
ELASTIC PROPERTIES OF POLYMERISED AND FLUID 
MEMBRANES UNDER STRESS 

Julian Charles Shillcock 

B.Sc. King's College London, 1982 

M.Sc. Simon Fraser University, 1985 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

in the Department 

of 

Physics 

O Julian Charles Shillcock 1995 

Simon Fraser University 

July 1995 

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy or 

other means, without the permission of the author. 



APPROVAL 

Name: Julian Charles Shillcock 

Degree: Doctor of Philosophy 

Title of Thesis: Elastic Properties of Polymerised and Fluid 
Membranes under Stress 

Examining Committee: Prof. J. Dahn 

Chair 

. - w 

Prof. David Boa1 

Senior Supervisor 

' /  mf. Michael Plischke 

Prof. Michael Wortis 

Prof. parf;ara Frisken 

Internal Examiner 

, - 

Prof. Bela JooW 

External Examiner 

Department of Physics 

University of Ottawa, Ontario 

Date Approved: 
5 July 1995 



PARTIAL COPYRIGHT LICENSE 

I hereby grant to Simon Fraser Universi the right to lend my 

t' 'Y thesis, pro'ect or extended essay (the title o which is shown below) 
to users o the Simon Fraser University Library, and to make 
partial or single copies only for such users or in response to a 
request from the library of any other university, or other 
educational institution, on its own behalf or for one of its users. I 
further agree that permission for multiple copying of this work for 
scholarly purposes may be granted by me or the Dean of Graduate 
Studies. It is understood that copying or publication of this work 
for financial gain shall not be allowed without my written 
permission. 

Title of Thesis/Project/Extended Essay 

d  F l u i d  1-under S t r e s  E l a s t i c  P r o p e r t i e s  of P o l y n e r i s e d  an s. 

Author: - 

(signature) 



The stability of a living cell relies on the properties and interrelations of its 

constituent parts. The fluid bilayer surrounding the cell separates the cytoplasm inside the 

cell from the extrkellular environment. A cross-linked network of proteins within the 

cytoplasm supports the fluid bilayer and contributes to the cell's elasticity. Three 

properties relating to the behaviour of a model fluid bilayer and polymerised network are 

investigated by Monte Carlo simulation: the phase behaviour of a system of discotic liquid 

crystal molecules, the elastic properties of a model polymerised network, and the stability 

and rupture of a model fluid membrane. 

The isotropic to nematic transition induced by hydrostatic pressure in a system of 

discotic liquid crystal molecules in three dimensions is presented. The study concentrates 

on the phase behaviour resulting from the anisotropy of the disks. The transition is present 

for disks whose thickness to radius ratio is less than 40%, but is absent for thicker disks. A 

more specialised model of disks restricted to intersect a planar interface between two 

immiscible fluids is investigated, but has no isotropic-nematic phase transition at finite 

temperature. 

The elastic properties of a two-dimensional, triangulated network of Hookean 

springs are investigated as a function of temperature and applied tension. The compression 

modulus decreases, and the shear modulus increases, as the tension on the network is 

increased. The elastic properties of self-avoiding networks at low temperam are well 

described by a mean field theory. When the self-avoidance constraint is removed, the 

network undergoes a phase transition to a collapsed state of small area as the tension is 

reduced to zero. Both types of network show an unstable expansion of their area when the 

stretching tension exceeds a specified value. Both networks also have the unusual property 
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(referred to as a negative Poisson ratio) of expanding transversely when stretched 

longitudinally for a large range of applied tension. 

The stability and rupture of a model fluid membrane at finite temperature is also 

investigated. The model membrane includes a single hole subject to a line tension, or 

energy cost per unit length of its perimeter. In the absence of applied pressure, thermal 

fluctuations are sufficient to rupture the membrane unless the line tension exceeds a 

minimum value. This value cornsponds to 2.5 x Jlnm, and is an order of magnitude 

below some experimental estimates. Our results agree with a finite temperature calculation 

that predicts a transition from an unbroken membrane to a ruptured state at zero pressure. 

The transition is controlled by the branched polymer scaling behaviour of fluid membranes. 

At the transition, however, the hole scales as a closed self-avoiding walk. At positive 

pressure (i.e., compression) the hole scaling behaviour changes to that of a branched 

polymer. When the membrane is subject to a stretching pressure it becomes metastable to 

rupture. The free energy banier height is found to be much smaller in finite temperature 

simulations than predicted by a zero temperature calculation. A phase diagram for the 

model membrane as a function of the line tension and pressure is presented. 
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I have of late, but wherefore I know not, lost all my mirth, forgone all custom of 
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CHAPTER 1 

INTRODUCTION 

1 .I Overview of thesis 

The cell is the basic unit of structure of all living things (Alberts et al., 1989). In 

recent years much attention has been directed towards trying to understand the basic 

physical properties of a cell. The red blood cell (RBC), the simplest cell in the human 

body, has proven to be a popular system for study (Bretscher, 1973; Leibler, 1989; 

Sackrnann, 1990). It displays both simple and complex behaviour in response to changing 

external conditions, behaviour that is mediated by the exquisitely arranged structure of its 

surface and the underlying structural components that give the cell its stability. 

The interactions between a cell's components can range over many different length 

and time scales. The RBC, for example, is surrounded by a plasma membrane (PM) 

composed of over 400 different kinds of lipid molecule. The lipids form a dense fluid 

bilayer held together by the repulsion of the lipids from the surrounding aqueous 

environment (Israelachvilli, 1992). The bilayer separates a cell's interior, called the 

cytoplasm, from the exterior, the extracellular space. Embedded in this fluid bilayer are 

proteins that mediate the cell's interactions with the outside world. Other transmembrane 

proteins connect the bilayer to structural components of the cell within the cytoplasm. On 

the cytoplasmic side of the bilayer is a crosslinked structure of filamentous proteins 

providing structural stability to the cell. 

In the RBC this network is closely bound to the bilayer and forms an approximately 

hexagonally connected mesh. It is referred to as the membrane-associated cytoskeleton to 

distinguish it from the three-dimensional filamentous cytoskeleton that pervades the whole 



cytoplasm in nucleated cells. The RBC cytoskeleton is attached to the bilayer by 

transmembrane proteins, and provides strength and shear resistance to the fluid membrane 

above it. The lipid molecules in the PM can diffuse freely in the plane of the bilayer but 

motion between the two monolayers in the PM (flip-flop) is approximately 1013 times 

slower (Alberts, 1989, p 278). The radius of the cell is about a factor of lo3 times the size 

of a lipid molecule (ibid., p 275). 

The lipid molecules that make up the PM contribute another level of structure to the 

cell. Lipids are derived from glycerol and contain two distinct parts. One part is a 

hydrophilic (water-loving) head group, that is usually polar, attached via a phosphate 

group to one carbon in the glycerol, and the other part consists of two long hydrophobic 

(water-hating) hydrocarbon tails attached to the two other carbons in the glycerol. The 

length of the hydrocarbon tails may vary but is usually between 14 and 24 carbon atoms 

long (Alberts et al., 1989, p 276). It is the hydrophobic repulsion of the hydrocarbon tails 

from water that causes the lipids to aggregate spontaneously in aqueous solution, while 

the repulsion between their headgroups contributes to the optimal membrane size. The 

repulsive forces between the head groups are complex and made up of several effects. In 

particular, steric repulsion, electrostatic and dispersion forces contribute (Israelachvilli, 

1992, p 368). 

Although the interactions between the individual parts of lipid molecules are 

complicated, experimental means have been found to separate several different structural 

components of a cell so that their functions can be individually analysed (Evans et al., 

1976; Evans and Waugh, 1977). Other systems that are simpler than living cells have also 

been extensively studied in laboratories. These include vesicles extracted from the brush 

border of living cells (Miyamoto et al., 1988) and d i c i a l  vesicles (Evans and Needham, 

1987; Evans and Rawicz, 1990; Rutkowski et al., 1991). The fluid bilayer of &icial 
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vesicles is generally composed of only one, or at most a few, types of lipids. This makes 

them more suitable than a living cell for analysis as a homogeneous membrane. 

A wide range of properties of cells and vesicles has been analysed. These include 

shape transformations of vesicles (Kas and Sackmann, 1991), structural properties of 

vesicles (Sackrnann, 1990) and the elastic properties of the cytoskeleton of RBCs (Evans 

et al., 1976; Evans and Waugh, 1977; Vertessy and Steck, 1989). The differences in the 

physics of these components of the cell can be illustrated by considering just two aspects: 

the fluid nature of the lipids in the PM, and the contribution of geometry to the behaviour 

of the PM and cytoskeleton. 

The lipid molecules in the PM form a dense fluid. It is not an isotropic fluid 

however. The bilayer organisation of the PM restricts the motion of the hydrocarbon 

chains of the lipid molecules. The chains are constrained to lie nearly parallel to the bilayer 

normal. Such a phase of matter is an example of a liquid crystal (de Gennes and Prost, 

1993). It has properties intermediate between those of an isotropic fluid and a crystalline 

material. The possibility of crystalline order occurring in the lipid bilayer of living cells is 

prevented by the structure of the hydrocarbon chains. These invariably contain one 

saturated chain and one unsaturated chain. The kinks due to the double bond prevent the 

lipids packing close enough together to freeze at physiological temperatures. The 

temperature at which the lipids make a transition to a crystalline phase is well below room 

temperature for RBC membranes'. Table 1.1 shows the chain melting temperatures for 

three of the major lipid components of the human RBC. They contain one chain with a 

carbon-carbon double bond. These can be compared with distearoyl phosphatidylcholine 

[The normal physiological phase of the lipids is called the La phase and corresponds to a fluid. The 
phases that appear on cooling depend on quantities such as chain tilt and surface topography. Such phases 
may be intermediate between the fluid and the solid. These have been named gel phases. See Evans and 
Needham (1987). 



which is saturated but has the same chain length (18 carbon atoms). The double bond is 

seen to lower the chain melting temperature well below physiological temperatures. 

Table 1.1 

Lipid Chain melting 
tem erature /de C 

Dioleo 1 PC 

I Distearoyl PC (sat.) I 5 5 I 
Dioleoyl PE 
Dioleovl PS 

Comparison of chain melting temperatures for three major 
unsaturated RBC lipids with a saturated lipid (PC- 
phosphatidtylcholine, PE-phosphatidylethanolarnine, PS- 
phosphatidylserine). From Israelachvilli, 1992, Table 17.1, p 378. 

- 16 
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The geometry of the cytoskeleton influences the shape and elastic properties of a 

cell. In the RBC the cytoskeleton is composed of filamentous proteins connected at 

junctions with approximate sixfold coordination into a network. The spectrin tetrarners 

that make up the network are joined at junctional complexes by short lengths of actin 

filaments, and stabilised by protein Band 4.1. The spectrin tetrarners are bound at their 

midpoint to the PM by other proteins. The RBC cytoskeleton gives shear rigidity to the 

otherwise fluid PM and allows the cell to deform elastically under stress. 

In living cells the PM is subject to stress in the form of osmotic pressure differences 

and density fluctuations of the lipids. Sometimes these stresses result in the opening up of 

pores in the PM and rupture (or lysis) of the cell. When a cell lyses, some of its contents 

are ejected into the extracellular environment. Cell lysis has been investigated in the 

context of artif3cial vesicles by several groups (Taupin et al., 1975; Ertel et al., 1993; 

Hallett et al., 1993). It is still imperfectly understood even for the simplest homogeneous 

vesicles. However, theoretical models have been developed that describe in some detail 

possible paths for cell lysis (Kashchiev and Exerowa, 1983; Fromherz, 1983). A 



prerequisite for a cell to be stable against rupture is that any hole that forms in the fluid 

bilayer should reseal immediately before allowing leakage of cell contents. 

The scope of this thesis is restricted to some of the physical properties of a cell that 

can be captured in simple model systems. I have investigated three such systems which are 

described briefly in the remainder of this chapter and more fully in the bulk of the thesis. 

Chapter 2 describes the liquid crystal simulations performed. The polymerised membrane 

simulations are presented in Chapters 3 and 4, and Chapter 5 describes the fluid membrane 

simulations. The conclusions to my work are given in Chapter 6 together with ideas for 

further investigation. The thesis has been organized so that a reader interested in only part 

of the work can move straight from the appropriate introduction in this chapter to the 

relevant chapters in the bulk of the thesis. An exception to this rule is that some of the 

analysis of polymerised membranes presented in Chapter 3 is used again in the fluid 

membrane analysis in Chapter 5. Technical details about the Monte Carlo (MC) simulation 

method, and the error analysis, are collected in Appendices A and B. 

1.2 Liquid crystals 

Liquid crystals (LC) are fluids whose constituent molecules are highly anisotropic 

(de Gennes and Prost, 1993). This makes an analytic treatment of their bulk behaviour 

difficult. Much effort has been devoted to studying the phases of LCs and the transitions 

between them because they are of great commercial value (Kaneko, 1987; Bahadur, 

1991). It has been known since Onsager predicted, in the 1940s, a first-order, orientational 

phase transition in a gas of long, thin rods (Onsager, 1949) that LCs exhibit complex 

phase transitions. One of the crucial elements in understanding such transitions is the 

influence of molecular shape on the intermolecular interactions. 



Prior to the mid 1970s it was accepted that thermotropic* LCs could only be formed 

from molecules that were shaped like long, thin rods. However, in 1977 the first LCs 

composed of disks were prepared and identified by Chandrasekhar et al. (1977). These 

systems have since been extensively investigated both experimentally (Tinh et al., 1979; 

Destrade et al., 1984) and theoretically (Veerman and Frenkel, 1992 and references 

therein). 

In Chapter 2 we present our investigation of the isotropic-nematic (I-N) transition in 

a system of thin, hard disks in two and three dimensions. This work extends earlier studies 

by Eppenga and Frenkel(1984), who found a first-order orientational phase transition in a 

system of infinitely thin hard disks or platelets. There is no such transition in a gas of hard 

spheres because of the molecular symmetry. We have located the I-N transition region for 

disks of varying thickness in three dimensions subject to a hydrostatic pressure. The 

transition disappears as the thickness of the disks increases and is at most weakly first- 

order. These results agree with simulations performed independently by Veerman and 

Frenkel(1992). 

The more restricted geometry of disks confined to a two dimensional interface is 

also considered because of interest in MoS2 flakes at an oil-water interface (Divigalpitiya, 

et al., 1989) and Langmuir-Blodgett films (Josefowicz et al., 1993). The MoS2 flakes 

form disk-like objects that are preferentially constrained to the interface because of their 

differential attraction to the water and solvent. The faces of a disk are non-polar while the 

edge is polar. At low density the disks lie flat at the interface. When a surface pressure is 

applied to the disks, they are forced closer together until their shape anisotropy causes 

them to orient themselves in parallel to accomodate the increased density. Similar systems 

studied by computer simulation include hard oblate spheroids (Wesemann, Qin and Siders, 

2Thennotropic refers to the appearance of new phases as the temperature is varied. There is another class 
of LCs referred to as lyotropic that undergo phase transitions as the density is varied. This distinction is 
not important for our work. 



1989) and spheroid-like shapes (He and Siders, 1990). We have extended previous work 

(Bod and Blair, 1991) to simulate a system of hard disks with complete rotational 

freedom constrained to intersect a planar interface between two immiscible fluids. The 

disks are subject to an applied surface pressure to see whether they undergo an 

orientational phase transition as the pressure is increased. This would be the two 

dimensional analogue of the I-N transition found in three dimensions (Veerman and 

Frenkel, 1992). We have found no evidence of such a transition. Nor is there evidence of a 

finite-temperature transition from a state with all the disks flat at the interface to one with 

them upright. 

1,3 Polymerised membranes 

One of the most obvious properties of a cell is its shape, and the effects of shape on 

behaviour may be profound. The behaviour of a cell is also strongly influenced by the 

material properties of its PM. Measuring the elastic properties of cells and artifkial 

vesicles has been the goal of much recent experimental work (Evans and Needham, 1987; 

Evans and Rawicz, 1990; Rutkowski et al., 1991; Hallett et al., 1993). A zero-temperature 

description of the elastic properties of lipid bilayers was produced by Helfrich in the early 

1970s (Helfrich, 1W3). The bilayer deformation energy is expressed in terms of the elastic 

constants for the material: the compression, shear and bending moduli. Because the PM of 

a cell is a fluid the shear modulus vanishes. The cytoskeleton underlying the fluid bilayer in 

the RBC has a non-zero shear modulus due to the fixed connectivity of its constituent 

spectrin molecules and the two-dimensional surface to which it is bound (Nelson and 

Peliti, 1985; Barsky et al., 1994). 

Recently materials have been constructed that show unusual elastic properties 

(Evans, 1991; Evans et al., 1991; Evans and Alderson, 1992). When they are stretched in 

one direction they expand in the the transverse direction. They have been given the name 



of auxetic materials (auxetos being Greek for "that which may be increased"). Normal 

elastic materials such as rubber or steel always contract tranversely when stretched 

longitudinally. The quantity that describes the transverse strain resulting from a given 

longitudinal stress is called the Poisson ratio. It is defined to be positive for normal elastic 

materials. Auxetic materials have a negative Poisson ratio. The possibility of auxetic 

materials has been known theoretically for some time (Landau and Lifshitz, 1959, p 14) 

but no materials exhibiting such properties had been known. The auxetic materials recently 

fabricated are mainly foams and plastics such as high density polyethylene (Evans and 

Alderson, 1992). 

We have performed simulations of a model of a polymerised membrane in two 

dimensions subject to an applied stress (Bod, Seifert, Shillcock, 1993). The model has an 

energy density that varies quadratically with the strain, a so-called Hooke's law network. 

We find that under certain conditions the network exhibits a negative Poisson ratio. This 

unusual behaviour results from an interplay of the network stress and entropy, and thus 

has an entropic origin. By contrast the negative Poisson ratio of the foams and plastics 

recently fabricated (Evans, 1991) results from their geometrical structure. 

At zero surface stress, the area of self-avoiding networks is proportional to the 

membrane mass. However, we find that a non self-avoiding network exhibits a transition 

to a collapsed state at zero stress. This collapsed state disappears in a first-order transition 

at finite surface stress, as a result of a competition between the stress and entropy of the 

network. The Hooke's law network undergoes an unstable increase in area when the 

applied stress exceeds a certain limit. The analysis of the model network is developed in 

Chapter 3, and the results are presented in Chapter 4. 



1.4 Stability of fluid membranes 

The plasma membrane mentioned in Section 1.1 is a fluid. Unlike the cytoskeleton 

that has a fixed connectivity, the lipids that make up the PM are free to diffuse within their 

monolayer. The physical behaviour of the fluid lipid bilayer surrounding both real and 

vesicles is essentially the same. An example of such similarity is the formation of 

pores in the lipid bilayer. Many significant cellular processes involve pores in vesicles or 

the PM that allow the transfer of molecules across the lipid bilayer (Alberts et al., 1989, 

p324). These pores occur during exocytosis (Nanavati et al., 1992) when a secretory 

vesicle fuses with the PM to release its contents to the exterior of a cell. They also appear 

if the cell is subject to osmotic stress caused by a decrease in the osmolarity of the 

extracellular medium (Taupin et al., 1975; Mui et al., 1993), or the application of an 

electromagnetic field to the PM (Zhelev and Needham, 1993; Freeman et al., 1994). 

