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Abstract 

A fast, color-based algorithm for 

unknown illuminant is presented. 

of the object's color distribution 

R, G and B denote the 3 color 1: 

recognizing objects and textures viewed under an 

Objects are indexed by six numbers: the angles 

and the angles of the color edge distributions. If 

)ands of the image of an object (stretched out as 

vectors) then the color angular index comprises the 3 inter-band angles (one per pair 

of vectors). Similarly the edge angular index comprises the angles of within band color 

edges represented as feature vectors. In the general case the distribution of colors, and 

in turn the angular index, will depend on the color of the illuminant. If, however, the 

original color bands are transformed by a sharpening transform before computing the 

distribution angles, then the angular index is illuminant independent. The sharpening 

transform in this case refers to linear combinations of the sensor responses which yield 

narrow band or sharper sensors. Indexing using angles calculated post sharpening 

delivers excellent recognition for a variety of illuminations. 

Textures are represented by the six spatial correlation functions of the intra and 

inter band image color distributions. Treating these correlations as vectors, a new set 

of angular invariants is computed as the set of angles between the six vectors. The 

spatial correlation angles are shown to preserve illumination independence under the 

sharpening transform. Tests show that these angles possess sufficient discrimination 

to correctly identify a set of textures. The color and edge angular index is used to rep- 

resent the spatial interactions in color textures and provides a rich representation for 

color textures. A coarse form of texture classification and segmentation is developed 

by computing these texture features locally across the image. 
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Chapter 1 

Introduction 

"When considering, with reference to color, the objects that constitute the 

world, it is quickly noted that these fleeting appearances, which so readily 

appear and disappear through certain angles of these objects, are not accidental 

but are dependent upon definite laws." 

- Goethe, "Color Theory" 

Object recognition - the identification of key features from an image which cor- 

rectly characterize the given object as a member of a set of well known objects - is 

one of the major goals of computer vision. This raises the question of what consti- 

tutes 'key features': typically they are measurable object properties such as 2D shape, 

edges, surface curvature and color which can be extracted from images of the object 

and a priori knowledge about the world. The obvious problem is that objects may be 

viewed from different positions under various rotations, orientations, changes of scale 

and lighting conditions. This often gives rise to different features for the same object 

and makes recognition a hard task. It is desirable therefore that the characterizations 

be invariant to the set of transformations which give rise to these differences. 

The work presented in this thesis is based on the premise that color distributions in 
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an object are sufficiently characteristic and discriminatory in nature to serve as a basis 

of identification. Previous work done by Swain [SB91] and Funt and Finlayson [FF95] 

has shown that color distributions are indeed sufficient for recognizing a wide variety 

of colorful man-made objects. The use of color distributions renders the character- 

ization invariant to translation and rotation about the optical axis. Distributions 

normalized by the area of the image are robust to changes in scale. Equally impor- 

tantly, distributions change gradually with occlusion and rotations about other axes 

- the only caveat being that they are sensitive to changes in illumination. Swain's 

"Color Indexing" [SB91] which does not account for illumination changes thus fares 

poorly in spectrally different lighting conditions. Funt and Finlayson solve this by 

using color ratio distributions which are invariants under this transformation. More 

recently work done by Healey and Slater [HS94] has used moment invariants of color 

histograms as a key to recognition. 

The key motivation here is to find a color invariant descriptor of this distribution 

space which is compact, reliable and efficiently computable. With this in mind, I use 

Finlayson et al.'s [FDF94b] result for a generalized diagonal model of color constancy 

which essentially states that a change in illumination color can be accounted for by an 

independent scaling of each color band in the image, after the sensors are transformed 

by a linear combination of the original sensor responses. With this assumption, we 

can treat each band color distribution as a feature vector in N dimensions, where N is 

the number of pixels in the image. A change in the color of illumination corresponds 

to a change in length of each feature vector; the angles between these vectors however 

remain invariant. I index objects on these angle invariants. A more formal derivation 

of these invariants is described in chapter 3. The algorithm has been tested on a 

variety of colored objects with impressive results. 

I try another variation on the above theme where I investigate the angle invariants 

of image edges by taking the Laplacian of the image and computing the invariants of 

the resultant image. Since the color and edge distributions will in general yield differ- 

ent information about the object, I conjecture that using both sets of invariants will 

improve the performance of the algorithm. Indeed, we will see for Swain's database, 

the combination of color and edge invariants exhibits better results than the use of 
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color distribution invariants alone. 

The notion of angle invariants has been extended to color texture recognition. 

Representing textures as spatial correlation feature vectors, I show that the diagonal 

model holds for the set of feature vectors. I propose that textures can be represented 

by the angles between these six feature vectors. While this is a deviation from the 

norm in terms of how textures are recognized with statistical methods, these angles 

are surprisingly robust to rotation and changes in color of light and possess sufficient 

discriminatory power. The algorithm in this case has been formalized in Chapter 4. 

Results are provided for tests on a variety of colored textures. I also examine the 

use of the color distribution and edge distribution invariants described above as a 

representation for textures. We observe that the results are superior to those obtained 

by using a spatial correlation model. 

Taking this a step further, the color and edge angles are locally computed across 

an image to yield a set of invariant descriptors for multi-textured images. These 

invariants are indexed by a hashing function which partitions the invariant space 

equally. Hash buckets with high bin counts are matched to a model database of 

textures for classifying the various textures present in an image. By computing these 

invariants for every pixel location in the image, a set of invariants for every image 

point is obtained. A clustering algorithm applied to these invariants yields a form of 

coarse image segmentation. 

This thesis is organized linearly. In the next chapter, I discuss some of the related 

work in color object recognition as well as certain relevant aspects of color texture 

recognition. Chapters 3 and 4 discuss formal aspects of the invariant derivation and 

cite some results about the performance of the various algorithms to be discussed. 

Chapter 5 is essentially devoted to the results obtained from the various algorithms 

and as such can be distinctly separated into two sections - the first dealing with 

object recognition and the next with texture. I conclude by remarking upon the 

limitations of the method, improvements which can be applied to the algorithm and 

possible applications. 



Chapter 2 

Literature Review 

"It seemed by then as if there were no facts anywhere in the universe, in his 

own brain or anyone else's or just lying loose, which could possibly be brought 

within his present scope." 

- Kingsley Amis, "Lucky Jim" 

2.1 Introduction 

The usefulness of color in identifying objects has been apparent for quite some time; 

what is less clear is the role color plays in the recognition process. Even a cursory 

study of the psychophysical literature in the field [WL93] shows a wide disagreement 

over exactly what benefits humans accrue from color vision. Of course a point to note 

here is that most of the psychophysical experiments in this regard have been carried 

out on natural objects with a predominant color. The emphasis has been on a single 

color as a feature of recognition and the extent to which it helps in pruning a search 

tree. 

My contention here is significantly different in that I say that the distribution of 

all the colors in an object is characteristic. For example, if we say that an object 

is red, it could either be an apple or a tomato (given we have a small database of 

vegetables). If however we say that the object is red with whitish patches, then the 
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probability of it being an apple is far larger than that of it being a tomato. This 

assumption holds very strongly in the case of man-made objects which usually have 

fixed proportions of colors in them. 

2.2 Color object recognition 

2.2.1 Swain: color indexing 

Swain [SB91] was the first to exploit the notion of uniqueness in color distributions. 

Each color pixel was represented by its opponent colors which are defined as fol- 

lows [BB82]: 

Here r, g, and b represent the red green and blue values respectively. The rg, by and 

wb axes are analogous to the opponent color axes used by the human visual system 

(Lennie and D'Zmura [DL86]). They were used to allow the intensity (wb) axis to be 

more coarsely sampled than the other two, as the intensity axis is more sensitive to 

lighting variation from shadows and distance to the light source. This distribution was 

then modeled as a three dimensional histogram of the pixel values. For recognition, 

the color histogram of a test image was matched with the model histograms in the 

database. Histogram intersection was defined as a metric : 

where h';,g,b, represent the image and model histogram bins respectively, min() 

returns the minimum of two numbers, and N,, Ng, Nb represent the number of bins 

for each color band. 

The result of the histogram intersection of a model histogram with an image his- 

togram is the number of pixels in the model which have the corresponding pixels of the 

same color in the image. To obtain a fractional match, the intersection is normalized 
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by the number of pixels in the model. This normalized intersection becomes what is 

known as the city block metric when each histogram is normalized by its area. 

Such a representation is invariant to rotation of the object about the optical axis, 

as the color histogram does not encode spatial information about the object. Rotation 

about a different axis and occlusion change the resultant histogram. However as Swain 

has shown with various experiments, the histogram changes slowly with respect to 

these transformations. The scale of the object affects the size of the histogram and 

thus any match to a database object. The histogram can be normalized by its total 

area to make it invariant to changes in scale. 

Swain tested his algorithm and reported excellent results for Color Indexing. His 

database consisted of a set of 66 objects, all highly colored and of different shapes 

and sizes. His test data set comprised 24 objects, taken under the same illuminant, 

but with different orientations in space. 

