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Abstract 

In the last decade and half, a number of numerical m.ethods have been developed, 

based on the Method of Lines (MOL) approach and mesh moving strategies. They 

are specially suitable to cater to the needs of a particular range of partial differential 

equations (PDE). These are time-dependent PDEs having large solution variations, 

such as shock waves, boundary layers or contact surfaces. Significant improvements 

in accuracy and efficiency are realized by adapting the mesh points concentration 

about these areas of large variation. In this thesis, we look into one such method 

and implement it to solve various time-dependent PDEs in one space dimension. In 

chapter 1, we begin by explaining the idea behind the MOL approach and the need 

for adaptive meshing. We then describe two contemporary numerical techniques, 

which apply these ideas towards solving time-dependent PDEs in one space dimension. 

Chapter 2 starts with a detailed description of MOVCOL, the Moving Collocation 

method under consideration. We then implement it for three different test problems, 

chosen from the existing numerical literature. We present and discuss the results to 

demonstrate the performance of the method, and move on to chapter 3. Here, a phase 

separation model is presented and our approach towards solving it using MOVCOL 

is discussed in detail. The computational results are presented and analyzed. We 

conclude the thesis in chapter 4, with a summary of our overall findings, and some 

ideas towards further research. 
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Chapter 1 

Numerical Methods in Solving 

Time-dependent Partial 

Differential Equations 

1.1 Introduction 

Differential equations and in particular, partial differential equations (PDEs), have 

always played an important role in modeling physical phenomena. The exact solution 

of a PDE is often hard to obtain. The difficulties arise partly from the governing 

PDE and partly from the complexities1 of the physical problem. Since only a small 

number of PDEs have known analytical solutions, numerical methods of solving PDEs 

have become extremely useful, and in some cases the only available tool for solving 

partial differential equations. In this thesis, we concern ourselves with solving a 

particular range of time-dependent PDEs, in one space dimension. Using a numerical 

technique, we at tempt to find the solution(s) which evolves in time from a given initial 

'e.g. irregular boundaries etc. 
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Numerically integrate in TIME 

using ODE solver 

Figure 1.1: Method of lines approach 

configuration. In this chapter, we discuss the tools of the method; the idea of the MOL 

(method of lines) approach, and the adaptive meshing strategy. We illustrate these 

ideas by taking a look at some of the important and highly used numerical solution 

techniques that use them, and move on to the next chapter for a detailed explanation 

of the method of our consideration. 

1.2 Method of lines and adaptive meshing 

The essence of MOL is to replace the original PDE with a system of ODEs and then 

to solve the system using any standard ODE integrator. This is done by replacing 

the spatial derivative terms in the PDE by their algebraic approximations which leads 

to a system of ODEs (usually stiff) in t ,  and then numerically integrating in time to 

generate the desired numerical solution. The MOL approach has given rise to many 

sophisticated PDE solvers in the recent past, especially for one-space-dimensional 

problems. With the improvement of stiff ODE solvers, these methods have become 
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reliable yet easy to implement tools in numerical analysis. Among the ODE solvers, 

one type has been particularly successful, in the terms of efficiency, robustness and 

reliability. Those are implicit Gear type BDF (backward differentiation formula) 

solvers. One particular ODE solver of this type has been used in the methods that 

we describe in the later part of this chapter. 

Figure 1.2: An example of fixed versus moving grid distribution for a solution curve 
with steep gradient. 

1.2.1 Why adaptive mesh 

In the cases of problems involving large solution variations, viz. shock waves, bound- 

ary layers and contact surfaces, the traditional fixed mesh approach is found to have 

some disadvantages. In order to adequately resolve the steep localized gradients which 

can occur in these types of solutions, the grid has to be very fine. However, if the grid 

is uniformly spaced, this implies that a very large number of grid points are required 

and that most of these are located in the regions where the solution is very smooth. 

The obvious choice here is to use a non-uniform distribution of grid points so 

that the high spatial resolution is provided only in those regions where the non-linear 
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nature of the problem requires it. In other words, if the solution is steep, and it varies 

rapidly over a small region(s) in space, the grid points will be distributed so that the 

region(s) has enough points to resolve the steep gradient accurately (fig. 1.2). This 

is the fundamental concept of adaptive meshing. Two types of adaptive methods are 

currently in demand: 

Moving mesh methods,  where a mesh equation which involves node speeds 

is employed to move a mesh having a fixed number of nodes so as to follow local 

non-uniformities of the solution. 

0 Local refinement methods,  where uniform fine grids are added to coarser 

grids in regions where the solution is not adequately resolved. 

In this chapter and the next, we are going to look into various adaptive methods 

of the first type, which take the method of lines approach. We start with two con- 

temporary moving grid methods; one uses a finite difference technique and the other 

takes the finite element approach. The third and the final method, is of the moving 

collocation type, which we explain and implement in the later chapters. 

From the user's point of view, an additional advantage of these moving grid meth- 

ods is that they can be implemented in most of the MOL software packages based 

on sophisticated implicit stiff ODE/DAE solvers. We mention, for example, the BDF 

solvers developed by Gear, Hindmarsh, Petzold and others. Thus, the user only has 

to set some numerical control parameters, and formulate the mathematical problem 

in terms of the computing language. Both the spatial discretization and the tem- 

poral integration can then be left to the package2. Some examples of the control 

parameters are a local tolerance parameter for the numerical integration in time, the 

number of points for the spatial discretization, and some parameters controlling the 

grid movement. 

2Here, by package we imply the moving grid PDE solver along with the ODE integrator. 
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1.3 Techniques currently in use 

1.3.1 A moving finite difference method 

The first method we are going to take a look at, implements the idea of MOL and 

solves a system of time-dependent PDEs in one space dimension. It is of Lagrangian 

type and introduces the semi-discretization in a moving reference frame. This method 

was discussed in detail in [29] by Verwer, Blom, Furzeland and Zageling. The grid 

movement for this case is based on the principle of spatial equidistribution of the 

nodes, the spatial discretization is done using standard central differencing technique, 

and a sophisticated BDF code is employed to carry out the numerical time integration. 

Consider the following system of PDEs in one space dimension, 

with the initial and boundary conditions 

(l.lb) u(x, 0) = uO(x), XL < x < XR and b(u, x, t )  = 0, x = XL, XR, t > 0 

Here f and b are spatial differential operators and the problem is assumed to have 

an unique solution and also to be well-posed. The derivation is started with an MOL 

approach as follows: 

Consider smooth, continuous time trajectories for the mesh points as 

Introducing the total derivative 

(1.2) u' = x'u, + ut = X ~ U ,  + f (u, X;(t), t), 1 5 i < N .  

along x(t) = X;(t), and spatially discretizing the space operators & and f ,  for each 
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fixed t, we obtain the semi-discrete scheme, given by 

Here, U;(t) represents the semi-discrete approximation to the exact PDE solution 

u at the point (x, t )  = (X;(t), t )  and F; is the finite difference replacement for f (u, x, t )  

at this point. 

It is then changed to the more compact form 

(1.4) U' = XI D + F, t > 0, U(O) given 

where 

The equation (1.4) represents the semi-discrete system to be numerically integrated 

in time to obtain the solution U. 

