
Test Vehicle for a Wafer Scale

Field Programmable Gate Array

by

Benoit Dufort

B.A.Sc., UniversitC Laval, 1993

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

IN THE SCHOOL OF ENGINEERING SCIENCE

O Benoit Dufort 1995

Simon Fraser University

July 1995

All rights reserved. This work may not be

reproduced in whole or in part, by photocopying or

other means, without permission of the author.

Approval

Name: Benoit Dufort

Degree: Master of Applied Science

Title of Thesis: Test Vehicle for a Wafer Scale

Field Programmable Gate Array

Examining Comrnitee:

Dr. M. Jamal Deen, Chairman

Dr. Glenn H. Chapman, Sdior Supervisor

Dr. Richard F. Hobson, Supervisor

-
Dr. Colombo R. Bolognesi, m n e r

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis,
project or extended essay (the title of which is shown below) to users of the
Simon Fraser University Library, and to make partial or single copies only for
such users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its usrs. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed without
my written permission.

Title of Thesis/Project/Extended Essay

"Test Vehicle for a Wafer Scale Field Pro~rammable Gate Array"

Author:
(signature)

Benoit DUFORT
(name)

July 1 1. 95
(date)

Abstract

Field Programmable Gate Arrays are growing steadily in use and have already

change the way designers build digital circuits. With their low cost and very fast

turnaround time, they are especially well suited for prototyping new designs. However, the

general nature of FPGAs implies a circuit density much lower than custom designs. This

currently limits the size of the circuits that can be implemented on a single FPGA to 40000

equivalent gates . Boards of FPGAs are used, but their speed remains slow, because of the

large capacitance of the inter-chip routing.

This thesis investigates the use of Wafer Scale Technology to expand the size of

FPGAs to 3 million gates for a 200mrn wafer. The defect avoidance proposed uses the

laser link technology to restructure the circuit in a square array. Two different techniques,

the row-column substitution and the combination of cell by cell and column substitution,

are analyzed. The first one is proposed to increase the yield of small FPGAs while the

second one is designed to restructure wafer scale chips. Simulations to show the effect of

the restructuring on the chip yield are presented.

The proposed design is described and the defect avoidance structures explained in

detail. A new kind of device, called the testable laser link, has been designed and tested. Its

application in the wafer scale FPGA is presented, both in the power distribution and the

reconfiguration. Two chip sized test vehicles incorporating the restructuring devices

described in the thesis have been successfully fabricated and the results of different tests of

cells and signal routing are analyzed. These indicate that a wafer scale FPGA would be

feasible with the described techniques.

Acknowledgments

I wish to thank my senior supervisor, Dr. Glenn Chapman, for his help and

guidance during this work. I also wish to thank my family and friends for their constant

support during my time at Simon Fraser University.

I would like to thank the Canadian Microelectronic Corporation for fabricating the

chips presented in this thesis.

This work was supported in part by the Natural Science and Engineering Research

Council of Canada, the SFU Center for System Science and the British Columbia

Advanced System Institute.

Table of Contents

. . Approval ... 11

... Abstract .. ill

Acknowledgments .. iv

... Table of Contents v

.. List of Figures ix
...

List of Tables ... xlll

Chapter 1 : Introduction .. 1

1 . 1 General ... 1

1.2 Applications ... 4

1.3 Thesis Objectives ... 4

1.4 Thesis Organization ... 5

Chapter 2: Theory of Wafer Scale Integration

and Field Programmable Gate Arrays 7

2.1 Wafer Scale Integration ... 7

2.1.1 Active Switches ... 8

2.1.2 Permanent Switches ... 9

2.1.3 Laser Link .. 9

.. 2.2 Field Programmable Gate Arrays 10

2.2.1 What is an FPGA? ... 1 1

2.2.2 FPGA Architectures ... 12

.. 2.2.3 FPGA Applications 13

... 2.2.4 Implementation Process 14

... 2.2.5 Commercially Available FPGAs 15

2.3 Summary .. 16

Chapter 3: Laser Linlung Wafer Scale Integration 17

3.1 Mite1 1.5pm Technology Parameter Extraction .. 17

.. 3.1.1 Laser Table Setup 17

3.1.2 Laser Link Power Calculations .. 18

.. 3.1.3 Laser Power Experiments 21

3.1.4 Laser Link Experiment .. 22

3.1.5 Laser Cut Experiments ... 24

3.1.6 Damage to Silicon Nitride .. 25

3.1.7 Batch Linking and Cutting ... 26

.. 3.1.8 Linking Summary 27

3.2 Practical Example: Test Vehicle for a Wafer Scale

... Thermal Pixel Scene Simulator 28

.. 3.2.1 Design 29

... 3.2.2 Experimental Procedure 30

... 3.2.3 Experimental Results 32

3.3 Summary .. 32

... Chapter 4: Defect Avoidance in FPGAs -33

... 4.1 Defect Avoidance 34

4.1.1 Fabrication Defects .. 34

4.1.2 General Defect Avoidance ... 35

.............................. 4.1.3 Making the Defect Avoidance Invisible to the User 36

4.2 Restructuring of a 2-D Array ... 37

4.2.1 Row-Column Substitution ... 37

.. 4.2.2 Cell by Cell Substitution 39

... 4.2.3 Row-Column and Cell Substitution 40

... 4.3 Algorithms and Yield Simulations 41

4.3.1 Defect Distribution Simulations .. 41

4.3.2 Row-Column Restructuring ... 44

4.3.3 Cell by Cell Restructuring ... 49

4.4 Design Considerations for Defect Avoidance in FPGAs 57

4.4.1 Power Routing ... 57

4.4.2 Clock .. 60

4.4.3 Routing ... 61

4.4.4 Line Redundancy ... 68

4.4.5 Programming Circuit .. 69

4.4.6 Testing ... 70

4.5 Software Overview ... 71

.. 4.5.1 Restructuring Software 71

.. 4.5.2 Programming Software 74

4.6 Summary ... 74

Chapter 5 : The Test Vehicle .. 75

5.1 Design .. 75

5.1.1 Architecture ... 76

.. 5.1.2 FPGA Programming Technology 76

5.1.3 Logic Block .. 77

5.1.4 Connection Box ... 78

... 5.1.5 Routing 80

... 5.1.6 Chip Layout 81

5.2 Power ... 88

.. 5.3 Delay 89

.. 5.3.1 Delay Approximation 89

.. 5.3.2 Delay Simulations 90

5.4 Delay Experiments ... 94

5.4.1 Routing Delay .. 94

vii

5.4.2 XOR Delay Test ... 96

5.4.3 Laser Linked Paths ... 97

... 5.4.4 Double Length Lines 99

5.4.5 The Ring Oscillator Test .. 100

5.4.6 Larger Cell Simulation ... 105

5.5 Summary .. 107

Chapter 6: Conclusion .. 108

6.1 The Test Vehicle .. 108

6.2 Technical and Economical Feasibility ... 109

6.3 Future Work ... 110

6.4 Summary .. 1 1 1

List of References .. 112

Appendix A: Hspice Ring Oscillator File ... 116

...
V l l l

List of Figures

Figure 1.1 : FPGA Block Diagram .. 2

. Figure 2.1 : Mite1 1 5pm CMOS Laser Link .. 10

Figure 2.2. Conceptual Simple FPGA .. 11

Figure 2.3. FPGA Implementation Process .. 15

Figure 3.1 : Laser Table Setup .. 18

Figure 3.2. Cross Section of the Linking Process .. 19

Figure 3.3. Graph of the Power vs . Depth of the Melt Front 21

Figure 3.4. Position of the Laser Zaps ... 23

Figure 3.5. Photograph of the Links ... 23

Figure 3.6. Two Methods for Cutting Large Metal Lines .. 24

Figure 3.7. Photograph of the Cutting Methods ... 25

Figure 3.8. Photograph of the Damage in the Silicon Nitride 26

Figure 3.9. Photograph of the Transducer Cell .. 29

Figure 3.10. Photograph of the Test Chip .. 30

Figure 3.1 1 : Optical Probing .. 30

Figure 3.12. Design Schematic .. 31

Figure 4.1 : Three Categories of Defects: a) Logic Defect: eg . Gate Oxide Hole;

b) Power Defect: eg . Power Short;

C) Routing Defect: eg . Bus Open Circuit and Bus Short 34

Figure 4.2. Two Redundancy Classes: a) Global Sparing; b) Local Sparing 36

Figure 4.3. Row-Column Substitution ... 38

Figure 4.4. Vertical Cell by Cell Substitution .. 39

Figure 4.5. Row-Column and Cell Substitution ... 41

Figure 4.6. Defect Map Example (k O . 1) .. 43

Figure 4.7. Yield Results for a Logical 25x25 Array. no clustering (L.0.005) 46

Figure 4.8. Yield Results for a Logical 25x25 Array. high clustering (k0.005) 47

Figure 4.9. Yield Results for a Logical 25x25 Array. no clustering (kO.O1) 48

Figure 4.10. Yield Results for a Logical 25x25 Array, high clustering (k0.01) 48

Figure 4.1 1 : Gupta Algorithm Restructuring example ... 51

Figure 4.12. Cell by Cell Restructuring Example .. 52

Figure 4.13: Cell by Cell Restructuring Simulation.

no extra line, M.O 1 (100 defectslwafer) ... 52

Figure 4.14: Cell by Cell Restructuring Simulation.

one extra line. ,k0.01 (100 defectslwafer) .. 53

Figure 4.15. Effect of Extra Lines, kO.01 (100 defectslwafer), ac=0.3 54

Figure 4.16: Cell by Cell Restructuring Simulation.

no extra line. k0 .06 (600 defectslwafer) ... 55

Figure 4.17: Cell by Cell Restructuring Simulation,

one extra line. k0 .06 (600 defectslwafer) ... 55

Figure 4.18. Effect of Extra Lines, k 0 . 0 6 (600 defectslwafer). ac=0.3 56

Figure 4.19. Testable Laser Link ... 58

............... Figure 4.20. Graph of the Voltage Drop across the Testable Power Link 59

.. Figure 4.2 1 : H-tree Clock Network 60

.. Figure 4.22. Routing Switch 62

... Figure 4.23. Laser Pass Transistor 62

Figure 4.24. Reconfigurable Routing Switch ... 63

Figure 4.25. Double Length Line Uncrossing Example .. 64

Figure 4.26. Laser Links Arrangement to Uncross the Lines 64

Figure 4.27. Possible Laser Switch Configurations ... 65

Figure 4.28. Physical Design ... 66

... Figure 4.29. Example of Defect Avoidance (darker Logic Blocks are defective) 66

Figure 4.30. Laser Switch .. 67

Figure 4.3 1: Possible Switch Configurations. with Linking and Cutting 67

Figure 4.32: Line Redundancy . Top: one extra line;
8

Bottom: two dedicated extra lines ... 68

Figure 4.33. Shift Register Bypass ... 69

Figure 4.34. Implementation of the Link and Cut Layers in Cadence 72

Figure 4.35. Restructuring Patterns .. 73

Figure 5.1 : Symmetrical Restructurable Architecture .. 76

Figure 5.2. Schematic of the Shift Register Bit Cell ... 77

Figure 5.3. Logic Block (LUT: Look Up Table; D: D Flip-flop) 78

Figure 5.4. Look-up Table Schematic .. 79

Figure 5.5. Connection Box Diagram .. 80

Figure 5.6. Block Diagram of the FPGA Cell .. 81

Figure 5.7: Circuit Layout of the FPGA Cell in Mitel 1.5pm (1206pm x 650pm) . 82

Figure 5.8. Layout of the Smaller Cell in Mite1 1.5p.m (834pm x 333pm) 83

Figure 5.9. Circuit Layout of the Large Chip (ICBSFCD4) 1 Scm x 1 Smm 84

Figure 5.10. Circuit Layout of the Small Chip (ICBSFCD3) 6.2mm x 1 Srnm 84

Figure 5.11. Photograph of the Large Cell Layout (1206pm x 650pm) 84

Figure 5.12. Photograph of the Small Cell Layout (834pm x 333pm) 85

Figure 5.13. Power Testable Link Photograph (45pm x 23pm) 85

Figure 5.14. Reconfigurable Switch Photograph (54.2pm x 25pm) 86

Figure 5.15. Laser Switch Photograph (32pm x 30pm) .. 86

Figure 5.16. Line Uncrossing Structure Photograph (60pm x 32pm) 87

Figure 5.17. Logic Block Delay Circuit (the numbers are spice nodes) 91

Figure 5.18: Circuits used for Delay Simulations: a) Dr, routing delay;

b) Doh. overhead delay; c) Drec. restructuring delay 92

Figure 5.19. Graph of the Delay vs . Yield for a Row of ten Working Cells 93

Figure 5.20. XOR Experiment Setup ... 96

Figure 5.2 1 : Laser Link Paths .. 97

Figure 5.22. Restructuring Experiment .. 98

Figure 5.23. Restructuring Experiment, Small Chip (ICBSFCD3) 101

Figure 5.24. Ring Oscillator Test, Small Chip (ICBSFCD3) 102

Figure 5.25: Ring Oscillator Restructuring Experiment, Large Chip (ICBSFCD4) 103

Figure 5.26. Ring Oscillator Test, Large Chip (ICBSFCD4) 105

Figure 5.27. Larger Cells Comparison, Active Switching and Laser Linking 106

xii

List of Tables

Table 3.1. Resistance of one Zap (Mite1 1.5pm link) .. 22

Table 4.1. Distribution of Wafer Lots; target k O . 1 .. 44

Table 4.2. Row Column Algorithm C-like Pseudo-code .. 45

Table 4.3. Cell by Cell Substitution C-like Pseudo-code .. 50

Table 5.1. Power Test Results .. 88

Table 5.2. Simulated Delays .. 93

.. Table 5.3. The XOR Gate 97

Table 5.4. Resistance and Delay of the Laser Linked Paths 98

Table 5.5. Resistance and Delay of the Active Switch Paths 99

... Table 5.6. Double Length Paths Uncrossing Results 100

Table 5.7: Hspice Simulation and Experiments

................................... for the Ring Oscillator, Small Chip (ICBSFCD3) 102

Table 5.8: Results for the f ing Oscillator.

.. Active Switching. Large Chip (ICBSFCD4) 104

Table 5.9: Results for the Ring Oscillator.

... Laser Linking. Large Chip (ICBSFCD4) 104

.. Table 5.10. Larger Cells Comparison. Frequency in kHz 106

...
X l l l

Chapter 1

Introduction

1.1 General

Field Programmable Gate Arrays (FPGAs) have progressed rapidly since their

introduction in 1985, and are now widely employed by designers, especially as a cheap

and fast means to implement new designs. An FPGA is basically an array of uncommitted

programmable logic blocks that can perform different digital functions. Those blocks can

be interconnected in different ways by use of a programmable routing structure. Figure 1.1

gives a block diagram of a typical FPGA. With their very low development cost and

turnaround time for implementing thousands of logic gates, FPGAs provide a new

capability which has changed the future of digital design. The largest FPGAs have an

equivalent gate count of approximately 40,000 gates [I]. With the large amount of routing

involved in an FPGA design, however, usually around 70%-90% [2], it is difficult to

increase the cell count and, therefore, the design complexity of a single chip. Large FPGAs

are also very expensive, mainly because of their low yields. One way to increase the gate

count of a single FPGA is to use a denser technology, but still the amount of routing is an

obstacle to very high gate count FPGAs. Arrays of FPGA chips on a board are used as a

prototype platform [3], however the delay between the chips remains large compared to

the delay within the chip.

Routing
Channels

Logic
Block

Figure 1.1 FPGA Block Diagram

While seldom considered, one way to increase the gate count of FPGAs is to

employ the technique known as Wafer Scale Integration. The chip size of a standard

design must be kept small in order to achieve reasonable yield, because of the defects

inherent in any microelectronic fabrication process. One way to counter this problem is to

use redundancy and defect avoidance. By harvesting and using only the working parts of a

circuit, it is possible to increase the size of a chip, ultimately to an entire wafer.

The restructuring technique employed at Simon Fraser University (SFU) is the

laser link technology, developed at MIT Lincoln Laboratory [4]. By using the power of a

laser, connections can be made between two metal layers of a microelectronic process and

the same laser may serve to cut lines, allowing the restructuring of the design.

This thesis investigates the use of this technique to produce FPGAs of large area

and very high gate count. The idea of a wafer scale FPGA has already been proposed in

another paper [5]. A different approach is proposed where the defect avoidance is invisible

to the user. The focus of this thesis is to solve the interconnection and defect avoidance

aspects of wafer scale systems. The FPGA cells employed are simple structures which

would be replaced by more complex cells in a full system. Reasonable estimates indicate

that in a final system, with a 0.5pm CMOS technology, it would be possible to implement

an FPGA of approximately 1.5 million equivalent gates on a 150mm wafer, and close to 3

million on a 200mm wafer, given a yield of 75% for the cells. The same restructuring

technique can also serve to build smaller FPGAs, in the order of 120 000 equivalent gates

with an approximate size of 3cm x 3cm.

