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Abstract 

In this thesis, a comparison between quantum and classical mechanics was made for 

two systems whose classical behaviour can be chaotic. The general correspondence 

between classical mechanics and quantum mechanics in the classical regime has always 

been assumed but never proved. Recent research in the field of quantum chaos has 

brought this assumption into question. For some systems, such as the kicked rotor 

in the classically chaotic regime, quantum mechanics does not display the classical 

behaviour of unbounded momentum. It has been suggested that quantum mechanics 

will fail to produce classical chaos for a broad range of simple systems. 

A comparison of quantum and classical mechanics was made using numerical sim- 

ulations, without recourse to taking limits such as 7 i  going to zero. The two systems 

studied were a driven pendulum and a pair of pendula joined by a spring. The quan- 

tum and classical expectation values for a number of observables were computed, as 

were the probability distributions in phase space. For periodic motion of the driven 

pendulum it was found that the theories agreed well for times up to 150 driving peri- 

ods. Similar agreement was found for initial conditions whose classical behaviour was 

chaotic, but only for times up to a few tens of driving periods. For longer times, it was 

found that the quantum system displayed a boundedness in position and/or momen- 

tum that was absent in the classical system. A possible explanation was given in terms 

of the quasienergy expansion. In the coupled-pendula system no such disagreements 

between the theories were found. 
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Chapter 1 

Introduction 

he study of dynamical chaos has spread with an exponential growth akin 

to that which characterizes the model systems with which it began. Over 

ten years, this spread has entered the realms of quantum physics, gradu- 

ally coagulating into the recognized field of "quantum chaos". In this domain, the 

interest has been in determining which, if any, features of dynamical chaos survive 

quantization. Given the differences in the two theories, what will chaos look like 

in a quantum system? Reversing this approach, can classical chaos be described by 

quantum mechanics? It is this question which this thesis addresses. 

There have been numerous approaches to these questions: the search for quantum 

"signatures" of classical chaos; the use of semi-classical approximations, and direct 

comparison of classical and quantum mechanics in phase space and/or via expectation 

values. 

1.1 Quantum Signatures of Classical Chaos 

Signatures of classical chaos have been found in quantum energy eigenfunctions, 

via Ehrenfest's theorem, and in the phase of the wavefunction. The study of en- 

ergy eigenfunctions has been used for the stadium potential [I] and coupled quartic 

oscillators.[2][3] The stadium potential is shaped like a rectangle with semi-circular 

ends. The potential is constant inside and infinite on the boundary. For appropriate 
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choices of the lengths of the sides, the classical phase space consists of chaos inter- 

spersed with unstable periodic trajectories. The quantum energy eigenfunctions fill 

the entire area in position space, as do the classical chaotic orbits. The eigenfunctions 

also reveal increased probability, or "scars," along some of the unstable periodic orbits 

within the chaotic regime. This scarring is also seen in the coupled quartic oscillator 

potential.[2][3] It is taken as a general quantum signature of classical chaos.[4] 

Ehrenfest's theorem has also been used to identify quantum chaos. It was found 

that in the chaotic regime of the anharmonic oscillator, Ehrenfest 's theorem holds for 

much shorter times than it does in the regular regime of the system. [5] [6] 

Randomness of the phase of the wave function in the Husimi representation (see 

section 2.3.2) has also been used as an indicator of chaos. This randomness occurs 

because the classical stretching and folding of phase space causes the wavefunction to 

overlap itself. The resulting interference serves to randomize the phase of the wave 

function in the Husimi representation.[7] It has also been shown that wavefunctions in 

the classically chaotic regime are more sensitive to perturbations than in the regular 

regime. [8] 

Semi- Classical Analysis of Quant um Chaos 

Semi-classical analysis builds on the work of Gutzwiller.[S] Semi-classical approxi- 

mations are based on integrating along a number of classical paths to determine a 

quantum probability distribution. This process works well for classically regular dy- 

namics. A number of systems have been explored to determine means of making 

such approximations in the chaotic regime. Such systems include: coupled quartic 

oscillators[2] and a driven cosine potential that is not a pendulum due to the absence 

of periodic boundary conditions.[lO][ll] In the driven cosine potential, Helmkamp and 

Browne were able to show that the quantum interference effects in the neighbourhood 

of a fixed point are due to a beating phenomenon between semi-classical paths. This 

interference is seen in the systems that were studied in this thesis. The semi-classical 

approach is not used in this thesis in favour of simply comparing quantum mechanics 

and classical mechanics without any approximations. 
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Quant um and Classical Dynamics Phase 

Space 

Ford has suggested that quantum mechanics should be used to calculate the results of 

a purely classical experiment. This would determine any differences between quantum 

and classical predictions of behaviour in the classical regime.[l2] Using algorithmic 

complexity as the measure of chaos in both the classical and chaotic cases, he demon- 

strates that "eigenvalues, eigenfunctioqand time development of wavefunctions in 

finite, bounded, undriven systems cannot be chaotic." [12] [l3] [14] The algorithmic- 

complexity argument amounts to describing the rate of loss of precision in one's 

knowledge of the system as a function of time. Put the other way around, a chaotic 

or algorithmically-complex system will require as many, or more, digits of precision in 

specifying the initial conditions than will be retained in the final answer. He concludes 

from this that the quantum description of a classically chaotic system cannot contain 

chaos, contrary to the classical description. To see why this lack of chaos may be so, 

consider the bound wavefunction as a finite superposition of energy eigenfunctions: 

E 

Here, the $ E ( x )  are the energy eigenfunctions with eigenvalue E, and the AE are the 

expansion coefficients of the wavefunction at time t = 0. The wavefunction is then 

doomed to motion that is at  most quasiperiodic; it can never be chaotic. There is no 

exponential loss of precision in the time-dependent exponential, as there must be for 

chaotic motion. 

The Arnol'd cat map is a mapping of the unit square onto itself. Imposing periodic 

boundary conditions, and taking the axes to  represent position and momentum, turns 

this mapping into a classically chaotic system. The cat map is an example of the 

lack of quantum chaos, in that,  for the corect choice of parameters, the quasiperiodic 

quantum wavefunction returns nearly to its initial state in as little as 12 iterations 

of the map.[l4] When the Arnol'd cat mapping is taken, instead, from two position 

axes onto themselves, the quantum and classical descriptions no longer show the 

disagreement found by Ford. [l5] 
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Ford's argument makes the assumption that the chaotic motion of a single trajec- 

tory can be compared to that of a wavefunction. It has been shown that both theories 

lose precision at  a similar rate, if one demands that the accuracy of a position mea- 

surement be the same for both.161 The demand for a comparison of the two formalisms 

on a single classical system is, however, a valid one. If quantum mechanics is a more 

complete portrayal of experimental reality than classical mechanics, it should give 

correct predictions for a simple, few-degrees-of-freedom, classical system. 

Some of the systems that have been investigated include the kicked rotor and 

coupled rotors (both mentioned below), the kicked top [16], the kicked pendulum 

[17], the discrete quantum pendulum [18], the double kicked rotor [19], the Arnol'd cat 

map [14], the Arnol'd cat map acting only on two position co-ordinates 1151, driven 

cosine potential [ll], driven double-well oscillator [20] and the driven anharmonic 

oscillator[21] [6]. 

In their analysis of the kicked top [16] and the kicked pendulum [17], Fox and 

Elston have shown that for a sharply peaked Gaussian wavefunction, its initial growth, 

in phase space, is related to the Lyapunov exponents of the classical trajectories. They 

also found that both quantum and classical theories agree well with each other up 

until the large scale occurrence of quantum interference. Similar results, regarding 

the time at which disagreement begins, where found in the case of the driven cosine 

potential.[ll] This behaviour was also seen in the two systems that were studied in 

this thesis. 

For the discrete pendulum mapping, it has been shown that the eigenfunctions of 

the Hamiltonian fill regions in phase space similar to that of the classical trajectories.[l8] 

For a driven double-well oscillator, the expectation values of quantum dynamical 

variables, such as the energy and the position, demonstrate quasiperiodic and irregular 

time series. The former occurs for initially Gaussian wavefunctions localized in the 

periodic area, and the latter occurs in the chaotic area of phase space. Quantum 

tunnelling between islands of periodicity in the chaotic sea was also observed.[20] 

Such time series will be presented in this thesis also. 

Much research has been devoted to the driven anharmonic oscillator. [6] [21] [22] The 

classical phase space of this system (for the parameter values studied) consists of an 
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island of regular orbits within a sea of chaos which is itself surrounded by periodic 

orbits. Ben-Tal et.  al. found that chaotic spreading was observed for both quantum 

and classical mechanics in the chaotic regime.[21][22] Comparing the two theories 

in phase space, Zibin found that both quantum and classical expectation values and 

probability distributions agreed well with each other for short times in the regular and 

chaotic regime. In the regular case, they also agreed well for long times. There was 

disagreement between the theories for the chaotic case that decreased as the classical 

regime was approached. The approach to classicality was made by varying the value 

of a scaled h.[6] This approach was also used in this thesis. 

The method that was followed in this thesis was that of Ford[l3], Fox[16][17], 

Helmkamp[lO], and Ben-Tal[21], which is to compare quantum and classical mechanics 

directly in phase space without the use of any limiting procedures or approximations. 

Two systems were investigated by numerically solving the classical and quantum equa- 

tions of motion. The   rob ability distributions and expectation values were compared. 

The first system, a one-degree-of-freedom parametrically driven pendulum, is intro- 

duced in chapter 2. This system was chosen for its simplicity and its absence from 

the literature on quantum chaos. The numerical methods and equations of motion 

for this system in both theories are outlined therein. The third chapter details the 

numerical investigation and presents the results. The second system studied was two- 

dimensional and energy conserving: a pair of pendula coupled by a linear massless 

spring. This simple, chaotic, conservative system is also absent from the literature. 