Next an equation is constructed defining the time-dependent grid X implicitly 

in terms of the continuous-time solution U. This equation is based on the idea of 

distributing the spatial variation in the solution equally over the interval [XL, XR] and 

is thus called the spatial equidistribution equation. It is used to move the nodes and 

is given by 

where n; = AX;-', and AX; = Xi+' - X; for 0 5 i 5 N. Here Mi 2 a > 0 

represents a monitor value that reflects the spatial variation over the i-th subinterval 

[X;, X;+l]. M; is a semi-discrete form of a solution functional m(u), containing one 

or more spatial derivatives of u. A commonly used (scalar form) of it is 
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Note that (1.5b) gives the arclength monitor for a = 1. 

Grid-smoothing is done to ensure a spatially smooth grid and to avoid oscillations 

for evolving time. The spatial grid smoothing is introduced to guarantee that the 

ratios of adjacent grid intervals satisfy the inequality 

where K > 0 is the spatial smoothing parameter, which controls the minimum and 

maximum interval length. In applications, K is normally set equal to 1 or 2. The 

temporal grid smoothing introduces the derivative of the point concentration n; in 

the grid equation (1.5a). This serves to prevent the grid movement from adjusting 

solely to the new monitor values. Instead, the introduction of rn '  forces the grid to 

adjust over a time interval of length T (the time smoothing parameter) from old to 

new monitor values, i.e., the parameter T acts as a delay factor. The aim here is 

to avoid temporal oscillations and hence to obtain a smoother progression of X(t). 

Usually, the value of T is chosen to be close to 0. 

The incorporation3 of the grid smoothing in the mesh moving equation (1.5a) gives 

rise to the following ODE system 

(1.7) TBX' = g, t > 0, X(O) given, 

where B is a penta-diagonal matrix and g a solution-dependent vector. The above 

equation along with 

are then numerically integrated in time, using the stiff ODE solver DASSL [25]. It 

is a BDF code which solves systems of implicit differential and algebraic equations 

having the general form 

3For details of how it is done, we refer the interested reader to [29] 
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and subject to appropriate4 initial conditions. It can solve stiff systems with variable 

order of accuracy and temporal step size, and also problems where singular matrices 

occur. It is capable of exploiting the sparse and banded structure of a matrix, thus 

saving space and time. 

In spite of the efficiency and robustness of this method, a few problems were 

reported in [29]. The integrations were interrupted due to Newton convergence test 

failures, for some of the test cases; especially so, when using extremely fine grids. 

According to the authors of [29], this could either be due to the fact that the local 

error and Newton convergence test was applied to Xi and not AX;, or poor prediction 

of Xi generated in the preparation of actual BDF step, causing convergence problem. 

The authors admit that both these problems need further attention. 

1.3.2 A moving finite element method 

The second method we explore, also solves system of time-dependent PDEs in one 

space dimension using the MOL approach. But it differs in the manner the spatial 

discretization and the grid movement are done. A Galerkin finite element approxi- 

mation is used for discretizing in space and the mesh is moved so as to equidistribute 

the spatial component of the discretization error in H1. This method was developed 

by Adjerid and Flaherty [I] at the Rensselaer Polytechnic Institute. 

Consider the system of PDEs having the form 

subject to the initial and boundary conditions 

(1.10~) either u,(x, t) = ai(t) or D ; ~ u ~ , ( x , ~ )  = a;(t) 
j=1 

4The initial approximations of Y and  must be consistent, i.e. they must satisfy (1.9). 
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The problem (1.10) is assumed to have an isolated solution. 

Next with the assumption u E Hk, where the subscript E denotes that u essentially 

satisfies ( 1 . 1 0 ~ ) ~  a test function v E H,' is selected to construct a weak form of (1.10). 

Equation (1.10) is multiplied by v, integrated over 0 < x < 1, and then integrated 

again by parts to obtain 

(1.1 l a )  (.,Mu,) + (v , f )  +a(v,u)  = O7 Vv E H,', t > o 

where 

(1.1 lc) 

which upon discretization gives 

where U E SEN and V E S t  are finite-dimensional approximations to u and v respec- 

tively, and U E SEN is the solution sought. Here, SEN and St are finite-dimensional 

subspaces of Hk and H,' respectively. A partition 

is introduced, in order to subdivide (0 , l )  into N subintervals (~ ;_~( t ) , x ; ( t ) ) ,  i = 

1,2, . . N, t 2 0. U and V are then selected so as to be piecewise linear polynomials 

with respect to (1.13). One example of which is the following equation 
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where 

( 0  otherwise. 

Next a quadratic error estimate is done by substituting u(x, t )  = U(x, t )  + e(x, t )  

into (1.10a) to get 

and then replacing e by a finite-dimensional approximation E consisting of piecewise 

quadratic functions, i.e., 

where 

4(x - ~; -~ ( t ) ) (x ; ( t )  - x)) 
(xi@) - ~ i . - l ( t ) ) ~  9 %l(t) L x I ~ i ( t )  

(1.17) @ ; ( x , ~ ( ~ , ~ ) ) = {  0 
otherwise. 

The error estimate is calculated by computing the approximation 

(1 .18~)  

( V , M ( ( i , + E t ) ) + ( V , f ( . , t , U + E , U z + E , ) ) + a ( ~ , l i + ~ ) = O ,  V V E ~ ,  t > O  

along with the initial conditions 

The error estimate is then used to control the motion of the mesh through the equation 
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where X is positive. 

Finally the three sets of equations (1.1 I ) ,  (1.18), and (1 .l9) are solved respectively, 

for the piecewise linear approximation, the quadratic error estimate and the mesh 

positions using the backward difference code DDASSL which is the double precision 

version of DASSL. 

One difficulty encountered here is finding an optimal value of A. Where a large 

enough X keeps the mesh close to equidistributed (see [I]) it also causes the stiffness in 

(1.19) making the system expensive to integrate. Developing an automatic procedure 

to balance the competing effects of stiffness and equidistribution has been considered 

in [2], where a local refinement is done, while keeping X of modest size. This will 

however, complicate the data structure, representing the solution, error, and the mesh 

but may produce more efficient results. 

1.4 Summary 

In this chapter we discussed the relevance of PDEs and their numerical solutions, 

and explained the idea behind the Method of lines approach; the semi-discretization 

in space, and then numerical integration of the resultant ODE system. We then 

introduced the idea of adaptive meshing and justified its need in cases of rapid solution 

variations. Two prominent methods, both of which implement MOL and adaptive 

mesh techniques but differ in the discretization and mesh moving procedures are 

explored and their difficulties are presented. In the next chapter, we discuss the third 

and our final method MOVCOL, a moving collocation method in its experimental 

stage. It is then implemented to solve a few time-dependent one space dimension 

PDEs, and the results are presented. 



Chapter 2 

An Introduction to MOVCOL 

2.1 Introduction 

Here we discuss the moving mesh method under consideration, wherein the physical 

PDE and the mesh equation are solved simultaneously for the physical solution and 

the mesh, using the MOL approach. It is a moving collocation method, thus named 

MOVCOL, developed by Huang and Russell [23] at Simon Fraser University. In the 

next section, we explain the method in detail. In section 2.3 we illustrate and analyze 

the performance using some test problems. In the last section we summarize the 

findings and move on to the next chapter to investigate a phase separation model. 