The restructuring can also serve to increase the yield of standard FPGAs, by

providing one or two extra rows in case there is a defect, in the same way dynamic RAM

chips are reconfigured today. Without increasing the gate count, this technique would be

useful to reduce dramatically the cost of large FPGAs as in the case of RAM, where the

number of working chips is increased by a factor of 5 with laser restructuring [12], and

also provide a means to produce devices of larger areas.

FPGA designs are very well appropriated to wafer scale implementation. First,

since FPGAs are arrays of identical cells, they are easier to test and reconfigure than large

custom circuits; secondly, the FPGA being a reconfigurable system in itself, some of the

reconfiguration circuitry is already available in the standard design and less overhead is

needed to allow for reconfiguration. Finally, there is a very good potential market for large

FPGAs, much better than other wafer scale projects which are very specialized.

1.2 Applications

The first application that comes to mind for a wafer scale FPGA is a prototype

emulator. With their current capacities, standard devices are limited in the designs they can

implement. Very large devices, such as microprocessors, require a very high gate count

and therefore very complex and expensive emulators. A wafer scale FPGA would provide

a cheaper and faster way to simulate those very large designs.

Another interesting application is for self healing circuits. Not only the circuit but

also the testing and reconfiguration circuitry could be implemented on the same FPGA.

This could prove very useful in hard to reach areas or in applications where the hardware

has to be fault tolerant. FPGA is the technology of choice for a new type of computers

where instead of programming instructions in a standard hardware, the hardware itself is

reconfigured to suit the computing requirements. Once again, very large FPGAs would be

very useful and perform better than a large number of small FPGAs.

An interesting alternative is to use the defect avoidance techniques of the large

systems and apply them to moderate size FPGAs to allow much better yield. This

technique is already used in all the dynamic memory chip and could greatly reduce the

price of actual high-end FPGAs.

1.3 Thesis Objectives

The main objective of this thesis is to show that it is possible to apply the different

techniques of Wafer Scale Integration to an FPGA design. Those techniques include power

considerations, redundancy, restructuring, testing and clock distribution. A new kind of

device to facilitate power testing and distribution is also presented. Different defect

avoidance techniques are analyzed and simulated to find the best way to restructure

FPGAs. Different types of redundancy are also analyzed.

The object of the work is not to build a complete wafer scale system, but rather to

solve the problems of wafer scale on smaller dimension devices that are easier to work

with and less expensive. Once the problems have been solved on the smaller devices, the

increase in size should be relatively straightforward.

The work presented concentrates on designing a test vehicle to prove the concepts

and apply them to a wafer scale design. There is a section describing the software

requirements of a wafer scale FPGA but no extensive work has been done in this area. No

attempts to optimize the logic nor the routing of FPGAs has been done. Instead, the

restructuring method developed is general and can be used on different FPGA

technologies and thus can be optimized by using state of the art logic and routing.

1.4 Thesis Organization

Chapter two is a theoretical review of both the Wafer Scale and the FPGA

technologies. A description of the concepts essential to the understanding of large area

FPGA systems is presented.

In chapter three, experiments on the laser link restructuring technique in the Mite1

1 Spm technology are presented. Work done during the early part of the master on another

wafer scale test vehicle, the thermal scene simulator, are discussed, with an emphasis on

the experimental work done with the chips.

Chapter four addresses the concepts of defect avoidance in FPGAs. Simulations

performed to find the best restructuring method are analyzed. The design considerations

involved with building a wafer scale FPGA are studied. The chapter ends with an

overview of the software needed once a wafer scale system is build, both for testing of

the hardware and programming of the device.

Chapter five emphasizes on the experimental work done on the test vehicle. The

design is presented with each part explained in detail and the experiments on the defect

avoidance methods exposed. The power distribution and the new device called the

Testable Power Link are tested and their performance analyzed. The clock time delay, a

critical parameter for FPGA users, is studied in detail and comparisons between

HSPICE simulation and the experiments are shown. A ring oscillator was mapped on

the test vehicle and its performance for different types of restructuring is presented.

The last chapter concludes by analyzing the feasibility, both technical and

economical, of the Wafer Scale FPGA. A section on future work is also presented.

Chapter 2

Theory of Wafer Scale Integration and
Field Programmable Gate Arrays

This chapter deals with the theory background used in conceiving a wafer scale

field programmable gate array. The first section treats of the wafer scale integration

technology in general. The second section deals with the theory of the FPGAS, their

applications and the commercially available products.

2.1 Wafer Scale Integration

The main limitation of microelectronic fabrication is presence of production

defects in the circuits. Only one defect on a chip makes it impossible to use. As the

technologies get more mature, the defect density decreases but the chips must be kept

relatively small to ensure sufficient yield. To build a large area chip is virtually impossible

if there is no way to avoid the defects in the circuit.

The process of building large chips with the capacity to avoid defective areas is

called Wafer Scale Integration [6]. The basic idea is that instead of fabricating small chips

and retaining only those without defects, a very large chip can be built if there is a way to

bypass the circuitry affected by defective areas. One way to do this is to use redundancy:

when a defective cell is identified, a spare cell is used to replace it. The challenge is to

build a circuitry to perform the reconfigurat~on. This circuitry must be as small as possible

and have very little influence on the operation of the rest of the circuit.

So it is possible with this technique to increase significantly the size of

microelectronic circuits. Because of the large amount of transistors on such a large device,

the technology of choice is CMOS, due to its low power dissipation. But power still

remains an important issue of wafer scale integration. The distribution of the signal

throughout a very large device also becomes an issue, especially for the power rails and

the clock lines. Testing of the different parts of the circuits may also become a problem

and a circuit allowing the testing of hard to reach cells must be designed. Defect avoidance

algorithms must be designed to make the best use of the area and maximize the speed of

the circuits. Those are all aspects that the wafer scale designer must take into account.

There are two different approaches for the reconfiguration circuitry: active

switches and permanent switches [6].

2.1.1 Active Switches

Active switches are basically pass transistors or transmission gates. The signals to

different parts of the circuit can be rerouted by programming those switches. They have

the advantage to be easily programmable and reconfigured many times. They have

however many drawbacks. First, they use more space than permanent switches, especially

the programming circuitry 171; they are also more resistive, thus imposing a longer delay

on the lines. Because of their large area overhead, they are also more sensitive to defects,

and the switches themselves can be defective, making the circuit impossible to

reconfigure.

2.1.2 Permanent Switches

Under this classification are different types of switches, such as EPROMs,

EEPROMs, Laser Programmable Switches and Anti-Fuses. They all have the drawback

that they are programmable only once (except EEPROMs). But they require less area and

they offer much better electrical characteristics than active switching. Permanent switches

are well suited for defect avoidance because once the defects are known, the circuit is

reconfigured only once. But they do not allow the possibility of self healing. They are also

much better candidates for the power distribution circuitry, since smaller resistances can

be achieved with permanent switches.

2.1.3 Laser Link

The type of switch used here at SFU is called the Laser Link and has been

developed at MIT Lincoln Laboratories in the mid-eighties as part of the Restructurable

VLSI program [4]. The idea is to employ the power of a laser to make connections

between two metal layers. To this effect, a special structure called the Laser Link is

needed. It is basically a gateless transistor (see Figure 2.1). In unconnected form the laser

link has the high impedance of two back to back diodes. A connection is formed by an

Argon laser focused in the gap between the implant regions. By melting the silicon in the

gap with a 2 W, 50ps laser pulse focused to 1.2 pm radius spot between the two heavily

doped regions, the dopant flows across the gap, forming a low resistance connection

(-IOOR) between the two metal lines. Typically two such "zap" points are made per link.

The main advantage of this type of structure is that it can be implemented in standard

CMOS technology since it does not require any additional steps or materials. Of course it

requires the use of a laser table that can be precisely aligned to allow the laser spot to be

focused between the active regions.

2nd Metal:

pm 2nd Metal Cut Point

Link Gap: 2pm
\

via

Contact

2nd Metal

In Metal I r 1st Metal:
22.4 x 3.3 pm 1.

Figure 2.1 Mitel 1.5p.m CMOS Laser Link

To successfully reconfigure a design, cuts are made to disconnect certain lines in

the circuit. This is done by shining the laser on top of the metal line and melting it. To start

a design, it is necessary to know the different parameters such as laser power and pulse

duration in order to make a suitable connection in a given technology. The next chapter

explains the experimental procedure used to extract those parameters for the Mitel 1Spm

CMOS technology and gives an example of a wafer scale circuit experiment done here at

SFU.

2.2 Field Programmable Gate Arrays

With current technology, it is possible to build large custom designs at relatively

low cost. However, because of the extensive manufacturing effort, the cost is high for each

unit unless large volumes are produced. So it becomes really hard and expensive to build a

prototype. Field Programmable Gate Arrays have emerged as the ultimate solution for low

cost and fast turnaround prototyping. An FPGA based prototype can be manufactured in

only minutes and their cost is in the order of $100 for low gate counts [2] . This is the

reason why FPGAs have evolved so rapidly from a tiny market four years ago to a very

large business today. It is predicted that almost 1 billion dollars worth of FPGAs will be

sold each year by 1996 [2].

2.2.1 What is an FPGA?

The Field Programmable Gate Array is basically an array of elements capable of

performing logic functions that can be interconnected in a general way. Both the logic

functions and the interconnections are user programmable. A general FPGA is composed

of three parts, as seen in Figure 2.2.

I/0 Cell

Figure 2.2 Conceptual Simple FPGA

11

The Logic Block contains the logic to implement different functions. It can be as

simple as a two-input nand gate or be quite complicated, such as look-up tables and flip-

flops. The interconnection resources are composed of wire segments and programmable

switches that allow the signals to propagate between the logic blocks and to go outside the

chips via the UO Cells. These cells are usually composed of multiplexers and buffers to

connect the pads to the wire segments. There are several ways to program the logic

functions and the switches to route the signal, including: RAM cells controlling pass

transistors, anti-fuses, EPROM and EEPROM transistors.

2.2.2 FPGA Architectures

In this section, the different architectures used in FPGA design are presented, with

some comments to their applicability to wafer scale designs.

Symmetrical architecture: this is the most commonly used, where the logic blocks

are surrounded by vertical and horizontal channels of routing. This is a very good

architecture for wafer scale FPGA because it allows bypassing of single cells or entire

rows.

Row based architecture: in this type of architecture, the logic blocks are organized

in rows and the routing resources are disposed between the rows. This architecture is well

suited for row reconfiguration but may cause some problems in reconfiguring very large

designs.

Sea of gates architecture: the logic blocks are all side by side and the routing

resources are placed on top of them. This causes some problems in most of the

reconfiguration techniques and thus this architecture is not well suited for wafer scale

applications.

Hierarchical PLDs architecture: this is an architecture where instead of having a

large number of simple logic blocks, there is a small number of programmable logic

devices(PLDs), which are composed of different logic blocks. This could be an interesting

architecture to explore for wafer scale integration: for example, memory cells consume

many gates in some designs in a simple FPGA. Significant gains could be obtained by

placing blocks of memory throughout the system. It is simpler however to have a

repetition of the same cell for the reconfiguration.

2.2.3 FPGA Applications

FPGAs can be used in all applications that can be performed now by other sorts of

programmable logic devices. Their ability to be reconfigured on site also gives rise to new

technologies. Here are some examples of FPGA applications:

Application-Specific Integrated Circuits (ASICs); being a completely general

medium for digital logic implementation, FPGAs are particularly well suited for the design

of ASICs. Some examples include controllers, graphics engines and many

telecommunication applications.

Random logic implementation; since the FPGAs have a higher density than PALs

(Programmable Array Logic), they are a good choice for implementing random logic in

circuits where speed is not critical. One FPGA can replace ten to twenty PALs and perform

the same function. FPGAs can also replace advantageously many SSI chips that require a

lot of area on circuit boards, for "glue" logic.

Prototyping; FPGAs are almost ideal for prototyping applications. Their low cost

and the extremely fast turnaround time they offer give them tremendous advantages over

traditional prototyping methods. This is an area where a very large FPGA would be very

useful, since the more gate equivalent an FPGA can offer, the larger the circuit it can

implement.

FPGA-based Compute engines; this is an all new class of computers where instead

of fetching instructions in a known hardware, it is the hardware itself which is actually

reconfigured to perform the task. This increases the performance in the order of 100 times.

Presently, boards of FPGAs are used for those kinds of computers; Wafer Scale FPGAs

would increase the performance and capacity of such devices.

On site reconfiguration of hardware; this is particularly useful for applications that

may require hardware reconfiguration and repair in hard to reach locations, such as

satellites. Once again, many FPGAs could be replaced by a wafer scale design.

2.2.4 Implementation Process

In order to successfully implement a circuit on an FPGA, an efficient CAD system

must be used; this system must be able to perform the tasks shown in Figure 2.3.

The first step is to enter the design. This can be done by any schematic design tool,

VHDL description or any acceptable format for the CAD tool. Then, the FPGA CAD tools

have to perform the logic optimization, consisting of modifying the logic expressions

either for speed or area density. The next step is to perform the technology mapping: it

consists of dividing the circuit into logic functions that can be realized by the logic block

of the FPGA used; for example, if the logic block used is a two input nand gate, the whole

circuit has to be transformed into nand gates. Once again there are two ways to do this:

either the mapper can optimize the number of logic blocks used or optimize the circuit for

speed and use more logic blocks. The next step is Placement, where the logic blocks are

placed to minimize the interconnection delays. Finally, the Routing, which assigns the

wire segments and switches to connect the logic blocks together. The two final steps of the

CAD tool may be iterative and it can be necessary to redo the placement if the router is

unable to successfully route all the connections. These steps can also be repeated to

optimize the design for speed.

Initial Design Entry -?
Logic Optimization i I;

i I Technology Mapping 1

Programming Unit %-
Configured FPGA

Figure 2.3 FPGA Implementation Process

The last step in the implementation process is the Programming of the FPGA. It

depends on the programming technology of the FPGA used. For a RAM programmable

FPGA, only a bit pattern fetched out of a separate memory is sufficient. For other

technologies, such as anti fuses or EPROMs, an appropriate programming unit must be

used.

2.2.5 Commercially Available FPGAs

Several combinations of architecture, logic block type and programming

technologies are available on the market [2].

The most important is the Xilinx FPGA. The latest generation of Xilinx FPGAs

uses a RAM programmable symmetrical architecture with look-up table based logic

blocks.

Actel offers a row-based design with anti-fuse programming and a multiplexer

based logic block. Compared to Xilinx FPGAs, the Actel design has a smaller logic block.

Altera uses the hierarchical approach with EPROM programming while Plessey

offers sea-of-nand-gates static RAM programmable FPGAs.

There are other companies that offer different types and technologies. The choice

of an FPGA depends on the particular application and the speed needed. The CAD tools

available should also be taken into account when choosing a type of FPGA to use. Each

company offers its own software but a specific software must be used for each type of

FPGA and the user can not make a separate choice between the hardware and the

programming tool.

2.3 Summary

The present chapter described the basics of Wafer Scale Integration and FPGAs.

These are two very wide fields but only succinct information necessary to the

understanding of the next chapters has been presented. The section on Wafer Scale

Integration described the types of switches used and presented the type used here, the laser

link. The section on FPGAs furnished explanations of the different architectures and

presented designs that are commercially available.

Chapter 3

Laser Linking Wafer Scale Integration

This chapter presents experiments done to extract parameters for laser link devices

using the Mitel technology as a wafer scale medium; the knowledge of those parameters is

crucial before any design work can be undertaken. It furnishes also explanations of the

experiments done on laser linking with the thermal pixel scene simulator, a wafer scale test

vehicle developed here at SFU.

3.1 Mitel 1.5pm Technology Parameter Extraction

3.1.1 Laser Table Setup

To make the laser links and cuts, a special setup is needed. The first part of this

setup is the laser. The laser used here at SFU is a 5.0 W Argon laser. Because of the very

small dimensions of today's microelectronic structures, a very precise table is needed to

correctly aligned the structure to be processed with the laser. The table uses laser

interferometry to allow a 0.1 Fm precision in both the horizontal and vertical axes. In order

to correctly melt the silicon, a short duration (approximately 1 0 0 ~ s) laser pulse is needed.

This is achieved by passing the laser beam through an electro-optic shutter. A z-axis

micropositioner is also used for the remote focusing of the chip. All the equipment is

controlled via a Windows based software developed here at SFU. This software can be

used to zap single points or a script file can be used to do batch work. A photograph of the

laser table setup is shown in Figure 3.1.

Figure 3.1 Laser Table Setup
I

3.1.2 Laser Link Power Calculations
I

Figure 3.2 shows a cross section view of the laser link in the Mite1 technology. This

is in fact a simplified model used to calculate the power required to form the melt pool.

