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Abstract

The hypercube is one of the most popular interconnection networks. Not
only does it have good topological structure but also nice symmetric proper-
ties. However, it has a major drawback that the degree is not bounded as the
dimension increases. Because of this, some networks with bounded degree
have been derived from the hypercube. Two of the most popular are but-
terfly graphs and cube-connected-cycles. They both inherit some properties
from the hypercube. This thesis investigates these two networks.
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Chapter 1

Introduction

Networks can be divided into two classes: static networks and dynamic net-
works. The physical structure of dynamic networks is not fixed. It can be
changed by modifying the configuration of the switches in the connection ca-
bles. On the other hand, the physical structure of static networks is fixed. It
can be modelled by the tools from Graph Theory. In this thesis, only static
networks are considered.

Before constructing a network, one has to consider many factors such
as the hardware cost, the performance, the reliability and the expandibility.
The first three are obviously important factors. For the expandibility, the
network must be designed to minimize the total amount of modification when
more processors are being added to it. The simplest method of building a
network is by putting a link between a new processor and one of the proces-
sors randomly chosen in the network. The cost for this kind of network is
very low because not many links are required. The expandibility is clearly
very high because almost no modification is required when a new processor is
added. However, this kind of connection is unpredicable. The network may
turn out to be a simple path. That means if any one of the links or one of
the processors breaks down, the network will not be connected. Furthermore,
the time for communication is very long for the processors at the end of the
path. Thus, this kind of network in general is neither reliable nor efficient.
Another extreme method is to connect every pair of processors. This kind
of network has the maximum performance and reliability. Each processor in
the network can directly communicate with every other. Also, the network is



always connected no matter how many processors are out-of-function. How-
ever, the cost will be very high. The expandibility is also not very good
because the number of links going out from each processors is not the same
for the networks of different size. Thus, every processor must be modified if
the network need to be expanded. These two examples show that building a
network is a trade-off problem.

For the hardware cost, one should consider the number of links being
used. In order to increase the performance, the network should be designed
so that any pair of processors can communicate easily. One measure of this
is that the diameter of the network should be small.

The design of a network also affects the software cost. If processors can be
addressed using binary numbers, the system software will be simpler because
most of the other components in the whole system are binary-based. Futher-
more, if the network is exactly “the same” with respect to each processor,
the processors can share a single routing table. The network is said to have
good symmetry properties. Symmetry properties also affect the reliability of
the network. Good symmetric network can re-order the processors or com-
munication lines so that some particular processors can still communicate,

This thesis will present two methods for constructing a network that has
good symmetry properties. One of them is the Cayley graph construction
and the other one is the set graph construction. This thesis will mainly
discuss the Cayley graph construction.

The n-dimensional (binary) hypercube is one of the most popular net-
works that is formed by the Cayley graph construction. It does not have too
many links but it has very good performance. The routing in the hypercube
is extremely easy. The reliability is also very high. Moreover, it possesses
all the symmetry properties that one usually studies. Unforturnately, it has
one major drawback in that the number of links going out from the pro-
cessors increases as the dimension increases. It reduces the expandibility
dramatically.

There are some extensions coming from the hypercube. The two popular
ones are the butterfly graph and the cube-connected-cycle. Both of them
use an n-cycle to replace each processor in the the hypercube so that the
degree of each processor can be fixed. They inherit many of the topological
properties from the hypercube, but they also destroy many of th6e symmetry



properties. This means the performance of the butterfly graph and the cube-
connected-cycle will be almost the same as the hypercube, but they have
lower reliability. This thesis will investigate these two networks, and will
discuss the topological structure as well as the symmetry properties of the
butterfly graph and the cube-connected-cycles. It also does some comparisons
between these two kinds of networks with the hypercube.



Chapter 2

Groups of Permutations

2.1 Permutation Groups

Permutation groups play a very important role in group theory. In fact,
Cayley’s Theorem [5] says that every finite group is isomorphic to a group of
permutations. In this section, certain notions regarding permutation groups

will be presented.
Given the set {1,...,n}, one can think of a permutation as a rearrang-
ment of the numbers. The following is a formal definition of a permutation

[5].
Definition 2.1 A function f : A — B is one-to-one if every element of B

has at most one element of A mapped to it.

Definition 2.2 A function f : A — B is onto if every element of B has at
least one element of A mapped to it.

Definition 2.3 A permutation of a set A is a one-to-one and onto function
from A to A.

In this chapter, all permutations are on the set {1,...,n}. The collection
of all permutations of {1,...,n} is usually denoted by S..

4



A permutation, ¢ € S, can written in several ways. One of them is to
list all (z,0(z)) pairs in an array as:

o= 1 2 ...t ...o0n
o(l) o(2) ... a(t) ... a(n) )’
In fact, all permutations in S, have the same first row. This row is
actually redundant. Hence, o can be written as:

Definition 2.4 Let p,0 € S,.. A binary operation - is defined as the com-
position of functions, that is, (p - ¢)(z) = p(o(z)) for all z € {1,...,n}.

Proposition 2.5 S, is closed under -.

Proof: Let p,o € Sa. For any z,y € {1,...,n},(p-0)(z) = (p-o)(y) =
p(a(z)) = p(o(y)). Since p is one-to-one, o(z) = o(y). Again, o is one-to-one
implying that £ = y. Hence, p - ¢ is one-to-one.

Now for any y € {1,...,n}, there is z € {1,...,n} such that y = p(z).
Again, there is z € {1,...,n} such that £ = o(2). Hence, y = p(0(2)) =
(p-0)(z) and p - o is onto. Thus p- o is a permutation in S,. ]

Proposition 2.8 (S,,:) is a group.

Proof: Let e be the permutation such that e(z) = z for all z € {1,...,n}.
Then for any p € Sn, (p- €)(z) = p(e(z)) = p(z) for all z € {1,...,n}.
Hence, ¢ is an identity.

For any p,0,7 € Sa, ((p - o) - 7)(z) = (p - 0)(7(z)) = p(a((2))) =
p((o - 1)(z))=(p- (¢ - 7))(z)forallz € {1,...,n}. Hence, - is associative.

Let p be a permutation. As p is one-to-one and onto, the inverse function
p~! of p exists, and p~! is also one-to-one and onto. We have (p-p~')(z) =
z = e(z) for all z € {1,...,n}. Hence, (Sn,-) is a group. O

(Sn,-) is usually called the symmetric group of degree n.

5



2.2 Orbits and Cycles

Given a permutation o, one can partition {1,...,n} using an appropriate
relation ~ defined as follows: For any a,b € {1,...,n},a ~ b if and only if
b = o™(a) for some integer n.

Proposition 2.7 The relation ~ is an equivalence relation.

Proof:
Reflexive a ~ a because a = e(a) = d°(a).

Symmetric a ~ b = b = o"(a) for some integer n. So a = o¢7"(b) and
b~ a.

Transitive a ~ b,b ~ ¢ = b = d"(a),c = o™(b) for some integers m and n.
So ¢ = o™(0™(a)) = o™*"(a) and a ~ c. O

Definition 2.8 Let 0 € S,, the equivalence classes determined by ~ are
called the orbits of o.

Hence a permutation partitions the set {1,...,n} into orbits. This idea
provides a method to decompose a permutation into a set of simple permu-
tations.

Another way to describe a permutation is to use a digraph. Let o € S,
and V = {1,...n} be the vertex-set. There is an arc from : to j if and only
if o(¢) = j. We denote this digraph by D,. Clearly, a directed cycle in D,
corresponds to an orbit in 0.

Theorem 2.9 The associated digraph D, of o consists of a set of vertez-
disjoint directed cycles.

Proof: As o is a function, the outdegree of each vertex in D, is 1. Since o is
one-to-one and onto, the indegree of each vertex in D, is also 1. Hence, D,
consists of a set of vertex-disjoint directed cycles. 0



Theorem 2.9 says that we can decompose D, into a set of vertex-disjoint
directed cycles, Cy, Cs, ..., Cx. Let By, B,, ..., By be the directed spanning
subgraphs induced by C,, Cs, ..., C, respectively, and add a directed loop
to each isolated vertex. Each B; will give us a permutation. Those permu-
tations have at most one orbit containing more than one element. Since the
permutations come from the cycles of D,, these permutations are also named
cycles.

Definition 2.10 A permutation ¢ € S,, is a cycle if o has at most one orbit
containing more than one element. The length of a cycle is the number of
elements in the largest orbit.

Definition 2.11 Two cycles are said to be disjoint if their orbits that con-
tain more than one element do not have any element in common.

Corollary 2.12 Every permutation o € S, can be written as a product of
disjoint cycles.

2.3 Cyclic Notation

By the definition, a cycle has at most one orbit containing more than one
element. So given the list of the elements in the largest orbit of a cycle is
sufficient to determine the whole structure of the permutation. For example,
if the largest orbit of a cycle ¢ € Ss is (1 8 3 5), then

(123456738
‘“\s25416173)
The notation, ¢ = (1 8 3 5) is called cyclic notation.

Corollary 2.12 says that every permutation can be written as a product
of disjoint cycles. For example p = 6734152 can be written as (1 6 5)(2 7).



2.4 Transpositions and Inversions

Other than the identity, every cycle has length at least 2. This means that
a cycle of length 2 has the simplest structure. However, it has a special
property. In cyclic notation, a cycle of length 2 can be written as (z 7). In
explicit notation, it will look like1...i—1j5¢+1...7—=1¢5+1...n. Given
a cycle p of length 2 and a permutation ¢ = a;4;...a, in explicit notation.
If p is multiplied on the right of o, it will exchange the ith and jth elements
in 0. Similarly if p is multiplied on the left of o, it will exchange ¢ and j in
o. Hence, a cycle of length 2 is called a transposition. Using this property,
one can obtain any permutation by exchanging suitable pairs of elements.

Theorem 2.13 FEvery permutation in S,,n > 2, can be written as a product
of transpositions.

Proof: 1t is sufficient to prove that every cycle can be written as a product
of transpositions. For any cycle ¢ = (a; a; --- ax) in cyclic notation, k > 2,
it can be written as

¢ = (a ax)(ay ag-1) - (a1 az).
If the length of ¢ is 1, then c is the identity and can be written as (1 2)(1 2).
a
Another property of a transposition is that every transposition is the
inverse of itself. Suppose o can be written as a product pip;---px of k

transpositions. Then e = opxpi-1 - - - p1, where e is the identity. This is the
basic idea of a sorting algorithm.

Definition 2.14 Let ¢ be a permutation. If o(j) < o(2) for ¢ < j, then the
pair (a(3), (1)) is called an inversion of o.

Transpositions and inversions in fact are the crucial parts of the sorting
algorithm based on comparison. The rest of this section will discuss the
relationship between transpositions and inversions.

Definition 2.15 A permutation ¢ is said to be an odd or even permutation
if the number of inversions in ¢ is odd or even, respectively.
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Lemma 2.16 Let w = aya3:--a, be a permutation andp=1...i— 151+

l...7—=1¢j3+1...n be a transposition. The number of inversions in w and
in wp has different parity.

Proof: We have wp = a16; -+ @,-16;8i41 "+ @j_1a;aj41 - ~an. It is sufficient
to consider the subsequence a;a;4y -+aj_1a;.

If a; < aj, then (a,,a;) is an inversion in wp but not in w. For any
a; < ap < aj,t+1 < k <j—1, both (ax,a;) and (a,,ax) are inversions in
wp but not inw. If g, <aj<arorar<a;<a;,it+1<k<j—1,then
the number of inversions involving ai in wp is the same as in w. Thus, the
number of inversions in wp is increased by an odd number.

If a; > aj, then (a;,a;) is an inversion in w but not in wp. For any
a; > ar > aj,1+1 < k <j—1, both (ar,a;) and (aj,ax) are inversions
in w but not in wp. If ¢; > a; >arorag >a;>a;,t1+1 <k<j—-1,
then the number of inversions involving ax in w is the same as in wp. Thus,
the number of inversions in wp is decreased by an odd number. The result
follows. a

Theorem 2.17 Let w = pyp;- - px be a product of k transpositions. Then
w is even (or odd) if and only if k is even (or odd).

Proof: Let e be the identity. The number of inversions in e is 0. When
k=1, k is odd and w = p; = ep;. By Lemma 2.16, w has an odd number of
inversions, that is, w is odd. Suppose it is true for k = r —1. Consider k = r.
By Lemma 2.16, w = py «- - p,—1Pr and p; - = p,_1 have different parity. The
result follows. a

Corollary 2.18 Ifo is even (or odd), then o can only be written as a product
of an even (or odd) number of transpositions.

