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Abstract 

This thesis describes a virtual simulator-based software debugging and 

performance analysis system (VSAM) for the Structured Architecture Machine (SAM). 

SAM is a distributed-function multiprocessor computer designed to execute APL 

efficiently. The purpose of VSAM is to help researchers investigate the behavior of the 

SAM architecture and to support the exploration of alternative designs. Object-oriented 

techniques are used to represent the hierarchical structure of the hardware thereby 

facilitating instrumentation and modification of the architecture. 

VSAM is implemented in C++ under OS/2 and utilizes multi-tasking extensively. 

The core of VSAM is a behavioral simulator of SAM. The simulator is a faithhl 

hnctional model of SAM down to the registerhus component level. A full-featured 

debugger interface is provided for each processor. The debugger includes novel features 

for dealing with multiple processors, functional units, and data presentation. VSAM also 

provides a general instrumentation facility which uses OSl2 pipes to connect sensors 

embedded in the simulator to display windows. 

The simulator design is discussed in detail and presented in the context of 

alternative simulation techniques and other microprocessor simulators. The use of VSAM 

is demonstrated on SAM benchmarks and the results are discussed. 
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1. Introduction 

As computer architectures become more complex in order to achieve further gains 

in performance, a thorough understanding of the behavior of an architecture under 

working conditions is a prerequisite for fbrther improvement. Software-based architecture 

simulation is an efficient and effective approach to analyzing and measuring the 

performance of existing and proposed systems. A detailed architecture simulator can be 

used to evaluate the feasibility of an architecture, to predict its performance, and evaluate 

the usability of the architecture from the point of view of the software that will need to be 

written for it. 

While software based architecture simulators are easier to build than hardware, 

they present their own set of design challenges. The basic challenge is the task of 

capturing the fbnctionality of the new system in software in an efficient and manageable 

way. The complexity and parallel nature of modern computer architectures makes this a 

significant exercise in software engineering. Beyond basic correctness, the simulator must 

be flexible enough to allow changes as the design evolves. The simulator representation 

must be sufficiently similar in structure to the hardware design to facilitate this. The 

simulator must be designed with measurement in mind, since one of its primary purposes is 

performance evaluation of the architecture. Structural similarity to the hardware will help 

greatly in this area, since the same types of events and objects that occur in the hardware 

will exist in the simulator. Ideally, the simulator must provide an array of performance 

analysis tools with which the designer can monitor the system. Finally, since software will 

need to be written and debugged for the new system, the simulator must provide an 

interface to software development facilities and to a debugger. 

This thesis describes the design, implementation, and use of VSAM, a virtual 

software simulator for the Structured Architecture Machine (SAM) described in [HGT86]. 

SAM is a distributed-hnction multiprocessor computer designed to execute APL 

programs efficiently. A working prototype of SAM, called SAM-1, has been built and is 

described in [HHS92]. A rudimentary APL interpreter, named SAM APL, has been 



implemented for SAM, (see [Hos87]), and has demonstrated the capabilities of the 

architecture. Unfortunately, the prototype hardware is not an ideal performance analysis 

platform because it is difficult to instrument for detailed measurements and difficult to 

modiQ in order to test new ideas. The purpose of VSAM is to overcome these difficulties 

and to become an architectural workbench for fbrther study of the Structured Architecture 

Machine and design of fbture machines. 

VSAM is implemented in C++ under OSl2. Object-oriented techniques are utilized 

to represent the modular structure of the hardware components. Multiple processes are 

used to emulate the parallel nature of the hardware. VSAM is a machine code simulator 

that executes SAM-1 binary images, albeit much slower than SAM-1. The simulator is 

faithfbl in the representation of hardware components down to the level of registers and 

buses, and accurately emulates the movement of data at the microinstruction level. VSAM 

does not emulate the timing of sub-instruction events. A powerhl debugger interface is 

provided to facilitate code testing and to explore the state of the various parts of the 

machine. 

An integral part of VSAM is an instrumentation methodology for measuring and 

observing the behavior of SAM during execution of SAM software benchmarks. 

Instrument probes are embedded in the simulator at strategic points and send data to 

display tasks that present the results graphically on-line, and optionally save results and 

traces to files for off-line analysis. Several instruments have been developed including a 

callheturn monitor, an execution profiler, and a processor utilization monitor. The design 

and implementation of the instruments is described in detail and their use is demonstrated 

on SAM benchmarks. 

The remainder of this chapter examines related work on the design and use of 

architecture simulators. Chapter 2 is an overview of the SAM architecture and the SAM-1 

prototype including a critical look at the software development system and development 

methodology. Chapter 3 describes the implementation of VSAM in detail. Chapter 4 looks 

at the performance analysis results of SAM benchmarks and discusses them. 



1.1 Related Work 

The benefits of simulating a system prior to implementation are described in many 

references including [BaC84], [Pre92], and [Fer78]. The main benefits are the ease with 

which a model can be built and modified, and the high degree of behavioral analysis such 

models enable. These benefits are particularly relevant in the study of parallel computer 

architectures due to the complexity of these systems and the difficulty of implementation. 

The importance of a sound evaluation methodology in performance analysis is articulated 

particularly well in [HeP90] and also in [Fer78]. The basic objectives of simulating a 

system for performance analysis are to identi& the typical work-load of a system and then 

to observe and measure how well the system handles the work-load. 

Two important design decisions in building an architecture simulator are the level 

of abstractness of the model and the implementation method. The level of abstractness 

refers to the granularity of the model with respect to the types of objects and events the 

designer works with. A highly abstract model may consider entire processors as basic 

building blocks, while a detailed model may be concerned with registers and bit transfers. 

The level of abstractness decision is based on the purpose of the simulation and the nature 

of the behavior to be observed. Detailed models provide the greatest flexibility and degree 

of detail, but are difficult to implement and generally very slow to execute. The 

implementation method must support the level of abstractness desired. A general-purpose 

programming language offers the greatest flexibility, but the least built-in support. Formal 

hardware description systems such as VHDL [Nav93] and Verilog [ThM91] are a good 

choice for detailed models. Discreet-event simulation systems such as SIMULA and 

GPSS are suitable for more abstract models. Hybrid solutions are also possible. In 

[Geo93] for example, the author describes the use ofprocessor libraries as building blocks 

for a more abstract model. 

Many reports of architecture simulation are available in the literature. Of particular 

interest are [And94], [Voi94], and [But941 which describe the use of architectural 

simulators for the PowerPC microprocessor recently released by LBM and Motorola. Two 

types of simulators are described: a detailed timing simulator and an instruction set 



simulator. The timing simulator models the internal organization of the microprocessor. It 

is intended for use by the microprocessor designers and by hardware designers of systems 

that will employ the microprocessor. It has been packaged as a Verilog module for use as 

a component of a Verilog simulation. The instruction set simulator executes actual 

instructions and is intended for software development for the PowerPC prior to availability 

of the hardware. The simulator has been interfaced to the Free Software Foundation's gdb 

debugger and a complete software development environment. The advantage of this 

approach is simultaneous delivery of a new microprocessor and software systems for it. A 

similar set of simulation tools for the Advanced Micro Devices' (AMD) 29K family of 

RISC processors is described in [TyD93]. 

An important class of architecture simulators are instruction set simulators 

described in [MAF91] and [HLT87]. These simulators allow designers to measure the use 

of various instructions and to evaluate proposed changes. RISC architecture designers 

made good use of such techniques to focus their designs on the actual work expected of 

their machines, [Pat85]. An important advantage of instruction set simulators over more 

detailed simulators, is ease of implementation and execution efficiency. 



2. SAM Overview 

This chapter describes the SAM architecture, the SAM-1 prototype, SAM APL, 

and the overall SAM software development environment. The purpose of this chapter is 

to familiarize the reader with SAM, describe the state of the SAM-1 prototype, and point 

out some of the difficulties with using it as an analysis platform. 

2.1 SAM Architecture 

The Structured Architecture Machine, (SAM), is a novel architecture designed to 

execute APL faster than general purpose architectures. SAM is described in detail in 

[HGT86] and [HHS92]. 

The basis for SAM is A Directly Executable Language called ADEL, described in 

[Hob84]. ADEL represents an APL program as a linear form that can be efficiently 

interpreted by SAM through the use of parallel processors and special purpose hardware. 

The structure of an ADEL instruction is a format code that identifies the instruction, 

operand references, and possibly an operator to be applied. The prototypical ADEL 

instruction is DLR which has the form: 

DLR destination-operand left-operand right-operand operator 

The APL expression 

translates to the ADEL instruction 

where the meaning of the operands A, B, and C is derived from context. The power of 

ADEL lies in the fact that the operands may in fact be large arrays! The set of ADEL 

formats was chosen through experimentation. Most formats are for data manipulation, but 

several formats are provided for branching and user-defined hnction invocation. The set 

of formats may change as the need arises. 



The SAM execution model of ADEL partitions the work among three specialized 

execution units: the Environment Control Unit (ECU), the Program Management Unit 

(PMU), and the Data Management Unit @MU). The SAM architecture is shown in 

Figure 2-1. The ECU is responsible for the user and host interfaces. It translates user 

input into ADEL which it passes to the PMU for execution. It also receives results from 

the DMU and displays them. 

The PMU manages the execution of programs. It is responsible for storage of 

defined fbnctions, and maintains the symbol table and the Contour Access Table (CAT) 

used to resolve operand references. During execution, the PMU looks after branching and 

hnction invocation and return. For data manipulation instructions, the PMU resolves 

operand references into data references, performs compatibility checks on the operands, 

and passes verified instruction to the DMU for execution. 

The DMU executes data operations as instructed by the PMU. It manages the 

storage of data in memory via the Data Access Table (DAT) which is referenced by the 

instruction operands. The DMU checks the operands for compatibility and performs the 

specified action. The DMU receives its instructions from the PMU via a pair of instruction 

User Interface v 
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Figure 2-1: SAM Architecture 



pipes which allows the PMU and DMU to overlap execution. 

2.2 SAM-1 Prototype 

SAM-1 is a prototype instantiation of SAM. The structure of SAM-1 is a general 

purpose host computer, (an IBM PC with DOS), that acts as the ECU, and two embedded 

custom processors called SAMjr, that are the PMU and DMU. The ECU executes a 

program that constitutes the user interface to the SAM application and that communicates 

with the PMU and DMU through a control bus interface and Dual Port Memory (DPM). 

The PMU and DMU communicate though a custom processor called the SJPM which 

implements the instruction pipe and operand compatibility checking. 

(SJMC ) 
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Figure 2-2: SAMjr Architecture 



2.2.1 SAMjr 

The PMU and DMU are two instances of a custom designed processor called 

SAMjr. SAMjr is a microprogrammable processor designed to be an efficient SAM 

building block. The architecture of SAMjr is shown in Figure 2-2 and is described in 

[Hob88B]. SAMjr consists of the SJ16 control microprocessor and co-processors 

including Dual Port Memory (DPM), segmented memory controller (SJMC), pipe 

interface (SJPM), and an optional auxiliary co-processor. The co-processors are 

connected to SJ16 via the SJBUS which is used both to send instructions in the form of 

SourceDestination (SID) codes, and data. The SAMjr instruction format, shown in Table 

2-1, includes the source and destination codes, thus allowing up to 2 co-processors to 

work in parallel with the SJ16 in any given instruction cycle. 

