
VSAM: A SIMULATOR-BASED DEBUGGER AND
PERFORMANCE ANALYSIS TOOL FOR SAM

George Vodarek
B. Sc., Simon Fraser University, 198 1

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School
of

Computing Science

Q George Vodarek, 1995
SIMON FRASER UNIVERSITY

August 1995

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Approval

Name: George Vodarek

Degree: Master of Science

Title of thesis: VSAM: A Simulator-based Debugger and Performance
Analysis Tool for SAM

Examining Committee: Dr. J. G. Peters ,
Chair /

Dr. R.F. ~ b b s o n
Senior Supervisor

Dr. R. Krishnamurti
External Examiner

Date Approved:

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

VSAM: A Simulator-Based Debugger and Performance Analysis Tool for SAM.

Author: -
(signature)

(name)

August 9, 1995

Abstract

This thesis describes a virtual simulator-based software debugging and

performance analysis system (VSAM) for the Structured Architecture Machine (SAM).

SAM is a distributed-function multiprocessor computer designed to execute APL

efficiently. The purpose of VSAM is to help researchers investigate the behavior of the

SAM architecture and to support the exploration of alternative designs. Object-oriented

techniques are used to represent the hierarchical structure of the hardware thereby

facilitating instrumentation and modification of the architecture.

VSAM is implemented in C++ under OS/2 and utilizes multi-tasking extensively.

The core of VSAM is a behavioral simulator of SAM. The simulator is a faithhl

hnctional model of SAM down to the registerhus component level. A full-featured

debugger interface is provided for each processor. The debugger includes novel features

for dealing with multiple processors, functional units, and data presentation. VSAM also

provides a general instrumentation facility which uses OSl2 pipes to connect sensors

embedded in the simulator to display windows.

The simulator design is discussed in detail and presented in the context of

alternative simulation techniques and other microprocessor simulators. The use of VSAM

is demonstrated on SAM benchmarks and the results are discussed.

Acknowledgments

I would like to thank Dr. Rick Hobson for his generous guidance, encouragement,

and support during this work. I would also like to thank my wife Laurie Cooper for her

support and love.

This work was funded by a Simon Fraser University Graduate Fellowship, the

Simon Fraser University Center for System Science, Micronet Center of Excellence, and

NSERC.

CONTENTS

... Abstract .. 111

Acknowledgments ... iv

List of Tables .. vi

.. List of Figures .. v11
1 . Introduction ... 1

1 . 1 Related Work .. 3

2 . SAM Overview .. 5

2.1 SAM Architecture ... 5
2.2 SAM-1 Prototype .. 7

... 2.2.1 SAMjr 8
2.2.2 SJ16 .. 8
2.2.3 Dual Port Memory (DPM) .. -10
2.2.4 SJMC .. 10
2.2.5 SJPM ... 10

2.3 SEDIT the front-end program ... 1 1
2.4 SAM microcode development environment ... 13
2.5 SAMAPL .. 15

3 . VSAM Implementation .. 18

3.1 Overview ... -18
3.2 The model ... -19
3.3 VSAM Architecture .. 20
3.4 The VSAMjr simulator .. $27
3.5 The VSAMjr debugger ... 36
3.6 Instrumentation .. -40

4 . Benchmark Analysis Results .. 45

... 4.1 Utilization 47
4.2 Execution Profile .. 52
4.3 Call Counts ... 56

5 . Conclusions ... 61

6 . Appendix ... 63

7 . Glossary .. 65

8 . Bibliography ... 66

List of Tables

Table 2- 1 : SAMjr microinstruction fields .. 8

.. Table 2-2: SJ16 microinstruction fields 9

Table 4-1: Comparison of QSS and QSV execution statistics ... 46

................ Table 4-2: Top 10 PMU and DMU subroutines by execution time during QSS 56

Table 4-3: Top 10 PMU and DMU subroutines by execution time during QSV 56

Table 4-4: Top 10 called subroutines in the PMU and DMU during QSV 57

.......... Table 4-5: Call counts for various PMU and DMU subroutines for QSS and QSV 58

.................. Table 4-6: PMU instiuction format subroutine call counts for QSS and QSV 59

................. Table 4-7: DMU instruction format subroutine call counts for QSS and QSV 60

Table 4-8: DMU operator subroutine call counts for QSS and QSV 60

List of Figures

Figure 2-1: SAM Architecture ... 6

Figure 2-2: SAMjr Architecture ... 7

Figure 2-3 : SJ16 Microprocessor Architecture .. 9

Figure 3- 1 : VSAM Architecture .. 21

................................ Figure 4-1: PMU and DMU utilization summary for QSS and QSV 48

Figure 4-2: PMU and DMU Utilization Time Profile during QSS 49

Figure 4-3: PMU and DMU Utilization Time Profile during QSV 50

Figure 4-4: Utilz trace showing the effect of APL branching ... 51

Figure 4-5: PMU and DMU Execution Profile Summary by Module for QSS and QSV ... 53

Figure 4-6: Profile of PMU and DMU during QSS benchmark .. 54

Figure 4-7: Profile of PMU and DMU during QSV benchmark 55

vii

1. Introduction

As computer architectures become more complex in order to achieve further gains

in performance, a thorough understanding of the behavior of an architecture under

working conditions is a prerequisite for fbrther improvement. Software-based architecture

simulation is an efficient and effective approach to analyzing and measuring the

performance of existing and proposed systems. A detailed architecture simulator can be

used to evaluate the feasibility of an architecture, to predict its performance, and evaluate

the usability of the architecture from the point of view of the software that will need to be

written for it.

While software based architecture simulators are easier to build than hardware,

they present their own set of design challenges. The basic challenge is the task of

capturing the fbnctionality of the new system in software in an efficient and manageable

way. The complexity and parallel nature of modern computer architectures makes this a

significant exercise in software engineering. Beyond basic correctness, the simulator must

be flexible enough to allow changes as the design evolves. The simulator representation

must be sufficiently similar in structure to the hardware design to facilitate this. The

simulator must be designed with measurement in mind, since one of its primary purposes is

performance evaluation of the architecture. Structural similarity to the hardware will help

greatly in this area, since the same types of events and objects that occur in the hardware

will exist in the simulator. Ideally, the simulator must provide an array of performance

analysis tools with which the designer can monitor the system. Finally, since software will

need to be written and debugged for the new system, the simulator must provide an

interface to software development facilities and to a debugger.

This thesis describes the design, implementation, and use of VSAM, a virtual

software simulator for the Structured Architecture Machine (SAM) described in [HGT86].

SAM is a distributed-hnction multiprocessor computer designed to execute APL

programs efficiently. A working prototype of SAM, called SAM-1, has been built and is

described in [HHS92]. A rudimentary APL interpreter, named SAM APL, has been

implemented for SAM, (see [Hos87]), and has demonstrated the capabilities of the

architecture. Unfortunately, the prototype hardware is not an ideal performance analysis

platform because it is difficult to instrument for detailed measurements and difficult to

modiQ in order to test new ideas. The purpose of VSAM is to overcome these difficulties

and to become an architectural workbench for fbrther study of the Structured Architecture

Machine and design of fbture machines.

VSAM is implemented in C++ under OSl2. Object-oriented techniques are utilized

to represent the modular structure of the hardware components. Multiple processes are

used to emulate the parallel nature of the hardware. VSAM is a machine code simulator

that executes SAM-1 binary images, albeit much slower than SAM-1. The simulator is

faithfbl in the representation of hardware components down to the level of registers and

buses, and accurately emulates the movement of data at the microinstruction level. VSAM

does not emulate the timing of sub-instruction events. A powerhl debugger interface is

provided to facilitate code testing and to explore the state of the various parts of the

machine.

An integral part of VSAM is an instrumentation methodology for measuring and

observing the behavior of SAM during execution of SAM software benchmarks.

Instrument probes are embedded in the simulator at strategic points and send data to

display tasks that present the results graphically on-line, and optionally save results and

traces to files for off-line analysis. Several instruments have been developed including a

callheturn monitor, an execution profiler, and a processor utilization monitor. The design

and implementation of the instruments is described in detail and their use is demonstrated

on SAM benchmarks.

The remainder of this chapter examines related work on the design and use of

architecture simulators. Chapter 2 is an overview of the SAM architecture and the SAM-1

prototype including a critical look at the software development system and development

methodology. Chapter 3 describes the implementation of VSAM in detail. Chapter 4 looks

at the performance analysis results of SAM benchmarks and discusses them.

1.1 Related Work

The benefits of simulating a system prior to implementation are described in many

references including [BaC84], [Pre92], and [Fer78]. The main benefits are the ease with

which a model can be built and modified, and the high degree of behavioral analysis such

models enable. These benefits are particularly relevant in the study of parallel computer

architectures due to the complexity of these systems and the difficulty of implementation.

The importance of a sound evaluation methodology in performance analysis is articulated

particularly well in [HeP90] and also in [Fer78]. The basic objectives of simulating a

system for performance analysis are to identi& the typical work-load of a system and then

to observe and measure how well the system handles the work-load.

Two important design decisions in building an architecture simulator are the level

of abstractness of the model and the implementation method. The level of abstractness

refers to the granularity of the model with respect to the types of objects and events the

designer works with. A highly abstract model may consider entire processors as basic

building blocks, while a detailed model may be concerned with registers and bit transfers.

The level of abstractness decision is based on the purpose of the simulation and the nature

of the behavior to be observed. Detailed models provide the greatest flexibility and degree

of detail, but are difficult to implement and generally very slow to execute. The

implementation method must support the level of abstractness desired. A general-purpose

programming language offers the greatest flexibility, but the least built-in support. Formal

hardware description systems such as VHDL [Nav93] and Verilog [ThM91] are a good

choice for detailed models. Discreet-event simulation systems such as SIMULA and

GPSS are suitable for more abstract models. Hybrid solutions are also possible. In

[Geo93] for example, the author describes the use ofprocessor libraries as building blocks

for a more abstract model.

Many reports of architecture simulation are available in the literature. Of particular

interest are [And94], [Voi94], and [But941 which describe the use of architectural

simulators for the PowerPC microprocessor recently released by LBM and Motorola. Two

types of simulators are described: a detailed timing simulator and an instruction set

simulator. The timing simulator models the internal organization of the microprocessor. It

is intended for use by the microprocessor designers and by hardware designers of systems

that will employ the microprocessor. It has been packaged as a Verilog module for use as

a component of a Verilog simulation. The instruction set simulator executes actual

instructions and is intended for software development for the PowerPC prior to availability

of the hardware. The simulator has been interfaced to the Free Software Foundation's gdb

debugger and a complete software development environment. The advantage of this

approach is simultaneous delivery of a new microprocessor and software systems for it. A

similar set of simulation tools for the Advanced Micro Devices' (AMD) 29K family of

RISC processors is described in [TyD93].

An important class of architecture simulators are instruction set simulators

described in [MAF91] and [HLT87]. These simulators allow designers to measure the use

of various instructions and to evaluate proposed changes. RISC architecture designers

made good use of such techniques to focus their designs on the actual work expected of

their machines, [Pat85]. An important advantage of instruction set simulators over more

detailed simulators, is ease of implementation and execution efficiency.

2. SAM Overview

This chapter describes the SAM architecture, the SAM-1 prototype, SAM APL,

and the overall SAM software development environment. The purpose of this chapter is

to familiarize the reader with SAM, describe the state of the SAM-1 prototype, and point

out some of the difficulties with using it as an analysis platform.

2.1 SAM Architecture

The Structured Architecture Machine, (SAM), is a novel architecture designed to

execute APL faster than general purpose architectures. SAM is described in detail in

[HGT86] and [HHS92].