When the bilayer is stable, open pores reseal as the hydrophobic force on the lipids 

pulls them together. This stability has been interpreted in terms of an edge energy around a 

pore that acts to reseal it (Litster, 1975; Frornherz, 1983). The edge energy tends to 

decrease the size of a spontaneously created pore in competition with, for example, an 

osmotic pressure tending to swell, and burst, the cell. On physiological time scales the 

fluid bilayer is stable against small stretching pressures. However, given sufficient stress 

the membrane is unstable to forming a large pore allowing leakage of the cell contents and 

possible rupture of the membrane. In the last system studied in this thesis we discuss the 

stability of a model fluid membrane against spontaneous hole formation. 

We allow a single hole to develop in a model fluid membrane subject to a line 

tension (energy per unit length) around the hole's perimeter. If the hole grows, it increases 

the energy of the system but the system may gain entropy due to the perimeter of a large 

hole having greater configurational freedom than a small one. The resulting change in the 



free energy at finite temperature may be positive, in which case the hole will shrink and 

disappear, or negative, in which case the hole will continue to grow. 

The competition between the energy of the hole and the entropy of the boundary 

leads to a transition from a stable state of the membrane with no hole at high line tension 

to another stable state with a large hole in the membrane at a finite value of the line 

tension. The predicted value of this line tension is 2 . 5 ~  Jlnm for a biological 

membrane and is an order of magnitude below some experimental values (Hallett et al., 

1993; Needham and Hochrnuth, 1989). Membranes in which the line tension is below this 

value are unstable to disintegration into a ruptured state. The shape and stability of the 

hole in a disintegrating membrane are described. We also investigate the behaviour of the 

transition when a pressure is applied to the membrane. This pressure may be positive, 

when it compresses the membrane, or negative, when it stretches the membrane. The 

investigation of the stability of the model fluid membrane to hole formation is presented in 

Chapter 5. 

1.5 Summary 

The physical properties of the cell plasma membrane and the underlying structural 

components are crucial to the stability and function of a cell. In this chapter we isolate 

several aspects of the cell for study: a liquid crystalline phase transition analogous to that 

of the molecular components of the plasma membrane, the stability of the fluid bilayer to 

hole formation, and the elastic properties of the network that underlies the red blood cell 

plasma membrane. 

The first system we study is an anisotropic fluid of disk-shaped molecules in three 

dimensions under an applied hydrostatic pressure. As the pressure is increased the system 

undergoes an orientational phase transition to a nematic phase. The transition disappears 

as the thickness of the disks is increased. When the disks are constrained to intersect a 



planar interface betwen two immiscible fluids and given a differential attraction to the 

fluids, the transition also disappears. 

The next system we study is a network model of a polymerised membrane in two 

dimensions under an applied stress. The network is composed of vertices connected by 

Hookean springs. As the tension is reduced, the network changes from being highly 

ordered to being increasingly disordered. The model shows the unusual property of 

becoming auxetic as the tension is reduced: it expands transversely when stretched 

longitudinally. When the elements of the network are allowed to intersect one another, the 

network undergoes a collapse transition at a finite value of the stretching tension. The 

Hookean network also undergoes a transition to an unstable state of infinite size when the 

stretching tension exceeds a critical value. 

Finally, we investigate the thermodynamic stability of a model fluid membrane to the 

process of opening a single hole. In real lipid bilayers transient pores are resealed by an 

effective line tension around the boundary of the pore. We have found that the model 

membrane becomes unstable to opening up a hole once the line tension is reduced below a 

critical value. We investigate the scaling behaviour of the hole boundary at the transition 

point and the effect on the transition of a non-zero pressure on the membrane. 



CHAPTER 2 

LIQUID CRYSTAL SIMULATIONS 

2.1 Introduction 

Liquid crystals are fluids whose properties are intermediate between those of 

crystalline solids and ordinary liquids (Brock et al., 1989). They have unusual optical 

properties and are extensively used in display technology (Kaneko, 1987). They have been 

known to experimentalists for over a hundred years (Kelker, 1973 and references therein). 

However, their structure and behaviour are complicated. In particular, they can possess 

several phases with properties intermediate between the solid and liquid phases (de Gennes 

and Prost, 1993). This behaviour is believed to result from the highly anisotropic shape of 

the constituent molecules that make up the liquid crystal, although there is some question 

about the relative influence of the hard-core repulsion and the long-range attraction 

between molecules~ (Frenkel, 1987). 

The most common LCs have a long, rigid, rod-like structure. One example is 80S1, 

shown below in Fig. 2.1: 

Figure 2.1 Molecular structure of 80SI 

l ~ h e  extreme examples are the simulations of the Maier-Saupe model which has only long-range, 
anisotropic, attractive forces (Lebwohl and Lasher, 1972) and hard rod simulations (Zwanzig, 1963) 
which have only hard-core repulsive forces. Both models show an orientational phase transition. 



Another example is the tobacco mosaic virus, which has a hollow, rod-like structure. 

These structures can take up several phases depending on their density, and the non- 

crystalline phases may possess long-range orientational order. 

It was predicted by Onsager in the 1940s that a system of long, thin rods should 

have a strong first-order phase transition from a low-density isotropic phase to a nematic 

phase at higher density (Onsager, 1949). The prediction was based on a second-order 

virial expansion and was subsequently supported by a calculation of Zwanzig (1963), who 

used a virial expansion up to 7th order. 

Several models attempting to capture the thennodynamic properties of rod-like 

molecules have been produced. In the 1970s Viellard-Baron (1974) determined the 

equation of state of a system of hard spherocylinders from MC simulations. A 

spherocylinder consists of a cylindrical rod capped with a hemisphere at each end. Several 

groups have studied the orientational phase behaviour of the hard spherocylinder system 

from theory (Cotter, 1977; Somoza and Tarazona, 1990) and MC simulations (Stroobants 

et al., 1987; Frenkel, 1988; Frenkel, Lekkerkerker and Stroobants, 1988; Veerman and 

Frenkel, 1990). Other workers have studied ellipsoids (Frenkel, Mulder and McTague, 

1984; Frenkel and Mulder, 1985) as well as cylinders themselves (Duro et al., 1988). 

As a result of these simulations the essential features of the phase transitions present 

in model liquids of rod-like molecules are known. At low densities the molecules are free 

to translate and rotate independently of each other. They have neither positional nor 

orientational order. Under increasing pressure the molecules start to interact via their 

anisotropic shape. A phase transition occurs to a more ordered phase (the nematic phase) 

in which the molecules still lack positional order but are orientationally ordered. At higher 

densities other LC phases may occur, such as Smectic A, where some positional order is 



also gained. The I-N phase transition is found to be weakly first-order in the simulations 

(Frenkel and Mulder, 1985). 

In 1979 the first examples of disk-like, or discotic, liquid crystals exhibiting a 

nematic phase were made by Hguyen Huu Tinh et al. (1979). Their compounds are based 

on hexasubstituted triphenylenes. An example is shown below in Fig. 2.2, where R is 

either a long-chain ether, R = CnH2,+,0, n = 1.. .13, or an ester, R = CnH,,+,C02, 

n = 1...15. 

Figure 2.2 Molecular structure of a typical discotic liquid 
crystal that exhibits a nematic mesophase. 

These substances are found to exhibit several highly viscous thennotropic mesophases 

with diverse optical textures. X-ray diffraction measurements of the compounds 

(Chandrasekhar, 1977; Levelut, 1979) show that the mesophases are made up of regular 

or irregular stacks of disks. Since then many examples of discotic liquid crystals have been 

found (Destrade et al., 1984). Correspondingly, simulations of the equation of state of 

models of discotic LCs have been performed (Wojcik and Gubbins, 1984). However, there 

are significant differences between the model systems simulated and real LCs. In a recent 

review of the properties of discotic liquid crystals, Chandrasekhar (1990) states that the 

presence of flexible side-chains on the disk-shaped cores is essential to the formation of 
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the mesophases. The long hydrocarbon chains contribute to the entropy in the liquid phase 

but are frozen out in the solid. This molecular characteristic has not been included in 

simulation models and yet the models show several distinct phases of discotic LCs. These 

include a nematic phase in a system of infinitely thin disks (Eppenga and Frenkel, 1984), 

and nematic and columnar phases in a system of cut-spheres (Veerman and Frenkel, 1992) 

and dipolar cut-spheres (Zarragoicoechea, Levesque and Weis, 1993). 

A detailed simulation of infinitely thin disks, called platelets, was carried out in 1984 

by Eppenga and Frenkel. They concluded that for a phase intermediate between the 

isotropic liquid and crystalline solid to exist, the hard disks 'must have two properties: 

they must be sufficiently anisotropic to favour orientational order, and 

at the temperature and density of the I-N transition, the solid phase must be 

thermodynamically unstable. 

The simulations discussed so far have been for three-dimensional systems. Some 

work on two-dimensional systems has also been performed (Fraser et al., 1990; He and 

Siders, 1990). Hard spherocylinders with their centres confined to a plane exhibit a first- 

order I-N transition (Coldwell et al., 1974). Wesernann, Qin and Siders (1989) study a 

monolayer of hard, oblate spheroids, with their centres confined to a plane, using 

Onsager's theory and Monte Carlo simulation. They point out that the system of spheroids 

confined to a plane is isotropic only at zero pressure. As the pressure is increased, the 

spheroids' short axes tip into the plane. Next, the long axes of the spheroids gradually 

align in a continuous transition to a nematic phase. Wesernann et al. also find that the 

transition density decreases as the eccentricity of the spheroids increases. 

While the LC molecules of biological importance are mainly rod-like in their 

geometry, the behaviour of discotic molecules is of importance in understanding the nature 



of liquid crystals. Several experimental realisations of disk-shaped objects confined to a 

plane are known (Divigalpitiya et al., 1989; Josefowicz et al., 1993) and the effect of 

dimensionality on the behaviour of a system of anisotropic disks is unclear. Wesemann et 

al. (1989) study hard spheroids confined to a plane and comment that the extrapolation to 

hard disks is unknown. In this chapter we use computer simulations to investigate the 

behaviour of discotic molecules, both in three dimensions and when confined to a two- 

dimensional interface. 

2.2 Simulation of isotropic/nematic transition for hard disks in 30 

We simulate a system of N disks of varying thickness confined to a cubical box in 

3D. The disks have a radius R, and we express their thickness Tin units of the radius. 

Because the disks interact only via their hard-core repulsion, the temperature only appears 

in combination with the hydrostatic pressure as the parameter pp. We use the Metropolis 

Monte Carlo technique in the constant pressure, constant temperature (NPT) ensemble. 

Details of this technique are given in Appendix A. 

Aese simulations provide a model for investigating the isotropic to nematic phase 

transition of discotic liquid crystals in 3D. If the disks are infinitely thin, there is a sharp 

I-N transition as found by Eppenga and Frenkel(1984). By contrast, isotropic objects, 

such as hard spheres, can have no such transition. We expect the behaviour of the disks to 

approach that of hard spheres as their thickness increases and they lose most of their 

geometrical anisotropy. We aim to find the dependence of the transition on disk thickness. 

The isotropic phase of a liquid has spherical symmetry: the orientational distribution 

of the molecules is random. We may express this mathematically by defining the single- 

particle orientational distribution function f (€),+). The fraction of molecules whose 

symmetry axes have spherical polar angles in the range 8 to 0 + d€) , + to + + d+ with 

respect to a fixed axis is f (8,+) sin Wed+. The polar angle is restricted to the range 0 to 



17 

x/2, because the molecules are taken to be up-down symmetric. The azimuthal angle has 

the usual range of 0 to 2x. The isotropic state corresponds to 

In ordered LC phases the molecules tend to align themselves in some way. For 

example, a nematic LC phase has cylindrical symmetry with the molecular axes 

approximately parallel. The deviation of the orientational distribution function from 

spherical symmetry is measured by a set of order parameters. For an axially symmetric 

distribution, the most general form of this function is: 

where 8 is the angle of the molecular orientation with the axis of symmetry (called the 

nematic director). ~ , (cose)  are the Legrendre polynomials, and a, are the expansion 

coefficients. Note that we assume the molecules have cylindrical symmetry and are up- 

down symmetric, so that a, with odd 1 vanish. The values of the coefficients are related to 

the values of the Legendre polynomials averaged with respect to the distribution function 

f (0): 

The quantities (~,(cose)),  with 1 even, are the order parameters of the system. For an 

isotropic liquid all the coefficients with 1 f 0 are zero. The first non-trivial average, 

( 4  (cose)), is often used as the nematic order parameter. 

Our investigation of the I-N transition proceeds as follows. Consider a system of 

disks with fixed T / R  placed in a cubical box which has periodic boundary conditions to 

rninimise the effects of the boundaries. The initial configuration is defined by giving each 



disk a random position and orientation in the box. The simulation is run to remove the 

influence of the initial conditions and then the disk positions and orientations are stored at 

fixed intervals throughout the remainder of the simulation for analysis. Each step in the 

simulation consists of an attempt to move and rotate each disk by a random amount 

chosen from a fixed range. An attempt to move every disk is called a sweep through the 

system. After a fixed number of sweeps, an attempt is made to rescale the volume of the 

simulation box. A small random change is made in each of the box side lengths and all the 

disk coordinates are rescaled by the new lengths. In these simulations the box is cubical so 

all the sides are rescaled by the same factor. The simulation is run until enough 

configurations have been collected to allow extraction of the nematic order parameter. 

Technical details of the simulation method are given in Appendix B, where we also discuss 

the error analysis for the simulations. 

The nematic order parameter, defined by Eq. (2.3) with 1 = 2, can be obtained from 

an ensemble average over the configurations of a simulation using: 

where the sum is over all the molecules and 8, is the angle of the ith molecular axis with 

the nematic director. Since the orientation of the nematic director is not known a priori, 

the calculational procedure is to evaluate 

where 2 is an arbitrary unit vector and gi is the normal vector to the ith disk. The tensor 

Q is defined in terms of the nonnal vector gi by 
-i 



where the outer product of the normal vector is taken with itself, and I is the 3D unit - - 

matrix. 

Obviously, Q is a symmetric, traceless tensor. It may be averaged over all N disks in 
-i 

a single configuration to get 

where Q is the tensor for the ith disk. The eigenvalues of Q for each configuration are 
-1 I 

extracted and then averaged over all configurations in the simulation to give the nematic 

order parameter. Let the average values of these eigenvalues be (A,), (h,), (1-, ) ordered 

from the largest to the smallest. Notice that h, is constrained to be non-negative by the 

fact that Q is traceless. Either (1,) or (-21,) may be taken as the order parameter: both - 
give comparable results to within the accuracy of the simulations. The advantage of the 

middle eigenvalue is that the amplitude of its fluctuations in the isotropic phase is smaller 

than that of the largest eigenvalue. In the nematic phase the eigenvalues are related by 

1, = h-, = -+A,, while in the isotropic phase they are all zero. 

2.3 Results of 3D simulations 

We have simulated a system of 100 disks of radius R and thickness 

T/R = 0.02,0.2,0.4,1.0. The first of these may be compared with the infinitely thin 

platelet results of Eppenga and Frenkel(1984). 

The density of the system is apparently a smooth function of the applied pressure for 

all thicknesses to the accuracy of our results. That is, any discontinuous change in the 

density due to molecular ordering is small. The average volume per disk norrnalised to the 

single disk volume, v, = X R ~ T ,  is shown in Fig. 2.3. This figure shows that the thick disks 
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(with T / R  of 0.4 and 1) become close-packed at pressures above PpR3 = 4 and behave 

essentially like an incompressible fluid. The thin-disk fluid is not yet incompressible at the 

highest pressures we could simulate. Figure 2.4 compares the equations of state for the 

hard disk systems. At high densities, which depend on the disk thickness, the thin disks 

behave like a highly compressible fluid (with ~ ( v ) / N ~ T  = 4 for T / R  = 0.02). This is 

substantially larger than the ideal gas value of P ( V ) / N ~ T  = 1. 

Disk thickness 
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Figure 2.3 Reduced volume per disk (v) /Nv,  against pressure PpR3 for 
disk thicknesses T / R  = O.O2,0.2,0.4,l.O. 
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Figure 2.4 Equation of state for hard disks with thickness 
T / R  = 0.02,O. 2,O. 4,l. 0 in a cubical box. The density is 
NR 3 / ( ~ ) .  



Next consider the behaviour of the deviation in the mean polar angle as a function of 

pressure. The mean polar angle is measured with respect to one of the axes of the 

simulation box. The standard deviation in the polar angle indicates the degree of alignment 

of all the disks within a configuration. It is defined by 

where (0) = 1 radian, (0') = n - 2 square radians in the isotropic phase, so o(0) = 0.376 

radians or 2 1.5'. 

Figure 2.5. shows that the deviation in the mean polar angle for disks of all 

thicknessess has the purely random value of 21.5 degrees at low pressure, P p ~ 3  < 1. There 

is a marked increase in alignment observed with increasing pressure for disks with 

T / R  = 0.02,0.2,0.4. The pressure at which the disks start to align increases with the 

thickness of the disks. The disks with T / R  = 1 show little tendency to align at the 

pressures considered. 
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Figure 2.5 Standard deviation of the mean polar angle (8) 
against pressure / 3 p ~ 3  for disk thicknesses 
T/R =0.02,0.2,0.4,1.0. 



Next we analyse the largest and the middle eigenvalues of the orientational order 

parameter derived from the Q-tensor of the platelets as described in Section 2.2. The - 
results are shown in Figures 2.6 and 2.7. It is clear that the disks with T / R  c 0.2 undergo 

a sharp orientational transition as their density increases, while the thicker disks with 

T / R  2 0.4 show no such transition over the pressure range investigated. By comparing 

Figures 2.6 and 2.7 one can see that there is no noticeable difference between the 

behaviour of the largest and middle eigenvalues in the nematic phase, although the 

fluctuations in the middle eigenvalue are closer to zero in the isotropic phase. To show 

that the transition occurs at a fixed density, independent of disk thickness, we show the 

data for the middle eigenvalue plotted against density in Figure 2.8. The transition occurs 

at a reduced density of NR 3 / ( ~ )  = 0.50 k 0.05. We have indicated the close packed 

density for the disks with T / R  = 0.4, 1.0 by arrows. These disk systems approach but are 

obviously less than the close-packed density. It should be noted that the rounding of the 

curve for disks with TIR = 0.02 is an artifact of the drawing and does not reflect the finite 

system size. 

Eppenga and Frenkel(1984) also find that the transition occurs at a reduced density 

of NR~/'V = 0.5. However, their results and those of Veerman and Frenkel(1992) are in 

the NVT ensemble and our work is in the NIT ensemble. The agreement between the 

results shows that the transition is not ensemble dependent to the accuracy of the 

simulations. 



Pressure 

Figure 2.6 Nematic order parameter (;I ,) against pressure PPR' for disk 
thicknesses T / R  = 0.02,0.2,0.4,1.0. 
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Figure 2.7 Nematic order parameter (-2h,) against pressure P p ~ l  for 
disk thicknesses T / R  = 0.02,0.2,0.4,1.0. 
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Figure 2.8 Nematic order parameter ( - 2k , )  against density NR ' /(v) for 
disk thicknesses T / R  = 0.02,0.2,0.4,1.0. Arrows indicate the 
close-packed density for the disks with T / R  = 0.4 and 1.0 as 
mentioned in the text. 
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We have taken the system with T / R  = 0.2 through the transition in both directions 

of increasing and decreasing pressure. The results are shown in Fig. 2.9. In both directions 

each run is started using an initial configuration from the run at the preceding pressure. 

