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Abstract 

The notion of a frame using hyper-relations is introduced to generalize Kripkean binary 

relational frames and Jennings' and Schotch's n+l-ary relational frames. A more general 

truth-condition for modal formulas in the hyper-relational setting is defined by a theory of 

strictness. The modal formula U a  is true at point x iff or satisfies x's strictness measure at 

all relata of x. For each iln, logic X is defined and shown to be determined by the class 

of hyper-relational frames. I illustrate some interesting and distinctive features of the 

logic by proving a few correspondence-theoretic results for logic and a few 

completeness and incompleteness results for its extensions. 
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Chapter 1 

Introduction 

The standard semaniics of modal logic is based on the notion of a binary relational frame 

consisting of a non-empty universe, U, and a binary relation defined over U. A natural 

generalization is to allow n+l-ary relational frames - that is to say, frames based on 

n+l -ary relations. A benefit of this approach is that philosophically significant distinctions 

obscured or unavailable in the strong modal logics of binary relational frames emerge in 

the weaker modal logics determined by the frames of the generalized semantic idiom. (cf. 

[Jennings and Schotch, 19841 and [Schotch and Jennings, 19801). 

In this thesis, which is based on Jennings' and Schotch's work, we build up a semantics 

adopting two further generalizations. The first involves the introduction of hyper- 

relational frames. Within this semantic idiom, the arities of the tuples to which a point is 

related are permitted to vary in width. The second is the adoption of a formally more 

general truth-condition for modal formulas. No doubt many intriguing philosophical 

questions may rise from the proposed semantics. However, our interest lies exclusively in 

formal questions, in particular, which formal properties of normal modal logic, 

conventionally conceived, can be preserved in the more general semantic setting. For this 

we need make no apology. Jt is not always possible for us to foresee how a formal theory 

will find applications. Non-euclidean geometry is a case in point, and this thesis must be 

another. So, for example, we propose no philosophical readings for 0, but rather focus on 

proving metatheorems after defining the semantics and its base logic. 



The structure of the work is as follows. In the first chapter, we introduce the notion of 

hyper-relational models and their modal logics. Actually, for each i 2 1 ,  we definc ;In 

infinite sequence of logics { : n 2 i 1, where is the base normal modal logic 

In chapter 2, we prove soundness and completeness for 2 with respect to the class of 

hyper-relational frames. 

In chapter 3, we deal with logic e, the largest in the sequence of logics (n > i). 

Some interesting and distinctive features of the logic such as incompleteness and 

definability are examined. 

In an appendix we deal with the connec~ions between X logics. 

1.1 Basic Syntax 

A propositional modal language usually has three elements: 

(1) At: 

An infinite sequence of propositional variables (atomic sentences), namely 

P. PI, P2, P39.e- 

9.417 929 q3,-.. 

r, rl, r2, r3,. . . 

*. . 

(2) k: 

A set of connectives, namely 

7 (negation), + (implication), and (necessity). 

(3) a: 
A recursively (inductively) defined set cf sentences. 

The sentences of are called well-formed formulas (wffs). 



To define (O we introduce metalogical variables, or, P, y, 6 etc. which range over the 

members of @. We use "a" to abbreviate English "if . . . then .. .", use "&" to abbreviate 

English "and". 

(a) Every propositio~al variable is in @. 

( b ) u . ~  < D = $ T ~ E  @. 

( c ) ~ E  <D & p €  @ J C ~ , + ~ E  @. 

( d ) a ~   ma^ a. 

( e )  Nothing is in @ except as prescribed by (a), (b), (c) and (d). 

Other connectives (v, A, ++, I, 1 and 0) are metalinguistically defined by 7 ,  3, as 

1.2 Basic Semantics 

Before looking at the semantics of propositional modal logic, let us recall what a model 

. /4 for propositional logic is. A model ,/4 for propositional logic is a pair < U, V > 

where U is a non-empty set of objects called points, and V is a function from At into 

$3 W)- 

It is usual to introduce a three place relation != to give an account of the truth- 

conditions fur wffs of @ in a model .,& = < U, V >. 
ift ( I )  Vp c At, Vx e U, if x c V(p), else, B , p; 

/i ft (2 )  V a  c Q1, Vx e U. ka7a if Yt a, else, B , ---a; 

(3) Vn, p E @, VX E U, k-a -+ p if BY a or E'$, else, Bf a -+ p; 



e"a is read "a is true or holds at point x in model . /''; C< n. is read ..a is (. '1 I sc at 

point x in model .,/G'. 

With these notions in hand, we proceed ro define models for propositional modal logic, 

by specifying a structu~al element and, in terms of that structure, the truth-conditions for 

modal formuias, We define models for Kripke semantics, n+l -ary relational semantics 

and hyper-relational semantics respectively. 

1.2.1 Kripke Semantics 

In (Kripke 19633, Saul Kripke made an important contribution to our understanding of 

modal logic by defining a truth-condition for modal formulas in terms of one binary 

relation. The truth-condition given here is one inspired by that work. 

Definition 1. A binan; relatiorz R on a rton-emp~ set U is n subset of u2. 
We write y E R(x) or sRy, or say x is related to y, if < x, y > E R. 

Definition 2. A b i n a i ~  relational frame, or a Kripke frame .x is m orclel-erl pcrir 

< U, R > wfiere U is a ~ o f t - e m p f ~ '  set ard R is n binary relation on U. 

Definition 3 A Kri-~ke model ,/d is a triple < U, R, V > where < U, R > is (i birlrrryfr-UIIM 

and V is a fiizctioil from At into p(U)- The truth-co~zditiotz for each yropositionul 

fomtula is defiled according to rlw customar). inductive de$ilitiorr. The fri~th cmclilio~~ for 

modal foriirulas is given 13: 

~ f n a  iff ~y E RR(X), I$& or 

~%3a iff Vyp XRF a l$x 

That is, O a  is true at a point x iff a is true at every x-relaturn. 



1.2.2 n+l-ary Relational Semantics 

A fairly obvious generalization of Kripke semantics is to allow n+l-ary relational 

frames - frames based on n+l-ary relations. A truth-condition for modal formulas in the 

n+l-ary relational setting was suggested by R. E. Jennings and P. K. Schotch in 1970's. 

The base logic determined by this semantics is weaker than that determined by Kripke 

semantics. As a result, formulas C3p 4 Op and 101, for example, which have quite 

different deontic readings, are no longer equivalent. 

Definition 4. AH n+l-all: i-elation R on n non-empty set U is a subset of u"+] where 

I? 2 I .  

Let.r:=<yl,  ..., y,>beann-tuple. I f < x , y  l . . . y , > ~  R, we write%€ R(x) orxRzand 

say x is related to .r: or r is an x-relatum. 

Definition 5. An n+l-at? relationnl frame .F is a1z ordered pair < U, R > where U is a 

norz-enrpty set and R is an n+l-nry relation on U. 

Definition 6 A Jennin cs-Schotch tnodel .- /d is a triple c U,R, I/ > wlzere < U, R > is an 

n+/-iiry relatioitnlfi-ante and V is a$iilcriolz from At into @(U). The truth-condition for 

each propositio~tal fomula is dejiiled according to the czrstoinaiy illductive dejirzitiolz. 

The truth conditio~i for modal fomurkas is given by: 

!+'%a iff V r  E R(r). 3z E T : E%, or 

AC ~ % a  iff V!,. ..ynJ -fit,.. .;, =13z E 1 y1 . . . . ~ n  } : I= a. 

That is, Oa is true at a point x iff a is true at some point in every n-tuple that x is 

related to. 

1.2.3 Strictness Theory 

Consider Jennings-Scho:chYs truth-condition again: 

kens iff ' d ~  E R(x). 3z E T : /;'b. 



The truth-condition says, U a  is true at a point x iff a is true at at least o m  point in each 

n-tuple that x is related to. However, under different strict requirements, i t  is quite natural 

to state that U a  is true at a point x iff a is true at distinct i (iln) points in each n-tuple tllat 

x is related to. Intuitively, i is the number of places that a necessitation needs to be true as 

required by a semantic agent. If we think of the i distinct points in each n distinct points in 

each tuple z that x is related to as x's strictness measure, then U a  is true at x if a satisfies 

x's strictness measure at every x-relaturn. 

In order to state the truth-condition, we need a language including 'v', 3, A, a, =, #, {, 

}, E ,  C, etc. Although A is used in both here and propositional modal language, there will 

be no confusion in particular contexts. 

For convenience, we use 

( 1 )  (#, yl . . . y, ) to abbreviate sentence (yl # y2 A y, # y3 A . . . A y,-, r;t y,). 

(2) {#, yl ... y, } to abbreviate the set {yl . .. y, } for which (#, yl . . . y, ), 

(3) 3{#, zl . . . z,} c {yl . . . y,} to abbreviate the sentence: 

there is a set {#, z1 . . . z,} such that { z, . . . z,} c {y, . . . y,}, where 112 and n are finitc. 

(4) 3 {#, zl . . . z,} c { yl . . . y,) a to abbreviate the sentence: 

32 ,... 32, ( ( { z1 ... z, ) {yl . . . y,} ) A (#, zl .. . z, ) A a ), where 112 2 11 is finitc, 

(5)  V{#, zl . . . z, } c {yl . . . y,}a to abbreviate the sentence: 

Vzl ... Vz,, ( ( {zl ... z,} c {y ,  ... y,} ) A (#, zl . . . z,) a a ), where 171 2 i t  is finitc. 

We can now state the truth-condition for modal formulas in a n+l-ary relational frame 

as follows: 

A4 Oa iff Vz E R(x), 3{#,  zl...zi} c z  : V Z ~ ( ~ ~ ~ ~ ~ ) ,  - g:a, where i5n. 

