
Learning From Knowledge Systems

by

Craig Larrnan

B.Sc. Simon Fraser University, 1992

THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the School
of

Computing Science

O Craig Larrnan 1995
SIMON FRASER UNIVERSITY

June 1995

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy or
other means, without permission of the author.

Approval

NAME: Craig Larman

DEGREE: Master of Science

TITLE OF THESIS: Learning from Knowledge Systems

Examining Committee:

Chair: Dr. Lou Hafer

Date Approved:

Dr. Nick Cercone
Senior Supervisor

Dr. Verunica Dahl
Senior Supervisor

Dr. Ronald Harrop
External Examiner

June 19, 1995

PARTLAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser Universi the right to lend my

d 'i" thesis, pro'ect or extended essay (the title o which is shown below)
to users o the Simon Fraser University Library, and to make
partial or single copies only for such users or in response to a
request from the library of any other university, or other
educational institution, on its own behalf or for one of its users. I
further agree that permission for multiple copying of this work for
scholarly purposes may be granted by me or the Dean of Graduate
Studies. I t is understood that copying or publication of this work
for financial gain shall not be allowed without my written
permission.

/Project/Extended Essay

+P

Author:
(signature)

CC, a;s/ 9s
(date)

Abstract

This thesis describes a case-based reasoning (CBR) system, ISCN Student, which

acquires its knowledge from a previously developed rule-based knowledge system,

ISCN Expert. That is, ISCN Student is a second generation knowledge system that

learns from a first generation one. ISCN Student has been shown to perform with

the same competence as ISCN Expert once trained. The architecture for this solution

is based upon the creation of a general purpose object-oriented CBR framework,

written in Smalltalk, that has been specialized to develop ISCN Student, but which

is applicable to other CBR problem domains.

ISCN is a notation used by geneticists to describe chromosome defects; the

functional purpose of both ISCN Expert and Student is to interpret expressions in

ISCN. To this end, several supporting paths of novel research have been pursued in

addition to the above. First, a grammar and associated parser for ISCN were created.

Second was the development of a visual manipulation system for displaying

chromosome defects and introducing new abnormalities as cases to ISCN Student.

iii

To Julie, Haley and Hannah,

Fred

and

my parents

Acknowledgments

My deepest heartfelt thanks to Drs. Nick Cercone and Veronica Dahl. So many

opportunities have flowed from their support! Their memory, spirit and influence

will be with me always. My gratitude and great thanks to Dr. Glen Cooper for

suggesting the genesis of this work, for providing intellectual and material support,

and for laying the strong foundation of ISCN Expert.

My sincere thanks to Dr. Ronald Harrop, who painstakingly examined this work

and suggested many improvements.

Thanks also to the Science Council of British Columbia (in other words, the

taxpayers), who provided the money to keep me going!

I owe a great debt to the developers of the language Smalltalk: Alan Kay, Adele

Goldberg and Dan Ingalls, and to the creators of the Smalltalk parser generator,

TGEN, Justin Graver and Hal Hildebrand.

Contents

APPROVAL

ABSTRACT

ACKNOWLEDGEMENTS

TEXT LISTINGS

LIST OF FIGURES

ii

iii

INTRODUCTION 1

1.1 Problem Statement 3

1.2 Scope 4

BACKGROUND 5

2.1 Genetic Terminology and Concepts
2.1.1 Structural Chromosomal Abnormalities

2.2 ISCN Expressions
2.2.1 ISCN Long Form Expressions

2.3 From Expert to Student 11

2.4 Case-Based Reasoning
2.4.1 CBR Components
2.4.2 CBR Advantages

2.5 Related Work
2.5.1 Related ISCN Interpretation Work
2.5.2 Related Genetics Work
2.5.3 Related CBR Work
2.5.4 Related Visualization Work

EXAMPLE: ISCN STUDENT AT WORK

4.

TRANSLATING ISCN EXPRESSIONS 42

4.1 The ISCN Grammars
4.1.1 T-gen Grammar Specifications

4.2 ISCN Short Form Grammar 46

4.3 The ISCN Long Form Grammar 48

4.4 Use of Derivation and Abstract Syntax Trees in Reasoning 50

5.

SYSTEM ARCHITECTURE 52

5.1 Introduction 52

5.2 The Process Model 52

5.3 Object Model
5.3.1 The Basic Object Model
5.3.2 The ISCNStudent Object Model
5.3.3 Inputting Cases
5.3.4 Inheritance in MOP Memory
5.3.5 Functional Attachments

6.

INTERPRETATION PARSING 65

6.1 Introduction 65

6.2 Solution Analysis 68

vii

6.3 MOP Installment and Automatic Memory Reorganization

MATCHING 79

7.1 Analysis of the Matching Logic
7.1.1 Analysis of ISCNStudent>>matchSetTo:
7.1.2 Analysis of ISCNStudent>>closestMatchTo:

ADAPTATION 88

8.1 Analysis of the Adaptation Logic
8.1.1 Analysis of ISCNStudenB> adapt:forExpr:
8.1.2 Analysis of ISCNStudent>> adaptAbnormalitesOf forExpr:

VISUAL MANIPULATION 97

9.1 Overview 97

9.2 The Manipulation Metaphor 99

9.3 The Display of Ideograms for a Chromosome Model 101
9.3.1 The Human Chromosomes Object Model Used in Ideogram Drawings 101
9.3.2 The Generation of Chromosome MOPS for a Case 105
9.3.3 The Drawing of Chromosome MOPS 109

9.4 Mapping Visual Changes to New Expressions 111

10.

EVALUATION 114

10.1 ISCN Student Performance 114

10.2 ISCN Student Correctness 116

11.

CONCLUDING REMARKS 121

11.1 Contributions 121

11.2 Conclusions 122

viii

11.3 Future Research

12.

REFERENCES 125

APPENDIX A - ISCN GRAMMARS

13.1 The ISCN Short Form Grammar

13.2 The ISCN Long Form Grammar

Text Listings

Listing 5.1. Sample input structured list representation for MOPS 59
Listing 5.2. ISCNStudent Smalltalk instance method used as a functional attachment 63
Listing 6.1 Sample input text file of two interpretations from ISCN Expert 67
Listing 6.2 Top level method for reading and creating cases 69
Listing 6.3 Method to transform a single text interpretation into a case MOP 71
Listing 6.4 Method to parse out chromosome counts and create generalization 72
Listing 6.5 Demon for creating generalization MOPS of new case MOPS 74
Listing 6.6 Top level methods to install new MOPS and reorganize memory 75
Listing 6.7 Method to reorganize memory when installing new abstractions. 76
Listing 6.8 Predicate method to evaluate potential generalization-specialization between 2 MOPS 78
Listing 7.1 Top Level Method for Case Interpretation. Performs Matching and Adaptation 80
Listing 7.2 The Top Level Matching Method for ISCN Student 84
Listing 7.3 The Essential Matching Method that is Recursively Called 87
Listing 8.1 Top Level Method for Case Interpretation. Performs Matching and Adaptation 89
Listing 8.2 The Top Level Adaptation Method for ISCN Student 92
Listing 8.3 Adaptation of abnormalities 96
Listing 9.1 MOP definitions for chromosome object model 104
Listing 9.2 Sample abbreviated graphical ideogram band details for chromosome 1 105
Listing 9.3 ISCNInterpreation case MOPS have Chromosome demons which calculate the chromosome

structures. 106
Listing 9.4 The Chromosome demon generates detailed structures for both pristine and abnormal

chromosomes. 107
Listing 9.5 Method to generate chromosome band structure for abnormal chromosomes, based on the

ISCN long form expression. 108
Listing 9.6 Method used to generate chromosome bands in a range. 109
Listing 9.7 The top level method for drawing all chromosome ideograms. 110
Listing 9.8 Method for drawing an ideogram for a single chromosome. 110
Listing 9.9 Translating a terminal deletion visual manipulation into a new case 112
Listing 10.1 Starting cases used in evaluations 116
Listing 10.2 ISCN Expert interpretation for 45,xy,-4,de1(2)@11) 118
Listing 10.3 ISCN Expert interpretation for 47,xy,+4,t(1;2)(q12;p12),de1(5)(~112) 120

List Of Figures

Figure 2.1 The structure of chromosome 4
Figure 2.2 Chromosome 5 for 46,xx,de1(5)(p14)
Figure 2.3 Chromosomes 2 and 3 for 46,xx,t(2;3)(q3 1;p2 1)
Figure 2.4 A Basic Case-based Reasoning Cycle
Figure 2.5 Data Flow Diagram of a Generic CBR System
Figure 3.1 Opening ISCN Student Window
Figure 3.2 Translation Window to invoke ISCN Expert and Load Interpretations
Figure 3.3 ISCN Expert's Translation Results are Ready for CBR Interpretation
Figure 3.4 Sample ISCN Expert Interpretation Cases Output
Figure 3.5 ISCN Student's Main Window after Loading Interpretation Cases
Figure 3.6 MOP Specialization Hierarchy for Interpretation Cases
Figure 3.7 Subset of Chromosome Ideograms for 46,xy,del(l)(p21). Note Ideogram 1A.
Figure 3.8 Textual Interpretation for 46,xy,del(l)(p21)
Figure 3.9 Abstract Syntax Tree for 46,xy,del(l)(p21)
Figure 3.10 Visual Manipulation: Choosing an Entire Chromosome
Figure 3.1 1 Visual Manipulation: Choosing the "Add" Button Duplicates the Chromosome
Figure 3.12 Visual Manipulation: Choosing a Breakpoint on Chromosome 2
Figure 3.13 Visual Manipulation: Choosing the "Cut" Button creates a terminal deletion
Figure 3.14 Visual Manipulation: Choosing a translocation Between Chromosomes 3 and 4
Figure 3.15 Visual Manipulation: Choosing the "Translocation" Button creates a translocation
Figure 3.16 Detail of the Translocation Between Chromosomes 3 and 4 (3B and 4C)
Figure 3.17 Textual Interpretation for the Visually Manipulated Case
Figure 3.18 Partial Abstract Syntax Tree for 47,xy,+ 1 ,de1(2)(p2 l),t(3;4)(q24;p 13)
Figure 3.19 Modified MOP Memory after Visual Manipulations
Figure 4.20 Abstract Syntax Tree for an ISCN Expression
Listing 4.1 A subset of ISCN short form grammar
Listing 4.2 A subset of ISCN long form grammar
Figure 4.3 Abstract Syntax Tree for an ISCN Expression
Figure 5.1 Level 1 DFD for ISCN Student
Figure 5.2 Level 2 DFD to Interpret a New Case
Figure 5.3 Object model for Generic CBR Framework and ISCN Student
Figure 5.4 Partial abstraction hierarchy for ISCNStudent memory
Figure 5.5. Partial associative network for an interpretation.
Figure 5.6 Complete Object Model for ISCNStudent
Figure 5.7. Partial associative network showing inheritance of slots
Figure 5.8. Functional attachments in a MOPMemory
Figure 6.1 MOP memory illustrating specialized and generalized cases.
Figure 9.1 The standardized ideogram for chromosome 4
Figure 9.2 Visual Manipulation: Choosing a breakpoint on chromosome 2.

Figure 9.3 Visual Manipulation: Choosing the "Scissors" Button creates a terminal deletion 101
Figure 9.4 Object model for human chromosomes and ideogram information 102
Figure 10.1 ISCN Student interpretation for 45,xy,-4,de1(2)(pll) 117
Figure 10.2 ISCN Student interpretation for 47,xy7+4,t(l;2)(q12;p12),del(5)(p12) 119
Listing 13.1 ISCN Short Form Grammar 130
Listing 13.2 ISCN Long Form Grammar 131

xii

Introduction

A case-based reasoning (CBR) system, ISCN Student, whose input training cases are the

output from a prior rule-based knowledge system, ISCN Expert, is described in this

thesis. That is, ISCN Student is a second generation knowledge system that learns from

a first generation one using case-based reasoning techniques. The problem domain is

the interpretation of a notation used by cytogeneticists to represent chromosomal

abnormalities, the International System for Human Cytogenetic Nomenclature (ISCN).

The singular feature of ISCN Student is that it successfully interprets ISCN expressions,

constructing a deep interpretation model, yet it has no inherent domain knowledge.

ISCN Student acquires its competence by learning from ISCN Expert.

As well as the interpretation of ISCN expressions, alternate representations of both

expressions and interpretations are investigated in this research. It uses a visual

metaphor whereby one can view standard chromosome ideograms associated with an

expression, and introduce new defects via direct visual manipulation. Visually modifying

chromosome ideograms causes the underlying symbolic ISCN expression to be modified,

which then causes the case-based reasoning component to attempt to construct a new

interpretation model for the altered expression.

A further development in this work is the first definition of a generalized object-

oriented framework model for case-based reasoning systems. A s well, the first formal

grammar specification of the ISCN language, which has been shown to be an LR(1)

grammar, has been defined.

This work is of interest to several disparate groups. CBR researchers can use the

general purpose object-oriented CBR framework as a common base for specialized

systems, sharing common factored objects and behavior. This group may also find

noteworthy aspects in the discussion of alternate input strategies using visual

manipulation, and the potential for specialized matching and adaptation strategies

which can be selectively introduced. Industry CBR developers can use the framework as

a springboard to new systems, reducing reinvention. Researchers in automated learning

and induction will find points of interest in the methods used to interpret input cases,

and to automatically determine generalization concepts.

The thesis chapters cover the following material:

1. This introduction.

2. Background to this work, such as basic genetics and case-based reasoning

(CBR) concepts. In this section an explanation of ISCN syntax is given, plus a

review of related work.

3. A sample demonstration of ISCN Student at work. Screen captures of a session

using ISCN Student illustrate the entire sequence of use. The effect on the

semantic network of cases by using the system is illustrated.

4. Description of the ISCN grammar and how expressions are parsed. Abbreviated

grammars for both the short and long form of ISCN are presented and illustrated

with an example. The entire grammars are presented in Appendix A.

5. The system architecture from the point of view of process and object models.

Data flow diagrams are used to describe the processes in ISCN Student and its

relationship to ISCN Expert. An object model, or extented entity-relationship

diagram, based on OMT notation is given for the generic object-oriented

framework for CBR systems.

6. Explanation of how the output interpretations from ISCN Expert are translated

into cases in the CBR system. ISCN Expert creates a text file of interpretations;

Student must read these and transform them into cases in a semantic network.

This work includes the creation of generalized classes of concepts in the

network.

7. Analysis of the process and logic used in the CBR matching phase. Given a new

case represented as an ISCN expression, ISCN Student must find the closest

existing cases in memory, and rank them from best to work match.

8. Analysis of the process and logic used in the CBR adaptation phase. Once a

priority queue of closest matching cases is found, the adaptation phase must

construct a new case from a synthesis of the existing cases. In this section a

detailed description of the logic for this process is presented.

9. Overview of the visual manipulation subsystem: how the topology of abnormal

chromosomes is computed, how the ideograms are drawn, and how visual

changes initiate new CB reasoning processes.

10. Evaluation of the performance and correctness of ISCN Student. Student was

measured with respect to the time required to interpret a new ISCN expression;

the results are compared to the performance of ISCN Expert. Likewise, the

correctness of Student's results are compared for new cases to that of ISCN

Expert.

11. Future research possibilities and salient conclusions of this research.

1. I Problem Statement

Create a CBR system that can interpret and encode the output of ISCN interpretations

from ISCN Expert, representing them as cases in a CBR memory. When the CBR system

is presented with new ISCN expressions create new interpretations that are as correct at

1 those produced by ISCN Expert. As well, create a visual subsystem in the CBR system

that displays the chromosomes and their defects, and which allows the introduction of

new ISCN cases via visually manipulating the chromosome pictures.

1.2 Scope

ISCN Student has been limited to solve for a subset of sentences within ISCN grammar -

- those dealing with terminal deletions and reciprocal translocations.

The visual manipulation system has been limited to display of chromosomes 1

through 5, and X and Y. This is because of excessive time delay in displaying any more

chromosomes; the graphics are computationally intensive.

Case memory was limited to tests with twenty or less cases as input. Larger input

sets are possible, but physical memory limitations created a physical constraint on the

size of test cases.

Background

2.1 Genetic Terminology and Concepts

The genetic material of cells, which determines all physical characteristics and

functions, is represented in chromosomes, which are composed of tightly packed DNA

molecules. In each cell of a normal human is found an identical set of 46 chromosomes,

which are a configuration of 23 pairs: the sex pair ("XX" for females, "XY" for males) and

22 pairs of autosomes, numbered 1 through 22. One member of each pair is inherited

from the father, the other from the mother.

Band
~ 1 3

Region q2

Figure 2.1 The structure of chromosome 4

A chromosome has a sequence of contiguous sections that appear in alternating

light and dark bands when stained using various chemical techniques. Each

chromosome has a characteristic constriction called the centromere, which divides the

chromosome into a short (petite) 'p' arm and a longer 'q' arm. The arms are segmented

into major sections called regions, that are numbered in increasing order from the

centromere outward. For example, regions 4p1, 4p2, ... Further, regions may be

subdivided into sections called bands, such as 4p11, 4p12, 4p2 1, 4p22, . .. (Figure 2.1).

