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Abstract 

Magnetic resonance tomography produces large quantities of three-dimensional medical im- 

age data. Data compression techniques can be used to  improve the efficiency with which 

these images can be stored and transmitted, but in order to achieve significant compression 

gains, lossy compression techniques (which introduce distortion into the images) must be 

used. Conventional metrics of distortion do not measure the effect of this "loss" on tasks 

applied to the images. This thesis uses a new task-oriented image quality metric which 

measures the similarity between a radiologist's manual segmentation of brain lesions in raw 

(not compressed) magnetic resonance images and automated segmentations performed on 

raw and compressed images. To compress the images, a general wavelet-based lossy image 

compression technique, embedded zerotree coding, is used. A new compression system is 

designed and implemented which enhances the performance of the zerotree coder by using 

information about the location of important anatomical regions in the images, which are 

coded at  different rates. Application of the new system to magnetic resonance images is 

shown to produce compression results superior to the conventional methods, with respect 

to the segmentation similarity metric. 
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Chapter 1 

Introduction 

1.1 Motivation 

Traditionally, medical images such as radiographs were generated and stored on film, but 

many advanced medical imaging modalities such as computed tomography (CT) and mag- 

netic resonance imaging (MRI) collect the data digitally. Thus, the amount of data stored 

in digital form is increasing. The images use vast amounts of storage space, and may require 

long transmission times when sent over communication lines to  remote locations, such as in 

teleradiology [55] .  

Compression techniques have long been used to  alleviate the storage and transmission 

problems for large data files. For image data, compression techniques fall into two categories. 

Lossless, or reversible, compression of digital images preserves all of the information in the 

original image. Lossy, or irreversible, compression can achieve more compression by storing 

or transmitting an approximation of the original image, so that the reconstructed image 

contains some noise or distortion. Such distortion may consist of both the removal of detail 

from the original image, and the introduction of artifacts that were not present in the 

original image. The additional compression that can be achieved using lossy techniques is 

usually justifiable for image data because the human visual system can tolerate error in the 

restored output. However, such lossy compression techniques have not been conclusively 

adopted in the medical imaging community due to the perceived or actual distortion of 

clinically significant image detail. 

In a medical imaging environment, vast quantities of data are generated, transmitted, 

and stored. For instance, a typical hospital might generate on the order of 1000 gigabytes 
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of image data per year [55]. Even a single MRI volume of 1.5 megabytes (MB) might take 

half an hour to transmit over a telephone line operating at 9600 bits per second (bps). 

Thus, to  achieve practical storage and transmission times, compression ratios of at least 

10:l are desired, while 20:l or 30:l compression would be preferable. In our MRI example, 

the transmission time would be reduced to one minute if a compression of 30:l could be 

achieved. The amount of compression that can be achieved using lossless methods may be 

inadequate for the large quantities of data generated in a medical imaging environment 116, 

18, 37, 39, 551. However, even if lossy compression has not yet been accepted for use in 

diagnostic medical imaging, it may be beneficial to employ lossy compression techniques 

for other purposes. For example, the original image may be used for diagnosis, but the 

image can be compressed using a lossy method for archival storage. Similarly, when a 

large image is being retrieved from storage or transmitted to  a remote location, it may be 

beneficial to  first transmit a lower-quality approximation for initial examination, followed 

by the slower transmission of further detail required for closer scrutiny.' Indeed, the recent 
\ 

increased interest in the use of lossy compression techniques for medical image compression 

is reflected in the proposed standard for Digital Imaging and Communications in Medicine 

(DICOM) [47]. 

When lossy compression is used, it is desirable to preserve as much clinically useful 

information as possible. The nature of the information to  be retained and to  be discarded 

depends on both the type of image and the diagnostic task to  be performed. One goal 

of this research is to  determine the effects of lossy compression on certain medical imaging 

applications. There exist a number of objective measures of reconstructed image quality and 

distortion, but the relationship of these measures to  the actual performance of applications 

on the reconstructed images has not been clearly identified. This thesis provides a new 

system for the lossy compression of medical images that takes advantage of certain known 

characteristics of the data and of the applications that will be applied to the data, with 

the goal of improving compression performance while maintaining the effectiveness of the 

applied medical imaging tasks. 

'In this thesis, the applications of information storage and retrieval are considered to be equivalent to 
transmission and reception respectively. 
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1.2 Background 

1.2.1 Magnetic Resonance Imaging 

In computerized tomographic imaging, multiple cross-sectional images are obtained through 

the body to produce a 3-dimensional volume image. Magnetic resonance imaging (MRI) is 

a form of computerized tomographic imaging in which data is acquired by measuring the 

interaction between pulses of radio frequency (RF) radiation and tissues in a strong magnetic 

field. These data are then transformed to  reconstruct a 3-dimensional digital image volume. 

Figure 1.1 depicts the 27 slices comprising an example MR volume. 

In MRI, several tissue characteristics can be measured, including the proton density 

(PD), the longitudinal relaxation time (TI), and the transversal relaxation time (T2). The 

magnitude or intensity of each voxel of an MR volume image is related to  the PD, TI, and 

T2 of the tissues located at the corresponding anatomical position; different tissues appear 

with different characteristic intensities. The contrast between different tissue types can 

be controlled at the time of acquisition by varying several MRI parameters including the 

pulse repetition time (TR) and echo time (TE). Choice of these parameters can result in 

PD-weighted, TI-weighted, or Tz-weighted images. Since multiple registered images of the 

same anatomical slice with different weightings can be acquired simultaneously, MRI data 

is inherently multispectral. For more information about magnetic resonance imaging, the 

reader is encouraged to consult (40, 541. 

Because of the excellent contrast and detail resolution which can be achieved, MRI is 

a particularly good method for visualizing anatomical features and pathologies. It is often 

used to  obtain images of the the Central Nervous System (CNS), which consists of the brain 

and spinal cord. The CNS tissues are of two types: the white matter and the gray matter. 

White matter fibres conduct the nerve impulses and are electrically insulated by a fatty 

substance, myelin. 

1.2.2 Segmentation of Multiple Sclerosis Lesions 

In MR images of the brain, the white and gray matter tissues appear with different inten- 

sities, depending on the acquisition parameters. In PD-weighted scans, the gray matter 

usually appears brighter and the white matter darker; in T2-weighted scans the reverse is 

true. The cerebrospinal fluid (CSF) and tissues such as muscle, fat, and bone of the skull 
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Figure 1.1: The 27 slices of the sample MRI volume. 
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appear with other characteristic intensities. Figure 1.2 shows three slices of an MR volume 

in both PD and T2 weighted acquisitions. 

Multiple sclerosis (MS) is a progressive disorder of the CNS whose symptoms include 

weakness, lack of coordination, abnormal sensations, and speech and visual impairment. 

The disease is characterized by a breakdown of myelin sheathing in parts of the white 

matter [21]. The resulting plaques or lesions are visible in MR images as bright patches, 

usually in the white matter, such as are visible in slice 17 of both the PD and T2 weighted 

images in Figure 1.2. Both the clinical symptoms of MS and extent of lesions found in the 

brain tend to  change over long periods of time, and the quantification of lesion volume plays 

an important role in the evaluation of drug treatments. Traditionally, the classification 

or segmentation of brain tissues has been performed by radiologists by manually tracing 

the outlines of tissues on digital images displayed on computer graphics terminals with 

a pointing device. Each such outline defines a region of interest (ROI). A set of ROIs 

isolating MS lesions in slice 17 of the data in Figure 1.2 is displayed in Figure 1.3. The 

manual segmentation of an MR image set into ROIs of different tissue types is a slow and 

tedious task, and the problem of automatic computerized segmentation has been the focus 

of considerable research [74]. 

1.3 Research Methodology 

1.3.1 Methods 

MR images of the brain containing MS lesions were segmented using a semi-automatic tech- 

nique. As a part of the pre-processing of the image data for segmentation, identification 

of the contour of the brain surface inside the intracranial cavity is required. Recent re- 

search has provided an automatic method for detecting this contour in an arbitrary MRI 

volume [45]. Since the data outside the brain contour is of no use to  the segmentation, 

this provides a means of partitioning the volume into disjoint subimages of differing relative 

importance, and this information can be used to improve compression. 

Most image compression systems are general-purpose and can be applied to any kind of 

image data, though the performance will vary according to  the nature of the input data. In 

this thesis we adapt a general image compression scheme and improve its performance on a 

particular class of images. 

After considering various image compression techniques, we used wavelet-transform 
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Figure 1.2: MR image slices, PD-weighted (left) and T2-weighted (right). Slices 1 (top), 17 
(middle), and 27 (bottom). 
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Figure 1.3: ROIs isolating MS lesions in slice 17. 

based subband coding, which, in addition to being very suitable for general image com- 

pression tasks, can be used to  take advantage spatial as well as frequency information in the 

input image, and is therefore well-suited to  our region-based approach. A state-of-the-art 

still-image compression method, embedded zerotree wavelet (EZW) coding, offers superior 

rate-distortion performance, fine bit-rate control, and progressive coding. We implemented 

an EZW coder and decoder using a visual programming language (described below). The 

MR images were compressed using EZW and reconstructed at various bit rates, and the 

semi-automatic segmentation was performed. Then, as a new approach to  measuring the 

quality of the compression, we used a numerical similarity measure to compare the results 

of the semi-automatic MS lesion segmentation with the radiologist's gold-standard segmen- 

tation. 

Our EZW implementation was adapted to take advantage of the spatial information 

provided by the brain contour. By specifying which portions of the input image are more 

important, the new technique splits the data into two subimages which are coded at different 

rates. The variation in area of the brain contour along the z-axis of the volume is also used 
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rdObj lopass2d display 

filename: image.wit width: 3 name: blurred 
height: 3 

Figure 1.4: Example of a WiT igraph. 

to  control the allocation of bits when compressing each slice. This new method is used to  

compress the same MR volume at the same bit rates. The segmentation is performed again, 

and the similarity measures are calculated and compared to results on original data and the 

data compressed using conventional methods. 

1.3.2 Implementation 

The image processing tasks performed in the course of this research were implemented in the 

WiTTM visual programming language [4, 51. WiT programs, or igraphs, consist of operators 

connected by links. Data objects flow on the links from operator to  operator. Operators 

perform functions on the input data objects and produce output data objects. Libraries of 

standard image-processing and other operators are provided as a part of WiT, and custom 

operators and data objects can be created by the user. An operator may itself be defined 

by a WiT igraph with input and output links; such an operator is called hierarchical, and 

can be used like any other operator in igraphs. Hierarchical operators are analogous t o  

subroutines in a conventional programming language. Operators may also be coded in C. 

Figure 1.4 shows an igraph with three operators, shown as rectangular icons, connected 

from left to right with links. Each operator's name is displayed above its icon; its parameters 

and their values are shown below. In this igraph the rdObj operator reads an image from 

disk, lopass2d applies a low-pass filter using a 3 x 3 kernel, and display displays the resulting 

image in a window. A probe labelled original causes the raw image to be displayed as it 

passes along the first link. 

1.4 Outline of the Thesis 

In Chapter 2, techniques for digital image compression are discussed. Previous work in the 

compression of medical images is surveyed. 
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Chapter 3 describes the wavelet transform and its application to image compression, 

focussing on the EZW algorithm. 

Chapter 4 discusses some approaches to the adaptation of compression techniques for 

certain classes of medical image data and tasks, in particular for the segmentation of white- 

matter brain lesions in magnetic resonance volume data. A quality measure based on the 

similarity between such image segmentations is defined, and results for images compressed 

using conventional EZW are presented. 

In Chapter 5, a new region-based adaptation of EZW is presented. 

In Chapter 6, experimental results of the region-based EZW method are given. 

In Chapter 7, the research is summarized and potential directions for future research are 

considered. 



Chapter 2 

Digital Image Compression 

Digital image compression has been the focus of a large amount of research in recent years 

[23, 32, 521. This chapter reviews image compression algorithms with particular focus on 

the compression of medical images. 

2.1 Data Compression 

Compression techniques take advantage of the redundant and irrelevant information con- 

tained in the data [52]. Redundancy results from the statistical correlation of data elements, 

while irrelevancy concerns the uselessness of some of the information contained in the data. 