The basis for SAM is A Directly Executable Language called ADEL, described in

[Hob84]. ADEL represents an APL program as a linear form that can be efficiently

interpreted by SAM through the use of parallel processors and special purpose hardware.

The structure of an ADEL instruction is a format code that identifies the instruction,

operand references, and possibly an operator to be applied. The prototypical ADEL

instruction is DLR which has the form:

DLR destination-operand left-operand right-operand operator

The APL expression

translates to the ADEL instruction

where the meaning of the operands A, B, and C is derived from context. The power of

ADEL lies in the fact that the operands may in fact be large arrays! The set of ADEL

formats was chosen through experimentation. Most formats are for data manipulation, but

several formats are provided for branching and user-defined hnction invocation. The set

of formats may change as the need arises.

The SAM execution model of ADEL partitions the work among three specialized

execution units: the Environment Control Unit (ECU), the Program Management Unit

(PMU), and the Data Management Unit @MU). The SAM architecture is shown in

Figure 2-1. The ECU is responsible for the user and host interfaces. It translates user

input into ADEL which it passes to the PMU for execution. It also receives results from

the DMU and displays them.

The PMU manages the execution of programs. It is responsible for storage of

defined fbnctions, and maintains the symbol table and the Contour Access Table (CAT)

used to resolve operand references. During execution, the PMU looks after branching and

hnction invocation and return. For data manipulation instructions, the PMU resolves

operand references into data references, performs compatibility checks on the operands,

and passes verified instruction to the DMU for execution.

The DMU executes data operations as instructed by the PMU. It manages the

storage of data in memory via the Data Access Table (DAT) which is referenced by the

instruction operands. The DMU checks the operands for compatibility and performs the

specified action. The DMU receives its instructions from the PMU via a pair of instruction

User Interface v
I

I Environment I
Control Unit

(ECU) 1
Dual Port
Memory n (DPM)

Management Unit Pipe B

(PM U I

Memory

Management Unit
(D M U)

Figure 2-1: SAM Architecture

pipes which allows the PMU and DMU to overlap execution.

2.2 SAM-1 Prototype

SAM-1 is a prototype instantiation of SAM. The structure of SAM-1 is a general

purpose host computer, (an IBM PC with DOS), that acts as the ECU, and two embedded

custom processors called SAMjr, that are the PMU and DMU. The ECU executes a

program that constitutes the user interface to the SAM application and that communicates

with the PMU and DMU through a control bus interface and Dual Port Memory (DPM).

The PMU and DMU communicate though a custom processor called the SJPM which

implements the instruction pipe and operand compatibility checking.

(SJMC)

Control Processor
(SJ16)

,
Data Memory

(32 bits x 51 2K)

i i Messages
. .
. . . .
. .

addr

Dual Port Memory
.................... (1 6 bits x 4K)

........
data

SJBUS (16 bits)

Control Memory
(48 bits x 8K)

Figure 2-2: SAMjr Architecture

2.2.1 SAMjr

The PMU and DMU are two instances of a custom designed processor called

SAMjr. SAMjr is a microprogrammable processor designed to be an efficient SAM

building block. The architecture of SAMjr is shown in Figure 2-2 and is described in

[Hob88B]. SAMjr consists of the SJ16 control microprocessor and co-processors

including Dual Port Memory (DPM), segmented memory controller (SJMC), pipe

interface (SJPM), and an optional auxiliary co-processor. The co-processors are

connected to SJ16 via the SJBUS which is used both to send instructions in the form of

SourceDestination (SID) codes, and data. The SAMjr instruction format, shown in Table

2-1, includes the source and destination codes, thus allowing up to 2 co-processors to

work in parallel with the SJ16 in any given instruction cycle.

The SJ16 is a custom designed VLSI microprocessor with special features to

facilitate SAM implementation. The architecture of the SJ16 is shown in Figure 2-3 and

described in [Hob88]. The SJ16 rnicro-instruction consists of the fields shown in Table 2-

2. Several operations may be specified in parallel including data manipulation, counter

increment, and next address generation. The next address field is highly encoded and

serves to specifjl literal data values, procedure calls, and conditional branching based on

status register flags, external messages, or data bus values. A 256-way EXEC procedure

call provides an efficient mechanism for ADEL format and operator decoding.

Table 2-1: SAMjr microinstruction fields

I Field I Pur~ose I
I Source I Source Co-~rocessor instruction I

Destination
Instruction

Destination Co-processor instruction
Control processor instruction

Table 2-2: SJ16 microinstruction fields

I Oeeration I Field I Function I
Data I ABUS I ABUS source register 1 1 FAUS 1 BBUS soy register 1 write T re ister

write A re ister
select ALU or barrel shifter

1 F 1 ALU function or shift count 1
I I SF 1 sample ALU flags I

I 1 NEXT I next address value 1
Counter
Address

SlBUS

(16 fits)

COUNT
ACTL

M=w-
(7 tits)

increment Counter register
next address control

I I

I 1 I 1
Barrel AW

R€gsters sifter
(0. .31) i any

i avfl
; sign

* T
j zero

A

1 i st,

jl of8 tits
Xhs

A

1 T

\ wlkhnn Mchs 1 of7tit.5 /sack ,.

Figure 2-3: SJ16 Microprocessor Architecture

\ J

Generatw

NPC)

I

2.2.3 Dual Port Memory (DPM)

Dual Port Memory is used to pass data between the host and SAMjr. On the host

side, Dual Port Memory is memory mapped. Each SAMjr gets a distinct DPM address

range. On the SAMjr side, Dual Port Memory is accessed as a co-processor via

Source/Destination codes. Two instructions are required by SAMjr to read and write data

since a single bus is used for both address and data. Data in Dual Port Memory is word

oriented.

2.2.4 SJMC

The SJMC is a custom VLSI Memory Controller which provides streamed access

to segmented paged memory. The data streaming feature provides efficient access to

logically sequential bytes or words in memory. Once a stream is started, it can deliver or

receive a data item every clock cycle. The SJMC has 8 streams available.

The SJMC also implements a segmented paged memory system. A segment is a

logically contiguous collection of a variable number of fixed size pages. An address

translation memory translates logical addresses to physical memory addresses. The

translate memory content is managed by the SAMjr memory management software. It is

important to note that no virtual memory capability is provided directly by the hardware.

2.2.5 SJPM

The SJPM is a custom Pipe and Mail co-processor known generically as "the pipe."

It is the communication medium between the PMU and DMU. It consists of the

Instruction Verification Unit (IVU) which is attached to the PMU SAMjr SJBUS and the

Operand Verification Unit which is attached to the DMU. The SJPM contains two FIFOs

for instruction passing from IVU to OVU, a set of dual-port registers accessible to both

sides, a state machine which controls execution, and error checking logic. Each end of the

pipe has a distinct set of instruction codes. In addition, the O W contains tag memory

which is used for error checking.

In normal execution, the PMU waits for an empty FIFO, then loads format,

operand, and operator bytes of an ADEL instruction into it, checks for errors and if none,

releases the FIFO. It then does the same to the other FIFO. The DMU waits for a

released FIFO, reads the contents, checks for errors, then executes the ADEL instruction.

Error checking is done on each ADEL instruction both by the I W and O W .

Each operand has a tag which describes the data item. On the PMU side, the type of the

operand is specified as one of: variable, constant, fbnction, or reserved. The IVU uses a

compatibility matrix to ensure that the types conform to the operation. For example, a

constant or a fbnction cannot be specified as the destination. On the DMU side, each

operand has a tag that describes the operand shape (undefined, scalar, array, or reserved),

and data type (character, boolean, integer, or floating point). The OVU uses compatibility

matrices to ensure operand conformity. For example, adding a character and an integer is

a domain error.

The SJPM registers are used to exchange status information and system values

between the PMU and DMU. Since this is the only means of moving data from the DMU

to the PMU, branch destination values are passed this way, as are error codes.

2.3 SEDIT the front-end program

SEDIT is the program that executes on the front-end host PC and interfaces among

all the components of SAM-1. SEDIT is written in C and is based upon a multi-window

visual text editor described in [Roc881 with specific enhancements for SAM. It is a

conglomeration of previously distinct programs. SEDIT has three distinct roles:

1. User interface

2. Debug and control interface to the SAM hardware

3. SAM APL interface

The user interface uses separate windows for the APL interface and the debugger.

The APL window is where the user enters APL code and views results. There are

commands to manipulate code and data in the window and to read and write the window

content to a file. When an APL function is defined or when the user specifies a line of

APL to be executed, SEDIT translates the source into ADEL and sends it to the PMU.

Results from the DMU, and error messages from the PMU or DMU are displayed.

The SAM debugger includes the following commands:

switch between communication with the PMU and DMU

load microcode image files into control store

view and mod@ Dual Port Memory (DPM)

view and modifL SJ16 registers

single step execution

trace execution flow for short duration

set, clear, and show breakpoints

redirect DEBUG source to a file

The debugger represents a very primitive debugging facility, a factor that made

software development of SAM microcode an arduous task. During the development of

SAM APL, the programmer had to devise an ingenious system of dump-and-analyze

techniques via Dual Port Memory (DPM) in order to monitor the internal activity of the

machine. This "debug-by-remote-control" process not only frustrated development, but

obscured the microcode design because many instructions and subroutines embedded in

the system are included entirely for debugging purposes. This code slows down execution

considerably, and is difficult to remove.

The control interface of SEDIT, called SAMIO, controls the execution of the

SAMjr hardware via I 0 mapped command and data registers. It has the following

primitives:

stop and start the SAM clock

retrieve the current micro-program counter value of a SAMjr unit

single step a SAMjr unit

restart execution of a SAMjr unit fiom a fixed address

modifjl the control store of a SAMjr unit

SAM10 implements all the control of the SAM hardware, there is no debug

monitor code in SAMjr. The hnctionality of the SAM debugger is implemented in terms

of the above primitives. Access to SAMjr internal values is implemented by temporarily

loading program fragments into control store, executing them, and then restoring the

original control store contents. The debug code fragments use DPM to send data to the

fiont-end. Breakpoints are implemented by changing the breakpoint location in control

store to an instruction that just repeats itself The detection of breakpoints is up to the

user -- that is, the user is not notified explicitly when a breakpoint is reached. An

execution tracing feature is implemented by single stepping the SAMjr unit and noting the

program counter value.

2.4 SAM microcode development environment

This section describes the SAM microcode development environment and presents

some of problems resulting from the software engineering methodology imposed by it.

The language used to program the SAMjr processor is a subset of APL called

microAPL. MicroAPL was conceived during the early design stages of the SAM project

as a high level microprogramming language that could be used to describe an architecture

and simulate its execution by interpretation within an architectural support package

[Hob87]. While the language itself is a good medium for hardware description, the

software engineering aspects of APL are not well suited to large projects such as SAM.

MicroAPL is an assembly language in that source statements correspond directly to

machine instructions. A single statement can speci@ multiple microoperations which are

executed in parallel. Microoperations correspond to the hnctionality of SAMjr and include

co-processor actions, data manipulation, and branching. Statements are combined into

subroutines which can be invoked via the CALL and EXEC operations. Subroutines are

combined into a control store image which is stored as a file to be loaded into SAM.

The SAM development environment is implemented in a commercial APL system,

(Manugistics APL*PLUS, [Man951), on an IBM PC. MicroAPL subroutines are entered

as APL fimctions which are stored as APL objects in a microcode database. The

subroutines are compiled into an intermediate form which is also stored in the database.