It is easy to see that if x is related to a tuple of 1~1-4, all necessitations would be false at x. 

In order to igfiore those tuples of cardinality less than i ,  we may have the following 

revised truth-condition: 

46 Occ iff Vz E R(x), ldZi 3 ( 3{#,  z, . . .zi} c T : Vzjclqri), E:U 1, where i<n. 



Formally, the truth-condition says, O a  is true at a point x if a is true at i distinct points in 

each n-tuple T (Id2i) that x is related to. 

Let i= l ,  then the above truth-condition turns out to be the same as that in a Jennings- 

Schotch model, since Id2l. 

1.2.4 Hyper-relational Semantics 

n+l-ary relational semantics is really a generalization of Kripke semantics. However, 

n+l-ary relational frames still have the assumption that each point in the universe is either 

a deadend, i.e. i t  is related to nothing at all, or the arity of the tuples that it is related to is 

n. Actually, in both n+l-ary relational and Kripkean binary frames, the size of tuples is 

fixed. The two differ only in where they fix it. In what follows, we relax this fixity in 

hyper-relational frames where the arities of the tuples that a point is related to may vary in 

width. 

Definition 7. A hyper-relation R on a noiz-empty set U is a subset of u2 u...u uk, where 

k 2 2 .  

Let T = < y,, ..., y, > be an m-tuple (l<m<k-1). If < x, y, ...y, > E R, we write z E 

R(x) or XRT and say x is related to z or z is an x-relatum. 

When R c  or some k22, we say R is a trivial hyper-relation. n+l-ary relations 

discussed earlier are n+l-ary trivial hyper-relations. 

Definition 8. A hyper-relationalfi-anze F i s  an ordered pair < U, R > where U is a non- 

empty set and R is a hjper-relation on U. We also can put a hyper-relational fi-aine as a 

triple < U, R, k > if we kzotv that there is a -finite ~zunzber such that k 2 2 and R c u2 u.. .U 

crk 

In the strictness-theoretical setting, the truth-condition for modal formulas says, Da is 

true at a point x iff a is true at i distinct points in each n-tuple z (1z12i) that x is related to. 

Formally, the basic idea is that we check the truth of Oa by checking whether a is true at 



i distinct points in each n points in each x-relatum. In a hyper-relational frame, however, 

arities of tuples that a point is related to may be greater than n. It is reasonable to say that 

if U a  is true at x, then a is true at some i distinct points in each n distinct points in each 

tuple r that x is related to. In other words. x is true at kt-n+i distinct points in each tuple 

that x is related to, if l.r12n1. 

Now we are ready to define the model in the hyper-relational setting. 

Definition 9. An i-iz-model (i42) ,/dd - i is a strictness measure - on a fi-cum .F = 

< U,R,k > is a pair < U,V > rvlzere V is a filizctioiz froin At into @(U) .  The trlrtll- 

condition for each propositiolzal fomzz41a is defined accordirzg to the custotnc~ry irlducfive 

de$izitioiz. The truth-condition for modal fonnulas is given by: 

,+ A 7%; 

ma ~ VT E R(x), ( I.~lal * ( 3{f, Z] . . - z lrh l+;  / C T V Z ~ ( ~ ~ ~ ~ ~ ~ ~ + ~ ) I  I?, a )), 

or 

.A; 
I=, Oa iflVin(k>m>O)Vy ,...V>j1, (xRy, . . . J ~ , ~ ,  A gbz * ( 3 / f ,  z, ... z g-,, +;) t ( y I  ... ye,) 

.A; 
. z , j j g n + i j  I ,  a )), where g is the cardinality of { yl, . ... y,,, ). 

By the definition of 0, the truth-condition for Oa would be: 

. 
Oa iff 3r E R(x) : Irltn A ( V { t ,  z1 . . . z ~ ~ ~ ~ + ~  } c T a 3 ~ ~ ( ~ ~ ~ ~ ~ ~ ~ ~ + ~ )  : ,$, a ), or 

$'; On iff 3m(k>m>0)3y1.. .3ym : (xRyl.. . y, A g>n A ( V {t, zl  . . . z,-,+~} c { y , . . . y,,), 

p'6 i  
' ~ ~ ( l < ~ ~ g - n + i )  5 a ), where g is the cardinality of { y,, . . ., y, ). 

Jt; 
We write C a to abbreviate: Vx E U, t$'; a; 

"/P 
FC,!, a to abbreviate: V.l&;, C * a, where .Ad: is a model on .F, 

We say .F= < U,R,k > is a frame for a wff a if .Fl=,!, a. 

Note that a hyper-relational frame < U,R > together with a valuation function V from 

At into @(U) is not a model in any sense at all. It is neutral or independent before we 

apply to it a truth-condition with different parameters i and n for modal formulas. 

1. If a is true at some i distinct points in each n distinct points in a tuple T, then there are at most n-i distinct points in which 
a is false. Therefore a is true at at least ITI-(n-i) distinct points. 

The assumption of I . r h  will always make Ist-n+i a positive number. 



From the truth-condition for modzl formulas, we can see that a hyper-relational model 

is really a very general one. Assume that frames are restricted within (n+l-ary) trivial 

hyper-relational frames and that i =I ,  then: 

. ,/q 
i$': O a  iff Vy, . . .Vy, (xRy, .. .yn A (#, yl . - - yn ) a 3yiclasn, : kri a ). 

The truth-condition for modal formulas above is the same as that of n+l-ary relational 

semantics except that it has the restriction of inequality (#, yl . . . y, ). If we let n = 1 in the 

above truth-condition, then we restore the Kripkean truth-condition. 

1.2.5 Base Logic 

The base logic for Kripke semantics is defined as follows: 

(a) all substitution instances of tautologies. (We naEe this set as PL) 

(b) all substitution instances of axiom [K]: 

UP, A up2 -+ q PI A P2 1 9  

and is closed under the rules: 

(c) [RMI 

a+P 

Da. 

We call this base logic 

The base logic for n+l-ary relational semantics is the same as Kexcept that (b) axiom 

[K] is replaced by [IS,]: 

upl A up2 A .-. A Q,+l + W P ~  A P2 v (PI A P, ..- (pn A ~n+l ) ) ,  

We call the base logic for n+l-ary relational semantics <. Actually, we have defined 

an infinite sequence of logics { < : n>l ) where & is K 



The base logic for hyper-relational semantics is the same as Kexcept that (b) asiom 

[K] is replaced by [IS:]: 

UP1 ~ 0 ~ 2  A -.- AaPt+l -+U((PI  A P ~ ) V ( P ,  AP+ v (p, A pt+,)), where t = C(n,i) 

and I l i a .  

As [K,!,] has two parameters, actually, for each 2 1 ,  we have defined an infinite 

sequence of logics { -% : i l n  ) . 

It is easy to see that if i = 1, then axiom [K:] is [K,], since C(n,l) = n; and that if i = n,  

then axiom [K:] is [K], since C(n,n) = I .  In other words, logic %$ is the same as Kl, and 

%is the well-known normal logic K 

We write @as the smallest logic containing u { A } for a formula A. 

A proof or derivation of a in logic is a finite sequence of wffs yl . . . y, where y,,, is 

a and for each yj (I l j lm) ,  

either yj is a substitution instance of a propositional theorem, 

or yj is a substitution instance of [KA], 

or yj is obtainable from a previous theorem in the sequence by [RN], 

or yj is obtainable from a previous theorem in the sequence by [RM]. 

Each yj ( l l j lm)  is called a theorem of the logic. 

We write l? a if a is provable from r in logic x. 



Chapter 2 

Logic 

In [Brown 19931, it was showed that logic is complete with respect to a semantic 

setting which is equivalent to the n+l-ary relational semantics. Here- we show at one 

stroke that %logic is complete with respect to the class of hyper-relational frames. 

Let wl, ..., wlTl be ITI  distinct points such that points falsifying a are put in front of 

those verifying a. 

Then, by the assumption, in the most right hand side I.st-n+i distinct points, there is a 

point w falsifying a. 

Since a11 points before w falsify a, there are at least n-i+l distinct points falsifying a. 

Therefore, in the most left hand side n distinct points, there are at most i-1 distinct 

points verifying a. 

Therefore, 3 { ~  zl ... z, 1 c T : ( V ( t ,  ul  ... ui 1 c { f ,  zl ... z, ), 3ujuqsi) : a). 

rn 



Theorem 1. X is sound with respect to the clnss of Izyper-relationalfi-cinles. 

Proof: 

We need only show that rules [RM] and [RN] preserve validity and axiom [KA] is valid: 

Let ,.Id: = < U,R,k,V > be an arb'trary i-n-model and x an arbitrary point in U. 

(1) The validity of [RM]: 

Assume that t=b a + p and that I$ Oa. 

Then, from the truth-condition, VT E R(x), ( lcclrn 3 ( El{#, z, ... z,,,-,+~ } c r : 
.A; 

+ k, a 1). 
. , i%; 

But VT E R(x), ( I.rl>n 3 ( 3 { t ,  z1 ... z,;,,+~ ) c r : VZ,,~,,,,,,,+~,, b, a -t p )), since 

I=,!, a -+ j3. 

Then VT E R(x), ( Id2n * ( 3 { t ,  z, . . . z,+,+~ } c r : VzjciqnTtn+il. $!'' p )). 

Therefore, E ~ :  UP. 

But .,&f and x are arbitrary. 

S o  if I=,!, a -+ j3, then I=,!, U a  -+ OD. 

(2) The validity of [RN]: 



In other words, the maximal number of propositional variables that satisfy 

, u . . u } G { z, - - z } 3 u j I j i  : 4 ((pl A p2) v (PI A p3) v - -. v (PI A Pt+l)) 

is C(n,i). 