The shape of the histogram changes with a change in illuminant color, and thus 

Swain's color indexing does not work under a change in illumination. Swain suggested 

the use of a color constancy algorithm as a preprocessing step to color indexing; this 

would solve the problem posed by a changing illumination, and render color indexing 

useful under spectrally varying conditions. 

a 

2.2.2 Color constant color indexing (CCCI) 

Subsequent to Swain's "Color Indexing', Funt and Finlayson [FF95] worked on a more 

elegant approach to indexing color invariant pixel distributions. Their approach was 

based on the observation that the spectral variation of illumination over an object is 

smooth, i.e. without local discontinuities. In such a case the illumination spectrum 

can be assumed to remain the same over a local region in the image. Color constant 

descriptors can be obtained by taking ratios of adjacent pixels in the image. This 

follows from a hypothesis that a change in the illumination of an object corresponds 

to an independent scaling in each color band. 
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This was first hypothesized by von Kries in 1904 [WS82] to explain the phe- 

nomenon of color constancy in humans on the basis of chromatic adaptation. Chro- 

matic adaptation is the phenomenon by which our eyes adjust to the ambient illumi- 

nation in a scene over time. The von Kries adapted responses to a surface Sx(X) in 

sensor channel k can be written as 

where E(X) is the incident illumination and Rk(X) is the sensor response for a sensor 

class k. von Kries conjectures that for any given illuminant E(X), dg will remain 

constant. This constant is often computed by assuming the presence of a white 

(uniform) reflector in every scene of the image. In reality, surfaces under varying 

illuminants are only approximately modeled by the von Kries invariants [WB82]. 

Under this assumption of independent scaling, given two pixel locations xl and x2 

we can write the ratio invariants as: r* 

where p:' and ei l  represent the responses under two different illuminations E(X) and 

E(A) at location s1 and 

These ratios are illumination invariant and are computed for each of the three 

bands. 3-dimensional histograms created on the basis of these ratio invariants (called 

ratio histograms) are therefore illumination independent descriptors of the color dis- 

tribution of a scene. Ratios of course encode color edge information about a scene 

(ratios of a patch with constant color will be unity, and not contribute information 

about the color content of the patch). Thus they encode substantially different infor- 

mation about a scene in comparison to Swain's "Color Indexing". These ratios are 

efficiently computed by taking the derivative of the log of the image. 

Funt and Finlayson [FF95] use a histogram intersection metric similar to the one 

defined by Swain for histogram matching. The histogram creation process is complex, 

involving a probability analysis of the ratio space. This follows from the observation 
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that some ratios are more likely than others. The ratio histograms therefore have a bin 

distribution based on non-uniform sampling of the ratio space. Probability distribu- 

tions for the ratio space are computed and used to generate optimal bin distributions 

for the ratio histograms. For the histogram intersection, in a slight deviation from 

Swain, the trivial ratio bin (1,1,1) is neglected for purposes of intersection. 

Funt and Finlayson show that ratio histograms provide a rich representation for 

color-based recognition tasks by successfully recognizing a wide variety of objects. 

Results of CCCI on Swain's database are comparable to Color Indexing. 

Amongst the various advantages of using ratios as a representational framework 

is the fact that they encode spatial information about the object by identifying color 

edges in the scene. Problems arise due to the imperfection of the diagonal model as 

a vehicle for color constancy, in addition to the problem of ratios at low pixel values, 

where the noise in an image can introduce significant errors into the computation. 

Finlayson et al. [FDF94b] have subsequently shown that the diagonal'model holds for 

color constancy if the sensors are transformed by a linear transformation to narrow- 

band sensors. In the case of narrow-band sensors, intuitively, there is little interaction 

between the sensor channels, and an independent scaling proves to be a good model of 

color constancy. Indeed, they have shown that under certain assumptions of surfaces 

or illuminants, a diagonal model under a sharpening transformation provides perfect 

color constancy [FDF94a]. 

2.2.3 Moment invariants of color histograms 

Recently, Healey has examined the behavior of higher order moment invariants of 

color histograms. Using a finite dimensional linear model of color image formations, 

he shows that the color histograms of a scene under different illuminations are related 

by an affine transformation. 

Under an image formation system, let 

where X denotes the wavelength, E(X) denotes the spectral power distribution of the 

illuminant, sX'(X) is the spectral reflectance of the surface and Rk(X) is the sensitivity 
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of the kth sensor class. The location x' on the surface is projected onto location x on 

the sensor array. 

The spectral reflectance function sX'(X) of a surface can be approximated at loca- 

tion x', by using a set of basis functions: 

where Sj(X) is a set of n fixed basis functions. If p" denotes the set of set of sensor mea- 

surements at location x on the sensor array as a column vector px = (py ,  p;, . . . , pz)t 

and ax' denotes the column vector ox' = (of ,  0221, . . . , o:')~ of spectral reflectance 

coefficients, we can write 

px = ACX' 

where A is the n x n matrix with entries 

We see that the matrix A depends on the illumination, but not on the location x' 

in the image. Images taken under a different illumination E(X), will yield a different 

matrix 71. For any illuminants, E(X) and E(X) such that A and 71 are non-singular, 

we can write 

jjx = Mpx v 6 )  

where M = ZA-l.  If H and are n-dimensional histograms that represent the 

distribution of color pixels in images px and jjx, then from Eq 2.6 they are related as 

Thus for a change in illuminants, the color histograms are related by an affine trans- 

formation. 

Taubin and Cooper [TC92] have recently developed efficient algorithms for the 

computation of vectors of affine moment (or algebraic) invariants of functions. These 

vectors are invariant to affine transformations of the function and as such can be 

used for recognition in the presence of illumination changes. Let us define a centered 
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moment of a color histogram H(p) as 

where H' = [1/I H(p) I ]  J pH(p)dp is the mean and I H(p) 1 = J H(p)dp. The notation pa 

denotes the monomial p~1p~2p,"3 for a vector of non-negative integers a = (al, a 2 ,  a3) 

called a multi-index. The size of a multi-index is Ial = a1 + a 2  + as. Vectors and 

matrices of these centered moments can be defined by a lexicographical ordering of 

these centered moments for a given size of index a. 

If the matrix M as defined in Eq 2.6 is orthogonal corresponding to a rotation 

in color space, then certain moment-matrix eigenvalues are invariants and do not 

depend on M. For affine transformations, invariants cannot be directly computed. An 

affine transformation is realized by a change of coordinates followed by an orthogonal 

transformation. As a result of this, Healey uses higher order moments (at least 3rd 

and 4th order) to calculate affine invariants for object recognition. These moment 

invariants encode higher order global shape information about the histogram and are 

used for recognition. Healey uses a set of six invariants in his work [HS94] to recognize 

objects. The computation of the moment invariants is efficient and can be done in 

30N multiplications, where N is the size of the image. Recognition is based on the 

Euclidean distance between the six invariants. This is far quicker than indexing on 

color or ratio histograms. 

The initial impetus for the work done in this thesis derived from this result of 

Healey. Under the assumption of a diagonal model of color constancy, the affine 

transformation M reduces to a scaling function D (where D is a diagonal matrix). 

Moment invariants in this case can be easily computed and lower order moments 

which have to be neglected by Healey can be used for recognition. I argue that often 

higher order moments do not yield sufficient discriminatory invariants for recognition 

and that lower order moments contain more useful information about the image scene. 

As we will see later, the algorithm presented in this thesis proves more effective than 

Healey's in all the recognition tasks that it is used for. 
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Texture Analysis 

Textures are studied in the computer vision community from a wide variety of per- 

spectives depending upon motivation and application. This has led to a variety of 

different definitions for textures. Coggins [Cog821 has compiled a catalogue of texture 

definitions in the computer vision literature and I cite a few examples here. 

0 "We may regard texture as what constitutes a macroscopic region. Its structure 

is simply attributed to the repetitive patterns in which elements or primitives 

are arranged according to a placement rule". ITMY781 

"The image texture we consider is non figurative and cellular . . . An image tex- 

ture is described by the number and types of its (tonal) primitives and the spatial 

organization or layout of its (tonal) primitives . . . A fundamental characteristic 

of texture : it cannot be analyzed without a frame of reference of tonal primitive 

being stated or implied. For any smooth gray-tone surface, there exists a scalar 

such that when the surface is examined, it has no texture. Then as resolution 

increases, it takes on a fine texture and then a coarse texture." [Har79] 

0 "The notion of texture seems to depend upon three ingredients: (i) some local 

'order' is repeated over a region which is large in comparison to the order's 

size, (ii) the order consists in the nonrandom arrangement of elementary parts, 

and (iii) the parts are roughly uniform entities having approximately the same 

dimension everywhere within the textured region." [Haw691 

As we can see from the above, the definition of texture is formulated by different 

people depending upon the particular application and that there is no generally agreed 

upon definition. Image texture, defined as a function of the spatial variation in pixel 

intensities, is useful in a variety of applications and has been a subject of intense study 

by many researchers. One immediate application of image texture is the recognition 

of image regions using texture properties. Texture in this sense forms an important 

visual cue in identifying various types of homogeneous regions. This is known as 

texture classification. The goal of texture classification is to produce a classification 
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map of the input image where each uniform textured region is identified with the 

texture class to which it belongs. 

2.3.1 Applications 

Texture analysis methods are used in a variety of application domains [TJ93]. In 

inspection problems, texture plays a limited role in the automated defect detection 

in textiles and in the automated inspection of carpet wear and automobile paints. In 

medical image analysis, textures are used in the automated extraction of features from 

the image which are then used for a variety of classification tasks such as distinguish- 

ing abnormal tissue from normal tissue. Depending upon the application, extracted 

features capture morphological properties or color properties. Textural properties 

have been used in the classification of pulmonary disease. Interstitial fibrosis can be 

clearly identified from lesions in X-rays by texture variations. Sutton and Hall have 

used isotropic contrast measures, a directional contrast measure and a Fourier domain 

energy sampling to distinguish normal lungs from diseased ones. Texture analysis has 

been extensively used in remote sensing for classification of homogeneous regions with 

different kinds of terrains. 

2.3.2 Use of Color in Textures 

Multi-spectral data contains a large amount of information about a scene which can 

be used to advantage in recognition tasks. Color, while an important and defining 

quality of texture in many cases, has largely been neglected by the vision community. 

