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Abstract 

The hypercube is one of the most popular interconnection networks. Not 
only does it have good topological structure but also nice symmetric proper- 
ties. However, it has a major drawback that the degree is not bounded as the 
dimension increases. Because of this, some networks with bounded degree 
have been derived from the hypercube. Two of the most popular are but- 
terfly graphs and cube-connected-cycles. They both inherit some properties 
from the hypercube. This thesis investigates these two networks. 
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Chapter 1 

Introduction 

Networks can be divided into two classes: static networks and dynamic net- 
works. The physical structure of dynamic networks is not fixed. It can be 
changed by modifying the configuration of the switches in the connection ca- 
bles. On the other hand, the physical structure of static networks is fixed. It 
can be modelled by the tools from Graph Theory. In this thesis, only static 
networks are considered. 

Before constructing a network, one has to consider many factors such 
as the hardware cost, the performance, the reliability and the expandibility. 
The first three are obviously important factors. For the expandibility, the 
network must be designed to minimize the total amount of modification when 
more processors are being added to it. The simplest method of building a 
network is by putting a link between a new processor and one of the proces- 
sors randomly chosen in the network. The cost for this kind of network is 
very low because not many links are required. The expandibility is clearly 
very high because almost no modification is required when a new processor is 
added. However, this kind of connection is unpredicable. The network may 
turn out to be a simple path. That means if any one of the links or one of 
the processors breaks down, the network will not be connected. Furthermore, 
the time for communication is very long for the processors at the end of the 
path. Thus, this kind of network in general is neither reliable nor efficient. 
Another extreme method is to connect every pair of processors. This kind 
of network has the maximum performance and reliability. Each processor in 
the network can directly communicate with every other. Also, the network is 



always connected no matter how many processors are out-of-function. How- 
ever, the cost will be very high. The expandibility is also not very good 
because the number of links going out from each processors is not the same 
for the networks of different size. Thus, every processor must be modified if 
the network need to be expanded. These two examples show that building a 
network is a trade-off problem. 

For the hardware cost, one should consider the number of links being 
used. In order to increase the performance, the network should be designed 
so that any pair of processors can communicate easily. One measure of this 
is that the diameter of the network should be small. 

The design of a network also affects the software cost. If processors can be 
addressed using binary numbers, the system software will be simpler because 
most of the other components in the whole system are binary-based. Futher- 
more, if the network is exactly "the samen with respect to each processor, 
the processors can share a single routing table. The network is said to have 
good symmetry properties. Symmetry properties also affect the reliability of 
the network. Good symmetric network can re-order the processors or com- 
munication lines so that some particular processors can still communicate, 

This thesis will present two methods for constructing a network that has 
good symmetry properties. One of them is the Cayley graph construction 
and the other one is the set graph construction. This thesis will mainly 
discuss the Cayley graph construction. 

The n-dimensional (binary) hypercube is one of the most popular net- 
works that is formed by the Cayley graph construction. It does not have too 
many links but it has very good performance. The routing in the hypercube 
is extremely easy. The reliability is also very high. Moreover, it possesses 
all the symmetry properties that one usually studies. Unforturnately, it has 
one major drawback in that the number of links going out from the pro- 
cessors increases as the dimension increases. It reduces the expandibility 
dramatically. 

There are some extensions coming from the hypercube. The two popular 
ones are the butterfly graph and the cube-connected-cycle. Both of them 
use an n-cycle to replace each processor in the the hypercube so that the 
degree of each processor can be fixed. They inherit many of the topological 
properties from the hypercube, but they also destroy many of th6e symmetry 



properties. This means the performance of the butterfly graph and the cube- 
connected-cycle will be almost the same as the hypercube, but they have 
lower reliability. This thesis will investigate these two networks, and will 
discuss the topological structure as well as the symmetry properties of the 
butterfly graph and the cube-connected-cycles. It also does some comparisons 
between these two kinds of networks with the hypercube. 



Chapter 2 

Groups of Permutations 

2.1 Permutat ion Groups 

Permutation groups play a very important role in group theory. In fact, 
Cayley's Theorem [5] says that every finite group is isomorphic to a group of 
permutations. In this section, certain notions regarding permutation groups 
will be presented. 

Given the set (1, . . . , n), one can think of a permutation as a rearrang- 
ment of the numbers. The following is a formal definition of a permutation 

PI. 

Definition 2.1 A function f : A -, B is one-to-one if every element of B 
has at most one element of A mapped to it. 

Definition 2.2 A function f : A + B is onto if every element of B has at 
least one element of A mapped to it. 

Definition 2.3 A permutation of a set A is a one-to-one and onto function 
from A to  A. 

In this chapter, all permutations are on the set (1, . . . , n). The collection 
of all permutations of (1,. . . , n)  is usually denoted by S,,. 



A permutation, a E Sn can written 
list all (x, a(x))  pairs in an array as: 

in several ways. One of them is to 

In fact, all permutations in Sn have the same first row. This row is 
actually redundant. Hence, o can be written as: 

Definition 2.4 Let p, o E Sn. A binary operation . is defined as the com- 
position of functions, that is, (p a ) ( ~ )  = p(a(x)) for all x E (1, . . . , n). 

Proposit ion 2.5 Sn is closed under -. 

Proof: Let p , a  E Sn. For any X, y E (1,. . . , n ) , ( p .  a)(x) = (p a)(y) + 
p(o(x)) = p(a(y)). Since p is one-to-one, a(x) = a(y). Again, a is one-to-one 
implying that x = y. Hence, p a is one-to-one. 

Now for any y E (1,. . . , n), there is x E (1,. . . , n )  such that y = p(x). 
Again, there is z E (1,. . . , n)  such that x = a(%). Hence, y = p(a(z)) = 
(p - a)(%) and p . a is onto. Thus p a is a permutation in Sn. 0 

Proposit ion 2.6 (Sn, .) is a group. 

Proof: Let e be the permutation such that e(x) = x for all x E (1,. . . ,n) .  
Then for any p E Sn, (p - e)(x) = p(e(x)) = p(x) for all x E (1,. . . ,n ) .  
Hence, e is an identity. 

For any P , ~ , T  E Sn,  ((P a) . T)(x) = (P . ~ ) ( T ( x ) )  = P ( ~ ( T ( X ) ) )  = 
p((a . T)(x)) = (p ( a  T))(x) for all x E (1,. . . ,n). Hence, is associative. 

Let p be a permutation. As p is one-to-one and onto, the inverse function 
of p exists, and p-l is also one-to-one and onto. We have (p . P-')(x) = 

x = e(x) for all x E (1,. . . , n). Hence, (S,, .) is a group. 

(Sn, -)  is usually called the symmetric group of degree n. 



Orbits and Cycles 

Given a permutation a ,  one can partition (1,. . . , n) using an appropriate 
relation - defined as follows: For any a,  b E (1,. . . , n), a - b if and only if 
b = an(a)  for some integer n. 

Proposition 2.7 The relation - is an equivalence relation. 

Reflexive a - a because a = e(a)  = ao(a).  

Symmetr ic  a - b + b = un(a)  for some integer n. So a = a-"(b) and 
b -  a. 

Transitive a - b, b - c =+ b = an(a) ,  c = am(b) for some integers m and n. 
SO c = am(an(a) )  = am+n ( a )  and a - c. 0 

Definition 2.8 Let a E Sn,  the equivalence classes determined by - are 
called the orbits of a .  

Hence a permutation partitions the set (1,. . . , n )  into orbits. This idea 
provides a method to decompose a permutation into a set of simple permu- 
tations. 

Another way to describe a permutation is to use a digraph. Let a E Sn 
and V = (1,. . . n)  be the vertex-set. There is an arc from i to j if and only 
if a ( i )  = j. We denote this digraph by Do. Clearly, a directed cycle in Du 
corresponds to an orbit in a .  

Theorem 2.9 The associated digraph Do of a consists of a set of vertez- 
disjoint directed cycles. 

Proof: As a is a function, the outdegree of each vertex in Du is 1. Since a is 
one-to-one and onto, the indegree of each vertex in D, is also 1. Hence, Do 
consists of a set of vertex-disjoint directed cycles. 0 



Theorem 2.9 says that we can decompose Du into a set of vertex-disjoint 
directed cycles, C1, C2, . . ., Ck. Let B1, B2, . . . , Bk be the directed spanning 
subgraphs induced by Cl, C2, . . . , Ck, respectively, and add a directed loop 
to each isolated vertex. Each Bi will give us a permutation. Those permu- 
tations have at most one orbit containing more than one element. Since the 
permutations come from the cycles of Do, these permutations are also named 
cycles. 

Definition 2.10 A permutation a E Sn is a cycle if a has at most one orbit 
containing more than one element. The length of a.cycle is the number of 
elements in the largest orbit. 

Definition 2.11 Two cycles are said to be disjoint if their orbits that con- 
tain more than one element do not have any element in common. 

Corollary 2.12 Every permutation a E Sn can be written as a product of 
disjoint cycles. 

Cyclic Not at ion 

By the definition, a cycle has at most one orbit containing more than one 
element. So given the list of the elements in the largest orbit of a cycle is 
sufficient to determine the whole structure of the permutation. For example, 
if the largest orbit of a cycle c E Ss is (1 8 3 5), then 

The notation, c = (1 8 3 5) is called cyclic notation. 
Corollary 2.12 says that every permutation can be written as a product 

of disjoint cycles. For example p = 6734152 can be written as (1 6 5)(2 7). 



2.4 Transpositions and Inversions 

Other than the .identity, every cycle has length at least 2. This means that 
a cycle of length 2 has the simplest structure. However, it has a special 
property. In cyclic notation, a cycle of length 2 can be written as (i j).  In 
explicit notation, it will look like 1 . . . i - 1 j i + 1 . . . j - 1 i j + 1 . . . n. Given 
a cycle p of length 2 and a permutation a = ala2 . . . a, in explicit notation. 
If p is multiplied on the right of a, it will exchange the ith and j th  elements 
in a. Similarly if p is multiplied on the left of a, it will exchange i and j in 
a. Hence, a cycle of length 2 is called a transposition. Using this property, 
one can obtain any permutation by exchanging suitable pairs of elements. 

Theorem 2.13 Every permutation in S,,, n 2 2, can be written as a product 
of transpositions. 

Proof: It is sufficient to prove that every cycle can be written as a product 
of transpositions. For any cycle c = (al a2 . - - ak)  in cyclic notation, k 2 2, 
it can be written as 

If the length of c is 1, then c is the identity and can be written as (1 2)(1 2). 

Another property of a transposition is that every transposition is the 
inverse of itself. Suppose a can be written as a product ptp.r-.-pk of k 
transpositions. Then e = ~ p k p k - ~  - . pl, where e is the identity. This is the 
basic idea of a sorting algorithm. 

Definition 2.14 Let u be a permutation. If u( j )  < a( i )  for i < j, then the 
pair (a( j ) ,  a(;)) is called an inversion of a. 

Transpositions and inversions in fact are the crucial parts of the sorting 
algorithm based on comparison. The rest of this section will discuss the 
relationship between transpositions and inversions. 

Definition 2.15 A permutation a is said to be an odd or even permutation 
if the number of inversions in a is odd or even, respectively. 



Lemma 2.16 Let w = alaz . - - a, be a pennutation and p = 1 . . . i - 1 j i + 
1 . . . j - 1 i j + 1 . . . n be a transposition. The number of inversions in w and 
in wp has d i f l e ~ n t  parity. 

Proof: We have wp = ala2 . . . a;-lajai+l . . . a .  ,-I a ; a .  ,+I . . a,. It is sufficient 
to consider the subsequence aja;+l aj-la;. 

If ai < aj, then (a;, a,) is an inversion in wp but not in w. For any 
a; < ak < aj,  i + 1 5 k 5 j - 1, both (ak ,  a j )  and (a; ,  ak )  are inversions in 
wp but not in w. If ai < a, < ak or ak < a, < a,, i + 1 5 k < j - 1, then 
the number of inversions involving ak in wp is the same as in w. Thus, the 
number of inversions in wp is increased by an odd number. 

If a; > aj, then ( a j ,  a;) is an inversion in w but not in wp. For any 
a; > ak > aj, i + 1 5 k < j - 1, both ( ak ,  a;) and ( a j ,  a k )  are inversions 
in w but not in wp. If a; > aj > ak or ak > a; > aj,  i + 1 5 k 5 j - 1, 
then the number of inversions involving ak in w is the same as in wp. Thus, 
the number of inversions in wp is decreased by an odd number. The result 
follows. 0 

Theorem 2.17 Let w = plpz pk be a product of k transpositions. Then 
w is even (or odd) if and only if k is even (or odd). 

