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Abstract 

This thesis describes a case-based reasoning (CBR) system, ISCN Student, which 

acquires its knowledge from a previously developed rule-based knowledge system, 

ISCN Expert. That is, ISCN Student is a second generation knowledge system that 

learns from a first generation one. ISCN Student has been shown to perform with 

the same competence as ISCN Expert once trained. The architecture for this solution 

is based upon the creation of a general purpose object-oriented CBR framework, 

written in Smalltalk, that has been specialized to develop ISCN Student, but which 

is applicable to other CBR problem domains. 

ISCN is a notation used by geneticists to describe chromosome defects; the 

functional purpose of both ISCN Expert and Student is to interpret expressions in 

ISCN. To this end, several supporting paths of novel research have been pursued in 

addition to the above. First, a grammar and associated parser for ISCN were created. 

Second was the development of a visual manipulation system for displaying 

chromosome defects and introducing new abnormalities as cases to ISCN Student. 
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Introduction 

A case-based reasoning (CBR) system, ISCN Student, whose input training cases are the 

output from a prior rule-based knowledge system, ISCN Expert, is described in this 

thesis. That is, ISCN Student is a second generation knowledge system that learns from 

a first generation one using case-based reasoning techniques. The problem domain is 

the interpretation of a notation used by cytogeneticists to represent chromosomal 

abnormalities, the International System for Human Cytogenetic Nomenclature (ISCN). 

The singular feature of ISCN Student is that it successfully interprets ISCN expressions, 

constructing a deep interpretation model, yet it has no inherent domain knowledge. 

ISCN Student acquires its competence by learning from ISCN Expert. 

As  well as the interpretation of ISCN expressions, alternate representations of both 

expressions and interpretations are investigated in this research. It uses a visual 

metaphor whereby one can view standard chromosome ideograms associated with an 

expression, and introduce new defects via direct visual manipulation. Visually modifying 

chromosome ideograms causes the underlying symbolic ISCN expression to be modified, 

which then causes the case-based reasoning component to attempt to construct a new 

interpretation model for the altered expression. 



A further development in this work is the first definition of a generalized object- 

oriented framework model for case-based reasoning systems. A s  well, the first formal 

grammar specification of the ISCN language, which has been shown to be an LR(1) 

grammar, has been defined. 

This work is of interest to several disparate groups. CBR researchers can use the 

general purpose object-oriented CBR framework as a common base for specialized 

systems, sharing common factored objects and behavior. This group may also find 

noteworthy aspects in the discussion of alternate input strategies using visual 

manipulation, and the potential for specialized matching and adaptation strategies 

which can be selectively introduced. Industry CBR developers can use the framework as 

a springboard to new systems, reducing reinvention. Researchers in automated learning 

and induction will find points of interest in the methods used to interpret input cases, 

and to automatically determine generalization concepts. 

The thesis chapters cover the following material: 

1. This introduction. 

2. Background to this work, such as basic genetics and case-based reasoning 

(CBR) concepts. In this section an explanation of ISCN syntax is given, plus a 

review of related work. 

3. A sample demonstration of ISCN Student at  work. Screen captures of a session 

using ISCN Student illustrate the entire sequence of use. The effect on the 

semantic network of cases by using the system is illustrated. 

4. Description of the ISCN grammar and how expressions are parsed. Abbreviated 

grammars for both the short and long form of ISCN are presented and illustrated 

with an  example. The entire grammars are presented in Appendix A. 

5. The system architecture from the point of view of process and object models. 

Data flow diagrams are used to describe the processes in ISCN Student and its 

relationship to ISCN Expert. An object model, or extented entity-relationship 



diagram, based on OMT notation is given for the generic object-oriented 

framework for CBR systems. 

6. Explanation of how the output interpretations from ISCN Expert are translated 

into cases in the CBR system. ISCN Expert creates a text file of interpretations; 

Student must read these and transform them into cases in a semantic network. 

This work includes the creation of generalized classes of concepts in the 

network. 

7. Analysis of the process and logic used in the CBR matching phase. Given a new 

case represented as an ISCN expression, ISCN Student must find the closest 

existing cases in memory, and rank them from best to work match. 

8. Analysis of the process and logic used in the CBR adaptation phase. Once a 

priority queue of closest matching cases is found, the adaptation phase must 

construct a new case from a synthesis of the existing cases. In this section a 

detailed description of the logic for this process is presented. 

9. Overview of the visual manipulation subsystem: how the topology of abnormal 

chromosomes is computed, how the ideograms are drawn, and how visual 

changes initiate new CB reasoning processes. 

10. Evaluation of the performance and correctness of ISCN Student. Student was 

measured with respect to the time required to interpret a new ISCN expression; 

the results are compared to the performance of ISCN Expert. Likewise, the 

correctness of Student's results are compared for new cases to that of ISCN 

Expert. 

11. Future research possibilities and salient conclusions of this research. 

1. I Problem Statement 

Create a CBR system that can interpret and encode the output of ISCN interpretations 

from ISCN Expert, representing them as cases in a CBR memory. When the CBR system 

is presented with new ISCN expressions create new interpretations that are as correct at 

1 those produced by ISCN Expert. As  well, create a visual subsystem in the CBR system 



that displays the chromosomes and their defects, and which allows the introduction of 

new ISCN cases via visually manipulating the chromosome pictures. 

1.2 Scope 

ISCN Student has been limited to solve for a subset of sentences within ISCN grammar - 

- those dealing with terminal deletions and reciprocal translocations. 

The visual manipulation system has been limited to display of chromosomes 1 

through 5, and X and Y. This is because of excessive time delay in displaying any more 

chromosomes; the graphics are computationally intensive. 

Case memory was limited to tests with twenty or less cases as input. Larger input 

sets are possible, but physical memory limitations created a physical constraint on the 

size of test cases. 



Background 

2.1 Genetic Terminology and Concepts 

The genetic material of cells, which determines all physical characteristics and 

functions, is represented in chromosomes, which are composed of tightly packed DNA 

molecules. In each cell of a normal human is found an identical set of 46 chromosomes, 

which are a configuration of 23 pairs: the sex pair ("XX" for females, "XY" for males) and 

22 pairs of autosomes, numbered 1 through 22. One member of each pair is inherited 

from the father, the other from the mother. 



Band 
~ 1 3  

Region q2 

Figure 2.1 The structure of chromosome 4 

A chromosome has a sequence of contiguous sections that appear in alternating 

light and dark bands when stained using various chemical techniques. Each 

chromosome has a characteristic constriction called the centromere, which divides the 

chromosome into a short (petite) 'p' arm and a longer 'q' arm. The arms are segmented 

into major sections called regions, that are numbered in increasing order from the 

centromere outward. For example, regions 4p1, 4p2, ... Further, regions may be 

subdivided into sections called bands, such as  4p11, 4p12, 4p2 1, 4p22, . .. (Figure 2.1). 

Chromosomal abnormalities involve deviations with respect to the number of 

chromosomes (numeric abnormalities) or their structure (structural abnormalities). They 

may be either congenital, such as inherited from the parents, or acquired, such as due 

to a cancer. Physical abnormalities usually result from chromosomal abnormalities. For 

example, a numeric abnormality in which there are 3 rather than 2 chromosome 



number 21s results in Down Syndrome. A structural abnormality in which a terminal 

portion of chromosome number 5 is deleted (missing) may result in Cri du chat 

syndrome. 

Cytogeneticists specialize in the investigation of chromosome abnormalities. For 

inspection, a sample set of chromosomes from a cell is isolated and stained to produce a 

fluorescent banding pattern. A picture is taken and the individual chromosomes are 

identified, enlarged and grouped into a karyotype for visual inspection. Chromosome 

defects can then be identified and recorded. The symbolic short-hand notation used to 

describe the karyotype and the observed abnormalities is called ISCN. 

2.1.1 Structural Chromosomal Abnormalities 

There are many categories of structural abnormalities, this discussion will use only two, 

in order to simplify examples. 

The first is a deletion (or terminal deletion), in which the end portion of a 

chromosome arm is broken off and lost. The break can be identified by the chromosome 

number and band a t  which the break occurred. 

The second is a translocation (or reciprocal translocation), in which there is an 

exchange of chromosomal segments between two chromosomes. The break can be 

identified by the two chromosomes, and for each, the band a t  which the segment broke. 

2.2 ISCN Expressions 

Cytogeneticists describe chromosomal defects using a standard notation, the 

International System for Human Cytogenetic Nomenclature (ISCN). This notation 

describes the: 



number of chromosomes 

sex chromosomes 

numerical abnormalities 

structural abnormalities 

For example: 

Normal Female - 46 chromosomes with the XXsex chromosomes 

46,xx 

Numeric Abnormality - Extra Chromosome 21 female with possible 
Down Syndrome) 

47,xx, +21 

Numeric Abnormality - Missing Chromosome 15 

4.5,~~)-15 

Structural Abnormality - Terminal Deletion at Bandpl4 on 
Chromosome 5. (Figure 2.2) 

46,xx,del(5)@14) 

Structural Abnormality - Translocation between chromosomes 2 and 
3, with breakage's at 2q31 and 3 ~ 2 1 .  (Figure 2.3) 

46,xx, t(2; 3) (q3 1 ;p2 1) 



Com bination of Abnormalities 

4 7,xx, +2, t(2; 3) (q3 1 ;p2 I), del(5) @I 4) 

Break at p 14 

Figure 2.2 Chromosome 5 for 46,xx,de1(5)(p14) 



Figure 2.3 Chromosomes 2 and 3 for 46,xx,t(2;3)(q31;p21) 

2.2.1 ISCN Long Form Expressions 

ISCN defines a detailed notation for structurally modified chromosomes. A double colon 

(::) is used to indicate break and reunion, an + is used to indicate a from-to range, the 

end of a chromosome is signified as qter or pter, and the centromere is denoted by cen. 

i For example: 



ISCN Short Form 

2.3 From Expert to Student 

ISCN Long Form 

ISCN Expert, the prior first generation knowledge system, uses explicit domain 

knowledge represented in the form of Prolog rules to interpret ISCN expressions (Cooper 

1990). This hard-won knowledge was gathered from intensive study of related literature 

(Harden 1985) and extensive interviews with a domain expert (Friedman 1986). ISCN 

Expert has achieved an expert level of performance and can interpret a very substantial 

subset of ISCN expressions, including those that contain complex and subtle issues of 

interpretation. ISCN Expert produces as output a detailed textual interpretation of the 

ISCN expression. 

The genesis of ISCN Student, a second generation system, was to extend ISCN 

Expert in some interesting or useful way; for example, to increase the knowledge base or 

investigate the visualization of chromosomes. An additional goal (of the author) was to 

ensure the emphasis of the research fell within the Computing Science domain, rather 

than being a exercise in pure genetics knowledge acquisition. Reflection on these goals, 

in conjunction with parallel research into models of medical knowledge systems, and 

the generic use of case-based reasoning systems, led to an inspiration: it would be both 

possible and intriguing to explore the creation a second generation case-based 



reasoning system that would learn, via the ISCN Expert interpretation cases, to also 

interpret ISCN expressions. This second generation system, ISCN Student, also afforded 

the opportunity to investigate other interesting research questions, such as how to 

model a visual manipulation system for chromosomal defects, and how to create an 

object-oriented model for CBR systems. 

2.4 Case-Based Reasoning 

Case-based reasoning (CBR) draws inspiration from a cognitive model emphasizing 

memory, recollection and adaptation in problem solving and interpretation. The seminal 

work in the field is from Roger Schank and his researchers in the Yale A1 lab (Schank 

1982, Kolodner 1986). The CBR model is based on reasoning in new situations by 

remembering previous similar cases of problems and solutions and adapting the old 

solutions to fit the new case situation. 

Figure 2.4 A Basic Case-based Reasoning Cycle 

A CBR system has a dynamic memory that records old cases and their solutions. 

Reasoning about a new input problem case involves finding the most similar matching 

old case or cases and adapting its solution. The new case and its solution are then 

added to memory, and in this sense the system can be said to dynamically learn (Figure 

2.4). CBR systems can also acquire domain knowledge by reading new sets of completed 

+ 
Add New 
Case to 
Memory 

- 

Get New 
Case 

7 

Retrieve Best Adapt Old 
Matching Old Solution 

Case 
- 

L 



cases (with their solutions). A CBR memory starts as an empty shell without cases; new 

ones may be added via reasoning and adaptation, or via input of completed cases. As 

case memory grows performance improves, due to the system's larger set of cases to 

match against new ones. The likelihood of matching to an existing case needing little or 

no adaptation increases as  the case memory grows. 

2.4.1 CBR Components 

A CBR system is composed of: 

A memory of cases and supporting knowledge structures. 

The usual representation of memory is a set of MOPS (Memory Organization 

Packages). A MOP is a frame-like object that is the basic unit of memory 

(Schank 1982). MOPS are organized in a graph structure to create a MOP- 

based memory which incorporates generalization-specialization hierarchies, 

multiple inheritance and composition (or arbitrary linkage) relationships. 

Their use differs from classic frame or script systems (Minslq 1975; Schank 

& Abelson 1977) in their application to dynamically changing knowledge 

bases that are altered during CBR reasoning. A MOP is either an abstraction 

or instance: the former representing a class-type object, the latter a specific 

instance of the abstraction. 

A pattern matcher for matching new cases to old. 

An adapter which adapts the solutions of old cases to new ones. 



A human user (or other external system) inputs a new case to the CBR system. It 

matches the new cases to existing ones and uses the best matches to adapt a new 

solution for the new case, which is then added to memory (Figure 2.5). 

new case, 

User newcase cases 

new case 
with adapted 

solution solution 

Figure 2.5 Data Flow Diagram of a Generic CBR System 

2.4.2 CBR Advantages 

Simple model; quick easy development. 

A virtue of CBR in the context of developing real-world applications is its simplicity; 

conceptually the model is easy to grasp, and there is evidence to show that system 

development is quicker and easier compared to other A1 programming techniques, such 

as rule or model-based systems (Goodman 1989, Koton 1988). 

Easy knowledge acquisition; access to large volumes of domain knowledge in the 
form of cases. 

Knowledge engineering, either in terms of identification of heuristic rules or of first 

principles causal models, is painstaking work and prone to error. Plus it requires the 

services of a very highly skilled individual. CBR systems, in contrast, have available to 

them the history of problems and solutions, which are relatively easier to both collect 



and record. Businesses often have large quantities of computer readable past completed 

cases. 

Speed; avoiding the effort to recreate solutions from scratch. 

CBR systems have been shown to outperform other approaches, such as model-based 

programs (Koton 1988), because of the relatively simply computational model. As the 

size of case memory grows there is a dynamic tension of trade-offs with respect to 

performance: potential for slowing the performance because of searching a larger 

memory, versus speeding time to solution by finding an existing case in the large set of 

cases that very closely matches the new problem. Research into this problem, and the 

quick, efficient retrieval of appropriate cases is termed the indexing problem. As case 

memory grows, speed to matches can be improved by the selection of a suitable set of 

indices that provide keys for rapid convergence to appropriate old cases. The choice of 

these indices in non-trivial. Alternative approaches to rapid search are now being 

explored that involve concurrent threads of execution in multiprocessor computers. 

Improved problem solving with use. 

CBR systems have the capacity to improve performance, in terms of solving more 

problems and more quickly, with use; in other words, they learn. As new cases and 

their solution are added to memory, the CBR case set grows and the likelihood 

increases of closely matching a new case to a similar old case (with a relevant solution 

requiring little or no adaptation). In contrast, rule-based systems do not improve with 

use; only by the knowledge engineering process of manually adjusting or adding rules to 

the rule base does it become a better problem solver. In practice, fielded rule-based 

systems tend to suffer maintenance problems because the users don't possess the 

expertise to update the rule base. Likewise, neural networks require a discrete training 

session separate from their use in order to be modified. The ability of CBR systems to 

automatically improve with use makes them very attractive from a maintenance 



perspective. Moreover, users may fine-tune the learning process by vetting and 

adjusting newly adapted solutions to input cases before they are added to memory. 

The ability of CBR systems to learn from past cases and to match on inexact 

inputs is analogous to the advantages that neural networks possess. Yet CBR offers an 

improvement over nets in its capacity to handle higher-level cognitive processing and 

symbolic representations; nets aren't yet good at this. Research in connectionist models 

that attempt to represent symbolic CBR memories may eventually eliminate their 

disadvantage. 

CBR can handle inexact inputs gracefully. 