The equations of motion and the numerical methods for the coupled pendula system 

are given in chapter 4. The penultimate chapter concerns itself with the results of this 

numerical investigation. Unsurprisingly, the final chapter contains a summary of the 

results and the conclusions to be drawn from them. The remainder of this chapter 

explains quasienergies, which were useful in the discussion of the kicked rotor[23], and 

will help to explain some of the behaviour of the driven pendulum. 
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1.4 Quasienergies and Moment urn Localization 

In quantum chaos, one of the first, and most popular systems has been the kicked 

rotor.[23][24][25] In the classical system there is a regime where the momentum in- 

creases unboundedly with each kick. In the quantum system this momentum diffusion 

is not observed.[23] The explanation for this disagreement stems from a mapping of 

this system to Anderson localization in a disordered crystal. Here, the momentum is 

localized as a purely quantum effect, just as the position of electrons is localized in a 

random crystal. Similar difficulties have been encountered in other systems, such as 

the double kicked rotor.[l9] This disagreement has been found to disappear upon in- 

cluding measurement [26], more degrees of freedom[24] [26], and by coupling the system 

to an environment [27] [28] or to another kicked rotor [24]. 

This momentum localization is not always observed in chaotic systems. One such 

system which does not display this phenomena is the periodically driven anharmonic 

oscillator. [21] [22] [6] This localization is best explained using the quasienergy repre- 

sentation, which will be elaborated on below. 

In the analysis of classical time-independent Hamiltonian systems, it is often useful 

to   lot trajectories in phase space. This is especially true in systems with one spatial 

degree of freedom. The resulting plot of position and its conjugate momentum resides 

entirely in two dimensions. A single trajectory in this space will be composed of a 

collection of points that all have the same energy. This ensemble then must have 

some equivalence to the quantum energy eigenstates. (For a numerical exploration 

of a few such states see reference [18]. ) When moving to periodic time-dependent 

Hamiltonians, one often uses a Poincark section to display the dynamics of the system 

in two dimensions. (See, for example, Figure 2.2.) A trajectory in this section will be 

mapped back onto itself after one period. Considered as classical ensembles, each of 

the lines and blotches that cover this plot have as their natural quantum analog the 

eigenfunctions of the one-period time-development operator (UT) .  

The quasienergy eigenfunctions are these eigenstates. They are the solutions to 

Schrodinger's equation which have the same periodicity, up to a const ant phase, as the 

Hamiltonian. Formally: consider a Hamiltonian with period T so that H( t )  = H ( t  + 
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T). The one-period time-development operator is designated UT. The quasienergy 

eigenfunctions are then such that 

where E = hu/T is the quasienergy of '$,(x). This is a restatement of Floquet's 

theorem for a potential which is periodic in time rather then space. An arbitrary 

wavefunction at  time t may be expanded in terms of the quasienergy eigenfunctions: 

Here, the AE are the expansion coefficients for Q(x, 0).[29] As in the case of a time- 

independent Hamiltonian, the behaviour of a wavefunction, whose quasienergy spec- 

trum is discrete, can be no more complex than quasiperiodic. 

The boundedness in momentum of the quantum kicked rotor may now be ex- 

plained by the use of quasienergies. For the kicked rotor it has been shown that the 

quasienergy-eigenfunctions are localized in momentum space.[25] The momenta of the 

quantum system are bounded because of the localization of the quasienergy eigenfunc- 

tions. Any momenta that are not included in the initial distribution of quasienergies 

will never be reached by the dephasing of the wavefunction with time. This argument 

will be used in the discussion of the driven pendulum. 



Chapter 2 

The Driven Pendulum System 

2.1 The Classical Driven Pendulum 

parametrically driven pendulum is a simple system that exhibits chaotic 

behaviour. [30] This frictionless pendulum is driven by a sinusoidally oscillat- 

ing gravitational field. (Should one be so inclined, these oscillations may be produced 

in a constant gravitational field by vertically driving the pivot in a sinusoidal manner.) 

In classical mechanics the position of a pendulum of length 4, with a bob of mass m, 

in a gravitational field g ,  may be described by a function O(T). Here 0 E [-T, T ]  is the 
, angular displacement as a function of time, T. (See Figure 2.1). The driving potential 

has an amplitude of y and frequency a. The Hamiltonian is then: 

m 
H = - mgl(l + y sin at) cos 0 

2 

The following substitutions are made to convert this into dimensionless units. The 

time is taken in units of the small angle frequency, t = fi T. The position may 

now be taken to be x(t)  = @(TI. The rest position of the pendulum, hanging straight 

down, is at  x = 0. From the rest position, counter-clockwise was taken as the positive 

direction, and the top of the pendulum is therefore at x = +T. Starting at zero 

and moving in the clockwise, or negative, direction also brings the pendulum to the 

top, thus periodic boundary conditions are imposed such that the top is at x = f T .  

The gravitational potential, without driving, is zero at x = f :, +1 at x = f T 
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*n 

Figure 2.1: The parametrically driven pendulum. 

and -1 at x = 0. Next, we replace the conjugate momentum to x, P, with the 

Lastly we divide the Hamiltonian by mge to dimensionless momentum p = - 
m(&')lI2 ' 

give the dimensionless Hamiltonian : 

p2 7-l = - - (1 + y sin c t )  cos x 
2 (2.2) 

The classical equation of motion in dimensionless units is: 

2.1.1 Classical Numerical Met hods 

The classical equation of motion was numerically integrated to give the position and 

momentum as a function of time. A Runge-Kutta-Nystrom variable time-step routine 

from the NAG library (D02LAF) was used. 1311 

The accuracy of this routine is controlled by setting the error tolerance. An ap- 

propriate value was determined by comparing the numerical and analytical solutions 
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of the equation of motion for a one-dimensional harmonic oscillator. This is unsatisfy- 

ing; it reassures one little that the method is indeed working for the driven pendulum. 

An additional, and perhaps more useful, way of gauging the accuracy is to compare 

results from the driven pendulum with smaller and smaller values of the tolerance. 

Once the end results converge, one may be reasonably satisfied with them. The most 

compelling demonstration of the accuracy of the numerical methods was the agree- 

ment of expectation values between the quantum and classical ensembles as shown in 

section 3.1. 

2.1.2 Classical Dynamics 

The driven pendulum exhibits both periodic and chaotic dynamical behaviour. These 

behaviours are demonstrated in the Poincark sections shown in Figures 2.2, 2.4, 

and 2.6. The section taken is the position-momentum plane when t = n?, n = 

0,1,2,3, .  . ., i.e. once each period of the driving force. Points in phase space will be 

referred to as pairs (x,p), where x is the position and p is the momentum. If these 

points are on the Poincark section this is enough to uniquely specify a classical trajec- 

tory. Trajectories cannot cross on the Poincarh section. The potentials (as a function 

of time and position) which gave rise to these behaviours are shown in Figures 2.3, 

2.5, and 2.7. 

Figure 2.2 is a typical Poincark section for the driven pendulum, in that it includes 

both regular and chaotic sections. The parameter values which produced this were 

y = -.5 and 6 = 3. This means that the gravitational field oscillations increase and 

decrease the potential by a factor of i, and that the frequency of these oscillations 

is 3 times that of the small-angle frequency of the pendulum. (In dimensionless units, 

the small angle frequency is 1.) For these parameters, the origin, (0, O), is a fixed 

point of the system and thus also of the Poincark map. The rings surrounding it are 

sections of regular orbits. They, in turn, are surrounded by a chaotic area of phase 

space. The two large regular areas centred on (- 1.65, -3.0) and (1.65,3.0) do not 

share trajectories. The centres of these are fixed points of the Poincark map, but 
1 2n not of the system. This was verified by taking a different section (t, = (n + 4)T,  
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Figure 2.2: Poincarh section for the driven pendulum when y = - .5  and 6 = 3. 
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for example) in which case the co-ordinates of these fixed points changed. The time 

dependent potential that produced these behaviours is shown in Figure 2.3. 

Figure 2.3: The potential as a function of position and time for the driven pendulum 
where y = -.5 and 6 = 3. 

When the driving frequency is twice that of the small-angle frequency ( i e .  c = 2) 

there is a resonance, and the fixed point at (0,O) becomes unstable.[32] A Poincark 

section through several orbits is shown in Figure 2.4. The parameter y remains equal 

to -.5, however, the region of phase space including (0,O) is now chaotic. There are 

two regular areas around (-1,l) and (1, -1) which are both sections through the 

same orbits; they are centred on a period-2 limit cycle. The potential which produces 

this is shown in Figure 2.5. 

Displaying an unscrupulous contempt for gravity, the driven pendulum may os- 

cillate periodically about the fixed point f .rr.[33] The Poincark section shown in Fig- 

ure 2.6 for y = 36.3 and c = 11, displays this behaviour. Both (0,O) and (f T ,  0) are 
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Figure 2.4: Poincark section for the resonant driven pendulum when y = -.5 and 
€ = 2. 

Figure 2.5: The potential as a function of position and time for the driven pendulum 
when 7 = -.5 and 6 = 2. 
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Figure 2.6: Poincar6 section for the inverted driven pendulum. Here y = 36.3 and 
E = 11. 

Figure 2.7: The potential as a function of position and time for the driven pendulum 
here y = 36.3 and c =  11. 
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now centres of stable oscillations. This potential is shown in Figure 2.7. 

2.2 The Quantum Driven Pendulum 

The quantum-mechanical version of this system is taken to be the system with the 

same Hamiltonian as equation 2.2, where p and y are now understood to be the 

momentum and position operators. 

To propagate a wave function a time At in a potential, we apply the quantum 

propagator to the wave function: $(t + At) = UAt$(t). For time-independent po- 
H 

tentials UAt = e - i A t ~ ,  where H is the Hamiltonian. Replacing H with the dimen- 

sionless Hamiltonian l-t, required the replacement of with a dimensionless constant: 
me3/2g1  /2 

c = . Like h ,  c is a measure of how far into the quantum regime the system 

is. As c increases, the size of tL decreases relative to the physical constants in the 

problem-the system becomes more classical. 

