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Abstract 

Field Programmable Gate Arrays are growing steadily in use and have already 

change the way designers build digital circuits. With their low cost and very fast 

turnaround time, they are especially well suited for prototyping new designs. However, the 

general nature of FPGAs implies a circuit density much lower than custom designs. This 

currently limits the size of the circuits that can be implemented on a single FPGA to 40000 

equivalent gates . Boards of FPGAs are used, but their speed remains slow, because of the 

large capacitance of the inter-chip routing. 

This thesis investigates the use of Wafer Scale Technology to expand the size of 

FPGAs to 3 million gates for a 200mrn wafer. The defect avoidance proposed uses the 

laser link technology to restructure the circuit in a square array. Two different techniques, 

the row-column substitution and the combination of cell by cell and column substitution, 

are analyzed. The first one is proposed to increase the yield of small FPGAs while the 

second one is designed to restructure wafer scale chips. Simulations to show the effect of 

the restructuring on the chip yield are presented. 

The proposed design is described and the defect avoidance structures explained in 

detail. A new kind of device, called the testable laser link, has been designed and tested. Its 

application in the wafer scale FPGA is presented, both in the power distribution and the 

reconfiguration. Two chip sized test vehicles incorporating the restructuring devices 

described in the thesis have been successfully fabricated and the results of different tests of 

cells and signal routing are analyzed. These indicate that a wafer scale FPGA would be 

feasible with the described techniques. 
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Chapter 1 

Introduction 

1.1 General 

Field Programmable Gate Arrays (FPGAs) have progressed rapidly since their 

introduction in 1985, and are now widely employed by designers, especially as a cheap 

and fast means to implement new designs. An FPGA is basically an array of uncommitted 

programmable logic blocks that can perform different digital functions. Those blocks can 

be interconnected in different ways by use of a programmable routing structure. Figure 1.1 

gives a block diagram of a typical FPGA. With their very low development cost and 

turnaround time for implementing thousands of logic gates, FPGAs provide a new 

capability which has changed the future of digital design. The largest FPGAs have an 

equivalent gate count of approximately 40,000 gates [I]. With the large amount of routing 

involved in an FPGA design, however, usually around 70%-90% [2], it is difficult to 

increase the cell count and, therefore, the design complexity of a single chip. Large FPGAs 



are also very expensive, mainly because of their low yields. One way to increase the gate 

count of a single FPGA is to use a denser technology, but still the amount of routing is an 

obstacle to very high gate count FPGAs. Arrays of FPGA chips on a board are used as a 

prototype platform [3], however the delay between the chips remains large compared to 

the delay within the chip. 

Routing 
Channels 

Logic 
Block 

Figure 1.1 FPGA Block Diagram 

While seldom considered, one way to increase the gate count of FPGAs is to 

employ the technique known as Wafer Scale Integration. The chip size of a standard 

design must be kept small in order to achieve reasonable yield, because of the defects 

inherent in any microelectronic fabrication process. One way to counter this problem is to 

use redundancy and defect avoidance. By harvesting and using only the working parts of a 

circuit, it is possible to increase the size of a chip, ultimately to an entire wafer. 

The restructuring technique employed at Simon Fraser University (SFU) is the 

laser link technology, developed at MIT Lincoln Laboratory [4]. By using the power of a 

laser, connections can be made between two metal layers of a microelectronic process and 

the same laser may serve to cut lines, allowing the restructuring of the design. 

This thesis investigates the use of this technique to produce FPGAs of large area 



and very high gate count. The idea of a wafer scale FPGA has already been proposed in 

another paper [5]. A different approach is proposed where the defect avoidance is invisible 

to the user. The focus of this thesis is to solve the interconnection and defect avoidance 

aspects of wafer scale systems. The FPGA cells employed are simple structures which 

would be replaced by more complex cells in a full system. Reasonable estimates indicate 

that in a final system, with a 0.5pm CMOS technology, it would be possible to implement 

an FPGA of approximately 1.5 million equivalent gates on a 150mm wafer, and close to 3 

million on a 200mm wafer, given a yield of 75% for the cells. The same restructuring 

technique can also serve to build smaller FPGAs, in the order of 120 000 equivalent gates 

with an approximate size of 3cm x 3cm. 

The restructuring can also serve to increase the yield of standard FPGAs, by 

providing one or two extra rows in case there is a defect, in the same way dynamic RAM 

chips are reconfigured today. Without increasing the gate count, this technique would be 

useful to reduce dramatically the cost of large FPGAs as in the case of RAM, where the 

number of working chips is increased by a factor of 5 with laser restructuring [12], and 

also provide a means to produce devices of larger areas. 

FPGA designs are very well appropriated to wafer scale implementation. First, 

since FPGAs are arrays of identical cells, they are easier to test and reconfigure than large 

custom circuits; secondly, the FPGA being a reconfigurable system in itself, some of the 

reconfiguration circuitry is already available in the standard design and less overhead is 

needed to allow for reconfiguration. Finally, there is a very good potential market for large 

FPGAs, much better than other wafer scale projects which are very specialized. 



1.2 Applications 

The first application that comes to mind for a wafer scale FPGA is a prototype 

emulator. With their current capacities, standard devices are limited in the designs they can 

implement. Very large devices, such as microprocessors, require a very high gate count 

and therefore very complex and expensive emulators. A wafer scale FPGA would provide 

a cheaper and faster way to simulate those very large designs. 

Another interesting application is for self healing circuits. Not only the circuit but 

also the testing and reconfiguration circuitry could be implemented on the same FPGA. 

This could prove very useful in hard to reach areas or in applications where the hardware 

has to be fault tolerant. FPGA is the technology of choice for a new type of computers 

where instead of programming instructions in a standard hardware, the hardware itself is 

reconfigured to suit the computing requirements. Once again, very large FPGAs would be 

very useful and perform better than a large number of small FPGAs. 

An interesting alternative is to use the defect avoidance techniques of the large 

systems and apply them to moderate size FPGAs to allow much better yield. This 

technique is already used in all the dynamic memory chip and could greatly reduce the 

price of actual high-end FPGAs. 

1.3 Thesis Objectives 

The main objective of this thesis is to show that it is possible to apply the different 

techniques of Wafer Scale Integration to an FPGA design. Those techniques include power 

considerations, redundancy, restructuring, testing and clock distribution. A new kind of 

device to facilitate power testing and distribution is also presented. Different defect 



avoidance techniques are analyzed and simulated to find the best way to restructure 

FPGAs. Different types of redundancy are also analyzed. 

The object of the work is not to build a complete wafer scale system, but rather to 

solve the problems of wafer scale on smaller dimension devices that are easier to work 

with and less expensive. Once the problems have been solved on the smaller devices, the 

increase in size should be relatively straightforward. 

The work presented concentrates on designing a test vehicle to prove the concepts 

and apply them to a wafer scale design. There is a section describing the software 

requirements of a wafer scale FPGA but no extensive work has been done in this area. No 

attempts to optimize the logic nor the routing of FPGAs has been done. Instead, the 

restructuring method developed is general and can be used on different FPGA 

technologies and thus can be optimized by using state of the art logic and routing. 

1.4 Thesis Organization 

Chapter two is a theoretical review of both the Wafer Scale and the FPGA 

technologies. A description of the concepts essential to the understanding of large area 

FPGA systems is presented. 

In chapter three, experiments on the laser link restructuring technique in the Mite1 

1 Spm technology are presented. Work done during the early part of the master on another 

wafer scale test vehicle, the thermal scene simulator, are discussed, with an emphasis on 

the experimental work done with the chips. 

Chapter four addresses the concepts of defect avoidance in FPGAs. Simulations 

performed to find the best restructuring method are analyzed. The design considerations 

involved with building a wafer scale FPGA are studied. The chapter ends with an 



overview of the software needed once a wafer scale system is build, both for testing of 

the hardware and programming of the device. 

Chapter five emphasizes on the experimental work done on the test vehicle. The 

design is presented with each part explained in detail and the experiments on the defect 

avoidance methods exposed. The power distribution and the new device called the 

Testable Power Link are tested and their performance analyzed. The clock time delay, a 

critical parameter for FPGA users, is studied in detail and comparisons between 

HSPICE simulation and the experiments are shown. A ring oscillator was mapped on 

the test vehicle and its performance for different types of restructuring is presented. 

The last chapter concludes by analyzing the feasibility, both technical and 

economical, of the Wafer Scale FPGA. A section on future work is also presented. 



Chapter 2 

Theory of Wafer Scale Integration and 
Field Programmable Gate Arrays 

This chapter deals with the theory background used in conceiving a wafer scale 

field programmable gate array. The first section treats of the wafer scale integration 

technology in general. The second section deals with the theory of the FPGAS, their 

applications and the commercially available products. 

2.1 Wafer Scale Integration 

The main limitation of microelectronic fabrication is presence of production 

defects in the circuits. Only one defect on a chip makes it impossible to use. As the 

technologies get more mature, the defect density decreases but the chips must be kept 

relatively small to ensure sufficient yield. To build a large area chip is virtually impossible 

if there is no way to avoid the defects in the circuit. 



The process of building large chips with the capacity to avoid defective areas is 

called Wafer Scale Integration [6]. The basic idea is that instead of fabricating small chips 

and retaining only those without defects, a very large chip can be built if there is a way to 

bypass the circuitry affected by defective areas. One way to do this is to use redundancy: 

when a defective cell is identified, a spare cell is used to replace it. The challenge is to 

build a circuitry to perform the reconfigurat~on. This circuitry must be as small as possible 

and have very little influence on the operation of the rest of the circuit. 

So it is possible with this technique to increase significantly the size of 

microelectronic circuits. Because of the large amount of transistors on such a large device, 

the technology of choice is CMOS, due to its low power dissipation. But power still 

remains an important issue of wafer scale integration. The distribution of the signal 

throughout a very large device also becomes an issue, especially for the power rails and 

the clock lines. Testing of the different parts of the circuits may also become a problem 

and a circuit allowing the testing of hard to reach cells must be designed. Defect avoidance 

algorithms must be designed to make the best use of the area and maximize the speed of 

the circuits. Those are all aspects that the wafer scale designer must take into account. 

There are two different approaches for the reconfiguration circuitry: active 

switches and permanent switches [6]. 

2.1.1 Active Switches 

Active switches are basically pass transistors or transmission gates. The signals to 

different parts of the circuit can be rerouted by programming those switches. They have 

the advantage to be easily programmable and reconfigured many times. They have 

however many drawbacks. First, they use more space than permanent switches, especially 

the programming circuitry 171; they are also more resistive, thus imposing a longer delay 



on the lines. Because of their large area overhead, they are also more sensitive to defects, 

and the switches themselves can be defective, making the circuit impossible to 

reconfigure. 

2.1.2 Permanent Switches 

Under this classification are different types of switches, such as EPROMs, 

EEPROMs, Laser Programmable Switches and Anti-Fuses. They all have the drawback 

that they are programmable only once (except EEPROMs). But they require less area and 

they offer much better electrical characteristics than active switching. Permanent switches 

are well suited for defect avoidance because once the defects are known, the circuit is 

reconfigured only once. But they do not allow the possibility of self healing. They are also 

much better candidates for the power distribution circuitry, since smaller resistances can 

be achieved with permanent switches. 

2.1.3 Laser Link 

The type of switch used here at SFU is called the Laser Link and has been 

developed at MIT Lincoln Laboratories in the mid-eighties as part of the Restructurable 

VLSI program [4]. The idea is to employ the power of a laser to make connections 

between two metal layers. To this effect, a special structure called the Laser Link is 

needed. It is basically a gateless transistor (see Figure 2.1). In unconnected form the laser 

link has the high impedance of two back to back diodes. A connection is formed by an 

Argon laser focused in the gap between the implant regions. By melting the silicon in the 

gap with a 2 W, 50ps laser pulse focused to 1.2 pm radius spot between the two heavily 

doped regions, the dopant flows across the gap, forming a low resistance connection 

(-IOOR) between the two metal lines. Typically two such "zap" points are made per link. 



The main advantage of this type of structure is that it can be implemented in standard 

CMOS technology since it does not require any additional steps or materials. Of course it 

requires the use of a laser table that can be precisely aligned to allow the laser spot to be 

focused between the active regions. 

2nd Metal: 

pm 2nd Metal Cut Point 

Link Gap: 2pm 
\ 

via 

Contact 

2nd Metal 

In Metal I r 1st Metal: 
22.4 x 3.3 pm 1. 

Figure 2.1 Mitel 1.5p.m CMOS Laser Link 

To successfully reconfigure a design, cuts are made to disconnect certain lines in 

the circuit. This is done by shining the laser on top of the metal line and melting it. To start 

a design, it is necessary to know the different parameters such as laser power and pulse 

duration in order to make a suitable connection in a given technology. The next chapter 

explains the experimental procedure used to extract those parameters for the Mitel 1Spm 

CMOS technology and gives an example of a wafer scale circuit experiment done here at 

SFU. 

2.2 Field Programmable Gate Arrays 

With current technology, it is possible to build large custom designs at relatively 

low cost. However, because of the extensive manufacturing effort, the cost is high for each 



unit unless large volumes are produced. So it becomes really hard and expensive to build a 

prototype. Field Programmable Gate Arrays have emerged as the ultimate solution for low 

cost and fast turnaround prototyping. An FPGA based prototype can be manufactured in 

only minutes and their cost is in the order of $100 for low gate counts [2] .  This is the 

reason why FPGAs have evolved so rapidly from a tiny market four years ago to a very 

large business today. It is predicted that almost 1 billion dollars worth of FPGAs will be 

sold each year by 1996 [2]. 

2.2.1 What is an FPGA? 

The Field Programmable Gate Array is basically an array of elements capable of 

performing logic functions that can be interconnected in a general way. Both the logic 

functions and the interconnections are user programmable. A general FPGA is composed 

of three parts, as seen in Figure 2.2. 

I/0 Cell 

Figure 2.2 Conceptual Simple FPGA 
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The Logic Block contains the logic to implement different functions. It can be as 

simple as a two-input nand gate or be quite complicated, such as look-up tables and flip- 

flops. The interconnection resources are composed of wire segments and programmable 

switches that allow the signals to propagate between the logic blocks and to go outside the 

chips via the UO Cells. These cells are usually composed of multiplexers and buffers to 

connect the pads to the wire segments. There are several ways to program the logic 

functions and the switches to route the signal, including: RAM cells controlling pass 

transistors, anti-fuses, EPROM and EEPROM transistors. 

2.2.2 FPGA Architectures 

In this section, the different architectures used in FPGA design are presented, with 

some comments to their applicability to wafer scale designs. 