In general, compression schemes consist of three steps, as depicted in Figure 2.1, where 

decorrelation is the application of some transformation or decomposition to  reduce the 

statistical redundancy of the input data; 

quantization is the many-to-one mapping of input values onto a smaller set of output 

symbols; and 

coding is the efficient representation (entropy coding) of the quantized values as a bit 

stream. 

samp!es 7 1  c o e 2 n t s  losSY quantization s~%l'lefficient coding bit*am decorrelatlon 

Figure 2.1: Data compression. 
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Lossless techniques omit the quantization step, since it is inherently lossy. However, it is 

also the step in which the majority of the data compression can be realized. The process of 

decompression consists of the same steps executed in reverse order. 

Compression of text sources generally employs only entropy coding. Huffman coding [29] 

employs a variable length code in which short code words are assigned to more common 

values or symbols in the data, and longer codes are assigned to  less frequently occurring 

values. Lempel-Ziv (LZ) coding [69] replaces repeated substrings in the input data with 

references to  earlier instances of the strings. Variations of LZ coding are used by the Unix 

compress and gzip programs. Arithmetic coding [70, 501 represents a message as some 

finite interval between 0 and 1 on the real number line. Each bit in the output code refines 

the precision of the value of the input code in the interval. The entropy coder used in 

this work is an adaptive arithmetic coder, which is preferable to Huffman coding at low bit 

rates because Huffman coding requires at least one bit per code symbol to  be emitted, while 

arithmetic coding does not. 

2.2 Image Compression 

In image compression, entropy coding is generally preceded by decorrelation (to reduce 

redundancy in the image data) and, for lossy compression, quantization. In two-dimensional 

image coding, redundancy refers to  the correlation among nearby pixels in a single image, 

but such correlation may exist among pixels in multidimensional data such as in a volume 

image, time series, video sequence, or in different spectral bands in a multispectral data 

set [25]. 

The effectiveness of an image compression technique is measured by the amount of 

compression achieved and, for lossy techniques, the quality of the reconstructed image. We 

must take some care when reading claims of the amount of compression obtained. One 

frequently used measure is compression ratio, or the ratio of the size of the original image to  

the size of the compressed image. This measure can be misleading, since it is dependent on 

the data storage format and sampling density. For example, medical images containing 12 

bits of useful information per pixel are often stored using 16 bits per pixel. A better measure 

of compression is bit rate, which measures the average number of bits used to  represent each 

pixel of the image in compressed form (and is thus independent of the data storage format). 
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If an n x m pixel image is stored using B bits, the bit rate is 

Bit rates are measured in bits per pixel (bpp), with a lower bit rate corresponding to a 

greater amount of compression. In discussing claims of compression efficiency reported in 

the literature, we quote the bit rate where it is given (or where it is possible to calculate); 

otherwise the compression ratio alone is given. 

2.3 Lossless Image compression 

Lossless entropy-coding techniques for data compression can be applied directly to image 

data. For instance, the popular GIF image format uses an LZ coder for its lossless com- 

pression. Typically, medical images can be compressed losslessly to  about 50 per cent of 

their original size. Boncelet et al. [lo] investigated the use of three entropy coding methods 

for lossless compression with application to digitized radiographs and found that a bit rate 

of about 4 to  5 bpp was the best possible. The Huffman and arithmetic coders performed 

about equally well. Tavakoli [65, 661 applied various lossless coding techniques to  MR im- 

ages and reported compression down to about 5 to  6 bpp, with LZ coding giving the best 

results. 

Lossless coders work best with decorrelated data. Roos et al. [58, 571 investigated meth- 

ods for decorrelating image data before coding medical images. These techniques, which 

include prediction, linear transformation, and multiresolution methods, are described in 

greater detail in section 2.6. Angiograms could be compressed with a ratio of up to  3:1, but 

results were less than 2:l for MRI, which contain more noise. Kuduvalli and Rangayyan [38] 

studied similar techniques and found linear prediction and interpolation techniques gave 

the best results, with similar compression ratios. We conclude that lossless coding cannot 

achieve the higher compression ratios which we have established as desirable for effective 

archiving and transmission of medical images. 

2.4 Distortion and Quality 

Significant coding gains can be achieved by sacrificing the ability to  perfectly reconstruct 

the original image, and lossy image compression methods trade off the quality of the recon- 

structed image against the bit rate that can be attained. The "quality" of the reconstruction 
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is a measure of how close it is, in some sense, to the original image. There are many practical 

measures of image quality [18], including: 

subjective comparison: how "good" the image looks to  a human viewer 

application quality: usefulness of the image for a particular task, e.g. clinical diagnosis 

(for medical images) 

mean square error (MSE) 

r signal-to-noise ratio (SNR) 

When comparing two lossy coding methods, we may either compare qualities of images 

reconstructed at a constant bit rate, or, equivalently, we may compare the bit rates used in 

two reconstructions with the same quality, if it is possible to  establish this. 

Ideally, when comparing the effects of lossy coding algorithms, we would like to use an 

objective method. Objective measures such as the SNR and MSE of the reconstructed image 

are easy to compute but they do not adequately characterize the distortion present in the 

image [18]. For instance, artifacts that are particularly objectionable to the human viewer 

may not be reflected by poor numerical SNR or MSE. There has been some research into the 

quantification of the artifacts introduced by various lossy compression schemes. For instance, 

Ho et al. [26] defined a measure of the "blockiness" introduced into images compressed using 

certain algorithms, but such a measure cannot be used to compare compression algorithms 

in general. 

The diagnostic quality of a medical image may remain high even when its subjective 

quality is significantly degraded [15]; this depends on the characteristics of the pathological 

features in the image and the clinical task being performed. Receiver Operating Character- 

istic (ROC) methods are frequently used to obtain and evaluate a "gold standard" in the 

medical imaging community [16, 181; expert viewers are asked to assess a degree of confi- 

dence in the presence or absence of diagnostic features in the images. However, these and 

other subjective measurements suffer from their dependence on human judgement; they are 

time-consuming to  perform, and their results may be difficult to reproduce. 

Because of these difficulties, the subjective visual appearance of images is considered 

only informally in this thesis. The peak signal-to-noise ratio (PSNR) is an objective quality 

measure often used in image compression literature, and so we will use it for purposes of 
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comparison. Consider an original image f and a distorted version of the image, f^, both of 

size m x n pixels. The mean-square error (MSE) a2 in f^ with respect to f is defined by 

and can be interpreted as the squared average difference between corresponding pixels in 

the two images. The PSNR is a related measure defined by 

2 
fmax PSNR = 10 log,, - 

02 

where fma, is the maximum pixel value (e.g., 255 for 8-bit images). PSNR is expressed in 

decibels (dB) with larger values indicating better image quality. 

In this research we will also use a new objective measure of image quality, based on 

the similarity between results of an image segmentation task on compressed images and the 

segmentation of the original data. 

2.5 Progressive Techniques 

While lossless coding is preferred for medical imaging, we have seen that the compression 

gains may not be sufficient. For certain applications such as teleradiology, progressive 

techniques may offer a compromise. As mentioned above, there exists an inverse relationship 

between coding bit rate and distortion when using lossy compression. Therefore, each 

additional bit of information used in the reconstruction of an image could, ideally, improve 

the quality of the image. An image compression method can be called progressive if it allows 

an image to be gradually built up as more and more bits are received. Initially a low-quality 

image is reconstructed, and it is then refined as the information contained in subsequent 

bits is added. 

For instance, consider a simple progressive transmission scheme in which the image 

resolution is gradually increased in steps from 8 x 8 pixels in the initial approximation 

(where each pixel represents the average of a 32 x 32 block of pixels in the source image) 

up to  the original 256 x 256. The resolution is increased by a factor 2 in both directions 

in each successive image, and thus each requires 4 times as many bits as the previous. 

This technique is illustrated in Figure 2 .2 ,  where the image sizes have been normalized. 

Many image compression algorithms allow for more sophisticated progressive reconstruction 
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Figure 2.2: Illustration of a simple progressive image reconstruction. Image representations 
using (a) 512 bits, (b) 2048 bits, (c) 8192 bits, (d) 32768 bits, (e) 131072 bits, and ( f )  the 
original image containing 524288 bits. 



CHAPTER 2. DIGITAL IMAGE COMPRESSION 

techniques. 

Progressive techniques are particularly well suited to  medical imaging applications such 

as teleradiology [55], where an initial low-fidelity image transmitted over a low-speed com- 

munication link could be used for preliminary consultation, followed by more detailed images 

required for diagnosis. It is also suitable for browsing image databases, allowing the user 

to determine quickly whether the selected image is of interest, and thereby to decide to  

proceed with reconstruction of a higher quality image or abort the retrieval procedure. 

2.6 Lossy Compression Techniques 

2.6.1 Transform Coding 

In transform coding, a linear transformation of the data is used to decorrelate it. The data 

in the transform domain is then quantized, and the quantized transform coefficients are 

entropy-coded. The discrete Karhunen-Lohe transform (KLT) is optimal in its information- 

packing properties (in the mean-square error sense) but is hard to  compute [32, 231. The 

discrete Fourier transform (DFT) and discrete cosine transform (DCT) approximate the 

energy-packing efficiency of the KLT, and have efficient algorithms; in practise, the DCT is 

almost always used in preference to  the DFT because the latter's coefficients are complex 

and thus require twice the storage space of the DCT coefficients. 

Transform coding exploits correlation of the pixels within a rectangular block. Full-frame 

methods, in which the transform is applied to the whole image as a single block, have been 

employed in medical imaging research [27, 12, 301. 

Bramble et al. [ll] used full-frame Fourier transform compression on 12 bpp digitized 

hand radiographs at  average rates from about 0.75 bpp down to 0.1 bpp. The diagnostic 

task in this study involved the detection of pathology characterized by a lack of sharpness in 

a bone edge. No significant degradation in diagnostic quality was found using images com- 

pressed at an average rate of 0.75 bpp, confidence in the diagnoses decreased at  rates on the 

order of 0.5 bpp, and diagnostic quality suffered at very low rates of 0.1 bpp. However, Cook 

et al. [17] investigated the effects of full-frame DCT compression on low-contrast detectabil- 

ity of chest lesions and found significant degradation at rates of about 0.75 bpp. These 

results illustrate that the imaging modality and task play an important role in determining 

the amount of compression that can be achieved. 
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2.6.2 Blocking Transforms and JPEG 

In an alternative to full-frame transforms, smaller blocks or tiles covering the image can be 

used, in what is called a blocking transform; each block is transformed, quantized, and coded 

separately. This technique, using square 8 x 8 pixel blocks and the DCT followed by Huffman 

or arithmetic coding, is utilized in the IS0 Joint Photographic Experts Group (JPEG) Draft 

International Standard for image compression [31,49,3]. The standard recently drawn up by 

the American College and Radiologists (ACR) and the National Electrical Manufacturers' 

Association (NEMA) provides for the use of JPEG compression of medical images [47], 

though it does not address the suitability of compressed images for clinical purposes. While 

the JPEG standard provides for lossless compression and a progressive mode, only the 

standard lossy compression has been widely implemented. 

Lossy JPEG compression uses a numerical "quality" parameter (in the range 1 to 100) 

to  jointly control the amount of compression and the quality of the reconstructed image. 

It works well at compression ratios up to  about 25:1, after which the quality degrades 

significantly due to the presence of blocking artifacts [25]. In addition, such artifacts may 

become visible at lower compression ratios if the image undergoes certain manipulations, 

such as contrast adjustment and zooming. Figure 2.3 shows the effects of JPEG image 

compression of a sample image at various bit rates. At 0.26 bpp (or a compression ratio of 

30:l with respect to an 8 bpp original), the 8 x 8 pixel blocks are easily visible. At 0.17 bpp 

(47:l compression), the image is degraded to such an extent that almost all detail has been 

lost. 

Since the adoption of the JPEG standard, the algorithm has been the subject of consider- 

able research. Collins et al. [16] studied the effects of a 10:l lossy image compression scheme 

based on JPEG, with modifications to  reduce the blocking artifacts. A number of image 

types and pathologies were studied using ROC methods, and the preliminary results sup- 

ported the use of lossy compressed images for comparison purposes such as detecting changes 

over time. Baskurt et al. [7] used an algorithm similar to  JPEG to compress mammograms 

with rates as low as 0.27 bpp while retaining detectability of pathologies by radiologists. 