CBR is potentially robust in handling noise and uncertainty in the input data; the 

matching phase can allow for partial pattern matching on novel cases. The developer of 

the matching algorithms can define to a greater or lesser extent the number of 

attributes that are required to match, and the strength of attribute value matching. For 

example, attribute value matching can be based on strict equality, or commonality 

within a range of values. 

Solutions in domains where algorithms, rules or causal models are not 
developed or understood. 

CBR systems need only problem cases and their solutions, and a means to adapt old 

solutions to meet variations in new cases. 

2.5 Related Work 

2.5.1 Related ISCN Interpretation Work 

Computerized interpretation of ISCN was first described by Dr. Jan Friedman (Friedman 

1986), a geneticist who attempted the construction of an interpretation system (with the 



aid of professional business programmers) in the language COBOL, without the benefit 

of knowledge or techniques from the domains of language theory or Artificial 

Intelligence, such as parsing, semantic representations, rule-based knowledge 

representation, etc. 

The problem was revisited in the latter 1980's by Dr. Glen Cooper, at  the request of 

Friedman (Cooper 1990). Cooper applied logic programming techniques, such as explicit 

rule-based knowledge representation, using the language PROLOG, in order to develop 

ISCN Expert - a very robust ISCN interpreter. 

The architecture and solution strategy of ISCN Student is radically different from 

Friedman's or Cooper's. Friedman's system, as one would expect of a program written in 

COBOL without the benefit of A1 methods, lacked representation richness and 

sophistication of reasoning methods. All information was stored in global variables or 

records of primitive data types; there was no representation for frame-like semantically 

rich concepts, or a semantic network relating concepts. Cooper's system did include 

richer symbolic structures for different aspects of the expressions interpretations, 

stored as Prolog clauses, but their potential relationships were not expressed in a 

network and their was no use of specialization hierarchies to factor and share 

representation. 

The reasoning and control in Friedman's system suffered from the classical problem 

of mixing knowledge and control in a procedural programming language - it was not a t  

all clear what the rules of interpretation were, meta-reasoning was impossible, and 

modification was unwieldy. Cooper's system made a vast improvement by using a rule- 

based solution in Prolog in which clauses matched and fired using Prolog's built-in 

backward chaining inference mechanism. Its main weaknesses were a computationally 

intensive exhaustive search which relied heavily on blind backtracking to match the 

rules of interpretation to the ISCN expression, and lack of meta-logically reasoning or 

learning to improve performance. 



ISCN Student builds primarily on Cooper's work in ISCN Expert, as  the input 

learning cases for Student are the output from Expert. However, Student is more limited 

in its scope of expressions than Expert, as Student's emphasis is on the proof of concept 

for a CBR learning architecture, whereas Expert's emphasis is on a very thorough 

interpretation of most ISCN expressions, suitable for acceptance by cytogenetic experts. 

Therefore Student was constrained to expressions involving numeric abnormalities and 

deletion and translocation genetic defects. 

Besides performing an identical task as Expert, that is, interpretation of 

expressions, Student has a variety of functions and methods which distinguish it. 

Undoubtedly Student's singular novel feature is its ability to learn problem solving skills 

from existing knowledge systems. Further, Student's initial knowledge base is 

automatically induced from a set of learning cases, where Expert's was hand-crafted via 

a human knowledge engineering effort. Student includes a learning function that 

modifies its performance in new problems, learning from prior solutions. While Expert's 

knowledge base and reasoning don't change over time, Student solves new problems 

drawing on previous solutions. In contrast to Expert, Student uses a semantically rich 

network of related concepts, associated by specialization and composition relationships. 

From this, reasoning based on inheritance and aggregation, such as  inheritance of 

abnormalities, was extensively exploited. While Expert's reasoning was based directly on 

Prolog's inference mechanism, Student used a CBR match-and-adapt inference engine 

which, it is claimed, more accurately models the human reasoning process in this 

domain, and which provided the basis for meta-level programming capabilities such as 

dynamic criticism and tracing. Another significant advancement made by Student is the 

visual representation and manipulation possible; Expert allowed only symbolic 

character string inputs and outputs. 

I 

I It is not established how well Student's performance would scale up to a broader 

range of expressions and cases from Expert, but it would certainly require enhancement 



to the case input and adaptation subsystems. Representation changes would not be 

necessary, as the frame-like structures (MOPS) used in ISCN Student are automatically 

derived from the input cases using an abnormality-independent algorithm. 

2.5.2 Related Genetics Work 

Dr. David Searles (Searles 1993) has done research into defining a grammar for DNA 

sequences, based on definite clause grammars implemented in Prolog. From this 

grammar, parsing and reasoning processes are being explored. Note that the DNA level 

of genetic representation is lower than the chromosome level; chromosomes being 

composed of tightly wound coils of DNA. Besides very different aims to ISCN Student, 

Searles' work emphasizes the microcosmic level to ISCN Student's macrocosmic level in 

the world of genetics. As with ISCN Expert, this research was limited to symbolic 

character string representations, in contrast to ISCN Student's visualization 

capabilities. 

2.5.3 Related CBR Work 

ISCN Student relies on the case-based reasoning (CBR) model of problem solving 

(Schank 1982), which is discussed in greater detail in section 2.4. Kolodner lays out the 

state of the art in (Kolodner 1993). She provides an in-depth look at representation and 

reasoning issues through many case studies, but focuses on the semantic level, rather 

than the architectural or implementation level. Where implementation is discussed, 

such as in some of Kolodner's cases, or Schank's survey of CBR implementation 

techniques (Schank 1989)' the solutions are consistently function-oriented, usually 

written in Lisp, and without an organizing systems metaphor. In contrast to existing 

CBR literature's emphasis on semantic level issues, albeit their preeminent importance, 



a contribution embodied in ISCN Student is the definition of an architectural-level 

solution: an object-oriented framework for a generalized CBR system which can be 

specialized for domain dependent CBR applications. 

What further distinguishes ISCN Student from existing CBR work is the source of 

its input cases used for learning - an existing knowledge system. Computer systems 

that perform automated knowledge acquisition from other computer systems are 

presumably uncommon, because a literature search yielded no references of related 

work. The closest work in this area is CASEY (Koton 1988), a CBR system for heart 

failure diagnosis that is built on top of a previous model-based system, the Heart 

Failure Program (Long 1987). If a new case presented to CASEY can't be solved, it 

passes it on to HFP, which returns its results for CASEY to use in subsequent cases. 

CASEY's training cases do not, however, derive from HFP outputs. 

2.5.4 Related Visualization Work 

Recent work in scientific visualization is surveyed in (Hagen 1993) and (Nielson 1990). 

Interestingly, throughout the descriptions the emphasis is on passive display of results, 

rather than on visually manipulating the images to affect the underlying models or 

objects they represent, although this idea is not new - most recently explored in virtual 

reality research. A specific (and apparently not widely exploited goal) of the visualization 

subsystem of ISCN Student was to link the visualization back to the underlying model 

so that there is a two-way linkage. 

Along this vein, Student is the only CBR system (at least as  far as literature 

searches yield) to accept case input via a direct visual manipulation metaphor; all 

existing CBR systems receive their cases in a symbolic character string format. 

In the literature on biomedical computer systems for genetics, there is no report on 

the visualization of chromosome ideograms. ISCN Student contributes to this area by 



defining a representation to store chromosome ideogram graphical information, and a 

means to (relatively) efficiently display ideograms. 



Example: ISCN Student 
at Work 

A sample session using ISCN Student will illustrate its central features. 



On startup, the main window is displayed which shows a list of existing cases in 

memory, and various action buttons (Figure 3.1). 

Load Display MOP Display 
interpretations - memory - chromosome 
from ISCN Expert \ I ideograms 

ISCN Cases 

Figure 3.1 Opening ISCN Student Window 



When the ISCN Analysis window is opened, one can enter ISCN expressions 

directly, or select them from a text file (Figure 3.2). 

Figure 3.2 Translation Window to invoke ISCN Expert and Load Interpretations 

The "Prolog Interp." button causes the ISCN expressions to be interpreted to a text 

output format using ISCN Expert (Figure 3.4). Once completed, the interpretations can 

be loaded into CBR memory via the "CBR Interp." button (Figure 3.3). In this figure we 

see the ISCN Expert output for the expression 46,xy,del(l)(q21q31), which will be input 

(along with the other interpretations) to the CBR load phase that translates them into 

MOP memory cases. 



Figure 3.3 ISCN Expert's Translation Results are Ready for CBR Interpretation 



ISCN Expert's interpretations (Figure 3.4) describe the sex, any abnormal copies, 

the detailed structure of abnormal chromosomes, and the nature of the abnormalities. 

I 
Sex model is male 
Exactly 3 whole copies of chromosome 2 
XNX (2) = extra whole normal chrom (trisomy/xxy/xyy) 

Cell observation is reciprocal translocation 
Cell observation is terminal deletion 
Chromosome 2 is 2pter->2q12::3~21->3pter 
Chromosome 3 is 2qter->2q12::3~21->3qter 
Chromosome 2 is 2p12->2qter 
Sex model is male 
Exactly 1 whole copies of chromosome 3 
Exactly 0 whole copies of chromosome 2 
Exactly 3 whole copies of chromosome 5 
RTB(2,3) = balanced carrier of reciprocal translocation 
TDR(2) = terminally deleted chromosome replaced normal 
XNX(5) = extra whole normal chrom (trisomy/xxy/xyy) 

Figure 3.4 Sample ISCN Expert Interpretation Cases Output 



Once the ISCN Expert interpretations have been loaded, the ISCN Student main 

window can be refreshed to show the new list of cases loaded in MOP memory (Figure 

3.5). 

ISCN Cases 

Figure 3.5 ISCN Student's Main Window after Loading Interpretation Cases 



The "Memory Display" button can be used to display a graph of all MOPS in memory 

- a subject which will be discussed in greater detail later. The graph shown here (a 

directed acyclic graph) illustrates the cases that have been loaded into memory from 

ISCN Expert. Generalizations are to the left, specialization's to the right. Note that 

generalized abstraction cases have been automatically created, such as 47,+<num>, 

from instances such as  47,xxY+3 (Figure 3.6). 

Figure 3.6 MOP Specialization Hierarchy for Interpretation Cases 

From the main window, one can also choose an existing case, and display the 

chromosome ideograms for it (Figure 3.7). In this instance, the ideograms for 

46,xy,del(l)(p21) are displayed. Note that the abnormal chromosome (1) is shown with 

its correct structure; a terminal deletion after lp21. It is coded as "1AW, and the lower 



centre of the display shows the ISCN long form expression of the structure 

(lp2 l+lqter). 

Textual 
interpretation 1 

zoom , I 

, Duplication 

Abstract syntax Terminal 
deletion 

Figure 3.7 Subset of Chromosome Ideograms for 46,xy,del(l)(p21). Note Ideogram 1A. 



From the chromosome ideogram window one can display a textual interpretation of 

the expression (Figure 3.8). This interpretation is stored in MOP memory via associative 

relationships with the case. Note that the sex, total number of chromosomes, and 

abnormality expressions, for example del(l)@21), have been isolated, and a description 

attached. Likewise, abnormal chromosome numbers and ISCN long form expressions 

are expressed for all aberrations. This interpretation is evidence of a deeper semantic 

understanding of the surface ISCN expression, and is constructed from associations 

maintained in MOP memory. 

Figure 3.8 Textual Interpretation for 46,xy,del(l)(p21) 



An abstract syntax tree (AST) may be generated for expressions, from the ideogram 

window (Figure 3.9). An LR(1) parser has been constructed for the ISCN grammar, 

which is used to construct the trees. An exhaustive derivation tree may also be 

generated, but is excluded from this view because of its verbosity. The AST view is not 

directly useful, but the underlying AST and derivation trees are used extensively during 

the CBR matching and adaptation phases. 

File 

Figure 3.9 Abstract Syntax Tree for 46,xy,del(l)(p21) 

An interesting feature of ISCN Student is the use of visual manipulation to 

introduce new ISCN expressions to the CBR engine for potential interpretation (Figure 

3.10). One can add or remove chromosomes, or add structural abnormalities using a 



visual metaphor. The singular feature of this utility is that these changes only affect the 

surface syntax of the ISCN expression, not the underlying chromosome model or case 

represented in MOP memory. For example, visually choosing a chromosome and 

requesting to duplicate it (e.g., choosing to duplicate chromosome 1) causes only the 

surface expression to change with the addition of a "+In to the ISCN expression. The 

visual manipulator subsystem, and indeed the entire CBR system, has no deep 

knowledge of chromosome models or ISCN semantics, and thus is incapable of affecting 

a deep change. The manipulator subsystem has knowledge of surface syntax only, 

knowing that when a chromosome duplication is requested, a "+.?'' can be added to the 

expression. 

How then, is the underlying model or case updated to reflect the visual 

manipulations? Each time a visual modification causes the ISCN expression to be 

modified, the new resultant expression is treated as a new case for the CBR engine to 

interpret. The new expression is matched to existing cases, and a deep semantic model 

(a solution, in this domain) is constructed via adaptation from existing models (recall 

section 2.4). 

In the example of Figure 3.10 chromosome 1 is chosen for duplication and then the 

"+" button is pressed. The manipulator adds a "+I" to the expression, and the CBR 

engine is invoked to attempt to construct a new case and deep interpretation model. The 

matching and adaptation phases are successful and a new case is added to memory. 

The ideograms are then redrawn from the underlying model that was generated via 

adaptation (Figure 3.1 1). 

To summarize the manipulation icons: '+' icon causes a duplication of a 

chromosome; " causes the removal; 'scissor' causes a terminal deletion of a 

chromosome; 'double scissors' causes the interstitial deletion of chromosome material; 

and 'swap' causes exchange or translocation of material. 



Figure 3.10 Visual Manipulation: Choosing an Entire Chromosome 

Figure 3.11 Visual Manipulation: Choosing the "Add" Button Duplicates the Chromosome 



In Figure 3.12 we see another example of visual manipulation. This time a 

breakpoint is chosen on chromosome 2 and then the Terminal Deletionw button is 

selected. Once again, the manipulator subsystem merely updates the ISCN expression 

with the corresponding syntactic changes. Then the CBR engine is invoked to attempt to 

construct a new case and interpretation model for the expression. 

Figure 3.12 Visual Manipulation: Choosing a Breakpoint on Chromosome 2 



An adapted case results, and the new ideogram is show in Figure 3.13. Note that 

the chromosome 2A is shorter, befitting a terminal deletion, and that the ISCN long 

form description for 2A is given on the window. 

Figure 3.13 Visual Manipulation: Choosing the "Cutn Button creates a terminal deletion 



In (Figure 3.14, Figure 3.15, Figure 3.16) we see a similar pattern to the previous 

terminal deletion example. This time, a translocation is added via a visual manipulation, 

and the CBR engine once again is able to adapt a new case and interpretation, 

evidenced by the detailed ideogram display in Figure 3.16. Note the chromosome regions 

on chromosomes 3B and 4C that have been swapped, and the displayed ISCN long 

forms. 

Figure 3.14 Visual Manipulation: Choosing a translocation Between Chromosomes 3 and 4 



Figure 3.15 Visual Manipulation: Choosing the "Translocation" Button creates a translocation 



Figure 3.16 Detail of the Translocation Between Chromosomes 3 and 4 (3B and 4C) 



Further proof that the CBR reasoner of ISCN Student can adapt meaningful deep 

interpretation (represented in MOP memory) is shown in the textual interpretation 

window for the ISCN expression that has been visually constructed in this series (Figure 

3.17). Note that the abnormality sections have been correctly identified, and associated 

with meaningful descriptions. 

Figure 3.17 Textual Interpretation for the Visually Manipulated Case 



An AST can be generated for expressions of arbitrary complexity, as illustrated in 

Figure 3.1 8. 
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Figure 3.18 Partial Abstract Syntax Tree for 47,xy,+l,de1(2)(p2l),t(3;4)(q24;~13) 



Finally, a view of MOP memory shows that each new ISCN case has been added 

with appropriate generalization inheritance relationships. Note that the following cases 

have been added, corresponding to the abnormalities that were introduced: 

File DAG 

Figure 3.19 Modified MOP Memory after Visual Manipulations 



Translating ISCN 
Expressions 

4. I The ISCN Grammars 

The ISCN nomenclature was developed by geneticists as a notational shorthand, 

without consideration to grammatical consistency or parsing (Denver 1960). 