N+
Depth of
Melt Pool P-Well 1

Melt Front Substrate

Figure 3.2 Cross Section of the Linking Process

First of all, the vertical temperature distribution from a focused laser spot can be

approximated by using the formula ([8] page 17 1):

Where H is the power density, t the time of the pulse, z the depth of penetration, a~

the thermal diffusivity and a the radius of the pulse. This formula assumes a constant a~

with temperature, which is not really true, but a useful first approximation.

For silicon ([8] page 174):
1

This formula also assumes the light is absorbed at the surface, which is a good

approximation as the green (5 14nm) Argon light is absorbed by a depth of about 0.3ym. In

order to calculate the power needed from the laser, the reflectivity at the silicon-silicon

nitride interface must be calculated, by using:

nsi=4.2 and nSi3N4=2 [9], then R=0.126. The effect of the oxide between the

silicon nitride and the silicon is neglected in the calculation. The reflection coefficient of

the air-Si interface is also needed. This coefficient is R=O. 11. The power absorbed by the

Si3N4 is given by the Beer-Lambert law ([lo] page 165):

-2a,z
P (z) = Poe

Where a, is the light absorption coefficient for silicon nitride. For argon laser light

(514nm), al=300 m-' [I l l . Thus the power density at the surface of the silicon is

approximately:

where P,=Laser power.

Instead of calculating one value only for a specific depth, a graph of the power

required from the laser pulse in function of the depth of the melt pool is given in Figure

3.3. This is obtained by solving (3.1) for AT=1680K, the silicon melting point, for laser

power densities from (3.4) using the typical values for this research of:

The thickness of the passivation layer is an approximation since the real value is

unknown.

The graph shows the power needed is in the order of 2.0 W to create a melt pool

sufficient to allow the dopants to form a bridge between the two N+ regions, knowing the

distance between the active region is 2pm and assuming the melt front propagates with the

same velocity in the vertical and horizontal directions. Experiments show this assumption

is reasonable. The graph also tells that for a power of about 5.8 W, the melt front reaches

the substrate below the P-well. Such a high power must be avoided because a connection

to the substrate results in a non usable link.

I I I
0.5 1 1.5 2 2.5 3

Z, Depth of the Melt Front (microns)

Figure 3.3 Graph of the Power vs. Depth of the Melt Front

3.1.3 Laser Power Experiments

The first set of experiment was done to find the power required to have a low

resistance connection between the active regions. Table 3.1 gives the obtained results. The

time of the laser pulse is 100 ps; the resistance of five separate connections was averaged.

After 2.5 W, the resistance starts to saturate. While the resistance is lower at 2.75W, the

damage is greater and can break the vias of the laser link. The safest power to use is

2.50W. If the link is long enough, the laser can be zapped at two separate points to reduce

the resistance of the connection.

Table 3.1: Resistance of one Zap (Mitel 1.5pm link)

If the second zap is too close to the first one, or if the second zap is at the same

location, there is no decrease in resistance. Experiment shows the spots should be at least

6pm apart to have a significant decrease in resistance. At 2.50 W, a second zap decreased

the resistance of the link to 1 0 9 9 Q . The experiments show the resistance of two zaps

follows a curve vs. the power similar to the curve for the resistance of one zap.

3.1.4 Laser Link Experiment

The next experiment consists in doing many links and test the resistance of each of

them. The zapping pattern can be seen in Figure 3.4. The width of the active regions is 9.9

pm and the gap between is 2pm (the minimum allowed separation in Mitel 1.5pm

technology). The first zap is made 1.65 pm from the top and the second at 6.6 pm from the

first zap. The laser power is 2.50W and the pulse duration is 100ps.

A third spot in the middle does not decrease the resistance and is thus useless. This

is because the two melt pools created by the zaps are touching and no gain is made by

adding an extra zap. The results for 10 links give RaVaage = IO9k5Q .

Figure 3.4 Position of the Laser Zaps

A rough rule of thumb to estimate the resistance of links can be deduced from

experimental data: one zap produces a resistance of 100i2; a 50!2 constant resistance from

the contact cuts to the N+ region and the implant region is added to the zap resistances. A

two-zap link will have 50i2 + (100i2 11 100i2) giving a total of 1 0 0 a A three-zap link has a

resistance of about 83Q . This shows the third zap, which has little measurable effect, is

not really creating an additional parallel resistive path. Figure 3.5 is a photograph of two

laser links, the one on the left has been linked with the method explained above. The laser

cut on a second metal line can also be seen.

Figure 3.5 Photograph of the Links

3.1.5 Laser Cut Experiments

The power required to cut the aluminum lines must be found. Experiments show

there is no problem in cutting the 3.3p.m width lines with a laser power higher than 2SW,

by zapping the line in the middle with a pulse of l00ps and a spot size of 1.2pm FWHM

(Full Width Half Maximum). Out of a total of approximately 100 cuts made this way, all of

them showed a resistance higher than 10 M i l So the best way seems to use the same

parameters for the cuts and the links. This cutting behavior applies to metal1 and metal2

lines. In order to cut wider lines, such as power lines, a larger number of zaps is needed.

The effect of each zap is reduced because of the greater loss of energy due to heat flow.

Due to the lack of proper test structures, it was hard to evaluate if the large line was really

cut, but by visual inspection, two cutting patterns were developed. They are shown in

Figure 3.6 for a lOpm wide metal1 line.

Straight Line Cutting Zig-Zag Cutting

Figure 3.6 Two Methods for Cutting Large Metal Lines

The straight line method consists of a first zap at 1 pm from the edge of the line

and a zap each 2pm afterwards, until a distance of less than 1 pm from the other edge is

reached. In the Zig-Zag method, a first zap is made lpm from the edge, then lpm away in

each direction. The Zig-Zag method seems more reliable (electrical test should be

performed to confirm this) than the straight line method but takes a longer time due to the

higher number of pulses required.

Zig-Zag
Cutting

Straight
Line
Cutting

Figure 3.7 Photograph of the Cutting Methods

The time taken to cut a 10pm wide line is 4.27s for the straight line method and

13.45s for the Zig-Zag. The Zig-Zag method also takes up more space. The choice should

be made in function of the time and the area available. Figure 3.7 is a photograph of the

two methods; the larger area taken by the zig-zag method is clearly seen.

3.1.6 Damage to Silicon Nitride

Silicon nitride can be very sensitive to low intensities of laser light. It will fluoresce

at about lOmW of power for a 1.2pm spot, and it has a low damage threshold that depends

on the exact composition of the nitride. In the photographs, lots of damage surrounding the

links and cuts can be seen. This is due to the behavior of the silicon nitride under the laser

pulse. Such damage is not seen in the Northern Telecom 3pm process which uses glass

instead of nitride. Figure 3.8 shows the radius of damage for different laser powers. The

large damage at 4.5W is probably due to a defect present in the silicon nitride layer. Its

diameter is close to 10pm.

seems much more opaque

when a pulse is applied on

These defects can have a significant impact because the layer

when shot once with the laser and there is no or little effect

top of a damaged area. These damages increase the minimum

spacing allowable between links and lines to cut.

Figure 3.8 Photograph of the Damage in the Silicon Nitride

3.1.7 Batch Linking and Cutting

In this section the behavior of many links and cuts done in parallel with a script file

is discussed. First the chip has to be very well aligned, especially if the links or cuts are far

apart on the table. Due to the 'wiggling' (side motion) effects of the z axis motor, the focus

was not changed during the linking process. The results were as follows: for five links in

parallel, the resistance was 41.2kO.4 Q and the total time to do the connections was

10.58s. This gives an average link resistance of 206Q. The individual links have a

measured resistance of about 100Q with this setup. This means the links have a slightly

higher resistance when done in batch. An explanation is that the alignment is not as precise

as when the links are done individually, therefore some of them, especially the last ones,

show a higher resistance. The average time to do each link is 2.12 s, which is rather long.

Faster control systems of the table will be needed for a very large number of links.

For the cuts, it took 3.7s to do 5 cuts of 3.3pm wide lines in a row. The resistance

was high, 26MQ proving the cutting was successful. The average time for each cut was

0.74s. The alignment seems less critical with the cuts. A different focus is used for cuts

and links. The difference is about 3pm. To do batch linking and cutting with the same file,

or over a large area, the focus has to be adjusted and therefore a Z axis controller which is

very precise and stable is needed.

3.1.8 Linking Summary

The goal of these experiments was to extract the parameters needed to use the laser

linking and cutting with the Mitel 1.5pm technology. Results have shown that the Mitel

technology can be used efficiently for this purpose. With proper table settings and careful

alignment, links resistances in the order of lOOQ can be achieved. The cutting of thin lines

(less than 3.3pm) seems very reliable, more than with other technologies used before, like

the 3pm CMOS from Northern Telecom. The cutting of large lines seems to be efficient,

but in this experiment only visual inspection was used because of the lack of test

structures.

The links seem to be less reproducible and their resistance is influenced by the

parameters. The minimum width of the links seems to be around lOpm if a resistance in

the order of lOOQ is wanted. This is because the distance between two zaps must be at

least -6pm to be effective. If a second zap is too close to the first one, there is no effect. A

careful alignment of the electro-optic shutter is needed to achieve maximum throughput

and effective use of the laser. The shutter's closed condition should block the light so there

is no permanent effect on the chip when the table is moved.

The designer should be careful about the extension of the P-well on its design.

Even if allowed by the DRC checker, the P-well should not extend less than 3pm from a

link. This is to avoid a connection to the substrate; such connections were seen in links

closer than 3pm from the P-well, but not in those at a greater distance. It is assumed these

shorts occur because the P-well is shallower near its edge. In addition, the power of the

laser has to be kept reasonable to avoid a vertical connection to the P-well.

One difficulty with the Mitel technology comes from the silicon nitride passivation

layer. The laser produces large damage which can interfere with surrounding structures

and block the laser for further processing. The designer should be aware of this and keep a

reasonable distance between structures needing repair. The silicon nitride may become

conductive when zapped with the laser and interconnection between metal 1 and 2 may be

possible 1121, although not encountered during these experiments.

The batch linking and cutting is reliable over a small area and by keeping the same

focus. The speed is slow for linking, around 2 s per link, and it must be improved if a large

number of links have to be made. A design with all the links aligned is faster to zap than a

random pattern. The z axis has to be very stable if the focus has to be changed. In the

current setup, there is an x and y movement when the focus is changed, causing a

misalignment of the coordinates.

These experiments have shown linking and cutting is possible with the Mitel

technology but improvements in the laser table control are needed for large batch jobs.

3.2 Practical Example: Test Vehicle for a Wafer Scale
Thermal Pixel Scene Simulator

This section describes the laser linking work done on a wafer scale test vehicle

designed by M. J. Syrzycki, L. S. Can, G. H. Chapman and M. Parameswaran: the

Thermal Pixel Scene Simulator [13]. It combines micromachining and wafer scale

restructuring techniques to build a large array of infrared emitters. The main purpose of

this section is to present an example of the restructuring work done with the laser table on

the laser links.

3.2.1 Design

Figure 3.9 shows the layout of the basic transducer cell. On the upper right, the

thermal pixel, a micromachined device that emits infrared radiation when a current is

applied, can be seen. Beneath the device is a pixel driver, to control the current fed to the

emitter. The local memory is used to store the value of the pixel. The A D converter is

used to convert the signal from the photodiode. This part of the design was not used during

these experiments.

Figure 3.9 SEM Photograph of the ~ansducer Cell (1260pm x 742pm)

Surrounding the basic circuitry are restructuring laser link buses. On the right, the

large laser links are used to hook up the power to the cell and to drive the current in the

thermal emitter. The other laser links serve to connect the different signals to the logic part

of the design. The laser links are disposed in an alternate up and down fashion to provide a

denser bus. The design was manufactured in Northern Telecom 3pm CMOS. The

photograph of the test chip is shown in Figure 3.10. The test chip is a 4x2 array of

transducer cells with the laser link buses running across the entire chip.

Figure 3.10 SEM Photograph of the Test Chip (7mm x 7mm)

3.2.2 Experimental Procedure

When first powered up, the power rails are disconnected and there is no power

consumption. Before making the connection to the power rails, and before any laser link is

connected, optical probing [14] is performed. By shining the laser at low power (-3mW)

at the junction between the substrate and the active region, electron-hole pairs are created

that generate a small photocurrent (around 30pA) between the substrate and the line

connected to the link. By measuring the photocurrent, the path resistance can be measured

and the signal route verified. This is shown in Figure 3.11.

\ Laser light

Measured Laser
Current 6 Link

Figure 3.11 Optical Probing

The first step is to connect the power to the cell (Step 1 in Figure 3.12). When

done, the power consumption is measured. If the current draw is normal, the

interconnection of the signal lines can begin. If there is a high power surge, indicating a

short in the cell circuitry, the cell is disconnected. The first step in interconnecting the

signal buses is to connect the four signal lines to the driver circuitry and test its operation

(Step 2). If this is successful, the hook-up of the latches can be performed (Step 3). To do

this, the line to the driver circuit is cut and by connecting two laser links, the cut is

bypassed and the signal redirected into a D flip-flop. The final test to the cell is then

performed and consists in being able to drive the pixel with a four bit memory, resulting in

16 possible current draws. Typical cell interconnections required 19 links and 5 cuts.

w
Vdd C

Thermal Pixel

Laser Link connection points

Data Clock 81 41 21 11
E4

4 4 E3
XY Select

3 4
E2

D Q D Q D Q -
El

I a I

Pixel Dam lo I XY Wcct

Pixel
W . Reference

Figure 3.12 Design Schematic

3.2.3 Experimental Results

Two types of chips were tested. The first one was tested as fabricated while the

other one was anisotropically etched to form a suspended plate holding the pixel. The

parameters for the laser links and cuts were extracted the same way as explained in the

previous section for the Mite1 technology. There was no difference found in the parameters

for both chips. The typical resistance for the standard laser link was 75R while the wider

power links showed a 25R resistance. The first test chip, which was unetched, had seven

operating pixels, six of which were latched. The etched chip was fully functional, each one

of the eight pixels working with the latching circuitry [15].

This work, performed early in the master program, was very useful in learning the

basics of wafer scale integration and also to learn how to use the laser table system. Many

of the concepts were later used in the design and test of the FPGA vehicle.

3.3 Summary

This chapter has described the experimental work done with the laser linking wafer

scale technology. In the first section, the experimental procedure to extract the linking and

cutting parameters was presented while the second section dealt with the work done on

another type of test vehicle, the wafer scale thermal pixel scene simulator.

The experiments described above provided useful insights and necessary results in

the elaboration of the FPGA test vehicle.

Chapter 4

Defect Avoidance in FPGAs

The key in building a working Wafer Scale field programmable gate array is to

design a system to eliminate the different types of defects present on the wafer after

fabrication. In this chapter, there is a brief introduction of the types of defects and faults

they create. Thereafter a summary of different defect avoidance techniques will be

presented and the requirements for restructuring an FPGA will be investigated.

The following section concerns restructuring algorithms and their effects on the

harvest of good cells. Simulations are made to test the performance of the algorithms and

the architectures. An other section concerns the design requirements for building a wafer

scale FPGA while the last section is an overview of the different tools needed to program a

large FPGA and how they differ from the commercially available software.

4.1 Defect Avoidance

This section treats of the general defect avoidance techniques and how they can be

applied to FPGA restructuring. In all these cases only one type of FPGA cell throughout

the wafer is assumed.

4.1.1 Fabrication Defects

There are numerous defect mechanisms in any microelectronic process. The goal

of this section is not to explain every type of defects but rather to classify the faults they

create to find a proper way to avoid them. Figure 4.1 shows an example of the major

categories.

Vdd =
Gnd

Figure 4.1 Three Categories of Defects: a) Logic Defect: e.g. Gate Oxide Hole; b)
Power Defect: e.g. Power Short; c) Routing Defect: e.g. Bus Open Circuit and Bus

Short

Logic Defects: all the defects affecting the logic operation of a circuit are grouped

under this category. Those defects can be of many types, such as misalignment, pinhole

defects, shorts or open circuits; their effect is localized, however, and affects only the logic

operation of a certain part of the circuit.

Power Defects: these types of defects can be caused by many defect mechanisms,

but the most common outcome is the power bus metal to metal short. This is the most

critical kind of defect because if it is not taken into account in the design, just one of these

defects can kill an entire wafer even before tests can be performed. For this purpose a

special defect avoidance scheme must be employed for this category of defects.

Routing Defects: this category includes all the defects that affect the buses on the

wafer, either the signal buses or the reconfiguration buses. They can be very deadly if they

are not taken into account because the reconfiguration circuitry can be inoperative, killing

the entire wafer.