Symmetrical architecture: this is the most commonly used, where the logic blocks 

are surrounded by vertical and horizontal channels of routing. This is a very good 

architecture for wafer scale FPGA because it allows bypassing of single cells or entire 

rows. 

Row based architecture: in this type of architecture, the logic blocks are organized 

in rows and the routing resources are disposed between the rows. This architecture is well 

suited for row reconfiguration but may cause some problems in reconfiguring very large 

designs. 

Sea of gates architecture: the logic blocks are all side by side and the routing 

resources are placed on top of them. This causes some problems in most of the 

reconfiguration techniques and thus this architecture is not well suited for wafer scale 

applications. 

Hierarchical PLDs architecture: this is an architecture where instead of having a 



large number of simple logic blocks, there is a small number of programmable logic 

devices(PLDs), which are composed of different logic blocks. This could be an interesting 

architecture to explore for wafer scale integration: for example, memory cells consume 

many gates in some designs in a simple FPGA. Significant gains could be obtained by 

placing blocks of memory throughout the system. It is simpler however to have a 

repetition of the same cell for the reconfiguration. 

2.2.3 FPGA Applications 

FPGAs can be used in all applications that can be performed now by other sorts of 

programmable logic devices. Their ability to be reconfigured on site also gives rise to new 

technologies. Here are some examples of FPGA applications: 

Application-Specific Integrated Circuits (ASICs); being a completely general 

medium for digital logic implementation, FPGAs are particularly well suited for the design 

of ASICs. Some examples include controllers, graphics engines and many 

telecommunication applications. 

Random logic implementation; since the FPGAs have a higher density than PALs 

(Programmable Array Logic), they are a good choice for implementing random logic in 

circuits where speed is not critical. One FPGA can replace ten to twenty PALs and perform 

the same function. FPGAs can also replace advantageously many SSI chips that require a 

lot of area on circuit boards, for "glue" logic. 

Prototyping; FPGAs are almost ideal for prototyping applications. Their low cost 

and the extremely fast turnaround time they offer give them tremendous advantages over 

traditional prototyping methods. This is an area where a very large FPGA would be very 

useful, since the more gate equivalent an FPGA can offer, the larger the circuit it can 

implement. 



FPGA-based Compute engines; this is an all new class of computers where instead 

of fetching instructions in a known hardware, it is the hardware itself which is actually 

reconfigured to perform the task. This increases the performance in the order of 100 times. 

Presently, boards of FPGAs are used for those kinds of computers; Wafer Scale FPGAs 

would increase the performance and capacity of such devices. 

On site reconfiguration of hardware; this is particularly useful for applications that 

may require hardware reconfiguration and repair in hard to reach locations, such as 

satellites. Once again, many FPGAs could be replaced by a wafer scale design. 

2.2.4 Implementation Process 

In order to successfully implement a circuit on an FPGA, an efficient CAD system 

must be used; this system must be able to perform the tasks shown in Figure 2.3. 

The first step is to enter the design. This can be done by any schematic design tool, 

VHDL description or any acceptable format for the CAD tool. Then, the FPGA CAD tools 

have to perform the logic optimization, consisting of modifying the logic expressions 

either for speed or area density. The next step is to perform the technology mapping: it 

consists of dividing the circuit into logic functions that can be realized by the logic block 

of the FPGA used; for example, if the logic block used is a two input nand gate, the whole 

circuit has to be transformed into nand gates. Once again there are two ways to do this: 

either the mapper can optimize the number of logic blocks used or optimize the circuit for 

speed and use more logic blocks. The next step is Placement, where the logic blocks are 

placed to minimize the interconnection delays. Finally, the Routing, which assigns the 

wire segments and switches to connect the logic blocks together. The two final steps of the 

CAD tool may be iterative and it can be necessary to redo the placement if the router is 

unable to successfully route all the connections. These steps can also be repeated to 



optimize the design for speed. 

Initial Design Entry -? 
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Figure 2.3 FPGA Implementation Process 

The last step in the implementation process is the Programming of the FPGA. It 

depends on the programming technology of the FPGA used. For a RAM programmable 

FPGA, only a bit pattern fetched out of a separate memory is sufficient. For other 

technologies, such as anti fuses or EPROMs, an appropriate programming unit must be 

used. 

2.2.5 Commercially Available FPGAs 

Several combinations of architecture, logic block type and programming 

technologies are available on the market [2]. 

The most important is the Xilinx FPGA. The latest generation of Xilinx FPGAs 



uses a RAM programmable symmetrical architecture with look-up table based logic 

blocks. 

Actel offers a row-based design with anti-fuse programming and a multiplexer 

based logic block. Compared to Xilinx FPGAs, the Actel design has a smaller logic block. 

Altera uses the hierarchical approach with EPROM programming while Plessey 

offers sea-of-nand-gates static RAM programmable FPGAs. 

There are other companies that offer different types and technologies. The choice 

of an FPGA depends on the particular application and the speed needed. The CAD tools 

available should also be taken into account when choosing a type of FPGA to use. Each 

company offers its own software but a specific software must be used for each type of 

FPGA and the user can not make a separate choice between the hardware and the 

programming tool. 

2.3 Summary 

The present chapter described the basics of Wafer Scale Integration and FPGAs. 

These are two very wide fields but only succinct information necessary to the 

understanding of the next chapters has been presented. The section on Wafer Scale 

Integration described the types of switches used and presented the type used here, the laser 

link. The section on FPGAs furnished explanations of the different architectures and 

presented designs that are commercially available. 



Chapter 3 

Laser Linking Wafer Scale Integration 

This chapter presents experiments done to extract parameters for laser link devices 

using the Mitel technology as a wafer scale medium; the knowledge of those parameters is 

crucial before any design work can be undertaken. It furnishes also explanations of the 

experiments done on laser linking with the thermal pixel scene simulator, a wafer scale test 

vehicle developed here at SFU. 

3.1 Mitel 1.5pm Technology Parameter Extraction 

3.1.1 Laser Table Setup 

To make the laser links and cuts, a special setup is needed. The first part of this 

setup is the laser. The laser used here at SFU is a 5.0 W Argon laser. Because of the very 

small dimensions of today's microelectronic structures, a very precise table is needed to 



correctly aligned the structure to be processed with the laser. The table uses laser 

interferometry to allow a 0.1 Fm precision in both the horizontal and vertical axes. In order 

to correctly melt the silicon, a short duration (approximately 1 0 0 ~ s )  laser pulse is needed. 

This is achieved by passing the laser beam through an electro-optic shutter. A z-axis 

micropositioner is also used for the remote focusing of the chip. All the equipment is 

controlled via a Windows based software developed here at SFU. This software can be 

used to zap single points or a script file can be used to do batch work. A photograph of the 

laser table setup is shown in Figure 3.1. 

Figure 3.1 Laser Table Setup 
I 

3.1.2 Laser Link Power Calculations 
I 

Figure 3.2 shows a cross section view of the laser link in the Mite1 technology. This 



is in fact a simplified model used to calculate the power required to form the melt pool. 
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Figure 3.2 Cross Section of the Linking Process 

First of all, the vertical temperature distribution from a focused laser spot can be 

approximated by using the formula ([8] page 17 1): 

Where H is the power density, t the time of the pulse, z the depth of penetration, a~ 

the thermal diffusivity and a the radius of the pulse. This formula assumes a constant a~ 

with temperature, which is not really true, but a useful first approximation. 

For silicon ([8] page 174): 
1 

This formula also assumes the light is absorbed at the surface, which is a good 



approximation as the green (5 14nm) Argon light is absorbed by a depth of about 0.3ym. In 

order to calculate the power needed from the laser, the reflectivity at the silicon-silicon 

nitride interface must be calculated, by using: 

nsi=4.2 and nSi3N4=2 [9], then R=0.126. The effect of the oxide between the 

silicon nitride and the silicon is neglected in the calculation. The reflection coefficient of 

the air-Si interface is also needed. This coefficient is R=O. 11. The power absorbed by the 

Si3N4 is given by the Beer-Lambert law ([lo] page 165): 

-2a,z 
P (z) = Poe 

Where a, is the light absorption coefficient for silicon nitride. For argon laser light 

(514nm), al=300 m-' [I l l .  Thus the power density at the surface of the silicon is 

approximately: 

where P,=Laser power. 

Instead of calculating one value only for a specific depth, a graph of the power 

required from the laser pulse in function of the depth of the melt pool is given in Figure 

3.3. This is obtained by solving (3.1) for AT=1680K, the silicon melting point, for laser 

power densities from (3.4) using the typical values for this research of: 



The thickness of the passivation layer is an approximation since the real value is 

unknown. 

The graph shows the power needed is in the order of 2.0 W to create a melt pool 

sufficient to allow the dopants to form a bridge between the two N+ regions, knowing the 

distance between the active region is 2pm and assuming the melt front propagates with the 

same velocity in the vertical and horizontal directions. Experiments show this assumption 

is reasonable. The graph also tells that for a power of about 5.8 W, the melt front reaches 

the substrate below the P-well. Such a high power must be avoided because a connection 

to the substrate results in a non usable link. 

I I I 
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Figure 3.3 Graph of the Power vs. Depth of the Melt Front 

3.1.3 Laser Power Experiments 

The first set of experiment was done to find the power required to have a low 

resistance connection between the active regions. Table 3.1 gives the obtained results. The 

time of the laser pulse is 100 ps; the resistance of five separate connections was averaged. 



After 2.5 W, the resistance starts to saturate. While the resistance is lower at 2.75W, the 

damage is greater and can break the vias of the laser link. The safest power to use is 

2.50W. If the link is long enough, the laser can be zapped at two separate points to reduce 

the resistance of the connection. 

Table 3.1: Resistance of one Zap (Mitel 1.5pm link) 

If the second zap is too close to the first one, or if the second zap is at the same 

location, there is no decrease in resistance. Experiment shows the spots should be at least 

6pm apart to have a significant decrease in resistance. At 2.50 W, a second zap decreased 

the resistance of the link to 1 0 9 9 Q  . The experiments show the resistance of two zaps 

follows a curve vs. the power similar to the curve for the resistance of one zap. 

3.1.4 Laser Link Experiment 

The next experiment consists in doing many links and test the resistance of each of 

them. The zapping pattern can be seen in Figure 3.4. The width of the active regions is 9.9 

pm and the gap between is 2pm (the minimum allowed separation in Mitel 1.5pm 

technology). The first zap is made 1.65 pm from the top and the second at 6.6 pm from the 

first zap. The laser power is 2.50W and the pulse duration is 100ps. 

A third spot in the middle does not decrease the resistance and is thus useless. This 

is because the two melt pools created by the zaps are touching and no gain is made by 

adding an extra zap. The results for 10 links give RaVaage = IO9k5Q . 



Figure 3.4 Position of the Laser Zaps 

A rough rule of thumb to estimate the resistance of links can be deduced from 

experimental data: one zap produces a resistance of 100i2; a 50!2 constant resistance from 

the contact cuts to the N+ region and the implant region is added to the zap resistances. A 

two-zap link will have 50i2 + (100i2 11 100i2) giving a total of 1 0 0 a  A three-zap link has a 

resistance of about 83Q . This shows the third zap, which has little measurable effect, is 

not really creating an additional parallel resistive path. Figure 3.5 is a photograph of two 

laser links, the one on the left has been linked with the method explained above. The laser 

cut on a second metal line can also be seen. 

Figure 3.5 Photograph of the Links 



3.1.5 Laser Cut Experiments 

The power required to cut the aluminum lines must be found. Experiments show 

there is no problem in cutting the 3.3p.m width lines with a laser power higher than 2SW, 

by zapping the line in the middle with a pulse of l00ps and a spot size of 1.2pm FWHM 

(Full Width Half Maximum). Out of a total of approximately 100 cuts made this way, all of 

them showed a resistance higher than 10 M i l  So the best way seems to use the same 

parameters for the cuts and the links. This cutting behavior applies to metal1 and metal2 

lines. In order to cut wider lines, such as power lines, a larger number of zaps is needed. 

The effect of each zap is reduced because of the greater loss of energy due to heat flow. 

Due to the lack of proper test structures, it was hard to evaluate if the large line was really 

cut, but by visual inspection, two cutting patterns were developed. They are shown in 

Figure 3.6 for a lOpm wide metal1 line. 

Straight Line Cutting Zig-Zag Cutting 

Figure 3.6 Two Methods for Cutting Large Metal Lines 

The straight line method consists of a first zap at 1 pm from the edge of the line 

and a zap each 2pm afterwards, until a distance of less than 1 pm from the other edge is 

reached. In the Zig-Zag method, a first zap is made lpm from the edge, then lpm away in 

each direction. The Zig-Zag method seems more reliable (electrical test should be 



performed to confirm this) than the straight line method but takes a longer time due to the 

higher number of pulses required. 
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Figure 3.7 Photograph of the Cutting Methods 

The time taken to cut a 10pm wide line is 4.27s for the straight line method and 

13.45s for the Zig-Zag. The Zig-Zag method also takes up more space. The choice should 

be made in function of the time and the area available. Figure 3.7 is a photograph of the 

two methods; the larger area taken by the zig-zag method is clearly seen. 

3.1.6 Damage to Silicon Nitride 

Silicon nitride can be very sensitive to low intensities of laser light. It will fluoresce 

at about lOmW of power for a 1.2pm spot, and it has a low damage threshold that depends 

on the exact composition of the nitride. In the photographs, lots of damage surrounding the 

links and cuts can be seen. This is due to the behavior of the silicon nitride under the laser 

pulse. Such damage is not seen in the Northern Telecom 3pm process which uses glass 

instead of nitride. Figure 3.8 shows the radius of damage for different laser powers. The 

large damage at 4.5W is probably due to a defect present in the silicon nitride layer. Its 

diameter is close to 10pm. 

seems much more opaque 

when a pulse is applied on 

These defects can have a significant impact because the layer 

when shot once with the laser and there is no or little effect 

top of a damaged area. These damages increase the minimum 



spacing allowable between links and lines to cut. 

Figure 3.8 Photograph of the Damage in the Silicon Nitride 

3.1.7 Batch Linking and Cutting 

In this section the behavior of many links and cuts done in parallel with a script file 

is discussed. First the chip has to be very well aligned, especially if the links or cuts are far 

apart on the table. Due to the 'wiggling' (side motion) effects of the z axis motor, the focus 

was not changed during the linking process. The results were as follows: for five links in 

parallel, the resistance was 41.2kO.4 Q and the total time to do the connections was 

10.58s. This gives an average link resistance of 206Q. The individual links have a 

measured resistance of about 100Q with this setup. This means the links have a slightly 

higher resistance when done in batch. An explanation is that the alignment is not as precise 

as when the links are done individually, therefore some of them, especially the last ones, 

show a higher resistance. The average time to do each link is 2.12 s, which is rather long. 

