this residual redundancy to 

reduce the effect of the channel noise. The problem thus is how to  design such a 

rereiver . 

This chapter presents an optinial sequential decoding scheme for a joint soiirc-e and 

c-hannel coding system operating in the AWGN channel. The  rni~iiniu~il  mean-square 

error (MSE) between the original and the reco~istructed source signals is used as the 

optirnality criterion. The system being investigated consists of a vector cluantizer 

(VQ) whose output indices are mapped directly into points in the modulation signal 



space. The  ~~lodula t ion  signal is then t r a~ l s~n i t t ed  over an AWGN channel. X seqllen- 

tial decoder based on the Bayesian estimate is used to reconstruct the source signal 

from the received signal samples. A recursive algorithnl for imple~nenting the l~lock 

soft decision receiver is introduced. (:ompared to the sy~nbol  by symbol decoding 

technique presented in Chapter 5, it is found that sequential decoding significantly 

improves the systenl perfor~nance when transmitting from a correlated source. 

This chapter is organized into five sections. Section 5.1 provides a brief review of 

previous work on detecting a Markov source based on the hard decision receiver, and 

a study of the residual redundancy a t  the output of the,source coder. By  nodel ling the 

VQ output as a first order Markov process, we derive in Section 5.2 a block decoder 

under the MSE criterion. 111 section 5 . 3 ,  a recursive signal reco~lstructiori procedure 

is presented to  implement block decoding. The  sirnulation results on the perfor~nance 

of the sequential decoding technique are presented in Section 5.4. Finally, a summary 

of this chapter is given in Section 5 .5 .  

6.1 Residual Redundancy 

The decoder described in chapter 5 actually performs syrnbol by sy~nbol  soft dec-ision 

decoding, i.e., as soon as a signal sample is received, the decoder would reconstruct a 

corresponding source signal sample, based solely on that particular received sample. 

Such a decoder works well for a rnemoryless source; however, for sources with memory, 

the performance can be further improved. Even if a very sopliisticated compression 

technique is used to  try to rernove the source redundancy, there will be some residiial 

c-orrelation a t  the output of the source coder at  different time instances. This residual 

redundancy can be used by the receiver to  provide error protection without bandwidth 

expansion. 



By  nodel ling the residual c-orrelation as a first order Markov process, several all- 

thors have considered the problem of detecting a correlated source over a noisy 

channel. Devore [78] considered detecting a binary Markov source through a binary 

sy mmetric-a1 sliannel and gave necessary co~iditions for the optimal detectors. Sayood 

arid Borkenhagen [79] sonsidered the problem of detecting a dissrete Markov sourse 

over a nle~noryless noisy channel in a joint source-channel DP(:M image coding sys- 

tem . Pharndo and Farvardin [80] considered the instanta~ieous ~ n a x i ~ n u ~ n  a posteriori 

(MAP) detection of a discrete Markov source over noisy channels and its application 

to the combined source-channel coding system. The  main difference between [79] and 

[go] is that the detector in [79] is suboptimum, hence, it is not a MAP detector. In [79] 

only sequential detection was considered, i.e., tlie deter~nination of the most probably 

t rans~nit ted sequence given an observed sequence, while the objective of instantaneous 

MAP detection is to determine the most probably transmitted symbol given the ob- 

servations up to  the current time. More recently, Gerlach developed a hard decision 

re(-eiver for combined speec-h extrapolation and error detection based on maximurn a 

posteriori probability of the source parameters [81]. The  optimal receiver structures 

resulting from the above papers were developed based on the signal detection theory. 

However, as we proved in chapter 4, tlie op t i~nal  receiver under the MSE criterion 

should make the conditional estimate. We first present a block decoding algorithm 

to exploit the residual redundancy, then develope a recursive algorithm to  implement 

the optimal soft decision block decoding, which constitutes the main contributio~l 

presented in this chapter. 

Let us first review briefly the s t r~icture of the optimal symbol by sy~nbol  desoder 

for a combined source and channel coding system. The  conlrnunication sys te~n model 

is shown in Fig. 6.1. Assume that x is a k-dimensio~ial vector derived from a random 

source. The  vector x is mapped into a VQ codeword chosen from the set {c,, . . . , CN).  



Figure 6.1: System model for symbol by symbol decoding 

Assuming c, was chosen, then its index z is mapped directly into the modulation signal 

point s,. The set {sl ,  . . . , s ~ )  forms the signal co~istellation. 

In the channel, the transmitted signal is co~nbined with additive C;aussian noise n. 

Given the received signal y = s, + n. the decoder should provide the "best" estimate 

of the original signal x. The  soft-decision detector provides the estimate 

Source 

The decoder described by (6.1) actually performs a symbol 

decoding. Due to  practical constrai~lts such as the encoding 

- 4 Modulator 
X 

by symbol soft decision 

delay and the VQ (-om- 

Receiver 

plexity, the VQ indices at  different time intervals are often correlated. This redun- 

clan(-y can be modeled as a first order Markov process. For de~no~lstrat ion purposes, 

we investigate the transition probability 

VQ 

P(c,Icj) = Pi.ob(c; at  time 111 I c j  a t  time 111-1) (6.2) 

Ci - 

of the VQ codebook. The  VQ codebook is designed by the SDVQ, see Section 5.2, 

which is a modified version of the Generalized Llyod Algorithm (GLA). As input 

data  we used a first order Gauss-Markov source as well as the line spectral pair (LSP) 

parameters of a speech signal. The  sinlulation results are shown in Fig.6.2 and 6.3 for 

different VQ parameters. 

The  two planar axes represent the VQ's indices and the vertical axis represents the 

transition probability. If the source is memoryless, the transition probability should 



Transition Probability 

Figure 6.2: Transition probability of a VQ codebook for an AR(1)  source with coeffi- 
cient p=0.9. Codebook size is N=64,  and the vector dimension k=6 .  

Transition Probability 

Figure 6.3: Transition probabilities of the first stage in a 4-stage VQ codebook for 
the LSP parameters of speech. Number of stages is 4. The codebook size is 64 for 
each stage, and the vector dinlension is 10. 



not depend 011 the previous index, i.e, 

which means that the transition probabilities along the index 1 axis should he equal 

to  each other. It is clear from the figures that the vertical readings are riot ~ m i f o r ~ n  

and this implies that redundancy is present at  the VQ's output. The  next probler~i is 

how to   nod el this redundancy. In the previous studies [79] and [t30], the VQ output 

was usually modeled as a first order Markov process, since it is a good represe~itatiou 

of the source model and easy to perform mathematic analysis. I11 this thesis, we 

adopt tlie same assulnption for tlie VQ source output.  It will be demonstrated later 

in this chapter that this redundancy can be exploited a t  the receiver to provide error 

protection against the channel noise. 