Chromosomal abnormalities involve deviations with respect to the number of

chromosomes (numeric abnormalities) or their structure (structural abnormalities). They

may be either congenital, such as inherited from the parents, or acquired, such as due

to a cancer. Physical abnormalities usually result from chromosomal abnormalities. For

example, a numeric abnormality in which there are 3 rather than 2 chromosome

number 21s results in Down Syndrome. A structural abnormality in which a terminal

portion of chromosome number 5 is deleted (missing) may result in Cri du chat

syndrome.

Cytogeneticists specialize in the investigation of chromosome abnormalities. For

inspection, a sample set of chromosomes from a cell is isolated and stained to produce a

fluorescent banding pattern. A picture is taken and the individual chromosomes are

identified, enlarged and grouped into a karyotype for visual inspection. Chromosome

defects can then be identified and recorded. The symbolic short-hand notation used to

describe the karyotype and the observed abnormalities is called ISCN.

2.1.1 Structural Chromosomal Abnormalities

There are many categories of structural abnormalities, this discussion will use only two,

in order to simplify examples.

The first is a deletion (or terminal deletion), in which the end portion of a

chromosome arm is broken off and lost. The break can be identified by the chromosome

number and band a t which the break occurred.

The second is a translocation (or reciprocal translocation), in which there is an

exchange of chromosomal segments between two chromosomes. The break can be

identified by the two chromosomes, and for each, the band a t which the segment broke.

2.2 ISCN Expressions

Cytogeneticists describe chromosomal defects using a standard notation, the

International System for Human Cytogenetic Nomenclature (ISCN). This notation

describes the:

number of chromosomes

sex chromosomes

numerical abnormalities

structural abnormalities

For example:

Normal Female - 46 chromosomes with the XXsex chromosomes

46,xx

Numeric Abnormality - Extra Chromosome 21 female with possible
Down Syndrome)

47,xx, +21

Numeric Abnormality - Missing Chromosome 15

4.5,~~)-15

Structural Abnormality - Terminal Deletion at Bandpl4 on
Chromosome 5. (Figure 2.2)

46,xx,del(5)@14)

Structural Abnormality - Translocation between chromosomes 2 and
3, with breakage's at 2q31 and 3 ~ 2 1 . (Figure 2.3)

46,xx, t(2; 3) (q3 1 ;p2 1)

Com bination of Abnormalities

4 7,xx, +2, t(2; 3) (q3 1 ;p2 I), del(5) @I 4)

Break at p 14

Figure 2.2 Chromosome 5 for 46,xx,de1(5)(p14)

Figure 2.3 Chromosomes 2 and 3 for 46,xx,t(2;3)(q31;p21)

2.2.1 ISCN Long Form Expressions

ISCN defines a detailed notation for structurally modified chromosomes. A double colon

(::) is used to indicate break and reunion, an + is used to indicate a from-to range, the

end of a chromosome is signified as qter or pter, and the centromere is denoted by cen.

i For example:

ISCN Short Form

2.3 From Expert to Student

ISCN Long Form

ISCN Expert, the prior first generation knowledge system, uses explicit domain

knowledge represented in the form of Prolog rules to interpret ISCN expressions (Cooper

1990). This hard-won knowledge was gathered from intensive study of related literature

(Harden 1985) and extensive interviews with a domain expert (Friedman 1986). ISCN

Expert has achieved an expert level of performance and can interpret a very substantial

subset of ISCN expressions, including those that contain complex and subtle issues of

interpretation. ISCN Expert produces as output a detailed textual interpretation of the

ISCN expression.

The genesis of ISCN Student, a second generation system, was to extend ISCN

Expert in some interesting or useful way; for example, to increase the knowledge base or

investigate the visualization of chromosomes. An additional goal (of the author) was to

ensure the emphasis of the research fell within the Computing Science domain, rather

than being a exercise in pure genetics knowledge acquisition. Reflection on these goals,

in conjunction with parallel research into models of medical knowledge systems, and

the generic use of case-based reasoning systems, led to an inspiration: it would be both

possible and intriguing to explore the creation a second generation case-based

reasoning system that would learn, via the ISCN Expert interpretation cases, to also

interpret ISCN expressions. This second generation system, ISCN Student, also afforded

the opportunity to investigate other interesting research questions, such as how to

model a visual manipulation system for chromosomal defects, and how to create an

object-oriented model for CBR systems.

2.4 Case-Based Reasoning

Case-based reasoning (CBR) draws inspiration from a cognitive model emphasizing

memory, recollection and adaptation in problem solving and interpretation. The seminal

work in the field is from Roger Schank and his researchers in the Yale A1 lab (Schank

1982, Kolodner 1986). The CBR model is based on reasoning in new situations by

remembering previous similar cases of problems and solutions and adapting the old

solutions to fit the new case situation.

Figure 2.4 A Basic Case-based Reasoning Cycle

A CBR system has a dynamic memory that records old cases and their solutions.

Reasoning about a new input problem case involves finding the most similar matching

old case or cases and adapting its solution. The new case and its solution are then

added to memory, and in this sense the system can be said to dynamically learn (Figure

2.4). CBR systems can also acquire domain knowledge by reading new sets of completed

+
Add New
Case to
Memory

-

Get New
Case

7

Retrieve Best Adapt Old
Matching Old Solution

Case
-

L

cases (with their solutions). A CBR memory starts as an empty shell without cases; new

ones may be added via reasoning and adaptation, or via input of completed cases. As

case memory grows performance improves, due to the system's larger set of cases to

match against new ones. The likelihood of matching to an existing case needing little or

no adaptation increases as the case memory grows.

2.4.1 CBR Components

A CBR system is composed of:

A memory of cases and supporting knowledge structures.

The usual representation of memory is a set of MOPS (Memory Organization

Packages). A MOP is a frame-like object that is the basic unit of memory

(Schank 1982). MOPS are organized in a graph structure to create a MOP-

based memory which incorporates generalization-specialization hierarchies,

multiple inheritance and composition (or arbitrary linkage) relationships.

Their use differs from classic frame or script systems (Minslq 1975; Schank

& Abelson 1977) in their application to dynamically changing knowledge

bases that are altered during CBR reasoning. A MOP is either an abstraction

or instance: the former representing a class-type object, the latter a specific

instance of the abstraction.

A pattern matcher for matching new cases to old.

An adapter which adapts the solutions of old cases to new ones.

A human user (or other external system) inputs a new case to the CBR system. It

matches the new cases to existing ones and uses the best matches to adapt a new

solution for the new case, which is then added to memory (Figure 2.5).

new case,

User newcase cases

new case
with adapted

solution solution

Figure 2.5 Data Flow Diagram of a Generic CBR System

2.4.2 CBR Advantages

Simple model; quick easy development.

A virtue of CBR in the context of developing real-world applications is its simplicity;

conceptually the model is easy to grasp, and there is evidence to show that system

development is quicker and easier compared to other A1 programming techniques, such

as rule or model-based systems (Goodman 1989, Koton 1988).

Easy knowledge acquisition; access to large volumes of domain knowledge in the
form of cases.

Knowledge engineering, either in terms of identification of heuristic rules or of first

principles causal models, is painstaking work and prone to error. Plus it requires the

services of a very highly skilled individual. CBR systems, in contrast, have available to

them the history of problems and solutions, which are relatively easier to both collect

and record. Businesses often have large quantities of computer readable past completed

cases.

Speed; avoiding the effort to recreate solutions from scratch.

CBR systems have been shown to outperform other approaches, such as model-based

programs (Koton 1988), because of the relatively simply computational model. As the

size of case memory grows there is a dynamic tension of trade-offs with respect to

performance: potential for slowing the performance because of searching a larger

memory, versus speeding time to solution by finding an existing case in the large set of

cases that very closely matches the new problem. Research into this problem, and the

quick, efficient retrieval of appropriate cases is termed the indexing problem. As case

memory grows, speed to matches can be improved by the selection of a suitable set of

indices that provide keys for rapid convergence to appropriate old cases. The choice of

these indices in non-trivial. Alternative approaches to rapid search are now being

explored that involve concurrent threads of execution in multiprocessor computers.

Improved problem solving with use.

CBR systems have the capacity to improve performance, in terms of solving more

problems and more quickly, with use; in other words, they learn. As new cases and

their solution are added to memory, the CBR case set grows and the likelihood

increases of closely matching a new case to a similar old case (with a relevant solution

requiring little or no adaptation). In contrast, rule-based systems do not improve with

use; only by the knowledge engineering process of manually adjusting or adding rules to

the rule base does it become a better problem solver. In practice, fielded rule-based

systems tend to suffer maintenance problems because the users don't possess the

expertise to update the rule base. Likewise, neural networks require a discrete training

session separate from their use in order to be modified. The ability of CBR systems to

automatically improve with use makes them very attractive from a maintenance

perspective. Moreover, users may fine-tune the learning process by vetting and

adjusting newly adapted solutions to input cases before they are added to memory.

The ability of CBR systems to learn from past cases and to match on inexact

inputs is analogous to the advantages that neural networks possess. Yet CBR offers an

improvement over nets in its capacity to handle higher-level cognitive processing and

symbolic representations; nets aren't yet good at this. Research in connectionist models

that attempt to represent symbolic CBR memories may eventually eliminate their

disadvantage.

CBR can handle inexact inputs gracefully.

CBR is potentially robust in handling noise and uncertainty in the input data; the

matching phase can allow for partial pattern matching on novel cases. The developer of

the matching algorithms can define to a greater or lesser extent the number of

attributes that are required to match, and the strength of attribute value matching. For

example, attribute value matching can be based on strict equality, or commonality

within a range of values.

Solutions in domains where algorithms, rules or causal models are not
developed or understood.

CBR systems need only problem cases and their solutions, and a means to adapt old

solutions to meet variations in new cases.

2.5 Related Work

2.5.1 Related ISCN Interpretation Work

Computerized interpretation of ISCN was first described by Dr. Jan Friedman (Friedman

1986), a geneticist who attempted the construction of an interpretation system (with the

aid of professional business programmers) in the language COBOL, without the benefit

of knowledge or techniques from the domains of language theory or Artificial

Intelligence, such as parsing, semantic representations, rule-based knowledge

representation, etc.

The problem was revisited in the latter 1980's by Dr. Glen Cooper, at the request of

Friedman (Cooper 1990). Cooper applied logic programming techniques, such as explicit

rule-based knowledge representation, using the language PROLOG, in order to develop

ISCN Expert - a very robust ISCN interpreter.

The architecture and solution strategy of ISCN Student is radically different from

Friedman's or Cooper's. Friedman's system, as one would expect of a program written in

COBOL without the benefit of A1 methods, lacked representation richness and

sophistication of reasoning methods. All information was stored in global variables or

records of primitive data types; there was no representation for frame-like semantically

rich concepts, or a semantic network relating concepts. Cooper's system did include

richer symbolic structures for different aspects of the expressions interpretations,

stored as Prolog clauses, but their potential relationships were not expressed in a

network and their was no use of specialization hierarchies to factor and share

representation.

The reasoning and control in Friedman's system suffered from the classical problem

of mixing knowledge and control in a procedural programming language - it was not a t

all clear what the rules of interpretation were, meta-reasoning was impossible, and

modification was unwieldy. Cooper's system made a vast improvement by using a rule-

based solution in Prolog in which clauses matched and fired using Prolog's built-in

backward chaining inference mechanism. Its main weaknesses were a computationally

intensive exhaustive search which relied heavily on blind backtracking to match the

rules of interpretation to the ISCN expression, and lack of meta-logically reasoning or

learning to improve performance.

ISCN Student builds primarily on Cooper's work in ISCN Expert, as the input

learning cases for Student are the output from Expert. However, Student is more limited

in its scope of expressions than Expert, as Student's emphasis is on the proof of concept

for a CBR learning architecture, whereas Expert's emphasis is on a very thorough

interpretation of most ISCN expressions, suitable for acceptance by cytogenetic experts.

Therefore Student was constrained to expressions involving numeric abnormalities and

deletion and translocation genetic defects.

Besides performing an identical task as Expert, that is, interpretation of

expressions, Student has a variety of functions and methods which distinguish it.

Undoubtedly Student's singular novel feature is its ability to learn problem solving skills

from existing knowledge systems. Further, Student's initial knowledge base is

automatically induced from a set of learning cases, where Expert's was hand-crafted via

a human knowledge engineering effort. Student includes a learning function that

modifies its performance in new problems, learning from prior solutions. While Expert's

knowledge base and reasoning don't change over time, Student solves new problems

drawing on previous solutions. In contrast to Expert, Student uses a semantically rich

network of related concepts, associated by specialization and composition relationships.

From this, reasoning based on inheritance and aggregation, such as inheritance of

abnormalities, was extensively exploited. While Expert's reasoning was based directly on

Prolog's inference mechanism, Student used a CBR match-and-adapt inference engine

which, it is claimed, more accurately models the human reasoning process in this

domain, and which provided the basis for meta-level programming capabilities such as

dynamic criticism and tracing. Another significant advancement made by Student is the

visual representation and manipulation possible; Expert allowed only symbolic

character string inputs and outputs.

I

I It is not established how well Student's performance would scale up to a broader

range of expressions and cases from Expert, but it would certainly require enhancement

to the case input and adaptation subsystems. Representation changes would not be

necessary, as the frame-like structures (MOPS) used in ISCN Student are automatically

derived from the input cases using an abnormality-independent algorithm.

2.5.2 Related Genetics Work

Dr. David Searles (Searles 1993) has done research into defining a grammar for DNA

sequences, based on definite clause grammars implemented in Prolog. From this

grammar, parsing and reasoning processes are being explored. Note that the DNA level

of genetic representation is lower than the chromosome level; chromosomes being

composed of tightly wound coils of DNA. Besides very different aims to ISCN Student,

Searles' work emphasizes the microcosmic level to ISCN Student's macrocosmic level in

the world of genetics. As with ISCN Expert, this research was limited to symbolic

character string representations, in contrast to ISCN Student's visualization

capabilities.

2.5.3 Related CBR Work

ISCN Student relies on the case-based reasoning (CBR) model of problem solving

(Schank 1982), which is discussed in greater detail in section 2.4. Kolodner lays out the

state of the art in (Kolodner 1993). She provides an in-depth look at representation and

reasoning issues through many case studies, but focuses on the semantic level, rather

than the architectural or implementation level. Where implementation is discussed,

such as in some of Kolodner's cases, or Schank's survey of CBR implementation

techniques (Schank 1989)' the solutions are consistently function-oriented, usually

written in Lisp, and without an organizing systems metaphor. In contrast to existing

CBR literature's emphasis on semantic level issues, albeit their preeminent importance,

a contribution embodied in ISCN Student is the definition of an architectural-level

solution: an object-oriented framework for a generalized CBR system which can be

specialized for domain dependent CBR applications.

What further distinguishes ISCN Student from existing CBR work is the source of

its input cases used for learning - an existing knowledge system. Computer systems

that perform automated knowledge acquisition from other computer systems are

presumably uncommon, because a literature search yielded no references of related

work. The closest work in this area is CASEY (Koton 1988), a CBR system for heart

failure diagnosis that is built on top of a previous model-based system, the Heart

Failure Program (Long 1987). If a new case presented to CASEY can't be solved, it

passes it on to HFP, which returns its results for CASEY to use in subsequent cases.

CASEY's training cases do not, however, derive from HFP outputs.

2.5.4 Related Visualization Work

Recent work in scientific visualization is surveyed in (Hagen 1993) and (Nielson 1990).

Interestingly, throughout the descriptions the emphasis is on passive display of results,

rather than on visually manipulating the images to affect the underlying models or

objects they represent, although this idea is not new - most recently explored in virtual

reality research. A specific (and apparently not widely exploited goal) of the visualization

subsystem of ISCN Student was to link the visualization back to the underlying model

so that there is a two-way linkage.

Along this vein, Student is the only CBR system (at least as far as literature

searches yield) to accept case input via a direct visual manipulation metaphor; all

existing CBR systems receive their cases in a symbolic character string format.

In the literature on biomedical computer systems for genetics, there is no report on

the visualization of chromosome ideograms. ISCN Student contributes to this area by

defining a representation to store chromosome ideogram graphical information, and a

means to (relatively) efficiently display ideograms.

Example: ISCN Student
at Work

A sample session using ISCN Student will illustrate its central features.

On startup, the main window is displayed which shows a list of existing cases in

memory, and various action buttons (Figure 3.1).

Load Display MOP Display
interpretations - memory - chromosome
from ISCN Expert \ I ideograms

ISCN Cases

Figure 3.1 Opening ISCN Student Window

When the ISCN Analysis window is opened, one can enter ISCN expressions

directly, or select them from a text file (Figure 3.2).