Images are generated from an image specification file that specifies the subroutines to be

included and their absolute addresses. An APL workspace manages the database and

performs compilation of subroutines and generation of images.

From a software engineering perspective, the SAM development environment has

several shortcomings, most of them inherited from the APL environment. The primary

problem is the lack of packaging. Subroutines exist on their own with no internal

information on their relationships with other subroutines. The only grouping mechanism is

the image specification file which simply enumerates the subroutines. There is no

provision for documentation of relationships among hnctions and no hierarchical

structuring mechanism. Furthermore, the APL syntax does not encourage liberal

documentation at the code level. Finally, the APL syntax provides no structured

programming constructs, leaving the programmer with a basic GOT0 as the only

branching mechanism.

The end result is a large database of tersely documented subroutines and very little

structural information. The PMU and DMU programs that implement SAM APL consist

of approximately 250 subroutines each. These are divided into roughly 10 images which

correspond to broad categories such as Supervisor and Utilities as well as patch images

that overlay previous code with new versions.

Several images can be fbrther combined into a grand image in order to simplify the

loading of images into SAM. The production version of SAM APL consists of a grand

image overlaid by several patch images both for the PMU and DMU. Unfortunately, along

the way, the content of the grand images was lost. That is, there is not a complete

mapping from the subroutine database to the microcode that executes SAM APL.

Because the original developer of SAM APL is gone, and the external documentation is

not sufficient, it is not possible to recreate the generation of the SAM APL code at this

time. One of the objectives of the simulator is to gather call information in order to

facilitate the mapping processes. The inability to modifL the SAM APL code was a major

factor in the design of VSAM.

2.5 SAM APL

SAM APL is the application that runs on SAM. It is a basic APL interpreter that

has been implemented to demonstrate the SAM prototype. The interpreter is described in

[Hos87]. An overview is presented here.

SAM APL consists of three parts: the SEDIT program which handles the user

interface and translates APL code into ADEL, the PMU which stores functions, controls

execution, and manages the symbol table, and the DMU which stores and manipulates data

objects. The DMU and PMU parts of SAM APL are implemented in microcode and

manipulate the hardware directly.

The PMU part of SAM APL consists of the following modules:

Diagnostic routines for communicating debugging information to the front-end via

Dual Port Memory (DPM).

A supervisor which gets control during startup. The supervisor initializes the PMU

environment according to parameters passed fiom SEDIT via Dual Port Memory

(DPM). It then initiates a protocol with SEDIT for defining new functions and

program execution.

A linker which incorporates new functions into the environment. This consists of

storing the function code, and registering all identifiers and constants used by the

function in the symbol table.

An environment manager that maintains the Symbol Table (ST) and Contour Access

Table (CAT) during function execution.

A memory manager which manages the storage of PMU objects.

Format subroutines that interpret ADEL instructions.

Utility subroutines.

The basic algorithm of the PMU is:

1. Initialize environment.

2. Wait for a new hnction definition fiom SEDIT via Dual Port Memory (DPM).

3 . Link the new hnction into environment.

4. If the new function type specifies that the function corresponds to a line of APL to be

directly executed, then:

5. Initiate pipe protocol with DMU.

6. Execute the ADEL code for the new function.

7. Wait for DMU to finish.

APL function execution consists of executing the ADEL formats that comprise the

function code. The IFETCH routine fetches the instructions and decodes them via an

EXEC call to the appropriate format subroutine. The format subroutine performs the

actions appropriate to the format. Format types include data manipulation which is passed

on to the DMU via the pipe, and execution control types which alter the instruction

sequence.

Formats that perform conditional branches require a target value which is a data

item stored in the DMU. The value is requested via a special DMU format which returns

the value through the SJPM (Pipe) registers. The PMU is forced to wait for this value

before it can continue. This is a major cause of delay in SAM APL execution as described

in Chapter 4.

Before an instruction can be passed on to the DMU, the PMU must wait for a free

pipe. Since there are two pipes, in general the PMU can load the next instruction while the

DMU executes the last one. If the DMU gets behind, the PMU is held up.

The DMU part of SAM APL is an input driven program. After the initial startup

processing, the DMU executes an IEXEC loop which gets instructions from the pipe and

executes them by decoding the instruction format. Most of the formats executed by the

DMU manipulate data. There are also formats for returning values to the PMU for

branching, and for sending data to SEDIT via DPM which is how results get back to the

user.

3. VSAM Implementation

This chapter describes the implementation of the VSAM simulator. It begins with

an overview of VSAM including the objectives of the project and the implementation

methodology. The major parts of VSAM are then described in detail in separate sections.

3.1 Overview

The motivation for VSAM was a need to observe and measure the performance of

SAM-1 and future versions of SAM with the goal of assessing the efficiency of the

architecture and identifjling areas for possible improvements. The study began with the

idea of instrumenting the SAM-1 prototype, however this turned out to be difficult for a

number of reasons and was abandoned. After some consideration, a simulator-based

approach was chosen for the following reasons:

The process of replicating SAM would be a good way to learn the details of SAM and

a motivation for compiling SAM documentation previously distributed in various forms

and degrees of precision.

A software version of SAM provides a flexible basis for further SAM research since it

can easily be modified.

A simulator is a better platform for observing architectural level behavior than

hardware which is difficult to instrument and obscures design with detail.

A simulator would allow observation of SAM APL "in situ", an important factor in

light of the software development environment difficulties discussed in the previous

chapter.

A simulator would be a better platform for implementing a new software debugger

interface for SAM since it is not encumbered by hardware interface limitations.

In order to allow the kind of observations desired, a detailed behavioral model of

SAM-I was constructed. The model is hierarchical in structure and corresponds closely to

the structure of SAM-1 hardware. At the top level of the hierarchy, separate operating

system tasks (processes) are used for the different units. At the bottom level of the

hierarchy, microinstructions are directly executed and registers, busses, and memories are

simulated. Each execution unit has its own user interface which provides execution

control for the unit and gives access to the unit's data elements. Any part of the system

can be instrumented by modifjing the simulator software with probe instructions that send

data to separate display processes.

The implementation platform for VSAM is C++ under 0 9 2 . OS/2 was chosen for

its multi-tasking capability and its DOS compatibility. Multi-tasking was clearly an

appropriate way to simulate the multiple processors of SAM. DOS compatibility was

important for continuity with the existing environment. Under OS/2 the APL-based SAM

microcode development environment, SEDIT, and the simulator could all co-exist on a

single machine. The initial implementation of VSAM is text based, but it was important to

have a migration path to a fiture GUI version via the OS/2 Presentation Manager. C++

was a natural choice for the implementation language because of its object-oriented nature,

and because SEDIT was already written in C. Object-oriented techniques turned out to be

a good way to duplicate the modular structure of hardware, although little use was made

of the class inheritance mechanism. All in all, OS/2 lived up to expectations and proved to

be a good choice.

3.2 The model

An important decision in the design of VSAM was the nature of the model and the

user and instrumentation interfaces. Initial research concentrated on a powerfbl visual

approach. What was envisioned was a kind of animated hierarchical architecture block

diagram that would allow the user to watch the system during execution and to zoom in

and out on specific components as desired. As the view zoomed in, more detailed

structural components would be visible and execution would be divided into steps

appropriate to the view level. As execution proceeded, the diagram would show the

current values of components and present an overall sense of the flow of data and control

in the system. The view level and the rate of execution would be under direct control of

users, allowing them to focus on the interesting parts of the machine and program.

Execution could be stopped and component values modified. Instrumentation would be

achieved by attaching probes to the object of interest and hooking them up to various

instruments.

While very appealing, the visual approach proved to be far too ambitious given the

time and resources available. It was also not necessary for the immediate goals. With the

visual approach as a general guiding principle, a more pragmatic approach was chosen.

The hierarchical structure was maintained, but instead of a unified visual interface,

VSAM uses separate text windows to control and access the state of the individual units.

The unit windows are the debug and control interfaces to the SAMjr simulators. All of the

SAMjr components are accessible through commands. Execution control and monitoring

is also affected through the unit windows. Instrumentation is achieved by modifying the

simulator code at the appropriate location with instructions that send data to an instrument

process.

An important step in simulating a system is the verification of the model accuracy

in representing the system. In the case of VSAM, verification was achieved through

execution of identical code in the SAM prototype and VSAM. The same input problem

was specified for both, and the results were compared. This was done with several

benchmarks which thoroughly exercised all parts of the machine. The verification process

was in fact part of the VSAM debugging process. It was an exciting moment when

VSAM was able to add two numbers and give the correct result!

3.3 VSAM Architecture

VSAM consists of a number of cooperating OS/2 sessions. (A session is a process

with a display window and a virtual keyboard.) The main session is VSAM, an

administrative session that creates the various resources such as shared memory, pipes,

and semaphores which are used by other sessions. VSAM also creates the other sessions

and stops them when it terminates. The other sessions are SEDIT, VPMU, and VDMU.

SEDIT is the front-end user interface program. VPMU and VDMU are instances of

VSAMjr, the SAMjr unit simulator, corresponding to the PMU and DMU. The VSAM

architecture is shown in Figure 3-1. This figure can be compared with Figure 2-1 which

shows the SAM architecture.

OSl2 provides inter-process communication via semaphores, pipes, and shared

memory. See [IBM94] for details. Semaphores can be event semaphores which allow

synchronization, or mutual exclusion (mutex) semaphores for protected access to shared

resources. Pipes are a type of point-to-point connection designed for client-server

communication. Shared memory gives multiple processes access to the same memory.

Window Window

Instrument l A l
Window

Instrument a
Window

Figure 3-1: VSAM Architecture

Semaphores are used throughout VSAM. Pipes are used between the units and the

VSAM main session for instruction execution control. Pipes are also used to connect

instrument probes to the instrument process. Shared memory is used to implement DPM,

and SJPM. A Status shared memory was added late in the project to aid instrumentation.

The VSAM session establishes the working environment for VSAM and controls

overall execution. The session provides a user interface which is intended to give access

to global data structures and system parameters. Currently, the interface only provides

commands to pause and resume system execution, and to terminate VSAM. The VSAM

session uses command line parameters which determine how the system is initialized. One

set of these parameters canspecify that any of the SEDIT, VPMU, and VDMU sessions

can be executed under the C++ debugger (Borland TD) which allows for the debugging of

the session software. Other VSAM command line parameters specie command source

files to be executed by the units during system startup. After initialization, the VSAM

session executes a loop which coordinates the execution of instructions by the VSAMjr

units, handles user commands, and provides a place to attach instrumentation probes. An

outline of the VSAM session main procedure follows:

void main(int argc, char *argv[]) / / VSAM main procedure.
{

//--- Initialize system

::SysClock = 0;
UserMsg("Starting VSAM Master initialization.'') ;
SJMP Create smem();
create ~ e d i t ~ e m () ;
create-startupsem();
~reateztatus () ;

/ / Parse command line args and start other sessions.

. . .
UserMsg("Start SEDIT session...") ;
if (debug sedit)

~ t a r t ~ e b u ~ ~ e s s i o n ("c:\\agv\\sedit\\SEDIT.EXEW, sedit-args,
SEDIT - sessionID, SEDIT - processID) ;

else
Startsession("c:\\agv\\sedit\\SEDIT.EXE1', sedit-args,

SEDIT sessionID, SEDIT - processID) ;
UserMsg("SEDIT session started!") ;

//--- Execute loop until user stop or error stop

int sender;
msg-type mtype;

int utilz-counter = 0; / / Utilz instrument.