The Block Decoder 

Figure 6.4: System model for block decoding 

We will derive the optimal block decoding algorithni under the MSE criterion. Referring 

Norse 

to Figure 6.4, in order to describe the sequential decoding process, we need to intro- 

duce a time index to describe tlie received signals and the reconstructed source signals 

at  different instants. Let us denote the ~nodulator  output at  time 7 n  by w,,,, and the 

corresponding noise vector, and received vector by n,,,, and y,,, respectively. In ad- 

dition, let the VQ codeword and the reconstructed source signal corresponding to 

w,,, be denoted by v,, and x,,. It should be clear that v,, E { c , ,  . . . , c N ) .  and 

A 

-----.) X Source 
x - V Q  

VI - Modulator Receiver 



W,,L E ( ~ 1 , .  . . , S N ) .  NOW if we define 

where L is the block length, then the optimal block decoder computes the conditional 

mean of the source given the received signal, i.e., 

x L ( Y L )  = 
Cv, P ( V L ) i V L  IVL)VL 
Cv, WL) P(YLIVL) 

where P ( V L )  is the probability of the sequence of centroids ( v l , .  . . , v L ) ,  and p(YLIVL) 

is the joint pdf of all the yL's  conclitioned on the source sequence ( v l ,  . . . , vL) .  Note 

that the s u ~ n ~ n a t i o ~ i s  in the above equation are taken over all possible L-length sour(-e 

sequences. (.lomparing with the symbol by symbol decoder in (6.1), we see immrtfi- 

ately that (6.5) is simply a more general formulation of (6.1). 

Because of the summations in (6.5), signal reconstruction by tlie block decoder 

appears to be very complex. A brute force approach would require the decoder to 

compute N L  terrns for each of the summations, where N is the codebook size. Clearly 

this is not feasible for any VQ of practical interest. Fortunately, by  nodel ling the VQ's 

output as a first order Markov process, the computation of (6.5) can be significantly 

simplified. To develop a sequential decoding algorithm, let us first express the prob- 

ability P(VL) as 

where P ( V , J V ~ - ~ )  is tlie transition probability from the previous state i - 1 to  the 



current state i. The conditional pdf p ( Y L I V ~ )  can be expressed as 

If  no coding is introduced in the modulation mapping, 

we obtain a common modulation mapping strategy. But we can introduce a first order 

conditional  napping for the ~nodulation 

which means that the received signal is related riot only to the current input v, but 

also to the previous input v,-l. Equation (6.8) describes an optimal rrlodulatio~i 

mapping rule for the Markov source, which suggests that a coded modulation should 

be adopted for the source with memory. In a traditional modulation system, a fixed 

~nodulation or mapping is used to  transmit a VQ index. This strategy is fine if the VQ 

indices are independent to  each other, i.e., no redundancy exits a t  the output of sour(-e 

coder. However, as shown in Fig. 6.2 and Fig. 6.3, redundancy does exist even thoiigli 

a sophisticated source co~ripressio~l scheme such as VQ is used. The redundancy can 

Ile used to design a coded ~nodulation scheme. Therefore, the optimal modulation 

scheme should be a conditional mapping. The  optinla1 niappi~lg rule would thus have 

a trellis structure. It is quite interesting to note that we could use the trellis coded 

modulation (TCM) for a first order Markov source. It is quite clear that the T('M 

(-an be derived from the tra~isitiori probability of the Markov source. 

6.3 The Sequential Decoding Algorithm 

Now we want to  develop a sequential decoding algorithm starting with equation (6.5) 

by exploiting the properties of a first order Markov source. The  cornbination of 



s l l  

Figure 6.5: Trellis ( M e d  Modulation for a first order Markov process 



the block decoder arid the recursive procedure leads to a sequential decoder. Since 

q u a t i o n  (6.5) is quite complicated, we will develop a recursive algorithm for the 

numerator and deuonlinator separately. Note that the denominator of equation (6.5) 

can be written as 

Furthermore, let us define 

and 

Note that the numerator of equation (6.5) is the vector: 

L)ecornposing the equation (6.1%), we get 

In the followi~ig, we develop a recursive formula for bj(vm). As we know 



Realizing that the last term is equal to b, (v, , , -~ ) for j = 1.2, . . , in - 2, we obtain 

the following recursive fornlula 

Subsequently, we can express the components of the vector b(V,,,) as 

Furthernnore, it is straightforward to express the reconstructed signal vectors .ill. . . , iL 

for an ol~servation window of L in the form: 

where the superscript L is deliberately introduced to  emphasize the dependency of 

the reconstructed signal vectors on the \,lock length L. 

The  VQ output v,,, represents a state in the Markov process, there are ,V suc-11 

state variables at  any time in. ('orrespondingly, the term f(v,,,) is a function of .V 

state variables v,,,. The update of f(v, , ,)  at  any time rn > 1 requires altogether 

2,Y2 multiplications; see second line in (6.10). At time rn = 1, there are only N 

~nultiplications required. Similarly, the term h,(vl,,) is also a function of the state 

variable v,,,. Since the index j can vary fro111 1 to  m ,  this means at  time m,  there are 

altogether N values for v,,,. The updating of f (v,,,) and h,(v,,,) at  time 772 requires 

altogether (rn - 1)N2  + N multiplic-ations. Thus in summary, for a block length of 

L, the updating of the f(v,,,) 's arid the h,(vIll)'s requires a total of N ( L  + 1) + ( L  - 

1) (L  + 4)N2/2  multiplications. For large N ,  this is approximately equal to (NL)'/2 

~nultiplications for decoding L symbols, or equivalently a complexity of LN2/2  per 

symbol. For the direct block decoding in terms of the equation (6.5), the VQ index v,,, 

has N states for each time interval rn, therefore, the total number of states for L time 



intervals is N L .  The ~iumber  of the ~nultiplicatio~is for brute-forw block derodilig is 

about 2 N L /  L.  We can see that a significant redoc-tion in conlplexity is obtained by 

applying the sequential decoding algorithm: the complexity is reduced from 2 N L / ~  

to L.YL/2.  

Since both the decoding delay and the complexity increase linearly with L,  an 

excessively large block size is clearly not desirable, nor is it necessary. Re(-all that 

the VQ output can be modeled as a first order Markov process and each VQ index 

represents a state of the Markov processes. According to the property of the Markov 

processes, the next state is dependent only on the present state. 011 other hand, for 

a homogeneous Markov process, the transition probability P(c , / c , )  is independent of 

the time in which the transition occurs. Therefore the state transition matrix at  time 

T T L ,  P(171), can be expressed as 

P(??L) = P( l ) l ' l  (6.17) 

where P ( 1 )  is the single-step (couditional) tra~isitiori probability matrix, defined as 

and the i ,  j - th  element of P ( l )  represents the probability of transferring at any time 

~n from state i to state j .  As we know, a homogeneous Markov chain can reach a 

steady-state probability matrix P after many tra~lsitions [8'L]. 