Fortunately, it turns out that ISCN can be expressed by an LR(1) context free grammar 

(CFG) (Listing 4. I), which provides the opportunity to automatically generate a parser 

translator using standard tools such as  YACC (Johnson 1975). As ISCN Student was 

written in Smalltalk, a YACC-like translator generator implemented in Smalltalk was 

used, T-gen (Graver 1992). T-gen can construct a translator that generates both 

derivation and abstraction syntax trees. 

There are two forms of ISCN expressions: short and long. Short form expressions 

indicate abnormalities, but do not explicate the actual structure of each chromosome. 

In contrast, long form expressions, don't state abnormalities, but do show the topology 

of all abnormal chromosomes. 



The ISCN short form expression is at the heart of the CBR matching and 

adaptation, thus the grammar from which derivation and abstract syntax trees (AST) 

can be generated is of central importance. The resultant trees are used in several stages 

of the ISCN Student. One notable use is in the matching phase, where the AST of a new 

ISCN expression is compared to ASTs associated with existing cases. Intersection sets of 

AST abnormality nodes are calculated and used in ordering old cases according to 

closeness of match. 

This (first) CFG for ISCN has been constructed to aid ISCN Student in CBR 

matching and adaptation. A grammar for all abnormalities was not attempted; it was 

limited to numerical aberrations, deletions (both terminal and interstitial) and 

translocations. 

4.1.1 T-gen Grammar Specifications 

As  usual in CFG specifications, T-Gen grammars are designated by a list of 

productions. The left hand side (LHS) of the first production is taken to be the start 

symbol. T-gen supports an extension of CFGs: regular right-part grammars (LaLonde 

1977), which provide improved readability and brevity in production specifications. As 

in YACC, T-gen notation expresses grammar productions as left hand side (LHS) non- 

terminals and RHS sequences of terminals, non-terminals and literals. For example, 

Translocation : 
It' TwoChromTwoBreakRea ; 

The non-terminal expression Translocation is composed of a literal 't' followed by a 

TwoChromTwoBreakRea expression 



Again similar to YACC, in T-gen notation an expression in "r brackets at the end of 

production indicates a node name in an AST. For example, 

Region : 

Arm Num {~egion) ; 

This production specifies that if an AST is being generated, the parent node for an Arm 

followed by a Num will be named Region in an abstract syntax tree. The branch at the 

bottom of the sample AST in Figure 4.20 illustrates its realization. We see the node is 

labeled Region, with a kind of A m  and Number as terminal child nodes. 

Alternate right hand side productions with the same left hand side can be 

consolidated with the use of the I symbol. For example, 

ChSet : 

ChCnt {~hset} 
I ChCnt I , '  SexList {~hset) 
I ChCnt AbnormList {Chset ) 
I ChCnt ' , I  SexList I , '  AbnormList {Chset); 

This declares that a ChSet is either a: 

Alternate Production Example 

ChCnt 46 

ChCnt ',' SexList 46, XY 

ChCnt ',' AbnormList 46,+2 

ChCnt ',' SexList ',' AbnormList 4 6 , ~ ~ , + 2  



Figure 4.20 illustrates the decomposition of a ChSet expression into the major child 

branches rooted a t  ChCnt, SexList and AbnormList nodes. 

I ChCnt ' , I  SexList ich~et j 
I ChCnt I ,  AbnormList {Ch~et ) 
I ChCnt I , '  SexList AbnormList {~h~et); 

----m 
w Region : 

1- 
- 

Arm Num {Region); 
l , ~  

-- 
'-\- 

''Ail 

Figure 4.20 Abstract Syntax Tree for an ISCN Expression 



4.2 ISCN Short Form Grammar 

Complete listings of the short and long form grammars are given in the appendices; a 

subset is shown here for discussion. 

ChSet : 

ChCnt {~hset) 
I ChCnt ' , I  SexList {~hset) 
I ChCnt I f 1  AbnormList {Chset) 
I ChCnt I , '  SexList ' , I  AbnormList {~hset) ; 

ChCnt : 

Num 

SexList : 

XList YList 
I XList 
I YList 

XList : 

ChX XList 

I chx 

YList : 

ChY YList 
I ChY 

AbnormList : 

Abnorm I , '  AbnormList 
I Abnorm 

Abnorm : 

Numer i cAbnorm 
I StructuralAbnorm 

" NUMERIC ABNORMS " 

NumericAbnorm : 

' + I  I ? '  AnyChrom 
1 + I ? '  AnyChrom Sign 
I I + '  AnyChrom 
I I + '  AnyChrom Sign 
1 I -  AnyChrom 
I 1 - 1  I ? '  AnyChrom 

I I + '  ChPartOfDiffLength 



Listing 4.1 A subset of ISCN short form grammar 

Consider a few examples with this grammar. The starting sentence in the grammar is: 

ChSet : 

ChCnt / /  alternate 1 
I ChCnt I , '  SexList / /  alternate 2 
I ChCnt I , '  AbnormList / /  alternate 3 
I ChCnt I , '  SexList I , '  AbnormList / /  alternate 4 

Alternate 1 provides a very brief karyotype description which refers only to the 

chromosome count: 

a person with 47 chromosomes 

Alternate 2, normal karyotypes and those defective only in sex counts are illustrated by: 

a normal male 

a person with an extra X chromosome 

Alternate 3 identifies abnormalities but excludes sex information: 

46,del(l)(p2 1) a person with a terminal deletion 

47,+2 1 ,del(l)(p2 1) a person with a terminal deletion and extra 2 1 



Alternate 4 provides the most information on a karyotype: 

4 8 , ~ , + 2  1 a male with an extra X 

4.3 The ISCN Long Form Grammar 

and 2 1 chromosome 

A grammar for the ISCN long form notation was also needed for ISCN Student to 

perform reasoning and interpretation of ISCN Expert output (Listing 4.2). As mentioned 

in the section on background concepts, the long form notation defines the detailed 

band-level topological structure of chromosomes; in particular, those that are abnormal. 

Associated with each case in MOP memory is a set of long form expressions for each 

abnormal chromosome. These long form expressions are critical to the generation of 

chromosome MOPS that represent the structure necessary for drawing chromosome 

ideograms and their visual manipulation. 



ISCNLongExpr : 

Bandsection I : : '  ISCNLongExpr {lift~ight~hild) 
I Bandsection {~~CNLong~xpr) 
I BandEnd {~~CNLong~xpr) ; 

  and section : 

StartBand ' - > I  EndBand 

StartBand : 

BandEnd 

EndBand : 

BandEnd 

BandEnd : 

Centromere 
I Terminal 
I Region 
I Band ; 

Listing 4.2 A subset of ISCN long form grammar 

An example with this grammar will illustrate typically long form expressions. The 

starting sentence in the grammar is: 

ISCNLongExpr : 
Bandsection I : : '  ISCNLongExpr / /  alternate 1 

I Bandsection / /  alternate 2 
I BandEnd / /  alternate 3 
I 

Alternate 1 defines the typical expression: 

An abnormal chromosome that starts at  the p terminal end and extends 

over the normal range of bands upto Ip13. This is followed by a section 

from 1 q22 through to 1 q42. 



4.4 Use of Derivation and Abstract Syntax Trees in Reasoning 

The definition of the ISCN grammar provides the capability to generate abstract syntax 

trees (ASTs) and parse (derivation) trees for each ISCN short and long-form expression 

associated with the CBR cases. Associated with these trees are Accessor objects, such 

as ISCNExprAccessor and ISCNLongExprAccessor, which encapsulate the knowledge 

for accessing the components of the trees (for example, the abnormality list section). 

These accessor objects were found to be required in order to ensure a low coupling 

between the components reasoning with the trees, and the tree structures and labels. 

To illustrate, consider the AST in Figure 4.3 and the following code fragment used 

in the adaptation phase for adapting abnormalities. 

1. exprAccessor := ISCNExprAccessor new expr: iscnExpr. 
"/ /  strip out the generalized ISCN abnormality expressionsN 

2. genAbExprs := exprAccessor generalizedAbnormalitiee. 

In reference 1, an ISCNExprAccessor object is instantiated on an ISCN expression 

string; the AST and derivation trees are generated during instantiation. In reference 2, 

the adaptation logic requires the subset of the expression that describes abnormalities 

(the AbnormList subtree in the figure), in a generalized form with specific chromosome 

numbers removed. The knowledge for the extraction and generalization of the subset 

expression is encapsulated within the accessor object, which delivers the results to 

without requiring high coupling of the reasoner (the adaptation methods) to the 

particulars of the tree structure. 
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Figure 4.3 Abstract Syntax Tree for an ISCN Expression 



System Architecture 

5. I Introduction 

Two dimensions of ISCN Student's architecture are discussed. The process model 

describes a data flow and process-oriented view which provides insight into the 

subsystems, system interface, and activity of the application. The object model 

describes the classes and their relationships for the generic CBR framework, and the 

class extensions required for ISCN Student. 

5.2 The Process Model 

New ISCN expressions may be entered manually be a user, or retrieved from a text file 

(Figure 5.1). ISCN Expert, an expert system written in Prolog, is invoked to process the 

expressions and produce textual interpretations in a new file. 

These interpretations are then loaded into ISCN Student's MOP memory, a step 

which requires explicit knowledge of the form and content of ISCN Expert's output. A 

case MOP is constructed for the new interpretation, as well as MOPS for all abnormality 

descriptions. The MOPS are then related with associative links. Generalized abstraction 



(superclass) MOPS are also constructed for the case and abnormalities. Finally, all the 

cases and their abstractions are organized into a generalization-specialization 

abstraction hierarchy based on specialization by abnormality criteria. This is a CBR 

learning phase in which the memory is loaded with the majority of cases. 

When a new expression is later entered by the user, either in textual format or via 

visual manipulation, ISCN Student will attempt to construct a new interpretation for it, 

and add it to memory. If successful, the new interpretation is presented to the user. 

I ISCN Expressions A ISCN Interpretations 

I exprs 

\ \new expr 

Interpret 
New Case 

Figure 5.1 Level 1 DFD for ISCN Student 

lfext interps 

Interps 0 
case Mops i 

4pl MOP Memory 

new case 
MOP 

-- 

Taking a closer look at interpretation of new cases (Figure 5.2), ISCN Student first 

retrieves existing cases that most closely match the new ISCN expression, based on 

derivation tree or AST pattern matching; details of the matching phase will be 

elaborated later. The adaptation phase extracts the interpretations from the old cases, 

and modifies them with respect to chromosome number, abnormal chromosome 

structures, etc. A new case is created with the adapted interpretations, and inserted 



into the memory abstraction hierarchy with associative links to abnormality MOPS. If 

the new expression was input via the visual manipulation subsystem, the case is 

returned for re-display, causing the new underlying chromosome model to be used for 

the ideograms. 

f 3.1 
User newexpr Match case MOPS 

b I MOP Memory 
b 

closest matching 
case MOPS 

Figure 5.2 Level 2 DFD to Interpret a New Case 

5.3 Object Model 

ISCN Student was used as vehicle to explore the design of a generic object-oriented (00) 

model, or framework (Booch 1994) for CBR systems - one that could be specialized in 

different domains, with a core framework of classes, attributes and methods that would 

prove universally useful in CBR. Furthermore, an extendible 00 model for standard 

CBR systems provides a structure for research which builds upon existing CBR systems 

without needless reinvention. 

The central question explored is this: what is an appropriate 00 framework for a 

generic CBR system that supports graceful specialization in different problem domains? 

The answer is illustrated in Figure 5.3, which shows the object model using the 



extended entity relationship diagram notation of the Object Modeling Technique 

(Rumbaugh et al. 199 1). 

5.3.1 The Basic Object Model 

The pivotal class in this model is MOP (Memory Organization Package), a frame- 

like object that is the basic unit of memory (Schank 1982). MOPs are organized into a 

graph structure to create a MOP-based memory which incorporates generalization- 

specialization hierarchies, multiple inheritance and composition relationships. A MOP is 

either an abstraction or instance: the former representing a class-type object, the latter a 

specific instance of the abstraction. An instance of the MOP class maintains the 

following base attributes: 

0 name: unique name of the MOP 

type: either abstraction or instance type 

and the following relationship attributes: 

abstractions: a set of immediate generalizations 

allAbstractions: a set of all direct and indirect abstractions (used for 
efficient processing) 

memory: the associated MOP-memory object 

slots: a set of packaging slot relationships to other MOPs 

specializations: a set of immediate specializations 



MOPMemory 
mops 7- 0 I 

ISCNStudent E%Y 
name 

slots pq 
MOPParser R 
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I sentence I 

name 
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abstractions, 
allAbstractions, 
specializations 

I 

Figure 5.3 Object model for Generic CBR Framework and ISCN Student 
(note: Solid dot represents "many" side of relationship; triangle denotes generalization- 
specialization) 

A MOPMemory object is created for each problem domain, or CBR memory, 

reflecting the cognitive model that people possess specialized memory sets of cases; for 

example, criminal sentencing cases, or ISCN interpretation cases. A MOPMemory object 

maintains a set of all its MOPS (which can be retrieved by name), and a pointer to the 

Root MOP. MOP memories are organized into an abstraction hierarchy and 

discrimination nehvork (Charniak et al. 1987) which is a directed acyclic graph of 

abstractions (generalizations) and specializations with a single ultimate ancestor MOP, 

Root, from which all other MOPS inherit. MOPMemory is a generic abstract class which 

has no (Smalltalk) instance objects, but which is specialized into concrete classes for 

each problem domain memory, such as the ISCN memory class ISCNStudent. Figure 

5.4 illustrates the abstraction hierarchy for a portion of ISCNStudent. 

Mopparser is a utility class to interpret structured list-form MOP definitions and 

store them in memory. 
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Figure 5.4 Partial abstraction hierarchy for ISCNStudent memory 

MOPMemory is the abstract generic class for creating a CBR dynamic memory; 

it defines the common protocol used by all subclasses, and installs common MOPs, 

such as  the Root  and Case MOPs, into the memory object. Subclasses of MOPMemory 

define domain specific memories. For example, ISCNStudent is for interpretation of 

ISCN expressions, and installs the domain dependent MOPs, such as  



Figure 5.5. Partial associative network for an interpretation. 
(note: The solid circle at the end of a dashed line indicates a directional "arrow '7. 

A MOP has associative links to other MOPS which are represented by a set of 

Slot objects. A Slot has a role and rolefiller (or simply filler). The role is a descriptor and 

the filler is another MOP in the memory. For example, the ISCNInterpretation MOP has 

a slot whose role is Sex and whose filler is an specialization of a Sex MOP. Figure 5.5 

illustrates the associative network for a particular case. 

# (Outcome (Root) . 

# (Fightoutcome (Outcome) 
( (State PhysState) (Actor Actor) ) . 
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Listing 5.1. Sample input structured list representation for MOPS 

5.3.2 The ISCNStudent Object Model 

The basic CBR framework is enhanced in ISCNStudent with classes to support 

interpretation and parsing of the textual descriptions. 

The T-gen translator generator defines an abstract class LRlParser and generates 

a concrete subclass ISCNParser class, which embodies a table representation of a state 

machine for the LR(1) parser for ISCN expressions. LRlParser defines the methods for 

parsing (running the state machine) and creating a derivation tree. 

Derivation trees are represented by a set of DerivationTreeNode objects, one of 

which is the tree root. Each node maintains a label, or symbol. 

To interpret the ISCN Expert text interpretations and load them into CBR memory, 

an ISCNInterpretationParser class is defined. This class is responsible for knowing the 

detailed layout and semantics of the interpretations, and must create both concrete 

specializations and generalized abstractions of cases and abnormalities. It will be 

discussed in greater detail. 



I LRlParser I 

AbstractExprAccessor IrxprI 

abstractions, 
allAbstractions, 
specializations 

1 \ 1 qots 
Slot 

1 sentence I 

Figure 5.6 Complete Object Model for ISCNStudent 

To support accessing the constituent components of ISCN expressions and ISCN 

long form expressions, which is necessary especially during the CBR adaptation phase, 

ISCNExprAccessor and ISCNLongExprAccessor have been defined. Objects of these 

classes can generate both derivation and abstract syntax trees for expressions. They 

possess knowledge of the structure and meaning of the expressions, and can for 

example retrieve the set of abnormality root nodes for those syntactic sub-units. 