Proof: Let e be the identity. The number of inversions in e is 0. When 
k = 1, k is odd and w = pl = e n .  By Lemma 2.16, w has an odd number of 
inversions, that is, w is odd. Suppose it is true for k = r - 1. Consider k = r. 
By Lemma 2.16, w = n . - p,-lp, and pl . . p,-1 have different parity. The 
result follows. 0 

Corollary 2.18 If a is even (or odd), then a can only be written as a product 
of an even (or odd) number of transpositions. 

Proof: By Theorem 2.13, a is a product of transpositions. Let a = plpz . . . p k ,  

where the pi's are transpositions. By Theorem 2.17, the result follows. o 



2.5 Conjugacy 

We again consider the associated directed graph D, of the permutation a 
again. D, consists of a set of vertex-disjoint cycles. The length of the cycles 
can be any number from 1 to n, so let [A l  ( a ) ,  X2(a), . . . Xn(u)] be an n-tuple, 
where &(a)  is the number of cycles of length i. We define a relation -, as 
follows: For any 0 1 ,  0 2  E S,, a1 wC 6 2  if and only if 

Definition 2.19 The relation wC is called conjugacy. 

Theorem 2.20 Conjugacy is an equivalence relation. 

Proof: The proof is trivial. 

2.6 Stabilizer 
There are special subgroups in a permutation group which we now define. 

Definition 2.21 Let ( B , . )  be a permutation group. Let u E ( 1 , .  . . ,n) and 
Bu = { a  : a E B and a ( u )  = u ) .  B, is called the stabilizer of u.  

Proof: Let a, E B,. Then ( a .  P)(u) = a(P(u))  = a ( u )  = u. So a .  P E Bu. 
Since e(u) = u, e E B, If a E B,, a (u )  = u. So a-'(u) = u, that is, 
a-' E Bu. Hence, (Buy .) is a subgroup of ( B ,  .). 



2.7 Transitive groups and regular groups 

There are certain permutation groups that play important roles in group 
theory. Some of them will be used in the coming chapters. 

Definition 2.23 Let I' be a permutation group on (1, . . . , n). r is transitive 
if for each pair i ,  j E {I , .  . . ,n ) ,  there exists a a E r such that a(i) = j. 

Definition 2.24 A permutation group r on (1,. . . , n) is said to be regular 
if l? is transitive and for each i E (1,. . . , n) ,  the stabilizer ri of i is {e) . 

Theorem 2.25 A permutation group I' on (1,. . . , n)  is regular if and only 
if for any pair i ,  j E (1,. . . , n), there is a unique permutation a E I? such 
that a( i )  = j .  

Proof: Since r is transitive, it is sufficient to show that a is unique. Suppose 
there are two permutations a1 and a2 such that al(i)  = az(i) = j .  Then 
e ( i )  = i = o;lal(i) = a;la2(i). Therefore, o;'ol = o;'02 implies that 
6 1  = 6 2 .  0 



Chapter 3 

Cayley Graphs and 
Transposition Graphs 

3.1 Cayley Graphs 

Cayley graphs are an important class of graphs constructed from groups. 
They reflect not only the group structure but also possess some nice graph 
properties. 

Definition 3.1 Let (I', .) be a finite group with identity e. Let S be a subset 
of such that 

1. if g E S, then g-' E S, and 

The Cayley graph G(r,  S )  is defined as follows. 

1. The vertex set of G ( r ,  S) = I'. 

2. The edge set of G(r,  S )  = {xy : x, y E I' and there exists g E S such 
that y =  z . g ). 

The set S is called the symbol of G(r ,  S) .  

Proposition 3.2 S generates I' if and only if G(I', S )  is connected. 



Proof: Let S = {al, . . . ,a,). Suppose S generates I'. Let x, y E G(r ,  S)  and 
g = x-'y. Since I' = (S), g = x-ly = a;, a, a , .  Hence, y = xx-I y = 
xu;, ai2 . . . a;, . This implies x, y are connected by a path. Conversely, suppose 
G(I', S )  is connected. Let g E I'. There is a path from e to g in G( r ,  S). So 
g = ail ai, . . . a,, . This implies S generates I'. o 

Since there is no reason to consider a disconnected interconnection net- 
work, all symbol sets in this thesis will be assumed to be generator sets. 

3.2 Xkansposition Graphs 

Another kind of graph that is determined by a permutation group is a trans- 
position graph. Studying transposition graphs is not useful because every 
simple graph is a transposition graph. However, the transposition graph cor- 
responding to the Cayley graph generated by a permutation group has some 
special characteristics. 

Definition 3.3 Let (I', .) be a permutation group on A. Let S be a set of 
transpositions in I'. The transposition graph TG(A, S )  is defined as follows: 

1. The vertex set of TG(A, S)  = A, and 

2. The edge set of TG(A, S) = {xy : (x, y )  E S). 

Definition 3.4 A transposition graph which is a tree is called a transposition 
tree. 

Theorem 3.5 (Pblya) A set 0 C Sn of (n - 1) transpositions generates 
the symmetric group Sn if and only if the transposition graph TG(Sn,Q) is 
a transposition tree. 

Proof: Suppose TG(Sn, 0). is a tree. Then any two vertices are connected 
by a unique path. Let a,  b E (1,. . . , n) and 



be the path joining a and b. Then 

which is a product of transpositions in R. 
Conversely, suppose R generates S,. Let (x y) = nn . - pk, where 

p l , ~ ,  . . . ,pk E R. Then pi, = (x xl) for some x1 and 1 5 il < k. Similarly, 
p;, = (xl 22) for some x2 and 1 5 i2 5 k, pi, = (x2 x3) for some x3 and 
1 5 i3 5 k, and so forth. Finally, pi, = (x,-l y)  for some 1 5 i, 5 k. Clearly 
x and y are joined by a walk x, XI,  5 2 , .  . . ,x,-1, y in TG(Sn, 0 ) .  Hence, 
TG(Sn, 0 )  is connected with n - 1 edges, that is, it is a tree. 

Corollary 3.6 A set 52 Sn of transpositions generates the symmetric 
group S,, if and only if the transposition graph TG(Sn, R) is connected. 

Proof: Every connected graph has a spanning tree. By Theorem 3.5, the 
result follows. 0 



Chapter 4 

Symmetry in Graphs 

Symmetry is an important issue in interconnection networks. It affects not 
only the performance but also the cost of the network. For instance, if a 
network has symmetry on the nodes, the same routing algorithm can be 
used on each node. This simplifies both the hardware of the control center 
and the system software of the operating system. This chapter will discuss 
certain symmetry that a network can have. 

4.1 Automorphisms on Graphs 

Given a square, one can rotate it and flip it. The square is still a square. 
However, if one tries to "twist itn, the square will no longer be a square. On 
the other hand, no transformation can make a complete graph structually 
different. This kind of transformation that perserves the structure of the 
graph is called an automorphism. 

Definition 4.1 A uertez automorphism a of G is a permutation of the 
vertex-set that preserves the adjacency. That is, if the edge xy E E, then 
the edge a(x)a(y) E E. 



4.2 Transitivity 

In a network, it will be useful if the network looks the same when viewed 
through any node. In other words, each node lead to the same network by 
relabelling the other nodes. This property is called vertex-transitivity. 

Definition 4.2 G is said to be vertez-transitive if given any pair of vertices 
x and y, there exists a E Aut(G) such that y = a(x) .  

Definition 4.3 G is said to be edge-transitive if given any pair of edges xy 
and uv, there exists a E Aut(G) such that x = a(u)  and y = a(v),  or 
x = a (v )  and y = a(u) .  

From this definition, it is easy to see that a vertex-transitive graph has 
to  be regular because no automorphism can map a vertex to  one of different 
degree. 

Vertex-transitivity can be generalized. Let D be the diameter of the 
graph G. For 0 < k 5 D, G is said to be k-distance-transitive if given four 
vertices, x, y,u and v such that d(x, y) = d(u,v) = k, then there exists an 
cr E Aut(G) such that u = a(x)  and v = a(y). If G is k-distance-transitive 
for all 0 < k < D, then it is called distance-transitive. 

Clearly, vertex-transitivity is 0-distance-transitivity. 

Proposi t ion 4.4 If a graph G is 1-distance-transitive, then G is edge- 
transitive. 

Proof: Suppose G is 1-distance-transitive. Let el = xy and ez = uv be two 
edges in G. Then there exists a E Aut(G) such that u = a(x)  and v = a(y). 
The result follows. o 

The rest of this section will discuss transitivities of the graphs. For u E 
V ( G ) ,  define Ni C V(G) as Ni = {v : v E V(G) and d(u,v) = i) and 
d; = I N;(u) I .  Then the following is the characterization of distance-transitive 
graph (8, 21. 



L e m m a  4.5 Let D be the diameter of the graph G. G is distance-transitive 
if and only if it is vertex-transitive and the vertez stabilizer Au is transitive 
on the set Ni(u) for all i E (0, 1, . . . , D) and for each u E V(G). 

Proof: G is distance-transitive implying that G is 0-distance-transitive. Thus 
G is vertex-transitive. Let u be any vertex and p, q E N,(u), 0 5 i < D. Since 
G is distance-transitive, there exists a E Aut(G) such that u = a(u) ,p  = 
a(q). Since u = a(u) ,  a E Au(G). So A,(G) is transitive on N,(u). 

Conversely, G is vertex-transitive and Au(G) is transitive on N;(u), for 
all u E V(G) and i E (0,. . . D). Let x, y,u,p E V ( G )  so that d(x, y) = 
d(u, p) = d. Let w E V(G). There exists a E Aut(G) such that w = a(x).  
Let y' = a(y). Also, there exists ,B E Aut(G) such that w = P(u). Let 
p' = P(p). Since a and ,8 are automorphisms, d(w,yl) = d(x, y) = d = 
d(u, p) = d(w,pt). So yt,p' E Nd(w). Since Aw(G) is transitive on Nd(w), 
there exists an automorphism T E Aw(G) such that w = ~ ( w )  and p' = ~ ( y ' ) .  
Then u = P-'ra(x) and p = P-'ra(y). Thus, G is distance-transitive. o 

4.3 Intersect ion Number 
Lemma 4.5 provides a method to check whether a graph is distance-transitive. 
The procedure in fact is quite tedious. There is a necessary condition for a 
graph being distance-transitive [8, 21. First we define nhi(u, v) = I{w : w E 
V, d(u, w) = h and d(v, w) = i)l = INh(u) n N,(v)l. If a graph G is distance- 
transitive, nhi(u, v) is independent of u and v but depends only on j which 
is d(u, v). This means nhi(u, v) can be denoted as n&j. 

Definition 4.6 Let D be the diameter of the distance-transitive graph G. 
The (D  + integers nh,j for 0 5 h, i, j < D are called intersection numbers. 

Proposit ion 4.7 We have nl,, = 0 for i 4 {j - 1, j, j + 1). 

Proof: As the graph is distance-transitive, it is sufficient to consider one pair 
u and v of vertices with distance j between them. Let w be a vertex that 
is adjacent to u. Then d(u, w )  = 1. Since d(u,v) = j, we have j - 1 5 
d(v,w) 5 j +  1. Inother words, nl,j = O  for i $ {j - l , j , j+ 1). 0 



For this reason, if D is the diameter of a distance-transitive graph, we 
can let 

a; = nljj = INl(u) n Nj(v)l 
bj = nl,j+l,j = INt(u) fl Nj+l(v)l 
cj = n ~ , , - ~ , ,  - - INl(u) Nj-l(v)L 

where u and v are any pair of vertices with distance j between them, 0 5 
j 5 D. Furthermore, bD and q, are undefined. These 3 0  + 1 integers can be 
arranged as an array. 

Definition 4.8 The array 

is called the intersection array of the distance-transitive graph G. 

The intersection array has the following properties [2]. 

Lemma 4.9 If G is distance-transitive, then the entries of IA (G)  satisfy: 

2. c; +a;  + b; = dl for all 1 5 i 5 D - 1, 

5. dj-lbi-l = d;ci for 1 5 i 5 D, 

where d; = JN;(u)l and D = diameter. 

1. We have a0 = nloo = INl(u) n No(v)l = 0 as d(u ,v )  = 0, that is, 
u = v. Also, bo = nllo = IN1(u)n  Nl(v)l = INl(u)J = dl as u = v ,  and 
c1 = nlol = IN1(u) n No(v)l = I{v)l = 1 as v is adjacent to  u. 



2. If d(u, v )  = i  and w is adjacent to u ,  then i  - 1 < d(v,  w )  < i  + 1. So 
ai+bi+~.= nlii+nl,i+l,i+nl,i-1,i = INl(~)nNi(~)l+INl(u)nNi+l(v)l+ 
INl(U) n N;-l(v)l = IN1(u)l = d l .  