4.1.2 General Defect Avoidance

Defect avoidance is defined as the different ways to avoid defective parts of a

circuit and provide means to employ the working parts to build a larger circuit than

achievable with standard microelectronics. One way to obtain this is to divide the circuit

into identical parts. They can be rows, running from side to side of the wafer, or they can

be cells, a small part of circuitry that can perform a certain function. Defect avoidance is

realized by providing spares that can be connected instead of the defective cells or rows.

This is called redundancy. The level of redundancy depends on the density of the defects

and the desired yield. There are two classes of redundancy: global and local sparing. In

global sparing, a spare can replace any of the cells in the circuit; this is very versatile but

can lead to long delays if the spare cell is situated far away. There are also some

applications where the physical placement of the cell is critical, like large sensor or

transducer arrays. The kind of redundancy used then is called local sparing [16], where the

spares are physically close to the original cell. Figure 4.2 gives an example of the two

redundancy classes. Figure 4.2 a) shows an example of a spare column of cells where the

spares are used to replace two defective cells to form a 6x6 array of worlung cells. In

Figure 4.2 b), local sparing is used to produce an array of 3x3 cells. The dashed line

encloses the cell and its spares. Only one out of those four cells needs to be working.

Working cell

Defective cell

\
Replaces
cell a

\

b) Replaces
cell b

Unused spare
Used spare

Figure 4.2 Two Redundancy Classes: a) Global Sparing; b) Local Sparing

For FPGAs, the physical placement of the cells is not critical because all cells are

identical. The spare cell, however, must be close to the defective cell in order to reduce the

time delay between the cells. Local sparing is ideal for that purpose but requires very large

overhead. The best way to restructure an array of cells is not to use dedicated spare cells,

but rather build the array using the closest available cell as a spare. This means every cell

in the array can be a spare.

4.1.3 Making the Defect Avoidance Invisible to the User

The idea of a wafer scale FPGA has been proposed by others[5], but was presented

with a different approach to defect avoidance. In this earlier paper, the defect avoidance is

performed by the FPGA software itself, using the inherent reconfigurability of the FPGA

circuitry. However, the FPGA software has to be aware of which cells in the array are

defective to bypass them. It may also cause problems because the FPGA may become no

longer symmetrical. Macro circuits already optimized cannot be used because of the

defective cells brealung the array. This method is also not tolerant of certain faults such as

power shorts. Although this method requires no overhead for restructuring, the above

reasons make it hard to use.

The proposed wafer scale FPGA in this thesis does not use the electronic bypass

capability of its routing architecture but rather physical restructuring switches. While this

technique uses a minimum of overhead because of the small area occupied by the laser

links, the major advantage of this method is to make the restructuring invisible to the user.

The restructuring consists in harvesting a two dimensional array of working cells from an

array containing defective cells andlor buses. By using different techniques, the array

appears fault free and the actual map of the defects does not have to be known by the user

when programming the FPGA.

The following section explains how to restructure such arrays to provide a

restructuring invisible to the user.

4.2 Restructuring of a 2-D Array

Different restructuring techniques are presented. They all have the same goal, i.e.

to build the largest 2-D array from a basic array containing defects. Advantages and

drawbacks of these techniques are evaluated and their potential for building FPGAs

discussed.

4.2.1 Row-Column Substitution

The simplest way of avoiding defects is the row-column substitution. If a defective

cell is found during the tests, the entire row or column containing this cell is bypassed; this

method is very fast and requires simple algorithms. The bypassing circuitry is kept to a

minimum, since the signals only have to go through the cell and reach the adjacent one.

Figure 4.3 shows a 2D array of 6 x 6 cells being restructured using the row-column

substitution technique. The algorithm must alternate and substitute a row after a column in

order to maximize the size of the array. Proceeding that way, the worst array is equal to the

size of the original array minus the number of defects divided by 2. The restructuring is

however more complex, because of defects occurring in the bypass circuitry. The

algorithm must bypass cells with defects in the reconfiguration circuitry first, since they

only can be bypassed either by a column or a row.

Working cell Defective cell Unused cell

Figure 4.3 Row-Column Substitution

As an example, the bottom defective cell (row 5, column 5) in Figure 4.3 has to

bypass the signal from the cell on its left to the cell on its right. This can only be done if

the horizontal bypass circuitry is not defective. If this circuitry is defective, then this cell

has to be bypassed with a row and the other defective cell would be bypassed by a column

to keep the logical array at 5x5 cells. Of course, both the horizontal and vertical bypass

circuitry may be faulty; in this case, the algorithm must use both the column and the row

substitution, reducing the size of the final array.

While this method is simple and economical in time, it leaves lots of unused cells

and, if the defect density is high, the final array will be very small. The size of the array

should increase if the defects tend to agglomerate, because many defects can be bypassed

with only one column or row substitution. Due to its simplicity, this method is well suited

to the restructuring of smaller arrays where the yield is already high. A method similar to

dynamic RAM memory column substitution will be investigated for the restructuring of

small FPGAs later in this chapter.

4.2.2 Cell by Cell Substitution

The next method is called cell by cell substitution. When a defective cell is

encountered, a neighboring cell is used to replace it. Special restructuring buses are placed

between the columns of cells. With a combination of switches, the defective cells can be

bypassed and an array can be constructed.

Working cell Defective cell Unused cell

Figure 4.4 Vertical Cell by Cell Substitution

An example is shown in Figure 4.4. There is a defective cell in row 2, column 3.

When connecting the rows, the cell in the row below (row 3) is used to replace the

defective cell (row 2). So every cell in column 3 must be shifted down in order to complete

the rows. An interesting thing happens if another defective cell appears in column 3. Now

the cells need to be shifted 2 rows down in order to complete the restructuring. There are

two ways to handle this problem: the first is to provide an additional restructuring channel

between each column. This is straightforward but requires additional area and the

maximum number of defective cells allowed in a row is equal to the number of

restructuring channels. The second way is to use pseudo faults: working cells are sacrificed

to allow the use of only one restructuring channel while being able to restructure an array

with many defective cells in the same area. This is very important because the defects tend

to cluster on a wafer. In the vertical cell by cell substitution, the columns are kept straight

while the rows are shifted down; this means more rows than columns are needed to

restructure a square array. Another way to perform the cell by cell substitution is to use

restructuring channels in both the vertical and horizontal direction. This allows efficient

harvesting but requires complex algorithms and the major drawback is the high amount of

overhead involved in these architectures. Because of the large area already occupied by the

FPGA routing, this technique is not investigated in this thesis.

4.2.3 Row-Column and Cell Substitution

The cell by cell substitution is an efficient way to restructure an array, but it

assumes that the restructuring circuitry is fault-free. The best way to restructure FPGAs is

to use a combination of the two methods presented above. The main restructuring remains

the cell by cell substitution, however a set of extra columns is also provided. This extra set

has a dual purpose: first, it allows the bypass of an entire column if a restructuring bus is

defective; secondly, the extra columns can be used to replace columns containing the most

defects and gain extra rows. An example of such a restructuring is shown in Figure 4.5.

The defective cell (2, 3) was bypassed using the cell by cell substitution while the cluster

of three defective cells in column 5 was bypassed by the column substitution method. The

result is a 5x5 array while cell by cell substitution alone would allow only 3 rows.

Working cell Defective cell Unused cell

Figure 4.5 Row-Column and Cell Substitution

4.3 Algorithms and Yield Simulations

This section shows the algorithms and yield simulations performed to find the best

restructuring technique applicable to FPGAs. The restructuring methods elaborated in the

last section are studied and explained in detail, while the algorithms and Monte-Carlo

simulation results are set out and discussed. A brief description of the defect distribution

model is also presented.

4.3.1 Defect Distribution Simulations

There are many papers dealing with the simulation of the defect distribution of a

particular fabrication process [18-231. In earlier yield models, the defect distribution on

the wafer was thought to follow a Poisson distribution:

where kdefect density per unit area, k=number of defects and P=probability of having k

defects in the unit area. This distribution means that the probability of a defect appearing

in a region of the wafer is completely independent of the defects already present.

Experimental data however shows the probability of a defect appearing in an area

is dependant on the number of defects already present in this area. This phenomenon is

called defect clustering. The distribution is then better represented by a Negative Binomial

Distribution:

P (x, S) =

where P=probability of having x defects in an area S, kdefect density and ac=cluster

coefficient. In most models the area used for h is that of the circuit block or cell. Clusters

begin to appear on the wafer, depending on the value of the a, parameter. A low value for

a, means a high clustering. An infinite a, parameter means no clustering, a,=l is

moderate clustering while ac=O. 1 is high clustering. Values of a, ranging from 0.125 to 4

have been encountered in samples of different products [22].

It is almost impossible to create a model that will perfectly reflect the defect

distribution of a known process. Extensive research on the process itself can only give

partial knowledge of the defect distribution. A defect distribution Monte Carlo simulation

was developed here at SFU. The goal was to distribute defects on a wafer with a

distribution that follows the Negative Binomial Distribution. The simulation is based on

the model presented by C. H. Stapper in [23]. The program starts with an array of non

defective cells; after a time interval At, the appearance of a defect in the cell is calculated

by comparing a random number generated with an assigned probability for each cell. This

probability is a linear function of the number of defects in the cell and in its four nearest

neighbors. The weight associated with the number of defects in the cell is higher than the

weight for the neighbors. By changing the value of these weights, the a, parameter can be

changed. If the number of defects in the cell itself and the neighboring cells is not taken

into account, a Poisson distribution is obtained. The program stops when the desired defect

density is obtained. An example of two defective cell maps is shown in Figure 4.6.

(a) a,=- (no clustering) (b) ac=O. 1 (high clustering)

Figure 4.6 Defect Map Example (kO.l)

The map on the left (Figure 4.6 a) is a pure Poisson distribution (ac=-) while the

one on the right (Figure 4.6 b) has a very small clustering coefficient (ac=O.l) thus

significant clustering. Both maps have the same average number of defects per cell

(kO.1). Note on the right that certain cells have a very high number of defects and how

the defects tend to be grouped in clusters.

An important parameter in any Monte Carlo simulation is the number of wafers

simulated to realistically represent the distribution. Different tests have been performed on

the model to test the number of iterations required. These tests show that approximately

100 wafers give distributions with an average a, parameter quite constant between

distributions. Thus in the simulations, wafer lots of 100 wafers will be used. Table 4.1

shows the results of the simulations for an array of 100x100 cells. Ten lots with 100 wafers

each were simulated with three different cluster parameters. The average simulation time

is one minute per wafer lot on a SparclO. The table shows the average defect density h and

the average a,, along with their respective standard deviations.

Table 4.1: Distribution of Wafer Lots; target kO.l

This method of simulating defects may not represent exactly a particular

fabrication process but approximates Negative Binomial Distributions with sufficient

accuracy to perform restructuring simulations. The model should be compared to an

existing production line to modify the parameters and ensure better accuracy.

4.3.2 Row-Column Restructuring

The purpose of this section is to demonstrate that it is possible to increase the yield

of current size FPGAs with a technique similar to the one used to reconfigure dynamic

RAM chips. The largest currently available FPGAs have very low yields. By providing a

small amount of extra rows and columns, it is possible to restructure the array and

therefore increase significantly the yield. Because of the restriction in size, the amount of

overhead must be kept to a minimum and the delay added by this overhead must also be

small, in order to keep the performance very close to full custom FPGAs. For these

reasons, the row-column restructuring is the best way to increase the yield of these

devices.

The restructuring algorithm used is very simple; it consists in restructuring first the

routing defects with the appropriate bypassing of either a row or a column. Then logic

defects are bypassed using a row or a column, depending on the spares available. The C-

like pseudo code is presented in table 4.2.

I* Restructure routing defects*/

for(i=l; i<row-number; i++) forCj=l; j<col-number; j++)

{ if(defect[i]u]==vertical-routing) bypass-col;

if(defect[i]lj]==horizontal_routing) bypass-row;)

/*Restructure logic defects*/

for(i=l; how-number; i++) forCj=l; j<col-number; j++)

{if(defect[i] u]==logic)

if(col~sum<row~sum) bypass-col;

else bypass-row;) /*Use row or column spare depending on availability*/

Table 4.2: Row Column Algorithm C-like Pseudo-code

Better algorithms are presented in [17] and [24]. Simulations with this simple

algorithm shows that even without the best procedure the yield is increased significantly.

For the simulation, batches of 1000 chips containing an array of 25x25 cells are used. The

approximate dimensions of the largest currently available FPGA (2cm x 2cm) are used.

The defect density is adjusted to obtain approximately a 5% yield in non restructurable

arrays (the cell yield is then 99.5%). The defects in the cell can either affect the logic or the

routing. As stated in [17], a defect in a cell has a 40% chance of affecting the routing, a

fact too often neglected by reconfiguration models. After each chip is simulated, it is

restructured. The percentage of chips successfully restructured is then calculated. The

results for the yield are shown in Figure 4.7. In this simulation, a Poisson distribution was

assumed. A physical array dimension of 26 means there is one extra row and one extra

column, a physical array dimension of 27 means two extra rows and two extra columns

and so on. The physical array dimension of 25 represents a chip with no restructuring

capability.

Yield Improvement of a 25x25 Array
No clusterina

No redundant line
One redundant line
Two redundant lines

26
iysical Arra

27
Dimension

Figure 4.7 Yield Results for a Logical 25x25 Array, no clustering (k0.005)

In Figures 4.7 through 4.10, the horizontal axis represents the number of physical

rows and columns available to build the 25x25 array. The dark columns are the results

when one and two redundant lines are added to the cell, for both the vertical and horizontal

routing channel. If the simulation says the defect is in the bus channel, the routing cannot

bypass using lines in that area. Adding n extra lines, however, will allow routing to be

possible for a number of defects I n in the channel. Even with only one extra row and one

extra column, the yield is increased by almost a factor of 9. Yields near 100% can be

achieved with 3 extra rows and 3 extra columns. The use of a redundant line increases the

yield, but requires extra overhead that may cause additional delays. Yield results with

wafer showing high clustering (low a,) are shown in Figure 4.8. The simulation is said to

be high clustering because in small arrays, it is hard to evaluate the a, parameter because

the defect density is very low. The yield after restructuring for wafers with clustering are

slightly better than those without clustering. This is due to the higher probability of having

defects in the same columns or rows.
Yield Improvement of a 25x25 Array

Hiah clusterinn

No redundant line
One redundant line
Two redundant lines

--

physical Array Dimension

Figure 4.8 Yield Results for a Logical 25x25 Array, high clustering (M.005)

The two simulations are extreme cases and a standard process should fall in

between as far as clustering is concerned. The simulations without any clustering give the

worst case. These simulations were repeated with a lower yield of 99% for each cell. The

results for no clustering are shown in Figure 4.9 while the results for high clustering are

shown in Figure 4.10. The yields are lower than the previous simulations, because of the

higher defect density. The improvement is nevertheless important, especially with a

redundant line. The second redundant line increases the yield more in highly clustered

chips. While its effect was too small in the other simulation, this simulation with a lower

yield shows that the possibility of adding two extra lines should be taken into account for

highly defective chips.
Yield lmprovement of a 25x25 Array

No clustering
I I I I 1

Figure 4.9 Yield Results for a Logical 25x25 Array, no clustering (k0.01)

Yield lmprovement of a 25x25 Array
Hinh clusterinn

o redundant line
ne redundant line

No redundant line
One redundant line
Two redundant lines

Physical Array Dimension

redundant

26
Physical

27
Array Dimension

Figure 4.10 Yield Results for a Logical 25x25 Array, high clustering (hO.01)

48

These simulations show it is possible to increase the yield of currently available

chips with a simple rowkol restructuring and thus reducing the production cost. The

rework needed to restructure the arrays is small and could be compared to the rework

needed in dynamic RAM chips. There is a delay added to the circuit but as will be shown,

the use of the laser link minimizes this delay.