: :StepMode = 0;
int exit = 0;
while(!exit) {

if (MSG - GetAny(mtype, sender))
if (exit = ProcessMessage(mtype, sender))

continue;
if (,kbhit()) { / / Invoke user interface

vm-user action action = vuser();
exit = action == VMU-END;
::StepMode = action == VMU - STEP;

1

/ / Utilz instrument probe code.
if (++utilz counter >= Utilz-sample-period) {

utilzcsend(::SysClock, Getstatus - PMUwaitO,
Getstatus-DMUwaitO) ;

utilz counter = 0; -
1

I

//--- Stop all sessions and exit

UserMsg("Stopping unit sessions!") ;
MSG Send (MSG STOP, UNIT VPMU) ;
unitstatus [~ ~ f i VPMU] = t f ~ STOP;
MSG Send(MSG STOP, UNIT vDMU) ;
unit~tatus[u~= - VDMU] = US - STOP;

I

SEDIT, the front-end program for SAM, has been ported from DOS to OSl2. It

executes as a separate session and communicates with the PMU and DMU via Dual Port

Memory (DPM). The control interface of SEDIT, SAMIO, is disabled in VSAM. The

only debugger commands that work are the Dual Port Memory display and modify

commands. The fkctionality of S A M 0 and the SEDIT debugger has been moved to the

VSAMjr units described below.

The moving of the control hnctionality from SEDIT to the VSAMjr units

uncovered interesting time dependencies that were not anticipated at design time. In

retrospect, more control fhctionality should have gone into the VSAM session user

interface rather than the VSAMjr units, particularly startup and execution control. A

command sequence at the VSAM level could have specified the timing dependencies

contained in SEDIT. As it was, a number of semaphores were added strictly to maintain

execution order. The sources of these dependencies were initialization protocols among

the units that utilized DPM locations and registers in the SJPM Pipe unit as signals. It

turns out that during startup, SEDIT must finish initialization before the DMU starts, and

the PMU must wait for the DMU. Several DPM locations are also used as startup

parameters. These dependencies are not inherent in the design of SAM, but were

obviously added during SAM-1 implementation. They were not anticipated during the

partitioning of function of the VSAM simulator and were only discovered during simulator

debugging.

The APL interface of SEDIT has been left as is. Unfortunately the APL character

set has not been implemented for OSl2. In DOS, SEDIT modified the display character

generator to implement APL characters. The same approach does not appear possible in

OSl2. The result is that the special APL characters show up in OS12 version of SEDIT as

strange symbols. It is not however difficult to interpret the display and it was not deemed

a high priority to achieve the translation at this time. Various approaches are feasible,

including turning SEDIT into an OSl2 Presentation Manager application which would

support arbitrary fonts.

The PMU and DMU are implemented as separate sessions consisting of the

VSAMjr simulator, a user interface for debugging and unit control, and an execution

control interface to the VSAM session. The sessions are called VPMU and VDMU, and

are nearly identical except for minor details relating to specific differences between the

PMU and DMU such as Dual Port Memory and the SJPM Pipe. Execution proceeds one

instruction at a time with the two units kept synchronized by the VSAM session. The

purpose of the synchronization is to maintain predictable behavior of the simulator during

debug sessions. If one of the units is stopped by a breakpoint, for example, the other unit

will wait before executing the next instruction. The synchronization is implemented by a

message protocol via pipes between the units and VSAM. When a unit is ready to execute

the next instruction it sends a READY message and waits for an EXECUTE message. It

turns out that this co-ordination is a large source of OSl2 overhead due to the process

switching involved. Because of the length of the initial startup code, it was decided to de-

couple the units during startup and let them run at full speed. The subsequent speed up in

execution speed of each unit was at least a factor of 10. This suggests that another

mechanism such as a pair of event semaphores may be a better way to implement the

synchronization of the units. One semaphore would indicate that a unit is ready, and the

other would correspond to the EXECUTE message. This scheme avoids the costly

process switch to the VSAM session.

The VSAM control interface of the VPMU and VDMU sessions is contained in the

main fbnction of the unit sessions. The interface consists of establishing access to shared

resources, initialization, and then proceeding with execution under the control of the

VSAM session instruction execution protocol. Initialization includes local variable

settings and also execution of startup commands fiom the user interface, possibly through

a specified command source file. An outline of the VPMU and VDMU session main

fimction follows:

void main(int argc, char *argv[l) / / VPMU or VDMU session main.
I

/ / Initialize session
MSG InitO; / / Establish comm with VSAM
VDPM Init () ; / / Establish DPM access
smjr. SJMP. nit (1 ; / / Establish SJMP - MUTEX
Openstatus () ; / / Status Smem

int msg = 0;
while(msg != MSG - STOP) {

/ / Reset VSAMJR
SysClock = 0;
SAMjr PC = 3;
~AMjr-pc old = 0;
SAMj r T ~ ~ T ~ e s e t () ;
SAMjr. SMem. Reset () ;
SAMjr.DPM.Reset (1 ;
VDPM Reset () ;
stepfiode = 0;
BreakMode = 0;
Reset-tracepoints0;

/ / Unit Start up - ini file according to command line args

char *startupfile = VSAMJR-UNIT ".INIW;
if (argc > 1)

if (*argv[l] == I - ' 1
startupfile = 0;

else
startupfile = argv[ll ;

if (Unitstartup(startupfile) == ' 2 ')
msg = MSG - RESET;

SysClock = 0;

/ / Execute instructions...
while(msg != MSG - STOP & & msg != MSG - RESET) {

/ / Go to user if step, breakpoint, or user input
if (::StepMode

I I ::Breamode & & Test breakpoint(SAMjr - PC)
I I : : BreakDPMmode & & ~est-~~Mbreak ()
I I ::BreakCallMode & & Test-CallBreakO
1 I ::BreakPipeMode & & Test-PipeBreakO
I I
I l kbhit0

UserBreak () ;

/ / Signal "Ready to execute instruction" to VSAM
MSG - Send (MSG - RFADY) ;

/ / Wait for message from VSAM; process user input if any
while(MSG NULL == (msg = MSG-Get()))

if (-kbhit ())
Usercommand () ;

/ / Carry out VSAM message
if (msg != MSG EXEC) -

break;

/ / Execute instruction
ProcessAddress (: : SAMj r PC) ;
~dd-tra~e~oint(::SAMjr-~~);
::SAMjr-PC-old = ::SAMTr PC;
::SAMjr-PC = SAMjr.~xecute(::SAMjr - PC) ;
if (: :SAMjr.SimBreak())

SirnBreak () ;

/ / Increment System Clock
::SysClock++;

3.4 The VSAMjr simulator

The VSAMjr simulator structure closely resembles the SAMjr hardware.

Essentially, the SAMjr design was implemented in software instead of hardware. It is

interesting to note that the software version was much easier to build, but executes about

1000 times slower than the hardware.

This similarity in structure is deliberate for the following reasons:

Ease of development - the simulator was built directly from the hardware specifications

and ambiguities were resolved by inspecting the hardware.

Ease of documentation - the same documentation that applies to the hardware applies

to the simulator. Also, the simulator implementation and the hardware complement

each other in documenting SAM.

Ease of verification - the simulator implementation is easy to verifjr step by step by

comparison to the hardware.

Ease of instrumentation - instrumenting the simulator is analogous to instrumenting the

hardware. The same objects and events are involved in both.

Ease of modeling future modifications to SAM architecture - since the simulator and

hardware are nearly identical, the designer can try out proposed hardware changes on

the simulator and evaluate their effectiveness.

Object oriented techniques were applied to package the various components of the

simulator into neat modules with well-defined interfaces. This closely represents the

component nature of hardware. Generally, there is a one-to-one mapping between the

hardware components and object classes representing them. The VSAM classes with their

nesting and a brief explanation are:

samjr SAMjr unit simulator
sjinst SAMjr microinstruction decoding auxiliary class
cp-sj 16 SJ16 Control Processor simulator

cpstack SJ16 stack class
smem SJMC Memory Controller simulator
dpm Dual Port Memory simulator
sjpm SJPM (Pipe) simulator including the I W and O W

The highest level class is samjr which stands for the SAMjr processor. In VSAM it

is instantiated as the PMU and DMU. The definition is:

class samjr (
CMem-instr CMem[CMEM - SIZE]; / / Control memory
cp-s j 16 CP; / / Control Processor
smem SMem; / / Segmented memory
dpm DPM; / / Dual port memory
sjmp SJMP; / / Pipe chip: I W or O W

public:
SAMADDR Execute (SAMADDR address) ;

1 ;

The only method defined for samjr is Execute() which takes an address as input

and returns the next address to be executed. As a side effect, Execute() modifies internal

state. Execution of SAMjr is achieved by the following code:

samjr SAMjr;
SAMWORD PC;
PC = 3; / / SAMjr always starts executing at 3.
While(1)

PC = SAMjr. Execute (PC) ;

There is no defined termination condition for SAM. In case of an error, SAM$

usually ends up in a tight loop in an error subroutine so that the error may be detected by

the user.

An important part of the simulator is the handling of sub-microinstruction events.

The SAMjr instruction cycle is divided into 4 phases called T1 to T4. Events within

SAMjr are co-ordinated with respect to these phases. Some important events are:

during T4, the next microinstruction is fetched, and the Source and Destination codes

are placed on SJBUS for co-processors to latch. Part of the SourceIDestination code

is a select field which activates only the specified co-processor.

during T2, the selected source co-processor outputs its value onto SJBUS, and the

selected destination co-processor latches it.

data operations in the Control Processor start at T3

The simulator emulates the data flow of SAMjr, but not the actual timing. The

simulator instruction cycle has the following sequence:

Fetch the next instruction.

Invoke the Source processing part of the specified co-processor with the Source code

as a parameter. Store the return value in variable sjbus.

Invoke the Destination processing part of the specified co-processor with the

Destination code and the value of sjbus as parameters.

Invoke the Control Processor execution processing hnction with the value of sjbus as

a parameter.

Each co-processor has a source processing and destination processing part. This

includes the Control Processor which performs literal, register, and stack input and output

during the source/destination phase. The Control Processor also has a process part that

executes the rest of the microinstruction.

The samjr Execute() hnction controls the order of events within a

microinstruction:

SAMADDR samjr::Execute(SAMADDR CMem - addr) / / Execute an instruction
I / / Return next addr to execute.

SAMADDR next-addr ;
SAMWORD SJBUS;

/ / Fetch instruction
sjinstr cur-inst = CMem[Cmem - addr];

/ / Source processing
switch (cur-inst.Source-unit()) {

case CP UNIT:
SJBUS = ~ ~ . ~ o u r c e (curinst 1;
break;

case cur ern-UNIT :
SJBUS = DPM.DPM-source(cur-inst.Source()) ;
break;

case SMem UNIT:
SJBUS = SMem. Source (cur-inst. Source ()) ;
break;

case SJMP UNIT:
#if;?ef PMU

SJBUS = SJMP.IW - source(cur-inst.Source()) ;
#else DMU

SJBUS = SJMP.OW - source(cur-inst.Source()) ;
#endi f
break;

1
/ / Destination processing
switch (cur inst.Dest-unit ()) {

case CF UNIT:
~ P . ~ e s t (cur-inst, SJBUS) ;
break;

case DPMem-UNIT:
DPM.DPM-dest(cur-inst.Dest(), SJBUS 1 ;
break;

case SMem-UNIT:
SMem.Dest(cur - inst.Dest(), SJBUS) ;
break;

case SJMP UNIT:
#ifdef PMU

SJMP.IW - dest(cur-inst.Dest(), SJBUS) ;
#else DMU

SJMP.OW-dest(cur-inst.Dest(), SJBUS) ;
#endi f
break;

1
/ / CP processing
next-addr = CP.Process(CMem-addr, cur-inst, SJBUS) ;
return next-addr;

I

Since a co-processor cannot be both a source and destination, it will at most be

called once during a cycle. The source and destination parts must complete all processing

for that cycle in the single call. The source or destination code which is the instruction to

be executed by the co-processor is passed to the co-processor as a parameter. The typical

implementation of a co-processor is demonstrated below in a simplified form of SMem.