This ensures that the system is started near equilibrium at the higher pressures 

investigated. It is seen that there is no significant dependence of the order parameter on 

the direction in which the transition is approached. This lack of hysteresis suggests that the 

transition is at most weakly first-order. Most of the simulations used 100 disks and the 

accuracy of the numerical results is limited to 10% by statistical error. Figure 2.9 shows, 

for disks of thickness T / R  = 0.2, that the change in the order parameter on going through 

the transition in opposite directions is less than 7%. 

Direction 
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Figure 2.9 Nematic order parameter (-2h,) against density NR 3 / ( ~ )  for 
disk thickness T / R  = 0.2 haversing the transition in both 
directions. 



Figure 2.10 shows, for disks with T / R  = 0.2, the nematic order parameter for two 

systems with 64 and 100 disks respectively. The difference in the order parameter of the 

two systems is very slight, and does not affect the conclusion that the isotropic-nematic 

transition occurs at a reduced density of approximately NR '/(v) = 0.5. 
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Figure 2.10 Nematic order parameter (-2 h , ) against density NR '/(v) 
for disk thickness T / R  = 0.2 and system sizes of 64 and 
100 disks. 



We use the disk coordinates (X  , Y, Z, 0, $) averaged over all disks in a 

configuration to measure positional and orientational correlations between the disks. Near 

the transition, the collective correlation functions of the disk coordinates q u i r e  many 

Monte Carlo steps to decay. However, independent runs of a system at a given pressure 

showed that the differences between the order parameters for the two runs were less than 

the statistical errors. Further, the correlation times for the coordinates of a single disk are 

at least an order of magnitude smaller than the collective correlation times (see Appendix 

B). The single-particle orientational correlation times for the disks are of the order of 

50,000 sweeps for all pressures for thick disks, rising to 400,000 sweeps at the transition 

point for the thinnest disks. We run the systems for 1,000,000 sweeps prior to collecting 

data to allow them to equilibrate and then allow 50,000 sweeps between sample 

configurations. This ensures that the configurations are substantially independent at low 

density and thus represent a reasonable average over the accessible phase space of the 

system. At high density, the disks are prevented from moving far by their neighbours and 

the large collective correlation time in the polar coordinate reflects the correlations 

between the disks and not insufficient simulation time. 

2.4 Simulation of isotropic/nernatic transition for hard disks at an 

interface 

2.4.1 Restricted orientation model of disks at an interface 

In a previous paper Bod and Blair (1991) investigated the phase behaviour of a set 

of platelets restricted to an interface between two immiscible fluids. The platelets were 

representative of MoS2 monolayer segments at an oiywater interface, a system of some 

interest experimentally (Divigalpitiya, Frindt and Morrison, 1989). We now describe their 

simulations and show how we have extended this work to give a more complete picture of 

platelets confined to an interface. 



The model platelets interact with each other via their geometrical hard-core 

repulsion. They also have an attraction for the two liquids that define the interface. Let 

liquid 1 (usually an organic solvent in experiments) be above the interface, and liquid 2 

(usually water) be below, and let k f l ,  k,, , k /,, k,, be the interaction energy per unit area of 

the platelet face (f) and edge (e) exposed to liquids 1 and 2. We assume that the energy of 

attraction is simply given by the amount of area exposed to the given liquid. The 

Hamiltonian for a single platelet is then 

where Af2, A,, are the areas of the faces and edge exposed to liquid 2 and Af, , A,, are the 

total areas of the faces and edge respectively. The constants gf = kfl - kf ,, g, - - ke2 - ke1 

are the differential attraction energies per unit area of the face and edge for the liquids. 

The signs are chosen so that positive values of g, and g, correspond to the face being 

more attracted to liquid 1 and the edge being more attracted to liquid 2, similar to the 

presumed experimental situation for MoS2 at an oil-water interface. Finally, S,, , A12 are 

the surface tension and area of liquid-liquid interface excluded by the platelet respectively. 

The term in brackets in Eq. (2.9) is the energy of a platelet totally immersed in liquid 1. 

A single platelet has its minimum energy state when it intersects the interface. This 

result is unaltered by the presence of surface tension, so the work here was carried out at 

zero surface tension. The extension of this model to a system of platelets at finite 

temperature requires several independent parameters to define the thermodynamic state of 

the system. These parameters occur in the four dimensionless combinations 

T/R, pgfR2, pg,~'and PpR2. 

An interesting situation arises if a flat disk has a lower energy than an upright one. If 

a surface pressure is applied to a system of such disks at the interface there will be a 

competition between the interaction energy of the disks and the interface, and the pressure 



attempting to force the disks upright so as to reduce the overall surface area of the system. 

It was conjectured (Boal and Blair, 1991) that this might lead to a sharp transition at a 

finite temperature from a low-density flat phase to a high-density upright phase. The 

upright disks may then order in a nematic phase at high pressure. A Monte Carlo 

simulation using a restricted set of disk configurations showed a flat-to-upright phase 

transition only at zero temperature. Here we study the same system with full orientational 

freedom of the disks. 

2.4.2 Full orientational model of disks at an interface 

We consider a set of platelets with radius R  and thickness Tat an interface which are 

allowed to translate and rotate freely subject to their body intersecting the interface. This 

restriction is necessary to ensure that raising the surface pressure in the simulation does 

not simply result in disks being squeezed away from the interface. As for the three- 

dimensional simulations we again work in the NPT ensemble. 

The energy of each disk is given by Eq. (2.9) and the appropriate free energy is the 

Gibbs potential where the energy and entropy of the system are functions of the positions 

and orientations of all the disks. A total of 144 disks with T / R  = 0.2 are randomly placed 

in a rectangular box so that each one intersects the interface. The ratio g,/g, = 5 so that 

the minimum energy state of a single platelet has it lying flat at the interface. The 

derivation of the ground state of a single platelet as a function of the ratios T / R  and 

g,/gf is given in Boal and Blair (1991). The plane of the interface is continued using 

periodic boundary conditions in the x and y directions. After allowing the initial 

configuration to relax to equilibrium, data are collected at intervals. The technical details 

of the simulation are given in Appendix B. 



2.5 Results of 2D simulations 

The aim of the simulations is two-fold: to see if there is a flat-to-upright transition in 

a system of platelets confined to an interface, and to see if an isotropic to nematic 

transition exists as the temperature and pressure are varied. It is clear from Boal and Blair 

(1991) that the change in the orientation of the disks with lateral pressure is smooth when 

the disks have only two orientations, flat and upright. It was suggested that this behaviour 

might change when the disks are given full orientational freedom. 

The interfacial area per disk in Fig. 2.11 decreases with increasing pressure at all the 

temperatures we have simulated, and shows no sign of a discontinuity. 
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Figure 2.1 1 Reduced interfacial area per disk (A)/NKR' against 

pressure p p ~ ~  at all temperatures ( P ~ , R ' ) "  
investigated in the simulation. The disks have 
T / R  = 0.2 and g , / g f  = 5. 



The behaviour of the compressibility factor p ( ~ ) / ~ k ~  is shown as a function of 

density in Fig. 2.12. This quantity is unity for an ideal gas. There is a slight dependence on 

temperature, the system being more incompressible at low temperatures, but overall the 

behaviour is that of a dense gas. In the low density regime (NR'/( A) < 0.7) the 

compressibility factor agrees with the second-order virial equation for a fluid of hard disks 

in two dimensions. 

Virial equation / 
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Figure 2.12 Equation of state for hard disks with rotational freedom, 

restricted to lie at the interface, at all temperatures ( P ~ , R ' ) - '  

investigated in the simulations. The density is NR '/(A), and 
the remaining parameters are as for Fig. 2.11. The 2D virial 
equation is shown for comparison. 



We show the mean polar angle and its standard deviation in Figs. 2.13 and 2. 

the lowest temperature we simulate, (pg ,  R2)-' = 0.6, and a pressure of PpR2 = 0.1 

mean polar angle falls below the random value, indicating that the disks are starting to lie 

flat at the interface. There is evidence for an increase in the average polar angle, and a 

narrowing in the distribution, as the pressure rises. This suggests that the disks are turning 

from lying in the plane of the interface to being normal to it. The change in the mean polar 

angle is almost independent of temperature, although the narrowing in the distribution of 

the polar angle is steeper at temperatures (pg,R2)-'  < 1.0 compared to the infinite 

temperature simulation. Note that the infinite temperature curve is one for which the 

interaction energy of the platelets with the interface is zero while the pressure is non-zero. 
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J(t 0.8 + 0.6 

Pressure 

Figure 2.13 Mean polar angle (0) of disks against prcssure PpR2 at 

all tempetatures ( p g f  R2)-I considered. The remaining 

parameters are as for Fig. 2.1 1. 
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Figure 2.14 Standard deviation of the mean polar angle (8) of disks 

against pressure P ~ R '  at all temperatures ( P ~ , R ' ) - '  
considered. The remaining parameters are as for Fig. 2.11. 
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The above measures show no clear sign of an orientational phase transition. This is 

supported by the tensor order parameter (defined in Section 2.2) which shows, in Figs. 

2.15 and 2.16, that there is no sharp transition from an isotropic to a nematic phase for the 

upright disks as the pressure is raised. Instead there is a smooth change in alignment with 

pressure, and this behaviour is not affected by the temperatures we can simulate. The 

fluctuations in the middle eigenvalue, (-2h,), are smaller than those of the largest 

eigenvalue, (h , ) ,  and, given the statistics of the simulations, indicate that the order 

parameter is indistinguishable from zero. 
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Figure 2.15 Nematic order parameter ( A , )  of the disks against 

pressure PpR2 at all temperatures (bg,R2)-I considered. 

The remaining parameters are as for Fig. 2.11. 
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Figure 2.16 Nematic order parameter (-21,) of the disks against 

pressure P ~ R '  at all temperatures ( P g f ~ ' ) - '  considered. 

The remaining parameters are as for Fig. 2.11. 

2.6 Discussion 

2.6.1 Isotropic/Nematic transition in 30 

We have used various definitions of a nematic order parameter to investigate the 

phase behaviour of a set of disks interacting only through hard-core repulsion in three 

dimensions. The results show that hard-core repulsion is sufficient to cause an I-N 

transition in a system of discotic particles if they are sufficiently thin, that is, anisotropic. 

The I-N transition exists for disks whose thickness to radius ratio lies between 0.02 and 

0.2. If the ratio exceeds 0.4 the transition is absent. The difference between systems of 

disks with T / R  = 0.2,0.4 is seen in the snapshots shown in Figures 2.17 and 2.18. These 

figures show a system of disks at a density just above the I-N transition density. The disks 

with T / R  = 0.2 are clearly in a nematic phase. The disks with T / R  = 0.4 seem to stack in 



misaligned columns that are very resistant to breaking up on the timescale of our 

simulations. The reduced density at the I-N transition is NR '/V = 0.5 and does not change 

with disk thickness from TIR = 0.02 to 0.2. This transition density is the same as that 

found by Eppenga and Frenkel(1984) for infinitely thin disks. After this work was 

completed, quantitatively similar results were obtained by Veerman and Frenkel(1992) on 

a system of cut spheres: the transition is present at a thickness to radius ratio of 0.2 but is 

absent at a ratio of 0.4. 

Summarising the available experimental results, Chandrasekhar (1990) concluded 

that the presence of long, flexible hydrocarbon chains attached to the solid core of discotic 

molecules is necessary for the molecules to form a mesophase between the isotropic liquid 

and solid phases. The results of our simulations show that geometric anisotropy alone is 

sufficient to produce an I-N transition for rigid disks. 

Previous simulations of hard disks in two (Bod and Blair, 1991) and three 

dimensions (Eppenga and Frenkel, 1984) have employed square and cubic periodic 

boundary conditions @bc) respectively. However, it has been shown by Veerman and 

Frenkel(1991) that pbcs can lead to spurious stability of columnar order in a system of 

hard, parallel spherocylinders. Each spherocylinder is a cylindrical segment of length L and 

diameter D capped at each end by a hemisphere of the same diameter. The spherocylinders 

are restricted to remain parallel at all times but their centres of mass may translate freely in 

the three-dimensional simulation box. The original work by Stroobants et al. (1987) found 

a columnar phase for LID > 4 and densities greater than 60% of the close-packed density 

for a system of 90 spherocylinders. Later work by Veerman and Frenkel(1991) showed 

that the columnar phase is only metastable for LID = 5, and that it is 



Figure 2.17 Snapshot of 100 disk system with T / R  = 0.2 at a 
density of NR ' / (v)  = 0.57, just above the isotropic- 
nematic transition. 



Figure 2.18 Snapshot of 100 disk system with T/R = 0.4 at a 
density of NR 3 / ( ~ )  = 0.5 1, showing the absence of 
nematic order. 



replaced by a hexagonal crystalline phase when the system size is increased to 1080 

spherocylinders. It is the combination of high density and pbcs that stabilise the columnar 

phase in the small system. Following Eppenga and Frenkel(1984) we have used cubic 

periodic boundary conditions for our study of the I-N transition in three dimensions. The 

density we find for the I-N transition ( N R  3/V = 0.5) is considerably smaller than the 

hexagonal-close-packed densities of 12.5 and 1.25 for disks with T / R  = 0.02,0.2 

respectively. Because the transition density is at least a factor of three smaller than the 

close-packed density, we feel that the transition is not induced by the shape of the 

simulation cell. 

2.6.2 Isotropic/Nematic transition at an interface 

We have simulated a system of platelets each restricted to intersect a planar interface 

between two immiscible liquids. The platelets are differentially attracted by their faces and 

edge to the two liquids. They are allowed to rotate and translate in all three dimensions 

subject only to the restriction of intersecting the interface. The disks are defined by their 

thickness to radius ratio T / R  = 0.2, and the energy scale of their interactions with the two 

Liquids g , / g ,  = 5. The ground state of a single platelet with these parameters is for it to be 

flat at the interface. 

The platelets' equation of state does not show any indication of a discontinuity in the 

density regime where the platelets are in close proximity. At low pressure and high 

temperature the mean polar angle of the disks takes the purely random value, and drops 

below the random value at the lowest temperature we could simulate (B~,R' ) - '  = 0.6. 

The hard-core repulsion between the platelets causes them to align at high density with 

their symmetry axes in the plane of the interface. This change occurs smoothly as a 

function of pressure and is not indicative of a phase transition except at zero temperature. 



The fraction of platelets in an upright position at a given pressure is not greatly influenced 

by the temperature within the range studied. 

Upright disks have the possibility of ordering in a nematic phase. However, we find 

little evidence of a sharp onset of such ordering at finite temperature, as measured by the 

tensor order parameter that was useful in the three-dimensional simulations. Boal and Blair 

(1991) found that the upright disks became aligned in a nematic phase, but we do not see 

this effect. The upright disks in their simulations are effectively hard rods of equal length 

confined to a plane, and as such, can undergo an I-N transition. In our simulations the 

disks can occupy many different orientations at the interface, with some disks underlying 

others and preventing them from turning completely upright. This extra orientational 

freedom appears to prevent them from aligning in a nematic phase. Figure 2.19 shows a 

typical configuration of disks at the interface, and the absence of nematic order is 

apparent. 

Finally, we mention two problems that limit the accuracy of the simulations of the 

platelets at an interface. The first is the fact that the free energy of a system of platelets at 

an interface has very narrow minima, as a function of temperature and pressure, which are 

difficult to sample without averaging over an impractically large number of configurations. 

The second problem is the long relaxation time for moving the tightly packed groups of 

platelets that form at high pressure and low temperature. Several platelets may be forced 

into a configuration with their faces parallel that is prevented from breaking up by the 

presence of other platelets. This configuration may be thermodynamically unstable, but 

still require a long simulation time before it breaks up and the platelets can move into a 

more stable orientation. 



Figure 2.1 9 Snapshot of 100 disk system at an interface with 
T / R  = 0.2 and a density of N R 2 / ( ~ )  = 1.75, showing 
the absence of nematic order. 



2.7 Summary 

In this chapter we have described a study of a system of hard disks in three 

dimensions subject to a hydrostatic pressure, and a more specialised model of hard disks 

constrained to intersect a flat, two-dimensional interface between two immiscible liquids. 

In the 3D simulations there is no energy scale in the problem, only the effects of the 

anisotropic geometry of the disks and the applied pressure. Increasing the pressure on the 

system causes it to undergo an isotropic to nematic transition in which the disks align their 

symmetry axes. This transition is absent if the thickness of a disk exceeds 40% of its 

radius. The transition is at most weakly first-order. 

In the second set of simulations the disks are constrained to intersect an interface 

between two immiscible fluids. The faces and edge of a disk have distinct interactions with 

the two fluids. This introduces an energy scale into the problem and leads to minima in the 

energy functional of a disk. In our model there are two such minima for a single disk: one 

has the disk lying in the plane of the interface, the other has it lying perpendicular to the 

interface. 

At low temperature and zero pressure, the disks congregate in the flat state because 

this state has the lowest free energy for disk parameters T / R  = 0.2 and ge/g, = 5. At low 

temperature and high pressure however, the disks orient themselves with their symmetry 

axes in the plane of the interface. The transition between the flat and upright states does 

not appear to be a phase transition except at zero temperature. Disks with their symmetry 

axes in the plane of the interface have the possibility of aligning in a nematic phase. 

However, we see no evidence that they form such a phase. 



CHAPTER 3 

POLYMERISED MEMBRANE SIMULATIONS: THEORY 

3.1 lntroducti'on 

Two-dimensional surfaces occur in physical systems as diverse as biological 

membranes (Nelson et al. 1989; Lipowsky, 1991) and polymerised sheets of graphite 

oxide (Hwa et al., 1991). Fluid membranes may show large thermal undulations; solid or 

polyrnerised membranes are constrained by their connectivity to be flat. The protein 

skeleton attached to the cytoplasmic side of the plasma membrane in a human RBC forms 

a natural example of a polymerised network. The long persistence length of the fluid 

component of the plasma membrane restricts its out-of-plane fluctuations on length scales 

of a micron or less. The spectrin network has approximately two-dimensional behaviour as 

a result of being anchored to the fluid bilayer. The interplay of the two components gives 

the red cell unusual mechanical properties (Sackrnann, 1990) and helps it to maintain its 

integrity in spite of considerable stresses that distort its shape in its passage through the 

capillaries of the body. In Chapters 3 and 4 we investigate the mechanical properties of 

polymerised sheets, such as the spectrin network confined to two dimensions. 

The mechanical response of an object to external forces is embodied in a set of 

elastic constants or moduli (for an introduction see Landau and Lifshitz, 1959). The elastic 

moduli of a material are required to be positive for mechanical stability. Isotropic materials 

have only two independent moduli. The bulk modulus describes the object's resistance to 

changing its volume in response to an applied hydrostatic pressure, and the shear modulus 

describes its resistance to two opposing, non-collinear surface forces. An important 

quantity derived from the bulk and shear moduli is the Poisson ratio. It too is positive in 

almost all known elastic materials, although this is not required for mechanical stability. 