Figure 3.2 Translation Window to invoke ISCN Expert and Load Interpretations

The "Prolog Interp." button causes the ISCN expressions to be interpreted to a text

output format using ISCN Expert (Figure 3.4). Once completed, the interpretations can

be loaded into CBR memory via the "CBR Interp." button (Figure 3.3). In this figure we

see the ISCN Expert output for the expression 46,xy,del(l)(q21q31), which will be input

(along with the other interpretations) to the CBR load phase that translates them into

MOP memory cases.

Figure 3.3 ISCN Expert's Translation Results are Ready for CBR Interpretation

ISCN Expert's interpretations (Figure 3.4) describe the sex, any abnormal copies,

the detailed structure of abnormal chromosomes, and the nature of the abnormalities.

I
Sex model is male
Exactly 3 whole copies of chromosome 2
XNX (2) = extra whole normal chrom (trisomy/xxy/xyy)

Cell observation is reciprocal translocation
Cell observation is terminal deletion
Chromosome 2 is 2pter->2q12::3~21->3pter
Chromosome 3 is 2qter->2q12::3~21->3qter
Chromosome 2 is 2p12->2qter
Sex model is male
Exactly 1 whole copies of chromosome 3
Exactly 0 whole copies of chromosome 2
Exactly 3 whole copies of chromosome 5
RTB(2,3) = balanced carrier of reciprocal translocation
TDR(2) = terminally deleted chromosome replaced normal
XNX(5) = extra whole normal chrom (trisomy/xxy/xyy)

Figure 3.4 Sample ISCN Expert Interpretation Cases Output

Once the ISCN Expert interpretations have been loaded, the ISCN Student main

window can be refreshed to show the new list of cases loaded in MOP memory (Figure

3.5).

ISCN Cases

Figure 3.5 ISCN Student's Main Window after Loading Interpretation Cases

The "Memory Display" button can be used to display a graph of all MOPS in memory

- a subject which will be discussed in greater detail later. The graph shown here (a

directed acyclic graph) illustrates the cases that have been loaded into memory from

ISCN Expert. Generalizations are to the left, specialization's to the right. Note that

generalized abstraction cases have been automatically created, such as 47,+<num>,

from instances such as 47,xxY+3 (Figure 3.6).

Figure 3.6 MOP Specialization Hierarchy for Interpretation Cases

From the main window, one can also choose an existing case, and display the

chromosome ideograms for it (Figure 3.7). In this instance, the ideograms for

46,xy,del(l)(p21) are displayed. Note that the abnormal chromosome (1) is shown with

its correct structure; a terminal deletion after lp21. It is coded as "1AW, and the lower

centre of the display shows the ISCN long form expression of the structure

(lp2 l+lqter).

Textual
interpretation 1

zoom , I

, Duplication

Abstract syntax Terminal
deletion

Figure 3.7 Subset of Chromosome Ideograms for 46,xy,del(l)(p21). Note Ideogram 1A.

From the chromosome ideogram window one can display a textual interpretation of

the expression (Figure 3.8). This interpretation is stored in MOP memory via associative

relationships with the case. Note that the sex, total number of chromosomes, and

abnormality expressions, for example del(l)@21), have been isolated, and a description

attached. Likewise, abnormal chromosome numbers and ISCN long form expressions

are expressed for all aberrations. This interpretation is evidence of a deeper semantic

understanding of the surface ISCN expression, and is constructed from associations

maintained in MOP memory.

Figure 3.8 Textual Interpretation for 46,xy,del(l)(p21)

An abstract syntax tree (AST) may be generated for expressions, from the ideogram

window (Figure 3.9). An LR(1) parser has been constructed for the ISCN grammar,

which is used to construct the trees. An exhaustive derivation tree may also be

generated, but is excluded from this view because of its verbosity. The AST view is not

directly useful, but the underlying AST and derivation trees are used extensively during

the CBR matching and adaptation phases.

File

Figure 3.9 Abstract Syntax Tree for 46,xy,del(l)(p21)

An interesting feature of ISCN Student is the use of visual manipulation to

introduce new ISCN expressions to the CBR engine for potential interpretation (Figure

3.10). One can add or remove chromosomes, or add structural abnormalities using a

visual metaphor. The singular feature of this utility is that these changes only affect the

surface syntax of the ISCN expression, not the underlying chromosome model or case

represented in MOP memory. For example, visually choosing a chromosome and

requesting to duplicate it (e.g., choosing to duplicate chromosome 1) causes only the

surface expression to change with the addition of a "+In to the ISCN expression. The

visual manipulator subsystem, and indeed the entire CBR system, has no deep

knowledge of chromosome models or ISCN semantics, and thus is incapable of affecting

a deep change. The manipulator subsystem has knowledge of surface syntax only,

knowing that when a chromosome duplication is requested, a "+.?'' can be added to the

expression.

How then, is the underlying model or case updated to reflect the visual

manipulations? Each time a visual modification causes the ISCN expression to be

modified, the new resultant expression is treated as a new case for the CBR engine to

interpret. The new expression is matched to existing cases, and a deep semantic model

(a solution, in this domain) is constructed via adaptation from existing models (recall

section 2.4).

In the example of Figure 3.10 chromosome 1 is chosen for duplication and then the

"+" button is pressed. The manipulator adds a "+I" to the expression, and the CBR

engine is invoked to attempt to construct a new case and deep interpretation model. The

matching and adaptation phases are successful and a new case is added to memory.

The ideograms are then redrawn from the underlying model that was generated via

adaptation (Figure 3.1 1).

To summarize the manipulation icons: '+' icon causes a duplication of a

chromosome; " causes the removal; 'scissor' causes a terminal deletion of a

chromosome; 'double scissors' causes the interstitial deletion of chromosome material;

and 'swap' causes exchange or translocation of material.

Figure 3.10 Visual Manipulation: Choosing an Entire Chromosome

Figure 3.11 Visual Manipulation: Choosing the "Add" Button Duplicates the Chromosome

In Figure 3.12 we see another example of visual manipulation. This time a

breakpoint is chosen on chromosome 2 and then the Terminal Deletionw button is

selected. Once again, the manipulator subsystem merely updates the ISCN expression

with the corresponding syntactic changes. Then the CBR engine is invoked to attempt to

construct a new case and interpretation model for the expression.

Figure 3.12 Visual Manipulation: Choosing a Breakpoint on Chromosome 2

An adapted case results, and the new ideogram is show in Figure 3.13. Note that

the chromosome 2A is shorter, befitting a terminal deletion, and that the ISCN long

form description for 2A is given on the window.

Figure 3.13 Visual Manipulation: Choosing the "Cutn Button creates a terminal deletion

In (Figure 3.14, Figure 3.15, Figure 3.16) we see a similar pattern to the previous

terminal deletion example. This time, a translocation is added via a visual manipulation,

and the CBR engine once again is able to adapt a new case and interpretation,

evidenced by the detailed ideogram display in Figure 3.16. Note the chromosome regions

on chromosomes 3B and 4C that have been swapped, and the displayed ISCN long

forms.

Figure 3.14 Visual Manipulation: Choosing a translocation Between Chromosomes 3 and 4

Figure 3.15 Visual Manipulation: Choosing the "Translocation" Button creates a translocation

Figure 3.16 Detail of the Translocation Between Chromosomes 3 and 4 (3B and 4C)

Further proof that the CBR reasoner of ISCN Student can adapt meaningful deep

interpretation (represented in MOP memory) is shown in the textual interpretation

window for the ISCN expression that has been visually constructed in this series (Figure

3.17). Note that the abnormality sections have been correctly identified, and associated

with meaningful descriptions.

Figure 3.17 Textual Interpretation for the Visually Manipulated Case

An AST can be generated for expressions of arbitrary complexity, as illustrated in

Figure 3.1 8.

File

Figure 3.18 Partial Abstract Syntax Tree for 47,xy,+l,de1(2)(p2l),t(3;4)(q24;~13)

Finally, a view of MOP memory shows that each new ISCN case has been added

with appropriate generalization inheritance relationships. Note that the following cases

have been added, corresponding to the abnormalities that were introduced:

File DAG

Figure 3.19 Modified MOP Memory after Visual Manipulations

Translating ISCN
Expressions

4. I The ISCN Grammars

The ISCN nomenclature was developed by geneticists as a notational shorthand,

without consideration to grammatical consistency or parsing (Denver 1960).

Fortunately, it turns out that ISCN can be expressed by an LR(1) context free grammar

(CFG) (Listing 4. I), which provides the opportunity to automatically generate a parser

translator using standard tools such as YACC (Johnson 1975). As ISCN Student was

written in Smalltalk, a YACC-like translator generator implemented in Smalltalk was

used, T-gen (Graver 1992). T-gen can construct a translator that generates both

derivation and abstraction syntax trees.

There are two forms of ISCN expressions: short and long. Short form expressions

indicate abnormalities, but do not explicate the actual structure of each chromosome.

In contrast, long form expressions, don't state abnormalities, but do show the topology

of all abnormal chromosomes.

The ISCN short form expression is at the heart of the CBR matching and

adaptation, thus the grammar from which derivation and abstract syntax trees (AST)

can be generated is of central importance. The resultant trees are used in several stages

of the ISCN Student. One notable use is in the matching phase, where the AST of a new

ISCN expression is compared to ASTs associated with existing cases. Intersection sets of

AST abnormality nodes are calculated and used in ordering old cases according to

closeness of match.

This (first) CFG for ISCN has been constructed to aid ISCN Student in CBR

matching and adaptation. A grammar for all abnormalities was not attempted; it was

limited to numerical aberrations, deletions (both terminal and interstitial) and

translocations.

4.1.1 T-gen Grammar Specifications

As usual in CFG specifications, T-Gen grammars are designated by a list of

productions. The left hand side (LHS) of the first production is taken to be the start

symbol. T-gen supports an extension of CFGs: regular right-part grammars (LaLonde

1977), which provide improved readability and brevity in production specifications. As

in YACC, T-gen notation expresses grammar productions as left hand side (LHS) non-

terminals and RHS sequences of terminals, non-terminals and literals. For example,

Translocation :
It' TwoChromTwoBreakRea ;

The non-terminal expression Translocation is composed of a literal 't' followed by a

TwoChromTwoBreakRea expression

Again similar to YACC, in T-gen notation an expression in "r brackets at the end of

production indicates a node name in an AST. For example,

Region :

Arm Num {~egion) ;

This production specifies that if an AST is being generated, the parent node for an Arm

followed by a Num will be named Region in an abstract syntax tree. The branch at the

bottom of the sample AST in Figure 4.20 illustrates its realization. We see the node is

labeled Region, with a kind of A m and Number as terminal child nodes.

Alternate right hand side productions with the same left hand side can be

consolidated with the use of the I symbol. For example,

ChSet :

ChCnt {~hset}
I ChCnt I , ' SexList {~hset)
I ChCnt AbnormList {Chset)
I ChCnt ' , I SexList I , ' AbnormList {Chset);

This declares that a ChSet is either a:

Alternate Production Example

ChCnt 46

ChCnt ',' SexList 46, XY

ChCnt ',' AbnormList 46,+2

ChCnt ',' SexList ',' AbnormList 4 6 , ~ ~ , + 2

Figure 4.20 illustrates the decomposition of a ChSet expression into the major child

branches rooted a t ChCnt, SexList and AbnormList nodes.

I ChCnt ' , I SexList ich~et j
I ChCnt I , AbnormList {Ch~et)
I ChCnt I , ' SexList AbnormList {~h~et);

----m
w Region :

1-
-

Arm Num {Region);
l , ~

--
'-\-

''Ail

Figure 4.20 Abstract Syntax Tree for an ISCN Expression

4.2 ISCN Short Form Grammar

Complete listings of the short and long form grammars are given in the appendices; a

subset is shown here for discussion.

ChSet :

ChCnt {~hset)
I ChCnt ' , I SexList {~hset)
I ChCnt I f 1 AbnormList {Chset)
I ChCnt I , ' SexList ' , I AbnormList {~hset) ;

ChCnt :

Num

SexList :

XList YList
I XList
I YList

XList :

ChX XList

I chx

YList :

ChY YList
I ChY

AbnormList :

Abnorm I , ' AbnormList
I Abnorm

Abnorm :

Numer i cAbnorm
I StructuralAbnorm

" NUMERIC ABNORMS "

NumericAbnorm :

' + I I ? ' AnyChrom
1 + I ? ' AnyChrom Sign
I I + ' AnyChrom
I I + ' AnyChrom Sign
1 I - AnyChrom
I 1 - 1 I ? ' AnyChrom

I I + ' ChPartOfDiffLength

Listing 4.1 A subset of ISCN short form grammar

Consider a few examples with this grammar. The starting sentence in the grammar is:

ChSet :

ChCnt / / alternate 1
I ChCnt I , ' SexList / / alternate 2
I ChCnt I , ' AbnormList / / alternate 3
I ChCnt I , ' SexList I , ' AbnormList / / alternate 4

Alternate 1 provides a very brief karyotype description which refers only to the

chromosome count:

a person with 47 chromosomes

Alternate 2, normal karyotypes and those defective only in sex counts are illustrated by:

a normal male

a person with an extra X chromosome

Alternate 3 identifies abnormalities but excludes sex information:

46,del(l)(p2 1) a person with a terminal deletion

47,+2 1 ,del(l)(p2 1) a person with a terminal deletion and extra 2 1

Alternate 4 provides the most information on a karyotype:

4 8 , ~ , + 2 1 a male with an extra X

4.3 The ISCN Long Form Grammar

and 2 1 chromosome

A grammar for the ISCN long form notation was also needed for ISCN Student to

perform reasoning and interpretation of ISCN Expert output (Listing 4.2). As mentioned

in the section on background concepts, the long form notation defines the detailed

band-level topological structure of chromosomes; in particular, those that are abnormal.

Associated with each case in MOP memory is a set of long form expressions for each

abnormal chromosome. These long form expressions are critical to the generation of

chromosome MOPS that represent the structure necessary for drawing chromosome

ideograms and their visual manipulation.

ISCNLongExpr :

Bandsection I : : ' ISCNLongExpr {lift~ight~hild)
I Bandsection {~~CNLong~xpr)
I BandEnd {~~CNLong~xpr) ;

 and section :

StartBand ' - > I EndBand

StartBand :

BandEnd

EndBand :

BandEnd

BandEnd :

Centromere
I Terminal
I Region
I Band ;

Listing 4.2 A subset of ISCN long form grammar

An example with this grammar will illustrate typically long form expressions. The

starting sentence in the grammar is:

ISCNLongExpr :
Bandsection I : : ' ISCNLongExpr / / alternate 1

I Bandsection / / alternate 2
I BandEnd / / alternate 3
I

Alternate 1 defines the typical expression:

An abnormal chromosome that starts at the p terminal end and extends

over the normal range of bands upto Ip13. This is followed by a section

from 1 q22 through to 1 q42.

4.4 Use of Derivation and Abstract Syntax Trees in Reasoning

The definition of the ISCN grammar provides the capability to generate abstract syntax

trees (ASTs) and parse (derivation) trees for each ISCN short and long-form expression

associated with the CBR cases. Associated with these trees are Accessor objects, such

as ISCNExprAccessor and ISCNLongExprAccessor, which encapsulate the knowledge

for accessing the components of the trees (for example, the abnormality list section).

These accessor objects were found to be required in order to ensure a low coupling

between the components reasoning with the trees, and the tree structures and labels.

To illustrate, consider the AST in Figure 4.3 and the following code fragment used

in the adaptation phase for adapting abnormalities.

1. exprAccessor := ISCNExprAccessor new expr: iscnExpr.
"/ / strip out the generalized ISCN abnormality expressionsN

2. genAbExprs := exprAccessor generalizedAbnormalitiee.

In reference 1, an ISCNExprAccessor object is instantiated on an ISCN expression

string; the AST and derivation trees are generated during instantiation. In reference 2,

the adaptation logic requires the subset of the expression that describes abnormalities

(the AbnormList subtree in the figure), in a generalized form with specific chromosome

numbers removed. The knowledge for the extraction and generalization of the subset

expression is encapsulated within the accessor object, which delivers the results to

without requiring high coupling of the reasoner (the adaptation methods) to the

particulars of the tree structure.

File -

Figure 4.3 Abstract Syntax Tree for an ISCN Expression

System Architecture

5. I Introduction

Two dimensions of ISCN Student's architecture are discussed. The process model

describes a data flow and process-oriented view which provides insight into the

subsystems, system interface, and activity of the application. The object model

describes the classes and their relationships for the generic CBR framework, and the

class extensions required for ISCN Student.

5.2 The Process Model

New ISCN expressions may be entered manually be a user, or retrieved from a text file

(Figure 5.1). ISCN Expert, an expert system written in Prolog, is invoked to process the

expressions and produce textual interpretations in a new file.