Note that in the case of SM-S-SCLR which flushes a data stream and SM-D-SRB which

initiates a stream, fbrther processing is required to complete the instruction.

SAMWORD smem::Source(const SAMBYTE source - code)

I
SAMWORD dataout;
int stream = sdcode stream(source-code) ;
switch (sdcode function(source-code)) (

case SM S~SORS:
dataout = SO•’ •’set [stream] ; break;

case SM S-SBRS:
dataout = SBase[stream]; break;

case SM-S-SSN:
/ / . . .
case SM S SCLR: - -

dataout = 4 - SStatus[stream].BA;
AOL = Make - SM - address(SBase[streaml, SOffset[streaml) ;
Mem-write-request(AOL, SStatus[stream].BS, stream,

SStatus [stream] .W ;
break;

I
return dataout;

I
SAMWORD smem::Dest(const SAMBYTE dest - code, const SAMWORD datain)

1:
int stream = sdcode stream(dest code) ;
switch (sdcode function (dest-code)) {

case SM-D~SBRD:
SBase [stream] = datain;
break;

/ / . . .
case SM D SRB: - -

SOffset[stream] = datain + 4;
SStatus[stream].M = MBYTE;
for (i = 0; i < 4; i++) SStatus[streaml .W[il = 0;
SStatus[stream].BS = 0;
SStatus[stream].BA = datain & 0x3;
SStatus [stream] . BF = 0;
AOL = Make - SM - address(SBase[streaml, datain) ;
Mem-read - request(AOL, SStatus[streaml.BS, stream) ;
break;

I
return datain;

I

The SJ16 control processor class is defined as:

class cp-sjl6 (-
public:

SAMWORD Register[CP - NUM - REGISTERS];
cpstack Stack;

SAMWORD Source (s jinstr) ; / / Source processing
void Dest(sjinstr, SAMWORD datain) ; / / Destination processing
SAMADDR Process (SAMADDR address, / / Execution processing

s jinstr,
const SAMWORD input-bus) ;

private:
SAMWORD alu (SAMWORD a, SAMWORD b, int fn, SAMWORD &flags) ;
SAMWORD xshift(SAMWORD a, SAMWORD b, int xcount) ;
SAMADDR agen(SAMADDR mpc, sjinstr ci, SAMWORD bus) ;

I ;

The Control ~rocesior (CP) data members are the register file and the stack. The

register file includes the general purpose registers as well as the special registers Counter,

10, T, and Status. The stack is a simple LIFO stack implemented by the cpstack class.

The public methods for cp-sjl6 are Source(), DestO, and Process() which implement the

source, destination and execution part of the SAMjr instruction cycle. Source() handles

literal specification, and output of register or stack values onto the bus. Dest() handles

input of stack values from the bus. Process() performs the movement of data among the

SJ16 internal registers and processing units, and the generation of the next

microinstruction address. The internal methods invoked within Process() are alu(),

xshift(), and ageno which implement the ALU, barrel shifter, and next address generation

logic components respectively. These functions are relatively straightforward though

somewhat tedious in detail.

The Dual Port Memory (DPM) co-processor is implemented by the class dpm

defined as:

class dpm {

SAMWORD in - data, out - data; / / DPM data latches

public:
void Reset () ;
SAMWORD DPM source(SAMBYTE source-code) ;
void DPM - dest(SAMBYTE dest - code, SAMWORD sjbus) ;

1;

This definition hides the details of the shared memory implementation of DPM.

The details consist of a separate named shared memory for each unit session, and a named

mutex semaphore used to protect access to the shared memory. The names are constructed

from the values of preprocessor constants.

The SJMC memory controller is implemented by the class smem defined as:

class smem {

SAMBYTE SMem[SMEM SIZE]; / / Segmented memory - bytes
SAMWORD TM~~[TMEM-SIZE]; - / / Translate memory - words

SAMWORD SOffset[SMEM-STREAMS]; / / Offset registers
SAMWORD SBase[SMEM STREAMS]; / / Base registers
srnbuff SBuff[SMEM STREAMS][~I; / / Stream buffers
SM stream status SS~~~US[SMEM_STREAMS]; / / Stream status bits
SKDDR AOL; / / Address Output Latch

public:
void Reset () ;
SAMWORD Source(const SAMBYTE source code) ;
SAMWORD Dest(const SAMBYTE dest-code, const SAMWORD 1 ;

private:
void Mem-read-request(SMADDR addr, BIT bs, int stream 1;
void Mem-write - request(SMADDR addr, BIT bs, int stream, BIT w[]) ;

1 ;

Class smem contains the segmented and translate memory data structures, as well

as the various data buffers and status bits required. The public methods Source() and

Dest() implement the controller behavior. The methods accept the instruction byte as a

parameter and proceed to decode it into the stream number and specific action code. All

actions that take place in the hardware during the rest of the instruction cycle are

performed by smem.Source() and smem.Dest() before they return.

The SJPM Pipe co-processor is more complex than the other co-processors since it

connects the PMU and DMU. In VSAM, this is achieved by dividing the co-procesor into

I W fbnctions which are part of the PMU session, OVU functions which are part of the

DMU session, and the SJPM shared memory which is accessed by these functions. Access

to the shared memory is protected by a mutex semaphore. The class and supporting

definitions are:

struct sjmp-shared-data {

/ / sjmp registers - shared
SAMWORD s jmp - regs [SJMP - REGISTERS] ;

/ / Pipe status flags
BIT Is, Ir, Os, Or; / / State bits - shared
BIT Pe, ISe, Ie, Oe; / / I W flags
BIT OSe, Oep; / / O W flags

/ / SJMP FIFOs - shared
SAMWORD FIF0[2] [SJMP - FIFO - SIZE] ;
int FIFO wcount [2] ;
int FIFO-maxwcount[2]; - / / O W uses this to read the FIFO.

/ / I W syntax tag registers
int Idest, Ileft, Iright;

/ / O W Tag memory
SAMWORD TagMem addr;
SAMBYTE T ~ ~ M ~ ~ ~ T A G - MEM - SIZE]; / / lower 4 bits are valid data.

/ / O W Semantic tags
int Dtag, Ltag, Rtag; / / lower 4 bits are valid data.
BIT Lv, Rv; / / valid tag bits

I;

class sjmp {
HMTX sjmp mutex;
sjmp - sharxdata *sd;

public:
SAMWORD I W source(const SAMBYTE source-code) ;
void I W dest(const SAMBYTE dest - code, const SAMWORD datain) ;
int IW-&~ (int msg) ;

SAMWORD O W source(const SAMBYTE source - code) ;
void O W dest(const SAMBYTE dest - code, const SAMWORD datain) ;
int O W - msg (int msg) ;

private:
void SM in();
void SM-OU~ () ;
SAMWORD-IW Crnato;
SAMWORD IW-status word () ;
int ~est-shape tags() ;
int ~ e s t - t ~ ~ e - ~ a ~ s () ;
int Dest tags () ;
int O W FMat () ;
BIT 0 W a e () ;
SAMWORD O W status word 1 () ;
SAMWORD OW-statusIword-2 - - () ;

I;

3.5 The VSAMjr debugger

The purpose of the VSAMjr debugger is to control the execution of the simulator

and to give the user access to the state of the simulated machine so that the correctness of

the executing microcode can be determined. The debugger uses a command line interface

with three groups of commands:

1. Control of the environment including loading of control memory, scripting, and general

session control.

2. Execution control via breakpoints and single stepping.

3. Object access to data elements, state values, memory contents, and execution history.

The debugger is an integral part of the SAMjr simulator. Since it must have access

to internal elements of the simulator, many access and display functions were added to the

basic simulator classes. (These were left out of the previous SAMjr simulator discussion

for conciseness.) The debugger is the user interface to the VSAMjr program which

executes as the PMU and DMU. The debugger is invoked by VSAMjr during startup,

when a breakpoint is reached, or when the user enters input into the debugger window.

The debugger is only invoked between SAMjr instructions which are indivisible from the

user point of view. The VSAMjr main execution loop checks for breakpoints and user

input before it executes an instruction. In the following (simplified) code fragment from

VSAMjr, the functions UserBreakO, Usercommand() and SimBreakO invoke the user

interface. The function SimBreak() is used to signal special conditions such as invalid

machine operations.

while(msg != MSG STOP & & msg != MSG RESET) { - -

/ / Go to user if step, breakpoint, etc., or user input
if (::StepMode

I I ::BreakMode & & Test - breakpoint(SAMjr-PC)
I I ...
I l kbhit (1
UserBreak () ;

/ / Signal "Ready to execute instruction" to VSAM
MSG - Send (MSG READY) ; -

/ / Wait for msg from VSAM; process user input if any
while(MSG-NULL == (msg = MSG - Get()))

if (kbhit ())
UserCommand () ;

/ / Carry out VSAM message
if (msg != MSG EXEC) -

break;

/ / Execute instruction
ProcessAddress (: : SAMjr-PC) ;
Add tracepoint(::SAMjr PC);
::~%ljr PC old = ::sAMTr PC;
::sAM~~-Pc= - ~AMjr.~xecute(::SAMjr - PC) ;
if (: :SAMjr. SimBreak())

SimBreak () ;

/ / Increment System Clock
::SysClock++;

I

The debugger syntax was kept very simple for ease of implementation. Commands

were added during development of VSAM as need arose. The basic format is a single

character which determines the type of command, followed by optional characters for

modifiers, followed by optional parameters. For example, the memory command

demonstrates the complete syntax. It is a highly overloaded command since it provides

access to three types of memory. It has the following forms:

MS [s] -- display the status of SMem for stream s (or all streams)
MDD -- display the DPM data latch value
M(DISIT){VICIF) [addr[{-addrl,count)]][=value] -- View/~hange/Fill memory

The last form requires hrther explanation. After the M, the first modifier is the

memory specifier -- one of dual port memory (DPM), segmented memory (SMem), or

translate memory (TMem). The next modifier is the action, one of view, change, or fill.

Next come the parameters which specifjl the address range in various forms, and an

optional value. For example, the command MDV 1000,20 displays 20 values of the DPM

fiom address 1000. The command MSF 0-100=0 fills the first 100 locations of segmented

memory with zeros. The memory command also has an interactive mode which steps

through memory and allows the user to change only selected values.

Most commands are much simpler. The I command, for example has the form:

I [I + l - I 1 [a1

which shows a disassembled view of control memory fiom the specified address, or

relative to the previous I command if + or - is specified.

A novel feature of the VSAMjr debugger is the use of color to highlight key data

objects in a complex display such as the register file which consists of 32 registers, 4 of

which are dedicated. The foreground color indicates whether the register has changed

since the last time it was displayed by using yellow for changed and white for not changed.

The background indicates special status such as the 10, Counter, Status, and T register

which each get a dedicated color, and the target register of the last instruction. This has

turned out to be a very effective technique and represents the first step to a graphical

interface that would allow the user to organize the display in a meaningfbl way.