Kostas et al. [37] used JPEG modified for use with 12-bit images and custom quantization 

tables to  compress mammograms and chest radiographs. This preliminary work reported 

compression down to about 0.25 bpp while retaining clinically useful information in varying 

degrees. Clunie et al. [15] studied the detection of multiple sclerosis lesions in MR images 
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Figure 2.3: Reconstruction of a JPEG-coded image. (a) The original image, scaled to 8 
bpp. (b) Reconstruction at 1.01 bpp (quality factor 77). (c) Reconstruction at 0.50 bpp 
(quality factor 35). (d) Reconstruction at  0.26 bpp (quality factor 10). (e) Reconstruction 
at 0.17 bpp (quality factor 1). 
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of the brain which had been compressed using JPEG, and found no significant difference in 

the number of lesions detected by radiologists in images compressed at bit rates of 0.3 bpp. 

However, this study did not evaluate effects of compression on the the size or shape of the 

lesions. 

2.6.3 Vector Quantization 

Shannon [62] first showed that quantization of vectors of input codes will result in a lower bit 

rate than scalar quantization. Gray [24] reviewed various techniques for vector quantization 

(VQ) of images. In VQ of image data, a vector is a small block of pixels from the original 

image, and a set of training images is used to generate a codebook of vectors which occur 

frequently. Each block of input pixels is examined and the index of a vector in the codebook 

which is "close" (using some measure) to  the input vector is emitted. The decoder simply 

receives each index and looks up the corresponding vector in the codebook. VQ therefore 

has a very fast decoder-essentially a table lookup-but the coder can be very slow, since 

it must perform a computationally complex codebook search for each vector. 

Riskin et al. [55] presented techniques for variable-rate VQ design and applied them to 

MR images. These techniques somewhat mitigate the complexity problem with the use of 

more efficient data structures in the codebook to  speed up the search. They reported results 

down to just under 1 bpp. Cosman et al. [18] used similar methods to  compress C T  and MR 

chest scans and investigated three quality measures: SNR, subjective quality, and diagnostic 

accuracy. They found that compression down to about 0.5 bpp did not significantly affect 

a blood-vessel measurement task in MR. Xuan et al. [73] also used similar VQ techniques 

to compress mammograms and brain MRI. Computerized segmentation of these images 

without significant degradation of the results was possible at rates down to 0.6875 bpp. 

VQ suffers from a lack of generality, since the codebook must be trained on some set 

of initial images; the bit rate and distortion of the compression will be affected by how 

representative the training set is of the images to be coded. This restriction can be relaxed 

using adaptive techniques, in which the codebook is constructed or modified during decod- 

ing, adapting itself to  the data, at the expense of some compression efficiency. Hu et al. [28] 

introduced a semi-adaptive VQ technique for the compression of multispectral MR images, 

which achieved compression at bit rates down to 0.4 bpp while maintaining diagnostic image 

quality as judged by radiologists. 

In addition to the slow coder and codebook requirements mentioned above, images 
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compressed at  low bit rates using VQ are prone to  artifacts like those resulting from blocking 

transforms. 

I 



Chapter 3 

Wavelets and Zerotree Coding 

3.1 Subband Coding 

Subband compression uses a linear transformation to  split a signal's frequency component 

into bands and then codes each band separately [34, 721. This allows different parameters 

t o  be used for the transmission of each band, depending on the desired characteristics of the 

reconstructed image. For instance, the human visual system is more sensitive to distortion 

in certain frequencies than in others, and so the coding of these bands could be performed 

more precisely than the others in order to improve the visual quality of the reconstructed 

image at a given bit rate. Rompelman [56] investigated the use of subband coding for 

medical image compression and reported that 12-bit CT images could be compressed at 

rates of 0.75 bpp and 0.625 bpp (16:l and 19.2:l respectively) without significantly affecting 

diagnostic quality. 

Recently, much research has been devoted to  the discrete wavelet transform (DWT) for 

subband coding of images [25]. The wavelet transform is a hierarchical subband decompo- 

sition particularly suited to  image compression. It avoids the blocking artifacts present in 

transform methods and allows for easy progressive coding due to its multiresolution nature. 

For these reasons, we focus on wavelet-based compression in this work. 

3.2 The Wavelet Transform 

In this section we review the Wavelet transform. The reader is referred to [8, 19, 25, 33, 511 

for additional details. 
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3.2.1 Background 

Like other linear transforms, the wavelet transform decomposes an arbitrary signal f into a 

superposition or weighted sum of some set of basis functions as (in one dimension) 

Since the basis functions are fixed, the signal f can be represented by the coefficients ck alone. 

The choice of basis function controls the nature of the information about the original signal 

contained in each coefficient. For instance, since sinusoidal functions have infinite support, 

their use as basis functions will result in a Fourier representation, with coefficients having 

good frequency localization but no spatial localization. By choosing basis functions with 

finite support of varying widths, the coefficients can represent both spatial and frequency 

information of the input signal at various scales. We can then take advantage of redundancy 

and irrelevancy in both the spatial and frequency domains for signal compression. 

Wavelets are functions $a,b generated by dilating and translating a single prototype 

mother wavelet function d ~ .  

Here a controls the dilation and b the translation of the wavelet. If a and b are powers 

of 2, an octave-band decomposition is produced, with logarithmic spatial and frequency 

resolution. The wavelet decomposition of a one-dimensional signal is then 

3.2.2 Implementation 

The wavelet transform can be implemented using multirate filter banks as shown in the block 

diagram of Figure 3.1. In this signal-processing framework, the wavelet transform is defined 

by the finite impulse response filter pairs H and G. Here analysis is the process whereby 

the input signal is split into critically-subsampled frequency-related subband signals. In 

the diagram, filters ho and hl split the signal into its low-pass and high-pass components, 

which are then subsampled and coded. The low-pass or reference signal r is a low-resolution 

version of the original, while the high-pass or detail signal d contains the detail information 

which has been removed from the reference signal. 
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codec 

Analysis 

codec 

Figure 3.1: Block diagram of wavelet analysis and synthesis. 

Figure 3.2: Block diagram of two-level pyramidal analysis system. 

The codec represents the coding and decoding of the signals, including the intermediate 

transmission or storage they may entail. If these processes include quantization, then some 

distortion will be introduced into the signals, and so the output reference and detail signals 

are denoted by i and d, respectively. Synthesis is the reverse process of interpolating and 

merging the subband signals to  reconstruct the input. The reference and detail signals i and 

d are up-sampled by inserting a zero between every sample, and then passed through filters 

go and g,, the low-pass and high-pass synthesis filters. The result is f, the reconstructed 

signal, which may differ from f .  

To make use of more subbands, the filters can be applied recursively to  the reference and 

detail signals. In pyramidal systems, the recursion is applied only to  the reference signal, 

such as the two-level system shown in Figure 3.2. Such systems provide good results for 

image compression applications because the individual characteristics of each subband may 
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be treated separately; typically, hierarchies of 4 to 6 levels have been found to  be sufficient. 

3.2.3 One-Dimensional Transform 

To illustrate the use of the wavelet transform, we first consider its application to a one- 

dimensional signal, and then extend it to two dimensions for application on image data. 

Consider the signal in Figure 3.3 (a), sampled on a vector of length 256. We apply the 

wavelet transform using a 4-tap "pseudo-Coiflet" filter [53,43] and produce the signal shown 

in Figure 3.3 (b), in which the coefficient vector is divided into two halves, with the low-pass 

(reference) subband ro on the left and the high-pass (detail) subband do on the right. The 

number of coefficients in each of these subbands is one-half the number of samples in the 

original signal, but all of the information in the signal is preserved in the transform space, 

and the original signal can be reconstructed by applying the inverse wavelet transform. 

The range of coefficient values in do is reduced: all the coefficients are in the interval 

(-10, lo), with the largest coefficients corresponding to  peaks and edges in the original 

signal. Conversely, the range of coefficient values in ro  is increased: where no sample in the 

original signal was greater than 200, several low-pass coefficients have values exceeding 250; 

however, the shape of the original signal is roughly preserved. These effects are magnified 

in a pyramidal decomposition resulting from recursive application of the filters to  the low- 

pass band (while leaving the high-pass band unchanged in each stage). After a total of five 

applications of the filters, the signal shown in in Figure 3.3 (c) is produced. The first 8 

coefficients represent the low-pass information in the original signal at a very coarse scale, 

but containing little detail information. The remaining coefficients comprise five high-pass 

subbands containing 8, 16, 32, 64, and 128 coefficients respectively. These bands represent 

detail information such as edges and peaks present at varying scales in the original signal. 

For instance, each of the 128 coefficients in the do band contains detail information about 

a 2-sample wide portion of the original signal; each coefficient in dl represents a 4-sample 

wide portion; and so on. 

While the number of coefficients in the transform is equal to the number of original 

samples, the precision required to represent the coefficients is increased. Typical images 

consist of small integral samples, while the transform coefficients are real numbers with a 

larger range. Therefore, quantization is used to reduce the number of bits required to  encode 

the coefficient values. The information-packing property characterized by the concentration 

of the large-magnitude coefficients in the coarser subbands is the basis for data compression 
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Figure 3.3: Application of the l-dimensional wavelet transform. (a) The original signal. (b) 
Result of one application of the wavelet transform. (c) Result of five recursive applications 
of the wavelet transform. 
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Figure 3.4: Subbands in the hierarchical 2-dimensional wavelet transform, after (a) one 
application, (b) two applications, and (c) five applications of the transform. 

using the wavelet transform. For example, the coefficients with values smaller than some 

threshold can be zeroed, and a good approximation of the original signal can still be obtained 

by performing the inverse transform. Hence only a fraction of the original coefficients need 

be transmitted. Various other quantization methods can be used to reduce the information 

required for a good reconstruction. In general, the significance of each transform coefficient 

to  the reconstruction quality is proportional to  its magnitude. Therefore, the transform 

coefficients could be sorted into decreasing order, and the largest used first. The quality of 

the reconstructed signal will then depend on how many of the largest coefficients are used. 

3.2.4 Two-Dimensional Transform 

The wavelet transform can be extended straightforwardly to two (or more) dimensions for 

application to  multidimensional data, such as images, by applying the one-dimensional 

transform separably in each dimension. One application of this two-dimensional wavelet 

transform decomposes an image into four subbands, each one-quarter the size of the original, 

as shown in Figure 3.4 (a), where: 

0 the L L  or low-pass band contains the original image filtered and subsampled by a 

factor of 2; 

0 the H L band contains detail in the horizontal orientation; 

0 the LH band contains detail in the vertical orientation; and 

0 the H H  band contains detail in the "diagonal" orientation. 
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(c, (dl  

Figure 3.5: Application of the 2-dimensional wavelet transform. 

As in the one-dimensional case, the transform can be applied recursively to  the low-pass 

subimage to  obtain decompositions a t  coarser scales, yielding a hierarchical decomposition 

or pyramid representation. The additional subbands created in this manner are depicted in 

Figure 3.4 (b) and (c). These subbands can be seen in Figure 3.5, which shows an MR image 

and the result of one, two, and five recursive applications of the wavelet transform. The 

images have been contrast-adjusted to  enhance visualization of the coefficients throughout 

all the subbands, as otherwise the low-pass coefficients would dominate, rendering the high- 

pass coefficients invisible. 
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Figure 3.6: Histograms of (a) the original image and (b) its wavelet transform. 

3.3 Image Compression using Wavelets 

The data in the detail bands has a low entropy and generally contains many near-zero 

coefficients, along with a few high-magnitude coefficients at locations corresponding to edges 

in the original image at the corresponding frequency and spatial location. This effect is 

illustrated in Figure 3.6, which depicts the histograms of (a) the original image and (b) the 

result of the 5-level wavelet transform. As in the one-dimensional case, the majority of the 

coefficients in the transform are close to  zero, and can be ignored to effect data compression. 