5.3.3 Inputting Cases 

MOPs may be input using a structured list representation, which requires parsing and 

translation into a true Smalltallc MOP object (a detailed discussion of this process is 

presented in Chapter 6). For example, in Listing 5.1 the MOP Fightoutcome is defined 

as a specialization of Outcome, with slot (State PhysState), where State is the role and 

PhysState the filler MOP, and slot (Actor Actor). 

The translation is accomplished by a MOPParser object which is responsible for 

installing the input sentence as a MOP in a MOPMemory, with all dependent links 

established (abstraction, specialization and slot). 

5.3.4 Inheritance in MOP Memory 

Figure 5.7. Partial associative network showing inheritance of slots 

Specialized MOPs inherit the slot definitions of their abstractions in a multiple 

inheritance schema. For example, in Figure 5.7 the ISCNInterpretation MOP defines 

the slot Sex, which is associated via a slot link to the abstraction Sex MOP. The 

specialized instance MOP 4 6 , ~ ~  also possesses these slots and overrides the inherited 



fillers for more specialized ones. Thus (Sex-Sex) is replaced by (Sex-Female). Inherited 

slots do not need to overridden, in which case the inherited filler applies. This 

inheritance of values, common to frame-based languages, is in contra-distinction to 

pure 00 languages like Smalltalk. If a MOP inherits multiple slots with the same role 

name, the ambiguity is resolved by using the slot of the earliest abstraction in the 

MOP'S abstraction list. 

5.3.5 Functional Attachments 

File DAG - 

Figure 5.8. Functional attachments in a MOPMemory 



MOPS may have slots which contain functional attachments represented as Pattern 

MOPs; attempting to retrieve the fder for a role with such an attachment will cause the 

function to execute and return a filler value. These functions may have side-effects 

which cause 110, pattern matching or the installation of new MOPs. They are named 

Pattern MOPS because of their use in pattern matching and role filling operations. The 

connections are set up as illustrated in the Figure 5.8 example: the Sex filler in 

ISCMnterpretation points to a Pattern MOP (Patternll) which has a CalcFN role, 

whose filler is the name of an associated instance method (#sexChs:) in the Smalltalk 

language. 

sexChs: aColl 
ItMOP Calculation Function. 
Return the OC of sex chromosomes for this interpretation" 

I pattern mop acc I 

pattern :=  aColl at: 1. mop :=  aColl at: 2. 
(mop isSuccessorOf: lISCNInterpretationl) issatisfied. 

acc := ISCNExprAccessor new expr: mop name. 
^act sexChs collect: [:aSymbol I 

(aSymbol asuppercase includes: $x) 
ifTrue: [self at: lChxt1 
ifFalse: [self at: IChyt] 

I .  

Listing 5.2. ISCNStudent Smalltalk instance method used as a functional attachment 

In this framework, the location of the functional attachments was chosen 

to be Smalltalk instance methods (pattern methods) of the related MOPMemory 

Smalltalk class (e.g. ISCNStudent). All generic pattern functions are defined as instance 

methods in the MOPMemory class and installed in the generic memory setup. Domain 

specific functions are stored as methods in the related subclass of MOPMemory. Figure 

5.8 contrasts generic functions installed in MOPMemory basic setup with those 

installed in the subclass ISCNStudent setup (in black). 



MOPMemory defines several general purpose pattern methods (which are related 

to Pattern and Function MOPS) for testing values and generating fillers. The most 

important of these is getClosestSibling: which is a pattern matching method used to 

retrieve the best matching old case related to a new case, once the new case has been 

installed under some abstraction MOP. The generic version simply returns the first 

available sibling; subclasses should override this method to return a realistic best 

matching sibling MOP. 



Interpretation Parsing 

6.1 Introduction 

As a case-based reasoner, ISCN Student requires a set of prior cases from which to 

learn. These come from ISCN Expert, an existing rule-based expert system for the 

interpretation of ISCN expressions written in Prolog. ISCN Expert reads a set of ISCN 

expressions as input, and writes the interpretations to a text file, as discussed in 

section 5.1 (Introduction 

Two dimensions of ISCN Student's architecture are discussed. The process model 

describes a data flow and process-oriented view which provides insight into the 

subsystems, system interface, and activity of the application. The object model 

describes the classes and their relationships for the generic CBR framework, and the 

class extensions required for ISCN Student. 

The Process Model). 

Text interpretations must be parsed and translated into an underlying semantic 

representation that captures the genetic information for each interpretation and relates 

it to existing MOP concepts in case memory. Thus each interpretation must be 



transformed into a specialization of a Case MOP, with MOP roles (akin to fiame facets) 

connected to such things as Abnormalities and ISCNLongForm MOPs. 

The process implies that all concepts embodied in the interpretation must be both 

identified and inserted into MOP memory with correct generalization-specialization and 

associative semantic relationships. One of the singular features of this phase is the 

capability to identify and generate (as MOPs) generalizations of specific concepts in a 

case. This generalization generation, and the identification of the correct placement of 

these concepts is rather subtle, and consumes significant effort. However, the payoff is 

a semantically rich case memory with the necessary generalizations and associations to 

provide a robust basis for the quintessential CBR capability: understanding and storing 

novel cases. 

For example, consider the portion of memory shown in Figure 6.1. The case 

'47,xy,+2' as given in Listing 6.1 has just been read and interpreted. As shown in the 

figure, not only has the MOP named '47,xy,+2' been installed, but also a generalization 

of it named '47,+<num>'. The abnormality of this case is the numerical defect of a third 

chromosome 2 (i.e. '+a?. ISCN Student has installed the concept '+2' and has also been 

able to infer a generalization of it, 'extra whole normal chromosome (trisomy ...)' 

which has additionally been installed as a MOP. Further, the specialized case's 

Abnormalities attribute has been associated with the '+2' MOP, and the generalized 

case's Abnormalities attribute has been associated with the 'extra whole normal 

chromosome (trisomy ...)' MOP. Likewise, installation of the ChCopies MOP has 

established a generalization of it, with the specialized interpretation case linked to the 

specialized chromosome copies MOP, and the generalized case linked to the generalized 

chromosome copies MOP. 



1 2 3 4 5 6 7 8 9 10111213141516171819202122~ y 

I I I I I I I I I I I I I I I I I I I I I I I I  
I I I I I I I I I I I I I I I I I I I I I I  

I  
Sex model is male 
Exactly 3 whole copies of chromosome 2 
XNX(2) = extra whole normal chrom (trisomy/xxy/xyy) 

1 2 3 4 5 6 7 8 9 10111213141516171819202122~ y 

I  I I I I I I I I I I I I I I I I I I I I I I  
I  I I I I I I I I I I I I I I I I I I I  

I 
Cell observation is reciprocal translocation 
Cell observation is terminal deletion 
Chromosome 2 is 2pter->2q12::3~21->3pter 
Chromosome 3 is 2qter->2q12::3p21->3qter 
Chromosome 2 is 2p12->2qter 
Sex model is male 
Exactly 1 whole copies of chromosome 3 
Exactly 0 whole copies of chromosome 2 
Exactly 3 whole copies of chromosome 5 
RTB(2,3) = balanced carrier of reciprocal translocation 
TDR(2) = terminally deleted chromosome replaced normal 
XNX(5) = extra whole normal chrom (trisomy/xxy/xyy) 

Listing 6.1 Sample input text file of two interpretations from ISCN Expert 



Figure 6.1 MOP memory illustrating specialized and generalized cases. 

6.2 Solufion Analysis 

Objects of class ISCNInterpretationParser are responsible for performing the 

translation. The top level method is #loadInterpretationskom:, which reads and 

transforms the interpretations (Listing 6.2). The algorithm involves reading through the 

text file, extracting each discrete interpretation, and transforming it. Inside the file 

iteration logic are the essential steps: 

[mops add: 
(self calcMOPModelFor: 

(self nextInterpretation: instream))]. 



In this expression, method #nextInterpretation: is invoked to extract and return a 

collection of strings comprising an interpretation. Method #calcMOPModelFor: then 

transforms it into a MOP in case memory, and returns the results, which are added to a 

set of new cases. Finally, in the line: 

(self mopMem at: 'ISCNInterpretationl) reorganizeAllSpecializations. 

the generalization-specialization relationships oi all MOPS below 

ISCNInterpretation (the abstract class of all case interpretations) are restructured in 

memory to reflect the influence of the new cases. 

1oadInterpretationsFrom: fileName 
"Read a set of ISCNXpert interpretations from a file, and 
transform each into a MOP structure in MOP memory. Return 
all the mops created." 

I instream mops I 

mops := OrderedCollection new. 
instream :=  File patmame: fileName. 
[instream atEnd] whileFalse: 

[mops add: 
(self calcMOPModelFor: 

(self nextInterpretation: instream) ) I  
instream close. 

" / /  establish generalization patterns based on abnormalities" 
(self mopMem at: 'ISCNInterpretationl) reorganizeAllSpecializations. 

A mops . 

Listing 6.2 Top level method for reading and creating cases 

The interesting work for a single interpretation is controlled by 

#calcMOPModelFor: (Listing 6.3). This method drives the invocation of the sub-tasks 



which both parse out each ISCN interpretation feature, and which generate 

generalizations and associations. 

In references 1 through 6 the transformation for each semantic unit in the text 

interpretation is performed. 

For example, in reference 2 #parseOutChCnt processes chromosome count 

information. 

Reference 7 composes the new case MOP. 

Reference 8 installs it in case in memory. 

Reference 9 causes a demon to execute which generates a generalization of the new 

case, installing it too in memory. 

calcMOPModelFor: strings 
I1Parse strings, which contains an ISCNXpert interpretation, 
and store it as a MOP structure in MOP memory. Answer the 
MOP created. Also, generate generalized interpretations and 
store them in memory." 

I mopstruct slots mop x I 

self textInterpretation: strings. 

mopstruct := OrderedCollection new. 
slots := OrderedCollection new. 
slots 

1. add: (Array with: #~xpression with: self parseOutISCNExpr); 
2. add: (Array with: #ChCnt with: self parseOutChCnt); 
3. add: (Array with: #Sex with: self parseOutSexMode1). 
4. x := self parse~ut~bnormalityDescriptions. 

x isEmpty ifFalse: 
[slots add: (Array with: #Abnormalities with: x)] . 

5. x := self parseOutChCopies. 
x isEmpty ifFalse: 

[slots add:(Array with: #ChCopies with: x ) ] .  

6. x := self parse0ut~ong~ormAbnomli t ies .  
x isEmpty ifFalse: 

[slots add: (Array with: #ISCNLongForms with: x)] . 

7. mops t ruct 
add: self parseOutISCNExpr; 
add : # ( ISCNInterpretation) ; 



add: #abstraction; 
add: slots. 

" / /  load the structure into memory, and then generate 
a generalized abstraction of it (a learning step)" 

8. mop := self mopMem storeCollAsMOP: mopstruct asArray. 
9. mop fillerlor: 'GeneralizedInterpretationl. 

^mop 

Listing 6.3 Method to transform a single text interpretation into a case MOP 

Transforming a semantic unit into MOPs, creating associations and concept 

generalization is performed by the #parseOut<Unit> methods, such as 

#parseOutChCopies (Listing 6.4). This example is the simplest of the set, but serves for 

illustration. 

In reference 1, the text lines specific to chromosome counts are extracted. 

Reference 2 transforms the chromosome count expression into a generalization 

concept, in this case by replacing the specific chromosome with a variable. 

At reference 3 the extracted specific chromosome count concept and the generated 

generalized concept are installed in memory, in a specialization hierarchy rooted a t  the 

generic MOP concept ChCopy. 

Reference 4 returns the collection of specialized chromosome copy MOPs, for 

establishing associative links to the new case MOP. 

"Return the statements containing the copies info, after storing 
them and generalized abstractions in memory." 

I copies x gencopies I 

" / /  get the raw text lines" 
copies := self textInterpretation select: [:line I 

line hasSubCollection: 'copies of chromosomev]. 

"/ /  create generalized abstractions. 
e.g. exactly 3 copies of cnum> 

gencopies :=copies collect: 1:aString I 
x := astring asArrayOfSubstrings. 
x at: x size put: vcnum>'. 
x asStringOfElements1. 



I t / /  store the gen and spec lines as MOPs in memory" 
3. copies with: gencopies do: [:copyInfo :genCopyInfo I 

self mopMem storeStringAsMOP: genCopyInfo under: #(ChCopy) . 
self mopMem storeStringAsMOP: copyInfo 

under: (Array with: genCopyInfo) . 
1 .  

A 
4. copies collect: [:line I Array with: line]. 

Listing 6.4 Method to parse out chromosome counts and create generalization 

The final stage in loading cases from ISCN Expert is creating a generalization of the 

new case itself (Listing 6.5). In simplified terms, the generalization involves the 

replacement of specific chromosomes by variable patterns, and associative links to 

abstract generalizations of abnormalities rather than concrete genetic defect MOPs. 

In reference 1, a new generalized version of the ISCN expression is created. A n  

expression accessor object is generated for the ISCN expression; it can created syntax 

trees and knows the structure of the expressions. The sex symbols are removed, the 

chromosome count is instantiated rather than treated as a variable, and all 

chromosome references are treated as variables. 

At reference 2 the slots of the new generalized interpretation MOP are established. 

In references 3 and 4 the abnormalities of the specific case are extracted and their 

generalizations are collected. These generalized abnormality MOPs are then attached via 

associations to the new generalized interpretation MOP. 

References 5 and 6 perform similar operations with chromosome copy and ISCN 

long form information; establishing relationships to generalization concepts of the 

specific case details. 

At reference 7 the new MOP is declared a specialization of a MOP 

ISCNInterpretation, and at  reference 8, the new MOP is installed in case memory. 



generalizedInterpretation: aColl 
"MOP Calculation Function. 
Return the generalized interpretation of an ISCN case. Used in 
'learning1 new generalizations which get remembered. 
e.g. 46,xy,+2 returns 46,+<num> with associated generalized 
abnormalities, etc. l1 

I acc pattern mop mopForm slots genMOP newExpr tree 
sexList chCnt abs copies 1ongFormsl 

pattern := aColl at: 1. mop := aColl at: 2. 

mopForm := OrderedCollection new. 
slots := OrderedCollection new. 

1 1 / /  gen the new generalized iscn expression. eliminating the 
sex if the sex is normal. We'll get 
something like: 45,-<num> l1  

newExpr :=  (acc := ISCNExprAccessor new 
expr: (mop fillerFor: 'Expressiont)) 

removesex; 
instantiateDerivTreeChCnt; 
generateDerivTreeSentence. 

' I / /  don't bother with the special case of having 
only a chCnt left (e.g. '46') It 

newExpr size = 2 ifTrue: [̂ nil]. 

tree := acc derivTree. 

It// if a mop by this name already exists, use it instead, 
and update its relationshipsll 

(genMOP := self at: newExpr) notNil ifTrue: [ 
genMOP makeSuitableSiblingAbstractionsIntoKids. 
^nil] . 

' I / /  load up the slotsll 
slots 

add: (Array with: #Expression with: newExpr); 
add: (Array with: #ChCnt with:(mop fillerlor: 'ChCntl) 1 ;  
add: (Array with: #DerivationTree with: tree). 

1 1 / /  find the generalization of the specific abnormalities1' 
abs :=  (mop fillerFor: 'Abnormalities1) groupMembers. 
abs isEmpty ifFalse: [ 

slots add: (Array 
with: #Abnormalities 
with: (abs collect: [ :abnorm I 

abnorm abstractions first]))]. 

If// find the generalization of the specific ch copies info1' 
copies := (mop fillerFor: 'ChCopiesl) group~embers. 
copies isEmpty ifFalse: [ 



slots add: (Array with: #ChCopies 
with: (copies collect : [ : copy~nfo 1 

copyInfo abstractions first]) )I. 

" / /  find the generalization of the specific ISCNLongFormstl 
6. 1ongForms := (mop fillerFor: lISCNLong~ormsl) groupMembers. 

1ongForms isEmpty ifFalse: [ 
slots add: (Array with: #ISCNLongForms 

with: (longForms collect: [ : long~orml 
longForm abstractions first]))]. 

7. mopForm 
add: newExpr; 
add: # (~S~~~nterpretation) ; 

add: #abstraction; 
add: slots. 

genMOP := MOPParserDG defMOP: mopForm in: self. 
8. genMOP installconcept. 

%il. 