Faster control systems of the table will be needed for a very large number of links. 

For the cuts, it took 3.7s to do 5 cuts of 3.3pm wide lines in a row. The resistance 

was high, 26MQ proving the cutting was successful. The average time for each cut was 

0.74s. The alignment seems less critical with the cuts. A different focus is used for cuts 



and links. The difference is about 3pm. To do batch linking and cutting with the same file, 

or over a large area, the focus has to be adjusted and therefore a Z axis controller which is 

very precise and stable is needed. 

3.1.8 Linking Summary 

The goal of these experiments was to extract the parameters needed to use the laser 

linking and cutting with the Mitel 1.5pm technology. Results have shown that the Mitel 

technology can be used efficiently for this purpose. With proper table settings and careful 

alignment, links resistances in the order of lOOQ can be achieved. The cutting of thin lines 

(less than 3.3pm) seems very reliable, more than with other technologies used before, like 

the 3pm CMOS from Northern Telecom. The cutting of large lines seems to be efficient, 

but in this experiment only visual inspection was used because of the lack of test 

structures. 

The links seem to be less reproducible and their resistance is influenced by the 

parameters. The minimum width of the links seems to be around lOpm if a resistance in 

the order of lOOQ is wanted. This is because the distance between two zaps must be at 

least -6pm to be effective. If a second zap is too close to the first one, there is no effect. A 

careful alignment of the electro-optic shutter is needed to achieve maximum throughput 

and effective use of the laser. The shutter's closed condition should block the light so there 

is no permanent effect on the chip when the table is moved. 

The designer should be careful about the extension of the P-well on its design. 

Even if allowed by the DRC checker, the P-well should not extend less than 3pm from a 

link. This is to avoid a connection to the substrate; such connections were seen in links 

closer than 3pm from the P-well, but not in those at a greater distance. It is assumed these 

shorts occur because the P-well is shallower near its edge. In addition, the power of the 



laser has to be kept reasonable to avoid a vertical connection to the P-well. 

One difficulty with the Mitel technology comes from the silicon nitride passivation 

layer. The laser produces large damage which can interfere with surrounding structures 

and block the laser for further processing. The designer should be aware of this and keep a 

reasonable distance between structures needing repair. The silicon nitride may become 

conductive when zapped with the laser and interconnection between metal 1 and 2 may be 

possible 1121, although not encountered during these experiments. 

The batch linking and cutting is reliable over a small area and by keeping the same 

focus. The speed is slow for linking, around 2 s per link, and it must be improved if a large 

number of links have to be made. A design with all the links aligned is faster to zap than a 

random pattern. The z axis has to be very stable if the focus has to be changed. In the 

current setup, there is an x and y movement when the focus is changed, causing a 

misalignment of the coordinates. 

These experiments have shown linking and cutting is possible with the Mitel 

technology but improvements in the laser table control are needed for large batch jobs. 

3.2 Practical Example: Test Vehicle for a Wafer Scale 
Thermal Pixel Scene Simulator 

This section describes the laser linking work done on a wafer scale test vehicle 

designed by M. J. Syrzycki, L. S. Can, G. H. Chapman and M. Parameswaran: the 

Thermal Pixel Scene Simulator [13]. It combines micromachining and wafer scale 

restructuring techniques to build a large array of infrared emitters. The main purpose of 

this section is to present an example of the restructuring work done with the laser table on 

the laser links. 



3.2.1 Design 

Figure 3.9 shows the layout of the basic transducer cell. On the upper right, the 

thermal pixel, a micromachined device that emits infrared radiation when a current is 

applied, can be seen. Beneath the device is a pixel driver, to control the current fed to the 

emitter. The local memory is used to store the value of the pixel. The A D  converter is 

used to convert the signal from the photodiode. This part of the design was not used during 

these experiments. 

Figure 3.9 SEM Photograph of the ~ansducer  Cell (1260pm x 742pm) 

Surrounding the basic circuitry are restructuring laser link buses. On the right, the 

large laser links are used to hook up the power to the cell and to drive the current in the 

thermal emitter. The other laser links serve to connect the different signals to the logic part 

of the design. The laser links are disposed in an alternate up and down fashion to provide a 

denser bus. The design was manufactured in Northern Telecom 3pm CMOS. The 

photograph of the test chip is shown in Figure 3.10. The test chip is a 4x2 array of 

transducer cells with the laser link buses running across the entire chip. 



Figure 3.10 SEM Photograph of the Test Chip (7mm x 7mm) 

3.2.2 Experimental Procedure 

When first powered up, the power rails are disconnected and there is no power 

consumption. Before making the connection to the power rails, and before any laser link is 

connected, optical probing [14] is performed. By shining the laser at low power (-3mW) 

at the junction between the substrate and the active region, electron-hole pairs are created 

that generate a small photocurrent (around 30pA) between the substrate and the line 

connected to the link. By measuring the photocurrent, the path resistance can be measured 

and the signal route verified. This is shown in Figure 3.11. 
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Figure 3.11 Optical Probing 



The first step is to connect the power to the cell (Step 1 in Figure 3.12). When 

done, the power consumption is measured. If the current draw is normal, the 

interconnection of the signal lines can begin. If there is a high power surge, indicating a 

short in the cell circuitry, the cell is disconnected. The first step in interconnecting the 

signal buses is to connect the four signal lines to the driver circuitry and test its operation 

(Step 2). If this is successful, the hook-up of the latches can be performed (Step 3). To do 

this, the line to the driver circuit is cut and by connecting two laser links, the cut is 

bypassed and the signal redirected into a D flip-flop. The final test to the cell is then 

performed and consists in being able to drive the pixel with a four bit memory, resulting in 

16 possible current draws. Typical cell interconnections required 19 links and 5 cuts. 
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Figure 3.12 Design Schematic 



3.2.3 Experimental Results 

Two types of chips were tested. The first one was tested as fabricated while the 

other one was anisotropically etched to form a suspended plate holding the pixel. The 

parameters for the laser links and cuts were extracted the same way as explained in the 

previous section for the Mite1 technology. There was no difference found in the parameters 

for both chips. The typical resistance for the standard laser link was 75R while the wider 

power links showed a 25R resistance. The first test chip, which was unetched, had seven 

operating pixels, six of which were latched. The etched chip was fully functional, each one 

of the eight pixels working with the latching circuitry [15]. 

This work, performed early in the master program, was very useful in learning the 

basics of wafer scale integration and also to learn how to use the laser table system. Many 

of the concepts were later used in the design and test of the FPGA vehicle. 

3.3 Summary 

This chapter has described the experimental work done with the laser linking wafer 

scale technology. In the first section, the experimental procedure to extract the linking and 

cutting parameters was presented while the second section dealt with the work done on 

another type of test vehicle, the wafer scale thermal pixel scene simulator. 

The experiments described above provided useful insights and necessary results in 

the elaboration of the FPGA test vehicle. 



Chapter 4 

Defect Avoidance in FPGAs 

The key in building a working Wafer Scale field programmable gate array is to 

design a system to eliminate the different types of defects present on the wafer after 

fabrication. In this chapter, there is a brief introduction of the types of defects and faults 

they create. Thereafter a summary of different defect avoidance techniques will be 

presented and the requirements for restructuring an FPGA will be investigated. 

The following section concerns restructuring algorithms and their effects on the 

harvest of good cells. Simulations are made to test the performance of the algorithms and 

the architectures. An other section concerns the design requirements for building a wafer 

scale FPGA while the last section is an overview of the different tools needed to program a 

large FPGA and how they differ from the commercially available software. 



4.1 Defect Avoidance 

This section treats of the general defect avoidance techniques and how they can be 

applied to FPGA restructuring. In all these cases only one type of FPGA cell throughout 

the wafer is assumed. 

4.1.1 Fabrication Defects 

There are numerous defect mechanisms in any microelectronic process. The goal 

of this section is not to explain every type of defects but rather to classify the faults they 

create to find a proper way to avoid them. Figure 4.1 shows an example of the major 

categories. 

Vdd = 
Gnd 

Figure 4.1 Three Categories of Defects: a) Logic Defect: e.g. Gate Oxide Hole; b) 
Power Defect: e.g. Power Short; c) Routing Defect: e.g. Bus Open Circuit and Bus 

Short 

Logic Defects: all the defects affecting the logic operation of a circuit are grouped 

under this category. Those defects can be of many types, such as misalignment, pinhole 

defects, shorts or open circuits; their effect is localized, however, and affects only the logic 

operation of a certain part of the circuit. 

Power Defects: these types of defects can be caused by many defect mechanisms, 

but the most common outcome is the power bus metal to metal short. This is the most 



critical kind of defect because if it is not taken into account in the design, just one of these 

defects can kill an entire wafer even before tests can be performed. For this purpose a 

special defect avoidance scheme must be employed for this category of defects. 

Routing Defects: this category includes all the defects that affect the buses on the 

wafer, either the signal buses or the reconfiguration buses. They can be very deadly if they 

are not taken into account because the reconfiguration circuitry can be inoperative, killing 

the entire wafer. 

4.1.2 General Defect Avoidance 

Defect avoidance is defined as the different ways to avoid defective parts of a 

circuit and provide means to employ the working parts to build a larger circuit than 

achievable with standard microelectronics. One way to obtain this is to divide the circuit 

into identical parts. They can be rows, running from side to side of the wafer, or they can 

be cells, a small part of circuitry that can perform a certain function. Defect avoidance is 

realized by providing spares that can be connected instead of the defective cells or rows. 

This is called redundancy. The level of redundancy depends on the density of the defects 

and the desired yield. There are two classes of redundancy: global and local sparing. In 

global sparing, a spare can replace any of the cells in the circuit; this is very versatile but 

can lead to long delays if the spare cell is situated far away. There are also some 

applications where the physical placement of the cell is critical, like large sensor or 

transducer arrays. The kind of redundancy used then is called local sparing [16], where the 

spares are physically close to the original cell. Figure 4.2 gives an example of the two 

redundancy classes. Figure 4.2 a) shows an example of a spare column of cells where the 

spares are used to replace two defective cells to form a 6x6 array of worlung cells. In 

Figure 4.2 b), local sparing is used to produce an array of 3x3 cells. The dashed line 



encloses the cell and its spares. Only one out of those four cells needs to be working. 
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Figure 4.2 Two Redundancy Classes: a) Global Sparing; b) Local Sparing 

For FPGAs, the physical placement of the cells is not critical because all cells are 

identical. The spare cell, however, must be close to the defective cell in order to reduce the 

time delay between the cells. Local sparing is ideal for that purpose but requires very large 

overhead. The best way to restructure an array of cells is not to use dedicated spare cells, 

but rather build the array using the closest available cell as a spare. This means every cell 

in the array can be a spare. 

4.1.3 Making the Defect Avoidance Invisible to the User 

The idea of a wafer scale FPGA has been proposed by others[5], but was presented 

with a different approach to defect avoidance. In this earlier paper, the defect avoidance is 

performed by the FPGA software itself, using the inherent reconfigurability of the FPGA 

circuitry. However, the FPGA software has to be aware of which cells in the array are 

defective to bypass them. It may also cause problems because the FPGA may become no 

longer symmetrical. Macro circuits already optimized cannot be used because of the 



defective cells brealung the array. This method is also not tolerant of certain faults such as 

power shorts. Although this method requires no overhead for restructuring, the above 

reasons make it hard to use. 

The proposed wafer scale FPGA in this thesis does not use the electronic bypass 

capability of its routing architecture but rather physical restructuring switches. While this 

technique uses a minimum of overhead because of the small area occupied by the laser 

links, the major advantage of this method is to make the restructuring invisible to the user. 

The restructuring consists in harvesting a two dimensional array of working cells from an 

array containing defective cells andlor buses. By using different techniques, the array 

appears fault free and the actual map of the defects does not have to be known by the user 

when programming the FPGA. 

The following section explains how to restructure such arrays to provide a 

restructuring invisible to the user. 

4.2 Restructuring of a 2-D Array 

Different restructuring techniques are presented. They all have the same goal, i.e. 

to build the largest 2-D array from a basic array containing defects. Advantages and 

drawbacks of these techniques are evaluated and their potential for building FPGAs 

discussed. 

4.2.1 Row-Column Substitution 

The simplest way of avoiding defects is the row-column substitution. If a defective 

cell is found during the tests, the entire row or column containing this cell is bypassed; this 

method is very fast and requires simple algorithms. The bypassing circuitry is kept to a 



minimum, since the signals only have to go through the cell and reach the adjacent one. 

Figure 4.3 shows a 2D array of 6 x 6 cells being restructured using the row-column 

substitution technique. The algorithm must alternate and substitute a row after a column in 

order to maximize the size of the array. Proceeding that way, the worst array is equal to the 

size of the original array minus the number of defects divided by 2. The restructuring is 

however more complex, because of defects occurring in the bypass circuitry. The 

algorithm must bypass cells with defects in the reconfiguration circuitry first, since they 

only can be bypassed either by a column or a row. 

Working cell Defective cell Unused cell 

Figure 4.3 Row-Column Substitution 

As an example, the bottom defective cell (row 5, column 5) in Figure 4.3 has to 

bypass the signal from the cell on its left to the cell on its right. This can only be done if 

the horizontal bypass circuitry is not defective. If this circuitry is defective, then this cell 

has to be bypassed with a row and the other defective cell would be bypassed by a column 

to keep the logical array at 5x5 cells. Of course, both the horizontal and vertical bypass 

circuitry may be faulty; in this case, the algorithm must use both the column and the row 

substitution, reducing the size of the final array. 

While this method is simple and economical in time, it leaves lots of unused cells 



and, if the defect density is high, the final array will be very small. The size of the array 

should increase if the defects tend to agglomerate, because many defects can be bypassed 

with only one column or row substitution. Due to its simplicity, this method is well suited 

to the restructuring of smaller arrays where the yield is already high. A method similar to 

dynamic RAM memory column substitution will be investigated for the restructuring of 

small FPGAs later in this chapter. 

4.2.2 Cell by Cell Substitution 

The next method is called cell by cell substitution. When a defective cell is 

encountered, a neighboring cell is used to replace it. Special restructuring buses are placed 

between the columns of cells. With a combination of switches, the defective cells can be 

bypassed and an array can be constructed. 