Therefore, image coding techniques based on the wavelet transform are often concerned with 

effectively quantizing and coding the high-magnitude coefficients which represent most of 

the image's energy. Figure 3.7 illustrates reconstruction of a wavelet-transformed image 

using only the largest 1000 coefficients, representing just 1.5 per cent of the coefficients in 

the transform. This simple scheme represents compression at about 0.5 bpp. 

Coding results are generally better than those achieved using JPEG [25]. In particular, 

the image quality degrades gracefully even at very low bit rates. Still, artifacts are unavoid- 

able in images reconstructed at low bit rates. In wavelet-based compression, these artifacts 

tend to be characterized by blurred irregularities or ringing effects at edges in the image, 

such as are visible near the sharp edges in Figure 3.7 (b). Visually, this distortion is less 

objectionable than the blocking artifacts produced using other methods such as transform- 

based compression and VQ [l, 641. Furthermore, wavelet techniques facilitate progressive 

transmission, due to  the hierarchical nature of the subbands. 
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Figure 3.7: Reconstruction of a wavelet-transformed image using 1000 coefficients. (a) 
A map showing the location in the wavelet transform of the 1000 coefficients of largest 
magnitude. (b) Reconstruction of a wavelet-transformed image using only the largest 1000 
coefficients. The original image is shown in Figure 2.2 (f). 

3.4 Embedded Zerotree Coding 

We have seen that wavelet-based image compression methods are concerned with efficiently 

coding the positions and values of large-magnitude coefficients in the transform. In this 

section, we review a recently devised technique that has received much attention and which 

forms the basis for the compression system used in this thesis. 

3.4.1 Zerotrees 

Lewis and Knowles [41, 421 devised a tree-structured coding technique for wavelet-trans- 

formed video images, in which the roots of the trees cover the coefficients in the low-frequency 

band of the image, and the branches extend to cover the higher-frequency bands. The coder 

descends the trees recursively to determine whether the tree's total energy exceeds a human- 

visual-system (HVS) weighted threshold, and if not, the coefficients covered by the whole 

tree are zeroed. In this work, the inter-frame correlation of the video sequence was also used 

by predicting the significance of trees from image to  image. 

Shapiro [64,63] expanded on this tree concept and introduced the zerotree, a data struc- 

ture which represents the low-magnitude areas in the transformed image (with respect to  
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a given threshold). The basic hypothesis is that regions in a subimage with low-magnitude 

coefficients correspond to low-magnitude regions in the same spatial position at other fre- 

quencies (i.e., in other subbands with the same orientation). For instance, in Figure 3.5, 

it is clear that regions having small-valued coefficients in the coarse-scale bands correspond 

spatially to regions in the finer-scale bands whose coefficients are also small. The idea is to  

code images using the wavelet transform and to take advantage of this similarity between 

the subbands in the transformed image. 

In each pass of the zerotree coding process, a reference threshold Ti is used to determine 

the significance of each coefficient: a coefficient c is called significant if Icl > Ti; otherwise it 

is insignificant. The initial threshold To chosen to  be larger than one-half the magnitude of 

the largest coefficient; subsequent thresholds are given by Ti = T;-1/2. In each pass, only 

the significant coefficients are processed. 

The zerotree coder works by repeatedly scanning the coefficients and comparing them to 

the current threshold Ti, and constructing zerotrees which map the predictably insignificant 

coefficients throughout all the subbands. A zerotree may be rooted at any scale and includes 

all the coefficients at the same spatial location in those finer-scaled subbands with the same 

directional orientation. This results in a significance map which classifies each coefficient 

into one of three groups: 

0 significant coefficients, 

0 predictably insignificant coefficients (those belonging to  a zerotree), 

0 the remaining insignificant coefficients (those not belonging to any zerotree) 

Using this map, the positions of large groups of insignificant coefficients can be transmitted 

merely by transmitting the positions of zerotree roots. 

In each dominant pass, the significance map for the current threshold is generated, 

entropy-coded, and transmitted. Using this map and the value of the current threshold, the 

decoder can reconstruct a low-precision approximation of the significant coefficients. The 

dominant pass is followed by a subordinate pass, in which the decoder refines each of the 

significant coefficients found so far by adjusting it up or down by Ti/2. These coefficient 

refinements constitute a sequence of binary decisions, which are are also entropy-coded and 

transmitted. 

The effect of this procedure is to gradually identify and refine the precision of the trans- 

form coefficients in order of their magnitudes. The encoding or decoding may be terminated 
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at any point, and the resulting bit stream is a prefix of all lower-rate encodings; this is re- 

ferred to as embedded coding. Thus, compression is achieved by terminating the transmission 

or storage of the embedded code at some point in the bit stream, and the exact bit rate 

is controlled by choosing the point at which this termination takes place. Embedded cod- 

ing schemes naturally suit a progressive mode of transmission of the image: at any time, 

images reconstructed from the decoded bit stream can be displayed as increasingly good 

approximations of the source image. 

The coded bit stream contains a small header, to  be used by the decoder, which includes: 

0 image size, 

0 number of subband scales in the transformed image, 

0 mean image pixel value (subtracted from the image before applying the wavelet trans- 

form), and 

0 initial threshold To 

Following this header is the entropy-coded stream of symbols from alternating dominant 

and subordinate passes. 

3.4.2 Implementation 

We implemented an embedded zerotree image coder and decoder in the WiT visual data- 

flow image processing environment. The 2-dimensional wavelet transform is implemented 

as a WiT operator wavelet2d using a modified version of the wv l t  library available from 

the Imager group at the University of British Columbia [43]. Our zerotree codec, which 

we will call EZW' in order to  distinguish it from Shapiro's EZW, is implemented as two 

operators: a coder ztcompress, and a decoder ztexpand. The encoded bit stream is written 

to  and read from a disk file by the codec operators. The inputs, parameters, and outputs 

of these operators are summarized in Tables 3.1, 3.2, and 3.3. 

As in Shapiro7s work, the entropy coder was an arithmetic coder based on [70]. It 

was implemented as a library of routines used in the code of the ztcompress and ztexpand 

operators. As a simplification, our implementation does not use the multiple arithmetic 

models in the dominant pass as used by Shapiro, as it does not result in a significant 

performance degradation [64]. Furthermore, the EZW' coder uses a 4-symbol alphabet and 
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1 O u t ~ u t s :  1 irnaeeout 1 Transform or imane. I 

Table 3.1: The wavelet2d operator. 

Table 3.2: The ztcompress operator. 

Inputs: 
Parameters: 

maxBits 
imageMean 

scale 
threshold 
maxHist 

imageln 

direction 
levels 
filter 

Inputs: 
Parameters: 

I Outputs: 
I 

I bits 

Image or transform. 
Transform direction, forward or inverse. 
Number of scales in the transform. 
Choice of Wavelet filter. 

image 

file 

Inputs: 
Parameters: 

Outputs: 

Wavelet transform of the i~nage to be encoded. 
File to which the encoded bit stream is written. 
Maximum number of bits to  encode. 
Mean pixel value of the original image. 
Number of levels in the subband hierarchy. 
Initial threshold To. 
Maximum histonram entries used by the arithmetic coder. 
Number of bits encoded. 

Table 3.3: The ztexpand operator. 

file 
maxBits 

image 
irnageMean 
scale 
bits 

None. 
File from which the encoded bit stream is read. 
Maximum number of bits to  decode. 
Decoded wavelet transform. 
Mean pixel value of the original image. 
Number of levels in the subband hierarchy. 
Number of bits decoded. 
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a single arithmetic coder and model throughout the encoding procedure, instead of the 

multiple alphabets and models used by EZW. Together, these simplifications result in a 

slight decrease in coding performance compared to Shapiro's EZW implementation. 

The wvlt library we used includes a variety of wavelet filters suitable for image compres- 

sion work, including the popular class of filters discovered by Daubechies [19, 511. Shapiro 

used a set of quadrature mirror filters (QMF) [34] described in [I], but these were not ini- 

tially included in the wvlt library. Experimental results (described in the next section) 

showed that the so-called pseudo-Coiflet filters [53] offered performance similar to QMF, 

and the 4-tap version was used for this work. 

Compression using EZW requires first the application of the wavelet transform to the 

image, followed by coding with the zerotree coder. We have implemented these two steps 

as hierarchical WiT operators, wTransform and ezwcompress. 

The wTransform operator expanded in Figure 3.8 (a), takes the source image as its input. 

The mean pixel value of the image is calculated and subtracted from the image, which is then 

passed to  wavelet2d to  perform the forward Wavelet transform. The number of levels and 

the filters used in the wavelet decomposition are controlled by parameters of the wavelet2d 

operator; in this example, these parameters are "promoted" to become parameters of the 

wTransform hierarchical operator itself. The transformed image and the mean image pixel 

value are provided as the outputs of the operator. 

These same data objects are the two inputs required by the ezwcompress operator, de- 

picted in Figure 3.8 (b). The initial threshold To for the EZW' compression is calculated 

from the magnitude of the transform coefficients c;j using the built-in stats and calc oper- 

ators; it is calculated as 

To = 
maxi,j(Ici jI) 

2 
The transform image is passed as input to ztcompress, and the mean pixel value and initial 

threshold are passed as parameters. The filename to which the encoded bit stream is written, 

as well as the maximum number of bits to write, and the scale used in the wavelet transform, 

are promoted to  become parameters of the ezwcompress operator. The number of bits 

written to the bit stream file is output from the operator. 

Figure 3.9 shows an igraph which compresses an image using these two hierarchical op- 

erators. In this igraph, an image file image.wit is read from disk by the rdObj operator. 

The image is passed as input to  the wTransform operator, which performs the wavelet trans- 

form as described above. In this example, the parameters select a 5-level transform using a 



CHAPTER 3. WAVELETS AND ZEROTREE CODING 

image 

El- 

levels: 5 
filter: Coif4 

T stats- I h I 

unaryOp: - 
float 

transform 

4 

file: output.zt 
maxBits: 16384 
scale: 5 

ztcompress 

itnagexform 

R 7 + 

Figure 3.8: Hierarchical operators used in EZW' compression, and their WiT igraphs. (a) 
The wTransform operator. (b) The ezw Compress operator. 
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Figure 3.9: WiT igraph to compress an image using EZW' 

rdObj wTransform ezwcompress display 
wlmage 

imageMean 

7 unaryOp display #I 

& :  

ztexp and wlmage 
I 

L 

levels % -m - 

0 

J 

unaryOp: + reconstruction 
display #2 

file: output.zt 
maxBits: 16384 
server: any L - 

decodedBits 

file: image.wit levels: 5 

Figure 3.10: WiT igraph to decompress an image using EZW'. 

- P - 

9-tap QMF. The transformed image and image mean are passed as to  ezwcompress, which 

performs the zerotree coding and writes an an encoded bit stream to file output . z t ;  the 

maxBits parameter causes the bit stream to terminate after 70,000 bits have been encoded. 

Thus, if the original image is of size 256 x 256 stored at 8 bpp, this encoded bit stream 

represents compression at just over 1 bpp, or a compression ratio of about 7.5:l. 

Figure 3.10 shows an igraph which decodes the image. In this igraph, the ztexpand 

operator reads the encoded bit stream from file output . z t ,  stopping after 16,384 bits have 

been decoded, as specified by maxBits. Thus, the resulting reconstruction will represent 

compression at a rate of 0.25 bpp, or a compression ratio of 32:l over the 8-bit original; a 

higher or lower rate can be selected by changing the value of maxBits. The decoded transform 

image is passed to  the wavelet2d operator, which performs the inverse wavelet transform. 

The number of levels in the wavelet transform were stored in the file header, and are specified 

by the scale output of ztexpand, which is passed as a parameter to  wavelet2d; similarly, the 

mean pixel value of the original image, imageMean, is added to the reconstructed image to 

imageMean 

obtain the final reconstruction, which is displayed in a window by display 

0 

file: output.zt 

L - 
filter: QMF9 

scale: 5 
L maxBits: 70000 bitscoded 
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Table 3.4: EZW and EZW' coding results for images "Lena" and "Barbara" at 0.25 bpp 

3.4.3 Performance 

and 0.125 bpp. 