Proof: By Theorem 2.13, o is a product of transpositions. Let o = p1p2-- - px,
where the p;’s are transpositions. By Theorem 2.17, the result follows. O



2.5 Conjugacy

We again consider the associated directed graph D, of the permutation o
again. D, consists of a set of vertex-disjoint cycles. The length of the cycles
can be any number from 1 to n, so let [A;(c), A2(0),. .. As(c)] be an n-tuple,

where (o) is the number of cycles of length i. We define a relation ~, as
follows: For any o4, 02 € Si, 01 ~¢ 02 if and only if

[/\1 (01), AQ(O’]), e /\,,(0'1)] = [Al(dg), /\2(02), . A,.(a'g)].

Definition 2.19 The relation ~. is called conjugacy. |

Theorem 2.20 Conjugacy is an equivalence relation.

Proof: The proof is trivial. 0

2.6 Stabilizer

There are special subgroups in a permutation group which we now define.

Definition 2.21 Let (B,-) be a permutation group. Let u € {1,...,n} and
B, = {a: a € B and a(u) = u}. B, is called the stabilizer of u.

Proposition 2.22 We have that (B,, ") is a subgroup of (B, ).
Proof: Let a, € B,. Then (a: 3)(u) = a(B(u)) = a(u) = u. So a- B € B,.

Since e(u) = u, ¢ € B, If a € B,, a(u) = u. So a”'(u) = u, that is,
a~! € B,. Hence, (B,,-) is a subgroup of (B,"). a

10



2.7 Transitive groﬁps and regular groups

There are certain permutation groups that play important roles in group
theory. Some of them will be used in the coming chapters.

Definition 2.23 Let I' be a permutation group on {1,...,n}. I is transitive
if for each pair i, € {1,...,n}, there exists a ¢ € T such that o(i) = j.

Definition 2.24 A permutation group I on {1,...,n} is said to be regular
if T is transitive and for each i € {1,...,n}, the stabilizer I'; of ¢ is {e} .

Theorem 2.25 A permutation group I' on {1,...,n} is regular if and only
if for any pair i,j € {1,...,n}, there is a unique permutation o € I' such
that o(1) = ;.

Proof: Since I' is transitive, it is sufficient to show that ¢ is unique. Suppose
there are two permutations o, and o7 such that oy(i) = o,(¢) = j. Then
e(1) =1 = orlon(i) = o7'oy(t). Therefore, o7'oy = o7'o; implies that
oy = o, a

11



Chapter 3

Cayley Graphs and
Transposition Graphs

3.1 Cayley Graphs

Cayley graphs are an important class of graphs constructed from groups.
They reflect not only the group structure but also possess some nice graph
properties.

Definition 3.1 Let (T, ) be a finite gr;)up with identity e. Let S be a subset
of I' such that

1. ifg€ S, then g7! € S, and

2. ¢e¢S.

The Cayley graph G(T', S) is defined as follows.
1. The vertex set of G(I',S) =T.

2. The edge set of G(I', S) = {zy : z,y € T and there exists g € S such
thaty=z - g }.

The set S is called the symbol of G(T', S).

Proposition 3.2 S generates T if and only if G(T', S) is connected.

12



Proof: Let S = {ay,...,a,}. Suppose S generates I'. Let z,y € G(T', S) and
g = z7'y. Since I' = (S), ¢ = 7'y = ai,a;,---a;,. Hence, y = zz~'y =
za;,a;, * - - a;,. This implies z,y are connected by a path. Conversely, suppose
G(T', S) is connected. Let g € T. There is 2 path from e to g in G(I, S). So
g = a;,a;, - - - a;,. This implies S generates I. m]

Since there is no reason to consider a disconnected interconnection net-
work, all symbol sets in this thesis will be assumed to be generator sets.

3.2 Transposition Graphs

Another kind of graph that is determined by a permutation group is a trans-
position graph. Studying transposition graphs is not useful because every
simple graph is a transposition graph. However, the transposition graph cor-
responding to the Cayley graph generated by a permutation group has some
special characteristics.

Definition 3.3 Let (I',-) be a permutation group on A. Let S be a set of
transpositions in . The transposition graph TG(A, S) is defined as follows:

1. The vertex set of TG(A,S) = A, and
2. The edge set of TG(A, S) = {zy : (z,y) € S}.

Definition 3.4 A transposition graph which is a tree is called a transposition
tree.

Theorem 3.5 (Polya) A set 0 C S, of (n — 1) transpositions generates
the symmetric group S, if and only if the transposition graph TG(S,,9) is
a transposition tree.

Proof: Suppose TG(S,,Q). is a tree. Then any two vertices are connected
by a unique path. Let a,b € {1,...,n} and

a, (a zl)a I, (31 1'2)7 ey (Ik-l xk)v Tk (.’L‘k b)’ b

13



be the path joining a and b. Then

(ad) = (a z1)(z1 z2) - (Tk-1 Tk)(Zh b)(Th-1 Zk) - - - (71 T2)(a 71)

which is a product of transpositions in 2.

Conversely, suppose ) generates S,. Let (z y) = pips-:- Pk, Where
P1,P2,---, Pk € Q. Then p;, = (z z,) for some z; and 1 < 7; < k. Similarly,
pi, = (z1 z3) for some z2 and 1 < i; < k, p;; = (z; z3) for some z3 and
1 < i3 < k, and so forth. Finally, p;, = (z,-1 y) for some 1 < i, < k. Clearly
r and y are joined by a walk z,z,,z3,...,2,-1,y in TG(Sn,§). Hence,
TG(S,,0) is connected with n — 1 edges, that is, it is a tree. } a

Corollary 3.6 4 set Q@ C S, of transpositions generates the symmetric
group S, if and only if the transposition graph TG(Sn, Q) is connected.

Proof: Every connected graph has a spanning tree. By Theorem 3.5, the
result follows. a

14



Chapter 4

Symmetry in Graphs

Symmetry is an important issue in interconnection networks. It affects not
only the performance but also the cost of the network. For instance, if a
network has symmetry on the nodes, the same routing algorithm can be
used on each node. This simplifies both the hardware of the control center
and the system software of the operating system. This chapter will discuss
certain symmetry that a network can have.

4.1 Automorphisms on Graphs

Given a square, one can rotate it and flip it. The square is still a square.
However, if one tries to “twist it”, the square will no longer be a square. On
the other hand, no transformation can make a complete graph structually
different. This kind of transformation that perserves the structure of the
graph is called an automorphism.

Definition 4.1 A vertez automorphism a of G is a permutation of the
vertex-set that preserves the adjacency. That is, if the edge zy € E, then
the edge a(z)a(y) € E.

15



4.2 Transitivity

In a network, it will be useful if the network looks the same when viewed
through any node. In other words, each node lead to the same network by
relabelling the other nodes. This property is called vertex-transitivity.

Definition 4.2 G is said to be vertez-transitive if given any pair of vertices
z and y, there exists a € Aut(G) such that y = a(z).

Definition 4.3 G is said to be edge-transitive if given any pair of edges zy
and uv, there exists a € Aut(G) such that z = a(u) and y = «a(v), or
z = a(v) and y = a(u).

From this definition, it is easy to see that a vertex-transitive graph has
to be regular because no automorphism can map a vertex to one of different
degree.

Vertex-transitivity can be generalized. Let D be the diameter of the
graph G. For 0 < k < D, G is said to be k-distance-transitive if given four
vertices, z,y,u and v such that d(z,y) = d(u,v) = k, then there exists an
a € Aut(G) such that u = a(z) and v = a(y). If G is k-distance-transitive
for all 0 < k < D, then it is called distance-transitive.

Clearly, vertex-transitivity is 0-distance-transitivity.

Proposition 4.4 If a graph G is 1-distance-transitive, then G is edge-
transitive.

Proof: Suppose G is 1-distance-transitive. Let e; = zy and e; = uv be two
edges in G. Then there exists a € Aut(G) such that u = a(z) and v = a(y).
The result follows. o

The rest of this section will discuss transitivities of the graphs. For u €
V(G), define N; C V(G) as N; = {v : v € V(G) and d(u,v) = i} and
d; = |N;(u)|. Then the following is the characterization of distance-transitive
graph [8, 2].

16



Lemma 4.5 Let D be the diameter of the graph G. G is distance-transitive
if and only if it is vertez-transitive and the verter stabilizer A, is transitive
on the set Ni(u) for alli € {0,1,...,D} and for each u € V(G).

Proof: G is distance-transitive implying that G is 0-distance-transitive. Thus
G is vertex-transitive. Let u be any vertex and p,q € N;(u),0 <: < D. Since
G is distance-transitive, there exists a € Aut(G) such that u = a(u),p =
a(q). Since u = au),a € A,(G). So A,(G) is transitive on N;(u).
Conversely, G is vertex-transitive and A,(G) is transitive on N;(u), for
all u € V(G) and i € {0,...D}. Let z,y,u,p € V(G) so that d(z,y) =
d(u,p) = d. Let w € V(G). There exists a € Aut(G) such that w = a(z).
Let y' = a(y). Also, there exists 3 € Aut(G) such that w = fB(u). Let
p = B(p). Since a and B are automorphisms, d(w,y’) = d(z,y) = d =
d(u,p) = d(w,p’). So y',p' € N4y(w). Since A,(G) is transitive on Ny(w),
there exists an automorphism 7 € A,(G) such that w = 7(w) and p’ = 7(y').
Then u = 8~'ra(z) and p = B~ 'ra(y). Thus, G is distance-transitive. O

4.3 Intersection Number

Lemma 4.5 provides a method to check whether a graph is distance-transitive.
The procedure in fact is quite tedious. There is a necessary condition for a
graph being distance-transitive (8, 2]. First we define npi(u,v) = [{w: w €
V, d(u,w) = h and d(v,w) = 1}| = |Na(u) " Ny(v)|. If a graph G is distance-
transitive, ng;(u,v) is independent of u and v but depends only on j which
is d(u,v). This means ni(u,v) can be denoted as n;;.

Definition 4.6 Let D be the diameter of the distance-transitive graph G.
The (D +1)? integers ny;; for 0 < h,i,j < D are called intersection numbers.

Proposition 4.7 We have ny;; =0 fori g {j —1,3,5 + 1}.

Proof: As the graph is distance-transitive, it is sufficient to consider one pair
u and v of vertices with distance j between them. Let w be a vertex that
is adjacent to u. Then d(u,w) = 1. Since d(u,v) = j, we have j —1 <
d(v,w) < j + 1. In other words, ny;; =0 fori ¢ {j — 1,j,7 +1}. 0
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For this reason, if D is the diameter of a distance-transitive graph, we
can let

a; = mny; = |Ni(u)N N;(v)l
bj = mii; = |[Ni(u)N Njpa(v)l
¢ = nyja,; = |[Ni(u)N N (v)],

where u and v are any pair of vertices with distance j between them, 0 <
J < D. Furthermore, bp and ¢, are undefined. These 3D + 1 integers can be
arranged as an array.

Definition 4.8 The array

ap a4y a2 ... ap-1 ap
JAG)=| b b b ... bp_y *
* ¢y € ... Cp-1 Cp

is called the intersection array of the distance-transitive graph G.

The intersection array has the following properties [2].

Lemma 4.9 If G is distance-transitive, then the entries of I A(G) satisfy:
l.ag=0,by=dy, c; =1,
2. ¢,+a;,+b=dy foralll <:<D-1,
3 1<¢<e3L...<¢p,
f.diy 20 2b,2>...2bp,,
5. di1bi-y =dic; for1 <1< D,
where d; = |N;(u)| and D = diameter.
Proof:

1. We have ag = njoo = |N1(u) N No(v)| = 0 as d(u,v) = 0, that is,
u = v. Also, by = ny10 = |N1(u) N Ny (v)| = |M(u)| = d; as u = v, and
c1 = nor = |[N1(u) N No(v)| = |[{v}| = 1 as v is adjacent to u.
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2. If d(u,v) = ¢ and w is adjacent to u, then t — 1 < d(v,w) <i+1. So
a;+bi+¢ = nyi+nyipi+tnnio = [Ni(u)NN(0)]+ | N (u)N N (v) 1+
[N1(u) N Nioa(v)| = |Ni(u)] = d1.

3. Suppose d(u,v) =i+1, 1 <i < D-1. Picka path v,z,...,uof length
i+1. Thend(z,u) =+ Ifw € N;_y(z)NNy(u), then w € N;(v)N Ny (u).
So Ni_1(z) N Ni(u) € Ni(v) N Ny(u), that is, |Ni—iiz) N Ny(u)| <
|Ni(v) N Ni(u)|. In other words, ¢; = nyi-1i < niiit1 = Gy for
1<:i<D-1.

