
Cavity Flows in Different Domains and 
Bifurcation 

Shunsuke Mizumi 

B.Sc. University of Tokyo, 1991. 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in the Department 

of 

Mathematics & Statistics 

@ Shunsuke Mizumi 1995 

SIMON FRASER UNIVERSITY 

July 1995 

All rights reserved. This work may not be 

reproduced in whole or in part, by photocopy 

or other means, without the permission of the author. 



APPROVAL 

Name: 

Degree: 

Title of thesis: 

Shunsuke h4izurni 

h4aster of Science 

Cavity Flows in Different Domains and Bifurcation 

Examining Committee: Dr. B. R. Alspach 

Chair 

Date Approved: 

Dr. T. Tang 

Senior Supervisor 

Dr. G. A. C. Graham 

- 

Dr. 11. Trummer 

Dr. H. Huang 

External Examiner 

July 2 7 ,  1995 

. . 
11 



PARTIAL COPYRIGHT LICENSE 

I hereby grant to Simon Fraser Universi the right to lend my 
thesis, pro'ect or extended essay (the title o which is shown below) t' 7 
to users o the Simon Fraser University Library, and to make 
partial or single copies only for such users or in response to a 
request from the library of any other university, or other 
educational institution, on its own behalf or for one of its users. I 
further agree that permission for multiple copying of this work for 
scholarly purposes may be granted by me or the Dean of Graduate 
Studies. It is understood that copying or publication of this work 
for financial gain shall not be allowed without my written 
permission. 

Title of Thesis/Project/Extended Essay 

F I L u G .  Dc);. I CW {v Dom,q.inc 

Author: 
(signature) 

, 27 
(date) 



Abstract 

The two dimensional flows in a series of differently shaped cavities are investigated. 

Particular attention is given to flows in right triangular cavities. Some indication 

of Hopf bifurcation is observed by using the total kinetic energy at relatively'large 

Reynolds number. On the numerical side, the spatial terms of the Navier-Stokes 

equations are discretized by the finite element method. The second order Gear's type 

difference method is used to treat time dependent problems. 
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Chapter 1 

Introduction 

Since the dawn of scientific methods like Newtonean mechanics, people have tried 

to predict natural phenomena either theoretically or experimentally. The theories 

which describe natural phenomena have been and will be greatly expanded, and have 

successfully explained many phenomena. On the other hand, industrial experimental 

models such as wind tunnel have played a very important role in the design of cars, 

planes and many other things for which wind resistance has to be taken into consid- 

eration. However, the difficulties which come from non-linearity or complex geometry 

make both theoretical and experimental methods virtually impractical in many cases. 

Until now, in the field of nonlinear problems, only a small number of exceptional cases 

are completely understood in theory. In addition, when a wind tunnel or like facility 

are used, a single change of parameters could sometimes mean the reconstruction of 

the whole actual model which leads to a tremendous amount expenditure of resources 

and time. 

Fortunately a third method, numerical analysis, arose in the late 1940's with the 

emergence of electronic computers. In many cases, non-linearities can be treated with 

little difficulty by means of numerical methods. Thanks to the steady improvement 

in the speed of computers and the memory size in the past few decades, relatively 

complicated problems such as fluid dynamics have been able to provide analysis to 

complement theory and experiment cost-effectively. Prior to the late 1 9 6 0 ' ~ ~  the most 
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widely used computer based numerical methods were the Method of characteristics 

and the Finite difference method. Because .of its straight-forwardness and ability to 

handle partial differential equations (PDEs) directly, the finite difference method has 

been successfully developed and has become very popular. However, this method 

encounters difficulties in treating problems with complicated domains. 

The finite element method (FEM), which was originally developed in the field of 

solid mechanics, has the great advantage of a capability to handle truly arbitrary 

geometry. In many powerful industrial codes, very complicated non uniform meshes 

can be automatically generated and updated so that a certain norm in each element 

is limited to a fixed value. FEM also has other important features, such as its ability 

to deal with general boundary conditions and the fact that it can include non ho- 

mogeneous materials. In other words, we can analyze a system of arbitrary shapes 

that are constructed with numerous different material regions. With the develop- 

ment of theoretical reasoning and a variety of new algorithms, the use of FEM in 

Computational Fluid Dynamics (CFD) has rapidly become usual. Modern finite ele- 

ment integral formulations are usually obtained by either of two different procedures; 

variational formulation or weighted residual formulation. The Ritz method (varia- 

tional method), which has been well used in stress analysis and structural dynamics 

is based on minimizing a functional value or seeking the stationary value of a func- 

tional. Unfortunately, it is generally difficult or even impossible to find the correct 

functional corresponding to a PDE. On the other hand, the weighted residual method 

has many variations including Galerkin's, collocation, least square and subdomain 

method. Among them, Galerkin's FEM enjoys the greatest popularity, since it can 

be accommodated to virtually any PDE in a relatively straightforward way. 

In chapter 2 we present an overview of the ideas of the FEM procedure: numer- 

ical integration, discretization of Navier-Stokes equations and iteration methods for 

solving systems of equations. The discretization of the time-dependent Navier-Stokes 

equations is also reviewed briefly. In chapter 3 we present previous work about the 

steady state cavity flow problems and give some examples of the practical application 

of triangular cavities. We also show numerical results of steady state driven cavity 
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flow problems for various shapes from square, through trapezoidal, to  triangular do- 

mains with relatively low Reynolds numbers. We will study the effect of continuous 

geometrical change on the physical structure of eddies. One specific case (isosceles 

right triangle) is further investigated in more detail. In chapter 4 we first review 

previous work on time-dependent problems including especially bifurcations with in- 

compressible viscous cavity flows. We then consider the time dependent problems 

for the isosceles right triangle and try to observe the Hopf bifurcation. In chapter 

5 we discuss the validity of the results obtained. using coarse meshes: Conclusions 

are presented in chapter 6. In most cases calculated results reasonably match with 

those of published papers. Throughout this thesis we frequently use Re to indicate 

Reynolds number for convenience. 



Chapter 2 

Introduction to the Finite 

Element Met hod 

The finite element method is a generalization of the classical variational and weighted 

residual methods which is based on the idea that the solution u of a differential equa- 

tion can be expressed as a linear combination of basis functions q5j with coefficients 

u j .  For a weighted residual method, a differential equation will be multiplied by a set 

of test functions, and then integrated over the domain. The coefficients uj will be de- 

termined so that the differential equation is satisfied in the sense of weak formulation. 

The basic idea of the finite element method is that the entire domain is considered as 

a collection of small elements, called finite elements, which can be of different forms 

such as a triangular or a quadrilateral form.and can also be rectilinear or curved. 

2.1 linear and quadratic triangular elements 

In a PDE, the function value of u will be approximated by a linear combination of 

polynomials: 
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where ii(gj) are function values at the points zj and polynomials $j(z) are basis 

functions such that : 

1 : a t j - t h n o d e  
4j = 

0 : the rest of the nodes. 

2.1.1 linear finite element 

For a two-dimensional problem, a piecewise linear. basis function $;, corresponding to 

nodal point 1; is such that: 

1. the form of 4i is 

d;(cc) = alx  + a2y + as 

2. the value of 4; is 

3. 4; is linear on each ek 

4. 4; is continuous on 

Triangular element e with nodal points :1,:2, 2. 

We also define the specific linear basis functions X I ,  X 2 ,  X 3 ,  which allow quadratic basis 

functions to  be written in a compact form: 

& =  1 - ( - 7  M A 1  

42 = t x X2 

d3 = 7 x X 3  

where t and 7 are variables in a < x 7 coordinate system. 