Listing 6.5 Demon for creating generalization MOPS of new case MOPS 

6.3 MOP installment and Automatic Memory Reorganization 

The last step of installing the new MOP in memory, is generally invoked via the 

message: 

Method #installconcept (Listing 6.6) causes a reorganization of affected MOPS with 

respect to generalization-specialization relationships. For example, the introduction of a 

new generalized interpretation case MOP may require that conceptual specializations of 

it that are not yet related, be linked up. This process is generic to all case memories, 

and is sufficiently subtle and powerful that it warrants a more full investigation. 

The method installs both instance and abstraction MOPs. Consider the case for 

abstractions. First, at reference 1, #installAbstraction is invoked, which causes sibling 



instance MOPS to become specializations of the new abstraction, if they are logically 

conceptual specializations. Last, at reference 2, sibling abstractions that should also be 

specializations of the new abstraction are also reorganized as children. 

Taking a closer look at #installAbstraction, it first determines if there is another 

huin abstraction (possibly under a different name) that is semantically identical. If so, 

the new MOP is removed and ignored. 

If the MOP is really a new concept, reference 4 causes suitable sibling instances are 

reorganized as specializations. 

installconcept 
"Place myself at an appropriate place in the memory hierarchy, 

moving siblings to be my kids if appropriate." 

I abs I 

self type notNil issatisfied. 

self isInstance 
ifTrue: [self installInstance1 
ifFalse: [ 

1. abs := self installllbstraction. 
2. abs makeSuitableSiblingAbstractionsIntoKids1. 

installAbstraction 
"Place an abstraction at its appropriate place in the hierarchyw 

I twin I 

twin := self getTwin. 
" / /  if there's a twin, don't bother with me" 

3. twin notNil ifTrue: [self remove. ^twin]. 
4. self makeSuitableSiblingInstancesIntokids. 

^self. 

Listing 6.6 Top level methods to install new MOPS and reorganize memory 



Making suitable siblings that are instances into specializations of the new abstraction is 

handled in Listing 6.7. At references 1 and 2, siblings are collected. 

In reference 3, abstractions are filtered out, leaving only instance MOPs. 

Reference 4 contains the most interesting test: is the new MOP a suitable 

abstraction of an existing instance? 

If the new abstraction should be a parent of an existing instance, then at references 

5 and 6 the instance in unlinked from its old parent abstraction and defined to be 

specialization of the new one. 

makeSuitableSiblingInstancesIntoKids 
"re-index all sibling instances as specializations of me, 
if they can beN 

1. self abstractions do: [:parent I 
2 .  parent specializations do: [:sibling I 
3. (sibling isInstance and: 
4. [self isSuitableAbstractionOf: sibling]) ifTrue: [ 

5. sibling unlinkFromAbstraction: parent. 
6. sibling 1inkToAbstraction: self]]]. 

^self. 

Listing 6.7 Method to reorganize memory when installing new abstractions. 

The test to determine if a mop should be an abstraction of another is handled by 

#isSuitableAbstractionOf (Listing 6.8). We first distinguish between MOPs which are 

collections or groups, and those that are not. A Group MOP A can be an abstraction of 

another group MOP B if A recursively contains members that are suitable abstractions 

of the members of B. This test is handled within the block starting at reference 1. 

The more common non-group case begins at reference 2. At reference 3 the slots 

that can be used in this generalization classification are extracted for testing. It was 

discovered during development that MOP concepts need attributes (slots) that may not 



participate in generalization tests, thus only a subset of mops (classification slots) are 

eligible candidates for this testing. Each classification slot must satisfy (a predicate 

calculus for-all condition) the test beginning at reference 4. 

Reference 4 tests that the MOP under consideration (mop) as a specialization has 

the same role (or attribute) as the potential abstraction (seZJJ. 

At reference 5 we test that the attribute values (or fillers) for identical attributes in 

the two MOPs pattern match. The pattern match testing method (#hasMatching:to:of:) 

includes obvious cases such as  equality, and more interestingly, a case where the 2 

values (which may themselves be MOPs) are recursively tested using 

#isSuitableAbstractionOf: to determine if one value is a potential abstraction of the 

other. 

isSuitableAbstractionOf: mop 
"Answer true if all my slots are 'satisfied' by the 
corresponding slots in mop. If satisfied, I am 
a suitable parent of mop. This is the major 
pattern matching method that aids in the placement 
of new input MOPs. 

*** If 2 group MOPs are being compared, I DON'T require that the 
contained MOPs be in corresponding slots (e.g. 1&1, 2&2), but 
rather that each contained MOP in self is an abstraction of any 
MOP in group 'mop' " 

(self == mop) ifTrue: [̂ false]. 
(self isAbstractionOf: mop) ifTrue: [̂ true]. 
(self isInstance or: [self hasslots not] ) ifTrue: [̂ false] . 
(self isGroup and: [mop isGroupl ) 

ifTrue: [ 
^self groupMembers alwayssatisfies: [:myMember I 

mop groupMembers has: [:hisMember I 
mmember isSuitableAbstractionOf: hisMemberl11 

ifFalse: [ 
^self classificationSlots alwayssatisfies: [:myslot I 

" / /  mop must have the roles I have, and the fillers 
of mop and I must pattern matchM 

(mop hasRole: myslot role) 
and: [self has~atching: myslot filler 

to: (mop fillerFor: myslot role) 



of: mop] 1 1  

Listing 6.8 Predicate method to evaluate potential generalization-specialization between 2 
MOPS 



Matching 

In CBR systems, matching is the process of finding the most similar existing cases to a 

new case. Ideally, a perfect match is found and thus solutions need not be adapted (null 

adaptation). More likely is that adaptation will be required. The matching strategy of 

ISCN Student is to find a set of closest matching cases that collectively cover all the 

abnormalities present in the new case, and then a synthesis of the old interpretations is 

used to construct a new interpretation. 

In order for retrieval to work successfully, the indexing problem (Kolodner 1993) 

must be addressed; that is, the problem of efficiently retrieving applicable cases a t  the 

right time. This problem includes the similarity-assessment problem of how to recognize 

when an  existing case is applicable to a new situation, the indexing-vocabuhy problem 

of choosing appropriate generalized abstractions to aid in comparing cases, the ranking 

problem of ordering similar cases according to a goodness of match measure, and the 

retrieval problem of efficient search in large search space (case library). 

In order to achieve matching, ISCN Student must provide a solution for retrieval 

and ranking. The generic 00 framework provides a default pattern method 

MOPMemory>>getClosestSibling which simply returns the closest sibling in the graph 

of memory, based on discrimination by abstraction. Normally this method is overridden 



in subclasses, or an alternate is used. ISCN Student uses an alternate method, 

ISCNStudent>>matchSetTo:, which returns a set of existing cases that best match to 

the new case, ranked in decreasing order of goodness of match. 

"Answer a new (or existing) case based on old ones. 
Attempt to interpret a new expr string based on the existing 
cases. This is the main 'new case' learning phase. If the 
expr already has a case, return it." 

I closestOld new matches case I 

" / /  already got a case? " 
(case := self at: iscnExpr) notNil ifTrue: [̂ case]. 

I f / /  search for matches to generalizations of old cases 
based on parse tree intersections of abnormalities." 

matches := self matchSetTo: iscnExpr. 
(matches includes: nil) ifTrue: [̂ nil] . 

" / /  construct a new case from the old matching ones." 
A self adapt: matches forExpr: iscnExpr. 

Listing 7.1 Top Level Method for Case Interpretation. Performs Matching and Adaptation 

ISCNStudent>>interpretNewCaseFor: (Listing 7.1) is the primary method used to 

construct new case solutions. The statement: 

matches := self matchSetTo: iscnExpr. 

invokes the ISCNStudent>>matchSetTo: method which returns the matching set. The 

adapted case is constructed in the final statement: 

^self adapt: matches forExpr: iscnExpr. 



which takes the set of closest matches and new expression, returning a complete 

specialization of an ISCNInterpretation MOP (the adaptation phase is described in the 

next chapter). 

ISCNStudent>>matchSetTo: (Listing 7.2) is responsible for identifying and 

returning the closest existing case MOPS that provide all of the interpretation material 

needed to interpret the new case. This new case is represented as the argument to the 

method - as  a string containing the expression. The approach is to find an existing case 

that includes the closest matching interpretation for each constituent abnormality in 

the new expression. As  each constituent abnormality is resolved, its grammatical 

representation is removed from the expression, and a recursive invocation solves for the 

remaining sentence. 

It might be invoked as follows: 

matches := self matchSetTo: '46,~~,+2,de1(3)(p13)~. 

7. I Analysis of the Matching Logic 

7.1.1 Analysis of ISCNStudent>>matchSetTo: 

matchSetTo: iscnExpr 
"Return an OC of closest matching mops that match to all 
the abnormalities in the iscnExpr." 

I aMatchMOP oldMop abNodes acc removedAbNodes I 

1. acc := ISCNExprAccessor new expr: iscnExpr. 



The top level matching method, #matchSetTo: receives an ISCN expression as 

argument, and returns a set of existing cases that match to it for abnormality 

interpretation purposes. In reference 1, an expression accessor is created which parses 

the ISCN expression into a derivation tree, using the T-gen generated LR(1) parser. This 

object contains the knowledge to access the constituent grammatical components of the 

sentence. 

2. (aMatchMOP := self closestMatchTo: iscnExpr) isNil 
ifTrue: [A~rray with: nil] . 

Reference 2 performs the essential match. The #closestMatchTo: method (Listing 

7.3) returns a single case that matches best with respect to intersection sets of the 

abnormality branches of the derivation trees. Actually, a wrapper object which includes 

both the case, and the intersecting parse tree branches is returned. 'Best' in this sense 

is that there are common abnormalities expressed grammatically, and that it is the case 

with the least number of abnormalities. Why least a s  opposed to most? Experience with 

least vs. most strategies demonstrated that the later adaptation step was more simple 

and elegant using a large number of minimal abnormality matches rather than a small 

set of maximum abnormality matches. Using a small set of maximum abnormality 

matches led to an adaptation solution that was very awkward to program; the synthesis 

of abnormality descriptions from several cases was excessively complicated with respect 

to handling generalizations and definition of new specializations. In constrast, the 

synthesis of abnormality descriptions from several simple cases was based on a union of 

the abnormalities in a straightfoxward algorithm. 

ll// match covers all abnormalities? " 
3. (aMatchMOP interset size = acc abnormalities size) 

ifTrue: [A~rderedCollection with: 
(aMatchMOP relatedAbNodes: acc abnorma1ityNodes)l . 



Reference 3 determines if the number of abnormalities in the expression is equal to 

the size of the intersection set of matching parse tree abnormality branches - implying 

the old case matched all the abnormalities. If it has, then we are finished, and the 

method returns the matching wrapper object of case, intersection set and explicit 

abnormality nodes in the derivation tree. 

" / /  isolate unmatch abnormalities and continue to 
use #closetMatchTo: on new (smaller) iscnExprs 
with the remaining unmatched abs, until 
all have been coveredN 

" / /  in the interset are abs, so this 
removes abs from the expr" 

4. removedAbNodes := acc removeNodes: aMatchMOP interset. 

In reference 4 the accessor object's knowledge of the grammatical structure of ISCN 

expressions is used to remove those abnormality nodes from the derivation tree that 

have been successfully matched on and for which existing cases have been found. 

I t / /  RECURSE for the remaining matches on a 
smaller expr." 

5. *(~rderedCollection with: 
(aMatchMOP relatedAbNodes: removedAbNodes)) 

addAll : (self matchSetTo: acc expr) ; 
yourself. 

In reference 5, the final step in the matching process, the essential recursive 

construction occurs. We return the ISCNMatchingMOP object (our wrapper of existing 

case and matching abnormality derivation tree branches) with the match set for the 

remaining expression, constructed via a recursive invocation of the method. 



matchSetTo: iscnExpr 
"Return an OC of closest matching mops that match to all 
the abnormalities in the iscnExpr.I1 

I aMatchMOP oldMop abNodes acc removedAbNodes I 

acc := ISCNExprAccessor new expr: iscnExpr. 

(aMatchMOP := self closestMatchTo: iscnExpr) isNil 
ifTrue: [AArray with: nil] . 

" / /  match covers all abnormalities? 
(aMatchMOP interset size = acc abnormalities size) 

ifTrue: ["~rdered~ollection with: 
(aMatchMOP relatedAbNodes: acc abnormalityNodes)]. 

" / /  isolate unmatch abnormalities and continue to 
use #closetMatchTo: on new (smaller) iecnExprs 
with the remaining unmatched abs, until 
all have been coveredN 

" / /  in the interset are abs, so this 
removes abs from the expr" 

removedAbNodes := acc removeNodes: aMatchMOP interset. 
It// RECURSE for the remaining matches on a 
smaller expr." 

A(~rderedCollection with: 
(aMatchMOP relatedAbNodes: removedAbNodes)) 

addAll: (self matchSetTo: acc expr); 
yourself. 

Listing 7.2 The Top Level Matching Method for ISCN Student 

7.1.2 Analysis of ISCNStudent>>closestMatchTo: 

closestMatchTo: iscnExpr 
"Return the closest matching case to the iscnExpr, 

based on intersections of 'abnormality1 sections 
in the parse trees. Only consider generalized 
cases, not leafs." 

I newCaseTree oldCaseTree coll interset maxSize minSize 
exprAcc maxDepth I 

" / /  candidate matching cases are ordered by the 
number of abnormalities they cover for the 
new case. It 

1. coll := SortedCollection sortBlock: [:a :b I 



(a mop fillerFor: tAbnormalitiest) groupsize c 

(b mop fillerFor: tAbnormalitiest) groupsize]. 

The heart of the matching is done in #closestMatchTo: . The method finds and 

returns a single object of class ISCNMatchingMOP, which packages the matching case 

and associated matching information. The basis of matching is comparison of the 

abnormality nodes in the derivation trees. The case which has the set of abnormalities 

is chosen. Note that this case has associations to a detailed interpretation which can be 

used in constructing the interpretation of the new case. 

In reference 1 a priority queue (SortedCollection) is defined that will contain the 

potential matches. The sorting criterion indicates preference to cases with the smallest 

number of abnormalities. 

2. exprAcc := ISCNExprAccessor new expr: iscnExpr. 
3. newCaseTree := exprAcc derivTree. 

References 2 and 3 create an ISCN expression accessor, from which we extract a 

derivation tree for use in comparison. 

" / /  search through existing abstraction cases 
for intersections of parse treesu 

4. ((self at: vISCNInterpretationt) allSpecializations select: [:x I 
5. x isAbstraction and: [x specializations notEmpty11) 

In references 4 and 5 we choose our candidates for comparison. Note that only 

abstraction cases that have specialized children are chosen. These abstractions are 

generalized cases in which information such as the specific chromosomes involved have 

been replaced with variables suitable in pattern matching. 



do: [ :aMOP I 
oldCaseTree := aMOP fillerFor: 'DerivationTreel. 
interset := oldCaseTree intersectionAt: labnorm' 

with: newCaseTree. 
interset notEmpty ifTrue: [ 

coll add: (ISCNMatchingMOPDG new 
mop: aMOP; 
interset: interset; 
yourself) I I . 

In the section starting with reference 6,  we iterate over all potential existing cases. 

The derivation tree for an existing case is retrieved. Then comes the critical step of 

finding intersection sets between the new and old derivation trees based on syntactic 

branches referring to abnormalities. Cases for which a match is found are packaged 

along with the resulting intersection set in a ISCNMatchingMOP object, and fmally 

stored in the priority queue. 

It// select the case with the narrowest abnormality match" 
7. coll isEmpty 

ifTrue: [ 
MessageBox message: 

'Failure: No old case matches to , iscnExpr , 
I .  Adaptation is not possible.'. 

^nil] 
ifFalse: [ 

^toll first1 . 

Reference 7 tests if any matching cases were indeed found. If there are, the priority 

queue ensures they are sorted in increasing order of abnormality matches. We choose 

and return the first match - the one with the least number of abnormalities matching 

the new case. 

closestMatchTo: iscnExpr 
"Return the closest matching case to the iscnExpr, 

based on intersections of labnormalityl sections 
in the parse trees. Only consider generalized 
cases, not leafs." 

I newCaseTree oldCaseTree coll interset maxSize minSize 
exprAcc maxDepth I 



" / /  candidate matching cases are ordered by the 
number of abnormalities they cover for the 
new case. " 

coll := SortedCollection sortBlock: [:a :b I 
(a mop fillerFor: 'Abnormalities') groupsize c 

(b mop fillerFor: 'Abnormalities') groupSize1. 

exprAcc := ISCNExprAccessor new expr: iscnExpr. 
newCaseTree := exprAcc derivTree. 