Some color texture models which capture the spatial interaction between the red, 

green and blue bands of a color image and are used for image synthesis are discussed 

in [GMTL86]. Color random field models for spatial interactions between generalized 

neighbor sets have been used for segmentation of natural scenes by Healey [HP95]. 

Healey has also used moment invariants of spatial correlation functions in order to 

model 3-dimensional color textures for geometry invariant recognition [KH94] . Schar- 

canski et al. [SHS92] have used image edges at different scales to discriminate between 

color textures. For each of these models, the color texture representation depends on 
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the scene illumination. Healey [HW95] has recently proposed a method of color tex- 

ture recognition based upon the spatial correlations between color bands which is 

invariant to the incident illumination. 

I will discuss some of Healey's work related to color texture recognition in greater 

detail as much of my work in color textures derives directly from his results. 

Geometry invariant recognition of color textures 

Kondepudy and Healey [KH94] have derived a 3-dimensional model of color textures 

based upon the spatial interactions amongst the color bands of an image. They use 

algebraic moment invariants (described in an earlier section) to select a best match 

from the model database to the image. The model is then fitted to the image to verify 

the match and identify orientation angles of the 3-dimensional texture in space. 

They define a correlation function for a pair of images I;(x, y)  and Ij(x, y) as 

where 7; and 7j are the means of the images, and E denotes the expectation. For 

a color image, there can be six correlation functions R,, , R,,, Rrb, R,, , Rgb, andRbb 

covering all the possible autocorrelations and cross correlations. 

To show that 3-dimensional geometric transformations of the texture produce cor- 

responding transformations in these correlation functions, they develop a 3-dimensional 

model of image formation. Under an arbitrary position in space, a point on a textured 

planar patch can be represented by a point on the Gaussian sphere which represents 

its normal. This point is specified by an azimuth angle 8 and a polar angle q5 as shown 

in Fig 2.1. 

Based on this model, Kondepudy derives a relationship between the correlation 

functions for an arbitrary rigid motion of the body as : 

where KjN(E) represents the color correlation of an image of the plane when it is 

perpendicular to the optical axis. a indicates the rotation of the object in the image 
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z (opticalaxis) 
A 

Figure 2.1: Gaussian sphere 

plane, while k indicates a magnification or scaling factor to account for distance of 

the texture from the image plane. E is the surface normal of the point and MI is the 

transformation defining the rigid motion of the body. Under a geometric transform 

of the texture surface, the image coordinates are transformed as: 

where i is the transform of the image coordinate 2 = (x, y), MI includes effects 

of rotation and orientation and D is the translation vector. Given two images of 

texture planes, the transformation matrix is calculated from the images for each of 

the correlation functions and a fit is ascertained by a minimization procedure. 

As this process is computationally intensive, Kondepudy and Healey use moment 

invariants as described before for selecting a best match to the set of texture models 

being recognized. Higher order moment invariants (up to 7th and 8th order moments) 

are calculated for each of the six correlation functions. A total of 54 moment invari- 

ants is used to match each texture. Only the first ranked match is selected for the 

minimization procedure; a successful identification is returned if the square of the 

difference error between the fitted model and the original image is below a chosen 

threshold. While excellent results are reported in identification of color textures, the 

model remains sensitive to illumination change as the structure of the correlation 

matrix changes with a change in the incident illumination. 
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Illumination invariant color texture recognition 

Work on illumination invariant texture representations has been done by Healey and 

Wang [HW95] using spatial correlation models to represent textures. These spatial 

correlation equations are described in Eq 2.9. A change in illumination transforms the 

structure of the spatial correlations. They show that a linear transformation maps the 

correlations for a change in illumination. Stretching the components of the correlation 

function out as a vector, he derives a set of orthonormal basis functions by a singular 

value decomposition of the six correlation vectors. For a change in illumination, it 

can be determined how well the new correlations can be represented using the basis 

vectors corresponding to the original correlation vectors. A distance function which 

calculates the squared fitted error is used as a matching function for a set of database 

textures. The biggest restriction here is that the textures are assumed to remain at the 

same orientation. A change in the orientation of a texture will change the structure 

of the correlation vector quite differently and the distance function will compute an 

incorrect match for the object. 



Chapter 3 

Color and Edge angle invariants 

"Its chief merit is its simplicity - a simplicity so pure, so profound, in a word, 

so simple, that no other word will fitly describe it." 

- Lewis Carroll, "Diversions and Digressions" 

3.1 Color Distribution Invariants 

The light reflected from a surface depends on the spectral properties of the surface 

reflectance and the illumination incident on the surface. In the case of Lambertian 

surfaces, this light is simply the product of spectral distribution of the light source 

with the spectral reflectance of the surface. I restrict this discussion to Lambertian 

surfaces. In an imaging system, light reflected from a surface falls onto a planar 

array of sensors in the camera. Each location x on the array has k classes of sensors. 

The value p i  of each sensor output is given by the integral of its response function 

multiplied by the incoming color signal: 

where X is the wavelength, Rk is the response function of the kth sensor class, E"' is 

the incident illumination and s"' is the surface reflectance function at location 2' on 

the surface which is projected onto location x on the sensor array. I further assume 
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here that the illumination does not vary spectrally over the given surface, and so drop 

the index xi from E(X). 
Consider the same surface illuminated by another illuminant ,!?, which is spectrally 

different from E.  In this case the sensor response is given by : 

The human visual system has three classes of photo receptor cells, called cones, 

which are used to sense the color signal entering the eye. The sensor outputs from 

Eq 3.1 can therefore be represented by an ordered triple as p = {p,, pz, p3)  for each 

location x. 

3.1.1 Finite Dimensional Models 

A response to visual stimuli is band-limited by the frequency response of the sen- 

sor and can be represented by a discrete summation of a sampling of the color sig- 

nal [SW64]. Cone sensitivities are usually considered to be significant between 380 

nm to 770 nm. A sampling interval of 10 nm is common practice in the color sci- 

ence community [Kri47, Nic571. Within this discretization framework, we can rewrite 

For almost all real illuminants and reflectances, Eq 3.3 approximates Eq 3.1 with 

small errors [SSS92]. 

The above equation can be further simplified by the use of finite dimensional 

models. Judd et al. [JMW64] measured 605 daylight illuminants and showed that 

they can be modeled well by a set of three basis functions. 

where Ei(X) is a basis vector and r; is the weight vector for the surface. 

Parkkinen et a1 [PHJ89] measured the spectra of Munsell colors. Vrhel [VGI94] and 

Maloney [Ma1861 evaluated various surface spectral reflectances and concluded that 
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reflectances could in general be well modeled by a set of 3 to 8 basis vectors [Fin951 

where Sj(X) is a basis vector and of is the weight vector for the surface x'. Given 

this, we can now rewrite Eq 3.3 in terms of a finite dimensional linear model : 

Under a change of illumination as represented by Eq 3.2, the triples p and j? are 

now related by a general linear transformation. 

3.1.2 Diagonal Models 

von Kries (1904) put forward his famous hypothesis on the law of coeficients for 

chromatic adaptation where he suggested chromatic adaptation as a vehicle for human 

color constancy. The central idea was that the eye adjusts to the ambient illumination 

in a scene over time and all colors are seen relative to this adapted state. Specifically, 

the responses under two different stimuli are related by an independent scaling in each 

sensor class [WS82]. 

= dkp; (3.8) 

where dk = 11 J E(X) Rk(X)dX. This modifies Eq 3.7 to a diagonal linear transform 

The diagonal matrix V contains the von Kries coefficients for the given sensor 

responses. Note that the same diagonal matrix V takes the response vectors at every 

image location x between illuminants; that is V maps the entire image. 

Several quantitative studies have shown the von Kries adaptation to be imperfect 

in one or more ways (see Wyszecki and Stiles 1982 [WS82] for a detailed study). 
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The von Kries model can however be quite accurate so long as there exist linear 

combinations of sensitivities which are narrow-band. This observation forms the basis 

of Finlayson et al's [FDF94b] spectral sharpening method. They show that if the 

sensor response functions are first transformed to a more narrow-band (or sharper) 

sensor basis [FDF94b] then the accuracy of Eq. (3.9) is improved. Indeed a von Kries 

type model is quite adequate for all sensor sets [FDF94a]. Von Kries plus sharpening 

can be written as 

where 7 denotes the sharpening transformation of the original sensor response func- 

tions. 

Let $" = 7 px where $" is called the sharpened response. Let W be a N x 

3 matrix representing the set of sharpened sensor responses for a 3 sensor imaging 

environment with N array elements. From Eq. (3.10), we can then write 

F = v w  
where @ is the set of responses under a different illumination. 

3.1.3 Angle Invariants of color distributions 

Consider W to be a set of three row vectors in N dimensions as 

where $2 is the sharpened response as defined above for sensor class k at location 

n. We see from Eq. (3.11) that a change in illumination corresponds to a change in 

length for each of these three vectors1. Upon normalizing each of these vectors to unit 

length, the diagonal matrix V reduces to the identity matrix. 

It follows from the above that the angles between the three N-dimensional vectors 

are invariant to changes in the illumination. These angles are computed as 

'The author thanks Graham Finlayson for the idea 
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where luil and lujl are the lengths of the band vectors. The q5;j form the color 

distribution descriptors. These can be computed with 6N multiplications from the 

sharpened responses. 

This idea is the crux of the thesis. Intuitively, consider a colored surface under 

a blue light. When the incident light is spectrally different, for example, a red light, 

the relative magnitudes of the 3 color bands will be scaled by 3 independent numbers. 