C H A P T E R  2. INTRODC'CTIOIV T O  T H E  FINlTE ELEMENT METHOD 6 

2.1.2 quadratic finite element' 

For a two dimensional problem, a piecewise quadratic basis function 4 can generally 

be written as 

c$(z) = alx2 + a2xy + a3y2 + a4x + asy +a6. 

Since we have six parameters (al,  a2,. . . , a6) to be determined, we need six nodes and 

six corresponding basis functions. They can be expressed by using previously defined 

X;(i = 1,2,3) as follows: 

for vertices: 

for mid points: 

4;j = 4X;Xj (i, j = 1,2,3 i # j ) .  

Triangular element e with six nodal points. 

comment: Roughly speaking, the use of linear approximating functions pro- 

duces solutions of about the same accuracy as provided by second-order finite 

difference methods and the use of quadratic approximating functions generates 

about the same accuracy as third-order finite difference methods. 



CHAPTER 2. INTRODUCTION T O  THE FINITE ELEMENT METHOD 7 

2.2 2D Poisson equation and Galerkin formula- 

tion 

Most of the techniques of the finite element method can be illustrated by the dis- 

cretization of a Poisson type equation. Let us consider the following problem on a 

two dimensional region R with the boundary r. 
Find u such that 

where f ,  gl and 92 are given functions, dR = ro U rl U r2. To derive a weak form, 

we multiply the PDE by an arbitrary test function v and integrate it over R .  Then, 

apply integration by parts or Green's formula to obtain 

Now if we choose v so that v = 0 on ro (essential condition) and apply boundary 

conditions to  (2.2), the problem becomes: 

Find u such that u Ira= 0 and 

/ Vu - VvdR + l2 uvdr = / /n fvd0 + glvdr + l2 g2vdr (2.3) 
1 

for all v with v Ira- 0. 

To discretize the PDE we substitute the following polynomial into the PDE. 

interior exterior 
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where dj(g) are basis functions and ii(gj) ar'e nodal values of the function u(~) ( N = 

interior + exterior ). Then the PDE together with boundary condition will become: 

Calculation is applied to each subregion and summed up. The subregions e k  are called 

triangular elements, the subregions 11, and l2 are termed line elements. Generally 

integrals will be calculated in a numerical way. 

2.3 Numerical integration 

In many cases a definite integral does not have an explicit anti-derivative or the inte- 

gral is not easily calculated. Therefore, an alternative method to obtain an approxi- 

mation of the integral is often required. The basic method involved in approximating 

S,b f(x)dz is called numerical quadrature. 

2.3.1 Newton-Cotes method 

In this method, points at which the function is to be found are determined priori. 

The n  + 1 point equally spaced closed Newton-Cotes formula uses nodes xi = xo + ih, 
for i = 0,1,. . . , n  where xo = a ,  xn = b and h = (b  - a)/n.  The formula will be 

where 
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and L;(x) is call the i th Lagrange interpolating polynomial. 

If n = 2 the formula is called Simpson's rule and has the form 

2.3.2 Gaussian quadrature 

In this method, instead of choosing equally spaced points, sampling p-oints will be 

determined so as to obtain the best accuracy. In a manner similar to  the Newton- 

Cotes method, the approximation of a function can be written as 

for an arbitrary function. If we apply the simple linear transformation 

t = [ l / (b  - a)](2x - a - b )  to  the change of the limits of the integral as 

and use following theorem, we can determine the sampling points and the polynomials 

cj. 

Theorem 1 If P is any polynomial of degree less than or equal to 2n - 1, then 

where 

and xo, xl ,  . . . , xn are the zeros of the n th  Legendre polynomial. 

In this thesis we used a variation of Gauss quadrature derived by Hammer et a1 [7 ] .  
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2.4 Finite element error 'estimate 

Here we will state only the main steps for error estimate; the proofs of the correspond- 

ing theorems will be omitted. 

For a typical elliptic problem satisfying the following conditions 

3. a ( - ,  .) is V elliptic: 

4. L is continuous: 

/ L ( v )  I< Wlb forall V E V , A > O .  

where V is a Hilbert space with scalar product (., - ) v  and norm 1 1  . Ilv, and a(.,  a )  is a 
bilinear form and L( . )  is a linear functional. 

If u E V such that: a ( u , v )  = L ( v )  for all v E V, 

and if uh E Vh C V such that: a(uh,  v) = L ( v )  for all v E Vh c V, 

then we have the following error estimate: 

Now if we simply choose I ~ U ,  which is the interpolant of u ,  as a test function v ,  then 

we have 

Y ( ( u  - uhllv 5 CIJu - I ~ U ~ ~ V  where uh E Vh c V ,  C = - > 0. 
CY 
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If the domain is divided into simplicia1 elements, then we can use the following theo- 

rem; 

1121 - IhullS,n < Chm-" I u I,,n, s 5 m (2.7) 

And obtain the error estimate for the elliptic problems. 

2.5 Solution method for a system of non-linear 

equations 

2.5.1 Picard iteration 

This is one of the simplest methods to handle nonlinearity. The application of this 

type of method to a highly nonlifiear problem such as Navier-Stokes equations leads 

to  a rather slow convergence to the solution. However, it has a reasonably large radius 

of convergence. ' 

Algorithm for Picard method: 

1. Choose initial value u0 

2. For i = 1,2, . . .  solve: 

or alternatively 

3. For i = 1,2,  . . .  solve: 

where I< is a stiffness matrix for a discrete system, - f is a vector of force and other 

known values, and 21 is a vector of unknown variables. 
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An improvement of convergence rate can sometimes be achieved by using a relax- 

ation formula, 

lqgi-l)u' = f 

where 
i-1 u' = crg + (1 -cr)u" 0 5 a < 1. - 

For a highly nonlinear problem the use of this method may greatly help to subdue an 

oscillatory behavior. 

2.5.2 Newton's method 

As previously mentioned the major drawback of the simple iteration method is its 

slow convergence. If convergence is not reached within a reasonable number of itera- 

tions, we have to apply a faster alternative method. Newton's method is one of the 

most frequently used quadratically convergent method with relatively small radius of 

convergence. However, if the current iteration is sufficiently close to the final solution 

ii, it converges within a few iterations. 

For each iteration we look for an approximation u' such that the residual R ( 2 )  of the 

equation is 

This will be rewritten by using a Taylor series expansion in the neighborhood of ui-' 

Since Aui = g' - 11'-', this will also be written 



C H A P T E R  2. INTRODUCTION T O  T H E  FINITE E L E M E N T  M E T H O D  13 

Since Newton's method is only locally convergent and requires a good initial guess, 

the data which are produced by a simple iteration method like the Picard method are 

usually used as starting values. With a good initial guess a small number of iterations 

is in general sufficient for convergence. 

2.5.3 quasi-Newton method 

For the equation R(g) = - f - I((g)g, Newton's method can be written as 

with J(gi-') the Jacobian matrix dR(gi-')/au'-'. Since the Jacobian matrix has to 

be calculated in each iteration, this method is very expensive. Instead, in the quasi- 

Newton method, J will be calculated only every several steps. In contrast to  Newton's 

method, it has a super-linear convergent rate. Engelman et  a1 [21] reported that by 

applying the quasi-Newton method to the Navier-Stokes equations, they obtained a 

saving of about 50% compared to  Newton's method for Re in the range of 100 to 

1000, where the initial guess is obtained by one Picard iteration. 