With these substitutions, the dimensionless quantum time-propagator becomes 

The wave function was chosen at time t = 0 to be a minimum uncertainty Gaussian 

in position representation. A Gaussian is characterized by a width, s, and a position, 

In momentum space this is also a Gaussian, centred at % with width (2sc)-'. This 

form for the wavefunction was chosen because of its simple analytical form and because 

it easily provides the minimum uncertainty in position and momentum, i . e .  AxAp = 

lI(2c). 

2.2.1 Quantum Numerical Methods 

The quantum mechanical wave function in co-ordinate representation was propagated 

numerically using the split-operator method.[34] The split-operator method works for 

Hamiltonians that are the sum of two functions: one of the momentum operator, p, 
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and one of the position operator, x. Writing H = $ + V(x), where V(x) is the 

potential as a function of the position, the propagation operator may then be split: 

An approximation is made in moving from equation 2.7 to equation 2.8. This symmet- 

ric form of the approximation is more accurate than the more obvious two-exponential 

form.[34] To use this time-independent propagator for our time-dependent potential, 

we also make the approximation that the potential is constant throughout the time At. 

This approximation is easily achieved by keeping At small. The operation of expo- 

nentionals of position and momentum may be treated as multiplication in the position 

and momentum representation respectively. 

Thus, to propagate $(x, t )  to $(x, t + At),  we replace $(x, t + At)  = U~t$ (x ,  t )  

with 

$(x, t + At) = F F T ~ ~ - ~ ' ~ ~ ~ F F T , ~ - ' ~ ~ ~ ~ ( ~ ) F F T  x e - ' c a t ~ ~ ~ ~ p d ( x ,  t) (2-9> 

The wave function in co-ordinate space is Fourier transformed numerically, using the 

Fast-Fourier-Transform routine CO6FUF from the NAG library[31], into momentum 

space. Then equation (2.9) amounts to a series of Fourier transforms and multipli- 

cations. Here FFT, is the Fourier transform into momentum-space representation of 

$(x, t).  The transform back is FFT,. This is done n times to  propagate a wavefunc- 

tion over a time T, where nAt = T. 

The accuracy is modified by adjusting the size of the grid on which the wave 

function is defined and the size of the time step.[34]. As in the classical case, the size 

of these parameters was chosen to provide accurate numerical simulation of the one- 

dimensional harmonic oscillator. However, the most dramatic demonstration of the 

accuracy was the agreement of expectation values between the formalisms, as shown 

in chapter 3. 

The Fourier transform assumes periodic boundary conditions in both represen- 

tations. Thus the wavefunction in position or momentum space is free to expand 
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through the boundary and back over itself. In position space, the continuous wave- 

function is represented as a discrete list of n complex numbers at  positions running 

from -T to T in increments of ?. The periodic boundary conditions come in at fn: 

the top of the pendulum's swing. 

The momentum of a driven pendulum is not periodic. The problem of the wave- 

function in momentum representation crossing over the periodic boundary is avoided 

by choosing the grid such that #(p, t )  is close to zero near the boundary. In momen- 

tum space the Fourier-transformed wavefunction is represented as a list of n complex 

numbers on a line from -2 to in increments of c-l. From which it can be seen 

that the maximum momentum, f E, allowed by the numerics is proportional to the 

length, n, of the position grid, and thereby, inversely proportional to the resolution, ?, 
in position space. 

Quantum- Classical Comparison 

2.3.1 The Classical Probability Distribution 

Quantum mechanics deals with the probability of outcomes whereas classical mechan- 

ics deals with well-defined final conditions. In order to make meaningful comparisons 

between the two, the ensemble interpretation of quantum mechanics was adopted. [35] 

The classical equivalent of a quantum wavefunction was taken to be an ensemble of 

classical points in phase space with the same initial probability distributions in po- 

sition and momentum as the quantum wavefunction. This was done by assigning a 

random position and momentum from a Gaussian distribution to each initial con- 

dition. These initial conditions were achieved numerically via a Gaussian random 

number generator: G05DDF, from the NAG library. [31] The classical ensemble then 

had the same initial probability distribution in position and momentum as did the 

quantum wave function. 

The classical phase space probability distribution was displayed by dividing phase 

space into bins of side length in position and & in momentum. Here n is the 

number of positions along the quantum grid. (Recall, from section 2.2.1, that the 
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number of points in the position representation of the wavefunction determines the 

length of the momentum representation: P,,, = f E.) The number of particles in 

each bin divided by the total number of particles gives the classical probability for 

each of these ten thousand points in phase space. This can then be compared to the 

quantum probability distribution in phase space: the quantum Husimi distribution. 

2.3.2 The Quantum Husimi Distribution 

To make the comparison between quantum and classical results more transparent, the 

quantum wave functions were displayed in the Husimi representation. The Husimi dis- 

tribution is the quantum mechanical equivalent to a classical phase space distribution 

function. The Heisenberg uncertainty principle will not allow us to assign an exact 

probability to a point in phase space, but it will allow us to assign a probability to an 

area at least the size of h.  (That is an area of c-' in dimensionless units). Formally 

here 

is a Gaussian whose width in q is s and (2sc)-l in p.[36] The amplitude squared of 

$hus(q,p) roughly gives the probability that the system is in a Gaussian area of c-l 

in phase space centred at (q,p). It amounts to a gaussian smoothing of the actual 

distribution. This distribution may be used to compare the filling of phase space by 

a wavefunction to that of a classical ensemble.[37] 

2.3.3 Calculation of Expectation Values. 

In addition to comparing the probability distributions in phase space, the expectation 

values of position, momentum, both squared, the kinetic and potential energies and 

the total energy as well as the expectation value of the time development operator 

(see section 3.3) were also calculated. 
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These operators, excepting the total energy, are all functions of either position or 

momentum. The expectation value of the total energy was calculated by adding the 

expectation values of kinetic and potential energy. The quantum expectation value of 

an operator A corresponds to its average value. When A is diagonal in the position 

representation, its expectation value is given by: 

This is the weighted average of the possible values, a(x), which the operator A may 

produce. The weights are the probabilities of each measured value at the position x. 

For operators that are diagonal in momentum representation, 

Here, the weighted average is of the possible values? b(p), which may be measured 

by the operation B. The weights are the probabilities of measuring the value b ( ~ )  a t  

momentum p. In order to numerically calculate the quantum expectation value, the 

integral was replaced by a sum over the discrete positions, or momenta. 

The classical expectation value is an average of the function in question over the 

ensemble. 

These definitions and the classical average were used to calculate the expectation 

values of those operators that were functions either of position or momentum. The 

two exceptions were the average energy and the average quasienergy. The average 

energy is the sum of the average kinetic energy (a function of momentum) and the 

average potential energy (a function of position). The average quasienergy will be 

dealt with in section 3.3. 

It should be noted that because of the periodic boundary conditions, the average 

value of x will not appear in the middle of distributions that extend around the edge. 

For example, the average position of a Gaussian centred at f T will be zero. In such 

cases, the physical significance of the expectation value is lost, but for comparison 

between the two theories the usefulness is retained. There will be a similar effect on 

the value of < x2 >. The momentum does not extend to the boundary and so this 

will not affect its expectation values. 



Chapter 3 

Results For the Driven Pendulum 

0th quantum and classical ensembles were propagated for times up to 150 

drive cycles. The probability distributions and expectation values were cal- 

for both theories. For both quantum and classical ensembles, the expectation 

values of x, x2, p, P2, the one-period time-development operator, the kinetic energy, 

the potential energy, and, by addition, the total energy were calculated. The stan- 

Figure 3.1: Periodic A. Expectation values for position and position squared for quan- 
tum and classical ensembles centered at (.I, 0) for y = -.5 and E = 3. The Poincar6 
section for this system is shown in Figure 2.2 The large dots are the quantum values 
and the small dots are the classical values. 

dard deviations (< x2 > - < x > 2 ) f  in position and momentum were also calculated. 

Comparison of the expectation values and the phase-space probability distributions 

showed occasions of great agreement and large disagreement. 
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<pA2> 

Figure 3.2: Periodic A. Expectation values for momentum and momentum squared 
for for the same ensemble as in Figure 3.1. 

Identical initial position distributions were used for three values of c: 50, 100, 

and 250. Recall that for a fixed width in position, the width in momentum space 

is inversely proportional to c.  The value of c = 100 was chosen because it gives 

a Gaussian whose area in phase space fits easily into either a chaotic or a regular 

area. The regular area in the centre of the phase space of Figure 2.2 has an area 

of approximately 9. This is much larger than the size of c-' = which means 

that a wavefunction started within this area may be localized entirely within it. This 

is also true for the chaotic region, which has an approximate area of 26. The more 

Figure 3.3: Periodic A. Expectation values for the standard deviation in momentum 
and position for the same ensemble as Figure 3.1. 

interesting behaviours were repeated for c = 50 and c = 250. In the latter case a 2048 

point grid still extends far enough in momentum space to contain the wavefunction 
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as it spreads. The value of c = 50 was chosen simply as half of c = 100. (Recall that 

as c increased, the value of fL relative to the other physical constants in the problem 

decreased-the system became more classical.) 

Figure 3.4: Periodic A Expectation values for the kinetic and total energy for the 
same ensemble as Figure 3.1. The potential energy is 112 of < p2 >, which is shown 
in Figure 3.2. 

Ensembles were started for each of the four parameter choices outlined in sec- 

tion 2.1.2. Each is given a label that appears in each Figure to help sort the results. 

In the typical phase space (y = -.5, E = 3, see the Poincark section in Figure 2.2) 

four ensembles were used. Two were centred in the chaotic area: (-3, -1.7), which 

is called Chaotic A, and (-2.3, O ) ,  called Chaotic B . The other two were centred in 

regular areas, one at ( . I ,  O),  Periodic A, and the other at (-1.7,3), Periodic B. A 

single ensemble was propagated in the resonant case (y = - .5, e = 2, see the Poincark 

section in Figure 2.4). It was centred at the unstable fixed point (0,0), and is ref- 

ered to as Resonant. For the stable inverted pendulum (y = 3 6 . 3 , ~  = 11, see the 

Poincark section in Figure 2.6), ensembles were used in the regular areas surrounding 

(0, 0), named Inverted A, and (f T, 0), Inverted B. The results covered in the next 

two sections, and these names, are summarized in Table 3.1. 