The Poisson ratio relates the strain in a transverse direction to a stress applied 

longitudinally. A positive value means that the material contracts transversely when 

stretched longitudinally; a material with a negative Poisson ratio expands transversely 

when stretched longitudinally. 

Recently, materials with negative Poisson ratios have been fabricated in laboratories 

(Evans and Caddock, 1989; Evans and Alderson, 1992). These materials, mainly foams 

and low density plastics, have been labelled auxetics. Although auxetic materials currently 

have low density and small elastic moduli (compared to rubber, for example), Evans has 

postulated (1991) that materials can be produced with the shear modulus much larger than 

the bulk modulus. One of the techniques used to produce plastics with a negative Poisson 

ratio, and a consequent increase in shear modulus at fixed compression modulus, is to 

process the material so that it has a microstructure which causes it to expand transversely 

when stretched (Caddock and Evans, 1989). Evans proposes (1991) that changing the 

molecular structure of an auxetic material or changing its microstructure on the scale of 

microns will produce materials with large negative Poisson ratios. 

The cytoskeleton that underlies the plasma membrane in a human RBC has the form 

of an approximately hexagonally-connected polymerised network of proteins (Steck, 

1989; Alberts et al., 1989). An RBC has a small (bulk) shear modulus (Evans et al., 1976) 

that is probably due to the cytoskeleton. A recent MC investigation of a model of the RBC 

bilayer with its associated spectrin network (Bod et al., 1992) c o n f d  an earlier 

proposal by Evans (1973) that the structural properties of the cell are determined by an 

interplay of the fluid bilayer and the spectrin network. This work also showed that the 

spectrin network under tension can exhibit a negative Poisson ratio. 

The statistical mechanics of two-dimensional surfaces has been investigated for some 

time (see Frolich, 1985, for references). A simple model of a surface with fixed 



connectivity, called the tethered net model, was introduced by Kantor, Kardar and Nelson 

(1986). A 2D tethered network without self-avoidance (or phantom network) embedded 

in three dimensions shows a phase transition from a low temperature flat phase to a high 

temperature crumpled phase (Kantor and Nelson, 1987). A self-avoiding tethered network 

shows no such transition (Plischke and Bod, 1988; Lipowsky and Girardet, 1990). 

Here we investigate a triangulated, tethered network of Hooke's law springs, with 

and without the self-avoidance constraint, subject to an applied stress. We determine the 

temperature and stress dependence of the model's elastic properties. In the remainder of 

this chapter we derive results from elasticity theory for the elastic moduli of two- 

dimensional sheets. We then present a mean-field-theory calculation of the elastic moduli 

of a triangulated network of Hooke's law springs. This theory allows us to understand 

some of the behaviour of the network, although, as we shall see in Chapter 4, both self- 

avoiding and phantom networks have features that cannot be explained within mean field 

theory. 

3.2 Elasticity in two dimensions 

3.2.1 Elastic constants and stress-strain relations 

Suppose, in the absence of external forces, a body is in a state of mechanical 

equilibrium. Under the action of an applied force, stresses are set up within the body that 

try to return it to its equilibrium state. We describe the deformation of a body under stress, 

using the approach and notation of Landau and Lifshitz (1959), and initially work in three 

dimensions before deriving the results needed for tethered networks in two dimensions. 

Consider an arbitrary body embedded in 3D. Let the coordinates of a point in the body be 

xi, i=1,2,3. When forces are applied to the body they result in a strain and each point of 

the body moves to a new equilibrium position xI'. Consider also another point close to xi, 

xi + h i ,  which is shifted to xI' + &. The displacement field is defined by 



a ~ .  and obviously dx,l= dr, + dui , where du, = d & , .  We employ the summation convention 
axk 

that repeated indices are summed over the number of space dimensions. The distances 

between the two points before and after the stress is applied are 

Expanding Eq.(3.2) gives 

which can be rewritten as 

1 aui auk aul au, 
where uik = - ( + - + - -) is the strain tensor. it is clear that the strain 

2 ax, axi axi ax, 

tensor is a symmetric second-rank tensor. 

Consider an homogeneous body in equilibrium at a given temperature. We can 

expand its free energy as a series of positive powers of the strain tensor uik. To avoid 

spontaneous deformations there can be no term linear in uik. The free energy is a scalar 

and we have to build it out of the second-rank tensor q,. There are only two independent 

second-order invariants that can be constructed for an isotropic material, so the free 

energy must have the form 



2 

where u: = [T uii)  and U: = Z u:. The two constants h p are called Lam6 coefficients. 
ik 

The free energy density in the unstrained state is F,. It may be shown that p is the shear 

modulus of the body. 

The stress tensor is defined as the derivative of the free energy of the body with 

respect to the strain tensor, and has the units of energy density, 

If there are no external forces on the body the stress tensor is zero, and the strain tensor is 

likewise zero. An alternative definition of the stress tensor that is useful is the following. 

Consider a small element of surface on a body. Let the normal to this area element be n,. 

The stress tensor ov is the ith component of the force per unit area acting in the jth 

direction of the normal to the surface, so the force on the area element is o v n j , .  For 

example, a hydrostatic compression exerts the same pressure on all surface elements of a 

body. Hence, oikdAk is the force on area element a ! ! .  But by definition this must equal 

-p&. Thus, in this case, 

We want to find relations among the elastic constants using the stress and strain 

tensors. Later we will use a microscopic model to predict the values of the elastic 

constants. In two dimensions we can rewrite Eq. (3.5) as 

where the area compression mddulus K = 1 + p. Taking the total differential of this 

equation and comparing this with Eq. (3.6), we obtain the stress tensor in terms of the 

strain tensor 



Equation (3.9) may be inverted to give the components of the strain tensor in terms of the 

stress tensor. We find 

We can derive relationships among the various elastic constants using Eqs. (3.9) and 

(3.10). The Young's modulus is defined as the longitudinal stress over the longitudinal 

strain which, in two dimensions, becomes 

and the Poisson ratio is the transverse strain divided by the longitudinal strain, 

3.2.2 Elastic constants and thermal fluctuations 

An MC simulation allows us to calculate ensemble averages and fluctuations of 

observables. An ensemble average calculated from the exact partition function is 

approximated by a finite weighted sum over the sample configurations generated by the 

simulation (see Appendix A for details of the MC procedure). The observables we are 

interested in are the length and breadth of the Hooke's law spring network. The 

fluctuations in these quantities are a measure of the response of the network to an applied 

stress. In the next chapter we extract the network's elastic moduli from the fluctuations of 

observables, instead of using numerical derivatives, for reasons of simplicity. Our 

derivation of the elastic constants from the fluctuations in the box shape at constant 

pressure follows that of Lipowsky and Girardet (1990). 
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Let L,, Ly be the equilibrium values of the box lengths in the x and y directions. We 

define a small change in the lengths by 

The strain tensor, in this case a two-dimensional matrix, has the simple form, 

and the free energy density, Eq. (3.3, is given by 

The partition function and the results of the relevant averages of the fluctuations in the 

box sides are: 

where p = l/k,T, k, is Boltzmann's constant, T is the temperature, and C is a 

normalisation constant. The Young's modulus and shear modulus may be found from these 

equations and Eq. (3.11): 



Note that we have used the average ( Y )  of the Young's modulus in the x and y directions 

in the calculation of the shear modulus. 

The bulk modulus is obtained by considering fluctuations of the box sides about 

their equilibrium values. The average area of the box is 

where the quantity 4 differs from (A) by a term that decreases with (A). Similarly the 

average square of the area is given by 

where we have ignored terms higher than second-order. Hence we obtain 

The bulk modulus is obtained from Eqs. (3.16) and (3.21), replacing 4 by (A): 

The Poisson ratio is determined from the bulk and shear moduli using Eq. (3.12). The bulk 
-1 a(A) 

modulus may alternatively be obtained from the relation, K-' = -- , via a numerical (4 a 
derivative of the equation of state obtained from the simulation. 



3.3 Mean field theory calculation of elastic properties 

We now use a mean-field approach to gain insight into the behaviour of an 

hexagonally-connected, tethered network of Hooke's law springs subject to an external 

stress. Let there be N vertices in the network and let the unstretched length of the springs 

be s,. The energy contained in a single spring is given by Hooke's law 

where k is the spring constant and s, is the length of the'spring connecting vertices i and j. 

In mean field theory we assume that all springs have the same length s, so that the energy 
3 2 J3 

per vertex of the network is Ev = - k(s - s,,) , and the area per vertex is 4. = -s2. The 
2 2 

network can then be tiled by plaquettes, each containing a single vertex. The plaquettes 

have the shape of a rhombus with side length s and interior angles of 60' or 120'. 

We calculate the thermodynamic properties of the network by considering a single 

plaquette (or parallelogram) described by the mean energy and area Ev and 4. A 

plaquette with area 4 has a Boltzrnann weight exp(-p~,). But the plaquettes can take 

on all positive values of 4, so the partition function for the ensemble of plaquettes is 

where C is a normalisation constant. This may be rewritten as 

- 

where the enthalpy per plaquette is 
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The area element dA can be replaced by an integral over the length f i sh .  The result for 

the partition function of the plaquettes is 

where j T = p  andS=- 
J5k ' 

Sh . We may also calculate expressions for the mean spring 
l+j? 

length sp and its dispersion As:. These are complicated functions of the unstretched spring 

length and pressure; but in the limit of low temperature or large stretching pressure, they 

reduce to the following simple forms: 

1 sp = ( + A + - +  ..., 
l+j5 3pk.7, 

As; = (s2) - (s)' = 
1 +-... 

3Pk(l+ B) 

Equation (3.28) shows that the network has an instability for a finite, negative value of the 

pressure. When p/k = -A the network expands without limit. The higher order terms in 

Eq. (3.28) contain exponentials of the form exp(-+ pk(l+ P)s') and cannot remove the 

singularity at p/k = -& . 

We can now derive a criterion for the applicability of the mean field theory (MFT 

hereafter) in describing the network's behaviour. The derivation leading up to Eq. (3.28) 

assumes that all springs in the network have the same length. We expect this 

approximation to be accurate when the dispersion in the spring length is small compared 

to the stretched equilibrium value. This condition is 



This shows that the MFT is accurate at low temperatures, k , ~ / k s :  << 1, or in the limit 

Next we calculate the enthalpy of deformation of a network composed of equal 

length springs and extract the elastic moduli for the network. We consider two 

deformations: a pure compression and a simple (area-preserving) shear. In this way both 

moduli are derived using similar procedures. 

Compression Modulu 

Consider a network of equilateral triangles with the length of side of each triangle 

stretched by a uniform amount, s, + (1 + E)s,. The enthalpy per vertex of the network 

initially is 

and the enthalpy change of the deformation is 

The area per vertex of the network is Ss ; ,  so the enthalpy density Ah for the deformation 

is 
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This may be compared with the general result from Eq. (3.8), AF = 2 K E ~ ,  obtained by 

setting y, = ~c, = E, and 4, = = 0. Hence the compression modulus is 

Shear M o d u l ~  

Consider a small, area-preserving shear of a triangle with E << s,, as shown in Fig 

3.1 below. 

Figure 3.1 Simple shear for an equilateral triangle. One vertex is 
moved parallel to the opposite side by an amount that is 
small compared to the original side length. 

The enthalpy per vertex of the network before the shear is again given by Eq. (3.30) and 

after the shear it is 

where 

s; = s; + E2s; - 2fs; cos 120, 

s: = sz + e2sz - 28; cos60. 

This corresponds to an enthalpy change 



The enthalpy density per vertex is then 

and, comparing this with the general form, AF = $pe2, obtained from Eq. (3.8) by setting 

24, = 4, = & / A ,  and y, = u, = O ,  gives the result, 

Poisson R a t i ~  

Finally we calculate the Poisson ratio from the two moduli just derived. It is defined 

in terms of K,p in Eq. (3.12). Substituting the expressions above gives 

We show the behaviour of the elastic constants and Poisson ratio as a function of pressure 

in Figure 3.2. For later reference we also show how they vary with the area per vertex in 

Figure 3.3. 



Figure 3.2 MFT predictions for compression modulus K/k, shear modulus 
p / k  , and Poisson ratio o of a 2D network of Hooke's law springs 
as a function of the pressure p /k  on the network. Note that a 
negative pressure stretches the network, and the network expands 
without limit at a pressure of p / k  = -&. 



Area per vertex 

Figure 3.3 MFT predictions for compression modulus K/k, shear modulus 
p/k, and Poisson ratio o of a 2D network of Hooke's law springs 
as a function of the normalised area per vertex A/NS: . 



3.4 Summary 

In this chapter we have investigated a network of Hookean springs confined to two 

dimensions. We have derived results for the elastic constants of the network from 

elasticity theory and from the fluctuations of observables that can be obtained from a 

Monte Carlo simulation. 

The network has a temperature scale set by the combination ks i l k ,  , where k  is the 

Hooke's law spring constant and s,, is the unstretched spring length. The network is 

subject to an applied pressure p l k .  We have shown how the bulk and shear moduli of the 

network may be calculated from fluctuations in its size. The Poisson ratio for the network 

is derived from these two moduli and relates the transverse strain to a stress applied 

longitudinally. The Poisson ratio of a material is usually positive, although this is not 

required for stability. Materials have recently been produced that have negative Poisson 

ratios. This means that they expand transversely when stretched longitudinally. 

We have introduced a mean field theory of a network of Hookean springs that 

allows us to calculate the network's behaviour, and its elastic constants, as a function of 

the temperature and pressure. The mean field theory predicts that the network expands 

without limit when the applied pressure satisfies p / k  i -&. In the Limit of low 

temperature, k , ~ / k s i  <<I, or as the pressure k  + - 1 ,  the average spring length and 

its dispersion take on simple forms. It is only in these limits that the mean field theory is 

accurate. The elastic moduli are calculated from small deformations of the network and 

show that the bulk modulus vanishes at the singular pressure p/&k = -1. The Poisson 

ratio is predicted to be negative for all pressures below p / k  = -&/5 = -0.35. 



CHAPTER 4 

POLYMERISED MEMBRANE SIMULATIONS: RESULTS 

4.1 Introduction 

Two-dimensional spring networks have been extensively investigated in the context 

of percolation theory (Feng and Sen, 1984) and elasticity (Thorpe and Garboczi, 1990). 

Feng, Thorpe and Garboczi (1985) studied the elastic properties of a network when a 

fraction of the bonds is removed, the so-called random network. Tang and Thorpe (1988) 

examined the elastic properties of random networks under an applied tension. The 

percolation threshold and the behaviour of the elastic constants of the network near this 

threshold were investigated. A surprising result obtained by Thorpe and Garboczi (1990) 

is that a regular network of Hooke's law springs appears to form pleats, as parts of the 

network overlap, when the strain is large. They examined a network of springs with two 

different natural lengths, confined to two dimensions with no applied tension. When the 

natural lengths differed by 5096, sections of the network overlapped as nearest-neighbour 

bonds crossed each other. This pleating occurred suddenly, and the properties of the 

network showed no anticipation of the change. 

In this chapter we present results for the elastic properties of a regular, triangulated 

network of Hooke's law springs subject to an applied tension. Our results are derived 

within the constant-pressure ensemble and are complementary to the above work, which 

was carried out on free networks, or within the constant-area ensemble. The bonds in our 

network are flexible springs with a Hooke's law potential energy function, 



where k is the spring constant, sh is the unstretched spring length and s, is the distance 

between vertices i and j. There is no maximum length to the springs. The networks are 

subject to an applied pressure and we investigate their elastic properties using Monte 

Carlo simulations in the NPT ensemble. In these simulations the lengths of the x and y 

dimensions of the network are changed independently, and the elastic moduli of the 

network are obtained from fluctuations in the box side lengths. In the results that follow, 

we consider sh to set the length scale and express the temperature in the dimensionless 

combination, k,~/ks:, and the pressure as p/k. For the rest of this chapter the pressure 

on the networks is restricted to the range p/k = 0 to -&, corresponding to a network 

under tension. 

Consider a rectangular patch of N vertices connected by 3N springs cut from a 

triangulated network and confined to two dimensions. A typical snapshot of a stretched, 

regular network is shown in Figure 4.1. We first present results for self-avoiding 

networks, in which the springs are constrained not to intersect each other; later we remove 

the self-avoidance constraint and consider networks in which the springs can cross, the so- 

called phantom networks. In order to reduce the influence of the edges of the network, 

periodic boundary conditions are used. The essence of the constant pressure MC method 

is to make small random changes in the variables of interest, here, the positions of the 

vertices and the lengths of the box sides, and to assign a pseudo-Boltzmann weight to the 

resulting configuration. This weight ensures that the configurations generated by the MC 

method are distributed according to the equilibrium probabilities of the canonical 

ensemble. The interesting network observables are obtained from the configurations and 

used to construct thermodynamic averages. The NPT ensemble allows us to set the 

pressure and extract the area of the system as an ensemble average. The technical details 

of the simulations are described in Appendix B, where we also describe the error analysis 

for the simulations. 



Figure 4.1 Stretched Hooke's law network at a pressure p/k = -1.5. The 
temperature is k ,~ /k s :  = 1, and the average spring length is 
(s)/s,, = 7.5. The network shown has N = 144 vertices. 
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4.2 Self-Avoiding Hooke's law network 

We examine first the mean area per vertex, ( A ) / N  s i ,  of the self-avoiding (SA) 

Hooke's law network. This is shown in Fig. 4.2 for the range of temperatures simulatedl, 

together with the zero-temperature mean-field-theory2 (MFT) prediction from Section 3.3 

for comparison. 

Figure 4.2 Area per vertex (A)/NS: against pressure p /k  for self-avoiding 
Hooke's law network at several temperatures k , ~ / k s : .  N = 144 
vertices. The T=O MFT prediction from Eq. (4.2) is shown for 
comparison. 

'We have omitted the curve for infinite temperature as it cannot be normalised to appear in this graph. 
2 ~ n  the rest of this chapter we identify the zero temperature mean field results by the abbreviation T=O 
m. 



The MFT of Chapter 3 predicts that the area per vertex, scaled by the unstretched 

spring length ( A ) / N S :  , should increase with tension (negative pressure) at constant 

temperature. Mean field theory also predicts that the area per vertex should increase with 

temperature at constant pressure. These results follow from Eq. (3.28) and are both seen 

in Fig. 4.2. At the' highest temperature simulated, k,T/ks: = 4, there is a significant 

deviation of the area per vertex from the T=O MFT prediction except for pressures 

p / k  < -1.2. At the temperature k , ~ / b :  = 1 the simulation agrees with the T=O MFT 

prediction except for pressures p /k  > -0.3. These deviations agree with Eq. (3.28), where 

the first correction term to the average spring length grows with the temperature. 

Recalling Eq. (3.28) 

from which the area per vertex is 

Figure 4.2 and Eq. (4.2) show that finite-temperature corrections to the T=O MFT result 

become irrelevant when the networks are highly stretched, that is, as p / k  -t -&. The 

instability of the network at p / k  = -& predicted by MFT is also seen in Fig. 4.23. The 

area per vertex is predicted to increase to infinity by Eq. (4.2) when p / k  = -&, and this 

behaviour appears in the simulations. 

The average spring length is shown in Fig. 4.3, and follows the zero temperature 

mean field prediction of Eq. (3.28) except at the highest temperature, k,T/ks: = 4, which 

shows an obvious deviation for pressures p /k  > -1.2. The curve at the lowest 

temperature kBT/ks: = 0.01 agrees with the T=O MFT curve to better than 1% in Figure 

3~ot ice  that the y axis scale is logarithmic in Fig. 4.2, so the area increase is steeper than it appears. 