Thus the red band will gain in magnitude while the blue band will have a lower 

magnitude. This simply means that the red band vector will become longer, while 

the blue band vector becomes shorter. The angles between the vectors will remain 

the same. Let the scaling factor (or the diagonal elements of V) be {dl, dZ, d3). From 

Eqs 3.12 and 3.13, we see that the angles for the new illumination can be written as 

" d;$f dj@ Cz=1 4i,j = cos-' for l < i < j < 3  
IdiuiI ldjujI 

From the above equation, it is obvious that the d; and dj in the numerator can be 

taken outside the summation. The scaling factors cancel out of the equation, and 

therefore, a change in illumination does not affect the angles. 

It is instructive to note here that the angles possess no discrimination with regards 

to changes in scale; thus we cannot identify a smaller object relative to an identical 

larger one. 

3.1.4 Data Sets used to test invariance of angles 

To test whether the angular invariants possess sufficient discrimination, I imaged a 

set of thirteen objects under varying lighting conditions and at different orientations. 

The database comprised highly colored man-made objects such as cereal boxes, books, 

t-shirts and sweaters. A few of the objects are shown in Figure 3.1. The set of objects 

were imaged three times; lighting conditions were varied across each set of images, 

but were identical within the set. No attempt was made to keep each object at a 
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Figure 3.1: Real objects imaged under varying illumination conditions 
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fixed orientation - I was only careful to preserve a major portion of a selected face 

of each object in the three images. The light source used was a halogen lamp; the 

other two sets of images were generated by using an orange and a blue filter. Spectral 

characteristics of these filters can be found in Barnard's thesis [Bar95]. 

A Sony 3-CCD DXC-930 color camera and a Parallax 24-bit frame grabber card 

attached to a SUN SparcLX formed the main components of the imaging system. 

The spectral sensitivities of the camera responses are shown in Figure 3.2. Each set 

of sensor responses is from 380 nm to 780 nm with an interval of 4nm. The responses 

are estimated at the central region of the camera with an aperture of 2.8 and a focal 

length of 25. Data based sharpening as described by Finlayson et a1 [FDF94b] was 

performed in our laboratory by Barnard [Bar95]. The sharpened camera responses 

are represented by the dotted lines in the figure. The sharpening transform calculated 

is 

i 0.9495 0.0038 0.0099 

7 = -0.1182 0.9535 -0.1279 I (3.15) 

0.0356 0.2380 0.9805 

Visually, we note that not much sharpening seems to have resulted. It seems worth- 

while therefore as a first approximation to set the sharpening transform matrix of 

Eq 3.10 to the identity matrix, i.e. use the original camera responses. 

3.1.5 Normalized Euclidean Distance as a measure 

A normalized Euclidean distance was used to measure the invariance of the angles. Let 

= {41,2, 41,3, (b2,3It represent the angles as a three dimensional vector. Given two 

such vectors a' and am for the test image and the model respectively, the normalized 

distance is defined as 
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Figure 3.2: Camera sensitivities 
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Figure 3.3: Measure of invariance for color distribution angles 
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3.1.6 Are 3 numbers sufficient ? 

Angular invariants were calculated for each of the thirty nine images. A distance 

matrix based on the measure in Eq 3.16 was generated by computing the distance 

for each image against the others. A model base was chosen as the set of images 

taken under the halogen lamp. Distances between each model image and the two test 

images for the same object were averaged (a; for each object i). For each object, the 

distances between it's test images and the other model images were averaged (Pj j  
for each model i and object j, where j # i). Figure 3.3 is a plot of the intra-object 

distance (a; ) and the nearest inter-object distance (minimum {Pij)) for each object 

2 .  

Two things are of importance in the graph. First, the ai7s should be close to 

zero as they represent distances between invariants of the same object. Secondly, the 

distance between the a; and the corresponding min{/?j,j) should be relatively large 

for successful discrimination. We see from the graph that in three cases (images 2, 8 

and 9 corresponding to the light bulb box, Javex bleach bottle and the Knorr Soup 

packet) the inter-object distances were smaller than the intra-object distance. Thus 
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Figure 3.4: Measure of invariance with sharpening 
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these objects would be incorrectly recognized. Furthermore, image 11 (a shampoo 

bottle) was found to have poor discrimination. For object 12 (a sweater) the intra- 

object invariant distance is quite large. The discrimination for this database is fairly 

good; however one would expect problems as the dataset grows larger. The average 

intra-object distance was found to be approximately 20% of the nearest inter-object 

distance. 

Using the sharpening transform previously calculated, the invariants were recom- 

puted. The corresponding plot of inter and intra-object distances is shown in Fig- 

ure 3.4 

We see that for image 12, the intra-object distance has reduced significantly. The 

invariance for image 2 has improved a little; however, inter-object distances are still 

in the same neighborhood, thus affecting the stability of discrimination. Inter-object 

distance in case of image 11 has increased, improving discrimination. These observa- 

tions are supported by the table of results in chapter 5. For image 13, the inter-object 

distance was too large to fit into the scale used for the plot. We observe that the 

initial assumption of an identity sharpening is reasonably justified as no significant 
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improvement is noted, Of course this argument applies only to systems with narrow 

band sensors. For systems like the human eye where the cone responses are broad 

band, sharpening is necessary for the diagonal model to work. 

3.2 Angular edge invariants 

Funt and Finlayson [FF95] argue that color ratios possess sufficient discrimination 

to be able to identify objects from a large database. This seems to follow from the 

observation that highly colorful objects will have distinctive color edge information 

which can be used as a cue to recognition. The motivation here lies in the fact that 

color edge distributions provide information which differs from that provided by the 

color distributions themselves. We would like to examine whet her this information is 

sufficiently uncorrelated as to overcome the discrimination problems of the original 

set of invariants. Note that since the objects under consideration in general will not 

be 2 dimensional surfaces, false edges may be encountered due to shading or surface 

edges. We can expect that surface edges will remain similar across all images of an 

object since an important constraint on the algorithm is that a major portion of a 

chosen surface area be preserved in each image. 

Consider this argument in the context of angle invariants. Given an image, we can 

extract color edges by differentiating the image and compute angle invariants of the 

edge distributions as described in the previous section. As an illustration, consider the 

two images shown in Fig 3.5. They are two synthetically generated images, containing 

equal surface areas of four different Mondriaans with the only difference being that the 

patches are arranged differently in the two images. The difference between the images 

is immediately obvious; the method of angular invariants as described above does not 

distinguish between the two images, as they contain equal amounts of identical color 

pixels for each surface patch. If we extract the edges from the two images as shown 

in Fig 3.6 and compute the angular invariants between them, we note that there is a 

large difference in the results obtained. 

Table 3.1 shows the invariants obtained by the two methods and the Euclidean 

distance between them. In the table, CD refers to the angle invariants of the color 
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Figure 3.5: Insufficiency of color angle invariants 

Figure 3.6: Color edges of the images 
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distribution, while ED refers to the invariants of the edge distributions in the image. 

Distance refers to the Euclidean distance between the two image invariants of each 

This is as much an argument for using edge information as showing that just using 

color distributions is not sufficient in many cases. 

Table 3.1: Comparison of invariant distances for color and edge distributions of two 
images. 

Type 
C D 
E D  

3.2.1 Choosing an edge operator 

The Laplacian of a function f (x, y) is defined as 

The Laplacian is the lowest order linear combination of partial derivatives that is 

rotationally symmetric [Hor86]. Rotationally symmetric operators are attractive be- 

cause they treat image features in the same way, irrespective of their orientation. It is 

standard practice to apply a low frequency attenuation filter to the image before ap- 

plying the Laplacian. This minimizes the effect of noise by preventing high frequency 

noise edges from being detected. One of the most popular filters used is a Gaussian, 

Image1 

where a defines the spread of the Gaussian. This Laplacian of Gaussian [GW92] (or 

LOG) operator was also used by Funt and Finlayson in Color Constant Color Index- 

ing [FF95] to differentiate the log of the image. Finlayson also cites other examples of 

the use of this operator. Hurlbert [Hur89] examined opponent invariants in the human 

visual system; her model used the LOG operator, which she proposes is implemented 

in humans by the double opponent cells [Fin92]. 

Distance 
0.000 
15.370 

19.432 
11.950 

57.727 
29.177 

Image2 
54.003 
20.622 

57.727 
25.911 

54.003 
29.226 

19.432 
24.260 
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3.2.2 Edge invariants 

The angular invariants for the edge distributions can be written from Eq 3.13 as 

where X: = LOG($:), y E N(x) .  N(x )  signifies the neighborhood of x as the LOG 

operator has a support over the neighborhood of the pixel being examined. In our 

case, it is calculated over a 7x7 pixel region with the given pixel at the center of the 

mask. Xi = {xi,. . . , Xr) represents the edge feature vector. To verify my hypothesis 

about the uncorrelated information content between image color distributions and 

image edge distributions, I repeat my invariance test on the same data set of 13 

objects. The LOG operator is applied to each image and its angular invariants are 

calculated. Distances between them are calculated as per Eq 3.16. Intra-object and 

inter-object distances are calculated and represented as in the earlier case. The plots 

are shown in Fig 3.7 for the case where the sharpening transform is set to identity. It 

is obvious from a comparison of the two graphs - Fig 3.3 and Fig 3.7 that the focus 

of our problems has shifted to other images. For the edge distribution invariants, 

we note discrimination problems in images 7, 10 and 11 while there are significant 

improvements in images 2, 8 and 9 which were the main cause of concern in the color 

distribution invariants. 

3.3 Combining edges and distributions 

Given the results in the preceding section, we would expect the combination of the 

two sets of invariants to offset the problems of each other. The final set of invariants 

is represented as the combination of both color and edge distribution angles. Given 

an image i, its angle invariants are: 

Distances are plotted as before for the set of six invariants for each of the 39 images. 