This means that there are at most C(n,i) necessitations of propositional variables in 

{pl  . . . pt+l } which are true at x. 

This contradicts the assumption that I$'; Upl A Up2 A . . . A Opt+l, where t = C(n,t). 

. ./& Therefore, Cpl A tlp2 A ... A Opt+l -+ U((pl A ~ 2 )  V (PI A ~ 3 )  V ..- V (Pt A Pt+l)), 

where t = C(n,i). 

But .ALL and x are arbitrary. 

Therefore, C: Upl A Gp2 A . . - A Opt+] -+ O((pl A ~ 2 )  V (PI A ~ 3 )  V ... V (Pr P~+I)), 

where t = C(n,i). 

Before we prove the completeness for logic, we need some definitions and lemmas. 

Lemma 2. If ( 5 A G a  ) -+ 06, tlzen ( 6 A O(a  v P) ) + ~ ( 6  v P), wlzem 5 is a 

conjurlction of necessitcltions. 

Proof. 

Assume that ( c A O a  ) -+ 06. 

Then we have a proof of ( C, A O a  ) + 06, that is, a finite sequence of theorems: 

YI Yj 'j... I'm 

wherey ,= (c r \Oa) -+06  

and for each yj ( l l j lm) ,  

either yj is a substitution instance of propositional theorem, 



or yj is a substitution instance of [K,!,], 

or yj is obtainable from a previous theorem in the sequence by [RN], 

or yj is obtainable from a previous theorem in the sequence by [RM]. 

For each yl(lsj,), we prove that if y, tt (( 5 A Oa ) -+ 06), then 

~ ( ~ A u ( c ~ , v P ) ) - + o ( ~ v P ) .  

The proof is by induction on the length of the proof of y,. 

Basis: 

There are two cases: 

(1) Assume yl is a substitution instance of a propositional theorem. 

Then tG yl @ (Oa -+ Ua). 

But O(a v p) -+ D(a v p) is also a propositional theorem. 

Therefore, O(a v P) -+ O(a v P). 

(2) Assume yl is a substitute instance of [K;]. Then, 

k Oal A ... A Off,,, -+ O((a, A a, ) v (CC, A a3 ) v ... v (a, A a,,,)), where t = C(n,i) 

and i<n. 

Le ta=a ,andak~  { a1 ... a,,, ). 

By PL, v a h ~  {al ... ah ... q,,), kCXh + Uhv P. 

Then, Oah + n(ah V P), by [RM]. 

Then by PL, k ma, A . . . A Oak-, A ~ ( a ,  v P) A ma,,, A . . . A Ua,,, -+ 

O(a, v p) A . .. A 0(a, v p) A . . . A O(a,+, v 0). 

~ u t  by [K:], ko(a, v P) A ... ~ O ( u , v  P) A ... A ~(q, ,  v P) -+ 

a ((a1 v P) A (a, v P) v ((a1 v p) A (a3 V PI) V V ((a, v P) A (a,,, v P))). 

Then k O ( a l  v P) A ... ~ O ( a , v  P) A ... AO(~,+,  v P) -+ 

O(((a, A %) v P) v ((a, A a,) v p)) v . .- v ((a, A a,,,) v P))), by PL. 

A n d b y P L , k O ( a , v P ) ~  ... ~ n ( c c , v P ) ~  ... ~ n ( u , + , v P ) +  

W(a, A g v (a, A a3 v - -. v (g A g+,)) v p). 



Then, from (I) and (11), 

Oul A . . A  O(ak v pj A . . A  Oat+, -+ G(((al A a2 ) v (al A a3 ) v...v (% A v 

P). 

Inductive Step: 

Assume that the lemma holds for each yh if h<j. 

We just need to consider the following [RM]: 

Assume y, = O a  -+ 0 6  is obtainable from a previous theorem in the sequence by [RM]: 

Then a + 6. 

B u t ~ ; a v ~ - + 6 v p .  

Then & O(a v P) -+ 0 ( 6  v P), by [RM]. 
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Lemma 3. If ( 6 A G a  ) + 0 6  and hi ( 6 A Up ) -+ 06, tlzen hi ( 6 A C I ( U  v P) ) + 
--u + 

06, where 6 is a corljimctio~z of ~zecessitations. 

Proof: 

A s s u m e ~ ( ~ ~ O a ) + 0 6 a n d ~ ( ~ ~ O ~ ) + 0 6 .  

Then by Lemma 2, 

~ ; ( ~ A o ( u v ~ ) ) + R ( ~ v ~ ) ~ ~ ~ ~ ( < A o ( P v ~ ) ) + u ( ~ v ~ ) .  

T h e n , $ ( ~ ~ O ( a v P ) ) + ( ~ ~ 0 ( P v 6 ) ) a n d ~ ( ( ~ 0 ( ~ ~ 6 ) ) + 0 ( 6 ~ 6 ) .  

Therefore, ( < A O(a v P) ) -+ ~ ( 8  v 6). 

Therefore, ( 6 A O(a  v P) ) -+ 0 6 .  

Definition 4. Ler r be a set of wffs and A c @(I?). A is an i-iz-distribution (lG4z) of T 

iff A is art n-decorrrpositionl of I? such that 'da E T ,  3{#, el ... Bi] c A : a E 

n(Q1 .. . Oil. I f i  = 1, we say that an i-iz-distribirtiorz of n set is an n-partition of r. 

1. A is an n-decomposition of r if A is a n-member set such that A E @(I-) and u A  = I- 

- 15- 



Lemma 5 (Distributional Compactness). If C is a set of jnite sets of wfls ha~ging the 

property tlzat for each i-n-distribution A of vC, 3Y E C, 3{#, 0, . .. 0;) c h siiciz th~zt \'Y 

c n{0, ... Oil, then there is a$nite subset Co of C having the propert), that for etrclz i - i t -  

distribution A of uCo, 3 Y  E C ,  3{#, 0, ... Oi)c A such tlzat 'P r n{O, ... Oil. 

Proof: 

We prove that if it is not the case that for every finite subset Co of C, for each i-n- 

distribution A of uCo, 3Y E EO, 3{#, 0, ... O i } c  A such that YG n(0, . .. O,}, then i t  is 

not the case that for each i-n-distribution A of uC,  3Y E C C{#, 0, . . . Oi} A such that 

Y ~ n { 0 ~  ... Bi).  

Assume that for every finite subset X o  of C, i t  is not the case that for each i-n- 

distribution A of uCo, 3 Y  E Co, 3{#, 0, ... O i ) c  A such that Y c  n { 0 ,  ... Oil. 

Then for every finite subset Co of C, there is an i-n-distribution A of uCo such that 

VY E Co, V{#, 0, ... O i ) c  A, Y e  n{ai ... Oil. (*> 

Assume that C is a set of finite sets of wffs. 

Let Z = { Y I  ... Y,, ... : j E I+ ) and b'j, let Y, = { a,, ... ajk, }. 

For simplicity, assume that C is a countable infinite set. 

We start with a first-crder language L which has: 

(1) n unary predicate letters: PI . . . P,. 

(2) Vj, VE, such that l<llkj, a distinct individual constant cjl representing the elements of 

Y,. 

Now let A = D u C where 

D = { 'x, 3{#, m, --. mi} c { 1 - - -  n) (Vmk(15kli)7 Pm$x) ) A (v(l~ql#qqz~i), 3 ~ 7  



By (*), every finite subset of A has a model. 

Therefore, by first-order Compactness, A has a model. 

Therefore, there is an i-n-distribution A of uC, V Y  E C, V{f  , . . . Oi} D such that 

Y & n{@, ... 8; ) .  

Therefore, it is not the case that for each i-n-distribution A of uC,  3 Y  E C, 

3{#, 0, ... Eli} c D such that Y c  n(8, ... Oil. 

Lemma 6. Let y be a tc$f aizd r = { a], . .., aj : for some jiizite j }. I$ for each i-n- 

distribution A of r, 3/#, el ... Oil c A such that n{O, ... Oi} I - j  y then 

t@a, A ... AOa,+ay. 

Proof: 

The proof is by induction on the number of the members of T, Card(T). 

Base step: 

Let j < C(n,i)+ I .  

Since j < C(n,i)+l, then there is an i-n-distribution A of r such that 

-( 3ap, a, E T, 3{#, 8, ... 0 , ) c A :  ( a ,  a } c n . 8 )  ), where l<p#q<k. 

Let 4 be the i-n-distribution of r such that T (  3 5 ,  3aq E T', 3{#, el ... 0 , ) ~  4 : 

( {  a,, a, ) c n { O l  ... Oi]j ), where IlpfqSk. 

Then V{#, O, ... Oi} c 4, n(0, ... O,} is a unit set. 

But by the assumption, 3(#, O1 . . . 0,)s 4, : n(0, . . . Oi) y. 

That is, 3cx E r : { u } y. 

L e t a k b e t h e w f f i n r :  {ak  j k y .  

Then b; ak -+ y. 

BY [MI, bf oak -+ a?. 

Therefore, b2 Oa, A . . . A Oaj + Oy. 

Inductive Hypothesis: Assume that the lemma holds for all sets of Card(T)<j. 



Inductive step: 

Let j 2 C(n,i)+l . 

i e t F o = ( ~ - { ~ 7 a g ~ u { u , ~ o r , j , w h e r e i S p # q 5 j .  

Consider any i-n-distribution A of r such that V{#.  ... O i } c  A such that  

( a, r n(O, ... Oi} o u,c n(Ol  ... Oi) 1. 

Then by the assumption, for each i-n-distribution A of T, ?I#, ... Oi} c A such 

that n ( 0 ,  -.. Oi) y- 

Then for each i-n-distribution A. of To, 3{#, 0, ... Oil  c_ Do such that 

n { e l  ... Oi) y. 