2.2 Details of the method 

As mentioned above, MOVCOL takes the MOL approach and applies that to solve 

the physical PDE (s), together with an additional PDE that moves the mesh. The 

current MOVCOL model solves a system of second order parabolic PDEs of the general 

divergence form. It uses a collocation discretization for the physical PDE (s) and the 

three point finite difference discretization for the moving mesh PDE (hereafter referred 
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to as an MMPDE). The details of the method are as follows: 

Consider a system of second order parabolic PDEs of the general divergence form 

(2. la)  
d 

~ ( t ,  X ,  U ,  u,, u ~ ,  uXt)  = - ~ ( t ,  ax X ,  U ,  u,, u ~ ,  u,~)  

for x L ( t )  < x  < xR( t )  and t ,  < t < tb ,  supplemented with the boundary conditions 

(2.1 b) B L ( t ,  xL,  xtL, u ( xL ,  t ) ,  uXx(xL ,  t ) ,  u t (xL,  t ) ,  uzt(xL,  t ) )  = 0 

m t ,  xR, xtR, u (xR ,  t ) ,  uxz(xR, t ) ,  ut(xR,  t),u.t(xR, t ) )  = 0 

and the initial conditions 

where F, G, B L ,  BR,  u and U are vector-valued functions of length N P  DE (number of 

PDEs). Throughout, it is assumed that the system thus defined is always well posed. 

As mentioned before, the physical PDE is discretized in space, using Cubic Hermite 

Collocation, where MOVCOL approximates the physical solution u(x,t ) on the mesh 

by v ( x ,  t ) ,  where 

(2.3) 

V ( X ,  t )  = v ; ( t ) @ l ( ~ ( ~ ) )  + ~x , i ( t )H j ( t )@2(~ ( ' ) )  + ~ j + l ( t ) & ( ~ ( ' ) )  + vX,j+l(t) H ; ( ~ ) O ~ ( S ( ~ ' ) ,  

is a piecewise cubic Hermite interpolating polynomial approximation. Here, x  E 

[x ; ( t ) ,  ~ ; + ~ ( t ) ] ,  i = 1 . . . N - 1, and v,( t) ,  v,,;(t) denote the approximations to u(x , ( t ) ,  t )  

and u,(x;(t), t )  respectively. The local coordinate s(') is defined as 

and @;'s are the Shape Functions, defined by 
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Note that v,,vzz,vt and vzt are the unknowns to be calculated. The substitution 

of equation (2.3) in the PDE (s) yield a residual, which is set equal to zero at the 

collocation points, in order to solve for these unknowns. The collocation points for 

each interval are given by 

where sl and s2 are the two Gauss points (zeros of the second degree Legendre poly- 

nomial) defined as 

Note that the collocation method has several important advantages over the finite 

difference methods. It provides a higher order of convergence, gives a continuous 

approximate solution and easily handles general boundary conditions, yet being easy 

to code. 

The MMPDEs, which control the node speeds are derived from an equidistribution 

principle [21]. The basic strategy here, is to choose a reliable monitor function M(x,t) 

which provides some measure of the computational difficulties in the solution of the 

physical PDEs, and to equidistribute it over the mesh. The most common choice is 

the arclength monitor function. 

(2.7) M(x, t )  = \/I + M2, where 'x7 is the spatial variable . 

Mat hematically speaking, the 

such that 

goal is to find mesh functions {xi(t)), i = 2....N-1, 
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For the purpose of mesh adaptation, the physical and computational spatial coor- 

dinates x and t are related by a differentiable monotone coordinate transformation 

subject to the boundary conditions 

Notice that equation (2.8) is the continuous counterpart of its discrete form, which 

determines x( t ,  t ) .  This coordinate transformation translates the rapid transition in 

x into a much more gradual one in t, thus making possible the use of equal spacing in 

t. Various MMPDEs have been developed (see [20]), by differentiating the continuous 

equidistribution equations. One example of the basic MMPDEs is 

where x = , T a nonnegative temporal smoothing parameter, and t is the compu- 

tational coordinate defined above. 

When large solution variations occur, the monitor function can be fairly non- 

smooth in space, and some kind of smoothing is necessary, to prevent the mesh from 

changing too rapidly. Following is one example of a smoothed MMPDE from [22] 

where n = (%)-I is so-called concentration function, X is a positive number. This is 

also the MMPDE that we use in our implementation of MOVCOL for the problems. 

MOVCOL currently has the option for four different MMPDEs, two of which are the 

smoothed ones. 

In summary, the moving collocation met hod consists of numerically solving the 

ODE system involving the collocation approximation (2.3) for the physical PDE, 
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the discrete mesh equation, and the corresponding boundary and initial conditions. 

This system is integrated in time using the stiff ODE solver DDASSL, which we 

briefly described in the last chapter. Most of the parameters that DDASSL requires 

are supplied by MOVCOL, except those such as error tolerances and the smoothing 

parameters T (temporal) and +y (spatial), thus keeping the user-intervention at a 

comfort able level. 

In the next section, we discuss the results of numerical testing on a set of three 

different problems, two of which are frequently used test models in existing moving 

grid literature (e.g. see [l6]). The set includes the well-known convection-diffusion 

equation of Burgers, a reaction-diffusion equation from combustion theory, and Allen- 

Cahn equation which models the process of grain boundary migration. It is worth 

noting that these three problems show different solution behaviour, and this makes, 

our tests with (only) three problems reasonably challenging. 
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2.3 A few numerical examples using MOVCOL 

Example 1 : Burgers' equation 

Our first example is Burgers' equation 

(3. l a )  ut = eu,,-uu,, 0 < x < 1, t > 0 

with 6 = and boundary conditions and initial values, 

(3.1 b) u(0,t) = u(1,t) = 0, t > 0 

For small times and c the solution is a pulse moving in a positive x direction while 

steepening. At about t = 0.6 a shock layer forms near x = 0.8 and after a time of 

0 ( 1 / ~ )  the solution dissipates to zero. We consider the time interval [0, 11 and output 

our solutions at t = 0,0.3,0.6,1.0, 1.4, following [I]. For the time integration, we use 

fixed tolerances at01 = and rtol = for all cases unless otherwise stated. 

The solutions for the given output times are all displayed on the one graph, in which 

the leftmost peak is the initial curve, and the rightmost peak is the solution at the 

last output time t = 1.4, with intermediate solutions in between, moving from left to 

right. 

Fig. 2.1 shows the solution obtained by the moving mesh (MM) method with 

25 nodes1, with the reference solution, computed with 200 MM nodes (shown in 

solid lines) with T = Note that the computed solution shows reasonably good 

agreement with the reference solution even with 25 nodes. The mesh trajectories 

however, show a slight oscillation between the times t = 0.4 and 1. 

Increasing the number of nodes to 40 takes care of this problem. Detailed results 

'The ODE integrator failed the error test repeatedly for 20 nodes. 
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Figure 2.1: Solutions at  t = 0,0.3,0.6,1,1.4 and the mesh trajectories for MM method 
with n = 25 

for the MM method with 40 nodes are given in table 2.1. In figures 2.2 we display our 

solutions at  different time points and the mesh trajectories for this case. Indeed, the 

computed solution here is visually indistinguishable from the reference solution. 

Figure 2.2: Solutions at t = 0,0.3,0.6,1,1.4 and the mesh trajectories for MM method 
with n = 40 
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Table 2.1 shows a comparison between the number of time steps (NTS) required 

by DDASSL to complete the time integration, the number of jacobian evaluations 

(JAC) computed by DDASSL, the number of error test failures (ETF) occurring in 

DDASSL, and the computer processing time (CPU) in second (s), for various runs 

with moving and fixed mesh methods. The computations, here as well as for the later 

problems were performed on a SPARC-server 20 work-st at ion. 