Figures 3.8 and 3.9 show the a; and min(Pij) plots for the set of invariants Z without 
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Figure 3.7: Edge invariant distances between images 

and with sharpening respectively. In the case where the sharpening transform is un- 

used or set to unity, we note that problems still persist in certain cases. In particular, 

images 10 and 11 still remain unstable in the discrimination problem. Application 

of the sharpening transform to the images before the edges and the invariants are 

calculated shows some improvement in the distances between a; and min(P;,j). 

We will see in Chapter 5 that the results obtained are comparable to Color Con- 

stant Color Indexing. 

In conclusion, it is necessary to point out that these invariants are suitable only for 

certain classes of objects. Highly textured surfaces in general, are not well modeled by 

the color distribution invariants, and as Healey [KH94] has shown, color histograms are 

not sufficient for many textures. This issue is examined in detail in the next chapter, as 

we look at the usefulness of certain statistical models in the characterization of colored 

textures. Many natural colored objects (for instance various fruits and vegetables) 

also do not respond well to the treatment described here. There is too much variation 

in color distributions and color edges for a stable recognition technique based on the 

invariants described above. This is not a problem of the algorithm, but rather the 
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Figure 3.9: Sharpened invariant distances between images for invariant set Z 
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fact that the feature base used (color distributions) is unstable for these objects. The 

algorithm is fast - linear in the number of pixels in the image - and as the results 

in Chapter 5 show, robust in its application over large databases of objects. 



Chapter 4 

Angular color texture descriptors 

"We never sufficiently reflect that a language, strictly speaking, can only be 

symbolical and figurative, that it can never express things directly, but only as 

it were, reflectedly. This is especially the case in speaking of qualities which are 

only imperfectly presented to observation. They are not to be arrested, and yet 

we find it necessary to describe them; hence we look for all kinds of formulae 

in order, figuratively at least, to define them." 

- Goethe, "Color Theory* 

4.1 Introduction 

While there exists a huge body of work dealing with various aspects of texture analysis, 

most of it is based on grey scale variations in image patterns. The role of color 

in the analysis of textures has been generally neglected in the pursuit of obtaining 

reliable characterizations for textures. Recently, Healey [HW95, KH94, HP951 has 

shown that color yields useful characterizations of texture both in statistical as well 

as model-based met hods of representation. 

In this work, I extend some of the ideas presented by Healey and obtain a set of 

feature descriptors invariant to  the color of illumination and to rotation in the image 

plane. The color-edge angles described in the previous chapter are used as another 



CHAPTER 4. ANGULAR COLOR TEXTURE DESCRIPTORS 34 

representation for textures, and it is shown that they provide a good framework for 

texture recognition. 

An important problem here is that the images are assumed to be pre-segmented 

into regions of a single texture. This is significant because image segmentation in 

general and texture segmentation in particular remain hard problems in computer 

vision. I show that by computing texture invariants locally across the image, we can 

account for multiple textures in an image. 

4.2 Representations of color textures 

Common statistical methods of representing tonal variations across an image consist 

of co-occurrence matrices and spatial correlations (usually autocorrelation functions 

as grey scale textures are commonly used in the vision community). The use of 

algebraic moments has also resulted in some interesting results in the field [Tuc94]. 

I use the spatial correlation function defined by Healey [KH94] to represent texture 

features. Surface reflectance patterns are considered to be two dimensional random 

processes. The three color bands of the texture image are considered to be wide 

sense stationary and can therefore be characterized by a mean and an autocorrelation 

function. Furthermore, it is assumed that any two color bands are jointly wide sense 

stationary with each other. For a color image we can define six correlation functions 

where p;(x, y ) represents the pixel value at location (x, y ) on the image plane for the 

color band i. pj(x+a, y+ b) correspondingly defines the pixel value at a location offset 

from (x, y) by (a, b) for another color band j of the same image. p; and pj represent 

the image means in the respective color bands. The number of pixels in the image is 

n2 = N. 

The structure of this correlation function in general will depend upon the spectral 

properties of the incident illumination. As the signals are assumed to be wide sense 

stationary, the correlation functions are independent of translations in the image. 
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Let us consider how these spatial correlation functions represent the textural prop- 

erties of an image. Fig 4.1 shows some examples of color textures. The corresponding 

spatial correlation functions of the texture in the top left corner of Fig 4.1 are shown 

in Fig 4.2. It is clear that the six correlations encode different information about 

the color spatial interactions in the image. This function is related to the size of 

the texture primitive (i.e. the fineness of the texture). If the texture is coarse, the 

correlation function will drop off slowly; otherwise, it will drop off very rapidly. For 

regular textures, the surface defined by the function will exhibit peaks and valleys. 

We can observe the effects of rotation and change in illumination upon the surfaces 

defined by these functions in Fig 4.3. Here the texture has been rotated by 30" in 

the image plane and in the second case has been imaged with a red filter over the 

camera. The surface generated by the autocorrelation in the red color band is shown 

in the figure. We see that the surface has undergone a rotation corresponding to the 

rotation in the image plane. With the change in illumination, there is a decrease in 

the overall height of the surface. 

4.3 Color texture invariants 

Given a change in illumination from E(X) to Ef(X) ,  the corresponding spatial corre- 

lation equation can be written as 

where p' represents the sensor outputs under the illumination E1(X). Applying a 

sharpening transformation to the image, we can write Eq 4.1 as: 

where +(x, y) = Tp(x, y) as given by Eq 3.10. Applying a similar transformation to 

Eq 4.2, we can establish a relation between the correlation functions of the sharpened 

color signal of an image under a changing illumination as: 
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Figure 4.1: Color texture images 
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Figure 4.2: Spatial correlation functions of a color texture 
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Crb Crb 

Figure 4.3: Spatial correlation functions changed due to: a) rotation in the image 
plane; b) due to changing illumination 

where di, dj represent the elements of the diagonal matrix of illumination change 2). 

Moving these outside the summation, we can write 

For the complete set of six correlation functions, dropping the subscript, we can write 

cu (a1  b) = {~,?,(a, b),ct2(a, b),. .. ,C&(a, b)}. Equation 4.5 can now be written as 

where D2 represents the diagonal transformations in the case of the spatial correlation 

functions. 

D2 = 
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We see therefore that the correlation functions of the sharpened color signal pre- 

serve the diagonal transformation between changes in illumination. A rotation of the 

texture in the image plane corresponds to a similar rotation of the surface defined by 

the correlation functions. For 3-dimensional textures, Healey [KH94] shows that the 

correlation surfaces are related by an affine transformation for any arbitrary change 

in the object's position in space. Texture representations are examined in the context 

of changes in illumination and rotation about the optical axis. 

From a formulation of the problem similar to that described in the previous chap- 

ter, angles between the six surfaces defined by the correlation functions can be easily 

obtained. This gives a set of fifteen invariants with which to describe textures. 

1 9 ; , ~  = 
~ . , s  c? (a, b)c:(a, b) for l < i , j 5 6  

lbl lc:l 
where C? and C: represent elements of the sharpened spatial correlation function set 

c#. This normalized dot product between the two correlation surfaces is invariant 

to changes in illumination and rotation of the texture about the optical axis. It is of 

course not obvious as to how well these angles will perform in terms of discriminating 

between various textures. This problem is examined in the following sections. 

4.3.1 Implementation details 

An important problem faced in the case of texture analysis is the treatment at image 

boundaries. If we assume the texture to be terminated at the image boundaries, 

then the correlation function displays characteristics which reflect that assumption. 

In particular, there will be a tail-off in the correlation function of Eq. 4.1 as the 

offsets a, b increase. Eq. 4.1 is adopted as the first method for computing correlation 

functions. 

Another aspect is that in reality the texture does not suddenly terminate at the 

image boundaries. In this case, there are two ways to deal with the issue. We can 

divide the correlation function by the number of pixels under consideration which will 

offset the effect of the reduced effective image size at the image boundaries. Eq. 4.1 
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n Image Plane 1 

Figure 4.4: Correlation of image color planes 

now becomes 

where n l  and n2 are the number of overlapping pixels under consideration. This is 

illustrated in Fig 4.4. The shaded portion in the image is the overlapping area, given 

by n l  x n2, where n l  = n - a and n2 = n - b. This modified correlation function is 

the basis of a second implementation. 

The other method of dealing with image boundaries is achieved by reflecting the 

image beyond its boundaries to give an impression of continuity of texture to the 

algorithm. This can be achieved in various ways - for example, below I outline 

a Fourier transform approach for computing the correlations which automatically 

incorporates this into the algorithm. 

Consider the number of computations required to generate the surfaces defined 

by Eq. 4.1. We see that for any significant number of offsets a, b typically taken over 

half the image area, -n/4 < a,  b, 5 n/4, the number of multiplications required is of 

the order N2. Here N is the number of pixels in the image and n is the number of 

rows and columns of the image (assuming a square image for simplicity of notation), 

so that N = n2. 

It is well known that convolution in the spatial domain corresponds to multipli- 

cation in the Fourier domain. Correlations are similar to convolution, except that 
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the correlating (or convolving) signal is not flipped about its axes. The computation 

of the correlation function in the Fourier domain transforms into a multiplication of 

the correlated signal transform with the complex conjugate of the correlating signal 

transform. Let R;(u, v) represent the Fourier transform of (4;(x, y) - 4;). For both 

the continuous and discrete cases, the following theorem holds [GW92] 

where o represents the correlation function and R;(u, v) is the complex conjugate 

of the Fourier transform of (4j(x, y ) - qj). Here 4;(x, y ) is the correlated signal 

while $j(x, y) is the correlating signal. The computation of the correlation is often 

more efficiently done in the frequency domain using an FFT algorithm to obtain 

the forward and inverse transforms. An important point here is that due to the 

discrete nature of the image, the resultant correlation is what may be called a circular 

correlation corresponding to the circular convolution which is obtained in the case of 

the convolution function. This derives from the fact that the signals are treated as 

periodic in the size of the image by the FFT, and essentially constitutes a repetition 

of the image beyond its boundaries. This can of course be avoided, as in the case of 

convolution, by padding the image with a border of zeros corresponding to the image 

dimensions. The implementation used here retains the periodicity of the image in the 

Fourier domain due to two reasons: simplicity of implementation and the fact that 

such a repetition of the image does not always imply a discontinuity of the texture. 