Working cell Defective cell Unused cell 

Figure 4.4 Vertical Cell by Cell Substitution 

An example is shown in Figure 4.4. There is a defective cell in row 2, column 3. 

When connecting the rows, the cell in the row below (row 3) is used to replace the 

defective cell (row 2). So every cell in column 3 must be shifted down in order to complete 

the rows. An interesting thing happens if another defective cell appears in column 3. Now 

the cells need to be shifted 2 rows down in order to complete the restructuring. There are 



two ways to handle this problem: the first is to provide an additional restructuring channel 

between each column. This is straightforward but requires additional area and the 

maximum number of defective cells allowed in a row is equal to the number of 

restructuring channels. The second way is to use pseudo faults: working cells are sacrificed 

to allow the use of only one restructuring channel while being able to restructure an array 

with many defective cells in the same area. This is very important because the defects tend 

to cluster on a wafer. In the vertical cell by cell substitution, the columns are kept straight 

while the rows are shifted down; this means more rows than columns are needed to 

restructure a square array. Another way to perform the cell by cell substitution is to use 

restructuring channels in both the vertical and horizontal direction. This allows efficient 

harvesting but requires complex algorithms and the major drawback is the high amount of 

overhead involved in these architectures. Because of the large area already occupied by the 

FPGA routing, this technique is not investigated in this thesis. 

4.2.3 Row-Column and Cell Substitution 

The cell by cell substitution is an efficient way to restructure an array, but it 

assumes that the restructuring circuitry is fault-free. The best way to restructure FPGAs is 

to use a combination of the two methods presented above. The main restructuring remains 

the cell by cell substitution, however a set of extra columns is also provided. This extra set 

has a dual purpose: first, it allows the bypass of an entire column if a restructuring bus is 

defective; secondly, the extra columns can be used to replace columns containing the most 

defects and gain extra rows. An example of such a restructuring is shown in Figure 4.5. 

The defective cell (2, 3) was bypassed using the cell by cell substitution while the cluster 

of three defective cells in column 5 was bypassed by the column substitution method. The 

result is a 5x5 array while cell by cell substitution alone would allow only 3 rows. 



Working cell Defective cell Unused cell 

Figure 4.5 Row-Column and Cell Substitution 

4.3 Algorithms and Yield Simulations 

This section shows the algorithms and yield simulations performed to find the best 

restructuring technique applicable to FPGAs. The restructuring methods elaborated in the 

last section are studied and explained in detail, while the algorithms and Monte-Carlo 

simulation results are set out and discussed. A brief description of the defect distribution 

model is also presented. 

4.3.1 Defect Distribution Simulations 

There are many papers dealing with the simulation of the defect distribution of a 

particular fabrication process [18-231. In earlier yield models, the defect distribution on 

the wafer was thought to follow a Poisson distribution: 

where kdefect  density per unit area, k=number of defects and P=probability of having k 

defects in the unit area. This distribution means that the probability of a defect appearing 



in a region of the wafer is completely independent of the defects already present. 

Experimental data however shows the probability of a defect appearing in an area 

is dependant on the number of defects already present in this area. This phenomenon is 

called defect clustering. The distribution is then better represented by a Negative Binomial 

Distribution: 

P (x, S )  = 

where P=probability of having x defects in an area S, kdefect  density and ac=cluster 

coefficient. In most models the area used for h is that of the circuit block or cell. Clusters 

begin to appear on the wafer, depending on the value of the a, parameter. A low value for 

a, means a high clustering. An infinite a, parameter means no clustering, a,=l is 

moderate clustering while ac=O. 1 is high clustering. Values of a, ranging from 0.125 to 4 

have been encountered in samples of different products [22]. 

It is almost impossible to create a model that will perfectly reflect the defect 

distribution of a known process. Extensive research on the process itself can only give 

partial knowledge of the defect distribution. A defect distribution Monte Carlo simulation 

was developed here at SFU. The goal was to distribute defects on a wafer with a 

distribution that follows the Negative Binomial Distribution. The simulation is based on 

the model presented by C. H. Stapper in [23]. The program starts with an array of non 

defective cells; after a time interval At, the appearance of a defect in the cell is calculated 

by comparing a random number generated with an assigned probability for each cell. This 

probability is a linear function of the number of defects in the cell and in its four nearest 

neighbors. The weight associated with the number of defects in the cell is higher than the 

weight for the neighbors. By changing the value of these weights, the a, parameter can be 



changed. If the number of defects in the cell itself and the neighboring cells is not taken 

into account, a Poisson distribution is obtained. The program stops when the desired defect 

density is obtained. An example of two defective cell maps is shown in Figure 4.6. 

(a) a,=- (no clustering) (b) ac=O. 1 (high clustering) 

Figure 4.6 Defect Map Example (kO.l) 

The map on the left (Figure 4.6 a) is a pure Poisson distribution (ac=-) while the 

one on the right (Figure 4.6 b) has a very small clustering coefficient (ac=O.l) thus 

significant clustering. Both maps have the same average number of defects per cell 

(kO.1). Note on the right that certain cells have a very high number of defects and how 

the defects tend to be grouped in clusters. 

An important parameter in any Monte Carlo simulation is the number of wafers 

simulated to realistically represent the distribution. Different tests have been performed on 

the model to test the number of iterations required. These tests show that approximately 

100 wafers give distributions with an average a, parameter quite constant between 

distributions. Thus in the simulations, wafer lots of 100 wafers will be used. Table 4.1 

shows the results of the simulations for an array of 100x100 cells. Ten lots with 100 wafers 

each were simulated with three different cluster parameters. The average simulation time 



is one minute per wafer lot on a SparclO. The table shows the average defect density h and 

the average a,, along with their respective standard deviations. 

Table 4.1: Distribution of Wafer Lots; target kO.l 

This method of simulating defects may not represent exactly a particular 

fabrication process but approximates Negative Binomial Distributions with sufficient 

accuracy to perform restructuring simulations. The model should be compared to an 

existing production line to modify the parameters and ensure better accuracy. 

4.3.2 Row-Column Restructuring 

The purpose of this section is to demonstrate that it is possible to increase the yield 

of current size FPGAs with a technique similar to the one used to reconfigure dynamic 

RAM chips. The largest currently available FPGAs have very low yields. By providing a 

small amount of extra rows and columns, it is possible to restructure the array and 

therefore increase significantly the yield. Because of the restriction in size, the amount of 

overhead must be kept to a minimum and the delay added by this overhead must also be 

small, in order to keep the performance very close to full custom FPGAs. For these 

reasons, the row-column restructuring is the best way to increase the yield of these 

devices. 



The restructuring algorithm used is very simple; it consists in restructuring first the 

routing defects with the appropriate bypassing of either a row or a column. Then logic 

defects are bypassed using a row or a column, depending on the spares available. The C- 

like pseudo code is presented in table 4.2. 

I* Restructure routing defects*/ 

for(i=l; i<row-number; i++) forCj=l; j<col-number; j++) 

{ if(defect[i]u]==vertical-routing) bypass-col; 

if(defect[i]lj]==horizontal_routing) bypass-row; ) 

/*Restructure logic defects*/ 

for(i=l; how-number; i++) forCj=l; j<col-number; j++) 

{if(defect[i] u]==logic) 

if(col~sum<row~sum) bypass-col; 

else bypass-row;) /*Use row or column spare depending on availability*/ 

Table 4.2: Row Column Algorithm C-like Pseudo-code 

Better algorithms are presented in [17] and [24]. Simulations with this simple 

algorithm shows that even without the best procedure the yield is increased significantly. 

For the simulation, batches of 1000 chips containing an array of 25x25 cells are used. The 

approximate dimensions of the largest currently available FPGA (2cm x 2cm) are used. 

The defect density is adjusted to obtain approximately a 5% yield in non restructurable 

arrays (the cell yield is then 99.5%). The defects in the cell can either affect the logic or the 

routing. As stated in [17], a defect in a cell has a 40% chance of affecting the routing, a 

fact too often neglected by reconfiguration models. After each chip is simulated, it is 

restructured. The percentage of chips successfully restructured is then calculated. The 



results for the yield are shown in Figure 4.7. In this simulation, a Poisson distribution was 

assumed. A physical array dimension of 26 means there is one extra row and one extra 

column, a physical array dimension of 27 means two extra rows and two extra columns 

and so on. The physical array dimension of 25 represents a chip with no restructuring 

capability. 

Yield Improvement of a 25x25 Array 
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Figure 4.7 Yield Results for a Logical 25x25 Array, no clustering (k0.005) 

In Figures 4.7 through 4.10, the horizontal axis represents the number of physical 

rows and columns available to build the 25x25 array. The dark columns are the results 

when one and two redundant lines are added to the cell, for both the vertical and horizontal 

routing channel. If the simulation says the defect is in the bus channel, the routing cannot 

bypass using lines in that area. Adding n extra lines, however, will allow routing to be 

possible for a number of defects I n in the channel. Even with only one extra row and one 

extra column, the yield is increased by almost a factor of 9. Yields near 100% can be 

achieved with 3 extra rows and 3 extra columns. The use of a redundant line increases the 



yield, but requires extra overhead that may cause additional delays. Yield results with 

wafer showing high clustering (low a,) are shown in Figure 4.8. The simulation is said to 

be high clustering because in small arrays, it is hard to evaluate the a, parameter because 

the defect density is very low. The yield after restructuring for wafers with clustering are 

slightly better than those without clustering. This is due to the higher probability of having 

defects in the same columns or rows. 
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Figure 4.8 Yield Results for a Logical 25x25 Array, high clustering (M.005) 

The two simulations are extreme cases and a standard process should fall in 

between as far as clustering is concerned. The simulations without any clustering give the 

worst case. These simulations were repeated with a lower yield of 99% for each cell. The 

results for no clustering are shown in Figure 4.9 while the results for high clustering are 

shown in Figure 4.10. The yields are lower than the previous simulations, because of the 

higher defect density. The improvement is nevertheless important, especially with a 

redundant line. The second redundant line increases the yield more in highly clustered 



chips. While its effect was too small in the other simulation, this simulation with a lower 

yield shows that the possibility of adding two extra lines should be taken into account for 

highly defective chips. 
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Figure 4.9 Yield Results for a Logical 25x25 Array, no clustering (k0.01) 
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Figure 4.10 Yield Results for a Logical 25x25 Array, high clustering (hO.01) 
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These simulations show it is possible to increase the yield of currently available 

chips with a simple rowkol restructuring and thus reducing the production cost. The 

rework needed to restructure the arrays is small and could be compared to the rework 

needed in dynamic RAM chips. There is a delay added to the circuit but as will be shown, 

the use of the laser link minimizes this delay. 

4.3.3 Cell by Cell Restructuring 

For the cell by cell restructuring, a different simulation approach is made. Whole 

wafers with 100x100 cells are simulated and the clustering is identified by the alpha 

parameters calculated from the lot. To perform this kind of restructuring, a special 

algorithm called the Gupta Algorithm [17] is needed (shown in Table 4.3). The purpose of 

this algorithm is to build a logical array of good cells from a physical array containing 

defective cell. The physical and logical columns are identical, only the logical row 

numbers are changed. Assuming i is the current physical row index and i '  is the logical 

row index, the algorithm starts with i=l, i l=l .  The i'-th logical row is configured by 

selecting the first available usable cell (i.e. neither faulty nor a pseudo-fault) from the top, 

in every column. When all the cells have been assigned to the i'-th logical row, the pseudo 

faults are determined. For two consecutive cells in the is-th logical row, when cell(e,j), 

(from the e-th row and j-th column), and cell(f;j+l) have e=f, there are no pseudo-faults 

between them. If e<f, every cell(k,j) for e<k<f will be assumed a pseudo-fault. If e>f, 

every cell(k,j+l) for f<k<e is declared a pseudo-fault. 



for(i=l; how-number; i++) /*Scan the rows*/ 

last-row=i; 

for(j=l; j<col-number; j++) /*Scan the columns*/ 

x=O; 

while(cell[i+x]lj]=defective) x++; /*Find the first non defective cell*/ 

ceil[i+x]ti]=i; /*Assign the row number to this cell*/ 

if(1ast-row<i+x) /* If the row number is smaller than the last column*/ 

for(z=last-row+l; z<i+x; z++) /*Scan the cell in the previous row */ 

if(cell[z] ti-l] !=defective) cell[z] lj-l]=pseudo-fault ; 

/* If the cell is not defective, it is declared as a pseudo-fault*/ 

if(1ast-row>i+x) I* If the row number is larger than the last column*/ 

for(z=i+x+l; z<last-row; z++)/*Scan the cell in the current row */ 

if(cell[z]lj-1] !=defective) cell[z]lj-l]=pseudo-fault ; 

/* If the cell is not defective, it is declared as a pseudo-fault*/ 

last-row=i+x; 

Table 4.3: Cell by Cell Substitution C-like Pseudo-code 



Figure 4.11 shows an example of this type of restructuring where a cluster of two 

cells in the same column (2) is bypassed. In a), the cell in the first physical row (1, 1) is 

assigned to the first logical row (l ' ,  1'). In b), since the cells in the first and second 

physical rows are defective, the third cell (3, 2) is assigned to the first logical row ( l ' ,  2'). 

The cell in the column on the left (2, 1) must be declared a pseudo fault. Then finally in c), 

a cell in the first row (1,3) is assigned to the logical row (1',3'). The physical index on the 

left being greater (3 compared to l), the cell (2, 3) in this column must be declared as a 

pseudo-fault. Pseudo-faults are considered exactly like defective cells in the algorithm. 

Good Cell Pseudo-fault Defective Cell 

Figure 4.11 Gupta Algorithm Restructuring example 

This algorithm assumes a perfect routing channel. As seen, this is not realistic. To 

this method of restructuring, the row and column substitution must be added in order to 

circumvent the routing defects. Figure 4.12 shows an example of the restructuring on a 

25x25 array. The numbers indicate the index of the logical rows (there is no column 

bypass in this example). 
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Figure 4.12 Cell by Cell Restructuring Example 

The simulation is done by restructuring 100 wafers and calculating the number of 

arrays that are successfully restructured, given a certain target array dimension. The 

physical size of the wafer was 100x100 cells. Figure 4.13 shows the result of the 

simulation. 
- 

- 
O'O60 

1 - 
70 80 90 

Target Array Dimensions 

Figure 4.13 Cell by Cell Restructuring Simulation, no extra line, k0.01 (100 defects/ 
wafer) 



The bottom axis represents the targeted array dimensions while the vertical axis is 

the percentage of wafers successfully restructured. From now on, when the term cell by 

cell restructuring is used, it includes the row-column bypass for the defective routing 

channels.Two curves are shown, the one on the left with a high clustering and the one on 

the right with no clustering. Both distributions have the same kO.O1, which produces 100 

defects per wafer. The results show that an array of 80x80 can be restructured with a yield 

of 50% while almost 100% yield is achieved with a target array of 60x60. The clustering 

has the effect of reducing the yield slightly. This is due to the fact that column substitution 

must be used to bypass the cells with a vertical routing defect. The clustering has the effect 

of grouping the defects together and increasing the probability of a routing defect 

occurring in one cell. 