These interpretations are then loaded into ISCN Student's MOP memory, a step

which requires explicit knowledge of the form and content of ISCN Expert's output. A

case MOP is constructed for the new interpretation, as well as MOPS for all abnormality

descriptions. The MOPS are then related with associative links. Generalized abstraction

(superclass) MOPS are also constructed for the case and abnormalities. Finally, all the

cases and their abstractions are organized into a generalization-specialization

abstraction hierarchy based on specialization by abnormality criteria. This is a CBR

learning phase in which the memory is loaded with the majority of cases.

When a new expression is later entered by the user, either in textual format or via

visual manipulation, ISCN Student will attempt to construct a new interpretation for it,

and add it to memory. If successful, the new interpretation is presented to the user.

I ISCN Expressions A ISCN Interpretations

I exprs

\ \new expr

Interpret
New Case

Figure 5.1 Level 1 DFD for ISCN Student

lfext interps

Interps 0
case Mops i

4pl MOP Memory

new case
MOP

--

Taking a closer look at interpretation of new cases (Figure 5.2), ISCN Student first

retrieves existing cases that most closely match the new ISCN expression, based on

derivation tree or AST pattern matching; details of the matching phase will be

elaborated later. The adaptation phase extracts the interpretations from the old cases,

and modifies them with respect to chromosome number, abnormal chromosome

structures, etc. A new case is created with the adapted interpretations, and inserted

into the memory abstraction hierarchy with associative links to abnormality MOPS. If

the new expression was input via the visual manipulation subsystem, the case is

returned for re-display, causing the new underlying chromosome model to be used for

the ideograms.

f 3.1
User newexpr Match case MOPS

b I MOP Memory
b

closest matching
case MOPS

Figure 5.2 Level 2 DFD to Interpret a New Case

5.3 Object Model

ISCN Student was used as vehicle to explore the design of a generic object-oriented (00)

model, or framework (Booch 1994) for CBR systems - one that could be specialized in

different domains, with a core framework of classes, attributes and methods that would

prove universally useful in CBR. Furthermore, an extendible 00 model for standard

CBR systems provides a structure for research which builds upon existing CBR systems

without needless reinvention.

The central question explored is this: what is an appropriate 00 framework for a

generic CBR system that supports graceful specialization in different problem domains?

The answer is illustrated in Figure 5.3, which shows the object model using the

extended entity relationship diagram notation of the Object Modeling Technique

(Rumbaugh et al. 199 1).

5.3.1 The Basic Object Model

The pivotal class in this model is MOP (Memory Organization Package), a frame-

like object that is the basic unit of memory (Schank 1982). MOPs are organized into a

graph structure to create a MOP-based memory which incorporates generalization-

specialization hierarchies, multiple inheritance and composition relationships. A MOP is

either an abstraction or instance: the former representing a class-type object, the latter a

specific instance of the abstraction. An instance of the MOP class maintains the

following base attributes:

0 name: unique name of the MOP

type: either abstraction or instance type

and the following relationship attributes:

abstractions: a set of immediate generalizations

allAbstractions: a set of all direct and indirect abstractions (used for
efficient processing)

memory: the associated MOP-memory object

slots: a set of packaging slot relationships to other MOPs

specializations: a set of immediate specializations

MOPMemory
mops 7- 0 I

ISCNStudent E%Y
name

slots pq
MOPParser R

root

I sentence I

name

I \

abstractions,
allAbstractions,
specializations

I

Figure 5.3 Object model for Generic CBR Framework and ISCN Student
(note: Solid dot represents "many" side of relationship; triangle denotes generalization-
specialization)

A MOPMemory object is created for each problem domain, or CBR memory,

reflecting the cognitive model that people possess specialized memory sets of cases; for

example, criminal sentencing cases, or ISCN interpretation cases. A MOPMemory object

maintains a set of all its MOPS (which can be retrieved by name), and a pointer to the

Root MOP. MOP memories are organized into an abstraction hierarchy and

discrimination nehvork (Charniak et al. 1987) which is a directed acyclic graph of

abstractions (generalizations) and specializations with a single ultimate ancestor MOP,

Root, from which all other MOPS inherit. MOPMemory is a generic abstract class which

has no (Smalltalk) instance objects, but which is specialized into concrete classes for

each problem domain memory, such as the ISCN memory class ISCNStudent. Figure

5.4 illustrates the abstraction hierarchy for a portion of ISCNStudent.

Mopparser is a utility class to interpret structured list-form MOP definitions and

store them in memory.

Generic MOPs

7/-
Application
Specific

-MOPS

Figure 5.4 Partial abstraction hierarchy for ISCNStudent memory

MOPMemory is the abstract generic class for creating a CBR dynamic memory;

it defines the common protocol used by all subclasses, and installs common MOPs,

such as the Root and Case MOPs, into the memory object. Subclasses of MOPMemory

define domain specific memories. For example, ISCNStudent is for interpretation of

ISCN expressions, and installs the domain dependent MOPs, such as

Figure 5.5. Partial associative network for an interpretation.
(note: The solid circle at the end of a dashed line indicates a directional "arrow '7.

A MOP has associative links to other MOPS which are represented by a set of

Slot objects. A Slot has a role and rolefiller (or simply filler). The role is a descriptor and

the filler is another MOP in the memory. For example, the ISCNInterpretation MOP has

a slot whose role is Sex and whose filler is an specialization of a Sex MOP. Figure 5.5

illustrates the associative network for a particular case.

(Outcome (Root) .

(Fightoutcome (Outcome)
((State PhysState) (Actor Actor)) .

59

Listing 5.1. Sample input structured list representation for MOPS

5.3.2 The ISCNStudent Object Model

The basic CBR framework is enhanced in ISCNStudent with classes to support

interpretation and parsing of the textual descriptions.

The T-gen translator generator defines an abstract class LRlParser and generates

a concrete subclass ISCNParser class, which embodies a table representation of a state

machine for the LR(1) parser for ISCN expressions. LRlParser defines the methods for

parsing (running the state machine) and creating a derivation tree.

Derivation trees are represented by a set of DerivationTreeNode objects, one of

which is the tree root. Each node maintains a label, or symbol.

To interpret the ISCN Expert text interpretations and load them into CBR memory,

an ISCNInterpretationParser class is defined. This class is responsible for knowing the

detailed layout and semantics of the interpretations, and must create both concrete

specializations and generalized abstractions of cases and abnormalities. It will be

discussed in greater detail.

I LRlParser I

AbstractExprAccessor IrxprI

abstractions,
allAbstractions,
specializations

1 \ 1 qots
Slot

1 sentence I

Figure 5.6 Complete Object Model for ISCNStudent

To support accessing the constituent components of ISCN expressions and ISCN

long form expressions, which is necessary especially during the CBR adaptation phase,

ISCNExprAccessor and ISCNLongExprAccessor have been defined. Objects of these

classes can generate both derivation and abstract syntax trees for expressions. They

possess knowledge of the structure and meaning of the expressions, and can for

example retrieve the set of abnormality root nodes for those syntactic sub-units.

5.3.3 Inputting Cases

MOPs may be input using a structured list representation, which requires parsing and

translation into a true Smalltallc MOP object (a detailed discussion of this process is

presented in Chapter 6). For example, in Listing 5.1 the MOP Fightoutcome is defined

as a specialization of Outcome, with slot (State PhysState), where State is the role and

PhysState the filler MOP, and slot (Actor Actor).

The translation is accomplished by a MOPParser object which is responsible for

installing the input sentence as a MOP in a MOPMemory, with all dependent links

established (abstraction, specialization and slot).

5.3.4 Inheritance in MOP Memory

Figure 5.7. Partial associative network showing inheritance of slots

Specialized MOPs inherit the slot definitions of their abstractions in a multiple

inheritance schema. For example, in Figure 5.7 the ISCNInterpretation MOP defines

the slot Sex, which is associated via a slot link to the abstraction Sex MOP. The

specialized instance MOP 4 6 , ~ ~ also possesses these slots and overrides the inherited

fillers for more specialized ones. Thus (Sex-Sex) is replaced by (Sex-Female). Inherited

slots do not need to overridden, in which case the inherited filler applies. This

inheritance of values, common to frame-based languages, is in contra-distinction to

pure 00 languages like Smalltalk. If a MOP inherits multiple slots with the same role

name, the ambiguity is resolved by using the slot of the earliest abstraction in the

MOP'S abstraction list.

5.3.5 Functional Attachments

File DAG -

Figure 5.8. Functional attachments in a MOPMemory

MOPS may have slots which contain functional attachments represented as Pattern

MOPs; attempting to retrieve the fder for a role with such an attachment will cause the

function to execute and return a filler value. These functions may have side-effects

which cause 110, pattern matching or the installation of new MOPs. They are named

Pattern MOPS because of their use in pattern matching and role filling operations. The

connections are set up as illustrated in the Figure 5.8 example: the Sex filler in

ISCMnterpretation points to a Pattern MOP (Patternll) which has a CalcFN role,

whose filler is the name of an associated instance method (#sexChs:) in the Smalltalk

language.

sexChs: aColl
ItMOP Calculation Function.
Return the OC of sex chromosomes for this interpretation"

I pattern mop acc I

pattern := aColl at: 1. mop := aColl at: 2.
(mop isSuccessorOf: lISCNInterpretationl) issatisfied.

acc := ISCNExprAccessor new expr: mop name.
^act sexChs collect: [:aSymbol I

(aSymbol asuppercase includes: $x)
ifTrue: [self at: lChxt1
ifFalse: [self at: IChyt]

I .

Listing 5.2. ISCNStudent Smalltalk instance method used as a functional attachment

In this framework, the location of the functional attachments was chosen

to be Smalltalk instance methods (pattern methods) of the related MOPMemory

Smalltalk class (e.g. ISCNStudent). All generic pattern functions are defined as instance

methods in the MOPMemory class and installed in the generic memory setup. Domain

specific functions are stored as methods in the related subclass of MOPMemory. Figure

5.8 contrasts generic functions installed in MOPMemory basic setup with those

installed in the subclass ISCNStudent setup (in black).

MOPMemory defines several general purpose pattern methods (which are related

to Pattern and Function MOPS) for testing values and generating fillers. The most

important of these is getClosestSibling: which is a pattern matching method used to

retrieve the best matching old case related to a new case, once the new case has been

installed under some abstraction MOP. The generic version simply returns the first

available sibling; subclasses should override this method to return a realistic best

matching sibling MOP.

Interpretation Parsing

6.1 Introduction

As a case-based reasoner, ISCN Student requires a set of prior cases from which to

learn. These come from ISCN Expert, an existing rule-based expert system for the

interpretation of ISCN expressions written in Prolog. ISCN Expert reads a set of ISCN

expressions as input, and writes the interpretations to a text file, as discussed in

section 5.1 (Introduction

Two dimensions of ISCN Student's architecture are discussed. The process model

describes a data flow and process-oriented view which provides insight into the

subsystems, system interface, and activity of the application. The object model

describes the classes and their relationships for the generic CBR framework, and the

class extensions required for ISCN Student.

The Process Model).

Text interpretations must be parsed and translated into an underlying semantic

representation that captures the genetic information for each interpretation and relates

it to existing MOP concepts in case memory. Thus each interpretation must be

transformed into a specialization of a Case MOP, with MOP roles (akin to fiame facets)

connected to such things as Abnormalities and ISCNLongForm MOPs.

The process implies that all concepts embodied in the interpretation must be both

identified and inserted into MOP memory with correct generalization-specialization and

associative semantic relationships. One of the singular features of this phase is the

capability to identify and generate (as MOPs) generalizations of specific concepts in a

case. This generalization generation, and the identification of the correct placement of

these concepts is rather subtle, and consumes significant effort. However, the payoff is

a semantically rich case memory with the necessary generalizations and associations to

provide a robust basis for the quintessential CBR capability: understanding and storing

novel cases.

For example, consider the portion of memory shown in Figure 6.1. The case

'47,xy,+2' as given in Listing 6.1 has just been read and interpreted. As shown in the

figure, not only has the MOP named '47,xy,+2' been installed, but also a generalization

of it named '47,+<num>'. The abnormality of this case is the numerical defect of a third

chromosome 2 (i.e. '+a?. ISCN Student has installed the concept '+2' and has also been

able to infer a generalization of it, 'extra whole normal chromosome (trisomy ...)'

which has additionally been installed as a MOP. Further, the specialized case's

Abnormalities attribute has been associated with the '+2' MOP, and the generalized

case's Abnormalities attribute has been associated with the 'extra whole normal

chromosome (trisomy ...)' MOP. Likewise, installation of the ChCopies MOP has

established a generalization of it, with the specialized interpretation case linked to the

specialized chromosome copies MOP, and the generalized case linked to the generalized

chromosome copies MOP.

1 2 3 4 5 6 7 8 9 10111213141516171819202122~ y

I
I

I
Sex model is male
Exactly 3 whole copies of chromosome 2
XNX(2) = extra whole normal chrom (trisomy/xxy/xyy)

1 2 3 4 5 6 7 8 9 10111213141516171819202122~ y

I I
I I I I I I I I I I I I I I I I I I I I

I
Cell observation is reciprocal translocation
Cell observation is terminal deletion
Chromosome 2 is 2pter->2q12::3~21->3pter
Chromosome 3 is 2qter->2q12::3p21->3qter
Chromosome 2 is 2p12->2qter
Sex model is male
Exactly 1 whole copies of chromosome 3
Exactly 0 whole copies of chromosome 2
Exactly 3 whole copies of chromosome 5
RTB(2,3) = balanced carrier of reciprocal translocation
TDR(2) = terminally deleted chromosome replaced normal
XNX(5) = extra whole normal chrom (trisomy/xxy/xyy)

Listing 6.1 Sample input text file of two interpretations from ISCN Expert

Figure 6.1 MOP memory illustrating specialized and generalized cases.

6.2 Solufion Analysis

Objects of class ISCNInterpretationParser are responsible for performing the

translation. The top level method is #loadInterpretationskom:, which reads and

transforms the interpretations (Listing 6.2). The algorithm involves reading through the

text file, extracting each discrete interpretation, and transforming it. Inside the file

iteration logic are the essential steps:

[mops add:
(self calcMOPModelFor:

(self nextInterpretation: instream))].

In this expression, method #nextInterpretation: is invoked to extract and return a

collection of strings comprising an interpretation. Method #calcMOPModelFor: then

transforms it into a MOP in case memory, and returns the results, which are added to a

set of new cases. Finally, in the line:

(self mopMem at: 'ISCNInterpretationl) reorganizeAllSpecializations.

the generalization-specialization relationships oi all MOPS below

ISCNInterpretation (the abstract class of all case interpretations) are restructured in

memory to reflect the influence of the new cases.

1oadInterpretationsFrom: fileName
"Read a set of ISCNXpert interpretations from a file, and
transform each into a MOP structure in MOP memory. Return
all the mops created."

I instream mops I

mops := OrderedCollection new.
instream := File patmame: fileName.
[instream atEnd] whileFalse:

[mops add:
(self calcMOPModelFor:

(self nextInterpretation: instream)) I
instream close.

" / / establish generalization patterns based on abnormalities"
(self mopMem at: 'ISCNInterpretationl) reorganizeAllSpecializations.

A mops .

Listing 6.2 Top level method for reading and creating cases

The interesting work for a single interpretation is controlled by

#calcMOPModelFor: (Listing 6.3). This method drives the invocation of the sub-tasks

which both parse out each ISCN interpretation feature, and which generate

generalizations and associations.

In references 1 through 6 the transformation for each semantic unit in the text

interpretation is performed.

For example, in reference 2 #parseOutChCnt processes chromosome count

information.

Reference 7 composes the new case MOP.

Reference 8 installs it in case in memory.

Reference 9 causes a demon to execute which generates a generalization of the new

case, installing it too in memory.

calcMOPModelFor: strings
I1Parse strings, which contains an ISCNXpert interpretation,
and store it as a MOP structure in MOP memory. Answer the
MOP created. Also, generate generalized interpretations and
store them in memory."

I mopstruct slots mop x I

self textInterpretation: strings.

mopstruct := OrderedCollection new.
slots := OrderedCollection new.
slots

1. add: (Array with: #~xpression with: self parseOutISCNExpr);
2. add: (Array with: #ChCnt with: self parseOutChCnt);
3. add: (Array with: #Sex with: self parseOutSexMode1).
4. x := self parse~ut~bnormalityDescriptions.

x isEmpty ifFalse:
[slots add: (Array with: #Abnormalities with: x)] .

5. x := self parseOutChCopies.
x isEmpty ifFalse:

[slots add:(Array with: #ChCopies with: x)] .

6. x := self parse0ut~ong~ormAbnomli t ies .
x isEmpty ifFalse:

[slots add: (Array with: #ISCNLongForms with: x)] .

7. mops t ruct
add: self parseOutISCNExpr;
add : # (ISCNInterpretation) ;

add: #abstraction;
add: slots.