Breakpoints are an important feature of a debugger. The standard type of

breakpoint specifies a break when a given address is about to be executed. In the VSAMjr

debugger, these breakpoints are implemented by keeping a list of breakpoint addresses and

checking this list at the start of each instruction. This is less efficient than the usual

method of modifjring the instruction, but it has the advantage of leaving control memory

pristine. The debugger also has breakpoints that examine the SourceDestination codes

and stop on instructions that use specified units. This is a valuable feature for debugging

co-processor software. Other breakpoint type features include a break on hnction call and

return, the execution stack display, and a trace of the last dozen executed instructions.

A couple of features that did not get implemented due to their complexity, but

would have been very usefbl are datapoints and reverse execution. Datapoints cause

execution to break upon access to specified data objects. In VSAM, data objects could be

various machine registers and flags, as well as locations in dual port memory and

segmented memory. One possible implementation approach is to maintain a list of all

datapoints in effect, and search this list for each data object accessed by each instruction.

This approach seems straightforward in concept, but does require interpretation of each

instruction in the context of various register values, particularly in the case of segmented

memory where buffering is taking place. This would probably incur a significant

performance penalty. An alternative approach would be to give data objects the

responsibility of knowing when the object is a datapoint, and detecting when the datapoint

is triggered. This would reduce overhead for each instruction, but would require

considerable modification to the simulator.

Reverse execution allows the user to back up from the current instruction to

determine the events that led to it. This would be particularly usehl in conjunction with

breakpoints and datapoints, especially if the user could then modify some value and

proceed with forward execution. The basic problem in reverse execution is that all the

changes precipitated by each instruction must be reversible, and must be recorded during

execution. Besides the performance and storage costs of this approach, reversibility may

be limited by cascading changes.

During the development of VSAM, the debugger was used in reverse to the usual

order of things. The program was assumed to be correct; it was the simulator that was

being debugged. The process is essentially the same - the program is executed and the

change in the state of the machine is monitored - except that the simulator program is itself

run in a debugger, (in our case the Borland C debugger), and monitored. This gets

particularly complex when multiple instances of the simulator are running each with its

own (Borland) debugger as in the case of the DMU and PMU. Despite the large number

of windows involved and the processing overhead, OS/2 was able to support this mode of

debugging, and the technique proved quite effective.

3.6 Instrumentation

Since one of the primary motivations for building VSAM was instrumentation, the

system includes a simple yet powefil instrumentation methodology. The instrumentation

design goals were:

flexibility and extensibility

ease of instrument hook-up and take-down

low impact on simulator design

execution efficiency in space and time

close analogy to hardware instrumentation methods such as logic probes

A generic instrument consists of three parts: the probe, the connection, and the

display. The probe is the sensor that is directly attached to the object being measured. In

the case of VSAM, the probe is a piece of software that is embedded in the simulator

code. The probe software obtains the values of relevant variables andlor activities and

sends them to the display unit via the connection. In VSAM, we chose OSl2 pipes as the

method of connection based on the flexibility and simplicity of the pipe model. The display

is an arbitrarily complex program that reads the probe data from the pipe, processes the

data, and outputs it in some way. The output may be in the form of a visual display in a

window, a file in trace or processed form, or both. The display program may be a fixed

display type or may require user input for control.

An example of an implemented VSAM instrument is Callvue which captures

subroutine calls and returns executed in the SAMjr microcode. This instrument was the

first one built and was extremely usefbl during the debugging of VSAM. The Callvue

display shows the names of subroutines as they are called in an indented call tree. The

Callvue probe is attached to the SAMjr simulator in the next address generation module of

the SJ16 control processor. If the next address action is a call or return, the probe sends a

record down the pipe. The record specifies the current address, whether a call or return,

and if a call, the target address. The display part of Callvue translates call addresses into

subroutine names via a load map file and displays the name and address positioned

according to the current call nesting level. Return records are only used to decrease the

call level.

Callvue information is also used to build a dynamic call profile of how many times

each subroutine was called and by whom. The call information is accumulated in the

"calls" matrix where each element M[i]G] counts the number of times subroutine i calls

subroutine j. The "calls" matrix is stored in a file at the end of a run. It is processed off-

line to produce a histogram of often called subroutines. The transpose of the "calls"

matrix corresponds to the "is-called-by" matrix where each element M[i]u] counts how

many times subroutine i was called by subroutine j. The sum of a given row of the "is-

called-by" matrix corresponds to the total number of times a subroutine was called. A

dynamic call tree (as opposed to a static one) can be obtained from the "calls" matrix by

following the call chain for each subroutine. The question "who calls subroutine i" can be

answered from the "is-called-by" matrix. This can be very usehl when a subroutine needs

to be modified. Yet more information about subroutine relationships can be obtained by

computing the transitive closure of the two call matrices to obtain a "uses" and "is-used-

by" view of the software. The later tools are particularly important for software

archeology - the process of trying to understand a software system from the bottom up,

usually required when no design documentation is available.

Another usefbl instrument is the unit utilization trace tool called Utilz. The

purpose of Utilz is to show the state of the PMU and DMU over time. Utilz shows when

a unit is busy or waiting, and if waiting, it shows what the unit is waiting for. This is an

important tool for assessing the degree of parallelism in the system, and determining the

causes of stalls. The Utilz probe is embedded in the VSAM control module where it

samples both the PMU and DMU status at once. This approach was chosen in order to

explore the instrumentation methodology. Utilz is an example of a sampled tool. The

probe only samples information every n cycles in order to reduce the overhead. The value

of n is currently set as a compile constant in the probe.

In general, a VSAM instrument consists of the probe module and the display

program connected by a pipe, configured in a client-server relationship with the display

program as the server and the probe as the client. The display program establishes the

pipe and waits for the probe to connect and start sending data. The display program must

be started before the probe attempts to connect. If the probe fails to connect, it assumes

that the display program is not present and effectively turns off the instrument. Generally

the display program is configured to accept multiple simulation sessions.

The display program can be display-only with no user input, or fully interactive.

The probe can be a passive probe which simply sends a one-way stream of data, or it could

interact with the display via a bi-directional pipe. Such an active probe would contain

local intelligence regarding when and what to sample. To date only simple instruments

with write-only displays and passive probes have been built for VSAM. An example of

where an active probe would make sense is a probe whose sampling rate can be changed

dynamically by the display unit.

The probe module is linked into the simulator. It consists of general routines for

connecting to the pipe and packaging data for transmission, as well as specific routines

that gather the data and interface with the display program. Calls to the probe routines are

inserted directly into the simulator code at strategic points, either in the VSAMjr

instruction execution loop or within specific simulator components. This invasive

approach allows arbitrary instrumentation flexibility, but does require that care be taken

not to disturb the environment. Since the probe code is usually quite straightforward, this

has not been a problem with the instruments implemented so far. For example, the Callvue

instrument probe is inserted into the cp-sj 16.Process() hnction after the next address has

been determined. The probe code is shown below. The code that connects the Callvue

probe to the Callvue instrument is contained in the VSAMjr unit main() function.

SAMADDR cp - sjl6::Process(SAMADDR ci addr, sjinstr ci,
const SAMW~RD input-bus)

I
/ / The data movement part
. . .
/ / COUNT processing - ZC flag is updated at end of cycle
/ / Compute next address
SAMADDR next-addr = agen(ci-addr, ci, input-bus) ;
if (ci.x(9) == 0 & & ci.x(l0) == 0 I I ci.actl0 == ACTL-EXEC)

Stack.Push(ci - addr+l) ;

/ / Update flags . . .
/ / Callvue instrument probe code! Send call/ret msg.

if (ci.x(9) == 0 & & ci.x(l0) == 0 I I ci.actl() == ACTL-EXEC)
callvuec call (next addr) ;

else if (ci.aFtl0 == ACTL - RETURN)
callvuec-ret () ;

return next-addr;
I

The instrument display program is an independent session in OSl2. It receives

data from the probe, processes it, and displays it in an appropriate format. The Callvue

display program, for example, receives call and return messages from the probe. The call

target address which is contained it the call message is translated into a subroutine index

and the name of the subroutine is displayed on the screen indented to the current call level.

The call level is incremented for calls, and decremented for returns. Since Callvue must

also increment the Calls matrix for the appropriate subroutines, a simple call stack is

maintained in order to know who the caller was. The display program may also produce

permanent files to store results for off-line analysis. In the case of Callvue, the Calls

matrix is output to a file at the end of a benchmark execution run.

An important issue in the design of instruments is the definition of important events

which act as triggers to start and stop data collection and reset. One convenient but not

very usefbl event is the startup of the instrument itself A more usefbl event is the

connection of a probe to the pipe for a session. Generally, the instrument should reset

itself at this time. An example of this is in Callvue, where upon probe connection the call

level and all entries in the call matrix are set to 0. Other important events are instrument

specific and must be specified in the probe-display protocol. An example of this is in

Profile, where a reset record can be sent by the probe to the display program, instructing it

to reset its counters in preparation for a measurement run. It turns out to be useful to

reset the display at the start of a trigger rather than at the end (e.g., probe disconnection)

in order to leave the display for viewing by the user.

To enable sophisticated instrumentation, a rich choice of system status indicators

must be available to instrument probes. The status must be globally available, and must be

easily modified as new requirements are encountered. In VSAM, the Status shared

memory was added just for this purpose. The need arose during the construction of the

dynamic execution profile instrument. The profile desired was of the execution phase of a

benchmark. Because SAM APL links new functions into the environment including the

special immediate execution function that results in execution, there is a lot of activity on

either end of the actual execution. The start trigger for the profile was to be when the

PMU began executing the code for the immediate execution function. The end trigger was

when the DMU began transferring the result to the ECU. These events were most easily

localized by execution address, so the simulator was modified to set a flag in Status shared

memory when the appropriate addresses were executed. The Profile probe watches these

flags and only samples during the relevant time.

In retrospect, the use of the Status shared memory should have been incorporated

into the simulator design as a central mechanism for posting important events and general

exchange of data among different components of VSAM. The shared memory would

contain two types of data, a fixed set of status flags that would describe the overall state of

VSAM, and a flexible named message mechanism which would provide for arbitrary

communication among cooperating components. Access to Status would be protected by

a mutex semaphore. The contents of Status would need to be accessible to the VSAMjr

debugger for full flexibility. The fixed status information could in fact be used to

implement the instruction execution synchronization between the PMU and DMU which is

currently implemented via pipes. The fixed information would be very useful for

instrumentation and general debugging. Some care would need to be taken to ensure that

Status information is kept well organized and coherent.

4. Benchmark Analysis Results

This chapter presents the results of the execution analysis of two APL benchmark

programs, a scalar implementation of Quicksort called QSS, and a vector implementation

called QSV. The purpose of this chapter is to demonstrate the use of VSAM to analyze

the execution behavior of SAM and SAM APL. Detailed interpretation of the results is

beyond the scope of this work.

The Quicksort benchmarks were selected because they have been previously

written by Hoskin [Hos87] to run in SAM APL and have been discussed in [HHS92] and

[CNS89]. The programs are shown in Appendix A. They are particularly interesting since

they offer a direct comparison of scalar and vector implementations of the same problem.

Both versions are recursive and use the algorithm of dividing the input vector into two

parts based on a pivot value, and calling themselves to sort each part. The primary

difference between the two benchmarks is in the divide step. The scalar version, QSS,

manipulates the elements as scalars and uses the traditional swapping approach. The

vector version, QSV, uses the APL vector fbnction Select (4 to extract all elements less

than and greater than the pivot. The scalar version performs a lot of branching and

copying of single values. The vector version performs copying of vectors.

The analysis data was collected by the Callvue, Profile, and Utilz instruments of

VSAM. Data was collected only while SAM was actually executing the benchmarks and

does not include the translation from APL to ADEL, nor the linking of new fbnctions into

the environment. Data collection began when the immediate execution fbnction

corresponding to the line of APL to be evaluated began execution, and ended when the

results were available for display. While each instrument has an on-line display, in-depth

analysis was performed off-line by importing the trace files into Microsoft Excel [Mic94].