Figure 4.14 Cell by Cell Restructuring Simulation, one extra line, ,k=0.01(100 
defects/wafer) 

The major problem of this technique is the row/column bypassing of the routing 

defects. The yield can be increased by placing one or more redundant line in the horizontal 



and vertical routing. Figure 4.14 shows the simulation results. The parameters are the same 

as in Figure 4.13, except for the addition of an extra line in both the vertical and horizontal 

channels. With this extra rowlcol line, the clustered wafers are more efficiently 

restructured. This is due to the extra line that significantly reduces the number of entire 

columns or rows being bypassed. The effect of extra lines on clustered wafers is clearly 

seen in Figure 4.15. The addition of one extra rowlcol line increases the yield significantly 

while the addition of a second extra rowlcol line has no effect. These simulations were 

done for a high yield process, since kO.O1 (but still there is 100 defects per wafers). 

Figure 4.16, Figure 4.17 and Figure 4.18 show the same type of simulations, this time with 

a process having l ~ 0 . 0 6 ,  or 600 defects per wafer. In Figure 4.16, the yield obtained is 

very low (-50% for a target array of 35x35). In Figure 4.17, however, when an extra row/ 

col line is added, the yield is much better (50% for a target array of 85x85). The effect of 

adding an extra rowlcol line in the channels is clearly seen in Figure 4.18. 

Figure 4.15 Effect of Extra Lines, M.01 (100 defectslwafer), ac=0.3 



Figure 4.16 Cell by Cell Restructuring Simulation, no extra line, k0.06 (600 defects/ 
wafer) 

Figure 4.17 Cell by Cell Restructuring Simulation, one extra Line, k0.06 (600 
defectdwafer) 



Figure 4.18 Effect of Extra Lines, b0.06 (600 defectslwafer), a,=0.3 

The effect of adding two rowlcol lines is more pronounced in this lower yield 

simulation. As shown the yield increase is not important enough however to justify the 

overhead of two extra lines. These high defect density simulations show the effect of the 

clustering is more pronounced. But once again the use of an extra rowlcol line improves 

the yield of the clustered wafers better than the Poisson wafers. 

These simulations show the efficiency of the cell by cell restructuring for large and 

wafer scale FPGAs. Because of the defects occurring in the routing and the reconfiguration 

resources, however, it is much better to use redundancy of the lines in the cells themselves 

rather than the cell by cell substitution alone. Rework is also reduced because only one cell 

has to be linked when an extra line is available. The bypass of an entire row or column 

requires many links in each cell to be zapped. 

The field of defect simulation is very vast. This simulation makes a number of 

simplifying assumptions and takes into account point defects only. A true process may 

have defects that are bigger and cover a large area on the wafer, affecting the routing 



architecture beyond repair. Note however that the approach taken in the simulation is to 

cluster the point defects together, simulating in a way the larger defects in one cell. 

This restructuring approach was chosen because of its simplicity, its low overhead 

and its ease of use with FPGAs. It will be explained in a later section why the cell by cell 

substitution with both a vertical and an horizontal restructuring channel is hard to 

implement on FPGA circuits. 

4.4 Design Considerations for Defect Avoidance in 
FPGAs 

The previous section dealt with the different aspects of the restructuring but 

without any explanation on how to physically implement the circuits. In this current 

section, different approaches are investigated to design a restructurable FPGA circuit. 

4.4.1 Power Routing 

The most critical aspect of any wafer scale design is the power routing. A power 

short on the bus can kill an entire wafer, even before tests can be performed. The way to 

counter this problem is to design cells disconnected from the power bus and connecting 

them one by one to test their power consumption and check for shorts. In the WASP 

project [25],  large transistors are used to connect the power to the cells. To test the cell, the 

transistor is turned on and the power connection made. Testing each separate cell can be 

done easily and the cells with no problems are kept powered and each one is tested 

incrementally. 

The major drawback of using a transistor is the large resistance placed between the 

power bus and the power lines in the cell. This causes a voltage drop that can lead to some 

problems in the electrical performances. A way to counter this problem is the use of a very 



large transistor which offers a small resistance, but the area taken up then is very large and 

can become unacceptable when numerous devices are needed. 

Instead of large transistors, laser links can be used to hook up the power lines. 

There is an example of this method in [15], where a thermal pixel cell was powered via a 

laser link. Experiments performed here at SFU showed no problem in using the laser link 

to power the cell. Two advantages are the small resistance of the link, around 100Q for a 

6.6p.m wide link (down to a few Ohms when very wide links are used), and the small area 

taken up by the device. The drawback is the time taken to zap the laser link and to cut the 

power bus in the case of a short in the cell. If a large number of cells have to be tested, this 

method can become tedious. 

A new device, combining the advantages of both methods, has been designed, 

fabricated and tested here at SFU. Called the Testable Laser Link, it is a combination of a 

laser link and a small transistor (Figure 4.19). 
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Link Figure 4.19 Testable Laser 



The small transistor, when turned on, simulate the effect of zapping the laser link. 

This becomes very handy because the cells can be tested for shorts without having to zap 

the laser link, and the structure combines the small area and resistance of a laser link 

connection with the ease of testability of a transistor. 

Electrical tests were performed to show that there were no problems in adding a 

gate at the end of the laser link. Both the transistor and the laser link were showing the 

same characteristics when combined in a single structure as they did separately. In Figure 

4.20, the graph of the voltage drop for the testable laser link is shown, before and after the 

zapping. The gate voltage used was 5 volts. The voltage drop is measured across the 

source and the drain of the transistor. 
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Figure 4.20 Graph of the Voltage Drop across the Testable Power Link 

The plot illustrates two advantages of the combined structure: first, the resistance is 

lower, only 7.5% of the transistor resistance, as shown by the voltage drop. The transistor 

width is 3.5pm compared to 13.2pm for the laser link, meaning the laser link is 3.5 times 

less resistive per unit width than the transistor. Secondly, the Laser Link does not saturate 



in the same way the transistor does, allowing a large current to be consumed by the cell. 

This structure is very useful in an FPGA design, because of the large number of cells to 

test. The approach is to incrementally add cells and check the power consumption. A map 

of defective cells can be produced this way. The cells can be accessed by a row-column 

circuit, or directly. The best approach depends on the number of cells and also on the 

number of pads that can be dedicated to the testing. Probe pads can also be used since 

there is no need to activate the test transistors after the link is zapped. 

4.4.2 Clock 

The clock signal, or any other signal distributed globally across the chip, must be 

dealt with care. The distribution of the clock signal on a wafer scale design was studied in 

many papers. The simplest approach for FPGAs is to use the H-tree architecture [26] to 

reduce the clock skew between the cells. This strategy is illustrated in Figure 4.21. The 

length of the clock line is the same for all the cells, thus reducing the clock skew. 

Cells 

Figure 4.21 H-tree Clock Network 

No tests were performed in this thesis to find the best clocking strategy. It depends 

on the size of the final circuit and on the maximum frequency at which the circuit can be 



used, depending on the delays between cells. The wafer scale FPGA clocking network 

could use the clocking strategies under research for wafer scale circuits [27][28]. 

The clock line must be redundant, however, because of the defects that can occur. 

The clock line is, like the power, a very critical issue in wafer scale design. The proposed 

method is to use a redundant clock line in each cell. With laser links, the signal can then be 

re-routed inside the cell and most of the defects can be avoided in this fashion. The low 

impedance of the laser link means the clock can be rerouted with very little additional 

delay. 

4.4.3 Routing 

As noticed in the previous section, the defect avoidance method chosen is the 

combination of cell by cell and row-column substitution. In this section are presented the 

different structures used and developed to restructure FPGAs. 

First of all, a way to bypass entire columns of cells is needed. All the signals 

coming from the cell on the left must pass through the defective cell in order to reach the 

cell on the right. Figure 4.3 shows this clearly. The easiest way is to provide extra routing 

and laser link the signal to go through the cell. However, this method takes up a large area. 

By using the same routing structure as the Xilinx 4000 series[29], a new bypassing method 

was developed. In the Xilinx routing architecture, there are three different kinds of routing 

resources: the single length lines, the double length lines and the long lines. A simple 

routing switch is used which allows each signal to take either three directions (Figure 

4.22). The single length lines go through one switch in each cell while the double length 

lines go through a switch only every other cell. The easiest way to bypass the signal 

through a dead cell is to permanently connect all the E-W and N-S connections of every 

switch in the cell. 



s 

Figure 4.22 Routing Switch 

To perform this, a laser link can be connected in parallel with the switch. Once the 

laser link is zapped, the signal can run freely in the cell. Instead of having two separate 

structures, a smaller version of the testable laser link is used. Its layout can be seen in 

Figure 4.23. 

Figure 4.23 Laser Pass Transistor 

By using this laser pass transistor for both the vertical and horizontal connections, 

and conventional N pass transistors for the other directions, the complete reconfigurable 

routing switch was designed. Its layout is shown in Figure 4.24. The switch box is made of 

one of these switches for each line in the channel. This switch has a double purpose: the 

transistors are used for FPGA routing only while the laser links are employed for defect 

avoidance. 



Figure 4.24 Reconfigurable Routing Switch 

This method of bypassing is easy to use for single length lines. However, double 

length lines are trickier. The way to design them while keeping the same cell is to cross the 

lines inside the cell so that a routing switch is encountered only every other cell [30]. If a 

column is bypassed, the two logically adjacent cells will see their double lines disturbed: 

one line becomes a single length line while the other becomes a triple length line. This is 

unacceptable because the mapper would have to know which cells are bypassed. This 

problem can be seen in Figure 4.25. In a), there are four cells with the second being 

defective. In b), the restructuring is performed without uncrossing the lines. The formation 

of the triple length bypass line can be seen (wide line). The way developed to counter this 

problem is to uncross the lines in the bypassed cell by using two laser links. So 

proceeding, the double length lines are kept constant throughout the cell array. As shown 

in Figure 4.25 c), by uncrossing the lines in the defective cell, the double length lines are 

preserved. 
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Figure 4.25 Double Length Line Uncrossing Example 
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Figure 4.26 Laser Links Arrangement to Uncross the Lines 



The laser link design to perform the line uncrossing is shown in Figure 4.26. 

Linking the laser links reestablishes the direct connection between the lines while laser 

cutting the original lines removes the line crossing. 

With these switches, the column and row substitution is possible. In order to 

perform the cell by cell substitution, however, a restructuring bus is needed. As seen in the 

section about restructuring, one vertical restructuring bus is used. This allows cell by cell 

substitution in the lines while preserving the alignment in the columns. 

Straight Downward Upward Straight Down 

Figure 4.27 Possible Laser Switch Configurations 

This restructuring bus must allow all the signals coming from the cell on the left 

column to connect to any cell on the adjacent column. For that purpose there must be 

switches allowing the signals to either go straight to the next cell, up or down. Thus the 

switch must be reconfigurable in one of the four possibilities shown in Figure 4.27 [31]. 

Each line in the channel must have a switch of its own. This switch arrangement, called the 

laser switch box, is placed on the right side of each cell, as shown in Figure 4.28. It is then 

possible to do the cell by cell restructuring, as the example shows in Figure 4.29. 
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Figure 4.28 Physical Design 

Figure 4.29 Example of Defect Avoidance (darker Logic Blocks are defective) 



These switches are designed with laser links and no active switching because they 

are used exclusively for defect avoidance. By using laser linking and cutting, the switch 

configurations shown in Figure 4.27 can easily be achieved. The layout of the laser switch 

is shown in Figure 4.30 while its different configurations are shown in Figure 4.31. 

Figure 4.30 Laser Switch 

st;aight Downward Upward Straight Down 

Figure 4.31 Possible Switch Configurations, with Linking and Cutting 



4.4.4 Line Redundancy 

Without line redundancy, the FPGA can still be restructured. As seen in the yield 

simulations, however, adding line redundancy increases the yield significantly and is 

therefore highly profitable. Line redundancy is achieved in this manner: an extra line runs 

in parallel with the routing channel. A laser link is placed between this line an all the other 

lines in the channel. This way, any line in the channel can be replaced using the extra line. 

The connections from the cell to the bus also have laser links to the extra line because, if 

one of these lines needs to be replaced, the connections have to be preserved. Depending 

on the number of lines, it is possible to use more than one extra line, each one being 

dedicated to a certain number of lines in the channel. This decreases the number of laser 

links on the extra line. 

Laser Link 

Figure Line Redundancy. Top: one extra line; Bottom: two dedicated extra lines 



4.4.5 Programming Circuit 

The proposed design uses static RAM programming. A long shift register runs 

through the columns to program each cell. Since cell by cell substitution is used in the 

rows only, all the cells in one column have the same column index in the physical and 

logical array. So there is no problem in programming the cells with a shift register running 

in each physical column. 

Shift register 

Laser cut --h L, 
Defective shift register - -1 3 t Zapped Link 

Laser cut 

Figure 4.33 Shift Register Bypass 

However, defective cells must have their shift register bypassed because the 

mapper will generate a bit pattern independent of the restructuring. Each cell contains a 

serial input and a serial output for its internal register. By using a bypass line that can be 

connected with a laser link, the bypass of the defective cell shift register is possible. The 

clock lines of the shift registers are also redundant in the same manner as the channels. 



If a shift register is inoperable even with this kind of redundancy, the entire column 

can be bypassed. 

4.4.6 Testing 

The testing is an important part of any microelectronic circuit. The testing of the 

wafer scale FPGA has not been studied in detail. This section gives an overview of the 

critical aspect of testing that should be taken into account. 

The testing of the wafer scale FPGA can be performed by using the same 

techniques available today to test the commercially available products. A reconfigurable 

design has however some special testing requirements: 

First the power must be tested. This is done with the testable power link shown 

earlier. By accessing each cell individually, a map of defective cells is created. The cells 

presenting no problem are laser linked to the power rail and can be tested logically. The 

power will eventually be laser cut for the cells which are found defective afterwards, 

though that may not be necessary for some of those cells. 