The SJ16 is a custom designed VLSI microprocessor with special features to 

facilitate SAM implementation. The architecture of the SJ16 is shown in Figure 2-3 and 

described in [Hob88]. The SJ16 rnicro-instruction consists of the fields shown in Table 2- 

2. Several operations may be specified in parallel including data manipulation, counter 

increment, and next address generation. The next address field is highly encoded and 

serves to specifjl literal data values, procedure calls, and conditional branching based on 

status register flags, external messages, or data bus values. A 256-way EXEC procedure 

call provides an efficient mechanism for ADEL format and operator decoding. 

Table 2-1: SAMjr microinstruction fields 

I Field I Pur~ose  I 
I Source I Source Co-~rocessor instruction I 

Destination 
Instruction 

Destination Co-processor instruction 
Control processor instruction 



Table 2-2: SJ16 microinstruction fields 

I Oeeration I Field I Function I 
Data I ABUS I ABUS source register 1 1 FAUS 1 BBUS soy register 1 write T re ister 

write A re ister 
select ALU or barrel shifter 

1 F 1 ALU function or shift count 1 
I I SF 1 sample ALU flags I 

I 1 NEXT I next address value 1 
Counter 
Address 

SlBUS 

(16 fits) 

COUNT 
ACTL 

M=w- 
(7 tits) 

increment Counter register 
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I I 

I 1  I 1 
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2.2.3 Dual Port Memory (DPM) 

Dual Port Memory is used to pass data between the host and SAMjr. On the host 

side, Dual Port Memory is memory mapped. Each SAMjr gets a distinct DPM address 

range. On the SAMjr side, Dual Port Memory is accessed as a co-processor via 

Source/Destination codes. Two instructions are required by SAMjr to read and write data 

since a single bus is used for both address and data. Data in Dual Port Memory is word 

oriented. 

2.2.4 SJMC 

The SJMC is a custom VLSI Memory Controller which provides streamed access 

to segmented paged memory. The data streaming feature provides efficient access to 

logically sequential bytes or words in memory. Once a stream is started, it can deliver or 

receive a data item every clock cycle. The SJMC has 8 streams available. 

The SJMC also implements a segmented paged memory system. A segment is a 

logically contiguous collection of a variable number of fixed size pages. An address 

translation memory translates logical addresses to physical memory addresses. The 

translate memory content is managed by the SAMjr memory management software. It is 

important to note that no virtual memory capability is provided directly by the hardware. 

2.2.5 SJPM 

The SJPM is a custom Pipe and Mail co-processor known generically as "the pipe." 

It is the communication medium between the PMU and DMU. It consists of the 

Instruction Verification Unit (IVU) which is attached to the PMU SAMjr SJBUS and the 

Operand Verification Unit which is attached to the DMU. The SJPM contains two FIFOs 

for instruction passing from IVU to OVU, a set of dual-port registers accessible to both 

sides, a state machine which controls execution, and error checking logic. Each end of the 

pipe has a distinct set of instruction codes. In addition, the O W  contains tag memory 

which is used for error checking. 



In normal execution, the PMU waits for an empty FIFO, then loads format, 

operand, and operator bytes of an ADEL instruction into it, checks for errors and if none, 

releases the FIFO. It then does the same to the other FIFO. The DMU waits for a 

released FIFO, reads the contents, checks for errors, then executes the ADEL instruction. 

Error checking is done on each ADEL instruction both by the I W  and O W .  

Each operand has a tag which describes the data item. On the PMU side, the type of the 

operand is specified as one of: variable, constant, fbnction, or reserved. The IVU uses a 

compatibility matrix to ensure that the types conform to the operation. For example, a 

constant or a fbnction cannot be specified as the destination. On the DMU side, each 

operand has a tag that describes the operand shape (undefined, scalar, array, or reserved), 

and data type (character, boolean, integer, or floating point). The OVU uses compatibility 

matrices to ensure operand conformity. For example, adding a character and an integer is 

a domain error. 

The SJPM registers are used to exchange status information and system values 

between the PMU and DMU. Since this is the only means of moving data from the DMU 

to the PMU, branch destination values are passed this way, as are error codes. 

2.3 SEDIT the front-end program 

SEDIT is the program that executes on the front-end host PC and interfaces among 

all the components of SAM-1. SEDIT is written in C and is based upon a multi-window 

visual text editor described in [Roc881 with specific enhancements for SAM. It is a 

conglomeration of previously distinct programs. SEDIT has three distinct roles: 

1. User interface 

2. Debug and control interface to the SAM hardware 

3. SAM APL interface 

The user interface uses separate windows for the APL interface and the debugger. 

The APL window is where the user enters APL code and views results. There are 



commands to manipulate code and data in the window and to read and write the window 

content to a file. When an APL function is defined or when the user specifies a line of 

APL to be executed, SEDIT translates the source into ADEL and sends it to the PMU. 

Results from the DMU, and error messages from the PMU or DMU are displayed. 

The SAM debugger includes the following commands: 

switch between communication with the PMU and DMU 

load microcode image files into control store 

view and mod@ Dual Port Memory (DPM) 

view and modifL SJ16 registers 

single step execution 

trace execution flow for short duration 

set, clear, and show breakpoints 

redirect DEBUG source to a file 

The debugger represents a very primitive debugging facility, a factor that made 

software development of SAM microcode an arduous task. During the development of 

SAM APL, the programmer had to devise an ingenious system of dump-and-analyze 

techniques via Dual Port Memory (DPM) in order to monitor the internal activity of the 

machine. This "debug-by-remote-control" process not only frustrated development, but 

obscured the microcode design because many instructions and subroutines embedded in 

the system are included entirely for debugging purposes. This code slows down execution 

considerably, and is difficult to remove. 



The control interface of SEDIT, called SAMIO, controls the execution of the 

SAMjr hardware via I 0  mapped command and data registers. It has the following 

primitives: 

stop and start the SAM clock 

retrieve the current micro-program counter value of a SAMjr unit 

single step a SAMjr unit 

restart execution of a SAMjr unit fiom a fixed address 

modifjl the control store of a SAMjr unit 

SAM10 implements all the control of the SAM hardware, there is no debug 

monitor code in SAMjr. The hnctionality of the SAM debugger is implemented in terms 

of the above primitives. Access to SAMjr internal values is implemented by temporarily 

loading program fragments into control store, executing them, and then restoring the 

original control store contents. The debug code fragments use DPM to send data to the 

fiont-end. Breakpoints are implemented by changing the breakpoint location in control 

store to an instruction that just repeats itself The detection of breakpoints is up to the 

user -- that is, the user is not notified explicitly when a breakpoint is reached. An 

execution tracing feature is implemented by single stepping the SAMjr unit and noting the 

program counter value. 

2.4 SAM microcode development environment 

This section describes the SAM microcode development environment and presents 

some of problems resulting from the software engineering methodology imposed by it. 

The language used to program the SAMjr processor is a subset of APL called 

microAPL. MicroAPL was conceived during the early design stages of the SAM project 

as a high level microprogramming language that could be used to describe an architecture 

and simulate its execution by interpretation within an architectural support package 



[Hob87]. While the language itself is a good medium for hardware description, the 

software engineering aspects of APL are not well suited to large projects such as SAM. 

MicroAPL is an assembly language in that source statements correspond directly to 

machine instructions. A single statement can speci@ multiple microoperations which are 

executed in parallel. Microoperations correspond to the hnctionality of SAMjr and include 

co-processor actions, data manipulation, and branching. Statements are combined into 

subroutines which can be invoked via the CALL and EXEC operations. Subroutines are 

combined into a control store image which is stored as a file to be loaded into SAM. 

The SAM development environment is implemented in a commercial APL system, 

(Manugistics APL*PLUS, [Man951 ), on an IBM PC. MicroAPL subroutines are entered 

as APL fimctions which are stored as APL objects in a microcode database. The 

subroutines are compiled into an intermediate form which is also stored in the database. 

Images are generated from an image specification file that specifies the subroutines to be 

included and their absolute addresses. An APL workspace manages the database and 

performs compilation of subroutines and generation of images. 

From a software engineering perspective, the SAM development environment has 

several shortcomings, most of them inherited from the APL environment. The primary 

problem is the lack of packaging. Subroutines exist on their own with no internal 

information on their relationships with other subroutines. The only grouping mechanism is 

the image specification file which simply enumerates the subroutines. There is no 

provision for documentation of relationships among hnctions and no hierarchical 

structuring mechanism. Furthermore, the APL syntax does not encourage liberal 

documentation at the code level. Finally, the APL syntax provides no structured 

programming constructs, leaving the programmer with a basic GOT0 as the only 

branching mechanism. 

The end result is a large database of tersely documented subroutines and very little 

structural information. The PMU and DMU programs that implement SAM APL consist 

of approximately 250 subroutines each. These are divided into roughly 10 images which 



correspond to broad categories such as Supervisor and Utilities as well as patch images 

that overlay previous code with new versions. 

Several images can be fbrther combined into a grand image in order to simplify the 

loading of images into SAM. The production version of SAM APL consists of a grand 

image overlaid by several patch images both for the PMU and DMU. Unfortunately, along 

the way, the content of the grand images was lost. That is, there is not a complete 

mapping from the subroutine database to the microcode that executes SAM APL. 

Because the original developer of SAM APL is gone, and the external documentation is 

not sufficient, it is not possible to recreate the generation of the SAM APL code at this 

time. One of the objectives of the simulator is to gather call information in order to 

facilitate the mapping processes. The inability to modifL the SAM APL code was a major 

factor in the design of VSAM. 

2.5 SAM APL 

SAM APL is the application that runs on SAM. It is a basic APL interpreter that 

has been implemented to demonstrate the SAM prototype. The interpreter is described in 

[Hos87]. An overview is presented here. 

SAM APL consists of three parts: the SEDIT program which handles the user 

interface and translates APL code into ADEL, the PMU which stores functions, controls 

execution, and manages the symbol table, and the DMU which stores and manipulates data 

objects. The DMU and PMU parts of SAM APL are implemented in microcode and 

manipulate the hardware directly. 

The PMU part of SAM APL consists of the following modules: 

Diagnostic routines for communicating debugging information to the front-end via 

Dual Port Memory (DPM). 



A supervisor which gets control during startup. The supervisor initializes the PMU 

environment according to parameters passed fiom SEDIT via Dual Port Memory 

(DPM). It then initiates a protocol with SEDIT for defining new functions and 

program execution. 

A linker which incorporates new functions into the environment. This consists of 

storing the function code, and registering all identifiers and constants used by the 

function in the symbol table. 