3. Suppose d(u, v )  = i  + 1,  1 < i 5 D- 1. Pick a path v ,  x ,  . . . , u of length 
i+1. Thend(x ,u)  = i .  I fw E N i - l ( ~ ) n N l ( ~ ) ,  then w E Ni(v)nNl(u) .  
So Ni-I(.) n N;(u) G Ni(v) n Nl(u) ,  that is, INi-l(x) n Nl(u)l < 
IN,(v) n Nl(u)l .  In other words, c; = n1,;-1,; < nl,i,i+l = c;+l for 
1 5 i 5 D - 1 .  

4. Suppose d(u, v )  = i ,  1 5 i  < D - 1. Pick a path v ,  x ,  . . . , u of length i. 
Then d(x,  u )  = i -  1. If w E N1(u)n  N;+l(v), then w E Nl(u)nNi(x) .  So 
N l ( u ) n  N;+l(x) N1(u)nNi(x) ,  i.e. bi-1 = nl,,,i,l = INl(u)n Ni(x)l 2 
INl(u) n Ni+l(v)l = bi. 

5. Pick any vertex v. The number of edges from N;,l(v) to Ni(v)  is equal 
to the number of edges from Ni(v)  to Ni-l(v),  1 < i 5 D. 

The number of edges from N,(v) to Ni-1(v) = c;l Ni(v)l = q d ; .  

The number of edges from Ni-1(v) to N,(v) = b i - l )N i - l (~ ) )  = b;-ld;-l. 

SO bi,ldi-l = qd;.  

In the rest of this section, we will consider properties of Cayley graphs 
and transposition graphs. 

Theorem 4.10 Every Cayley graph is vertez-transitive. 



Proof: Let G(I', S )  be a Cayley graph. Pick any two vertices u and v and 
define a : V -t V by a(x)  = vu-'2, x E V. 

1. If a(x1) = a(x2), then vu-'XI = vu-'x2. So xl = 2 2  and a is one-to- 
one. 

2. For any y E V, a(uv-'y) = v u - ' ~ v - ' ~  = y. Thus, a is onto. 

3. If XI  is adjacent to x2, then x2 = xlg for some g E S. So vu-'x2 = 
vu-lxlg, or a(x2) = a(xl)g. That is, a (x l )  is adjacent to a(x2)  imply- 
ing that a is an automorphism of G(I', S). 

Furthermore, a (u)  = vu-'u = v. Hence, a is an automorphism that maps u 
to v. 0 

Using the Cayley graph construction, we can obtain a vertex-transitive 
graph. If we use a group with certain properties, those properties may be 
reflected in the graph. The Proposition [2] is one such example. 

Proposition 4.11 Let G be a connected graph. The subgroup H of the au- 
tomorphism group Aut(G) acts regularly on G if and only if G is a Cayley 
graph G(H, S )  for some symbol set S that generates H. 

Proof: Suppose G = G(H, S). For each h E H,  let a h  : H -+ H be defined 
by a h ( x )  = hx. The mapping a h  is definitely a permutation. If x is adjacent 
to y, then y = xs for some s E S. So ah(y)  = hy = hxs = ah(x)S. That is, 
ah(x) is adjacent to ah(y). Therefore, a h  is an automorphism. The set of all 
a h  is a subgroup of Aut(G) isomorphic to H. Let B be this subgroup. For 
any pair of vertices x and y, x, y E H. There is a unique h E H such that 
hx = y. Hence, there is an automorphism in p, a h  such that ah(x)  = y. 
Notice that if e is the identity in H, then it is the unique element such that 
a,(x) = z. Hence, acts on G regularly. 

Conversely, suppose H is regular and H 5 Aut(G). Let V(G) = 
{vl, 0 2 , .  . . , vn) denote the vertex-set of G. Since H is transitive, for each 
i, there exists hi E H such that hi(vl) = vi. Suppose hi(vl) = hi(vl) = vi. 
Then h? h;(vl) = h;' hi(vl) = vl. Since H is regular, h;' hi = e and hi = hi. 
This implies hi is the unique element in H that maps vl to v,. Now let 
S = {hi E H : vi is adjacent to vl in G). Clearly e 4 S. If hi E H, then v; is 



adjacent to vl and hi(vi) is adjacent to hi(vl) = vie So hfl(h;(vi)) = hfl(vl) 
is adjacent to hfl(vi) = vl. By the definition of S, h;' E S. Therefore, 
S satisfies the conditions of being a symbol set. Let 4 : G + G(H, S )  be 
defined by 4(vi) = hi. Since there is a unique hi corresponding to v;, 4 is 
one-to-one. Since H is transitive, 4 is onto. 

Suppose v; is adjacent to vj. Then hfl(v;) = vl is adjacent to hfl(vj) = 
h;' hj(vl). SO hfl hj € S. Since hj = hihfl hj, hi is adjacent to hj in G(H, S). 
Conversely suppose hi is adjacent to hj. Then hj = hihl, for some hl E S.  
Since vl is adjacent to vl, hi(vl) = vi is adjacent to hi(vl) = h;hl(vl) = 
hj(vl) = vj. Thus, G 2 G(H, S). O 

Now we consider some relationships between Cayley graphs and transpo- 
sition graphs 18). 

Lemma 4.12 Let G(r l ,  S1) and G(r2 ,  S2) be two Cayley graphs on the per- 
mutation groups rl and r2 acting on the sets Al and A2, respectively. Let 
rl and r2 be generated by the sets of transpositions S1 and S2 respectively, 
where lSll = IS2(. If the transposition graphs TG(Al, S1) and TG(A2, S2) 
are isomorphic, then G(r l ,  Sl) and G(r2 ,  S2) are isomorphic too. 

Proof: Let w : TG(Al, Sl)  + TG(A2, S2) be an isomorphism. Define 
P : rl -+ rz by P(u) = w . u - w-'. Then P(u) is a composition of one- 
to-one and onto functions, so p(u) is a permutation on A2. 

1. p is one-to-one. 

If P(ul) = P(u2), then w ul - w-'(y) = w . u2 w-'(y) for all y E A2, or 
w(ul(w-'(y))) = w(uz(w-'(y))) for all y E A2. Since w is one-to-one, 
~ ~ ( w - ' ( ~ ) )  = ~ ~ ( w - l ( ~ ) )  for all y E A2. Thus, ul(x) = u2(x) for all 
x E A1, or ul =u2. 

2. p is onto. 

Pick any p E r2. Let u = w-I p . w. Then P(u) = P(w-' . p . w) = 
w . w-1 . p 0 .  w-' = p. 

3. p preserves the adjacency. 

If uv is an edge in G(r l ,  S1), then u = us for some transposition 
3 = (i j) E Sl. Since w is an isomorphism from TG(Al, Sl) to 



TG(A1, S1), (w(i) w(j)) f S2. Thus, P(u) = w . us w-' = w . v . s . w-' 
= w . v . w-'w - s . w-' = p(v)(w(i) w(j)). That is, P(u) is adjacent to 
P W .  

Hence, p is an isomorphism from G(r1, Sl) to G(r2, S2). 0 

Theorem 4.13 Let G ( r ,  S )  be a Cayley graph on a permutation group r act- 
ing on A with the set of transpositions S. If the transposition graph TG(A, S )  
is edge-transitive, then G ( r ,  S )  is l-distance-transitive. 

Proof: Let e be the identity in r and let G = G(r ,  S). Let u, v, x, y E I' 
be such that uv E E(G) and xy E E(G). Since G is vertex-transitive, there 
exist automorphisms a and T such that e = a(u )  and e = ~ ( x ) .  Let v' = a(v) 
and y' = ~ ( y ) .  Since d(u, v) = d(e, v') = d(e, y') = d(x, y) = 1, v' and y' are 
transpositions. 

Let v' = (i j )  and y' = (I  k). Since the transposition graph TG(A, S) 
is edge-transitive, there exists an automorphism a such that 1 = a(;) and 
k = a ( j ) ,  or k = a( i )  and 1 = a( j ) .  Notice that a is a permutation on A. 

Define /3 : r + r by P(p) = apo-'. By the proof of Lemma 4.12, P is an 
automorphism of G so that P(vt) = auto-' = y' and P(e) = oeo-' = e. 

Hence,  pa is an automorphism such that .r-'pa(u) = x and T-'@a(v) 
= y. That is, G( r ,  S )  is 1-distance-transitive. 0 

4.4 Set Graphs 

Although the construction of Cayley graphs gives us a way to build vertex- 
transitive graphs, it does not produce all vertex-transitive graphs. For ex- 
ample, the Petersen graph is not a Cayley graph. Before showing that the 
Petersen graph is a vertex-transitive graph but not a Cayley graph, let's 
consider another construction of vertex- transitive graphs. 

Definition 4.14 Let S = (1,. . . , n). The set graph G(S, k) is a graph whose 
vertex-set is the set of all krsubsets of S. Two vertices are adjacent if and 
only if the intersection of the corresponding subsets is empty. 



Figure 4.1: The Petersen Graph Modelled as a Set Graph 

Example : Let S = {1,2,3,4,5) and k = 2. We get the Petersen graph 
(Figure 4.1 .) 

Theorem 4.15 Every set graph is vertez-transitive. 

Proof: Let G(S, k) be a set graph. For any pair of vertices u and v, we need 
to find an automorphism $,, such that $,,(u) = v. Let u = {al,a2,. . . , ak )  
and v = {bl, h, . . . , bk) .  There exists a permutation a such that u(a,) = b, 
for all 1 5 i 5 k. 

Let 4,, : G -, G be defined by g),,(z) = ~u,({x1,x2,. . . ,xk)) = {u(xl), 
u ( x ~ ) ,  . . ., ~ ( x k ) ) .  Suppose we have {u(xl), o(x2), . . . , ~ ( x k ) )  = {o(yl), 
a(y2), . . . , ~(yk) ) ,  then we can relabel the elements so that o(xi) = o(yi), 
1 5 i 5 k. Since o is a permutation, x; = y; for dl 1 5 i 5 k, that is, 
{ x I , x ~ , .  . . , xk) = {yl, y2,. . . , yk). Hence, t$,, is one-to-one. 

For any {21,22,. . . , zk), Let w = {o-'(zl), o-l(z2), . . . , o-l(zk)). Then 
$,,,(w) = {zl,z2,. . . , zk). SO 4,, is onto. 

If {XI, 5 2 , .  . . , xk) is adjacent to {yl, y l , .  . . , yk), then {xl, 2 2 , .  . . , xk) n 
{ y ~ ,  y2, . . . , yk) = 0. Since'o is a permutation, {a(xl), o(x2), . . . , o(xk)) n 
{ ~ ( y l ) ,  o(y2), . . . , o(yk)) = 0. Therefore, t$,,,({xl, 12,. . . , xk)) is adjacent to 
&({YI,Y~, .  . . , ~ k ) ) .  



Also, +,,({al, a2,. . . , ak)) = {o(al),o(a2), . . . , u(ak)) = {bl,  bz, . . . , bk).  

Hence, $,, is an automorphism mapping u to v .  0 

Corollary 4.16 The Petersen graph is vertez-transitive. 

Although Cayley graphs and set graphs are both vertex-transitive, in 
general, the Cayley graph construction cannot produce set graphs. Again we 
can show that the Petersen graph is not a Cayley graph. 

Theorem 4.17 The Petersen graph is not a Cayley graph. 

Proof: Suppose the Petersen graph is a Cayley graph G(r, S) for some group 
I' and symbol set S. From the fact of the group theory, there are only two 
possible groups of order 10[2, 131. Suppose r = (9) for some element g. Then 
I? = {e, gl,  g2, . . . 9'). The symbol set can only be Si = {g', g5, g-'1, where 
i = 1,2,3,4. Then e, eg', eg'g5, egig5g-', eg'g5g-'g5 = e is a 4-cycle. But the 
Petersen graph does not have any 4-cycle. 

2 3 4  Then r = {e, g ,g  , g  , g  , x, xg, xg2, xg3, 29'1, where zg'x = g-' and x2 = 
e. Then the possible symbol sets are S1 = {xg',g, 9'1, S2 = {xg',g2, g3} and 
S3 = {xgj, xgk, xgl), where 0 < i, j, k, 1 < 4. 

If the symbol set is Sl ,  then e, exg', exgig, ~ x ~ ' ~ x ~ ' ,  exg'gxg'g = e is a 4- 
cycle. If the symbol set is S2, then e, exg', exg'g2, exg'g2xg', exg'g2xg'g2 = e 
is a 4-cycle. For S3, we let S3 = {gl,g2,g3). We know that g: = gi = g: = e. 
We can label the edges by the symbols in S3 such that adjacent edges have 
different symbols assigned. 