But, Card(F',) = j - 1. 

Oal A . . . A o(q, A ag) A .. . A maj + Dy, by inductive hypothesis. 

Therefore, tp + Oal A . . . A Ocx, A U ( 3  A ~ $ 1 3  Dy, where 15 p + q < j. 

By applying Lemma 3 to (*) C(t,2) - 1 times, 

ki Ocx, A . . . A Ciaj A Cl((a, A a2) v . . . v (g A a,,,)) + Oy, where t = C(n,i). 
4 

But k O a ,  A D % A  ... ~Dcr,,, +U((cc, n a 2 ) v  (a, ~ a ,  ) v  ... v (a,~cx,+,)), 

where t = C(n,i). 

Ti3erefore, kUcl,  AD^, - A ... A O ~ ~  +O((ff, A cr,) v (a, A a3 ) v ... v (04 A a,,,)), 

since j2e. 

Therefore, [7a1 A . . . A Oaj + Cly. 

Lemma 7. Let C = (Y.', . .. Yh) be a Jirzite set offinite sets of tvgs uatzd Vs(lS.sSlz), 6, I x  

the conjulzction of all the elements of Y,. Let UC = {a, ... a, 1. for each i-n- 

distribution A of uC, 3Y E C, 3{+, O, ... Oi/ c A such that 'I' c n{Ol .. . Oi/, thetz 

A . . . A [7aj U { C ~  v - - -  v ch). 



ProoE 

Assume that for each i-n-distribution A of uC, 3Y E 2, 3{ 

Y! n{@, . * *  q). 

But VY E 27, Y i, tvhere c is the conjunction of Y. 

Then for each i-n-distribution A of ;rC, 3Y E C, 3{#, . 

. . . Oil <, where 6 is the conjunction of Y. 

#, . . . Oi) L A such that 

. . O,} c A such that n{el 

Then for each i-n-distribution A of uC, 3{#, 0, . . . Oi) c A such that n{Ol . . . Oi) 

(cr v . . . v Q. 

By Lemma 6, Oul A ... A UCY, -+ o(<, v ... v <,)I. 

Now we are ready to prove the fundamental theorem for Ti. 

Definition 8. Let .%be n -< logic. A canonical model for a coizsistettt %logic is an i-12- 

model .,i/dX = < uL, R ~ ,  vL > in u-hiclz: 

f f j ffL is the set of%-trraximal cunsistertt sefs of\i@s. 

(2) X R ~ ~ ~ . . . ~ , ,  e (f .  yl -.. ynl 3 ( V a  E O(s) 3 (3{#, ul ... ui] c {y] ... y,] : 

OL E n{uI  . . . irif )). 

(3) (p )  = {x E vL : p E X). 

As a canonical model is actually based on a trivial hyper-relational frame, the truth- 

condition for modal formulas will be: 



Fundamental Theorem 9. For each poim x i r l - ,  /&%, a E x f l  P $' a .  

Proof: 

The proof is by induction on the length of a. 

We prove only the inductive step for a of the form OD. 

Assume that UP E X. 

By the definition of RL, 

Vy ,... Vy, (xRL y1 .-.yn * ( ( f ,  y1 .-. y,) 3 (VUa, D a  E x - 3{+, u ,  ... u i /  c 

{yl ... y,} : a E n{ul  ... ui) )). 

Since DP E X, then 

VyI- - .Vyn,  (xRLyl - - -yn  ( ( f 3  ~1 - 0 -  Y n  1 * 3{ f7  u l  ... u i ) c  { y l  -.. y n ]  : 

a E n { u l  .. . ui} )). 

.,/dL Then I= UP (by inductive hypothesis and the truth-condition). 

e Assume that UP e x. 

'dL We must prove that 8 

By the truth-condition, we must prove that 

4 '  p )) 3y1..-3yn (xRyl.-.yn A (4 Y1 - - -  Yn A ( Q { # 3 ~ ~ . - -  Zi I L { Y I  ---Y.), 3zj(ld6i) : F, 

By the definition of RL and inductive hypothesis, it is sufficient to prove that 

3, ... 3yn ( (Va E U(x) 3 (3{#, u l  ... u j ) r  {y ,  ... y,} : a E n { u ,  ... u i ]  )) A 

V{#, zl .-- zi) C {J'l .-- ~ n ) .  3zj(lqsl P zj 1). 

Assume that it is not the case. 

Then Vy l...Vyn (Va E CJ(x) 3 3{#, ul ... ui) c {y, ... y,} a E n { u ,  ... u i )  ) =+ 

3{#, zz, ... q) c {yl - - -  y,,} : P E n{z1  .-- zi) 1. 

Then, for each i-n-distribution A = { y . . . y, ) of O(x), 3 {#, z, . . . zi ) c A such that 

E n{#, zi --. q ) -  

Then, for each i-n-distribution A = { y ... y, 1 of O(x), 3{# ,  zl . . . zj ) c_ A such that 

n{#,zl  -..q 1 k p -  



Then, for each i-n-distribution A = { yl . . . y, } of O(x), 3{#, zl . .. zi ) c A such that 

there is a finite subset Y of n{#, z1 . zi }, Y' p. 

Let C = { Y : for each i-n-distribution A of O(x), 3{#, zl . . . zi ) c D such Y is a finite 

subset of n{#, z, . . . zi ) and Y kg p ). 

Then, by the definition of C, for each i-n-distribution A of uC,  3UY E C, 3{#, z1 .. . zi) 

c A such that Y c n{zl  . . . 2,). 

But, by Lemma 5, there is a finite Co of E such that for each i-n-distribution A of uCo, 

3Y E Co, 3{#, z, ... z i ) c  A such that Y c n { z l  ... zi). 

Let Zo = {Yl  . . . Yh), UZ = {al . . . aj) and for each ISsSh, 5, is the conjunction of the 

elements of Y,. 

By the definition of Co: 

b' el v ... v ch + P. 

O(Cl v . .. v ch) 4 UP, by lRMI- 

b; Oa, A . . . A ~ a ,  + O(cl v . .. v Q, by Lemma 7. 

O a ,  A . . . A Oa, 4 Up, by PL. 

B U ~  ma, A . . . A naj E X. 

Therefore 0 P  E x, contrary to hypothesis. 

Corollary 9. Logic X is detetmined by the class of I~~iper-relationalJ1;.ai~zes.. 
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Chapter 3 

Logic 

In this chapter, we look first at some correspondence-theoretic results for logic %, then 

illustrate some completeness and incompleteness results for some of its extensions. Those 

results can be easily extended mutatis mutandis to the logics. 

While doing this, however, we will confine our attention to the class of the so-called 

[it+l,k]-crry hyper-relational frames which has the property that the arity of a tuple to 

which a point may be related is never less than n. With this in mind, an [iz+l,k]-aly 

hyper-relational frame is defined as follows: 

Definition: An [it+ 1. kT-or? Izyper-relatioiz oiz a nun-entpty set U is a subset of U " + I  u.. . u 

uk where k 2 n+1 is a izarural izzmber. 

Definition: An Jn+l.kl-aiy Izy-~er-re-elatioizal frame is an ordered pair < U, R > where U 

is ci norr-eizzpty set aird R is an [iz+l,k]-aiy hyper-relation. We caiz put an [iz+l,k]-aiy 

hyper-relatioi~al frame as a triple < U,R,k > where Ust 0 and k 2 n+l is a izatural 

illrnlber and R c U"+I U. ..u uk. 
An .,Id: model on an [n+l,k]-ary hyper-relational frame is defined as usual where the 

truth-condition for modal formulas is: 

@; I$ oa iff VT E R(x), ~ d h  3 ( 3 {+, z, . . . zlTkn+l T : V Z ~ ( ~ ~ ~ ~ ~ ~ ~ + ~ ~ ,  a ), 

or 

f&y .Ad; 
I=; oa iff VT E R(x), V ( f ,  z, ... z,, } c 5, 3 ~ ~ ( ~ ~ ~ ~ ~ )  : kj a ). 



For Oa, 
I 

Oa iff 35 E R(x), lrlb A ( V{*, zI -.. z ~ ~ ~ ~ + ~  } G 7 3 3 ~ , ~ ~ ~ ~ ~ ~ ~ ~ + ~ ~  el"- a 1, Or 

/4: I$': Oa iff 3~ E R(x), irl>n A ( 3 ( t ,  zl . .. z, c r, V Z ~ ( ~ ~ ~ ~ ~ )  : q a 1. 

A point in an 1-n-model .ALLwill make Up, needless to say, make [K:], true trivially if 

it is related to only tuples of arities less than n. It is quite obvious that, by the truth- 

condition for modal formulas, logic % is still determined by the class of [n+l,k]-ary 

hyper-relational frames. 

3.1 Correspondence 

3.1.1 R-second-order Definability 

In hyper-relational models, the truth-condition of modal formulas is actually a second- 

order statement. However, when the relation is restricted to trivial hyper-relations, the 

truth-condition turns out to be first order. We call sentences of the former kind R-second- 

order sentences. 

In correspondence theory, we need to find the class of R-second-order frames on which 

a wff (in propositional modal language) is valid. Especially, we need to find the class of 

R-second-order frames for a wff such that the restricted class of trivial hyper-relational 

frames are also frames for the wff. 

Definition. A wf l  a is first-order definable if there is a first-order senterlce 6 with 

predicates R and = such that for any frame .Z .FI=i a ifS.F< 6. 

Definition. A wff a is R-secord-order definable if there is a R-second-order sentence S 

with predicates R and = such that for any frame .K .F I=: a ifS .,F I=; 6, tllen W, is 

Jirst-order definable. 