2.6 Application of FEM to the Navier-Stokes equa- 

tions 

The governing equations for an incompressible fluid flow are Navier-Stokes equations 

which expresses the conservation of momentum and the continuity equation which de- 

scribes the conservation of mass. In the finite element method, there are mainly three 

methods to discretize those equations; penalty function method, stream function- 

vorticity method and velocity-pressure method. 
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2.6.1 stream funct ion-vorticity 'formulation 

Here we explain the stream function-vorticity method briefly. For the incompressible 

Navier-Stokes equations, we have to treat pressure so that it satisfies the continuity 

equation. One way to do this is to eliminate the pressure term from the original 

Navier-Stokes equations. 

Navier-Stokes equations: 

Differentiate equation (2.10) with respect to a: and differentiate equation (2.9) with 

respect to y. Then subtract the latter from the former and get 

where 

Using the stream function Q, equation (2.11) is automatically satisfied when the 

following substitutions are used: 

From (2.13) and (2.14), we then have 

Also from(2.12) and (2.14), we have: 

dw dQdw dQdw -+--- -- = v v 2 w .  
dt d y d x  d x d y  

0 finite element discretization 
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Multiply (2.15) by a test function 6l/, and (2.16) by a test function 6w. Integrating 

the resulting equations over the domain R,  we have 

Integration by parts or Green's formula yields . 

Here the unknowns S ,  w and the corresponding first variations 6$,6w are approxi- 

mated by using shape functions 4, such as: 

where a(&) and w(&) are nodal values of the stream function and vorticity, respec- 

tively. 

2.6.2 velocity-pressure formulation 

There are many variations of techniques of this type which treat an instability of this 

method with high Reynolds number. We will use this method for our calculation. 

Start from the ~avier -s tokes  equations 
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These equations involve time-dependent terms, linear terms, nonlinear terms and the 

continuity equation and therefore we consider them separately. We will consider time 

dependent terms in the later section. 

linear terms : 

Multiplying both sides of each equation by a test function 4 and integrate over the 

domain R we get: 

We now apply integration by parts (or Green's formula) together with Gauss diver- 

gence theorem to obtain 

av a4 avao / / a [L Re (-- dxdx + --) dydy -pz] d~ = 

Seek an approximate solution of the form; 
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where uo and vo satisfy the Dirichlet boundary condition and ( b j ( ~ )  and $j(z)  take 

value zero on the boundaries. Then the equation (2.27) and (2.28) can be compactly 

written as: 

nonlinear termi (Incremental method or Newton like method) : . 
If the n th  iteration un is close to the solution u, then the error 6u will be small. Thus 

for each iteration of this method. nonlinear terms can be written as; 

Therefore the integrated form will be: 

or more explicitly 

Since Newton's method is only a locally convergent method, we used a simple iteration 

method for the first few steps. In other words, convection terms un(V un)  will be 

approximated by un(V un-I). In general, by carefully choosing an initial data, only 

a small number of iterations is required for the solution to converge. Furthermore, 
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Engelman e t  a1 [21] reported that for Navier-Stokes problems, the result of one Picard 

iteration is usually a good starting value for the Newton process. This method is fully 

explained in [I]. 

continuity equation: 

For the continuity equation we will use the integrated form as follows: 

Comment: By Glowinski and Pironneau [S], and Bercovier and Pironneau [9], it is 

found that if the pressure is included in a Galerkin formulation, the optimal conver- 

gence is obtained if the pressure shape function is one order lower than the velocity 

shape function. 

2.6.3 the penalty function method 

In the penalty function method, the continuity equation is perturbed and the pressure 

term is eliminated. The main advantage over the integrated method is the considerable 

reduction of both memory and computation time required. However, the physical 

meaning of the penalty term is still uncertain. 

Here we only consider the Stokes equation, since the Navier-Stokes equations can be 

treated in a similar manner: 

where u = 0 on I', the boundary of R. The idea of the penalty function method is to 

perturb the continuity equation with a small term containing the pressure: 
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with E a small parameter. Now the solution for velocity and pressure will be ap- 

proximated by shape functions $,, t,bj respectively. To satisfy a continuity equation 

properly, the degree of $ j  should be one higher than that of t,bj. 

where $ and 1C, are (column) vectors of interpolation (or shape) functions, and vectors - - 
1 4 , ~  and p - are nodal values of velocity components and pressure, respectively. 

The discretized form of the penalty function formulation will be 

where i = 1,2 , .  . . : N ,  and 

where k = 1,2, .  . . , M. By substituting (2.40) into (2.43), a simple manipulation of 

(2.43) will allow us to express pressure vector p - as: 

where [ I-' indicates the inverse of the matrix. From (2.41) and (2.42) we can 

eliminate the pressure to obtain uncoupled equations in a compact matrix vector 

not a t  ion: 

SG+ T L ~ D - ' L U  = E (2.45) 

where 
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The main advantage of this construction is that the computation of the velocity and 

pressure are uncoupled. First the velocity u and v are computed from (2.45) then the 

pressure is computed separately from (2.44). 

0 Comment: In theory the pressure satisfying the Navier-Stokes equation can 

only be determined up to an additive constant. One way to determine the pressure 

is to claim that: 

In numerical computation, for the sake of simplicity, the pressure is usually prescribed 

at one point. That is we set 

with po the additive constant 

2.7 Time-dependent problems for FEM 

There are many ways to discretize the time-dependent part. One way to do this, is 

to apply Galerkin's method to the time direction. But this is not popular. Instead, 

we will present some different ways which are commonly used to discretize the time- 

dependent part. Since after applying Galerkin's method .to spatial terms, a partial 

differential equation (PDE) becomes an ordinary differential equation (ODE), we can 

basically apply any methods which have been developed to solve ODES. 
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2.7.1 finite difference in time 

0 Some examples of the finite difference approximation of the time-dependent part of 

d u l d t  are: 

0 The 6 method: 

After the discretization, the Navier-Stokes equations will be reduced to a system of 

ordinary differential equations of the form 

with initial condition u(0) = g. The 8 method applied to (2.47) is: 

where t n  denotes the nth tiine level and gn the solution of (2.48). Special cases of the 

6 method are: 

0 6 = 0 (explicit Euler scheme): 

0 6 = 112 (Crank-Nicolson scheme): 



CHAPTER 2. INTRODUCTION T O  THE FINITE ELEMENT METHOD 22 

0 8 = 1 (implicit Euler scheme): 

In the case of nonlinear problems, after the discretization of the spatial terms the 

PDE becomes a nonlinear ODE, and we can apply any ODE methods to obtain 

numerical solutions. In practice, predictor-corrector type algorithms such as the 

Adams-Bashforth method or Runge-Kutta type schemes are also popular. For the 

comprehensive discussion of the theoretical aspect of the time-dependent FEM, see 

references [34, 35, 361. 

2.7.2 application of 8 method to NS equations 

Most of the processes to discretize the time-dependent Navier-Stokes equations are 

the same as the steady state case. For the sake of brevity, we start from the simplified 

form of the equations. 

where in two dimensions 
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After the application of previously presented 8 method to (2.49), we obtain 

Since (2.53) has exactly the same structure as the system of equations for the steady 

state Navier-Stokes equations, we may be able to apply the same linearization tech- 

niques as the nonlinear steady state problems. Unlike the stationary case, we do not 

usually need any iteration to solve the nonlinear equations. For At small enough 

the difference between two succeeding time-steps is small and the preceding time-step 

gives a sufficient initial guess for the linearization method. Application of Newton 

linearization to  (2.53) will produce: 

The Crank-Nicolson scheme (8 = i) is the most accurate one for solutions in time. 