The benchmarks were executed under the same conditions with identical sampling rates

and input. The input size was 10 elements. This is a relatively small size for a sort

benchmark, but is sufficient to demonstrate the process. The execution speed of a fblly

instrumented VSAM is rather slow. The 10 element benchmarks each took approximately

an hour of elapsed time to run. The results reported in [HHS92] show that the vector

benchmark performance is always better than the scalar version, and that the advantage

grows with input size.

The first part of each benchmark run constructs the input vector with a balanced

distribution. This is not directly relevant to the analysis, except that it shows up as part of

the run in the time profile graphs, for example Figure 4-2. Since the input generation

program was nearly identical for both benchmarks, this phase of the run serves as an

informal reference point among the time series graphs, although they are not exactly the

same. Since the phase is nearly identical in both cases, it does not affect the results

significantly.

A side-by-side comparison of some execution statistics is summarized in Table 4-1.

The table shows that QSV executed in 26% less time than QSS, and executed significantly

fewer subroutine calls. While the PMU utilization was higher in QSS than QSV, the DMU

utilization was lower. This is a reflection of the greater amount of interpretive overhead

incurred by the scalar version which executed more lines of APL, more APL function calls,

and more APL branches. The vector version, on the other hand, moved more data within

the DMU. The PMU and DMU overlap is the fraction of time that both units were busy.

Surprisingly these figures are very close. Overall, the vector benchmark is more efficient

Table 4-1: Comparison of QSS and QSV execution statistics

I QSS~ QSVI % ~ecreasel

IAPL branches I 91 1

APL function Calls
APL lines executed

[S-M clock cycles 1 48,3501 35,6501 26%1

25
122

~PMU utilization 60%1 46%1 23%1

35

PMU microcode subroutine calls
DMU microcode subroutine calls
PMU subroutines invoked (of 21 9)
DMU subroutines invoked (of 252)

62%

18
84

28%
31 %

5,346
11,702

79
107

DMU utilization
PMU and DMU overlap

3,952
4,851

79
1 04

74%
35%

26%
59%
0%
3%

90%
37%

-22%
-6%

in each of the APL, SAM, and real-time domain.

4.1 Utilization

As a first look at how SAM spends its time, the Utilz instrument was designed to

record the busylwaiting state of both units during execution. The PMU has three types of

waits:

Waiting for a free instruction pipe FIFO to fill. This occurs when the PMU gets ahead

of the DMU and both FIFOs are full.

Waiting for a branch destination value from the DMU.

Waiting for the DMU to finish executing the last instruction and sending results to the

front-end. This wait only occurs at the end of immediate execution and is ignored in

the rest of this discussion.

The DMU has only one type of wait, waiting for a fill instruction FIFO to execute.

The Utilz trace file records the state of each unit. The file can be analyzed in a number of

ways.

Figure 4-1 is a summary of the unit busylwaiting state over the whole benchmark.

It was obtained by totaling the trace file for each type of state. The figure clearly shows

that the scalar benchmark took longer to execute. It also shows that the scalar benchmark

used the PMU heavily, while the vector benchmark used the DMU heavily. This is

consistent with the discussion in the previous section.

Figures 4-2 and 4-3 show unit utilization as a time profile. These figures were

obtained by grouping the Utilz trace file into 50 equal units of time, and calculating the

busylwaiting state distribution for each group. The time profiles show that there are

definite phases to the program. The first phase is input generation which lasts about one

fifth of the run and is identical in both benchmarks. It is marked by a sudden increase in

the QSS PMU Pipe Wait increase in the top part of Figure 4-2, presumably caused by the

overhead of copying the result vector from the generation fbnction to the sort finction.

b

The next phase in the QSS benchmark is the split of the entire input vector which

involves a lot of branching in the PMU and scalar data movement in the DMU. This phase

is identifiable in the top part of Figure 4-2 as many branch waits in the PMU and relatively

high DMU utilization. As the vectors get shorter the graph gets erratic, but the lower

DMU utilization is discernible. The QSV benchmark behavior in Figure 4-3 is somewhat

easier to see. DMU utilization is consistently high due to the amount of vector copying.

On the PMU side the amount of busy time increases as the recursion winds up and the

vectors get shorter, then decreases as the recursion unwinds and the result vector gets

built.

ass OSS c5v
PMU DMU

Figure 4-1: PMU and DMU utilization summary for QSS and QSV

PMU Utilization during QSS

[U Busy D Brand Wad OPlpe Walt 1

21

Execution Time ir

DMU Utilization during QSS

2 1

Execution T i m ->

Figure 4-2: PMU and DMU Utilization Time Profile during QSS

PMU Utilization during QSV

[a Busy Branch Wait 0 Pipe ~ a i t]

21 31

Execution Tim a

DMU Utilization during QSV

I E i ~ u s y OPipe Wait I

2 1 31

Execution Tlm a

Figure 4-3: PMU and DMU Utilization Time Profile during QSV

A significant efficiency problem arises fiom APL's peculiar branching mechanism

which uses data values as control flow targets. Since the target line of a branch statement

is a data item in the DMU, the PMU must request the value fiom the DMU. The

D4SNDSTK instruction directs the DMU to send the top of stack value to the PMLJ via

the SJPM (Pipe) registers. The PMU must wait until the value is delivered. Since this

empties the instruction pipe, a significant overhead is incurred for each branch. Figure 4-4

demonstrates the branching overhead in a time trace which shows the wait state of both

units for a small period of time at the start of the benchmark execution. The PMU must

first wait for a fiee FIFO to send the stack request, then wait for the stack value, then

resume execution at the new address. The DMU is idle while it waits for the PMU to

resume the instruction stream. The branching delay is clearly more significant in the scalar

version of the benchmark which does far more branches than the vector version (91 vs.

Figure 4-4: Utilz trace showing the effect of APL branching

35). The higher Branch Wait counts and lower D M ' Utilization for the QSS benchmarks

shown in Figure 4-1 are a symptom of this effect. Branching is always a source of stalls in

pipelined computers, but the problem is particularly acute in APL since the branch

instruction is so general. The same mechanism serves for unconditional branches,

conditional branches, and function returns. Only conditional branches need to incur this

overhead. The other two types should be treated separately by assigning ADEL formats

for them. APL*PLUS 111 [Man941 has added structured programming constructs to APL

(if-then-else, and loops) which would allow the use of branch prediction techniques.

4.2 Execution Profile

The Profile instrument is used to obtain the distribution of execution time among

the subroutines of SAM APL. Profile produces a trace file of the subroutine that was

executing in the PMU or DMU during periodic execution sampling. From this trace, an

execution profile of the program can be constructed by subroutine and by module. Figure

4-5 shows a summary of the profile for QSS and QSV grouped by module. This figure

and the subsequent time profile figures, Figure 4-6 and Figure 4-7, correspond to the

utilization figures described in the previous section. The profile figures show the relative

execution times of the different components of the SAM APL software. As the summary

Figure 4-5 shows, QSS took longer to execute and spent more time in every module

except PMU Pipe Wait and DMU Memory Management. Since the PMU looks after

branching and function invocation, during QSV, the PMU has much less to do, which

explains the higher waiting time. The PMU is simply waiting for the DMU to finish an

instruction, so that it can load the next instruction into the pipe. The DMU is kept much

busier in QSV copying intermediate vectors, which explains the higher Memory manager

use. Because the operands in QSV are vectors rather than the scalars that QSS moves, the

DMU executes fewer instructions, but more work is done. This is precisely the design

goal of the Structured Architecture Machine which attempts to reduce interpretive

overhead.

The time profiles show how work is distributed among SAM APL components

over the duration of execution. As with the utilization figures, the fnst phase of each

benchmark is the generation of the input vector. The prof~les show that a significant part

of the PMU'S work time is spent in the Environment and Linker modules which look after

function invocation. The DMU spends a large part of its time in the Data Access Table

(DAT) and Memory Manager modules. During the vector benchmark, the DMU Memory

Manager shows a dramatic increase in use compared to the scalar benchmark The format

routines directly account for a small portion of the execution time.

ass
DMU

Figure 4-5: PMU and DMU Execution Profile Summary by Module for QSS and
QSV

DMU Pronk by Wduk durlng QSS

EmaMonlhw~k.-,

F i r e 4-6: Profile of PMU and DMU during QSS benchmark

DYU Proflh by Modub durn

Figure 4-7: Frofile of PMU and DMU during QSV benchmark

The Profile instrument gathers statistics on the relative execution times for each

subroutine in a unit. The top 10 subroutines for each unit are shown in Table 4-2 for the

scalar benchmark, and in Table 4-3 for the vector benchmark. The dominance of the pipe

and branch wait subroutines is obvious. The next point of interest is that the top 10

subroutines account for a large portion of the execution time, particularly in the PMU.

The relevance of this point is that optimization of these routines will have a large effect on

overall execution time. Subroutine usage is hrther discussed in the next section.

Table 4-2: Top 10 PMU and DMU subroutines by execution time during QSS

Table 4-3: Top 10 PMU and DMU subroutines by execution time during QSV

4
5
6
7
8
9

4.3 Call Counts

The Callvue instrument produces a

Calls[ij] is the number of times subroutine

RELlVUPlPE
IFETCH
PUSHST
READST
STARTSTSl
CHKPT

Calls matrix in which the value of element

i calls subroutine j. There are many ways to

54
53
24
2 1
19
14

8%
7%
3%
3%
3%
2%

use this matrix, but for the purposes of performance analysis, the most usehl is to sum the

rows of the transpose of Calls, producing a table of how many times each subroutine is

called. When this table is sorted in decreasing order of the number of times called, a

profile of subroutine invocation is obtained. The call profile is significantly different fiom

the execution profile. For example, a routine such as FETCH which is the main

instruction processing loop in the PMU, is only called once, but executes for the duration

of the run and accumulates 10% of the execution time. The top 10 subroutines for each

unit for the vector benchmark are shown in Table 4-4, with the corresponding execution

weight shown for comparison. RECVCONST is a very short DMU subroutine called by

DWAITPIPE. Although it accounts for a large number of calls, it accumulates no

execution time.

Table 4-4: Top 10 called subroutines in the PMU and DMU during QSV

Perhaps the best use of call count information is to understand how many times

particular events took place during a run. For example, since the subroutine UDFCALL is

called when an APL fkction is invoked, the call count for UDFCALL indicates the

number of APL fbnction invocations. Similarly, the subroutine P4NXTL is called at the

end of each APL line and P4BSTK for branching. Table 4-5 shows some interesting call

counts for the two benchmarks. The subroutine STARTSTSl is called to start the ADEL

instruction stream fiom PMU Segmented Memory. It represents a significant delay which

could perhaps be reduced through the use of multiple instruction streams. WNTEDEST

is a DMU DAT subroutine which copies a temporary result to its destination.

 able 4-5: Call counts for various PMU and DMU subroutines for QSS and QSV

Subroutine QSS QSV
UDFCALL
P4 NXTL
P4BSTACK

Io4* 1
WRITEDEST 335 209
STARTSTSl
PWAlTPlPE 422 238

The relative frequency of the instruction formats and operators is an important clue

to the work done by SAM. Since each format and operator are implemented as separate

subroutines, their call counts correspond to their frequency. Tables 4-5, 4-6, and 4-7

compare the instruction and operator subroutine counts for QSS and QSV.