4.3.3 Cell by Cell Restructuring

For the cell by cell restructuring, a different simulation approach is made. Whole

wafers with 100x100 cells are simulated and the clustering is identified by the alpha

parameters calculated from the lot. To perform this kind of restructuring, a special

algorithm called the Gupta Algorithm [17] is needed (shown in Table 4.3). The purpose of

this algorithm is to build a logical array of good cells from a physical array containing

defective cell. The physical and logical columns are identical, only the logical row

numbers are changed. Assuming i is the current physical row index and i ' is the logical

row index, the algorithm starts with i=l, i l=l . The i'-th logical row is configured by

selecting the first available usable cell (i.e. neither faulty nor a pseudo-fault) from the top,

in every column. When all the cells have been assigned to the i'-th logical row, the pseudo

faults are determined. For two consecutive cells in the is-th logical row, when cell(e,j),

(from the e-th row and j-th column), and cell(f;j+l) have e=f, there are no pseudo-faults

between them. If e<f, every cell(k,j) for e<k<f will be assumed a pseudo-fault. If e>f,

every cell(k,j+l) for f<k<e is declared a pseudo-fault.

for(i=l; how-number; i++) /*Scan the rows*/

last-row=i;

for(j=l; j<col-number; j++) /*Scan the columns*/

x=O;

while(cell[i+x]lj]=defective) x++; /*Find the first non defective cell*/

ceil[i+x]ti]=i; /*Assign the row number to this cell*/

if(1ast-row<i+x) /* If the row number is smaller than the last column*/

for(z=last-row+l; z<i+x; z++) /*Scan the cell in the previous row */

if(cell[z] ti-l] !=defective) cell[z] lj-l]=pseudo-fault ;

/* If the cell is not defective, it is declared as a pseudo-fault*/

if(1ast-row>i+x) I* If the row number is larger than the last column*/

for(z=i+x+l; z<last-row; z++)/*Scan the cell in the current row */

if(cell[z]lj-1] !=defective) cell[z]lj-l]=pseudo-fault ;

/* If the cell is not defective, it is declared as a pseudo-fault*/

last-row=i+x;

Table 4.3: Cell by Cell Substitution C-like Pseudo-code

Figure 4.11 shows an example of this type of restructuring where a cluster of two

cells in the same column (2) is bypassed. In a), the cell in the first physical row (1, 1) is

assigned to the first logical row (l ' , 1'). In b), since the cells in the first and second

physical rows are defective, the third cell (3, 2) is assigned to the first logical row (l ' , 2').

The cell in the column on the left (2, 1) must be declared a pseudo fault. Then finally in c),

a cell in the first row (1,3) is assigned to the logical row (1',3'). The physical index on the

left being greater (3 compared to l), the cell (2, 3) in this column must be declared as a

pseudo-fault. Pseudo-faults are considered exactly like defective cells in the algorithm.

Good Cell Pseudo-fault Defective Cell

Figure 4.11 Gupta Algorithm Restructuring example

This algorithm assumes a perfect routing channel. As seen, this is not realistic. To

this method of restructuring, the row and column substitution must be added in order to

circumvent the routing defects. Figure 4.12 shows an example of the restructuring on a

25x25 array. The numbers indicate the index of the logical rows (there is no column

bypass in this example).

.- .
Defective cell * Pseudo-fault . Unused cell

Figure 4.12 Cell by Cell Restructuring Example

The simulation is done by restructuring 100 wafers and calculating the number of

arrays that are successfully restructured, given a certain target array dimension. The

physical size of the wafer was 100x100 cells. Figure 4.13 shows the result of the

simulation.
-

-
O'O60

1 -
70 80 90

Target Array Dimensions

Figure 4.13 Cell by Cell Restructuring Simulation, no extra line, k0.01 (100 defects/
wafer)

The bottom axis represents the targeted array dimensions while the vertical axis is

the percentage of wafers successfully restructured. From now on, when the term cell by

cell restructuring is used, it includes the row-column bypass for the defective routing

channels.Two curves are shown, the one on the left with a high clustering and the one on

the right with no clustering. Both distributions have the same kO.O1, which produces 100

defects per wafer. The results show that an array of 80x80 can be restructured with a yield

of 50% while almost 100% yield is achieved with a target array of 60x60. The clustering

has the effect of reducing the yield slightly. This is due to the fact that column substitution

must be used to bypass the cells with a vertical routing defect. The clustering has the effect

of grouping the defects together and increasing the probability of a routing defect

occurring in one cell.

Figure 4.14 Cell by Cell Restructuring Simulation, one extra line, ,k=0.01(100
defects/wafer)

The major problem of this technique is the row/column bypassing of the routing

defects. The yield can be increased by placing one or more redundant line in the horizontal

and vertical routing. Figure 4.14 shows the simulation results. The parameters are the same

as in Figure 4.13, except for the addition of an extra line in both the vertical and horizontal

channels. With this extra rowlcol line, the clustered wafers are more efficiently

restructured. This is due to the extra line that significantly reduces the number of entire

columns or rows being bypassed. The effect of extra lines on clustered wafers is clearly

seen in Figure 4.15. The addition of one extra rowlcol line increases the yield significantly

while the addition of a second extra rowlcol line has no effect. These simulations were

done for a high yield process, since kO.O1 (but still there is 100 defects per wafers).

Figure 4.16, Figure 4.17 and Figure 4.18 show the same type of simulations, this time with

a process having l ~ 0 . 0 6 , or 600 defects per wafer. In Figure 4.16, the yield obtained is

very low (-50% for a target array of 35x35). In Figure 4.17, however, when an extra row/

col line is added, the yield is much better (50% for a target array of 85x85). The effect of

adding an extra rowlcol line in the channels is clearly seen in Figure 4.18.

Figure 4.15 Effect of Extra Lines, M.01 (100 defectslwafer), ac=0.3

Figure 4.16 Cell by Cell Restructuring Simulation, no extra line, k0.06 (600 defects/
wafer)

Figure 4.17 Cell by Cell Restructuring Simulation, one extra Line, k0.06 (600
defectdwafer)

Figure 4.18 Effect of Extra Lines, b0.06 (600 defectslwafer), a,=0.3

The effect of adding two rowlcol lines is more pronounced in this lower yield

simulation. As shown the yield increase is not important enough however to justify the

overhead of two extra lines. These high defect density simulations show the effect of the

clustering is more pronounced. But once again the use of an extra rowlcol line improves

the yield of the clustered wafers better than the Poisson wafers.

These simulations show the efficiency of the cell by cell restructuring for large and

wafer scale FPGAs. Because of the defects occurring in the routing and the reconfiguration

resources, however, it is much better to use redundancy of the lines in the cells themselves

rather than the cell by cell substitution alone. Rework is also reduced because only one cell

has to be linked when an extra line is available. The bypass of an entire row or column

requires many links in each cell to be zapped.

The field of defect simulation is very vast. This simulation makes a number of

simplifying assumptions and takes into account point defects only. A true process may

have defects that are bigger and cover a large area on the wafer, affecting the routing

architecture beyond repair. Note however that the approach taken in the simulation is to

cluster the point defects together, simulating in a way the larger defects in one cell.

This restructuring approach was chosen because of its simplicity, its low overhead

and its ease of use with FPGAs. It will be explained in a later section why the cell by cell

substitution with both a vertical and an horizontal restructuring channel is hard to

implement on FPGA circuits.

4.4 Design Considerations for Defect Avoidance in
FPGAs

The previous section dealt with the different aspects of the restructuring but

without any explanation on how to physically implement the circuits. In this current

section, different approaches are investigated to design a restructurable FPGA circuit.

4.4.1 Power Routing

The most critical aspect of any wafer scale design is the power routing. A power

short on the bus can kill an entire wafer, even before tests can be performed. The way to

counter this problem is to design cells disconnected from the power bus and connecting

them one by one to test their power consumption and check for shorts. In the WASP

project [25], large transistors are used to connect the power to the cells. To test the cell, the

transistor is turned on and the power connection made. Testing each separate cell can be

done easily and the cells with no problems are kept powered and each one is tested

incrementally.

The major drawback of using a transistor is the large resistance placed between the

power bus and the power lines in the cell. This causes a voltage drop that can lead to some

problems in the electrical performances. A way to counter this problem is the use of a very

large transistor which offers a small resistance, but the area taken up then is very large and

can become unacceptable when numerous devices are needed.

Instead of large transistors, laser links can be used to hook up the power lines.

There is an example of this method in [15], where a thermal pixel cell was powered via a

laser link. Experiments performed here at SFU showed no problem in using the laser link

to power the cell. Two advantages are the small resistance of the link, around 100Q for a

6.6p.m wide link (down to a few Ohms when very wide links are used), and the small area

taken up by the device. The drawback is the time taken to zap the laser link and to cut the

power bus in the case of a short in the cell. If a large number of cells have to be tested, this

method can become tedious.

A new device, combining the advantages of both methods, has been designed,

fabricated and tested here at SFU. Called the Testable Laser Link, it is a combination of a

laser link and a small transistor (Figure 4.19).

Metal 2

Metal 1

E P O ~ Y
Active

$ 3.3p.m

Link Figure 4.19 Testable Laser

The small transistor, when turned on, simulate the effect of zapping the laser link.

This becomes very handy because the cells can be tested for shorts without having to zap

the laser link, and the structure combines the small area and resistance of a laser link

connection with the ease of testability of a transistor.

Electrical tests were performed to show that there were no problems in adding a

gate at the end of the laser link. Both the transistor and the laser link were showing the

same characteristics when combined in a single structure as they did separately. In Figure

4.20, the graph of the voltage drop for the testable laser link is shown, before and after the

zapping. The gate voltage used was 5 volts. The voltage drop is measured across the

source and the drain of the transistor.

x Measured Link
o Measured Transistor

x'

- Simulated Transistor K

Voltage Drop (V)

Figure 4.20 Graph of the Voltage Drop across the Testable Power Link

The plot illustrates two advantages of the combined structure: first, the resistance is

lower, only 7.5% of the transistor resistance, as shown by the voltage drop. The transistor

width is 3.5pm compared to 13.2pm for the laser link, meaning the laser link is 3.5 times

less resistive per unit width than the transistor. Secondly, the Laser Link does not saturate

in the same way the transistor does, allowing a large current to be consumed by the cell.

This structure is very useful in an FPGA design, because of the large number of cells to

test. The approach is to incrementally add cells and check the power consumption. A map

of defective cells can be produced this way. The cells can be accessed by a row-column

circuit, or directly. The best approach depends on the number of cells and also on the

number of pads that can be dedicated to the testing. Probe pads can also be used since

there is no need to activate the test transistors after the link is zapped.

4.4.2 Clock

The clock signal, or any other signal distributed globally across the chip, must be

dealt with care. The distribution of the clock signal on a wafer scale design was studied in

many papers. The simplest approach for FPGAs is to use the H-tree architecture [26] to

reduce the clock skew between the cells. This strategy is illustrated in Figure 4.21. The

length of the clock line is the same for all the cells, thus reducing the clock skew.

Cells

Figure 4.21 H-tree Clock Network

No tests were performed in this thesis to find the best clocking strategy. It depends

on the size of the final circuit and on the maximum frequency at which the circuit can be

used, depending on the delays between cells. The wafer scale FPGA clocking network

could use the clocking strategies under research for wafer scale circuits [27][28].

The clock line must be redundant, however, because of the defects that can occur.

The clock line is, like the power, a very critical issue in wafer scale design. The proposed

method is to use a redundant clock line in each cell. With laser links, the signal can then be

re-routed inside the cell and most of the defects can be avoided in this fashion. The low

impedance of the laser link means the clock can be rerouted with very little additional

delay.

4.4.3 Routing

As noticed in the previous section, the defect avoidance method chosen is the

combination of cell by cell and row-column substitution. In this section are presented the

different structures used and developed to restructure FPGAs.

First of all, a way to bypass entire columns of cells is needed. All the signals

coming from the cell on the left must pass through the defective cell in order to reach the

cell on the right. Figure 4.3 shows this clearly. The easiest way is to provide extra routing

and laser link the signal to go through the cell. However, this method takes up a large area.

By using the same routing structure as the Xilinx 4000 series[29], a new bypassing method

was developed. In the Xilinx routing architecture, there are three different kinds of routing

resources: the single length lines, the double length lines and the long lines. A simple

routing switch is used which allows each signal to take either three directions (Figure

4.22). The single length lines go through one switch in each cell while the double length

lines go through a switch only every other cell. The easiest way to bypass the signal

through a dead cell is to permanently connect all the E-W and N-S connections of every

switch in the cell.

s

Figure 4.22 Routing Switch

To perform this, a laser link can be connected in parallel with the switch. Once the

laser link is zapped, the signal can run freely in the cell. Instead of having two separate

structures, a smaller version of the testable laser link is used. Its layout can be seen in

Figure 4.23.

Figure 4.23 Laser Pass Transistor

By using this laser pass transistor for both the vertical and horizontal connections,

and conventional N pass transistors for the other directions, the complete reconfigurable

routing switch was designed. Its layout is shown in Figure 4.24. The switch box is made of

one of these switches for each line in the channel. This switch has a double purpose: the

transistors are used for FPGA routing only while the laser links are employed for defect

avoidance.

Figure 4.24 Reconfigurable Routing Switch

This method of bypassing is easy to use for single length lines. However, double

length lines are trickier. The way to design them while keeping the same cell is to cross the

lines inside the cell so that a routing switch is encountered only every other cell [30]. If a

column is bypassed, the two logically adjacent cells will see their double lines disturbed:

one line becomes a single length line while the other becomes a triple length line. This is

unacceptable because the mapper would have to know which cells are bypassed. This

problem can be seen in Figure 4.25. In a), there are four cells with the second being

defective. In b), the restructuring is performed without uncrossing the lines. The formation

of the triple length bypass line can be seen (wide line). The way developed to counter this

problem is to uncross the lines in the bypassed cell by using two laser links. So

proceeding, the double length lines are kept constant throughout the cell array. As shown

in Figure 4.25 c), by uncrossing the lines in the defective cell, the double length lines are

preserved.

I
Defective cell

b) Before uncrossing (3 cell length)

c) after uncrossing (2 cell length)

Figure 4.25 Double Length Line Uncrossing Example

4
32pm

b

Figure 4.26 Laser Links Arrangement to Uncross the Lines

The laser link design to perform the line uncrossing is shown in Figure 4.26.

Linking the laser links reestablishes the direct connection between the lines while laser

cutting the original lines removes the line crossing.

With these switches, the column and row substitution is possible. In order to

perform the cell by cell substitution, however, a restructuring bus is needed. As seen in the

section about restructuring, one vertical restructuring bus is used. This allows cell by cell

substitution in the lines while preserving the alignment in the columns.

Straight Downward Upward Straight Down

Figure 4.27 Possible Laser Switch Configurations

This restructuring bus must allow all the signals coming from the cell on the left

column to connect to any cell on the adjacent column. For that purpose there must be

switches allowing the signals to either go straight to the next cell, up or down. Thus the

switch must be reconfigurable in one of the four possibilities shown in Figure 4.27 [31].

Each line in the channel must have a switch of its own. This switch arrangement, called the

laser switch box, is placed on the right side of each cell, as shown in Figure 4.28. It is then

possible to do the cell by cell restructuring, as the example shows in Figure 4.29.

Vertical
Channel

4

Defect Avoidance
Bus

1
Switch
Box

Logic
Block

Horizontal
Channel

Laser
. Switch
Box

Connection
Box

Figure 4.28 Physical Design

Figure 4.29 Example of Defect Avoidance (darker Logic Blocks are defective)

These switches are designed with laser links and no active switching because they

are used exclusively for defect avoidance. By using laser linking and cutting, the switch

configurations shown in Figure 4.27 can easily be achieved. The layout of the laser switch

is shown in Figure 4.30 while its different configurations are shown in Figure 4.31.

Figure 4.30 Laser Switch

st;aight Downward Upward Straight Down

Figure 4.31 Possible Switch Configurations, with Linking and Cutting

4.4.4 Line Redundancy

Without line redundancy, the FPGA can still be restructured. As seen in the yield

simulations, however, adding line redundancy increases the yield significantly and is

therefore highly profitable. Line redundancy is achieved in this manner: an extra line runs

in parallel with the routing channel. A laser link is placed between this line an all the other

lines in the channel. This way, any line in the channel can be replaced using the extra line.

The connections from the cell to the bus also have laser links to the extra line because, if

one of these lines needs to be replaced, the connections have to be preserved. Depending

on the number of lines, it is possible to use more than one extra line, each one being

dedicated to a certain number of lines in the channel. This decreases the number of laser

links on the extra line.

Laser Link

Figure Line Redundancy. Top: one extra line; Bottom: two dedicated extra lines

4.4.5 Programming Circuit

The proposed design uses static RAM programming. A long shift register runs

through the columns to program each cell. Since cell by cell substitution is used in the

rows only, all the cells in one column have the same column index in the physical and

logical array. So there is no problem in programming the cells with a shift register running

in each physical column.

Shift register

Laser cut --h L,
Defective shift register - -1 3 t Zapped Link

Laser cut

Figure 4.33 Shift Register Bypass

However, defective cells must have their shift register bypassed because the

mapper will generate a bit pattern independent of the restructuring. Each cell contains a

serial input and a serial output for its internal register. By using a bypass line that can be

connected with a laser link, the bypass of the defective cell shift register is possible. The

clock lines of the shift registers are also redundant in the same manner as the channels.

If a shift register is inoperable even with this kind of redundancy, the entire column

can be bypassed.

4.4.6 Testing

The testing is an important part of any microelectronic circuit. The testing of the

wafer scale FPGA has not been studied in detail. This section gives an overview of the

critical aspect of testing that should be taken into account.