Consider the outermost 5-cycle. Two of the symbols in S3 must be used 
twice. Without loss of generality, welabel theoutermost 5-cycleas Figure4.2. 

Then we can continue to label the edges, and finally we will get two 
adjacent edges having the same symbol. So we get the contradiction. Hence 
the Petersen graph is not a Cayley. 0 
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Figure 4.2: Diagram for Theorem 4.17 



Chapter 5 

The Hypercube 

The hypercube is usually considered to be an efficient networks for parallel 
computation. The construction of the hypercube is based on the binary 
numbers. As a consequence, routing algorithms for the hypercube are very 
easy to implement. Also, the hypercube is highly symmetric. In fact, it 
is distance-transitive. Furthermore, one can simulate most of the popular 
networks on the hypercube such as the grid and the binary tree. Hence, the 
hypercube is a good architecture for general purpose parallel systems [9]. 

5.1 Modelling 
The hypercube is usually defined as follows [9]. 

Definition 5.1 Let G(V, E )  be a graph with IVI = 2' and IEl = r2'-' 
for some positive integer r. The vertices in G are labelled with a binary 
sequence of length r. Two vertices are adjacent if and only if their binary 
sequences differ in precisely one bit. G is called the r-dimensional hypercube 
and denoted as 9,. 

Figure 5.1 is a 3-dimensional hypercube. Besides the above definition, 
The hypercube can be defined as a Cayley graph too [S]. 

Proposi t ion 5.2 Let r = ((1 2), (3 4), . . . , (2r-1 2r)) be a subgroup of S2,. 
Let S = ((1 2), (3 4), . . . , (2r-1 2r)) be the set of symbols. Then the Cayley 
graph G ( r ,  S )  r 9,. 



Figure 5.1: The 3-dimensional Hypercube 

Proof: Let v be a vertex in Q,. Let ala2. a ,  be the binary sequence 
corresponding to v. Define 4 : Q ,  + G(r,  S )  by 4 ( v )  = 4(a la z . .  . a,) = 
plp2 . . p, where 

{ y-1 22) if a; = 1 
pi = otherwise. 

Let v l ,  v2 E Q ,  and vl = al . . . a,  and v2 = h - .  -6,. Since ( 1  2 ) ,  (3 4 ) ,  . . ., 
(2r-1 2 r )  are disjoint cycles, none of them can be generated by the others. 
Thus, if vl  # v2, then a1 . . a,  # bl . . -6,. There are some 1 5 i  5 r  such 
that a; # 6;. So (2i-1 2 i )  is contained either in 4 ( v l )  or in 4(v2 )  but not in 
both, that is, 4(vl)  # 4(v2) .  

Let p E r. Let ala2..  . a,  be a binary sequence such that 

1 if (2i-1 2 i )  is in p 
a; = 0 otherwise. 

Then 4(a la2  . - - a , )  = p. Hence 4 is a bijection. 
Now if al . a, is adjacent to bl . . . b,, then there is exactly one i ,  1  < i  < r  

such that a, = 6, for i # j and a; # 6;. Then 4 ( a l q  a,) = 4(h br)(2i - 
1 2i) .  So 9(a l  - . . a,) is adjacent to 4(h. 6,). 



Figure 5.2: The Sdimensional Hypercube Modelled as a Cayley Graph 

Conversely, if d (a l  . - - a , )  is adjacent to d(b . . . b,), then d (a l  . . a,)  = 
d(bl - - .  br)(2i  - 1 2i )  for some i .  This implies that a ,  = bj for i  # j and a; # 
6;. Hence, a1 - a ,  is adjacent to bl . . b,. Therefore, 4 is an isomorphism. 
Figure 5.2 is the Cayley graph version of the 3-dimensional hypercube. 

One drawback of the hypercube is that the degree of each vertex is equal 
to log, IVI. That means, when the network is getting bigger, the commu- 
nication lines going out from the vertex will increase too. If a processor 
is designed for the Cdimensional hypercube, it cannot be used for the 8- 
dimensional hypercube because four communication ports are missing from 
each processor. This drawback reduces the expandibility of the network. 

5.2 Symmetry 

However, the hypercube has very good symmetry properties. Since the hy- 
percube is a Cayley graph, it is vertex-transitive. The transposition graph 
of the hypercube is a perfect matching, so it is l-distance-transitive by 
Lemma 4.13. As mentioned before, the hypercube is in fact distance- 
transitive [2 ] .  



Lemma 5.3 The r-dimensional hypercube has diameter r .  

Proof: For any pair of vertices u and v in Q,, we can flip the necessary bits 
of u one by one to get v .  This also gives a route from u to v. Thus, the 
diameter must be at most r. Since from 00. 0 to 11 1 we have to flip at 
least r bits, the diameter must be at least r .  The result follows. o 

I Theorem 5.4 The hypercube is distance-transitive. 

Proof: From the above Lemma, we know that the diameter of Q, is r. Since 
Q, is a Cayley graph, it is vertex-transitive. Let u = plpz . .p, be any vertex, 
where pj = (2j-1 2j) or pj = e. Let x and y E Ni(u), 0 5 i < r. There are 
precisely i transpositions either in x or in u but not in both. Simlarly, there 
are precisely i transpositions either in y or in u but not in both. 

Let pkl,pk2,. . . ,pki be the transpositions either in x or in u but not in 
both, and pll,plz,. . . ,pri be the transpositions either in y or in u but not in 
both. Let pkj = (rkj rkj+l)  and plj = (slj slj+l) for 1 5 j 5 i. Consider the 
mapping P : ((1 2), . . . (2r-1 2r)) + ((1 2), . . . (2r-1 2r)) defined by 

I Notice that every components in @ is the inverse of itself. We have 

Also, 8-* = P. Clearly P is a permutation on the vertices in Q,. If vl is 
adjacent to v2 in Q,, then there is precisely one transposition in one of the 
v,'s but not in both. There is also precisely one transposition in one of the 
P(v,)'s but not in both. Hence, 10 is an automorphism. Since @(u) = u and 
P(x) = y, P E A.. By Lemma 4.5, Q, is distance-transitive. o 



5.3 Connectivity 

To be a good network, a graph should have very high connectivity. The 
connectivity tells us how many nodes can be malfunctioned and the network 
is still connected. It also tells us how many node-disjoint paths between 
a pair of nodes. The more node-disjoint paths the network has, the more 
subproblems can be handled simultaneously. 

Definition 5.5 Let b be a binary digit. we define 

L e m m a  5.6 An n-regular graph has connectivity n if for any pair of vertices 
u and v, there are n vertez-disjoint paths joining them. 

Proof: If any two vertices are joined by n vertex-disjoint paths, then we 
should remove a t  least n vertices to disconnect the graph. However, G is 
n-regular, so G has connectivity n. 

Note: the converse of the lemma is also true (See the Menger's Theorem 
[3]), but we will not prove it here. . 

T h e o r e m  5.7 The r-dimensional hypercube Q,  has connectivity r. 

Proof: In the 2-dimensional hypercube, any pair of vertices are joined by two 
vertex-disjoint paths. We assume that any pair of vertices of Q,  are joined 
by r vertex-disjoint paths. Since Q,+l is vertex-transitive, it is sufficient to 
show that there are r + 1 vertex-disjoint paths joining the vertex 0 . - 0 and 
b l ~ ~ ~ b , + l , w h e r e b i ~ { O , l ) , l ~ i ~ r + l .  
Case 1: The bit b,+l = 0. Let S be the subgraph induced by the vertices 
whose (r + 1)th bit is 0, and let T be the subgraph induced by the vertices 
whose (r + 1)th bit is 1. S and T are r-dimensional hypercubes. There are 
r vertex-disjoint paths from 0. -0 to  . . b,O in S. There is a path P from 
0 .  . .01  to bl . - b,l in T .  Therefore, we have a path starting from 0 . 0, 
passing through P and ending at  bl . . - b,O in Q,+l. Together with the r 



vertex-disjoint paths in S ,  we have r + 1 vertex-disjoint paths from 0 . .  - 0 to 
bl .. . b,O. 
Case 2: The bit b,+l = 1 .  We use the same definitions of S and T. There are 
r vertex-disjoint paths from 0 0 to h . . b,O in S .  We remove bl . . . b,O from 
each of these paths. Let Pi be the path from 0 . .  - 0  to bl . . bi-l&bi+l - - bTO, 
1 5 i 5 r. We extend Pi by adding the Zpath bl ... bi-l&bi+l. .  . b,O, 
bl . . . bi-l&bi+l . . . bT1, b1 . . . bi-@ibi+l . - - b,1 for 1 5 i 5 r - 1. We extend P, 
by adding the Zpath h . . b,-1 b,O, bl . - . b,-l b,O, h 0 . . bT-lb,l. We translate 
P, to T by changing the ( r  + 1)th bit of each vertex to 1 and call it P:. Then 
we have the path from 0 . . 0 passing through P,! to h . . br-1 b, 1 .  Hence, we 
have r + 1 vertex-disjoint paths from 0 .  . . 0 to bl - . b,l. By Lemma 5.6, the 
result follows. 0 

Corollary 5.8 The edge-connectivity of the r-dimensional hypercube is r .  

Proof: Suppose the edge-connectivity is k,  where k < r .  Let T be the set 
of k edges whose removal will disconnect the graph. Then for each edge in 
T we can remove one of the incident vertices to disconnect the graph. But 
it is a contradiction. Since the r-dimensional hypercube is r-regular. The 
edge-connectivity must be r. 0 

5.4 Other Known Results 
It is not difficult to see that the hypercube is bipartite. We can get the 
bipartition by letting one of the partition sets be the set of vertices with an 
even number of 1's. 

Definition 5.9 Let G = (X, Y) be a bipartite graph. If for any pair of 
vertices, x E X and y E Y ,  there is a Hamilton path from x to y, then G is 
said to be Hamilton-laceable. 

Definition 5.10 Let G be a graph. If for any pair of vertices x and y in G, 
there is a Hamilton path from x to y, then G is said to be Hamilton-connected. 



Theorem 5.11 The r-dimensional hypercube is Hamilton-laceable. 

Proof: Q2 is Hamilton-laceable. Assume Q, is Hamilton-laceable. Let u = 
uluz.. . u,+l and vlvz..  . v,+l be any vertices in Q,+l, where u;,v; E {0,1) 
for 1 5 i 5 r. Suppose u; # v;. Let PI be a Hamilton path from 

- ul . . . u;-lu,+l . . . u,+1 to ul . . . U ; - ~ U ; + ~  . . . u,+~ in Q, and P2 a be a Hamil- - ton path from ul . . . u;-lu;+l. . . u,+l to vl . . . v;,lv;+l. . . v,+l in another copy - of Q, (These exist because ul . . . U ; - ~ U ; + ~  . . . u,+l and vl . . . v;-lv;+l. . . v,+l 
differ in an odd number of bits.) 

Now we insert u; in the ith position for every vertex in PI and denote 
the new path as PI (u;) .  We also insert v; in the ith position for every vertex 
in P2 and denote the new path as Pz(vi). Clearly Pl(ui)P2(v;) is a Hamil- 
ton path from ul . . . u,+l to vl . . . v,+l in Q,+l. By induction, the result 
follows. 0 

Corollary 5.12 The r-dimensional hypercube is hamiltonian. 



Chapter 6 

The Butterfly Network 

The butterfly network is one of the modification of the hypercube. It in- 
herits some of the properties of the hypercube, but its degree is bounded. 
In fact, the butterfly graph is a 4-regular graph. Like the hypercube, the 
butterfly network can simulate most of the networks with bounded degree 
with acceptable slowdown [9]. 

6.1 Modelling 
The following definition of the butterfly graph is taken from [9]. 

Definition 6.1 Let G(V, E) be a graph with IVI = r2' and IEl = r2'+' for 
some positive integer r .  The vertices in G are labelled as (w, i), where w is a 
binary sequence of length r that is called the row of the vertex, and i is the 
level of the vertex (1 5 i 5 r). Two vertices (w, i )  and (w1,i') are adjacent 
if and only if either 

1. w = w' and i' r i f 1 (mod r )  or 

2. w and w' differ in precisely the i'th bit when i' r i + 1 (mod r )  or w 
and w' differ in precisely the ith bit when it r i - 1 (mod r )  

G is called the T-dimensional butterjy graph and denoted as B,. 