Table 4-6: PMU instruction format subroutine call counts for QSS and QSV

Subroutine I Calls I % of Calls
P4NXTL 1 122) 22%

Subroutine (Calls I % of Calls
P4NXTL 1 841 27%

60

Table 4-7: DMU instruction format subroutine call counts for QSS and QSV

Subroutine I Calls1 % of calls

Table 4-8: DMU operator subroutine call counts for QSS and QSV

5. Conclusions

The goal of this work was to develop a method for observing and analyzing the

behavior and performance of parallel computers. The VSAM performance analysis tool

described in this thesis accomplishes this goal for the Structured Architecture Machine

(SAM), a distributed-function multiprocessor computer. The SAM-1 prototype has been

simulated in software and its performance on existing benchmarks was measured. The

design and implementation of VSAM is described herein and the results of the benchmark

measurements are presented.

A simulator-based 'approach to performance analysis was chosen after initial

experiments with the prototype hardware showed it to be difficult to instrument and

generally hard to work with. Simulation is a proven method of analyzing the behavior of a

complex system. The main benefits of simulation are the degree of control that can be

exercised over the simulated system, and the ease with which the system can be changed to

explore the effects of proposed alterations of the system. Simulation is also an excellent

platform for measurement because of the direct access provided to all internal objects and

events.

The main challenge of the simulator-based approach was the specification of the

complex SAM architecture in a software model. A detailed and structurally accurate

model was required in order to measure the execution of benchmark programs written for

the prototype. The VSAM model was written in C++ and runs under 0 9 2 . The object-

oriented nature of C++ was exploited to represent the modular structure of the SAM

hardware. The multi-processing capability of OS/2 was used to partition SAM processors

into separate processes. The resulting system closely resembles the structure of the

hardware, and can be readily modified to explore alternative architecture configurations

such as adding more processing units or extending the capabilities of the SAM

components.

VSAM runs about 1000 times slower than the SAM-1 prototype. A large part of

this difference is due to the multiprocessing overhead of OSl2 which could probably be

significantly reduced by a better inter-process communication strategy. Late in the project,

the STATUS shared memory was added in order to make available the status of various

system components for instrumentation. In retrospect, the shared memory should have

been a central part of VSAM both for instrumentation and general process control. In the

current control scheme, the PMU and DMU processes co-ordinate execution of

instructions through the VSAM process via commands passed through OSl2 pipes. This is

very inefficient and unnecessarily complex. The STATUS shared memory could contain

flags that achieve the same effect without the overhead of switching context to the VSAM

process. As more processors and instruments are added to VSAM, the STATUS shared

memory will become an important central feature.

The current user interface to VSAM is text oriented. While this is efficient from

the implementation point of view, a graphical interface would better serve the VSAM user,

particularly when VSAM is used for debugging SAM software. The main problem is the

large number of commands a user must be familiar with, and the large amount of

information that is presented to them. A graphical interface would allow users to focus on

parts of the system that are changing and of direct interest to the problem at hand. VSAM

makes some attempts at helping the user through the use of color to highlight changed

values and these were found to be very effective. A graphical interface could also be very

usefbl for observation of the system during execution. For example, animation could be

used to indicate changes in the system, and instruments could be attached directly to

elements to be monitored. The initial design of VSAM was graphically oriented, but this

proved to be very difficult to implement and was abandoned as too ambitious under the

circumstances.

Overall, VSAM represents a good start at an architectural modeling tool. Given

the complexity of modern computer systems, such modeling tools are an essential part of

the design process. Future graduate projects could expand the capabilities of VSAM as

the need arises.

6. Appendix

This appendix shows the SAM APL source code for the Quicksort scalar QSS and vector

QSV benchmarks. The code may look peculiar due to SAM APL limitations.

QSS is a shell which calls QSSINNER to do the work. The variable ANS is used as a

global place-holder for the data being sorted.

V ANS+LEF QSS ARG; RYT
111 ANScARG
12 I RYT++/PANS
131 LEFcl
141 ARG*O+LEF QSSINNER RYT

v

QSINNER splits the vector to be sorted into two parts based on the pivot, and calls itself

recursively to sort each part.

V PTR+LEF QSSINNER RYT;T
[I1 PTR+l3
121 +(LEF>RYT)/O
131 PTR+(LEF QSSPLIT RYT)
[4 1 T+ (LEF QSINNER PTR-2
[51 T+(PTR QSINNER RYT)

v

QSSPLIT arranges the data vector ANS[LEF] to ANS[RYT] so that upon return lower

values are to the left of PTR, and higher values to the right.

V PTR-LEF QSSPLIT RYT;VAL
111 VAL+ANS[LEFI
[2 1 PTR+LEF+l
[31 +(PTR>RYT)/8
14 I +(VAL<ANS[PTRI)/lo
[51 ANS[LEFl+ANS[PTRI
[6 1 LEF+LEF+l
171 +2
181 ANS[LEFl+VAL
[91 +O
[lo1 +(PTR=RYT)/8
[Ill +(VAL>ANS[RYT1)/14
[I21 RYTeRYT-1
[I31 +10
1141 ANS[LEFl+ANS[RYTI
1151 ANS[RYTlcANS[PTRI
[I61 RYTcRYT-1
[I71 +6

V

QSV is the vector version of Quicksort. It calls itself recursively twice, once with the

values less than or equal to the pivot, and then with the values greater than the pivot. It

then catenates the two results and the pivot in proper order.

v ANSeLEF QSV RARG
[ll ANStRARG
[2 1 +(2>PRARG)/O
131 LEF+RARG[ll
[41 RARGcl4RARG
151 ANS+LEF,2 QSV (LEFIRARG)/RARG
I61 ANSc(2 QSV (LEF>RARG)/RARG),ANS

v

QARG builds an input vector of the specified length with a balanced order.

v VECcPIVOT QARG LEN
[I1 +(LEN>2)/5
[2 1 VECeLLEN
[31 +O
141 PIVOTc(LEN DIV 2)
[5] VECc(2 QARG PIVOT-1)
[61 VEC+PIVOT,VEC,PIVOT+VEC
[7] +(LEN=PVEC)/O
[8 1 VEC+VEC, LEN

v

7. Glossary

ADEL

CAT

CP

DAT

DMU

DPM

FIFO

I W

O W

PMU

SAM

SAMjr

SJ16

S JMC

S JPM

SMem

TMem

VSAM

A Directly Executable Language

Countour Access Table

Control Processor

Data Access Table

Data Management Unit

Dual Port Memory

First In First Out

Instruction Verification Unit

Operand Verification Unit

Program Management Unit

Structured Architecture Machine

a unit of SAM consisting of a microprocessor and co-processor

a custom VLSI microprocessor for SAMjr

SAMjr Memory Controller

SAMjr Pipe and Mail processor

Segmented Memory

Translate Memory

Virtual SAM

VSAMjr Virtual SAM$

8. Bibliography

Anderson, W., "An Overview of~otorola's PowerPC Simulator Family",
Communications of the ACM, Vol. 37, No. 6 , June 1994, pp. 64-69.

Banks, J. and Carson, J. S., Discreet-Event System Simulation, Prentice-Hall,
1984.

Butler, J.M. and Oruc, A.Y., "A Facility for Simulating Multiprocessors",
IEEE Micro, Oct. 1986, pp. 32-44.

Butt, F., "Rapid Development of a Source-Level Debugger for PowerPC
Microprocessors", ACMSigplan Notices, Vol. 29, No. 12, Dec. 1994, pp. 73-
77.

Ching, W., Nelson, R., Shi, N., "An Empirical Study of the Performance of the
APL3 70 Compiler", APL 89 Con$erence Proceedings, August 1989, New
York, pp. 87-93.

Ferrari, D., Computer Systems Performance Evaluation, Prentice-Hall, 1978.

George, A.D., "Simulating Microprocessor-Based Parallel Computers Using
Processor Libraries", Simulation 60:2, Feb. 1993, pp. 129- 134.

Hennessy, J.L. and Patterson, D.A., Computer Architecture A Quantitative
Approach, Morgan Kaufmann Publishers Inc., 1990.

Hobson, R.F., Hoskins, J., Simmons, J., Spilsbury, R., "SAM-I: a Prototype
Machine for Dynamic, Array-oriented Programming Languages", IEE
Proceedings, Vol. 139, Pt. E, No. 4, July 1992, pp. 335-347.

Hollingsworth, J.K., Irvin, R.B., Miller, B.P., "The Integration of Application
and System Based Metrics in a Parallel Program Performance Tool", ACM
Sigplan Notices, Vol. 26, No. 1, 1991, pp. 189-199.

Huguet, M., Lang, T., Tamir, Y., "A Block-and-Actions Generator as an
Alternative to a Simulator for Collecting Architecture Measurements", ACM
Sigplan Notices, Vol. 22, No. 7, 1987, pp. 14-25.

Hobson, R.F., "A Directly Executable Encoding for APL", ACM Transactions
on Programming Languages and Systems, Vol. 6, No. 3, July 1984, pp. 3 14-
332.

Hobson, R.F., Microprogramming Tools in an APL Environment, Technical
Report, (LCCR TR 87-14), School of Computing Science, Simon Fraser
University, 1986.

[Hob881 Hobson, R.F., "High-level Microprogramming Support Embedded in Silicon",
IEE Proceedings, Vol. 135, Pt. E, No. 2, March 1988, pp. 73-81.

[Host371 Hoskin, J., An APL Subset Interpreter for a New Chip Set, Master's Thesis,
School of Computing Science, Simon Fraser University, 1987.

[IBM92] IBM Corp., OS/2 2.0 Control Program Programming Guide, Que, 1992.

[Knu72] Knuth, D.E., "An Empirical Study of FORTRAN Programs", Software -
Practice and Experience, Feb. 1972, pp. 105-1 33.

[MAF91] Mills, C., Ahalt, S., Fowler, J., "Compiled Instruction Set Simulation",
Software - Practice and Experience, Vol. 21(8), Aug. 199 1, pp. 877-889.

[Man941 Manugistics, APL *PLUS 111 Language Reference Manual, 1994.

[MeM88] Melamed, B. and Morris, R. J.T., "Visual Simulation: The Performance
Analysis Workstation", Computer, Aug. 1988, pp. 87-94.

[Mic93 J Microsof? Corporation, Microsoft Excel User 's Guide Version 5.0, 1993.

[MK088] Miyata, M., Kishigami, H., Okamoto, K., Kamiya, S., "The TX1 32-Bit
Microprocessor: Performance Analysis, and Debugging Support, IEEE Micro,
Apr. 1988, pp. 37-46.

Pav931 Navabi, Z., WDL Analysis and Modeling of Digital System, McGraw-Hill
Inc., 1993.

[Pat851 Patterson, D.A., "Reduced instruction set computers", Communications of the
ACM, Vol. 28, No. 1, 1985, pp. 8-21.

[Pre92] Pressman, R.S., Software Engineering A Practitioner's Approach, Third
Edition, McGraw-Hill Inc., 1992.

Poc881 Rochkind, M. J., Advanced C Programming for Displays, Prentice-Hall, 1 988.

[Strg 11 Stroustrup, B., The C+ + Programming Language, Second Edition, Addison-
Wesley Publishing Company, 199 1.

[TyD93 J Typaldos, M.D. and Deneau, T., "Interoperability of RISC Debugger Tools",
Computer Design.

[ThM9 11 Thomas, D.E. and Moorby, P., The Verilog Hardware Description Language,
Kluwer Academic Publishers, 199 1.

[Voi94] Voith, R.P., "The PowerPC 603 C++ Verilog Interface Model", Proceedings
of Spring Compcon '94, San Francisco,