4.3. The finite-temperature MFT predicts that the average spring length should increase 

with temperature at fixed pressure, and this effect is also seen in Fig. 4.3. 

For each configuration in the simulation, we define an average spring length, S,  and 

its standard deviation, a ( ~ ) .  The quantity S averaged over all the configurations in the 

simulation gives the average spring length (s)/sh plotted in Fig. 4.3. In Fig. 4.4 we show 

the standard deviation of the spring length, averaged over all configurations, divided by 

the average spring length (o(S))/(s). This shows the relative spread of spring lengths 

within a single configuration. 

This ratio approaches zero when the network is stretched at high pressure, but it 

Temperature 

0.0625 

+ 0.01 - - = T=OMFT 

Figure 4.3 Average spring length (s)/sh against pressure p / k  
for self-avoiding Hooke's law network at four 
temperatures k , ~ / k s : .  N = 144 vertices. The T=O 
MFT prediction from Eq. (3.28) is shown for 
comparison. 



stays finite even as the pressure approaches zero. This is predicted by MFT in Eq. (3.28) 

of Chapter 3. However, in the simulations this ratio is also finite at infinite temperature. 

The low temperature mean field theory is obviously invalid at high temperatures, but Eq. 

(3.28) predicts that the corrections to the average spring length diverge as the temperature 

increases. Notice that the average spring length at infinite temperature cannot be plotted in 

Fig. 4.3, but that the relative standard deviation in Fig. 4.4 is well-defined. 

Figure 4.4 Relative standard deviation of spring length (o(~))/(s) 
against pressure p/k for self-avoiding Hooke's law 
network at all temperatures k,T/ks: considered. N = 
144 vertices. 

When the lateral pressure on the network is zero, MFT predicts that the average 

spring length (s)/s,, = l+  kBT/3h$ (see Eq. (3.28)). Figure 4.5 shows that the low- 

temperature simulations, k,~/ks: 5 0.0625, agree with T=O MFT but that the simulations 

at temperatures k,~/ks: 2 1 do not. The discrepancy between T=O MFT and the 



simulations grows with temperature, as expected. The criterion for the low temperature 

MFT, Eq. (3.28), to be applicable is Eq.(3.29) which requires k,T/ks: << 3 at zero 

pressure. 
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Figure 4.5 Average spring length (s)/s, at zero pressun against 
temperature k,T/ks: for self-avoiding Hooke's law network. 
The MFT prediction at T=O and the prediction including the 
first-order temperature correction are shown for comparison. 
N = 144 vertices. 
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The relevant elastic constants of the two-dimensional network are the compression 

(K) and shear (p) moduli. These may be combined a give the Poisson ratio (0). Figure 

4.6 shows the compression modulus against pressure for all the temperatures simulated. 

The compression modulus is defined in Section 3.2.2, and has the interpretation that a 

large value of K means that the material is rigid and fluctuations in its size are small. 

Temperature 

Figure 4.6 Compression modulus K / k  against pressure p / k  for self- 
avoiding Hooke's law network at all temperatures k , ~ / k r :  
considered. N = 144 vertices. The T=O MFT prediction from Eq. 
(3.31) is shown for comparison. 

The trend in Fig. 4.6 is clear: as the pressure approaches the unstable point 

p / k  = - &, a small change in pressure produces a large change in network area and the 

compression modulus vanishes. As the pressure tends to zero the network becomes harder 

to compress until, at zero pressure, there is a temperature-dependent residual resistance to 
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compression. It is also clear from Fig. 4.6 that the zero temperature mean field expression 

for the compression modulus is only applicable for a network under a significant tension or 

at a low temperature, as expected. 

For comparison we show the same results for the compression modulus against the 

area per vertex in Fig. 4.7 below. This shows that the data for different temperatures 

collapse onto one curve, the zero-temperature mean-field expression, 

Area per vertex 

Figure 4.7 Compression modulus K / k  against area per vertex ( A ) / N S :  for 
self-avoiding Hooke's law network at three temperatures k , ~ / k s : .  
N  = 144 vertices. The T=O MFT prediction using Eqs. (3.3 1) and 
(4.2) is shown for comparison. 
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when the network is stretched4. Notice that the infinite-temperature simulation cannot be 

normalised to plot against the area per vertex but is well-defined when plotted against 

pressure. 

In Fig. 4.8 below we show the shear modulus against pressure for all temperatures. 

Temperature 
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Figure 4.8 Shear modulus p / k  against pressure p / k  for self-avoiding 
Hooke's law network at all temperatures k,T/ks: considered. 
N = 144 vertices. The T=O MFT prediction from Eq. (3.32) is 
shown for comparison. 

'we omit the curve for a temperature of k , ~ / k r :  = 0.01 here and in Figure 4.9 for clarity, as it is 
indistinguishable from the T=O MFT curve. 
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The shear modulus reflects the network's ability to resist two opposing, non-collinear 

forces in the plane, and a large value implies a strong resistance to shear. It can be seen 

that the shear modulus approaches the zero-temperature mean-field predictions from Eq. 

(3.32) (p/k = J5/4 at zero pressure, and p/k = & at a pressure of p/k = -&) for 

temperatures k,T/ks: < 1. We show the same mults against the area per vertex in Fig. 

4.9. This figure, and Fig. 4.7, show that as p/k -+ -a the network behaviour agrees 

with the T=O MFT prediction, in that the relative fluctuations of the spring lengths are 

small compared to the equilibrium length. 

Temperature 

Area per vertex 

Figure 4.9 Shear modulus p/k against area per vertex ( A ) / N S :  for 
self-avoiding Hooke's law network at three temperatures 
k,T/ks: considered. N = 144 vertices. The T=O MIT 
prediction using Eqs. (3.32) and (4.2) is shown for 
comparison. 
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At low temperatures k,T/k.s: < 1. Figures 4.6 and 4.8 show that the ratio of the 

compression modulus to the shear modulus approaches the value of one half in the limit of 

zero pressure. This is predicted by the T=O MFT in Eqs. (3.31) and (3.32) in Section 3.3. 

The Poisson ratio o is defined in Eq. (3.12) of Section 3.2.1, and it was mentioned 

in the introduction to Chapter 3 that almost all materials have a positive Poisson ratio. We 

plot the Poisson ratio for the SA network in Fig. 4.10. For pressures p / k  < -0.25. the 

Poisson ratio is negative and becomes more negative with increasing pressure. It also 

appears from the figure that this result depends only weakly on temperature. There are 

fluctuations in the data but the trend is consistent for all temperatures. The results are in 

close agreement with the zero-temperature mean-field prediction of Eq. (3.33). 

Figure 4.10 Poisson ratio o against pressure p / k  for self-avoiding Hooke's law 
network at all temperatures k,T/k.s: considered. N=144 vertices. 
The T=O MFT prediction from Eq. (3.33) is shown for 
comparison. 



4.3 Phantom Hooke's law networks 

The self-avoiding network described in the previous section does not allow springs 

to cross one another. Removing this constraint produces a phantom network, whose 

springs can freely intersect. Here we describe the behaviour of the phantom network and 

compare it with that of the self-avoiding network. It may be recalled that phantom 

networks exhibit a collapsed phase in which the linear dimension grows with the logarithm 

of the system size. We do not investigate this regime here, because the simulations 

converge very poorly for the system sizes achievable. 

It may be useful to mention here one-dimensional analogues of two-dimensional self- 

avoiding and phantom networks confined to a plane. The analogue of a self-avoiding 

network is the self-avoiding chain; and the analogue of a phantom network is the phantom 

chain, or random walk. The random walk as a model of a polymer has been extensively 

investigated and many results are known (see de Gennes, 1979 for a comprehensive 

discussion). Of relevance here is the comparison of the average size of the self-avoiding 

and random walks. The self-avoiding walk in one dimension consists of N equal length 

steps without overlap. Hence its average size is equal to its maximum size, Na , where a is 

the size of each step. By contrast, the average displacement of a one-dimensional random 

walk is given by N 'a, with v = l/2. Removing the constraint of self-avoidance thus causes 

the walk to shrink. We anticipate that the self-avoiding and phantom networks in two 

dimensions will have different properties, as have self-avoiding and random chains in one 

dimension. 

The first difference between the phantom and self-avoiding networks is seen in the 

norrnalised area per vertex shown in Figure 4.1 1. The phantom networks are seen to 

collapse to a small area at values of the pressure that depend on the temperature. Note 

that, although the phantom network at a temperature of k , ~ / k s :  = 0.0625 appears to 



76 

remain expanded even at zero pressure, it actually collapses to a value ( A ) / N S :  c 0.05 at 

a pressure very close to zero. In the highly stretched regime, as p/k + -&, the SA and 

phantom networks coincide, because the external pressure prevents the springs in the 

Temperature 
2 

Figure 4.1 1 Area per vertex ( A ) / N S :  against pressure p/k for self-avoiding 
(without markers) and phantom (with markers) Hooke's law networks at 
three temperatures k , ~ / k s : .  N  = 256,400 vertices for the phantom 
network. The T=O Mm prediction from Eq. (4.2) is shown for 
comparison. 

phantom network from overlapping. Hence, when the pressure p/k < -1.2, the SA and 

phantom networks both agree with the T=O MFT prediction, to within the accuracy of the 

simulations. 



The average spring length as a function of pressure is shownS in Fig. 4.12, and the 

relative standard deviation of the spring length is shown in Fig. 4.13. The average spring 

length in the phantom network agrees with the T=O MFT prediction when the network is 

stretched at pressures p /k  < -1.2. Unlike the area per vertex, the average spring length 

does not show a significant decrease even close to the collapse transition. 
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Figure 4.12 Average spring length ( s ) / s ,  against pressure p / k  for a phantom, 
Hooke's law network at three temperatures k , ~ / k s : .  N = 256,400 
vertices. The T=O MFT prediction from Eq. (3.28) is shown for 
comparison. 

For example, at a temperature of k , ~ / k s :  = 4, the pressure p / k  = -1.02 is within 

2% of the collapse pressure, but the average spring length is still (s/s,,) = 2.040f 0.002, 

5 ~ e  omit the SA results in Fig. 4.12 for clarity. They are indistinguishable from the T=O MFT curve for 
temperatures k , ~ / k s :  < 1.  



and the dispersion of spring lengths within a configuration is o(s) = 0 . 0 3 ~ ~ .  This may be 

compared with a stretched configuration at a pressure of p/k = -1.25, for which the 

average spring length is (s/sh) = 3.540 k 0.004 and the spread within a configuration is 

o(s) = 0 . 0 4 ~ ~ .  

Figure 4.13 shows that the relative dispersion in the spring lengths approaches zero 

as p/k + -A, as found for the SA network in Fig. 4.4, but increases as the collapse 

pressure is approached, in contrast to the SA network where the dispersion tends to a 

temperature-dependent constant as the pressure approaches zero. This suggests that the 

relative range of spring lengths in the phantom network increases as the network 

collapses. 

Temperature 

Figure 4.13 Relative standard deviation of spring length (o(~))/(s) 
against pressure p/k for phantom Hooke's law network at 
t h e  temperatures k , ~ / k s : .  N = 256,400 vertices. 



We plot the average spring length normalised by the square-root of the area per 

vertex in Fig. 4.14. This ratio is constant within the T=O MFT, as may be seen from Eqs. 

(3.28) and (4.2), and has the value ( ~ 2 ) '  = 1.07. This value implies that the simulation 

2 5  - + 
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Figure 4.14 Normalised spring length (s)/Jm against pressure p/k , at 
three temperatures k ,~ /ksf ,  for phantom Hooke's law network 
showing the abrupt decrease in the network area at the collapse 
transition. N=256,400 vertices. The T=O MFT value from Eqs. 
(3.28) and (4.1) is shown for reference. 

box is much larger than the average spring length in the network. When the average spring 

length approaches the dimensions of the system, the periodic boundary conditions become 

unreliable, as a vertex may interfere with its own periodic reflections. We have used 400 

and 900 vertices for simulations close to the transition to try to keep the system 

dimensions larger than the average bond length. However, the reduction in the area per 

vertex is too great to allow us to simulate a collapsed network accurately. 



80 

The elastic constants for the phantom network show very different behaviour from 

that found in the SA network. The compression modulus is shown in Fig. 4.15 together 

with that of the self-avoiding network and the zero temperature mean field prediction. 

Both types of network agree with each other and the T=O MFT, when they are highly 

Temperature 

Figure 4.15 Compression modulus K/k against pressure p/k for phantom 
and self-avoiding networks at three temperatures k , ~ / k s : .  
The markers show the phantom network data. N = 256,400 
vertices. The T=O MET prediction from Eq. (3.3 1) is shown 
for comparison. 

stretched and the pressure p/k -A. As the pressure is reduced to zero the 

compression modulus for the phantom network reaches a maximum value and then drops 

to zero at a pressure that depends on the temperature. 



There are thus two limits in which the phantom membrane has a small resistance to 

compression: when p / k  + -4 the network is highly elastic and responds strongly to an 

infinitesimal change in pressure, and as the pressure is reduced to zero the springs in the 

network overlap allowing large fluctuations in area for small pressure changes. 

Figure 4.16 compares the shear modulus for the SA and phantom networks with the 

T=O MFT prediction. As for the compression modulus, the shear moduli for both types of 

network agree as the pressure plk + -A. The shear modulus for the phantom network 

drops rapidly to zero at the same temperature-dependent pressure as the compression 

modulus and area per vertex. 

Temperature 
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Figure 4.16 Shear modulus p /k  against pressure p / k  for phantom and self- 
avoiding networks at three temperatures k , ~ / k s : .  The markers 
show the phantom network data. N = 256,400 vertices. The T=O 
MFT prediction from Eq. (3.32) is shown for comparison. 
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The Poisson ratios for the SA and phantom networks are compared in Figure 4.17. 

Both networks have a negative Poisson ratio for all pressures p /k  < -0.4. Unlike the 

results for the SA network where all the curves collapsed onto the T=O MFT result, the 

Poisson ratio for the phantom networks falls away from the T=O MFI' curve at the same 

values of the pressure as found for the elastic constants and area. Note that for clarity we 

only show the SA curve at a single temperature as the curves at other temperatures are 

similar. 

Temperature 

Figure 4.17 Comparison of Poisson ratio o against pressure p / k  for phantom 
and self-avoiding Hooke's law networks with T 4  MFT. The line 
without markers is for a self-avoiding network at a temperature 
k , ~ / k r :  = 1. N = 256,400 vertices. The T=O MFT curve from 
Eq. (3.33) is shown for comparison. 
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At the lowest temperature k , ~ / k s :  = 0.0625, the Poisson ratio appears to tend to 

the T=O MFI' limit of l/3 at zero pressure as predicted by Eq(3.33). However, we expect 

that at zero pressure the data will again diverge from the T=O MFT curve as mentioned at 

the beginning of this section (see page 76). 

Finally, we show an order parameter for the collapse transition in Figure 4.18. The 

order parameter is obtained from the normal vector to a triangle defined by three adjacent 

vertices in the network. This vector is positive by construction for the initial configuration 

Figure 4.18 Order parameter (twice the fraction of inverted triangles) 
against pressure plk  for phantom network at a temperature 
k , ~ / k s :  = 1. N = 256,400 vertices. 
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of springs in the regular, hexagonal network. If two of the springs along the side of a 

triangle subsequently cross, the sign of the normal vector is changed. We call such a triangle 

an inverted triangle. The order parameter is twice the fraction of inverted triangles. 

4.4 Discussion 

The zero temperature mean field theory of Chapter 3 accurately predicts the 

behaviour of both self-avoiding and phantom Hooke's law networks in the limits of low 

temperature, k,T/k.s: < 1, and high extension, p /k  -+ -4. In these regimes, both types 

of network are composed of equivalent springs whose length is given by Eq. (3.28). The 

fluctuations in the spring lengths, relative to the equilibrium length, tend to zero as the 

network becomes highly stretched or the temperature tends to zero. 

At constant temperature, k ~ / k r :  < 1 ,  the area per vertex of the self-avoiding 

network differs slightly from the T=O MFT prediction as the pressure tends to zero. When 

the first finite temperature comction term to the area per vertex is included, the difference 

is reduced below 5%. At higher temperatures, k , ~ / k s :  > 1, the area per vertex diverges 

from the T=O MFT result as the pressure decreases. This divergence is not accurately 

represented by including only the first correction term to the T=O MFT result. Including 

further terms is not warranted, because the assumption on which the T=O mean field 

theory is based breaks down at high temperatures. The zero temperature assumption is 

that all the springs in the network are at the same equilibrium length. This assumption 

becomes less applicable for the self-avoiding network at temperatures k , T / b :  > 1. At 

these temperatures the dispersion of the spring lengths approaches one half of the 

equilibrium length as the pressure tends to zero, which shows there are many different 

spring lengths in the network. 
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The area per vertex for the phantom network is close to zero6 below a temperature- 

dependent pressure. We refer to this effect as the collapse transition. Simultaneously, the 

dispersion in the spring length divided by the equilibrium length increases as the network 

approaches the collapse transition. This behaviour cannot be described within mean field 

theory. The springs in the phantom network become much less regular than is found in the 

self-avoiding case, although they maintain an average spring length not very different from 

the T=O MFT prediction. This is borne out in the snapshot of the phantom network near 

the collapse transition shown in Figure 4.19. 

At the critical pressure p/k = -& both the self-avoiding and phantom networks 

appear to expand without limit as predicted by T=O MFT. The unstable expansion of the 

network at a finite pressure follows from consideration of the energy density of the 

springs. The work done in stretching the springs in the network is the product of the 

pressure and the area. Both the spring potential energy and the work scale linearly with the 

area of the network. A fluctuation that causes an increase in the area of the net, M, 

produces a negative contribution7 to the enthalpy due to the external pressure, pAA . This 

is opposed by the increase in the spring energy k(s - s ~ ) ~  but, depending on the relative 

magnitudes of the pressure and the spring constant, the net change in the enthalpy may be 

negative. In this case the fluctuation will grow, causing the network to undergo an 

unstable increase in area. 

-- 

6 ~ t  zero pressure the area per vetex ( A ) / N S :  < 0.05. 
7~ecall that a stretching pressure has plk < 0. 



The elastic moduli of the self-avoiding network agree with the T=O M l T  predictions 

for temperatures k,T/ks: c 1, and in the limit p/k  + -&. Both the compression and 

shear moduli diverge from the T=O M l T  predictions at temperatures k,T/ks: > 1. This 

deviation is larger than predicted by the first term in the finite temperature mean field 

theory. The Poisson ratio agrees with the T=O MFT prediction surprisingly well. 

Figure 4.19 Phantom Hooke's law network near the collapse transition. The 
pmsure is p/k  = -0.8, and the temperatwe is k,T/ks: = 1. The 
network shown has N = 256 vertices. 