For our case, we can compaie the norm of the difference of two consecutive transitiun 

probability matrices and determine how long time the system needs to enter the 

steady state. Fig. 6.6 shows the norm of the difference of two consecutive transition 



Number of iterations 

Figure 6.6: The  rlorm of the difference of consecutive transition matrix V.S. iteration 
number 



probability matrices as a furictio~i of the iteration number, where tlie norrn is defined 

Our experiments show that after 16 transitions, the transition matrix enters steady- 

state. In other words, the Markov process has a menlory span of about 16 symbols. 

If a source has a memory span of Lo symbols, then the block length L should be at  

least Lo. I11 our case, the recoristructed signal vectors x!:) in (6.16) will satisfy 

The  above equation implies that except for an initial delay of Lo symbol time, decoding 

can be performed continuously, one symbol a t  a time, by only keeping and extending 

all those state variables h,,,(v,,,) with an index 111 greater than L - Lo.  This is the 

basis of oilr sequential ctecoder. 

6.4 Simulation Results 

In our experinients, the vector quantizer used in the sequential decoding soft dec-ision 

vector quantizer (SD-SDVQ) is the same as that used in tlie SDVQ system based 

on symbol-by-symbol decoding (i.e., vector quantizer codebook optimization does not 

a(-c-ount for sequential decoding). Obviously, the system is a sub-opti~nuni SD-SDVQ, 

hut it is easy to  i~nplement and gives a good indication of the coding gain that can 

be obtained by using the sequential decoding technique. 

To demonstrate the advantages of sequential decoding over symbol-by-symbol de- 

rocling, such as the COVQ, SDVQ and SOVQ(LBG), Figs. 6.7-6.10 compare SD- 

SDVQ to tlie ( 'OVQ, SDVQ and SOVQ(LBG) for different VQ source di~nensions 

and codebook sizes at  rates of 1 bi t /sa~nple (Fig. 6.7-6.8) and 2 bits/sample (Fig. 
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Figure 6.7: Perfomlance of COVQ, SD-SDVQ, SDVQ and SOVQ(LBG) systems. The 
rate is 1 bit/symbol. VQ codebook size &I = 16, block length k=4. Source AR- 1 
with p=0.9. The design channel SNR for SDVQ and COVQ is 5 dB. 



('hamel SNR dB 

20 

15 

Figure 6.8: Perforlnance of (:OVQ, SD-SDVQ, SDVQ and SOVQ(LBC;) systems. The 
rate is 1 bit/symbol. VQ codebook size N = 256, block length k=6. Source AR-1 
with p=0.9. The design channel SNR for SDVQ and COVQ is 5 dB. 
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Figure 6.9: Performance of COVQ, SD-SDVQ, SDVQ and SOVQ(LBG) systems. The 
rate is 2 bit/sy~nbol. VQ codebook size M = 16, block length k=2. Source AR-1 
with p=0.9. The design channel SNR for SDVQ and COVQ is 5 dB. 
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Figure 6.10: Performance of SD-SDVQ, SDVQ, COVQ and SOVQ(LBG) systems. 
The  rate is 2 bit/symbol. VQ codebook size N = 256, block length k=3. Source 
AR-1 with p=0.9. The design cha~lnel SNR for SDVQ and (:OVQ is 5 dB. 



6.9-6.10), where a first-order Gauss-Markov source is used as input. The COVQ and 

SDVQ systems were designed for an average SNR of 5 dB and the optimal modulation 

constellation, described in section 5.5, is used to transmit tlie VQ indices. Simulated 

annealing was used to optimize the index assignnnent for the (:OVQ, SDVQ and 

SOVQ(LBC:). 

Figures 6.7-6.8 show that SD-SDVQ provides significant performance improvement 

over other symbol-by-symbol decoding scheme, particularly in low channel SNR. For 

example, in Fig. 6.8, a t  a cha~lnel SNR of 3 dB and a codebook size of 256, a vector 

dimension k = 8, SD-SDVQ perfornlance is better than SDVQ by about 1.2 dB, than 

(:OVQ by about 2 dB and than SOVQ(LBG) by about 2.5 dB. We can see that the 

SD-SDVQ provide the best perfornlance in the all experiments. 

6.5 Conclusions 

We have derived in this chapter a sequential decoder for reco~lstructing vector-quantized 

and digitally modulated signals transmitted over an AWGN channel. This decoding 

algoritlm has a c-omputational complexity of LN2/2 ,  where L is the observation win- 

dow size and N is the size of the VQ codebook. The  sirnulation results show that 

the sequential decoding can improve the system performance over symbol-by-symbol 

decoding, especially a t  low channel signal-to-noise ratio. 



Chapter 7 

Application of the Joint Source 

and Channel Coding Algorithm 

As we see from the previous chapters, joint optirnizatiori of source and channel codi~ig 

(-an bring about a significant i~liprove~nent in the systeni performance c-ompared with 

the traditional design method. Here in this chapter, we consider the application of 

this coding philosophy to the mobile channel, wliicli is characterized by the present-e 

of the Rayleigh fading. I11 addition, we will look at tlie the performance of the joint 

c-odec in transmitting the line spectral pair (LSP) parameters of the speech signal over 

tlie AWGN channel. The  solutions to these two relatively more practical problems 

c-onstitute the main subjects of this chapter. 

On the subject of joint optiniization of source and cha~lriel coding over a Rayleigh 

fading channel, once again, a decoder based 011 the co~iditional estimate is used to 

reconstruct tlie source signal frorn the received signal and tlie channel state informa- 

tion ((251). We will present an iterative algoritli~n that jointly optimizes the VQ and 

tlie modulation signal set in terms of the minimum MSE criterion. It will be shown 

tliat a jointly optimized systern based on average channel characteristics significantly 

outperforms a reference systeni based on a VQ designed for the given source and 



a standard QAM modulation signal set. We also compared the performance of the 

symbol-by-symbol decoding with the sequential decoding. It is found that the distor- 

tion can be further reduced by the sequential decoding algorithm, especially in the 

low SNR c-hannel. 

On the subject of trans~nitt ing LSPs over the AWGN channel, in a view of the real- 

time implementation, a structured VQ is used to reduce the computational coniplexity 

and storage capacity. We use a multi-stage VQ (MSVQ) to represent the LSP. To 

take account of the properties of the human ear, a weighted mean squared-error 

(WMSE) is used as the opti~nization criterion. The conditions for optirnality under the 

WMSE criterion are derived. It is found that the optimal receiver is still a conditional 

estimator and the jointly optimized system can reduce the spectral distortion in the 

noisy c:hannel significantly. 