" / /  search through existing abstraction cases 
for intersections of parse treesu 

((self at: 'ISCNInterpretationl) allspecializations select: [:x I 
x isAbstraction and: [x specializations notEmpty11) 

do: [ :aMOP I 
oldCaseTree := aMOP fillerFor: 'DerivationTreel. 
interset := oldCaseTree intersectionAt: 'abnorml 

with: newCaseTree. 
interset notEmpty ifTrue: [ 

coll add: (1SCNMatchingMOPDG new 
mop: aMOP; 
interset: interset; 
yourself) 1 1 . 

" / /  select the case with the narrowest abnormality matchw 
coll isEmpty 

ifTrue: [ 
MessageBox message: 

'Failure: No old case matches to ' , iscnExpr , 
I. Adaptation is not possible.'. 

^ni 11 
ifFalse: [ 

^toll first] . 

Listing 7.3 The Essential Matching Method that is Recursively Called 



Adaptation 

Adaptation is the act of modifying the solution in an existing case (or cases) to apply to 

the new case. The case or cases chosen for adaptation are those which have been 

identified as most closely matching the new input case. Once constructed, the adapted 

solution is associated with the new case, which is then stored in case memory. 

Adaptation is typically the most complex, knowledge intensive and domain dependent 

reasoning process in CBR systems, as modification of a solution requires awareness of 

domain principles and heuristics. 

In CBR theory, there are two main categories of adaptation: structural and 

derivational (Kolodner 87). Structural adaptation methods apply rules of modification 

directly to the retrieved (best) case. Derivation methods involves discovery of the rules 

that generated the retrieved case, and then applying these rules to generate a new 

solution. With either approach critic-based adaptation (Sacerdoti 1975; Hammond 

1989) is a common addition, in which critics are used to recognize problems in nearly 

correct solutions; feedback may re-invoke the adaptation phase to converge on a better 

solution. ISCN Student uses a structural adaptation technique, without the use of a 

critic. 

In the case of ISCN Student the solution is a semantic network describing the 

chromosomal abnormality features associated with an ISCN expression, such as the 



MOPS describing abnormal chromosome copies. The adaptation process involves 

extracting existing solutions from the best matching cases and transforming the 

abnormality descriptions to fit the new case. 

interpretNewCaseFor: iscnExpr 
I closestOld new matches case I 

(case := self at: iscnExpr) notNil ifTrue: [^case] . 
matches := self matchSetTo: iscnExpr. 
(matches includes: nil) ifTrue: [^nil]. 

I t / /  construct a new case from the old matching ones." 
^self adapt: matches forExpr: iscnExpr. 

Listing 8.1 Top Level Method for Case Interpretation. Performs Matching and Adaptation 

As  previously reviewed, ISCNStudent>>interpretNewCaseFor: (Listing 8.1) is the 

primary method used to construct new case solutions. After the best matching existing 

cases have been found, the statement: 

^self adapt: matches forExpr: iscnExpr. 

invokes the ISCNStudent>>adapt:forExpr: method which constructs a new 

interpretation solution from the existing ones. It is installed in case memory as a side- 

effect. 



8.1 Analysis of the Adaptation Logic 

Analysis of ISCNStudent>> adapt:forExpr: 

adapt: matches forExpr: iscnExpr 
"Return a new MOP case that is an adaptation of the related 
matching old cases. The adaptation is based on iscnExpr. 
Also install 
this new mop and all associated mops (such as abnormalities)" 

I x exprAccessor specAbExprs slots mopstruct mop chCopies longForms I 

1. exprAccessor := ISCNExprAccessor new expr: iscnExpr. 

The top level adaptation method, #adapt: forExpr: receives as arguments: 

matches - a set of ISCNMatchingMOP objects. These are composite objects 
containing the matching case MOP and the intersection set of matching 
abnormalities. 

iscnExpr - a string ISCN expression. 

In reference 1, an expression accessor is created which parses the ISCN expression into 

a derivation and abstract syntax tree. 

" / /  calc the adaptations for abnormalites, copies, etcn 
2. specAbExprs := self adaptAbnormalitesOf: matches forExpr: iscnExpr. 
3. chCopies := self adaptChCopiesOf: matches forExpr: iscnExpr. 
4 .  longForms := self adaptISCNLongFormsOf: matches forExpr: iscnExpr. 

References 2-4 are the heart of the adaptation phase, constructing the adapted 

interpretations in the three central categories: 

1. abnormality descriptions 

2. abnormal chromosome copy counts 



3. ISCN long form notation for each structural aberration 

It// create the new case MOP and install itw 
4 .  mopstruct :=  OrderedCollection new. 

. . . 
^mop := self storeCollAsMOP: mopstruct 

From reference 4 until the end of the method simple housekeeping processes transform 

the three adapted interpretation sections into a proper case MOP and install it in 

memory, finally returning the result. 

adapt: matches forExpr: iscnExpr 
"Return a new MOP case that is an adaptation of the related 
matching old cases. The adaptation is based on iscnExpr. 
Also install 
this new mop and all associated mops (such as abnormalities)" 

I x exprAccessor specAbExprs slots mopstruct mop chCopies 1ongForms I 

exprAccessor := ISCNExprAccessor new expr: iscnExpr. 

" / /  calc the adaptations for abnormalites, copies, etc" 
specAbExprs := self adaptAbnormalitesOf: matches forExpr: iscnExpr. 
chCopies := self adaptChCopiesOf: matches forExpr: iscnExpr. 
1ongForms := self adaptISCNLongFormsOf: matches forExpr: iscnExpr. 

"/ /  create the new case MOP and install it" 
mopstruct := 0rderedCollection new. 
slots := 0rderedCollection new. 
slots 

add: (Array with: #Expression with: iscnExpr) ; 
add: (Array with: #ChCnt with: exprAccessor chCnt) ; 
add: (Array with: #Sex with: exprAccessor sexMode1) 

"/ /  add in the 'group' attributes like abs and chCopiesU 
specAbExprs notEmpty ifTrue: [ 

x := specAbExprs collect: [:aString I Array with: aString1. 
slots add: (Array with: #Abnormalities with: x)] . 

chCopies notEmpty ifTrue: [ 
x := chCopies collect: [:aString I Array with: aString1. 
slots add: (Array with: #ChCopies with: XI]. 

longForms notEmpty ifTrue: [ 



x := longForms collect: [:aString 1 Array with: aString1. 
slots add: (Array with: #ISCNLongForms with: x)l . 

" / /  put it all together in a mop and save it in memory" 
mops truc t 

add: iscnExpr; " / /  name 
" / /  generalizationsn 

add: (matches collect: [:aMatchMO~ I aMatchMOP mop name]) ; 
add : #instance ; 
add: slots. 

*mop := self storeCollAsMOP: mopstruct.! 

Listing 8.2 The Top Level Adaptation Method for ISCN Student 

8.1.2 Analysis of ISCNStudent>> adaptAbnormalites0f:forExpr: 

Three adaptation processes occur in ISCN Student: for 1) abnormalities, 2) chromosome 

copies, and 3) ISCN long form expressions. A detailed analysis of each process would be 

both overwhelming and tedious! Therefore only the adaptation of abnormalities is 

considered explicitly as  representative of the domain knowledge required to construct 

new solutions from old. As  suggested by the analysis of this first category, the processes 

required for adapting copies and long form expressions are also subtle and complex. 

adaptAbnormalitesOf: matches forExpr: iscnExpr 
"Answer a coll of abnormalies for iscnExpr, adapted 
from the matching old cases. Install these abnormalies 
in memory too" 

I x exprAccessor genAbExprs genAbs specAbExprs 
genExpr specExpr abMOP mop slots I 

1. exprAccessor := ISCNExprAccessor new expr: iscnExpr. 
" / /  strip out the generalized ISCN abnormality expressions" 

2 .  genAbExprs := exprAccessor generalizedAbnormalities. 
I#// strip out the specialized (with nums) 

ISCN abnormality expressions" 
3 .  specAbExprs := exprAccessor abnormalities. 



Adaptation of abnormalities requires the new ISCN expression and best matching cases 

as arguments. In reference 1 an ISCN expression accessor object is created that 

constructs a parse tree and abstract syntax tree for the expression. 

In reference 2 the accessor object uses its specialized knowledge of the abstract 

syntax tree to extract those portions of the expression that indicate structural 

abnormalities, generalized so that all chromosome references are made into variables. 

For example, in the expression '46,xy7del(1)(p21)', a generalized expression of the 

form 'del(<xl>)(pcx2>)' would be returned. 

At reference 3 the accessor returns an expression similar to that in reference 2 - the 

structural abnormalities. But where in reference 2 they were generalized with respect to 

chromosome numbers, here the numbers are kept. Again, domain knowledge of the 

derivation tree and nodes that comprise abnormalities is exploited. 

Thus the expression '46,xy,del(l)(p2 I)' would return 'del(l)(p2 I)'. 

' I / /  collect the associated generalized abnormality mops. We 
can assume these are 'generalized abs' because the match 
set contains generalized cases, not specific ones." 

g e m s  := OrderedCollection new. 
4 .  (matches collect : [ :aMatchMOP I aMatchMOP mop1 ) do: [ :aMOP I 

g e m s  addAll : 
(aMOP fillerFor: IAbnormalities1) groupMembers1. 

At reference 4 the MOPS representing the generalized abnormality descriptions 

associated with the best matching old cases are extracted. For example, if the case was 

'46,xy7de1(5)(pll)', this would yield a generalized MOP for the Yerminal deletion' 

abnormality. 

' I / /  for each general abnorm expr (e.g. +cnum> ) in the iscnExpr, 
find the associated generalized abnormality. Then make the 
specific abnormality (+2) a specialization 
of the generalized 
one (extra whole. . . ) . " 

5. 1 to: genAbExprs size do: [ :  i I 



Reference 5 frames a major iteration over each generalized abnormality expression, 

such as  'del(<xl>)(p<x2>)'. Within this loop, the associated generalized abnormality (e.g. 

'terminal deletion') will be found and matched with 'del(<xl>)(p<x2>)'. Then the specific 

abnormality expression associated with the general one (e.g. 'del(l)(p21)' with 

'del(<xl>)(p<x2>)' ) is defined as a specialization of the generalized abnormality concept 

(e.g. 'terminal deletion'). 

genExpr :=  genAbExprs at: i. "/ /  e.g. +mum> " 
specExpr := specAbExprs at: i. It// e.g. +2 I' 

" / /  find the generalized abnormality that matches to 
the generalized expr. 
e.g. 'extra whole ...I with +enurn> " 

abMOP := genAbs 
detect: [:aMOP I 

(aMOP fillerFor: 'ExprFormatl) = genExpr1 
ifNone: [self error: 'missing abnormality'] . 

Within the iteration process, reference 6 extracts the current generalized expression - 

for example, 'del(<x 1 >) (p<x2>)'. 

Reference 7 extracts the associated specialized expression - for example, 

'del(l)(p2 1)'. 

Reference 8 searches for a generalized abnormality concept MOP whose generalized 

expression format (e.g. 'del(<xl>)(p<x2>)' ) matches the one currently sought. Once 

found, it is stored in the temporary 'abMOP' variable. 

" / /  make the specific ab a specialization 
of the general" 

slots := Array with: (Array with: #Code with: I???'). 
self storeCollAsMOP: 

(Array 
" / /  mop name. e.g. +2" 

with: specExpr 
11// abstraction. e.g. extra whole . . . "  



with: (Array with: abMOP name) 
with: #abstraction 
with: slots) I .  

Still within the iteration, and starting with reference 9, the new specific abnormality 

expression of the new case (e.g. 'del(l)(p21)' ) is stored in MOP memory as a 

specialization of the generalized abnormality concept MOP (e.g. 'terminal deletion'). 

Thus the generalization-specialization hierarchy is extended during reasoning in a 

semantically meaningful way, with new abnormalities correctly inserted as 

specialization's of their appropriate generalized genetic defect concept. 

The above references 6-9 iteratively repeat until all abnormalities in the new ISCN 

expression case have been constructed into MOPs and placed in the abnormality 

hierarchy. 

Finally, the set of specialized abnormality expressions for the new expression is 

returned to the calling method, for construction into the complete new case MOP and its 

associations to other MOPs. 

adaptAbnormalitesOf: matches forExpr: iscnExpr 
"Answer a coll of abnormalies for iscnExpr, adapted 
from the matching old cases. Install these abnormalies 
in memory too" 

I x exprAccessor genAbExprs genAbs specAbExprs 
genExpr specExpr abMOP mop slots I 

exprAccessor := ISCNExprAccessor new expr: iscnExpr. 
s / /  strip out the generalized ISCN abnormality expressionsw 

genAbExprs := exprAccessor generalizedAbnormalities. 
ll// strip out the specialized (with nums) ISCN 

abnormality expressions" 
specAbExprs := exprAccessor abnormalities. 



" / /  collect the associated generalized abnormality mops. We 
can assume these are 'generalized abs' because the match 
set contains generalized cases, not specific ones." 

genAbs :=  OrderedCollection new. 
(matches collect: [:aMatchMOP I aMatchMOP mop]) do: [:aMOP I 

genAbs addAll: 
(aMOP fillerFor: tAbnormalitiesl) groupMembers1. 

" / /  for each general abnorm expr (e.g. +cnum> ) in the iscnExpr, 
find the associated generalized abnormality. Then make the 
specific abnormality (+2) a specialization 
of the generalized 
one (extra whole . . . I  . "  

1 to: genAbExprs size do: [:i I 
genExpr := genAbExprs at: i. " / /  e.g. +<num> " 
specExpr := specAbExprs at: i. It// e.g. +2 

" / /  find the generalized abnormality that matches to 
the generalized expr. 
e.g. 'extra whole. ..I with +<nun> " 

abMOP := genAbs 
detect: [:MOP I 

(aMOP fillerFor: 'ExprFormatt) = genExpr1 
ifNone: [self error: 'missing abnormality']. 

" / /  make the specific ab a specialization 
of the general" 

slots : = Array with: (Array with: #Code with: ? ? ?  ' ) . 
self storeCollAsMOP: 

(Array 
" / /  mop name. e.g. +211 

with: specExpr 
" / /  abstraction. e.g. extra whole . . . "  

with: (Array with: abMOP name) 
with: #abstraction 
with: slots) I . 

Listing 8.3 Adaptation of abnormalities 



Visual Manipulation 

9.1 Overview 

The heart of ISCN Student is the capability to receive a new ISCN expression, as a 

character string, and interpret this new case in terms of existing cases using CBR 

techniques. For example: 

aCBRChrom interpretNewCaseFor: '46,xy,del(l) (~21)'. 

ISCN expressions represent chromosomal abnormalities, which can also be pictured 

using a standard ideogram convention outlined in the definitive ISCN report (Harden 

1985). For example, chromosome 4 is depicted as shown in Figure 9.1. Cytogeneticists, 

the domain experts who use ISCN notation, are comfortable communicating the defects 

using these ideograms with additional graphical annotation. However, there is no 

consensus on how abnormalities should be visually expressed. 
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Figure 9.1 The standardized ideogram for chromosome 4 

A chromosome ideogram with accompanying graphical annotation to indicate 

defects can be mapped to an  ISCN expression. In ISCN Student, software has been 

developed for this mapping. The user introduces defects using a visual manipulation 

metaphor on the ideograms, such as pointing at  and 'breaking off the end of a 

chromosome ideogram. Each new visual modification leads to a diagram of the 

chromosomes that can be associated with a new ISCN expression. Once the new 

expression has been created, the conventional CBR mechanism for case interpretation 

for a character string format expression (CBRChrom>>interpretNewCaseFor:) can be 

invoked, yielding a new case. 

In short, ISCN Student provides two mechanisms for entering new cases: 1) direct 

ISCN expression as a character string, or 2) indirect creation of an ISCN expression via 



visual manipulation of chromosome ideograms. In either case, the final CBR new case 

interpretation is done from the character string expression. 

Four major components are needed to provide the capabilities of visual 

manipulation: 

1. A correct object model that provides meaningful composition and semantic 

definitions for chromosome structures. From this, drawable ideograms can 

be generated. 

2. A means to generate new chromosome topological structures for 

abnormalities. 

3. A method to draw the ideograms from the chromosome topological 

structures. 