3.1 Regular Dynamics 

For all initial conditions, both expectation values and probability distributions agreed 

well for short times of a few tens of drive cycles. For y = -.5 and 6 = 3, gaussian 
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Figure 3.5: Periodic A Quantum probability distributions for times = 0, 1, 100, and 
150 periods of the driving force. This is for the same ensemble as Figure 3.1. The black 
areas represent .2 of the initial peak of the distribution. White is zero probability. 
The Poincark section for the classical trajectories is shown in Figure 2.2 
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Figure 3.6: Periodic A. Classical probability distributions for time = 0, 1, 100,and 150 
periods of the driving force. This is for the same ensemble as Figure 3.1. The grey 
shades represent the same probabilty values as in the quantum case in Figure 3.5. 
The Poincark section is shown in Figure 2.2 
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ensembles of width s = .05 initially centered in the regular areas of phase space, that 

is, centred on (. 1,O) Periodic A and (- 1.7, -3) Periodic B, there was no significant 

difference between the classical and quantum expectation values (see Figures 3.1, 

3.2, 3.3, 3.4, and Figures 3.7, 3.8, 3.9, and 3.10) and probability distributions (see 

Figures 3.5, 3.6, 3.11, and 3.12) for times up to 150 cycles of the driving force. 

Figure 3.7: Periodic B. Position and position-squared expectation values for quantum 
and classical ensembles centered at (1.7,3) for y = -.5 and 6 = 3. The large dots are 
the quantum values and the small ones are the classical values. The Poincarh section 
for these parameter values is shown in Figure 2.2. 

Figure 3.8: Periodic B. Momentum and momentum-squared expectation values for 
quantum and classical ensembles centered at (1.7,3) for y = -.5 and c = 3. The large 
dots are the quantum values and the small ones are the classical values. The Poincark 
section for these parameter values is shown in Figure 2.2. 

For y = 36.3 and 6 = 11, for which the inverted pendulum is stable, ensembles were 

started in the centres of the regular regions at (0,O) (Inverted A) and ( f n, 0) (Inverted 
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Figure 3.9: Periodic B. Standard deviations for momentum and position expectation 
values for quantum and classical ensembles centered at (1 .7 ,3 )  for y = -.5 and r = 3. 
The large dots are the quantum values and the small ones are the classical values. 
The Poincark section for these parameter values is shown in Figure 2.2. 

Figure 3.10: Periodic B Potential and total-energy expectation values for quantum 
and classical ensembles centered at (1 .7 ,3)  for y = -.5 and e = 3. The large dots are 
the quantum values and the small ones are the classical values. 
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Figure 3.11: Periodic B. Quantum probability distributions for time = 0,1,100, and 
150 drive cycles for the same ensemble as Figure 3.7. 
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Figure 3.12: Periodic B. Classical probability distributions for time = 0,1,100, and 
150 drive cycles for the same ensemble as Figure 3.7. 
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B). (See Figure 2.6.) Here also there was good agreement between the quantum and 

classical expectation values, as shown in Figures 3.13-3.16 and 3.17-3.20. The position 

expectation values for Inverted B (f T ,  0) show that the quantum average position 

is offset slightly from the correct value of zero. The position values for Inverted A, 

centered at (0,0), and the momentum values for both inverted cases, show structure in 

the classical values that is absent in the quantum one. This reflects small oscillations of 

the classical ensemble about the centre of the quantum ensemble. The close agreement 

of the rest of the classical and quantum expectation values show that the ensembles 

are spreading at the same rate and over the same area. This demonstrated that the 

dynamical behaviour (regular versus chaotic) is more important in determining the 

amount of agreement than other considerations such as energy. Close agreement in the 

regular regime has also been observed in other similar systems. [6] [lo] [ll] [17] [16] This 

agreement demonstrated quite clearly that both numerical methods are sufficiently 

accurate for this system. 

Figure 3.13: Inverted A. Expectation values for position and position squared for 
quantum and classical ensembles centered at (0,O) for y = 36.3 and c = 11. The 
small points are the classical values, the larger ones are the quantum values. 

The results were much more interesting when the ensemble was centred in the 

chaotic regime. One difference between the regimes was that the wavefunction quickly 

filled up an area in phase space and thereafter its behaviour was dominated by inter- 

ference effects. These were not seen in the regular ensembles discussed this far. Thus, 

it was useful to determine how quantum interference patterns which extend over the 

whole wave function affect the expectation values, independent of chaos. To this end, 
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Figure 3.14: Inverted A. Expectation values for momentum and momentum squared 
for quantum and classical ensembles centered at (0,O) for y = 36.3 and c = 11. The 
small points are the classical values, the larger ones are the quantum values. 

Figure 3.15: Inverted A. Standard deviations for position and momentum for quantum 
and classical ensembles centered at (0,O) for y = 36.3 and 6 = 11. The small points 
are the classical values, the larger ones are the quantum values. 
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Figure 3.16: Inverted A. Kinetic and total-energy expectation values for quantum and 
classical ensembles centered at (0,O) for y = 36.3 and c = 11. The small points are 
the classical values, the larger ones are the quantum values. 

Figure 3.17: Inverted B . Expectation values for position and position squared for 
quantum (large dots) and classical (small dots) ensembles centered at (*a, 0) for 
y = 36.3 and c = 11. 

. .  i... . . .  . . . . .  
... . . . . . . .  

-0.005 . . . . .  ..... 
-0.01 

0 40 80 120 

Figure 3.18: Inverted B . Expectation values for momentum and momentum squared 
for quantum (large dots) and classical (small dots) ensembles centered at (f T, 0) for 
y = 36.3 and c = 11. 
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Figure 3.19: Inverted B Standard deviation of position and momentum for quantum 
(large dots) and classical (small dots) ensembles centered at (f T ,  0) for y = 36.3 and 
€ = 11. 

Figure 3.20: Inverted B. Expectation values of kinetic and total energy for quantum 
(large dots) and classical (small dots) ensembles centered at (f T ,  0) for y = 36.3 and 
€ = 11. 
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a Gaussian ensemble was propagated with initial centre (-1,1.7) in a system where 

y = 0 ( i . e .  no driving force). The phase space of the simple pendulum contains only 

regular trajectories. Starting the ensemble with this energy allowed it to travel accross 

the position boundary at f T .  This resulted in the creation of large persistent regions 

of overlap. In quantum mechanics, these show up as interference in the probability 

distribution and as simple addition in the classical probability distribution. This is 

shown in Figures 3.25 and 3.26. This is similar to the interference patterns that domi- 

nated the appearance of the chaotic probability distributions. Figures 3.21-3.24 show 

the effect of interference on the expectation values. One can see that the result of the 

interference was that the quantum expectation values oscillated about the classical 

value but the qualitative behaviour was similar. 

Figure 3.21: Simple Pendulum. Position and position-squared expectation values for 
quantum and classical ensembles centered at (- 1,1.7) for the simple pendulum. The 
bigger dots are the quantum values and the smaller dots are the classical values. 

Anticipating the chaotic results: knowing the effect of interference on the expec- 

tation values allowed differentiation between disagreements that could be attributed 

simply to  interference and those due to other quantum effects. Quantum interference 

results in oscillations about the classical expectation value. 

Chaotic and Resonant Dynamics 

For the parameters y = - .5  and c = 3 two ensembles were propagated starting in the 

chaotic regime. (The appropriate Poincark section is shown in Figure 2.2.) One was 
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Figure 3.22: Simple Pendulum. Momentum and momentum-squared expectation val- 
ues for quantum and classical ensembles centered at (- 1, l .  7) for the simple pendulum. 
The bigger dots are the quantum values and the smaller dots are the classical values. 

Figure 3.23: Simple Pendulum. The standard deviations for position and momentum 
for the quantum and classical ensembles centered at (- 1, l .  7) for the simple pendulum. 
The bigger dots are the quantum values and the smaller dots are the classical values. 
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Figure 3.24: Simple Pendulum. The expectation values of kinetic and total energy 
for quantum and classical ensembles centered at (-1,1.7) for the simple pendulum. 
The bigger dots are the quantum values and the smaller dots are the classical values. 

Figure 3.25: Simple Pendulum. Quantum probability distributions for the same en- 
semble as Figure 3.21. The time runs from left to right, top to bottom, and is at  0, 
1, 10, and 30 linear-pendulum periods. Black represents .2 of the initial maximum 
probability and white represents zero. 
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Figure 3.26: Simple Pendulum. Classical probability distributions for the same en- 
semble as Figure 3.21. The time runs from left to right, top to bottom, and is at  0, 
1, 10, and 30 linear-pendulum periods. Black represents .2 of the initial maximum 
probability and white represents zero. 

Table 3.1: A summary of the results presented in sections 3.1 and 3.2 for the driven 
pendulum. The Figure column refers to the appropriate Poincark section. Agreement 
refers to the how well the classical and quantum expectation values agreed. 
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initially centred at (-3, -1.7), Chaotic A , and the other at (-2.3, O), Chaotic B. For 

the first case there was good agreement between quantum and classical theories for 

all the expectation values up to 150 drive cycles (see Figures 3.27-3.30). The small 

oscillations of the quantum values about the classical values may be attributed to in- 

terference effects. This is supported by looking at the actual probability distributions 

(see Figures 3.31-3.34). The quantum distribution shows higher probability in the 

momentum range -2 to -4. 

Figure 3.27: Chaotic A . Quantum and classical expectation values for position and 
position squared. The ensembles were initialy centered at (-3, -1.7) and y = -.5 
and E = 3. The large dots are the quantum values and the small dots are the classical 
values. 