To evaluate the performance of our EZW' implementation, we applied it to two standard 

test images often used for this purpose in the literature. The original 512 x 512 pixel images 

"Lena" and "Barbara" images are depicted in Figure 3.11 (a) and (b), respectively. The 

images were coded using EZW' and reconstructed at 0.25 bpp, as shown in (c) and (d); and 

at 0.125 bpp, (e) and (f). The MSE and PSNR of the reconstructed images are given in 

Table 3.4; results are given for EZW' using both 9-tap QMF and 4-tap pseudo-Coiflet filters, 

as well as for Shapiro's EZW using the same QMF [64]. We note that our implementation 

achieves slightly worse results than Shapiro's, due to  the simplifications described above; the 

difference is on the order of 1.5 dB for the "Lena" image and about 0.5 dB for "Barbara". 

Using EZW', the QMF and pseudo-Coiflet filters gave very similar results, with the QMF 

only very slightly worse. 

The sample MR image previously compressed using JPEG (see section 2.6.2) was coded 

using EZW' and then reconstructed at  bit rates ranging from 1.0 bpp down to 0.125 bpp, as 

depicted in Figure 3.12. As the bit rate decreases (and the amount of compression increases), 

the quality of the reconstructed image can be seen to degrade. Loss of image detail in the 

smooth central parts of the image is easily visible at 0.5; this blurring increases at lower 

rates. At 0.125 bpp, the centre of the image seems washed out, and ringing artifacts are 

visible near the outer edges. However, the quality of the EZW1-coded images is visually 

superior to the JPEG reconstructions at similar bit rates, seen in Figure 2.3. 

To compare the qualities of EZW' and JPEG reconstructions using an objective measure, 

the PSNR of the images with respect to  the 8 bpp original were calculated and are plotted 

Bit Rate 

PPP)  

0.25 

0.125 

"Lena" 
MSE PSNR 

(dB) 
31.33 33.17 
47.68 31.35 
44.66 31.63 
61.67 30.23 
91.37 28.52 
86.60 28.70 

Method 
and Filter 

EZW QMF9 
EZW' QMF9 
EZW' psCoif4 
EZW QMF9 
EZW' QMF9 
EZW' psCoif4 

"Barbara" 
MSE PSNR 

(dB) 
136.8 26.77 
163.0 26.01 
162.2 26.03 
257.1 24.03 
279.0 23.68 
268.6 23.56 
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Figure 3.11: EZW' reconstructions of "Lena" (left) and "Barbara" (right) images. The 
original images (top) were reconstructed at  0.25 bpp (middle) and 0.125 bpp (bottom). 
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Figure 3.12: Reconstruction of an EZW1-coded MR image. (a) The original image, scaled to 
8 bpp. (b) Reconstruction at 1.00 bpp. (c) Reconstruction at 0.50 bpp. (d) Reconstruction 
at 0.25 bpp. (e) Reconstruction at 0.125 bpp. 
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Figure 3.13: PSNR of JPEG and EZW' reconstructions of slice 18 (with respect to the 8 
bpp original) at bit rates below 1 bpp. 

in Figure 3.13. The PSNR of the JPEG and EZW' reconstructions is similar at rates down 

to about 0.5 bpp; however, at lower bit rates the EZW' reconstruction quality degrades 

more gracefully than JPEG. 



Chapter 4 

Task-Oriented Compression 

In this chapter, the effect of distortion caused by lossy image compression on a medical image 

processing application is considered. We explore methods of adapting the EZW compression 

algorithm to improve the performance of an image-processing application on a particular 

class of images, with the goal of improving the quality of data reconstructed at a given bit 

rate. The image set is a magnetic resonance image volume of the brain; the application is the 

segmentation of multiple sclerosis lesions from this image data. To evaluate the performance 

of our compression system, we compare the similarity of semi-automatic segmentation of the 

compressed data to  a radiologist's segmentation of the raw image data. First, we describe 

the segmentation procedure and the baseline results obtained on raw image data. Then the 

characteristics of the data which can be exploited to  improve the compression performance 

are discussed. 

4.1 Semi-Automatic Lesion Segmentation 

In Section 1.2.2, the segmentation of tissues in MR images of the brain was introduced, and 

we saw that computerized segmentation has been the focus of a considerable research effort. 

Johnston et al. [35, 361 achieved good results with the use of a semi-automatic technique 

for segmenting brain tissues, and in particular MS lesions, in MR images. The algorithm 

operates under the assumption that voxels in a local neighbourhood of an image (that is, 

a region of a given tissue type) have similar intensities; and that the different tissue types 

occur adjacent to  one another (in three dimensions) with varying probabilities. Histograms 

of intensities of a training set of regions representative of the various tissue types are used to  
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provide an initial estimate of the segmentation and neighbourhood interaction parameters. 

These then are passed as input to a classification technique based on Iterated Conditional 

Modes (ICM) [9], which converges to provide a partial volume segmentation of the volume, 

giving the probability that each voxel represents tissue of each of the possible types. The 

multispectral nature of MR images can be exploited by applying the algorithm to scans 

obtained with different acquisition parameters and combining the resulting segmentations. 

The quality and speed of the segmentation can be improved if the images are prepro- 

cessed. Intensity variations in the volume caused by radio frequency field inhomogeneities 

can be corrected using digital filtering techniques [20]. It is useful, both for the correction 

and the segmentation processes, to isolate the brain in each slice from the surrounding tis- 

sues such as skull, muscle and fat. Conventionally, this is performed manually, as in [6], 

but recently Mackiewich [45] has obtained very good results using automatic techniques. 

Furthermore, postprocessing of the partial volume segmentation can be used to  provide an 

improved segmentation of lesions alone. The final result of the segmentation is a binary 

classification of each voxel in the volume as "lesion" or "not lesion". Such a classification 

can be represented by a binary image; as an example, consider Figure 4.1 (a), which depicts 

as a binary mask the manual radiologist's lesion segmentation of slice 17 previously shown 

as overlaid ROIs in Figure 1.3. The results of the semiautomatic segmentation using the 

ICM-based technique are shown in Figure 4.1 (b). Visually, the correspondence between 

the two classifications is easy to  see: the automatic segmentation has classified most of the 

lesions identified by the radiologist, but some have been missed (false negatives), and some 

non-lesion tissue has been wrongly classified as lesion (false positives). 

Xuan et al. [73] used the segmentation of compressed medical images as a method of 

quantifying the effects of compression loss on a typical medical image processing task. They 

compared the binary segmentations of original and compressed images, and used a percent- 

age of misclassified pixels as the metric. A more sophisticated measure is the similarity 

index defined by Zijdenbos et al. [75, 741. Consider a binary segmentation as a set A con- 

taining the pixels considered to  belong to  the classification. Then the similarity of two 

segmentations A1 and A2 is given by a real number S E {O. . l )  defined by 

This provides a simple numerical measure by which the quality of segmentations can be 

compared; for instance, the similarity index of the two images in Figure 4.1 is 0.63. This 
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Figure 4.1: Binary lesion segmentations of slice 17. (a) Manual. (b) Automatic. The 
similarity index between these segmentation slices is 0.63. 

definition applies equally to three-dimensional segmentations. For an objective image quality 

metric, we will calculate the similarity of the automated segmentation of the volume data 

with the gold standard provided by the radiologist. While it is difficult to  interpret a 

similarity index in isolation, it is a useful means to compare two segmentations. 

4.2 Baseline Results 

4.2.1 Segmentationofthe Raw Data 

The data set used for this work was acquired in London, Ontario for the MS/MRI Study 

Group at the University of British Columbia 1481. It is a dual echo MRI sequence consisting 

of 27 PD and T2 weighted slices of 256 x 256 voxels per slice, with a slice thickness of 5 mm 

and no inter-slice gap. The raw data was stored at 16 bpp, but information was contained 

in only 12 of the 16 bits; furthermore, the data was scaled linearly to 8 bpp and supplied in 

that form. Thus the original data set occupied 6.75 MB of storage space; the scaled data 

occupied 3.375 MB. 

The scaled data was segmented using the semi-automatic method described above. The 

final lesion segmentation in each case was performed only for the middle slices 11 through 
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Figure 4.2: Similarity indices for each slice of the semi-automatic lesion segmentation with 
respect to the manual lesion segmentation. 

0.8 9 I 1 I I r 1 I 

20, which contain the majority of the lesion tissue, in order to  reduce processing time. The 

similarity index for this ten-slice volume with respect to the manual segmentation is 0.51; 

the individual slices' similarity indices are plotted in Figure 4.2. This raw-data segmentation 

represents the standard against which we will compare the performance on data that has 

undergone lossy compression. We expect that the distortion introduced into the data as the 

compression ratio increases will be reflected by a decrease in the similarity index measured 

between the resulting segmentation and the manually generated gold standard. 

0.7 

4.2.2 Segmentation of the Compressed Data 

Raw 8 bpp - 
- 

In Section 3.4.3, we saw that lossy compression introduces distortion such as blurring of 

image detail and edge artifacts. Since the semi-automatic segmentation is based on the 

intensities of pixels representing various tissue types, the segmentation of data compressed 

at low bit rates is affected by this distortion. Changes in the size and shape of the segmented 

lesions, as well as misclassification of lesion and other tissue types, reduce the similarity 

between the semi-automatic segmentation and the manual segmentation. 
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Figure 4.3: PSNR of EZW' compressed MRI slices, reconstructed at 0.25 bpp and 0.125 

~ P P .  

The image volume was compressed slice-by-slice, using the EZW' implementation de- 

scribed in Chapter 3. Using the compression ratios and image qualities described in [64] as 

a guide, we chose to  reconstruct the slices at 0.25 bpp and at 0.125 bpp. Examples of these 

reconstructed images were shown in Figure 3.12 (d) and (e). The resulting PSNR of each 

slice is plotted in Figure 4.3. At both bit rates and for both the PD and T2 weighted data, 

there is a trend for the PSNR of the reconstructed slices to increase as the slice number 

increases. This can be explained by the greater amount of edges and details present in the 

lower slices, where there is less smooth brain tissue; and by the decrease in cross-sectional 

head area near the top slices. The effect is more pronounced for the PD weighted data 

set, perhaps because the brain tissues contain less contrast than the T2 weighted data. For 

purposes of comparison, the data was also compressed with JPEG at about 0.27 bpp. 

The reconstructed image volumes were preprocessed and segmented as described above. 

The segmentation of the slice 17 is shown in Figure 4.4. The lesion segmentation obtained 

using the 0.25 bpp EZW1-compressed data visually resembles that of both the segmentation 

of the raw data and the manual segmentation, though some detected lesions have changed 
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Figure 4.4: Segmentations of slice 17. (a) Manual segmentation; segmentations of the EZW1- 
compressed data set reconstructed (b) at 0.25 bpp, and (c) at 0.125 bpp; (d) segmentation 
of the JPEG-compressed data set reconstructed at 0.27 bpp. Slice similarity indices are (b) 
0.60, (c) 0.20, and (d) 0.52. 
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Table 4.1: Similarity indices for slices 11 through 20 of the automatic lesion segmentations 
of raw and compressed data, with respect to  the manual segmentation. 

Data Set I Similarity I 

EZW' 0.25 bpp 0.438 
JPEG 0.27 bpp 0.404 

in shape, and others have disappeared altogether. The segmentation of the 0.125 bpp data 

is very distorted, with a large amount of falsely identified lesion. JPEG compression at 0.27 

bpp resulted in a segmentation slightly worse than that obtained using EZW' compression 

at 0.25 bpp. The degree of distortion seen in the images is reflected in their similarity 

indices with respect to  the radiologist's manual segmentation: 0.60 and 0.20 for the EZW1- 

compressed images, and 0.52 for the JPEG-compressed image. 

The similarity indices for the volume segmentations are given in Table 4.1, and the 

individual slice similarities are plotted in Figure 4.5. The segmentation similarity does not 

suffer much as a result of the EZW' compression at 0.25 bpp; as shown in Table 4.1, the 

compression results in a decrease in volume similarity by about 14 per cent with respect to  

the segmentation of the raw data. The JPEG compression at about the same rate results 

in a reduction of the volume similarity index by about 20 per cent. EZW' compression at  

0.125 bpp, however, results in a similarity reduction of about 74 per cent. 