4. Suppose d(u,v) =i, 1 <i < D—1. Pick a path v,z,...,u of length 1.
Then d(z,u) = i—1. fw € Ny(u)NN;;1(v), then w € Ny(u)NN;(z). So
N (w)NNig1(z) € Ni(u)NNi(z), e, bicy = nyiio1 = [N(u)NNi(z)| >
|N1(u) N Nija(v)] = bi.

5. Pick any vertex v. The number of edges from N;_;(v) to N;(v) is equal
to the number of edges from N;(v) to Ni_1(v),1 <: < D.

N,'_l(‘v) N,-(v
bi_

v<@...@f®)

1

The number of edges from N;(v) to Ni—y(v) = | Ni(v)| = cid;.

The number of edges from N;_1(v) to N;(v) = bi-1|Ni—1(v)} = bi—1di-1.
So b;_1di-1 = cid,. in

In the rest of this section, we will consider properties of Cayley graphs
and transposition graphs.

Theorem 4.10 Every Cayley graph is vertez-transitive.

19



Proof: Let G(T',S) be a Cayley graph. Pick any two vertices u and v and
define a: V = V by a(z) = vu~lz, z € V.

1. If a(z1) = a(z2), then vu~'z; = vu~'z,. So z; = z; and a is one-to-
one.

2. For any y € V, a(uv~ly) = vu 'uv~ly = y. Thus, a is onto.

3. If z, is adjacent to z,, then z; = 7,9 for some g € S. So vu~lz, =
vu~lz,g, or a(z;) = a(z,)g. That is, a(z;) is adjacent to a(z,) imply-
ing that a is an automorphism of G(T', S).

Furthermore, a(u) = vu™'u = v. Hence, « is an automorphism that maps u

to v. O

Using the Cayley graph construction, we can obtain a vertex-transitive
graph. If we use a group with certain properties, those properties may be
reflected in the graph. The Proposition [2] is one such example.

Proposition 4.11 Let G be a connected graph. The subgroup H of the au-
tomorphism group Aut(G) acts regularly on G if and only if G is a Cayley
graph G(H,S) for some symbol set S that generates H.

Proof: Suppose G = G(H,S). For each h € H, let a, : H — H be defined
by ax(z) = hz. The mapping o, is definitely a permutation. If z is adjacent
to y, then y = zs for some s € S. So as(y) = hy = hzs = ax(z)s. That is,
ax(z) is adjacent to as(y). Therefore, ay, is an automorphism. The set of all
ay, is a subgroup of Aut(G) isomorphic to H. Let H be this subgroup. For
any pair of vertices £ and y, z, y € H. There is a unique A € H such that
hz = y. Hence, there is an automorphism in H, ay such that ax(z) = y.
Notice that if e is the identity in H, then it is the unique element such that
a.(z) = z. Hence, H acts on G regularly.

Conversely, suppose H is regular and H < Aut(G). Let V(G) =
{v1,v3,...,v,} denote the vertex-set of G. Since H is transitive, for each
i, there exists h; € H such that h;(v;) = v;. Suppose h;(v1) = hi(v1) = v;.
Then h7'h;(vy) = A7 hl(v1) = vi. Since H is regular, h7'h! = e and k] = ;.
This implies h; is the unique element in H that maps v; to v;. Now let

S = {h; € H : v; is adjacent to v; in G}. Clearly e € S. If h; € H, then v; is
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adjacent to vy and hi(v;) is adjacent to h;(v1) = vi. So A7 (hi(vi)) = A7 (w1)
is adjacent to h7!(v;) = v;. By the definition of S, A7' € S. Therefore,
S satisfies the conditions of being a symbol set. Let ¢ : G — G(H, S) be
defined by #(v;) = h;. Since there is a unique h; corresponding to v;, ¢ is
one-to-one. Since H is transitive, ¢ is onto.

Suppose v; is adjacent to v;. Then h7'(v;) = v; is adjacent to A7 (v;)
h;7'h;(vy). So 7 h; € S. Since h; = h;h]'h;, h; is adjacent to h; in G(H, S

f—

Conversely suppose h; is adjacent to h;j. Then h; = h;h;, for some k; € S.
Since v, is adjacent to v, hi(v,) = v; is adjacent to hi(v;) = hihi(v1) =
h;j(v1) = v;. Thus, G = G(H,S). a

Now we consider some relationships between Cayley graphs and transpo-
sition graphs [8].

Lemma 4.12 Let G(T'1, S1) and G(T'2, S2) be two Cayley graphs on the per-
mutation groups I'y and I'; acting on the sets A, and A;, respectively. Let
I'y and T'; be generated by the sets of transpositions Sy and S, respectively,
where |S;| = |Sa|. If the transposition graphs TG(Ay,S:) and TG(Az, S3)
are isomorphic, then G(I'y, S1) and G(T';, S2) are isomorphic too.

Proof: Let w : TG(A;,S1) — TG(Az,S2) be an isomorphism. Define
B:T;y - Iy by B(u) = w-u-w-. Then B(u) is a composition of one-
to-one and onto functions, so 3(u) is a permutation on A,.

1. B is one-to-one.
If B(uy) = Buz), then w-uy - w™(y) = w-uz-w™(y) for all y € Az, or
wlup(w™Y(y))) = w(uz(w=(y))) for all y € A;. Since w is one-to-one,
u(w(y)) = ua(w(y)) for all y € Az. Thus, u)(z) = ua(z) for all
T € Ay, or u; = uy.

2. B is onto.
Pick any p € ;. Let u = w™! - p-w. Then B(u) = B(w™ -p-w) =
wwlpwwl=p

3. [ preserves the adjacency.

If uv is an edge in G(I';,S1), then u = vs for some transposition
s = (i j) € S . Since w is an isomorphism from TG(A;,5)) to
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TG(A1, S1), (w(i) w(j)) € S3. Thus, f(u) =w v - wl=w-v-s-w!
=w v - wlw-s-w = B(v)(w(i) w(j)). That is, B(u) is adjacent to
B(v).

Hence, 3 is an isomorphism from G(I'y, S;) to G(I'z, S3). a

Theorem 4.13 Let G(T', S) be a Cayley graph on a permutation group T act-
ing on A with the set of transpositions S. If the transposition graph TG(A, S)
is edge-transitive, then G(I',S) is 1-distance-transitive.

Proof: Let e be the identity in I' and let G = G(I', S). Let u,v,z,y € T
be such that uv € E(G) and zy € E(G). Since G is vertex-transitive, there
exist automorphisms a and 7 such that e = a(u) and e = 7(z). Let v' = a(v)
and y' = 7(y). Since d(u,v) = d(e,v') = d(e,y’) = d(z,y) = 1, v’ and y’ are
transpositions.

Let v' = (¢ j) and y’' = (I k). Since the transposition graph TG(A,S)
is edge-transitive, there exists an automorphism o such that { = &(i) and
k = o(j), or k = o(i) and I = o(j). Notice that ¢ is a permutation on A.

Define 8: T — T by 8(p) = opo~!. By the proof of Lemma 4.12, 8 is an

automorphism of G so that 8(v') = ov'e™! =y’ and B(e) = geo™! =e.
Hence, 77! Ba is an automorphism such that 77'Ba(u) = z and 7~!Ba(v)
= y. That is, G(T', S) is 1-distance-transitive. O

4.4 Set Graphs

Although the construction of Cayley graphs gives us a way to build vertex-
transitive graphs, it does not produce all vertex-transitive graphs. For ex-
ample, the Petersen graph is not a Cayley graph. Before showing that the
Petersen graph is a vertex-transitive graph but not a Cayley graph, let’s
consider another construction of vertex-transitive graphs.

Definition 4.14 Let S = {1,...,n}. The set graph G(S, k) is a graph whose

vertex-set is the set of all k-subsets of S. Two vertices are adjacent if and
only if the intersection of the corresponding subsets is empty.
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{1,2}

{3,4}
{4,5}

{1,3} (2,5}

Figure 4.1: The Petersen Graph Modelled as a Set Graph

Example : Let S = {1,2,3,4,5} and k = 2. We get the Petersen graph
(Figure 4.1.)

Theorem 4.15 Every set graph is vertez-transitive.

Proof: Let G(S, k) be a set graph. For any pair of vertices u and v, we need
to find an automorphism @y, such that ¢,.,(u) = v. Let u = {a1,4a,,...,ax}
and v = {b1,b,,...,b}. There exists a permutation o such that o(a;) = ¥
foralll <:<k.

Let ¢y, : G — G be defined by ¢,,(z) = duu({z1,22,...,74}) = {o(z}),
o(z2),.., o(zx)}. Suppose we have {o(z1),(z3),...,o(zs)} = {o(3n),
o(y2),-..,0(ys)}, then we can relabel the elements so that o(z;) = o(y:),
1 <1 < k. Since o is a permutation, z; = y; for all 1 < ¢ < k, that is,
{z1,22,..., 2k} = {y1,92,--.,yx}. Hence, ¢,, is one-to-one.

For any {z1,22,...,2:}, Let w = {¢7%(2;),07(23),...,067 (2x)}. Then
buv(w) = {21,22,...,2k}. So Py, is onto.

If {z1,2,...,zx} is adjacent to {y1,¥2,...,Yx}, then {z1,2q,...,27:} N
{y1,92,...,yx} = 0. Since o is a permutation, {o(z1),0(z3),...,0(zx)} N
{o(y1),0(y2),...,0(yx)} = 0. Therefore, @y,({z1,Z3,...,2k}) is adjacent to
¢uv({yl, Y2s.-., yk})
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Also, ¢uv({a1,a2,...,ak}) = {o(a1),0(az),...,0(ar)} = {b1,b2,..., b}

Hence, ¢,, is an automorphism mapping u to v. O

Corollary 4.16 The Petersen graph is vertez-transitive.

Although Cayley graphs and set graphs are both vertex-transitive, in
general, the Cayley graph construction cannot produce set graphs. Again we
can show that the Petersen graph is not a Cayley graph.

Theorem 4.17 The Petersen graph is not a Cayley graph.

Proof: Suppose the Petersen graph is a Cayley graph G(I', S) for some group
I' and symbol set S. From the fact of the group theory, there are only two
possible groups of order 10[2, 13]. Suppose I' = (g) for some element g. Then
I' = {e,g",¢%...9°}. The symbol set can only be S; = {g*,¢° ¢*}, where
i =1,2,3,4. Then e,eg',eg'g®, eg'9°g~", eg'g°g~'g® = e is a 4-cycle. But the
Petersen graph does not have any 4-cycle.

Then T = {e, 9,4% ¢° 9%, 2,29, 2g% zg°,zg*}, where zg'z = g~* and 2% =
e. Then the possible symbol sets are S; = {zg',g,9%}, S2 = {zg', 9%, ¢} and
S3 = {zg’,zg*,zg'}, where 0 < 4,5, k,1 < 4.

If the symbol set is 5y, then e, exg’, exg g,e:cg g:rg exg 'gzg g =e 1s a 4-
cycle. If the symbol set is S;, then e,ezg’, exg'g?, ezg'g*zg’, e:z:g g zg* g =e
is a 4-cycle. For Ss, we let S3 = {g1,92,93}. We know that ¢? = g3 = g3 =e.
We can label the edges by the symbols in S3 such that adjacent edges have
different symbols assigned.

Consider the outermost 5-cycle. Two of the symbols in S3 must be used
twice. Without loss of generality, we label the outermost 5-cycle as Figure 4.2.

Then we can continue to label the edges, and finally we will get two
adjacent edges having the same symbol. So we get the contradiction. Hence
the Petersen graph is not a Cayley. o
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Figure 4.2: Diagram for Theorem 4.17

25



Chapter 5

The Hypercube

The hypercube is usually considered to be an efficient networks for parallel
computation. The construction of the hypercube is based on the binary
numbers. As a consequence, routing algorithms for the hypercube are very
easy to implement. Also, the hypercube is highly symmetric. In fact, it
is distance-transitive. Furthermore, one can simulate most of the popular
networks on the hypercube such as the grid and the binary tree. Hence, the
hypercube is a good architecture for general purpose parallel systems [9].

5.1 Modelling

The hypercube is usually defined as follows [9].

Definition 5.1 Let G(V,E) be a graph with |[V| = 2" and |E| = r27!
for some positive integer r. The vertices in G are labelled with a binary
sequence of length r. Two vertices are adjacent if and only if their binary
sequences differ in precisely one bit. G is called the r-dimensional hypercube
and denoted as Q,.