From the definition, it is easy to see that if a wff is not first-order definable, then it is 

not R-second-order definable. 

Definition. An [tz+l,k]-ary frame < U, R, k > is n+lk-transitive iff R satisfies the 

condition: 

Vx, VT E R(x), V{f, yl . . . Y,) c T, vxl E Nyl). . .VT, E R(y,), V{#, zll . . . z1 J c T]. . .V{t, 

Z,l . . . z,,,] C T,,, 3{#, . . . JU, f c {#, Z/;I . . . Zkrt : 1, 320 E R(x) ({w~ . . . WJ c TO). 

Theorem I. The formula [4], Op + UOp, is valid on an [iz+l,k]-ary frame < U, R, k > 

ljff R is n+ lk-ti-utzsitive. 

Proof. 

3 Suppose that < U,R,k > is any [n-il,k]-ary frame which is not n+lk-transitive. 

Then 3x, 37 E R(x), 3{#, y ,  ... y,} c T, 32, E R(yl) ... 32, E R(y,), 3{#, z l l  ... z,,} 

C T  1...3{#, znl ... z,,) CT,, 'if{#, w1 ... w,) c { f ,  zkl ... zk,:  15k<n }, V T ~  E R(x) 

( { w ,  w,) !z TO). 

Let the above existential variables be the actual points in U. 

We define a model ../LLon < U,R,k > such that V(p) = U - { zjk, . . . zjkn : I<k<n ). 

Since V{#, w1 ... w,} c { f ,  zkl ... zk, : l5k5n }, Vzo E R(x) ({wl ... w,) & T ~ ) ,  by 

.,fey the definition of truth-condition, Up. 

43; But, on the other hand, since Vz E { t ,  zkl ... zk, : 15k<n), k$ p, then E 

Ay R(Y,),%E { ~ , z ~ ~ . - . z , , } c T ~ , ~  P. 

/q Therefore, Vyj(lq,,,, Fj Up. 

Therefore, ti!$/'; OOp. 

Therefore, I$'': Op + OOp. 

e= Suppose that .,&~ = < U,R,k,V > is an arbitrary [n+l,k]-ary model which is n+lk- 

transitive. 

Let x be an arbitrary point in U. 

,A%: Suppose that 6'': Up. We must show that OOp. 



Definition. An [tz+l,k]-ary frame < U, R, k > is n+lk-euclidean iff R satisfies the 

coizditioiz: 

Vx, V.r1 E R(x), V T ~  E R(x), V { t ,  141 ... u,} c rl, 'if{+, v1 ... v,,} r r2, 311j(,4s,,) : 

(37 E R(uj) : {vl . . . v,l c 7). 

Theorem 2. The fonnuln [5], Op + 00p, is valid on aiz [iz+l,k]-ap frame < U, R, k > i '  

R is iz+lk-euclidean. 

Proof. 

Suppose that < U,R,k > is an arbitrary [n+l,k]-ary frame which is not n+lk- 

euclidean. 

Then 3x, 3 0 ~  E R(x), 3~~ E R(x), 3{#, ul ... u,) L T,, 3{t, vl ... v,) c o ~ ,  

(VO E R(ujj, {vl . . . v,) & T). 

Let the above variables be the actual points in U. 

We define a model d/&Lon < U,R,k > such that V(p) = {vl . . . v, ). 

Then, I$'': Op. 

But VujU,(,$,, &? Op, since VO E R(uj), {+, v, . . . v,) & T. 

Hence E~ 00p. 

s o  &4dL Op -t mop. 

+ Suppose that .,f'4:= < U,R,k,V > is an arbitrary [n+l,k]-ary model which is n+lk- 

euclidean. 



Let x be an arbitrary point in U. 

.,/q .A; Suppose that 6 Op. We must show that OOp. 

??y Suppose that k$ OOp. 

&; Then E R(x), 3{#, u l  . . . u, } r : b ' ~ ~ ( ~ ~ ~ ~ ) ,  6, Op. 

But, by assumption, Op. 

.A5; 
Then 3x2 E R(x), 3{#, vl .. . v,} L T2, : ~ v ~ ~ ~ < ~ ~ ~ ) ,  b, P. 

But R is n+l k-euclidean. 

Therefore, 3ujllq5,) (32 E R(uj) : {vl . . . v,} c T). 

Then, 3 ~ ~ ( ~ ~ ~ ~ ~ )  %? OP. 

So we have a contradiction. 

Definition. An [tz+l,k]-aiy fi-anze < U, R, k > is ~ z+ l~ -de~enera t e  ifS R satisfies the 

condition: 

Vx, VT E R(.x), 4/#, z, ... z,,) c T, where lSh<:?. 

Theorem 3. Each of the for-tnulas Up, [K;] and [B] (p + mop) is valid on an [n+l,k]- 

cuvfi-ume < U, R, k > # R  is iz+lk-deaetzerate. 

Proof. 

We prove the theorem for Up first. 

(a) 3 Suppose that < U,R,k > is an arbitrary [n+l,k]-ary frame that is not n+lk- 

degenerate. 

Then 3x ,  32 E R(x), 3 {#, z, . . .z,) c_ z 

Let the above variables be the actual points in U. 

We define a model ,rldLon < U,R,k > such that V(p) = U - {zl . . . z, ). 

Then I$': Up. 

e= Suppose that ,lln/= < U,R,k,V > is an arbitrary [n+l,k]-ary model which is n+lk- 

degenerate. 



Let x be an arbitrary point in U. 

By the definition of truth-condition, it is easy to see that I$': Up. 

(b) 3 Suppose R is not n+l k-degenerate. 

Then 3x, 3.r; E R(x), 3{#,  zl . . . 2,) G T. 

Let the above variables be the actual points in U. 

We define a model ,fCL on < U,R,k > such that 'd llh_<n, V(ph) = U - { 2 , .  . .zh-, , 

z ~ + ~ .  . .z,}. (The valuation is possible since h a ) .  

./Ay Then, u p l  A up2  A . . . A a ~ ~ + ~ .  

But Q l S h W ,  E;'' ((pl A p2 v (PI A p3 ) v -.. v (ph A P,+I)). 

degenerate, 

Let x be an arbitrary point in U. 

By the definition of truth-condition, D((pl A p2 ) v (pl A p3 ) v . . . v (ph A PI,+,)) is true 

at x trivially. 

Hence, I$" Up, A . . . A ph+l -f 0((pI A p~ ) V (PI A P1) V . . . V (PI, A P ~ + I  )). 

(c )  3 Suppose R is not n+lk-degenerate. 

Then 3x, 31: E R(x), 3{#, zl . . . z,} G 1: 

Let the above variables be the actual points in U. 

We define a model J L i o n  < U,R,k > such that V(p) = {x)  . 

This will make Op false everywhere, needless to say, at point 2, . . . z,. 

so  $&L mop. 

But ,gq 
P - 

So p -+ mop. 

e= Suppose that < U,R,k,V > is an arbitrary [ncl,k]-ary model which is n+lk- 

degenerate. 

Let x be an arbitrary point in U. 



Suppose that p holds at x. 

It is easy to see that 00p is true at x also. 

Theorem 4. FonnuIa Op + Up is valid on an [n+l,k]-my$-ame F = < U, R, k > zfSR 

satisfies the conditioi?: Vx) ( V T ~  E R(x), V{f ,  yl ... y,J c T~ A V T ~  E R(x), V{#, zI ... ZJ 

c T2 ==+- I {y ,... y,,, zj...z,J 1 1212-1 ). 

Proof. 

Let < U, R, k > is an arbitrary [n+l,k]-ary frame without the required condition. 

Then 3x  ( 3~~ E R(x), 3{# ,  y l  ... y,) c 2, A 3 T 2  E R(x) 3{#, z l  ... z,) c ?;2 A 

I {y ,  . . .yn, z,. . .z,) I > 211-1 ). 

We define a model .,'/dL on < U,R,k > such that p true at each point of {y l . .  .y,) and 

false at each point of {zl . . .zn).  

. / /d l  Then by the definition of truth-condition, 6 Op and Up. 

So we have a model falsifying Op Up. 

c= Assume that .A;= < U,R,k,V > is an arbitrary [n+l,k]-ary model with the required 

condition. 

Let x be an arbitrary point in U. 

.A: Assume that kj Op. We need to prove that Dp. 

Assume for reductio that E / ~  Up. 

Then, by the definition of truth-condition, 3r1 E R(x), 3{# ,  y l . .  .y,) c rl : V Y ~ ( ~ ~ ~ ) ,  

., /A; , p; and 

3 ~ 2  E R(x), zl .-. zn) GT2 Vzj(lqln), 5 

But, by the definition of the frame, I {yl .. . y, . . . zl . . . z,) I < 211-1. 

S o  we have a contradiction. 



Theorem 5. The fo~mrrla [Dl, Up + Op, is lalid on an [n+l,k]-atyfiante < U, R, k > 

R satisfies the condition: Vx, 37 E R(x) : I~1221z-I. 

Proof. 

Assume that A?&: = < U,R,k,V > is an arbitrary [n+l ,k]-ary model with the required 

condition. 

Let x be an arbitrary point in U. 

Then 3.r; E R(x) : Id22n- 1. 

.l6: Assume that Up. 

/ d l  Then by truth-condition, V { t ,  yl ... yn ) G T, 3 ~ ~ ( ~ ~ ~ )  : 6, . 

Therefore, 3 { t ,  yl . . . y, ) G 7, Vyj(lsj5n, : e("' , since ldt2n-1. 

By truth-condition, t$ Op. 
, '. f/ 

Hence Up + 0p. 