The elastic moduli of the phantom network behave quite differently from those of 

the self-avoiding network near the collapse transition. As the pressure is increased from 

p / k  = -&, the compression modulus follows the T=O MFT at f i t  and then falls to zero 

at a finite, temperature-dependent pressure. The shear modulus, compression modulus and 

area collapse occur at the same pressure and temperature. There are thus two regimes 

where the compression modulus of the phantom network vanishes. At the critical pressure 

p / k  = -& an infinitesimal change in pressure produces an infmiteg change in area and the 

network ceases to resist a hydrostatic pressure. Reducing the tension from the critical 

value allows the network to reduce its area by decreasing the length of its constituent 

springs. As the collapse transition is approached however, the phantom network area is 

further reduced as springs overlap. Because the spring lengths are not significantly 

different from their equilibrium value, there is no energy cost to these configurations, 

although there is a considerable entropy gain. The Poisson ratios for the phantom and self- 

avoiding networks are negative, and coincide when the networks are highly stretched or at 

low temperatures k,~/k-s:  < 1. The Poisson ratio for the phantom network exhibits a 

maximum, below zero, and then drops to a more negative value as the pressure is reduced 

towards zero, while that for the self-avoiding network increases and becomes positive at a 

pressure just below zero. 

4.5 Summary 

We have presented results for the elastic properties of a two-dimensional membrane 

modelled as an hexagonal network of vertices connected by Hooke's law springs. The 

effects of temperature and an applied stretching pressure on the network's behaviour have 

been examined. The difference between a network in which the springs are self-avoiding 

and one in which the springs can cross is also investigated 

8 ~ n  the thermodynamic limit of an infinite network. 



The self-avoiding and phantom Hooke's law networks show an instability as the 

applied pressure approaches plk  = -&: both networks expand without limit As the 

pressure approaches zero, the behaviour of the two types of network diverges. The self- 

avoiding network approaches a stable state with the springs subject to thermal fluctuations 

about a finite average length. The fluctuations are smaller at lower temperatures as 

expected from zero temperature mean field theory. By contrast the phantom network 

shows a transition to a collapsed state of very small network area at a non-zero value of 

the applied pressure. The transition pressure depends on the temperature, and the elastic 

constants of the network approach zero at this pressure. The collapse process involves 

springs in the network crossing to remove area from the network at low pressures. The 

springs that overlap are not compressed significantly from their average length in the non- 

overlapping regions of the network. 

The compression and shear moduli for the self-avoiding network approach the ratio 

K/p = 2 predicted from zero temperature mean field theory as the pressure approaches 

zero, for temperatures k,T/ks: < 1. This agreement is lost for networks at higher 

temperatures. A criterion derived in Chapter 3 predicts that networks at zero pressure 

should agree with zero temperature mean field theory for temperatures k,T/ks: cc 3, and 

this is borne out in the simulations. The first term in the finite temperature mean field 

theory accurately predicts the network behaviour for temperatures up to k , ~ / b :  = 1. 

Both self-avoiding and phantom Hooke's law networks have a negative Poisson ratio 

over a large range of applied pressure. The Poisson ratio for self-avoiding networks agrees 

with zero temperature mean field theory at all the temperatures simulated. The Poisson 

ratio for the phantom network agrees with the T=O prediction when the network is highly 

stretched, but it exhibits a maximum and then drops to a more negative value as the 

pressure is reduced towards zero. 



CHAPTER 5 

FLUID MEMBRANE STABILITY AND RUPTURE 

5.1 Introduction 

Lipid molecules spontaneously aggregate to form micelles or bilayers when placed in 

an aqueous solution at sufficient concentration (Israelachvilli, 1992, Ch. 16). The type of 

aggregate formed, e.g., micelle, bilayer, bicontinuous phase, etc., is determined by the 

physical characteristics of the lipids, such as their headgroup size and the length of their 

hydrocarbon tails. The stability of an aggregate results from the hydrophobic effect of the 

lipids and depends on the concentration of lipids in the surrounding aqueous environment. 

The cohesive energy of the lipids in a bilayer, for example, is also altered by adding lipids 

of incompatible shape. It is known that chemically mating erythrocytes with tellurite 

compounds (among others) causes leakage (Deuticke et al., 1992), although this process 

involves transmembrane proteins and protein-lipid interactions. 

The health of a cell depends on the integrity of its plasma membrane which maintains 

its controlled isolation from the extracellular space. The lipid bilayer provides a tight 

chemical insulator that separates the interior of the cell from the exterior (Bloom, Evans 

and Mouritsen, 1991). Nevertheless, controlled transport of ions across the bilayer is 

needed to maintain constant cellular volume under osmotic stress. The fluid bilayer cannot 

support a significant pressure difference (Tanford, 1979), so transmembrane proteins 

control osmotic gradients by pumping ions across the bilayer. Thermal and osmotic 

stresses also act to destabilise the bilayer. Several experimental means have been used to 

probe the stability of the lipid bilayer by subjecting it to a lateral tension. Such tension is 

opposed by the hydrophobic effect of the lipids, but may cause the cell to rupture, or lyse, 

if the stress is sufficiently great. Experiments have also been directed at the reverse 



process of attempting to reseal ruptured cells by adding surfactants that congregate at 

holes in the bilayer (Lee at al., 1992; Lee et al., 1994). In this chapter we investigate the 

stability of a model fluid membrane against hole formation at finite temperature and the 

effects of an applied tension. 

Experimentally, cell lysis may be induced by means of an electric field across the cell 

that compresses the membrane (Glaser et al., 1988; Zhelev and Needharn, 1993; Wilhelm 

et al., 1993; Freeman et al., 1994) or by placing the cell in a hypoosmotic solution, causing 

it to swell (Ertel et al., 1993; Hallett et al., 1993; Mui et al., 1993). Both processes tend to 

pull apart the lipids in the plasma membrane, thereby reducing their cohesion. 

Electroporation experiments show that the increase of the membrane area prior to rupture 

is small, only 2-3 percent of the total area, and the tension needed is of the order of 2-15 

dyn/cm (Evans and Needham, 1987; Needham and Hochmuth, 1989). 

It is not clear from experiments whether rupture occurs via a single large hole or 

many small holes. Vacancy condensation in ideal monolayers may result in the formation 

of a single large hole (Jo6s et al., 1994). Electroporation experiments suggest that 

irreversible membrane rupture proceeds via the unstable growth of a single hole (Wilhelrn 

et al., 1993), while reversible leakage of intracellular solutes follows the appearance of 

many small holes. In addition, Hallett et al. (1993) and Mui et al. (1993) find that lysis of 

vesicles under hypoosmotic stress is not always irreversible. Vesicles swell until they 

rupture and eject some of their lurnenal contents, whereupon they reseal. If the residual 

osmotic gradient is still great enough they will lyse again and eject another fraction of their 

contents. Taupin et al. (1975) measured the time-dependent leakage of a marker molecule 

from egg lecithin vesicles as a function of osmotic stress. They found different functional 

dependences for the leakage rates at high and low stress that were well described by 

postulating the irreversible growth of unstable holes that rupture the vesicle at high stress 

and fluctuations in size of many small, stable holes at low stress. 
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Recent experiments on the diffusion of water across lipid bilayers (Jansen and 

Blurne, 1995) have been interpreted by postulating that small, transient pores created by 

thermal fluctuations of the lipids are always present in the plasma membrane of a cell. 

Transient pores have been used previously (Taupin et al., 1975) to account for variation in 

leakage rates of marker molecules in rupture experiments. Glaser et al. (1988) proposed 

that reversible electrical breakdown of lipid membranes involves two types of pore: the 

first are hydrophobic, with the lipid hydrocarbon tails in contact with the aqueous 

surroundings, the second are hydrophilic, in which the lipids around the pore rearrange so 

as to expose only their headgroups to the sumounding solution. They suggest that 

hydrophobic pores are formed spontaneously by thermal fluctuations of the lipids, and, if a 

pore has sufficient energy to overcome an energy barrier it rearranges into a hydrophilic 

pore. 

A lipid bilayer subject to a lateral tension is in a metastable state. A transmembrane 

voltage reduces the barrier against hydrophilic pore growth and so causes rupture. A 

detailed model for the appearance of lipid vacancies in a fluid bilayer, and their 

aggregation to produce membrane rupture, has been proposed by Kashchiev and Exerowa 

(1983). This model postulates that thermally generated lipid vacancies in the bilayer can 

condense to form holes, and predicts a first-order transition between an unbroken state of 

the membrane and a condensed vacancy phase in which the bilayer has ruptured. 

A different approach to modelling the rupture of the lipid bilayer uses a mesoscopic 

approximation to the actual intermolecular forces. Such a model was introduced by Litster 

(1975) and developed by Abidor et al. (1979), Powell and Weaver (1986), Popescu and 

Rucareanu (1991), among others. It has been extensively used to interpret the results of 

electroporation experiments (Glaser et al., 1988; Wilhelm et al., 1993; Freeman et al., 

1994). These models represent the altered interactions of lipids on a hole boundary via a 

phenomenological edge free energy. The competition between the tension stretching the 
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membrane, and tending to increase the area of a hole, and the edge free energy, acting to 

reduce the perimeter of a hole, results in a barrier to rupture that renders the membrane 

metastable at non-zero stretching tension. 

A somewhat related model for the transition of a circular membrane fragment to a 

closed, spherical vesicle, based on energy minimisation arguments, was described by 

Fromherz (1983, 1986). The transition is driven by the competition between the edge 

energy acting to close the disk to a sphere, and a bending energy that opposes distortion 

of the disk. The model restricts the membrane fragment to have the shape of a spherical 

shell lying on the continuum between a flat, circular disk and a closed sphere. For a 

particular ratio of the edge energy to bending energy, the disk spontaneously closes up to 

a sphere in a first-order transition. The edge energy at the transition derived from this 

model, h = 4.2 x 10" dyn, agrees with that from electric field induced permeabilisation 

experiments, h = 0.9 - 3 . 0 5 ~  lo4 dyn, (Zhelev and Needham, 1993). The transition is 

susceptible to edge-active agents that reduce the edge energy around the disk boundary 

and destabilise the vesicle with respect to the disk. 

Boal and Rao (1992b) studied the transition from an open sheet of fluid membrane 

to a closed sphere under the influence of an edge energy, membrane rigidity and 

temperature. Calculations at zero temperature examined the energy minimising shapes of 

the membrane, and Monte Carlo simulations were used to explore the finite temperature 

transition from an open membrane sheet to a closed vesicle, as the edge energy and 

rigidity of the vesicle were altered Fromherz' model is a special case of this more general 

approach. The simulations showed that the operdclosed transition persisted at zero 

bending rigidity. This demonstrates that thermal fluctuations can act to open a hole in a 

closed model membrane, whereas Fromherz' model requires a bending energy to 

destabilise the spherical vesicle. 
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In this chapter we study the stability and lysis of a two-dimensional model fluid 

membrane. The creation of a hole is subject to an energy cost, or line tension, that 

represents the interaction energy of lipids on the hole boundary compared to those in the 

bulk of the membrane. We use MC simulation to predict the behaviour of a single hole as 

a function of the edge energy, temperature, and surface pressure on the membrane. Finite 

temperature fluctuations in the shape of the hole boundary are treated exactly in the 

simulations. We make predictions for the following quantities related to membrane 

stability: 

minimum edge energy required for membrane stability at zero pressure 

hole size distribution and scaling behaviour 

effect of a crushing pressure, and the metastability of a membrane at a finite, 

stretching pressure. 

Section 5.2 discusses the generic zero-temperature model for the rupture of a membrane 

under stress and introduces our description of membrane stability at finite temperature. 

Section 5.3 presents the results of the membrane stability simulations. Section 5.4 is a 

discussion of the results and their relation to other theories and simulations, and Section 

5.5 summarises this chapter. 

5.2 Theory of hole formation in 2D fluid membranes 

5.2.1 Tension-driven membrane rupture at zero temperature 

Common experimental techniques used to study cell rupture create a tension in the 

bilayer by applying an external electric field or osmotically inflating the cell. The tension 

stretches the bilayer laterally, forcing its component lipids apart and weakening their 

hydrophobic repulsion from water. It is believed (Freeman et al., 1994) that this is 

followed by rapid rearrangement of lipids in the membrane to form one or more aqueous 

holes, in which the lipids pack around the hole boundary with their headgroups facing into 
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the hole. The increase of the membrane area prior to rupture is small, only 2-3 percent of 

the total area (Needham and Hochmuth, 1989), and the tension needed is of the order of 

2-15 dynlcm (Evans and Needham, 1987). 

We can understand the appearance of a hole in a membrane under lateral tension 

from the following zero-temperature argument. Consider a flat, uniform, circular 

membrane in 2D subject to a mechanical tension r (energy per unit area) that stretches the 

membrane. A circular hole of radius R is allowed to appear in the membrane subject to an 

edge energy h (energy per unit length). The energy of the membrane with a hole, in excess 

of that of the unbroken state, is 

where we assume that the membrane is incompressible, so that its only response to the 

tension is to change the size of the hole. The energy of the membrane increases 

monotonically with hole perimeter when the tension r is zero as shown in Fig. 5.1. At 

(small) non-zero tension the appearance of a hole renders the membrane metastable. The 

energy has a maximum at a hole radius 

Holes smaller than the critical size R* are long-lived, while holes larger than R* grow 

without bound. The ruptured state is the thermodynamic equilibrium state of the 

membrane under tension; but, the ban-ier to the ruptured state may be very large and i 

found from Eq. (5.1) 
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Hole perimeter 

Figure 5.1 Energy Elh a of a flat membrane with a circular hole 
as a function of the hole perimeter (measured in units 
of a microscopic length a) for three values of the 
tension Ta/h = 0,0.3,1.0, as determined from the zero 
temperature expression Eq. (5.1). 

The barrier height in Eq. (5.3) may be estimated using values for h and r obtained 

from micromechanical and electroporation experiments. The tension at rupture r is 
proportional to the square of the transmembrane voltage in electroporation experiments 

(Glaser et al., 1988). Typical values for several vesicle/cell types are r = 2 - 3 dyn/cm for 

DMPC, 3-6 for SOPC, and 10 dynfcm for an RBC (Evans and Needham, 1987; Needham 

and Hochrnuth, 1989). These values increase with the addition of cholesterol to the 

membrane showing that the cholesterol-lipid interactions strengthen the membrane. The 

line tension h has also been measured using electroporation techniques and has a value 

around h = 0.9 x 10" dyn for SOPC (Zhelev and Needham, 1993). An estimate of the line 

tension necessary to close a circular membrane disk to a sphere has been made by 

Frornherz (1983), who obtained a value h = 4.2 x 10" dyn. Most workers have assumed 



that the line tension does not depend on the hole size and membrane curvature. Taking 

r = 3 dyn/cm and h = lo6 dyn as representative values, the barrier height to rupture is 

lo-" erg, or about 25 kBT at room temperatwe. This value rises to 450 kBT if Frornhen' 

value for the line tension is used. Such barriers are inaccessible to thermal fluctuations, at 

physiological temperatures, showing that the lipid bilayer is secure from rupture under 

normal conditions. This conclusion is supported by a theoretical model of membrane 

rupture that predicts a barrier height to spontaneous hole formation of 90 kBT (Popescu 

and Rucareanu, 1991). 

5.2.2 Entropy-driven membrane disintegration at finite temperature 

The model of membrane rupture used in the experiments discussed so far assumes 

that the hole has an energy-minimising, circular shape. The inclusion of thermal 

fluctuations in the model will create a distribution of hole sizes in the membrane and allow 

the hole boundary to undergo shape fluctuations. These fluctuations will lower the free 

energy barrier against membrane rupture. 

The lipid bilayer is usually viewed as a dense fluid of lipids held together by the 

hydrophobic effect of the hydrocarbon tails and opposed by the steric (and sometimes 

electrostatic) repulsion of the headgroups. Fluctuations in the membrane surface density 

occur at finite temperature. Weaver (1994) conjectures that vacancies occur when a lipid 

leaves the bilayer and goes into the surrounding bulk solution, while Helm et al. (1992) 

propose that adjacent lipids may spontaneously separate, briefly exposing their 

hydrocarbon tails to the surrounding solution. Dimples may also occur in the surface of 

the fluid bilayer (Popescu and Rucareanu, 1991). One model for rupture proposes that 

lipid vacancies can aggregate and form a hole that ruptures the membrane (Kashchiev and 

Exerowa, 1983). 
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The creation of a hydrophilic hole in the lipid bilayer involves rearrangement of the 

lipids to enable them to pack around the hole boundary. To avoid treating such complex 

motion, we try to model the behaviour of the hole boundary after rearrangement using a 

phenomenological line tension h. In addition, because the radius of curvature of a cell is 

much larger than the hole diameter of interest, we restrict our model to two dimensions. 

The motive force for rupture is provided by a surface pressure p and thermal fluctuations. 

The free energy of an incompressible membrane with a hole of perimeter L, measured with 

respect to the unbroken state, may be written as the sum of the energy cost of creating the 

hole boundary U ,  the work done by the external pressure p on the membrane of area A, 

and the entropy TS due the increased mobility of the "lipids" on the hole boundary. 

The Gibbs free energy of the model membrane is 

where S(L) is the entropy of the hole with perimeter L. Note that the pressure is conjugate 

to the total area of the membrane including the hole. We write the entropy of the hole 

boundary of length L as 

where k, is Bolamann's constant, and ~ ( n )  is the number of configurations of the 

boundary of a hole with perimeter L = nb, relative to the unbroken state of the membrane, 

and b is the average length of the individual elements around the hole. Bod and Rao 

(1992b) used an explicit counting of configurations for a simply connected sheet on a 

three-dimensional lattice to estimate the entropy change in hole formation via Eqs. (5.4) 

and (5.5) at zero pressure. They found a transition of the open membrane sheet in 3D to a 

closed vesicle as the line tension around the membrane boundary was increased. The open 

membrane was found to scale as a branched polymer, and its boundary contributed a 
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substantial configurational entropy to the sheet that had to be overcome in forming the 

closed vesicle. We expect the hole boundary in the 2D membrane to contribute a 

significant entropy to the free energy as well. As a trial calculation to see if an open/closed 

transition occurs at zero pressure in two dimensions, we estimate the behaviour of Eq. 

(5.5) using lattice results. While it is obviously not exact to treat the continuous boundary 

as having only a discrete number of conformations, it is not inconsistent with the spirit of 

the Monte Carlo simulations in the next section, in which the membrane is represented as a 

two-dimensional network of vertices connected by tethers, but the vertices are allowed to 

move continuously in the plane. 

Lattice calculations of closed loops in two and three dimensions (McKenzie, 1976) 

and open sheets in three dimensions (Glaus, 1988) show that the number of configurations 

of length n behaves asymptotically as 

where z is related to the coordination number of the lattice, a is an exponent and Q, is a 

prefactor that is independent of n. We postpone discussion of the precise scaling 

behaviour of the hole boundary, described by the exponent a, until Section 5.4. Given 

Eqs. (5.4)-(5.6), the Gibbs free energy, at zero pressure, of the membrane with a hole is 

where p is the inverse temperature and b is a microscopic length. The last two terms are 

negligible relative to the first for large n, and the membrane has two distinct equilibrium 

states depending on the size of the line tension. These are 

1 phb > In z only small holes are present in the membrane, 

2 Phb < In z holes in the membrane may grow without bound. 



99 

The transition separating these two cases occurs when the line tension is such as to make 

the first term in Eq. (5.7) vanish. As in the three-dimensional fluid sheets, this calculation 

predicts a sharp transition, in an infinite system, from a uniform state of the membrane 

with no hole at large line tension to a state with an infinite hole, when the line tension is 

below a critical value. However, the logarithmic term in the entropy cannot be neglected in 

a finite system. The logn term in Eq. (5.7) is a fmite-size effect and is particularly 

important when the first term in the free energy is small, as it is in the transition region. 