An environment manager that maintains the Symbol Table (ST) and Contour Access 

Table (CAT) during function execution. 

A memory manager which manages the storage of PMU objects. 

Format subroutines that interpret ADEL instructions. 

Utility subroutines. 

The basic algorithm of the PMU is: 

1. Initialize environment. 

2. Wait for a new hnction definition fiom SEDIT via Dual Port Memory (DPM). 

3 .  Link the new hnction into environment. 

4. If the new function type specifies that the function corresponds to a line of APL to be 

directly executed, then: 

5. Initiate pipe protocol with DMU. 

6.  Execute the ADEL code for the new function. 

7. Wait for DMU to finish. 

APL function execution consists of executing the ADEL formats that comprise the 

function code. The IFETCH routine fetches the instructions and decodes them via an 



EXEC call to the appropriate format subroutine. The format subroutine performs the 

actions appropriate to the format. Format types include data manipulation which is passed 

on to the DMU via the pipe, and execution control types which alter the instruction 

sequence. 

Formats that perform conditional branches require a target value which is a data 

item stored in the DMU. The value is requested via a special DMU format which returns 

the value through the SJPM (Pipe) registers. The PMU is forced to wait for this value 

before it can continue. This is a major cause of delay in SAM APL execution as described 

in Chapter 4. 

Before an instruction can be passed on to the DMU, the PMU must wait for a free 

pipe. Since there are two pipes, in general the PMU can load the next instruction while the 

DMU executes the last one. If the DMU gets behind, the PMU is held up. 

The DMU part of SAM APL is an input driven program. After the initial startup 

processing, the DMU executes an IEXEC loop which gets instructions from the pipe and 

executes them by decoding the instruction format. Most of the formats executed by the 

DMU manipulate data. There are also formats for returning values to the PMU for 

branching, and for sending data to SEDIT via DPM which is how results get back to the 

user. 



3. VSAM Implementation 

This chapter describes the implementation of the VSAM simulator. It begins with 

an overview of VSAM including the objectives of the project and the implementation 

methodology. The major parts of VSAM are then described in detail in separate sections. 

3.1 Overview 

The motivation for VSAM was a need to observe and measure the performance of 

SAM-1 and future versions of SAM with the goal of assessing the efficiency of the 

architecture and identifjling areas for possible improvements. The study began with the 

idea of instrumenting the SAM-1 prototype, however this turned out to be difficult for a 

number of reasons and was abandoned. After some consideration, a simulator-based 

approach was chosen for the following reasons: 

The process of replicating SAM would be a good way to learn the details of SAM and 

a motivation for compiling SAM documentation previously distributed in various forms 

and degrees of precision. 

A software version of SAM provides a flexible basis for further SAM research since it 

can easily be modified. 

A simulator is a better platform for observing architectural level behavior than 

hardware which is difficult to instrument and obscures design with detail. 

A simulator would allow observation of SAM APL "in situ", an important factor in 

light of the software development environment difficulties discussed in the previous 

chapter. 

A simulator would be a better platform for implementing a new software debugger 

interface for SAM since it is not encumbered by hardware interface limitations. 

In order to allow the kind of observations desired, a detailed behavioral model of 

SAM-I was constructed. The model is hierarchical in structure and corresponds closely to 



the structure of SAM-1 hardware. At the top level of the hierarchy, separate operating 

system tasks (processes) are used for the different units. At the bottom level of the 

hierarchy, microinstructions are directly executed and registers, busses, and memories are 

simulated. Each execution unit has its own user interface which provides execution 

control for the unit and gives access to the unit's data elements. Any part of the system 

can be instrumented by modifjing the simulator software with probe instructions that send 

data to separate display processes. 

The implementation platform for VSAM is C++ under 0 9 2 .  OS/2 was chosen for 

its multi-tasking capability and its DOS compatibility. Multi-tasking was clearly an 

appropriate way to simulate the multiple processors of SAM. DOS compatibility was 

important for continuity with the existing environment. Under OS/2 the APL-based SAM 

microcode development environment, SEDIT, and the simulator could all co-exist on a 

single machine. The initial implementation of VSAM is text based, but it was important to 

have a migration path to a fiture GUI version via the OS/2 Presentation Manager. C++ 

was a natural choice for the implementation language because of its object-oriented nature, 

and because SEDIT was already written in C. Object-oriented techniques turned out to be 

a good way to duplicate the modular structure of hardware, although little use was made 

of the class inheritance mechanism. All in all, OS/2 lived up to expectations and proved to 

be a good choice. 

3.2 The model 

An important decision in the design of VSAM was the nature of the model and the 

user and instrumentation interfaces. Initial research concentrated on a powerfbl visual 

approach. What was envisioned was a kind of animated hierarchical architecture block 

diagram that would allow the user to watch the system during execution and to zoom in 

and out on specific components as desired. As the view zoomed in, more detailed 

structural components would be visible and execution would be divided into steps 

appropriate to the view level. As execution proceeded, the diagram would show the 

current values of components and present an overall sense of the flow of data and control 



in the system. The view level and the rate of execution would be under direct control of 

users, allowing them to focus on the interesting parts of the machine and program. 

Execution could be stopped and component values modified. Instrumentation would be 

achieved by attaching probes to the object of interest and hooking them up to various 

instruments. 

While very appealing, the visual approach proved to be far too ambitious given the 

time and resources available. It was also not necessary for the immediate goals. With the 

visual approach as a general guiding principle, a more pragmatic approach was chosen. 

The hierarchical structure was maintained, but instead of a unified visual interface, 

VSAM uses separate text windows to control and access the state of the individual units. 

The unit windows are the debug and control interfaces to the SAMjr simulators. All of the 

SAMjr components are accessible through commands. Execution control and monitoring 

is also affected through the unit windows. Instrumentation is achieved by modifying the 

simulator code at the appropriate location with instructions that send data to an instrument 

process. 

An important step in simulating a system is the verification of the model accuracy 

in representing the system. In the case of VSAM, verification was achieved through 

execution of identical code in the SAM prototype and VSAM. The same input problem 

was specified for both, and the results were compared. This was done with several 

benchmarks which thoroughly exercised all parts of the machine. The verification process 

was in fact part of the VSAM debugging process. It was an exciting moment when 

VSAM was able to add two numbers and give the correct result! 

3.3 VSAM Architecture 

VSAM consists of a number of cooperating OS/2 sessions. (A session is a process 

with a display window and a virtual keyboard.) The main session is VSAM, an 

administrative session that creates the various resources such as shared memory, pipes, 

and semaphores which are used by other sessions. VSAM also creates the other sessions 



and stops them when it terminates. The other sessions are SEDIT, VPMU, and VDMU. 

SEDIT is the front-end user interface program. VPMU and VDMU are instances of 

VSAMjr, the SAMjr unit simulator, corresponding to the PMU and DMU. The VSAM 

architecture is shown in Figure 3-1. This figure can be compared with Figure 2-1 which 

shows the SAM architecture. 

OSl2 provides inter-process communication via semaphores, pipes, and shared 

memory. See [IBM94] for details. Semaphores can be event semaphores which allow 

synchronization, or mutual exclusion (mutex) semaphores for protected access to shared 

resources. Pipes are a type of point-to-point connection designed for client-server 

communication. Shared memory gives multiple processes access to the same memory. 

Window Window 

Instrument l A l  
Window 

Instrument a 
Window 

Figure 3-1: VSAM Architecture 



Semaphores are used throughout VSAM. Pipes are used between the units and the 

VSAM main session for instruction execution control. Pipes are also used to connect 

instrument probes to the instrument process. Shared memory is used to implement DPM, 

and SJPM. A Status shared memory was added late in the project to aid instrumentation. 

The VSAM session establishes the working environment for VSAM and controls 

overall execution. The session provides a user interface which is intended to give access 

to global data structures and system parameters. Currently, the interface only provides 

commands to pause and resume system execution, and to terminate VSAM. The VSAM 

session uses command line parameters which determine how the system is initialized. One 

set of these parameters canspecify that any of the SEDIT, VPMU, and VDMU sessions 

can be executed under the C++ debugger (Borland TD) which allows for the debugging of 

the session software. Other VSAM command line parameters specie command source 

files to be executed by the units during system startup. After initialization, the VSAM 

session executes a loop which coordinates the execution of instructions by the VSAMjr 

units, handles user commands, and provides a place to attach instrumentation probes. An 

outline of the VSAM session main procedure follows: 

void main( int argc, char *argv[] ) / /  VSAM main procedure. 
{ 

//--- Initialize system 

::SysClock = 0; 
UserMsg( "Starting VSAM Master initialization.'' ) ;  
SJMP Create smem(); 
create ~ e d i t ~ e m  ( ) ; 
create-startupsem(); 
~reateztatus ( ) ; 

/ /  Parse command line args and start other sessions. 

. . . 
UserMsg( "Start SEDIT session..." ) ;  
if ( debug sedit ) 

~ t a r t ~ e b u ~ ~ e s s i o n (  "c:\\agv\\sedit\\SEDIT.EXEW, sedit-args, 
SEDIT - sessionID, SEDIT - processID ) ;  

else 
Startsession( "c:\\agv\\sedit\\SEDIT.EXE1', sedit-args, 

SEDIT sessionID, SEDIT - processID ) ;  
UserMsg( "SEDIT session started!" ) ;  



//--- Execute loop until user stop or error stop 

int sender; 
msg-type mtype; 

int utilz-counter = 0; / /  Utilz instrument. 

: :StepMode = 0; 
int exit = 0; 
while( !exit ) { 

if ( MSG - GetAny( mtype, sender ) ) 
if ( exit = ProcessMessage( mtype, sender ) ) 

continue; 
if ( ,kbhit() ) { / /  Invoke user interface 

vm-user action action = vuser(); 
exit = action == VMU-END; 
::StepMode = action == VMU - STEP; 

1 

/ /  Utilz instrument probe code. 
if (++utilz counter >= Utilz-sample-period ) { 

utilzcsend( ::SysClock, Getstatus - PMUwaitO, 
Getstatus-DMUwaitO ) ;  

utilz counter = 0; - 
1 

I 

//--- Stop all sessions and exit 

UserMsg( "Stopping unit sessions!" ) ;  
MSG Send ( MSG STOP, UNIT VPMU ) ; 
unitstatus [ ~ ~ f i  VPMU] = t f ~  STOP; 
MSG Send( MSG STOP, UNIT vDMU ) ;  
unit~tatus[u~= - VDMU] = US - STOP; 

I 

SEDIT, the front-end program for SAM, has been ported from DOS to OSl2. It 

executes as a separate session and communicates with the PMU and DMU via Dual Port 

Memory (DPM). The control interface of SEDIT, SAMIO, is disabled in VSAM. The 

only debugger commands that work are the Dual Port Memory display and modify 

commands. The fkctionality of S A M 0  and the SEDIT debugger has been moved to the 

VSAMjr units described below. 