The testing of the wafer scale FPGA can be performed by using the same

techniques available today to test the commercially available products. A reconfigurable

design has however some special testing requirements:

First the power must be tested. This is done with the testable power link shown

earlier. By accessing each cell individually, a map of defective cells is created. The cells

presenting no problem are laser linked to the power rail and can be tested logically. The

power will eventually be laser cut for the cells which are found defective afterwards,

though that may not be necessary for some of those cells.

The programming circuitry must be tested up front; each output of the shift register

must be accessible to test the shift register, because a defective shift register will propagate

the wrong bit pattern to the cells located after the defective cell. This access can be done in

a row column access, as in the case of the power test.

Each cell must be separately testable for its logic functioning; this may be done by

testing an entire column at a time, with the same vectors to each cell, rejecting those who

produce different results. Built-in self test (BIST) can be added to complex cells to aid in

the testing phase.

Checking for shorts and open circuits is also important. The restructuring buses run

through the whole chip; they are therefore easily testable. Programming the cells to

perform different tests on the routing architecture is also a possibility.

Testing of a wafer scale design is a complex task that extend beyond the scope of

this thesis. However, with small modifications to the techniques already employed, the

testing should not cause major problems.

4.5 Software Overview

Even if the object of the thesis is to study the physical aspects of a wafer scale

FPGA design, software cannot be overlooked because it is an essential part of an FPGA

design. This section explains the critical aspects for the software requirements to

reconfigure and run a wafer scale FPGA.

4.5.1 Restructuring Software

Once the testing has produced a map of defective cells, the circuit has to be

restructured. The defect avoidance consists only in physical restructuring, so there is no

need to program switches. Instead, the laser links and cuts must be performed. There are

many links and cuts to perform in each cell; however, those links and cuts are the same

from cell to cell for the most part of the restructuring. So it is easy to use a batch file to

perform the task. A separate program must be run to restructure around the defects of the

channels, because the channels needing repairs vary from cell to cell. But once again, only

a limited number of coordinates are needed for each cell. Also it is easy to use the batch

linking. The configuration time can be reduced by aligning the laser links so they can be

zapped with limited movement of the laser table. This is the task of the designer to align

the links accordingly. The best way to create the batch file is to use the CAD tool and

create two additional layers: one for the laser link and one for the cut. By using these new

layers, the designer is able to simulate the effect of the laser restructuring. These layers

were created in the Cadence environment. The properties of the link layer establishes

connectivity between the active regions of the link; for simulations, the resistivity of the

link, extracted from the technology, can be added to the properties.

Figure 4.34 Implementation of the Link and Cut Layers in Cadence

The cut layer simply consists in breaking the connectivity in a metal line. It

allows the designer to test for connectivity and also simulate the performance of the

design with the laser links and cuts included in the design. It is also very easy to extract

the information about the coordinates of the links and cuts, since they are separate

layers. Thus there is no problem in integrating the laser links and cuts into already

existing design tools. A library of restructured cells can be designed and the appropriate

linking and cutting pattern chosen for each cell in the array. There is a limited number of

rerouting patterns for a cell; all the laser switches in the cell have to be rerouted in one

of the four possibilities shown in Figure 4.3 1, while the switch box has two rerouting

possibilities, either horizontal or vertical. This is shown schematically in Figure 4.35:

all the switches in the switch box can be laser linked in the a or b fashion and all the

laser switches in the laser switch box can be laser linked in the c, d or e fashion (the

channel contains only two lines for clarity). Coordinates of the links and cuts can be

referred to the corner of the cell and are easily transformed.

Box

Switch

(a) Block and Switches

(b) Possible Laser Link Restructuring Patterns

Figure 4.35 Restructuring Patterns

The amount of rework is dependant on the size of the final product. For small

restructurable arrays, where only column bypass is considered, the bypass of the cells is

simple and fast. For complete wafer scale systems, the process is longer because testing

and restructuring is iterative. Auto routing software [32] are necessary to route very

complex circuit. Such a software could be used to generate the laser link routing map.

4.5.2 Programming Software

As seen in section 2.2.4, there are six basic steps to create a circuit on an FPGA.

Since the wafer scale FPGA proposed in this thesis is based on the same kind of basic

cells found in commercially available circuits, there is no major differences in the

programming software. Small restructured FPGAs could be used like any other FPGA

and depending on their design, they could even be programmed with existing software.

The complete wafer scale circuits will require special software: the design entry and

optimization are still done in the same manner, only the software used must be able to

handle large designs. High level capture is better suited for large designs. Placement and

routing software will require research but will not differ a lot from actual software used

to program prototype boards and arrays of FFGAs. The programming of the shift

register requires a larger nemory capacity.

Since restructuring is invisible to user and the software, the wafer scale FPGA

can be considered as a larger version of a standard FFGA. A library of macro functions

could be built and optimized, with complete circuits already available. The designer

could chose from these circuits and implement a complete wafer scale system in a short

period of time.

4.6 Summary

This chapter has dealt with the different aspects of the defect avoidance in

FPGAs. The major emphasis has been made on the restructuring aspects and physical

design of the defect avoidance structure. It has been shown that acceptable yields can be

achieved by using appropriate methods. The required software has been briefly

introduced and left as future work in the realization of wafer scale FPGAs.

Chapter 5

The Test Vehicle

This chapter presents the design and experimental work done to test the concepts

presented in the previous chapter. The first section will deal with the design of the test

vehicle and its different parts. The second section will present the results on power while

the third section will explain the delay simulations. Finally, the last section will set out the

different experimental results performed on the chips.

5.1 Design

The idea behind a test vehicle is to provide means to examine the aspects of wafer

scale systems on a chip which can be produced within the Canadian Microelectronic

Corporation multi-project wafer system. This section shows the design of the wafer scale

FPGA test vehicle fabricated to test the techniques presented in Chapter 4. The design was

done on Cadence with the Mite1 1 Spm CMOS technology.

5.1.1 Architecture

The first step in designing an FPGA is to chose the architecture to employ. The

symmetrical architecture is best suited because of the restructuring technique chosen. In

this architecture, a square array of similar logic blocks is surrounded by routing resources.

To make the design restructurable, a restructuring bus is added between each column of

cells. The block diagram is shown in Figure 5.1

Vertical Defect Avoidance
Channel Bus

4
Logic
Block

Horizontal
Channel

Connection
Box

Switch
Box

Laser
Switch
Box

FPGA
Cell

Figure 5.1 Symmetrical Restructurable Architecture

This is the basic architecture used as a starting point to design the test vehicle. The

next subsections will describe the different parts of the cell in detail.

5.1.2 FPGA Programming Technology

As noted in Chapter 2, the most widely employed programming technologies are

static RAMS, anti-fuses and EEPROMs [34]. Since only CMOS technology was available,

the EEPROM or anti-fuse programming could not be used. Since static RAM

programming is very popular in actual FPGAs, and is easily programmable with our

testing equipment, it was chosen as the programming technology for the test vehicle.

A long shift register is run through the FPGA cells. Each bit in the shift register

accomplishes a function, like activating a switch. The basic cell must be very simple and

occupy very little area, because of the large number of programming bits required. A

double non-overlapping clock shift-register was designed. The design was not optimized

for area, but rather to ensure proper functioning. Two inverters in a SR latch mode with

pass transistors were used. The pass transistors allow minimum size inverters. The

schematic of the circuit is shown in Figure 5.2.

n n

I
Clk 1

I
Clk2

Figure 5.2 Schematic of the Shift Register Bit Cell

As explained in section 4.4.5, a laser link was placed between the input and the

output of the shift register in each cell to bypass the cell in case of a defect occurring in the

circuit.

5.1.3 Logic Block

Considering the silicon space available is limited and because the logic block does

not need any reconfiguration, a very basic circuit was employed. As seen, the logic block

is used to implement logic functions. This can be done in different ways: Look-Up tables,

multiplexers or simple logic gates. A Look-up table based logic block was chosen, because

it is easy to implement, requires little area and is also commonly used in currently

available FPGAs [2]. The results obtained with a small look-up table can easily serve for a

more complex but similar design. In order to test the sequential circuits, the logic block

also includes a D flip-flop. The output of the Look-up table is either transferred directly to

the output of the cell or run through the D flip flop. The number of inputs and outputs was

also kept low: three inputs for the look-up table, one clock input for the flip-flop and one

enable input for the cell and one buffered output. The block diagram of the logic block is

shown in Figure 5.3. The schematic for the look-up table is shown in Figure 5.4.

" 1 LUT L OUT

Figure 5.3 Logic Block (LUT: Look Up Table; D: D Flip-flop)

5.1.4 Connection Box

The connection box serves to connect the inputs and outputs of the logic block to

the routing channels. The design is very simple: a pass transistor activated by a bit of the

shift register allows the connection. In this way, connection to no line (hi-Z), one or many

lines in the channel is possible.

Figure 5.4 Look-up Table Schematic

79

Input

r,
Routing Channel

Figure 5.5 Connection Box Diagram

The number of lines to which each input and output can be connected directly

influences the flexibility of the FPGA [2], but also increases the length of the shift register.

The number was set to six, to achieve a certain flexibility while keeping the design small.

5.1.5 Routing

Since the symmetrical architecture was chosen, routing channels must be placed

vertically and horizontally between each cell. The number of lines in each channel is

critical for the flexibility of the routing. An important aspect to test with the vehicle is the

utilization of single and double length lines; both were included in the routing channels.

Once again, area considerations made us choose a small number of lines, 12 in total: 6

single length, 4 double length and 2 for the clock. The double length lines include the

uncrossing option for the bypass of the cells.

Switch box
L-

Laser links ~ardwired
Connections

Figure 5.6 Block Diagram of the FPGA Cell

It is a small number compared to commercial FPGAs but sufficient to perform the

tests and demonstrate all functional operations of an FPGA cell. The switch matrix, which

makes the connections between the channels, uses 8 switches similar to those described in

section 4.4.3; they allow the connection to the three opposite lines and can be laser linked

to bypass the cell. In the test vehicle fabricated, there is no redundancy in the channels.

The block diagram of the FPGA cell is shown in Figure 5.6. A new circuit including line

redundancy was designed and submitted for fabrication.

5.1.6 Chip Layout

Two different chips were designed and fabricated in the Mite1 1.5pm CMOS

technology. The first one utilizes the cell described in the previous section. The layout of

this cell can be seen in Figure 5.7.

Switch matrix
Vertical channel

Testable laser I+ J
I Y

I - t Laser switch box)
Horizontal channel Restructuration Bus

Figure 5.7 Circuit Layout of the FPGA Cell in Mitel 1.5pm (1206pm x 650pm)

Because of its large dimensions, it was impossible to build an array of such cells

with the standard chip dimensions (3.lmm x 3.lmrn) available from Mitel. With special

arrangement with CMC, it was however possible to take four adjacent tiles of those chips.

By using half the width (leaving space for other designs), the fabrication of a

1 Scmx 1 Smm chip (ICBSFCD4) was possible. This chip includes a row of 12 cells with

an additional row of restructuration buses to bypass defective cells. In order to test the

design with a real array, another version of the cell, with smaller dimensions, was

designed. All the elements of redundancy found in the larger cell are present and only the

width of the channels and the size of the logic differ. Two single length lines and two

double length lines were used. The look up table has two inputs. The logic block has only

three connections to the channels, two inputs and one output. The layout of this cell can be

seen in Figure 5.8. The large chip (ICBSFCD4) layout is shown in Figure 5.9 while the

small chip (ICBSFCD3) layout is shown in Figure 5.9.

Figure 5.8 Layout of the Smaller Cell in Mitel 1.5p.m (834p.m x 333p.m)

Figure 5.9 Circuit Layout of the Large Chip (ICBSFCD4) 1.5cm x 1.5mm

Figure 5.10 Circuit Layout of the Small Chip (ICBSFCD3) 6.2mm x 1.5mm

Figure 5.11 Photograph of the Large Cell Layout (1206pm x 650pm)

Figure 5.12 Photograph of the Small Cell Layout (834p.m x 333p.m)

Figure 5.13 Power Testable Link Photograph (45p.m x 23p.m)

85

Figure 5.14 Reconfigurable Switch Photograph (54.2pm x 25pm)

Figure 5.15 Laser Switch Photograph (32pm x 30pm)

86

Figure 5.16 Line Uncrossing Structure Photograph (60pm x 32pm)

Figure 5.1 1 through Figure 5.16 are photographs of the layouts as well as the

different defect avoidance structures.

5.2 Power

The first step in testing the device is to check power shorts in the cells. Each

testable power link is turned on and the input current measured. Unfortunately, in the test

vehicles, the P-Well of the testable link was left floating, making the current measurement

difficult. The current consumption is however low when all the transistors are turned on,

indicating no power shorts in all the chips tested. The input current for the small chips was

in the order of 360_2+ 0pA while running at 1kHz and 440-2+ 0pA at 1MHz. The laser

linking of the cells was performed successfully and there was no change in behavior or

power consumption.

An earlier version of the chip (ICBSFCDI) had its P-Wells properly tied. The

results for the power consumption of those chips are shown in table 5.1. For no cells

connected, the input current was 7.6s . lmA; for all cells connected, 1 2 . W . 1mA.

Table 5.1: Power Test Results

Input
Curren t(mA)

Column 1

Column2

Column3

The power consumption is high in the unconnected mode because of a design error

in the pads, but it can be seen that the current is increased approximately the same amount

for each cell tested. These tests were performed on different chips, however the design

error caused the power to vary from chip to chip. The same behavior was observed in

every chip, each cell showing about the same current increment when turned on.

Row3

8 . 4 s . 1

8.5d3.1

9.4f0.1

Row1

9 . w . 1

9 . w . 1

9.8kO. 1

Row2

8.4kO. 1

8.4M. 1

9 . 5 s . 1

5.3 Delay

The major drawback of an FPGA is circuit speed. For a given circuit, the custom

implementation is much faster than the FPGA because of the large delays in the routing

circuitry. Some papers have dealt with the optimization of the logic block complexity, the

cell granularity and the different architectures to optimize the speed of FPGAs [33][35]. In

this section, the results for defect free wafer scale FPGAs of the same complexity, but

without the redundancy or defect avoidance, are compared with the architecture used,

taking into account the defect avoidance overhead. Note the defect free Wafer Scale FPGA

would have a negligible yield and are considered only as the idealized comparison target,

with a speed similar to current standard FPGAs.

5.3.1 Delay Approximation

In [33], the total delay (D,,) of the critical path in a defect free FPGA is

approximated as follows:

where NL is the number of logic blocks in the critical path, DLB the delay of the Logic

Block and DR the delay of the routing between two blocks. The delay of the logic block

can be easily calculated but the delay of the routing is much more difficult to approximate.

It depends on a large number of factors, like the fanout and the length of the connections

[33]. A calculated value is used to give an idea of the delay but the reader should keep in

mind that this value can vary a lot, even just by remapping the circuit.

For the wafer scale circuit, new delays must be included in the calculation of the

total delay D,, because of the extra routing and the physical restructuring of the array.

There are two extra delays: DOH, the delay of the overhead restructuring circuitry in each

cell and DREC, the delay of a restructuring channel. The total delay (D,,) of the critical

path becomes:

where NR is the number of restructuring channels in the path. This number is hard to

evaluate because it depends on the restructuring algorithm. Before doing any calculations,

the delay of each section of the design must be evaluated with Hspice.

5.3.2 Delay Simulations

The following simulations were done with the dimensions of the small chip

(ICBSFCD3). The Hspice model in the following sections is changed when the large chip

(ICBSFCD4) is used.

The delay of the logic block is simulated as follows (the circuit is shown in Figure

5.17): the input comes from one channel line (In), goes through a pass transistor(l), then to

the input of the look up table. In the worst case, the input is connected to two transistor

gates and also goes through one inverter and is then connected to two other gates. The

signal is then transferred from the cell bit in the shift register, through an inverter, two pass

transistors (33) and two transmission gates (6, 7). This is connected to a large buffer (8)

which goes through a pass transistor and is then connected to the output channel line (out).

out

Figure 5.17 Logic Block Delay Circuit (the numbers are Hspice nodes)

To simulate the routing delay, a signal corning out of the logic block and going to a

routing channel is assumed. The capacitive load of a line in the channel is composed of the

metal line itself, simulated by a 1150pm long by 3.3pm wide RC line in Hspice. This line

goes through a pass transistor. Other capacitive loads are simulated on the line with

connections to the drains of open transistors. They represent the connections of the line to

the connection box. The overhead delay, composed of the restructuring circuitry, is a

simulation of the laser switch box with a lOOpm long and 3.3pm wide metal line. The

switch box includes 4 laser links. The last delay simulation is for the restructuring delay,

Drec. This is approximated by a signal going through a laser link (modeled at 108R), a

metal line of 550p.m in length and 3.3p.m in width, and another laser 1ink.The delay model

in Hspice for the metal lines is as follows:

.MODEL linemetal 1 R COX=0.00014 RSH=0.04 CAPSW=2.3E- 10

where COX=area capacitance (~lrn*), RSH=sheet resistivity (R/O) and CAPSW=edge

capacitance (Flm). These simulations are of course rough approximations of the real

delays in the cell, but they give a good idea of the delays introduced by the laser

restructuring.