A bit rate of 0.25 bpp represents a compression ratio of 32:l over the scaled 8 bpp 

data, or 64:l over the raw data format. As we have seen, such compression ratios afford 

an acceptable reduction in storage space for data sets of the size we are considering. For 

instance, at 0.25 bpp, the MRI volume used in this work was stored using only 108 kb, which 

could be transmitted over a 9600 bps modem link in about 90 seconds. Thus, our goal in 

this thesis is to  find a way of improving the quality of the images reconstructed at  bit rates 

on the order of 0.25 bpp, as measured by segmentation similarity; ideally, the improved 

similarity indices would approach those obtained using the raw data set. Since the EZW' 

compression algorithm we have implemented results in better reconstructed image quality 

than JPEG compression at similar bit rates, the focus of our efforts will be EZW'. 
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Figure 4.5: Similarity index for each slice of the raw, EZW' compressed, and JPEG com- 
pressed semi-automatic segmentations with respect to  the manual segmentation. 
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4.3 Adaptation 

We have seen that both redundancy and irrelevancy are exploited by the EZW compression 

scheme. Redundancy in an image is reduced by the efficient energy packing of the wave- 

let transform, prediction of the regions of insignificant coefficient values in the transform, 

and entropy coding of the symbol stream used to transmit the information. Irrelevancy 

is exploited by ordering the transmission of coefficients in such a manner that the most 

significant information required for salient feature reconstruction is transmitted first, and 

by using an embedded code that allows for early termination of the encoded bit stream and 

reconstruction of a useful image. In this section we discuss approaches to  improving the 

performance of the EZW' compression system, by identifying and exploiting other forms of 

redundancy and irrelevancy in our data. 

4.3.1 Inter-Slice Correlation 

The 3-dimensional volume data set produced using computerized tomography is similar to  

video data that consists of a sequence of 2-dimensional images (whose third dimension is 

time). Compression of such video sequences takes advantage of the inter-frame redundancy 

present in the images by coding, for instance, only the difference between two frames, or 

by predicting the motion of objects in the scene from frame to frame. Such techniques are 

used, for example, in the MPEG video coding standard [3]; this is not suitable for MRI 

data, which does not contain the static backgrounds or object movement found in video 

sequences. 

Another technique that can be used to  exploit inter-frame redundancy is to  extend 

the decorrelation transformation performed on the image (such as the DCT or Wavelet 

transform) to  3 dimensions. Chen et al. [13] used subband coding with the wavelet transform 

in 3 dimensions combined with adaptive quantization based on the iterated conditional 

modes (ICM) algorithm [9] to compress MR images of the head, with little subjective loss 

of clinical detail. This initial study did not present detailed rate or distortion figures, nor 

did it discuss the implementation consequences of processing the data in 3D. More recent 

research [68] has shown that while gains can be realized for very high-resolution data, almost 

no improvement resulted when using data with large slice thickness or gap, such as the data 

used for this research. The correlation between adjacent MR images acquired with a large 

inter-slice gap (such as the 5 mm slice thickness of our data) is not great enough to warrant 
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either prediction or 3-dimensional transforms. 

4.3.2 Multispectral Compression 

Just as there may be similar features in adjacent slices in an image volume, slices in a 

multispectral image set may be correlated. Hu et al. [28] used VQ to compress multispectral 

MRI images; the code vectors included pixels in the different echo sequences of the same 

slice, as well as within the slices themselves. In effect, this form of compression implements 

a simple tissue segmentation, since the code vectors tend to classify the tissue types across 

the spectra. However, the results showed only a slight gain in compression performance for 

images outside the training set. 

Markas and Reif [46] used wavelet-based compression on large satellite image data sets 

containing many spectra, which are analogous to the multispectral data in MRI [67]. They 

removed spectral redundancy in the data by performing a decorrelating transform along the 

spectral dimension. This approach is valid only if there are many different spectral images 

in the data set; the satellite images compressed using this technique contained 8 different 

spectra. Typically, MRI data sets contain only two or three different echo sequences, and 

so this method is not suitable. 

4.3.3 Band-Specific Thresholds in EZW 

Due to  the multiresolution nature of the wavelet transform, each individual subband con- 

tains spatial and frequency information about the original image at  various scales. We 

supposed that EZW compression performance, as measured by segmentation of compressed 

images, might be improved by using different threshold values Ti for different subbands. In 

particular, if the information encoding the lesions in the images is concentrated in certain 

wavelet subbands, then by lowering the value of Ti when coding these bands, we could im- 

prove the the reconstruction of lesions in the images at  the expense of other features whose 

energy is found in other bands, resulting in an improved segmentation similarity. 

We proposed adapting a technique described by Safranek and Johnston [59] in which 

noise of known increasing energy was added to  each band of a subband decomposition in 

turn, and the quality of the resulting reconstruction was measured subjectively, until it 

was deemed noticeable. Our proposed method would modify the zerotree threshold used 

to code each subband of the wavelet decomposition and then measure the quality of the 
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reconstructed image using the segmentation similarity metric. After performing this test 

on each subband, we would have a means of determining the relative importance of the 

coefficients in each band with respect to  our quality measure, and therefore this information 

could be used to  adapt the EZW algorithm for our application. 

We explored this possibility with a simple change to  the EZW' coder. After producing the 

wavelet transform of the image, the coefficients of each band were scaled by some factor to  

alter their magnitudes. Since EZW determines coefficient significance based on magnitude 

(with respect to threshold Ti), this scaling should have the same effect as changing the 

threshold in each band. After decoding, the coefficients were scaled back down by the same 

factor as was applied before coding. Thus, the order in which the coefficients were coded 

was changed without affecting their values. However, this method did not produce the 

desired improvement in reconstruction quality. Figure 4.6 shows the effects of using a lower 

threshold in two different bands, by scaling each coefficient in the band by a factor of 10. 

In (c), the coefficients in bands HL2, HH2, and LH2 were scaled; in (d), the coefficients 

in the three high-pass bands HLo, HHo, and LHo were scaled. In both cases, the overall 

reconstruction quality is reduced without a corresponding improvement in the quality of 

any salient features. 

Our experiments suggest that further research into the spatial and frequency charac- 

teristics of lesions in the data, and into the response of the wavelet filter banks used for 

the subband decompositions, is required to  determine whether this approach holds promise; 

such research is beyond the scope of this thesis. 
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Figure 4.6: Results of using band-specific thresholds in EZW'. (a) The original image. (b) 
Image reconstructed at 0.25 bpp using conventional EZW'. (c) Image reconstructed at 0.25 
bpp with coefficients in level-2 bands scaled by a factor of 10. (d) Image reconstructed at 
0.25 bpp with coefficients in level-0 bands scaled by a factor of 10. 



Chapter 5 

Region-Based Compression 

In this chapter, methods are presented that exploit spatial information about the significance 

of three-dimensional regions in the data set to  improve compression performance. 

5.1 Region-Based Coding 

5.1.1 Image Partition 

Various spatial regions of our image volumes are more "important" than others, with respect 

to  medical imaging applications such as brain tissue segmentation. As we have seen, the 

segmentation procedure requires the image portion outside the brain to be masked out to  

improve the algorithm's performance. Thus, we have available a simple partition of the 

3-dimensional volume image into two disjoint images, namely the regions inside and outside 

the brain contour. Figure 5.1 depicts the 27 slices of the brain mask for the sample MR 

volume used in this work; the corresponding PD-weighted slices were shown in Figure 1.1. 

Let us consider a w-bit square m x m pixel image as an matrix A of integral values 

a;,j E {0..2" - 1) with i, j E {O..m - 1). A binary mask of A can be represented by a set K 

containing coordinates of pixels in A. K can be used to partition the image into two disjoint 

subimages: the interior subimage of A with respect to  mask I< is the image B defined by 

a;,j if (i, j) E K b; . = { 0 otherwise 
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Figure 5.1: The 27 slices of the sample MRI volume brain mask. 
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and the exterior subimage is an image C given by 

ai,j if (i, j )  $! A' c; . = { 0 otherwise 

Note that the original image can be obtained by summing the interior and exterior subim- 

ages. 

The simplest way to  take advantage of the brain contour for compression is to  discard 

the exterior subimage of each original slice before compressing the volume; in this way, few 

bits are expended compressing less important information. Similar techniques have been 

used previously [14, 281. However, this method is inflexible: once the exterior information 

has been masked out, it is irrevocably lost. Our solution provides for compressing regions 

of differing significance with a range of bit rates, so that each region can be reconstructed 

with an appropriate amount of detail. To do this, we compress the volume data as two 

separate bit streams using different bit rates, a higher rate for the more important data 

inside the brain contour, and a lower rate for the less important data outside the contour. 

For transmission applications, the bit streams could be multiplexed, while for archival appli- 

cations, the streams could be stored in separate files. Both applications allow for flexibility 

in controlling the bit rates used in reconstructing each of the regions: for instance, when 

retrieving such an encoded image from disk, the decoder could specify the desired bit rate 

for each region, and read only the minimum quantity of data in each case. The embedded 

coder allows for complete flexibility with regard to specifying a desired bit rate. 

5.1.2 Spatial-Domain Partition 

The straightforward way to split and code the separate regions is to use a modification of 

the simple approach of removing the pixels outside the brain region before compressing; 

instead of discarding the exterior data, it is compressed and stored along with the interior 

data. This approach is illustrated in Figure 5.2, where (c) and (d) show the interior and 

exterior subimages which are compressed separately using conventional EZW'. The bit rates 

at which the two subimages are decoded can be controlled to determine the relative qualities 

of the regions. On decompression, the two subimages are fused by adding them together. 
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Figure 5.2: Subimage partition in the spatial domain. The original slice 17 (a), and its brain 
mask (b); the interior (c) and exterior (d) subimages resulting from the application of the 
mask to  the original image. 
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5.1.3 Transform-Domain Partition 

As we have seen, traditional subband compression methods apply different coding parame- 

ters to  each frequency band to take advantage of the bands7 varying characteristics; but the 

same parameters are used across the whole spatial extent of each band. Here we propose a 

new approach by which spatial regions of the data can be coded at different bit rates, across 

the whole frequency domain. 

We have seen that the coefficients of the wavelet transform represent both both spa- 

tial and frequency information. The spatial localization allows us to identify coefficients 

in each subband corresponding to the spatial regions we have identified in the original vol- 

ume, thereby permitting application of the partitioning mask in the wavelet domain. The 

proposed masking technique consists of the following steps: 

Apply the wavelet transform to the image, 

Modify the brain mask to  cover corresponding coefficients in each subband, 

Partition the coefficient image using the transformed mask, and 

Code each partition separately (at different rates) by applying the EZW' coder to  the 

individual coefficient subimages. 

The two decoded images can be recombined by summing them. This is a special case of 

the wavelet-based method for image fusion proposed by Li et al. [44], but since in our case the 

two images form a partition of the coefficients, it is not necessary to discard any information 

from either image when performing this fusion. The masking technique is illustrated in 

Figure 5.3. Clearly, both transform images (c) and (d) still exhibit the similarity between 

scales that is exploited by the EZW' coder. 

5.1.4 Region Bit Rate and PSNR 

To code the image at an overall bit rate of R bpp using the region-based EZW' coders, we 

must determine the number of bits with which to  code the interior and exterior subimages; 

let us call these quantities b; and be respectively. Let us define a real-valued parameter 

p E [0, 11, which we will call the importance ratio of the interior subimage with respect to  

the whole m x m pixel image, as the ratio of the number of bits used to code the subimage 

to the number of bits used to code the whole image, p = b;/(b; + be). Since Rm2 = b; + be 
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Figure 5.3: Subimage partition in the transform domain. (a) Wavelet transform of slice 16. 
(b) Brain mask modified using the wmask operator to  cover transform subbands. Wavelet 
coefficients corresponding to  (a) interior and (b) exterior subimages. 
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then, given an importance parameter p, we can calculate b; = pRm2 and be = (1 - p)Rm2. 

If K is the image mask, then the bit rates used to code the interior and exterior data are 

given by r; = b;/(K( and T ,  = b,/(m2 - (KO,  respectively. 