The programming circuitry must be tested up front; each output of the shift register 

must be accessible to test the shift register, because a defective shift register will propagate 

the wrong bit pattern to the cells located after the defective cell. This access can be done in 

a row column access, as in the case of the power test. 

Each cell must be separately testable for its logic functioning; this may be done by 

testing an entire column at a time, with the same vectors to each cell, rejecting those who 

produce different results. Built-in self test (BIST) can be added to complex cells to aid in 

the testing phase. 

Checking for shorts and open circuits is also important. The restructuring buses run 

through the whole chip; they are therefore easily testable. Programming the cells to 



perform different tests on the routing architecture is also a possibility. 

Testing of a wafer scale design is a complex task that extend beyond the scope of 

this thesis. However, with small modifications to the techniques already employed, the 

testing should not cause major problems. 

4.5 Software Overview 

Even if the object of the thesis is to study the physical aspects of a wafer scale 

FPGA design, software cannot be overlooked because it is an essential part of an FPGA 

design. This section explains the critical aspects for the software requirements to 

reconfigure and run a wafer scale FPGA. 

4.5.1 Restructuring Software 

Once the testing has produced a map of defective cells, the circuit has to be 

restructured. The defect avoidance consists only in physical restructuring, so there is no 

need to program switches. Instead, the laser links and cuts must be performed. There are 

many links and cuts to perform in each cell; however, those links and cuts are the same 

from cell to cell for the most part of the restructuring. So it is easy to use a batch file to 

perform the task. A separate program must be run to restructure around the defects of the 

channels, because the channels needing repairs vary from cell to cell. But once again, only 

a limited number of coordinates are needed for each cell. Also it is easy to use the batch 

linking. The configuration time can be reduced by aligning the laser links so they can be 

zapped with limited movement of the laser table. This is the task of the designer to align 

the links accordingly. The best way to create the batch file is to use the CAD tool and 

create two additional layers: one for the laser link and one for the cut. By using these new 



layers, the designer is able to simulate the effect of the laser restructuring. These layers 

were created in the Cadence environment. The properties of the link layer establishes 

connectivity between the active regions of the link; for simulations, the resistivity of the 

link, extracted from the technology, can be added to the properties. 

Figure 4.34 Implementation of the Link and Cut Layers in Cadence 

The cut layer simply consists in breaking the connectivity in a metal line. It 

allows the designer to test for connectivity and also simulate the performance of the 

design with the laser links and cuts included in the design. It is also very easy to extract 

the information about the coordinates of the links and cuts, since they are separate 

layers. Thus there is no problem in integrating the laser links and cuts into already 

existing design tools. A library of restructured cells can be designed and the appropriate 

linking and cutting pattern chosen for each cell in the array. There is a limited number of 

rerouting patterns for a cell; all the laser switches in the cell have to be rerouted in one 



of the four possibilities shown in Figure 4.3 1, while the switch box has two rerouting 

possibilities, either horizontal or vertical. This is shown schematically in Figure 4.35: 

all the switches in the switch box can be laser linked in the a or b fashion and all the 

laser switches in the laser switch box can be laser linked in the c, d or e fashion (the 

channel contains only two lines for clarity). Coordinates of the links and cuts can be 

referred to the corner of the cell and are easily transformed. 

Box 

Switch 

(a) Block and Switches 

(b) Possible Laser Link Restructuring Patterns 

Figure 4.35 Restructuring Patterns 

The amount of rework is dependant on the size of the final product. For small 

restructurable arrays, where only column bypass is considered, the bypass of the cells is 

simple and fast. For complete wafer scale systems, the process is longer because testing 

and restructuring is iterative. Auto routing software [32] are necessary to route very 

complex circuit. Such a software could be used to generate the laser link routing map. 



4.5.2 Programming Software 

As seen in section 2.2.4, there are six basic steps to create a circuit on an FPGA. 

Since the wafer scale FPGA proposed in this thesis is based on the same kind of basic 

cells found in commercially available circuits, there is no major differences in the 

programming software. Small restructured FPGAs could be used like any other FPGA 

and depending on their design, they could even be programmed with existing software. 

The complete wafer scale circuits will require special software: the design entry and 

optimization are still done in the same manner, only the software used must be able to 

handle large designs. High level capture is better suited for large designs. Placement and 

routing software will require research but will not differ a lot from actual software used 

to program prototype boards and arrays of FFGAs. The programming of the shift 

register requires a larger nemory capacity. 

Since restructuring is invisible to user and the software, the wafer scale FPGA 

can be considered as a larger version of a standard FFGA. A library of macro functions 

could be built and optimized, with complete circuits already available. The designer 

could chose from these circuits and implement a complete wafer scale system in a short 

period of time. 

4.6 Summary 

This chapter has dealt with the different aspects of the defect avoidance in 

FPGAs. The major emphasis has been made on the restructuring aspects and physical 

design of the defect avoidance structure. It has been shown that acceptable yields can be 

achieved by using appropriate methods. The required software has been briefly 

introduced and left as future work in the realization of wafer scale FPGAs. 



Chapter 5 

The Test Vehicle 

This chapter presents the design and experimental work done to test the concepts 

presented in the previous chapter. The first section will deal with the design of the test 

vehicle and its different parts. The second section will present the results on power while 

the third section will explain the delay simulations. Finally, the last section will set out the 

different experimental results performed on the chips. 

5.1 Design 

The idea behind a test vehicle is to provide means to examine the aspects of wafer 

scale systems on a chip which can be produced within the Canadian Microelectronic 

Corporation multi-project wafer system. This section shows the design of the wafer scale 

FPGA test vehicle fabricated to test the techniques presented in Chapter 4. The design was 

done on Cadence with the Mite1 1 Spm CMOS technology. 



5.1.1 Architecture 

The first step in designing an FPGA is to chose the architecture to employ. The 

symmetrical architecture is best suited because of the restructuring technique chosen. In 

this architecture, a square array of similar logic blocks is surrounded by routing resources. 

To make the design restructurable, a restructuring bus is added between each column of 

cells. The block diagram is shown in Figure 5.1 
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Figure 5.1 Symmetrical Restructurable Architecture 

This is the basic architecture used as a starting point to design the test vehicle. The 

next subsections will describe the different parts of the cell in detail. 

5.1.2 FPGA Programming Technology 

As noted in Chapter 2, the most widely employed programming technologies are 

static RAMS, anti-fuses and EEPROMs [34]. Since only CMOS technology was available, 



the EEPROM or anti-fuse programming could not be used. Since static RAM 

programming is very popular in actual FPGAs, and is easily programmable with our 

testing equipment, it was chosen as the programming technology for the test vehicle. 

A long shift register is run through the FPGA cells. Each bit in the shift register 

accomplishes a function, like activating a switch. The basic cell must be very simple and 

occupy very little area, because of the large number of programming bits required. A 

double non-overlapping clock shift-register was designed. The design was not optimized 

for area, but rather to ensure proper functioning. Two inverters in a SR latch mode with 

pass transistors were used. The pass transistors allow minimum size inverters. The 

schematic of the circuit is shown in Figure 5.2. 
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Figure 5.2 Schematic of the Shift Register Bit Cell 

As explained in section 4.4.5, a laser link was placed between the input and the 

output of the shift register in each cell to bypass the cell in case of a defect occurring in the 

circuit. 

5.1.3 Logic Block 

Considering the silicon space available is limited and because the logic block does 

not need any reconfiguration, a very basic circuit was employed. As seen, the logic block 



is used to implement logic functions. This can be done in different ways: Look-Up tables, 

multiplexers or simple logic gates. A Look-up table based logic block was chosen, because 

it is easy to implement, requires little area and is also commonly used in currently 

available FPGAs [2]. The results obtained with a small look-up table can easily serve for a 

more complex but similar design. In order to test the sequential circuits, the logic block 

also includes a D flip-flop. The output of the Look-up table is either transferred directly to 

the output of the cell or run through the D flip flop. The number of inputs and outputs was 

also kept low: three inputs for the look-up table, one clock input for the flip-flop and one 

enable input for the cell and one buffered output. The block diagram of the logic block is 

shown in Figure 5.3. The schematic for the look-up table is shown in Figure 5.4. 

" 1 LUT L OUT 

Figure 5.3 Logic Block (LUT: Look Up Table; D: D Flip-flop) 

5.1.4 Connection Box 

The connection box serves to connect the inputs and outputs of the logic block to 

the routing channels. The design is very simple: a pass transistor activated by a bit of the 

shift register allows the connection. In this way, connection to no line (hi-Z), one or many 

lines in the channel is possible. 



Figure 5.4 Look-up Table Schematic 
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Figure 5.5 Connection Box Diagram 

The number of lines to which each input and output can be connected directly 

influences the flexibility of the FPGA [2], but also increases the length of the shift register. 

The number was set to six, to achieve a certain flexibility while keeping the design small. 

5.1.5 Routing 

Since the symmetrical architecture was chosen, routing channels must be placed 

vertically and horizontally between each cell. The number of lines in each channel is 

critical for the flexibility of the routing. An important aspect to test with the vehicle is the 

utilization of single and double length lines; both were included in the routing channels. 

Once again, area considerations made us choose a small number of lines, 12 in total: 6 

single length, 4 double length and 2 for the clock. The double length lines include the 

uncrossing option for the bypass of the cells. 
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Figure 5.6 Block Diagram of the FPGA Cell 

It is a small number compared to commercial FPGAs but sufficient to perform the 

tests and demonstrate all functional operations of an FPGA cell. The switch matrix, which 

makes the connections between the channels, uses 8 switches similar to those described in 

section 4.4.3; they allow the connection to the three opposite lines and can be laser linked 

to bypass the cell. In the test vehicle fabricated, there is no redundancy in the channels. 

The block diagram of the FPGA cell is shown in Figure 5.6. A new circuit including line 

redundancy was designed and submitted for fabrication. 

5.1.6 Chip Layout 

Two different chips were designed and fabricated in the Mite1 1.5pm CMOS 

technology. The first one utilizes the cell described in the previous section. The layout of 

this cell can be seen in Figure 5.7. 
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Figure 5.7 Circuit Layout of the FPGA Cell in Mitel 1.5pm (1206pm x 650pm) 

Because of its large dimensions, it was impossible to build an array of such cells 

with the standard chip dimensions (3.lmm x 3.lmrn) available from Mitel. With special 

arrangement with CMC, it was however possible to take four adjacent tiles of those chips. 

By using half the width (leaving space for other designs), the fabrication of a 

1 Scmx 1 Smm chip (ICBSFCD4) was possible. This chip includes a row of 12 cells with 

an additional row of restructuration buses to bypass defective cells. In order to test the 

design with a real array, another version of the cell, with smaller dimensions, was 

designed. All the elements of redundancy found in the larger cell are present and only the 

width of the channels and the size of the logic differ. Two single length lines and two 

double length lines were used. The look up table has two inputs. The logic block has only 

three connections to the channels, two inputs and one output. The layout of this cell can be 

seen in Figure 5.8. The large chip (ICBSFCD4) layout is shown in Figure 5.9 while the 

small chip (ICBSFCD3) layout is shown in Figure 5.9. 



Figure 5.8 Layout of the Smaller Cell in Mitel 1.5p.m (834p.m x 333p.m) 



Figure 5.9 Circuit Layout of the Large Chip (ICBSFCD4) 1.5cm x 1.5mm 

Figure 5.10 Circuit Layout of the Small Chip (ICBSFCD3) 6.2mm x 1.5mm 

Figure 5.11 Photograph of the Large Cell Layout (1206pm x 650pm) 



Figure 5.12 Photograph of the Small Cell Layout (834p.m x 333p.m) 

Figure 5.13 Power Testable Link Photograph (45p.m x 23p.m) 
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Figure 5.14 Reconfigurable Switch Photograph (54.2pm x 25pm) 

Figure 5.15 Laser Switch Photograph (32pm x 30pm) 

86 



Figure 5.16 Line Uncrossing Structure Photograph (60pm x 32pm) 

Figure 5.1 1 through Figure 5.16 are photographs of the layouts as well as the 

different defect avoidance structures. 



5.2 Power 

The first step in testing the device is to check power shorts in the cells. Each 

testable power link is turned on and the input current measured. Unfortunately, in the test 

vehicles, the P-Well of the testable link was left floating, making the current measurement 

difficult. The current consumption is however low when all the transistors are turned on, 

indicating no power shorts in all the chips tested. The input current for the small chips was 

in the order of 360_2+ 0pA while running at 1kHz and 440-2+ 0pA at 1MHz. The laser 

linking of the cells was performed successfully and there was no change in behavior or 

power consumption. 

An earlier version of the chip (ICBSFCDI) had its P-Wells properly tied. The 

results for the power consumption of those chips are shown in table 5.1. For no cells 

connected, the input current was 7.6s . lmA; for all cells connected, 1 2 . W .  1mA. 

Table 5.1: Power Test Results 

Input 
Curren t(mA) 

Column 1 

Column2 

Column3 

The power consumption is high in the unconnected mode because of a design error 

in the pads, but it can be seen that the current is increased approximately the same amount 

for each cell tested. These tests were performed on different chips, however the design 

error caused the power to vary from chip to chip. The same behavior was observed in 

every chip, each cell showing about the same current increment when turned on. 

Row3 

8 . 4 s .  1 

8.5d3.1 

9.4f0.1 

Row1 

9 . w .  1 

9 . w .  1 

9.8kO. 1 

Row2 

8.4kO. 1 

8.4M. 1 

9 . 5 s .  1 



5.3 Delay 

The major drawback of an FPGA is circuit speed. For a given circuit, the custom 

implementation is much faster than the FPGA because of the large delays in the routing 

circuitry. Some papers have dealt with the optimization of the logic block complexity, the 

cell granularity and the different architectures to optimize the speed of FPGAs [33][35]. In 

this section, the results for defect free wafer scale FPGAs of the same complexity, but 

without the redundancy or defect avoidance, are compared with the architecture used, 

taking into account the defect avoidance overhead. Note the defect free Wafer Scale FPGA 

would have a negligible yield and are considered only as the idealized comparison target, 

with a speed similar to current standard FPGAs. 

5.3.1 Delay Approximation 

In [33], the total delay (D,,) of the critical path in a defect free FPGA is 

approximated as follows: 

where NL is the number of logic blocks in the critical path, DLB the delay of the Logic 

Block and DR the delay of the routing between two blocks. The delay of the logic block 

can be easily calculated but the delay of the routing is much more difficult to approximate. 

It depends on a large number of factors, like the fanout and the length of the connections 

[33]. A calculated value is used to give an idea of the delay but the reader should keep in 

mind that this value can vary a lot, even just by remapping the circuit. 