NTS JAC ETF CPU 

Table 2.1 : Computational summary for Burgers' equation 

We did some more testing to evaluate the performance of MOVCOL for different 

values of the temporal and spatial smoothing parameters T and y. As might be 

expected, for T = and more, the mesh movement is somewhat slow and oscillatory 

(graph not shown). Due to the small amount of diffusion, the semi-discrete solutions 

have a tendency to oscillate as soon as the grid becomes a little too coarse in the 

layer regions. This makes the problem difficult to solve, and in fact is the main cause 

for the relatively larger number of Jacobian updates. This also explains the slow and 

oscillatory movements of the mesh for a relatively large T. For smaller values of T, the 

method works better and more efficiently. For the spatial smoothing, however, y = 1 

is found to have given the best results in terms of reliability and efficiency. Increasing 

it only diminishes the efficiency. The integrator breaks down due to repeated error 

test failures for 7 = 3. 
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Figure 2.3: FM Solutions at t = 0,0.3,0.6,1,1.4 with n = 80 and n = 200 

For comparison purposes, we try to compute the solution with a fixed mesh (FM) 

by freezing2 the mesh movement in MOVCOL, and present the results. The solutions 

obtained even with n = 200, (almost five times that of the MM) fail to yield the same 

level of accuracy as the MM solutions. It places almost no points in the regions where 

the steep gradient occurs, and thus gives an inaccurate picture while consuming a 

huge amount of CPU time. 

2MOVCOL has the option of solving the PDE (s) with a fixed collocation discretization. 
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Example 2 : Reaction-diffusion equation 

Our next problem is a reaction-diffusion model in one space dimension, viz. 

Re6 6 
ut = u,, + -(I + a  - u)e-G 0 < x < 1, t > 0 

a6 

where R, a ,  and 6 are physical constants. The solution represents the temperature of 

a reactant in a chemical system. For small times, the temperature gradually increases 

from unity with a hot spot forming at x = 0. At a finite time ignition occurs and 

the temperature at x = 0 jumps suddenly from near unity to 1 + a. A sharp flame 

front then forms and propagates towards x = 1 with exponential speed. The problem 

reaches a steady state once the flame propagates to x = 1. The degree of difficulty of 

the problem is determined by the value of 6. Our first choice of problem parameters 

is a = 1, R = 5 and 6 = 20. For the current choice of parameters, the steady state is 

reached ([I], [16], [20]) slightly after time t = 0.29 and we take that as our end point 

for time integration and output our solutions at t = 0.26,0.27,0.28,0.29. 

In the plots for this case, the reference solution (solid lines) is obtained with 

n = 2 0 0 , ~  = 1 , ~  = and at01 = rtol = One main concern for this case is 

to detect the start of the ignition accurately as small errors at this stage can result 

in significantly larger global error later on. After some experiment we choose the 

tolerances at01 = rtol = . Another parameter of concern is T. 

Even though the start of ignition is detected accurately by a range of values for T 

[see table 2.21, for a large enough T (e.g.l), a nearly nonmoving mesh results, and the 

propagation of the flame front becomes very slow. After some experiments, we choose 
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Figure 2.4: MM Solutions at t = 0.26,0.27,0.28,0.29 and the mesh trajectories with 
n = 20 

it to be T = The spatial smoothing is not too critical as the flame layer is not 

too thin, and we take 7 = 1. 

Figure 2.4 shows the solutions for the above case with n = 20,7 = 1, T = 

which accurately portrays the reference solution. As shown in the plot, the flame 

layer is not very thin and a fixed mesh with n = 40 gives nearly the same accuracy. 

Figure 2.5: MM Solutions at t = 0.240,0.241,0.244,0.247 with n = 20 and the 
corresponding mesh trajectories. 
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Figure 2.6: FM Solutions at t = 0.240,0.241,0.244,0.247 with n = 20,80 and n = 200 
respectively. 
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The computational results are compiled in table 2.2. 

A more interesting case is when 6 = 30; In this case, the flame front is much 

thinner and higher spatial resolution is required. Here the steady state is reached 

slightly before t = 0.247 which is the end point for our time integration. 

The solution is plotted at  times t = 0.240,0.241,0.244,0.247 following [20]. We 

choose T = lo-', as a higher value results in inaccuracy. The reference solution is 

obtained in the same manner as in the case with 6 = 20. The time tolerances are 

crucial again, and fail to detect the start of ignition even for at01 = lo-'. However, 

lowering it to at01 = accurate results are obtained. We plot our solution with 

n = 20, at01 = and T = in fig. 2.5. 

The fixed mesh with the same tolerance, however, fails (see fig.2.6) to  follow the 

flame propagation, even though it is able to detect the start of ignition accurately. 

Even an increase of nodes by four times that of moving nodes shows deviation from the 

reference solution (see fig. 2.6). In order to produce comparable (to that of moving 

mesh) accuracy with fixed mesh we needed 200 nodes and proportionately more CPU 

time (see table 2.2). 

NTS JAC ETF CPU 
204 33 21 9.41 
770 81 28 25.78 
450 45 17 14.86 
449 43 16 15.55 
537 47 20 17.44 
750 33 17 15.44 
756 31 17 28.31 
902 60 20 216.80 
1272 267 46 55.69 
4288 518 256 99.04 
12089 1516 249 1134.8 
10185 867 132 2127.5 

Table 2.2: Computational summary for the Reaction-Diffusion equation 
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Example 3 : Allen-Cahn equation 

The last problem that we consider in this chapter is called one-dimensional Ginzburg- 

Landau or Allen-Cabn equation, given by 

where the function f is smooth and satisfies f (+l) = 0, fl(+l) > 0, ~ 2 ,  f (u)du = 0. 

A typical example is f (u) = u3 - u, and this is also the function chosen here. 

We consider the following boundary and initial conditions: 

Case 1 

Case 2 

The solution for this bistable equation is known to have demonstrated interesting 

behaviour, when captured by the attracto? of the dynamical system. The only pos- 

sible stable equilibrium solution of (3.3a) are constant in space, and are minimizers 

of the energy functional 

where f (u) = ~ ' ( u ) .  Thus, for large t, typical solutions will be approximately constant 

in space. However, for c small, the time taken to reach these patternless asymptotic 

states can be extremely long. Although a pattern of layers form in a relatively short 

time, having reached this state, the solution changes exponentially slowly. The rate 

depends on the physical parameter E ,  and is approximately of ~ ( e - ' / ' ) ( ~ e e  [12]). 

3The attractor of a dynamical system is generically the union of the set of equlibria and their 
unstable manifolds (cf. [8] and [18]). 
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Case 1: We choose c = 0.05, and the initial condition as in (3.3b), following 

[12], for the purpose of comparison. The above equation models the process of grain 

boundary migration, by which two differently aligned crystal lattices in a solid evolve 

with time. For c small, diffusion is negligible on a short time scale, and the initial data 

evolves towards the stable zeros of f ,  {+I,-1). Development of interface separating 

regions (in which u > 0, and u < 0) occurs, and they propagate to the boundary 

x = 0, at an exponentially slow rate. For this problem, we concern ourselves with 

steady state solutions only, and stop the time-stepping once a solution reaches a state 

that appears to be stable. The reference solution is computed using 200 MM nodes, 

and at01 = rtol = T = y = 2, and as before it is plotted with solid lines. 