The moving of the control hnctionality from SEDIT to the VSAMjr units 

uncovered interesting time dependencies that were not anticipated at design time. In 

retrospect, more control fhctionality should have gone into the VSAM session user 

interface rather than the VSAMjr units, particularly startup and execution control. A 

command sequence at the VSAM level could have specified the timing dependencies 



contained in SEDIT. As it was, a number of semaphores were added strictly to maintain 

execution order. The sources of these dependencies were initialization protocols among 

the units that utilized DPM locations and registers in the SJPM Pipe unit as signals. It 

turns out that during startup, SEDIT must finish initialization before the DMU starts, and 

the PMU must wait for the DMU. Several DPM locations are also used as startup 

parameters. These dependencies are not inherent in the design of SAM, but were 

obviously added during SAM-1 implementation. They were not anticipated during the 

partitioning of function of the VSAM simulator and were only discovered during simulator 

debugging. 

The APL interface of SEDIT has been left as is. Unfortunately the APL character 

set has not been implemented for OSl2. In DOS, SEDIT modified the display character 

generator to implement APL characters. The same approach does not appear possible in 

OSl2. The result is that the special APL characters show up in OS12 version of SEDIT as 

strange symbols. It is not however difficult to interpret the display and it was not deemed 

a high priority to achieve the translation at this time. Various approaches are feasible, 

including turning SEDIT into an OSl2 Presentation Manager application which would 

support arbitrary fonts. 

The PMU and DMU are implemented as separate sessions consisting of the 

VSAMjr simulator, a user interface for debugging and unit control, and an execution 

control interface to the VSAM session. The sessions are called VPMU and VDMU, and 

are nearly identical except for minor details relating to specific differences between the 

PMU and DMU such as Dual Port Memory and the SJPM Pipe. Execution proceeds one 

instruction at a time with the two units kept synchronized by the VSAM session. The 

purpose of the synchronization is to maintain predictable behavior of the simulator during 

debug sessions. If one of the units is stopped by a breakpoint, for example, the other unit 

will wait before executing the next instruction. The synchronization is implemented by a 

message protocol via pipes between the units and VSAM. When a unit is ready to execute 

the next instruction it sends a READY message and waits for an EXECUTE message. It 

turns out that this co-ordination is a large source of OSl2 overhead due to the process 



switching involved. Because of the length of the initial startup code, it was decided to de- 

couple the units during startup and let them run at full speed. The subsequent speed up in 

execution speed of each unit was at least a factor of 10. This suggests that another 

mechanism such as a pair of event semaphores may be a better way to implement the 

synchronization of the units. One semaphore would indicate that a unit is ready, and the 

other would correspond to the EXECUTE message. This scheme avoids the costly 

process switch to the VSAM session. 

The VSAM control interface of the VPMU and VDMU sessions is contained in the 

main fbnction of the unit sessions. The interface consists of establishing access to shared 

resources, initialization, and then proceeding with execution under the control of the 

VSAM session instruction execution protocol. Initialization includes local variable 

settings and also execution of startup commands fiom the user interface, possibly through 

a specified command source file. An outline of the VPMU and VDMU session main 

fimction follows: 



void main( int argc, char *argv[l ) / /  VPMU or VDMU session main. 
I 

/ /  Initialize session 
MSG InitO; / /  Establish comm with VSAM 
VDPM Init ( )  ; / /  Establish DPM access 
smjr. SJMP.  nit ( 1  ; / /  Establish SJMP - MUTEX 
Openstatus ( ) ;  / /  Status Smem 

int msg = 0; 
while( msg != MSG - STOP ) { 

/ /  Reset VSAMJR 
SysClock = 0; 
SAMjr PC = 3; 
~AMjr-pc old = 0; 
SAMj r T ~ ~ T ~ e s e t  ( ) ; 
SAMjr. SMem. Reset ( )  ; 
SAMjr.DPM.Reset ( 1  ; 
VDPM Reset ( ) ; 
stepfiode = 0; 
BreakMode = 0; 
Reset-tracepoints0; 

/ /  Unit Start up - ini file according to command line args 

char *startupfile = VSAMJR-UNIT ".INIW; 
if ( argc > 1 ) 

if ( *argv[l] == I - '  1 
startupfile = 0; 

else 
startupfile = argv[ll ; 

if ( Unitstartup( startupfile ) == ' 2 '  ) 
msg = MSG - RESET; 

SysClock = 0; 

/ /  Execute instructions... 
while( msg != MSG - STOP & &  msg != MSG - RESET ) { 

/ /  Go to user if step, breakpoint, or user input 
if ( ::StepMode 

I I ::Breamode & &  Test breakpoint( SAMjr - PC ) 
I I : : BreakDPMmode & &  ~est-~~Mbreak ( ) 
I I ::BreakCallMode & &  Test-CallBreakO 
1 I ::BreakPipeMode & &  Test-PipeBreakO 
I I  
I l kbhit0 

UserBreak ( ) ; 

/ /  Signal "Ready to execute instruction" to VSAM 
MSG - Send ( MSG - RFADY ) ; 

/ /  Wait for message from VSAM; process user input if any 
while( MSG NULL == (msg = MSG-Get()) ) 

if (-kbhit ( )  ) 
Usercommand ( ) ; 



/ /  Carry out VSAM message 
if ( msg != MSG EXEC ) - 

break; 

/ /  Execute instruction 
ProcessAddress ( : : SAMj r PC) ; 
~dd-tra~e~oint(::SAMjr-~~); 
::SAMjr-PC-old = ::SAMTr PC; 
::SAMjr-PC = SAMjr.~xecute( ::SAMjr - PC ) ;  
if ( : :SAMjr.SimBreak() ) 

SirnBreak ( ) ; 

/ /  Increment System Clock 
::SysClock++; 

3.4 The VSAMjr simulator 

The VSAMjr simulator structure closely resembles the SAMjr hardware. 

Essentially, the SAMjr design was implemented in software instead of hardware. It is 

interesting to note that the software version was much easier to build, but executes about 

1000 times slower than the hardware. 

This similarity in structure is deliberate for the following reasons: 

Ease of development - the simulator was built directly from the hardware specifications 

and ambiguities were resolved by inspecting the hardware. 

Ease of documentation - the same documentation that applies to the hardware applies 

to the simulator. Also, the simulator implementation and the hardware complement 

each other in documenting SAM. 

Ease of verification - the simulator implementation is easy to verifjr step by step by 

comparison to the hardware. 

Ease of instrumentation - instrumenting the simulator is analogous to instrumenting the 

hardware. The same objects and events are involved in both. 



Ease of modeling future modifications to SAM architecture - since the simulator and 

hardware are nearly identical, the designer can try out proposed hardware changes on 

the simulator and evaluate their effectiveness. 

Object oriented techniques were applied to package the various components of the 

simulator into neat modules with well-defined interfaces. This closely represents the 

component nature of hardware. Generally, there is a one-to-one mapping between the 

hardware components and object classes representing them. The VSAM classes with their 

nesting and a brief explanation are: 

samjr SAMjr unit simulator 
sjinst SAMjr microinstruction decoding auxiliary class 
cp-sj 16 SJ16 Control Processor simulator 

cpstack SJ16 stack class 
smem SJMC Memory Controller simulator 
dpm Dual Port Memory simulator 
sjpm SJPM (Pipe) simulator including the I W  and O W  

The highest level class is samjr which stands for the SAMjr processor. In VSAM it 

is instantiated as the PMU and DMU. The definition is: 



class samjr ( 
CMem-instr CMem[CMEM - SIZE]; / /  Control memory 
cp-s j 16 CP; / /  Control Processor 
smem SMem; / /  Segmented memory 
dpm DPM; / /  Dual port memory 
sjmp SJMP; / /  Pipe chip: I W  or O W  

public: 
SAMADDR Execute ( SAMADDR address ) ; 

1 ;  

The only method defined for samjr is Execute() which takes an address as input 

and returns the next address to be executed. As a side effect, Execute() modifies internal 

state. Execution of SAMjr is achieved by the following code: 

samjr SAMjr; 
SAMWORD PC; 
PC = 3; / /  SAMjr always starts executing at 3. 
While( 1 ) 

PC = SAMjr. Execute ( PC ) ; 

There is no defined termination condition for SAM. In case of an error, SAM$ 

usually ends up in a tight loop in an error subroutine so that the error may be detected by 

the user. 

An important part of the simulator is the handling of sub-microinstruction events. 

The SAMjr instruction cycle is divided into 4 phases called T1 to T4. Events within 

SAMjr are co-ordinated with respect to these phases. Some important events are: 

during T4, the next microinstruction is fetched, and the Source and Destination codes 

are placed on SJBUS for co-processors to latch. Part of the SourceIDestination code 

is a select field which activates only the specified co-processor. 

during T2, the selected source co-processor outputs its value onto SJBUS, and the 

selected destination co-processor latches it. 

data operations in the Control Processor start at T3 



The simulator emulates the data flow of SAMjr, but not the actual timing. The 

simulator instruction cycle has the following sequence: 

Fetch the next instruction. 

Invoke the Source processing part of the specified co-processor with the Source code 

as a parameter. Store the return value in variable sjbus. 

Invoke the Destination processing part of the specified co-processor with the 

Destination code and the value of sjbus as parameters. 

Invoke the Control Processor execution processing hnction with the value of sjbus as 

a parameter. 

Each co-processor has a source processing and destination processing part. This 

includes the Control Processor which performs literal, register, and stack input and output 

during the source/destination phase. The Control Processor also has a process part that 

executes the rest of the microinstruction. 



The samjr Execute() hnction controls the order of events within a 

microinstruction: 

SAMADDR samjr::Execute( SAMADDR CMem - addr ) / /  Execute an instruction 
I / /  Return next addr to execute. 

SAMADDR next-addr ; 
SAMWORD SJBUS; 

/ /  Fetch instruction 
sjinstr cur-inst = CMem[ Cmem - addr]; 

/ /  Source processing 
switch ( cur-inst.Source-unit() ) { 

case CP UNIT: 
SJBUS = ~ ~ . ~ o u r c e (  curinst 1;  
break; 

case cur  ern-UNIT : 
SJBUS = DPM.DPM-source( cur-inst.Source() ) ;  
break; 

case SMem UNIT: 
SJBUS = SMem. Source ( cur-inst. Source ( ) ) ; 
break; 

case SJMP UNIT: 
#if;?ef PMU 

SJBUS = SJMP.IW - source( cur-inst.Source() ) ;  
#else DMU 

SJBUS = SJMP.OW - source( cur-inst.Source() ) ;  
#endi f 
break; 

1 
/ /  Destination processing 
switch ( cur inst.Dest-unit ( )  ) { 

case CF UNIT: 
~ P . ~ e s t (  cur-inst, SJBUS ) ;  
break; 

case DPMem-UNIT: 
DPM.DPM-dest( cur-inst.Dest(), SJBUS 1 ;  
break; 

case SMem-UNIT: 
SMem.Dest( cur - inst.Dest(), SJBUS ) ;  
break; 

case SJMP UNIT: 
#ifdef PMU 

SJMP.IW - dest( cur-inst.Dest(), SJBUS ) ;  
#else DMU 

SJMP.OW-dest( cur-inst.Dest(), SJBUS ) ;  
#endi f 
break; 

1 
/ /  CP processing 
next-addr = CP.Process( CMem-addr, cur-inst, SJBUS ) ;  
return next-addr; 

I 



Since a co-processor cannot be both a source and destination, it will at most be 

called once during a cycle. The source and destination parts must complete all processing 

for that cycle in the single call. The source or destination code which is the instruction to 

be executed by the co-processor is passed to the co-processor as a parameter. The typical 

implementation of a co-processor is demonstrated below in a simplified form of SMem. 

