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Abstract

This thesis describes a virtual simulator-based software debugging and
performance analysis system (VSAM) for the Structured Architecture Machine (SAM).
SAM is a distributed-function multiprocessor computer designed to execute APL
efficiently. The purpose of VSAM is to help researchers investigate the behavior of the
SAM architecture and to support the exploration of alternative designs. Object-oriented
techniques are used to represent the hierarchical structure of the hardware thereby

facilitating instrumentation and modification of the architecture.

VSAM is implemen;ed in C++ under OS/2 and utilizes multi-tasking extensively.
The core of VSAM is a behavioral simulator of SAM. The simulator is a faithful
functional model of SAM down to the register/bus component level. A full-featured
debugger interface is provided for each processor. The debugger includes novel features
for dealing with multiple processors, functional units, and data presentation. VSAM also
provides a general instrumentation facility which uses OS/2 pipes to connect sensors

embedded in the simulator to display windows.

The simulator design is discussed in detail and presented in the context of
alternative simulation techniques and other microprocessor simulators. The use of VSAM

is demonstrated on SAM benchmarks and the results are discussed.
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1. Introduction

As computer architectures become more complex in order to achieve further gains
in performance, a thorough understanding of the behavior of an architecture under
working conditions is a prerequisite for further improvement. Software-based architecture
simulation is an efficient and effective approach to analyzing and measuring the
performance of existing and proposed systems. A detailed architecture simulator can be
used to evaluate the feasibility of an architecture, to predict its performance, and evaluate
the usability of the architecture from the point of view of the software that will need to be

written for it.

While software based architecture simulators are easier to build than hardware,
they present their own set of design challenges. The basic challenge is the task of
capturing the functionality of the new system in software in an efficient and manageable
way. The complexity and parallel nature of modern computer architectures makes this a
significant exercise in software engineering. Beyond basic correctness, the simulator must
be flexible enough to allow changes as the design evolves. The simulator representation
must be sufficiently similar in structure to the hardware design to facilitate this. The
simulator must be designed with measurement in mind, since one of its primary purposes is
performance evaluation of the architecture. Structural similarity to the hardware will help
greatly in this area, since the same types of events and objects that occur in the hardware
will exist in the simulator. Ideally, the simulator must provide an array of performance
analysis tools with which the designer can monitor the system. Finally, since software will
need to be written and debugged for the new system, the simulator must provide an

interface to software development facilities and to a debugger.

This thesis describes the 'design, implementation, and use of VSAM, a virtual
software simulator for the Structured Architecture Machine (SAM) described in [HGT86].
SAM is a distributed-function multiprocessor computer designed to execute APL
programs efficiently. A working prototype of SAM, called SAM-1, has been built and is
described in [HHS92]. A rudimentary APL interpreter, named SAM APL, has been



implemented for SAM, (see [Hos87]), and has demonstrated the capabilities of the
architecture. Unfortunately, the prototype hardware is not an ideal performance analysis
platform because it is difficult to instrument for detailed measurements and difficult to
modify in order to test new ideas. The purpose of VSAM is to overcome these difficulties
and to become an architectural workbench for further study of the Structured Architecture

Machine and design of future machines.

VSAM is implemented in C++ under OS/2. Object-oriented techniques are utilized
to represent the modular structure of the hardware components. Multiple processes are
used to emulate the parallel nature of the hardware. VSAM is a machine code simulator
that executes SAM-1 binary images, albeit much slower than SAM-1. The simulator is
faithful in the representation of hardware components down to the level of registers and
buses, and accurately emulates the movement of data at the microinstruction level. VSAM
does not emulate the timing of sub-instruction events. A powerful debugger interface is
provided to facilitate code testing and to explore the state of the various parts of the

machine.

An integral part of VSAM is an instrumentation methodology for measuring and
observing the behavior of SAM during execution of SAM software benchmarks.
Instrument probes are embedded in the simulator at strategic points and send data to
display tasks that present the results graphically on-line, and optionally save results and
traces to files for off-line analysis. Several instruments have been developed including a
call/return monitor, an execution profiler, and a processor utilization monitor. The design
and implementation of the instruments is described in detail and their use is demonstrated

on SAM benchmarks.

The remainder of this chapter examines related work on the design and use of
architecture simulators. Chapter 2 is an overview of the SAM architecture and the SAM-1
prototype including a critical look at the software development system and development
methodology. Chapter 3 describes the implementation of VSAM in detail. Chapter 4 looks

at the performance analysis results of SAM benchmarks and discusses them.



1.1 Related Work

The benefits of simulating a system prior to implementation are described in many
references including [BaC84], [Pre92], and [Fer78]. The main benefits are the ease with
which a model can be built and modified, and the high degree of behavioral analysis such
models enable. These benefits are particularly relevant in the study of parallel computer
architectures due to the complexity of these systems and the difficulty of implementation.
The importance of a-sound evaluation methodology in performance analysis is articulated
particularly well in [HeP90] and also in [Fer78]. The basic objectives of simulating a
system for performance analysis are to identify the typical work-load of a system and then

to observe and measure how well the system handles the work-load.

Two important design decisions in building an architecture simulator are the level
of abstractness of the model and the implementation method. The level of abstractness
refers to the granularity of the model with respect to the types of objects and events the
designer works with. A highly abstract model may consider entire processors as basic
building blocks, while a detailed model may be concerned with registers and bit transfers.
The level of abstractness decision is based on the purpose of the simulation and the nature
of the behavior to be observed. Detailed models provide the greatest flexibility and degree
of detail, but are difficult to implement and generally very slow to execute. The
implementation method must support the level of abstractness desired. A general-purpose
programming language offers the greatest flexibility, but the least built-in support. Formal
hardware description systems such as VHDL [Nav93] and Verilog [ThM91] are a good
choice for detailed models. Discreet-event simulation systems such as SIMULA and
GPSS are suitable for more abstract models. Hybrid solutions are also possible. In
[Geo93] for example, the author describes the use of processor libraries as building blocks

for a more abstract model.

Many reports of architecture simulation are available in the literature. Of particular
interest are [And94], [Voi94], and [But94] which describe the use of architectural
simulators for the PowerPC microprocessor recently released by IBM and Motorola. Two

types of simulators are described: a detailed timing simulator and an instruction set



simulator. The timing simulator models the internal organization of the microprocessor. It
is intended for use by the microprocessor designers and by hardware designers of systems
that will employ the microprocessor. It has been packaged as a Verilog module for use as
a component of a Verilog simulation. The instruction set simulator executes actual
instructions and is intended for software development for the PowerPC prior to availability
of the hardware. The simulator has been interfaced to the Free Software Foundation’s gdb
debugger and a complete sofiware development environment. The advantage of this
approach is simultaneous delivery of a new microprocessor and software systems for it. A
similar set of simula@ion tools for the Advanced Micro Devices’ (AMD) 29K family of
RISC processors is described in [TyD93].

An important class of architecture simulators are instruction set simulators
described in [MAF91] and [HLT87]. These simulators allow designers to measure the use
of various instructions and to evaluate proposed changes. RISC architecture designers
made good use of such techniques to focus their designs on the actual work expected of
their machines, [Pat85]. An important advantage of instruction set simulators over more

detailed simulators, is ease of implementation and execution efficiency.



2. SAM Overview

This chapter describes the SAM architecture, the SAM-1 prototype, SAM APL,
and the overall SAM software development environment. The purpose of this chapter is
to familiarize the reader with SAM, describe the state of the SAM-1 prototype, and point

out some of the difficulties with using it as an analysis platform.

2.1 SAM Architecture

The Structured Architecture Machine, (SAM), is a novel architecture designed to
execute APL faster than gweneral purpose architectures. SAM is described in detail in
[HGT86] and [HHS92].

The basis for SAM is A Directly Executable Language called ADEL, described in
[Hob84]. ADEL represents an APL program as a linear form that can be efficiently
interpreted by SAM through the use of parallel processors and special purpose hardware.
The structure of an ADEL instruction is a format code that identifies the instruction,
operand references, and possibly an operator to be applied. The prototypical ADEL

instruction is DLR which has the form:

DLR destination-operand left-operand right-operand operator
The APL expression

A<B+C
translates to the ADEL instruction

DLRABC+

where the meaning of the operands A, B, and C is derived from context. The power of
ADEL lies in the fact that the operands may in fact be large arrays!  The set of ADEL
formats was chosen through experimentation. Most formats are for data manipulation, but
several formats are provided for branching and user-defined function invocation. The set

of formats may change as the need arises.



The SAM execution model of ADEL partitions the work among three specialized
execution units: the Environment Control Unit (ECU), the Program Management Unit
(PMU), and the Data Management Unit (DMU). The SAM architecture is shown in
Figure 2-1. The ECU is responsible for the user and host interfaces. It translates user
input into ADEL which it passes to the PMU for execution. It also receives results from

the DMU and displays them.

The PMU manages the execution of programs. It is responsible for storage of
defined functions, and maintains the symbol table and the Contour Access Table (CAT)
used to resolve operand references. During execution, the PMU looks after branching and
function invocation and return. For data manipulation instructions, the PMU resolves
operand references into data references, performs compatibility checks on the operands,

and passes verified instruction to the DMU for execution.

The DMU executes data operations as instructed by the PMU. It manages the
storage of data in memory via the Data Access Table (DAT) which is referenced by the
instruction operands. The DMU checks the operands for compatibility and performs the

specified action. The DMU receives its instructions from the PMU via a pair of instruction

[ User Interface J

Environment
Control Unit
(ECU)

Dual Port Dual Port
Memory Memory
(DPM) (DPM)
Program

Management Unit Pipe
(PMU)

Figure 2-1: SAM Architecture



pipes which allows the PMU and DMU to overlap execution.

2.2 SAM-1 Prototype

SAM-1 is a prototype instantiation of SAM. The structure of SAM-1 is a general
purpose host computer, (an IBM PC with DOS), that acts as the ECU, and two embedded
custom processors called SAMjr, that are the PMU and DMU. The ECU executes a
program that constitutes the user interface to the SAM application and that communicates
with the PMU and DMU through a control bus interface and Dual Port Memory (DPM).
The PMU and DMU communicate though a custom processor called the SJPM which

implements the instruction pipe and operand compatibility checking.

Control Processor | .4
(SJ16) [ »  Control Memory
Jdata (48 bits x 8K)
e
i : Messages
Memory Controller Dual Port Memory
(SIMC ) R SO (16 bits x 4K)
Translation Memo ;
(16 bits x 4K) v : [ PIPE (vU, ow)
O (SIPM)
Data Memory
(32 bits x 512K)

SJBUS (16 bits)

Figure 2-2: SAMjr Architecture



2.2.1 SAMjr

The PMU and DMU are two instances of a custom designed processor called
SAMjr. SAMjr is a microprogrammable processor designed to be an efficient SAM
building block. The architecture of SAMjr is shown in Figure 2-2 and is described in
[Hob88B]. SAMjr consists of the SJ16 control microprocessor and co-processors
including Dual Port Memory (DPM), segmented memory controller (SJIMC), pipe
interface (SJPM), and an optional auxiliary co-processor. The co-processors are
connected to SJ16 via the SIBUS which is used both to send instructions in the form of
Source/Destination (S/D) codes, and data. The SAMjr instruction format, shown in Table
2-1, includes the source and destination codes, thus allowing up to 2 co-processors to

work in parallel with the SJ16 in any given instruction cycle.