A point worth noting here is that, this slow propagation of the interface sometimes 

gives rise to spurious steady state solution(s) as stated earlier (see also[l2]). The 

resolution of the numerical method being insufficient to capture the tiny propagation 

speeds for the transition layers makes these metastable4 states the steady solutions 

of the numerical method. With 20 fixed spatial nodes, and 800 grid points in time, 

their method (an implicit Euler scheme) was held at the spurious steady state, and 

the true result was obtained by increasing the spatial nodes to 100. Keeping this in 

mind, we proceed to discuss our test results. 

Figure 2.7 shows the solutions at t = 0 and FM and MM solutions after they 

reached a steady state (which was at t = 40, for MM), where the results were obtained 

using n = 20, at01 = rtol = Notice the agreement between the MM and 

the reference solution even at a low number of grid points n = 20. 

The FM solutions on the other hand, produces a spurious steady state, and stays 

there for a very long time. We did further experiments to evaluate the performances 

of the parameters of MOVCOL. We noticed that for fewer grid points, e.g. n = 20 

spatial smoothing proved to be at a disadvantage, as it led to a spurious stable solution 

4The states which evolve at a very slow time scale are known as metastable states. 
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reference - 
MM A 

FM 0 

reference - 
FM 0 

reference - 
MM 0 

Figure 2.7: Initial Solution; FM solution; MM solution at t = 40 
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Figure 2.8: MM Solutions for n = 90 with y = 1  and 7 = 2; for n = 40 with T = 1  
and y = 1  and the mesh trajectories. 

(table 2.3). However, when number of grid points was increased, e.g. to n = 90, 

smoothing helped the solution to get out of the spurious state (fig. 2.8). Although 

no apparent improvement was found by decreasing T from to the solution 

behaviour deteriorated following an increase to T = 10. Interestingly enough though 

a moderately large5 ~ ( = 1 )  did not seem to disrupt the solution behaviour (fig. 2.8). 

It is worth noting that the solution behaviour was very sensitive to the numerical 

parameters. The solutions (both MM and FM) switched back and forth between 

5MO~COL's recommended range for r is < r < 
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the two true stable solutions Ul and U2, following even the slightest change in the 

parameters. An example is shown in fig. 2.9, where a change in 7 from 1 to 2 changed 

the solution from U2 to U l .  This, however, is not unusual for numerical solutions of 

bistable problems (see [18]). 

reference - 
MM A 1 reference - 

MM a 

Figure 2.9: MM Solutions at t = 40 with y = 1 and -y = 2 and the mesh trajectories. 

Although FM produced comparable results to MM after increasing the number of 

nodes to n = 40, it gave spurious solutions for certain values of n (see table 2.3). For 

MM this problem was remedied with the help of smoothing; FM on the other hand, 

had no choice but to increase the number of nodes in order to solve this problem. 
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NTS JAC ETF CPU 

Table 2.3: Computational summary for the Allen-Cahn equation for the Dirichlet 
boundary condition; with Ul, U2 and Us respectively giving the two true stable and 
the spurious solutions. 

Case 2: The Allen-Cahn equation with the homogeneous Neumann boundary 

condition is our second test problem here. The initial solution is a cosine function 

in [0, 11, and e is chosen to be 0.05 as before. Note that the stationary solutions are 

given by the equation 

@zz - f (@) = 0 

where @(O) = 0, and @(x) + f 1 as x -+ f oo. The solution to the above equation 

is 0 (x)  = tanh(-&) for f (u) = u3 - U. According to [B], the metastable states are 

approximated by appropriate translates or reflections of 0, the unstable stationary 

solution. That is, for one layer state with layer length h, the metastable states are 

given by @(x - h) or @ ( h  - x). 

The first solution that we compute is with n = 20, and all other parameters as in 

the first case except for T ,  which we choose to be here. Both the FM and MM 

methods produces spurious steady state solutions at this point. 
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Figure 2.10: MM solutions with n = 20, n = 30, n = 50, and the corresponding mesh 
trajectories. 
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Figure 2.11: FM Solutions with n = 40, n = 100, n = 200 respectively. 
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Notice that the spurious MM solution here is a translated reflection of the station- 

ary tanh solution @(x) as claimed in [8]. However, an increase in the nodepoints for 

MM gives the accurate solution, whereas FM even with five times that many points 

(fig. 2.11) fails to produce the desired result. Figure 2.10 shows MM solutions and 

the corresponding mesh trajectories for n = 20, n = 30 and n = 50 respectively. Our 

experiments with the MOVCOL parameters shows the same sensitive nature of the 

solution as before. A point worth noting is that spatial smoothing creates an adverse 

effect even at n = 40, unlike before, and makes no apparent improvement for larger 

n. 

We tested case 2 further, with a smaller r(=0.04) in order to observe its effect on 

the propagation rate of the solution layers. As mentioned earlier, when 6 decreases, 

so does the rate of propagation, being on a time scale of ~(e- ' ' ' )  (see [3], [B], and 

[12]). Our experiments agreed, with their claims, as the solution took considerably 

more time to reach the steady-state. Also, DDASSL took a lot more timesteps to 

converge (see table 2.5) than it did in the earlier case with e = 0.05. Other results 

were however similar to those for larger r. 

Table 2.4: Computational summary for the Allen-Cahn equation with the homoge- 
neous Neumann boundary condition and r = 0.05 

NTS JAC ETF CPU 
860 75 13 25.96 
424 40 5 10.7 
496 56 7 23.71 
490 49 5 35.67 
506 47 8 36.37 
212 22 3 4.65 
221 34 3 10.6 
259 34 9 24.27 
274 36 11 30.88 
235 32 7 55.15 

MM 

FM 

y T 

1 
2 
1 

2 
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n I T  T 1 NTS JAC ETF CPU 1 U 1 

Table 2.5: Integration history: A few results for the case when c = 0.04 

2.4 Summary 

In this chapter, we introduced MOVCOL, the method of implementation here, and 

discussed it in detail. We then simulated three problems with very different solution 

behaviour, with the help of MOVCOL, and presented our results, along with any 

difficulties that we encountered. For the first two problems, when the solutions reached 

their steady-state rather fast, the adaptive meshing proved its need beyond a shred 

of doubt, whereas for the Allen-Cahn problem, with an exponentially slow rate of 

solution propagation, the need of a moving mesh did not seem to have justified itself 

well enough in the first case, where a carefully chosen fixed mesh could produce results 

equally accurately and efficiently even with its drawbacks (e.g. spurious solution for 

certain nodepoints). However, MM exhibited superior performance in the case with 

the Neumann boundary condition, with the fixed mesh taking more than five times 

as many nodepoints to produce the same effect as that of the moving mesh. Hence 

we conclude this chapter with rather mixed views about the performance of the code 

for such problems, and move on to the next chapter to investigate a phase separation 

model. 



Chapter 3 

A Phase Separation Model 

3.1 Introduction 

In the process known as spinodal decomposition, a homogeneous alloy spontaneously 

separates into a fine grained mixture of nearly pure phases of metals. When the 

alloy is separated, some regions of space are rich in one phase and correspondingly 

poor in the others. The Cahn-Hilliard equation has been proposed as a model of 

spinodal decomposition for a binary alloy. In this chapter, we study this model in 

detail and simulate it with the help of MOVCOL. The numerical results are presented 

and discussed. 