Level 

1 2 3 

row 000 

row 0 0 1  

row 010 

row 011  

row 1 0 0  

row 101 

row 110 

row 111 

Figure 6.1: The Pdimensional Butterfly Graph 



Figure 6.1 exhibits the Sdimensional butterfly graph. Notice that if we 
identify the vertices in the same row, and remove all the loops and multiple 
edges, we will get an r-dimensional hypercube. 

Proposition 6.2 Let B, be an r-dimensional butterfly graph. If G is the 
graph obtained from B, by identifying the vertices in the same row and re- 
moving all the loops and multiple edges, then G g Q,. 

Proof: This follows directly from the definitions of the butterfly graph and 
the hypercube. 13 

Again, the butterfly graph can be modelled as a Cayley graph. But the 
group structure will not be as simple as the one for the hypercube. For the 
butterfly graph, each vertex has two coordinates. The first one is related to 
the one in the hypercube. Thus, we will extend the group for the hypercube 
to the one for the butterfly graph [l 1, 11. 

Let r, = {(p, i) : p = pl sp,, p; E {(2j-1 2j) : j = 1,. . . , r )  U {e), 0 5 
i 5 r - 1) and S = ((1 2), (3 4),. . . ,(2r-1 2r)). Define ?r; : S -, S by 
?r;((2j-1 2j))  = (2(i+j)-1 2(i+j)) reduced modulo 2r and ?ri(e) = e. Clearly, 
~ i+k(p)  = ~ i ( ~ k ( p ) ) .  

Define a binary operator as follows: 

where i + it is reduced modulo r .  

Proposition 6.3 We have that (I',, .) is a group. 

Proof: Note that 



So is associative. 
Since (e ,  0 )  (p ,  2 )  = (p,  2 )  . (e ,  0 )  = (p,  i ) ,  ( e ,  0 )  is the identity. 

For any (p ,  i )  = (pl . . p, , i ) ,  

and every element has an inverse. 

Now we can model the butterfly graph as a Cayley graph. 

Proposition 6.4 Let r, be the group in Proposition 6.3 and S  = { ( e ,  I ) ,  
( e ,  r  - 1 ) ,  ( ( 1  2 ) ,  I ) ,  ((2r-1 2r) ,  r  - 1 ) ) .  The Cayley Graph G(r,, S )  S B,. 

Proof: Let ( w ,  2 )  be a vertex in B,, where w = alas . . . a, is a binary sequence 
of length r.  Define 4 : BT -, G ( r ,  S )  by 4 ( ( w , i ) )  = $ ( ( a l .  .a,, i ) )  = 
(pl . . p,, i ) ,  where 

{ i - 1 2  i fa;  = 1  
pi = otherwise. 

Let ( w l ,  i l ) ,  (w2, i2)  E B, where wl = a1 a, and w2 = bl . . . b,. If 
i1 # i2 ,  then clearly 4 ( ( w l , i l ) )  # 4( (w2 , i2 ) ) .  If w1 # 202, then using the 
same argument in Proposition 5.2, We have 4 ( (w l ,  i l ) )  # ~ ( ( w z ,  4). 

Let (p ,  i )  E r. Let al . . a, be a binary sequence such that 

1  if (2i - 1  2i) is in p  
a, = 0  otherwise. 

Then 4((al  . . a,, a ) )  = (p ,  i) .  Hence 4 is a bijection. 
If (wl, i l )  is adjacent to (w2,  i2) ,  then there are two cases. 

Case 1: wl = w2 and il = i2 + 1  (mod r ) .  Then 4( (wl , i l ) ) (e ,  1)  = 
d( (w2 ,  i2)) .  Thus, 4( (wl ,  i l ) )  is adjacent to 4((w2, i z ) ) .  

Case 2: wl and w2 differ in the ilth bit and il i2 + 1  (mod r ) .  Then 

4 ( (w l .  i l ) ) ( ( l  2) ,  1)  = 4 ( ( ~ 2 , i 2 ) ) .  Thus, ~ ( ( w I ,  2 1 ) )  is adjacent to 4( (w , i2 ) ) .  

Conversely, if 4 ( (w l ,  i l ) )  is adjacent to 4( (w2 ,  i 2 ) ) ,  there are four cases. 



Case 1: if 4((wl, il))(e, 1) = 4((w2, i ~ ) ) ,  then wl = w2 and i2 = il + 1 (mod 
r ) .  Hence, (wl, il) is adjacent to (w2, i2). 

Case 2: if 4((wl, il))(e, r - 1) = 4((w2, i2)),  then wl = w2 and i2 = i l  + r - 1 
(mod r ) ,  or il = i2 + 1 (mod r).  Hence, (wl,il) is adjacent to (202, i2). 

Case 3: if 4((wl, i l ) ) ( ( l  2), 1) = 4((w2, i2)), then wl and w2 differ in the 
ilth bit and i2 il + 1 (mod r) .  Hence, (wl,il) is adjacent to (w2,i2). 

Case 4: if 4((wl, i1))((2r - 1 2r), r - 1) = 4((wz, i2)), then WI and w2 differ 
in the (il - 1)th bit and i2 il + r - 1 (mod r).  That is, wl and w2 differ in 
the i2th bit and il E i2 + 1 (mod r) .  Hence, (wl, il) is adjacent to  (w2, i2). 

Corollary 6.5 All butterfly graphs are vertex-transitive. 

Proof: Since all Cayley graph are vertex-transitive, the result follows. 

6.2 Symmetry 

Although the butterfly graph is derived from the hypercube, unfortunately 
it does not inherit all the symmetry properties from the hypercube. In fact, 
the butterfly graph is not even edge-transitive. This means that it is not 
distance-transitive or k-distance- transitive because those transitivities imply 
edge-transitivity. 

Theorem 6.6 Butterfly graphs are not edge-transitive for r 2 3. 

Proof: For r 2 3, consider the r-cycle, 



Each edge (00 - . - 0 ,  i) (00. . - 0 ,  i + 1) in this cycle lies in the unique $-cycle, 

These 4-cycles are edge-disjoint. If the butterfly graph is edge-transitive, the 
edge (00. . .0 ,1)(10.  . 0, r )  must lie in an r-cycle with the same property de- 
scribed above. Suppose such a cycle exists. Then (00. . 0 , l )  and (10. w - 0 ,  r )  
are the first and the second vertex. 



The third vertex cannot be (10. - - 0 , l )  because (00 - - - 0,1)(10 -0 ,  r )  and 
(10 . - 0, r )  (10 ..a - 0 , l )  are in the same 4-cycle 

Hence, the third vertex must be either ( l o - . .  0,r  - 1) or (10 . -01, r - 1). 
The fourth vertex cannot be in the rth level. Otherwise, the second and the 
third edge will be in the same 4-cycle (see the figure above). Similarly, the 
fifth vertex cannot be in the ( r  - 1)th level. Otherwise, the third and the 
fourth edge will be in the same 4-cycle, and so on. It forces the last vertex v, 
to be in the second level. Since the path from (00.. - 0 , l )  to the last vertex 
v, passes through the rth level exactly once at the second vertex (10 . . 0, r), 
the first bit of the last vertex is 1. Hence, v, is not adjacent to (00. . -0 , l ) .  
That is, the cycle in fact does not exist. Therefore, the butterfly graph is 
not edge-transitive. o 

6.3 Topological Structure 

Besides the properties of symmetry, topological properties are also very im- 
portant in studying interconnection networks. For example, people are un- 
likely to use a network with the large diameter because in general it takes 
longer time to communicate. Furthermore, it may be good news for anyone 
who wants to pipeline the job if the network is hamiltonian. We will now 
consider the topological properties of the butterfly graph. 

Proposition 6.7 The r-dimensional butterfly graph has girth 4, for r 2 4. 

Proof: Since (00 0 , l )  (010 . - 0,2) (010 - . .0,1) (00. . .0,2) (00 - . 0 , l )  is a 
4-cycle, the butterfly graph has girth at most 4. Now suppose there is a 
triangle in the butterfly graph. Let (wl, il), (w2, i2) and (w3, i3) be the 
vertices of this triangle. Then lit - i21 = 1, )i2 - i3) = 1 and lit - i31 = 1 
which is impossible unless r = 3. 0 

Before determining the diameter of the butterfly graph, we present a 
simple routing algorithm that is completely based on the definition of the 
butterfly graph. 



Let s = ( w , i )  be the source node and t = (w' , i l )  be the destination. 
Let w  = a l a 2 . . - a r  and w' = b l b 2 . - - b , .  If q  = c 1 c 2 - . - ~ ,  then denote 
f l ip(q,  k)  = clcz . - C ~ - I & C ~ + ~  . c+, where 

Algorithm 6.1: Simple Routing Algorithm for Butterfly Graph 

The level indices are reduced modulo r and in the range from 1 to r .  

1 .  Let p + i ,  1 +Oand qo t w.  

3. If a ,  # b,, then 

91 flip(91-1, P ) ,  

else 

91 + 91-1. 

4 .  If p # i  then go to step 2. 

5. If (i' - i )  < ( i  - i t )  then 

the route is: 

else 

the route is: 

Example: In the bdimensional butterfly graph, the route from (1011,2) to 
(0110,4)  will be 



The above algorithm changes the bits in w one by one to get w'. Then 
it continues the path in the row w' to get the correct level 2'. The algorithm 
actually works. Notice that the loop from ste 2 to step 4 runs r times. In 
step 5, it augments the path with at most vertices. Thus the length of 

the route that the algorithm produces is at most r + [:I = [PI. With this 

result, we can show that the diameter of the butterfly graph is [?I. 
Theorem 0.8 The r-dimensional butterfly graph has diameter [?I. 
Proof: By Algorithm 6.1, we know that the length of the path between any 
two vertices is at  most [ $1 , so the diameter of the butterfly graph is at  most 

&] too. Now consider the shortest path from (00 - 0, r) to (1 1 . . 1, It] ). 
e must change all 0's of the source to 1's and move from level r to eve1 1:). No matter how we move, we have to take at least r + I:] = I?] steps. 

Thus,thediameterofthebutterflyisatleast [f]. Theresultfollows. 0 

Algorithm 6.1 is not so good because it always produces a walk of length 
at least r .  Of course, we can identify the repeated vertices and remove the 
vertices in between to make the walk be a path to get some improvement. 
However, the result is still not a shortest path in general. For example, 
consider a path between (000,3) and (011,l) in the Sdimensional butterfly 
graph. Figure 6.2 shows that Algorithm 6.1 does not give the shortest path. 

Before presenting a shortest path algorithm, we consider a simple opti- 
mization problem. Given an n-cycle 

where uO,vl,. . . , vn-l are vertices and el, e2,. . . en are edges, let A C_ E be 
a subset of the edge-set, and s , t  E V be any two vertices. The problem is 
to find a shortest walk from s to t so that it covers all the edges in A (See 
Figure 6.3). 

Lemma 6.9 The shortest walk covers each vertez at most twice. 

Proof: Suppose the walk covers the vertex v three times. Then the walk will 
look like one of the diagrams in Figure 6.4. 



Level 

row 000 

row 001 

row 010 

row 011 

row 100 

row 101 

row 110 

row 111 

The route determined by Algorithm 6.1 

Level 

1 2 3 

A shortest route 

Figure 6.2: The Routes from (000,3) to (011,l) 



edge in A 

S 

Figure 6.3: Diagram for the Shortest Walk Problem 

Figure .6.4: Diagram for Lemma 6.9 



Figure 6.5: Possible Shortest Walks 

Clearly, the walks from a to b are redundant in all cases. If we remove all 
the redundant parts, we can get a shorter walk that covers v at most once. If 
the walk covers the vertex more than three times, we can use this operation 
repeatedly to reduce the number of times the walk covers the vertex. 

The walk has to start from s and stop at t ,  so it must contain a path 
from s to t .  Based on Lemma 6.9, the shortest walk will look like one of the 
diagrams in Figure 6.5. 

Suppose A = { e ~  e;, , . . . , e, ). Then the walk we need to consider will 
be sp1e;,Fl p2tp3ei, p3 as illustrated in Figure 6.6. 

Note that PI and P2 may be empty and B1 and F2 are the reverse paths of 
PI and P2, respectively. There are in fact k walks to check, and the shortest 
one will be the shortest walk from s to t that covers all edges in A. 



Walk Covering All Edges in A 

Now we can model the shortest path problem in the butterfly graph as 
the above optimization problem. Given any two vertices (w, i )  and (w', 2 )  
where w = ala2 . . . a, and w' = blh . . . b,, let 

be an r-cycle, A = { e ,  : ai # b ; ) ,  s = vi and t = vil 
Once we get the shortest walk in C, we can transform the solution to the 

shortest path of the butterfly graph. Let 

W = V j , e ; , V j , e , , V j , e i ,  . . . e i p V j p ,  

where jo = i and j ,  = i f ,  be a shortest walk that covers all edges in A 

Algorithm 6.2: The shortest path algorithm for the butterfly graph. 