2.2.2 SJ16

The SJ16 is a custom designed VLSI microprocessor with special features to
facilitate SAM implementation. The architecture of the SJ16 is shown in Figure 2-3 and
described in [Hob88]. The SJ16 micro-instruction consists of the fields shown in Table 2-
2. Several operations may be specified in parallel including data manipulation, counter
increment, and next address generation. The next address field is highly encoded and
serves to specify literal data values, procedure calls, and conditional branching based on
status register flags, external messages, or data bus values. A 256-way EXEC procedure

call provides an efficient mechanism for ADEL format and operator decoding.

Table 2-1: SAMjr microinstruction fields

Field Purpose

Source Source Co-processor instruction
Destination Destination Co-processor instruction
Instruction Control processor instruction




Table 2-2: SJ16 microinstruction fields

Operation Field Function
Data ABUS ABUS source register
BBUS BBUS source register
WT write T register
WA write A register
XS select ALU or barrel shifter
F ALU function or shift count
SF sample ALU flags
Counter COUNT | increment Counter register
Address ACTL next address control
: NEXT next address value

Abs
Bos
Barrdl ALU
Regsters Shiter | | [
(0.31)  cany
: ovil
s
Chus )
b é $
I Cane I ....... m .......... R@'Qe- ..........
§1ofsuts
(16 bits) ‘
~ CllRam [ Adfess | lo(7his | Messages
Stack Generdtor (Thits)
VPC )

Next Address
v (13bifs)

Figure 2-3: SJ16 Microprocessor Architecture
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2.2.3 Dual Port Memory (DPM)

Dual Port Memory is used to pass data between the host and SAMjr. On the host
side, Dual Port Memory is memory mapped. Each SAMjr gets a distinct DPM address
range. On the SAMjr side, Dual Port Memory is accessed as a co-processor via
Source/Destination codes. Two instructions are required by SAMjr to read and write data
since a single bus is used for both address and data. Data in Dual Port Memory is word

oriented.

2.24 SIMC

The SIMC is a custom VLSI Memory Controller which provides streamed access
to segmented paged memory. The data streaming feature provides efficient access to
logically sequential bytes or words in memory. Once a stream is started, it can deliver or

receive a data item every clock cycle. The SIMC has 8 streams available.

The SIMC also implements a segmented paged memory system. A segment is a
logically contiguous collection of a variable number of fixed size pages. An address
translation memory translates logical addresses to physical memory addresses. The
translate memory content is managed by the SAMjr memory management software. It is

important to note that no virtual memory capability is provided directly by the hardware.

2.2.5 SJPM

The SJPM is a custom Pipe and Mail co-processor known generically as “the pipe."
It is the communication medium between the PMU and DMU. It consists of the
Instruction Verification Unit (IVU) which is attached to the PMU SAM;jr SIBUS and the
Operand Verification Unit which is attached to the DMU. The SJPM contains two FIFOs
for instruction passing from IVU to OVU, a set of dual-port registers accessible to both
sides, a state machine which controls execution, and error checking logic. Each end of the
pipe has a distinct set of instruction codes. In addition, the OVU contains tag memory

which is used for error checking.
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In normal execution, the PMU waits for an empty FIFO, then loads format,
operand, and operator bytes of an ADEL instruction into it, checks for errors and if none,
releases the FIFO. It then does the same to the other FIFO. The DMU waits for a

released FIFO, reads the contents, checks for errors, then executes the ADEL instruction.

Error checking is done on each ADEL instruction both by the IVU and OVU.
Each operand has a tag which describes the data item. On the PMU side, the type of the
operand is specified as one of: variable, constant, function, or reserved. The IVU uses a
compatibility matrix to ensure that the types conform to the operation. For example, a
constant or a function cannot be specified as the destination. On the DMU side, each
operand has a tag that describes the operand shape (undefined, scalar, array, or reserved),
and data type (character, boolean, integer, or floating point). The OVU uses compatibility
matrices to ensure operand conformity. For example, adding a character and an integer is

a domain error.

The SIPM registers are used to exchange status information and system values
between the PMU and DMU. Since this is the only means of moving data from the DMU

to the PMU, branch destination values are passed this way, as are error codes.

2.3 SEDIT the front-end program

SEDIT is the program that executes on the front-end host PC and interfaces among
all the components of SAM-1. SEDIT is written in C and is based upon a multi-window
visual text editor described in [Roc88] with specific enhancements for SAM. It is a

conglomeration of previously distinct programs. SEDIT has three distinct roles:
1. User interface

2. Debug and control interface to the SAM hardware

3. SAM APL interface

The user interface uses separate windows for the APL interface and the debugger.

The APL window is where the user enters APL code and views results. There are
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commands to manipulate code and data in the window and to read and write the window
content to a file. When an APL function is defined or when the user specifies a line of
APL to be executed, SEDIT translates the source into ADEL and sends it to the PMU.
Results from the DMU, and error messages from the PMU or DMU are displayed.

The SAM debugger includes the following commands:
e switch between communication with the PMU and DMU
e load microcode irﬁage files into control store
e view and modify Dual Port Memory (DPM)
e view and modify SJ16 régisters
e single step execution
e trace execution flow for short duration
e set, clear, and show breakpoints
e redirect DEBUG source to a file

The debugger represents a very primitive debugging facility, a factor that made
software development of SAM microcode an arduous task. During the development of
SAM APL, the programmer had to devise an ingenious system of dump-and-analyze
techniques via Dual Port Memory (DPM) in order to monitor the internal activity of the
machine. This “debug-by-remote-control” process not only frustrated development, but
obscured the microcode design because many instructions and subroutines embedded in
the system are included entirely for debugging purposes. This code slows down execution

considerably, and is difficult to remove.
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The control interface of SEDIT, called SAMIO, controls the execution of the
SAMjr hardware via I0 mapped command and data registers. It has the following
primitives:

e stop and start the SAM clock

e retrieve the current micro-program counter value of a SAMjr unit
e single step a SAMjr unit

e restart execution of a SAMjr unit from a fixed address

¢ modify the control store of a SAMjr unit

SAMIO implements all the control of the SAM hardware, there is no debug
monitor code in SAMjr. The functionality of the SAM debugger is implemented in terms
of the above primitives. Access to SAMjr internal values is implemented by temporarily
loading program fragments into control store, executing them, and then restoring the
original control store contents. The debug code fragments use DPM to send data to the
front-end. Breakpoints are implemented by changing the breakpoint location in control
store to an instruction that just repeats itself. The detection of breakpoints is up to the
user -- that is, the user is not notified explicitly when a breakpoint is reached. An
execution tracing feature is implemented by single stepping the SAMjr unit and noting the

program counter value.

2.4 SAM microcode development environment

This section describes the SAM microcode development environment and presents

some of problems resulting from the software engineering methodology imposed by it.

The language used to program the SAMjr processor is a subset of APL called
microAPL. MicroAPL was conceived during the early design stages of the SAM project
as a high level microprogramming language that could be used to describe an architecture

and simulate its execution by interpretation within an architectural support package
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[Hob87]. While the language itself is a good medium for hardware description, the

software engineering aspects of APL are not well suited to large projects such as SAM.

MicroAPL is an assembly language in that source statements correspond directly to
machine instructions. A single statement can specify multiple microoperations which are
executed in parallel. Microoperations correspond to the functionality of SAMjr and include
co-processor actions, data manipulation, and branching. Statements are combined into
subroutines which can be invoked via the CALL and EXEC operations. Subroutines are

combined into a control store image which is stored as a file to be loaded into SAM.

The SAM development environment is implemented in a commercial APL system,
(Manugistics APL*PLUS, [Man95] ), on an IBM PC. MicroAPL subroutines are entered
as APL functions which are stored as APL objects in a microcode database. The
subroutines are compiled into an intermediate form which is also stored in the database.
Images are generated from an image specification file that specifies the subroutines to be
included and their absolute addresses. An APL workspace manages the database and

performs compilation of subroutines and generation of images.

From a software engineering perspective, the SAM development environment has
several shortcomings, most of them inherited from the APL environment. The primary
problem is the lack of packaging. Subroutines exist on their own with no internal
information on their relationships with other subroutines. The only grouping mechanism is
the image specification file which simply enumerates the subroutines. There is no
provision for documentation of relationships among functions and no hierarchical
structuring mechanism.  Furthermore, the APL syntax does not encourage liberal
documentation at the code level.  Finally, the APL syntax provides no structured
programming constructs, leaving the programmer with a basic GOTO as the only

branching mechanism.

The end result is a large database of tersely documented subroutines and very little
structural information. The PMU and DMU programs that implement SAM APL consist

of approximately 250 subroutines each. These are divided into roughly 10 images which
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correspond to broad categories such as Supervisor and Utilities as well as patch images

that overlay previous code with new versions.

Several images can be further combined into a grand image in order to simplify the
loading of images into SAM. The production version of SAM APL consists of a grand
image overlaid by several patch images both for the PMU and DMU. Unfortunately, along
the way, the content of the grand images was lost. That is, there is not a complete
mapping from the subroutine database to the microcode that executes SAM APL.
Because the original developer of SAM APL is gone, and the external documentation is
not sufficient, it is not possible to recreate the generation of the SAM APL code at this
time. One of the objectives of the simulator is to gather call information in order to
facilitate the mapping processes. The inability to modify the SAM APL code was a major
factor in the design of VSAM.

2.5 SAM APL

SAM APL is the application that runs on SAM. It is a basic APL interpreter that
has been implemented to demonstrate the SAM prototype. The interpreter is described in

[Hos87]. An overview is presented here.

SAM APL consists of three parts: the SEDIT program which handles the user
interface and translates APL code into ADEL, the PMU which stores functions, controls
execution, and manages the symbol table, and the DMU which stores and manipulates data
objects. The DMU and PMU parts of SAM APL are implemented in microcode and

manipulate the hardware directly.
The PMU part of SAM APL consists of the following modules:

e Diagnostic routines for communicating debugging information to the front-end via

Dual Port Memory (DPM).
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e A supervisor which gets control during startup. The supervisor initializes the PMU
environment according to parameters passed from SEDIT via Dual Port Memory
(DPM). It then initiates a protocol with SEDIT for defining new functions and

program execution.

e A linker which incorporates new functions into the environment. This consists of
storing the function code, and registering all identifiers and constants used by the

function in the symbol table.

e An environment manager that maintains the Symbol Table (ST) and Contour Access

Table (CAT) during function execution.
e A memory manager which manages the storage of PMU objects.
e Format subroutines that interpret ADEL instructions.

e Utility subroutines.

The basic algorithm of the PMU is:
1. Initialize environment.
2. Wait for a new function definition from SEDIT via Dual Port Memory (DPM).
3. Link the new function into environment.