For the wafer scale circuit, new delays must be included in the calculation of the 

total delay D,, because of the extra routing and the physical restructuring of the array. 



There are two extra delays: DOH, the delay of the overhead restructuring circuitry in each 

cell and DREC, the delay of a restructuring channel. The total delay (D,,) of the critical 

path becomes: 

where NR is the number of restructuring channels in the path. This number is hard to 

evaluate because it depends on the restructuring algorithm. Before doing any calculations, 

the delay of each section of the design must be evaluated with Hspice. 

5.3.2 Delay Simulations 

The following simulations were done with the dimensions of the small chip 

(ICBSFCD3). The Hspice model in the following sections is changed when the large chip 

(ICBSFCD4) is used. 

The delay of the logic block is simulated as follows (the circuit is shown in Figure 

5.17): the input comes from one channel line (In), goes through a pass transistor(l), then to 

the input of the look up table. In the worst case, the input is connected to two transistor 

gates and also goes through one inverter and is then connected to two other gates. The 

signal is then transferred from the cell bit in the shift register, through an inverter, two pass 

transistors (33) and two transmission gates (6, 7). This is connected to a large buffer (8) 

which goes through a pass transistor and is then connected to the output channel line (out). 
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Figure 5.17 Logic Block Delay Circuit (the numbers are Hspice nodes) 

To simulate the routing delay, a signal corning out of the logic block and going to a 

routing channel is assumed. The capacitive load of a line in the channel is composed of the 

metal line itself, simulated by a 1150pm long by 3.3pm wide RC line in Hspice. This line 

goes through a pass transistor. Other capacitive loads are simulated on the line with 

connections to the drains of open transistors. They represent the connections of the line to 

the connection box. The overhead delay, composed of the restructuring circuitry, is a 

simulation of the laser switch box with a lOOpm long and 3.3pm wide metal line. The 

switch box includes 4 laser links. The last delay simulation is for the restructuring delay, 



Drec. This is approximated by a signal going through a laser link (modeled at 108R), a 

metal line of 550p.m in length and 3.3p.m in width, and another laser 1ink.The delay model 

in Hspice for the metal lines is as follows: 

.MODEL linemetal 1 R COX=0.00014 RSH=0.04 CAPSW=2.3E- 10 

where COX=area capacitance (~lrn*), RSH=sheet resistivity (R/O) and CAPSW=edge 

capacitance (Flm). These simulations are of course rough approximations of the real 

delays in the cell, but they give a good idea of the delays introduced by the laser 

restructuring. 
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Figure 5.18 Circuits used for Delay Simulations: a) Dr, routing delay; b) Doh, 
overhead delay; c) Drec, restructuring delay 



The results for each delay simulated is shown in table 5.2. 

Delay 

Logic Block DLB 

I Routing DR I 9 s 6  1 
I Overhead DOH 1 0.6 1 

Table 5.2: Simulated Delays 

Restructuring DREC 

As an example, the delay for a worst path of ten cells is calculated. The results are 

given in Figure 5.19 
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Figure 5.19 Graph of the Delay vs. Yield for a Row of ten Working Cells 

The graph shows that for high yield (low NR), the difference between the wafer 

scale FPGA and the defect free FPGA of the same complexity is small. The delay is 

increasing linearly from 4% (NR=O) to 22% (NR=lO). To achieve good performance, the 

restructuring algorithm must give a number of channels NR as low as possible. 



In this example, the delay for a logic block composed of a 2 input look-up table is 

measured. Larger blocks show a larger delay but require less routing. A very large block is 

useless in standard VLSI because not enough blocks can be placed on a single chip. But 

for wafer scale, the choice of a larger block may improve the performance. 

The Wafer Scale FPGA has a lower delay than the prototype boards composed of 

arrays of commercial FPGAs because of the high impedance of the board connections and 

the extra delay caused by the routing chips [3]. 

5.4 Delay Experiments 

The purpose of the test vehicle was not to build and test a high performance FPGA 

architecture. The basic cell is very simple and not optimized. The goal was to measure the 

effect of the laser restructuring on the FPGAs, and the delays imposed by the overhead. 

A series of experiment were conducted to measure delays in non-restructured 

FPGAs (with no laser links) and in FPGAs with restructured channels. The design offered 

limited flexibility but different paths and configurations were tested. 

5.4.1 Routing Delay 

The first experiment is to test the small cell FPGA (ICBSFCD3) to see if the logic 

is functioning properly. Because the test vehicle is a custom design, there is no software 

available to work with. Software was written to program the shift registers in the test 

FPGA: two non-overlapping clock signals and two programming bit patterns used as 

inputs for the shift registers were generated using a National Instrument [37] data 

acquisition board. Four bits of an output port were used for this purpose. A simple text file 

composed of the bit pattern to be recorded is needed to program the test vehicle. This 



method of programming is tedious but sufficient for the size of the test vehicle used. 

Proper functioning of the shift registers can be checked by looking at the output 

(which was made accessible via a pad). On the large chip, the output of the shift register of 

each cell is accessible, so it is easy to tell which one is defective and bypass it. The smaller 

chip only have the last output available. Tests were done on three small chips. The first one 

had one shift register working and the other was defective. The second and third had both 

their shift registers working fine. An attempt to correct the defective shift register was 

made, but since it was impossible to tell which cell was defective (because of the 

unsufficient UO pads number), it had not been conclusive. On the large chips 

(ICBSFCD4), the restructuring of the shift register was performed successfully. 

After the shift registers were tested properly, simple continuity tests were done to 

verify the connection between the lines. In the first test, a connection was made between 

two cells via the switches; only the transistors were used, no laser links. The test vehicles 

were designed with blank pads, to allow the measurement of the internal resistances. Care 

must be taken when calculating the delays, because there is no large output buffers and the 

capacitance of the oscilloscope probe must be taken into account. 

The resistance across two cells was 2618k14Q The delay of a square wave going 

through this path was 190k2ns. The maximum amplitude of the signal was 3.8M.O2V, 

because the pass transistors are N type (3.5pm width). A longer path was also simulated. 

This time the signal was run through all the cells, ten N pass transistors. The resistance 

measured was 14.15kO.lkSZ and the delay 800kSns. Unless running at very low 

frequencies, the signal did not reach its full amplitude (-3V) because of the very large rise 

time. These tests show that the routing architecture of an FPGA is quite slow compared to 

a full custom chip design. Such delays are typical for FPGAs. Results of the laser linked 



path are presented later in this section. 

5.4.2 XOR Delay Test 

The next test was to verify the logic operation of the cells. To do this, a two input 

XOR gate was simulated in a cell. The experiment was performed on the small chips 

(ICBSFCD3), with a two input LUT. The setup for this experiment is shown in Figure 

5.20. The delay of this function was measured by keeping one input low and applying a 

square wave to the other input. If the delays in table 5.1 are used, the path of this function 

can be approximated with: Dlb+2Dr+2Doh, giving a delay of 27.1 ns. This does not 

include the output capacitance of the probe; by adding the probe, lOMQ and 1 lpF, a new 

Hspice simulation gives a result of 150ns and measurements indicate a 170&2ns delay. In 

another experiment, the output was run through another cell before reaching the pad and 

the probe. 

Probe ------------. 

Figure 5.20 XOR Experiment Setup 

The Hspice simulation for this circuit gives a 217ns delay while the measurements 

in such conditions show a delay of 3 m 2 n s .  With the high capacity of the probe 

(inaccurately known), it is hard to measure the internal delay. The simulations show 



however that the delay is well approximated with the Hspice simulation when considering 

the capacitive load. Results for the amplitudes are shown in table 5.3. 

Table 5.3: The XOR Gate 

This experiment shows the little overhead delay simulated with Hspice is actually 

low compared to the routing delay of the FPGA. 

5.4.3 Laser Linked Paths 

The next experiment was done to test the restructuring of the FPGA possible with 

the laser links. The first path was the linking of the two single length lines through 3 cells. 

Access to the output pad was achieved by linking the laser switch in its downward mode. 

The paths are schematically represented in Figure 5.21. 

Figure 5.21 Laser Link Paths 

The resistance of the first path was measured at 353k38 and the second path at 

382k3Q . The Hspice model for the lines and links gives a resistance of -3498 for such 



paths. Applying a lMHz square wave gave a delay of 2.5*.5ns for the first path and 

3.W.5ns for the second path. 

After this, another experiment was done to check the influence of bypass 

restructuring on the delays of the paths. The second cell was bypassed by using the laser 

link switches. The schematic representation can be seen in Figure 5.22. With this 

experiment, the delay added by such a restructuring can be measured. 

Figure 5.22 Restructuring Experiment 

The results are as follows: the new resistance was 677+522 for the first path and 

659*1(2 for the second path. Delays were measured as 1 1 .O*Sns for both paths. Table 

5.4 shows the results and the change in resistance and delay after the restructuring. 

Table 5.4: Resistance and Delay of the Laser Linked Paths 

Path 

Hspice 

1 

2 

R ( a )  
before 

349 

353f3 

382f 3 

Delay(ns) 
before 

3.6 

2 3 3 . 5  

3 . W . 5  

R(Q) 
after 

803 

677k5 

659k5 

Delay(ns) 
after 

8.8 

11.0kO.5 

1 1 0 . 5  

Change 
on R 

454 

324f 8 

277k8 

Change on 
Delay(ns) 

5.2 

8Sk1 

7 . e l  



The change in delay predicted by table 5.2 can be estimated to be 2xDrec which 

gives 6.011s. The results show that this estimation is quite reasonable, almost matching 

the results within the expected error. In comparison, the same experiment was 

performed using the active reconfiguration in the cells. Note that this time only two cells 

were used instead of three. The results are shown in table 5.5. 

Table 5.5: Resistance and delay of the Active Switch Paths 

Path 

1 

2 

These results show well the large delays of the active switching compared to the 

laser links. The experiment was repeated on different chips and similar results were 

obtained. 

5.4.4 Double Length Lines 

Another similar experiment was done on the double length lines. This time to 

test the capacity to uncross the lines rather than the actual delay. The path was still 

going through three cells. The first step was to link the lines and measure the resistance 

and the delay. The second step of the experiment was to uncross the lines. First the two 

paths were laser cut; their resistance was too high to measure (>32MR), showing the cut 

was properly made. Thereafter the links were made to reconnect the lines: the effect was 

to invert the lines. The extra delay comes from the laser link. The results of the 

experiment are shown in table 5.6. 

R (a) 
before 

2618f14 

334Ok18 

Delay(ns) 
before 

19m 

202f2 

R(Q) 
after 

5710f29 

6115f31 

Delay(ns) 
after 

37M2 

3 9 1 e  

Change 
On R(R) 

3032f43 

2775f49 

Change 
on 

Delay(ns) 

180f4 

189k4 



-- - - -  

Table 5.6: Double Length Paths Uncrossing Results 

Path 

1 

2 

This experiment shows that the line uncrossing can be done with no problems 

and the delay overhead is small. 

5.4.5 The Ring Oscillator Test 

A ring oscillator was programmed with the FPGA to verify the impact of the 

restructuring on the maximum frequency of operation of a circuit. Due to the small chip 

(ICBSFCD3) dimensions, a 2x5 array, the oscillator was made using six FPGA cells, 

five to simulate the inverters and one as an output buffer, so the capacitance of the 

oscilloscope would not affect the frequency. 

The idea of the test is to simulate the oscillator first without restructuring, then 

with one restructured path and so on, until the maximum number of restructured paths 

possible with the chip was obtained (NR=4). Hspice simulations using the proposed 

delay models gave the results shown in table 5.7. Some modifications on the length of 

the lines and the logic block circuit were made to take into consideration the smaller 

dimensions of the cell used in this experiment. The experimental results were obtained 

as follows: the ring oscillator was incrementally restructured and the frequency of 

operation measured for each value of NR. The procedure is illustrated in Figure 5.23 

(only the laser switch boxes are shown for clarity). In a), there is no restructuring; in b) 

R (R) 
before 

289k3 

2 0 2 e  

Change 
on 

Delay(ns) 

1.5k1 

1.5k1 

Delay(ns) 
before 

3 . W . 5  

1 S M . 5  

R (R) 
after 

3 6 e 3  

287f 3 

Delay(ns) 
after 

4.5kO.5 

3.03a.5 

Change 
On R(R) 

7 1k6 

85k5 



one restructured path is included and in c) two restructured paths are shown. 

Laser Switch ~ o x f  a) NR=O 

Figure 5.23 Restructuring Experiment, Small Chip (ICBSFCD3) 

Measurements were also taken for NR=3 and NR=4. The results of the 

experiment are shown in table 5.7. 



This experiment shows the impact on the delay of an FPGA restructured in the 

cell by cell fashion. 

Number of 
restructured 
paths ( N ~ )  

Table 5.7: Hspice Simulation and Experiments for the Ring Oscillator, Small Chip 
(ICBSFCD3) 

Experimental 
Frequency 

(MHz) 

The waveforms were measured using a lOOMHz digital oscilloscope. The period 

Simulated 
Frequency 

(MHz) 

Frequency 
Change from 
non-defective 
path(NR=O) 

was measured with the cursors of the instrument. The precision on the period is k 0.5ns. 

Frequency 
Change from 
non-defective 
path(NR=O) 

The comparison between simulations and measurements is shown graphically in 

Figure 5.24. 
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Figure 5.24 Ring Oscillator Test, Small Chip (ICBSFCD3) 



Both the simulation and the experiment show the expected trends of decreasing 

frequency with increased NR. The same experiment was repeated on another chip and 

the results were similar. 

The same ring oscillator test was also performed on the large chip (ICBSFCD4). 

Only this time the restructuring was different. Since this chip is a long row (1x12 cells), 

it was used to measure the impact of the column substitution, where the number of laser 

links in the restructuring path is smaller, but where the bypass routing length is longer. 

Another interesting aspect of this experiment is that it uses the new device called the 

laser pass transistor shown in Figure 4.23 so it was possible to show the difference 

between active switching and laser linking. The experiment was done as shown in 

Figure 5.25. In a), there is no laser restructuring. Then in b), a cell was bypassed 

Switch Box a) No restructuring, NR=O 

Laser Link bypassy 
b) One laser restructuring, NR=l 

Figure 5.25 Ring Oscillator Restructuring Experiment, Large Chip (ICBSFCD4) 

and the new frequency was measured. The experiment was repeated for NR=2, 3 and 4. 

The results of both the simulations and the experiments are given in table 5.8 for active 

switching and in table 5.9 for laser linking. 