Definition. An [n+I,k]-a17 frame < U, R, k > is 12+l~-coitver~ent iff R sc~tisJies the 

condition: 

V X ,  V T ]  E R(x), T2 E R(x), V{#, M I  ... u,) c T l ,  V{#, V l  ... VJ T2,  3{#, IVl ... Wzt,-l), 

( (3 E { f ,  u1 ... u,,}, 3r3 E R(u) 3 { f ,  wl ... w ~ ~ , - ~ }  c T ~ ) )  A (3v0 E {f, v1 ... I),,], 

3~~ E R(vo), 3{#, w1 . . . w ~ , , - ~ }  c .r;J ), wlzere rz> I .  

Theorem 6. The formula [GI, W p  -+ UOp is valid on an [n+ I, k]-ary fr-arne < U, R, k > 

i f R  is convercent. 

Proof. 

Assume that .A~IL = < U,R,k,V > is an arbitrary [n+l,k]-ary model with the required 

condition. 

Let x be an arbitrary point in U. 

Assume that l$': (KIP. 
. , Ay 
. up.  Then 32 E R(x), 3{#,ul ... u, ) c x :  Mijoq,) ,,, 



Theorem 7. The foi-inula [MI 0Op + OOp is valid on an [~z+l,k]-ary fi-anze F = 

< U, R, k > 18 R satisfies t12e co~zdition: V-x,  if^] E Pfx) ,  YJf, yl . . . y,,f c T], V{#, zl . . . 

Theorem 8. Fonnula [TI, Rp+p has no [n+ I ,  k]-aiy relational frames, where n> 1.  



Proof: 

Assume that < U,R,k > is an arbitrary [n+l ,k]-ary frame, where n> I .  

Let x be a point in 'u'. 

We define s model on < U,R,k > such that p false at x, and true everywhere else. 

By the truth-condition, this makes Up true at x. 

Hence Up + p is false a: x. 

Therefore, formula [Ti has no [n+l ,k]-ary relational frames, if n > 1. 

Theorem 9. (1) Fonnula O a  + Oj3, especially formula [Dl, has no n+lk-degeizemte 

model, ifn > 1. 

(2) Fornula [Dl is nor R-seco~dorder dejinable, ifit > 1. 

Proof: 

(1)  For any n+lk-degenerate model such that n > 1, by Theorem 3, Up is true at the model 

and O q  has no n+lk-degenerate model. 

So the formula of the sort E a  -+ Op has no n+l"degenerate model. 

(2) Let n > 1. First we define an [ntl,k]-ary frame .z= < Ui, Itj, n-2 > for each i E N = 

{ l,2,3,. . . ) as follows: 

(a) Ui has exactly i(2n-2)+2 distinct points. 

(b) Every point xj in Ui is related to all the convex 2n-2 tuples in a cycle of the set Ui - 

( ~ ~ 1 ' .  

It is easy to see that sentence (a) is first-order sentence. And, as the frame is finite and 

the arity of the tuples is fixed, sentence (b) is also first-order sentence. 

Figure 1 illustrates how a point is related to each convex 2n-2 tuple in frames .FF .? 
ud~_7;respec~~e ly ,  for:: = 2  m d n =  3. 



Figure 1 .  



But @] is valid on each .z 
/Ly For an arbitrary model on .z and an arbitrary point x in U,, assume that I$ Up. 

Since lzl=2n-2, by the truth-condition, 

/d l  
' v '  9 3 1 - -  - 1  } : y j j  ; pa 

Assumz for reductio that k$": OP. By the truth-condition, 

.JZ; 
'v'~ E R(x), 3{f 1 Y l  --.  Yn-1 } C : VyJ(lgsnl, 5; l p .  

If i=l. Then we have a contradiction, since the cycle has only 2n-1 points. 

If i>l. 

The cycle has i(2n-2)+1 points. Thinking of the cycle as the result of adding 

(i- 1)*(2n-2) points in the cycle of 2n-1 points. 

Since we get a ccntrzdiction in the cycle with 2n- 1 points, and VT E R(s), 

/d l  /q 
( 3{#1 yl -.. yn-1 } c7 v ~ j Y j ( l q s ) r  4, Pi & 3 { # 7  y~ --. Yn-I C : v~J(,<Jsn)7 5, l p  1- 

We still get a contradiction in the cycle of i(2n-2)+1 points. 

Now assume that [Dl is first-order definable. 

Then there is a first-order formula a such that for each frame .Fl=d [Dl iff .Fb,', a. 

Let pi be the first-order property for .z i.e. (a) A (b). 

AndletC= { & ~ a :  i2l  ). 

Since each finite subset of C has a model, by first-order Compactness, C has a model. 

But by the definition of C, the universe U of the model for C is infinite. For simplicity, 

let U = { z,, 2, ... ), and each zj E U be related to each convex 2n-2 tuple in the ordered 

cycle of U-  { zj ). 

But if we put p true at zi if i is even, and put p false at zi if i is odd, then both Clp and 

U7p are true at each z .  

Hence fails in this muciei. Contradiction. 

Hence @j is not hi-order definable. 

Hence is not R-second-order definable. 



Theorem 10. The fonnula [GI OOp + Clop is not R-second-order de3nable. 

Proof: 

The argument is similar to that in Theorem 9. 

First we define an [n+l ,k]-ary frame .T= < Ui, Ri, n-2 > for each i E N = { 1,2,3,. . . ) as 

follows: 

( 1 )  Ui has exactly i(2n-2)+2 distinct points, among which only one, say x, is an initial 

point and the others, say yl . . . yi(2n-2)+1, are non-initial points. 

(2) Let the set of non-initial points {yl . .. yi(2n-2)+1 ) form an ordered cycle, and each 

point in { y, . . . yi(2n-2)+1 ) be related to each convex 2n-2 tuple in the cycle of { y, . . . 

yi(2n-2)+1 ) like in Theorem 9. 

(3) Let x be related to each n distinct points in { yl . . . yi(2n-2)+1 ). 

To prove that the formula [GI is valid on each of the .% we need results (i) and (ii). 

(i) I$': OOP -+ OOP. 

Assume for reductio that &/'; OOp + OOp. 

Then 6'': 4:p and 4"; 0Op. 

. ,/4; Then 3yj, 5, Op and 3y,, Op, lSj,k<i(2n-2)+1. 

From the proof of Theorem 9, if Op, then ~y Op. 

But by the definition of the frame .z the tuples that yj and yk are related to are exactly 

same. 

/A: So I$ Op, contradicting the fact that Op. 

(ii) vy E ( y1 . . . yi(2n-2)+l I ,  $" ~p -+ 00p. 

Assume y E ( y, . . . yi(2,,-2)+l ) and ifGL OOp and Ff'l OOp. 

Aq dGL Then there are points yj and yk in { y, . . . yic2n-2)+l ) such that Fj Op and Fk Op. 

. . ,?&L By the same argument as that in (i), 5 KIp + 00p. 

Now assume for rebuctio that_ &e [GI is first-order definable. 

Then there is a first-order formula a such that for each frame Fl=A [GI iff .Fl=,!, a. 

Let pi be the first-order property for 



AndletC= { Pir\a: i2l ). 

Since each finite subset of C has a model, then, by first-order compactness, C has a 

model. 

But by the definition of C., the model for C should contain an initial point, say x, and 

infinite non-initial points, say U = { z,, z2. .. ), and x is related to each n points in U and 

each zj E U is related to each convex 2n-2 tuple in the ordered cycle of U - { z. }. 
J 

But if we put p true at zi if i is even, and put p false zi if i is odd, then both Up and C h p  

are true at each zj. 

Therefore CUp is true and OOp is false at x. Hence [GI fails on this model. 

Hence [GI is not first-order definable. 

Hence [GI is not R-second-order definable. 

Corollary 11. I f M  and N are sequences ofU nnd O's, then the fontzula MEL1p -+ NOp is 

not R-second-order definable. 

Proof: 

The frame . q f o r  the formula [GI in theorem 10 is also a frame for MOp + NOp. 

(i) The formula holds at x: 

Assume that Mop  + NOp fails at x. 

Then MDp is true and NOp is false at x. 

We define a operaror * as follows: if a is a modal formula, i.e. a = Up or Op for some 

wff p, then *(a) = p. 

Since MClp is true at x, and x is related to each n tuple in ( y, . . . yi(2n-21+, ), then therc 

is a y, E { yl . . . yi(2n-21+1 } such that *(Map) is true at y,. But each y E { yl . . . ~ i ( 2 ~ - 2 ) + 1  ) 

is related to each 2n-2 convex tuple in the cycle of { y, . . . yi(2n-2)+1 ), then at the end, 

there must be a yj E { y, . . . yi(2n-2,1 ) such that Up holds at y,. 

On the other hand, let N be the dual modality of N (I7 and 0 are dual modalities one of 

the other). 



Since NOp is false at x, NrCI7p is true at x. 

Then *(N'n7p) is true at some y, E { y1 . . . yi(2n-2f+l ), and at the end, there must be a 

yk such that 0-p ho!ds at yk. 

Then by the same argument as that in Theorem 10, the formula holds at x. 

(ii) The formula holds at each point in { yl  . . . yi(2n-2)+1 ). 

Assume that y is an arbitrary point in { y l  . . . yi(2n-2)+1 ), and that Mop is true and NOp 

is false at y. 

Then there is a y, E { yl  . . . yi(2n-2)+1 } such that *(Mop) is true at y,, and "(N'ClTp) is 

true at some y, E y l  .. . yi(2n-2)+1 ). By the truth-condition, there must be a yk such that 

0 ~ p  holds at yk at the end. 

B y  the same argument as that in Theorem 10, MClp + NOp is true at y. 

By a similar argument as that in the proof of Theorem 10, MOp -+ NOp is not R- 

second-order definable, if n> 1. 