4. If the new function type specifies that the function corresponds to a line of APL to be

directly executed, then:
5. [Initiate pipe protocol with DMU.
6. Execute the ADEL code for the new function.
7. Wait for DMU to finish.

8. Goto 2.

APL function execution consists of executing the ADEL formats that comprise the

function code. The IFETCH routine fetches the instructions and decodes them via an
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EXEC call to the appropriate format subroutine. The format subroutine performs the
actions appropriate to the format. Format types include data manipulation which is passed
on to the DMU via the pipe, and execution control types which alter the instruction

sequence.

Formats that perform conditional branches require a target value which is a data
item stored in the DMU. The value is requested via a special DMU format which returns
the value through the SJPM (Pipe) registers. The PMU is forced to wait for this value
before it can continue. This is a major cause of delay in SAM APL execution as described

in Chapter 4.

Before an instruction can be passed on to the DMU, the PMU must wait for a free
pipe. Since there are two pipes, in general the PMU can load the next instruction while the

DMU executes the last one. If the DMU gets behind, the PMU is held up.

The DMU part of SAM APL is an input driven program. After the initial startup
processing, the DMU executes an IEXEC loop which gets instructions from the pipe and
executes them by decoding the instruction format. Most of the formats executed by the
DMU manipulate data. There are also formats for returning values to the PMU for
branching, and for sending data to SEDIT via DPM which is how results get back to the

user.
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3. VSAM Implementation

This chapter describes the implementation of the VSAM simulator. It begins with
an overview of VSAM including the objectives of the project and the implementation

methodology. The major parts of VSAM are then described in detail in separate sections.

3.1 Overview

The motivation for VSAM was a need to observe and measure the performance of
SAM-1 and future versions of SAM with the goal of assessing the efficiency of the
architecture and identifying areas for possible improvements. The study began with the
idea of instrumenting the SAM-1 prototype, however this turned out to be difficult for a
number of reasons and was abandoned. After some consideration, a simulator-based

approach was chosen for the following reasons:

e The process of replicating SAM would be a good way to learn the details of SAM and
a motivation for compiling SAM documentation previously distributed in various forms

and degrees of precision.

e A software version of SAM provides a flexible basis for further SAM research since it

can easily be modified.

e A simulator is a better platform for observing architectural level behavior than

hardware which is difficult to instrument and obscures design with detail.

e A simulator would allow observation of SAM APL “in situ”, an important factor in
light of the software development environment difficulties discussed in the previous

chapter.

e A simulator would be a better platform for implementing a new sofiware debugger

interface for SAM since it is not encumbered by hardware interface limitations.

In order to allow the kind of observations desired, a detailed behavioral model of

SAM-1 was constructed. The model is hierarchical in structure and corresponds closely to
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the structure of SAM-1 hardware. At the top level of the hierarchy, separate operating
system tasks (processes) are used for the different units. At the bottom level of the
hierarchy, microinstructions are directly executed and registers, busses, and memories are
simulated. [Each execution unit has its own user interface which provides execution
control for the unit and gives access to the unit’s data elements. Any part of the system
can be instrumented by modifying the simulator software with probe instructions that send

data to separate display processes.

The implementation platform for VSAM is C++ under OS/2. OS/2 was chosen for
its multi-tasking capability and its DOS compatibility. Multi-tasking was clearly an
appropriate way to simulate the multiple processors of SAM. DOS compatibility was
important for continuity with the existing environment. Under OS/2 the APL-based SAM
microcode development environment, SEDIT, and the simulator could all co-exist on a
single machine. The initial implementation of VSAM is text based, but it was important to
have a migration path to a future GUI version via the OS/2 Presentation Manager. C++
was a natural choice for the implementation language because of its object-oriented nature,
and because SEDIT was already written in C. Object-oriented techniques turned out to be
a good way to duplicate the modular structure of hardware, although little use was made
of the class inheritance mechanism. All in all, OS/2 lived up to expectations and proved to

be a good choice.

3.2 The model

An important decision in the design of VSAM was the nature of the model and the
user and instrumentation interfaces. Initial research concentrated on a powerful visual
approach. What was envisioned was a kind of animated hierarchical architecture block
diagram that would allow the user to watch the system during execution and to zoom in
and out on specific components as desired. As the view zoomed in, more detailed
structural components would be visible and execution would be divided into steps
appropriate to the view level. As execution proceeded, the diagram would show the

current values of components and present an overall sense of the flow of data and control
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in the system. The view level and the rate of execution would be under direct control of
users, allowing them to focus on the interesting parts of the machine and program.
Execution could be stopped and component values modified. Instrumentation would be
achieved by attaching probes to the object of interest and hooking them up to various

instruments.

While very appealing, the visual approach proved to be far too ambitious given the
time and resources available. It was also not necessary for the immediate goals. With the

visual approach as a general guiding principle, a more pragmatic approach was chosen.

The hierarchical structure was maintained, but instead of a unified visual interface,
VSAM uses separate text windows to control and access the state of the individual units.
The unit windows are the debug and control interfaces to the SAMjr simulators. All of the
SAMjr components are accessible through commands. Execution control and monitoring
is also affected through the unit windows. Instrumentation is achieved by modifying the
simulator code at the appropriate location with instructions that send data to an instrument

process.

An important step in simulating a system is the verification of the model accuracy
in representing the system. In the case of VSAM, verification was achieved through
execution of identical code in the SAM prototype and VSAM. The same input problem
was specified for both, and the results were compared. This was done with several
benchmarks which thoroughly exercised all parts of the machine. The verification process
was in fact part of the VSAM debugging process. It was an exciting moment when

VSAM was able to add two numbers and give the correct result!

3.3 VSAM Architecture

VSAM consists of a number of cooperating OS/2 sessions. (A session is a process
with a display window and a virtual keyboard)  The main session is VSAM, an
administrative session that creates the various resources such as shared memory, pipes,

and semaphores which are used by other sessions. VSAM also creates the other sessions
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and stops them when it terminates. The other sessions are SEDIT, VPMU, and VDMU.
SEDIT is the front-end user interface program. VPMU and VDMU are instances of
VSAMjr, the SAMjr unit simulator, corresponding to the PMU and DMU. The VSAM
architecture is shown in Figure 3-1. This figure can be compared with Figure 2-1 which
shows the SAM architecture.

OS/2 provides inter-process communication via semaphores, pipes, and shared
memory. See [IBM94] for details. Semaphores can be event semaphores which allow
synchronization, or mutual exclusion (mutex) semaphores for protected access to shared
resources. Pipes are a type of point-to-point connection designed for client-server

communication. Shared memory gives multiple processes access to the same memory.
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Figure 3-1: VSAM Architecture
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Semaphores are used throughout VSAM. Pipes are used between the units and the
VSAM main session for instruction execution control. Pipes are also used to connect
instrument probes to the instrument process. Shared memory is used to implement DPM,

and SJPM. A Status shared memory was added late in the project to aid instrumentation.

The VSAM session establishes the working environment for VSAM and controls
overall execution. The session provides a user interface which is intended to give access
to global data structures and system parameters. Currently, the interface only provides
commands to pause and resume system execution, and to terminate VSAM. The VSAM
session uses command line parameters which determine how the system is initialized. One
set of these parameters can specify that any of the SEDIT, VPMU, and VDMU sessions
can be executed under the C++ debugger (Borland TD) which allows for the debugging of
the session software. Other VSAM command line parameters specify command source
files to be executed by the units during system startup. After initialization, the VSAM
session executes a loop which coordinates the execution of instructions by the VSAMjr
units, handles user commands, and provides a place to attach instrumentation probes. An

outline of the VSAM session main procedure follows:

void main{ int argc, char *argv([] ) // VSAM main procedure.

{

//--— Initialize system

::SysClock = 0;

UserMsg( "Starting VSAM Master initialization." );
SIJMP_Create_smem() ;

Create_SeditSem{();

Create_StartupSem();

CreateStatus () :;

// Parse command line args and start other sessions.

UserMsg( "Start SEDIT session..." );
if ( debug sedit )
StartDebugSession( "c:\\agv\\sedit\\SEDIT.EXE", sedit args,
SEDIT_sessionID, SEDIT processID );
else
StartSession( "c:\\agv\\sedit\\SEDIT.EXE", sedit_args,
SEDIT sessionID, SEDIT_processID );
UserMsg( "SEDIT session started!" );
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//~-— Execute loop until user stop or error stop

int sender;
msg_type mtype;

int utilz_counter = 0; // Utilz instrument.

::StepMode = 0;
int exit = 0;
while( 'exit ) |
if ( MSG_GetAny( mtype, sender ) )
if ( exit = ProcessMessage( mtype, sender ) )
continue;
if ( kbhit() ) { // Invoke user interface
vm_user_action action = vuser();
exit = action == VMU_END;
::StepMode = action == VMU_STEP;
} .
// Utilz instrument probe code.
if (++utilz_counter >= Utilz_sample period ) {
utilzc_send( ::SysClock, GetStatus_PMUwait (),
GetStatus_DMUwait () );
utilz counter = 0;
}
//--- Stop all sessions and exit
UserMsg( "Stopping unit sessions!" );
MSG_Send( MSG_STOP, UNIT_VPMU );
UnitStatus[UNIT_VPMU] = US_STOP;

MSG_Send ( MSG_STOP, UNIT_VDMU );
UnitStatus[UNIT_VDMU] = US_STOP;

SEDIT, the front-end program for SAM, has been ported from DOS to 0S/2. It
executes as a separate session and communicates with the PMU and DMU via Dual Port
Memory (DPM). The control interface of SEDIT, SAMIO, is disabled in VSAM. The
only debugger commands that work are the Dual Port Memory display and modify
commands. The functionality of SAMIO and the SEDIT debugger has been moved to the
VSAMjr units described below.

The moving of the control functionality from SEDIT to the VSAMjr units
uncovered interesting time dependencies that were not anticipated at design time. In
retrospect, more control functionality should have gone into the VSAM session user
interface rather than the VSAMjr units, particularly startup and execution control. A

command sequence at the VSAM level could have specified the timing dependencies
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contained in SEDIT. As it was, a number of semaphores were added strictly to maintain
execution order. The sources of these dependencies were initialization protocols among
the units that utilized DPM locations and registers in the SJPM Pipe unit as signals. It
turns out that during startup, SEDIT must finish initialization before the DMU starts, and
the PMU must wait for the DMU. Several DPM locations are also used as startup
parameters. These dependencies are not inherent in the design of SAM, but were
obviously added during SAM-1 implementation. They were not anticipated during the
partitioning of function of the VSAM simulator and were only discovered during simulator

debugging.

The APL interface of SEDIT has been left as is. Unfortunately the APL character
set has not been implemented for OS/2. In DOS, SEDIT modified the display character
generator to implement APL characters. The same approach does not appear possible in
OS8/2. The result is that the special APL characters show up in OS/2 version of SEDIT as
strange symbols. It is not however difficult to interpret the display and it was not deemed
a high priority to achieve the translation at this time. Various approaches are feasible,
including turning SEDIT into an OS/2 Presentation Manager application which would

support arbitrary fonts.