Line tension 

Hole perimeter 

Figure 5.2 Dimensionless free energy PG - log R, of a model fluid membrane 
with a hole as a function of the hole perimeter L as determined from 
Eq. (5.7). The line tension appears in the dimensionless combination 
phb , and the hole perimeter is measured in units of b. The model 
assumes p = 0, T # 0, and the parameters z = 4.15,a = 0.5 
appropriate for a two-dimensional triangular lattice have been used 
(McKenzie, 1976). 



The response of the membrane to the spontaneous appearance of a hole is illustrated 

in Fig. 5.2 where we plot the dimensionless free energy of the membrane as a function of 

hole perimeter for several values of the line tension at zero pressure. Note that we have 

subtracted the constant term, log Q,, from the free energy in the figure. If phb is greater 

than a critical value, the smallest hole has the lowest free energy. If phb is less than the 

critical value, then large holes are thermodynamically favoured, but small holes are 

metastable. The critical hole size at the transition is 

and the barrier height at this hole size is 

This lattice-based model predicts that a membrane at finite temperature must have a 

minimum line tension to prevent spontaneous holes from growing and rupturing the 

membrane, even at zero pressure. We return to this model in Section 5.4 after presenting 

the results of our simulations. 

5.3 Fluid membrane simulations 

5.3.1 Introduction 

In this section we investigate the growth of a hole in a model fluid membrane using 

Monte Carlo simulations. The membrane is represented by a triangulated network of 

vertices, with nearest-neighbour vertices connected by tethers with the potential energy 

function, 



where sii is the length of the tether joining vertices i and j, a is the hard-core diameter of a 

vertex, and so is the maximum tether length. All vertices are subject to the hard-core 

repulsion embodied in the first line of Eq. (5.10). In order to prevent the tethers from 

crossing one another, to make the membrane self-avoiding, the maximum tether length 

must satisfy so < 2a. We define h as the energy cost per unit length to create the hole 

boundary. This energy represents the difference, in the actual fluid bilayer, of the 

interaction energy of the lipids on the hole boundary compared to those in the bulk 

membrane. We use a to set the length scale, so that the simulation contains as parameters 

the dimensionless combinations, pha and ppa2, where P = l/k,T is the inverse 

temperature and p is the surface pressure. 

Consider a rectangular patch of N vertices connected by 3N tethers cut from a 

triangulated network and confined to two dimensions. Confining the membrane to two 

dimensions restricts its application in biomembranes to length scales small compared to the 

persistence length of the surface. This latter quantity is typically more than a micron for 

biomembranes. Experiments have found that the holes present when a vesicle ruptures are 

typically tens of nanornetres (Mui et al., 1993) to a micron (Zhelev and Needham, 1993) in 

diameter. Periodic boundary conditions are used to reduce the influence of the edges of 

the network. We use the isobaric-isothermal Metropolis MC algorithm to make small 

random changes in the relevant degrees of freedom, here the vertex positions and box side 

lengths, and to assign a Boltzmann weight to the resulting network configuration. This 

weight ensures that the configurations generated by the algorithm are distributed 

according to the equilibrium probabilities of the canonical ensemble. The vertex-move and 

box-rescaling algorithms are similar to those for the polymerised membrane simulations, 



with the additional constraint that a vertex move or box rescaling is rejected if any tether 

violates the conditions of Eq. (5.10). The fluidity of the membrane is simulated by 

allowing the tethers to be cut and reconnected between adjacent vertices, again subject to 

Eq. (5.10). The algorithm for implementing bond fluidity was introduced by Baumgartner 

and Ho (1990), and its details are given in Appendix B. 

A hole is introduced into the network by removing a single bond in the initial 

configuration, so that the membrane always contains at least four bonds defining the hole. 

Attempts are made to shrink or expand the hole using the Metropolis procedure. An 

adjacent pair of vertices on the hole perimeter is randomly chosen and an attempt is made 

either to remove the tether between them or to add a tether across one of the two vertices 

by linking its two neighbours on the perimeter. Notice that we restrict the maximum tether 

length to so = 1.688a< &, to prevent interference by a distant vertex on the hole 

perimeter with a tether being connected across a vertex. This choice also facilitates 

comparison with three-dimensional membrane simulations which use so = &a as the 

maximum tether length. This algorithm is similar to that used by Bod and Rao (1992b) for 

membranes embedded in three dimensions. 

We define a sweep through the network as an attempt to move each vertex, rescale 

the box side lengths independently, cut and reconnect each tether that is not on the hole 

perimeter, and attempt to remove or add N tethers around the hole perimeter. Technical 

details of the procedures are given in Appendix B. The network is allowed to relax from 

the initial configuration (in which all vertices occupy the sites of a regular triangular 

lattice) before data collection begins. To reduce the correlations between successive 

configurations generated by the MC procedure, sample configurations are collected at 

intervals separated by a large number of sweeps, usually 50,000. We monitor the 

autocorrelations of the hole area, the eigenvalues of its inertia tensor and the simulation 

box area. 



103 

A snapshot of a typical network with a small hole is shown in Fig. 5.3. A snapshot of 

a similar network with a larger hole is shown in Fig. 5.4, and illustrates the non-local steric 

interaction that results from the self-avoidance of the tethers around the hole perimeter. 

Note that the network is not allowed to separate into disconnected pieces, so the hole 

perimeter must remain simply connected as depicted in Fig. 5.5, where the line tension is 

well below the critical value and the hole has expanded to occupy most of the membrane 

area. 

\ 

/ . 

Figure 5.3 Snapshot of a fluid network with N = 400 vertices and a line tension 
pha = 1.24, showing a small hole. 



Figure 5.4 Snapshot of a fluid network with N = 400 vertices and a line 
tension PAa = 1.24, showing the convoluted shape of the 
perimeter of a large hole. 



Figure 5.5 Snapshot of a fluid network with N = 400 vertices and a line 
tension PXa = 0.8, showing the branched polymer character of 
the ruptured membrane. 



5.3.2 Membrane stability at zero pressure 

The theory of Section 5.2.1 only considers the possibility of a circular hole 

appearing in the model membrane at finite surface pressure and zero temperature. Non- 

circular hole configurations are expected at finite temperature as outlined in Section 5.2.2. 

The barrier separating the unbroken membrane' from the ruptured state at finite 

temperature and zero pressure, Eq. (5.9), has a very different form from the zero 

temperature barrier function, Eq. (5.2). We look first at the appearance of the membrane 

boundary (or hole perimeter) as a function of the line tension at zero pressure. 

0 0 2  OA 0.6 0.8 1 1 2  1.4 1.6 

Line tension 

Figure 5.6 Hole perimeter scaled by the system size ( L ) / N ~  
against the dimensionless line tension pha for 
system sizes N = 144,196,256,400 vertices. 

'The minimum hole has four vertices on its perimeter because one tether is always missing from the 
network. We regard such holes as negligible because they owe their existence to the discrete nature of the 
model network and not to the energetics of hole creation. 



The average length of the hole perimeter as a function of the line tension is shown in 

Fig. 5.6 for the four network sizes used, N = 144,196,256,400 vertices. The data collapse 

onto a single curve when scaled by the system size. The hole has a perimeter on the scale 

of the tether length for line tensions greater than a critical value pha = 1.25f 0.05, and 

grows abruptly for line tensions lower than this value. The critical line tension is the same 

within statistical error for all the system sizes studied. For line tensions less than the 

critical value, the hole grows to occupy the whole network and is limited only by the 

requirement that the network remain simply connected. It is clear from Fig. 5.6 that the 

hole perimeter scales linearly with the membrane size, a characteristic to which we return 

in Section 5.4. 

The standard deviation of the hole perimeter divided by the average perimeter is 

0.7 0.8 0.9 1 1.1 12 1.3 1A 15 

Line tension 

Figure 5.7 Standard deviation of the hole perimeter divided by the average 
perimeter (o(L)) / (L)  as a function of the dimensionless line 
tension @ a ,  for system sizes N = 144,196,256,400 vertices. 
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seen in Fig. 5.7 to peak at approximately the same critical line tension for the four system 

sizes. The magnitude of the relative fluctuations is not significantly different within the 

range of system sizes we have simulated. The slight increase seen for the systems with 

256,400 vertices compared to the systems with 144, 196 vertices is smaller than the 

spread of values obtained from different simulations. We are therefore unable to conclude 

that the change with system size is significant. 

There are many ways to characterise the size and shape of an irregular object, such 

as the hole depicted in Fig. 5.4, none of which is both simple and complete. The area of 

the hole is an obvious measure of its size but gives no information about its shape. The 

radius of gyration offers a simple, one-parameter measure of the size of an object. The 

radius of gyration, R:, of an object embedded in d-dimensional space is related to the 

eigenvalues of the inertia tensor T, , (i, j = I,.  . . d ) 

via 

where hi are the eigenvalues. A simple measure of the shape asymmetry of an object in 

two dimensions is given by the ratio A of the larger to smaller eigenvalue of the inertia 

tensor, 

where h, > 1,. This ratio is unity for a circle and tends to infinity as the object becomes 

more elongated, i.e., one-dimensional. 



Fractal objects share the property that their radius of gyration scales as a power of 

their mass (or number of monomers in a discrete object). Objects that scale with the same 

power law are said to be in the same universality class, and much effort has been spent 

trying to distinguish the criteria for membership of different universality classes. The 

radius of gyration has been extensively used to describe ring-polymers2 embedded in two 

dimensions (Leibler, Singh, Fisher, 1987; Camacho, Fisher, Singh, 1991) as precursors to 

investigations of vesicles in three dimensions (Baumgartner and Ho, 1990; Gompper and 

Kroll, 1992; Bod and Rao, 1992a; Gompper and Kroll, 1995). The presence of a bending 

rigidity, or pressure difference between the inside and outside of the ring, results in the 

ring polymer having several distinct scaling regimes that are characterised by different 

exponents. The scaling properties of the radius of gyration, volume, and area of an object 

distinguish different universality classes, such as the closed self-avoiding random walk 

(CSAW) and branched polymer (BP). In 2D, the area and radius of gyration of a ring 

polymer (in the absence of bending rigidity and pressure) both scale with mass M to the 

same power, while the scaling exponents for a branched polymer differ. This is expressed 

as 

with one exponent v for a random walk, and M,, being the mass of the ring or perimeter, 

and 

*A ring polymer is a closed, one-dimensional chain in which adjacent vertices are connected such that the 
ring does not intersect itself. 
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with two exponents for the branched polymer, and Me, now being the mass or area 

enclosed by the branched polymer. The angle brackets represent ensemble averages. The 

prefactors in Eqs. (5.14)-(5.17) may have finite-size dependence. 

The hole area and radius of gyration are calculated from the positions of the vertices 

on the hole boundary3. Figure 5.8 shows a negligible hole area for line tensions above 

pha = 1.25, and an abrupt increase for line tensions below this value. The area increase 

occurs at the same line tension as the hole perimeter increase in Fig. 5.5. The radius of 

I . . . . I . . . . # . . . . I . . . . # . . . . I . . . . I . . - . . ~ . - . ~  
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Figure 5.8 Hole area scaled by the system size ( A , , ) / N ~ '  against 
the dimensionless line tension pha, for system sizes 
N = 144,196,256,400 vertices. 

accuracy of the calculation of R: is increased by dividing each external tether into 50 points and 
using these points to define the hole boundary. 
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gyration, shown in Fig. 5.9, has similar behaviour to that of the area. Both graphs show 

the data scaled by the system size, but it is clear that the hole area and radius of gyration 

do not scale linearly with the system size as did the hole perimeter. The correct scaling 

0 0 2  0.4 0.6 0.8 1 1 2  1.4 1.6 
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Figure 5.9 Hole radius of gyration scaled by the system size 
(R:) /  NU ' against dimensionless line tension @a, for 

system sizes N = 144,196,256,400 vertices. 

form of these quantities is discussed later. 

The scaling behaviour of the membrane area (excluding the hole) with the hole 

perimeter is shown in Fig. 5.10 for the four system sizes used, N = 144,196,256,400 

vertices. The membrane area is independent of the hole perimeter for line tensions above 

the critical value, because the hole is negligibly small, and it scales linearly with the hole 

perimeter for line tensions below the critical value, indicative of branched polymer 
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behaviour. The slopes of the curves for pha = 0.8.1.0 are 0.97 f 0.02 and 0.99 f 0.0 1 

respectively. Boal and Rao (1992b) investigated the transition between an open sheet and 

a closed sphere for fluid membranes in three dimensions as a function of the line tension 

around the boundary. They found that the open membrane has branched polymer scaling 

behaviour, and we see this behaviour in two dimensions. 

T Line tension 

100 

Hole perimeter 

Figure 5.10 Membrane area ( ~ ) / a '  (excluding the hole area) against hole 
perimeter ( ~ ) / a  for system sires N = 144,196,256,400, and 
several values of the dimensionless line tension pha. The 
slopes of the lines for pha = 0.8,l.O are unity. 

We show how the hole area scales with its perimeter in Fig. 5.11. When the line 

tension is above the critical value, pha > 1.25, the hole is small and almost circular, and its 

area scales as the square of its perimeter. The slope of the curve for pha = 1.3 is 



2.10f 0.12, while at pha = 1.25 and @a = 1.2 the slopes are 1.56k0.06, and l.38f 0.10. 

The exponent for a line tension pha = 1.25 suggests that the hole area scales as a CSAW 

at the transition: further results supporting this scaling behaviour are presented in Section 

5.3.4. The slopes of the curves for pha = 0.8,l.O are 1.36f 0.04 and 1.35f 0.10 

respectively, suggesting that the hole area does not scale as a BP below the transition. 

Comparing Figs. 5.10 and 5.11 shows that the hole and membrane areas have different 

scaling behaviour below the transition. 

Figure 5.11 Hole area (A,)/u' against hole perimeter ( ~ ) / a  for system 
sizes N = 144,196,256,400, and several values of the 
dimensionless line tension @ a .  The slopes of the curves are 
given in.the text. 



The model presented in Section 5.2.2 assumes that the presence of the hole has no 

effect on the remainder of the bulk membrane or network. We have verified this 

assumption by examining the area per mangle of the network as a function of the hole 

size. The area per triangle is the network area divided by the number of triangles N, in its 

interior. The maximum tether length in the simulations is so = 1.688a, leading to a mean 

tether length, averaged over 20 independent simulations of networks with 400 vertices, 

and line tensions ranging from pha = 0.8 to pha = 1.5, of (s/a) = 1.3320f 0.0003. This 

average was found to be independent of the line tension and system size to the accuracy of 

the simulations. The area per triangle is predicted to be 

( A / N , ~ ~ )  = J5/4(~/a)~ - 0.7683. The area per triangle averaged over the 20 simulations 

is (AIN,~') = 0.7366f 0.0005, which is within 4% of the predicted value. The area per 

triangle varies by less than 1% for all simulations regardless of the line tension and system 

size. The independence of the area per triangle from hole size supports the assumption 

made in Section 5.2.2 that the average properties of the bulk membrane are unaffected by 

the presence of the hole. 

Visual examination of the network shows the occurrence of highly asymmetrical 

boundary shapes. The asymmetry arises because there are more ways of stretching the 

fluid network and reconnecting the tethers around a long, thin rectangular shape than one 

that is more nearly square. It was checked by inspection that the shape of the network was 

not correlated with hole size. Because the periodic boundary conditions constrain the 

network to be rectangular, the network asymmetry is measured by the ratio of the long to 

the short side averaged over all configurations. The average of eight simulations with 

pha > 1.25 (two at each system size) gives a network asymmetry of 2.75f 0.02, whereas 

the asymmetry averaged over eight simulations with pha < 1.25, is 1.57 f 0.06. 

The average of eight simulations with pha > 1.25 (two at each system size) gives a 

(small) hole asymmetry A of 3.0 1 f 0.34. The asymmetry of the (larger) holes averaged 
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over eight simulations with pha < 1.25, is 3.40 It 0.08. No dependence of the hole or 

network asymmetry on system size is found. 

5.3.3 Membrane elastic properties 

The shear modulus of a fluid network is identically zero. The small fluctuations of 

the shear modulus with different sample sets provide an estimate of the statistical accuracy 

of the simulations. The shear modulus, for simulations at zero pressure, was found to 

satisfy Ppa2 < 0.01 independent of the hole size, and was closer to zero than its statistical 

error.4 This accuracy is achieved with 400 configurations for most cases, and with 1000 

configurations used for approximately one third of the simulations. There was no 

significant change in the accuracy in the two cases. 

The compression modulus for the network drops from a value P K ~ ~  = 20, as found 

previously in simulations of the network representation used here (Bod, Seifert and Zilker, 

1992), for line tensions above the critical value, to a value close to zero when the hole is 

present. The presence of the hole removes the resistance to compression of the network, 

and even the small holes present for line tensions just above the critical value are sufficient 

to reduce the compression modulus. Figure 5.12 shows that the compression modulus is 

independent of the system size to the accuracy of the simulations; the compression 

modulus is known to 20% accuracy for line tensions greater than the critical value, and is 

consistent with zero, within statistical error, for line tensions below the transition. To 

estimate the standard errors of the elastic moduli we use the following method. The 

sample configurations from a simulation are divided into five groups and the elastic moduli 

are calculated for each group. The five independent values of the moduli are used to 

estimate the standard errors of the mean values for the complete set of configurations in 

the simulation. 

4The Young's moduli and elastic constants of the fluid network are measured using the methods described 
in Chapter 3 for polymerised networks. 
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Figure 5.12 Membrane in-plane compression modulus PKa against line 
tension pha for system sizes N = 144,196,256,400. 

5.3.4 Hole scaling behaviour at zero pressure 

At large line tension, we expect small holes to be approximately circular (or 

polygonal, as the tethers around the perimeter are taken to be straight edges). At a line 

tension pha = 1.4, somewhat above the transition, the area and radius of gyration of the 

hole scale with the hole perimeter M, according to A = 4 M:,. and R: = R:,,M:, 

respectively, with the same exponent 2v = 1.80f 0.05. The area scales with the radius of 

gyration to the power 1.00 f 0.05, supporting the equivalence of the scaling exponents for 

the area and radius of gyration. This shows that the scaling behaviour of small holes has an 

exponent close to 2, as expected for a quasi-circular object. When the line tension is 

reduced to pha = 1.24, close to the critical line tension at which the membrane ruptures, 
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the scaling exponents take the value 2v = 1.52 + 0.05, showing that the area and radius of 

gyration of the hole close to the rupture transition scale according to the self-avoiding 

walk exponent v =a. The area scales with the radius of gyration as 0.97 It0.01. The 

snapshots of the membrane in Figs. 5.4 and 5.5 support these results. The ratio of the 

prefactors in the scaling laws is estimated to be (A,,)/(R:) = 2.52 f 0.03, independent of 

the hole size, precluding any collapse of the hole to zero area as the system size increases. 

Note that for a circular disk this ratio is AIR: = n, while for CSAWs it has been 

calculated analytically to be AIR: = 4x15 = 2.5 1 (Cardy, 1994). The scaling exponents 

extracted here from the fluctuations in the area of a hole at a fixed system size agree with 

those shown in Fig. 5.1 1 which are obtained from four system sizes. 