When coding regions at different bit rates, it will be useful to  measure the reconstruction 

quality of the image data within a given region. The definition of PSNR given in Equation 2.2 

extends naturally to  the measurement of the quality of a region of an image. Again, let f 

be the original and j the distorted image, and let li be a set of pixels defining a region of 

interest. The MSE of the region K in f^ with respect to f is defined by 

Similarly, the PSNR of the region K is defined by 

J max PSNRjy = 10 log,, - 
0;. 

5.2 Volume Bit Rate Allocation 

The conventional EZW' coder operates on single image slices, and so, to  code a volume 

image, we would code each slice individually. However, we can use the information about 

the spatial distribution of important information across the volume to code the slices more 

intelligently. For instance, to  achieve compression at a particular bit rate calculated over 

the whole volume, conventionally each slice is compressed at that rate. As we have seen in 

Figure 4.3, the quality of each slice coded conventionally at a fixed bit rate differs across the 

volume; ideally, the bit rate per slice should be adjusted so that more bits are used to  code 

more difficult slices. However, slices in the middle of the scan typically contain more brain 

tissue, while those lower in the head contain a greater quantity of irrelevant information 

which may be harder t o  compress. Therefore, in this section we introduce a new method 

for allocating bits across the image volume which re-uses the information provided by the 

brain mask with the goal of equalizing the bit rate (and PSNR) of the brain tissue region 

in each slice across the volume. 

The number of pixels in each interior subimage defines a relative importance to the slice 

data, and can be used to  allocate bits proportionally among the slices. Let R be the desired 

bit rate for the volume. Let n be the number of slices in the volume, and assume each slice is 

square, with m2 pixels per slice. Again, let p be the proportion of the total bit budget to  be 
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allocated t o  the more important interior voxels. Finally, let k be the proportion of interior 

voxels to  the total number of voxels in the data set, i.e. for volume mask I { ,  k = I ~ l l n m ~ .  

RnrnC2 is the total number of bits to be used for the volume, so 

is the bit rate for interior data, and 

is the bit rate for exterior data. The number of bits used to code the subimages of each 

slice can be determined by multiplying the bit rate R; or Re by the number of pixels in 

the corresponding region; so if the mask for slice j contains II{jl pixels, the interior image 

should be be coded with b; = RiIKjl bits, and the exterior image should be coded with 

be = ~ , ( m ~  - I I j l )  bits. 

5.3 Implementation 

Both the spatial-region-based (SRB) and transform-region-based (TRB) EZW' systems were 

implemented in WiT. It may be useful to refer to  the igraphs implementing conventional 

EZW' in Chapter 3. Our implementations code the interior and exterior bit streams sepa- 

rately, writing them to two files; the decoder accesses these two files to  read the bit streams 

necessary to reconstruct the interior and exterior subimages, before fusing them to obtain 

the final reconstruction. In a transmission application, we envision multiplexing the two bit 

streams to  allow progressive transmission of the images. 

In addition to  the choice of filter and number of levels used in the wavelet transform, the 

importance ratio p and the overall desired bit rate R comprise the user-specified parameters 

required to  control the operation of the coder and decoder. The brain mask is input as an 

image containing nonzero pixels in each interior voxel position, and zeroes in the exterior 

voxels. The mask size statistics are calculated by counting the nonzero pixels in each slice 

of the mask, and in the whole volume. Once the mask size ratio k has been determined, the 

interior and exterior overall bit rates R; and Re are calculated. The coder then operates 

on each slice of the volume in sequence. The number of bits used to code the interior and 

exterior subimage of each slice, b; and be, are calculated from the slice's mask size and the 

interior and exterior bit rates, and are specified as parameters to the EZW' coder or decoder. 
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Figure 5.4: WiT igraph to  code a single slice using SRB-EZW'. 

5.3.1 S p a t i a l  Reg ion -Based  E Z W '  (SRB-EZW') 

Coder 

The igraph depicted in Figure 5.4 performs the compression of a single slice using the SRB- 

EZW' technique. The image and brain mask are read from files and are each passed to 

two aluOp operators, which apply the mask to the image and produce the interior and 

exterior subimages. Each subimage is coded individually using conventional EZW', using 

the wTransform and ezwcompress operators. Two files are created, containing the interior 

subimage and exterior subimage data. 

Decoder 

The decoder, shown in Figure 5.5, decodes the interior and exterior bit streams using two 

ztexpand operators, each with the desired bit budget specified as a parameter. The interior 

and exterior subimages are decompressed using the conventional EZW' technique, and the 

two reconstructed images are summed to produce the final image. 

5.3.2 T r a n s f o r m  Region-Based E Z  W' ( T R B - E Z W ' )  

Coder 

The igraph depicted in Figure 5.6 performs the compression of a single slice using TRB- 

EZW'. The image is read and transformed using  transform. The wmask operator, as 
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Figure 5.5: WiT igraph to  reconstruct a single slice coded with SRB-EZW'. 

Figure 5.6: WiT igraph to  code a single slice using TRB-EZW'. 
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Table 5.1: The wmask operator. 

Inputs: 
Parameters: 
Outputs: 

Figure 5.7: WiT igraph to reconstruct a single slice coded with TRB-EZW'. 

ztexpand: in aluOp wavelet xform #1 
unaryOp display 
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specified in Table 5.1, is used to transform the slice mask to cover the coefficients in each 

subband. This is performed by performing a 2:l decimation of the mask, copying the result 

into the three coarser-scale subbands, and then repeating the process until the low-pass 

band is reached. The subband mask is then applied to  the transformed image using aluOp 
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levels 

maskout  
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maxBits: 16384 Coif4 
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imageMean 
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operators with a simple conditional expression to  include or exclude each coefficient based 

Image brain mask. 
Number of scales in the transform. 
Transform brain mask. 

unaryOp: + name: reconstructed 
&bit unsigned 

on the corresponding mask pixel value; this produces the interior and exterior subimages. 

calc display #1 

exterior.zt 
maxBits: 1024 11: L - 

expression: A + B name: totalBits 

The two subimages are compressed using ezwcornpress operators that take the calculated 

values of b; and be as parameters. 

Decoder 

The decoder, shown in Figure 5.7, decodes the interior and exterior bit streams using two 

ztexpand operators, with the desired bit budget specified as a parameter. To achieve a 

particular overall bit rate given an importance ratio p, the mask size parameter k must be 

known; the bit rates are calculated as described above. The two decoded transform-space 
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images are fused by adding them with the aluOp operator. The inverse wavelet transform is 

then performed on the resulting image, and the image mean is then restored using unary0p.  

The reconstructed image, and the total bits used in its reconstruction, are displayed. 

5.3.3 Overheads 

In conventional EZW', as we have seen, the bit streams coding the wavelet coefficients are 

preceded by a header containing several parameters required by the decoder to correctly op- 

erate on the bit stream. In t he proposed region-based systems, some additional information 

must be transmitted. We have seen that the decoder requires the mask size parameter k in 

order to  correctly calculate the bit rates at which the interior and exterior subimages are 

to be decoded. This parameter must be transmitted for each slice; it can be represented by 

an integer specifying the number of pixels in the slice's mask, since the whole image size is 

known to the decoder. The brain mask itself is not required by the decoder. 

If both interior and exterior bit streams are available in their entirety (for instance, if 

they are stored on a local disk), then arbitrary bit rates can be specified by the decoder, 

and the bit stream segments read in any order before reconstructing the image. However, 

to effect progressive transmission of each slice, the bit streams for the interior and exterior 

subimages must be multiplexed. This requires that the coder and decoder agree on the 

interior and exterior bit rates; thus two values specifying the rates will precede transmission 

of the bit-streams. 

Finally, for the transmission of three-dimensional images, the transmission must include 

a parameter specifying the number of slices in the image. Progressive reconstruction of the 

volume could be implemented by multiplexing the bit streams representing each slice, in 

addition to  the subimage multiplexing we have described. 



Chapter 6 

Experimental Results 

Each slice of our test MRI volume (both PD and T2 weighted) was compressed using region- 

based EZW', using a manually generated brain mask, though equally good or better masks 

recently have been produced automatically [45]. To simulate results a t  various bit rates, we 

first compressed the interior and exterior data of each slice separately at 1 bpp using the 

region-based coders. Due to  the embedded nature of the EZW encoding, we were then able 

to  reconstruct images from these individual bit-stream files a t  any rate less than or equal 

to  1 bpp, in order to simulate coding and decoding or transmission at  various rates. 

6.1 Single Slice Coding 

We have seen that a range of bit rates are possible for the interior and exterior subimages 

while maintaining a fixed overall bit rate. The importance ratio parameter p can be varied to  

jointly control the quality of the two subimages; larger values of p result in an improvement 

in the quality of the interior subimage at the expense of the exterior subimage. Alternatively, 

the interior or exterior bit rate (Ri or Re) could be fixed and p adjusted to control the overall 

bit rate of the image. 

A single slice of the PD-weighted MR volume was coded using region-based EZW' and 

reconstructed at  an overall bit rate of 0.25 bpp. Slice 17, used in this experiment, has a 

brain mask containing 30,676 pixels, or 46.8 per cent of the image area, and so the interior 

and exterior bit rates were calculated using k = 0.468. The resulting interior and exterior 

bit rates are given in Table 6.1. 

The effects of region-based EZW' reconstruction on image quality at an overall bit rate 
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Figure 6.1: Results of SRB-EZW' coding of slice 17. The original image (a) was coded at 
0.25 bpp using (b) the conventional EZW' coder, and the SRB-EZW' coder with (c) p = 1.0, 
(d) p = 0.9, (e) p = 0.7, and (f) p = 0.5. 
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i f )  

Figure 6.2: Results of TRB-EZW' coding of slice 17. The original image (a) was coded at 
0.25 bpp using (b) the conventional EZW' coder, and the TRB-EZW' coder with (c) p = 1.0, 
(d) p = 0.9, (e) p = 0.7, and (f) p = 0.5. ~ 
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Table 6.1: Interior and exterior bit rates used to reconstruct slice 17 (with k = 0.468) using 
region-based EZW' at  0.25 bpp. 

of 0.25 bpp using different values of p are depicted in Figure 6.1 (SRB-EZW') and Fig- 

ure 6.2 (TRB-EZW'). Visually, no improvement in image quality over conventional EZW' 

is apparent in the SRB-EZW' reconstructions, for any of the values of p chosen; when using 

TRB-EZW', however, increased detail in the central brain region is visible in the images 

reconstructed using p = 0.9 and p = 0.7. Restricting our attention to  the quality of fine 

detail in the interior region, the image quality of the TRB-EZW' reconstructions is superior 

to  SRB-EZW' in each case. When p = 0.5 z k, the image quality of TRB-EZW' is similar 

to  that obtained with conventional EZW'; if p < k, the exterior subimage would be of better 

quality than the interior. 

Both SRB-EZW' and TRB-EZW' introduce artifacts in the reconstructed image near 

the location of the brain mask edge. In SRB-EZW', the artifacts appear as irregular bright 

ridges around the brain where the two subimages meet. A partial cross-sectional profile of 

one row of a reconstructed image, in Figure 6.3, shows a large peak in the reconstructed 

signal at the location of the mask edge. These artifacts are caused by the imperfect edge 

reconstruction inherent in lossy wavelet compression. By masking the brain in the spatial 

domain, sharp artificial edges are introduced in both the interior and exterior subimages, 

resulting in artifacts in both reconstructions; when these subimages are summed to obtain 

the final image, the visible artifacts are emphasized. 

The sharp edges introduced in the subimages coded using SRB-EZW' are also responsi- 

ble for the decrease in reconstruction image quality compared to TRB-EZW'. The artificial 

edges in the subimages result in corresponding large-valued coefficients in the wavelet trans- 

form domain. Since EZW' codes the largest coefficients first, more effort is used to code 

the artificial edges at the expense .of the smoother regions of the images. TRB-EZW', by 

partitioning the image in the transform domain, avoids the introduction of artificial edges 

in the data, and is able to reconstruct the interior subimage with more detail. 
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Figure 6.3: Partial profile plot of image reconstructed using SRB-EZW'. The artifact ap- 
pears as a sharp peak near the location of the mask edge. 
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Table 6.2: PSNR of brain region of EZW' reconstructions. 