The PMU and DMU are implemented as separate sessions consisting of the
VSAMjr simulator, a user interface for debugging and unit control, and an execution
control interface to the VSAM session. The sessions are called VPMU and VDMU, and
are nearly identical except for minor details relating to specific differences between the
PMU and DMU such as Dual Port Memory and the SJPM Pipe. Execution proceeds one
instruction at a time with the two units kept synchronized by the VSAM session. The
purpose of the synchronization is to maintain predictable behavior of the simulator during
debug sessions. If one of the units is stopped by a breakpoint, for example, the other unit
will wait before executing the next instruction. The synchronization is implemented by a
message protocol via pipes between the units and VSAM. When a unit is ready to execute
the next instruction it sends a READY message and waits for an EXECUTE message. It

turns out that this co-ordination is a large source of OS/2 overhead due to the process
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switching involved. Because of the length of the initial startup code, it was decided to de-
couple the units during startup and let them run at full speed. The subsequent speed up in
execution speed of each unit was at least a factor of 10. This suggests that another
mechanism such as a pair of event semaphores may be a better way to implement the
synchronization of the units. One semaphore would indicate that a unit is ready, and the
other would correspond to the EXECUTE message. This scheme avoids the costly

process switch to the VSAM session.

The VSAM control interface of the VPMU and VDMU sessions is contained in the
main function of the unit sessions. The interface consists of establishing access to shared
resources, initialization, and then proceeding with execution under the control of the
VSAM session instruction execution protocol. Initialization includes local variable
settings and also execution of startup commands from the user interface, possibly through
a specified command source file. An outline of the VPMU and VDMU session main

function follows:
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void main( int argc, char *argv([] ) // VPMU or VDMU session main.
{

// Initialize session

MSG_Init(); // Establish comm with VSAM

VDPM_Init(); // Establish DPM access

SAMjr.SJMP.Init(); // Establish SJMP_MUTEX

OpenStatus(); // Status Smem

int msg = 0;
while( msg != MSG_STOP ) {

// Reset VSAMJR
SysClock = 0;
SAMjr PC = 3;
SAMjr PC _old = 0;
SAMjr.CP.Reset () ;
SAMjr.SMem.Reset ()
SAMjr.DPM.Reset () ;
VDPM Reset():
StepMode = 0;
BreakMode = 0;
Reset_tracepoints();

// Unit Start up - ini file according to command line args

char *startupfile = VSAMJR UNIT ".INI";
if ( arge > 1 )
if ( *argv([l]} == '-' )
startupfile = 0;
else
startupfile = argv(1l];
if ( UnitStartUp( startupfile ) == 'Z2' )
msg = MSG_RESET;
SysClock = 0;

// Execute instructions...
while( msg != MSG_STOP && msg != MSG_RESET ) |{

// Go to user if step, breakpoint, or user input
if | : : StepMode

|| ::BreakMode && Test_breakpoint( SAMjr_PC )
|| ::BreakDPMmode && Test DPMbreak()

|1 ::BreakCallMode && Test_CallBreak()

|1 ::BreakPipeMode && Test PipeBreak()

...

|1 kbhit() )

Break();

User

// Signal "Ready to execute instruction" to VSAM
MSG_Send( MSG_READY );

// Wait for message from VSAM; process user input if any
while( MSG NULL == (msg = MSG_Get()) )
if ( kbhit() )
UserCommand () ;
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// Carry out VSAM message
if ( msg '= MSG EXEC )

break; -
// Execute instruction
ProcessAddress(::SAMjr_PC);
Add_tracepoint (::SAMjr_PC);
::SAMjr_PC old = ::SAMjr_ PC;
::SAMjr_PC = SAMjr.Execute( ::SAMjr PC };
if ( ::SAMjr.SimBreak(} )

SimBreak () :;

// Increment System Clock
::SysClock++;

3.4 The VSAMjr simulator

The VSAMjr simulator structure closely resembles the SAMjr hardware.
Essentially, the SAMjr design was implemented in software instead of hardware. It is
interesting to note that the software version was much easier to build, but executes about

1000 times slower than the hardware.
This similarity in structure is deliberate for the following reasons:

e Ease of development - the simulator was built directly from the hardware specifications

and ambiguities were resolved by inspecting the hardware.

e Ease of documentation - the same documentation that applies to the hardware applies
to the simulator. Also, the simulator implementation and the hardware complement

each other in documenting SAM.

e Ease of verification - the simulator implementation is easy to verify step by step by

comparison to the hardware.

e Ease of instrumentation - instrumenting the simulator is analogous to instrumenting the

hardware. The same objects and events are involved in both.



28

e Ease of modeling future modifications to SAM architecture - since the simulator and
hardware are nearly identical, the designer can try out proposed hardware changes on

the simulator and evaluate their effectiveness.

Object oriented techniques were applied to package the various components of the
simulator into neat modules with well-defined interfaces. This closely represents the
component nature of hardware. Generally, there is a one-to-one mapping between the
hardware components and object classes representing them. The VSAM classes with their

nesting and a brief explanation are:

samjr SAMjr unit simulator
sjinst SAMjr microinstruction decoding auxiliary class
cp_sjl6 SJ16 Control Processor simulator
cpstack SJ16 stack class
smem SIMC Memory Controller simulator
dpm Dual Port Memory simulator
sjpm SJPM (Pipe) simulator including the IVU and OVU

The highest level class is samjr which stands for the SAMjr processor. In VSAM it
is instantiated as the PMU and DMU. The definition is:
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class samjr {
CMem _instr CMem[CMEM SIZE]; // Control memory

cp_sjlé CP; // Control Processor

smem SMem; // Segmented memory

dpm DPM; // Dual port memory

sjmp SJMP; // Pipe chip: IVU or OVU
public:

SAMADDR Execute( SAMADDR address ) ;
}i

The only method defined for samjr is Execute() which takes an address as input

and returns the next address to be executed. As a side effect, Execute() modifies internal

state. Execution of SAMjr is achieved by the following code:

samjr SAMjr;
SAMWORD PC;
PC = 3; // SAMjr always starts executing at 3.
While( 1 )
PC = SAMjr.Execute( PC };

There is no defined termination condition for SAM. In case of an error, SAMjr
usually ends up in a tight loop in an error subroutine so that the error may be detected by

the user.

An important part of the simulator is the handling of sub-microinstruction events.
The SAMjr instruction cycle is divided into 4 phases called T1 to T4. Events within

SAMjr are co-ordinated with respect to these phases. Some important events are:

e during T4, the next microinstruction is fetched, and the Source and Destination codes
are placed on SJBUS for co-processors to latch. Part of the Source/Destination code

is a select field which activates only the specified co-processor.

e during T2, the selected source co-processor outputs its value onto SJBUS, and the

selected destination co-processor latches it.

e data operations in the Control Processor start at T3
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The simulator emulates the data flow of SAMjr, but not the actual timing. The

simulator instruction cycle has the following sequence:
1. Fetch the next instruction.

2. Invoke the Source processing part of the specified co-processor with the Source code

as a parameter. Store the return value in variable sjbus.

3. Invoke the Destination processing part of the specified co-processor with the

Destination code and the value of sjbus as parameters.

4. Invoke the Control Processor execution processing function with the value of sjbus as

a parameter. -

Each co-processor has a source processing and destination processing part. This
includes the Control Processor which performs literal, register, and stack input and output
during the source/destination phase. The Control Processor also has a process part that

executes the rest of the microinstruction.
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The samjr Execute() function controls the order of events within a
microinstruction:

SAMADDR samjr::Execute( SAMADDR CMem_addr ) // Execute an instruction

{ // Return next addr to execute.
SAMADDR next_addr;
SAMWORD SJBUS;

// Fetch instruction
sjinstr cur_ inst = CMem| Cmem_addr];

// Source processing
switch ( cur_inst.Source_unit() ) |
case CP_UNIT:
SJBUS = CP.Source( cur_inst );
_ break;
case DPMem_UNIT:
SJBUS = DPM.DPM source( cur_inst.Source() ) :
break;
case SMem UNIT:
SJBUS = SMem.Source ( cur_inst.Source() )
break;
case SJMP_UNIT:
#ifdef PMU
SJBUS
#else DMU
SJBUS
#endif
break:

SIJMP.IVU_source( cur_inst.Source() );

SJMP.OVU_source ( cur_inst.Source() };

}

// Destination processing
switch ( cur_inst.Dest_unit() y |
case CP_UNIT:
CP.Dest( cur_inst, SJBUS );
break;
case DPMem UNIT:
DPM.DPM dest ( cur_inst.Dest (), SJBUS )
break;
case SMem UNIT:
SMem.Dest ( cur_inst.Dest (), SJBUS );
break;
case SJMP UNIT:
#ifdef PMU
SJMP.IVU dest( cur_inst.Dest(), SJBUS )
#else DMU
SJMP.OVU dest( cur_inst.Dest(), SJBUS );
#endif
break;
}
// CP processing
next_addr = CP.Process( CMem_addr, cur_inst, SJBUS );

return next_addr;
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Since a co-processor cannot be both a source and destination, it will at most be

called once during a cycle. The source and destination parts must complete all processing

for that cycle in the single call. The source or destination code which is the instruction to

be executed by the co-processor is passed to the co-processor as a parameter. The typical

implementation of a co-processor is demonstrated below in a simplified form of SMem.

Note that in the case of SM_S SCLR which flushes a data stream and SM_D_SRB which

initiates a stream, further processing is required to complete the instruction.

SAMWORD smem: :Source( const SAMBYTE source_code )
{
SAMWORD dataout;
int stream = sdcode_stream( source_code );
switch ( sdcode_function( source_code } ) {
case SM _S_SORS:
dataout = SOffset[stream]; break;
case SM_S SBRS:
dataout =
case SM_S_SSN:
//...
case SM_S_ SCLR:
dataout = 4 - SStatus[stream].BA;
AQL = Make_SM address( SBase[stream], SOffset[stream]
Mem write request( AOL, SStatus[stream].BS, stream,
SStatus[stream] .W );

SBase[stream]; break;

break;
)
return dataout;
}
SAMWORD smem: :Dest( const SAMBYTE dest_ code, const SAMWORD datain )
{
int stream = sdcode_stream( dest_code });
switch ( sdcode_function( dest code ) ) {
case SM_D SBRD:
SBase[stream] = datain;
break;
/7. ..
case SM_D SRB:
SOffset[stream] = datain + 4;
SStatus[stream]}] .M = MBYTE;
for ( i = 0; i < 4; i++ ) SStatus(stream] .W[i] = 0;
SStatus[stream] .BS = 0;
SStatus[stream] .BA datain & 0x3;
SStatus[stream] .BF = 0;
AQL = Make_ SM address( SBase[stream], datain }:
Mem read request( AOL, SStatus[stream] .BS, stream });
break;

)

return datain;

Y
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The SJ16 control processor class is defined as:

class cp_sjlé {

public:
SAMWORD Register[CP_NUM REGISTERS];
cpstack Stack;

SAMWORD Source( sjinstr ); // Source processing

void Dest( sjinstr, SAMWORD datain ); // Destination processing

SAMADDR Process( SAMADDR address, // Execution processing
sjinstr,

const SAMWORD input bus );
private: .
SAMWORD alu( SAMWORD a, SAMWORD b, int fn, SAMWORD &flags );
SAMWORD xshift( SAMWORD a, SAMWORD b, int xcount );
SAMADDR agen( SAMADDR mpc, sjinstr ci, SAMWORD bus );
};

The Control Processor (CP) data members are the register file and the stack. The
register file includes the general purpose registers as well as the special registers Counter,
IO, T, and Status. The stack is a simple LIFO stack implemented by the cpstack class.
The public methods for cp_sj16 are Source(), Dest(), and Process() which implement the
source, destination and execution part of the SAMjr instruction cycle. Source() handles
literal specification, and output of register or stack values onto the bus. Dest() handles
input of stack values from the bus. Process() performs the movement of data among the
SJ16 internal registers and processing units, and the generation of the next
microinstruction address. The internal methods invoked within Process() are alu(),
xshift(), and agen() which implement the ALU, barrel shifter, and next address generation
logic components respectively. These functions are relatively straightforward though

somewhat tedious in detail.