Number of Simulated Frequency Frequency Experimental Change from restructured Frequency Change from Frequency 
paths (NR) 

non-defective 
(kHz) 

non-defective 
(kHz) path(NR=O) path(NR=O) 

Table 5.8: Results for the Ring Oscillator, Active Switching, Large Chip 
(ICBSFCD4) 

I 4 746 -20.9% 

Table 5.9: Results for the Ring Oscillator, Lase 

Number of 
restructured 
paths (NR) 

Linking, Large Chip (ICBSFCD4) 

Experimental 
Frequency 

(kHz) 

Simulated 
Frequency 

(kHz) 

Those results are shown graphically in Figure 5.26. It shows clearly that the 

Frequency 
Change from 
non-defective 
path(NR=O) 

Frequency 
Change from 
non-defective 
path(NR=O) 

laser linking offers better performance when compared with active switching. While 

both are the same for NR=O, by NR=4 the laser linking oscillator is 33% faster than the 

actively switched device. Both simulations and experiments match very well. The 

experiment was repeated on another chip and the results were similar. 

Those restructuring experiments showed it is possible to use the laser link to 



restructure FPGAs to bypass defects, and showed that it gives better performance then 

active switching. The cases with NR=4 are cases where a very low cell yield is obtained 

and would rarely be encountered on a real wafer. The simulation was repeated with 

wider pass transistors, double the size of those designed (7.Opm instead of 3.5pm). The 

active switching showed a decrease of 18.3% in performance while the laser link 

showed a 12.3% decrease. At this width, the pass transistors are the same size as the 

laser link. 

Figure 5.26 Ring Oscillator Test, Large Chip (ICBSFCD4) 

5.4.6 Larger Cell Simulation 

The simulations from the previous section were done for the fabricated devices. 

In this section, the comparison is made for cells of larger size, which are more likely to 

be used in a real wafer scale design. The logic block is optimized for speed in these 

simulations, so better results are obtained than for the simulations which take the 

fabricated design into account. A comparison is also made with a custom hard-wired 

circuit, with the routing switches replaced by a direct line connection. Cells of 1,2 and 5 



times larger were simulated. The same restructuring scheme as the previous experiment 

was used. The results are shown in table 5.11 for the direct connection, active switching 

and laser linking. The lx means the designed cell size was used (1206pm x 650pm), in 

2x a 2412pm x 1300pm cell was used while 5x means a 6030pm x 3250pm cell was 

used. A graph of these results for active switching and laser linking is shown in Figure 

5.27. 

I I Direct connection 1 Laser linking I Active switching I 

- - 

Table 5.10: Larger Cells Comparison, Frequency in kHz 
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Figure 5.27 Larger Cells Comparison, Active Switching and Laser Linking 



The values indicate the laser link is better even for very large cells, going from 

1.6 times faster for the small cells to two times better than active switching for a cell of 

6030pm x 3250pm. Note these results are comparing the results for the length of the 

routing architectures, and do not take into account the change in performance of the 

logic block. Clearly, with larger cells, more complex circuits can be done with each 

block. 

5.5 Summary 

In this Chapter, the design of the test vehicle was presented. Results of the 

HSpice simulation were compared with the experiments performed on two chip designs 

fabricated in Mite1 1 Spm technology. The effect of the overhead restructuring circuitry 

was analyzed in detail and compared to the simulations. It has been shown that the delay 

overhead is reasonably small and that there is advantages in using the Laser Link to 

restructure FPGAs to bypass defects. 



Chapter 6 

Conclusion 

The work presented in this thesis was aimed at investigating a solution to the 

interconnection problems associated with a wafer scale FPGA. The design and testing 

of a test vehicle was done to show the influence of the restructuring circuitry on the 

performance of the FPGA. The first section of the conclusion deals with the results 

obtained with the test vehicle and how they can be used to expand the size of the 

devices. The second section deals with the technical and economical feasibility of the 

wafer scale and large FPGAs. The last section will present some future work. 

6.1 The Test Vehicle 

A seen in Chapter 5, there is an overhead associated with the laser restructuring 

of the FPGA compared to a standard design. One of the objective of the thesis was to 

show that while this overhead is not negligeable, it is small because of the large delays 



already imposed by the routing structure of the FPGA. The simulations and tests have 

shown the overhead in delay in the order of 10-15% for highly defective areas (around 

50% cell yield) for the cell by cell restructuring, while the row-column restructuring 

gave decreases in performance in the order of 25% for highly defective areas. One thing 

that must be taken into account is that it is unlikely that the worst path of a given circuit 

will actually be mapped on the worst physical path of the FPGA, and this can result in 

circuits with performances close to standard FPGAs. 

The limitation in silicon area available did not allow us to test cells with a size 

used today. It had been shown however that the increase in the area of the cell actually 

decreases the influence of the laser restructuring, since the resistance of the laser link is 

constant and the speed of the circuit decreases with the increase of the cell area. A 

design with large cells also requires a smaller number of cells and thus a smaller number 

of restructuring circuits. 

The results obtained with the test vehicle demonstrate the possibility of laser 

restructuring FPGAs and therefore increasing their size or yield with a small penalty on 

circuit performance. 

6.2 Technical and Economical Feasibility 

Two different approaches to the laser restructuring of FPGAs have been 

presented in this thesis. The first one is to use a complex defect avoidance scheme that 

allows the size of FPGAs to increase up to full wafer devices. The other one deals with 

the yield of standard size devices. By using a low overhead circuitry and a simple row 

column defect avoidance scheme, it is possible to increase the yield of the devices. A 

similar approach is used in dynamic RAMS today. This approach could decrease the 



cost of large FPGAs and even be used to increase the size of high-end devices. 

The full wafer scale FPGAs would offer considerably higher capability than 

current FPGAs but requires more area and the restructuring costs more than standard 

devices. Their use is however targeted for applications that use very expensive 

equipment today. The main advantage of a wafer scale product is once the production is 

launched, the cost of rework is kept small. One of the problem with boards of FPGAs, 

apart from being slower than a potential wafer scale design, is they cannot use standard 

FPGAs, so a custom design has to be build. The amount of rework on a board or multi 

chip module is also very high, and the probability of breaking a device is large when the 

rework is performed. While a wafer scale product would be technically superior, an 

analysis of the market should be done to build a system that suits the needs of the 

demand. As one designer said: "As far as density, the sky's the limit. If the gates are 

there, I'll use them-40,000 or 500,000 gates" [38]. 

6.3 Future Work 

The experiments on the test vehicles show it is possible to build a wafer scale 

device with low overhead. More tests should however be done to slowly increase the 

size of the devices. A more complex cell should also be used. The next logical step in 

the project would be to employ a commercially available cell and implement the 

restructuring on it. Building a small area restructurable FPGA that can be programmed 

using available software and compare its performance to a custom device would give 

useful insights. This kind of project requires cooperation and the work of many people, 

which is beyond a student's thesis. The work presented in this thesis is however the 

necessary first step and the results presented are showing that the next step is possible. 



Other interesting options come to mind when talking about a wafer scale FPGA. 

One of the main problem of today's designs is the lack of embedded memory. With a 

wafer scale design, it is possible to include significant amounts of memory, distributed 

on the chip, that can be used by the circuit. It is also possible to build a wafer scale 

design with many different blocks, to reach better performance. This is the trend today, 

but the low area of the chip is an obstacle. FPGAs are very popular today and will 

probably be more popular in the future. If the chip size barrier can be broken, this future 

could be even more interesting. 

6.4 Summary 

The goal of the thesis was to propose a way to restructure FPGAs by using Laser 

Link Technology. Different defect avoidance approaches are presented and simulations 

performed. It is shown that a combination of row and cell restructuring, and line 

redundancy inside the channels, gives good yields. A test vehicle was designed and 

fabricated to test the different aspects of a wafer scale design. While further work still 

need to be done, results show a laser restructured wafer scale FPGA is feasible. 
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Appendix A: Hspice Ring Oscillator File 

Hspice file sample, osc.sp, to simulate the restructuration on the ring oscillator for the 
small chip (ICBSFCD3). 
* 
.MODEL PMITEL PMOS LEVEL3 COX= 1.28E-3 DERIV= 1 KAPPAz5.69 
+ KP= 17.65E-6 TOX=27E-9 VMAX=:! l6.54E3 LD= 152.9 1 E-9 LMLT= 1 
+ WD=97.74E-9 WMLT= 1 XJ403.33E-9 DELTA= 1.53 ETA= 146.55E-3 
+ NFS=224.75E9 NSUk3.6E16 PHk765.08E-3 VTO=-559.63E-3 
+ THETAz35.94E-3 UO= 138.03 
* 
.MODEL NMITEL NMOS LEVEL=3 COX= 1.28E-3 DERIV= 1 KAPPA= 1 OE-3 
+ KP=68.03E-6 TOX=27E-9 VMAX=160.4E3 LD=239.68E-9 LMLT=l 
+ WD= 100E- 12 WMLT= 1 XJ=296.9E-9 DELTA= 1.06 ETA= 140.68E-3 
+ NFSd368.21E9 NSUB= 1.6E16 PHk725.15E-3 VTO427.59E-3 
+ THETA=34.67E-3 UO=53 1.92 

*** Lines Models 

.MODEL linepoly R COX=0.00012 RSH=20.0 

.MODEL linemetall R COX=0.00014 RSH=O.W CAPSW=2.3E-10 

.MODEL linemetal2 R COX=0.00012 RSH=O.W CAPSW=2.3E- 10 

.subckt laserlink in out 
R 1 in out 108 
ml in 0 out 0 nmitel 1=1.5u w=6.6u ad=34.98p as=34.98p pd=23.8u ps=23.8u 
.ends 

.subckt laserlinkopen in out 
R1 in out 10E6 
ml in 0 out 0 nmitel 1=1.5u w=6.6u ad=34.98p as=34.98p pd=23.8u ps=23.8u 
.ends 

subckt nswitch in out 
ml in vdd out 0 nmitell=lSu w=3.5u ad=11.55p as=11.55p pd=13.6u ps=13.6u 
vddvddO5vdc 
.ends 

.subckt openswitch in 
ml in 0 0 0 nrnitel k 1 . 5 ~  w=3.0u ad=9.9p as=9.9p pd=12.6u ps=12.6u 
.ends 

subckt inv in out 
ml vdd in out vdd pmitel 1=1.5u w=3.0u ad=10.87p as=10.87p pd=13.2u ps=13.2u 



m2 out in 0 0 nmitel 1=1.5u w=1.5u ad=10.87p as=10.87p pd=l3.2u ps=13.2u 
vddvddO5vdc 
.ends 

.subckt bigbuffer in out 

.subckt inv in out 
ml vdd in out vdd pmitel 1=1.5u w=3u ad=10.87p as=10.87p pd=13.2u ps=13.2u 
m2 out in 0 0 nmitell=lSu w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u 
vdd vdd 0 5v dc 
.ends 
.subckt inv2 in out 
ml vdd in out vdd pmitell=lSu w=60.0u ad=198p as=198p pd=126.6u ps= 126 .6~  
m2 out in 0 0 nmitell=lSu w=30.0u ad=99p as=99p pd=66.6u ps=66.6u 
vddvddO5vdc 
.ends 
xl in 1 inv 
x2 1 out inv2 
.ends 

.subckt tgate in out 
ml in 0 out vdd pmitell=lSu w=6.0u ad=24.78p as=24.78p pd=19.8u ps= 1 9 . 8 ~  
m2 in vdd out 0 nmitel 1=1.5u w=3.0u ad=10.87p as=10.87p pd=13.2u ps=13.2u 
vddvddO5vdc 
.ends 

*** Logic block 

.subckt dlb in out 
xl in 1 nswitch 
x2 1 2 inv 
x3 vdd 10 inv 
x4 0 11 inv 
ml 10 1 3 0 nmitell=lSu w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u 
m2 0 1 0 0 nmitel1=1.5u w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u 
m3 11 2 3 0 nmitel 1=1.5u w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u 
m4 0 1 0 0 nmitel 1=1.5u w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u 
m5 3 vdd 5 nmitell=lSu w=1.5u ad=9.9p as=9.9p pd=12.6u ps=12.6u 
m6 vdd 5 9 vdd pmitel 1= 1 . 5 ~  w=7.2u 
m7 9 5 0 0 nmitell=lSu w=5u 
x5 5 6 tgate 
x6 6 7 tgate 
x7 7 8 bigbuffer 
x8 8 out nswitch 
vddvddO5vdc 
.ends 



*** Routing 

.subckt dr in out 
x 1 in openswitch 
x2 in openswitch 
x3 in openswitch 
x4 in openswitch 
r l  in 1 linemetall 1=1150u ~ 3 . 3 ~  
x5 1 2 nswitch 
r2 2 out linemetal 1 I= 100u w=3.3u 
x6 2 0 laserlinkopen 
x7 2 0 laserlinkopen 
x8 2 0 laserlinkopen 
x9 2 0 laserlinkopen 
.ends 

*** Direct routing(for double length lines) 

subckt dir in out 
x l  in openswitch 
x2 in openswitch 
x3 in openswitch 
x4 in openswitch 
r 1 in 1 linemetal 1 1=1150u w d . 3 ~  
r5 1 2 linemetall 1=2u w=3.3u 
r2 2 out linemetall 1=100u ~ = 3 . 3 u  
x6 2 0 laserlinkopen 
x7 2 0 laserlinkopen 
x8 2 0 laserlinkopen 
x9 2 0 laserlinkopen 
.ends 

.subckt drec in out 
x 1 in 2 laserlink 
r l  2 3 linemetall 1=333u w d . 3 ~  
x2 3 out laserlink 
.ends 

x l  1 2 dlb 
x2 2 3 dr 
*x20 30 3 drec 
x3 3 4 dlb 
x4 4 5 dir 
*x40 50 5 drec 



x5 5 6 dlb 
x6 6 7 dr 
*x60 70 7 drec 
x7 7 8 dlb 
x8 8 9 dir 
*x80 90 9 drec 
x9 9 10 dlb 
x10 10 11 dr 
*x100 110 11 drec 
x l l  11 12 dir 
*x110 120 12 drec 
x12 12 13 dr 
*x120 130 13 drec 
x13 13 14 dir 
*x130 140 14 drec 
x14 14 1 dr 

x15 3 15 dr 
x16 15 out dlb 

c l  out 0 lop 
c2 1 0 1 . 4 ~  
c3 2 0 1 . 4 ~  

.ic v(l)=Ov 

.tran Ins 50011s 

.OPTIONS post 

.END 