Figure 3.28: Chaotic A . Quantum and classical expectation values for momentum 
and momentum squared. The ensembles were initialy centered at (-3, -1.7) and 
y = - .5  and E = 3. The large dots are the quantum values and the small dots are the 
classical values. 
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Figure 3.29: Chaotic A . Quantum and classical standard deviations for position and 
momentum. The ensembles were initialy centered at (-3, -1.7) and y = -.5 and 
6 = 3. The large dots are the quantum values and the small dots are the classical 
values. 

The classical ensemble which started at (-2.3,O) (and refered to as Chaotic B) 

ended up occupying a similar range in phase space as did the (3, -1.7) (Chaotic A ) 
ensemble. It initially agreed well with the quantum ensemble until the interference 

effects became widespread. These small disagreements, due to interference, are typi- 

cal of quantum systems in the chaotic regime. [5] [6] [lo] [ll] [21] However, the classical 

ensemble disagreed greatly with the quantum ensemble after around 80 drive cycles. 

(See Figures 3.35-3.38). As can be seen from the actual probability distributions, 

the disagreement stems from the ability of the classical ensemble to spread into an 

area of phase space which the quantum mechanical ensemble can not reach. (See 

Figures 3.39-3.42). 

This area is the remnant separatrices in the neighbourhood of f 2 in momentum 

that surround the two regular areas in the (+, +) and (-, -) quadrants. The inability 

of the quantum ensemble to reach this area of phase space occured even though the 

other ensemble, which started on this remnant separatrix, quickly covered the starting 

area of this ensemble. This is reminiscent of the lack of momentum diffusion in the 

quantum kicked rotor.[24] Here the quantum and classical theories gave measurably 

different predictions: classically, the driven pendulum will reach momenta greater 

then two, and quantum mechanically, it will not. The disagreement was postponed to 

later times, however, when the value of c was raised to 250, see Figures 3.43-3.46. It 
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occurs earlier when c is lowered to 50, see Figures 3.47-3.50. This suggests that the 

classical and quantum mechanical descriptions agree longer as the system becomes 

more classical. In section 3.3, a plausible explanation is given for how two ensembles 

Figure 3.30: Chaotic A. Quantum and classical expectation values for kinetic and 
total energy. The ensembles were initialy centered at (-3, -1.7) and y = -.5 and 
E = 3. The large dots are the quantum values and the small dots are the classical 
values. 

whose classical fates are indistinguishable should have such different final quantum 

distributions. 

The final chaotic example was under resonant conditions: y = -.5 and 6 = 2. The 

centre was initially at the unstable fixed point, (0,O). In this case the disagreement 

between the theories occurred in both position and momentum. It started at around 

20 drive cycles. (See Figures 3.51-3.54.) However, the early disagreement, between 20 

and 60 cycles, was also heavily influenced by the interference fluctuations occurring 

at the origin. (See Figures 3.55-3.55.) By 60 drive cycles, it was clear that the 

classical ensemble was continuing to expand in both position and momentum, whilst 

the quantum ensemble remained bounded in both. This lack of agreement was not 

ameliorated by increasing c to 250 (thus decreasing the relative value of h)  and moving 

the system closer to the classical regime, see Figures 3.59-3.59. When c was reduced 

to 50, the quantum ensemble expanded faster then the classical one, as is shown in 

Figures 3.63-3.66. The quasienergy representation will be invoked in the next section 

to help explain this quantum behaviour. 
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Figure 3.31: Chaotic A . Quantum probability distributions for time = 0, 1, 4 and 8 
drive cycles for the same ensemble as in Figure 3.27. The Poincar6 section is shown 
in Figure 2.2. The probability scale runs from black, at .2 of the initial maximum 
probability, down to white, at zero probability. 
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Figure 3.32: Chaotic A . Quantum probability distributions for time = 16, 48, 100, 
and 150 drive cycles for the same ensemble as in Figure 3.27. 
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Figure 3.33: Chaotic A . Classical probability distributions for time = 0, 1, 4 and 8 
drive cycles for the same ensemble as in Figure 3.27. The Poincark section is shown 
in Figure 2.2. The gray scales are set the relative to the initial distribution as in the 
other probability distribtuions. 
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Figure 3.34: Chaotic A . Quantum probability distributions for time = 16, 48, 100 
and 150 drive cycles for the same ensemble as in Figure 3.27. The Poincari section is 
shown in Figure 2.2. The gray scales are set the relative to the initial distribution as 
in the other probability distribtuions. 

Figure 3.35: Chaotic B. Expectation values for position and position squared for 
quantum and classical ensembles centered at (-2.3,O) for y = - .5, 6 = 3 and c = 100. 
The small dots are the classical values and the large dots are the quantum values. The 
relevant Poincari section is shown in Figure 2.2. 
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Figure 3.36: Chaotic B. Expectation values for momentum and momentum squared 
for the same ensemble as Figure 3.35. 

Figure 3.37: Chaotic B. Expectation values for the standard deviation of position and 
momentum for the same ensemble as Figure 3.35. The classical Poincark section is 
shown in Figure 2.2. 

Figure 3.38: Chaotic B. Expectation values for potential and total energy for the same 
ensemble as in Figure 3.35. The classical Poincark section is shown in Figure 2.2. 
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Figure 3.39: Chaotic B. Quantum probability distributions for time = 0, 1, 4, 8 drive 
cycles for the ensemble centered at (-2.3,O) for y = -.5, c = 3 and c = 100. The 
~ r o b a b i l i t ~  is represented as white for zero, up to .2 of the initial distribution, shown 
as black. The Poincare section is found in Figure 2.2. 
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Figure 3.40: Chaotic B. Quantum probability distributions for time = 16, 48, 100, and 
150 drive cycles for the same ensembles as in Figure 3.39. The grey scale is the same 
as in the other probability distributions. The Poincark section is found in Figure 2.2. 
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Figure 3.41: Chaotic B. Classical probability distributions for time = 0, 1,  4, and 8 
drive cycles for the same ensembles as in Figure 3.39. 
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Figure 3.42: Chaotic B. Classical probability distributions for time = 16, 48, 100, and 
150 drive cycles for the same ensembles as in Figure 3.39. 

Figure 3.43: Chaotic B. Position and position squared expectation values for quantum 
and classical ensembles centered at (-2.3,O) for y = -.5, 6 = 3 and c = 250. The 
Poincar4 section is shown in Figure 2.2. 
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Figure 3.44: Chaotic B. Momentum and momentum-squared expectation values for 
the same ensembles as Figure 3.43. 

3.3 Application of Quasienergies to Results 

In the chaotic examples shown above, the boundedness of the quantum < p2 > ex- 

pectation and/or < x2 > expectation values, compared to their classical equivalents, 

could not be due to the same mechanism as that of Anderson localization in the kicked 

rotor. This was clear from the agreement in the (-3, -1.7) Chaotic A case and also 

from the fact that classically the momentum is bounded by the dynamics and the 

position by the boundary conditions even when the ensembles disagree. Hence, the 

argument that leads to the mapping of the kicked-rotor problem onto the Anderson 

localization problem does not apply at all in the case of the disagreement of < x2 >; 
the momentum in the kicked rotor is unbounded classically. However, it must be true 

Figure 3.45: Chaotic B. Momentum and position standard deviations for the same 
ensembles as Figure 3.43. 
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Figure 3.46: Chaotic B. Potential and total energy for the same ensembles as Fig- 
ure 3.43. 

Figure 3.47: Chaotic B. Expectation values of position and position squared for quan- 
tum and classical ensembles centered at (-2.3,O) for y = - . 5 ,  E = 3 and c = 50. 
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that the quasienergy eigenfunctions for the driven pendulum Hamiltonian were local- 

ized in position and momentum, since the wavefunction was at  all times a sum (given 

in equation 1.3) fixed by the initial conditions, of such functions. It would be useful 

to have knowledge of the quasienergy eigenfunctions that made up this sum for the 

various cases considered above. If they were bounded in position and/or momentum 

this would explain the quantum results. The difference between the members of this 

sum in the (3, -1.7) Chaotic A case and the (-2.3,O) Chaotic B case would go a long 

way towards explaining their different behaviour. It would also be nice to know the 

eigenvalues. Such a calculation is, in method, quite simple. 

Figure 3.48: Chaotic B. Expectation values of momentum and momentum squared 
for the ensembles centered at (-2.3,O) for y = -.5, c = 3 and c = 50. 

Figure 3.49: 
Standard deviations for momentum and position for the ensembles centered at 

(-2.3,O) for y = - . 5 ,  t = 3 and c = 50. 
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Figure 3.50: Chaotic B. Potential and total energy for the same ensembles as Fig- - 
ure 3.49. 

Figure 3.51: Resonant Expectation values of position and position squared for quan- 
tum and classical ensembles centered at (0,O) for y = -.5, t = 2 and c = 100. 
Poincark section is shown in Figure 2.4. 

The 

Figure 3.52: Resonant. Expectation values of momentum and momentum squared for 
the ensembles centered at (0,O) for y = - . 5 ,  6 = 2 and c = 100. The Poincark section 
is shown in Figure 2.4. 
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Figure 3.53: Resonant. Standard deviations for position and momentum for the 
ensembles centered at (0,O) for y = - .5,  6 = 2 and c = 100. 

Figure 3.54: Expectation values for kinetic and total energy for the ensembles centered 
at (0,O) for y = -.5, 6 = 2 and c = 100. 
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Figure 3.55: Resonant. Quant urn probability distributions for the ensemble centered 
at (0,O) for y = -.5, t = 2 and c = 100. Time runs from left to right starting at the 
top. The times are 0, 1, 4, and 8 periods of the driving force. The scale runs from 
black, .2 of the intial probability, to white, at zero probability. 
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Figure 3.56: Resonant. Quantum probability distributions for the same ensemble as 
Figure 3.55. Time runs from left to right starting at the top. The times are 16, 48, 
100, and 150 periods of the driving force. The scale runs from black, .2 of the intial 
probability, to white, at zero probability. The Poincark section is shown in Figure 2.4. 
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Figure 3.57: Resonant. Classical probability distributions for the same ensemble as 
Figure 3.55. Time runs from left to right starting at the top. The times are 0, 1, 
4, and 8 periods of the driving force. The scale runs from black, .2 of the intial 
probability, to white, at zero probability. The Poincar6 section may be found in 
Figure 2.4. 
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Figure 3.58: Resonant. Classical probability distributions for the same ensemble as 
Figure 3.57. Time runs from left to right starting at the top. The times are 16, 48, 
100, and 150 periods of the driving force. The scale runs from black, .2 of the intia] 
probability, to white, at zero probability. 