The Dual Port Memory (DPM) co-processor is implemented by the class dpm

defined as:
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class dpm {

SAMWORD in_data, out_data; // DPM data latches
public:

void Reset():

SAMWORD DPM source( SAMBYTE source code );

void DPM dest( SAMBYTE dest code, SAMWORD sjbus );
}i

This definition hides the details of the shared memory implementation of DPM.
The details consist of a separate named shared memory for each unit session, and a named
mutex semaphore used to protect access to the shared memory. The names are constructed

from the values of preprocessor constants.

The SIMC memory controller is implemented by the class smem defined as:

class smem {

SAMBYTE SMem[SMEM SIZE]; // Segmented memory - bytes
SAMWORD TMem[TMEM SIZE]; // Translate memory - words

SAMWORD SOffset [SMEM_STREAMS]; // Offset registers

SAMWORD SBase[SMEM_STREAMS] ; // Base registers

smbuff SBuff[SMEM_ STREAMS][2]; // Stream buffers

SM_stream_status SStatus[SMEM_STREAMS]; // Stream status bits

SMADDR AOL; // Address Output Latch
public:

void Reset{();

SAMWORD Source( const SAMBYTE source_code };

SAMWORD Dest( const SAMBYTE dest_ code, const SAMWORD );
private:

void Mem read request( SMADDR addr, BIT bs, int stream );

void Mem write request( SMADDR addr, BIT bs, int stream, BIT wl[] );
}:

Class smem contains the segmented and translate memory data structures, as well
as the various data buffers and status bits required. The public methods Source() and
Dest() implement the controller behavior. The methods accept the instruction byte as a
parameter and proceed to decode it into the stream number and specific action code. All
actions that take place in the hardware during the rest of the instruction cycle are

performed by smem.Source() and smem.Dest() before they return.

The SJPM Pipe co-processor is more complex than the other co-processors since it
connects the PMU and DMU. In VSAM, this is achieved by dividing the co-procesor into
IVU functions which are part of the PMU session, OVU functions which are part of the
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DMU session, and the SJPM shared memory which is accessed by these functions. Access
to the shared memory is protected by a mutex semaphore. The class and supporting

definitions are:

struct sjmp_ shared data {

// sjmp registers - shared
SAMWORD sjmp_regs[SJMP_REGISTERS];

// Pipe status flags

BIT Is, Ir, Os, Or; // State bits - shared
BIT Pe, ISe, Ie, Oe; // IVU flags

BIT OSe, Oep; // OVU flags

// SJMP FIFOs - shared

SAMWORD FIFO[2] [SJMP FIFO SIZE]:;

int FIFO wcount[2]; - -

int FIFO maxwcount{2]; // OVU uses this to read the FIFO.

// IVU syntax tag registers
int Idest, Ileft, Iright;

// OVU Tag memory
SAMWORD TagMem addr;
SAMBYTE TagMem[TAG_MEM SIZE]; // lower 4 bits are valid data.

// OVU Semantic tags
int Dtag, Ltag, Rtag; // lower 4 bits are valid data.
BIT Lv, Rv; // valid tag bits

}i

class sjmp {
HMTX sjmp_mutex;
sjmp_shared data *sd;
public:
SAMWORD IVU_source( const SAMBYTE source_code )};
void IVU dest( const SAMBYTE dest code, const SAMWORD datain );
int IVU_msg( int msg );

SAMWORD OVU_source( const SAMBYTE source_code );
void OVU dest( const SAMBYTE dest code, const SAMWORD datain };
int OVU msg( int msg );
private:
void SM_in():
void SM_out();
SAMWORD IVU Cmat () ;
SAMWORD IVU status_word();
int Dest shape tags(),
int Dest_type_ tags():;
int Dest tags();
int OVU_CMat (});
BIT OVU Oe();
SAMWORD OVU status_word 1();
SAMWORD OVU status word | 2();
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3.5 The VSAMjr debugger

The purpose of the VSAMjr debugger is to control the execution of the simulator
and to give the user access to the state of the simulated machine so that the correctness of
the executing microcode can be determined. The debugger uses a command line interface

with three groups of commands:

1. Control of the environment including loading of control memory, scripting, and general

session control.
2. Execution control via breakpoints and single stepping.

3. Object access to data elements, state values, memory contents, and execution history.

The debugger is an integral part of the SAMjr simulator. Since it must have access
to internal elements of the simulator, many access and display functions were added to the
basic simulator classes. (These were left out of the previous SAMjr simulator discussion
for conciseness.) The debugger is the user interface to the VSAMjr program which
executes as the PMU and DMU. The debugger is invoked by VSAMjr during startup,
when a breakpoint is reached, or when the user enters input into the debugger window.
The debugger is only invoked between SAMjr instructions which are indivisible from the
user point of view. The VSAMjr main execution loop checks for breakpoints and user
input before it executes an instruction. In the following (simplified) code fragment from
VSAMijr, the functions UserBreak(), UserCommand() and SimBreak() invoke the user
interface. The function SimBreak() is used to signal special conditions such as invalid

machine operations.



37

while( msg != MSG_STOP && msg != MSG_RESET ) {

// Go to user if step, breakpoint, etc., or user input
if ( : : StepMode
|| ::BreakMode && Test breakpoint( SAMjr_ PC )
...
Il kbhit() )
UserBreak () ;
// Signal "Ready to execute instruction" to VSAM
MSG_Send( MSG_READY );

// Wait for msg from VSAM; process user input if any
while( MSG_NULL == (msg = MSG_Get()) )
if ( kbhit() )
UserCommand () ;

// Carry out VSAM message
if ( msg != MSG_EXEC )
break;

// Execute instruction
ProcessAddress(::SAMjr_PC);
Add_tracepoint(::5AMjr_PC);
::SAMjr PC_old = ::SAMjr_PC;
::SAMjr PC = SAMjr.Execute( ::SAMjr PC );
if ( ::SAMjr.SimBreak() )

SimBreak();

// Increment System Clock
::SysClock++;

The debugger syntax was kept very simple for ease of implementation. Commands

were added during development of VSAM as need arose. The basic format is a single

character which determines the type of command, followed by optional characters for

modifiers, followed by optional parameters. For example, the memory command

demonstrates the complete syntax. It is a highly overloaded command since it provides

access to three types of memory. It has the following forms:

MS [s]
MDD
M{D| S|

-- display the status of SMem for stream s (or all streams)
-- display the DPM data latch value
T} {VIC|F} [addr[{-addr]|,count}]][=value] -- View/Change/Fill memory

The last form requires further explanation. After the M, the first modifier is the

memory specifier -- one of: dual port memory (DPM), segmented memory (SMem), or

translate memory (TMem). The next modifier is the action, one of view, change, or fill.

Next come the parameters which specify the address range in various forms, and an

optional value. For example, the command MDV 1000,20 displays 20 values of the DPM
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from address 1000. The command MSF 0-100=0 fills the first 100 locations of segmented
memory with zeros. The memory command also has an interactive mode which steps

through memory and allows the user to change only selected values.

Most commands are much simpler. The I command, for example has the form:
If{+1-}1 [a]

which shows a disassembled view of control memory from the specified address, or

relative to the previous I command if + or - is specified.

A novel feature of the VSAMjr debugger is the use of color to highlight key data
objects in a comple){ display such as the register file which consists of 32 registers, 4 of
which are dedicated. The foreground color indicates whether the register has changed
since the last time it was displayed by using yellow for changed and white for not changed.
The background indicates special status such as the IO, Counter, Status, and T register
which each get a dedicated color, and the target register of the last instruction. This has
turned out to be a very effective technique and represents the first step to a graphical

interface that would allow the user to organize the display in a meaningful way.

Breakpoints are an important feature of a debugger. The standard type of
breakpoint specifies a break when a given address is about to be executed. In the VSAMjr
debugger, these breakpoints are implemented by keeping a list of breakpoint addresses and
checking this list at the start of each instruction. This is less efficient than the usual
method of modifying the instruction, but it has the advantage of leaving control memory
pristine. The debugger also has breakpoints that examine the Source/Destination codes
and stop on instructions that use specified units. This is a valuable feature for debugging
co-processor software. Other breakpoint type features include a break on function call and

return, the execution stack display, and a trace of the last dozen executed instructions.

A couple of features that did not get implemented due to their complexity, but
would have been very useful are datapoints and reverse execution. Datapoints cause
execution to break upon access to specified data objects. In VSAM, data objects could be

various machine registers and flags, as well as locations in dual port memory and
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segmented memory. One possible implementation approach is to maintain a list of all
datapoints in effect, and search this list for each data object accessed by each instruction.
This approach seems straightforward in concept, but does require interpretation of each
instruction in the context of various register values, particularly in the case of segmented
memory where buffering is taking place. This would probably incur a significant
performance penalty. An alternative approach would be to give data objects the
responsibility of knowing when the object is a datapoint, and detecting when the datapoint
is triggered. This would reduce overhead for each instruction, but would require

considerable modification to the simulator.

Reverse execution allows the user to back up from the current instruction to
determine the events that led to it. This would be particularly useful in conjunction with
breakpoints and datapoints, especially if the user could then modify some value and
proceed with forward execution. The basic problem in reverse execution is that all the
changes precipitated by each instruction must be reversible, and must be recorded during
execution. Besides the performance and storage costs of this approach, reversibility may

be limited by cascading changes.