4.3.2 Datasets 

A set of ten textures under varying illumination conditions forms the test bed for the 

texture invariants. The images were obtained from Glenn Healeyl, and have been 

used in his work on illumination invariant descriptors of color textures [HW95]. Some 

typical textures consisted of fabric patterns, carpets, trees, clouds and other natural 

scenes. The textures were imaged under nearly white light using a Sony XC-77 CCD 

camera and a RasterOps TC-PIP frame grabber. Varying illumination was simulated 

'The author is grateful to Glenn Healey, University of California, Irvine, for providing the images. 
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by the use of 3 color filters (Corion CA-600, CA-550, CA-500). This gave a set of 10 

database texture images (under nearly white light) and 30 test images under varying 

illumination. The images were rotated in the image plane at five different angles 

(30') 45') 60') 90') 110'). Two such textures under varying illumination and rotation 

are shown in Figs 4.5 and 4.6. Including the initial set of images I now have a set of 

240 images. Invariants were computed for these test sets using both methods outlined 

in the previous section. 

4.3.3 Performance Analysis 

The distance function 

texture descriptors for 

defined in Chapter 3 is used to measure the invariance of the 

the given data set of texture images. 

where (cp: is the kth angle of the ith texture being matched with the model texture 

m. The set of images under nearly white light with no rotation is chosen as the 

model set. A graph is plotted showing the average distance between the invariants 

of each object (a; for each object i). The average distances between a model texture 

i and test image invariants of other textures j are calculated (Pilj). The smallest of 

these distances (min{/3i,j}) is plotted on the same graph to indicate the clustering 

characteristics of the data. The plot is shown in Fig 4.7. In this case the invariants 

have been calculated using the normalized correlation computation of Eq 4.8. 

The second graph (fig 4.8) is a similar plot where the invariants have been calcu- 

lated from Eq 4.1. We note that both graphs have similar characteristics. Image 7 has 

poor discrimination due to its low inter- texture distance. The int ra-texture invariant 

differences are quite significant and affect the recognition process as well. Images 3 

and 4 from the graph show good discrimination, but instability in the invariant space. 

The invariants computed using the Fourier transform approach are shown in 

Fig 4.9. Here we have a significant departure from the previous set of graphs where 

we note that results for image 7 have improved substantially, while images 2 and 10 



CHAPTER 4. ANGULAR COLOR TEXTURE DESCRIPTORS 

Figure 4.5: A texture under varying illumination and rotations 
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Figure 4.6: Another color texture under similar illumination and rotation conditions 
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Figure 4.7: Invariant distances for normalized correlations 
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Figure 4.8: Invariant distances for correlations defined by Eq 4.1 



CHAPTER 4. ANGULAR COLOR TEXTURE DESCRIPTORS 46 

now show poor clustering. This can be attributed to the assumption of periodicity of 

the image which influences the Fourier transform method of correlations. 

0 Vera e intrq-ob e t .dist 
A a fieare% avg mteL%pct %"tZnce 

Images 

Figure 4.9: Invariant distances for correlations using a Fourier transform approach 

Finally, note that the color and edge angle invariants discussed in section 3.3 also 

incorporate spatial information about the image. We therefore use the six angles to 

index color textures. The results obtained are remarkably good. An invariant plot as, 

in the previous cases, is displayed in Fig 4.10. We see that the color-edge invariants 

have low intra-texture distances with large inter-texture distances. This provides for a 

stable representation with good discrimination. In fact, as we shall see in Chapter 5, 

the performance of these invariants is superior to any of the algorithms discussed 

above. 
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Figure 4.10: Invariant distances for color-edge angle invariants for natural textures 

4.4 Color texture classification 

It is clear from the above section that the proposed texture invariants possess suffi- 

ciently stable clustering characteristics for recognizing a wide variety of colorful tex- 

tures. A primary assumption for the algorithm to work correctly is that only one tex- 

ture be present in the image under consideration. Such an assumption can be a serious 

drawback when we wish to identify images which contain multiple textures. Spatial 

interactions in the image are no longer well modeled by the correlation functions as 

the properties of one texture begin to interfere with another. Pre-segmentation of the 

image becomes a necessary part of the recognition process. Segmentation however is 

a non-trivial process, and such an assumption weakens the viability of the algorithm. 

When many textures are present in an image (consider Fig 4.11), texture classification 

is often a desirable property of image analysis. By texture classification, I mean here 

the correct recognition of each of the distinct textures in the image based on a model 

database of textures. 

The logical step in classifying textures based on angular invariants is to compute 

the texture characteristics locally across the image. Such local characteristics can be 
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Figure 4.11: A natural scene with multiple textures 
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computed by defining a window of interest within which the texture characteristics 

are computed. This window is then translated across the image, giving rise to a set of 

invariants for each window position. It is important to keep in mind that I am not at 

this stage concerned with the segmentation of the image into its component textures 

- only with the identification of the various textures present in the image. These 

invariants can then be indexed on some selected criteria; for invariants with high bin 

counts the database can be searched for the closest model invariants. 

One of the significant problems faced in this approach is the selection of a proper 

window size. The window must be large enough to capture the spatial interactions 

which characterize the texture; it must also be small enough not to overlap more than 

one texture. As we keep translating the window, it will eventually move from one 

texture region in the image to another. At these texture boundaries the window will 

straddle at least two textures so the invariants computed will be significantly different 

from those computed previously. These invariants will however have a low bin count 

as we do not expect the textures to repeat frequently. Since we are interested only 

in recognizing those invariants which have high bin counts, invariants computed at 

texture edges will be neglected in the recognition process. 

4.4.1 Local texture invariants 

I examine two sets of local invariants in this section, based on the experiments with the 

spatial operators described above. First I consider a localized texture feature based 

on sharpened spatial correlations as described in Eq 4.3 and examine whether the 

representation remains stable under varying window sizes. Another method of com- 

puting local texture invariants using the color-edge distribution angles is described. 

Experiments show that the color-edge angles preserve invariance far better than the 

spatial correlation angles for small window sizes. 
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Spatial correlation based local texture representations 

I define a window function as 

for ux I x I V X ,  u y  I Y I v y  
W ( x ,  Y )  = 

0 otherwise 

where (vx - u , ) ( v ,  - u,) << N defines the size of the window and N is the size of the 

image under consideration. The function W ( x ,  y )  can be translated by applying an 

offset to its x and y limits. If uX, ,  = u ,  + m where m is the offset, we can rewrite 

Eq 4.11 as 

1 for U Z , ~  I X I Vx,m, Uy ,n  I Y I V y , n  
( 4 .12 )  

0 otherwise 

where m, n specifies the translation of the window in the x and y dimensions. Portions 

of the image can now be isolated by applying the window function to the image under 

consideration with the desired offset. 

The localized spatial correlation function is now given by 

where e"n(x, y )  = & ( x ,  y ) Wrn,,(x,  Y )  is the region of interest of the image and 

is the mean of the sharpened image within the window of interest. Local texture 

invariants are computed using Eq 4.7 from the localized sharpened spatial correlations 

described above. 

Color-edge distribution based local operators 

Color edge angle invariants provide a rich representation for a variety of textures. 

They can be computed locally across the image by applying the window function 

described in Eq 4.12 to the color image and to the Laplacian of the Gaussian of the 

image. This will yield a set of six angles for each window position. The angles can be 

computed by Eqs 3.13 and 3.19, where the dimensions of the feature vectors 4 and x 
are given by the area under the window function Wrn,,(x,  y ) .  Another advantage of 
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computing these angles locally is that the normalization for changing illumination is 

done locally, and thus the method can account for varying illumination across the im- 

age. The assumption underlying varying illumination is that the incident illumination 

can change spectrally over the texture surface, but such a change is gradual, and over 

a small region of the image the illumination remains fixed in its spectral distribution. 

Of course, the same can be said of the local spatial correlation invariants indicated 

above. 

4.4.2 Invariance of local representations 

It is important to examine to what extent textures can be localized by the techniques 

explained in the previous section. A simple analysis is carried out to investigate the 

reliability of the local invariants for differing sizes of the window function. I obtain 

representations for the 10 textures used earlier, by setting the window to the size of 

the image. These form the model invariant set. While progressively reducing the 

window size, the local invariants are calculated and compared to the model set. The 

error introduced by the window causes a shift in the invariants, which is measured 

using the normalized Euclidean distance function described earlier. These errors are 

averaged over the set of textures for a given window size. I also averaged the number 

of correct matches to the database over the set of textures for each window size. 

It was observed that as the window size decreased the representations became 

more susceptible to error. This is to be expected as a smaller window is unable to 

encapsulate all the spatial interactions in the texture. However in the case of the 

spatial correlation based local invariants, the results were extremely poor, even for 

relatively large window sizes: a 32x32 window over a 64x64 image yielded no better 

than a 60% recognition rate. The color-edge distributions on the other hand proved 

remarkably stable even at window sizes of 16x16 pixels for the same set of textures. 