The level indices are reduced modulo r and in the range from 1 to r .  

1. Let W = vj, e;, vj, e;,vj,e;, . e;,vj,,, where jo = i and j ,  = it, be a 
shortest walk that covers all edges in A 



2. Let qo t w. 

3. For 1 = 1 to p 

if e,, E A then 

QI + f lip(q1-1, il), A t A - {e,, ), 
else 

q1 t q1-1. 

4. The shortest path from (w, i) to (w', it) is 

Example : Consider the same example mentioned before. We want to find 
the shortest path from (000,3) to (011,l) in a 3-dimensional butterfly graph. 
The associated 3-cycle is: 

v2 

Clearly, the shortest walk is v3e3vze2vl. Using algorithm 6.2, we get 

which is the desired result. 
The above algorithm works because from (w, i) to (w', it) we have to 

change w bit by bit to get w'. Each time we change one bit, i will be 
changed to be either i + 1 or i - 1. Finally we have to make i become it too. 
Consider the following diagram: 



Level 

We want to start at  row 2 and finish at row 2'. If we move to the right at 
row j, we can change the ( j  + 1)th bit (ej+i is marked) or keep it the same 
(ej+i is not marked). If we move to the left at row j, we can change the j th  
bit (ej is marked) or keep it the same (ej is not marked). It is exactly the 
shortest walk problem that we have discussed. 

Of course, Algorithm 6.1 is much easier to implement. It is not necessary 
to pre-determine the route before the node sends the message. This also 
means that no extra memory is required to store the route if Algorithm 6.1 is 
used. Thus, there is some trade-off between Algorithm 6.1 and Algorithm 6.2. 

6.4 Hamilton Cycles and Hamilton Paths 

Next we show that the butterfly graph is hamiltonian and discuss an al- 
gorithm to determine a Hamilton cycle. The following is an algorithm to 
determine a Hamilton cycle in butterfly graphs. 

Algorithm 6.3: Hamilton cycle algorithm for butterfly graphs 

The level indices additions are reduced modulo r and in the range from 
1 to r. 

1. Set (wo, io) t (00. . -0 ,  r). 

2. For 1 = 1 to r2' 
if wl-1 = 00 . 0 

let k = max{j : j th  bit of wl-I is 1) otherwise. 

If i1-i < k then 



else 

3. The Hamilton cycle is 

Figure 6.7 is a Hamilton cycle of the Sdimensional butterfly graph gen- 
erated by Algorithm 6.3. 

Theorem 6.10 Algorithm 6.3 generates a Hamilton cycle of the butterfly 
graph and hence, all butterfly graphs are hamiltonian. 

Proof: We need to show that Algorithm 6.3 generates all vertices in the but- 
terfly graph. Suppose we start at the vertex (al - . - a,-10, r).  Algorithm 6.3 
will generate the following: 

So all vertices in row a1 . - a, are generated. The path also contains the 
vertex, (al . . . U , - ~ O ,  r )  and returns to (al . - .  a,-lO, r - 1). Assume that 
if we start at the vertex (al . . . ajO . -0 ,  r) ,  then Algorithm 6.3 will gener- 
ate the path that contains all vertices in row a l  . a a ajbj+1 - a . b,, bl E {O,1} 
and (al . . .  ajO...O,l), where j + 1 5 1 5 r. Also the path will return to 
(al . . - ajO - .  . 0, j).  

Now suppose we start at (al . . - aj-10 . -0 ,  r). Then by the assumption, 
Algorithm 6.3 will generate the path that contains all vertices in row 
al  . . aj-lObj+l - .  br, bl E {0,1) and (al . . aj-lO.. -0 ,  I), where j + 1 5 
1 5 r. The path will return to (al - . - aj-lO.. -0 ,  j). The path will continue 
to (al ~ ~ - a j - ~ 1 0 ~ ~ ~ 0 , j - l ) ( a l ~ ~ ~ a j - 1 1 0 ~ ~ ~ 0 , j - 2 )  . . .(al. . .aj-llO...O,r). 
Then by the assumption again, Algorithm 6.3 will generate the path 
that contains all vertices in row a1 . aj-llbj+l . . b,, bl E {0,1) and 
(al . . . aj-l 10. - 0, I), where j + 1 5 1 5 r. The path will then return to 
(al . a j - ~  10 '0 ,  j) and then it continues to (al . aj-10 . -0 ,  j - 1). By 
induction, if we start at (00. . -0 ,  r), Algorithm 6.3 will generate all vertices 
in the butterfly graph. 



Figure 6.7: A Hamilton Cycle in the bdimensional Buttedy Graph 
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The butterfly graph is not only hamiltonian, but also hamilton-connected 
for odd dimension and hamilton-laceable for even dimension. We are going 
to show this stronger result [12]. 

Theorem 6.11 The butterfly graph Br is Hamilton-laceable when n is even. 

Proof: First we show that if Br-2 is Hamilton-laceable, then B, is also 
Hamilton-laceable. Let &-2(x, y) be the rows xyb3.. . b,, where b; E {O,1) 
for all 3 5 i 5 r .  Since Br is vertex-transitive, it is sufficient to show that 
there is Hamilton path from (0. - - 0, r) to any vertex v = (al . . - a,, I), where 
1 is odd. 

Case 1: The bits ala2 = 00. If 1 2 3, then let PT-2 be a Hamilton path 
from ( 0 - . . 0 , r  - 2 )  to ( a 3 - . - a , , / - 2 )  in Br-2. If 1 < 3, then let Pr-2 

be a Hamilton path from (0. . 0, r - 2) to (a3. - . a,, 1) such that the edges 
(ag. . .a , , r  -2 ) ( i i3 . - -a , , l )  and (a3...a,,r-2)(a3-..a,,l) are not in Pr-2. 

First we construct a path in &-2(x, y) from PT-2. We relabel each vertex 
(bl . br-2, i) in PrV2 to (xybl . br-2, i + 2) and augment level 1 and level 2 
to P,-2. We replace the edge (xybl . . . b,-2, i + 2) (xy& . - b,-2, i + 2) by the 
path 

and replace the edge (xybl . br-2, r )  (xybl . . br-2, 3) by the path 

If 1 = 1, we also put a path 

(it is possible because of the choice of Pr-2). Let the resultant path be 
Sr-2(0, 0). 

Using Algorithm 6.3, we can get a path from (xyO . 0, r) to (xyO. . .0,2) 
which contains all but (xyO. 0 , l )  in &-2(x, 9 ) .  Therefore, by putting the 
edge (xyO . - 0 , l )  (xyO. . 0,2), we get a Hamilton path from (xyO . . -0,  r )  to 
(xyO - - 0 , l )  in &-2(x, y). We denote this path by Tr,2(0, 0). 

Since P,-2 is a Harn i l t~n '~a th ,  it must use an edge whose endpoints are 
in the first and the rth level. That means contains an edge whose 



Figure 6.8: Diagram 1 for Theorem 6.11 



Figure 6.9: : ~ i a ~ r a m '  2 for Theorem 6.1 1 

endpoints are in the first and the second level. Let f be that edge. Now we 
connect S,-2 and three T r - 2 ' ~  together to get P, as Figure 6.8 shown. 

For the isolated vertices (OOdl - - . d,-2, 1 )  and (OOdl . - dr-2, 2 ) .  We re- 
move the edge (Oldl . . - d,-2, l)(O1dl - .. dr-2, 2 )  and add a path 

Notice that P, also satisfies the restriction of Pr-2. 
Case 2: The bits ala2 # 00 and a3a4.. . a ,  # 0 0. We first connect the 
paths as Figure 6.9 shown. Then we use the same method as in case 1 to 
join the isolated vertices into the path. Again the resultant path satisfies the 
restriction of Pr-2. 



Case 3: The bits ala2 # 00 and as . a, = 0.. - 0. Let 3+-2(x, y) be the 
path from (xyl . -1, r) to the vertices in row xyO . . 0 in R+-g(x, y) obtained 
by reversing the rows of Sr-2(x, y) which starts from (xyO...O,r) to the 
vertices in row xyl... 1. We define F,-2(x, y) in a similar manner. We 
also let S0,r-2(x, y) be the path from (xyO. - 0, r) to (xyl . - 1,l). Now we 
connect the paths as Figure 6.10 and join the isolated vertices to get P,. 

Figure 6.10: Diagram 3 for Theorem 6.1 1 

Notice that all of P, satisfies the restriction of Pr-2. When r = 2, we 
have the following Hamilton paths. 



By induction, the result follows. 

Theo rem 6.12 The Butterfly graph B, is Hamilton-connected when r is 
odd. 

Proof: we will use the notation in Theorem 6.11. The proof is basically 
the same as Theorem 6.11. Suppose Br-2 is Hamilton-connected. We want 
to find a Hamilton path from (0. .  . O ,  r) to any vertex (al . a,, 1). The 
same procedure in Theorem 6.11 will be use to get the Hamilton path in 
B,. There is one exception: 1 = 2. When I = 2 and a s . .  - a, # 0. .  0. 
We let P,-2 be the path from (0 - .  0, r - 2) to (a3 - .  . a,, r - 2) such that 
it does not have the edges (a3. . .a , , l ) (a3. . .a , , r  - 2) and ( a3 . - - a , , r  - 
2)(iji3..-a,,l) . Then we construct S,-~(X, y) as before and add a path 
(xya3. - .  a,, r)(xya3. a,, l)(xya3 a,, 2). The rest will be the same as 
Theorem 6.11. 

If 1 = 2 and a3.e. a, = 0 . .  0, the we let Sr-2(x, y) be the path from 
(xyO . -0 ,  r) to (xyl . - - 1, r). We also let S0,r -2(~,  y) be the path from 
(xyO...O,r) to ( x y l . . . l , l )  . Then we connect the paths as Figure 6.11 
and Figure 6.12 shown. 

Notice that all P, satisfy the restriction of Pr-2. For the Hamilton paths 
starting from (000,3) in B3. We can use the following Sl(x, y) to generate 
them. 

By induction, the result follows. 

Connectivity 

Unlike the hypercube, the butterfly graph has the bounded connectivity be- 
cause of its fixed degree. 

Theo rem 6.13 The connectivity of r-dimensional butterfly graph is 4. 



Figure 6.1 1: Diagram 1 for Theorem 6.12 



Figure 6.12: Diagram 2 for Theorem 6.12 



Proof: Let u, v be any two vertices in B,. Since B, is vertex-transitive, 
we can assume that u = (0. . -0, r). Using the Algorithm 6.3, we can get 
a Hamilton cycle (0 . .0, r)AvB(O.. . 0, r). If A or B is empty, then B, - 
((0 . . 0, r), v )  is connected. We assume that both A and B are non-empty. 
Then (O... 01, r - 1) E A and (10.. -0,l) E B. Consider the paths 

PI : (0-~~01,r-1)(0~~~01,r)(10~~~01,1)(10~~~01,2)~~~ (10-..01,r-1) 
(10 - . 0, r)(lO . 0,l). 

P2 : (0--.Ol,r - l)(O...Oll,r -2)-.-(01.--11,1)(11-.. 1,r) 
(11-10,r - 1)- (10--0,l). 

P3 : (0-01,r - 1)(0-01,r -2)--~(O-Ol,l)(i0~~~01,~) 
(10. . -0, r - 1)(10 . - 0, r - 2) . - (10.. 0,l). 

Those are the vertex-disjoint paths from (0. . 01, r - 1) to (10. -0,l). There 
must exist an edge from A to B. That is, BT - ((0- -0, r), v) is connected. 
Therefore, the connectivity of B, is at least 3. 

Let u, v and w be any three vertices in Br. Again, we can assume that 
u = (0 - . 0, r). Using Algorithm 6.3 and relabelling v and w if necessary, we 
can get a Hamilton cycle (0 0, r)AvBwC(O . . 0, r). If any two of A, B 
and C are empty, then Br - ((0. . -0, r), v, w) is still connected. If only B is 
empty, then we can use the same argument above to show that the graph is 
still connected. Suppose only A is empty. Then B contains (0 . - 01, r - 2) 
and C contains (10. - - 0,l). conside; the paths 

Pl : (0-.-Ol,r -2)(O...Oll,r - 1)(10~~~011,1)(10~~~011,2)~~~ 
(10-..011,r - 2)(10-..01,r - 1)(10--.O,r)(lO--.0,1). 