Figure 5.1 is a 3-dimensional hypercube. Besides the above definition,
The hypercube can be defined as a Cayley graph too (8].

Proposition 5.2 Let T = ((1 2),(3 4),...,(2r-1 2r)) be a subgroup of Sa..
Let S = {(12),(34),...,(2r-1 2r)} be the set of symbols. Then the Cayley
graph G(T', S) = Q,.

26



000 001

Nt |

100 101

110 111

VN

010 011

Figure 5.1: The 3-dimensional Hypercube

Proof: Let v be a vertex in @,. Let aja;---a, be the binary sequence
corresponding to v. Define ¢ : @, — G(T',S) by ¢(v) = d(araz---a,) =
;P2 - - - pr Where .

! e otherwise.

._{ (2i-123) ifa; =1

Let vy, v2 € Q, and v; = a;---a, and v = b;--- b.. Since (1 2),(3 4),...,
(2r-1 2r) are disjoint cycles, none of them can be generated by the others.
Thus, if vy # v,, then a;---a, # by -+ b,. There are some 1 < : < r such
that a; # b;. So (2i-1 2¢) is contained either in ¢(v;) or in ¢(vz) but not in
both, that is, ¢(v1) # ¢(v2).

Let p € I'. Let aja; -+ - a, be a binary sequence such that

_J 1 if(2-12)isinp
%=1 0 otherwise.

Then ¢(aia;---a,) = p. Hence ¢ is a bijection.

Now if a, - - - a, is adjacent to b; - - - b,, then thereis exactlyone:, 1 < ¢ <r
such that a; = b; for i # j and a; # b;. Then ¢(a1---a,) = (b ---b.)(2¢ -
12i). So ¢(a, ---a,) is adjacent to (by - --b;).
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Figure 5.2: The 3-dimensional Hypercube Modelled as a Cayley Graph

Conversely, if #(a;---a,) is adjacent to ¢(by---b,), then ¢(ay---a,) =
#(by - - - b, )(2¢ — 1 21) for some i. This implies that a; = b; for ¢ # j and a; #
b;. Hence, a,---a, is adjacent to b, ---b,. Therefore, ¢ is an isomorphism.
Figure 5.2 is the Cayley graph version of the 3-dimensional hypercube.

One drawback of the hypercube is that the degree of each vertex is equal
to log, |V|. That means, when the network is getting bigger, the commu-
nication lines going out from the vertex will increase too. If a processor
is designed for the 4-dimensional hypercube, it cannot be used for the 8-
dimensional hypercube because four communication ports are missing from
each processor. This drawback reduces the expandibility of the network.

5.2 Symmetry

However, the hypercube has very good symmetry properties. Since the hy-
percube is a Cayley graph, it is vertex-transitive. The transposition graph
of the hypercube is a perfect matching, so it is 1-distance-transitive by
Lemma 4.13. As mentioned before, the hypercube is in fact distance-
transitive [2].
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Lemma 5.3 The r-dimensional hypercube has diameter r.

Proof: For any pair of vertices u and v in Q,, we can flip the necessary bits
of u one by one to get v. This also gives a route from u to v. Thus, the
diameter must be at most r. Since from 00- --0 to 11 --~1 we have to flip at
least r bits, the diameter must be at least ». The result follows. O

Theorem 5.4 The hypercube is distance-transitive.

Proof: From the above Lemma, we know that the diameter of Q; is r. Since
Q- is a Cayley graph, it is vertex-transitive. Let u = p;p; -- - p, be any vertex,
where p; = (2j-1 2j) or p; = e. Let z and y € Ni(u), 0 < ¢ < r. There are
precisely 7 transpositions either in  or in u but not in both. Simlarly, there
are precisely ¢ transpositions either in y or in u but not in both.

Let p1,px2,---,Pki be the transpositions either in = or in u but not in
both, and pn,pia, ..., pi be the transpositions either in y or in u but not in
both. Let px; = (ri; rxj+1) and pi; = (81 815+1) for 1 < j < i. Consider the
mapping 3 : {(1 2),...(2r-1 2r)) = ((1 2),...(2r-1 2r)) defined by

B(v) = u(rrr sn)(rrka+1 su+1)(rez si2)(Tha+1 si2+1) -+
(rii st)(rei+1 s+1)uv(rer sn)(r+1 sn+1)
(re2 si2)(rha+1 si2+1) - -« (Thi 80 (rai+1 si+1).

Notice that every components in 3 is the inverse of itself. We have

u(rkj Tkj+1) ift = Sk;j
ﬂ(u(t t+1)) = u(skj skj+1) ift = Tkj
u(t t+1) otherwise

and
B(u(ty ti+1)(t2 ta+1) -+« (tm tm+1))

= Au(ty t1+1))uB(u(ts t1+1)) - - - uB(u(tm tm+1)).

Also, 8! = 8. Clearly J is a permutation on the vertices in Q. If vy is
adjacent to v; in @, then there is precisely one transposition in one of the
v;’s but not in both. There is also precisely one transposition in one of the
B(v;)’s but not in both. Hence, 3 is an automorphism. Since f(u) = u and
B(z) =y, B € A,. By Lemma 4.5, Q; is distance-transitive. a
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5.3 Connectivity

To be a good network, a graph should have very high connectivity. The
connectivity tells us how many nodes can be malfunctioned and the network
is still connected. It also tells us how many node-disjoint paths between
a pair of nodes. The more node-disjoint paths the network has, the more
subproblems can be handled simultaneously.

Definition 5.5 Let b be a binary digit. we define

11 ifb=0.

Lemma 5.8 An n-regular graph has connectivity n if for any pair of vertices
u and v, there are n vertez-disjoint paths joining them.

Proof: If any two vertices are joined by n vertex-disjoint paths, then we
should remove at least n vertices to disconnect the graph. However, G is
n-regular, so G has connectivity n.

Note: the converse of the lemma is also true (See the Menger’s Theorem
[3]), but we will not prove it here. : a

Theorem 5.7 The r-dimensional hypercube @), has connectivity r.

Proof: In the 2-dimensional hypercube, any pair of vertices are joined by two
vertex-disjoint paths. We assume that any pair of vertices of @, are joined
by r vertex-disjoint paths. Since Q,4; is vertex-transitive, it is sufficient to
show that there are r + 1 vertex-disjoint paths joining the vertex 0---0 and
by---by41, where b; € {0,1},1 <1 <r+1.

Case 1: The bit b,;; = 0. Let S be the subgraph induced by the vertices
whose (r + 1)th bit is 0, and let T be the subgraph induced by the vertices
whose (r + 1)th bit is 1. S and T are r-dimensional hypercubes. There are
r vertex-disjoint paths from 0---0 to b, --- 4,0 in S. There is a path P from
0---01 to by ---b,1 in T. Therefore, we have a path starting from 0-- -0,
passing through P and ending at b;---5,0 in Q,41. Together with the r
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vertex-disjoint paths in S, we have r + 1 vertex-disjoint paths from 0---0 to
by -+ 5,0.

Case 2: The bit b,,; = 1. We use the same definitions of S and T. There are
r vertex-disjoint paths from 0---0to b, ---5,0in S. We remove b, - - - 5,0 from
each of these paths. Let P, be the path from 0---0 to by - - b;_; b;b;4, - - - b,0,
1 <1 < We extend P; by adding the 2-path b;---b;_1b;b;4, - - - 6,0,
by - bi1bibiyy b1, by b.-_l_b.-b;H co-b1forl <t <r-—1. Weextend P,
by adding the 2-path b, - <+ b,-16,0, by - - - b,_1 5,0, by - - - b._1b,1. We translate
P, to T by changing the (r + 1)th bit of each vertex to 1 and call it P!. Then
we have the path from 0-- -0 passing through P/ to 4, --- b,_,5,1. Hence, we
have r + 1 vertex-disjoint paths from 0---0 to b, --- b,1. By Lemma 5.6, the
result follows. o

Corollary 5.8 The edge-connectivity of the r-dimensional hypercube is r.

Proof: Suppose the edge-connectivity is k, where k¥ < r. Let T be the set
of k edges whose removal will disconnect the graph. Then for each edge in
T we can remove one of the incident vertices to disconnect the graph. But
it is a contradiction. Since the r-dimensional hypercube is r-regular. The
edge-connectivity must be r. 0

5.4 Other Known Results

It is not difficult to see that the hypercube is bipartite. We can get the
bipartition by letting one of the partition sets be the set of vertices with an
even number of 1’s.

Definition 5.9 Let G = (X,Y) be a bipartite graph. If for any pair of
vertices, z € X and y € Y, there is a Hamilton path from z to y, then G is
said to be Hamilton-laceable.

Definition 5.10 Let G be a graph. If for any pair of vertices z and y in G,
there is a Hamilton path from z to y, then G is said to be Hamilton-connected.
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Theorem 5.11 The r-dimensional hypercube is Hamilton-laceable.

Proof: @2 is Hamilton-laceable. Assume Q, is Hamilton-laceable. Let u =
U1Uz ... Ur4; and V1V;...Vr41 be any vertices in Q.,,, where u;,v; € {0,1}
for 1 < i < r. Suppose u; # v;. Let P, be a Hamilton path from
Uy oo Ui Uil -« - Upgp EO Uy oo Ui Wiyy ... Upyp 1D @, and P; a be a Hamil-
ton path from ;... u;_1Ti41 ... Urpy tO V1 ... Vi_1Vig1 . .. Uryy 1D another copy
of @, (These exist because uy ... ui—1Uiyy ... Ups1 a0d V3 ... VioVigy ... Vrpy
differ in an odd number of bits.)

Now we insert u; in the i¢th position for every vertex in P, and denote
the new path as P(u;). We also insert v; in the ith position for every vertex
in P, and denote the new path as Py(v;). Clearly P(u;)P2(v;) is a Hamil-
ton path from u;...u,41 to v1...0r41 in @,41. By induction, the result
follows. 0

Corollary 5.12 The r-dimensional hypercube ts hamiltonian.
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Chapter 6
The Butterfly Network

The butterfly network is one of the modification of the hypercube. It in-
herits some of the properties of the hypercube, but its degree is bounded.
In fact, the butterfly graph is a 4-regular graph. Like the hypercube, the
butterfly network can simulate most of the networks with bounded degree
with acceptable slowdown [9].

6.1 Modelling

The following definition of the butterfly graph is taken from [9)].

Definition 6.1 Let G(V, E) be a graph with |V| = r2" and |E| = r27*! for
some positive integer r. The vertices in G are labelled as (w,¢), where w is a
binary sequence of length r that is called the row of the vertex, and ¢ is the
level of the vertex (1 < i < r). Two vertices (w,1) and (w’,?') are adjacent
if and only if either

l. w=wand?=ix1 (modr) or

2. w and w' differ in precisely the i'th bit when ¢/ =i+ 1 (mod r) or w
and w’ differ in precisely the ith bit when ¢’ =¢ — 1 (mod r)

G is called the r-dimensional butterfly graph and denoted as B,.
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row 000
row 001
row 010
row 011
row 100
row 101
row 110
row 111

Figure 6.1: The 3-dimensional Butterfly Graph
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Figure 6.1 exhibits the 3-dimensional butterfly graph. Notice that if we
identify the vertices in the same row, and remove all the loops and multiple
edges, we will get an r-dimensional hypercube.

Proposition 8.2 Let B, be an r-dimensional butterfly graph. If G is the
graph obtained from B, by identifying the vertices in the same row and re-
moving all the loops and multiple edges, then G = Q,.

Proof: This follows directly from the definitions of the butterfly graph and
the hypercube. o

Again, the butterfly graph can be modelled as a Cayley graph. But the
group structure will not be as simple as the one for the hypercube. For the
butterfly graph, each vertex has two coordinates. The first one is related to
the one in the hypercube. Thus, we will extend the group for the hypercube
to the one for the butterfly graph [11, 1].

Let T, = {(p,i):p=pr--pr, p € {(2j-125): j=1,...,r}U{e}, 0 <
i <r—-1}and S = {(1 2),(3 4),...,(2r-1 2r)}. Define r; : S — S by
7i((27-1 25)) = (2(:+5)-1 2(¢+7)) reduced modulo 2r and 7;(e) = e. Clearly,
rok(p) = mi(ma(p)):

Define a binary operator - as follows:

(p,8) - (P ') = (pr- - Pryt) - (P -+ - PL,3") = (P1 - - Prmi(p)) - - - i), 2 +47),

where 1 + ¢’ is reduced modulo r.