For non-smooth solutions in space, Crank-Xicolson may cause numerical oscillations 

when large time steps are used. In that case 8 > 0.5 should be used, for example 

8 = 0.75 or 8 = 1. 



Chapter 3 

Steady flows in different cavity 

shapes 

Steady viscous flows in a variety of shapes of the domains from trapezoids, through 

the square, to triangles are investigated. The Navier-Stokes equations are solved nu- 

merically using the Galerkin finite element method. The results show a primary eddy 

and a secondary eddy at the stagnant corner of most of the shapes with large Reynolds 

number. We first present some published works on cavity flow problems. Then we 

will present the results in several different shape patterns with a fixed Reynolds num- 

ber Re=1000. The main aim of this chapter is to discuss the physical effect of the 

shape-chang to the properties of the physical structure of eddies. 

3.1 review of cavity flow problems 

Even though the power of computers has been greatly increased in both speed and 

memory storage, the calculation of highly nonlinear, time-dependent, three dimen- 

sional or complicated geometric problems is still a big task: On the other hand, many 

real life applications involve relatively simple shapes or repetition of simple shapes. 

Thus relatively simple problems such as a steady incompressible viscous flow within 



CHAPTER 3. STEADY F L O W  IN DIFFERENT CAVITY SHAPES 

a rectangular cavity are still very important in computational fluid dynamics both in 

their own right as physical phenomena and for engineering applications. Because of 

their simple closed geometry, the problems have also been used as computationally 

important model problems for testing and evaluating numerical techniques. As we 

can easily guess, the two dimensional square viscous cavity flow with three non-slip 

walls and a top lid moving at a constant speed has been the most widely studied case 

in the literature of numerical computation. For the investigation of this cavity flow, 

a number of schemes have been applied; finite difference, spectral method, multigrid 

method, finite element method, etc. (see references [13, 15, 16, 28, 301). 

Although the square cavity flow problem is regarded as essentially solved, there 

are still some minor differences in the numerical results. For example, the results of a 

small vortex at the.upstream of the top lid are not consistent for all researchers nor 

even observed experimentally (see [lo] and its references). Quere and Roquefort [16] 

solved the classical problem of natural convection of a Boussinesq fluid in square and 

rectangular cavities by using a semi-implicit spectral method with Rayleigh number 

up to  lo7. Kim and Moin (301 used a square driven cavity flow as a test case for 

evaluating the stability and accuracy of their fractional-step method before applying 

it to three dimensional backward-facing step problem. Ghia e t  a1 [28] studied a square 

cavity flow with high resolution grid (257x257) for Reynolds number up to  10,000 

by using multigrid method. Since the calculation is done with very high resolution, 

their results are often used as benchmark results. Tuam and Olson [13] reviewed and 

categorized computational methods for recirculating flows in the relatively early days 

(1978) of the development of the computational fluid dynamics. They mentioned 

that in many cases, the FEM appeared to be the most accurate and stable for the 

same number of unknowns. This, however, took no account of computing effort and 

time which may be higher or lower. In 1986 Gustafson and Halasi [15] tabulated 

the works done on a rectangular cavity and further investigated the vortex dynamics 

of rectangular cavity flows with several aspect ratios. They calculated the unsteady 

driven cavity flow by the MAC method with particular attention to  the formulation 

and evolution of vortices and eddies. The next chapter is related to their work. 
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Cavity flow problems in a relatively simpler geometry than square are rarely in- 

vestigated in the literature of fluid dynamics. Triangular or rectangular shapes are, 

in fact, as common as the square in practice. For the design of fluid flow across 

corrugated boundaries, the study of triangular groove is extremely important. As 

mentioned in [lo, 111, triangular and trapezoidal grooves, which are wider at open- 

ing, are easier to mill than square one. For another example, Sparrow and Charm- 

chi [17] studied analytically and numerically the laminar flow and heat transfer in 

corrugated-wall ducts. Their work aimed to evaluate and enhance the heat transfer 

efficiency of an air-operated solar collector compared to other shapes such as parallel- 

wall channel. Another example for the application of the triangular cavity is studied 

by Savvides and Gerrard [18]. Steady and unsteady incompressible flows through a 

periodically corrugated tube are investigated by a finite difference method with the 

stream function-vorticity formulation. As a medical application of the triangular cav- 

i ty flow model, arterial pros theses was cited. For the treatment of arteriosclerosis, 

the most effective way is to bypass the obstructed artery. When no patient's own 

vein is available a prosthetic artery must be used, and many of these have corrugated 

walls, so that they remain open when bent. In the design of corrugated artery tube, 

the effect of the size change of the corrugations is important since it may cause local 

stasis which promotes the formulation of thrombus. This provides motivation for our 

computation. 

Recently, Ribbens et a1 [lo,  111 studied the physical structure of steady viscous 

flows in triangular and rectangular cavities by a finite difference method using trans- 

formed geometry. Their method is based on a fourth-order streamfunction formula- 

tion. An arbitrary triangle is transformed to the isosceles right triangle with a special 

numerical treatment in the corners. They pointed out the failure of the direct ap- 

plication of the algorithms developed in Schreiber and Keller [14]. Li and Tang [12] 

proposed an alternative approach based on the Navier-Stokes equations in terms of the 

streamfunction-vorticity formulation, which appeared to be more efficient than those 

based on the fourth-order streamfunction formulation. With the help of a special 
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linear transformation mapping, the former formulation can treat an arbitrary trian- 

gular shape. Schreiber and Keller [33] indicated that computational results obtained 

by an insufficiently fine grid might be spurious, inferring a lot of earlier numerical 

calculations may be erroneous. 

Less work has been done for geometries more complicated than rectangular or 

triangular cavities. Invention of numerical schemes for such problems, especially using 

finite differences, is an on-going and important activity [19, 201. Moreover, many 

authors use a uniform grid for which efficient algorithms are available, despite the 

fact that a huge number of unknowns are involved for high Reynolds numbers. In 

our calculation non-uniform grids are used for some of the shapes in order to obtain 

a convergent solution with a reasonable number of unknowns and iterations. 

3.2 numerical results 

In the programing of FEM the procedure is usually divided into several parts; param- 

eter input, mesh generation, boundary condition, assembly, linear system solver and 

data output. To solve the matrix system we used a direct method, namely banded 

Gaussian elimination. Therefore computational time is generally governed by the lin- 

ear system solver part. If we double the number of grid lines, the grid points will be 

quadrupled and band width will be doubled. Thus the resulting system will be at 

least- eight times more expensive. In the case of 55x55 grid (1540 points) for right 

triangular cavity, it requires about 70 minutes CPU time. For one iteration this seems 

to be the maximum acceptable time with our UNIX work station. 

For the non-uniform grid simple sine mapping is employed, which seems to  be well 

suited to  mend the.corner singularity. Although we used rather coarse grids ( about 

1000 grid points) for most of the calculation, we can see graphically that they still hold 

essential properties compared with published results (see [lo, 11, 121). Throughout 

this chapter the Reynolds number for most of the figures shown is fixed to  1000, and 

the meshes used are 33x33 grid (1089 points) for the square cavity, 67x23 grid (1035 
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points) for the trapezoidal cavities, 45 x 45 grid (1035 points) for the right triangular 

cavities and 65x33 grid (1089 points) for the other triangular cavities. Since we used 

the same magnification of the velocities for all computed figures, the vortex composed 

of short vectors should represent for a vortex rotating at a slower speed than those 

with longer arrows. 