Note that in the case of SM-S-SCLR which flushes a data stream and SM-D-SRB which 

initiates a stream, fbrther processing is required to complete the instruction. 

SAMWORD smem::Source( const SAMBYTE source - code ) 

I 
SAMWORD dataout; 
int stream = sdcode stream( source-code ) ;  
switch ( sdcode function( source-code ) ) ( 

case SM S~SORS: 
dataout = SO•’ •’set [stream] ; break; 

case SM S-SBRS: 
dataout = SBase[stream]; break; 

case SM-S-SSN: 
/ / .  . . 
case SM S SCLR: - - 

dataout = 4 - SStatus[stream].BA; 
AOL = Make - SM - address( SBase[streaml, SOffset[streaml ) ;  
Mem-write-request( AOL, SStatus[stream].BS, stream, 

SStatus [stream] .W ; 
break; 

I 
return dataout; 

I 
SAMWORD smem::Dest( const SAMBYTE dest - code, const SAMWORD datain ) 

1: 
int stream = sdcode stream( dest code ) ;  
switch ( sdcode function ( dest-code ) ) { 

case SM-D~SBRD: 
SBase [stream] = datain; 
break; 

/ / .  . . 
case SM D SRB: - - 

SOffset[stream] = datain + 4; 
SStatus[stream].M = MBYTE; 
for ( i = 0; i < 4; i++ ) SStatus[streaml .W[il = 0; 
SStatus[stream].BS = 0; 
SStatus[stream].BA = datain & 0x3; 
SStatus [stream] . BF = 0; 
AOL = Make - SM - address( SBase[streaml, datain ) ;  
Mem-read - request( AOL, SStatus[streaml.BS, stream ) ;  
break; 

I 
return datain; 

I 



The SJ16 control processor class is defined as: 

class cp-sjl6 ( - 
public: 

SAMWORD Register[CP - NUM - REGISTERS]; 
cpstack Stack; 

SAMWORD Source ( s jinstr ) ; / /  Source processing 
void Dest( sjinstr, SAMWORD datain ) ;  / /  Destination processing 
SAMADDR Process ( SAMADDR address, / /  Execution processing 

s jinstr, 
const SAMWORD input-bus ) ;  

private: 
SAMWORD alu ( SAMWORD a, SAMWORD b, int fn, SAMWORD &flags ) ; 
SAMWORD xshift( SAMWORD a, SAMWORD b, int xcount ) ;  
SAMADDR agen( SAMADDR mpc, sjinstr ci, SAMWORD bus ) ;  

I ;  

The Control ~rocesior (CP) data members are the register file and the stack. The 

register file includes the general purpose registers as well as the special registers Counter, 

10, T, and Status. The stack is a simple LIFO stack implemented by the cpstack class. 

The public methods for cp-sjl6 are Source(), DestO, and Process() which implement the 

source, destination and execution part of the SAMjr instruction cycle. Source() handles 

literal specification, and output of register or stack values onto the bus. Dest() handles 

input of stack values from the bus. Process() performs the movement of data among the 

SJ16 internal registers and processing units, and the generation of the next 

microinstruction address. The internal methods invoked within Process() are alu(), 

xshift(), and ageno which implement the ALU, barrel shifter, and next address generation 

logic components respectively. These functions are relatively straightforward though 

somewhat tedious in detail. 

The Dual Port Memory (DPM) co-processor is implemented by the class dpm 

defined as: 



class dpm { 

SAMWORD in - data, out - data; / /  DPM data latches 

public: 
void Reset ( ) ; 
SAMWORD DPM source( SAMBYTE source-code ) ;  
void DPM - dest( SAMBYTE dest - code, SAMWORD sjbus ) ;  

1; 

This definition hides the details of the shared memory implementation of DPM. 

The details consist of a separate named shared memory for each unit session, and a named 

mutex semaphore used to protect access to the shared memory. The names are constructed 

from the values of preprocessor constants. 

The SJMC memory controller is implemented by the class smem defined as: 

class smem { 

SAMBYTE SMem[SMEM SIZE]; / /  Segmented memory - bytes 
SAMWORD TM~~[TMEM-SIZE]; - / /  Translate memory - words 

SAMWORD SOffset[SMEM-STREAMS]; / /  Offset registers 
SAMWORD SBase[SMEM STREAMS]; / /  Base registers 
srnbuff SBuff[SMEM STREAMS][~I; / /  Stream buffers 
SM stream status SS~~~US[SMEM_STREAMS]; / /  Stream status bits 
SKDDR AOL; / /  Address Output Latch 

public: 
void Reset ( )  ; 
SAMWORD Source( const SAMBYTE source code ) ;  
SAMWORD Dest( const SAMBYTE dest-code, const SAMWORD 1 ;  

private: 
void Mem-read-request( SMADDR addr, BIT bs, int stream 1;  
void Mem-write - request( SMADDR addr, BIT bs, int stream, BIT w[] ) ;  

1 ;  

Class smem contains the segmented and translate memory data structures, as well 

as the various data buffers and status bits required. The public methods Source() and 

Dest() implement the controller behavior. The methods accept the instruction byte as a 

parameter and proceed to decode it into the stream number and specific action code. All 

actions that take place in the hardware during the rest of the instruction cycle are 

performed by smem.Source() and smem.Dest() before they return. 

The SJPM Pipe co-processor is more complex than the other co-processors since it 

connects the PMU and DMU. In VSAM, this is achieved by dividing the co-procesor into 

I W  fbnctions which are part of the PMU session, OVU functions which are part of the 



DMU session, and the SJPM shared memory which is accessed by these functions. Access 

to the shared memory is protected by a mutex semaphore. The class and supporting 

definitions are: 

struct sjmp-shared-data { 

/ /  sjmp registers - shared 
SAMWORD s jmp - regs [SJMP - REGISTERS] ; 

/ /  Pipe status flags 
BIT Is, Ir, Os, Or; / /  State bits - shared 
BIT Pe, ISe, Ie, Oe; / /  I W  flags 
BIT OSe, Oep; / /  O W  flags 

/ /  SJMP FIFOs - shared 
SAMWORD FIF0[2] [SJMP - FIFO - SIZE] ; 
int FIFO wcount [2] ; 
int FIFO-maxwcount[2]; - / /  O W  uses this to read the FIFO. 

/ /  I W  syntax tag registers 
int Idest, Ileft, Iright; 

/ /  O W  Tag memory 
SAMWORD TagMem addr; 
SAMBYTE T ~ ~ M ~ ~ ~ T A G  - MEM - SIZE]; / /  lower 4 bits are valid data. 

/ /  O W  Semantic tags 
int Dtag, Ltag, Rtag; / /  lower 4 bits are valid data. 
BIT Lv, Rv; / /  valid tag bits 

I; 

class sjmp { 
HMTX sjmp mutex; 
sjmp - sharxdata *sd; 

public: 
SAMWORD I W  source( const SAMBYTE source-code ) ;  
void I W  dest( const SAMBYTE dest - code, const SAMWORD datain ) ;  
int IW-&~ ( int msg ) ; 

SAMWORD O W  source( const SAMBYTE source - code ) ;  
void O W  dest( const SAMBYTE dest - code, const SAMWORD datain ) ;  
int O W  - msg ( int msg ) ; 

private: 
void SM in(); 
void SM-OU~ ( ) ; 
SAMWORD-IW Crnato; 
SAMWORD IW-status word ( ) ; 
int ~est-shape tags() ; 
int ~ e s t - t ~ ~ e - ~ a ~ s  ( ) ; 
int Dest tags ( ) ; 
int O W  FMat ( )  ; 
BIT 0 W a e  ( ) ; 
SAMWORD O W  status word 1 ( )  ; 
SAMWORD OW-statusIword-2 - - ( )  ; 

I; 



3.5 The VSAMjr debugger 

The purpose of the VSAMjr debugger is to control the execution of the simulator 

and to give the user access to the state of the simulated machine so that the correctness of 

the executing microcode can be determined. The debugger uses a command line interface 

with three groups of commands: 

1. Control of the environment including loading of control memory, scripting, and general 

session control. 

2. Execution control via breakpoints and single stepping. 

3. Object access to data elements, state values, memory contents, and execution history. 

The debugger is an integral part of the SAMjr simulator. Since it must have access 

to internal elements of the simulator, many access and display functions were added to the 

basic simulator classes. (These were left out of the previous SAMjr simulator discussion 

for conciseness.) The debugger is the user interface to the VSAMjr program which 

executes as the PMU and DMU. The debugger is invoked by VSAMjr during startup, 

when a breakpoint is reached, or when the user enters input into the debugger window. 

The debugger is only invoked between SAMjr instructions which are indivisible from the 

user point of view. The VSAMjr main execution loop checks for breakpoints and user 

input before it executes an instruction. In the following (simplified) code fragment from 

VSAMjr, the functions UserBreakO, Usercommand() and SimBreakO invoke the user 

interface. The function SimBreak() is used to signal special conditions such as invalid 

machine operations. 



while( msg != MSG STOP & &  msg != MSG RESET ) { - - 

/ /  Go to user if step, breakpoint, etc., or user input 
if ( ::StepMode 

I I  ::BreakMode & &  Test - breakpoint( SAMjr-PC ) 
I I  ... 
I l kbhit ( 1  
UserBreak ( )  ; 

/ /  Signal "Ready to execute instruction" to VSAM 
MSG - Send ( MSG READY ) ; - 

/ /  Wait for msg from VSAM; process user input if any 
while( MSG-NULL == (msg = MSG - Get()) ) 

if ( kbhit ( )  ) 
UserCommand ( ) ; 

/ /  Carry out VSAM message 
if ( msg != MSG EXEC ) - 

break; 

/ /  Execute instruction 
ProcessAddress ( : : SAMjr-PC) ; 
Add tracepoint(::SAMjr PC); 
::~%ljr PC old = ::sAMTr PC; 
::sAM~~-Pc= - ~AMjr.~xecute( ::SAMjr - PC ) ;  
if ( : :SAMjr. SimBreak() ) 

SimBreak ( )  ; 

/ /  Increment System Clock 
::SysClock++; 

I 

The debugger syntax was kept very simple for ease of implementation. Commands 

were added during development of VSAM as need arose. The basic format is a single 

character which determines the type of command, followed by optional characters for 

modifiers, followed by optional parameters. For example, the memory command 

demonstrates the complete syntax. It is a highly overloaded command since it provides 

access to three types of memory. It has the following forms: 

MS [s] -- display the status of SMem for stream s (or all streams) 
MDD -- display the DPM data latch value 
M(DISIT){VICIF) [addr[{-addrl,count)]][=value] -- View/~hange/Fill memory 

The last form requires hrther explanation. After the M, the first modifier is the 

memory specifier -- one of dual port memory (DPM), segmented memory (SMem), or 

translate memory (TMem). The next modifier is the action, one of view, change, or fill. 