Proposition 6.3 We have that (I',,-) is a group.
Proof: Note that

[(p,) - (7, 3)] - (P",4")

[y pry) - (-, 0] (7447)

(pr-- - pemi(p)) - - mi(pL), i +4') - (", 4")

(oo pemilpy) - milpr), i +9) - (- -PF03")
(pr- - pemi(ph) - - mi(P))miir(PY) - - Wi (PF), 3 + 47 +47)
(pr- - pemi(P}) - - mil(pL)mi(ma(PY)) - - - mi(man(p)), 2 + 3+ 47)
(pr-Pryi) - (P Prman(pY) - - - W (p’),z +14")
(pr---pryt) - [(Ph - 21 ) - (P -+ - B, 47)]

(p,%) - [(#,7) - (", 3")]-
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So - is associative.
Since (e,0) «(p,?) = (p,1) - (e,0) = (p, ¢), (e,0) is the identity.
For any (p,t) = (p1 - - pr, 1),

(p1p1r -+ - prpr, 0)
(e,0),

and every element has an inverse. ]

(P1+-Pry2) - (m=i(p1) - - - 7-i(pr), —1)

Now we can model the butterfly graph as a Cayley graph.

Proposition 6.4 Let I', be the group in Proposition 6.3 and S = {(e,1),
(e,7r—1),((12),1),((2r-1 2r),r—1)}. The Cayley Graph G(T',,S) = B,.

Proof: Let (w,1) be a vertex in B,, where w = a,a; - - - a, is a binary sequence
of length r. Define ¢ : B, — G(I,S) by ¢((w,1)) = ¢é({a1---a,,2)) =
(p1- pryt), where

T le otherwise.

_{ (2i-12i) ifa; =1

Let (wy,t),(wsz,12) € B, where w; = a;---a, and w; = by---b.. If
i1 # 13, then clearly ¢((w1,i1)) # ¢((ws,%2)). If wi # w,, then using the
same argument in Proposition 5.2, We have ¢({w1,11)) # ¢({w2,12))-

Let (p,i) € T. Let a; -+ - a, be a binary sequence such that

_J 1 if(2i-12)isinp
*7 ] 0 otherwise.

Then ¢({a; - - -a,,i)) = (p,). Hence ¢ is a bijection.

If (w,,1,) is adjacent to (ws,1;), then there are two cases.
Case 1: w; = wy and 3, = i3 + 1 (mod r). Then ¢((w1,%1))(e,1) =
¢((wg,3)). Thus, ¢((w1,1,)) is adjacent to ¢({ws,?2)).
Case 2: w; and w, differ in the 7;th bit and ¢; = i3 + 1 (mod r). Then
o((wy,41))((1 2), 1) = ({wa,12)). Thus, ¢({w,41)) is adjacent to ¢((w2,12)).

Conversely, if ¢({w;,%1)) is adjacent to @¢({(w3,13)), there are four cases.
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Case 1: if ¢((w1,41))(e,1) = ¢({w2,%2)), then w; = w, and i3 =4; + 1 (mod
r). Hence, (wy,%,) is adjacent to (w,, ).

Case 2: if 6((wr,i1))(e,r— 1) = ({13, iz)), then wy = wy and iz = iy +7 1
(mod r), or ¢y = i3 + 1 (mod r). Hence, (w,,1;) is adjacent to (ws,1,).

Case 3: if ¢((w1,%1))((1 2),1) = ¢({w2,72)), then w; and w, differ in the
i1th bit and ¢, = ¢; + 1 (mod r). Hence, (wq,?,) is adjacent to (w.,t3).

Case 4: if ¢((w1,21))((2r — 1 2r),r — 1) = ¢((w2,12)), then w, and w, differ
in the (z; — 1)th bit and i2 = ¢ + r — 1 (mod r). That is, w; and w; differ in
the i;th bit and ¢; = i3 + 1 (mod r). Hence, (w,%) is adjacent to (ws,3).

a

Corollary 6.5 All butterfly graphs are vertez-transitive.

Proof: Since all Cayley graph are vertex-transitive, the result follows. i

6.2 Symmetry

Although the butterfly graph is derived from the hypercube, unfortunately
it does not inherit all the symmetry properties from the hypercube. In fact,
the butterfly graph is not even edge-transitive. This means that it is not
distance-transitive or k-distance-transitive because those transitivities imply
edge-transitivity.

Theorem 6.6 Butterfly graphs are not edge-transitive for r > 3.

Proof: For r > 3, consider the r-cycle,

(00---0,1){00+--0,2)--- (00---0,r — 1)(00---0,r)(00- - 0,1).
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(00---0,1)

SV

Each edge (00---0,2){00---0,7 + 1) in this cycle lies in the unique 4-cycle,
(00---0,2)(00---010---0,7 +1){(00---010---0,2)(00--- 0,2 + 1)(00--- 0,2).
These 4-cycles are edge-disjoint. If the butterfly graph is edge-transitive, the
edge (00---0,1)(10---0,r) must lie in an r-cycle with the same property de-
scribed above. Suppose such a cycle exists. Then (00---0,1) and (10---0,r)
are the first and the second vertex.

(00---0,1) 9\

( (10---0,r)
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The third vertex cannot be (10---0,1) because (00---0,1)(10---0,r) and
(10---0,7)(10---0,1) are in the same 4-cycle

(00---0,1)(10---0,r)(10---0,1){00- - - 0,r)(00- - - 0, 1).

Hence, the third vertex must be either (10---0,r — 1) or (10---01,r — 1).
The fourth vertex cannot be in the rth level. Otherwise, the second and the
third edge will be in the same 4-cycle (see the figure above). Similarly, the
fifth vertex cannot be in the (r — 1)th level. Otherwise, the third and the
fourth edge will be in the same 4-cycle, and so on. It forces the last vertex v,
to be in the second level. Since the path from (00---0,1) to the last vertex
v, passes through the rth level exactly once at the second vertex (10---0,r),
the first bit of the last vertex is 1. Hence, v, is not adjacent to (00---0,1).
That is, the cycle in fact does not exist. Therefore, the butterfly graph is
not edge-transitive. o

6.3 Topological Structure

Besides the properties of symmetry, topological properties are also very im-
portant in studying interconnection networks. For example, people are un-
likely to use a network with the large diameter because in general it takes
longer time to communicate. Furthermore, it may be good news for anyone
who wants to pipeline the job if the network is hamiltonian. We will now
consider the topological properties of the butterfly graph.

Proposition 6.7 The r-dimensional butterfly graph has girth 4, for r > 4.

Proof: Since (00---0,1)(010---0,2)(010---0,1)(00---0,2){(00---0,1) is a
4-cycle, the butterfly graph has girth at most 4. Now suppose there is a
triangle in the butterfly graph. Let (wy,i;), (ws,12) and (ws,i3) be the
vertices of this triangle. Then |i; — i3] =1, Jia — i3] =1 and |} —43] = 1
which is impossible unless r = 3. o

Before determining the diameter of the butterfly graph, we present a
simple routing algorithm that is completely based on the definition of the

butterfly graph.
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Let s = (w,t) be the source node and t = (w’,i’) be the destination.
Let w = ajaz---a, and w' = biby---b,. If ¢ = ¢1c;---¢,, then denote
flip(q, k) = crcp -+ - ck—1CkChyy -+ ¢, Where

= 0 ifck=l
k=11 ife =0.

Algorithm 6.1: Simple Routing Algorithm for Butterfly Graph

The level indices are reduced modulo r and in the range from 1 to r.
1. Let p—1,l — 0 and ¢o — w.
22 l~1l+1,pe—p+1.

3. If ap # by, then
qQ — fIiP(QI-uP),

else
qQ — qi-1.
4. If p # 1 then go to step 2.
5. If (i —1) < (i — ') then
the route is:

(wai)(th + 1)<q2’i + 2) e (qrai><q”i + 1) e <qrsil)’

else

the route is:

(‘w,i)<Q1,i + 1>(QQ,1 + 2) T <qv'si)(qr9i - 1) e <q1"i’>‘

Example: In the 4-dimensional butterfly graph, the route from (1011,2) to
(0110, 4) will be

(1011, 2)(1011, 3)(1010, 4)(0010, 1)(0110, 2)(0110, 1)(0110, 4).
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The above algorithm changes the bits in w one by one to get w’. Then
it continues the path in the row w' to get the correct level ¢'. The algorithm
actually works. Notice that the loop from step 2 to step 4 runs r times. In
step 5, it augments the path with at most l%f vertices. Thus the length of

the route that the algorithm produces is at most r + l%J = la—;J With this

result, we can show that the diameter of the butterfly graph is l%’J

Theorem 6.8 The r-dimensional butterfly graph has diameter l%J

Proof: By Algorithm 6.1, we know that the length of the path between any
two vertices is at most l%}] , 80 the diameter of the butterfly graph is at most

l:?"J too. Now consider the shortest path from (00---0,r) to (11---1, Lg])
e must change all 0’s of the source to 1's and move from level r to level
' 3r

l%J No matter how we move, we have to take at least r + l%J = l?J steps.

Thus, the diameter of the butterfly is at least [%’J The result follows. 0O

Algorithm 6.1 is not so good because it always produces a walk of length
at least r. Of course, we can identify the repeated vertices and remove the
vertices in between to make the walk be a path to get some improvement.
However, the result is still not a shortest path in general. For example,
consider a path between (000,3) and (011,1) in the 3-dimensional butterfly
graph. Figure 6.2 shows that Algorithm 6.1 does not give the shortest path.

Before presenting a shortest path algorithm, we consider a simple opti-
mization problem. Given an n-cycle

Vp€1V1€2V3 * - * Un—2€5n_2Un-1€x0,

where vg, v1,...,Vn_1 are vertices and ej, e, ...€, are edges, let A C E be
a subset of the edge-set, and s,t € V be any two vertices. The problem is
to find a shortest walk from s to ¢ so that it covers all the edges in A (See
Figure 6.3).

Lemma 6.9 The shortest walk covers each vertez at most twice.

Proof: Suppose the walk covers the vertex v three times. Then the walk will
look like one of the diagrams in Figure 6.4.
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1 2 3 1 2 3

row 000

row 001

row 010

row 011
[ ® ° row 100 o L ®
° ° ° row 101 o [ °
® e L row 110 o o ®
® ® o row 111 o [ o

The route determined by Algorithm 6.1 A shortest route

Figure 6.2: The Routes from (000, 3) to (011,1)
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edgein A

Figure 6.3: Diagram for the Shortest Walk Problem

Figure 6.4: Diagram for Lemma 6.9
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Figure 6.5: Possible Shortest Walks

Clearly, the walks from a to b are redundant in all cases. If we remove all
the redundant parts, we can get a shorter walk that covers v at most once. If
the walk covers the vertex more than three times, we can use this operation
repeatedly to reduce the number of times the walk covers the vertex. a

The walk has to start from s and stop at t, so it must contain a path
from s to t. Based on Lemma 6.9, the shortest walk will look like one of the
diagrams in Figure 6.5.

Suppose A = {e;,,€i;,..-,¢€,}. Then the walk we need to consider will
be sPye;, P1 Pyt Pse; P as illustrated in Figure 6.6.

Note that P, and P; may be empty and P, and P; are the reverse paths of
Py and P,, respectively. There are in fact k walks to check, and the shortest
one will be the shortest walk from s to ¢ that covers all edges in A.
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b

Figure 6.6: A Walk Covering All Edges in A

Now we can model the shortest path problem in the butterfly graph as
the above optimization problem. Given any two vertices (w,?) and (w’,’)
where w = aya;...a, and w' = b1by...b,, let

C = vre v1€3V2€3 -+ - €r_Ur_2€,_1VUr_1€, 0y

be an r-cycle, A= {e;: a; # b;}, s=v; and t = vy

Once we get the shortest walk in C, we can transform the solution to the
shortest path of the butterfly graph. Let

W = v, €i,vj,€i, V5855 * * - €3, Vj

where jo =i and j, = ¢/, be a shortest walk that covers all edges in A

Algorithm 6.2: The shortest path algorithm for the butterfly graph.

The level indices are reduced modulo r and in the range from 1 to r.

1. Let W = vj,€,vj,€;,vj,€i, ©tCipVspy where jo = ¢ and j, = i, be a
shortest walk that covers all edges in A
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2. Let go — w.
3. Forl=1top
if e;, € A then
q flip(ql—lail)? A—A- {eit}a

else
q < qi-1.