Figure 3.59: Resonant. Position and position-squared expectation values for quantum 
and classical ensembles centered at (0,O) for y = - .5 ,  c = 3 and c = 250. The Poincar& 
section is shown in Figure 2.4. 
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Figure 3.60: Resonant. Momentum and momentum-squared expectation values for 
the same ensemble as Figure 3.59. 

Figure 3.61: Standard deviation of position and momentum for the same ensemble as 
Figure 3.59. 
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Consider the discrete-position representation as it is treated numerically. The 

wavefunction in position representation is a complex-valued row vector with n ele- 

ments, and the time-development operator is an unknown n x n matrix. This operator 

maps the wavefunction at period j to the wavefunction at period j + 1. 

Figure 3.62: Kinetic and total energy expectation values for the same ensemble as 
Figure 3.59. 

Figure 3.63: Expectation values of position and position-squared for quantum and 
classical ensembles centered at (0,O) for y = -.5, c = 3 and c = 50. 

Though the n x n matrix is unknown, the Bj(x) and Bjil(x) are known by nu- 

merically integrating Schrodinger's equation. Thus, equation 3.1 is n equations, in n2 

unknowns. In order to have n2 equations we need n versions of equation 3.1. That 
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Figure 3.64: Resonant. Expectation values of momentum and momentum-squared for 
the same ensembles as Figure 3.63 

(cxe2> - <x>^2)^.5 

Figure 3.65: Standard deviations for position and momentum for the same ensemble 
as Figure 3.63. 

Figure 3.66: Resonant. Kinetic and total energy expectation values for the same 
ensembles as Figure 3.63. 
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is, the value of the wavefunction over n periods of the driving force. Solving this 

set of n2 equations, we have the unknown matrix, UT. Then, it is possible to solve 

for its eigenvalues and vectors: the quasienergy values and functions. The difficulty 

was that, for c = 100, a grid length of n = 2048 was required to contain the higher 

momenta. (See section 2.2.1.) This procedure then requires the system to  be numer- 

ically propagated for 2048 periods of the driving frequency; this was not feasible. It 

was feasible to propagate the wave function for 128 periods of the driving potential, 

as was done for c = 50,100,250. The difficulty then, is that in order to fit in the 

higher momenta on a 128 point line, c must be reduced to about 15. At this point, 

the wavefunction became sufficiently broad in position and momentum that it could 

not be localized enough to display the behaviour that was wanted. 

The effect of UT, namely to advance the wavefunction one drive period in time, is 

known and easily calculable numerically. Thus, the one thing that may be calculated 

from the wavefunctions is the expectation value of the time-development operator. 

This was the only information about the quasienergy spectrum of the quantum en- 

semble that I was able to calculate. 

The expectation value of the quasienergy is given by: 

where we consider the wave function after n periods of the driving function. Operating 

UT on Q gives: 

< UT >= Q*(x, nT)Q(x, (n + 1)T)dx 1: (3.3) 
This can be implemented numerically quite easily by converting the integral to a 

sum. From this, < UT > is seen to be a complex number whose magnitude gives 

the probability that the wavefunction returns back to itself (or itself multiplied by a 

phase) after one period of the drive function. Invoking the quasienergy representation 

sheds further light on the properties of this value. 

As in equation 1.3, we may represent the wavefunction at any time in terms of the 

quasienergy eigenfunctions. Whereupon equation 3.3 becomes 
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Table 3.2: Magnitude and phase of < UT > for various initial conditions when 7 = - .5 

(1.7,3) 
- (070) 

(-2.3, 0) 
( 3  -1.7) 

and E = 3. Zero values are meant as zero to within machine precision, i.e. of the 
order of 10-14. The number of digits quoted is the number which were constant over 
the first five periods. 

Regular 
Regular 
Chaotic 
Chaotic 

Here, as in equation 1.3, $,q(x) are the eigenfunctions of quasienergy E and the 

AE are the time zero expansion coefficients. The quasienergy eigenfunctions are 

orthogonal.[29] All the cross terms vanish leaving only 

The eigenfunctions of quasienergy are all normalized, thus the integrals in the sum all 

equal one. This demonstrates that < UT > is independent of time. (T is the period of 

the Hamiltonian, and thus does not depend on time.) From this it may be seen that 

the probability that the system returns to its previous state after one driving period 

is constant. We may interpret equation 3.5 as the sum of the exponentials of the 

quasienergies each multiplied by its probability. Thus, when the value of I < UT > l 2  
is close to one it will be the result of one of the following situations. There is a large 

probability that the system is in a single quasi-energy state and a small probability for 

the others, or, there is a similar probability for the system to be in several quasienergy 

states which have closely spaced quasienergies. When I  < UT > l 2  is close to zero it 

will be due to either a superposition of a large number of quasienergy states (many 

phases) or of a few (or one) pairs that are nearly exactly out of phase. 

The calculated values of < UT > using equation 3.3 are shown in Table 3.2, for a 

variety of initial conditions. These results were not as illuminating as one might hope. 

,62393098 
.go990324 
1.34 x lo-' 
z 0 

1.63971745 
1.0855218 
334 

N/A 
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The points (- 1.7, -3) and (1.7,3) had the same energy and are also in identical areas 

of regular orbits. It is likely the second of these things that lead to their identical 

average quasienergy. Dividing the list into zero and non-zero values shows that this 

property was not an indication of chaotic or non-chaotic dynamics. 

These results do show a difference in the quasienergy spectrum of the (-2.3,O) and 

the (-3, - 1.7) ensembles. That, by itself, was not enough to tell whether the quasi- 

energy eigenstates that make up the ensembles were different or not, only that, at the 

very, least the probability of the quasienergies was different. However, the eigenstates 

contributing to these wavefunctions must have been different because both wavefunc- 

tions may be written in the form of equation 1.3. If they differed only by the initial 

probability coefficient then given enough time they would dephase enough so that 

the initial destructive interference that was keeping the wavefunction localized would 

dissipate. The wavefunction would be allowed to explore all momenta which were con- 

tained in the quasienergy eigenfunctions. Since the two wavefunctions differed in their 

ability to reach higher momenta they could not contain only the same quasienergy 

states. 

In the Resonant case centred at (0,O) with y = -.5 and 6 = 2, see Figures 3.63- 

3.66, the classical-ensemble expectation values grew faster for c = 100 and 250 then 

the quantum values. This was reversed when c was lowered to 50. This suggests that 

the form of the quasienergy eigenfunctions is not simply related to  c.  The results 

in the Chaotic A and Chaotic B case suggested that the quasienergy expension was 

better able to mimic the classical behaviour as c increased and the system became 

more classical. The Resonant case shows that it is generally not that simple. 



Chapter 4 

Coupled Pendula 

4.1 The Classical System 

n two dimensions, the physically simplest autonomous system that can dis- 

play chaos is almost certainly the double pendulum: a two-pendulum system 

he second pendulum pivots on the bob of the first.[l3] The difficulty with this 

system is that the potential energy of the bottom pendulum depends on the position 

of the top pendulum. Which is to say that the Hamiltonian cannot be written as only 

two functions: one of position and one of momentum. Because of these cross terms in 

the Hamiltonian, it can not be treated by the split-operator method, see section 2.2.1. 

The coupled pendula model was chosen to avoid this difficulty; it is a simple system 

that can display chaos and that can be treated by the split-operator method. The 

two coupled pendula system is two pendula with independent fixed pivots whose bobs 

are joined by a linear spring. Numerical investigation of this system gave Poincark 

sections which display chaotic and regular behaviour. 

The displacement of each pendulum may be described by a function 6; ( T ) ,  i = 1,2.  

Here T is time and 6 E [-T, TI.  The same sign and periodic boundary condition 

conventions are used for each pendulum. They are also the same as those used for 

the driven pendulum in section 2.1. As was done for the driven pendulum, we will 

use dimensionless units of time by taking time in units of the natural frequency of 
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the first pendulum: t = &. Here, g is the magnitude of the gravitational field, 

and the length of the first' pendulum is t .  All other lengths in the system will be 

described by their proportion to this length. Thus, the second pendulum's length 

is a t .  The distance between the pivots is yt.  The unstretched length of the spring 

is St. The mass of the first bob is m, and that of the second is pm. Continuing the 

transition to dimensionless units, we change displacement to yi(t) = 8;(7), i = 1,2. 

The spring-constant of the spring, k, will be replaced with e = 5. 
The system is shown in Figure 4.1. 

.IT +IT 

Figure 4.1: The coupled pendula system. The relative lengths of the pendula match 
the parameters used. The unstretched length of the spring is St and the dimensionless 
spring constant is e = 2. The relative sizes of the bobs corresponds to their relative 
masses. 

Making the same substitions for momentum and the Hamiltonian as in the driven 

pendulum, gives the dimensionless Hamiltonian: 

P? %=-+ -  + cos y l  + ap cos y2 + e(6 - G ) ~  
2 2a2P (4.1) 

Here 

G = (1 + a2 + y2 - 2y(sin yl - a sin y2) - 2a cos(yl - y2)} (4.2) 

The dimensionless classical equations of motion are: 

sin yl 
Yz = L { A z ( l  - SG-'I2)} 

a a2p 
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This allows us to consider the mass and length of the first pendulum to be iden- 

tically one, and the Greek letters as the other lengths and mass, or we may consider 

the Greek letters as the ratio between the other lengths and mass of the system to 

that of the first pendulum. 