During the development of VSAM, the debugger was used in reverse to the usual
order of things. The program was assumed to be correct; it was the simulator that was
being debugged. The process is essentially the same - the program is executed and the
change in the state of the machine is monitored - except that the simulator program is itself
run in a debugger, (in our case the Borland C debugger), and monitored. This gets
particularly complex when multiple instances of the simulator are running each with its
own (Borland) debugger as in the case of the DMU and PMU. Despite the large number
of windows involved and the processing overhead, OS/2 was able to support this mode of

debugging, and the technique proved quite effective.
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3.6 Instrumentation

Since one of the primary motivations for building VSAM was instrumentation, the
system includes a simple yet powerful instrumentation methodology. The instrumentation

design goals were:

o flexibility and extensibility

e ease of instrument hook-up and take-down
e low impact on simulator design

e execution efficiency in space and time

e close analogy to hardware instrumentation methods such as logic probes

A generic instrument consists of three parts: the probe, the connection, and the
display. The probe is the sensor that is directly attached to the object being measured. In
the case of VSAM, the probe is a piece of software that is embedded in the simulator
code. The probe software obtains the values of relevant variables and/or activities and
sends them to the display unit via the connection. In VSAM, we chose OS/2 pipes as the
method of connection based on the flexibility and simplicity of the pipe model. The display
is an arbitrarily complex program that reads the probe data from the pipe, processes the
data, and outputs it in some way. The output may be in the form of a visual display in a
window, a file in trace or processed form, or both. The display program may be a fixed

display type or may require user input for control.

An example of an implemented VSAM instrument is Callvue which captures
subroutine calls and returns executed in the SAMjr microcode. This instrument was the
first one built and was extremely useful during the debugging of VSAM. The Callvue
display shows the names of subroutines as they are called in an indented call tree. The
Callvue probe is attached to the SAMjr simulator in the next address generation module of
the SJ16 control processor. If the next address action is a call or return, the probe sends a

record down the pipe. The record specifies the current address, whether a call or return,
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and if a call, the target address. The display part of Callvue translates call addresses into
subroutine names via a load map file and displays the name and address positioned
according to the current call nesting level. Return records are only used to decrease the

call level.

Callvue information is also used to build a dynamic call profile of how many times
each subroutine was called and by whom. The call information is accumulated in the
“calls” matrix where each element M[i][j] counts the number of times subroutine i calls
subroutine j. The “calls” matrix is stored in a file at the end of a run. It is processed off-
line to produce a histogram of often called subroutines. The transpose of the “calls”
matrix corresponds to the “is-called-by” matrix where each element M[i][j] counts how
many times subroutine i was called by subroutine j. The sum of a given row of the “is-
called-by” matrix corresponds to the total number of times a subroutine was called. A
dynamic call tree (as opposed to a static one) can be obtained from the “calls” matrix by
following the call chain for each subroutine. The question “who calls subroutine i” can be
answered from the “is-called-by” matrix. This can be very useful when a subroutine needs
to be modified. Yet more information about subroutine relationships can be obtained by
computing the transitive closure of the two call matrices to obtain a “uses” and “is-used-
by” view of the sofiware. The later tools are particularly important for software
archeology - the process of trying to understand a sofiware system from the bottom up,

usually required when no design documentation is available.

Another useful instrument is the unit utilization trace tool called Utilz. The
purpose of Utilz is to show the state of the PMU and DMU over time. Utilz shows when
a unit is busy or waiting, and if waiting, it shows what the unit is waiting for. This is an
important tool for assessing the degree of parallelism in the system, and determining the
causes of stalls. The Utilz probe is embedded in the VSAM control module where it
samples both the PMU and DMU status at once. This approach was chosen in order to
explore the instrumentation methodology. Utilz is an example of a sampled tool. The
probe only samples information every n cycles in order to reduce the overhead. The value

of n is currently set as a compile constant in the probe.
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In general, a VSAM instrument consists of the probe module and the display
program connected by a pipe, configured in a client-server relationship with the display
program as the server and the probe as the client. The display program establishes the
pipe and waits for the probe to connect and start sending data. The display program must
be started before the probe attempts to connect. If the probe fails to connect, it assumes
that the display program is not present and effectively turns off the instrument. Generally

the display program is configured to accept multiple simulation sessions.

The display program can be display-only with no user input, or fully interactive.
The probe can be a passive probe which simply sends a one-way stream of data, or it could
interact with the display via a bi-directional pipe. Such an active probe would contain
local intelligence regarding when and what to sample. To date only simple instruments
with write-only displays and passive probes have been built for VSAM. An example of
where an active probe would make sense is a probe whose sampling rate can be changed

dynamically by the display unit.

The probe module is linked into the simulator. It consists of general routines for
connecting to the pipe and packaging data for transmission, as well as specific routines
that gather the data and interface with the display program. Calls to the probe routines are
inserted directly into the simulator code at strategic points, either in the VSAMjr
instruction execution loop or within specific simulator components. This invasive
approach allows arbitrary instrumentation flexibility, but does require that care be taken
not to disturb the environment. Since the probe code is usually quite straightforward, this
has not been a problem with the instruments implemented so far. For example, the Callvue
instrument probe is inserted into the cp_sj16 Process() function after the next address has
been determined. The probe code is shown below. The code that connects the Callvue

probe to the Callvue instrument is contained in the VSAMjr unit main() function.
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SAMADDR cp_sjlé6::Process( SAMADDR ci_addr, sjinstr ci,
const SAMWORD input_bus )

{
// The data movement part

// COUNT processing - ZC flag is updated at end of cycle ...

// Compute next address
SAMADDR next_addr = agen( ci_addr, ci, input_bus );

if ( ci.x(9) == 0 && ci.x(10) == 0 [| ci.actl() == ACTL_EXEC )
Stack.Push( ci_addr+l );

// Update flags

// Callvue instrument probe code! Send call/ret msgq.

if ( ci.x(9) == 0 && ci.x(10) == 0 || ci.actl() == ACTL_EXEC )
callvuec_call( next_addr );

else if ( ci.actl() == ACTL_RETURN )

callvuec_ret();

return next_addr;

The instrument display program is an independent session in OS/2. Tt receives
data from the probe, processes it, and displays it in an appropriate format. The Callvue
display program, for example, receives call and return messages from the probe. The call
target address which is contained it the call message is translated into a subroutine index
and the name of the subroutine is displayed on the screen indented to the current call level.
The call level is incremented for calls, and decremented for returns. Since Callvue must
also increment the Calls matrix for the appropriate subroutines, a simple call stack is
maintained in order to know who the caller was. The display program may also produce
permanent files to store results for off-line analysis. In the case of Callvue, the Calls

matrix is output to a file at the end of a benchmark execution run.

An important issue in the design of instruments is the definition of important events
which act as triggers to start and stop data collection and reset. One convenient but not
very useful event is the startup of the instrument itself. A more useful event is the
connection of a probe to the pipe for a session. Generally, the instrument should reset
itself at this time. An example of this is in Callvue, where upon probe connection the call
level and all entries in the call matrix are set to 0. Other important events are instrument

specific and must be specified in the probe-display protocol. An example of this is in
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Profile, where a reset record can be sent by the probe to the display program, instructing it
to reset its counters in preparation for a measurement run. It turns out to be useful to
reset the display at the start of a trigger rather than at the end (e.g., probe disconnection)

in order to leave the display for viewing by the user.

To enable sophisticated instrumentation, a rich choice of system status indicators
must be available to instrument probes. The status must be globally available, and must be
easily modified as new requirements are encountered. In VSAM, the Status shared
memory was added just for this purpose. The need arose during the construction of the
dynamic execution profile instrument. The profile desired was of the execution phase of a
benchmark. Because SAM APL links new functions into the environment including the
special immediate execution function that results in execution, there is a lot of activity on
either end of the actual execution. The start trigger for the profile was to be when the
PMU began executing the code for the immediate execution function. The end trigger was
when the DMU began transferring the result to the ECU. These events were most easily
localized by execution address, so the simulator was modified to set a flag in Status shared
memory when the appropriate addresses were executed. The Profile probe watches these

flags and only samples during the relevant time.

In retrospect, the use of the Status shared memory should have been incorporated
into the simulator design as a central mechanism for posting important events and general
exchange of data among different components of VSAM. The shared memory would
contain two types of data, a fixed set of status flags that would describe the overall state of
VSAM, and a flexible named message mechanism which would provide for arbitrary
communication among cooperating components. Access to Status would be protected by
a mutex semaphore. The contents of Status would need to be accessible to the VSAM;jr
debugger for full flexibility. The fixed status information could in fact be used to
implement the instruction execution synchronization between the PMU and DMU which is
currently implemented via pipes. The fixed information would be very useful for
instrumentation and general debugging. Some care would need to be taken to ensure that

Status information is kept well organized and coherent.
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4. Benchmark Analysis Results

This chapter presents the results of the execution analysis of two APL benchmark
programs, a scalar implementation of Quicksort called QSS, and a vector implementation
called QSV. The purpose of this chapter is to demonstrate the use of VSAM to analyze
the execution behavior of SAM and SAM APL. Detailed interpretation of the results is

beyond the scope of this work.

The Quicksort benchmarks were selected because they have been previously
written by Hoskin [Hos87] to run in SAM APL and have been discussed in [HHS92] and
[CNS89]. The programs are shown in Appendix A. They are particularly interesting since
they offer a direct comparison of scalar and vector implementations of the same problem.
Both versions are recursive and use the algorithm of dividing the input vector into two
parts based on a pivot value, and calling themselves to sort each part. The primary
difference between the two benchmarks is in the divide step. The scalar version, QSS,
manipulates the elements as scalars and uses the traditional swapping approach. The
vector version, QSV, uses the APL vector function Select (/) to extract all elements less
than and greater than the pivot. The scalar version performs a lot of branching and

copying of single values. The vector version performs copying of vectors.

The analysis data was collected by the Callvue, Profile, and Utilz instruments of
VSAM. Data was collected only while SAM was actually executing the benchmarks and
does not include the translation from APL to ADEL, nor the linking of new functions into
the environment. Data collection began when the immediate execution function
corresponding to the line of APL to be evaluated began execution, and ended when the
results were available for display. While each instrument has an on-line display, in-depth
analysis was performed off-line by importing the trace files into Microsoft Excel [Mic94].
The benchmarks were executed under the same conditions with identical sampling rates
and input. The input size was 10 elements. This is a relatively small size for a sort
benchmark, but is sufficient to demonstrate the process. The execution speed of a fully

instrumented VSAM is rather slow. The 10 element benchmarks each took approximately
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an hour of elapsed time to run. The results reported in [HHS92] show that the vector
benchmark performance is always better than the scalar version, and that the advantage

grows with input size.

The first part of each benchmark run constructs the input vector with a balanced
distribution. This is not directly relevant to the analysis, except that it shows up as part of
the run in the time profile graphs, for example Figure 4-2. Since the input generation
program was nearly identical for both benchmarks, this phase of the run serves as an
informal reference point among the time series graphs, although they are not exactly the
same. Since the phase is nearly identical in both cases, it does not affect the results

significantly.

A side-by-side comparison of some execution statistics is summarized in Table 4-1.
The table shows that QSV executed in 26% less time than QSS, and executed significantly
fewer subroutine calls. While the PMU utilization was higher in QSS than QSV, the DMU
utilization was lower. This is a reflection of the greater amount of interpretive overhead
incurred by the scalar version which executed more lines of APL, more APL function calls,
and more APL branches. The vector version, on the other hand, moved more data within
the DMU. The PMU and DMU overlap is the fraction of time that both units were busy.