3.2 Phase separation in a binary alloy and the 

Cahn-Hilliard equation 

Consider a binary alloy, comprising of species XA and XB, existing in a state of 

isothermal equilibrium at a temperature T,, greater than the critical temperature 

T,. The alloy's composition is spatially uniform with the concentration u(x, t )  of 
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Figure 3.1: Free Energy 

X B ,  which takes the constant value urn. Suppose that the alloy is now suddenly 

quenched to a uniform temperature Tm below T,. Phase separation takes place in 

which the composition of the alloy changes from the uniform mixed state to that of a 

spatially separated two phase structure, each phase being characterized by a different 

concentration value which is either u, or ub. 

A theory describing this phenomenon comes from considering the Gibb's free en- 

ergy $(x, t ) ,  which has the following properties 

for u E [uz, ui]. This energy has the double-well form for T < T,, as shown in Fig. 

3.1. 

Here uz and ui are the spinodal points. Close to the two local minima are the 

binodal values u, and ub, which are the two unique points where the supporting 

tangent touches the curve. The spinodal region is unstable, states to the left and 

right of the binodal points are stable, and the remaining intervals are metastable. 

Suppose that the mixture has been prepared to have an initial state with a spatial 
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Figure 3.2: Phase diagram 

composition taking values in the spinodal interval. The mixture will evolve from 

this unstable nonequilibrium state to an equilibrium configuration consisting of two 

coexisting phases with a spatial pattern composed of grains rich in either X A  or in 

X B .  Such an evolution process is called phase separation, and when it takes place in 

spinodal region, it is called spinodal decomposition. Associated with this description 

is the phase diagram depicted in figure 3.2. Here, el and e2 represent the spinodal' 

and the coexistence2 curves respectively. Below el, the state (u,, T,) is unstable and 

the alloy separates into two phases characterized by the values u, and ub where the 

line T = T, crosses e2. 

It can be shown that the phase diagram in figure 3.2 can be explained by thermo- 

dynamics in terms of the minimization of the free energy $(u) [ll]. We now want to 

model the evolution of an alloy, initially in equilibrium in the uniform state (u,, T,) 

with T, > T, which is then quenched to a state where T, < Tc and urn lies in the 

spinodal region. The new state is not in equilibrium. Here we assume that the system 

'Gives the locus of points where +,,(u, T) = 0. 
'Above this curve any uniform concentration (u,, T,) is stable. 



CHAPTER 3. A PHASE SEPARATION MODEL 

is isothermal. The mass flux is given by 

where M > 0 denotes the mobility and p = +'(u)  is the chemical potential difference 

between species A and B. Upon substitution of p = +'(u) in (3.2) we get 

which along with the mass balance law 

yields the diffusion equation 

where the difusivity K ( u )  = M+"(u). 

In order to model the surface energy of the interface separating the phases Cahn 

and Hilliard [6] modified the free energy +(u)  by adding the gradient term Z ~ V U ~ ~  so 

that the free energy becomes 

Here, y(> 0 )  is the parameter determining the interaction length for the gradient 

energy term, and +(.) is the homogeneous free energy. The Cahn-Hilliard model for 

the equilibrium description of phase separation is thus to 

(3.7) minimize ~ { $ ( u ( x ) )  + S I V U ~ ~ } ~ X ,  subject to 1 u ( x ) d x  = urn 101. 

The generalized chemical potential a = +'(u) - y A u  is introduced such that c is the 

functional derivative of the energy 
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i.e., 

(3.9) < 6, v >=< ~ ' ( u ) ,  v >= (dl(u), V) + y(Vu, Vv). 

Here (., .) denotes the L2(fl) inner-product. But the mass flux J also satisfies 

(3.10) J = -VO. 

Combining the above equation with (3.5) we get the generalized diffusion equation 

for this non-equilibrium gradient theory of phase separation 

(3.1 la)  U, = -A(yAu - q5(u)) 

where 4(u) = +l(u). 

This fourth order, nonlinear evolution equation is called the Cahn-Hilliard equa- 

tion. For a closed system it is supplemented by the following boundary conditions, 

the first of which is the zero mass flux condition and the latter is the natural boundary 

condition associated with the energy functional: 

(3.1 1 b) v($'(u) - y ~ 2 ( u ) )  = 0, . yVu = 0, x = 0, L. 

The initial condition is given by 

(3.11~) u(x,o) = UO(X), i L ~ O ( ~ ) d ~  = M L .  

where M gives the mean value of the initial concentration uO(x). 

3.2.1 Some Continuum Properties 

This initial boundary value problem was studied by Elliot and Zheng (151, and the 

existence and uniqueness of a solution u(t) of (3.11) were proved under certain condi- 

tions. They also showed that under these conditions, for any initial data, the solution 

u(t) converges as t + w to a solution of the steady-state problem 

(3.12~) yu,, = +(u) - 6, 0 < x < L and 6 E 32, 



CHAPTER 3. A PHASE SEPARATION MODEL 

(3.12b) ut = 0 ,  x = O , L  and ~ L ~ O ( z ) d 5  = ML, 

solutions of which are associated with the local minimizers of the energy functional 

E(u). These solutions are periodic3 and monotone4 for sufficiently small y, and all 

non-monotone solutions are saddle points of E(u). The last statement ensures that 

for every non-monotone solution ii of (3.12), there is an initial value uo lying in any 

H' neighbourhood of ii, for which the solution of the dynamic problem (3.11) will stay 

bounded away from ii. It is also shown, that phase separation does not take place if 

the initial concentration uo(x) lies in the stable region, i.e., outside the interval [u,, ub] 

(see fig. 3.1). Moreover, in such cases, the solution uo(x) tends to the uniform state 

u = M, where the mean value M of the initial solution is given by (3.1 lc). 

The simplest form of $ having the double-well potential is 

where 70, 71, and 7 2  are constants with 7 2  > 0. Note that $"(u) has two real roots, 

namely the spinodal values u: and u;. 

Following Elliot and French [13], we choose the interval [O, 61 and the energy $(u) 

to be 

Note that it implies d(u) = 5u3 - u. For (3.14), the spinodal points are 

and the binodal points are 

f i  u a = f i 9  

31t means that all lengths along the x-axis of transition, from peak to trough or vice versa, are 
equal (see [7]). 

41f u,(z) is a unique minimizer of the energy functional, so is u7(-2) (see [7]). 
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It has been shown in [13] that these values define piecewise constant functions 

that minimize the energy functional E(u). Note that $ is symmetric about u = 0, 

and this implies that the binodal points correspond to the absolute minima of $, i.e. 

$rn = $ ( ~ a )  = $(w). 

3.2.2 Implementation Strategy 

In order to implement MOVCOL for this problem, we transform this fourth order in 

space PDE into a system of two PDEs as follows: 

Call v := yAu - q5(u). Then (3.11) can be written as 

with boundary conditions 

We then simulate (3.15) with various initial conditions following [13], each giving 
it. 

rise to a different solution behaviour, and present our results in the next section. 

The numerical method used in [13] is a combination of the Galerkin method for 

discretization in space and an implicit midpoint rule for time discretization. One 

concern that the authors Elliot and French expressed was about the accuracy of the 

numerical solution. In spite of the optimal convergence (see [13]) of their method, 

it does not guarantee accuracy unless the spatial stepsize is very small. The loss in 

accuracy comes from a constant determining the error bounds which is rather large due 

to its dependence on -y5 and the derivative of the solution u. Note that, u is expected 

to have large derivatives in x, as the separation patterns form sharp interfaces. 