4.1.1 Classical Numerical Met hods 

The classical equations of motion were numerically integrated to give the positions and 

momenta as a function of time. An Adams method variable-order variable-time-step 

ordinary-differential-equation integration routine from the NAG library (D02QFF) 

was used.[31] As in the case of the driven pendulum, the value for the tolerance was 

determined by comparing the analytical and numerical results for a two-dimensional 

harmonic oscillator. However, this gave little reassurance that the routine was working 

for the coupled pendulum system. A much more compelling test of the accuracy was 

the comparison of the numerical results from the classical and quantum case as shown 

in chapter 5 .  

4.1.2 Classical Dynamics 

This system displays a great variety of dynamical behaviours. The following parameter 

values were studied: a = .9, ,B = 1.4, y = .6, S = 1.6, e = 1.7. The system as it is 

shown in Figure 4.1 shows these relationships, in that it is drawn with all the correct 

relative lengths, and the size of the bobs are relative to their mass. The Poincarh 

section in Figure 4.2 was taken to be the yl, y2 plane when the time derivative of the 

distance between the bobs is passing through zero in the positive direction (G = 0). 

Three co-ordinates are sufficient to specify a unique point in this four-dimensional 

phase space because energy is conserved. This choice of the third co-ordinate, which 

places the section, is not as odd as it seems. This is one of the few sections through 

which all orbits must pass. This is not true of simpler, and easier to visualize, choices 

such as yl = 0 or y2 = 0. The potential that gives rise to these trajectories consists of 

a trough with many local minima along its bottom. Displaying only the area within 

[-T, T] along each axis and imposing periodic-boundary conditions gives Figures 4.3 
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Figure 4.2: PoincarC section for the coupled pendula system when a = .9, ,B = 1.4, 
y = .6, S = 1.6, e = 1.7. 
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and 4.4. We may also consider the potential to consist of a double well and a single well 

divided by a central ridge. The two wells are joined at their ends by the boundaries. 

The minimum of the potential occurs at -2. 

Figure 4.3: Potential for the coupled pendula system with the same parameters as in 
Figure 4.2. 

As can be seen from the Poincarh section in Figure 4.2, the coupled-pendula system 

displays both regular and chaotic behaviours. The three-dimensional trajectories that 

give rise to these sections are shown in Figures 4.5-4.10 Here the particles position 

in three-space is plotted. The three coordinates chosen were (yl, y2, G). The trajec- 

tories (all of energy -.55) are quasiperiodic (Figures 4.5, 4.8, 4.8, 4.9, and 4.10) or 

chaotic (Figures 4.6 and 4.7). All of these trajectories consist of oscillatory motion of 

both pendula. Neither pendulum makes any complete rotations. The quasi-periodic 

behaviour occurs in the double well which is on the positive-y2 of the central ridge in 
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Figure 4.4: A random dot stereogram of the coupled pendula potential. The image 
may be seen by focusing one's eyes behind the page. An inside-out image may be 
seen by focusing in front of the page. The axes run from -T to T,  yl runs from left 
to right and y, from bottom to top. 
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the potential. In the single well, the chaotic behaviour occurs. Due to the periodic- 

boundary conditions it is possible for a single trajectory of sufficent energy to visit 

both wells without crossing the central ridge. 

The trajectory shown in Figure 4.10 is especially interesting because the surface on 

which the trajectory travels appears to intersect itself. However, the invariant surface 

that the trajectory travels along may not actually intersect itself. In this case, the 

surface is not continuous, but takes the form of a cantor set, thus avoiding intersecting 

itself. A cross section of the trajectory is shown in Figure 4.11. 

Figure 4.5: Quasi-periodic trajectory with initial conditions yl = .3, ys = .36, pl = 

P2 = 0 
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Figure 4.6: Chaotic trajectory with initial conditions yl = .5,  yz = -1.5, pl = p2 = 0 
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Figure 4.7: Chaotic trajectory with initial conditions y, = 2.0, y2 = .38, pl = p2 = 0 
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Figure 4.8: Quasi-periodic trajectory with initial conditions y l  = 1.7? yz = -.3? 
p1 = .5 ,  p, = 0 
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Figure 4.9: Quasiperiod 3 trajectory with initial conditions y, = -1.8, y2 = -.4, 
pl = -.6 
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Figure 4.10: Quasi-periodic trajectory with initial conditions yl = -2.0, y2 = -.66 
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Figure 4.11: A section through the quasi-periodic trajectory shown in Figure 4.10. 
The slice is taken when yl = 1.85 and yl > 0. 
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4.2 The Quantum System 

The dimensionless classical Hamiltonian (equation 4.1) was taken directly into quan- 

tum representation, by letting the classical variables (yl , y2, pl , p2) become quantum 

operators with the usual meaning. 

The initial wavefunction was chosen as a two-dimensional Gaussian in position 

space at time t = 0: 

This is a two-dimensional Gaussian centred in position space at  (ylo, y2,) with a width 

in both directions of s. The centre in momentum space is c-l(kl0, kao), with a width 

(2sc)-' in both momenta. The Husimi distribution was not invoked for this system 

because the time to do each calculation was several hours. It seemed sufficient to 

compare the theories in position space, especially since the two position operators 

commute so there was no fL  limit to the area which could be resolved. 

4.2.1 Quantum NumericalMethods 

The wave function was propagated using the two-dimensional split-operator method.[34] 

The only difference from the one dimensional case (outlined in section 2.2.1 ) was 

the replacement of x and p by two-dimensional vector operators. In this case, the 

two-dimensional Fast-Fourier-Transform routine (COGFJF) from the NAG library was 

used.[31] As in the one-dimensional case the accuracy was determined by adjusting 

the time-step size and the grid spacing. The value for these was chosen by compari- 

son between the numerical and analytical solutions for the harmonic oscillator. These 

values were confirmed by the agreement of the two methods (quantum and classical) 

in the case of the two-dimensional simple pendulum. The two-dimensional FFT is 

very slow for large grid sizes: the largest practical grid was 128 x 128. With this size 

grid and appropriate time-step it took about one day to propagate the wavefunction 

the equivalent of one small-angle period of the unit pendulum in time. 

In order to keep the wavefunction in momentum space confined on so small a grid 

it was necessary to choose c = 15. (Recall the maximum value of momentum for a 



CHAPTER 4. COUPLED PENDULA 

grid of length n, is f z.) 

4.2.2 Quant urn- Classical Comparison 

To compare the two theories for the coupled pendula system, ensembles were again 

used. The quantum ensemble was the two-dimensional wave function in position 

space. This was compared with a classical ensemble whose initial coordinates in the 

four-dimensional phase space had the same probability distribution as the quantum 

probability distributions in position and moment um representation. This was done 

using the random number generator G05DDF from the NAG library.[31] The compar- 

ison was then made between the two-dimensional probability distributions in position 

space, and between the expectation values. The quantum probability distribution 

is the squared amplitude of the wavefunction. The classical probability distribution 

was created by dividing the position space into a grid of 100 squares on a side. The 

number of points in each bin divided by the number of points in the ensemble gave 

the classical probability for each bin. 

The expectation values were calculated as in the one-dimensional case, the differ- 

ence being that all the sums and integrals were made over two variables. 



Chapter 5 

Results for the Coupled Pendula 

System 

uantum and classical ensembles were propagated for times up to thirty unit- 

pendulum-small-angle-periods. (Hereafter simply referred to as periods or 

reason for the short time is two-fold: nothing much of interest happened 

after the first few periods, and the long computational time for which the quantum 

system needed to run. (Thirty periods represents around a month of computer time.) 

The position   rob ability distributions and expectation values were calculated for both 

ensembles. The expectation values calculated included yl, yz, pl , pz,  the square of 

these operators, the standard deviation of these distributions, the total kinetic and 

potential energy and, by addition, the total energy. 

Classical ensembles with identical position and momentum probability distribu- 

tions (i.e. minimum uncertainty Gaussians) were propagated for a single value of 

c = 15. The width of these Gaussians in both directions in position space (s in equa- 

tion 4.7) was 10-l. The width in momentum space (again, in both directions) was 

then 6.6 x The two ensembles were started with zero average momentum for 

each pendulum and an initial position of (-2.0, - .66) and (.5, - 1.5). The first was 

in the classically regular regime. A single classical trajectory with the same initial 

conditions is shown in Figure 4.10. The second was in the chaotic area. A single 

classical trajectory with the same initial conditions is shown in Figure 4.6. A single 
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Figure 5.1: The position and position squared expectation values calculated for clas- 
sical and quantum ensembles initially centered at (-2.0, -.66), in the quasiperiodic 
regime, with zero average momentum as a function of time. The large dots are the 
quantum values and the small dots are the classical values. 
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Figure 5.2: The expectation values of momentum and momentum squared, calculated 
for the quasiperiodic ensembles in Figure 5.1 
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Figure 5.3: The standard deviations for position and momentum, calculated for the 
quasiperiodic ensembles in Figure 5.1 
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Figure 5.4: The potential, kinetic, and total energy expectation values, calculated for 
the quasiperiodic ensembles in Figure 5.1 
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particle with these initial conditions would have a classical total energy of - .55. The 

average energy of these ensembles, however, was -.43 in the first case, and -.20 in 

the second. The minimum of the potential was -2.0. 

To get an order of magnitude estimate of the number of energy states excited by 

these ensembles, assume that the energy spacing for this potential may be approxi- 

mated by the harmonic oscillator energy levels. In dimensionless units, the harmonic 

oscillator energy levels (60) are c-l. Thus the number of energy states excited was 

around 23 for the quasiperiodic ensemble and around 27 for the chaotic ensemble. 

Given that this is an order of magnitude argument, they may be said to have been 

composed of similar numbers of energy eigenfunctions. 

A classical trajectory started at (-2.0, - .66) behaves quasiperiodicly as demon- 

strated in the Poincark section shown in Figure 4.2 and the trajectory in Figure 4.10. 

The second initial condition, (.5, - 1.5), leads to a chaotic trajectory as seen on the 

same Poincark section and in Figure 4.7. 