" / / load the structure into memory, and then generate
a generalized abstraction of it (a learning step)"

8. mop := self mopMem storeCollAsMOP: mopstruct asArray.
9. mop fillerlor: 'GeneralizedInterpretationl.

^mop

Listing 6.3 Method to transform a single text interpretation into a case MOP

Transforming a semantic unit into MOPs, creating associations and concept

generalization is performed by the #parseOut<Unit> methods, such as

#parseOutChCopies (Listing 6.4). This example is the simplest of the set, but serves for

illustration.

In reference 1, the text lines specific to chromosome counts are extracted.

Reference 2 transforms the chromosome count expression into a generalization

concept, in this case by replacing the specific chromosome with a variable.

At reference 3 the extracted specific chromosome count concept and the generated

generalized concept are installed in memory, in a specialization hierarchy rooted a t the

generic MOP concept ChCopy.

Reference 4 returns the collection of specialized chromosome copy MOPs, for

establishing associative links to the new case MOP.

"Return the statements containing the copies info, after storing
them and generalized abstractions in memory."

I copies x gencopies I

" / / get the raw text lines"
copies := self textInterpretation select: [:line I

line hasSubCollection: 'copies of chromosomev].

"/ / create generalized abstractions.
e.g. exactly 3 copies of cnum>

gencopies :=copies collect: 1:aString I
x := astring asArrayOfSubstrings.
x at: x size put: vcnum>'.
x asStringOfElements1.

I t / / store the gen and spec lines as MOPs in memory"
3. copies with: gencopies do: [:copyInfo :genCopyInfo I

self mopMem storeStringAsMOP: genCopyInfo under: #(ChCopy) .
self mopMem storeStringAsMOP: copyInfo

under: (Array with: genCopyInfo) .
1 .

A
4. copies collect: [:line I Array with: line].

Listing 6.4 Method to parse out chromosome counts and create generalization

The final stage in loading cases from ISCN Expert is creating a generalization of the

new case itself (Listing 6.5). In simplified terms, the generalization involves the

replacement of specific chromosomes by variable patterns, and associative links to

abstract generalizations of abnormalities rather than concrete genetic defect MOPs.

In reference 1, a new generalized version of the ISCN expression is created. A n

expression accessor object is generated for the ISCN expression; it can created syntax

trees and knows the structure of the expressions. The sex symbols are removed, the

chromosome count is instantiated rather than treated as a variable, and all

chromosome references are treated as variables.

At reference 2 the slots of the new generalized interpretation MOP are established.

In references 3 and 4 the abnormalities of the specific case are extracted and their

generalizations are collected. These generalized abnormality MOPs are then attached via

associations to the new generalized interpretation MOP.

References 5 and 6 perform similar operations with chromosome copy and ISCN

long form information; establishing relationships to generalization concepts of the

specific case details.

At reference 7 the new MOP is declared a specialization of a MOP

ISCNInterpretation, and at reference 8, the new MOP is installed in case memory.

generalizedInterpretation: aColl
"MOP Calculation Function.
Return the generalized interpretation of an ISCN case. Used in
'learning1 new generalizations which get remembered.
e.g. 46,xy,+2 returns 46,+<num> with associated generalized
abnormalities, etc. l1

I acc pattern mop mopForm slots genMOP newExpr tree
sexList chCnt abs copies 1ongFormsl

pattern := aColl at: 1. mop := aColl at: 2.

mopForm := OrderedCollection new.
slots := OrderedCollection new.

1 1 / / gen the new generalized iscn expression. eliminating the
sex if the sex is normal. We'll get
something like: 45,-<num> l1

newExpr := (acc := ISCNExprAccessor new
expr: (mop fillerFor: 'Expressiont))

removesex;
instantiateDerivTreeChCnt;
generateDerivTreeSentence.

' I / / don't bother with the special case of having
only a chCnt left (e.g. '46') It

newExpr size = 2 ifTrue: [̂ nil].

tree := acc derivTree.

It// if a mop by this name already exists, use it instead,
and update its relationshipsll

(genMOP := self at: newExpr) notNil ifTrue: [
genMOP makeSuitableSiblingAbstractionsIntoKids.
^nil] .

' I / / load up the slotsll
slots

add: (Array with: #Expression with: newExpr);
add: (Array with: #ChCnt with:(mop fillerlor: 'ChCntl) 1 ;
add: (Array with: #DerivationTree with: tree).

1 1 / / find the generalization of the specific abnormalities1'
abs := (mop fillerFor: 'Abnormalities1) groupMembers.
abs isEmpty ifFalse: [

slots add: (Array
with: #Abnormalities
with: (abs collect: [:abnorm I

abnorm abstractions first]))].

If// find the generalization of the specific ch copies info1'
copies := (mop fillerFor: 'ChCopiesl) group~embers.
copies isEmpty ifFalse: [

slots add: (Array with: #ChCopies
with: (copies collect : [: copy~nfo 1

copyInfo abstractions first]))I.

" / / find the generalization of the specific ISCNLongFormstl
6. 1ongForms := (mop fillerFor: lISCNLong~ormsl) groupMembers.

1ongForms isEmpty ifFalse: [
slots add: (Array with: #ISCNLongForms

with: (longForms collect: [: long~orml
longForm abstractions first]))].

7. mopForm
add: newExpr;
add: # (~S~~~nterpretation) ;

add: #abstraction;
add: slots.

genMOP := MOPParserDG defMOP: mopForm in: self.
8. genMOP installconcept.

%il.

Listing 6.5 Demon for creating generalization MOPS of new case MOPS

6.3 MOP installment and Automatic Memory Reorganization

The last step of installing the new MOP in memory, is generally invoked via the

message:

Method #installconcept (Listing 6.6) causes a reorganization of affected MOPS with

respect to generalization-specialization relationships. For example, the introduction of a

new generalized interpretation case MOP may require that conceptual specializations of

it that are not yet related, be linked up. This process is generic to all case memories,

and is sufficiently subtle and powerful that it warrants a more full investigation.

The method installs both instance and abstraction MOPs. Consider the case for

abstractions. First, at reference 1, #installAbstraction is invoked, which causes sibling

instance MOPS to become specializations of the new abstraction, if they are logically

conceptual specializations. Last, at reference 2, sibling abstractions that should also be

specializations of the new abstraction are also reorganized as children.

Taking a closer look at #installAbstraction, it first determines if there is another

huin abstraction (possibly under a different name) that is semantically identical. If so,

the new MOP is removed and ignored.

If the MOP is really a new concept, reference 4 causes suitable sibling instances are

reorganized as specializations.

installconcept
"Place myself at an appropriate place in the memory hierarchy,

moving siblings to be my kids if appropriate."

I abs I

self type notNil issatisfied.

self isInstance
ifTrue: [self installInstance1
ifFalse: [

1. abs := self installllbstraction.
2. abs makeSuitableSiblingAbstractionsIntoKids1.

installAbstraction
"Place an abstraction at its appropriate place in the hierarchyw

I twin I

twin := self getTwin.
" / / if there's a twin, don't bother with me"

3. twin notNil ifTrue: [self remove. ^twin].
4. self makeSuitableSiblingInstancesIntokids.

^self.

Listing 6.6 Top level methods to install new MOPS and reorganize memory

Making suitable siblings that are instances into specializations of the new abstraction is

handled in Listing 6.7. At references 1 and 2, siblings are collected.

In reference 3, abstractions are filtered out, leaving only instance MOPs.

Reference 4 contains the most interesting test: is the new MOP a suitable

abstraction of an existing instance?

If the new abstraction should be a parent of an existing instance, then at references

5 and 6 the instance in unlinked from its old parent abstraction and defined to be

specialization of the new one.

makeSuitableSiblingInstancesIntoKids
"re-index all sibling instances as specializations of me,
if they can beN

1. self abstractions do: [:parent I
2 . parent specializations do: [:sibling I
3. (sibling isInstance and:
4. [self isSuitableAbstractionOf: sibling]) ifTrue: [

5. sibling unlinkFromAbstraction: parent.
6. sibling 1inkToAbstraction: self]]].

^self.

Listing 6.7 Method to reorganize memory when installing new abstractions.

The test to determine if a mop should be an abstraction of another is handled by

#isSuitableAbstractionOf (Listing 6.8). We first distinguish between MOPs which are

collections or groups, and those that are not. A Group MOP A can be an abstraction of

another group MOP B if A recursively contains members that are suitable abstractions

of the members of B. This test is handled within the block starting at reference 1.

The more common non-group case begins at reference 2. At reference 3 the slots

that can be used in this generalization classification are extracted for testing. It was

discovered during development that MOP concepts need attributes (slots) that may not

participate in generalization tests, thus only a subset of mops (classification slots) are

eligible candidates for this testing. Each classification slot must satisfy (a predicate

calculus for-all condition) the test beginning at reference 4.

Reference 4 tests that the MOP under consideration (mop) as a specialization has

the same role (or attribute) as the potential abstraction (seZJJ.

At reference 5 we test that the attribute values (or fillers) for identical attributes in

the two MOPs pattern match. The pattern match testing method (#hasMatching:to:of:)

includes obvious cases such as equality, and more interestingly, a case where the 2

values (which may themselves be MOPs) are recursively tested using

#isSuitableAbstractionOf: to determine if one value is a potential abstraction of the

other.

isSuitableAbstractionOf: mop
"Answer true if all my slots are 'satisfied' by the
corresponding slots in mop. If satisfied, I am
a suitable parent of mop. This is the major
pattern matching method that aids in the placement
of new input MOPs.

*** If 2 group MOPs are being compared, I DON'T require that the
contained MOPs be in corresponding slots (e.g. 1&1, 2&2), but
rather that each contained MOP in self is an abstraction of any
MOP in group 'mop' "

(self == mop) ifTrue: [̂ false].
(self isAbstractionOf: mop) ifTrue: [̂ true].
(self isInstance or: [self hasslots not]) ifTrue: [̂ false] .
(self isGroup and: [mop isGroupl)

ifTrue: [
^self groupMembers alwayssatisfies: [:myMember I

mop groupMembers has: [:hisMember I
mmember isSuitableAbstractionOf: hisMemberl11

ifFalse: [
^self classificationSlots alwayssatisfies: [:myslot I

" / / mop must have the roles I have, and the fillers
of mop and I must pattern matchM

(mop hasRole: myslot role)
and: [self has~atching: myslot filler

to: (mop fillerFor: myslot role)

of: mop] 1 1

Listing 6.8 Predicate method to evaluate potential generalization-specialization between 2
MOPS

Matching

In CBR systems, matching is the process of finding the most similar existing cases to a

new case. Ideally, a perfect match is found and thus solutions need not be adapted (null

adaptation). More likely is that adaptation will be required. The matching strategy of

ISCN Student is to find a set of closest matching cases that collectively cover all the

abnormalities present in the new case, and then a synthesis of the old interpretations is

used to construct a new interpretation.

In order for retrieval to work successfully, the indexing problem (Kolodner 1993)

must be addressed; that is, the problem of efficiently retrieving applicable cases a t the

right time. This problem includes the similarity-assessment problem of how to recognize

when an existing case is applicable to a new situation, the indexing-vocabuhy problem

of choosing appropriate generalized abstractions to aid in comparing cases, the ranking

problem of ordering similar cases according to a goodness of match measure, and the

retrieval problem of efficient search in large search space (case library).

In order to achieve matching, ISCN Student must provide a solution for retrieval

and ranking. The generic 00 framework provides a default pattern method

MOPMemory>>getClosestSibling which simply returns the closest sibling in the graph

of memory, based on discrimination by abstraction. Normally this method is overridden

in subclasses, or an alternate is used. ISCN Student uses an alternate method,

ISCNStudent>>matchSetTo:, which returns a set of existing cases that best match to

the new case, ranked in decreasing order of goodness of match.

"Answer a new (or existing) case based on old ones.
Attempt to interpret a new expr string based on the existing
cases. This is the main 'new case' learning phase. If the
expr already has a case, return it."

I closestOld new matches case I

" / / already got a case? "
(case := self at: iscnExpr) notNil ifTrue: [̂ case].

I f / / search for matches to generalizations of old cases
based on parse tree intersections of abnormalities."

matches := self matchSetTo: iscnExpr.
(matches includes: nil) ifTrue: [̂ nil] .

" / / construct a new case from the old matching ones."
A self adapt: matches forExpr: iscnExpr.

Listing 7.1 Top Level Method for Case Interpretation. Performs Matching and Adaptation

ISCNStudent>>interpretNewCaseFor: (Listing 7.1) is the primary method used to

construct new case solutions. The statement:

matches := self matchSetTo: iscnExpr.

invokes the ISCNStudent>>matchSetTo: method which returns the matching set. The

adapted case is constructed in the final statement:

^self adapt: matches forExpr: iscnExpr.

which takes the set of closest matches and new expression, returning a complete

specialization of an ISCNInterpretation MOP (the adaptation phase is described in the

next chapter).

ISCNStudent>>matchSetTo: (Listing 7.2) is responsible for identifying and

returning the closest existing case MOPS that provide all of the interpretation material

needed to interpret the new case. This new case is represented as the argument to the

method - as a string containing the expression. The approach is to find an existing case

that includes the closest matching interpretation for each constituent abnormality in

the new expression. As each constituent abnormality is resolved, its grammatical

representation is removed from the expression, and a recursive invocation solves for the

remaining sentence.

It might be invoked as follows:

matches := self matchSetTo: '46,~~,+2,de1(3)(p13)~.

7. I Analysis of the Matching Logic

7.1.1 Analysis of ISCNStudent>>matchSetTo:

matchSetTo: iscnExpr
"Return an OC of closest matching mops that match to all
the abnormalities in the iscnExpr."

I aMatchMOP oldMop abNodes acc removedAbNodes I

1. acc := ISCNExprAccessor new expr: iscnExpr.

The top level matching method, #matchSetTo: receives an ISCN expression as

argument, and returns a set of existing cases that match to it for abnormality

interpretation purposes. In reference 1, an expression accessor is created which parses

the ISCN expression into a derivation tree, using the T-gen generated LR(1) parser. This

object contains the knowledge to access the constituent grammatical components of the

sentence.

2. (aMatchMOP := self closestMatchTo: iscnExpr) isNil
ifTrue: [A~rray with: nil] .

Reference 2 performs the essential match. The #closestMatchTo: method (Listing

7.3) returns a single case that matches best with respect to intersection sets of the

abnormality branches of the derivation trees. Actually, a wrapper object which includes

both the case, and the intersecting parse tree branches is returned. 'Best' in this sense

is that there are common abnormalities expressed grammatically, and that it is the case

with the least number of abnormalities. Why least a s opposed to most? Experience with

least vs. most strategies demonstrated that the later adaptation step was more simple

and elegant using a large number of minimal abnormality matches rather than a small

set of maximum abnormality matches. Using a small set of maximum abnormality

matches led to an adaptation solution that was very awkward to program; the synthesis

of abnormality descriptions from several cases was excessively complicated with respect

to handling generalizations and definition of new specializations. In constrast, the

synthesis of abnormality descriptions from several simple cases was based on a union of

the abnormalities in a straightfoxward algorithm.

ll// match covers all abnormalities? "
3. (aMatchMOP interset size = acc abnormalities size)

ifTrue: [A~rderedCollection with:
(aMatchMOP relatedAbNodes: acc abnorma1ityNodes)l .

Reference 3 determines if the number of abnormalities in the expression is equal to

the size of the intersection set of matching parse tree abnormality branches - implying

the old case matched all the abnormalities. If it has, then we are finished, and the

method returns the matching wrapper object of case, intersection set and explicit

abnormality nodes in the derivation tree.

" / / isolate unmatch abnormalities and continue to
use #closetMatchTo: on new (smaller) iscnExprs
with the remaining unmatched abs, until
all have been coveredN

" / / in the interset are abs, so this
removes abs from the expr"

4. removedAbNodes := acc removeNodes: aMatchMOP interset.

In reference 4 the accessor object's knowledge of the grammatical structure of ISCN

expressions is used to remove those abnormality nodes from the derivation tree that

have been successfully matched on and for which existing cases have been found.

I t / / RECURSE for the remaining matches on a
smaller expr."

5. *(~rderedCollection with:
(aMatchMOP relatedAbNodes: removedAbNodes))

addAll : (self matchSetTo: acc expr) ;
yourself.

In reference 5, the final step in the matching process, the essential recursive

construction occurs. We return the ISCNMatchingMOP object (our wrapper of existing

case and matching abnormality derivation tree branches) with the match set for the

remaining expression, constructed via a recursive invocation of the method.

matchSetTo: iscnExpr
"Return an OC of closest matching mops that match to all
the abnormalities in the iscnExpr.I1

I aMatchMOP oldMop abNodes acc removedAbNodes I

acc := ISCNExprAccessor new expr: iscnExpr.

(aMatchMOP := self closestMatchTo: iscnExpr) isNil
ifTrue: [AArray with: nil] .