We calculated with many different Reynolds number for all figures (most of them 

are not presented) and observed that basic global phenomena for all shapes seem to be 

common: the primary eddy first moves toward downstream wall then bounced back 

towards the upstream in all cases and towards the middle of the domain, especially 

with axisymmetric shapes. Up to Re=1000, the shapes of eddies generally tend to be 

a complete circle with higher Re. Moreover, as Re increases the size of eddies becomes 

larger and the center moves downwards followed by the emergence of a secondary eddy. 

For Re=l the velocity fields for axisymmetric geometries are almost symmetric with 

respect to  the line x=0.5. We found that for a square cavity it is easier to increase the 

Reynolds number than for any other shapes. Isosceles right triangles with negative 

directional wind are the most difficult cavity shape for which to obtain convergence. 

This, I think, is because the most of the flow energe has to be compressed into a small 

area. 

We will now begin to see results with Figure 3.1. We first considered the effect 

of constant change of the ratio of the moving top lid to. the bottom wall. In this 

sense the last two smaller triangular figures are different from other six, but they 

can still be obtained from the continuous transformation of the previous triangle. As 

we can expect, figures with wider moving wall tend to have larger eddy. Since our 

coarse grids do not have sufficient resolutions, we graphically determined the center of 

primary eddies instead of using the computed numerical values. However, this should 

still help us to show the essential movement of primary eddies. For most of the cases 

Newton-like iteration methods converged to the error of the residuals within loe6 at 

four to six iterations for Re up to 1000 with increment of ARe=200. 

In pattern 2 (see Figure 3.3), the effect of a change of the bottom wall is considered. 

Although Figure 3.3-(a) is quantitatively distinct from other four, it is observed that 
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Table 3.1: Center of the eddy for equilateral triangular cavity flows. 
Co-Re stands for conventional Reynolds number 

the basic flow properties are common to all figures. There is a relatively large eddy 

around the center of the domain and a counter-rotating secondary eddy near the 

bottom right corner. We can also recognize that at least the size of primary eddies 

is very sensitive to an angle of the corner at downstream (see for example Figure 

3.3-(a)). Comparing the figures with negative and positive wind, latter cases have 

relatively larger primary eddies with a perfectly round circle. The bottom right chart 

explains the transition of the shapes which is equivalent to the figure pattern we 

Re 

Re=50 
(Co-Re= 173) 

Re=100 
(Co-Re=346) 

Re=200 
(Co-Re=693) 

used. To save coding time, we introduced geometries with negative wind direction 

(goes left) although we originally meant to use geometries with only positive wind 

direction (goes right). In this thesis all the figures with negative wind should have 

corresponding figur'es with positive wind which produce the essentially same results. 

The geometries in Figure 3.4 except for right triangles are investigated by McQuan 

e t  a1 [lo, 111 with the fourth order stream function formulation, and by Li and Tang 

[12] with the second order stream function-vorticity formulation. Since they used 

2 a - f o l d  for Re, we can not exactly compare the results with presented figures. We, 

instead, give the comparison of center of eddies for only three different cases (see Table 

3.1). For example, conventional Re=1000 should mean Re=289 for their 2 4 %  fold 

Re. Basic flow structures and the center of the primary eddies are quite well matched 

Li and Tang (h=1/80) 
McQuain e t  a1 (h=1/200) 

our result (h=1/45) 
Li and Tang (h=1/80) 

McQuain et  a1 (h=1/200) 
our result (h=1/45) 

Li and Tang (h=1/80) 
McQuain e t  a1 (h=1/200) 

our result (h=1/45) 

x coordinate 
0.606 
0.599 
0.606 
0.606 
0.595 
0.606 
0.550 
0.560 
0.581 

y coordinate 
0.704 
0.706 
0.697 
0.682 
0.680 
0.685 
0.650 
0.658 
0.661 
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to those in [lo, 11, 121. We can clearly see from Figure 3.4 that the primary eddy 

becomes large and is pushing the secondary eddy toward the bottom right corner as 

shapes change. 

In Figure 3.5 figures on the left correspond to positive wind direction and figures 

on the right correspond to negative wind direction, it is much harder to increase the 

Reynolds number for the figures on the right. For the left hand geometries we could 

increase Re up to 4800 with little difficulty by using 53x53 grid (1540 points). It 

seems that for right hand figures the primary eddy has to be squeezed into the small 

corner which has stronger singularity. Moreover it also seems that the eddies tend 

to retain a circle, but the right hand side figures seem to have difficulty in forming a 

completely round eddy. 

Here we will see a specific shape (Figure 3.6), the isosceles triangular with negative 

wind direction. From x-directional velocity profile (right bottom), we can see that 

the secondary eddy is clearly formulated at Re=1000 though there is already a sign 

of the secondary eddy at Re=500. As Reynolds number &creases the primary eddy 

quickly moves towards upper left corner and the size becomes smaller to leave large 

enough space for secondary vortex to generate. At Re=3000 we can observe that the 

small tertiary eddy begins to appear between the primary and the secondary eddies. 

By this mesh we can easily increase Re up to 2000 with increment size ARe=200. 

However, after about 2000 we have to use smaller increment such as AR=50 and we 

could not obtained convergent solution for Re higher than 3440 with this mesh. 

Overall, though we did not use the same type of mesh for each case and it is not 

easy to make conclusions, we still have feeling that the problems with negative wind 

direction seems to be harder to converge. In other words, the problems in which wind 

goes to narrower corner ( such as Figure 3.6 ) require more steps to converge than the 

problem in which wind goes to the corner with wider angle. 
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Figure 3.1: Transition of the shape pattern 1. 
Re=1000 and wind goes x-positive direction for all figures. 

(a) trapezoid + (b) trapezoid 2 -+ (c) square -, (d) trapezoid 3 -+ 

(e) trapezoid 4 + ( f )  triangle 1 -+ (g) triangle 2 -+ (h) triangle 3. 

Table 3.2: Center of the eddy for symmetrical cavity flows 

Figure 3.2: X-directional velocity profiles at  x=0.5 with Re=1000 
Figure (a) to ( f )  for the left hand side plot and figure (f) to (h) for the right hand side plot. 

figure 
x axis 

fig a 
0.51 

y axis 

fig b 
0.56 

0.77 0.66 

fig c 
0.53 
0.56 

fig d 
0.58 
0.66 

fig e 
0.56 
0.72 

fig f 
0.56 
0.76 

fig g 
0.56 

fig h 
0.62 

0.64 (0.74%) 0.36 (65%) 
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........................ 
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x axb 

Equivalent shape shift 1 

wind diredion is x-positive 4 

Figure 3.3: Transition of the  shape pattern 2. 
(a) right triangle 1 (top left) --+ (b) trapezoid 1 + (c) square + (d) trapezoid 2 -+ (e) right triangle 2. 

For the figure (a) and (b) wind goes x-positive direction and 
for the rest of the figures, wind goes x-negative direction. 



C H A P T E R  3. S T E A D Y  C A V I T Y  FLOWS IN DIFFERENT SHAPES 

0.6 

S 
0.4 

0 2  

0 

Equivalent shape shift 2 

I wind direction is xpositivc II) 1 

. . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  - .. . . . . . . . . . . . . . . . . . . . . .  .................... . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . .  - . . . . . . . . . . . . .  