7.1 Optimized Decoder Over the Rayleigh Fading 

Channel 

It is well know11 that the land/mobile radio channel exhibits Rayleigh fading. The 

block diagram of the com~nunication system over the Rayleigh fading channel is shown 

in Figure 7.1. The  source is a zero-mean stationary random process, and x is a k -  

Fading 
Cjain Noise 

Source VL! Modulator 

Figure 7.1: System model over Rayleigh fading channel 

diniensional vector derived from the random source with the pdf p(x) .  The vector x 

is mapped to a VQ codeword chosen from the set {c,, . . . , c ~ )  according to a given 

optimization criterioxl. Assuming the source vector is represented by ci, then its index 



1 is mapped directly into the modulation signal point. Since every two dimensicms of 

s: can be viewed as a QAM symbol, it is thus most conve~iier~t to treat s: as a complex 

vector with M / 2  components. Let s:,, j = 1,2,. . . , M / % ,  be the jt" component of S T .  

the11 after transmission over the Rayleigh channel with additive white Gaussian noise, 

the correspondingly received signal is 

where T L ~  and g; are zero mean, c-omplex Gaussian random variables representing thr  

fading gain and the additive Gaussian noise respectively, experienced by sZ;. Sinc-e 

i~~terleaving/deir~terle~vi~~g is usually used to combat fading, it is reasonable to assume 

that gr's are independent and identically distributed (i.i.d). The same is true for the 

~1:'s. Note that if the white Gaussian noise in the channel has a two-sided power 

spectral density of 1V0/2, then the variance of the n:'s is N , / 2 .  In addition, if the 

variance of the fading gain gj is g i ,  then the symbol signal energy is 

where Pt is the probability that s; is transmitted. The  channel signal-to-ooisr ratio 

(SNR) is simply E,,,/+. As in many other studies of the fading channel, we assume 

perfect channel state infor~natiori ((:SI) is available at  the receiver, i.e., the 9,'s are 

known a t  the receiver. It is not difficult to estimate these con~plex fading gains, 

especially a t  slow fading rates. This may be done, for example, by inserting known 

training syr~ibols a t  regularly spaced intervals [83]. If the fading rate is, say f Hz, and 

the baud rate is B Hz, then the spacing of training symbols should be a t  least HI(2f) 

symbols. The fade rate is usually small compared with the baud rate (around half 

a percent in Digital Cellulai-, for example) and hence the overhead associated with 

channel estimation is very small. Interpolation may be used to determine the cornplex 

gains that affect the data  sy~nbols  between training symbols. 



The received signal can be written in a matrix form as 

where G* = &cay($, g t ,  - . , gLjz) .  For convenience, let us define a fading gain vector 

Given the received signal y*  and the fading gain g*, the decoder should provide the 

"best" estimate of the original signal x .  

The  MSE criterion is used to  measure the distortion between the original arid 

the recoristructed source signals. Let p(x,  y* lg*) denote the conditional joint density 

fu~iction of x and y*  given the fading vector g*. Then the average distortion can be 

written as 

where p(g*)  denotes the pdf of the fading gain vector g*. 

As shown in ('hapter 5 ,  the o p t i n ~ u ~ n  decoder under the minimum MSE criterion 

is one that computes the conditional expectation of the signal x given the received 

signal y* and the fading gain g*. 111 other words 

where p(x)  is the pdf of x, p(y*/x,  g*)  is the conditional pdf of y*  given x and g*. 

Let R,, i = 1 ,2 , .  . - , N denote the it11 partition in the VQ, and let pll*() be the pdf of 

the complex Gaussian noise vector n*. Since we assume that perfect ( S I  is available 

at  the receiver, it can be show11 that (7.6) can be rewritten as 



where 

is the c-onditional pdf of y* given that s: is transmitted and the fading gain is g*, 

is the VQ's clean channel centroid associate with the partition region fli, and 

is the probability of oc-currence of the it11 codevector c, . 

7.2 Optimization of VQ and Modulation Signal 

Set for the Rayleigh Fading Channel 

We first consider the problem of opti~nizing the VQ partitions for a given modulation 

constellation arid Rayleigh fading gain. 

As in the AWGN channel, the GLA procedure is used again to find the optimal 

VQ. Assumed that an initial VQ codebook, c,, i = 1,. - - , N ,  is given. Furthermore, 

assume that the codeword c, is transmitted by the signal vector s:. Therefore after 

substituting (7.7) into (7.5), the average distortion D can be rewritten as 

1 c E ~  Pi PcipU* (G*(s:,, - s:) + n*) 
= 171=1 hm 1 1  - , P G * ( s  - sf) + n*) 

~ l l *  (n* )v(g*)dg*~(x>dx 

where fl;, 1 = 1,. . , N ,  are the various partitions. Since each inner integral term 

c , N = ~  Picipll* (G*(s:,, - sf) + n*) 
p,. (n*)p(g*)dg*dna (7.12) 



in equation (7.12) is non-negative, the average distortion will be minirllized if tlie 

following partitioning rule is adopted for the VQ: 

x E R if I ,  I for all j # r n  

The partitions defined by (7.12) and (7.13) depend on the VQ centroids c l ,  . . . , c v ,  

which in turn depend on the partitions according to the following 

Therefore the opt i~nal  centroids and partitions can be obtained by iterating (7.12) 

and (7.14) until convergence occurs. Convergence is guaranteed since the distortion 

(-an either decrease or remain the same at each step of the iteration. 

The rnappirlg of the VQ centroids into the nlodulation signal points (index assign- 

rnent) has an inlportant impact on the system performance. The simulated annealing 

algorithm is used for optimizing the index assig~mlent [23]. 

The distortion in (7.1 1 )  depends on the VQ partitions {R,,,, nL = 1 , .  - - , N )  and 

tlie nlodulation constellation {s:,,, rn = I ,  . - . , N ) .  Therefore, the average distortion 

c-ould be further reduced by optimizing the modulation constellation for a given VQ 

partition. 

Due to the inherent property of the nonlinear receiver it is quite difficulty to find 

an analytical solution for the opt i~nal  ~llodulation constellation, As in (Ilapter 5 ,  we 

still adopt the constraint gradient-search algorithm to  find the optimal constellations. 

Sequential Decoding over 

ing Channel 

the Rayleigh Fad- 

As we discussed in Chapter 6, the redundancy exits a t  the VQ output due to  the 

constraints on the VQ complexity, therefore a block decoding technique can be used 



to  exploit tlie redundancy. 

The  optimal block decoder for the Rayleigh fading chanriel is given by 

where P(VL) is the probability of the sequence of c-entroids (v , ,  . . . . v L ) ,  arid p ( Y i I V L ,  GI )  

is the joint pdf of all the YL's coriditio~ied on the source sequenc-e (v , ,  . . . , v L )  and 

the fading gain ( g ; ,  . . . , gz). Note that the summations in the above equation are 

taken over all possible L-length source sequences. 

Following a similar development of the sequential decoding algorithm for tlie 

XWGN channel, we can express tlie reconstructed source vectors xl ,  . . . , xL for an 

observation window of L in the form: 

where the superscript ( L )  is deliberately introduced to emphasize the clependenc-y of 

the reconstructed signal vectors on the block length L. Note the recursive forniula for 

bL,l,L and cull,  are related to the given Rayleigh fading gain matrix GjL. 