4. The shortest path from (w,) to (w',) is

(g0, Jo){q1, 71) - * (gp, Jp)-

Example : Consider the same example mentioned before. We want to find
the shortest path from (000, 3) to (011,1) in a 3-dimensional butterfly graph.
The associated 3-cycle is:

V2

€2 €3 A= {62,63}

Clearly, the shortest walk is vsezvzeqv;. Using algorithm 6.2, we get
(000, 3)(001,2)(011, 1)

which is the desired result.

The above algorithm works because from (w,i) to (w’,i') we have to
change w bit by bit to get w’. Each time we change one bit, ¢ will be
changed to be either i + 1 or ¢ — 1. Finally we have to make ¢ become ¢’ too.
Consider the following diagram:
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a1
er
€1
v

Ur

We want to start at row : and finish at row ¢’. If we move to the right at
row j, we can change the (7 + 1)th bit (e;4+; is marked) or keep it the same
(ej+1 is not marked). If we move to the left at row j, we can change the jth
bit (e; is marked) or keep it the same (e; is not marked). It is exactly the
shortest walk problem that we have discussed.

Of course, Algorithm 6.1 is much easier to implement. It is not necessary
to pre-determine the route before the node sends the message. This also
means that no extra memory is required to store the route if Algorithm 6.1 is
used. Thus, there is some trade-off between Algorithm 6.1 and Algorithm 6.2.

6.4 Hamilton Cycles. and Hamilton Paths

Next we show that the butterfly graph is hamiltonian and discuss an al-
gorithm to determine a Hamilton cycle. The following is an algorithm to
determine a Hamilton cycle in butterfly graphs.

Algorithm 6.3: Hamilton cycle algorithm for butterfly graphs

The level indices additions are reduced modulo r and in the range from
l1tor.

1. Set (wo,20) « (00---0,7).

2. Forl=1tor2"

et k=d 0 ’ if i =00---0
¥ =1\ maz{j: jth bit of w;_; is 1} otherwise.

If 3y_;, < k then
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W — wi_y, i — 4o — 1,
else
wy — flip(wioy,4i-1), 0 — 41 — 1.

3. The Hamilton cycle is
(wo, io)(wl, i) - (wrer, ir2')-

Figure 6.7 is a Hamilton cycle of the 5-dimensional butterfly graph gen-
erated by Algorithm 6.3.

Theorem 6.10 Algorithm 6.3 generates a Hamilton cycle of the butterfly
graph and hence, all butterfly graphs are hamiltonian.

Proof: We need to show that Algorithm 6.3 generates all vertices in the but-
terfly graph. Suppose we start at the vertex (a; - - - a,-10,r). Algorithm 6.3
will generate the following:

(ay--ar_11,1){ay - apy 1,7 = 1){ay - @y l,r — 2) -+

<{ay---a,11,1,7)(ay - ap_1 0,1 — 1).

So all vertices in row a;---a, are generated. The path also contains the
vertex, (a;---a,-;0,7) and returns to (a;---a,—10,r — 1). Assume that
if we start at the vertex (a;---a;0---0,7), then Algorithm 6.3 will gener-
ate the path that contains all vertices in row ay---@a;bj41--- b, by € {0,1}
and (a,---a;0---0,!), where j + 1 < I < r. Also the path will return to
(ay---a;0---0,7).

Now suppose we start at (a;---aj—10---0,r). Then by the assumption,
Algorithm 6.3 will generate the path that contains all vertices in row
a - -a;-10bj41---be, b € {0,1} and (ay---@;—10---0,1), where j +1 <
| < r. The path will return to (a;---a;—10---0,5). The path will continue
to (ay---@j-110---0,5 —1){ay---a;~110---0,7 —2) ... {ar---a;110---0,7).
Then by the assumption again, Algorithm 6.3 will generate the path
that contains all vertices in row a;---a;—11b;41---b,, b € {0,1} and
(ay---a;-110---0,1), where j + 1 < [ < r. The path will then return to
(ay-++-a;—110---0,7) and then it continues to (a,---a;—10---0,5 — 1). By
induction, if we start at (00---0,r), Algorithm 6.3 will generate all vertices
in the butterfly graph.
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E==)

Figure 6.7: A Hamilton Cycle in the 5-dimensional Butterfly Graph
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The butterfly graph is not only hamiltonian, but also hamilton-connected
for odd dimension and hamilton-laceable for even dimension. We are going
to show this stronger result [12].

Theorem 6.11 The butterfly graph B, is Hamilton-laceable when n is even.

Proof: First we show that if B._; is Hamilton-laceable, then B, is also
Hamilton-laceable. Let R,_;(z,y) be the rows zybs---b,, where b; € {0,1}
for all 3 < ¢ < r. Since B, is vertex-transitive, it is sufficient to show that
there is Hamilton path from (0---0,r) to any vertex v = (a, - - - a,, ), where
[ is odd. ,
Case 1: The bits a;a; = 00. If | > 3, then let P,_; be a Hamilton path
from (0---0,r — 2) to (as---a,,{ —2) in By_y. Ifl < 3, then let P._,
be a Hamilton path from (0---0,r — 2) to (a3:--a,,1) such that the edges
(a3-:-a,,r —2)(@z-:-a,,1) and (a3---a,,r —2){as---a,,1) are not in P,_,.
First we construct a path in R,_3(z,y) from P,_;. We relabel each vertex
(by : =~br_2,1) in P,_5 to (zyby - - b,_2,7 +2) and augment level 1 and level 2
to P,_;. We replace the edge (zyb, - - - b,—3,7 + 2)(zyb; - -- b,_3,1 + 2) by the
path

(bel r -2 )(zyb, et b,-_g, 2) (zybl T br—?a 1)<zybl T br—2s 1‘),

and replace the edge (zyb; -+ - b,_,, r)(iybl -+ «by_2,3) by the path

(xybl e br—2, 3)<$ybl e br—2’ 2) (bel e br—2a )(zybl r—27 )

If | =1, we also put a path

(xybl e br-2a 3) (bel 1'—2’ )(xybl r—2, )

(it is possible because of the choice of P,_;). Let the resultant path be
5--2(0,0).

Using Algorithm 6.3, we can get a path from (zy0 - -0,r) to (zy0---0,2)
which contains all but (zy0---0,1) in R,_2(z,y). Therefore, by putting the
edge (zy0---0,1){(zy0---0,2), we get a Hamilton path from (zy0---0,r) to
(zy0---0,1) in R,_3(z,y). We denote this path by T,_5(0,0).

Since P._, is a Hamilton path, it must use an edge whose endpoints are
in the first and the rth level. That means S,_; contains an edge whose

50



o Sr-2(0,0) \f
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e maen {08 5
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Tr—2(110)

T,-a(1,1)

!

Figure 6.8: Diagram 1 for Theorem 6.11
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T,-2(0,0)

Sr—2(0,1)

T,-2(1,0)

Tr-2(1,1)

Oy

Tr-2(0,0)

Tr—2 (0- 1)

Sy-2(1,0)

T,_2(1,1)

ajaz2 =11

i e o
oo
oo o

Figure 6.9: Diagram 2 for Theorem 6.11

T;-2(0,0)

Tr-2(0,1)

Tr—2(1,0)

Sr-2(1,1)

endpoints are in the first and the second level. Let f be that edge. Now we

connect S,_; and three T,_;’s together to get P, as Figure 6.8 shown.
g g g

For the isolated vertices {(00d; - - -d,_2,1) and (00d, - - -d,_2,2).
move the edge (01d, - - -d,—2,1)(01d; - - - d,_2,2) and add a path

We re-

(01d; -+ dy—3,1)(00d; - - - dy_3,2)(00d; - - - dy_3,1)(01d, - - - dy_3,2).

Notice that P, also satisfies the restriction of P,_3.

Case 2: The bits aja; # 00 and azas---a, # 0---0. We first connect the
paths as Figure 6.9 shown. Then we use the same method as in case 1 to
join the isolated vertices into the path. Again the resultant path satisfies the

restriction of P,_s.
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Case 3: The bits aja; # 00 and a3---a, = 0---0. Let ?,_g(z,y) be the
path from (zyl---1,r) to the vertices in row zy0---0 in R,_3(z,y) obtained
by reversing the rows of S,_5(z,y) which starts from (zy0---0,r) to the
vertices in row zyl---1. We define T,_g(z,y) in a similar manner. We
also let So,—2(z,y) be the path from (zy0---0,r) to (zyl---1,1). Now we
connect the paths as Figure 6.10 and join the isolated vertices to get P,.

ajaz =01
A0 o
H Tr—2(0v0)
.-
o S,-3(0,1)
oy
L N .—T
. . SO,"—?(lvo)
i\
e\0 o
\ ‘ Tr—?(lvl)
e . 2
—————

a1az3 = 10

o0 /.

37 .

i

._

@
e
y

7

ol

so.r-2 (0’ 0)

Tr—2(0,1)

S$,-2(1,0)

Tr—2(1,1)

ajaz =11
o0 ®
e 0
o—
T
o
. J ®
[

Figure 6.10: Diagram 3 for Theorem 6.11

S0,r—2(0,0)

T,-2(0,1)

Tr-2(1,0)

Sr—2(1,1)

Notice that all of P, satisfies the restriction of P,_;. When r = 2, we
have the following Hamilton paths.

E
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By induction, the result follows. (m]

Theorem 6.12 The Butterfly graph B, is Hamilton-connected when r is
odd.

Proof: we will use the notation in Theorem 6.11. The proof is basically
the same as Theorem 6.11. Suppose B,_; is Hamilton-connected. We want
to find a Hamilton path from (0...0,7) to any vertex (a;---a,,l). The
same procedure in Theorem 6.11 will be use to get the Hamilton path in
B,. There is one exception: | = 2. When! = 2 and a3---a, # 0---0.
We let P,_; be the path from (0---0,r — 2) to (as---a,,r — 2) such that
it does not have the edges (az-:-a,,1){az---a,,r — 2) and (az-:-a,,r —
2)(@---ar,1) . Then we construct S,_3(z,y) as before and add a path
(zyaz---a,,r){zyaz---a,1)(zyaz -+ a,,2). The rest will be the same as
Theorem 6.11.

Ifl=2and az---a, = 0---0, the we let S,_(z,y) be the path from
(zy0---0,7) to (zyl---1,r). We also let Sp,-2(z,y) be the path from
(zy0---0,7) to (zyl---1,1). Then we connect the paths as Figure 6.11
and Figure 6.12 shown.

Notice that all P, satisfy the restriction of P,_,. For the Hamilton paths
starting from (000,3) in B;. We can use the following S;(z,y) to generate

them. _
| I L
SR IR SRR S
By induction, the result follows. o

6.5 Connectivity

Unlike the hypercube, the butterfly graph has the bounded connectivity be-
cause of its fixed degree.

Theorem 6.13 The connectivity of r-dimensional butterfly graph is 4.
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Figure 6.11: Diagram 1 for Theorem 6.12
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Figure 6.12: Diagram 2 for Theorem 6.12
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Proof: Let u, v be any two vertices in B,. Since B, is vertex-transitive,
we can assume that u = (0---0,7). Using the Algorithm 6.3, we can get
a Hamilton cycle (0---0,7)AvB(0---0,7). If A or B is empty, then B, —
{(0---0,r),v} is connected. We assume that both A and B are non-empty.
Then (0---01,r — 1) € A and (10---0,1) € B. Consider the paths
P :(0---01,r—1)(0---01,7)(10---01,1)(10--- 01,2)--- (10---01,r—1)
(10---0,7)(10---0,1).
Py {0---01,r — 1){0--- 011, r—2) S(01---11,1)(11--- 1, 7)
(11---10,7 — 1)+ (10---0,1).
Py:(0---01,r —1){0--- 0L, r—2) +{0-+-01,1)(10--- 01,r)
(10---0, r—l)(lO 0,7 —2)---(10---0,1).
Those are the vertex-disjoint paths from (0---01,r—1) to (10---0,1). There
must exist an edge from A to B. That is, B, — {(0---0,r),v} is connected.
Therefore, the connectivity of B, is at least 3.
Let u, v and w be any three vertices in B,. Again, we can assume that
u = (0---0,r). Using Algorithm 6.3 and relabelling v and w if necessary, we
can get a Hamilton cycle (0--:0,r)AvBwC(0---0,r). If any two of A, B
and C are empty, then B, — {(0---0,r),v, w} is still connected. If only B is
empty, then we can use the same argument above to show that the graph is
still connected. Suppose only A is empty. Then B contains (0---01,r — 2)
and C contains (10---0,1). Consider the paths
Pi:(0---01,r —2){0---011,r — 1)(10--- 011,1)(10--- 011,2) - - -
(10---011,r — 2)(10---01,r — 1){(10--- 0,7){10---0,1).
P:{(0---01,r—2){(0---0101,7 — 3) -- (01 -101,1)(11-- - 101, r)
(11---100,r — 1)(11---100,r — 2)(11---1000,r — 3)---(10---0,1).
P;y:(0---01,r —2)(0-- 01 r—3).--(0-- Ol 1)(10---01,7)
(10+--0,r — 1)(10+--0,r — 2)---(10---0,1).
Those are the vertex-disjoint paths from (0- - 01 r—1)to (10-.-0,1). There
must exist an edge from B to C. That is, B,—{(0---0,r),v, w} is connected.
Suppose only C is empty. Then A contains (0---01,r—1) and B contains
(110---0,2). Consider the paths
P, :{0---01,7 —1)(0---01,r)(10---01,1)(110---01,2) - - -

(110---01,r — 1)(110--- 0,7)(110--- 0,7 — 1) --- (110---0,2).