P2 : (O..-01,r - 2)(0...0101,r -3)...(01... 101,1)(11... 101,r) 
(ll... 100,r - 1)(11... 100,r - 2)(11-.. 1000,r - 3)s.. (10-.-0,l). 

P3 : (O...Ol,r -2)(O...Ol,r -3)~~~(0~~~01,1)(10~-~01,r) 
(10 . - 0, r - 1)(10 . - 0, r - 2) . (10. . - 0,l). 

Those are the vertex-disjoint paths from (0 - - -01, r - 1) to (10 - .  -0,l). There 
must exist an edge from B to C. That is, B, - ((0. . 0, r), v, w) is connected. 

Suppose only C is empty. Then A contains (0 . -01, r - 1) and B contains 
(1 10 . .0,2). Consider the paths 

Pl : (O-..Ol,r - 1)(0~~~01,r)(10~~~01,1)(110~~~01,2)~~~ 
(110-..Ol,r - 1)(110~~~0,r)(110~~~0,r - I)... (110..-0,2). 

P2 : (O.--Ol,r - 1)(0-.-011,r - 2) ... (01 . . -  11,1)(11 1,r) 
(11-..10,r - l)... (110...0,2) . 

P3 : (0.. -01,r - 1)(0... 01,r - 2) - .  . (O... 01,1)(10... 01,r) 
( 1 0 . . . o , r - 1 ) ( 1 0 . . . O , r - 2 ) ~ ~ ~  (10-0,2)(110~~~0,1)(110~~~0,2). 



Those are the vertex-disjoint paths from (0. - 01, r - 1) to (110. 0,2). 
There must exist an edge from A to B. That is, B, - ((0 0, r), v, w} 
is connected. 

Finally, suppose all A, B and C are non-empty. Then (0. -01, r - 1) E A 
and C contains (10. 0,l). We can use the three vertex-disjoint path from 
(0 - . 01, r - 1) to(l0 . -0,l) discribed above to show that there is a path from 
A to C. If there is an edge from A or C to B, then B, - ((0---O,r),v,w} 
is connected. Otherwise, since the connectivity of B, is at least 3, either 
(0. - . 0, r - 1) or (0. . .0,1) is in B. For the first case, we have the following 
three vertex-disjoint paths from (0 . .01, r - 1) to (0. . - 0, r - 1): 

PI : (0-..01,r - 1)(0.-.Ol,r)(O...O,r - 1). 
P2 : (O..-01,r - l)(O...Oll,r -2)(O.-q011,r - l)(O...OlO,r) 

(0 . 010,l) . . (0. . -010, r - 2)(OS . 0, r - 1). 
P3 : (0.-~01,r - 1)(0..-01,r - 2)~s. (0~~~01,1)(10~~~01,r) 

(10-a-01,r - 1)(10~~~0,r)(0~~~0,1)(0~~~0,2)~~~(0~-~0,r - 1). 
For the second case, we have the following three vertex-disjoint paths 

from (0.--01,r - 1) to (0..,0,1): 
PI : (O.-.Ol,r - 1)(0.-.Ol,r)(O...O,r - 1)(0...0,1) . 
P2 : (O-..Ol,r - l)(O...Ol,r -2)~~~(0~~~01,1)(10~--01,r) 

(10. . . 01, r - 1) . . . (10. -0, r)(O -0,l). 
P3 : (O...Ol,r - l)(O...Oll,r -2)e.a (01...1,1)(01.-. 1,2) 

(0101 . . . 1,3) (010 SO, r)(010.. .0,1)(010.. - 0,2) (0.. .0,1). 
Hence, there must be a path from A to B. B, - ((0.. 0, r), v, w) is 

connected. Since B, is 4-regular, it has connectivity 4. 0 

Corollary 6.14 The edge-connectivity of r-dimensional butterfly graph is 4. 

Proof: Since B, is 4-regular and has connectivity 4, the result follows. 



Chapter 7 

In the previous chapter, we discuss an extension of the hypercube, the but- 
terfly graph. It not only inherits some properties from the hypercube, but 
also has bounded degree. In this chapter, we will discuss another extension 
of the hypercube which also has bounded degree. Consider the following 
operation: 

Let v be a vertex of a hypercube Q,, r > 3. We replace each vertex by an 
r-cycle as illustrated above. Then the resultant graph will become a 3-regular 
graph and is called the r-dimensional cube-connected-cycles. Figure 7.1 is a 
3-dimensional cube-connected-cycles. 

7.1 Modelling 
The following is the formal definition of r-dimensional cube-connected-cycles 
[91. 



Level 

1 2 3 

row 000 

row 001 

row 010 

row 01 1 

row 100 

row 101 

row 110 

row 111 

Figure 7.1: The 3-dimensional cube-connected-cycles 

Definition 7.1 Let G(V, E )  be a graph with IVI = r2' and IEl = 3r2'-' for 
some positive integer r .  The vertices in G are labelled by (w, i), where w is 
a binary sequence of length r that denotes the row of the vertex and i is the 
level of the vertex (1 5 i 5 r ) .  Two vertices (w, i) and (w', it) are adjacent 
if and only if either: 

1. w = w' and i' i f l(mod r )  or 

2. w and w' differ in precisely the ith bit and i' = i. 

The graph is called r-dimensional cube-connected-cycles and is denoted as 
CCC'. 

It is not suprising that cube-connected-cycles are also Cayley graphs. 
By comparing the cube-connected-cycles and the butterfly graphs, we can 
discover some similarities between these two classes of graphs. In fact, the 
group used to generate the cube-connected cycles is exactly the one for the 
butterfly graphs Ill, 11. * 



Propos i t ion  7.2 Let I?, be the group in Proposition 6.3 and S = {(e 
(e, r - l ) ,  ((1 2), 0)). The Cayley graph G(I',, S) CCC,. 

Proof: Let (w, i) be a vertex in CCC,, where w = ala2. . .  a, is a 
nary sequence of length r. Define 4 : CCC, -, G(r,  S )  by 4((w, i) 
4((al . a,, i)) = (n . . . p,, i), where 

, 11, 

bi- 

> = 

{ Fi-1  22) if a, = 1 
Pi = otherwise. 

We have already shown that this mapping is a bijection in Proposition 6.4. 
Let (wl, i l ) ,  (w2, i2) E CCC,, where wl = a1 - .  - a, and wl = h . . . b,. If 
(wl, i t )  is adjacent to  (w2, i2), then there are two cases. 

Case 1: wl = w2 and il  = i2 + 1 (modr ) .  Then q5((wl,il))(e,1) = 
4((w2, i2)). Therefore, 4((wl, il)) is adjacent to  4((w2, i2)). 

Case 2: wl and w2 differ in the ilth bit and il  = i2. Then 4((wl, i l ))(( l  2), 0) 
= 4(w2, i2).  Thus, $((wl, il)) is adjacent to  4((w2, i2)). 

Conversely, if 4((wl, i l ))  is adjacent to  4((w2, i2)), there are three cases. 

Case 1: If 4((wl, il))(e, 1) = 4((w2,i2)), then wl = w2 and i2 G il + 1 (mod 
r).  Hence, (wl, i l )  is adjacent to (202, i2). 

Case 2: If 4((wl, il))(e, r - 1) = 4((w2, i2)), then wl = w2 and i2 r i l  + r  - 1 
(mod r) ,  or il  G i2 + 1 (mod r ) .  Hence, (wl, i l )  is adjacent to  (w2, i2). 

Case 3: If 4((w1, i l ))(( l  2), 0) = 4((w2, iz)), then wl and w2 differ in the 
ilth bit and i2 = il. Hence, (wl,il)  is adjacent t o  (w2,i2). 

This shows that 4 is an isomorphism. 0 

Corol lary  7.3 All cube-connected-cycles are vertex-transitive. 

7.2 Symmetry 

As with the butterfly graph, the cube-connected-cycles is not edge-transitive. 
This also means that the cube-connected-cycles cannot be distance-transitive 
or even k-distance-transitive. 



Figure 7.2: Diagram 1 for Theorem 7.4 

Theorem 7.4 The CCC, is not edge-transitive for r 2 3. 

Proof: Consider the r-cycle of row (00.. . - 0 )  when r # 8 (figure 7.2.) 

Each edge (00 - . - 0 ,  i )  (00 - 0, i + 1) in this cycles lies in the unique 8-cycle 
l O - . . O , i ) ( ~ l O . . . O , i  + 1)( 11O...O,i + 1) 

1-1 i-1 i-1 

( 0 ~ ~ ~ 0 1 0 ~ ~ ~ 0 , i ) ( ~ 1 0 ~ ~ ~ 0 , i ) ( ~ 1 0 ~ ~ ~ 0 , i  - + l)(O...O,i + 1) 
1-1 i i 

(0- 0,i).  
If the cube-connected-cycles is edge-transitive, then we can find an au- 

tomorphism that maps the edge (0 - .0,1) (0 . . .0 ,2)  to the edge (0 . - 0 ,  r - 
2)(O...0100,r - 2). Thus, the edge (0 - . .O , r  - 2)(0-- .0100,r  - 2) must 
lie in an r-cycle with the same property. Let W be this r-cycle. The edge 
(0 . . - 0, r - 2)(0. . . 100, r - 2) lies in two &cycles (see figure 7.2). If the edge 
g is in W, then 



Figure 7.3: Diagram 2 for Theorem 7.4 

will be the 8-cycle containing g. Similarly, if the edge h is in W, then the 
same cycle 

(0. .  ~ O l O O , l ) ( O ~ ~ ~  Ol00,2). . (0- 0100,~) 

will be the 8-cycle containing h. Hence, r must be 8, but it is a contradiction. 
When r = 8, there are two types of &cycles. We call the &cycle of 

each row be the &cycle of type I, and the &cycle lying in more than one 
row be the &cycle of type 11. Two 8-cycles are said to be adjacent if they 
have an edge in common. Consider those &cycles of type I1 in Figure 7.2 
again. Any two disjoint &cycles of type I1 have only one common adjacent 
8-cycle of type I which is the cycle of row 00 . -0. If the cube-connected- 
cycles is edge-transitive, again we want to find an automorphism that maps 
the edge (0...0,1)(0...0,2) to the edge (O...O,r -2)(0--.0100,r -2). In 
this case, we can map the cycle ( 0 ~ ~ ~ 0 , 1 ) ( 0 ~ ~ ~ 0 , 2 ) ~ ~ ~ ( 0 ~ ~ ~ 0 , r ) ( O ~ ~ ~ O , 1 )  
to one of the cycles R or S (see figure 7.3). If R is the image, then the 
disjoint cycles S and T have two common adjacent cycles R and V. This 
means that this case is impbssible. If S is the image, then the disjoint cycles 
D and E have two common adjacent cycles U and S. Again it is impossible. 
Hence, it is impossible to map the edge (00.. .0,1)(00 . - 0,2) to the edge 



(00. . - 0, r - 2)(00 . -0100, r - 2). That is, none of the cube-connected-cycles 
are edge- t ransi t ive. 

7.3 Topological Structure 

We now consider topological properties of the cube-connected-cycles. 

Proposit ion 7.5 The r-dimensional cube-connected cycle has girth r for r 5 
8 and girth 8 for r > 8. 

Proof: Consider a cycle (wlil)(w2i2) . . (wkik)(wlil). If all W;'S are the same, 
we will get a r-cycle. Since any two rows are joined by at most one edge, 
it is impossible that a cycle lies in precisely two rows. Similarly, any three 
rows are joined by at most two edges, so it is impossible that a cycle is lies 
in precisely three rows. Suppose the cycle lies in precisely four rows. The 
cycle must use at least one edge from each row. This implies the cycle must 
have length at least 8. 

The edge (al - .  - a,, i) (al . . . a,, i + 1) lies in the r-cycle 

and an 8-cycle - 
(al...a,a;+l...a,,i)(al...a,a,+l.--a,,i+ l ) (a l . . . a , a ,+ l - - . a , , i+  1) - -- , ,+I - - . a,, i )  (al - . a aiai+l. . - a,, i) (al a - . ?i,?i;+l . . . a,, i + 1) (al . a . a .  

- - ( a l . . . a ; a ; + l . - - a , , i +  l)(al.-.a;a,+l.-.a,,i)(al..-a;a;+l.-.a,,i). 
Hence, the result follows. 0 

As the butterfly graphs and the cube-connected-cycles are generated by 
the same group, there are some similarities between these two classes of 
graphs. For instance, if we modify the simple routing algorithm for the 
butterfly graph (Algorithm 6.1), we will get the following version for the 
cu be-connected-cycles. 

Let s = (w, i) be the source node and t = (w', it) be the destination, 
where w = ala2 - . . a ,  and w' = b t b . . .  b,. 