For the quasiperiodic ensemble all of the the quantum and classical expectation 

values calculated agree - excepting interference effects. This is shown in Figures 5.1, 

5.2, 5.3, 5.4. This agreement is also good evidence that the accuracy of the numerical 

routines is sufficient for these purposes. The agreement between expectation values is 

supported by the actual probability distributions in position space, see Figures 5.9- 

5.12. The one exception to the close agreement of the two sets of expectation values 

is that of the energy. This suggests that the classical method was not as accurate as 

the quantum one, although it was accurate enough that the rest of the expectation 

values agreed. 

For the ensemble started in the chaotic area of position space the results are similar. 

Both the expectation values (see Figures 5.5, 5.6, 5.7, and 5.8 ) and the probability 

distributions (see Figures 5.13-5.16) agree well, excepting interference effects. Here 

there was also the same discrepancy in the classical energy, presumably for the same 

reason. 

In the regular regime the wavefunction reached its maximum extension in position 

and momentum after 10 periods. The chaotic ensemble achieved the same thing in 

around 3 or 4 periods. The faster expansion of the chaotic ensemble was to be expected 
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Figure 5.5: The position and position squared expectation values calculated for clas- 
sical and quantum ensembles, initially centered in the chaotic regime at (.5, -1.5) in 
position, with zero average momenta, as a function of time. The large dots are the 
quantum values and the small dots are the classical values. 
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Figure 5.6: The momentum and momentum squared expectation values calculated for 
the same chaotic ensembles as in Figure 5.5.  
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Figure 5.7: The standard deviations of position and momentum expectation values 
calculated for the same chaotic ensembles as in Figure 5.5. The large dots are the 
quantum values and the small dots are the classical ensembles. 
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Figure 5.8: The expectation values for potential, kinetic, and total energy for the 
same chaotic ensembles as in Figure 5.5 .  
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-Pi 0 Pi- Pi 0 

~2 

Figure 5.9: The probability distributions in position space for the quasiperiodic p a n -  
tum ensemble centered at (-2.0, -.66) This is for time = 0, 1, 2, and 4 periods. The 
time ordering is from right to left and from top to bottom. The position expecta- 
tion values are shown in Figure 5.1. The black represents .2 of the initial greatest 
probability. Zero probability is white. The same grey scale scheme is used for all the 
probability distributions in this chapter. 
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Figure 5.10: More probability distributions in position space for the quantum ensem- 
ble centered in the quasiperiodic regime at (-2.0, -.66) This is for time = 10, and 32 
periods. The position expectation values are shown in Figure 5.1. 
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I * 1 
- P i  0 Pi-Pi  0 P i  

Figure 5.11: The probability distributions in position space for the classical ensemble 
centered in the quasiperiodic regime at (-2.0, -.66) This is for time = 0, 1, 2, and 4 
periods. The position expectation values are shown in Figure 5.1. 
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Figure 5.12: More probability distributions in position space for the classical ensemble 
centered at (-2.0, -.66) in the quasiperiodic regime. This is for time = 10, and 32 
periods. The position expectation values are shown in Figure 5.1. 
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due to the exponential divergence of nearby trajectories in classical chaos. Both here 

and in the driven pendulum quantum mechanics was initially able to provide the 

same behaviour for its ensemble. In the coupled pendula system, both classical and 

quantum ensembles expanded out to the same limits in position and momentum. 

For both cases computer time limited the number of periods to which the calcula- 

tion could be made to thirty. Compared to the driven pendulum where the calculations 

were made up to 150 drive cycles it can be seen that this is a very short time. How- 

ever, if both cases have reached a steady state-and unlike the driven pendulum at 

similar times, they give every indication that they have-then this short time is long 

enough. 

-Pi 0 Pi-Pi  0 

Figure 5.13: The probability distributions in position space for the quantum ensem- 
ble centered in the chaotic regime at (.5, -1.5) This is for time = 0, 1, 2, and 4 
periods. The time ordering is from left to right and from top to bottom. The position 
expectation values are shown in Figure 5.5. 
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Figure 5.14: More probability distributions in position space for the chaotic quantum 
ensemble centered at (.5, -1.5) Reading from left to right this is for time = 10 and 
32 periods. The position expectation values are shown in Figure 5.5. 
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Figure 5.15: The probability distributions in position space for the chaotic classical 
ensemble centered at (.5, -1.5) Reading from left to right and top to bottom, this 
is for time = 0, 1, 2, and 4 periods. The position expectation values are shown in 
Figure 5.5. 
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I I I 

- P i  0 Pi-Pi  0 P i  

Figure 5.16: More probability distributions in position space for the classical ensemble 
centered at (.5, -1.5) This is for time = 10, and 32 periods. The position expectation 
values are shown in Figure 5.5. 



Chapter 6 

Conclusion 

n this thesis, 

made for two 

investigate the 

a comparison between quantum and classical mechanics was 

systems whose classical behaviour can be chaotic. This was 

possibility of a disagreement between the predictions of the two 

theories in the classically chaotic regime. The comparison was made using numerical 

simulations, without recourse to taking limits such as f i  going to zero. Instead, a 
, p / 2  112 

dimensionless ratio, c = 6 g  , of the physical constants of the system to f i  was 

varied as an indication of how classical the system was. 

The two systems studied were a driven pendulum and a pair of pendula joined 

by a spring. For these systems, the quantum and classical expectation values for a 

number of observables were computed, as were the probability distributions in phase 

space. 

For the periodic regime of the driven pendulum, it was found that the theories 

agreed well for times up to 150 driving periods. This may be explained using Ehren- 

fest's theorem. Loosely, it states that if the width of the wavefunction (Ay) is suf- 

ficiently small compared to the length scale of variations in the potential then the 

centroid, < y >, of the quantum ensemble will follow a classical trajectory.[38] The 

regular regimes of the classical driven pendulum consist of concentric regular trajec- 

tories in phase space. The members of the classical ensemble, including the centroid, 

must then follow these trajectories. The time evolution of < y > in both theories 

is then the same. The same argument may be made for < p > and thus for all the 
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functions of y and/or p. However, the agreement continues after the width of the 

distribution is large enough that Ehrenfest 's theorem no longer applies. 

Similar agreement between quantum and classical behaviour was found for initial 

conditions whose classical behaviour was chaotic, but only for times up to a few tens 

of driving periods. For short times of 10 periods or less, both classical and quantum 

ensembles grew rapidly in phase space, after which, interference effects dominated the 

quantum behaviour. This early agreement between the theories, while the ensembles 

are still spreading in phase space, is explained with the same reasoning as in the 

regular case. In this case also, the agreement continues beyond the time at which the 

ensembles are too wide for Ehrenfest's theorem to apply. This observation suggests 

the following generalization: For as long as the value of < y > continues to  be a useful 

indication of the centre of a moving ensemble, the quantum and classical values will 

agree, even when this involves times beyond which Ehrenfest7s theorem applies. This 

rapid growth of the ensembles followed by large scale interference, has been seen in a 

number of other systems. [6] [2] [lo] [17] 

For longer times, it was found that the quantum system was limited to values 

in position and/or momentum that were lower than those in the classical system. A 

possible explanation was given in terms of the quasienergy expansion: the limits of the 

wavefunction in position and momentum must reflect similar limits of the quasienergy 

eigenfunctions which make up these wavefunctions. 

The numerical methods used in this thesis were unable to determine the form 

of these eigenfunctions. The form of the eigenfunctions would have been useful for 

two reasons. The quantum evolution of wavefunctions is simple in the quasienergy 

expansion for periodicly driven systems, thus knowledge of the eigenfunctions would 

have aided the numerical approach. The second use would be to  determine the effect 

of chaotic dynamics on these eigenfunctions and on the classical equivalent of these 

eigenfunctions. 

Quantum and classical mechanics differed in their predictions for the chaotic driven 

pendulum. The time at which the disagreements occurred was extended as c was 

increased and the system became more classical. This suggests that the disagreement 

occurs at longer and longer times as the system approaches the classical regime. 
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However, the largest value of c studied was only 250. The realm of everyday objects 

with dimensions of a single meter and masses of a kilogram has a value of c = 

The realm of optically microscopic (a length of 1000nm, and a density of water) 

pendula occurs for c = 10''. The results from this thesis are still far from the truly 

classical regime. 

In the two-dimensional system, there was consistently good agreement between the 

quantum and classical analysis, both in the chaotic and the regular regimes. Several 

qualifications need to be made. The first is that the systems were run for less then 

thirty linear-pendulum periods. This was small compared to  the 150 drive cycles for 

which the driven pendulum was run. Because of processing time, the value of c was 

kept very small so that the system was even closer to the quantum regime (by an 

order of magnitude) than the driven pendulum. Also because of the small value of c, 

the area of the Gaussians that were used was very large, thus removing the system 

even further from simulating a narrow classical ensemble. It is still very interesting to 

note how well, excepting interference, the classical ensemble mimics the behaviour of 

the quantum wavefunction this deep into the quantum regime. The predictions made 

by the two theories are represented by the expectation values and the probability 

distributions. The predictions of the two theories are nearly identical under these 

circumstances. 

The last issue to be addressed is the question as to why the two theories agree so 

well in the chaotic regime for the coupled-pendula system and so poorly at long times 

in the chaotic regime for the driven-pendulum system. The least satisfying answer is to 

suggest that the short runs in the coupled-pendula case ended before the disagreements 

could appear. To explain the differences in quantum and classical behaviour in the 

chaotic driven pendulum as due to the quasienergy eigenfunctions that make up the 

wavefunction is only to rephrase the question without attempting to answer it. I 

do not know why the structure and extent of the quasienergy eigenfunctions should 

be limited as it was. This result may be tied to the difference between them and 

the energy eigenfunctions. In autonomous systems, the classical ensembles that are 

the equivalents to the quantum energy eigenfunctions are the trajectories of each 

energy. The equivalents to the eigenvalues are the classical energies. Similarly for the 
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quasienergy, the classical equivalents are the trajectories on the Poincark section. The 

classical equivalent to the quasienergy itself is unknown. Solving this problem would 

go a long way to explaining what happens to the quantum quasienergy functions as 

the classical regime is approached, and perhaps suggest why the two theories disagree. 
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