Py:{0---01,7 —1)(0--~011,r —2)--- (01---11,1)(11--- 1,7)
(11---10,r — 1) ---(110---0,2).

Py:{0---01,r —1)(0---01,r —2)---(0---01,1)(10--- 01, )
(10---0,r —1)(10---0,r —2)--- (10---0,2){110--- 0,1)(110---0,2).
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Those are the vertex-disjoint paths from (0---01,r — 1) to (110---0,2).
There must exist an edge from A to B. That is, B, — {(0---0,r),v,w}
is connected.

Finally, suppose all A, B and C are non-empty. Then (0---01,r—1) € A
and C contains (10---0,1). We can use the three vertex-disjoint path from
(0---01,r—1) to(10---0,1) discribed above to show that there is a path from
A to C. If there is an edge from A or C to B, then B, — {(0---0,7),v,w}
is connected. Otherwise, since the connectivity of B, is at least 3, either
(0---0,r —1) or (0---0,1) is in B. For the first case, we have the following
three vertex-disjoint paths from (0---01,r — 1) to (0---0,r — 1):

P:{(0---01,»—=1)(0---01,7)(0---0,r — 1).

(0---01,7 — 1)(0---011,r — 2){(0--- 011,r — 1)(0--- 010,r)
(0---010,1)---(0---010,7 — 2)(0--- 0,r — 1).

(0---01,r = 1)(0---01,r = 2)---(0---01,1)(10--- 01, r)
(10---01,r —1)(10---0,r)(0---0,1){(0---0,2)---(0---0,r — 1).

For the second case, we have the following three vertex-disjoint paths
from (0 01,7 —=1) to (0---0,1):

0--

:(0---01,7 = 1)(0---01,r)(0---0,r —1)(0---0,1).
:(0---01,7 — 1)(0--- 01, r——2) +(0---01,1)(10---01,r)
(10---01,r — 1) .- ( 0,7){(0---0,1).
:(0---01,r=1)(0-- 011 r—2)---(01---1,1)(01 -1,2)
(0101---1,3)---(010---0,r)(010---0,1)(010---0,2) (0 0,1).
Hence, there must be a path from A to B. B, — {(0- ) v,w} is
connected. Since B, is 4-regular, it has connectivity 4. i

Corollary 6.14 The edge-connectivity of r-dimensional butterfly graph is 4.

Proof: Since B, is 4-regular and has connectivity 4, the result follows. 0O
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Chapter 7

Cube-connected-cycles

In the previous chapter, we discuss an extension of the hypercube, the but-
terfly graph. It not only inherits some properties from the hypercube, but
also has bounded degree. In this chapter, we will discuss another extension
of the hypercube which also has bounded degree. Consider the following
operation:

Let v be a vertex of a hypercube @,, r > 3. We replace each vertex by an
r-cycle as illustrated above. Then the resultant graph will become a 3-regular
graph and is called the r-dimensional cube-connected-cycles. Figure 7.1 is a
3-dimensional cube-connected-cycles.

7.1 Modelling

The following is the formal definition of r-dimensional cube-connected-cycles

(9].
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Level

row 000
row 001
row 010
row 011
row 100
row 101
row 110

row 111

Figure 7.1: The 3-dimensional cube-connected-cycles

Definition 7.1 Let G(V, E) be a graph with |V| = r2" and |E| = 3r2"~! for
some positive integer r. The vertices in G are labelled by (w,1), where w is
a binary sequence of length r that denotes the row of the vertex and ¢ is the
level of the vertex (1 <i < r). Two vertices (w,i) and (w',1') are adjacent
if and only if either:

l. w=w"and ¢ =i+ 1(mod r) or
2. w and w’ differ in precisely the ith bit and ¢’ = 1.
The graph is called r-dimensional cube-connected-cycles and is denoted as

CCC,.

It is not suprising that cube-connected-cycles are also Cayley graphs.
By comparing the cube-connected-cycles and the butterfly graphs, we can
discover some similarities between these two classes of graphs. In fact, the
group used to generate the cube-connected cycles is exactly the one for the
butterfly graphs (11, 1].
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Proposition 7.2 Let T, be the group in Proposition 6.3 and S = {(e,1),
(e,r-1),((1 2),0)}. The Cayley graph G(T',,S) = CCC,.

Proof: Let (w,i) be a vertex in CCC,, where w = a,ay---a, is a bi-
nary sequence of length r. Define ¢ : CCC, — G(T,S) by ¢({w,1)) =
é((ay1:--ar1)) =(pr--pr,i), where

{ (2i-12i) ifa;=1

e otherwise.

"=

We have already shown that this mapping is a bijection in Proposition 6.4.
Let {(wi,11), (ws,12) € CCC,, where w; = a;---a, and wy = by---b,. If
(wn, 1) is adjacent to (wy,1;), then there are two cases.

Case 1: w; = wp and i; = i3+ 1 (modr). Then ¢({wy,21))(e,1) =
#({ws,13)). Therefore, ¢({w,,11)) is adjacent to ¢({ws,?3)).

Case 2: w; and w, differ in the ¢;th bit and ¢; = i3. Then ¢({w1,11))((1 2),0)
= @(ws,12). Thus, ¢({w1,41)) is adjacent to ¢((wa,2)).

Conversely, if ¢((wn,%1)) is adjacent to ¢((wz,?2)), there are three cases.

Case 1: If ¢((wy,1))(e, 1) = é({w2,?2)), then wy = wy and i3 =4, + 1 (mod
r). Hence, (wy,1,) is adjacent to (wa,13).
Case 2: If ¢({(wy,21))(e,r~1) = ¢({w2,173)), then wy = w; and iz = 43 +7—1
(mod r), or i; = i3 + 1 (mod r). Hence, (wy,%,) is adjacent to (wz,?3).
Case 3: If ¢({wy,141))((1 2),0) = ¢({w2,72)), then w, and w; differ in the
i1th bit and i, = i;. Hence, (w;,4;) is adjacent to (w,,1,).

This shows that ¢ is an isomorphism. O

Corollary 7.3 All cube-connected-cycles are vertez-transitive. O

7.2 Symmetry

As with the butterfly graph, the cube-connected-cycles is not edge-transitive.
This also means that the cube-connected-cycles cannot be distance-transitive

or even k-distance-transitive.
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Figure 7.2: Diagram 1 for Theorem 7.4

Theorem 7.4 The CCC, is not edge-transitive for r > 3.
Proof: Consider the r-cycle of row (00.- - 0) when r # 8 (figure 7.2.)
(00---0,1)(00---0,2)---(00---0,r —1)(00---0,7)(00---0,1).

Each edge (00---0,2)(00-~-0,¢ 4+ 1) in this cycles lies in the unique 8-cycle

(0---0,2)(0---010---0,2)(0---010---0,2 + 1)(Q--- 0110--- 0,2 + 1)

i-1 i-1 i-1

(0---010---0,4)(0---010---0,2)(0---010--- 0,2 + 1)(0--- 0,7 + 1)

i-1 i :

(0---0,1).

If the cube-connected-cycles is edge-transitive, then we can find an au-
tomorphism that maps the edge (0---0,1){(0---0,2) to the edge (0--- 0,7 —
2)(0---0100,r — 2). Thus, the edge (0---0,r — 2)(0---0100,r — 2) must
lie in an r-cycle with the same property. Let W be this r-cycle. The edge
(0---0,r —2)(0--- 100, —2) lies in two 8-cycles (see figure 7.2). If the edge
g is in W, then

(0---0100,1)(0- - - 0100,2) --- (0 - - 0100, )
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Figure 7.3: Diagram 2 for Theorem 7.4

will be the 8-cycle containing g. Similarly, if the edge h is in W, then the
same cycle

(0---0100,1)(0- - - 0100,2) - - (0 - - 0100, r)

will be the 8-cycle containing h. Hence, r must be 8, but it is a contradiction.

When r = 8, there are two types of 8-cycles. We call the 8-cycle of
each row be the 8-cycle of type I, and the 8-cycle lying in more than one
row be the 8-cycle of type II. Two 8-cycles are said to be adjacent if they
have an edge in common. Consider those 8-cycles of type II in Figure 7.2
again. Any two disjoint 8-cycles of type II have only one common adjacent
8-cycle of type I which is the cycle of row 00---0. If the cube-connected-
cycles is edge-transitive, again we want to find an automorphism that maps
the edge (0---0,1){0---0,2) to the edge (0---0,r —2)(0---0100,r —2). In
this case, we can map the cycle (0---0,1)(0---0,2)---(0:--0,r){(0---0,1)
to one of the cycles R or S (see figure 7.3). If R is the image, then the
disjoint cycles S and T have two common adjacent cycles R and V. This
means that this case is impossible. If S is the image, then the disjoint cycles
D and E have two common adjacent cycles U and S. Again it is impossible.
Hence, it is impossible to map the edge (00---0,1)(00---0,2) to the edge
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(00---0,7—2)(00--- 0100, —2). That is, none of the cube-connected-cycles
are edge-transitive.

7.3 Topological Structure
We now consider topological properties of the cube-connected-cycles.

Proposition 7.5 The r-dimensional cube-connected cycle has girthr forr <
8 and girth 8 for r > 8.

Proof: Consider a cycle (wy2,)(wat2) - - - (wiie)(wyy). If all w;’s are the same,
we will get a r-cycle. Since any two rows are joined by at most one edge,
it is impossible that a cycle lies in precisely two rows. Similarly, any three
rows are joined by at most two edges, so it is impossible that a cycle is lies
in precisely three rows. Suppose the cycle lies in precisely four rows. The
cycle must use at least one edge from each row. This implies the cycle must
have length at least 8.
The edge (a1 ---ar,t){a1 - a,, i+ 1) lies in the r-cycle

(al...a”O)...(al...ar,r)<a_1...ar,0)

and an 8-cycle
(@1 ai@ip1- - Ary1)(@1 - QiGig1 - - @ry b + 1){ay -+ - @iGip1 - Qry 2 + 1)
(a1~ Qi1 -~ ey )01 - Teliga -~ Gry i) (@1~ Eigr - i + 1)
(@y -+ T@igr - - Ayt + 1){01 - Ti@igr - @y 2)(@1 - - QiBig1 - - - Gpy T).
Hence, the result follows. =)

As the butterfly graphs and the cube-connected-cycles are generated by
the same group, there are some similarities between these two classes of
graphs. For instance, if we modify the simple routing algorithm for the
butterfly graph (Algorithm 6.1), we will get the following version for the
cube-connected-cycles.

Let s = (w,i) be the source node and ¢t = (w’,') be the destination,
where w = a1a2 -+ a, and W’ = b1by---b,.

Algorithm 7.1: Simple Routing Algorithm for Cube-Connected-Cycles
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The level indices are reduced modulo r and in the range from 1 to r.
1. Let pe—1,1 0, go — w and ¢y « .
2. Ifli+1 -4 < |t —1—7| then
s=1,
else
s=-1.
3. l—1+41.

4. If ap # by, then
@ — flip(q-1,p),
U =y,
else
q — qi-1,
i+ 8,
p+—p+s.
5. If p# i — s, then go to step 2.
6. If a;_, # bi_, then |
le=1+1,
q — flip(qi-1,2 — ),
4 — 1.
7. The route is
(w,1){q1,81) (g2, 32) - - - {qu )@ 3t — s){@, it — 28) - -~ (@, 7).