4. A metaphor for visually manipulating the displayed ideograms. 

The class which defines the responsibility for creating chromosome structures, both 

for normal and abnormal chromosomes, is ChromCBR. The class which defines 

responsibility for the display of chromosome ideograms and their visual manipulation is 

ChromView . 

9.2 The Manipulation Metaphor 

In the absence of any standards for graphical annotation of chromosome 

abnormalities on the ideograms, I was free to construct a metaphor for visually 

introducing new defects. The metaphor chosen was one of direct manipulation of 

structure, as all the defects are structural. For example, introducing a terminal deletion 

is accomplished by pointing to a chromosome band for deletion, and then pressing the 

scissors iconic button to effect the cut, or deletion (Figure 9.2 and Figure 9.3). 



Thus terminal and interstitial deletions find obvious analogues in the scissors 

buttons, while translocations are suggested by the visual swap icon. The chromosome 

addition and elimination manipulation symbolism required a compromise from the 

physical iconic hints, underscoring the need to use the most familiar symbols in the 

domain of the user. In these cases, the '+' and " symbols were chosen, as these are 

used in ISCN to denote the abnormalities, and are also rich in associative meaning from 

arithmetic. Although more physical symbols are possible, they would have a lower 

associative strength to the intended action than the familiar and terse ISCN 

nomenclature. 

Figure 9.2 Visual Manipulation: Choosing a breakpoint on chromosome 2. 



Figure 9.3 Visual Manipulation: Choosing the "Scissors" Button creates a terminal deletion 

9.3 The Display of Ideograms for a Chromosome Model 

long form in the case-> ideogram display 

rep for ISCNInterpretation w.r.t. calc filler for chromosomes 

9.3.1 The Human Chromosomes Object Model Used in Ideogram 
Drawings 

Objects of class ChromView are responsible for drawing the chromosome ideograms 

associated with a case. In order to draw the ideograms for all chromosomes in a human 

karyotype, each case must be associated with a description for all chromosomes. A band 



by band topological description is necessary for each chromosome, including height, 

color, and if its terminal or centromeric (next to the centromere). 

Isvariable 
IsPCen 
IsQCen 
BoundingBox 
GBandStartColor 

I I I I 

Figure 9.4 Object model for human chromosomes and ideogram information 
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In order to realize this goal, ISCN Student defines an object model for the human 

chromosomes (Listing 9.1 and Figure 9.4). Note that an  aggregation model (indicated by 

the diamond in OMT notation) has been chosen to reflect the genetic notion of higher 

order structural units being composites of lower order units. For example, arms are 

defined by an aggregate ordered group of regions. Thus, chromosomes are composed of 

2 arms which in turn are composed of many regions which are composed of many 

bands. 

Band 
P 

BandNumber 



Specific chromosomes, arms, etc., are defined as  subclasses of the abstract 

superclasses and these are inserted into the generalization hierarchy of the MOP 

memory. These chromosome MOP structures are then linked via associative slots to the 

cases. 

The preceding description pertains to pristine chromosomes; those without defect. 

The construction of abnormal chromosome MOP structures for use in ideogram 

displays, that is, those chromosomes related to aberration descriptions in the ISCN 

expression, are a more difficult case. Their creation is discussed in the next section. 

In Listing 9.2 we see the detailed descriptions for the band layouts required for a 

chromosome (in this case, chromosome 1) in order to be able to display its ideogram. 

Height, color, position and other attributes are given for each band, and the bands are 

then aggregated into regions which in turn are aggregated into arms, and finally into 

complete a chromosome. 

(Chromosome (Root) 
( (Drawing (Pattern) (CalcFN drawCh: 

(BoundingBox nil) 
(IsAutosome false) 
(Bands (Pattern) (CalcFN bandsFor : ) ) 

) 1 

(ChPart (Group)) 

(Arm (ChPart) ) 

(Region (ChPart)) 

(Band (ChPart) abstraction 
( (Isvariable false) 

(IsPCen false) 
(IsQCen false) 
(BoundingBox nil ) 
(GBandColor (Pattern) (CalcFN gBandColor:) 
( A r m  (Pattern) (CalcFN band-: ) ) 

(BandNumber (Pattern) (CalcFN bandNumber:)) 
(ChNumber (Pattern) (CalcFN bandChNumber : ) ) 
(GBandStartColor nil) 



1 )  

Listing 9.1 MOP definitions for chromosome object model 

addChlMOP 
"Add MOPS for a normal ch 1" 

defMOP : # ( I lp12 I (Band) 
( (Height 1) 

(GBandStartColor ClrBlue) 
) ) in: self; 

defMOP: #('lp13' (Band) 
( (Height 6) 
) in: self; 

I f / /  CHROMOSOME 1 --------------------------------------------!I 

defMOP: #(Chl (Chromosome) 



Listing 9.2 Sample abbreviated graphical ideogram band details for chromosome 1 

9.3.2 The Generation of Chromosome MOPS for a Case 

The generation of chromosome structures from which ideograms could be drawn turned 

out to be one of the most subtle problems in this work. The heart of the problem is that 

we start only with an ISCN expression, and from this must determine the precise 

topological structure of each abnormal chromosome, band by band. 

As  indicated in the last section, the topological and graphical descriptions 

necessary to create the ideograms for all pristine chromosomes are stored into the 

original state of MOP memory. These descriptions are not suitable for abnormal 

chromosomes, which by definition have structural defects. How, then, are the abnormal 

chromosome descriptions generated? 

Each case MOP has associated with it a MOP filler named Chromosome, which is 

related to a slot demon that fires when the attribute is accessed (Listing 9.3). This 

causes the CBRChrom>>chromosomes: method to execute, which calculates and 

returns the set of both pristine and abnormal chromosomes (Listing 9.4). 

(ISCNInterpretation (Case) abstraction 
( (Expression nil) 

... 
(Chromosomes (Pattern) (CalcFN chromosomes:)) 
(AbnormalChs (Pattern) (CalcFN abnormalche:)) 
(SexChs (Pattern) (CalcFN sexChs:)) 



Listing 9.3 ISCNInterpreation case MOPS have Chromosome demons which calculate the 
chromosome structures. 

Determining the pristine chromosome structures is trivial; they have been pre- 

defined. The abnormal chromosome construction requires more work - based on the 

ISCN long form expressions associated with a case. As  suggested in previous sections on 

case adaptation, the long form expressions for new cases are adapted from existing best 

matching cases during the CBR adaptation phase. 

To review, the long form expressions are part of the ISCN nomenclature that 

symbolically describe the contiguous structure of each defective chromosome. For 

example, 

del(l)(q21q31) is equivalent to lpter-, 1 q21::l q3l+ 1 qter 

The long form expression lpter+ 1 q2l::l q3l+ 1 qter provides a complete 

topological description at the gross level. Thus chromosome MOPS composed of arms, 

regions and bands as described in the last section can be constructed from this 

description. 

Within the #chromosomes: method, the generation of copies of the pristine 

chromosome MOPS occurs in the section starting with reference 1 in Listing 9.4. There 

are no surprises here; just a need to ensure a very deep copy down to the band MOP 

level within the composite MOP object. 

The generation of abnormal chromosome MOPS starts at reference 2. The key 

statement at reference 2 is: 

(mop fillerlor: 'AbnormalChsl) , (mop fillerFor: ISexChs1) 

In this expression the chromosome MOPS for abnormal and sex chromosomes are 

generated as lists which are concatenated together. The following statements create 

deep copies of the list elements. As  this statement suggests, the case MOP has further 



attribute demons for the abnormal and sex chromosomes (e.g. (mop fderFor: 

'AbnormalChs') ). Through a series of indirect MOP demons, the processing will finally 

arrive a t  the heart of the logic, #chForLongExpr:abnormditJrof: and its helper, 

#bandsFrom:to: (Listing 9.5 and Listing 9.6). 

chromosomes: aColl 
I'MOP Calculation Function. 
Return the OC of chromosomes for this interpretationu 

I pattern mop chs copy I 

pattern := aColl at: 1. mop := aColl at: 2. 
(mop isSuccessorOf: 'ISCNInterpretationl) issatisfied. 

chs := SortedCollection sortBlock: [:a :b I 
(a fillerFor: 'Number1) asstring c 

(b f illerFor : 'Number I ) asstring] . 

" / /  normally, 2 of each autosome, 
unless a numerical abnormality" 

1. self autosomes do: [ :aMOP I 
. . .  / /  deep copy logic for pristine chromosomes 
. . . 

" / /  add in the abnormalites and sex" 
2. (mop fillerlor: 'AbnormalChsn) , (mop fillerlor: ISexChsg) 

do: [ :aMOP I 
copy := aMOP deepcopy. 
copy replaceFiller: (copy fillerFor: 'Bands') 

deepcopy forRole: 'Bands'. 
chs add: copy1 . 

Listing 9.4 The Chromosome demon generates detailed structures for both pristine and 
abnormal chromosomes. 

At reference 1 in #chForLongExpr:abnormdityOf:, we create an 

ISCNLongExprAccessor object to parse out the band sections within a long form 

expression. For example, in the expression: 



The band sections are: 

Starting at reference 2 in Listing 9.5, we iterate over each band section, and for each 

one, use the helper method #bandsFrom:to: to generate the contiguous set of bands 

associated with the band section range, saving the results in a growing list. 

chForLongExpr: longExpr abnormalityof: chNum 
"Return a ch mop that contains the bands in the range defined 
in 1ongExpr. This new ch mop will be an abnormal one, and 
will be installed in memory before it is returned. Its name will 
be 1ongExpr. Its number will be chNum, if chNum is 
nonNil, else number will be first ch number encountered in 
1ongExpr. l1 

I acc bands slots num I 

bands := OrderedCollection new. 
1. acc := ISCNLongExprAccessorDG new expr: 1ongExpr. 

2. acc bandsections do: [:Mode I 
bands addAll: (self bandslrom: (acc startBandFor : &Node) 

to: (acc endBandFor: Mode))]. 

... / /  wrap up and return the bands as a Chromosome MOP 

. . . 

Listing 9.5 Method to generate chromosome band structure for abnormal chromosomes, based 
on the ISCN long form expression. 

At references 1 and 2 in #bandskom:to: (Listing 9.6) we translate the 'familiar' 

band names as used in long form expressions, such as lpter, into their related band 

names, such as lp36.  In reference 3 we iterate over the set of existing Band MOPS, and 

retrieve those that fall between the start and end bands in the specified range. Finally, 

in reference 4, the bands are ordered according to chromosome topological rules. 



bandsFrom: start to: end 
"Return an OC of bands in the range from start to end" 

I bands startName endName I 

" / /  if start/end are a Itert or 'cent, get 
the associated band name. 
e.g. lpter == lp36 " 

1. startName := self bandNameEquivalentTo: start. 
2. endName := self bandNameEquivalentTo: end. 
3. bands :=  (self at: 'Band1) specializations select: [:aMOP 1 

self isBand: aMOP name between: startName and: endName1. 
4. *self sortedBands: bands from: startName to: endName. 

Listing 9.6 Method used to generate chromosome bands in a range. 

9.3.3 The Drawing of Chromosome MOPS 

The drawing of the ideograms is a straightforward process. The hard work of 

determining the band structure for each chromosome in the case to displayed has 

already been accomplished, as reviewed in the previous section. The drawing algorithms 

simply traverse the contiguous bands that comprise the chromosome MOPS (and which 

contain detailed graphical height and color infoimation) and draw each band. 

In Smalltalk, the opening of a window has associated with it an event handler for 

drawing the window's client area. The window defined for drawing ideograms is defined 

in the ISCNView class, and the event handler for drawing is #onGetContents: (Listing 

9.7). At reference 1 we iterate over all chromosome structures associated with the case. 

These are the topological structures for pristine and abnormal chromosomes. Within 

this iteration, we invoke the helper method #draw:on: (reference 2) to draw a particular 

chromosome. 

onGetContente: aPane 
"Private. Draw the chrom on the paneN 

I prevCh pen extraGap bigGap basicGap ( 



... / /  initialization and label drawing 

. . . 

" / /  draw each ch" 
1. self chroms do: [:ch I 

. . .  / /  calculation of the ideogram position 

. . .  
2. self draw: ch on: aPane. 

I .  

CursorManager normal change. 

Listing 9.7 The top level method for drawing all chromosome ideograms. 

In Listing 9.8 we see the essential process for drawing an ideogram. The bands for the 

chromosome MOP are extracted (reference 1) and we iterate over them in contiguous 

order. At reference 2 the detailed graphical drawing logic, based in part on the height of 

the band, is deferred to the helper method #drawBand:on:at: . 

draw: ch on: aPane 
"Private. Draw the ch on the pane." 

I regions pt pen h bands pCen qCen b I 

bands := ch fillerFor: 'Bands1. 
... / /  initialization; placing drawing pen at correct position 

" / /  draw the bandsg1 
pen drawRetainPicture: [ 
bands do: [ :band I 

self drawBand: band on: aPane at: pt. 
h :=  self scaledHeight: (band fillerFor: 'Height1). 
pt := pt up: h. 
1 1  - 

. . .  / /  draw the name and legend for this chromosome 

Listing 9.8 Method for drawing an ideogram for a single chromosome. 



9.4 Mapping Visual Changes to New Expressions 

How does the visual manipulation which introduces abnormalities result in new ISCN 

expressions with deep interpretations, which in turn are redrawn correctly? When a 

manipulation icon is pressed, such as the scissors icon for terminal deletion, a button 

event handler method executes. The event handler has knowledge of the required ISCN 

syntactic form related to the type of modification. It identifies the structural change 

selected on the graphical representation, and then uses an ISCNExprAccessor object to 

append the appropriate ISCN syntactic unit for the abnormality to the ISCN expression 

associated with the ideograms. Finally, the new ISCN expression is evaluated as a new 

case using CBRChrom>>interpretNewCaseFor: (the main CBR match and adapt 

process). If the case is interpretable, a new deep model is constructed as discussed in 

previous sections. Associated with this new case will be the just-created ISCN long form 

expressions for each abnormal chromosome. As  discussed above, from this set of long 

form expressions, a new set of chromosome MOPS with correct topological structure will 

be created (at considerable effort!), and finally the display of ideograms will be redrawn 

to reflect the structure of each pristine and defective chromosome. 

deleteTermina1 
"Delete from the selected band to terminal" 

I band I 

1. (band := self selections at: #selectedBand ifAbsent: [nil]) 
isNil ifTrue : [^nil1 . 

" / /  mod the iscn expr" 
2. self exprAcc addDeleteTermina1: band. 
3. self refreshExpr. 

" / /  refresh window" 
4. self changed: #onGetContents:. 



"Regenerate the iscn expr from the parse tree. This is 
invoked after the tree is modified. This is a major step 
because resetting the expr causes a new case to be 
retrieved or created (i.e. adaptation)" 

" / /  setting the expr causing new case and chromosomes 
to be generatedu 

5. self expr: self exprAcc expr. 

expr : as tring 
"Set the value of the iscn expr (e.g. 46,xy) and 
all associated attributes (e.g. caseMOP, chromosomes) . "  

I newcase I 

" / /  will return existing case, if one exists, or 
new adapted case. 

newcase :=self mopMem interpretNewCaseFor: aString. 

" / /  if no possible new case, return the expr accessor to 
its original expr and bail out." 

newcase isNil ifTrue: [ 
self exprAcc: (ISCNExprAccessor new expr: self expr) . 
^nil] . 

self case: newcase. 
expr := aString. 
self exprAcc: (ISCNExprAccessor new expr: expr). 
self chroms removeAll. 
self chroms addAll: (self case fillerFor: lChromosomest). 

Listing 9.9 Translating a terminal deletion visual manipulation into a new case 

As show in Listing 9.9, on pressing the scissors button to perform a terminal deletion, 

the #deleteTerminal method executes. The following processes then occur: 

Reference 

1 The breakpoint band that should have previously been chosen is 



retrieved. 

2 The ISCNExprAccessor object has syntactic knowledge of ISCN and the 

#addTerminalDeletion message is sent with the breakpoint band in order 

to append the appropriate syntactic unit to the expression; for example, 

'de1(2)(p2 1)'. 

3 The major step of refreshing the expression and associated interpretation 

model. Discussed in references 5- 12. 

4 Cause the graphical display to refresh and draw the new ideograms for 

the modified ISCN expression. 

5 Extract the new expression from the ISCNExprAccessor object and 

assign it to the visual view's expression. This will initiate the CBR 

reinterpretation process (references 6- 12). 