. . . . . . . . .  
. . . . . . . . . .  

. . . . . . . . . . . . .  

. . .  - . . -  
. . . . . . . .  . . . .  

. . 

. 1 :  ' , --- 
. 

.- 
--.--- 

Figure 3.4: Transition of the  shape pattern 3. 
(a) right triangle 1 (top left) -, (b) triangle 1 -, (c) triangle 2 -, (d) triangle 3 -, (e) right triangle 2. 

For the figure (a) and (b) wind goes x-positive direction and 
for the rest of the figures, wind goes x-negative direction. 

0.6 

3 
0.4 

0 2  

0 

.. . .  .\___ -*.... ..... ..-. . ................... -----.. ........... - _ _ _ . _ _ _ . _ . -  . . . . . . . . . . . . . .  --- .. . . . . . . . . . . . . . . . .  ... . . . . . . . . . . . . . . .  -..- - . . . . . . . . . . . . . .  --... . . . . . . .  ............ ... - ............... . . . . . . . . . . . .  
. . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . .  

. . . .  - . . 

. . . . . .  
....... 
. . .  
. . . .  

1 

0 0 2  0.4 0.6 0.8 1 
x axk 

(c> 
1 .  ..... I .................- -.I 

..... 
... .... 

0.6 - 

0 0 2  0.4 0.6 0.8 1 
x u is  

9 
............. -.--.. ............ -.-. .......... .-. . . . . . . . . .  .--. ............... . . . . . . . . .  -- . 

. . . . . . .  - 

0 0 2  0.4 0.6 0.8 1 
x axis 

- 
2 

0.4 

0 2  

0 

....... ..... ... -.,_,. .... ... ...-- -.... 
.......................... ...................... - . . . . . . . . . . . . . . . . .  .................... . . . . . . . . . . . . .  ................. 

. . . . . . . . .  
. . . .  - . . .  

. . .  

- 
0 0 2  0.4 0.6 0.8 1 

x axis 



C H A P T E R  3. S T E A D Y  C A V I T Y  FLOWS IN DIFFERENT SHAPES 

Figure 3.5: Transition of the shape pattern 4. 
Wind goes to X-positive direction for the figures on the left and 

wind goes to X-negative direction for the figures on the right. 
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Figure 3.6: Steady s tate  solutions with higher Reynolds numbers. 
(a)Re=l (top left) (b)Re=200 (c)Re=1000 (d)Re=2000 (e)Re=3000 (bottom left). 

The figure at  the bottom right conner is for x-directional velocity profiles 
at  ~ ~ 0 . 7 7  with s m d  Reynolds numbers. 



Chapter 4 

Time-dependent problems 

Time dependent cavity problems are investigated for the isosceles right triangular 

domain. The second order accurate finite difference approximation is employed to 

discretize the time derivative terms. To observe the Hopf bifurcation, total kinetic 

energy is used as a global change indicator. Some oscillatory behavior is observed 

which may indicate a time periodic solution. 

4.1 review of bifurcation problems 

Since we are living in the world which is surrounded by a large quantity of fluid, 

any of' our activities are influenced by it to some degree. When we are living our 

daily life in the pool of air, we consciously or unconsciously benefit from it as it 

refreshes and sustains our bodies. Air and water also help to accelerate a plane or 

ship and they play a major role in the reduction of fuel efficiency. In many cases, 

most of incidents involve constant dramatic changes in the qualitative structure of 

the fluid. Wind, the motion of the air, ceaselessly changes its strength and direction. 

Whirlpools which may appear near the non-smoothed body parts of a car, plane or 

ship constantly change shape and position as time elapses. In real life models, people 

are usually concerned about the long-time behavior of the solutions. In numerical 
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computation, this may give steady state solutions, periodic solutions and many other 

types of solutions. Most of the fluid phenomena observed by us in daily life are 

turbulent and have very high Reynolds numbers. On the other hand, most of the early 

researches in the fluid dynamics were about steady state problems. The potentially 

rich unsteady cavity dynamics have only recently begun to be addressed. Nowadays 

it is widely believed that the Navier-Stokes equations can model the complex natural 

fluid phenomena associated with the transition to turbulence. Hopf bifurcation theory 

or, more generally, bifurcation theory; which are popular in ODE, however, are quite 

rarely applied to Navier-Stokes equations. The reason is that an accurate simulation 

of a flow problem requires a very large number of degrees of freedom and a correct 

simulation of bifurcation phenomena is thus computationally expensive. Until now 

most of the bifurcations observed by researchers in fluid dynamics were of Hopf type. 

To detect and confirm a Hopf bifurcation, we need to setup some kinds of indicators. 

There are many ways to  display the information which is obtained by taking any 

scalar value data as time proceeds. The most immediate way to display those data is 

to  plot them against time. However, this type of presentation may hide the important 

features of information. The two most powerful indicators of the qualitative features 

of nonlinear dynamical systems are spectral densities and phase diagrams. A spectral 

density or power spectrum is a well-known device in the field of signal processing 

which identifies flow frequencies and their relative strength. A phase diagram or 

phase portrait is constructed by mapping values of scalar data a t  the same point but 

separated by multiples of a. fundamental time delay T.  

Shen [23, 241 reported Hopf bifurcation about a numerical simulation of unsteady 

incompressible flows in a unit cavity. He used a second order projection scheme 

proposed by Kim and Moin [30] in time and a Chebyshev-Tau approximation (spectral 

method) for the space variable. The boundary condition for the top lid is regularized 

[u = (16x2(1 - x)', O)] to take advantage of the spectral accuracy. The first Hopf 

bifurcation is observed at ~ e = 1 0 5 0 0  and the other one at Re=15500. Since the 

effective Reynolds number of the flow with unsmoothed boundary conditions is larger 

than that of the flow with regularized boundary conditions, the nonsmooth driven 
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cavity flow will exhibit Hopf bifurcation with smaller Reynolds numbers. Bruneau and 

Jouron [25] observed transition to turbulence in the unit cavity flow for a Reynolds 

number lower than 7500 by solving the steady Navier-Stokes equations with a high 

resolution grid. The main measurements Shen used to identify the bifurcation are time 

historical velocity profile at some fixed point for a local indicator and total kinetic 

energy for a global indicator which is 

where urj,  v t j  are the (i,j)th coefficients of the Chebyshev expansion of the two compo- 

nents of the velocity at the nth step. Fortin e t  a1 [27] observed the Hopf bifurcation to 

turbulence by solving the unsteady Navier-Stokes equations using a standard Galerkin 

approximation and a loading strategy for increasing the Reynolds number. The main 

measure they used to detect the bifurcations is the phase portraits of the velocities 

taken from the same point as time proceeds. They showed very odd figures which 

may called strange attractor. This is one of the very rare numerical simulations of 

chaotic behavior of Navier-Stokes equations. However, they could not confirm that 

the results are reaily true. Gustafson and Halasi [29] found a persistent oscillation 

in the study of the unsteady viscous incompressible flow in a higher aspect ratio 

(A=depth/width=2) driven cavity at a higher Reynolds number (Re=10,000). The 

Navier-Stokes equations are discretized on a uniform 40x80 grid using a modified 

MAC (marker and cell) staggered mesh scheme. They graphically showed an indi- 

cation of a Hopf bifurcation by the time history of the velocity field. Goodrich et 

a1 1261 also studied a Hopf bifurcation of a driven cavity flow with an aspect ratio 

of two. Their numerical algorithm is based on the time dependent stream function 

equation, with a Crank-Nicolson differencing scheme for the diffusion terms, and with 

an Adams-Bashforth scheme for the convective terms. They reported a periodic so- 

lution at Re=10,000 on a coarse rectangular 48 x 96 mesh and two periodic solutions 

at  Re=5000 on 4Sx96 and 96x 192 grids. To determine the Hopf bifurcation they 

collected numerous useful measures to identify the final asymptotic state of cavity 

flows. We will briefly list the measures and indicators they used for the qualitative 
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representation of a flow structure. 