" / / match covers all abnormalities?
(aMatchMOP interset size = acc abnormalities size)

ifTrue: ["~rdered~ollection with:
(aMatchMOP relatedAbNodes: acc abnormalityNodes)].

" / / isolate unmatch abnormalities and continue to
use #closetMatchTo: on new (smaller) iecnExprs
with the remaining unmatched abs, until
all have been coveredN

" / / in the interset are abs, so this
removes abs from the expr"

removedAbNodes := acc removeNodes: aMatchMOP interset.
It// RECURSE for the remaining matches on a
smaller expr."

A(~rderedCollection with:
(aMatchMOP relatedAbNodes: removedAbNodes))

addAll: (self matchSetTo: acc expr);
yourself.

Listing 7.2 The Top Level Matching Method for ISCN Student

7.1.2 Analysis of ISCNStudent>>closestMatchTo:

closestMatchTo: iscnExpr
"Return the closest matching case to the iscnExpr,

based on intersections of 'abnormality1 sections
in the parse trees. Only consider generalized
cases, not leafs."

I newCaseTree oldCaseTree coll interset maxSize minSize
exprAcc maxDepth I

" / / candidate matching cases are ordered by the
number of abnormalities they cover for the
new case. It

1. coll := SortedCollection sortBlock: [:a :b I

(a mop fillerFor: tAbnormalitiest) groupsize c

(b mop fillerFor: tAbnormalitiest) groupsize].

The heart of the matching is done in #closestMatchTo: . The method finds and

returns a single object of class ISCNMatchingMOP, which packages the matching case

and associated matching information. The basis of matching is comparison of the

abnormality nodes in the derivation trees. The case which has the set of abnormalities

is chosen. Note that this case has associations to a detailed interpretation which can be

used in constructing the interpretation of the new case.

In reference 1 a priority queue (SortedCollection) is defined that will contain the

potential matches. The sorting criterion indicates preference to cases with the smallest

number of abnormalities.

2. exprAcc := ISCNExprAccessor new expr: iscnExpr.
3. newCaseTree := exprAcc derivTree.

References 2 and 3 create an ISCN expression accessor, from which we extract a

derivation tree for use in comparison.

" / / search through existing abstraction cases
for intersections of parse treesu

4. ((self at: vISCNInterpretationt) allSpecializations select: [:x I
5. x isAbstraction and: [x specializations notEmpty11)

In references 4 and 5 we choose our candidates for comparison. Note that only

abstraction cases that have specialized children are chosen. These abstractions are

generalized cases in which information such as the specific chromosomes involved have

been replaced with variables suitable in pattern matching.

do: [:aMOP I
oldCaseTree := aMOP fillerFor: 'DerivationTreel.
interset := oldCaseTree intersectionAt: labnorm'

with: newCaseTree.
interset notEmpty ifTrue: [

coll add: (ISCNMatchingMOPDG new
mop: aMOP;
interset: interset;
yourself) I I .

In the section starting with reference 6, we iterate over all potential existing cases.

The derivation tree for an existing case is retrieved. Then comes the critical step of

finding intersection sets between the new and old derivation trees based on syntactic

branches referring to abnormalities. Cases for which a match is found are packaged

along with the resulting intersection set in a ISCNMatchingMOP object, and fmally

stored in the priority queue.

It// select the case with the narrowest abnormality match"
7. coll isEmpty

ifTrue: [
MessageBox message:

'Failure: No old case matches to , iscnExpr ,
I . Adaptation is not possible.'.

^nil]
ifFalse: [

^toll first1 .

Reference 7 tests if any matching cases were indeed found. If there are, the priority

queue ensures they are sorted in increasing order of abnormality matches. We choose

and return the first match - the one with the least number of abnormalities matching

the new case.

closestMatchTo: iscnExpr
"Return the closest matching case to the iscnExpr,

based on intersections of labnormalityl sections
in the parse trees. Only consider generalized
cases, not leafs."

I newCaseTree oldCaseTree coll interset maxSize minSize
exprAcc maxDepth I

" / / candidate matching cases are ordered by the
number of abnormalities they cover for the
new case. "

coll := SortedCollection sortBlock: [:a :b I
(a mop fillerFor: 'Abnormalities') groupsize c

(b mop fillerFor: 'Abnormalities') groupSize1.

exprAcc := ISCNExprAccessor new expr: iscnExpr.
newCaseTree := exprAcc derivTree.

" / / search through existing abstraction cases
for intersections of parse treesu

((self at: 'ISCNInterpretationl) allspecializations select: [:x I
x isAbstraction and: [x specializations notEmpty11)

do: [:aMOP I
oldCaseTree := aMOP fillerFor: 'DerivationTreel.
interset := oldCaseTree intersectionAt: 'abnorml

with: newCaseTree.
interset notEmpty ifTrue: [

coll add: (1SCNMatchingMOPDG new
mop: aMOP;
interset: interset;
yourself) 1 1 .

" / / select the case with the narrowest abnormality matchw
coll isEmpty

ifTrue: [
MessageBox message:

'Failure: No old case matches to ' , iscnExpr ,
I. Adaptation is not possible.'.

^ni 11
ifFalse: [

^toll first] .

Listing 7.3 The Essential Matching Method that is Recursively Called

Adaptation

Adaptation is the act of modifying the solution in an existing case (or cases) to apply to

the new case. The case or cases chosen for adaptation are those which have been

identified as most closely matching the new input case. Once constructed, the adapted

solution is associated with the new case, which is then stored in case memory.

Adaptation is typically the most complex, knowledge intensive and domain dependent

reasoning process in CBR systems, as modification of a solution requires awareness of

domain principles and heuristics.

In CBR theory, there are two main categories of adaptation: structural and

derivational (Kolodner 87). Structural adaptation methods apply rules of modification

directly to the retrieved (best) case. Derivation methods involves discovery of the rules

that generated the retrieved case, and then applying these rules to generate a new

solution. With either approach critic-based adaptation (Sacerdoti 1975; Hammond

1989) is a common addition, in which critics are used to recognize problems in nearly

correct solutions; feedback may re-invoke the adaptation phase to converge on a better

solution. ISCN Student uses a structural adaptation technique, without the use of a

critic.

In the case of ISCN Student the solution is a semantic network describing the

chromosomal abnormality features associated with an ISCN expression, such as the

MOPS describing abnormal chromosome copies. The adaptation process involves

extracting existing solutions from the best matching cases and transforming the

abnormality descriptions to fit the new case.

interpretNewCaseFor: iscnExpr
I closestOld new matches case I

(case := self at: iscnExpr) notNil ifTrue: [^case] .
matches := self matchSetTo: iscnExpr.
(matches includes: nil) ifTrue: [^nil].

I t / / construct a new case from the old matching ones."
^self adapt: matches forExpr: iscnExpr.

Listing 8.1 Top Level Method for Case Interpretation. Performs Matching and Adaptation

As previously reviewed, ISCNStudent>>interpretNewCaseFor: (Listing 8.1) is the

primary method used to construct new case solutions. After the best matching existing

cases have been found, the statement:

^self adapt: matches forExpr: iscnExpr.

invokes the ISCNStudent>>adapt:forExpr: method which constructs a new

interpretation solution from the existing ones. It is installed in case memory as a side-

effect.

8.1 Analysis of the Adaptation Logic

Analysis of ISCNStudent>> adapt:forExpr:

adapt: matches forExpr: iscnExpr
"Return a new MOP case that is an adaptation of the related
matching old cases. The adaptation is based on iscnExpr.
Also install
this new mop and all associated mops (such as abnormalities)"

I x exprAccessor specAbExprs slots mopstruct mop chCopies longForms I

1. exprAccessor := ISCNExprAccessor new expr: iscnExpr.

The top level adaptation method, #adapt: forExpr: receives as arguments:

matches - a set of ISCNMatchingMOP objects. These are composite objects
containing the matching case MOP and the intersection set of matching
abnormalities.

iscnExpr - a string ISCN expression.

In reference 1, an expression accessor is created which parses the ISCN expression into

a derivation and abstract syntax tree.

" / / calc the adaptations for abnormalites, copies, etcn
2. specAbExprs := self adaptAbnormalitesOf: matches forExpr: iscnExpr.
3. chCopies := self adaptChCopiesOf: matches forExpr: iscnExpr.
4 . longForms := self adaptISCNLongFormsOf: matches forExpr: iscnExpr.

References 2-4 are the heart of the adaptation phase, constructing the adapted

interpretations in the three central categories:

1. abnormality descriptions

2. abnormal chromosome copy counts

3. ISCN long form notation for each structural aberration

It// create the new case MOP and install itw
4 . mopstruct := OrderedCollection new.

. . .
^mop := self storeCollAsMOP: mopstruct

From reference 4 until the end of the method simple housekeeping processes transform

the three adapted interpretation sections into a proper case MOP and install it in

memory, finally returning the result.

adapt: matches forExpr: iscnExpr
"Return a new MOP case that is an adaptation of the related
matching old cases. The adaptation is based on iscnExpr.
Also install
this new mop and all associated mops (such as abnormalities)"

I x exprAccessor specAbExprs slots mopstruct mop chCopies 1ongForms I

exprAccessor := ISCNExprAccessor new expr: iscnExpr.

" / / calc the adaptations for abnormalites, copies, etc"
specAbExprs := self adaptAbnormalitesOf: matches forExpr: iscnExpr.
chCopies := self adaptChCopiesOf: matches forExpr: iscnExpr.
1ongForms := self adaptISCNLongFormsOf: matches forExpr: iscnExpr.

"/ / create the new case MOP and install it"
mopstruct := 0rderedCollection new.
slots := 0rderedCollection new.
slots

add: (Array with: #Expression with: iscnExpr) ;
add: (Array with: #ChCnt with: exprAccessor chCnt) ;
add: (Array with: #Sex with: exprAccessor sexMode1)

"/ / add in the 'group' attributes like abs and chCopiesU
specAbExprs notEmpty ifTrue: [

x := specAbExprs collect: [:aString I Array with: aString1.
slots add: (Array with: #Abnormalities with: x)] .

chCopies notEmpty ifTrue: [
x := chCopies collect: [:aString I Array with: aString1.
slots add: (Array with: #ChCopies with: XI].

longForms notEmpty ifTrue: [

x := longForms collect: [:aString 1 Array with: aString1.
slots add: (Array with: #ISCNLongForms with: x)l .

" / / put it all together in a mop and save it in memory"
mops truc t

add: iscnExpr; " / / name
" / / generalizationsn

add: (matches collect: [:aMatchMO~ I aMatchMOP mop name]) ;
add : #instance ;
add: slots.

*mop := self storeCollAsMOP: mopstruct.!

Listing 8.2 The Top Level Adaptation Method for ISCN Student

8.1.2 Analysis of ISCNStudent>> adaptAbnormalites0f:forExpr:

Three adaptation processes occur in ISCN Student: for 1) abnormalities, 2) chromosome

copies, and 3) ISCN long form expressions. A detailed analysis of each process would be

both overwhelming and tedious! Therefore only the adaptation of abnormalities is

considered explicitly as representative of the domain knowledge required to construct

new solutions from old. As suggested by the analysis of this first category, the processes

required for adapting copies and long form expressions are also subtle and complex.

adaptAbnormalitesOf: matches forExpr: iscnExpr
"Answer a coll of abnormalies for iscnExpr, adapted
from the matching old cases. Install these abnormalies
in memory too"

I x exprAccessor genAbExprs genAbs specAbExprs
genExpr specExpr abMOP mop slots I

1. exprAccessor := ISCNExprAccessor new expr: iscnExpr.
" / / strip out the generalized ISCN abnormality expressions"

2 . genAbExprs := exprAccessor generalizedAbnormalities.
I#// strip out the specialized (with nums)

ISCN abnormality expressions"
3 . specAbExprs := exprAccessor abnormalities.

Adaptation of abnormalities requires the new ISCN expression and best matching cases

as arguments. In reference 1 an ISCN expression accessor object is created that

constructs a parse tree and abstract syntax tree for the expression.

In reference 2 the accessor object uses its specialized knowledge of the abstract

syntax tree to extract those portions of the expression that indicate structural

abnormalities, generalized so that all chromosome references are made into variables.

For example, in the expression '46,xy7del(1)(p21)', a generalized expression of the

form 'del(<xl>)(pcx2>)' would be returned.

At reference 3 the accessor returns an expression similar to that in reference 2 - the

structural abnormalities. But where in reference 2 they were generalized with respect to

chromosome numbers, here the numbers are kept. Again, domain knowledge of the

derivation tree and nodes that comprise abnormalities is exploited.

Thus the expression '46,xy,del(l)(p2 I)' would return 'del(l)(p2 I)'.

' I / / collect the associated generalized abnormality mops. We
can assume these are 'generalized abs' because the match
set contains generalized cases, not specific ones."

g e m s := OrderedCollection new.
4 . (matches collect : [:aMatchMOP I aMatchMOP mop1) do: [:aMOP I

g e m s addAll :
(aMOP fillerFor: IAbnormalities1) groupMembers1.

At reference 4 the MOPS representing the generalized abnormality descriptions

associated with the best matching old cases are extracted. For example, if the case was

'46,xy7de1(5)(pll)', this would yield a generalized MOP for the Yerminal deletion'

abnormality.

' I / / for each general abnorm expr (e.g. +cnum>) in the iscnExpr,
find the associated generalized abnormality. Then make the
specific abnormality (+2) a specialization
of the generalized
one (extra whole. . .) . "

5. 1 to: genAbExprs size do: [: i I

Reference 5 frames a major iteration over each generalized abnormality expression,

such as 'del(<xl>)(p<x2>)'. Within this loop, the associated generalized abnormality (e.g.

'terminal deletion') will be found and matched with 'del(<xl>)(p<x2>)'. Then the specific

abnormality expression associated with the general one (e.g. 'del(l)(p21)' with

'del(<xl>)(p<x2>)') is defined as a specialization of the generalized abnormality concept

(e.g. 'terminal deletion').

genExpr := genAbExprs at: i. "/ / e.g. +mum> "
specExpr := specAbExprs at: i. It// e.g. +2 I'

" / / find the generalized abnormality that matches to
the generalized expr.
e.g. 'extra whole ...I with +enurn> "

abMOP := genAbs
detect: [:aMOP I

(aMOP fillerFor: 'ExprFormatl) = genExpr1
ifNone: [self error: 'missing abnormality'] .

Within the iteration process, reference 6 extracts the current generalized expression -

for example, 'del(<x 1 >) (p<x2>)'.

Reference 7 extracts the associated specialized expression - for example,

'del(l)(p2 1)'.

Reference 8 searches for a generalized abnormality concept MOP whose generalized

expression format (e.g. 'del(<xl>)(p<x2>)') matches the one currently sought. Once

found, it is stored in the temporary 'abMOP' variable.

" / / make the specific ab a specialization
of the general"

slots := Array with: (Array with: #Code with: I???').
self storeCollAsMOP:

(Array
" / / mop name. e.g. +2"

with: specExpr
11// abstraction. e.g. extra whole . . . "

with: (Array with: abMOP name)
with: #abstraction
with: slots) I .

Still within the iteration, and starting with reference 9, the new specific abnormality

expression of the new case (e.g. 'del(l)(p21)') is stored in MOP memory as a

specialization of the generalized abnormality concept MOP (e.g. 'terminal deletion').

Thus the generalization-specialization hierarchy is extended during reasoning in a

semantically meaningful way, with new abnormalities correctly inserted as

specialization's of their appropriate generalized genetic defect concept.

The above references 6-9 iteratively repeat until all abnormalities in the new ISCN

expression case have been constructed into MOPs and placed in the abnormality

hierarchy.

Finally, the set of specialized abnormality expressions for the new expression is

returned to the calling method, for construction into the complete new case MOP and its

associations to other MOPs.

adaptAbnormalitesOf: matches forExpr: iscnExpr
"Answer a coll of abnormalies for iscnExpr, adapted
from the matching old cases. Install these abnormalies
in memory too"

I x exprAccessor genAbExprs genAbs specAbExprs
genExpr specExpr abMOP mop slots I

exprAccessor := ISCNExprAccessor new expr: iscnExpr.
s / / strip out the generalized ISCN abnormality expressionsw

genAbExprs := exprAccessor generalizedAbnormalities.
ll// strip out the specialized (with nums) ISCN

abnormality expressions"
specAbExprs := exprAccessor abnormalities.

" / / collect the associated generalized abnormality mops. We
can assume these are 'generalized abs' because the match
set contains generalized cases, not specific ones."

genAbs := OrderedCollection new.
(matches collect: [:aMatchMOP I aMatchMOP mop]) do: [:aMOP I

genAbs addAll:
(aMOP fillerFor: tAbnormalitiesl) groupMembers1.