7.4 Joint Optimization of Source and Channel Cod- 

ing over Rayleigh Fading Channel 

X strategy of the generalized Lloyd's algorithm (GLA) can be used to  jointly optimize 

the VQ and ~nodula t io~i  co~istellatio~is over the Rayleigh fading channel. This strategy 

first optimizes the VQ for tlie given modulation constellation, then opti~riizes the 

rrlodulation constellation for tlie given VQ. By iterating these two steps until the 

convergence, a jointly optimized systern is obtained. 

The  design procedure described above was applied to a first order Gauss-Markov 

source signal. The  correlation coefficient between successive samples is set to 0.9. The 



corresponding nu~nerical results are shown in Figs 7.2-7.5 for the different 

the signal space dimension M ,  and the VQ source rate R,, defined as 

VQ size ,V, 

(7.17) 

The reference systems used for comparison in Figs. 7.2-7.5 are constructed as follows. 

For given N, M ,  and R,, we first design the optimal VQ for the AR-1 source in a 

noiseless channel, using the LBG algorithnn [43]. Then from the value of N and M, 

determine the most appropriate basic QAM co~lstellation. The decoder in the ref- 

erence system is assumed to perform hard decision decoding, i.e. it determines the 

rnost likely transmitted VQ codeword from the received vector y* and the clia1111el 

state information g*. The simulated annealing algorithm is used to find the optimal 

VQ-modulation mapping for the reference system. As for sequential decoding, the 

same VQ and 11iodulatio11 constellatio~l designed for symbol by sy~nbol  decoding is 

used. Neither VQ nor modulation co~lstellation has been re-opti~nized for the sequen- 

tial decoding strategy. Due to the homoge~ieous Markov property of the particular 

VQ output,  the decoding delay Lo is equal to 16. 

We show in Figs 7.2-7.8 the performance of our systen~s as a function of the channel 

signal to noise ratio, E,,/No, in dB. Figs 7.2-7.4 are for a source rate of 1 bit/sample 

while Figs. 7.5-7.7 are for a source rate of 2 bit/sample. The  difference among Figs 

7.2-7.4 (or Figs. 7.5-7.7) is the number of codewords N. The  perforn~ance measure is 

the reconstructed source signal-to-noise ratio (SSNR), defined as 

It should be pointed out that systeni optimization were performed at a channel SNR 

of 17 dB. The  resultant systems were then used over the entire SNR range. The 

optinlization point (at  17 dB) gives the best compromise between the performance 



in the high SNR and the low SNR regions. Note that in principle we can optimize 

the system at every channel SNR. However this would require an adaptive system 

which coordinates between the transmitter and the receiver. As observed from these 

figures. the sequential decoder significantly outperfor~ns the two reference systems. 

For example, it can be seen from that,  see fig. 7.2 and 7.4, with N = 16 and a channel 

SNR of 10 dB,  the gain in SSNR provided by sequential decoding is roughly 5 d B  

compared to the hard decision decoder (conventional system) and 1.5 dB compared to 

the symbol by sy~nbol  decoder. When .Y increases to 256, the performance advantage 

(in SSNR) the sequential decoder has over the symbol by symbol decoder increases 

to 2.4 dB a t  the same channel SNR. When the channel SNR decreases, the advantage 

of using a sequential decoder becomes even more obvious. 

To put the Rayleigh channel resillts in perspective, we show in Fig. 7.8 the per- 

formance cornparison with the pure AWGN channel. It is found that Rayleigh fading 

c-alises a 15 dB degradation in the channel SNR. 

7.5 Linear Prediction and Spectrum Information 

In the earlier chapters, we evaluate the performance of the joint source and channel 

c-oding tl~roiigh the use of a first order Gauss-Markov source. Now, we consider a 

more practical application of our SDVQ technique in transmitting the line spectral 

pairs (LSP) of a digitized speech signal. 

LSP is a representation form of the linear prediction parameter of the speech signal. 

Linear prediction is a very i~nportant  and powerful signal processing technique used 

in the speech analysis and speech coding. The  basic idea behind the method is that 

each input speech sample can be predicted by a linear co~nbination of a finite number 

of past input speech samples. Mathematically, the linear predictor is described by the 
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Figure '7.12: System Performance for vector dimension k=4, rate 1 bit/sample, and 
signal space dimension M=4. (Jurve *** denotes the performance of sequential de- 
coding, Curve +++ is the performance of the optimized system for symbol by symbol 
decoding. Curve o o o is for the reference system where 'LXQPSK symbols is used as 
the modulation format. 
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Figure 7.3: System Performance for vector d j ~ n e ~ ~ s i o l ~  k=6, rate 1 bit/sample. and 
signal space dimension M=6. Curve *** denotes the perforrna~lce of sequential de- 
coding, Curve +++ is the perfornlarice of the optimized system for symbol by synlbol 
decoding. Curve o o o is for the reference system where SXQPSK symbols is used as 

the modulation format. 
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Figure 7.4: System Performa~ice for vector di~nension k=8, rate 1 bit/sample, arid 
signal space di~nension M=8. ('urve *** denotes the performance of sequential de- 
coding, Curve +++ is the performance of the optimized system for symbol by symbol 
decoding. Curve o o o is for the reference system where 4XQPSK symbols is used as 
t lie modulation format. 
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Figlire 7.5: System Performance for vector dimension k=2, rate 2 bit/sample, and 
signal space dimension M=4. ('urve *** denotes the perfor~na~ice of sequential de- 
coding, Curve +++ is the perforniance of the optimized system for symbol by synihol 
decoding. Curve o o o is for the reference system where 2XQPSK symbols is used as 
the ~nodulation format. 
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Figure 7.6: Systern Performance for vector di~liension k=3, rate 2 bit/sample, and 
signal space dimension M=6. Curve "** denotes the performance of seque~itial de- 
coding, Curve +++ is the performance of tlie optimized system for symbol by symbol 
decoding. Curve o o o is for the reference systeru where 3XQPSK symbols is used as 
tlie modulation format. 
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Figure 7.7: System Performance for vector dimension k=2, rate 2 bit/sample, and 
bignal space dimension M=4. (:urve *** denotes the performance of sequential de- 
coding, (:urve +++ is the performa~:ce of the optimized system for symbol by symbol 
decoding. Curve o o o is for the reference system where 4XQPSK symbols is used as 

the modulation format. 
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Figure 7.8: Effect of Rayleigh fading on the system performance. Tlie VQ c-odebook 
size N = 64, block length k = 3, arid a signal space dixilension M = 6. Tlie source 
is AR-1 with p = 0.9. Curve +++ is the AWGN channel result. ( h r v e  *** is the 
Rayleigh fading channel results. 
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equation 

By subtracting the predicted signal, ii(n), from the current value, u (n ) ,  we obtain a 

residual (or error) signal, 

e ( n )  = ~(11)  - ii(n) 

The coefficients is chosen to  ~ninimize the MSE of the prediction error, therefore the 

partial derivative of the MSE with respect to each coefficient i ~ ,  ( i  = 1.2 , .  . . , I < )  

should be zero. Then, the following condition for optimality is found: 

This equation is called the orthogonal principle in the linear prediction theory. It im- 

plies that the prediction error should be orthogonal to the input data. By sub~nit t ing 

equ. (7.19), (7.20) into (7.21) we obta i~ l  the following linear equation 

Ra = r, 

where R is the autocorrelation nlatrix, 

Q) r ( 1 )  . . -  r ( K -  1) 

4 1) ~ . ( o )  . . . r ( K  - 2) 

r (2 )  ~ ( 1 )  . . .  r ( K - 3 )  

. . .  