3.1.2 Modal Definability 

On the other hand, some R-second-order sentences are not modally definable. 

Definition 12. An [n+l,k]-aqlfra~ne < U], RI, kI > is a p-morphic image of an [n+l, k]- 

ary frame <U2, R2, k2> if there is a function f fi-0172 <UZ, R2, k2> to <Ul, R,, kl> such 

that 

( I )  f is onto, i.e. V x  E U2, 3y E Ul : f (x)  = y. 

(2) E R 2 W  v f f ,  Z I  . - - Z, J G 72) 371 E Rl(f  (x)) : ({ f ( ~ 1 )  f (zn) I C 71 ) A ($3 f ( Z I )  

- -  - f(z,))- 

(3) v71 E Rl(f(.r)j, v { f ,  Z I  -.- ZJ C 71. 3 7 2  E R2(x), 3Jf, V I  ... v,J C T2 : ( f (v I )  = z I  A ... 

A fh,) = z, 1. 



Definition 13. J&, = c U1, R1, kl, V, > is a p-morphic imnge of .,/4, = < Uz, R2, k2, V2 

> if there is a function f from < U2, R2, k2•÷ V2 > to < UI ,  R,, k , ,  V1 > such that 

< U,, R,, k, > is a p-morphic image of < UI,  R2, k2 > and Vp E At, 'Jx E U2, p iff 

$3 p. 

Theorem 14. I f  < Ul, Rl, kl, Vl > is a p-ntorplzic image of < U2, R2, k,, V2 > t l ~ w  

. ,&, a € , I a I ,  a. 

Proof: 

The proof is by induction on the construction of a wff. 

Basis: 

If a is a propositional variable, the theorem holds by Definition 12. 

Inductive step: 

We prove only the inductive step for a of the form UP. 

3 Suppose that $'. UP. 

Then 3.r2 E R2(x), 3{#,  Z, . .. z,} c T2 : b'zi(lciin), E("P P. 

But, by the definition of p-morphism, 3.rl E R,(f(x)), (({f(z,) ... f(z,)) c_ z,) A 

(M f(z1) ... f(z,)} 1). 

But by induction assumption, V Z ~ ( ~ ~ ~ ~ ~ ) ,  - P 
Therefore, i$$' UP. 

rc 
C= Suppose that Ff(, j UP. 

,@, p Then 3'1 E Rl(f (x)), 3{#, zl znJ G 71 : vzi(l<isn), z, 

But, by the definition of p-morphism, 3~~ E R2(x), 3{#, V, ... v,} c z2 : ( f(v,) = zI A 

... A f(v,) = G). 

But by the inductive hypothesis, VvqlGIn,, 6 7  P. 

Hence UP, by the definition of truth-condition. 



Theorem 15. Suppose that < U,, R,, k, > is a p-nzorphic image of < U2, R2, k2 >. Then 

for any wfla, i f a  is valid on < U2, R2, k2 >, a is also valid on < U,, R,, k, >. 

Proof 

Assume that there is a wff a is not valid on < U1, R1, k l  >. 

This means there is a model < U,, R1, kl,  V1 > which falsifies a. 

We now define a model < U2, R2, k2, V2 > such that Vp E At ,  Vx E U2, 

.At/ k " ~ p  iff bcx, p. 

By Definition 12, < U1, R1, k,, V1 > is a p-morphic image of < U2, R2, k2, V2 >. 

By Theorem 14, < U2, R2, k2, V2 > falsifies a. 

Theorem 15. Each of the the following jirst-order seizteizces is not modally de$nable, if R 

is at least a terizaiy predicate: 

( I )  Vx xRu.. .x 

(2) 3x xRX.. .x 

(3) Vx -uRx. . .x. 

Proof: 

(1) The frame < {x,y),{<x,x ... x>, <y,y ...y >}, k > is reflexive for some finite k, but its 

p-morphic image < {XI,  0, n+l > or < {x,y}, <{x,y.. .y}>, n+l > is not. By Theorem 14, 

reflexivity is not modally definable. 

(2) and (3) The proof is similar to (1). 

Theorem 17. Let a be a R-second-ordel-fonnula with an 12+1-a?y predicate R (n>3) or a 

binary predicate =. Let P be the result of exchanging the positions of the two individuals 

rnrinbles of predicates = or the positions of the individual variables except the first one 

of R in a. Theit a + P is not ~ttodnlly definable. 



Proof: 

It is easy to see from the definition of p-morphic image. 

Here is a R-second-order formula that is not modally definable: 

VX,VTE R(x),V{#,yl ... y,) GT, p + tJx, ~ T E  R(x), v { f ,  y, ... y l )  G T ,  p. 

3.2 Completeness and Incompleteness 

In this section, we first prove that %Sand 3$4 are complete with respect to the class of 

all n+lk-euclidean frames and n+lk-transitive frames respectively, and then show some 

incompleteness results. 

Theorem 1. g 5 i s  conzplete with respect to t l~e class of all n+lX-el~clideanf,nn~es. 

Proof: 

We just need to show that the canonical frame for e 5 i s  n+lk-euclidean, that is, 

VX, V{#, yl ... Vy,), V{#, z1 ... VZ,), ( x R ~ Y  ,...Y, A xRLzl. . .~,  * ( Y ~ R ~ Z ~ . . . Z ,  v ... v 

~ n R ~ z 1 . .  -zJ). 

By the definition of RL, what we have to show is that if O(x) c u{#, y,  . . . y,) A O(x)  

c u { # , z l  ... z,), then3y E {#, y, ... y,) : O(y) cu{*, z, ... 2,). 

Assume the antecedent and the negation of the consequence. 

Then O(x) c u{#, yl ... y,) A O(x) c u{#, zl ... z,) and Vy E {#, yl ... y,}, U(y) & 

u(#, z, ... z,). 

Let y be an arbitrary element in {#, yl . . . y,). 

Then, 3a E U(y), a E u{#, z, ... z,). 

Then a P O(x), since CJ(x)c u{#, zl  . . . 2,). 

Then O a  P x. 

But OOa -+ O a  is theorem. 

So OOa P x. 



Then O O T ~  E x. 

Then 0-a E u{#, y, . . . y,), since O(x)c u(#, yl . . . y,). 

Then O a  E u{#, yl  . . . y,). 

Therefore, O a  E y. 

Therefore a E O(y). Contradiction. 

Theorem 2. e4 is colnplete with respect to the class of all n+lk-transitivefianzes. 

Proof: 

We just need to show that the canonical frame for $4 is n+lk-transitive, that is, 'dx, 
- - 

V ~ l ~ . . V ~ n ,  V Z ~ ~ . . . V Z ~ ~ . . . V Z ~ ~ . . . V Z ~ ~  E i,, (xRLy l. . .yn A y 1 R L z l 1 . . . ~ , ,  A ... A 

Y, ,R~Z,~. . .Z~,  A (#, yI ..- Y,) A ( f ,  zll ... ~ 1 , )  A -.. A ( f y  znl . . . znn)  3 3 { f ,  ~1 ... w,) 5 

{zI1  ... z l n  ... znl - znn) A ( {wI  ... wn) c R(x>) 1. 

By the definition of RL, what we have to show is that 

if C](x)c u{#, yl  ... y, 1 A Cl(yl) c u{#, z l l  ... q,} A ... A U(y,) c u{#,  z,l ... z,, 1 ,  

then 

3{#,  W l  ... W,} c {zI I  -.. zln ... ZnI  ... Z,,) A O(X) c U{W] ... w,). 

Assume the antecedent and V{#,  wl...w,) G { z l l  ... zl, ... Z n l  ... z,,), d 

u { w ,  ..- W,). 

Then U(x) cL: u{#, z, , . . . z,,) A . . . A O(x) ct u{#,  znl . . . z,,)), that is, 3al E O(x) A 

a, ss u{it, z l l  ... z,, ) A ... ~ 3 a ,  E O(X)A(X,E u {#, znl ... znn}. 

Then a, A ... A a, E U(x) A al A ... A a, 8. u { z l l  ... z ln  ... z,, . .. z,,). 

So a A . . . A a e u { 0 ( y l ) ,  . .., Cl(y,)), since u{O(y:), . . ., Cl(y,))c u { z l  . . . zln . . . 

%I znn}* 

Then formula O(a l  A ... A q,) E u{#,  )I, .. . y,). 

Then O ( a l  A . . . A q,) e O(x), since U(x) E u{#, yl . . . y,). 

Then OU(a,  A . . . A q,) E x. 

But O ( q  A . . . A q,) -+ DD(a, A . . . A a,) Is a theorem. 



Then O(al  A . . . A a,) E x, that is, ( a l  A . . . A a,) e x contradicting the assumption that 

(al A ... A an )  E x. 

H 

In [Boolos 19851, logic @H( [HI: O(Op H p) -+ Up ) is shown to be incomplete with 

respect to Kripke (binary relational) semantics. Formula [4] is not a theorem of logic $rri, 

but each binary frame for [HI is also a frame for [4]. To see that for each n > 2, e r i i s  

still an incomplete logic with respect to the class of [n+l,k]-ary relational frames, we 

need to prove that formula [4] is not a theorem of and each [n+l,k]-ary frame for 

[HI is also an [n+l ,k]-ary frame for [4]. 

Lemma 3. Fonnula [K;,] is not a theorem of for any 1 <nz<n. 

Proof: 

By soundness, it is enough to show that formula [K;] is false in a model for !A$. 

Let .F= < U,R,k > be a frame such that 3x  E U and 3{#, y, . . . y,} c U : xRy, .  . .y,,. 

Let . / lZbe a model based on .Fsuch that b'i(l<iSm), V(p,) = {yj).  

.Ad: Then Upl A . . . A since m a .  