" / / for each general abnorm expr (e.g. +cnum>) in the iscnExpr,
find the associated generalized abnormality. Then make the
specific abnormality (+2) a specialization
of the generalized
one (extra whole . . . I . "

1 to: genAbExprs size do: [:i I
genExpr := genAbExprs at: i. " / / e.g. +<num> "
specExpr := specAbExprs at: i. It// e.g. +2

" / / find the generalized abnormality that matches to
the generalized expr.
e.g. 'extra whole. ..I with +<nun> "

abMOP := genAbs
detect: [:MOP I

(aMOP fillerFor: 'ExprFormatt) = genExpr1
ifNone: [self error: 'missing abnormality'].

" / / make the specific ab a specialization
of the general"

slots : = Array with: (Array with: #Code with: ? ? ? ') .
self storeCollAsMOP:

(Array
" / / mop name. e.g. +211

with: specExpr
" / / abstraction. e.g. extra whole . . . "

with: (Array with: abMOP name)
with: #abstraction
with: slots) I .

Listing 8.3 Adaptation of abnormalities

Visual Manipulation

9.1 Overview

The heart of ISCN Student is the capability to receive a new ISCN expression, as a

character string, and interpret this new case in terms of existing cases using CBR

techniques. For example:

aCBRChrom interpretNewCaseFor: '46,xy,del(l) (~21)'.

ISCN expressions represent chromosomal abnormalities, which can also be pictured

using a standard ideogram convention outlined in the definitive ISCN report (Harden

1985). For example, chromosome 4 is depicted as shown in Figure 9.1. Cytogeneticists,

the domain experts who use ISCN notation, are comfortable communicating the defects

using these ideograms with additional graphical annotation. However, there is no

consensus on how abnormalities should be visually expressed.

Band
~ 1 3

-i Region q2

4

Figure 9.1 The standardized ideogram for chromosome 4

A chromosome ideogram with accompanying graphical annotation to indicate

defects can be mapped to an ISCN expression. In ISCN Student, software has been

developed for this mapping. The user introduces defects using a visual manipulation

metaphor on the ideograms, such as pointing at and 'breaking off the end of a

chromosome ideogram. Each new visual modification leads to a diagram of the

chromosomes that can be associated with a new ISCN expression. Once the new

expression has been created, the conventional CBR mechanism for case interpretation

for a character string format expression (CBRChrom>>interpretNewCaseFor:) can be

invoked, yielding a new case.

In short, ISCN Student provides two mechanisms for entering new cases: 1) direct

ISCN expression as a character string, or 2) indirect creation of an ISCN expression via

visual manipulation of chromosome ideograms. In either case, the final CBR new case

interpretation is done from the character string expression.

Four major components are needed to provide the capabilities of visual

manipulation:

1. A correct object model that provides meaningful composition and semantic

definitions for chromosome structures. From this, drawable ideograms can

be generated.

2. A means to generate new chromosome topological structures for

abnormalities.

3. A method to draw the ideograms from the chromosome topological

structures.

4. A metaphor for visually manipulating the displayed ideograms.

The class which defines the responsibility for creating chromosome structures, both

for normal and abnormal chromosomes, is ChromCBR. The class which defines

responsibility for the display of chromosome ideograms and their visual manipulation is

ChromView .

9.2 The Manipulation Metaphor

In the absence of any standards for graphical annotation of chromosome

abnormalities on the ideograms, I was free to construct a metaphor for visually

introducing new defects. The metaphor chosen was one of direct manipulation of

structure, as all the defects are structural. For example, introducing a terminal deletion

is accomplished by pointing to a chromosome band for deletion, and then pressing the

scissors iconic button to effect the cut, or deletion (Figure 9.2 and Figure 9.3).

Thus terminal and interstitial deletions find obvious analogues in the scissors

buttons, while translocations are suggested by the visual swap icon. The chromosome

addition and elimination manipulation symbolism required a compromise from the

physical iconic hints, underscoring the need to use the most familiar symbols in the

domain of the user. In these cases, the '+' and " symbols were chosen, as these are

used in ISCN to denote the abnormalities, and are also rich in associative meaning from

arithmetic. Although more physical symbols are possible, they would have a lower

associative strength to the intended action than the familiar and terse ISCN

nomenclature.

Figure 9.2 Visual Manipulation: Choosing a breakpoint on chromosome 2.

Figure 9.3 Visual Manipulation: Choosing the "Scissors" Button creates a terminal deletion

9.3 The Display of Ideograms for a Chromosome Model

long form in the case-> ideogram display

rep for ISCNInterpretation w.r.t. calc filler for chromosomes

9.3.1 The Human Chromosomes Object Model Used in Ideogram
Drawings

Objects of class ChromView are responsible for drawing the chromosome ideograms

associated with a case. In order to draw the ideograms for all chromosomes in a human

karyotype, each case must be associated with a description for all chromosomes. A band

by band topological description is necessary for each chromosome, including height,

color, and if its terminal or centromeric (next to the centromere).

Isvariable
IsPCen
IsQCen
BoundingBox
GBandStartColor

I I I I

Figure 9.4 Object model for human chromosomes and ideogram information

Arm Region
bands

I I

In order to realize this goal, ISCN Student defines an object model for the human

chromosomes (Listing 9.1 and Figure 9.4). Note that an aggregation model (indicated by

the diamond in OMT notation) has been chosen to reflect the genetic notion of higher

order structural units being composites of lower order units. For example, arms are

defined by an aggregate ordered group of regions. Thus, chromosomes are composed of

2 arms which in turn are composed of many regions which are composed of many

bands.

Band
P

BandNumber

Specific chromosomes, arms, etc., are defined as subclasses of the abstract

superclasses and these are inserted into the generalization hierarchy of the MOP

memory. These chromosome MOP structures are then linked via associative slots to the

cases.

The preceding description pertains to pristine chromosomes; those without defect.

The construction of abnormal chromosome MOP structures for use in ideogram

displays, that is, those chromosomes related to aberration descriptions in the ISCN

expression, are a more difficult case. Their creation is discussed in the next section.

In Listing 9.2 we see the detailed descriptions for the band layouts required for a

chromosome (in this case, chromosome 1) in order to be able to display its ideogram.

Height, color, position and other attributes are given for each band, and the bands are

then aggregated into regions which in turn are aggregated into arms, and finally into

complete a chromosome.

(Chromosome (Root)
((Drawing (Pattern) (CalcFN drawCh:

(BoundingBox nil)
(IsAutosome false)
(Bands (Pattern) (CalcFN bandsFor :))

) 1

(ChPart (Group))

(Arm (ChPart))

(Region (ChPart))

(Band (ChPart) abstraction
((Isvariable false)

(IsPCen false)
(IsQCen false)
(BoundingBox nil)
(GBandColor (Pattern) (CalcFN gBandColor:)
(A r m (Pattern) (CalcFN band-:))

(BandNumber (Pattern) (CalcFN bandNumber:))
(ChNumber (Pattern) (CalcFN bandChNumber :))
(GBandStartColor nil)

1)

Listing 9.1 MOP definitions for chromosome object model

addChlMOP
"Add MOPS for a normal ch 1"

defMOP : # (I lp12 I (Band)
((Height 1)

(GBandStartColor ClrBlue)
)) in: self;

defMOP: #('lp13' (Band)
((Height 6)
) in: self;

I f / / CHROMOSOME 1 --!I

defMOP: #(Chl (Chromosome)

Listing 9.2 Sample abbreviated graphical ideogram band details for chromosome 1

9.3.2 The Generation of Chromosome MOPS for a Case

The generation of chromosome structures from which ideograms could be drawn turned

out to be one of the most subtle problems in this work. The heart of the problem is that

we start only with an ISCN expression, and from this must determine the precise

topological structure of each abnormal chromosome, band by band.

As indicated in the last section, the topological and graphical descriptions

necessary to create the ideograms for all pristine chromosomes are stored into the

original state of MOP memory. These descriptions are not suitable for abnormal

chromosomes, which by definition have structural defects. How, then, are the abnormal

chromosome descriptions generated?

Each case MOP has associated with it a MOP filler named Chromosome, which is

related to a slot demon that fires when the attribute is accessed (Listing 9.3). This

causes the CBRChrom>>chromosomes: method to execute, which calculates and

returns the set of both pristine and abnormal chromosomes (Listing 9.4).

(ISCNInterpretation (Case) abstraction
((Expression nil)

...
(Chromosomes (Pattern) (CalcFN chromosomes:))
(AbnormalChs (Pattern) (CalcFN abnormalche:))
(SexChs (Pattern) (CalcFN sexChs:))

Listing 9.3 ISCNInterpreation case MOPS have Chromosome demons which calculate the
chromosome structures.

Determining the pristine chromosome structures is trivial; they have been pre-

defined. The abnormal chromosome construction requires more work - based on the

ISCN long form expressions associated with a case. As suggested in previous sections on

case adaptation, the long form expressions for new cases are adapted from existing best

matching cases during the CBR adaptation phase.

To review, the long form expressions are part of the ISCN nomenclature that

symbolically describe the contiguous structure of each defective chromosome. For

example,

del(l)(q21q31) is equivalent to lpter-, 1 q21::l q3l+ 1 qter

The long form expression lpter+ 1 q2l::l q3l+ 1 qter provides a complete

topological description at the gross level. Thus chromosome MOPS composed of arms,

regions and bands as described in the last section can be constructed from this

description.

Within the #chromosomes: method, the generation of copies of the pristine

chromosome MOPS occurs in the section starting with reference 1 in Listing 9.4. There

are no surprises here; just a need to ensure a very deep copy down to the band MOP

level within the composite MOP object.

The generation of abnormal chromosome MOPS starts at reference 2. The key

statement at reference 2 is:

(mop fillerlor: 'AbnormalChsl) , (mop fillerFor: ISexChs1)

In this expression the chromosome MOPS for abnormal and sex chromosomes are

generated as lists which are concatenated together. The following statements create

deep copies of the list elements. As this statement suggests, the case MOP has further

attribute demons for the abnormal and sex chromosomes (e.g. (mop fderFor:

'AbnormalChs')). Through a series of indirect MOP demons, the processing will finally

arrive a t the heart of the logic, #chForLongExpr:abnormditJrof: and its helper,

#bandsFrom:to: (Listing 9.5 and Listing 9.6).

chromosomes: aColl
I'MOP Calculation Function.
Return the OC of chromosomes for this interpretationu

I pattern mop chs copy I

pattern := aColl at: 1. mop := aColl at: 2.
(mop isSuccessorOf: 'ISCNInterpretationl) issatisfied.

chs := SortedCollection sortBlock: [:a :b I
(a fillerFor: 'Number1) asstring c

(b f illerFor : 'Number I) asstring] .

" / / normally, 2 of each autosome,
unless a numerical abnormality"

1. self autosomes do: [:aMOP I
. . . / / deep copy logic for pristine chromosomes
. . .

" / / add in the abnormalites and sex"
2. (mop fillerlor: 'AbnormalChsn) , (mop fillerlor: ISexChsg)

do: [:aMOP I
copy := aMOP deepcopy.
copy replaceFiller: (copy fillerFor: 'Bands')

deepcopy forRole: 'Bands'.
chs add: copy1 .

Listing 9.4 The Chromosome demon generates detailed structures for both pristine and
abnormal chromosomes.

At reference 1 in #chForLongExpr:abnormdityOf:, we create an

ISCNLongExprAccessor object to parse out the band sections within a long form

expression. For example, in the expression:

The band sections are:

Starting at reference 2 in Listing 9.5, we iterate over each band section, and for each

one, use the helper method #bandsFrom:to: to generate the contiguous set of bands

associated with the band section range, saving the results in a growing list.

chForLongExpr: longExpr abnormalityof: chNum
"Return a ch mop that contains the bands in the range defined
in 1ongExpr. This new ch mop will be an abnormal one, and
will be installed in memory before it is returned. Its name will
be 1ongExpr. Its number will be chNum, if chNum is
nonNil, else number will be first ch number encountered in
1ongExpr. l1

I acc bands slots num I

bands := OrderedCollection new.
1. acc := ISCNLongExprAccessorDG new expr: 1ongExpr.

2. acc bandsections do: [:Mode I
bands addAll: (self bandslrom: (acc startBandFor : &Node)

to: (acc endBandFor: Mode))].

... / / wrap up and return the bands as a Chromosome MOP

. . .

Listing 9.5 Method to generate chromosome band structure for abnormal chromosomes, based
on the ISCN long form expression.

At references 1 and 2 in #bandskom:to: (Listing 9.6) we translate the 'familiar'

band names as used in long form expressions, such as lpter, into their related band

names, such as lp36. In reference 3 we iterate over the set of existing Band MOPS, and

retrieve those that fall between the start and end bands in the specified range. Finally,

in reference 4, the bands are ordered according to chromosome topological rules.

bandsFrom: start to: end
"Return an OC of bands in the range from start to end"

I bands startName endName I

" / / if start/end are a Itert or 'cent, get
the associated band name.
e.g. lpter == lp36 "

1. startName := self bandNameEquivalentTo: start.
2. endName := self bandNameEquivalentTo: end.
3. bands := (self at: 'Band1) specializations select: [:aMOP 1

self isBand: aMOP name between: startName and: endName1.
4. *self sortedBands: bands from: startName to: endName.

Listing 9.6 Method used to generate chromosome bands in a range.

9.3.3 The Drawing of Chromosome MOPS

The drawing of the ideograms is a straightforward process. The hard work of

determining the band structure for each chromosome in the case to displayed has

already been accomplished, as reviewed in the previous section. The drawing algorithms

simply traverse the contiguous bands that comprise the chromosome MOPS (and which

contain detailed graphical height and color infoimation) and draw each band.

In Smalltalk, the opening of a window has associated with it an event handler for

drawing the window's client area. The window defined for drawing ideograms is defined

in the ISCNView class, and the event handler for drawing is #onGetContents: (Listing

9.7). At reference 1 we iterate over all chromosome structures associated with the case.

These are the topological structures for pristine and abnormal chromosomes. Within

this iteration, we invoke the helper method #draw:on: (reference 2) to draw a particular

chromosome.

onGetContente: aPane
"Private. Draw the chrom on the paneN

I prevCh pen extraGap bigGap basicGap (

... / / initialization and label drawing

. . .

" / / draw each ch"
1. self chroms do: [:ch I

. . . / / calculation of the ideogram position

. . .
2. self draw: ch on: aPane.

I .

CursorManager normal change.

Listing 9.7 The top level method for drawing all chromosome ideograms.

In Listing 9.8 we see the essential process for drawing an ideogram. The bands for the

chromosome MOP are extracted (reference 1) and we iterate over them in contiguous

order. At reference 2 the detailed graphical drawing logic, based in part on the height of

the band, is deferred to the helper method #drawBand:on:at: .

draw: ch on: aPane
"Private. Draw the ch on the pane."

I regions pt pen h bands pCen qCen b I

bands := ch fillerFor: 'Bands1.
... / / initialization; placing drawing pen at correct position

" / / draw the bandsg1
pen drawRetainPicture: [
bands do: [:band I

self drawBand: band on: aPane at: pt.
h := self scaledHeight: (band fillerFor: 'Height1).
pt := pt up: h.
1 1 -

. . . / / draw the name and legend for this chromosome

Listing 9.8 Method for drawing an ideogram for a single chromosome.

9.4 Mapping Visual Changes to New Expressions

How does the visual manipulation which introduces abnormalities result in new ISCN

expressions with deep interpretations, which in turn are redrawn correctly? When a

manipulation icon is pressed, such as the scissors icon for terminal deletion, a button

event handler method executes. The event handler has knowledge of the required ISCN

syntactic form related to the type of modification. It identifies the structural change

selected on the graphical representation, and then uses an ISCNExprAccessor object to

append the appropriate ISCN syntactic unit for the abnormality to the ISCN expression

associated with the ideograms. Finally, the new ISCN expression is evaluated as a new

case using CBRChrom>>interpretNewCaseFor: (the main CBR match and adapt

process). If the case is interpretable, a new deep model is constructed as discussed in

previous sections. Associated with this new case will be the just-created ISCN long form

expressions for each abnormal chromosome. As discussed above, from this set of long

form expressions, a new set of chromosome MOPS with correct topological structure will

be created (at considerable effort!), and finally the display of ideograms will be redrawn

to reflect the structure of each pristine and defective chromosome.

deleteTermina1
"Delete from the selected band to terminal"

I band I

1. (band := self selections at: #selectedBand ifAbsent: [nil])
isNil ifTrue : [^nil1 .

" / / mod the iscn expr"
2. self exprAcc addDeleteTermina1: band.
3. self refreshExpr.

" / / refresh window"
4. self changed: #onGetContents:.

"Regenerate the iscn expr from the parse tree. This is
invoked after the tree is modified. This is a major step
because resetting the expr causes a new case to be
retrieved or created (i.e. adaptation)"

" / / setting the expr causing new case and chromosomes
to be generatedu

5. self expr: self exprAcc expr.

expr : as tring
"Set the value of the iscn expr (e.g. 46,xy) and
all associated attributes (e.g. caseMOP, chromosomes) . "

I newcase I

" / / will return existing case, if one exists, or
new adapted case.

newcase :=self mopMem interpretNewCaseFor: aString.