. . .  

. . .  

( I -  1 ( I - )  . . .  r(o) 

a = [ a l ,  n 2 , .  . . , nKIT is the linear prediction coefficients and r, = [ ~ ( l ) ,  r (2) ,  - .  . , ~ - ( l < ) ] ~ ,  

where r(i), i = 1.2, , - . . , K ,  is the autocorrelation function of the signal u(n) .  The 

equation (7.22) is called Yule-Walker equation. The  autocorrelation matrix R is a 



positive, Toeplitz matrix. Due to its special structure a computational effic-ieut pro- 

cedure, Levison-Durbin algorithm [59]-[60], can be used to find the optimal predirtion 

coefficients. If the speech signal is passed through a filter with the optimal predirtion 

coefficients, the residual sequence needs fewer bits of information to achieve a satis- 

factory signal-to-noise ratio. Note the prediction c-oefficients are needed be quantized 

arid coded only a t  a rather slow frame rate, typically about 10-30 nis to reflect the 

changing nature of the speerh signal. 

On the other hand, we ran look at the LP(' analysis of speech signal from the view 

of signal spectrum. LPC analysis is to extract a set of parameters from the speech 

signal which specifies the filter transfer function giving the best spectral match to  the 

signal being encodered. The  spectral density function of the speech signal is given by 

where the u2 is the variance of the prediction error signal, and A(e-lw) is the spectral 

response of the linear filter. Such a filtering process is often referred to as spectral 

flatting, since regardless of the spectral shape of the input speech signal, the spectrum 

of residual sequence is substantially flat. Practically, a good estimate of the signal 

spec-tral density can be obtained hy the so-ralled model-based approach. For the 

speech signal analysis 10 order predictor is usually adopted, such as VSELP [j], DOI) 

FS- 1016 [7]. Figure 7.9 shows the linear prediction spectrunl of a 'LO 111s segment of 

voiced speech. A Hamming window was used to  weight the speech data  prior to the 

linear prediction analysis. We can see from the figure that the spectral envelope of 

the LP(: filter frequency response contains a nurnber of peaks a t  frequencies closely 

related to the fornlant frequencies, the resonant frequencies of the vocal tract. 

In low-bit rate speech coding algorithms such as CELP, the input speech spectrurn 

information is quantized and transmitted, along with other parameters to  the receiver. 
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Figure 7.9: Linear prediction spectrum and signal spectrum 

Vector qua~itizatiori of spectral parameters has attracted considerable attention for 

the low bit rate speech coding. However, the application of spectral parameter vec-tor 

quantization lias been limited in actual speech coding system due to the high VQ 

c-omputational complexity and the large distortion over noisy channels. The optimal 

Ii-tli order linear predictor is represented by: 

where a; are the coefficients of the linear predictor. And the same predictor with 

quantized coefficients Bi is denoted by ~ ( z ) .  The line spectrum pairs (LSP), histori- 

cally, is a popular one-to-one t ransformatio~~ of the LPC parameters that result in a 

set of parameters which can be efficiently quantized while maintaining stability [t34]- 

[86]. Many good properties of LSP make it a good candidate for the presentation of 

the speech signal spectral information. The  first such property is monotonicity, which 



restricts each LSP in a vector to be larger than the previous LSP. Ciiven the mono- 

tonicity property, errors can be easily detected and corrected. The  second desirable 

property is its robustness towards error, which means that an error in any single LSP 

do not propagate to  other LSP. 

By introducing a suitable structure in the VQ codebook, both the rnemory and 

conlputational complexity required by a VQ can be reduced dramatically. These 

techniques range from the multi-stage codebooks and group codebooks to overlaying 

11011-uniform binary tree structures on the codebook. In a multi-stage VQ (MSVQ) 

system, an input LSP vector x is approximated by: 

where x is the quantization presentation of x ,  A' is the number of stages, and c y  

is the 7n-th codevector from the j - th  stage. The  j - th  stage codebook comprises of 

L = 2b codevectors. The  total bits for the MSVQ system are equal to b x Ii' bits. A 

seq~leritial search procedure is traditionally used in MSVQ by selecting the j - th  vector 

suc-h that the nlean squared error 

is nlinirnized over all possible choices of j - th  stage codebook c,, where e,-I is the 

residual error up to  j - l t h  stage. Since the ~ninimization of MSE for overall stages is 

riot equal to  the nlinimization of MSE for each stage, the sequential search pro(-edure 

is not the optimal search procedure. The  sub-optimal search procedure will result in 

the performance degradation. 

A~iother answer to reduce the VQ complexity is to use group vector quantization 

(GVQ). I11 GVQ, the vector to be quantized is divided into several sub-vectors where 

an independent VQ is applied to  each sub -vector. The  only constraint placed on the 

135 



individual code book search is that the reco~lstructetl vector for LSP is required to 

be ~ n o ~ ~ o t o ~ i i c a l l y  increasing from the first element to the last. Recently, the spectral 

distortion near 1 dB  has been obtained by using GVQ technique in a 24 bits/franle 

system, where 12 bits were used to encode the tlie first 4 LSP parameters arid the other 

6 LSP parameters respectively [89]. As we see, a group VQ codebook is equivalent 

to a nlulti-stage VQ where some vector cornpo~ients are forced to zero. The MSVQ 

performance can be i~nproved by iteratively optimizing the MSVQ codebook, as re- 

ported by ('lian, Gupta and Ckrslio [go]. MSVQ was previously studied in [91]. I11 [91] 

several measures were utilized to improve the perfor~nance of the traditional MSVQ, 

which include using a ~nul t iple  search procedure in each stage search to approximate 

tlie full-search codebook search. arid jointly optimizing the MSVQ codebooks of total 

st ages. 