Next come the parameters which specifjl the address range in various forms, and an 

optional value. For example, the command MDV 1000,20 displays 20 values of the DPM 



fiom address 1000. The command MSF 0-100=0 fills the first 100 locations of segmented 

memory with zeros. The memory command also has an interactive mode which steps 

through memory and allows the user to change only selected values. 

Most commands are much simpler. The I command, for example has the form: 

I [ I + l - I 1  [a1 

which shows a disassembled view of control memory fiom the specified address, or 

relative to the previous I command if + or - is specified. 

A novel feature of the VSAMjr debugger is the use of color to highlight key data 

objects in a complex display such as the register file which consists of 32 registers, 4 of 

which are dedicated. The foreground color indicates whether the register has changed 

since the last time it was displayed by using yellow for changed and white for not changed. 

The background indicates special status such as the 10, Counter, Status, and T register 

which each get a dedicated color, and the target register of the last instruction. This has 

turned out to be a very effective technique and represents the first step to a graphical 

interface that would allow the user to organize the display in a meaningfbl way. 

Breakpoints are an important feature of a debugger. The standard type of 

breakpoint specifies a break when a given address is about to be executed. In the VSAMjr 

debugger, these breakpoints are implemented by keeping a list of breakpoint addresses and 

checking this list at the start of each instruction. This is less efficient than the usual 

method of modifjring the instruction, but it has the advantage of leaving control memory 

pristine. The debugger also has breakpoints that examine the SourceDestination codes 

and stop on instructions that use specified units. This is a valuable feature for debugging 

co-processor software. Other breakpoint type features include a break on hnction call and 

return, the execution stack display, and a trace of the last dozen executed instructions. 

A couple of features that did not get implemented due to their complexity, but 

would have been very usefbl are datapoints and reverse execution. Datapoints cause 

execution to break upon access to specified data objects. In VSAM, data objects could be 

various machine registers and flags, as well as locations in dual port memory and 



segmented memory. One possible implementation approach is to maintain a list of all 

datapoints in effect, and search this list for each data object accessed by each instruction. 

This approach seems straightforward in concept, but does require interpretation of each 

instruction in the context of various register values, particularly in the case of segmented 

memory where buffering is taking place. This would probably incur a significant 

performance penalty. An alternative approach would be to give data objects the 

responsibility of knowing when the object is a datapoint, and detecting when the datapoint 

is triggered. This would reduce overhead for each instruction, but would require 

considerable modification to the simulator. 

Reverse execution allows the user to back up from the current instruction to 

determine the events that led to it. This would be particularly usehl in conjunction with 

breakpoints and datapoints, especially if the user could then modify some value and 

proceed with forward execution. The basic problem in reverse execution is that all the 

changes precipitated by each instruction must be reversible, and must be recorded during 

execution. Besides the performance and storage costs of this approach, reversibility may 

be limited by cascading changes. 

During the development of VSAM, the debugger was used in reverse to the usual 

order of things. The program was assumed to be correct; it was the simulator that was 

being debugged. The process is essentially the same - the program is executed and the 

change in the state of the machine is monitored - except that the simulator program is itself 

run in a debugger, (in our case the Borland C debugger), and monitored. This gets 

particularly complex when multiple instances of the simulator are running each with its 

own (Borland) debugger as in the case of the DMU and PMU. Despite the large number 

of windows involved and the processing overhead, OS/2 was able to support this mode of 

debugging, and the technique proved quite effective. 



3.6 Instrumentation 

Since one of the primary motivations for building VSAM was instrumentation, the 

system includes a simple yet powefil instrumentation methodology. The instrumentation 

design goals were: 

flexibility and extensibility 

ease of instrument hook-up and take-down 

low impact on simulator design 

execution efficiency in space and time 

close analogy to hardware instrumentation methods such as logic probes 

A generic instrument consists of three parts: the probe, the connection, and the 

display. The probe is the sensor that is directly attached to the object being measured. In 

the case of VSAM, the probe is a piece of software that is embedded in the simulator 

code. The probe software obtains the values of relevant variables andlor activities and 

sends them to the display unit via the connection. In VSAM, we chose OSl2 pipes as the 

method of connection based on the flexibility and simplicity of the pipe model. The display 

is an arbitrarily complex program that reads the probe data from the pipe, processes the 

data, and outputs it in some way. The output may be in the form of a visual display in a 

window, a file in trace or processed form, or both. The display program may be a fixed 

display type or may require user input for control. 

An example of an implemented VSAM instrument is Callvue which captures 

subroutine calls and returns executed in the SAMjr microcode. This instrument was the 

first one built and was extremely usefbl during the debugging of VSAM. The Callvue 

display shows the names of subroutines as they are called in an indented call tree. The 

Callvue probe is attached to the SAMjr simulator in the next address generation module of 

the SJ16 control processor. If the next address action is a call or return, the probe sends a 

record down the pipe. The record specifies the current address, whether a call or return, 



and if a call, the target address. The display part of Callvue translates call addresses into 

subroutine names via a load map file and displays the name and address positioned 

according to the current call nesting level. Return records are only used to decrease the 

call level. 

Callvue information is also used to build a dynamic call profile of how many times 

each subroutine was called and by whom. The call information is accumulated in the 

"calls" matrix where each element M[i]G] counts the number of times subroutine i calls 

subroutine j. The "calls" matrix is stored in a file at the end of a run. It is processed off- 

line to produce a histogram of often called subroutines. The transpose of the "calls" 

matrix corresponds to the "is-called-by" matrix where each element M[i]u] counts how 

many times subroutine i was called by subroutine j. The sum of a given row of the "is- 

called-by" matrix corresponds to the total number of times a subroutine was called. A 

dynamic call tree (as opposed to a static one) can be obtained from the "calls" matrix by 

following the call chain for each subroutine. The question "who calls subroutine i" can be 

answered from the "is-called-by" matrix. This can be very usehl when a subroutine needs 

to be modified. Yet more information about subroutine relationships can be obtained by 

computing the transitive closure of the two call matrices to obtain a "uses" and "is-used- 

by" view of the software. The later tools are particularly important for software 

archeology - the process of trying to understand a software system from the bottom up, 

usually required when no design documentation is available. 

Another usefbl instrument is the unit utilization trace tool called Utilz. The 

purpose of Utilz is to show the state of the PMU and DMU over time. Utilz shows when 

a unit is busy or waiting, and if waiting, it shows what the unit is waiting for. This is an 

important tool for assessing the degree of parallelism in the system, and determining the 

causes of stalls. The Utilz probe is embedded in the VSAM control module where it 

samples both the PMU and DMU status at once. This approach was chosen in order to 

explore the instrumentation methodology. Utilz is an example of a sampled tool. The 

probe only samples information every n cycles in order to reduce the overhead. The value 

of n is currently set as a compile constant in the probe. 



In general, a VSAM instrument consists of the probe module and the display 

program connected by a pipe, configured in a client-server relationship with the display 

program as the server and the probe as the client. The display program establishes the 

pipe and waits for the probe to connect and start sending data. The display program must 

be started before the probe attempts to connect. If the probe fails to connect, it assumes 

that the display program is not present and effectively turns off the instrument. Generally 

the display program is configured to accept multiple simulation sessions. 

The display program can be display-only with no user input, or fully interactive. 

The probe can be a passive probe which simply sends a one-way stream of data, or it could 

interact with the display via a bi-directional pipe. Such an active probe would contain 

local intelligence regarding when and what to sample. To date only simple instruments 

with write-only displays and passive probes have been built for VSAM. An example of 

where an active probe would make sense is a probe whose sampling rate can be changed 

dynamically by the display unit. 

The probe module is linked into the simulator. It consists of general routines for 

connecting to the pipe and packaging data for transmission, as well as specific routines 

that gather the data and interface with the display program. Calls to the probe routines are 

inserted directly into the simulator code at strategic points, either in the VSAMjr 

instruction execution loop or within specific simulator components. This invasive 

approach allows arbitrary instrumentation flexibility, but does require that care be taken 

not to disturb the environment. Since the probe code is usually quite straightforward, this 

has not been a problem with the instruments implemented so far. For example, the Callvue 

instrument probe is inserted into the cp-sj 16.Process() hnction after the next address has 

been determined. The probe code is shown below. The code that connects the Callvue 

probe to the Callvue instrument is contained in the VSAMjr unit main() function. 



SAMADDR cp - sjl6::Process( SAMADDR ci addr, sjinstr ci, 
const SAMW~RD input-bus ) 

I 
/ /  The data movement part 
. . . 
/ /  COUNT processing - ZC flag is updated at end of cycle ... ... 
/ /  Compute next address 
SAMADDR next-addr = agen( ci-addr, ci, input-bus ) ;  
if ( ci.x(9) == 0 & &  ci.x(l0) == 0 I I ci.actl0 == ACTL-EXEC ) 

Stack.Push( ci - addr+l ) ;  

/ /  Update flags . . . 
/ /  Callvue instrument probe code! Send call/ret msg. 

if ( ci.x(9) == 0 & &  ci.x(l0) == 0 I I ci.actl() == ACTL-EXEC ) 
callvuec call ( next addr ) ; 

else if ( ci.aFtl0 == ACTL - RETURN ) 
callvuec-ret ( ) ; 

return next-addr; 
I 

The instrument display program is an independent session in OSl2. It receives 

data from the probe, processes it, and displays it in an appropriate format. The Callvue 

display program, for example, receives call and return messages from the probe. The call 

target address which is contained it the call message is translated into a subroutine index 

and the name of the subroutine is displayed on the screen indented to the current call level. 

The call level is incremented for calls, and decremented for returns. Since Callvue must 

also increment the Calls matrix for the appropriate subroutines, a simple call stack is 

maintained in order to know who the caller was. The display program may also produce 

permanent files to store results for off-line analysis. In the case of Callvue, the Calls 

matrix is output to a file at the end of a benchmark execution run. 

An important issue in the design of instruments is the definition of important events 

which act as triggers to start and stop data collection and reset. One convenient but not 

very usefbl event is the startup of the instrument itself A more usefbl event is the 

connection of a probe to the pipe for a session. Generally, the instrument should reset 

itself at this time. An example of this is in Callvue, where upon probe connection the call 

level and all entries in the call matrix are set to 0. Other important events are instrument 

specific and must be specified in the probe-display protocol. An example of this is in 



Profile, where a reset record can be sent by the probe to the display program, instructing it 

to reset its counters in preparation for a measurement run. It turns out to be useful to 

reset the display at the start of a trigger rather than at the end (e.g., probe disconnection) 

in order to leave the display for viewing by the user. 