Surprisingly these figures are very close. Overall, the vector benchmark is more efficient

Table 4-1: Comparison of QSS and QSV execution statistics

QSS QSV|% Decrease
APL function Calls 25 18 28%
APL lines executed 122 84 31%
APL branches 91 35 62%
SAM clock cycles 48,350 35,650 26%
PMU microcode subroutine calls 5,346 3,952 26%
DMU microcode subroutine calls 11,702| 4,851 59%
PMU subroutines invoked (of 219) 79 79 0%
DMU subroutines invoked (of 252) 107 104 3%
PMU utilization 60% 46% 23%
DMU utilization 74% 90% -22%
PMU and DMU overlap 35% 37% 6%
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in each of the APL, SAM, and real-time domain.

4.1 Utilization

As a first look at how SAM spends its time, the Utilz instrument was designed to
record the busy/waiting state of both units during execution. The PMU has three types of
waits:

1. Waiting for a free instruction pipe FIFO to fill. This occurs when the PMU gets ahead
of the DMU and both FIFOs are full.

2. Waiting for a branch destination value from the DMU.

3. Waiting for the DMU to finish executing the last instruction and sending results to the
front-end. This wait only occurs at the end of immediate execution and is ignored in

the rest of this discussion.

The DMU has only one type of wait, waiting for a full instruction FIFO to execute.
The Utilz trace file records the state of each unit. The file can be analyzed in a number of

ways.

Figure 4-1 is a summary of the unit busy/waiting state over the whole benchmark.
It was obtained by totaling the trace file for each type of state. The figure clearly shows
that the scalar benchmark took longer to execute. It also shows that the scalar benchmark
used the PMU heavily, while the vector benchmark used the DMU heavily. This is

consistent with the discussion in the previous section.

Figures 4-2 and 4-3 show unit utilization as a time profile. These figures were
obtained by grouping the Utilz trace file into 50 equal units of time, and calculating the
busy/waiting state distribution for each group. The time profiles show that there are
definite phases to the program. The first phase is input generation which lasts about one
fifth of the run and is identical in both benchmarks. It is marked by a sudden increase in
the QSS PMU Pipe Wait increase in the top part of Figure 4-2, presumably caused by the

overhead of copying the result vector from the generation function to the sort function.
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The next phase in the QSS benchmark is the split of the entire input vector which
involves a lot of branching in the PMU and scalar data movement in the DMU. This phase
is identifiable in the top part of Figure 4-2 as many branch waits in the PMU and relatively
high DMU utilization. As the vectors get shorter the graph gets erratic, but the lower
DMU utilization is discernible. The QSV benchmark behavior in Figure 4-3 is somewhat
easier to see. DMU utilization is consistently high due to the amount of vector copying.
On the PMU side the amount of busy time increases as the recursion winds up and the

vectors get shorter, then decreases as the recursion unwinds and the result vector gets
built.

Reference Count

PMU DMU

Figure 4-1: PMU and DMU utilization summary for QSS and QSV
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PMU Utilization during QSS
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A significant efficiency problem arises from APL’s peculiar branching mechanism
which uses data values as control flow targets. Since the target line of a branch statement
is a data item in the DMU, the PMU must request the value from the DMU. The
D4SNDSTK instruction directs the DMU to send the top of stack value to the PMU via
the SJPM (Pipe) registers. The PMU must wait until the value is delivered. Since this
empties the instruction pipe, a significant overhead is incurred for each branch. Figure 4-4
demonstrates the branching overhead in a time trace which shows the wait state of both
units for a small period of time at the start of the benchmark execution. The PMU must
first wait for a free FIFO to send the stack request, then wait for the stack value, then
resume execution atvthe new address. The DMU is idle while it waits for the PMU to
resume the instruction stream. The branching delay is clearly more significant in the scalar

version of the benchmark which does far more branches than the vector version (91 vs.

PMU
Pipe Wait

Execution
Time ->

DMU
Pipe Wait

Figure 4-4: Utilz trace showing the effect of APL branching
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35). The higher Branch Wait counts and lower DMU Utilization for the QSS benchmarks
shown in Figure 4-1 are a symptom of this effect. Branching is always a source of stalls in
pipelined computers, but the problem is particularly acute in APL since the branch
instruction is so general. The same mechanism serves for unconditional branches,
conditional branches, and function returns. Only conditional branches need to incur this
overhead. The other two types should be treated separately by assigning ADEL formats
for them. APL*PLUS III [Man94] has added structured programming constructs to APL

(if-then-else, and loops) which would allow the use of branch prediction techniques.

4.2 Execution Profile

The Profile instrument is used to obtain the distribution of execution time among
the subroutines of SAM APL. Profile produces a trace file of the subroutine that was
executing in the PMU or DMU during periodic execution sampling. From this trace, an
execution profile of the program can be constructed by subroutine and by module. Figure
4-5 shows a summary of the profile for QSS and QSV grouped by module. This figure
and the subsequent time profile figures, Figure 4-6 and Figure 4-7, correspond to the
utilization figures described in the previous section. The profile figures show the relative
execution times of the different components of the SAM APL software. As the summary
Figure 4-5 shows, QSS took longer to execute and spent more time in every module
except PMU Pipe Wait and DMU Memory Management. Since the PMU looks after
branching and function invocation, during QSV, the PMU has much less to do, which
explains the higher waiting time. The PMU is simply waiting for the DMU to finish an
instruction, so that it can load the next instruction into the pipe. The DMU is kept much
busier in QSV copying intermediate vectors, which explains the higher Memory manager
use. Because the operands in QSV are vectors rather than the scalars that QSS moves, the
DMU executes fewer instructions, but more work is done. This is precisely the design
goal of the Structured Architecture Machine which attempts to reduce interpretive

overhead.
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The time profiles show how work is distributed among SAM APL components
over the duration of execution. As with the utilization figures, the first phase of each
benchmark is the generation of the input vector. The profiles show that a significant part
of the PMU’s work time is spent in the Environment and Linker modules which look after
function invocation. The DMU spends a large part of its time in the Data Access Table
(DAT) and Memory Manager modules. During the vector benchmark, the DMU Memory
Manager shows a dramatic increase in use compared to the scalar benchmark. The format

routines directly account for a small portion of the execution time.

Reference Count

PMU

Figure 4-5: PMU and DMU Execution Profile Summary by Module for QSS and
QSsv
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PMU Profile by Module during QSS
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Figure 4-6: Profile of PMU and DMU during QSS benchmark
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Figure 4-7: Profile of PMU and DMU during QSV benchmark
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The Profile instrument gathers statistics on the relative execution times for each
subroutine in a unit. The top 10 subroutines for each unit are shown in Table 4-2 for the
scalar benchmark, and in Table 4-3 for the vector benchmark. The dominance of the pipe
and branch wait subroutines is obvious. The next point of interest is that the top 10
subroutines account for a large portion of the execution time, particularly in the PMU.
The relevance of this point is that optimization of these routines will have a large effect on

overall execution time. Subroutine usage is further discussed in the next section.

Table 4-2: Top 10 PMU and DMU subroutines by execution time during QSS

PMU (Subroutine Hits [% of Hits DMU [Subroutine Hits {% of Hits
1{WAIT4CLR 211 22% 1|DWAITPIPE 274 28%
2PWAITPIPE 123 13% 2|{COPYN2D 93 10%
3|IFETCH 97 10% 3IEXEC 59 6%
4| CHKDSTATUS 78 8% 4 WRITEDEST 42 4%
5|RELIVUPIPE 69 7% 5|PUBDMUSTAT | 38 4%
6|PUSHST 38 4% 6{D5DLR 28 3%
7|READST 36 4% 7|D5RIGHT 25 3%
8|STARTSTS1 35 4% 8|OVUCAST1 22 2%
9|POPST 20 2% 9{DSLEFT 20 2%

10|CHKPT 19 2% 10|D5SNDSAR 20 2%
TOTAL 726 75% TOTAL 621 64%

Table 4-3: Top 10 PMU and DMU subroutines by execution time during QSV

PMU |Subroutine Hits [% of Hits DMU {Subroutine Hits |% of Hits
1|PWAITPIPE 158 22% 1{DWAITPIPE 77 11%
2|CHKDSTATUS | 113 16% 2|COPYN2D 66 9%
3|{WAIT4CLR 105 15% 3|FREE 56 8%
4 RELIVUPIPE 54 8% 4|ALLOCATE 35 5%
5|IFETCH 53 7% 5|IEXEC 30 4%
6 |PUSHST 24 3% 6 |WRITEDEST 25 4%
7|READST 21 3% 7|FREESOLO 23 3%
8|STARTSTS1 19 3% 8|PUBDMUSTAT | 22 3%
9|CHKPT 14 2% 9|ALLOCEXACT 16 2%
10{CATGETFRM 11 2% 10|O5REVBOP 16 2%
TOTAL 572 80% TOTAL 366 51%

4.3 Call Counts

The Callvue instrument produces a Calls matrix in which the value of element

Calls[i,j] is the number of times subroutine i calls subroutine j. There are many ways to



57

use this matrix, but for the purposes of performance analysis, the most useful is to sum the
rows of the transpose of Calls, producing a table of how many times each subroutine is
called. When this table is sorted in decreasing order of the number of times called, a
profile of subroutine invocation is obtained. The call profile is significantly different from
the execution profile. For example, a routine such as IFETCH which is the main
instruction processing loop in the PMU, is only called once, but executes for the duration
of the run and accumulates 10% of the execution time. The top 10 subroutines for each
unit for the vector benchmark are shown in Table 4-4, with the corresponding execution
weight shown for comparison. RECVCONST is a very short DMU subroutine called by
DWAITPIPE. Although it accounts for a large number of calls, it accumulates no

execution time.

Table 4-4: Top 10 called subroutines in the PMU and DMU during QSV

PMU [Subroutine % of Calls| % of Time DMU ;Subroutine % of calls| % of Time
1[{CHKDSTATUS 37% 16% 1|RECVCONST 17% 0%
2|CHKPT 8% 2% 2|PUBDMUSTAT 6% 3%
3[{PWAITPIPE 6% 22% 3|DWAITPIPE 5% 11%
4| RELIVUPIPE 5% 8% 4|COPYN2D 4% 9%
5|STARTSTS1 5% 3% 5|WRITEDEST 4% 4%
6[P5RIGHT 4% 1% 6| TRACE 4% 0%
7 [PSNXTL 3% 1% 7|D5DEST 4% 2%
8|P5RSTPRG 3% 1% 8|DSRIGHT 4% 2%
9|P4NXTL 2% 1% 9|IDSLEFT 3% 2%

10|READST 2% 3% 10{CHKB4FREE 2% 2%
TOTAL 74% 58% TOTAL 52% 34%

Perhaps the best use of call count information is to understand how many times
particular events took place during a run. For example, since the subroutine UDFCALL is
called when an APL function is invoked, the call count for UDFCALL indicates the
number of APL function invocations. Similarly, the subroutine PANXTL is called at the
end of each APL line and P4BSTK for branching. Table 4-5 shows some interesting call
counts for the two benchmarks. The subroutine STARTSTSI is called to start the ADEL

instruction stream from PMU Segmented Memory. It represents a significant delay which
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could perhaps be reduced through the use of multiple instruction streams. WRITEDEST
is a DMU DAT subroutine which copies a temporary result to its destination.