The  performance of traditional MSVQ degrades significantly in the presence of 

transmission errors. In noisy cha~lnels, the received index may differ from the trans- 

mitted index and as a result the reproduction vector may be a poor representation 

of the original source vector. Due to the inherent structure of MSVQ codebook tlie 

errors in the first several stages are very sensitive to the channel error, which leads to 

very large distortion if an error occurs in the demodulator. As we see in chapter 5, 

the optimal decoder should make a linear combination of the clean chan~lel centroids 

with weights depending on the received signal and the channel statistics. 

7.6 Weighting Mean Squared-Error Criterion for 

the LSP 

Bec.ause of the different sensitivities of the human ear to various frequencies, a 



weighted mean-squared error ( W M S E )  distortion measure is usually used as an opti- 

~nization criterion in training tlie VQ for the LSP. The WMSE between the original 

and the reconstructed signal is given by: 

where W is a diagonal matrix whose elements may depend on x. For the LSP, the 

perceptually based weighted matrix introduced in [92] is used. The weighted matrix 

elements are given by: 

~ ( f i )  Jn.lO,,,,, 1.375 5 Di 5 D,,,,, 
w; = 

u( f i )D , /  Jl.:375D ,,,, , D; < 1.375 

where 

f, denotes the i-th components of tlie LSP, D, denotes the group delay for f,, and 

I),,,,, is the maximum group delay. The function u ( D , )  accounts for the specific- 

spectral sensitivity of each frequency f,. The group delay can be computed as the 

gradient of the phase angle of the filter at  a frequency corresponding to the i-th LSP 

with the sarnplirlg rate being 8000 Hz. 

The  following spectral distortion measure is used to measure the performanc-e of 

the resulting LSP MSVQ codebook: 

As for the optimization of the joint codec under the WMSE criterion, it ran he 

sliown that the optimal decoder is once again the one that computes the conditional 

expectation of the source given the received signal 



It is well known that there are two conditions that must be satisfied for the optinla1 

VQ. One is the partitions, and the other is the centroids. In the following, we will 

address these two issues. 

We first consider the optirnal partition condition. For a given source, the decoder 

in (7.29) and the given chanriel statistics, the overall WMSE can be expressed as 

M ' = c L, J [ x  - E ( x / J '  = si + TL )ITw[x - E ( x  /y = S ;  + n)] p ( x ) p ( n ) d n d x  
1=1 7L 

It can be proved that the optimal partitions are given by 

x E R, if li 5 I,,, for all i # rn (7.30) 

where I,,, denotes a scalar 

011 the other hand, the optimal centroids are given by 

The  optinla1 partitions specified by (7.30) depend on the VQ centroids c l ,  C L ,  . . . , C N ,  

which in turn are related to  the partitions, see (7.:31). Therefore the G L A  procedure 

can be used to design the optimal VQ until convergence occurs. 

7.7 MSVQ LSP Codebook Design 

There are several approaches to design tlie MSVQ codebook, such as sequential [57]. 

iterative [92] and joint opti~iiizatio~i of the MSVQ [91]. In the sequential MSVQ design 

algorithm, each stage VQ codebook is designed using a training sequence consisting of 

quantization error vectors resulting from the previous stages. This training procedure 

iniplicitly assumes that all the VQ codebooks in the the following stages are zero. 



Optirnizi~ig in this manner is clearly sub-optimal due to  the correlation property of tlie 

different stage errors. The  iterative sequential design and si~nultaneous joint desigp 

algorithms are concerned with designing MSVQ to ~ r i i n i~~ i i ze  tlie overall WMSE. In 

tlie iterative design, the other stage codebooks are assunled fixed and known, and the 

objective is to design tlie currelit stage VQ codebook to ~niniriiize tlie overall WMSE. 

Once an initial set of VQ codebooks are obtained, each stage can be re-optimized given 

the other stage VQ codebooks. Thus, the overall weighted mean square error (WMSE) 

is ~niriirnized rather than the WMSE for encoding the residual vector resulting fro111 

tlie previous stage VQ. Cknerally speaking, the MSVQ codebook obtained from tlie 

sequential design can be used as an initial codebook for the iterative optimization. 

The  MSVQ codebooks are designed by using tlie GLA algorithm to nlinimize 

average WMSE based on a training sequence. The  (:LA consists of two steps, one is 

to cluster the training sequence according to a given set of centroids (or codevectors), 

and tlie other is to  choose tlie centroids to minimize the distortion over the particular 

partitions. \;Ve iterate these two steps until the convergency condition is satisfied. 

For a sequential design algorithm, the current stage residual vector is obtained by 

subtracting the previous stage reconstruction vectors from the original vector. The 

residual vector is then quantized by the current stage VQ. A soft decision VQ design 

procedure based on the equation (7.30) and (7.31) is used to design the current stage 

VQ starting with the first stage. A condition estimator is used as a source decoder to 

obtain a reconstructed signal from the received channel signal. 

7.8 Experimental Results 

Tlie first step toward MSVQ design is to collect a set of representative speech vectors. 

This training set should include 50 to 1000 training vectors per code word. Here 



400,000 training vectors were used for tlie codebook design, a ~ i d  another set of 256,000 

vectors were used for testing the perforniance of the resulting VQ codebook. 

The  use of soft decision VQ requires the knowledge of tlie noise pdf. For the AWGN 

channel this pdf is co~npletely deternlined by the channel SNR. Once again the SDVQ 

system is designed for an average expected value of the channel SNR. When used 011 

a given cha~lnel, such a SDVQ may suffer some performance degradation due to the 

noise level misnlatch, still it will offer a significant advantage over other proc-edures. 

The  vector quantizer design used in sequential decoding soft decision vector quan- 

tizer (SD-SDVQ) is the same as that used in the SDVQ system based on symbol-by- 

symbol decoding (i.e., the vector quantizer codebook optimization does not account 

for sequential decoding). Although this method will not lead to an optimum SD- 

SDVQ, the sys te~n is easy to implement and gives a good indication of the coding 

gain that can be obtained by using the sequential decoding technique. 

The  soft decision vector quantizer (SDVQ) and the channel optimized vector quan- 

tizer (( 'OVQ), discussed in (Jhapter 4, were trained by using the same database as 

that used for the source optimized vector quantizer (SOVQ) discussed in Chapter 

2. The  standard QPSK modulation signal set was used to trarisrnit the MSVQ in- 

dices. Each VQ index was mapped into a signal formed by concatenating a number 

of QPSK symbols. For exa~nple  for codebook size N = 256, each index was mapped 

into a signal obtained by colicatenatirlg four QPSK symbols. 

Figures 7.9 and 7.10 show the average spectral distortion comparison among 

SOVQ, COVQ, SDVQ and SD-SDVQ for LSP quantization using two different MSVQ 

structures. Both MSVQ systems use 24 bits for the quantization of speech LSP pa- 

rameters. Fig.7.9 corresporlds to the case of a 4 stage MSVQ with 6 bits per stage, 

wliile Fig. 7.10 correspo~lds to  the case of a 3 stage MSVQ with 8 bits per stage. 