5This constant is directly proportional to 7-3, and 7 is small. 
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The smoothed MMPDE6 that we use, is nonlinear in x, whereas successful com- 

putation of Y and Y by DDASSL7 requires that the monitor function (or the initial 

physical solution) be smoother in the computational coordinates. We have encoun- 

tered cases where DDASSL altogether failed to even start the time integration for a 

steep initial solution. An initial mesh equidistributed with respect to the initial solu- 

tion is created before starting the time integration to reduce this difficulty (see [22]). 

This is done by solving internally the MMPDE and the PDE ut = U(x), 0 < t < 1, 

where U(x) is the user prescribed initial approximation of u(x). The reference solu- 

tions for all the cases are computed with MM using 200 nodes and at01 = rtol = lo-' 

unless mentioned otherwise, and as before, are shown with solid lines. 

3.3 Numerical Results 

Case 1: For the first case, we choose a ninth-degree polynomial as our initial solution, 

given by 

uo(x) = Ap(x) + M, where p(x) = x4(x - 6)4(x - 2.2) + Mo 

Here, M = 3, Mo is picked such that ~:p(x)dx = 0, and A is chosen so as to make 

the result 11 uo - M (1, 2.7 true. The parameter 7 is set equal to 0.005, following 

Notice that the mean value of the initial concentration uo(x) lies in the stable 

region (-00, - &) U (4, oo), and we expect that the solution will tend to its mean 

value M. We plot the solutions at times t = 0, .5,1.5,2, and 2.7, using MM with 

20 nodes, at01 = rtol = 7 = 1 and T = Figure 3.3 show the 

concentration u and the mesh trajectories for this experiment. As expected, the 

solution u(x, t) converges to the constant function M. The solution for this case is not 

6The MMPDE given by eqn. (2.11) in chapter 1. 
7As defined in the eqn. (1.15) in chapter 1.  
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steep and a FM works as well with 20 node points. In fact with y = 1, FM shows less 

error than MM. This is not surprising, as MM puts more points in the transitional 

area of the steep initial solution, and therefore fails to produce an uniform mesh 

when needed, whereas FM, having started with an uniform mesh, produces better 

resolution for this uniform solution. This is also clear from the movement of the 

mesh. The transition from steep initial solution to almost uniform constant solution 

takes place at around t = 0.5, and after that the need for mesh adaptation dies. No 

phase separation takes place with this initial condition as predicted, which justifies 

the comparatively less effective performance of an MM here. 

Figure 3.3: Solutions at t = 0,0.5,1,1.5,2, 2.7, and Mesh trajectories for MM method 
with n = 20 for case 1. 

Case 2: We choose for our second experiment an initial concentration with mean 

value in the spinodal region, to simulate a phase separation. It is a cosine function 

and is given by 

u0(x)  = c o s ( ~ x I 6 )  

in the interval [O, 61. Notice that the mean value here is 0, which lies in the spinodal 

region (-1,l). The parameter y is chosen to be 0.02. The MM solution is computed 
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reference - 
MM A 

FM 0 

Figure 3.4: Solutions at t=2, t=6, t=10 for case 2. 



CHAPTER 3. A PHASE SEPARATION MODEL 45 

with 40 node points, and is shown at t = 2, t = 6, and t = 10, in fig. 3.4, along with 

the reference solution and a FM comparison. 

Notice that at t = 2 the FM solution shows deviation from the reference solution 

at the peak as well as at the dip, which it retained even at t = 10. Also, FM failed to 

resolve the steepness in the solution accurately. This is clearly reflected in the graph 

as well as in the error analysis (shown in table 3.1). The error for FM is maximum 

at t = 2, as the transition has already started to take place by that time, whereas for 

MM it is the minimum. The error for FM reduces as the rneshpoints are doubled, but 

it still lags behind the MM solution as is clear from table 3.1. We have plotted the 

minimal spacing H(t)  against the output times in fig. (3.5), where 

for the MM approximation. This shows the jump in the stepsize by the moving mesh, 

to adequately resolve the steep gradient. Figure 3.5 also shows the mesh trajectories 

for the MM method. 

We ran some experiments, to find out the solution sensitivity towards the numer- 

Figure 3.5: Mesh trajectories and the function H ( t )  for MM method with n = 40 
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Table 3.1: Error history for case 2 

-ical parameters. Both temporal and spatial smoothing proved to be less helpful than 

they were for some of our other test problems. In fact, the solution hardly showed 

any change when the temporal smoothing parameter T was increased to 1. Although 

this resembles the results found for the Allen-Cahn problem, it is very unlike the case 

of our reaction-diffusion problem, where, following a similar increase in T ,  the mesh 

movement almost stopped causing a very slow solution propagation. 

Figure 3.6: MM solutions at t = 10 with n = 40 and 7 = 1 and y = 2 respectively. 
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We attribute this result to the particular nature of this problem. Lack of sudden 

change in solution behaviour, and presence of only one interface layer decreases the 

need for temporal smoothing. Spatial smoothing did not seem to enhance the accuracy 

of the solution, although it converged faster and consumed less CPU time. At n = 40, 

the solution with y = 2 deviated (at the peak as well as at  the dip) from the reference 

solution more, than it did with y = l(fig. 3.6). Table 3.2 shows the computational 

summary for this case. 

NTS JAC ETF CPU 
189 22 0 13.46 
177 21 0 12.77 
194 22 0 13.04 
182 22 0 13.17 
173 22 0 24.93 
159 19 0 23.93 
202 23 0 27.87 
176 24 0 26.92 
216 28 1 78.28 
189 26 1 74.85 
154 18 0 7.89 
144 19 0 16.02 
161 20 0 42.81 
160 19 0 84.34 

Table 3.2: Computational Summary for case 2 

Case 3: For our third and the last test case we choose an initial solution which 

seemed to have difficulty reaching the true steady-state (see [13]). It is of the same 

form uO(x) = A p ( x )  + M as in case 3, but with M = 0 and A set so that 11 uo 11, 0.6. 

The value of the physical parameter y was chosen to be 0.07. 

Our first computation for this problem was done using a FM with n = 200, 

at01 = and rtol = The results we thus obtained are shown in fig. 3.7 

at times t = 0,4,40,200,300, and 400, respectively. The solution evolved from layer 

formation following the phase separation, and then through eventual layer collapses 
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Figure 3.7: Spurious FM solutions showing layer evolving from t = 0 to t = 400 
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to one-layer monotone structure. Although the solution evolution in this case resem- 

bled that of a true stable solution, it proved otherwise when we decreased the error 

tolerances for time integration. With at01 = and rtol = the solution did 

not change at all from t = 40 to t = 400, and stayed on a two-layer metastable state 

as shown in fig. 3.8. 

Figure 3.8: FM solutions at t = 40 and.t = 400 with at01 = rtol = 

Neither decreasing the time-stepsize nor increasing the number of spatial node- 

points helped in moving the metastable solution to its stable state. This slow motion 

of the solution for Cahn-Hilliard model has been widely observed8. There exist sev- 

eral explanations pertaining to this behaviour, and they are attributed to a small 

interaction length e ( e = fi) [3], slow dissipation of energy [19], and the evidence of 

spurious metastable solution introduced by truncated boundaries [27]. 