In Out

In

b) Doh

I out

In Out

c) Drec

Figure 5.18 Circuits used for Delay Simulations: a) Dr, routing delay; b) Doh,
overhead delay; c) Drec, restructuring delay

The results for each delay simulated is shown in table 5.2.

Delay

Logic Block DLB

I Routing DR I 9 s 6 1
I Overhead DOH 1 0.6 1

Table 5.2: Simulated Delays

Restructuring DREC

As an example, the delay for a worst path of ten cells is calculated. The results are

given in Figure 5.19

3.0

170.0

Defect free FPGA

1 60.0 2 4 6 8 10

Figure 5.19 Graph of the Delay vs. Yield for a Row of ten Working Cells

The graph shows that for high yield (low NR), the difference between the wafer

scale FPGA and the defect free FPGA of the same complexity is small. The delay is

increasing linearly from 4% (NR=O) to 22% (NR=lO). To achieve good performance, the

restructuring algorithm must give a number of channels NR as low as possible.

In this example, the delay for a logic block composed of a 2 input look-up table is

measured. Larger blocks show a larger delay but require less routing. A very large block is

useless in standard VLSI because not enough blocks can be placed on a single chip. But

for wafer scale, the choice of a larger block may improve the performance.

The Wafer Scale FPGA has a lower delay than the prototype boards composed of

arrays of commercial FPGAs because of the high impedance of the board connections and

the extra delay caused by the routing chips [3].

5.4 Delay Experiments

The purpose of the test vehicle was not to build and test a high performance FPGA

architecture. The basic cell is very simple and not optimized. The goal was to measure the

effect of the laser restructuring on the FPGAs, and the delays imposed by the overhead.

A series of experiment were conducted to measure delays in non-restructured

FPGAs (with no laser links) and in FPGAs with restructured channels. The design offered

limited flexibility but different paths and configurations were tested.

5.4.1 Routing Delay

The first experiment is to test the small cell FPGA (ICBSFCD3) to see if the logic

is functioning properly. Because the test vehicle is a custom design, there is no software

available to work with. Software was written to program the shift registers in the test

FPGA: two non-overlapping clock signals and two programming bit patterns used as

inputs for the shift registers were generated using a National Instrument [37] data

acquisition board. Four bits of an output port were used for this purpose. A simple text file

composed of the bit pattern to be recorded is needed to program the test vehicle. This

method of programming is tedious but sufficient for the size of the test vehicle used.

Proper functioning of the shift registers can be checked by looking at the output

(which was made accessible via a pad). On the large chip, the output of the shift register of

each cell is accessible, so it is easy to tell which one is defective and bypass it. The smaller

chip only have the last output available. Tests were done on three small chips. The first one

had one shift register working and the other was defective. The second and third had both

their shift registers working fine. An attempt to correct the defective shift register was

made, but since it was impossible to tell which cell was defective (because of the

unsufficient UO pads number), it had not been conclusive. On the large chips

(ICBSFCD4), the restructuring of the shift register was performed successfully.

After the shift registers were tested properly, simple continuity tests were done to

verify the connection between the lines. In the first test, a connection was made between

two cells via the switches; only the transistors were used, no laser links. The test vehicles

were designed with blank pads, to allow the measurement of the internal resistances. Care

must be taken when calculating the delays, because there is no large output buffers and the

capacitance of the oscilloscope probe must be taken into account.

The resistance across two cells was 2618k14Q The delay of a square wave going

through this path was 190k2ns. The maximum amplitude of the signal was 3.8M.O2V,

because the pass transistors are N type (3.5pm width). A longer path was also simulated.

This time the signal was run through all the cells, ten N pass transistors. The resistance

measured was 14.15kO.lkSZ and the delay 800kSns. Unless running at very low

frequencies, the signal did not reach its full amplitude (-3V) because of the very large rise

time. These tests show that the routing architecture of an FPGA is quite slow compared to

a full custom chip design. Such delays are typical for FPGAs. Results of the laser linked

path are presented later in this section.

5.4.2 XOR Delay Test

The next test was to verify the logic operation of the cells. To do this, a two input

XOR gate was simulated in a cell. The experiment was performed on the small chips

(ICBSFCD3), with a two input LUT. The setup for this experiment is shown in Figure

5.20. The delay of this function was measured by keeping one input low and applying a

square wave to the other input. If the delays in table 5.1 are used, the path of this function

can be approximated with: Dlb+2Dr+2Doh, giving a delay of 27.1 ns. This does not

include the output capacitance of the probe; by adding the probe, lOMQ and 1 lpF, a new

Hspice simulation gives a result of 150ns and measurements indicate a 170&2ns delay. In

another experiment, the output was run through another cell before reaching the pad and

the probe.

Probe ------------.

Figure 5.20 XOR Experiment Setup

The Hspice simulation for this circuit gives a 217ns delay while the measurements

in such conditions show a delay of 3 m 2 n s . With the high capacity of the probe

(inaccurately known), it is hard to measure the internal delay. The simulations show

however that the delay is well approximated with the Hspice simulation when considering

the capacitive load. Results for the amplitudes are shown in table 5.3.

Table 5.3: The XOR Gate

This experiment shows the little overhead delay simulated with Hspice is actually

low compared to the routing delay of the FPGA.

5.4.3 Laser Linked Paths

The next experiment was done to test the restructuring of the FPGA possible with

the laser links. The first path was the linking of the two single length lines through 3 cells.

Access to the output pad was achieved by linking the laser switch in its downward mode.

The paths are schematically represented in Figure 5.21.

Figure 5.21 Laser Link Paths

The resistance of the first path was measured at 353k38 and the second path at

382k3Q . The Hspice model for the lines and links gives a resistance of -3498 for such

paths. Applying a lMHz square wave gave a delay of 2.5*.5ns for the first path and

3.W.5ns for the second path.

After this, another experiment was done to check the influence of bypass

restructuring on the delays of the paths. The second cell was bypassed by using the laser

link switches. The schematic representation can be seen in Figure 5.22. With this

experiment, the delay added by such a restructuring can be measured.

Figure 5.22 Restructuring Experiment

The results are as follows: the new resistance was 677+522 for the first path and

659*1(2 for the second path. Delays were measured as 1 1 .O*Sns for both paths. Table

5.4 shows the results and the change in resistance and delay after the restructuring.

Table 5.4: Resistance and Delay of the Laser Linked Paths

Path

Hspice

1

2

R (a)
before

349

353f3

382f 3

Delay(ns)
before

3.6

2 3 3 . 5

3 . W . 5

R(Q)
after

803

677k5

659k5

Delay(ns)
after

8.8

11.0kO.5

1 1 0 . 5

Change
on R

454

324f 8

277k8

Change on
Delay(ns)

5.2

8Sk1

7 . e l

The change in delay predicted by table 5.2 can be estimated to be 2xDrec which

gives 6.011s. The results show that this estimation is quite reasonable, almost matching

the results within the expected error. In comparison, the same experiment was

performed using the active reconfiguration in the cells. Note that this time only two cells

were used instead of three. The results are shown in table 5.5.

Table 5.5: Resistance and delay of the Active Switch Paths

Path

1

2

These results show well the large delays of the active switching compared to the

laser links. The experiment was repeated on different chips and similar results were

obtained.

5.4.4 Double Length Lines

Another similar experiment was done on the double length lines. This time to

test the capacity to uncross the lines rather than the actual delay. The path was still

going through three cells. The first step was to link the lines and measure the resistance

and the delay. The second step of the experiment was to uncross the lines. First the two

paths were laser cut; their resistance was too high to measure (>32MR), showing the cut

was properly made. Thereafter the links were made to reconnect the lines: the effect was

to invert the lines. The extra delay comes from the laser link. The results of the

experiment are shown in table 5.6.

R (a)
before

2618f14

334Ok18

Delay(ns)
before

19m

202f2

R(Q)
after

5710f29

6115f31

Delay(ns)
after

37M2

3 9 1 e

Change
On R(R)

3032f43

2775f49

Change
on

Delay(ns)

180f4

189k4

-- - - -

Table 5.6: Double Length Paths Uncrossing Results

Path

1

2

This experiment shows that the line uncrossing can be done with no problems

and the delay overhead is small.

5.4.5 The Ring Oscillator Test

A ring oscillator was programmed with the FPGA to verify the impact of the

restructuring on the maximum frequency of operation of a circuit. Due to the small chip

(ICBSFCD3) dimensions, a 2x5 array, the oscillator was made using six FPGA cells,

five to simulate the inverters and one as an output buffer, so the capacitance of the

oscilloscope would not affect the frequency.

The idea of the test is to simulate the oscillator first without restructuring, then

with one restructured path and so on, until the maximum number of restructured paths

possible with the chip was obtained (NR=4). Hspice simulations using the proposed

delay models gave the results shown in table 5.7. Some modifications on the length of

the lines and the logic block circuit were made to take into consideration the smaller

dimensions of the cell used in this experiment. The experimental results were obtained

as follows: the ring oscillator was incrementally restructured and the frequency of

operation measured for each value of NR. The procedure is illustrated in Figure 5.23

(only the laser switch boxes are shown for clarity). In a), there is no restructuring; in b)

R (R)
before

289k3

2 0 2 e

Change
on

Delay(ns)

1.5k1

1.5k1

Delay(ns)
before

3 . W . 5

1 S M . 5

R (R)
after

3 6 e 3

287f 3

Delay(ns)
after

4.5kO.5

3.03a.5

Change
On R(R)

7 1k6

85k5

one restructured path is included and in c) two restructured paths are shown.

Laser Switch ~ o x f a) NR=O

Figure 5.23 Restructuring Experiment, Small Chip (ICBSFCD3)

Measurements were also taken for NR=3 and NR=4. The results of the

experiment are shown in table 5.7.

This experiment shows the impact on the delay of an FPGA restructured in the

cell by cell fashion.

Number of
restructured
paths (N ~)

Table 5.7: Hspice Simulation and Experiments for the Ring Oscillator, Small Chip
(ICBSFCD3)

Experimental
Frequency

(MHz)

The waveforms were measured using a lOOMHz digital oscilloscope. The period

Simulated
Frequency

(MHz)

Frequency
Change from
non-defective
path(NR=O)

was measured with the cursors of the instrument. The precision on the period is k 0.5ns.

Frequency
Change from
non-defective
path(NR=O)

The comparison between simulations and measurements is shown graphically in

Figure 5.24.
6.0

h 2 5.0

z
%
0
C

3
CT

I!! 4.0

1 I 1

-
----.. If\.

-

0- --0 Experiment

I

3.0 I 1

1 2 3 4
N

R

Figure 5.24 Ring Oscillator Test, Small Chip (ICBSFCD3)

Both the simulation and the experiment show the expected trends of decreasing

frequency with increased NR. The same experiment was repeated on another chip and

the results were similar.

The same ring oscillator test was also performed on the large chip (ICBSFCD4).

Only this time the restructuring was different. Since this chip is a long row (1x12 cells),

it was used to measure the impact of the column substitution, where the number of laser

links in the restructuring path is smaller, but where the bypass routing length is longer.

Another interesting aspect of this experiment is that it uses the new device called the

laser pass transistor shown in Figure 4.23 so it was possible to show the difference

between active switching and laser linking. The experiment was done as shown in

Figure 5.25. In a), there is no laser restructuring. Then in b), a cell was bypassed

Switch Box a) No restructuring, NR=O

Laser Link bypassy
b) One laser restructuring, NR=l

Figure 5.25 Ring Oscillator Restructuring Experiment, Large Chip (ICBSFCD4)

and the new frequency was measured. The experiment was repeated for NR=2, 3 and 4.

The results of both the simulations and the experiments are given in table 5.8 for active

switching and in table 5.9 for laser linking.

Number of Simulated Frequency Frequency Experimental Change from restructured Frequency Change from Frequency
paths (NR)

non-defective
(kHz)

non-defective
(kHz) path(NR=O) path(NR=O)

Table 5.8: Results for the Ring Oscillator, Active Switching, Large Chip
(ICBSFCD4)

I 4 746 -20.9%

Table 5.9: Results for the Ring Oscillator, Lase

Number of
restructured
paths (NR)

Linking, Large Chip (ICBSFCD4)

Experimental
Frequency

(kHz)

Simulated
Frequency

(kHz)

Those results are shown graphically in Figure 5.26. It shows clearly that the

Frequency
Change from
non-defective
path(NR=O)

Frequency
Change from
non-defective
path(NR=O)

laser linking offers better performance when compared with active switching. While

both are the same for NR=O, by NR=4 the laser linking oscillator is 33% faster than the

actively switched device. Both simulations and experiments match very well. The

experiment was repeated on another chip and the results were similar.

Those restructuring experiments showed it is possible to use the laser link to

restructure FPGAs to bypass defects, and showed that it gives better performance then

active switching. The cases with NR=4 are cases where a very low cell yield is obtained

and would rarely be encountered on a real wafer. The simulation was repeated with

wider pass transistors, double the size of those designed (7.Opm instead of 3.5pm). The

active switching showed a decrease of 18.3% in performance while the laser link

showed a 12.3% decrease. At this width, the pass transistors are the same size as the

laser link.

Figure 5.26 Ring Oscillator Test, Large Chip (ICBSFCD4)

5.4.6 Larger Cell Simulation

The simulations from the previous section were done for the fabricated devices.

In this section, the comparison is made for cells of larger size, which are more likely to

be used in a real wafer scale design. The logic block is optimized for speed in these

simulations, so better results are obtained than for the simulations which take the

fabricated design into account. A comparison is also made with a custom hard-wired

circuit, with the routing switches replaced by a direct line connection. Cells of 1,2 and 5

times larger were simulated. The same restructuring scheme as the previous experiment

was used. The results are shown in table 5.11 for the direct connection, active switching

and laser linking. The lx means the designed cell size was used (1206pm x 650pm), in

2x a 2412pm x 1300pm cell was used while 5x means a 6030pm x 3250pm cell was

used. A graph of these results for active switching and laser linking is shown in Figure

5.27.

I I Direct connection 1 Laser linking I Active switching I

- -

Table 5.10: Larger Cells Comparison, Frequency in kHz

3000.0

. Active switching

R 2000.0
H
>
0 c
J
D
E
LL 1000.0

Figure 5.27 Larger Cells Comparison, Active Switching and Laser Linking

The values indicate the laser link is better even for very large cells, going from

1.6 times faster for the small cells to two times better than active switching for a cell of

6030pm x 3250pm. Note these results are comparing the results for the length of the

routing architectures, and do not take into account the change in performance of the

logic block. Clearly, with larger cells, more complex circuits can be done with each

block.

5.5 Summary

In this Chapter, the design of the test vehicle was presented. Results of the

HSpice simulation were compared with the experiments performed on two chip designs

fabricated in Mite1 1 Spm technology. The effect of the overhead restructuring circuitry

was analyzed in detail and compared to the simulations. It has been shown that the delay

overhead is reasonably small and that there is advantages in using the Laser Link to

restructure FPGAs to bypass defects.

Chapter 6

Conclusion

The work presented in this thesis was aimed at investigating a solution to the

interconnection problems associated with a wafer scale FPGA. The design and testing

of a test vehicle was done to show the influence of the restructuring circuitry on the

performance of the FPGA. The first section of the conclusion deals with the results

obtained with the test vehicle and how they can be used to expand the size of the

devices. The second section deals with the technical and economical feasibility of the

wafer scale and large FPGAs. The last section will present some future work.

6.1 The Test Vehicle

A seen in Chapter 5, there is an overhead associated with the laser restructuring

of the FPGA compared to a standard design. One of the objective of the thesis was to

show that while this overhead is not negligeable, it is small because of the large delays

already imposed by the routing structure of the FPGA. The simulations and tests have

shown the overhead in delay in the order of 10-15% for highly defective areas (around

50% cell yield) for the cell by cell restructuring, while the row-column restructuring

gave decreases in performance in the order of 25% for highly defective areas. One thing

that must be taken into account is that it is unlikely that the worst path of a given circuit

will actually be mapped on the worst physical path of the FPGA, and this can result in

circuits with performances close to standard FPGAs.

The limitation in silicon area available did not allow us to test cells with a size

used today. It had been shown however that the increase in the area of the cell actually

decreases the influence of the laser restructuring, since the resistance of the laser link is

constant and the speed of the circuit decreases with the increase of the cell area. A

design with large cells also requires a smaller number of cells and thus a smaller number

of restructuring circuits.

The results obtained with the test vehicle demonstrate the possibility of laser

restructuring FPGAs and therefore increasing their size or yield with a small penalty on

circuit performance.