The idea of this algorithm is the same as that of Algorithm 6.1. It changes
the bits in w one-by-one to get w’. Then it continues the route in row w’
to get the correct level '. Notice that the loop from step 3 to step 5 in
Algorithm 7.1 runs at most 2r — 1 times. Because of step 2, the algorithm
augments the route with at most lz;_Z.J vertices if r > 4, or 1 if r = 3. Hence,
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2
when r > 4, and at most 2(3) — 1+ 1 = 6, when r = 3. This leads to the

following result [7].

the algorithm always gives a route of length at most 2r — 1 + l"—glj = lf”'_—“J,

Theorem 7.6 The CCC, has diameter [5'2'4J, when r > 4, and 6 when
r=3.

Proof: When r = 3, the length of the shortest route from (000, 3) to (111, 2)
is 6. The result follows. When r > 4, the algorithm gives a route of length
at most l%"j. Consider the route from (00---0,7) to (11---1, l%J) The
route must hit at least r rows. The route also comes across each level at least
once. The ith level is only connected to the (¢ — 1)th and (¢ + 1)th level.

This forces the route to traverse at least r — 1 + l% -1= l3'2' 4

j vertices if

the route starts from level r, ends at level l and crosses every level at least

2
once. Hence, the length of the route from (00---0,r) to (11---1, l%J) is at

least r + l-:ﬁ'z;“J = ls—'z‘—"J The result follows. (m|

Algorithm 7.1 does not give the shortest route in general. For instance,
consider the route from (0000,4) to (1100,2). Algorithm 7.1 will generate
the following route:

(0000, 4)(0000, 3){(0000, 2)(0100, 2)(0100, 1)(1100, 1){(1100, 2).
However, the shortest route is
(0000, 4)(0000, 1)(1000, 1)(1000, 2)(1100, 2).

We are now going to investigate the shortest path algorithm for cube-
connected-cycles. In fact, the idea is exactly the same as that for the butterfly
graphs. We know that if the source and the destination differ in k bits, the
route must traverse at least k rows. There is no way to reduce this number.
However, we can minimize the number of levels that the route hits. First
consider a simple optimization problem. Given an n-cycle

C =vvy vy,
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B vertexin A

K3

Figure 7.4: Diagram for the Shortest Walk Problem.

where v v, - - - v, are vertices, let A C V be a subset of the vertex-set, and
s,t € V be any two vertices. The problem is to find a shortest walk from s
to t so that it covers all the vertices in A (see figure 7.4).

This optimization problem is almost the same as that for the butterfly
graphs. In fact, we can use the same method to solve this problem. This
solution corresponds to the minimum number of levels that the route must
hit. ,

Now we can model the shortest path problem in the cube-connected-
cycles as the above optimization problem. Given any two vertices (w,?) and
(w',1"), where w = a1a3- - a, and w' = byby--- b,, let

C = MNVUV3 - Uy

be an r-cycle, A = {vk 1 ax # by, 1 <k <r},s=v;and t = vy.
Suppose we have a shortest walk in C that covers all vertices in A. Let

W = 0,05, 05,055+ * * Vi

where jo = ¢ and j, = 7/, be such a shortest walk. We can now transform the
solution to the shortest path in the cube-connected-cycles.

Algorithm 7.2: The shortest path algorithm for the
cube-connected-cycles.

The level indices are reduced modulo r and in the range from 1 to r.
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1. Let W = v;,v;,v;,0;, - - - vj, be the shortest walk of the associated opti-
mization problem.

2. Let o — w,l «~ 0, k — 0 and 7 « .
3. l—1+1.

4. If v;, € A then
@ — flip(qi-1, k), &1« jk, A — A= {v;,},

else

k‘_k+1aql‘_ql—l7il"—jk'
5. If k < p then go to step 2.

6. If v;, € A then

=141,

@ — flip(qi-1, Jp)s 2t — Jp.
7. The shortest path is

(90, %0)(q1,21){q2, %2) « - - (@1, U1).

Example: Consider the same example mentioned before. We are looking
for a shortest path from (0000,4) to (1100,2). The associated 4-cycle is
shown below.

t= V2 V3
A= {‘Ul,vg}

(%1 Vg =38

Clearly the shortest walk is W = v4v1v;. Algorithm 7.2 will generate the
path
(0000, 4){0000, 1){1000, 1){(1000, 2)(1100, 2).

which is the desired result.

68



7.4 Hamilton Cycles

The cube-connécted-cycles is again hamiltonian. The result has been proven
by R. Stong [11].

Theorem 7.7 All cube-connected-cycles are hamiltonian.

Proof: Let R; be the subgraph of an r-dimensional cube-connected-cycles
induced by the rows

0---0a;41842 - ay, 0;6{0,1}, J+1<i<r.

Suppose R; is hamiltonian. Consider R;_;. It consists of four copies of R;

which are R;(0,0), R;(0,1), R;(1,0) and R;(1,1).

The vertices (0---0zy0---0,5 — 1) and (0---0Qxy0---0,;) have degree 2
i-2 i~2
in R;(z,y). Therefore, we can let Pj(z,y) be a Hamilton path starting at
(0---0zy0---0,7 —1) and ending at (0---0zy0---0,7). Let P;(z,y) be the
-2 i-2
re\‘;erse of this Hamilton path. Then we can get a Hamilton cycle of R;_»,
namely,

PJ(O’ 0)?1(()» l)PJ(la 1)1—51(1, 0)

When r is even, R, is an r-cycle, so the result follows. When r is odd, we have
the Hamilton cycle of R._3 (Figure 7.5). By induction, the result follows.
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Figure 7.5: Hamilton Cycle on R,_3

Figure 7.6 illustrates Hamilton cycles of the 4-dimensional and the 5-
dimensional cube-connected-cycles.

Theorem 7.7 gives a recursive construction of a Hamilton cycle of the
cube-connected-cycles. In practice, we may want to have an algorithm that
can determine the next vertex of the Hamilton cycle directly. With the
algorithm, we do not need to store a Hamilton cycle in memory.

In the recursive construction, the even cases and the odd cases are sepa-
rated. In the following algorithm, we still separate it into two different cases.
For the even cases, let v = (ajaz- - - azp,t). We choose

(0...0,")(0...0,7-_ 1)...(0...0,1)(0...0,1')_
be the base cycle. The Hamilton cycle of R;_; is given by
Pj(ovo)—P-j(O’l)Pj(l’l)ﬁj(110)°

This implies that we either flip the ith bit or add 1 to ¢ (opposite direc-
tion of R,) to get the next one when the number of 1’s in aja3--ag is
odd. Similarly, if the number of 1’s in aja;--- a2, is even, we either flip
the ith bit or substract 1 for : (same direction of R,). If v is in the form

(ay--ai_azy0---0,1), s even, and zy = 00 or zy = 11, then we flip the :th

s . .
bit according to the recursive construction. Let [ = maz{j : a; = 1} and
k = number of 1’s in a; - - - az,. Hence, we flip the ith bit when ¢ > [, and ¢
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Figure 7.6: Hamilton Cycles in the 4- and 5-dimensional Cube-connected-
cycles
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and k are both even. If v is in the form (a;---a;_;zy0---0,17), s odd, and

zy = 01 or zy = 10, then again we flip the ¢th bit a.ccordir’lg to the recursive
construction. Hence, we flip the ith bit when : > | — 1, and ¢ and k are both
odd. We have the following algorithm for the even case.

Algorithm 7.3: Algorithm for generating a Hamilton cycle of CCC, when
r is even.

The level indices are reduced modulo r and in the range from 1 to r.
1. (‘wo, 20) — (OO s 0,7‘).

2. Forp=1tor2r

let [ = 0 if wpey =00---0
= maz{j : jth bit of w,_; is 1} otherwise,

let k¥ = number of 1’s in wy_;.
If k is even then
if ¢,—1 2 [ then
if 2, is even then
wp — flip(wp_1,1p-1), 1p + 1p-1,
else
Wp — Wp_1, Ip — tp-1 — 1,
else
Wp — Wp—1, Ip & Ip_1 — 1,
else
if i,—y 2 1 —1 then
if 7,_; is odd then
wp — flip(Wp_1,1p-1), 1p + 1p-1,
else
Wp — Wp-1, ip — tp-1 + 1,
else

Wp & Wp_1, tp — tp-1 + 1.
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3. The Hamilton cycle is
(wo, z'o)(wl, il) “ - (wror, irzf)-

The odd case is basically the same as the even case. Since the recursive
construction starts from R,_s3, some modifications are needed.

Algorithm 7.3: Algorithm for generating a Hamilton cycle of CCC, when
r is odd.

The level indices are reduced modulo r and in the range from 1 to r.
1. <UJO, lo) — (00 s 0,7‘)

2. Forp=1tor?"
1et1={° if wp—y =00---0

maz{j : jth bit of w,_, is 1} otherwise,
let k¥ = number of 1’s in w,_;.
If k is even then
if a,_; = 1 then
if i,-y =7 —1 then
wp — flip(Wp-1,7p-1), tp & Ip-1,
else
Wp & Wp_1, lp — tp1 + 1,
else
ifl>r~—1 then
if ip_1 =r —1 then
wp — flip(wp_1,ip-1), 1p  tp-1,
else
Wp & Wp_1, Ip — lp-1 — 1,
else

if : > [ and ¢ is even then

Wp & flip(wp—l,ip-l), tp & 1p-1,
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else
Wy & Wp—1, Ip & tpoq — 1,
else
if a,_; =1 then
if ¢,y = r then
wp — flip(wp1,1p-1), 1p — 1p-1,
else
Wp ¢ Wp—1, Ip & Ip-1 — 1,
else
if ]l >r—2then
if ip_y =7 —2 then
wp — flip(wp—1,1p-1), tp & Tp-1,
else
Wp & Wp_1, tp — 1p_1 + 1,
else
ifl-1<i<r—1and:isodd then
wp & flip(Wp-1,7p-1); 1p < tp-1,
else

Wp & Wp_1, tp — 2p—1 + 1.
3. The Hamilton cycle is

{wo, to) (wr,21) -+ - (Wrar, 2r2r).

7.5 Connectivity

Since the cube-connected-cycles has the bounded degree, the connectivity is
bounded. Using the fact that the cube-connected-cycles is hamiltonian, we

have the following result.
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Theorem 7.8 The connectivity of the r-dimensional cube-connected-cycles
s 3.

Proof: Let u, v be any two verticesin CCC,. Since CCC, is vertex-transitive,
we can assume that v = (0---0,r). Using the Algorithm 7.3, we can get a
Hamilton cycle (0---0,r)AvB(0---0,r). If A or B is empty, then CCC, —
{{(0---0,7),v} is connected. We assume that both A and B are non-empty.
Then (0 -01,7) € A and (0---0,1) € B. Consider the paths
(0 01 r)(0- - 01,1)(10-- - 01,1){10- - - 01,r){10-- - 0, 7)
(10---0,1)(0---0,1).
2+ (0 - 01 r)(O -01,r—=1)---(0---01,2)(010---01,2)
(010---01,3)---(010---01,7)(010-- -01,r)(010 -~-0,r)

(010---0,r —1)(010---0,2)(0---0,2)(0---0,1).
These are the vertex-disjoint paths from (0---01,r) to (0- -0, 1) without the
vertex (0---0,r). Since v can only disconnect one of the paths, There must
exist an edge from A to B. That is, CCC, — {(0---0,r),v} is connected.
Since CCC, is 3-regular, the result follows. a

Corollary 7.9 The edge-connectivity of the r-dimensional cube-connected-
cycles 1s 3.

Proof: The r-dimensional cube-connected-cycles is 3-regular and has con-

nectivity 3. The result follows. a

7.6 Summary

Before finishing the thesis, we make a little summary of the results that we
get in Table 7.1.
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Table 7.1: Summary of the Results

Qr B, CCC,
Cayley Graph Yes Yes Yes
Group ((12),(34),... the group the group
(r-171)) defined in defined in
Proposition Proposition
6.3 6.3
Symbol Set {(12),(3 4), {(e,1),(e,7 = 1), | {(e,1),(e,r —1),
(r-1r)} ((12),1), ((12),0)}
((2r-1 2r),r-1)} :
Transitivity distance- vertex- vertex-
transitive transitive transitive
Degree r 4 3
Girth 4 4ifr >4 min{8,r}
3ifr=3 r
Diameter r | =] |22 ]
Hamiltonian Yes Yes Yes
Connectivity r 4 3
Edge- r 4 3
connectivity
Bipartite all r r even r even
Hamilton- Yes Yes t
laceable/
connected

t As far as the author knows, the 3-dimensional cube-connected-cycles is hamilton-connected and 4-

dimensional cube-connected-cycles is hamilton-laceable.
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