Table 4-5: Call counts for various PMU and DMU subroutines for QSS and QSV

Call Count
Subroutine | QSS| QSV
UDFCALL 25 18
P4NXTL 122 84
P4BSTACK 73 27
P4BRABS 28 8
P4 564| 315
D4* 422 238
04" 210 174
WRITEDEST| 335| 209
STARTSTS1 349| 186
PWAITPIPE 422 238
DWAITPIPE 421 237

The relative frequency of the instruction formats and operators is an important clue
to the work done by SAM. Since each format and operator are implemented as separate
subroutines, their call counts correspond to their frequency. Tables 4-5, 4-6, and 4-7

compare the instruction and operator subroutine counts for QSS and QSV.
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Table 4-6: PMU instruction format subroutine call counts for QSS and QSV

Subroutine Calls|% of Calls
P4NXTL 84 27%
P4SLR 28 9%
P4BSTACK 27 9%
P4SSmR 27 9%
P4DGETSR 15 5%
P4SLS 15 5%
P4SLuR 15 5%
P4SmR 15 5%
P4LLR 14 4%
P4DGETSS 12 4%
P4DLmMR 12 4%
P4DSmR 12 4%
P4BRABS 8 3%
P4DLMS 8 3%
P4LSUBR 6 2%
P4DLS 4 1%
P4COMENT 3 1%
P4SLuS 3 1%
P4LLMR 2 1%
P4SLmS 2 1%
P4DmR 1 0%
P4HALT 1 0%
P4QADOUT 1 0%
23 315 8%

Subroutine Calls|% of Calls
P4NXTL 122 22%
P4BSTACK 73 13%
P4SSmR 73 13%
P4SLR 61 11%
P4LSUBR 32 6%
P4BRABS 28 5%
P4DGETSS 28 5%
P4LLR 28 5%
P4SLS 22 4%
P4COMENT 17 3%
P4DGETSR 17 3%
P4SLuUR 16 3%
P4DLR 12 2%
P4IXASN 12 2%
P4SLuS 9 2%
P4SmR 3 1%
P4DLmMS 2 0%
P4LLMR 2 0%
P4SLmS 2 0%
P4DfS 1 0%
P4DLS 1 0%
P4DmR 1 0%
P4HALT 1 0%
P4QADOUT 1 0%
24 564 11%
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Table 4-7: DMU instruction format subroutine call counts for QSS and QSV

Subroutine Calls| % of calls Subroutine Calls| % of calls
D4DLR 123 29% D4DLR 57 24%
D4SNDSTK 73 17% D4SNDSTK 27 11%
D4SSmR 73 17% D4SSmR 27 11%
D4LSUBR 32 8% D4UDFRET 18 8%
D4DGETSS 28 7% D4DGETSR 15 6%
D4UDFRET 25 6% D4SLuR 15 6%
D4DGETSR 17 4% D4SmR 15 6%
D4SLuR 16 4% D4DGETSS 12 5%
D4iXASN 12 3% D4DLmMR 12 5%
D4SLuS 9 2% D4DSmR 12 5%
D4SmR 3 1% D4DLmS 8 3%
D4DLmS 2 0% D4LSUBR 6 3%
D4LLmR 2 0% D4DLS 4 2%
D4SLmS - 0% D4SLuS 3 1%
D4DfS 1 0% D4LLmR 2 1%
D4DLS 1 0% D4SLmS 2 1%
D4DmR 1 0% D4DmR 1 0%
D4EXIT 1 0% D4EXIT 1 0%
D4QADOUT 1 0% D4QADOUT 1 0%
19 422 4% 19 238 5%

Table 4-8: DMU operator subroutine call counts for QSS and QSV

Subroutine Callg % of calls Subroutine Calls % of call

O4CMPRSS 73 35% Q4CMPRSS 39 22%
0O4ADD 31 15% Q4GRTR 26 21%
Q4GRTR 23 11% Q4L TEQ 29 17%
048UBT 23 11% O4ADD 19 11%
O4EQUAL 16 8% QA4CATNS 18 10%
O4GREQ 13 6% Q4SHAPE 15 9%
Q4L ESS 12 6% 04SUBT 9 5%
Q41 TEQ 9 4% Q4DROP 6 3%
Q4CATNS 6 3% Q4EQUAL 2 1%
Q4SHAPE 3 1% QAMIOTA 1 1%
Q4MIOTA 1 0% 10 174 4%

11 21 2%
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5. Conclusions

The goal of this work was to develop a method for observing and analyzing the
behavior and performance of parallel computers. The VSAM performance analysis tool
described in this thesis accomplishes this goal for the Structured Architecture Machine
(SAM), a distributed-function multiprocessor computer. The SAM-1 prototype has been
simulated in software and its performance on existing benchmarks was measured. The
design and implementation of VSAM is described herein and the results of the benchmark

measurements are presented.

A simulator-based ‘approach to performance analysis was chosen after initial
experiments with the prototype hardware showed it to be difficult to instrument and
generally hard to work with. Simulation is a proven method of analyzing the behavior of a
complex system. The main benefits of simulation are the degree of control that can be
exercised over the simulated system, and the ease with which the system can be changed to
explore the effects of proposed alterations of the system. Simulation is also an excellent
platform for measurement because of the direct access provided to all internal objects and

events.

The main challenge of the simulator-based approach was the specification of the
complex SAM architecture in a software model. A detailed and structurally accurate
model was required in order to measure the execution of benchmark programs written for
the prototype. The VSAM model was written in C++ and runs under OS/2. The object-
oriented nature of C++ was exploited to represent the modular structure of the SAM
hardware. The multi-processing capability of OS/2 was used to partition SAM processors
into separate processes. The resulting system closely resembles the structure of the
hardware, and can be readily modified to explore alternative architecture configurations
such as adding more processing units or extending the capabilities of the SAM

components.

VSAM runs about 1000 times slower than the SAM-1 prototype. A large part of

this difference is due to the multiprocessing overhead of OS/2 which could probably be
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significantly reduced by a better inter-process communication strategy. Late in the project,
the STATUS shared memory was added in order to make available the status of various
system components for instrumentation. In retrospect, the shared memory should have
been a central part of VSAM both for instrumentation and general process control. In the
current control scheme, the PMU and DMU processes co-ordinate execution of
instructions through the VSAM process via commands passed through OS/2 pipes. This is
very inefficient and unnecessarily complex. The STATUS shared memory could contain
flags that achieve the same effect without the overhead of switching context to the VSAM
process. As more processors and instruments are added to VSAM, the STATUS shared

memory will become an important central feature.

The current user interface to VSAM is text oriented. While this is efficient from
the implementation point of view, a graphical interface would better serve the VSAM user,
particularly when VSAM is used for debugging SAM software. The main problem is the
large number of commands a user must be familiar with, and the large amount of
information that is presented to them. A graphical interface would allow users to focus on
parts of the system that are changing and of direct interest to the problem at hand. VSAM
makes some attempts at helping the user through the use of color to highlight changed
values and these were found to be very effective. A graphical interface could also be very
useful for observation of the system during execution. For example, animation could be
used to indicate changes in the system, and instruments could be attached directly to
elements to be monitored. The initial design of VSAM was graphically oriented, but this
proved to be very difficult to implement and was abandoned as too ambitious under the

circumstances.

Overall, VSAM represents a good start at an architectural modeling tool. Given
the complexity of modern computer systems, such modeling tools are an essential part of
the design process. Future graduate projects could expand the capabilities of VSAM as

the need arises.
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6. Appendix

This appendix shows the SAM APL source code for the Quicksort scalar QSS and vector
QSV benchmarks. The code may look peculiar due to SAM APL limitations.

QSS s a shell which calls QSSINNER to do the work. The variable ANS is used as a
global place-holder for the data being sorted.

v ANS«LEF QSS ARG; RYT

[1] ANS«ARG

[2]  RYT«+/PANS

[3] LEF«l

[4] ARG«O0+LEF QSSINNER RYT
v

QSINNER splits the vector to be sorted into two parts based on the pivot, and calls itself

recursively to sort each part.

v PTR«LEF QSSINNER RYT;T
(1] PTR«13

[2] +(LEF2RYT)/0

[3] PTR«{(LEF QSSPLIT RYT)
(4] T«(LEF QSINNER PTR-2)

(5] T«(PTR QSINNER RYT)
v

QSSPLIT arranges the data vector ANS[LEF] to ANS[RYT] so that upon return lower
values are to the left of PTR, and higher values to the right.
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v PTR«LEF QSSPLIT RYT;VAL
[1] VAL<ANS[LEF]

[2] PTR<LEF+1

[3]1 +(PTR>RYT)/8

(4] +(VAL<ANS[PTR])/10
[5] ANSILEF]<«ANS[PTR]
[6] LEF<LEF+1

[71 »2
(81 ANS[LEF ] «VAL
(9] -0

[10] - (PTR=RYT)/8
(11] -(VAL>ANS[RYT])/14
[12] RYT<RYT-1
[(13] -10
[14] ANSI[LEF]<«ANS[RYT]
[15] ANSI[RYT]«ANS[PTRI]
[16] RYT«RYT-1
(171 =6

v

QSV is the vector version of Quicksort. It calls itself recursively twice, once with the
values less than or equal to the pivot, and then with the values greater than the pivot. It

then catenates the two results and the pivot in proper order.

v ANS<«LEF QSV RARG

(1] ANS«RARG

[2] +(2>pRARG)/0

(3] LEF+«RARG([1]

(4] RARG<«1+RARG

[5] ANS<«LEF,2 QSV (LEF<RARG)/RARG

(6] ANS«(2 QSV (LEF>RARG)/RARG),ANS
v

QARG builds an input vector of the specified length with a balanced order.

v VEC<PIVOT QARG LEN

[1] »(LEN>2)/5

[2] VEC<«1lLEN

[3] +0

(4] PIVOT«(LEN DIV 2)

[5] VEC<«(2 QARG PIVOT-1)
(6] VEC«PIVOT,VEC,PIVOT+VEC
[7]  +(LEN=pVEC)/0

(8] VEC«VEC,LEN



7. Glossary

ADEL
CAT
CpP
DAT
DMU
DPM
FIFO
IVU
OovVu
PMU
SAM
SAMjr
SJ16
SIMC
SIPM
SMem
TMem
VSAM

VSAMir

A Directly Executable Language
Countour Access Table

Control Processor

Data Access Table

Data Management Unit

Dual Port Memory

First In First Oﬁt

Instruction Verification Unit

Operand Verification Unit

Program Management Unit

Structured Architecture Machine

a unit of SAM consisting of a microprocessor and co-processor
a custom VLSI microprocessor for SAMjr
SAMjr Memory Controller

SAMjr Pipe and Mail processor
Segmented Memory

Translate Memory

Virtual SAM

Virtual SAMjr
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