Algorithm 7.1: Simple Routing Algorithm for Cube-Connected-Cycles 



The level indices are reduced modulo r  and in the range from 1 to r .  

1 .  Let p t i ,  1 + 0, qo +- w and io t i .  

2. If li + 1 - i'l < li - 1 - i'l then 

s = 1, 

else 

4. If a, # b,, then 

5. If p # i - s ,  then go to step 2. 

6. If a;-, # bi-, then 

l + l + l ,  

q1 t f lip(q1-1, i - 4, 
il  t Z I - ~ .  

7. The route is 

The idea of this algorithm is the same as that of Algorithm 6.1. It changes 
the bits in w one-by-one to get w'. Then it continues the route in row w' 
to get the correct level i t .  Notice that the loop from step 3 to step 5 in 
Algorithm 7.1 runs at most 2r - 1 times. Because of step 2, the algorithm 
augments the route with at most [?I vertices if r  2 4, or 1 if r = 3. Hence, 



the algorithm always gives a route of length at most 2r - 1 + [?I = [?I, 
when r 2 4, and at most 2(3) - 1 + 1 = 6, when r = 3. This leads to the 
following result [7]. 

Theo rem 7.6 The CCC, has diameter I?], when r 2 4, and 6 when 
r = 3. 

Proof: When r = 3, the length of the shortest route from (000,3) to (111,2) 
is 6. The result follows. When r 2 4, the algorithm gives a route of length 
at most [?I . Consider the route from (00 . .0 ,  r) to (1 1 . . - 1, ). The 
route must hit at least r rows. The route also comes across each level at least 
once. The ith level is only connected to the (i - 1)th and (i + 1)th level. 
This forces the route to traverse at least r - 1 + [:I - 1 = vertices if 

the route starts from level r, ends at level [:I and crosses every level at least 

once. Hence, the length of the route from (00 - - - 0, r) to (1 1 . -1 ,  [I] ) is at 

least r + [?I = [?I. The result follows. 

Algorithm 7.1 does not give the shortest route in general. For instance, 
consider the route from (0000,4) to (1100,2). Algorithm 7.1 will generate 
the following route: 

However, the shortest route is 

We are now going to investigate the shortest path algorithm for cube- 
connected-cycles. In fact, the idea is exactly the same as that for the butterfly 
graphs. We know that if the source and the destination differ in k bits, the 
route must traverse at least k rows. There is no way to reduce this number. 
However, we can minimize the number of levels that the route hits. First 
consider a simple optimization problem. Given an n-cycle 



vertex in A 

Figure 7.4: Diagram for the Shortest Walk Problem. 

where vlv2.. - v, are vertices, let A C V be a subset of the vertex-set, and 
s, t E V be any two vertices. The problem is to find a shortest walk from s 
to t so that it covers all the vertices in A (see figure 7.4). 

This optimization problem is almost the same as that for the butterfly 
graphs. In fact, we can use the same method to solve this problem. This 
solution corresponds to the minimum number of levels that the route must 
hit. 

Now we can model the shortest path problem in the cube-connected- 
cycles as the above optimization problem. Given any two vertices (w, i) and 
(w' , i t) ,  where w = ala2...a, and w' = blbz..-b,, let 

be an r-cycle, A = {vk : ak # bk, 1 5 k 5 r ) ,  s = vi and t = up. 
Suppose we have a shortest walk in C that covers all vertices in A. Let 

where jo = i and j, = it, be such a shortest walk. We can now transform the 
solution to the shortest path in the cube-connected-cycles. 

Algorithm 7.2: The shortest path algorithm for the 
cube-connected-cycles. 

The level indices are reduced modulo r and in the range from 1 to r. 



1 .  Let W = vjovjlvj2vj3 . . . vj, be the shortest walk of the associated opti- 
mization problem. 

2. Let qo t w,  1 t 0, k t 0 and io t i .  

5. If k < p then go to step 2. 

6 .  If vj, E A then 

l t l + l ,  

ql + f l ip(ql-l,jp), il t jp. 

7. The shortest path is 

Example: Consider the same example mentioned before. We are looking 
for a shortest path from (0000,4) to (1100,2). The associated 4-cycle is 
shown below. 

Clearly the shortest walk is W = v4vlv2. Algorithm 7.2 will generate the 
path 

(0000,4) (0000,l) (1000, l)(lOOO, 2)(1100,2). 

which is the desired result. 



7.4 Hamilton Cycles 

The cube-connected-cycles is again hamiltonian. The result has been proven 
by R. Stong [ll]. 

Theorem 7.7 All cube-connected-cycles are hamiltonian. 

Proof: Let R, be the subgraph of an r-dimensional cube-connected-cycles 
induced by the rows 

O . . . Oaj+~a j+~  . . . a,, ai E (0, I ) ,  j + 1 5 i 5 r. 

Suppose Rj  is hamiltonian. Consider Rj-2. It consists of four copies of Rj  
which are Rj(0, 0), Rj(0, I ) ,  Rj(1, 0) and Rj(1, 1). 

The vertices ( xyO...O,j - 1) and ( xy0 . -0,  j) have degree 2 
j-2 j-2 

in Rj(x, y). Therefore, we can let Pj(x, y) be a Hamilton path starting at 
( ~ z y O . . . O ,  j - 1) and ending at ( u x y O . . . O ,  j). Let F,(x, y) be the 

j-2 j-2 

reverse of this Hamilton path. Then we can get a Hamilton cycle of Rje2, 
namely, 

P,(o, o)F,(o, l )Pj( l ,  l )F,(l ,  0). 

When r is even, & is an r-cycle, so the result follows. When r is odd, we have 
the Hamilton cycle of (Figure 7.5). By induction, the result follows. 



Figure 7.5: Hamilton Cycle on lL3 

Figure 7.6 illustrates Hamilton cycles of the CdimensionaI and the 5- 
dimensional cube-connected-cycles. 

Theorem 7.7 gives a recursive construction of a Hamilton cycle of the 
cube-connected-cycles. In practice, we may want to have an algorithm that 
can determine the next vertex of the Hamilton cycle directly. With the 
algorithm, we do not need to store a Hamilton cycle in memory. 

In the recursive construction, the even cases and the odd cases are sepa- 
rated. In the following algorithm, we still separate it into two different cases. 
For the even cases, let v = (a la2  - - . a2,, i). We choose 

be the base cycle. The Hamilton cycle of Rj-2 is given by 

This implies that we either flip the ith bit or add 1 to i (opposite direc- 
tion of &) to get the next one when the number of 1's in ala2.  - . a2 ,  is 
odd. Similarly, if the number of 1's in ala2 . . azp is even, we either flip 
the ith bit or substract 1 for i (same direction of 8). If v is in the form 
(a l  - a i - 2 x y g ; . ; 9 ,  i), s even, and xy = 00 or xy = 11, then we flip the ith 

bit according t d  the recursive construction. Let I = m a x { j  : aj = 1) and 
k = number of 1's in a1 . . . a2,. Hence, we flip the ith bit when i 2 I ,  and i 



Figure 7.6: Hamilton Cycles in the 4- and bdimensional Cube-connected- 
cycles 



and k are both even. If v is in the form (al . . . a,-lxy i) ,  s odd, and 
a 

xy = 01 or xy = 10, then again we flip the ith bit according to the recursive 
construction. ~ e n c e ,  we flip the ith bit when i 2 1 - 1, and i and k are both 
odd. We have the following algorithm for the even case. 

Algorithm 7.3: Algorithm for generating a Hamilton cycle of CCC, when 
r  is even. 

The level indices are reduced modulo r  and in the range from 1 to r .  

2. For p = 1 to r2' 

if wp-1 = 00 - - - 0 
let 1 = max{j : j th  bit of wp-1 is 1) otherwise, 

let k = number of 1's in wp-1. 

If k is even then 

if ip-l 2 1 then 

if ip-l is even then 

w, + f lip(wp-1, ip-l), ip + ip-1, 

else 

wp + wp-1, ip + ip-1 - 1, 

else 

wp + wp-1, ip + ip-1 - 1, 

else 

if ip-l 2 I - 1 then 

if ip-l is odd then 

wP + flip(wp-I, ip-I), ip + ip-1, 

else 

wp t wp-1, ip + ip-1 + 1, 

else 



3. The Hamilton cycle is 

The odd case is basically the same as the even case. Since the recursive 
construction starts from Rr-3, some modifications are needed. 

Algorithm 7.3: Algorithm for generating a Hamilton cycle of CCC, when 
r is odd. 

The level indices are reduced modulo r and in the. range from 1 to r .  

2. For p  = 1 to r2r 

if wp-1 = 00. - - 0 
let 1 = max{j : j th  bit of wp-1 is 1 )  otherwise, 

let k = number of 1's in wp-1. 

If k is even then 

if a,-1 = 1 then 

if ip-l = r - 1 then . 

wp t f l ip(wp-l , ip-1),  i p  + ip-1, 

else 

W p  t w ~ - ~ ,  i p  t i p - 1  + 1 ,  

else 

if I 2 r - 1 then 

if ip-l = r - 1 then 

else 

wp t wp-1, i p  + ip-1 - 1, 

else 

if i  2 1 and i is even then 



else 

w p  t wp-1, ip t ip-1 - 1, 
else 

if a,-l = 1 then 
. . lf tP-~ = r then 

w p  t flip(wp-l,ip-I), ip + ip-1, 

else 

w p  t wp-l, ip + ip-1 - 1, 
else 

if 1 2 r - 2 then 
. . 
if zP-~ = r - 2 then 

w p  + flip(wp-~,iP-l), ip + iP-l, 

else 

w p  t wp-l, ip t ip-1 + 1, 
else 

if 1 - 15 i 5 r - 1 and i is odd then 

wP t flip(~~-l,i~-l), ip + ip-1, 

else 

w p  t w ~ - ~ ,  ip t ip-1 + 1. 
3. The Hamilton cycle is 

7.5 Connectivity 

Since the cube-connected-cycles has the bounded degree, the connectivity is 
bounded. Using the fact that the cube-connected-cycles is harniltonian, we 
have the following result. 



T h e o r e m  7.8 The connectivity of the r-dimensional cube-connected-cycles 
is 3. 

Proof: Let u,  v be any two vertices in CCC,. Since CCC, is vertex-transitive, 
we can assume that u = (0 - - - 0 ,  r) . Using the Algorithm 7.3, we can get a 
Hamilton cycle (0 . - 0, r)AvB(O.. -0 ,  r).  If A or B is empty, then CCC, - 
((0.  . - 0, r), v) is connected. We assume that both A and B are non-empty. 
Then (0.  . -01,  r) E A and (0.  . - 0 , l )  E B. Consider the paths 

PI : (O~~~01,r)(O~~~01,1)(10~~~01,1)(10~~~ 01,r)(10... 0 , r )  
(10~-0 ,1 ) (0 -  0 , l ) .  

P2 : (O.. .Ol,r)(O-. .01,r  - 1)~~~(0~~-01,2)(010~~~01,2) 
(010- . - 01,3) . - ( O l O . . .  01, r)(OlO . 01, r ) ( O l O  0, r) 
(010.-.O,r - 1)(010~~~0,2)(0~~~0,2)(0~~~0,1). 

These are the vertex-disjoint paths from (0. -01, r) to  (0 0,L) without the 
vertex (0. . - 0, r). Since v can only disconnect one of the paths, There must 
exist an edge from A to B. That is, CCC, - {(O...O,r),v) is connected. 
Since CCC, is 3-regular, the result follows. 

Corollary 7.9 The edge-connectivity of the r-dimensional cube-connected- 
cycles is 3. 

Proof: The r-dimensional cube-connected-cycles is 3-regular and has con- 
nectivity 3. The result follows. 0 

7.6 Summary 

Before finishing the thesis, we make a little summary of the results that we 
get in Table 7.1. 



Table 7.1: Summarv of the Results 

Symbol Set r 
Transitivity r 
Girth 

Edge- 
connectivity 

laceable/ 
I connected 
t As far u the auth 

distance- 
transitive 

r 
Yes 
r 

all r  
Yes 

knows, the Sdimena 

I 

the group the group I 
Br 
Yes 

defined in 
Proposition 

6.3 
{ ( e ,  I ) ,  ( e ,  7- - 1 1 ,  

( ( 1  219 1 1 7  

((2r-1 2r), r-1))  
vertex- 

ccc, 
Yes 

defined in 
Proposition 

vertex- 
transitive 

4 

I 

r even I r even 1 

transitive 
3 

1% 
Yes 

~d cube-connected-cydea ir hamilton-connected and 4- 

1% 
Yes 

dimenaiod cube-conuectedcyder is hamilton-laceable. 
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