( 1 )  Standard two-dimensional field representations 

stream function contour plots 

stream function surface plots 

0 velocity vector plot 

kinetic energy contour plot 

kinetic energy surface plot 

vorticity contour plot 

0 vorticity surface plot 

pressure gradient vector plot. 

These plots are multi-purpose and each one has its own characteristics. Among them 

the stream function contour plot, the velocity vector plot and the vorticity contour 

plot are the most commonly used representations. 

(2) Indicators of dynamics 

The following indicators are used for tracking convergence to an asymptotic state 

and for understanding the qualitative nature of that state. They are either mathemat- 

ical norms or data a t  a fixed point. A mathematical norm can be a global indicator 

while point data value show a local behavior of flow. 

the relative L1 norm of the stream function change per time step (global) 

the maximum and minimum stream function value 
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the relative Ll norm of the vector field change per time step (global) 

the total kinetic energy 
1 

the maximum acceleration 

stream function value at  a point 

velocity component at a point 

kinetic energy value at  a point 

vorticity value at a point 

They reported that the relative L1 stream function change norm and the total kinetic 

energy are very good complements for indicating convergence to an asymptotic state. 

Transition of the properties of a cavity flow to chaos is also reported on problems 

other than wind driven cavity flows. Paolucci and Chenoweth [32] investigated a 

Boussinesq fluid in two-dimekional closed, differentially heated vertical cavities. By 

changing the aspect ratio and Rayleigh number, they observed the flow transition to 

chaos. The main measurements they used to detect the bifurcations were the follow- 

ing: time history of temperature versus velocity components at fixed points; power 

spectrum of the fluctuating values of velocity versus temperature at  fixed locations; 

and phase space trajectory of temperature versus velocity component u. They showed 

a clear characteristic properties of the Boussinesq flow. 

Related to the topics of the chapter 3, square driven cavity flow or rectangu- 

lar driven cavity flow with aspect ratio 2 is also used as a test model for the new 
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time dependent numerical scheme. Extension to the time dependent incompressible 

Navier-Stokes equations of the finite difference Galerkin (FDG) method was tested 

on the square and rectangular driven cavity flows by Goodrich and Soh [31]. Their 

method uses the fourth-order stream function equation with a Crank-Nicolson Adams- 

Bashforth algorithm to treat time derivative. 

4.2 numerical results 

As is reported in the references [23, 24, 291, unsmoothed driven cavity flows or cavity 

flows with a different shape of domain from a square will lead to  a bifurcation with 

a considerably smaller Reynolds number than the regularized square cavity flow for 

which critical Re value is about 10500. From the experience of these calculations, the 

shape we used for the time dependent problem is the one that is the most difficult 

to increase Reynolds numbers. This led us to conjecture that we might be able to 

observe a bifurcation with a relatively small Reynolds number. The method we used 

is based on the same method used in the previous chapter. 

As the Reynolds number increases, the qualitative change of flow becomes time 

sensitive. Then a time-accurate discretization scheme is necessary for simulating 

unsteady flows. The major difficulty in obtaining a time-accurate solution for an 

incompressible flow arises from the fact that the continuity equation does not contain 

a time-derivative explicitly.. It can be shown that failure to  preserve properties such as 

global conservation of momentum, kinetic energy or circulation can lead to  numerical 

instabilities especially for high Reynolds numbers. For the discretization of the time 

derivative we used a Gear's scheme based on the approximation, 

This second order accurate two-step method is known to be stiff stable. All zero ve- 

locity values and the steady state solution with Re=3400 are used as initial data. The 

main measure we used to determine whether a flow had attained its final asymptotic 
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state was the total kinetic energy (TKE): 

where u and v are the two components of the velocity of each node at each nth time 

step. And they are summed up over the whole domain. Here we used a fixed time 

step At=0.05. 

Let us see the first plot (t=2) of Figure 4.1 which starts with its initial data at 

zero. The primary eddy has been already formed at  the top left corner, which is more 

compact than that of Re=3,400, but the secondary eddy has not appeared yet. At 

t=4 and t=6, the secondary eddy, generated by the main eddy, begins to form. Then 

it moves toward the upstream and is separated from the primary eddy. At t=16, 

the secondary eddy is fully developed and occupied a large area. Also, there is some 

turbulence or a tertiary eddy appearing between the first and the second eddies. At 

t=l8,  the turbulence is almost settled. This point corresponds approximately to the 

local minimum total kinetic energy as we shown in Figure 4.3. The figure at t=20 is 

quite similar to that at t=16 and takes about the same total kinetic energy which is 

almost the local maximum value of the Figure 4.3. 

The time history of the kinetic energy of the solution is presented in Figure 4.3. 

From the graph we can recognize that the oscillation is clearly formulated with ap- 

proximately the same amplitude after the third peak ( k 1 2 ) .  For reference, we also 

show the time history profile of the total kinetic energy with Re=2000 in Figure 4.2 

which has a steady state solution. Again, due to the restriction of time we only 

calculated up to t=20. Comparing Figure'4.2 with Figure 4.3, we can recognize qual- 

itative differences: the size of the oscillation in Figure 4.2 is gradually suppressed and 

becomes smaller while those in Figure 4.3 is sustained. 
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To ensure that the oscillation in Figure 4.3 persists, we also calculated the same 

flow problem with the steady state solution with Re=3400 as its initial value (see 

Figure 4.4). The 4.4-(a) is the steady solution with Re=3400 and is used as the initial 

data for the rest of the calculations. As we can observe from the figures (b)  to ( f ) ,  the 

flow is repeatedly changing its pattern. Roughly speaking, the figures (b) ,  (d)  and (f) 

are qualitatively similar and they approximately corresponds to the local minimum 

values of Figure 4.5. On the other hand, figures (c) and (e) are graphically similar 

to each other and roughly correspond to the local maximum values seen in Figure 

4.5. The amplitudes of waves in Figure 4.5 after t=15 are ranging from 0.011562 to  

0.011624 (left side peak minus right side peak), which are very close to those of Figure 

4.4. In addition the wavelengths are either 3.85 or 3.95 which are exactly the same 

as those in Figure 4.3. Overall we observe that the velocity vector field pattern at  

the beginning of the cycle is almost perfectly recaptured at the end of the cycle. This 

strongly indicates the global periodic feature of the solution in the entire domain. In 

the figure 4.5 the periodic oscillation still remains without a substantial reduction of 

the amplitude. Because of the fairly limited power of computer speed and time, the 

approximate solutions presented here were not fully developed into a final asymptotic 

state and thus we can not conclude whether this oscillatory result is really a periodic 

one or will eventually disappear. 

Figure 4.6 shows the phase portraits of the total kinetic energy versus the total 

kinetic energy with time delay t=2.5 for the figure on the left and t=3.5 for the figure 

on the right. The data used are based on the same data used for the 4.5(b) of Figure 

4.5. Although the trajectories in both figures are not closed and are shifting, the basic 

shape and size of the trajectories seem to be preserved. 