SDVQ shows the performance improvenlent over SOVQ and COVQ, particularly for 
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Figure 7.10: Performance of SD-SDVQ, SDVQ, COVQ, and SOVQ ( G L A )  for quan- 
tization of speech line spectral pairs (LSP). Four stages with 6 bitslstage were used. 
The  design SNR is 8 dB  for SDVQ and ('OVQ. 

the low charmel SNR region. For example, at  a cha~lnel SNR of 5 dB and for the 

3-stage MSVQ, the average spectral distortion of SDVQ is about 0.35 dB less than 

SOVQ and 0.15 dB  less than ('OVQ. SD-SDVQ further irnproves the performance 

by reducing the SD by about 0.15 dB  with respect to SDVQ. For example, at a 

channel SNR of 5 dB and for the 3-stage MSVQ, the average spectral distortion of 

SDVQ is about 0.35 dB less than SOVQ and 0.15 dB less than COVQ. SD-SDVQ 

further improves the performance by reducing the SD by about 0.15 dB  with respect 

to SDVQ. 
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Figure 7.11: Performance of SD-SDVQ, SDVQ, COVQ, and SOVQ (GLA) for quan- 
tization of speech line spectral pairs (LSP). Three stages with 8 bitslstage were used. 
The  design SNR is 8 dB for SDVQ atid (:OVQ. 



Conclusions 

We have presented in this chapter an iterative procedure for joint source arid channel 

coding optimization over a Etayleigli fading chaunel. We also developed a sequential 

decoding algorithm for the fading channel. These approaches were applied to design 

a corlibined source and charirlel coding system for a first order Gauss-Markov sourc-e. 

The s i~nula t io~l  results show that a significant improvement can be obtained compared 

with tlie separately designed system, and that the sequential decoder can frirther 

reduce the average distortion by exploiting redundancy in the VQ indices. 

We also compared the performanc-e of different multi-stage vector quantizer rlsed 

to represe~it the line spectral pair parameters of tlie speech signal. The multi-stages 

vector quantizers were designed by SOVQ, COVQ, SDVQ, and SD-SDVQ. A weighted 

mean square error (WMSE) was used as the optimization criterion to design the 

SDVQ. Tlie sirnulatiori results show that soft decision vector quantizer has a miallest 

spectral distortion anlorig tlie source-optimized, the channel-optimized arid the soft 

decision vector quantizer for the LSP parameters. 



Chapter 8 

Summary and Review 

8.1 Summary 

We have considered the problem of joint optimization of source and channel coding 

for the AWGN and Rayleigh fading channels. In our system, the source signal is 

compressed by a vector quantizer (VQ), the output of the VQ ,i.e., its index, is 

mapped directly into a signal vector in the ~nodulation signal space and then it is 

transniitted over a noisy cha~mel.  The  opti~nization variables in the joint source and 

channel coder are the VQ enc,oder, the mapping from the VQ index to the modulation 

c-onstellation, the ~nodulation constellation and the receiver structure. The  objective is 

to  minimize the mean-square error (MSE) between the original and the reconstructed 

source signal, subject to constrains on the average energy and bandwidth. 

Based on Bayesian estimation theory, a soft decision vector quantizer (SDVQ) was 

developed. It is shown that the opt i~nal  receiver should calculate the conditional mean 

of the source signal under the received signal. The  output of the receiver is a linear 

c-o~nbination of t,he VQ centroids and the weighting coefficients are no~ll i~iear  function 

of the received signal. Several approximations at  various channel SNR were discussed. 

An iterative algorithm is presented to  jointly design the VQ and the modulation signal 



set. The  algorithm first optimizes tlie VQ codebook for a fixed signal set, and then 

opti~nizes the signal set for a fixed VQ codebook. Iterating these two steps until 

c-onvergence occurs will provide at least a local optimum solution to the problem. 

The  algoritlim has been used to design the VQ and the signal constellatiori for a first 

order Gauss-Markov source operating in the AWGN arid Rayleigh fading channels. 

The  simulation results indicate that system performance benefits significantly from 

the joint design, especially for the low channel SNR. 

Due to the constraints on tlie VQ encoder delay and complexity, the source coder 

can not remove all the redundancy in the source. The  residual redundancy is nlodeled 

as a first order Markov process. We further developed a sequential decoder algorithm 

to exploit the residual redundancy to combat the channel noise without tlie bandwidth 

expansion. The  si~nulation results show that further i~nprovenient can be obtained by 

lising sequential decoding strategy, especially for the Rayleigh fading channel. 

8.2 Critical Review of the Results and Further 

Research 

We have shown that the soft decision receiver based on the conditional estimate is 

quite robust in the noisy channel and can improve the system performance when 

compared to traditional receivers. However, the i~~lplernentatiori of the conditional 

estimate requires more computations than the traditional receivers since it deals typ- 

ically with the co~nputation of an exponential function. (:omplexity reduction for 

the soft decision receiver based on conditional estimate may be a subject of further 

research. 

In this study, the receiver is optiniized a t  the no~ninal  channel SNR and the re- 

sulting receiver is then tested in all channel conditions. By using this approach, we 



considered the channel mismatch introduced by the channel SNR. In practical sys- 

tems one may encounter other types of mismatch, for example, nlismatch of the noise 

probability distribution (PDF) ,  when a system desig~ied for a given PDF (say AWGN) 

is used on a channel with a different noise PDF. The efect of other types of mis~natch 

re~nains a subject for further study. 

The  next generation of  nob bile or personal communication system ( P( 'S ) will not 

only provide voice, but also services such as fax and video. Obviously from a trans- 

~niss io~i  and transport point of view, we want to use a conlmori modulation sclienie 

to transrnit different kinds of infornmtion. This poses some difficulties to our existing 

joint source and channel coding design approach, which is intended for a single service. 

However, one possible remedy is to use the optimization procedure with a proper cost 

function derived from the traffic intensity of the different services and their respective 

distortion measures. 

Part of the experimental results presented in the thesis were obtained on a first- 

order Markov sollrce and the typical source SNRs achieved by the proposed syste~n is 

abo~ i t  -5 dB. Such an SNR is too low for practical applications. There are two reasons 

why the SNR is so low. First, the Markov source is only a theoretical model and it is 

Inore difficult to encode than practical signals. Second, due to the limited computing 

resolirces available during the thesis work, relatively low-rate vector quantizers were 

used ( the amount of co~nputations required by a VQ increases exponentially with the 

rate). 

On the other hand, the results obtained for the quantization of LP(: para~neters 

show spectral distortions in the range of 1-2 dB. These are practical values and the 

i~nprovernents obtained by the proposed system are significant from practical point of 

view. LP( ' quantization is an essential part of most modern speech coders. Extending 

the work to include a full speech coder is a possible subject for future research. Modern 



speech coders use exte~lsively vector for encoding the excitation and the 

gains, hence extending the work to include these blocks is relatively straightforward. 
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