The investigation of texture classification was therefore carried out using the color- 

edge local angle invariants. 
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4.4.3 Representing the invariant set 

The problem of classification in the context of these local invariants is essentially 

a clustering problem: how many clusters of invariants can be obtained and which 

database texture invariants are they closest to? Unfortunately, clustering algorithms 

usually require as an input the number of clusters to be generated. This is obviously 

unknown for an image about which we have no a priori knowledge. Secondly, in- 

variants for windows which contain texture edges will bias the clustering algorithm, 

as these invariants do not represent a texture and hence should be neglected. An 

alternative is to index these invariants by partitioning the invariant space using a 

hashing function. Hash buckets with high counts are matched to the model database, 

while hash buckets with low counts, which represent texture edge information, are ne- 

glected. Thus we can obtain a reliable characterization of the textures present in the 

image. Results using a set of outdoor scenes show good classification for the images 

considered. 
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Results 

"A man who holds a cat by its tail learns things he could learn no other way" 

- Mark Twain. 

The algorithms described in Chapters 3 and 4 were implemented and tested on 

a wide variety of data. Recognition results from these algorithms are described in 

this part of the thesis. Comparative results, where available from other recognition 

techniques, have been included. First I describe the performance of the object recog- 

nition algorithms, comparing it with Funt and Finlayson's [FF95] Color Constant 

Color Indexing and Healey's [HS94] global color constancy algorithm. Note that the 

performance of the algorithm described in Chapter 3 is better than Healey's in all 

cases, and almost as good as color constant color indexing. Next, the texture recogni- 

tion algorithm is evaluated for a set of natural textures. Results are fairly good under 

a wide change in illumination and rotation of the textures. 
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Object Recognit ion Results 

Results are given for the algorithms explained in Chapter 3 - the color angle in- 

variant s, the edge angles invariant s and the color-edge angle invariant met hod. Color 

constant color indexing and global color constancy are used for a relative evaluation 

of the performance of the system. Two data sets are used. The first set is the one 

described in Chapter 3 which was imaged in our laboratory. The second set is Swain's 

original database of 65 images which was used in his experiments on Color Indexing. 

5.1.1 Objects under changing illumination: 

A set of thirteen objects comprised of a t-shirt, a sweater, a book, some cereal boxes, 

and a few colored plastic bottles was imaged; some of these are shown in Fig 3.1. 

The objects were imaged under three sets of lighting conditions. A studio halogen 

lamp was used to obtain the first set of images. The other two sets were imaged by 

using a broad band blue filter and an orange filter placed over the camera, with the 

same halogen lamp used to illuminate the images. In each case, the orientation of the 

objects was changed in space so as to present a rotated and a slightly occluded, and 

in some cases (t-shirt and sweater), even a deformed view of the object. One of the 

objects was then imaged at a highly reduced scale to observe the effects of change in 

scale on the algorithm. The rank assigned to an object is its position in the sorted 

list of model objects matched to the image. Thus, a rank of 1 indicates the object 

was correctly recognized, while a rank of 2 or greater indicates the position of the 

correct match in the set of database objects. Table 5.1 shows the results of running 

the three algorithms on the dataset. The first row is the result of using only color 

distributions in the image. The second row is the set of results obtained by indexing 

on the angles of the edge distributions alone. Here the edges were produced by using a 

7x7 Laplacian of Gaussian mask on the image. Finally the last row contains the results 

of using a combination of the two sets of angles. We note that the performance of the 

color distributions alone is the poorest, while the other two methods yield the same 

recognition rates (though the objects which are incorrectly identified are different in 

each case). This was predicted in Chapter 3, where we noted that the information 
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1 Alaorithm Rankinus 

Table 5.1: Recognition results for angle invariants 

content of the two sets of angles is uncorrelated and thus a combination of both 

could be used to advantage. These are results obtained by setting the sharpening 

transformation to unity. 

Next, the performance of edge invariants is examined, using a variety of gradient 

operators. Table 5.2 shows the performance of operators such as the sum of gradients, 

a simple Laplacian and a 7x7 Laplacian of Gaussian (as used in the first table). We 

see that the Laplacian of the Gaussian does indeed provide the best results. 

Table 5.2: Results using different edge operators 

Algorithm 

Sum of gradients 
3x3 Laplacian 
Laplacian of Gaussian 

Finally the results shown in Table 5.1 are recomputed by applying the sharpening 

transform used in Chapter 3. Recognition results are shown in Table 5.3. Also in- 

cluded in the table are results obtained by running CCCI1. The last row is obtained by 

an implementation of Healey's Global Color constancy algorithm as outlined in [HS94]. 

We observe that CCCI provides the best recognition results, although the color and 

edge angles algorithm is nearly as good, with just one match ranked 3rd. Healey's al- 

gorithm provides the worst results; indeed we are surprised by its performance which 

lThe author thanks Graham Finlayson for running CCCI on the images 

Rankings 
> 3  
2 
5 
0 

1 

20 

2 
2 0 4 0  
1 7 3 1  

5 

3 

1 



CHAPTER 5. RESULTS 

Algorithm 

Table 5.3: Comparative results of different recognition algorithms 

Rankings 
1 1 2 1 3 1 > 3  

Color angles 
Edge angles 
Color and Edge angles 
CCCI 
Healey 

is very poor given the small database size. We note that both the color angles and 

the edge angles have benefited, albeit slightly, by the use of the sharpening transform. 

5.1.2 Swain's Database: 

Swain's database is pruned from 65 objects to 55 in order to eliminate images with 

saturated pixels in them, as these pixels do not yield useful color information. The 

images are of a variety of man-made objects such as t-shirts, jerseys, boxes, plastic 

bottles and various packaged goods such as soup cans, paper towels. The images 

have been taken under a whitish illumination. Unfortunately all the images in the 

model as well as the test set have been taken under the same illumination, so we are 

unable to verify the effects of changing illumination on this database. Changes in 

orientation and some deformation are however present in the test database relative to 

the model images. For the test then, we have 55 model images and 24 test images from 

a subset of the same objects. As before, the three algorithms evaluated are shown in 

Table 5.4. As seen in the previous dataset, Healey's algorithm performs poorly. It gets 

noticeably worse as the database size increases with 7  objects matched with a greater 

than 3 rank. The color distribution angles and edge angles also perform poorly with 

just 16 and 17 objects recognized correctly in each case. The combination of both 

however, performs very well, as seen in row 3  of the table, where we note that the 

match performance is comparable with CCCI. Because these images have been taken 

with respect to a single illuminant, sharpening is not required. The performance of 

23 1  

2 1 4 1  
2 0 6 0  

2 
2 4 2 0  
1 1 6 6  

0  
0  
0  
0  
3 
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Algorithm 

Color angles 
Edge angles 
Color and Edge angles 
CCCI 
Healey 

I Rankings 

Table 5.4: Database of 55 real objects 

the algorithm is excellent given the large database of objects and the fact that I index 

on just six numbers. 

5.1.3 Remarks 

For the color and edge distribution angle invariants to work well, the objects need to 

have a large set of colors in them. Since the algorithm is invariant to changes in scale, 

it is essentially the number of distinct colors and their respective proportions which 

provide the richness of representation. For example, if an object has only two colors 

in fairly equal proportions, the color distribution angles are no longer independent 

of each other. The N dimensional feature vector, where N is the size of the image, 

collapses to a two dimensional space and the third angle can be computed as the 

sum of the other two angles. This is not a serious restriction on the domain of the 

algorithm, however, as man-made objects are often multicolored. Secondly most color 

constancy algorithms need a large number of colors in the image to perform well so 

this requirement is present in most color based object recognition schemes. 

5.2 Color texture recognition results 

Using the model described in Chapter 4 for representing color textures, I attempt to 

recognize a number of natural textures based on the angular invariants of the spatial 

correlation functions. It was shown in Chapter 4 that these angles are illumination 
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invariant and are robust to rotation in the image plane. To evaluate the performance 

of the algorithms described in section 4.3, a set of ten natural textures is used as a 

model base. These textures have been described in section 4.3.2. They comprise a 

variety of natural surfaces such as sand, clouds, trees and some man-made textures 

such as fabrics and carpets. The model base of images has been imaged under nearly 

white light. For a test set, the textures were imaged with a set of 3 color filters. The 

filters used have a narrow band response in the blue, green and red regions of the 

visual spectra. A set of five rotations were applied to the set of 40 images. Rotation 

angles were arbitrarily chosen to be 30•‹, 45", 60•‹, 90" and 110". 

Three algorithms based on differing computations of spatial correlation functions 

were described in Chapter 4. In the first algorithm, the correlation function was 

computed as specified by Eq 4.1. In the second case, the correlation function was 

normalized by the actual overlapping image area of the two color planes being corre- 

lated. Finally, a fast implementation of spatial correlation was achieved using Fourier 

transforms. As noted in the section 3.3, the color and edge distribution algorithm 

also encodes spatial interaction in the image. I therefore use this as a fourth approach 

in texture recognition. Finally, I also match textures on the color distribution angle 

invariants algorithm to see how much the color distributions alone can characterize 

the set of textures. In all cases, the camera responses were narrow band and the 

sharpening transform has been set to unity. 

First, I evaluate the performance of the algorithms relative to Healey's [HW95] 

algorithm. Healey's method, however, is only invariant to changing illumination and 

does not account for rotation of the texture. I therefore use a test set of 30 textures 

which are unrotated relative to the model textures. Table 5.5 shows the results of the 

various algorithms. The ranking scheme described in the previous section is used to 

evaluate the performance of the various methods. Results of Healey's algorithm are 

taken from [HW95]. It was felt unnecessary to implement Healey's algorithm here 

because I use the images he utilized in his experiments. 