But k$"' O((pl A p2) v . . . v (p, A p,+,)). 

Therefore &"' Opl A ... A + U((pl A p2) V . .. V (pn A pm+l)). 

H 

Since formula 141 is not a theorem of g N  by Lemma 3, formula 141 is not a theorem of 

Lemma 4. Formula [#I is valid in each Liz+ 1, k]-aiy frame in which the _iirnnula /HI 

O(0p H p) + Op is valid. 

Proof: 

We show that for an arbitrary frame, if formula [4] is not valid on a frame, then formula 

m] is false on it. 



Assume that formula [4] is not valid on a frame K t h e n ,  by Theorem 3.1.1, .F is not 

n+l k-transitive. 

T h e n 3 x , 3 ~ ~  R(x),3{#,yl ... y,} c T , % ,  E R(yl) ... 3 7 , ~  R(yn),3{f,Z1l ... Z1,) c 

~ , . . . 3 { # ,  znI ... z,,} c T,, V{#, w1 ... w,j c {z, zkl ... zk, : l<k_<n ), Vxo E R(x) ({w, 

... w,} &To). 

Let the above existential variables be the actual points in U. 

Now let us construct a model JtbLon .Fthat  falsifies formula [HI O(Op ++ p) + Up. 

Put p false at x, Zij( l l i , j~n)  and false at all points in set { f ,  u, ... u, } that satisfies 

condition 

(*)I W E  R(x), { f ,  ul ... u,) G T ' A  Vul(lslln), 3T1€ R(ul), 3 { f ,  wl ... w,} C (zkl ... Zkn 

: I <k<n f , {s ,  w . . . w,} c R(ul). 

Put p true everywhere else. 

Obviously, {#, y, . . . y, } satisfies the condition (*). 

$4: 
Then Vy E (#, yl ... y,), 6 p. 

Then Kj"; Up. 

But on the other hand, VT' E R(x), V{#, vl .. . v,) c T', 

( I )  if {it, v, . . . v,} satisfies the condition (*), then both p and Up are false, that is Up ++ p 

is true at some point in {z, yl . . . y,}; 

(2) if {#, vl ... v,} doesn't satisfy the condition (*), then both p and Op are true, that is 

Op t, p is true at each point in {#, y1 . . . yn } . 
. ~6: Therefore, VT' E R(x), V{#, vl ... v,} G T', 3vj(lq,,1, k, Up H p. 

Hence 5''; %:(Up o p). 

/'; Hence %:(Up ++ p) -+ Up. 

So . F i s  not a frame for [HI- 

Here we show that [K:] is not provable from logic a i.e. 2$M is not a normal logic. 

Lemma 5. For each n 2 2, *is not a normal logic. 



Proof. 

We just need to construct a model for which falsifies [K;], Clp A Clq + O(p A q). 

Consider a model < U,R,n+l ,V > where U = { x, y, z j, R = { <x, y, z.. .z>), V(p) = ( y ) 

and V(q) = {z). 

It is easy to see that formula [HI is true at points x,y,z. 

But [K;] is false at point x. 

a 

Theorem 6. For each n>l, is incoinplete with respect to the class of [n-i-I,k]-(iry 

relational frames. 

Proof. 

It follows immediately from lemmas 4 and 5. 

%His  the simplest incomplete logic with respect to the class of binary relational 

frames where the degree of [HI is two and it has only one propositional variable (cf.[van 

Benthem 19781). But when n>l and h a ,  logic %B and gG are incomplete and the 

degree of [B] and [K;] is one. 

Theorem 7. 9@3 is iitcornplete with respect to the class [it+ I ,  k]-ary t-elu~ional fiaines, 

where n>l. 

Proof. 

Assume that n> 1 .  

By Theorem 3.1.3, each [n+l,k]-ary frame for [B] is also an [n+l,k]-ary frame for 

formula Op. 

On the other hand, [B] is valid on a binary frame iff it is symmetrical. 

*A; 
But, for any 1-1-model .Ad<= < U,R,V > and any x E U, Clp iff x is a deadend. 

Therefore, ~f @3] -+ Up. 

Therefore, by soundness, b$ m] -+ Up. 



Hence, &; [B] -+ Op. 

IL 

Theorem 8. e G  is ittcotnplete with respect to the class of [lz+l,k]-aiy relatio~zal frames 

where r t > l  and h<n. 

Proof. 

The proof is similar to the argument in Theorem 7. 

Moreover, let C = (Y, ... Yh} be a finite set of finite sets of wffs such that for some n- 

partition2 n of uZ, VY E Z, VO E K, YdB. Let 5, be the conjunction of elements of Y, 

( ILSh), and UC the set { a, . . . a, ), and [Q] the wff On, A..  .A Ocx, --+ ~ ( 5 ,  v.. .v rh). 

Then, based on the n-partition, we can define a non-n+lk-degenerate model ~ ' 4  falsifying 

[Q]. But by a similar proof to that of Theorem 3.3, Q is valid on an [n+l,k]-ary frame iff 

it is n+lk-degenerate. But on the other side, I=; [Q] and PI Up. Therefore, &; [Q] J Up. 

Then we have: 

Theorem 9. e ~ i s  incomplete lvith respect to the class of[~z+l,k]-ary relational$-anzes. 

But we know that there are uncountable many such different [Q] like formulas. So 

there are uncountable many incomplete logics. 

Since there are incomplete logics with respect to [n+l,k]-ary relational frames, 

[n+i ,k]-ary relational semantical consequence is stronger than its correspondent logical 

consequence. As expected, a weaker semantical consequence which is based on a general 

[n+l ,k]-ary realtional frames is defined as follows: 

Definition 10. A general [n+l,k]-ary relational frame is < U, R, n+l,  W > where < U, R, 

n+ 1 > is an [n+ 1, k]-ary relational frame, and W is a set of sets of points of U satisfying 

rke fallowing conditions: 



(1)  IfA E JV,  then W - A  E JV,  

(2) @A e W or B E JV,  then J V  - (AuB) E 1% and 

(3)I fA E W, t h e n / x ~  U: VTE R(.r), Vfi, zl ... z , l s -c ,  3 z l s j , ~  A )  E W 

Theorem 11. Each logic is characterized by a class of general [n+l,k]-at? rt*lutioncrl 

frames. 

Proof: 

Let < uL, RL, n+l, vL > be the canonical model for any logic. We define a subset of 

the power set of uL, W such that A E W iff A = I a IL for some a. It is sufficient to sec 

that < uL,  RL, n+l, W > is a general frame. But because of the properties of maximal 

consistent set, the general frame satisfies (1) and (2) of definition 10. By the definition of 

the canonical model, it satisfies (3) of definition 10. 



Appendix A 

Some Connections Between Logics 

In this appendix, we deal with the connections between X logics. But first of all, we 

come back to our original definitions of hyper-relations and hyper-relational frames in 

Chapter f and 2. Here ace :he definitions again: 

A hyxv--relation on a non-empty set U is a subset of U' u.. .u uk, where k is a natural 

number. A hyper-relational franze is an ordered pair < U, R > where U is a non-empty set 

and R is a hyper-relation. 

By examining [IS:], we can show that { X : n>i } = { % : m21 ). 

Theorem 1. ( 1 )  For each rhem if a s i ~ h  !hat % = where m = C(t1, i). 

(2)  For eaclz (111 # 2) there is a srtclz that = %where i # I and n # in. 

13) For each X &ere is a 2$= s14d2 that = a ~ r k r e  j = n-i. 

Proof: 

( i f  It is easy to see from the .xxiomatizations of % and g. 
( 2 ) I f m =  1,then %is$. 

Let i = n. 

Then, by the definition, is $. 

If m>Z. 

Let i=n-I .  

Since C(n. I )  = C(n.i), = ,< 
Butn+2-Theni+  1- 



(3 )  Let j = n-i. 

Then C(n,i) = C(n& 

Then [K,!,] = &!I. 

Then X = a. 

Theorem 2. (1) For all i, if?n>n, then is a proper sublogic of 

(2) For all n, ifj>i, then is a proper sublogic of z. 
Proof. (I) Construct an i-m-model in which [ G I  is true but [K:] is false. 

(2) Construct a j-n-model in which [K;] is true but [K:] is false. 

Although X and ( m = C(n,i) ) are same logic, and they are complete with respect to 

both the class of JYC; and the class of .ALL, their models are not equivalent. 
.A; 

Let m = C(n,i) and i>l. We can falsify that V.,/&t V d ' b ~  V a ,  if C a then kNi a, 

where .,f, and J/~L are based on the same frame and the same valuation. 
a 

Consider a model .,&f = < {x,  y, ... y,}, {<x, y l  .. . y,>}, V > such that {+, y l  .. . y, ) 

and V(p) = 0. 

Then by the truth definition, I$': Up. 

But i>l . Then m>n. 

.,/g By the truth definition, kx Up trivially. 

.,4; . , /tq 
Theorem 3. Let nz = C(n, i )  and i>l. Then V,&L V./IGL Va ,  I= a 3 I= a, where 

.AZk and .,f,LL are on tlze same frame and valuation. 

Proof. The proof is by induction on the construction of wffs. Here we just show that the 

Iernrna holds when a is the form of UP. 

Assume that # a. 

Then 3x, UP. 
/q 

By the tmth-condition, 3r E R(x), 3(#, zl ... z,) c T : Vzj( lq ,,,, 6 P. 



since n<m and i<m. 

Then g''; Op. 

./i'Ci 
Then &c- OD. 

Since the semantic consequence of ./id: is stronger than that of J L f y  there is a wff A 

such that is complete with respect to some class of .A: but is incomplete with 

respect to the class of ./i'd:, where m=C(n,i). We leave it to readers to find such a 

formula A. 
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