From these calculations we found that the approximate solution quickly developed 

into a time periodic pattern, although it probably needs a very long time for the 

solution to attain its final asymptotic periodic state. Together with the facts we 

considered previously, we thus have some confidence that the oscillation will remain 

and may be able to call this phenomena a Hopf bifurcation. Although in order to 

verify the legitimacy of the results we have to use a much finer grid with possibly 
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a smaller time step for the same problem and ascertain that a qualitatively similar 

solution is produced. That would be far above the capability of our computers, and 

thus remains a future topic. 
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0 
0 02 0 4 0.6 0.8 1 

x r m  

Figure 4.1: Unsteady problem with all-zero I.C. 
Re=3600 and At=0.05: (a)  t=2 (top left), (b) t=4, (c) t=6, (d) t=16, (e) t=18, ( f )  t=20. 
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Figure 4.2: The  total kinetic energy 1. 
45x45 grid (1035 points) with Re=2000, At=0.05. 

Figure 4.3: The  total kinetic energy 2. 
55x55 grid (1540 points) with Re=3600 and At=0.05. 

Initial data are set to be all zero. 
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x ui 
C) i ~ 6 0 0 .  m r m  LC 

0 
0 02 0.4 0.6 0.8 1 

x ak 
(f 1 i ~ 6 0 0 .  t-40 wth m t m  I.C. 

Figure 4.4:- Unsteady problem with non-zero I.C. 
Re=3600 except for the first figure which is used as initial data. 

At=0.05 and (a) t=O (top left), (b) t=32, (c) t=34, (d) t=36, (e) t=38, ( f )  t=40. 
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Figure 4.5: The total kinetic energy 3. 
55x55 grid (1540 points) with Rez3600. At=0.05. 

Steady state solution with Re=3600 is used as the initial data. 

Figure 4.6: The phase portrait. 
The total kinetic energy versus the total kinetic energy with 

time delay 2.5 for the left and 3.5 for the right. 



Chapter 5 

Discussion of validity 

As is mentioned in [33], Bezout's theorem assures us that an algebraic system with 

N unknowns has essentially 2N solutions. In case of an N x N two dimensional grid 

problem, the system has 2N2  numerical solutions. Therefore if the problem to be 

solved has a unique solution, we might have one of the 2N2  - 1 spurious solutions 

unless the solution is close enough to the true solution. Fortunately most of the 

computational solutions are complex and we do not usually end up with them by 

means of real numerical calculations. But this is not always the case. In [33] Schreiber 

and Keller showed that even time marching schemes may lead to spurious steady 

states. Unfortunately there is no good theory to determine whether the approximated 

solution is spurious or legitimate. For the validity of the numerically obtained results 

we have to check them against the known experimental results or recalculate the 

same problem with a finer grid to obtain the essentially same results. Because of the 

restriction of both computational power and time, we used rather coarse meshes for 

most of the computation. However as we will show later, they still hold most of the 

properties of the results obtained by using much finer mesh. In the examples of the 

steady state problems, the Reynolds number is fixed to 1,000 and the figures with 

coarse meshes are the same as shown in chapter 3. 

For the calculation of a square cavity with finer mesh we used a 59 x59 non uniform 

grid (Figure 5.1), by which the solution of the right upper corner has been much 
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improved and smoothed. In general, there is a dominant recirculating eddy generated 

by the moving wall and two smaller counter-rotating eddies at the bottom stagnant 

corners. The graphically obtained center of the eddy with coarse mesh is (0.529,0.560) 

which seems to be satisfactorily close to that with a finer mesh's (0.531,0.571). For 

the calculation of Figure 5.2, we used 55 x 55 grid (1540 points) for right hand side 

finer mesh and the same mesh as given in chapter 3 for the left hand side coarser 

mesh. Again, clearly the two figures are qualitatively almost identical except for the 

exact position of the primary and secondary vortices. Because of the concentration 

of the grid at  the corner, the situation of the corner velocity is much more acceptable 

than the above square cavity case. The approximated center of the primary eddy for 

the coarser mesh is (0.360,0.S75) and (0.372,0.S64) for finer one. 

Figure 5.3 shows typical examples of Hopf bifurcation plots which are taken from 

the paper by Shen [23]. As mentioned in chapter 4, due to the lack of computational 

time and power, we could not continue to run the program until it reached the final 

asymptotic state. However, our calculation exhibits the basic behavior of a bifurca- 

tion. As in Figure 4.3 or 4.5, obtained plots are periodic in time with an almost fixed 

interval, approximately the same minimum and maximum values and a similar shape 

pattern. Those facts enable us to believe that our calculations are fairly reliable. 
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0 0 2  0.4 0.6 0.8 1 
xaxk 

0 0 2  0.4 0.6 0.8 1 
x a x k  

Figure 5.1: The  square cavity flows with two different grids. 
33 x 33 grid (1089 points) for (a) 
59 x 59 grid (3481 points) for (b) 

0 0 2  0.4 0.6 0.8 1 
x axis 

0 0 2  0.4 0.6 
x axis 

Figure 5.2: The  right triangular cavity flows with two different 
45 x 45 grid (1035 points) for (a) 
55 x 55 grid (1540 points) for (b) 

0.8 1 

grids. 





Chapter 6 

Conclusion and discussion 

.We have investigated the effect of the change of a shape to the qualitative and the 

quantitative features of cavity flows. Several patterns have been considered and it 

was found that the flow structures are sensitive to shape differences. The size of 

eddies is greatly influenced by the angle of a downstream corner. The difficulty of 

increasing Reynolds numbers also differs with each shape. We found that the shape 

we used for time dependent problems is one of the hardest to converge. This shape 

has been further investigated with higher Reynolds numbers. Although the standard 

application of the finite difference method fails to give a well-posed system for some 

shapes (it was briefly presented in chapter 3), as expected, our standard formulation 

of FEM works well with little difficulty for all shapes. We could easily increase a 

Reynolds number with a fairly small number of unknowns. 

For the time-dependent problem, we have used two different initial conditions; all- 

zero velocity components and the steady state solution with Re=3400. The former 

one is used to see the flow dynamics itself and the time needed for it to develop 

bifurcation. The latter one is used to possibly see the long time behavior of the 

solution. In this thesis we used the total kinetic energy plot, velocity vector field plot 

and phase portrait of the total kinetic energy to observe a global phenomenon of a 

bifurcation since we do not know, in advance, whether this phenomenon is only local 

or global. We thus did not attempt to choose a specific point for the local indicator 
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which may hide a global behavior of a flow. 

As in Figures 4.3 and 4.5, the results obtained from the two different initial condi- 

tions exhibit quite similar behaviors which also resemble published results of a Hopf 

bifurcation (see such a s  [23]). Finally we will provide some possibilities for further 

investigation which are the natural extension of this thesis. 

For the steady state problems: 

Since we can consider many more shape transformation patterns, we can also 

investigate the same things for other patterns. 

For a fixed Reynolds number, starting from a periodic solution, change the 

shape slightly to obtain a steady state solution or other bifurcations , or vice 

versa. (Since in practice turbulence is generally unpreferable, this may have an 

industrial application.) 

For the time dependent problems: 

Further increase the Reynolds number with a much finer grid and observe other 

bifurcations and hopefully chaos. 

Identify the specific critical values to the Hopf bifurcation for each shape and 

- study the effect of the change of a shape. 

All of above future topics probably require much more computational resources in- 

cluding a super computer, and are burdensome for today's mainframe, but will be 

practicable in the near future. 
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