To enable sophisticated instrumentation, a rich choice of system status indicators 

must be available to instrument probes. The status must be globally available, and must be 

easily modified as new requirements are encountered. In VSAM, the Status shared 

memory was added just for this purpose. The need arose during the construction of the 

dynamic execution profile instrument. The profile desired was of the execution phase of a 

benchmark. Because SAM APL links new functions into the environment including the 

special immediate execution function that results in execution, there is a lot of activity on 

either end of the actual execution. The start trigger for the profile was to be when the 

PMU began executing the code for the immediate execution function. The end trigger was 

when the DMU began transferring the result to the ECU. These events were most easily 

localized by execution address, so the simulator was modified to set a flag in Status shared 

memory when the appropriate addresses were executed. The Profile probe watches these 

flags and only samples during the relevant time. 

In retrospect, the use of the Status shared memory should have been incorporated 

into the simulator design as a central mechanism for posting important events and general 

exchange of data among different components of VSAM. The shared memory would 

contain two types of data, a fixed set of status flags that would describe the overall state of 

VSAM, and a flexible named message mechanism which would provide for arbitrary 

communication among cooperating components. Access to Status would be protected by 

a mutex semaphore. The contents of Status would need to be accessible to the VSAMjr 

debugger for full flexibility. The fixed status information could in fact be used to 

implement the instruction execution synchronization between the PMU and DMU which is 

currently implemented via pipes. The fixed information would be very useful for 

instrumentation and general debugging. Some care would need to be taken to ensure that 

Status information is kept well organized and coherent. 



4. Benchmark Analysis Results 

This chapter presents the results of the execution analysis of two APL benchmark 

programs, a scalar implementation of Quicksort called QSS, and a vector implementation 

called QSV. The purpose of this chapter is to demonstrate the use of VSAM to analyze 

the execution behavior of SAM and SAM APL. Detailed interpretation of the results is 

beyond the scope of this work. 

The Quicksort benchmarks were selected because they have been previously 

written by Hoskin [Hos87] to run in SAM APL and have been discussed in [HHS92] and 

[CNS89]. The programs are shown in Appendix A. They are particularly interesting since 

they offer a direct comparison of scalar and vector implementations of the same problem. 

Both versions are recursive and use the algorithm of dividing the input vector into two 

parts based on a pivot value, and calling themselves to sort each part. The primary 

difference between the two benchmarks is in the divide step. The scalar version, QSS, 

manipulates the elements as scalars and uses the traditional swapping approach. The 

vector version, QSV, uses the APL vector fbnction Select (4 to extract all elements less 

than and greater than the pivot. The scalar version performs a lot of branching and 

copying of single values. The vector version performs copying of vectors. 

The analysis data was collected by the Callvue, Profile, and Utilz instruments of 

VSAM. Data was collected only while SAM was actually executing the benchmarks and 

does not include the translation from APL to ADEL, nor the linking of new fbnctions into 

the environment. Data collection began when the immediate execution fbnction 

corresponding to the line of APL to be evaluated began execution, and ended when the 

results were available for display. While each instrument has an on-line display, in-depth 

analysis was performed off-line by importing the trace files into Microsoft Excel [Mic94]. 

The benchmarks were executed under the same conditions with identical sampling rates 

and input. The input size was 10 elements. This is a relatively small size for a sort 

benchmark, but is sufficient to demonstrate the process. The execution speed of a fblly 

instrumented VSAM is rather slow. The 10 element benchmarks each took approximately 



an hour of elapsed time to run. The results reported in [HHS92] show that the vector 

benchmark performance is always better than the scalar version, and that the advantage 

grows with input size. 

The first part of each benchmark run constructs the input vector with a balanced 

distribution. This is not directly relevant to the analysis, except that it shows up as part of 

the run in the time profile graphs, for example Figure 4-2. Since the input generation 

program was nearly identical for both benchmarks, this phase of the run serves as an 

informal reference point among the time series graphs, although they are not exactly the 

same. Since the phase is nearly identical in both cases, it does not affect the results 

significantly. 

A side-by-side comparison of some execution statistics is summarized in Table 4-1. 

The table shows that QSV executed in 26% less time than QSS, and executed significantly 

fewer subroutine calls. While the PMU utilization was higher in QSS than QSV, the DMU 

utilization was lower. This is a reflection of the greater amount of interpretive overhead 

incurred by the scalar version which executed more lines of APL, more APL function calls, 

and more APL branches. The vector version, on the other hand, moved more data within 

the DMU. The PMU and DMU overlap is the fraction of time that both units were busy. 

Surprisingly these figures are very close. Overall, the vector benchmark is more efficient 

Table 4-1: Comparison of QSS and QSV execution statistics 

I QSS~ QSVI % ~ecreasel 

IAPL branches I 91 1 

APL function Calls 
APL lines executed 

[S-M clock cycles 1 48,3501 35,6501 26%1 

25 
122 

~PMU utilization 60%1 46%1 23%1 

35 

PMU microcode subroutine calls 
DMU microcode subroutine calls 
PMU subroutines invoked (of 21 9) 
DMU subroutines invoked (of 252) 

62% 

18 
84 

28% 
31 % 

5,346 
11,702 

79 
107 

DMU utilization 
PMU and DMU overlap 

3,952 
4,851 

79 
1 04 

74% 
35% 

26% 
59% 
0% 
3% 

90% 
37% 

-22% 
-6% 



in each of the APL, SAM, and real-time domain. 

4.1 Utilization 

As a first look at how SAM spends its time, the Utilz instrument was designed to 

record the busylwaiting state of both units during execution. The PMU has three types of 

waits: 

Waiting for a free instruction pipe FIFO to fill. This occurs when the PMU gets ahead 

of the DMU and both FIFOs are full. 

Waiting for a branch destination value from the DMU. 

Waiting for the DMU to finish executing the last instruction and sending results to the 

front-end. This wait only occurs at the end of immediate execution and is ignored in 

the rest of this discussion. 

The DMU has only one type of wait, waiting for a fill instruction FIFO to execute. 

The Utilz trace file records the state of each unit. The file can be analyzed in a number of 

ways. 

Figure 4-1 is a summary of the unit busylwaiting state over the whole benchmark. 

It was obtained by totaling the trace file for each type of state. The figure clearly shows 

that the scalar benchmark took longer to execute. It also shows that the scalar benchmark 

used the PMU heavily, while the vector benchmark used the DMU heavily. This is 

consistent with the discussion in the previous section. 

Figures 4-2 and 4-3 show unit utilization as a time profile. These figures were 

obtained by grouping the Utilz trace file into 50 equal units of time, and calculating the 

busylwaiting state distribution for each group. The time profiles show that there are 

definite phases to the program. The first phase is input generation which lasts about one 

fifth of the run and is identical in both benchmarks. It is marked by a sudden increase in 

the QSS PMU Pipe Wait increase in the top part of Figure 4-2, presumably caused by the 

overhead of copying the result vector from the generation fbnction to the sort finction. 



b 

The next phase in the QSS benchmark is the split of the entire input vector which 

involves a lot of branching in the PMU and scalar data movement in the DMU. This phase 

is identifiable in the top part of Figure 4-2 as many branch waits in the PMU and relatively 

high DMU utilization. As the vectors get shorter the graph gets erratic, but the lower 

DMU utilization is discernible. The QSV benchmark behavior in Figure 4-3 is somewhat 

easier to see. DMU utilization is consistently high due to the amount of vector copying. 

On the PMU side the amount of busy time increases as the recursion winds up and the 

vectors get shorter, then decreases as the recursion unwinds and the result vector gets 

built. 

ass OSS c5v 
PMU DMU 

Figure 4-1: PMU and DMU utilization summary for QSS and QSV 
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Figure 4-3: PMU and DMU Utilization Time Profile during QSV 



A significant efficiency problem arises fiom APL's peculiar branching mechanism 

which uses data values as control flow targets. Since the target line of a branch statement 

is a data item in the DMU, the PMU must request the value fiom the DMU. The 

D4SNDSTK instruction directs the DMU to send the top of stack value to the PMLJ via 

the SJPM (Pipe) registers. The PMU must wait until the value is delivered. Since this 

empties the instruction pipe, a significant overhead is incurred for each branch. Figure 4-4 

demonstrates the branching overhead in a time trace which shows the wait state of both 

units for a small period of time at the start of the benchmark execution. The PMU must 

first wait for a fiee FIFO to send the stack request, then wait for the stack value, then 

resume execution at the new address. The DMU is idle while it waits for the PMU to 

resume the instruction stream. The branching delay is clearly more significant in the scalar 

version of the benchmark which does far more branches than the vector version (91 vs. 

Figure 4-4: Utilz trace showing the effect of APL branching 



35). The higher Branch Wait counts and lower D M '  Utilization for the QSS benchmarks 

shown in Figure 4-1 are a symptom of this effect. Branching is always a source of stalls in 

pipelined computers, but the problem is particularly acute in APL since the branch 

instruction is so general. The same mechanism serves for unconditional branches, 

conditional branches, and function returns. Only conditional branches need to incur this 

overhead. The other two types should be treated separately by assigning ADEL formats 

for them. APL*PLUS 111 [Man941 has added structured programming constructs to APL 

( if-then-else, and loops) which would allow the use of branch prediction techniques. 

4.2 Execution Profile 

The Profile instrument is used to obtain the distribution of execution time among 

the subroutines of SAM APL. Profile produces a trace file of the subroutine that was 

executing in the PMU or DMU during periodic execution sampling. From this trace, an 

execution profile of the program can be constructed by subroutine and by module. Figure 

4-5 shows a summary of the profile for QSS and QSV grouped by module. This figure 

and the subsequent time profile figures, Figure 4-6 and Figure 4-7, correspond to the 

utilization figures described in the previous section. The profile figures show the relative 

execution times of the different components of the SAM APL software. As the summary 

Figure 4-5 shows, QSS took longer to execute and spent more time in every module 

except PMU Pipe Wait and DMU Memory Management. Since the PMU looks after 

branching and function invocation, during QSV, the PMU has much less to do, which 

explains the higher waiting time. The PMU is simply waiting for the DMU to finish an 

instruction, so that it can load the next instruction into the pipe. The DMU is kept much 

busier in QSV copying intermediate vectors, which explains the higher Memory manager 

use. Because the operands in QSV are vectors rather than the scalars that QSS moves, the 

DMU executes fewer instructions, but more work is done. This is precisely the design 

goal of the Structured Architecture Machine which attempts to reduce interpretive 

overhead. 