6 The central CBR step of search and adaptation using 

#interpretNewCaseFor: executes with the new ISCN expression. A new 

case is generated and returned. 

7 Failure handling if no new case can be constructed. 

8-12 Record the new case and retrieve the chromosome structures associated 

with it. These structures will be used in the visual display processes and 

are described in the previous section on the ideogram drawings. 



Evaluation 

ISCN Student is a CBR system designed to learn - from ISCN Expert - how to interpret 

ISCN expressions. To evaluate how well it meets the goal of correctly interpreting new 

expressions, the interpretations of ISCN Expert are used as  a standard for comparison. 

ISCN Expert was extensively tested on over 300 complex expressions, and scrutinized 

for accuracy by an expert in genetics and ISCN. Thus its results can be considered a 

reliable benchmark. 

ISCN Student was also evaluated on performance; results will be presented. 

10.1 ISCN Student Performance 

Two performance metrics were gathered. The results show ISCN Student performed 

more poorly than ISCN Expert, and performance degraded as  case memory increased. 

The tests were: 

1. Relative performance of ISCN Student to ISCN Expert. For a simple case involving 

only one new abnormality (with respect to the case memory), what was the speed 

performance of ISCN Student compared to ISCN Expert? The test expression was: 



Milliseconds 

ISCN Student 1930 

ISCN Expert 970 

The results show that Expert is significantly faster (darn!). Possible causes include: 

Expert is in compiled machine code, Student is in interpreted Smalltalk. 

Student is performing more work due in the matching and adaptation cycles 
than Expert is in its rule-based backward chaining with backtracking. 

2. Relative performance of ISCN Student as it learns. What was the time required to 

interpret a complex expression starting from a simple memory versus the time required 

with a larger memory containing more cases that closely match the new expression? 

The test expression was: 

Simple case memory 

Rich case memory 

Milliseconds 

4000 

5880 

The results show that Student degraded in performance as memory grew (double darn!). 

Possible causes include: 

0 Increased search time during the matching phase, as case memory is larger. 



Adaptation phase logic performs better with construction from an aggregation of 
simple cases rather than complex ones. 

10.2 ISCN Student Correctness 

Two evaluations of expressions were generated. In both cases ISCN Student performed 

perfectly, generating identical interpretations to that of ISCN Expert. 

The evaluation method for correctness was as follows: A set of ISCN expressions 

was loaded into ISCN Student to form the basis of the CBR memory (Listing 10.1). New 

expressions were then applied to ISCN Student that should be interpretable using the 

CBR learning techniques of matching and adaptation. The ISCN Student interpretations 

for these were compared to interpretations from ISCN Expert for the same expressions. 

Listing 10.1 Starting cases used in evaluations 

The first (relatively simple) test expression was: 

45,~,-4,de1(2)(~ 11) 



Compared to the debacle in the performance evaluation, Student has fared well (Figure 

10.1) in relation to the interpretation from Expert (Listing 10.2). On all points, Student 

has generated a complete and correct interpretation that matches the results created by 

Expert. 

Figure 10.1 ISCN Student interpretation for 45,xy,-4,de1(2)(pll) 



Cell observation is terminal deletion 
Chromosome 2 is 2pll->2qter 
Sex model is male 
Exactly 1 whole copies of chromosome 2 
Exactly 1 whole copies of chromosome 4 
TDR(2) = terminally deleted chromosome replaced normal 
MIM (4 ) = missing whole chromosome (monosomy) 

Listing 10.2 ISCN Expert interpretation for 45,xy,-4,de1(2)(pll) 

The second, more complex, test expression was: 

Once again, Student's interpretation matches that produced by Expert (Figure 10.2 and 

Listing 10.3). 



Figure 10.2 ISCN Student interpretation for 47,xy,+4,t(1;2)(q12;p12),de1(5)(p12) 



Cell observation is reciprocal translocation 
Cell observation is terminal deletion 
Chromosome 1 is lpter->lq12::2p12->2pter 
Chromosome 2 is lqter->lq12::2p12->2qter 
Chromosome 5 is 5p12->5qter 
Sex model is male 
Exactly 1 whole copies of chromosome 1 
Exactly 1 whole copies of chromosome 2 
Exactly 1 whole copies of chromosome 5 
Exactly 3 whole copies of chromosome 4 
RTB(1,2) = balanced carrier of reciprocal translocation 
TDR(5) = terminally deleted chromosome replaced normal 
X N X ( ~ )  = extra whole normal chrom (trisomy/xxy/xyy) 

Listing 10.3 ISCN Expert interpretation for 47,xy,+4,t(1;2)(q12;p12),de1(5)(p12) 



Concluding Remarks 

7 I. 7 Contributions 

The most significant contribution developed in the research for ISCN Student is the 

novel demonstration that a second generation knowledge system can automatically 

learn from a first generation predecessor, and achieve similar competence, using only 

CBR techniques for domain knowledge acquisition and reasoning. The input cases for 

developing a case memory are required to be the output solutions from the predecessor. 

The first general purpose object-oriented framework for CBR systems was 

developed. It contains generic reasoning and representation support for all specialized 

CBR applications, and specialization hierarchies can be derived from it to create spec& 

CBR systems. 

The first formal grammar for ISCN was constructed and shown to be context-free 

for the subset of ISCN under consideration, the proof being the successful generation of 

an LR(1) parser for the grammar. 



The novel integration of a visual manipulation front-end for chromosome ideograms 

used to generate symbolic problem cases for a CBR system demonstrated both the 

capability and convenience of such an approach. 

1 1.2 Conclusions 

The creation of ISCN Student was interesting and pleasurable (probably because it 

worked), with exploration into quite varied topics. CBR was verified as a sufficiently 

powerful technique to create a second generation knowledge system that learns from 

existing knowledge systems in order to achieve similar competence. This is the most 

novel research aspect of the thesis -- the demonstration of a CBR system that learns 

from other knowledge systems. 

A generalized object-oriented framework and class hierarchy was designed for CBR 

systems that can be specialized into different CBR domains. The proof of its successful 

application is ISCN Student itself. A discovery in this work is that the very dynamic 

aspect of MOP memory (with MOPS being added, generalized and rearranged constantly) 

calls for a single class of MOP object. This MOP object itself takes on the dynamic roles 

of all instances and abstractions, with shifting attributes and behaviors. This is in 

contrast to the classic object-oriented design of pre-defining static class definitions for 

all anticipated abstractions. A regular class hierarchy in Smalltalk or C++ is not 

sufficiently dynamic or flexible for the demands of CBR reasoning and knowledge 

representation. 

The crafting of the case memory representation and the loading of ISCN Expert 

interpretations led some insights. The choice of granularity of concepts, and what 

concepts to generalize, plays a pivotal role in the complexity of the matching and 

adaptation algorithms. 



In considering the complexity of all software operations, the adaptation phase of the 

CBR system proved to be most intricate, and required the most domain knowledge. I 

believe this to be generally true of CBR systems, which underlines the need for further 

research into declarative and elegant reasoning and representation models for 

adaptation knowledge. 

ISCN Student was coupled with a visual manipulation system for the display of 

existing (chromosome abnormality) cases and the introduction of new ones. Visual 

manipulation has both an intuitive appeal and an elegance of expression in this 

domain, which is largely concerned with topological defects. 

Finally, I conclude that the CBR paradigm is worthy of more wide-spread 

exploitation, both in research and industry. The simplicity of the model, the often 

abundant availability of existing case histories, and its parallels to human cognitive 

problem solving strategies contribute to my feeling that CBR techniques have a practical 

appeal and great potential for successful application. 

11.3 Future Research 

As the evaluation section indicated, ISCN Student's performance degraded as the case 

memory grew. Analysis of the complexity of the matching and adaptation algorithms 

would be helpful to provide insight to the pace of degradation, and the source of 

potential improvements. Is it the matching or adaptation phase, or both, that is 

responsible for the majority of problem? Could the adaptation phase, which at present 

is optimized to work with simple cases, be accelerated if it worked better with complex 

cases? 

The current naive drawing algorithm for chromosome ideograms is slow. Research 

into speeding it to the point where all 46 chromosomes could be drawn, instead of the 

representative 12, would improve the visual manipulation module. 



ISCN Student has potential as an educational tool. An obvious area of inquiry, in 

this case, is identifying the cogent operational knowledge required by aspiring 

geneticists and the cognitive processes involved in the learning domain of ISCN and 

genetic abnormalities. These factors would assist the definition of new requirements for 

ISCN Student improvements, and could also be used in the creation of a computer- 

based student learning model within ISCN Student. 

The generalization and adaptation techniques emphasize generalization of the 

specific chromosomes involved in defects. Further research into other dimensions of 

generalization of ISCN interpretation cases could yield new methods for matching and 

adaptation. The assistance of a domain expert would be helpful in the elucidation of 

other generalization attributes. 

The adaptation phase relies heavily on domain knowledge. In ISCN Student this 

knowledge was embedded in the Smalltalk methods. There is room for improvement by 

investigating how to represent it declaratively, and apply it with a separate inference 

engine. 

If ISCN Student fails in finding sufficient matches, it reports failure. An alternative 

would be to invoke ISCN Expert in these cases, and then dynamically load the new 

interpretation into case memory. This would make ISCN Student more robust, and 

accelerate its learning process. 

ISCN Expert could be incorporated as an expert critic, either dynamically cross- 

checking Student's results, or doing so in a batch-mode when Student was not in use. 

Error detection and error handling research is called for to identify how wrong 

interpretations can be removed, and the associations in MOP memory adjusted to 

prevent the reoccurrence of incorrect results. 



References 

Booch, G. 1994. Object-oriented Analysis and Design. Redwood City, Ca: Benjamin- 
Cummings. 

Chapman, S. 1989. LR Parsing: Theory and Practice. Cambridge, UK: Cambridge 
University Press. 

Cooper, G. and Friedman, J. 1990. Interpreting Chromosomal Abnormalities Using 
Prolog, In Computers and Biomedical Research, 23:153-164. New York, NY: 
Academic Press. 

Friedman, J. and Smith, J. 1986. Automated Interpretation of Cytogenetic 
Nomenclature, In AAMSZ Congress 86: Proceedings of the Congress on Medical 
Informatics. 

Goodman, M. 1989. CBR in Battle Planning. In Proceedings: Worlcshop on case-based 
reasoning, ed. K. Hammond. San Mateo, Ca: Morgan Kaufman. 

Hagen, C. and Muller, J. 1993. Focus on Scientific Visualization. Berlin: Springer-Verlag. 

Hammond, K. 1989. Case-based Planning: Viewing Planning as a Memory Task. Boston, 
MA: Academic Press. 

Harden, D. and Klinger, H. 1985. ZSCN 1985: An International System for Human 
Cytogentic Nomenclature. Basel, Switzerland: S. Karger AG. 

Kolodner, J. and Riesbeck, C. 1986. Experience, Memory and Reasoning. Hillsdale, NJ: 
Lawrence Erlbaum. 

Kolodner, J. 1987. Capitalizing on failure through case-based inference. In Proceedings 
of the Ninth Annual Conference of the Cognitive Science Society. Northvale, NJ:  
Erlbaum. 

Kolodner, J. 1993. Case-Based Reasoning. San Mateo, CA: Morgan Kaufman. 



Koton, P. 1988. Reasoning about evidence in causal explanation. In Proceeding of &LU- 
88, pages 256-26 1. Los Altos, CA: Morgan Kaufman. 

Long, W.; Naimi, S. ;  Criscitiello, M. and Jayes, R. 1987. The development and use of a 
causal model for reasoning about heart failure. In Symposium on Computer 
Applications in Medical Care. New York, NY: IEEE Press. 

Minsky, M. 1975. A Framework for Representing Knowledge. In The Psychology of 
Computer Vision, ed. P. Winston. New York, NY: McGraw-Hill. 

Nielson and Shriver, eds. 1990. Visualization in  Scientific Computing. Los Alamitos, NM: 
IEEE Press. 

Sacerdoti, E. 1975. The nonlinear nature of plans. In Advance Papers ji-om the Fourth 
Int. Joint Conference on Artificial Intelligence, Los Altos, CA: Morgan Kaufman. 

Schank, R. and Abelson, R. 1977. Scripts, Plans, Goals and Understanding. Hillsdale, 
NJ: Lawrence Erlbaum. 

Schank, R. 1982. Dynamic Memory: A theory of learning in  computers and people. New 
York, NY: Cambridge University Press. 

Schank, R. and Riesbeck, C. 1989. Inside Case-Based Reasoning. Hillsdale, NJ: 
Lawrence Erlbaum. 

Searles, J. 1993. Investigating the linguistics of DNA with Definite Clause Grammars. In 
Logic Programming: Proceedings of the North American Conference on Logic 
Programming, ed. E. Lusk and R. Overbeek. Cambridge, MA: MIT Press. 



Appendix A - ISCN 
Grammars 

13.1 The ISCN Short Form Grammar 

This is the listing of the context free grammar for ISCN short form expressions, 

expressed as productions in T-gen format. 

ChSet : 

ChCnt {Chset) 
I ChCnt I ,  ' SexList {ch~et) 
I ChCnt ' , I  AbnormList {ch~et) 
I ChCnt I ,  SexList I ,  AbnormList { ~ h ~ e t )  

I 

ChCnt : 

Num 

SexList : 

XList YList 
I XList 
I YList 

XList : 

ChX XList 



YList : 

ChY YList 
I ChY 

AbnormList : 

Abnorm I , '  AbnormList 
I Abnorm 
I 

Abnorm : 

NumericAbnorm 
I StructuralAbnorm 

" NUMERIC ABNORMS " 

NumericAbnorm : 
I+' I?' AnyChrom 

1 + I?' AnyChrom Sign 
( I+' AnyChrom 
I I+' AnyChrom Sign 
1 - AnyChrom 
I 1 - 1  '?I AnyChrom 
I I+' ChPartOfDiffLength 
I ChPartOfDiffLength 
I 

{lift~ight~hild) 
{AbnormList) 

ChPartOfDiffLength : 
AnyChrom ChPartDownToRegion Sign {~h~art~f~iff~ength) 
I 

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  n 

STRUCTURAL ABNORMS l1 

StructuralAbnorm : 
Translocation 
I Deletion 

" TRANSLOCATIONS " 

Translocation : 
It1 TwoChromTwoBreakRea 

" DELETION " 
Deletion : 

'dell UpToTwoBreakRea 
I 



" REARRANGEMENTS " 

UpToTwoBreakRea : 

I ( Autosome I ) ( 

ChPartUpToArm ) { ~ ~ ~ o ~ w o ~ r e a k ~ e a )  
I I ( I Autosome ' ) ' ' ( 

ChPartUpToArm ChPartUpToArm '1 { ~ ~ T o ~ w o ~ r e a k ~ e a )  
I 

TwoChromTwoBreakRea : 

' (' Autosome I;' Autosome I)' ChPartUpToArm 
' ; ' ChPartUpToArm ) I { ~ w o ~ h ~ w o ~ r e a k ~ e a )  

ChPartDownToRegion : 
Arm 
I Region 
I 

ChPartUpToArm : 

Band 
I Region 
I Arm 

Band : 

Region I.' Num 

Region : 

Arm Num 

Arm : 

'PI 
I 'q' 

AnyChrom : 

SexChrom 
I Autosome; 

Autosome : 

Num 

SexChrom : 

chx 
I ChY 
I 



ChY : 

'Y' 

Sign : 

+ 
I 1 - 1  

I 

Num : 

<num> 

Listing 13.1 ISCN Short Form Grammar 

13.2 The ISCN Long Form Grammar 

This is the listing of the context free grammar for ISCN long form expressions, expressed 

as productions in T-gen format. 

ISCNLongExpr : 

Bandsection I : : '  ISCNLongExpr {lift~ight~hild} 
I Bandsection {I~~NLong~xpr) 
I BandEnd {I~NLong~xpr) 

I 

 ands section : 

StartBand ' - > I  EndBand 

StartBand : 
BandEnd 

EndBand : 

BandEnd 

BandEnd : 

Centromere 
I Terminal 
I Region 
I Band 



Terminal : 

Ch 'pter' 
I Ch 'qter' 
I 

Band : 

Region I . '  Number 

Region : 

Ch Arm Number 

Arm : 

'PI 
I 'st 
I 

Centromere : 

cen ' 

Ch : 

Num 
I 'x' 

I 'Y' 
I 

Number : 

Num 

Num : 

cnum> 

{Centromere); 

Listing 13.2 ISCN Long Form Grammar 