Data Set 

For all values of p, the SRB-EZW' artifacts have a similar appearance and are spatially 

quite localized. In TRB-EZW', however, the artifacts are very pronounced for large values 

of p, but they become less prominent as the value of p decreases. The TRB-EZW' artifacts 

are due to  the the distortion present in the exterior subimage, reconstructed at a very low 

bit rate. 

The quality of the images was evaluated using the PSNR of only the brain region, as 

defined by Equations 5.1 and 5.2. In Table 6.2, the PSNRs of the 3-dimensional brain 

regions are shown for both the PD-weighted and T2-weighted data. Figure 6.4 shows the 

brain-region PSNR for each slice of the PD-weighted data only. Use of region-based EZW' 

results in an improvement in PSNR in the brain region of the image with respect to the 

conventional EZW', with best results obtained using TRB-EZW' with p = 0.7. 

The partitioning of the image and the separate coding of the subimages exact a small 

performance cost. For instance, slice 17, when reconstructed at 0.25 bpp using our conven- 

tional EZW', has a PSNR of 34.3 dB. When reconstructed at the same overall bit rate using 

TRB-EZW' with interior and exterior bit rates of 0.25 bpp (i.e. p = k = 0.468), the PSNR 

decreased by about 1.8 dB. However, this decrease in coding performance is outweighed by 

the gain possible by coding the exterior and interior at different rates. 

6.2 Volume Coding and Segmentation Similarity 

The size in pixels of each slice of the manually outlined brain mask is plotted in Figure 6.6; 

the entire mask contains 550,315 voxels, representing 31.1 per cent of the voxels in the whole 

volume. For comparison with our standard EZW' compressed data set, we reconstructed 

the data set a t  0.25 bpp in total. The graph in Figure 6.7 plots the interior and exterior 

bit rates required to achieve an overall bit rate of 0.25 bpp using this mask (k = 0.311) for 

values of p, the proportion of interior data importance, from 0 to  1. 
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Figure 6.4: Brain region PSNR of each slice of the PD-weighted reconstructions using EZW 
and EZW'. 

The volume was reconstructed at 0.25 bpp using TRB-EZW' with importance ratios of 

p = 0.9 and p = 0.7 (i.e. with 90 and 70 per cent of the total bit budget allocated to  the 

interior voxels), based on the results achieved with these values of p with single-slice coding. 

For p = 0.9, this results in a bit rate of 0.0363 bpp for the exterior data and 0.723 bpp for 

the interior data, as shown in Figure 6.7. Some of the reconstructed images are shown in 

Figure 6.8. For p = 0.7, the interior bit rate is decreased to  0.563 bpp, while the exterior 

rate is increased to 0.109 bpp.   he same slices are shown reconstructed at  these rates in 

Figure 6.9. 

The volume was also reconstructed at 0.25 bpp using SRB-EZW'; in this case, an im- 

portance ratio of p = 1.0 was used; since lower values of p resulted in worse image quality 

than TRB-EZW'. In effect, this implements the simple approach to region-based compres- 

sion discussed in Section 5.1.1, where the exterior subimage is discarded altogether. With 

k = 0.311, this results in an interior bit rate of 0.80 bpp; some of these reconstructed images 

are depicted in Figure 6.5. 

As before, the standard ICM segmentation was applied to the reconstructed data sets. 
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Figure 6.5: Slices from overall reconstruction at 0.25 bpp using SRB-EZW': PD-weighted 
slices, left; T2-weighted slices, right. Slice 7, top; slice 12, middle; slice 17, bottom. 
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Figure 6.6: Size of the brain mask in pixels for each slice. 

Interior - 
Exterior ----- 

Figure 6.7: Interior and exterior bit rates required to  achieve an overall bit rate of 0.25 bpp 
using the manually generated brain mask, k = 0.311. 
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Figure 6.8: Slices from overall 0.25 bpp reconstruction, using TRB-EZW' with p = 0.9: 
PD-weighted slices, left; Tz-weighted slices, right. Slice 7, top; slice 12, middle; slice 17, 
bottom. 
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Figure 6.9: Reconstructed slices using TRB-EZW' with p = 0.7: PD-weighted slices, left; 
Tz-weighted slices, right. Slice 7, top; slice 12, middle; slice 17, bottom. 



CHAPTER 6. EXPERIMENTAL RESULTS 

Figure 6.10: Segmentations of the raw data, performed manually by a radiologist (left), and 
automatically using the ICM-based algorithm (right). Slices shown are 16, 17, and 18 (top 
to  bottom). 
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Figure 6.11: Semi-automatic segmentation of volume compressed to 0.25 bpp with conven- 
tional EZW' (left) and SRB-EZW' with p = 1.0 (right). Slices are 16, 17, and 18 (top to 
bottom). 
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Figure 6.12: Semi-automatic segmentation of volume compressed with TRB-EZW' and 
reconstructed a t  0.25 bpp with p = 0.9 (left) and p = 0.7 (right). Slices are 16, 17, and 18 
(top to  bottom). 
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Table 6.3: Similarity indices for slices 11 through 20 of the automatic lesion segmentations 
of raw and compressed data, with respect to  the manual segmentation. 

Data Set I Similarity 1 
EZW' 0.25 bpp 0.438 

0.468 

Figure 6.10 depicts slices 16, 17, and 18 of the radiologist's manual segmentation and the 

semi-automated segmentation of the raw data. For comparison, Figure 6.11 shows the same 

slices from the segmentations of data compressed to 0.25 bpp using conventional EZW', and 

SRB-EZW' with p = 1.0. These two segmentations, which are visually very similar, classify 

most of the large lesions well. While they lack many of the smaller lesion areas detected 

in the segmentation of the raw data, the presence or absence of such small lesions does not 

greatly affect the similarity measure. 

Figure 6.12 shows the segmentations of the same three slices of the images reconstructed 

using TRB-EZW' with p = 0.9 and p = 0.7. Although the lesion areas inside the brain have 

again been classified quite well, large areas of bright edge artifacts have been rnisclassified 

as lesion, especially in the volume reconstructed using p = 0.9. When p = 0.7, these false 

positives are considerably reduced. 

The results of the similarity comparisons with the radiologist's segmentation are shown 

in Table 6.3. We see that compression using conventional EZW' at 0.25 bpp resulted in 

a 14 per cent decrease in segmentation similarity. Compression using TRB-EZW' with 

p = 0.7 regained half the loss, with an improvement of about 7 per cent over conventional 

EZW'. The artifacts introduced using TRB-EZW' with p = 0.9 resulted in the similarity 

diminishing by more than 30 per cent from the raw segmentation results, and by more than 

20 per cent from the conventional EZW' results. Use of SRB-EZW' with p = 1.0, while 

giving results very similar to those achieved using TRB-EZW' with p = 0.7, required all 

exterior subimage data to  be sacrificed. The similarity indices of the individual slices in 

each of the segmentations are plotted in Figure 6.14. 

Comparing Tables 6.2 and 6.3, we see that the brain-region PSNR was not a very good 

predictor of segmentation performance. While the quality of the TRB-EZW' reconstructions 

using p = 0.9 resulted in a slight improvement in PSNR over conventional EZW', the 
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Figure 6.13: Slice similarity indices for SRB-EZW', p = 1.0. 

segmentation similarity decreased considerably. Furthermore, while the brain-region PSNR 

of the SRB-EZW' (p = 1.0) and TRB-EZW' (p = 0.7) reconstructions differed by several 

dB, the segmentation similarities were very close. 

6.3 Progressive Transmission 

As a final illustration of region-based EZW', the progressive transmission of one slice us- 

ing TRB-EZW' is depicted in Figure 6.15. As in the previous illustration of progressive 

transmission in Figure 2.2, the overall bit rate in each successive image in the sequence is 

equal to  four times that of the preceding frame. Since we have chosen p = 0.7 in this ex- 

ample, the interior subimage is transmitted with higher fidelity than the exterior. It would 

be possible to  change p during the image transmission; for instance, when the quality of 

the exterior subimage becomes sufficiently high, p could be increased to  1.0 so that all the 

remaining data is used to  refine the quality of the interior subimage alone. Such a change in 

the importance ratio would require an additional communication between the receiver and 

transmitter. 
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Figure 6.14: Slice similarity indices for TRB-EZW': (a) p = 0.9; (b) p = 0.7. 
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Figure 6.15: Illustration of progressive image reconstruction using TRB-EZW'. Image rep- 
resentations using (a) 512 bits, (b) 2048 bits, (c) 8192 bits, (d) 32768 bits, (e) 131072 bits, 
and ( f )  the original image containing 524288 bits. 



Chapter 7 

Summary and Conclusions 

7.1 Review 

In this thesis, we have adapted a general, state of the art still-image compression system, 

EZW', for use with three-dimensional MR image volumes, exploiting characteristics of both 

the data being compressed and the task that is applied to  the data. 

We have devised a new method for incorporating information about the spatial location 

of important regions in the three-dimensional volume in the compression scheme, in order 

to improve the reconstruction quality of the important regions at the expense of the less 

important regions. We have implemented two techniques for applying this information to 

the image compression process, one in the spatial domain and one in the transform domain. 

We have also devised a new method for varying the amount of compression performed across 

the image volume, based on the relative sizes of the important regions in each slice. 

The results of using the region-based EZW' compression techniques on a sample MRI 

volume were compared both with the conventional EZW' and with standard JPEG image 

compression results. In addition to  comparing the subjective image quality and PSNR of 

the reconstructed images, we have devised a new task-oriented image quality measurement 

based on the semi-automatic segmentation of multiple sclerosis lesions from these brain MR 

images, and the similarity of the segmentation to the results of a similar task performed 

manually by radiologists. 

We have found that our transform-region-based method (TRB-EZW'), which performs 
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the image partition in the wavelet-transform domain, provides the best image quality mea- 

sured subjectively, by PSNR, and using the segmentation similarity metric, while still pro- 

viding variable-quality reconstruction of the image regions. 

7.2 Future Work 

In this thesis, we have shown that an improvement in image reconstruction quality can be 

achieved using region-based techniques. However, there exist considerable opportunities for 

future research to  extend the methods used in various ways. 

We have restricted our attention to  MR imagery, but a variety of other medical imaging 

modalities could benefit from our methods. In CT images, for instance, it is the edges, 

not the smoother regions, which hold more information. Edge-detection techniques might 

provide a means for compressing these regions with a higher bit rate than the smooth areas. 

Similarly, our research has been restricted to  MR data sets with a large slice thickness, and 

further investigation is required to  determine how small the slice thickness must be before 

it becomes advantageous to  apply 3-dimensional wavelet transform techniques. Finally, we 

have partitioned our MR images into two regions, but our method can be applied to images 

containing multiple regions of varying importance, as might be produced using other imaging 

modalities. In fact, the method is extensible to any class of image in which regions of varying 

importance can be distinguished. 

While we have tested our methods using several different bit rates, we have not deter- 

mined the lowest bit rate it is possible to  achieve while maintaining a reasonable segmenta- 

tion similarity. Similarly, further research is required to  determine the optimal value of the 

importance parameter p. Furthermore, we have not addressed the issue of determining just 

how low the similarity index can fall before rendering a segmentation unusable for lesion 

quantification. 

The choice of filters is an important aspect of tuning any wavelet-based compression 

system. While we have restricted our research to comparing performance using a 4-tap 

"pseudo-Coiflet" filter, further work is needed to  determine if overall performance can be 

improved with the use of other filters. Recently, Egger and Li [22] have shown that the 

use of asymmetrical filter banks can improve compression performance in subband systems, 

with a considerable reduction in ringing artifacts. The application of these asymmetrical 

filter banks might help reduce the distortion found near the mask edge in our region-based 
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EZW' reconstructions. 

While we have shown the practical benefits of of our region-based scheme, additional 

work is needed to implement a real-time system with bit-stream multiplexing as we have 

described. Performance optimizations are required to achieve the processing speed neces- 

sary for teleradiology applications. In this context, it would be useful to explore the use of 

different "qualities of service", such as described in [ 2 ] ,  to  transmit bit streams of differing 

importance. Finally, the basic compression performance of our EZW' system could be im- 

proved, both by removing the simplifications made in our implementation, and by applying 

recent research results [60, 611 which have improved on EZW itself. 
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