The time profiles show how work is distributed among SAM APL components 

over the duration of execution. As with the utilization figures, the fnst phase of each 

benchmark is the generation of the input vector. The prof~les show that a significant part 

of the PMU'S work time is spent in the Environment and Linker modules which look after 

function invocation. The DMU spends a large part of its time in the Data Access Table 

(DAT) and Memory Manager modules. During the vector benchmark, the DMU Memory 

Manager shows a dramatic increase in use compared to the scalar benchmark The format 

routines directly account for a small portion of the execution time. 

ass 
DMU 

Figure 4-5: PMU and DMU Execution Profile Summary by Module for QSS and 
QSV 
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F i r e  4-6: Profile of PMU and DMU during QSS benchmark 
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Figure 4-7: Frofile of PMU and DMU during QSV benchmark 



The Profile instrument gathers statistics on the relative execution times for each 

subroutine in a unit. The top 10 subroutines for each unit are shown in Table 4-2 for the 

scalar benchmark, and in Table 4-3 for the vector benchmark. The dominance of the pipe 

and branch wait subroutines is obvious. The next point of interest is that the top 10 

subroutines account for a large portion of the execution time, particularly in the PMU. 

The relevance of this point is that optimization of these routines will have a large effect on 

overall execution time. Subroutine usage is hrther discussed in the next section. 

Table 4-2: Top 10 PMU and DMU subroutines by execution time during QSS 

Table 4-3: Top 10 PMU and DMU subroutines by execution time during QSV 

4 
5 
6 
7 
8 
9 

4.3 Call Counts 

The Callvue instrument produces a 

Calls[ij] is the number of times subroutine 

RELlVUPlPE 
IFETCH 
PUSHST 
READST 
STARTSTSl 
CHKPT 

Calls matrix in which the value of element 

i calls subroutine j. There are many ways to 

54 
53 
24 
2 1 
19 
14 

8% 
7% 
3% 
3% 
3% 
2% 



use this matrix, but for the purposes of performance analysis, the most usehl is to sum the 

rows of the transpose of Calls, producing a table of how many times each subroutine is 

called. When this table is sorted in decreasing order of the number of times called, a 

profile of subroutine invocation is obtained. The call profile is significantly different fiom 

the execution profile. For example, a routine such as FETCH which is the main 

instruction processing loop in the PMU, is only called once, but executes for the duration 

of the run and accumulates 10% of the execution time. The top 10 subroutines for each 

unit for the vector benchmark are shown in Table 4-4, with the corresponding execution 

weight shown for comparison. RECVCONST is a very short DMU subroutine called by 

DWAITPIPE. Although it accounts for a large number of calls, it accumulates no 

execution time. 

Table 4-4: Top 10 called subroutines in the PMU and DMU during QSV 

Perhaps the best use of call count information is to understand how many times 

particular events took place during a run. For example, since the subroutine UDFCALL is 

called when an APL fkction is invoked, the call count for UDFCALL indicates the 

number of APL fbnction invocations. Similarly, the subroutine P4NXTL is called at the 

end of each APL line and P4BSTK for branching. Table 4-5 shows some interesting call 

counts for the two benchmarks. The subroutine STARTSTSl is called to start the ADEL 

instruction stream fiom PMU Segmented Memory. It represents a significant delay which 



could perhaps be reduced through the use of multiple instruction streams. WNTEDEST 

is a DMU DAT subroutine which copies a temporary result to its destination. 

  able 4-5: Call counts for various PMU and DMU subroutines for QSS and QSV 

Subroutine QSS QSV 
UDFCALL 
P4 NXTL 
P4BSTACK 

Io4* 1 
WRITEDEST 335 209 
STARTSTSl 
PWAlTPlPE 422 238 

The relative frequency of the instruction formats and operators is an important clue 

to the work done by SAM. Since each format and operator are implemented as separate 

subroutines, their call counts correspond to their frequency. Tables 4-5, 4-6, and 4-7 

compare the instruction and operator subroutine counts for QSS and QSV. 



Table 4-6: PMU instruction format subroutine call counts for QSS and QSV 

Subroutine I Calls I % of Calls 
P4NXTL 1 122) 22% 

Subroutine ( Calls I % of Calls 
P4NXTL 1 841 27% 



60 

Table 4-7: DMU instruction format subroutine call counts for QSS and QSV 

Subroutine I Calls1 % of calls 

Table 4-8: DMU operator subroutine call counts for QSS and QSV 



5. Conclusions 

The goal of this work was to develop a method for observing and analyzing the 

behavior and performance of parallel computers. The VSAM performance analysis tool 

described in this thesis accomplishes this goal for the Structured Architecture Machine 

(SAM), a distributed-function multiprocessor computer. The SAM-1 prototype has been 

simulated in software and its performance on existing benchmarks was measured. The 

design and implementation of VSAM is described herein and the results of the benchmark 

measurements are presented. 

A simulator-based 'approach to performance analysis was chosen after initial 

experiments with the prototype hardware showed it to be difficult to instrument and 

generally hard to work with. Simulation is a proven method of analyzing the behavior of a 

complex system. The main benefits of simulation are the degree of control that can be 

exercised over the simulated system, and the ease with which the system can be changed to 

explore the effects of proposed alterations of the system. Simulation is also an excellent 

platform for measurement because of the direct access provided to all internal objects and 

events. 

The main challenge of the simulator-based approach was the specification of the 

complex SAM architecture in a software model. A detailed and structurally accurate 

model was required in order to measure the execution of benchmark programs written for 

the prototype. The VSAM model was written in C++ and runs under 0 9 2 .  The object- 

oriented nature of C++ was exploited to represent the modular structure of the SAM 

hardware. The multi-processing capability of OS/2 was used to partition SAM processors 

into separate processes. The resulting system closely resembles the structure of the 

hardware, and can be readily modified to explore alternative architecture configurations 

such as adding more processing units or extending the capabilities of the SAM 

components. 

VSAM runs about 1000 times slower than the SAM-1 prototype. A large part of 

this difference is due to the multiprocessing overhead of OSl2 which could probably be 



significantly reduced by a better inter-process communication strategy. Late in the project, 

the STATUS shared memory was added in order to make available the status of various 

system components for instrumentation. In retrospect, the shared memory should have 

been a central part of VSAM both for instrumentation and general process control. In the 

current control scheme, the PMU and DMU processes co-ordinate execution of 

instructions through the VSAM process via commands passed through OSl2 pipes. This is 

very inefficient and unnecessarily complex. The STATUS shared memory could contain 

flags that achieve the same effect without the overhead of switching context to the VSAM 

process. As more processors and instruments are added to VSAM, the STATUS shared 

memory will become an important central feature. 

The current user interface to VSAM is text oriented. While this is efficient from 

the implementation point of view, a graphical interface would better serve the VSAM user, 

particularly when VSAM is used for debugging SAM software. The main problem is the 

large number of commands a user must be familiar with, and the large amount of 

information that is presented to them. A graphical interface would allow users to focus on 

parts of the system that are changing and of direct interest to the problem at hand. VSAM 

makes some attempts at helping the user through the use of color to highlight changed 

values and these were found to be very effective. A graphical interface could also be very 

usefbl for observation of the system during execution. For example, animation could be 

used to indicate changes in the system, and instruments could be attached directly to 

elements to be monitored. The initial design of VSAM was graphically oriented, but this 

proved to be very difficult to implement and was abandoned as too ambitious under the 

circumstances. 

Overall, VSAM represents a good start at an architectural modeling tool. Given 

the complexity of modern computer systems, such modeling tools are an essential part of 

the design process. Future graduate projects could expand the capabilities of VSAM as 

the need arises. 



6. Appendix 

This appendix shows the SAM APL source code for the Quicksort scalar QSS and vector 

QSV benchmarks. The code may look peculiar due to SAM APL limitations. 

QSS is a shell which calls QSSINNER to do the work. The variable ANS is used as a 

global place-holder for the data being sorted. 

V ANS+LEF QSS ARG; RYT 
111 ANScARG 
12 I RYT++/PANS 
131 LEFcl 
141 ARG*O+LEF QSSINNER RYT 

v 

QSINNER splits the vector to be sorted into two parts based on the pivot, and calls itself 

recursively to sort each part. 

V PTR+LEF QSSINNER RYT;T 
[I1 PTR+l3 
121 +(LEF>RYT)/O 
131 PTR+(LEF QSSPLIT RYT) 
[ 4 1 T+ ( LEF QSINNER PTR-2 
[51 T+(PTR QSINNER RYT) 

v 

QSSPLIT arranges the data vector ANS[LEF] to ANS[RYT] so that upon return lower 

values are to the left of PTR, and higher values to the right. 



V PTR-LEF QSSPLIT RYT;VAL 
111 VAL+ANS[LEFI 
[ 2 1 PTR+LEF+l 
[31 +(PTR>RYT)/8 
14 I +(VAL<ANS[PTRI )/lo 
[51 ANS[LEFl+ANS[PTRI 
[ 6 1 LEF+LEF+l 
171 +2 
181 ANS[LEFl+VAL 
[91 +O 
[lo1 +(PTR=RYT)/8 
[Ill +(VAL>ANS[RYT1)/14 
[I21 RYTeRYT-1 
[I31 +10 
1141 ANS[LEFl+ANS[RYTI 
1151 ANS[RYTlcANS[PTRI 
[I61 RYTcRYT-1 
[I71 +6 

V 

QSV is the vector version of Quicksort. It calls itself recursively twice, once with the 

values less than or equal to the pivot, and then with the values greater than the pivot. It 

then catenates the two results and the pivot in proper order. 

v ANSeLEF QSV RARG 
[ll ANStRARG 
[2 1 +(2>PRARG)/O 
131 LEF+RARG[ll 
[41 RARGcl4RARG 
151 ANS+LEF,2 QSV (LEFIRARG)/RARG 
I61 ANSc(2 QSV (LEF>RARG)/RARG),ANS 

v 

QARG builds an input vector of the specified length with a balanced order. 

v VECcPIVOT QARG LEN 
[I1 +(LEN>2)/5 
[2 1 VECeLLEN 
[31 +O 
141 PIVOTc(LEN DIV 2) 
[5] VECc(2 QARG PIVOT-1) 
[61 VEC+PIVOT,VEC,PIVOT+VEC 
[7] +(LEN=PVEC)/O 
[ 8 1 VEC+VEC, LEN 

v 



7. Glossary 

ADEL 

CAT 

CP 

DAT 

DMU 

DPM 

FIFO 

I W  

O W  

PMU 

SAM 

SAMjr 

SJ16 

S JMC 

S JPM 

SMem 

TMem 

VSAM 

A Directly Executable Language 

Countour Access Table 

Control Processor 

Data Access Table 

Data Management Unit 

Dual Port Memory 

First In First Out 

Instruction Verification Unit 

Operand Verification Unit 

Program Management Unit 

Structured Architecture Machine 

a unit of SAM consisting of a microprocessor and co-processor 

a custom VLSI microprocessor for SAMjr 

SAMjr Memory Controller 

SAMjr Pipe and Mail processor 

Segmented Memory 

Translate Memory 

Virtual SAM 

VSAMjr Virtual SAM$ 
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