" / / if no possible new case, return the expr accessor to
its original expr and bail out."

newcase isNil ifTrue: [
self exprAcc: (ISCNExprAccessor new expr: self expr) .
^nil] .

self case: newcase.
expr := aString.
self exprAcc: (ISCNExprAccessor new expr: expr).
self chroms removeAll.
self chroms addAll: (self case fillerFor: lChromosomest).

Listing 9.9 Translating a terminal deletion visual manipulation into a new case

As show in Listing 9.9, on pressing the scissors button to perform a terminal deletion,

the #deleteTerminal method executes. The following processes then occur:

Reference

1 The breakpoint band that should have previously been chosen is

retrieved.

2 The ISCNExprAccessor object has syntactic knowledge of ISCN and the

#addTerminalDeletion message is sent with the breakpoint band in order

to append the appropriate syntactic unit to the expression; for example,

'de1(2)(p2 1)'.

3 The major step of refreshing the expression and associated interpretation

model. Discussed in references 5- 12.

4 Cause the graphical display to refresh and draw the new ideograms for

the modified ISCN expression.

5 Extract the new expression from the ISCNExprAccessor object and

assign it to the visual view's expression. This will initiate the CBR

reinterpretation process (references 6- 12).

6 The central CBR step of search and adaptation using

#interpretNewCaseFor: executes with the new ISCN expression. A new

case is generated and returned.

7 Failure handling if no new case can be constructed.

8-12 Record the new case and retrieve the chromosome structures associated

with it. These structures will be used in the visual display processes and

are described in the previous section on the ideogram drawings.

Evaluation

ISCN Student is a CBR system designed to learn - from ISCN Expert - how to interpret

ISCN expressions. To evaluate how well it meets the goal of correctly interpreting new

expressions, the interpretations of ISCN Expert are used as a standard for comparison.

ISCN Expert was extensively tested on over 300 complex expressions, and scrutinized

for accuracy by an expert in genetics and ISCN. Thus its results can be considered a

reliable benchmark.

ISCN Student was also evaluated on performance; results will be presented.

10.1 ISCN Student Performance

Two performance metrics were gathered. The results show ISCN Student performed

more poorly than ISCN Expert, and performance degraded as case memory increased.

The tests were:

1. Relative performance of ISCN Student to ISCN Expert. For a simple case involving

only one new abnormality (with respect to the case memory), what was the speed

performance of ISCN Student compared to ISCN Expert? The test expression was:

Milliseconds

ISCN Student 1930

ISCN Expert 970

The results show that Expert is significantly faster (darn!). Possible causes include:

Expert is in compiled machine code, Student is in interpreted Smalltalk.

Student is performing more work due in the matching and adaptation cycles
than Expert is in its rule-based backward chaining with backtracking.

2. Relative performance of ISCN Student as it learns. What was the time required to

interpret a complex expression starting from a simple memory versus the time required

with a larger memory containing more cases that closely match the new expression?

The test expression was:

Simple case memory

Rich case memory

Milliseconds

4000

5880

The results show that Student degraded in performance as memory grew (double darn!).

Possible causes include:

0 Increased search time during the matching phase, as case memory is larger.

Adaptation phase logic performs better with construction from an aggregation of
simple cases rather than complex ones.

10.2 ISCN Student Correctness

Two evaluations of expressions were generated. In both cases ISCN Student performed

perfectly, generating identical interpretations to that of ISCN Expert.

The evaluation method for correctness was as follows: A set of ISCN expressions

was loaded into ISCN Student to form the basis of the CBR memory (Listing 10.1). New

expressions were then applied to ISCN Student that should be interpretable using the

CBR learning techniques of matching and adaptation. The ISCN Student interpretations

for these were compared to interpretations from ISCN Expert for the same expressions.

Listing 10.1 Starting cases used in evaluations

The first (relatively simple) test expression was:

45,~,-4,de1(2)(~ 11)

Compared to the debacle in the performance evaluation, Student has fared well (Figure

10.1) in relation to the interpretation from Expert (Listing 10.2). On all points, Student

has generated a complete and correct interpretation that matches the results created by

Expert.

Figure 10.1 ISCN Student interpretation for 45,xy,-4,de1(2)(pll)

Cell observation is terminal deletion
Chromosome 2 is 2pll->2qter
Sex model is male
Exactly 1 whole copies of chromosome 2
Exactly 1 whole copies of chromosome 4
TDR(2) = terminally deleted chromosome replaced normal
MIM (4) = missing whole chromosome (monosomy)

Listing 10.2 ISCN Expert interpretation for 45,xy,-4,de1(2)(pll)

The second, more complex, test expression was:

Once again, Student's interpretation matches that produced by Expert (Figure 10.2 and

Listing 10.3).

Figure 10.2 ISCN Student interpretation for 47,xy,+4,t(1;2)(q12;p12),de1(5)(p12)

Cell observation is reciprocal translocation
Cell observation is terminal deletion
Chromosome 1 is lpter->lq12::2p12->2pter
Chromosome 2 is lqter->lq12::2p12->2qter
Chromosome 5 is 5p12->5qter
Sex model is male
Exactly 1 whole copies of chromosome 1
Exactly 1 whole copies of chromosome 2
Exactly 1 whole copies of chromosome 5
Exactly 3 whole copies of chromosome 4
RTB(1,2) = balanced carrier of reciprocal translocation
TDR(5) = terminally deleted chromosome replaced normal
X N X (~) = extra whole normal chrom (trisomy/xxy/xyy)

Listing 10.3 ISCN Expert interpretation for 47,xy,+4,t(1;2)(q12;p12),de1(5)(p12)

Concluding Remarks

7 I. 7 Contributions

The most significant contribution developed in the research for ISCN Student is the

novel demonstration that a second generation knowledge system can automatically

learn from a first generation predecessor, and achieve similar competence, using only

CBR techniques for domain knowledge acquisition and reasoning. The input cases for

developing a case memory are required to be the output solutions from the predecessor.

The first general purpose object-oriented framework for CBR systems was

developed. It contains generic reasoning and representation support for all specialized

CBR applications, and specialization hierarchies can be derived from it to create spec&

CBR systems.

The first formal grammar for ISCN was constructed and shown to be context-free

for the subset of ISCN under consideration, the proof being the successful generation of

an LR(1) parser for the grammar.

The novel integration of a visual manipulation front-end for chromosome ideograms

used to generate symbolic problem cases for a CBR system demonstrated both the

capability and convenience of such an approach.

1 1.2 Conclusions

The creation of ISCN Student was interesting and pleasurable (probably because it

worked), with exploration into quite varied topics. CBR was verified as a sufficiently

powerful technique to create a second generation knowledge system that learns from

existing knowledge systems in order to achieve similar competence. This is the most

novel research aspect of the thesis -- the demonstration of a CBR system that learns

from other knowledge systems.

A generalized object-oriented framework and class hierarchy was designed for CBR

systems that can be specialized into different CBR domains. The proof of its successful

application is ISCN Student itself. A discovery in this work is that the very dynamic

aspect of MOP memory (with MOPS being added, generalized and rearranged constantly)

calls for a single class of MOP object. This MOP object itself takes on the dynamic roles

of all instances and abstractions, with shifting attributes and behaviors. This is in

contrast to the classic object-oriented design of pre-defining static class definitions for

all anticipated abstractions. A regular class hierarchy in Smalltalk or C++ is not

sufficiently dynamic or flexible for the demands of CBR reasoning and knowledge

representation.

The crafting of the case memory representation and the loading of ISCN Expert

interpretations led some insights. The choice of granularity of concepts, and what

concepts to generalize, plays a pivotal role in the complexity of the matching and

adaptation algorithms.

In considering the complexity of all software operations, the adaptation phase of the

CBR system proved to be most intricate, and required the most domain knowledge. I

believe this to be generally true of CBR systems, which underlines the need for further

research into declarative and elegant reasoning and representation models for

adaptation knowledge.

ISCN Student was coupled with a visual manipulation system for the display of

existing (chromosome abnormality) cases and the introduction of new ones. Visual

manipulation has both an intuitive appeal and an elegance of expression in this

domain, which is largely concerned with topological defects.

Finally, I conclude that the CBR paradigm is worthy of more wide-spread

exploitation, both in research and industry. The simplicity of the model, the often

abundant availability of existing case histories, and its parallels to human cognitive

problem solving strategies contribute to my feeling that CBR techniques have a practical

appeal and great potential for successful application.

11.3 Future Research

As the evaluation section indicated, ISCN Student's performance degraded as the case

memory grew. Analysis of the complexity of the matching and adaptation algorithms

would be helpful to provide insight to the pace of degradation, and the source of

potential improvements. Is it the matching or adaptation phase, or both, that is

responsible for the majority of problem? Could the adaptation phase, which at present

is optimized to work with simple cases, be accelerated if it worked better with complex

cases?

The current naive drawing algorithm for chromosome ideograms is slow. Research

into speeding it to the point where all 46 chromosomes could be drawn, instead of the

representative 12, would improve the visual manipulation module.

ISCN Student has potential as an educational tool. An obvious area of inquiry, in

this case, is identifying the cogent operational knowledge required by aspiring

geneticists and the cognitive processes involved in the learning domain of ISCN and

genetic abnormalities. These factors would assist the definition of new requirements for

ISCN Student improvements, and could also be used in the creation of a computer-

based student learning model within ISCN Student.

The generalization and adaptation techniques emphasize generalization of the

specific chromosomes involved in defects. Further research into other dimensions of

generalization of ISCN interpretation cases could yield new methods for matching and

adaptation. The assistance of a domain expert would be helpful in the elucidation of

other generalization attributes.

The adaptation phase relies heavily on domain knowledge. In ISCN Student this

knowledge was embedded in the Smalltalk methods. There is room for improvement by

investigating how to represent it declaratively, and apply it with a separate inference

engine.

If ISCN Student fails in finding sufficient matches, it reports failure. An alternative

would be to invoke ISCN Expert in these cases, and then dynamically load the new

interpretation into case memory. This would make ISCN Student more robust, and

accelerate its learning process.

ISCN Expert could be incorporated as an expert critic, either dynamically cross-

checking Student's results, or doing so in a batch-mode when Student was not in use.

Error detection and error handling research is called for to identify how wrong

interpretations can be removed, and the associations in MOP memory adjusted to

prevent the reoccurrence of incorrect results.

References

Booch, G. 1994. Object-oriented Analysis and Design. Redwood City, Ca: Benjamin-
Cummings.

Chapman, S. 1989. LR Parsing: Theory and Practice. Cambridge, UK: Cambridge
University Press.

Cooper, G. and Friedman, J. 1990. Interpreting Chromosomal Abnormalities Using
Prolog, In Computers and Biomedical Research, 23:153-164. New York, NY:
Academic Press.

Friedman, J. and Smith, J. 1986. Automated Interpretation of Cytogenetic
Nomenclature, In AAMSZ Congress 86: Proceedings of the Congress on Medical
Informatics.

Goodman, M. 1989. CBR in Battle Planning. In Proceedings: Worlcshop on case-based
reasoning, ed. K. Hammond. San Mateo, Ca: Morgan Kaufman.

Hagen, C. and Muller, J. 1993. Focus on Scientific Visualization. Berlin: Springer-Verlag.

Hammond, K. 1989. Case-based Planning: Viewing Planning as a Memory Task. Boston,
MA: Academic Press.

Harden, D. and Klinger, H. 1985. ZSCN 1985: An International System for Human
Cytogentic Nomenclature. Basel, Switzerland: S. Karger AG.

Kolodner, J. and Riesbeck, C. 1986. Experience, Memory and Reasoning. Hillsdale, NJ:
Lawrence Erlbaum.

Kolodner, J. 1987. Capitalizing on failure through case-based inference. In Proceedings
of the Ninth Annual Conference of the Cognitive Science Society. Northvale, NJ:
Erlbaum.

Kolodner, J. 1993. Case-Based Reasoning. San Mateo, CA: Morgan Kaufman.

Koton, P. 1988. Reasoning about evidence in causal explanation. In Proceeding of &LU-
88, pages 256-26 1. Los Altos, CA: Morgan Kaufman.

Long, W.; Naimi, S. ; Criscitiello, M. and Jayes, R. 1987. The development and use of a
causal model for reasoning about heart failure. In Symposium on Computer
Applications in Medical Care. New York, NY: IEEE Press.

Minsky, M. 1975. A Framework for Representing Knowledge. In The Psychology of
Computer Vision, ed. P. Winston. New York, NY: McGraw-Hill.

Nielson and Shriver, eds. 1990. Visualization in Scientific Computing. Los Alamitos, NM:
IEEE Press.

Sacerdoti, E. 1975. The nonlinear nature of plans. In Advance Papers ji-om the Fourth
Int. Joint Conference on Artificial Intelligence, Los Altos, CA: Morgan Kaufman.

Schank, R. and Abelson, R. 1977. Scripts, Plans, Goals and Understanding. Hillsdale,
NJ: Lawrence Erlbaum.

Schank, R. 1982. Dynamic Memory: A theory of learning in computers and people. New
York, NY: Cambridge University Press.

Schank, R. and Riesbeck, C. 1989. Inside Case-Based Reasoning. Hillsdale, NJ:
Lawrence Erlbaum.

Searles, J. 1993. Investigating the linguistics of DNA with Definite Clause Grammars. In
Logic Programming: Proceedings of the North American Conference on Logic
Programming, ed. E. Lusk and R. Overbeek. Cambridge, MA: MIT Press.

Appendix A - ISCN
Grammars

13.1 The ISCN Short Form Grammar

This is the listing of the context free grammar for ISCN short form expressions,

expressed as productions in T-gen format.

ChSet :

ChCnt {Chset)
I ChCnt I , ' SexList {ch~et)
I ChCnt ' , I AbnormList {ch~et)
I ChCnt I , SexList I , AbnormList { ~ h ~ e t)

I

ChCnt :

Num

SexList :

XList YList
I XList
I YList

XList :

ChX XList

YList :

ChY YList
I ChY

AbnormList :

Abnorm I , ' AbnormList
I Abnorm
I

Abnorm :

NumericAbnorm
I StructuralAbnorm

" NUMERIC ABNORMS "

NumericAbnorm :
I+' I?' AnyChrom

1 + I?' AnyChrom Sign
(I+' AnyChrom
I I+' AnyChrom Sign
1 - AnyChrom
I 1 - 1 '?I AnyChrom
I I+' ChPartOfDiffLength
I ChPartOfDiffLength
I

{lift~ight~hild)
{AbnormList)

ChPartOfDiffLength :
AnyChrom ChPartDownToRegion Sign {~h~art~f~iff~ength)
I

n . n

STRUCTURAL ABNORMS l1

StructuralAbnorm :
Translocation
I Deletion

" TRANSLOCATIONS "

Translocation :
It1 TwoChromTwoBreakRea

" DELETION "
Deletion :

'dell UpToTwoBreakRea
I

" REARRANGEMENTS "

UpToTwoBreakRea :

I (Autosome I) (

ChPartUpToArm) { ~ ~ ~ o ~ w o ~ r e a k ~ e a)
I I (I Autosome ') ' ' (

ChPartUpToArm ChPartUpToArm '1 { ~ ~ T o ~ w o ~ r e a k ~ e a)
I

TwoChromTwoBreakRea :

' (' Autosome I;' Autosome I)' ChPartUpToArm
' ; ' ChPartUpToArm) I { ~ w o ~ h ~ w o ~ r e a k ~ e a)

ChPartDownToRegion :
Arm
I Region
I

ChPartUpToArm :

Band
I Region
I Arm

Band :

Region I.' Num

Region :

Arm Num

Arm :

'PI
I 'q'

AnyChrom :

SexChrom
I Autosome;

Autosome :

Num

SexChrom :

chx
I ChY
I

ChY :

'Y'

Sign :

+
I 1 - 1

I

Num :

<num>

Listing 13.1 ISCN Short Form Grammar

13.2 The ISCN Long Form Grammar

This is the listing of the context free grammar for ISCN long form expressions, expressed

as productions in T-gen format.

ISCNLongExpr :

Bandsection I : : ' ISCNLongExpr {lift~ight~hild}
I Bandsection {I~~NLong~xpr)
I BandEnd {I~NLong~xpr)

I

 ands section :

StartBand ' - > I EndBand

StartBand :
BandEnd

EndBand :

BandEnd

BandEnd :

Centromere
I Terminal
I Region
I Band

Terminal :

Ch 'pter'
I Ch 'qter'
I

Band :

Region I . ' Number

Region :

Ch Arm Number

Arm :

'PI
I 'st
I

Centromere :

cen '

Ch :

Num
I 'x'

I 'Y'
I

Number :

Num

Num :

cnum>

{Centromere);

Listing 13.2 ISCN Long Form Grammar