6.2 Technical and Economical Feasibility

Two different approaches to the laser restructuring of FPGAs have been

presented in this thesis. The first one is to use a complex defect avoidance scheme that

allows the size of FPGAs to increase up to full wafer devices. The other one deals with

the yield of standard size devices. By using a low overhead circuitry and a simple row

column defect avoidance scheme, it is possible to increase the yield of the devices. A

similar approach is used in dynamic RAMS today. This approach could decrease the

cost of large FPGAs and even be used to increase the size of high-end devices.

The full wafer scale FPGAs would offer considerably higher capability than

current FPGAs but requires more area and the restructuring costs more than standard

devices. Their use is however targeted for applications that use very expensive

equipment today. The main advantage of a wafer scale product is once the production is

launched, the cost of rework is kept small. One of the problem with boards of FPGAs,

apart from being slower than a potential wafer scale design, is they cannot use standard

FPGAs, so a custom design has to be build. The amount of rework on a board or multi

chip module is also very high, and the probability of breaking a device is large when the

rework is performed. While a wafer scale product would be technically superior, an

analysis of the market should be done to build a system that suits the needs of the

demand. As one designer said: "As far as density, the sky's the limit. If the gates are

there, I'll use them-40,000 or 500,000 gates" [38].

6.3 Future Work

The experiments on the test vehicles show it is possible to build a wafer scale

device with low overhead. More tests should however be done to slowly increase the

size of the devices. A more complex cell should also be used. The next logical step in

the project would be to employ a commercially available cell and implement the

restructuring on it. Building a small area restructurable FPGA that can be programmed

using available software and compare its performance to a custom device would give

useful insights. This kind of project requires cooperation and the work of many people,

which is beyond a student's thesis. The work presented in this thesis is however the

necessary first step and the results presented are showing that the next step is possible.

Other interesting options come to mind when talking about a wafer scale FPGA.

One of the main problem of today's designs is the lack of embedded memory. With a

wafer scale design, it is possible to include significant amounts of memory, distributed

on the chip, that can be used by the circuit. It is also possible to build a wafer scale

design with many different blocks, to reach better performance. This is the trend today,

but the low area of the chip is an obstacle. FPGAs are very popular today and will

probably be more popular in the future. If the chip size barrier can be broken, this future

could be even more interesting.

6.4 Summary

The goal of the thesis was to propose a way to restructure FPGAs by using Laser

Link Technology. Different defect avoidance approaches are presented and simulations

performed. It is shown that a combination of row and cell restructuring, and line

redundancy inside the channels, gives good yields. A test vehicle was designed and

fabricated to test the different aspects of a wafer scale design. While further work still

need to be done, results show a laser restructured wafer scale FPGA is feasible.

List of References

B. Fuller, "AT&T rolls 40 000-gate Orca FPGA", Electronic Engineering Times,
pp. 1 and 108, February 1995.

S.D. Brown, R.J. Francis, J. Rose and Z.G. Vranesic, "Field Programmable Gate
Arrays" ed. Kluwer Academic, Boston, 1992.

D.E. Van Den Bout, J.N. Morris, D. Thomae, S. Labrozzi, S. Wingo, D. Hallman,
"AnyBoard: An FPGA-Based, Reconfigurable System", in IEEE Design and Test
of Computers, vol. 9, no. 3, pp. 2 1-30, September 1992

J.I. Raffel, A.H. Anderson and G.H. Chapman, "Laser Restructurable Technology
and Design", in Wafer Scale Integration, E. Swartzlander; ed. Kluwer Academic,
Boston, ch. 7, 1988.

J.F. McDonald, B. Philhower and H.J. Greub, "A Fined Grained, Highly Fault
Tolerant System based on WSI and FPGA Technology", in FPGAs, ed. W. Moore
and W. Luk, Abingdon EE&CS Books, Abingdon, pp. 1 14- 126, 199 1.

S.K. Tewksbury, "Wafer-Level Integrated Systems: Implementation Issues",
Kluwer Academic Publishers, Boston, 1989.

G.H. Chapman and K. Fang, "Comparison of Laser Link Crossbar and Omega
Switching for Wafer-Scale Integration Defect Avoidance", Proceedings of the
IEEE International Conference on Wafer Scale Integration, pp. 352-36 1, San

Francisco, CA, January 1994.

J. Wilson, J.F.B. Hawkes, "Lasers, Principles and Applications", Prentice Hall,
New-York, 1987.

D.R. Messier and W.J. Croft, "Silicon NitrideJJ, ch. 2 of Preparation and
Properties of Solid State Materials, vol. 7, edited by W. Wilcox, New York, 1982.

W.M. Steen, "Laser Material Processing", Springer-Verlag, London, 1991.

V.I. Belyi, et al., "Silicon Nitride in Electronics", Elsevier, Amsterdam, 1988.

S.S. Cohen and G.H. Chapman, "Laser Beam Processing and Wafer Scale
Integration", chapter 2, VLSI Electronics: Microstructure science, vol. 2 1, pp 10-

[13] M. J. Syrzycki, L. S. Carr, G. H. Chapman and M. Parameswaran, "A Wafer-Scale
Visual-to-Thermal Converter", Proceedings of the IEEE International Conference
on Wafer Scale Integration, pp. 1- 10, San Francisco, CA, January 1993.

[14] G.H. Chapman, J.I. Raffel, J.M. Canter and EM. Rhodes, "Advances in laser link
technology for wafer scale circuits", IFIF' Int. Workshop on Wafer-Scale
Integration, Brunel University, Sept. 23-25, 1987.

[15] G. H. Chapman, L. S. Can, M. J. Syrzycki and B. Dufort, "Test Vehicle for a
Wafer Scale Thermal Pixel Scene Simulator", IEEE Transactions on Components,
Packaging and Manufacturing Technology, vol. 17, no. 3 , pp. 334-341, August
1994.

[16] L. E. Laforge, "What Designers of Wafer Scale Systems Should Know about Local
Sparing", Proceedings of the 1994 Intl. Conference on Wafer Scale Integration, pp.
106- 13 1, San Francisco, CA, January 1994.

[17] R. Negrini, M.G. Sami and R Stefanelli, "Fault Tolerance Through
Reconfiguration in VLSI and WSI Arrays", MIT Press, Cambridge, ch. 14, 1989.

[18] C. H. Stapper, F. M. Armstrong and K. Saji, "Integrated Circuit Yield Statistics",
Proceedings of the IEEE, vol. 71, no. 4, pp. 453-468, April 1983.

[19] C. H. Stapper, "Yield Model for Fault Clusters within Integrated Circuits", IBM
Journal Res. Develop., vol. 28, no. 5, pp. 636-639, September 1984.

[20] S.K. Tewksbury, "Wafer-Level Integrated Systems: Implementation Issues",
Kluwer Academic Publishers, Boston, Ch. 5: Yield Models and Analysis, 1989.

[21] W. Moore, W. Maly and A. Strojwas, "Yield Modeling and Defect Tolerance in
VLSI", Adam Hilger; Bristol, 1988.

[22] C.H. Stapper, A.N. McLaren and M. Dreckrnann, "Yield Model for Productivity

Optimization of VLSI Memory Chips with Redundancy and Partially Good

Product", IBM Journal Res. Develop., vol. 24, no. 3, pp. 398-409, May 1980.

[23] C. H. Stapper, "Block Alignment: A Method for Increasing the Yield of Memory

Chips that are Partially Good", in Defect and Fault Tolerance in VLSI Systems I,

pp.243-255, 1989.

1241 S. Kuo and W. K. Fuchs, "Efficient Spare Allocation for Reconfigurable Arrays",
in IEEE Design and Test, pp. 24-3 1, February 1987.

[25] R.M. Lea, "A 3-D WASP Module for Real-Time Signal and Data Processing",
Proceedings of the 1992 Intl. Conference on Wafer Scale Integration, pp. 95- 104,
San Francisco, CA, January 1992.

[26] D.C. Keezer and V.K. Jain, "Clock Distribution Strategies for WSI: A Critical
Survey", Proceedings of the IEEE International Conference on Wafer Scale
Integration, pp. 277-283, San Francisco, CA, January 199 1.

[27] S.H.K. Embabi and D.E. Brueske, "Clock Synchronization for WSI Systems",
Proceedings of the IEEE International Conference on Wafer Scale Integration, pp.
228-234, San Francisco, CA, January 1994.

[28] D. Audet, Y. Savaria and N. Arel, "An Architectural Approach for Increasing
Clock Frequency and Communication Speed in Monolithic-WSI Systems,
Proceedings of the IEEE International Conference on Wafer Scale Integration, pp.
235-243, San Francisco, CA, January 1994.

[29] Xilinx, "The Programmable Logic Data Book", Sun Jose, 1994.

[30] P. Chow, S.O. Seo, D. Au, T. Choy, B. Fallah, D. Lewis, C. Li and J. Rose, "A
1.2pm CMOS FPGA using Cascaded Logic Blocks and Segmented Routing", in
FPGAs, ed. W Moore and W Luk, '~bingdon EE&CS Books, Abingdon pp. 91-
102, 1991.

[31] V.N. Doniants, V.G. Lazarev, M.G. Sami and R. Stefanelli, "Reconfiguration of
VLSI Arrays: a technique for increased flexibility and reliability",
Microprocessing and Microprogramming, vol. 16, pp. 101 - 106, 1985.

[32] "Restructurable VLSI Program: Semiannual Technical Summary", Lincoln
Laboratories Technical Report, Sept. 1985.

[33] S. Singh, J.Rose, D. Lewis, K. Chung, P. Chow, "Optimization of Field-
Programmable Gate Array Logic Block Architecture for Speed", in IEEE 1991
Custom Integrated Circuits Conference, pp 6.1.1-6.1.6, 1991.

[34] S. M. Trimberger, "Field-Programmable Gate Array Technology", Kluwer
Academic Publishel; Boston, 1994.

[351 J.L. Kouloheris, A.E. Gamal, "FPGA Performance versus Cell Granularity", in
IEEE 1991 Custom Integrated Circuits Conference, pp 6.2.1-6.1.5, 199 1.

[361 D. Galloway, D. Karchmer, P. Chow, D. Lewis, J. Rose, "The Transmogrifier: The
University of Toronto Field-Programmable System", Proceedings of the 1994
Canadian Workshop on Field-Programmable Devices, pp. 1.4.1 - 1.4.6, June 1994.

[37] National Instrument, "NI-DAQ Function Reference Manual for PC Compatibles",
November 1993.

[38] "ORCA: Opening Design Doors", Supplement to Electronic Engineering Times,
p.6, April 17 1995.

Appendix A: Hspice Ring Oscillator File

Hspice file sample, osc.sp, to simulate the restructuration on the ring oscillator for the
small chip (ICBSFCD3).
*
.MODEL PMITEL PMOS LEVEL3 COX= 1.28E-3 DERIV= 1 KAPPAz5.69
+ KP= 17.65E-6 TOX=27E-9 VMAX=:! l6.54E3 LD= 152.9 1 E-9 LMLT= 1
+ WD=97.74E-9 WMLT= 1 XJ403.33E-9 DELTA= 1.53 ETA= 146.55E-3
+ NFS=224.75E9 NSUk3.6E16 PHk765.08E-3 VTO=-559.63E-3
+ THETAz35.94E-3 UO= 138.03
*
.MODEL NMITEL NMOS LEVEL=3 COX= 1.28E-3 DERIV= 1 KAPPA= 1 OE-3
+ KP=68.03E-6 TOX=27E-9 VMAX=160.4E3 LD=239.68E-9 LMLT=l
+ WD= 100E- 12 WMLT= 1 XJ=296.9E-9 DELTA= 1.06 ETA= 140.68E-3
+ NFSd368.21E9 NSUB= 1.6E16 PHk725.15E-3 VTO427.59E-3
+ THETA=34.67E-3 UO=53 1.92

*** Lines Models

.MODEL linepoly R COX=0.00012 RSH=20.0

.MODEL linemetall R COX=0.00014 RSH=O.W CAPSW=2.3E-10

.MODEL linemetal2 R COX=0.00012 RSH=O.W CAPSW=2.3E- 10

.subckt laserlink in out
R 1 in out 108
ml in 0 out 0 nmitel 1=1.5u w=6.6u ad=34.98p as=34.98p pd=23.8u ps=23.8u
.ends

.subckt laserlinkopen in out
R1 in out 10E6
ml in 0 out 0 nmitel 1=1.5u w=6.6u ad=34.98p as=34.98p pd=23.8u ps=23.8u
.ends

subckt nswitch in out
ml in vdd out 0 nmitell=lSu w=3.5u ad=11.55p as=11.55p pd=13.6u ps=13.6u
vddvddO5vdc
.ends

.subckt openswitch in
ml in 0 0 0 nrnitel k 1 . 5 ~ w=3.0u ad=9.9p as=9.9p pd=12.6u ps=12.6u
.ends

subckt inv in out
ml vdd in out vdd pmitel 1=1.5u w=3.0u ad=10.87p as=10.87p pd=13.2u ps=13.2u

m2 out in 0 0 nmitel 1=1.5u w=1.5u ad=10.87p as=10.87p pd=l3.2u ps=13.2u
vddvddO5vdc
.ends

.subckt bigbuffer in out

.subckt inv in out
ml vdd in out vdd pmitel 1=1.5u w=3u ad=10.87p as=10.87p pd=13.2u ps=13.2u
m2 out in 0 0 nmitell=lSu w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u
vdd vdd 0 5v dc
.ends
.subckt inv2 in out
ml vdd in out vdd pmitell=lSu w=60.0u ad=198p as=198p pd=126.6u ps= 126 .6~
m2 out in 0 0 nmitell=lSu w=30.0u ad=99p as=99p pd=66.6u ps=66.6u
vddvddO5vdc
.ends
xl in 1 inv
x2 1 out inv2
.ends

.subckt tgate in out
ml in 0 out vdd pmitell=lSu w=6.0u ad=24.78p as=24.78p pd=19.8u ps= 1 9 . 8 ~
m2 in vdd out 0 nmitel 1=1.5u w=3.0u ad=10.87p as=10.87p pd=13.2u ps=13.2u
vddvddO5vdc
.ends

*** Logic block

.subckt dlb in out
xl in 1 nswitch
x2 1 2 inv
x3 vdd 10 inv
x4 0 11 inv
ml 10 1 3 0 nmitell=lSu w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u
m2 0 1 0 0 nmitel1=1.5u w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u
m3 11 2 3 0 nmitel 1=1.5u w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u
m4 0 1 0 0 nmitel 1=1.5u w=1.5u ad=10.87p as=10.87p pd=13.2u ps=13.2u
m5 3 vdd 5 nmitell=lSu w=1.5u ad=9.9p as=9.9p pd=12.6u ps=12.6u
m6 vdd 5 9 vdd pmitel 1= 1 . 5 ~ w=7.2u
m7 9 5 0 0 nmitell=lSu w=5u
x5 5 6 tgate
x6 6 7 tgate
x7 7 8 bigbuffer
x8 8 out nswitch
vddvddO5vdc
.ends

*** Routing

.subckt dr in out
x 1 in openswitch
x2 in openswitch
x3 in openswitch
x4 in openswitch
r l in 1 linemetall 1=1150u ~ 3 . 3 ~
x5 1 2 nswitch
r2 2 out linemetal 1 I= 100u w=3.3u
x6 2 0 laserlinkopen
x7 2 0 laserlinkopen
x8 2 0 laserlinkopen
x9 2 0 laserlinkopen
.ends

*** Direct routing(for double length lines)

subckt dir in out
x l in openswitch
x2 in openswitch
x3 in openswitch
x4 in openswitch
r 1 in 1 linemetal 1 1=1150u w d . 3 ~
r5 1 2 linemetall 1=2u w=3.3u
r2 2 out linemetall 1=100u ~ = 3 . 3 u
x6 2 0 laserlinkopen
x7 2 0 laserlinkopen
x8 2 0 laserlinkopen
x9 2 0 laserlinkopen
.ends

.subckt drec in out
x 1 in 2 laserlink
r l 2 3 linemetall 1=333u w d . 3 ~
x2 3 out laserlink
.ends

x l 1 2 dlb
x2 2 3 dr
*x20 30 3 drec
x3 3 4 dlb
x4 4 5 dir
*x40 50 5 drec

x5 5 6 dlb
x6 6 7 dr
*x60 70 7 drec
x7 7 8 dlb
x8 8 9 dir
*x80 90 9 drec
x9 9 10 dlb
x10 10 11 dr
*x100 110 11 drec
x l l 11 12 dir
*x110 120 12 drec
x12 12 13 dr
*x120 130 13 drec
x13 13 14 dir
*x130 140 14 drec
x14 14 1 dr

x15 3 15 dr
x16 15 out dlb

c l out 0 lop
c2 1 0 1 . 4 ~
c3 2 0 1 . 4 ~

.ic v(l)=Ov

.tran Ins 50011s

.OPTIONS post

.END