One known way to tackle this problem of slow-moving phase boundaries is to 

choose a very high number of spatial nodes and to continue the time-stepping for an 

enormous length of time (see [27]). We did several experiments with n = 400 and 

differing time lengths, but decided to stop the calculations at t = 2000 as neither u 

fact, it is a very popular area of numerical research (see [3], [19], [27] etc.) 
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Figure 3.9: FM solutions at t = 4, t = 1000 and t = 2000 with n = 400, at01 = 
rtol = and their time derivatives 
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nor ut showed any considerable change from t = 1000 to t = 2000 (see fig. 3.9). 

It is a well known fact that for small e these solution layers move at an exponen- 

tially small speed of O(e-'/'), where C depends only on the distance between layers. 

The stable state can be reached faster with a higher value of e. In fact, this was 

demonstrated when the solution reached the steady-state at t = 500 upon increasing 

the value of y (= e2) to 0.17 from 0.07 (fig. 3.10). 

Figure 3.10: Steady-state solution with FM using y = 0.17 

The results of our experiments with the moving mesh were as follows. With n = 40 

and at01 = rtol = the MM showed behaviour almost similar to that of a fixed 

mesh. However, it produced an oscillation near the left layer unlike the fixed mesh 

(fig. 3.11); also, the mesh adaptation did not reflect the solution behaviour correctly. 

Smoothing created an adverse effect and made the solution, movement slower; an 

effort to increase the number of nodes resulted in a break-down of DDASSL following 

repeated error test failures. After a number of experiments with different combinations 

of MOVCOL parameters, the results remained unchanged which led us to believe that 

this could be caused by the monitor function. 

Numerical experiments with the phase separation problems has shown [lo] that 

gradient monitor functions do not place enough emphasis on concentrating the mesh 
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in the phase change regions. They are more sensitive to larger transitions, and the 

mesh concentration is strongly dependent on the size of the transition. This can 

result in very poor resolution of the smaller transitions, thus stopping the movement 

altogether. Although choosing the right monitor function for these kind of problems 

could be a time-consuming and difficult task, it could prove to be very worthwhile. 

Figure 3.11: MM solution at t  = 4 and also at t  = 2000 and the mesh trajectories 

We did some experiments with different monitor functions M(x, t ) ;  upon changing 

M(x, t )  to 

M(s,  t )  = Jz, where a = +'(ti) - TAU, 

the oscillation disappeared, and also the layers moved. Increasing n to 80 we reached 

a solution which showed the desired steady monotone structure at t = 1000. The 

results obtained with n = 200, was very similar to that with n = 80 and exhibited 

the final phase transition at  t  = 1000. We show our results at n = 200 in figure 3.12. 

at times t  = 4,40,100,500,1000, and 2000, respectively. 

Notice that this new and effective M(x, t )  is in fact the gradient monitor for the 

generalised chemical potential a. It is the tiny jumps in potential across the layers that 

drives this (exponentially) slow motion. Hence it is not surprising that monitoring it 
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Figure 3.12: MM solutions with n = 200 and at01 = rtol = demonstrating 
the evolution to the steady-state solution 
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would enable the mesh to track down the layer movements efficiently to produce the 

final transition. 

Although the numerical results obtained through this monitor function converge 

to a solution resembling the true solution as we increase grid points in space, the mesh 

trajectories start behaving like a uniform mesh, as time increases. This is due to the 

fact that a, is small, and that leads to M ( x ,  t )  z 1 giving rise to a grid behaviour (in 

space) similar to that of a fixed one. 

3.4 Summary 

We started this chapter with the description of the phase separation in a binary alloy, 

and explained the theory that relates it to the phenomenological Cahn-Hilliard equa- 

tion. We discussed some of its continuum properties before implementing MOVCOL 

for solving this problem, with initial conditions leading towards different solution be- 

haviour. Three different cases were considered. The first case starting with a stable 

initial solution led to a uniform constant state; the second gave rise to a phase sep- 

aration in a comparatively short time. When the performance of FM and MM were 

compared, the difference proved to be marginal. The third case, however, was very 

difficult to tackle; at  first, both fixed and moving mesh gave spurious metastable so- 

lutions. When nothing seemed to help, a change in the monitor function for MM gave 

dramatic results, giving rise to the true stable monotone solution. FM with almost 

five times as many nodes remained on the two-layer metastable state. This proved two 

things beyond doubt. While a carelessly chosen monitor function can create extremely 

adverse effect, it is in fact a very powerful tool in successfully implementing a moving 

mesh method. And secondly, with an efficient and reflective monitor function, MM 

definitely has a scope of producing clear resolution of sharp transition regions, and is 

able to cope with gradual and rapid changes in the number of transition regions. 
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Conclusions 

In this chapter we summarize our overall findings obtained during the course of this 

work. We present some of the difficulties encountered, along with suggested remedies, 

and some directions towards further research. 

In this thesis, we tested the performance of a moving collocation method for four 

different test problems, all time-dependent PDEs in one space dimension. The paths 

that the solutions take to reach their respective stable steady state are, however, in- 

terestingly different for second set of problems than the first. While Burgers' equation 

with its small diffusion term forms a wave with a steep gradient moving towards x = 1, 

the reaction-diffusion problem produces a flame front propagating at an exponentially 

high speed towards x = 1 following an ignition occurring at an early state. Despite 

their apparent dissimilarities, they approach the steady state in a rather fast manner. 

MOVCOL's performance was found to be excellent for these problems, especially for 

the more difficult versions, Burgers' equation with a small viscosity parameter c caus- 

ing a steeper gradient, or the reaction-diffusion equation with a larger 6 ruling the 

thinness of the front. 

The phase separation problems (Allen-Cahn and Cahn-Hilliard) on the other hand 
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are found to possess entirely different solution behaviour dominated by exponentially 

slow propagation rate. For small time, the solutions form a pattern with transition 

layers and thenceforth propagate at a time scale of O(e-CIL) for e small, with e deter- 

mining the interaction length and C depending on the distance between layers. 

While the arc-length monitor function that we used for the first two problems 

demonstrated reliability in moving the mesh-points where needed most, it failed to 

show the same accuracy in regard to the phase separation problems. It showed a 

tendency of being more sensitive towards larger transitions, or shock formation, than 

it was towards smaller ones caused by a tiny jump in potential across the layers found 

very commonly, e.g. in the Allen-Cahn or Cahn-Hilliard problem. This reconfirmed 

the already existing view that one single choice of monitor function cannot serve 

too large of a range of problems satisfactorily, and that choosing a proper monitor 

function is as important (if not more so) and as imperative as choosing a proper set 

of parameters. 

Although it is e which dictates the rate of propagation, for a given e, an estimate 

of the energy decay can be an excellent way to track down the comparatively smaller 

movements. If the motion is driven by energy dissipation, and the solutions move a 

large distance without losing much energy, it implies that they must move very slowly. 

Hence if we can monitor the energy, we can monitor the layer movements, however 

tiny they might be. Although it needs a rigorous approach and a lot more numerical 

experiments, but the end results would well justify doing this. 

Besides searching for a proper monitor function for these kind of problems, a 

natural extension for this work would be to study Cahn-Morral systems, which are 

multicomponent analogues of the Cahn-Hilliard model. Such a system describes the 

phase separation and coarsening in multicomponent mixtures, and it possess the slow 

mot ion exhibited by its binary counterpart. 
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