Healey's algorithm works very well, correctly recognizing all the textures. Similarly 

the normalized spatial correlation function invariants are also successful in recognizing 



CHAPTER 5. RESULTS 

Table 5.5: Texture recognition for a database of ten textures 

Algorithm 

Spatial Correlation angles 
Normalized spatial correlation angles 
Fourier correlation angles 
Color and edge angles 
Color angles 

1 Healey 

all the textures. The Fourier transform correlation invariants and the spatial corre- 

lation function angles correctly recognize all but one of the textures. Surprisingly, 

we note that the color and edge angles are also successful in correctly recognizing all 

textures. The color distribution angles fare comparatively poorly, with five textures 

incorrectly recognized. Even then, all the textures are matched within the first three 

places. 

Tests are now run with the set of 230 images obtained by rotating the textures in 

the image plane. The database remains the same set of ten textures as in the previous 

case. Results for the various algorithms are shown in Table 5.6. Firstly, we notice that 

Algorithm 

Ra 

Spatial Correlation angles 
Normalized spatial correlation angles 
Fourier correlation angles 
Color and edge angles 
Color angles 

1 2  
29 
30 
29 
30 
25 
30 

Rankings G 

1 
0 
0 
0 
4 
0 

Table 5.6: Texture recognition with change in illumination and rotation about the 
optical axis. 

using color distributions alone fails; almost half the textures are incorrectly recognized. 

Most surprisingly we note that the color and edge angle distributions have the best 
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results, with all but six of the images correctly recognized. The invariants based 

on the spatial correlations perform reasonably well, with most of the texture images 

being placed within the first two rankings. We observe that the Fourier transform 

computation of the correlations has a slightly degraded performance relative to the 

other spatial correlation invariants. This is probably due to the circular correlation 

effect described in Chapter 4. 

5.2.1 Color texture classification 

Color texture classification, achieved by a local computation of color-edge invariants 

across the image, yields excellent results for a wide variety of outdoor scenes. A model 

base of a wide variety of natural textures comprised of different types of grass, rocks, 

clouds, sand, trees and water was created from a set of images obtained from the 

VisTex database at the Vision and Modeling group, MIT Media Lab. 

A database of 12 natural textures was chosen, some of which are shown in Fig 5.1. 

Context scenes such as the ones shown in Fig 4.11 and Fig 5.2 were subjected to 

the texture classification algorithm described in section 4.4. The context images 

were either 512x512 pixels or 640x480 pixels. A window size of 32x32 pixels was 

chosen for purposes of obtaining the local texture invariants. All classification results 

were obtained for non-overlapping windows. In all cases, component textures were 

correctly identified. By computing these invariants for every pixel in one image, a set 

of six images was generated: one for each texture invariant, in a manner similar to 

Tuceryan [Tuc94]. These are shown in Fig 5.3, for the image in Fig 5.2. We observe 

from the invariant images that the original image can be easily segmented into its two 

component textures by using the texture invariants. The number of buckets created 

by the hashing function can be fed to a clustering algorithm, such as K-means in 

order to obtain a segmentation of the image. This has been tested with a clustering 

algorithm based on a least-sum-of-squares criterion using competitive learning [UA94]; 

results are shown in Fig 5.3. We see that the clustering is poor in this case; whereas 

the segmentation obtained by using the last invariant image (Fig 5.4) is far superior. 

We predict that good segmentation can be achieved by a more informed approach. 
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Figure 5.1: Database of natural textures used for texture classification 
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Figure 5.2: Context images of natural scenes used for texture classification 
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Figure 5.3: a)Invariant images for a context scene; b) Clustering results for the in- 
variant s 
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Figure 5.4: Segmented texture image 



Chapter 6 

Conclusions 

Dirk stepped boldly through, . . .and then announced that he saw exactly how 

it worked, that it was obviously to do with the unreal numbers that lay between 

minimum quantum distances and defined the fractal contours of the enfolded 

Universe and he was only astonished at himself for not having thought of it 

himself. 

- Douglas Adams, "Dirk Gently's Holistic Detective Agency" 

I have presented a new algorithm for object and texture recognition based on the 

color distributions and spatial color variations in an image. This algorithm has been 

extended to texture classification and preliminary results for texture segmentation are 

promising. The work can be extended in various ways. A careful data analysis of the 

angles shows a lower variance in the edge angles over the entire data set of images 

than for the color distribution angles. The application of a weighting function to the 

edge angle invariants is likely to improve the match results. Careful sharpening will 

also improve results under varying illumination conditions. I consider these issues in 

the following sections. While results for texture recognition show that angle invariants 

work reasonably well for spatial correlation representations of textures, I have found 
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an excellent representational scheme for textures in the framework of color-edge angle 

invariants. This method proves stable under relatively small window sizes, and thus 

textures can be classified and segmented on the basis of these invariants. 

6.1 Application based invariant representat ion 

For the data sets I have tested for object recognition, the variance of the edge angles 

has been smaller than the variance of the color distribution angles. Thus, given a 

database, good weighting functions can be found to optimize the representation of 

the invariant space. This of course assumes that the database is relatively static, with 

few objects being added, or that the objects added are similar to existing objects in 

the database so as to avoid a re-computation of the weighting function and updat- 

ing the invariant database. Similarly, application specific problems, such as ambient 

lighting conditions or noise, can be accounted for in various ways. If the lighting 

variations are known or can be controlled, for a given set of objects, database sharp- 

ening can be optimized to yield the best possible results for a diagonal model of color 

constancy [FDF94b]. 

Limitations of the method have already been pointed out before. A large set of col- 

ors is an important requirement for objects if they are to be reliably identified. Single 

colored or bi-colored objects are unstable in their representations. Edge distributions 

are limited in their availability in such cases, and the edge angles contribute very 

little to the representation as well. Limitations of color indexing have been explored 

by various people (Niblack et al. [NB93], Pentland et al. [PPS94], Gong [GZ94]) and 

the general conclusion is that color indexing needs to be combined with some sort of 

textural and geometric properties to reduce the number of false positives. I have, how- 

ever, shown that edge angles provide a good representation for texture recognition. 

Spatial interaction about a scene is thus well encoded in the invariants. Whether the 

representation is rich enough to index a very large database of textures has not been 

dealt with here. 
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Extensions 

We can observe that the angles represent second order statistical information about 

the image. In the case of texture representations, it seems likely that higher order 

information may be useful for the generation of a larger and richer set of invariants. 

Such higher order information could be obtained by the use of higher order differential 

operators (I have used a Laplacian, but other higher order differencing operators may 

be used as well). Alternatively, higher order algebraic moments of the sharpened 

and normalized data set can be considered for purposes of indexing. As a case in 

point, the recovery of 3-dimensional textural patches as described by Kondepudy and 

Healey [KH94] can now be achieved under varying illumination by considering spatial 

correlations of the sharpened and normalized data. 

Another possibility is the consideration of inter-color band edges. Healey's [HW95, 

HS941 correlation functions model the inter-band spatial interaction by cross-correlating 

the band images. A different approach would be to consider the application of an 

inter-band Laplacian mask to the color image. This can be done using a Laplacian of 

Gaussian mask by using the center of the mask in one band and the support of the 

mask in the other color band. This will lead to the use of inter-band edge information. 

In the case of white or uniform (grey) colors, the LOG mask will sum to zero, thus 

indicating the absence of an inter-band edge. Presence of a color will cause a value 

to be present for the inter-band interaction. While I have not implemented this, it 

seems to promise a rich source of spatial color information about a scene. Indirect 

evidence of the usefulness of inter-band spatial interactions is available from Healey's 

spatial cross-correlation functions. 

6.3 Texture segmentation schemes 

Methodologies as suggested above can be used to extend the set of invariants in various 

ways. It is interesting to consider how this affects texture classification and texture 

segmentation. Most texture segmentation schemes rely on model based methods, 

such as Markov random field models, for a compact support of representation of 
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textural features [HP95]. This becomes important as most segmentation schemes 

depend upon the local computation of textural features. Healey's Markov random 

field segmentation scheme, for example, is able to use window sizes of up to 4 x 4 

pixels for identifying texture features. The possibility of small windows leads to a 

finer segmentation of the scene. Such a necessity is of course application dependent. 

By their definition, small window sizes will be unable to capture more global spatial 

interactions in the image and if these are of importance in segmentation, some other 

transformation schemes might be considered as a preprocessing step. In our case, a 

richer set of invariants may enable us to use smaller windows for segmentation. Other 

applications of local computations of textures can be in the field of texture indexing 

- where we attempt to recognize objects by the distributions of various textures 

present in the object. As a preliminary step, I have tried indexing the database of 

objects, described as the first data set in Chapter 5, using a set of localized spatial 

correlation angles with reasonably good results. However, such a database is probably 

not suitable for such a representation - natural scenes with a richer set of textures 

would perhaps provide for a more interesting case study of texture indexing. 

6.4 Concluding remarks 

A new algorithm for color object and texture recognition, based on just six numbers, 

has been presented. The six invariants used are the normalized dot products of the 

inter-band color and edge distributions of the image. They represent second-order 

statistical information about the scene, and are similar to lower order moments. The 

representation has been shown to be rich, with very good discriminatory power. In- 

dexing on six numbers is extremely fast, as opposed to indexing on over 4000 numbers 

in the case of Color Constant Color Indexing. Recognition results are of the same 

order of CCCI, under varying conditions of illumination, rotation and changes of scale. 

The six invariants have been shown to provide a rich representation for color tex- 

tures. Textures are recognized under rotations about the optical axis, under changes 

in illumination and over a range of scales. The computation is linear in the size of the 

image; spatial correlation based texture features are, on the other hand, quadratic in 
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the image size. This is a distinct computational advantage over the use of spatial cor- 

relations. Matching is also very quick, involving only the computation of the distance 

between the six invariants of a test image and a model database of textures. The six 

invariants are stable when computed over a small support, and have been successfully 

used for texture classification and segmentation for images of natural outdoor scenes. 
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