When the line tension is below pha = 0.6, the area and radius of gyration of the hole 

have large average values determined by the system size and the requirement that the 

membrane remain simply connected. In this regime, the hole area does not fluctuate over a 

large enough range to allow the extraction of a scaling exponent from one system size. 

So far we have discussed the expectations of observables as a function of system 

size. We next present the frequency distribution of the membrane and hole areas, at fixed 

system size, in three regimes: above the transition, at the critical line tension, and below 

the transition. At a line tension pha = 1.4, above the transition, the area of the membrane 

is seen in Fig. 5.13 to be approximately normally distributed, while the hole area, shown in 

Fig. 5.14, is narrowly distributed around a value close to zero. The hole area distributions 

for a line tension pha = 1.24, close to the transition, and pha = 0.6, well below the 

transition, are shown in Figs. 5.15 and 5.16. The bimodal distribution for the hole area at a 

line tension pha = 1.24, seen in Fig. 5.15, suggests that the hole is fluctuating between 

two states. The hole area for the membrane with a line tension well below the transition is 

normally distributed about a large average value as expected. 
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Figm 5.13 Histogram of frequency of occurence of membrane area ( ~ / a ' )  
at a dimensionless line tension pha = 1.4, for a system with 400 
vertices. This line tension is above the critical value of 
pha = 1.25, and the membrane area is seen to be normally 
distributed. 
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Figure 5.14 Histogram of frequency of occurence of hole area ( A , , / U ~ )  at a 
dimensionless line tension pha = 1.4, for a system with 400 vertices. 
The hole area is n m w l y  distributed around a value close to zero. 
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Figure 5.15 Histogram of frequency of occurence of hole area ( A ~ , ~ / U ' )  

at a dimensionless line tension pha = 1.24, for a system with 
400 vertices. This line tension is close to the critical value of 
pha = 1.25. The appearance of two peaks shows that the 
hole is fluctuating between two distinct states. 
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Figwe 5.16 Histogram of frequency of occurenre of hole area ( ~ ~ , < / a ' )  
at a dimensionless line tension @ a  = 0.6, for a system with 
400 vertices. This line tension is below the critical value of 
pha = 1.25, and the average hole area is large and limited 
only by the system size. 



5.3.5 Membrane behaviour at positive pressure 

A positive pressure reduces the membrane and hole areas as expected. The average 

hole area, shown in Fig. 5.17, approaches the minimum hole limit, as the pressure 

increases, when the line tension pha t 0.8. We define the minimum hole area as + ( s ~ o ) ~ ,  

the area of a hole with four vertices on its perimeter connected by tethers of average 

length (s/a) = 1.33. When the line tension pha 5 0.6, the hole area decnases slowly with 

increasing pressure, but does not reach the minimum hole area up to a pressure ppa2 = 8. 

Line tension 

Minimum hole area 

1 

0 1 2 3 4 5 6 7 8 

Pressure 

Figure 5.17 Hole area ( ~ , . / a ' )  against pressure ppa2 for a network 

with 1% vertices, at several values of the line tension 
pha = 0.6,0.8,1.0,1.2. The minimum hole area for an 
average tether length (s/a) = 1.33 is shown for comparison. 
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The shear modulus of the network remains close to zero1 for al l  positive pressures 

up to ppa2 = 8. By contrast, the compression modulus increases dramatically with 

increasing pressure as shown in Figure 5.18, exceeding the value for a uniform fluid 

network at zero pressure (obtained from Boal, Seifert and Zilker, 1992), showing that the 

network is becoming more rigid with increasing pressure. It is interesting to note that the 

correlation times for the hole area and eigenvalues of its inertia tensor drop to very small 

10 Uniform network 

1 

Line tension 

0.1 

0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 1 2 3 4 5 6 7 8 

Pressure 

3gure 5.18 Membrane compression modulus P K ~  against pressure 
ppa2 for a network with 196 vertices, at several values of 
the line tension pha = 0.6,O. 8,l. 0,l. 2. The value for a 
uniform tethered network at zero pressure is shown for 
comparison. 

 h he shear modulus satisfies &La2 < 0.0 1 for pressures ppa2 < 8, and is less than 0.04 at ppa2 = 8. 
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values, typically a few thousand sweeps, when the pressure is non-zero. This is probably 

related to the increased elasticity in the tethered network when the tethers are stretched or 

compressed by an external force. 

We have examined how the hole area and radius of gyration scale with the system 

size for networks subject to a line tension and pressure pha = 0.8, ppa2 = 1 respectively. 

The results for the area scaling exponent (expected to be unity for a BP, see Leibler, Singh 

andFisher, 1987) are 1.08f 0.02, 1.07f0.01, l.O3f 0.01, 1.004k0.005, and for the 

radius of gyration (expected to be 1.28, Bod, 1991) 1.25 f 0.03, 1.25 f 0.08, 1.10 + 0.04, 

1.13+ 0.14, for networks with N = 144,196,256,400 vertices respectively. Visual 

inspection of configurations of a membrane under positive pressure reveals that the hole 

resembles a branched polymer. The change in hole scaling, from a CSAW at zero pressure 

to a BP at positive pressure, appears for all positive pressures we have used. 

5.3.6 Membrane metastability at negative pressure 

The analysis in Section 5.2.1, predicts that the network under tension (or negative 

pressure) is at most metastable, and that the ruptured state is the thermodynamic 

equilibrium state. The barrier to rupture results from the energy needed to open up the 

hole against the line tension. At zero temperature, this barrier is described by Eq. (5.3). 

We have begun to investigate the effect of thermal fluctuations on the network 

metastability by examining the MC time required for the network to rupture as a function 

of the pressure. 

At a line tension of pha = 2 and zero pressure, the barrier against rupture is 

predicted to be infinite by the zero temperature calculation of Section 5.2.1. At the same 

line tension and a pressure ppa2 = -1, the banier height for circular holes is predicted to 

be E'/L - 6.3, and the critical hole perimeter at rupture is 2 d g / a  = 12.6. At finite 

temperature, we estimate the relative probability for the spontaneous appearance of a hole 
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of the critical size using the Boltzmann factor exp(-p~') - 3x lod. The barrier height is 

thus about 13kBT. We expect that the non-circular configurations of the hole perimeter at 

finite temperature will lower the barrier height from this value, and we can estimate the 

entropic contribution by using the results of our simulations. 

For a line tension and pressure of pha = 2 and ppa2 = -1, the average time2 to 

rupture of a network with 196 vertices is (14f 14) x lo4 sweeps. The distribution of 

waiting times prior to rupture is consistent with an exponential distribution. We find that 

the network does not rupture until the hole has at least 13 bonds on its perimeter. If we 

assume that each bond requires an energy pha = 1.25 to be cut (the zero pressure critical 

line tension), and that this must be balanced by the entropy gain of the hole perimeter, the 

approximate entropy of the critical size hole can be obtained from 

TS,,,, = E,, = 17. 

The entropy created by fluctuations of the closed self-avoiding walk hole boundary thus 

reduces the barrier height from its zero temperature value, E,,,, = 26 (given ha = 2kBT) 

and the PA term reduces it further. The barrier height against rupture of the membrane, as 

measured by the MC time prior to rupture, decreases with increasing tension as expected. 

When the pressure is ppa2 = -1.2, the average time to rupture drops to (4 f 3) x lo4 

sweeps (again averaged over 50 simulations). 

We may estimate the area change of the network due to the applied pressure and 

compare it with the experimentally observed value of 5% (Needham and Hochmuth, 1989; 

Hallett et al., 1993). When the line tension is pha = 10, preventing the appearance of a 

hole, and the pressure is ppa2 = -1.2, the average area per triangle in the (stretched) 

network is ( A ) / N ,  = 0.7850f0.0005. This may be compared to the value at zero 

=The average is taken over 50 independent simulations, for each of which the initial state is taken from a 
previous simulation, with the minimum hole, at the same line tension and pressure. 
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pressure (given on page 117) of (A)/N, = 0.7366f 0.0005. This represents a change of 

6.6%. We may also estimate the area change from the compression modulus of the 

network. We have &/A = &/K, and the compression modulus obtained from the 

simulation of the stretched network is P K ~ ~  = 19.02 1.5, which gives an area change of 

6.3%. 

5.4 Discussion 

5.4.1 Membrane stability at zero pressure 

The zero temperature calculation in Section 5.2.1 predicts that, in the absence of 

tension, the energy of a model membrane is a monotonically increasing function of the 

hole radius. Spontaneously occurring large holes are suppressed by the energy cost arising 

from the line tension around the hole perimeter. By contrast, the finite temperature 

calculation in Section 5.2.2 predicts that a minimum line tension is necessary to prevent 

the appearance of a hole that ruptures the model membrane, even when the applied tension 

is zero. The spontaneous appearance of a large hole may reduce the membrane free energy 

because of the entropic contribution of the hole boundary. We have investigated the effect 

of thermal fluctuations and tension on the rupture of a model fluid membrane using Monte 

Carlo simulations. 

We can qualitatively predict the behaviour of a model membrane with a single hole 

by constructing its effective free energy, and calculating the relative contributions of the 

energy cost, and entropy gain, of the hole perimeter. In Section 5.2.2 we have used a 

result from lattice counting of the number of configurations of closed loops on a planar 

triangular lattice to give a functional form for the entropy of the hole boundary. In order 

to compare the critical line tension derived in Section 5.2.2 with the simulation results, we 

need values for the constants in Eqs. (5.6)-(5.9). We have assumed that the hole perimeter 

scales as a closed self-avoiding walk, and so a = 3 and z = 4.15 as given by McKenzie 
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(1976). These values are used to construct the curves in Fig. 5.2, although their qualitative 

appearance does not depend crucially on the exact values of a and z. In fact, the critical 

value of pha depends only on the effective lattice constant z,  and not on the exponent a ,  

so other scaling forms for the hole perimeter, such as a branched polymer, would also 

predict a transition at pha of order unity. 

Note that for line tensions which make the first term in Eq. (5.7) positive, the free 

energy of the membrane is again a monotonically increasing function of hole size. It is 

clear from Fig. 5.2 that as the line tension approaches the critical value 

pha = In 4.15 = 1.4231 from above, there is a steep drop in the dimensionless barrier 

height from infinity to a number of order unity that allows a hole to grow and rupture the 

membrane. 

Simulations at zero pressure show that the membrane is stable against hole 

formation for line tensions larger than a critical value pha = 1.25+ 0.05. In this regime, the 

Boltzmann weight for the spontaneous appearance of a hole progressively suppresses 

larger holes. The critical line tension found in the simulations is only 12% smaller than that 

predicted by the finite temperature model of Section 5.2.2, and corresponds to a biological 

line tension of 2.5 x lo-' dyn, or 2.5 x 10-l2 N, assuming a typical length-scale of 2 nm. 

We do not expect better agreement between the calculation and the simulations because of 

the error introduced by the use of a lattice counting argument for a continuous quantity 

(the hole boundary), embodied in the parameter z, the effective lattice constant. Also, the 

asymptotic formula Eq. (5.6) overestimates the number of conformations of a closed loop 

for the small holes (only tens of monomers on the hole boundary) that occur in the systems 

we investigate (144 to 400 vertices in the network). Small holes are almost circular, and 

this reduces the number of configurations below that predicted by Eq. (5.6) by a factor of 

between 10 and 100. Nevertheless, the agreement between the theory and simulations is 

very good. When the line tension is zero, any spontaneous fluctuation that increases the 
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hole size lowers the membrane free energy because of the consequent increase in entropy 

of the hole boundary at zero energy cost. In this regime, the model membrane 

disintegrates, and the membrane in the simulations breaks up into a thin mesh surrounding 

the hole, which is of the order of the system size. 

A first-order open-to-closed transition has been found previously in three 

dimensional fluid vesicle simulations (Boal and Rao, 1992b), although our value for the 

critical line tension required for closure of the hole, pha = 1.25, is 25% larger than the 

value, pha = 1.00, obtained for the three-dimensional membrane3. The simulation 

techniques are almost identical and cannot account for the difference in the critical value 

of pha . For example, we have checked that increasing our maximum tether length from 

so = 1.688~ to 1.72a, closer to so = 1.732~ used by Bod and Rao, changes the critical line 

tension by less than 0.05. 

It is possible that the relative entropy change between the open and closed states of 

a vesicle in three dimensions, is less than the corresponding change when a hole appears in 

a membrane in two dimensions. A fluid vesicle in three dimensions scales as a branched 

polymer regardless of whether it is open or closed, so the removal of the fluctuations of 

the membrane boundary when the vesicle closes does not change its scaling behaviour, 

although it may change its free energy considerably. The closure of the hole in the two- 

dimensional sheet eliminates the branched polymer scaling behaviour of the open 

membrane, and hence changes its entropy substantially. 

5.4.2 Hole scaling behaviour at zero pressure 

The area of a hole in a three-dimensional open vesicle is not well-defined, but it is 

unambiguous in a planar membrane. Inspection of membrane configurations, illustrated in 

3 0 ~  dimensionless line tension pha is equivalent to Klona in Boa1 and Rao (1992b). 



129 

Figs. 5.4 and 5.5, and the scaling behaviour of the membrane area in Fig. 5.10, suggest 

that the bulk membrane has branched polymer scaling behaviour when a large hole is 

present, for sufficiently large system sizes. This is supported by the collapse of the hole 

perimeter to a single curve when scaled by the system size shown in Fig. 5.6. The area and 

radius of gyration of the hole, by contrast, are seen in Figs. 5.8 and 5.9 not to collapse to a 

single curve when scaled with the system size. When plotted as functions of the hole 

perimeter, for line tensions close to the critical value, the area and radius of gyration of the 

hole are both found to scale with the exponent 2v = 1.52 + 0.05, as expected for a closed 

self-avoiding walk. When the line tension is below the critical value, the scaling exponent 

of the hole area and radius of gyration is typically 1.35 + 0.10. 

We conclude that the area of a planar membrane at zero pressure, changing from an 

unbroken state to a ruptured state is governed by branched polymer scaling laws. This 

shows that the open-to-closed transition in a model fluid membrane in 2D is the same as 

that of a fluid vesicle with zero rigidity and zero pressure in three dimensions (Bod and 

Rao, 1992b). The area of the hole in the planar membrane, however, scales with its 

boundary as a CSAW at the transition, and does not change to a BP even when the hole is 

large, and the line tension is well below the critical value. 

The scaling behaviour of a ring polymer has been investigated by several groups 

(Leibler et al., 1987; Fisher, 1989; Camacho et al., 1991). A ring polymer is analogous to 

the hole boundary in our simulations. Leibler and co-workers (1987) found that the area 

and radius of gyration of a ring polymer with zero rigidity are well described by the scaling 

laws 
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in which jj = Apa2/k,~, and v is the standard end-to-end length exponent for open 

SAWS. Note that the convention for the sign of the pressure in Leibler et al. (1987), 

Ap = pht - p,,, , is the opposite of ours. The exponent v is believed to be (see Nienhuis, 

1982; Duplantier, 1 WO), and they find v = 0.755 f 0.0 18. They also fmd that 

v, /v = 1.007 f 0.01 3. Because the pressure couples to the area they expect the exponent 

(I to be 2. They estimate (I = 2.13f 0.17. The scaling functions X ( x ) , ~ ( x )  are different for 

different regimes. At zero pressure they find 

This precludes a collapse of the ring AIR: -t 0 as N -t 0,  and they conclude that the 

ring polymer does not take up a branched polymer configuration at zero pressure. We 

find4 the ratio AIR: = 2.52f 0.03, and this compares well with their msult 

AIR: = 2.50 f 0.24. In the deflated regime, Ap < 0, they fmd 

x (x) = x-/xff , 

~ ( x )  = +/x=,  

with o = 0.13 f 0.05, z = 0.25 + 0.04. These values are indicative of a collapse into a 

branched polymer state, and this collapse is also found in our simulations (and discussed in 

Section 5.4.3 to follow). The agreement between the scaling behaviour of a ring polymer 

and the hole boundary within a bulk network in two dimensions, suggests that the network 

surrounding the hole perimeter is irrelevant to the scaling properties of the hole area at the 

open-to-closed transition. 

4We have used 16 simulations of a 400 vertex network at line tensions pha = 0.8 - 1.5. 



5.4.3 Membrane behaviour at positive pressure 

When the membrane is placed under positive pressure, i.e., compression, its area 

decreases and its compression modulus increases, as shown in Figs. 5.17 and 5.18. When 

the line tension is just below the critical value pha = 1.25, application of a positive 

pressure to the membrane causes the hole perimeter to shrink, and its area to maintain a 

value close to the minimum allowed in the simulations. For line tensions in the range 

0.6 < @a < 1.2, and pressures Ppa2 < 2, the hole perimeter is large, although its area is 

small relative to its size at zero pressure. Inspection of membrane configurations shows 

that the hole is still present. When the line tension is less than pha = 0.6, the hole remains 

large in spite of applied pressures up to Ppa2 = 8. For all positive pressures we have 

investigated, the hole area, if sufficiently large, scales with its perimeter as a branched 

polymer. A typical example has the exponent 1.04f 0.03 for a membrane subject to a 

pressure ppa2 = 1.0 and line tension pha = 0.8. This agrees with the results of Leibler, 

Singh and Fisher (1987) as described in the previous section. 

The scaling behaviour of the hole in the fluid membrane thus changes from that of a 

CSAW at zero pressure, to a BP at positive pressure. Under compression, so that the hole 

area is small relative to its zero pressure value, the membrane behaves as a uniform, fluid 

network, as shown by the compression modulus which has values in excess of the uniform 

fluid network value P K ~ ~  = 20. The increased compression modulus reflects the fact that 

the hard-core vertices are constrained to occupy a smaller average area under positive 

pressure. The existence of the hole becomes irrelevant in this regime, as the vertices in the 

network are as close together as if the hole were absent. 



5.4.4 Phase diagram of membrane under tension 

We can combine some of our results into a tentative phase diagram, Fig. 5.18, for 

the stability of a fluid network subject to an applied pressure at finite temperature. At zero 

pressure, a minimum line tension of pha = 1.25 is required to stabilise the unbroken 

network against hole formation. Under compressive pressure, the average hole area for a 

given line tension decreases with increasing pressure. Below a line tension pha = 0.6 the 

hole area remains large even at a pressure of ppa2 = 8, although smaller than it would be 

at zero pressure. A hole at finite pressure is represented as "closed" if its area differs by 

Closed 

+ Line tension w . . . . : . .  $ . : . * . ; . # . . I  
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Figure 5.19 Phase diagram for rupture of a model fluid membrane in two 

dimensions as a function of the line tension around the hole pha and 
pressure ppa2. At zero pressure, the membrane scales as a self- 
avoiding, branched polymer (BP) for line tensions between zero and a 
critical value pha = 1.25. Above the critical line tension the membrane 
contains only small holes. (M closed membrane, + open membrane) 
See the text for discussion of metastability. 



less than a factor of two from the minimum hole area in the unbroken network. 

We can relate the transition of the model membrane from an unbroken state to a 

ruptured state to the experimental work on cell lysis. The fluid lipid bilayer that surrounds 

a cell is stabilised by the hydrophobic effect of lipids in an aqueous solution that makes it 

unfavourable for them to leave the bilayer and solubilise. Experiments have shown that red 

blood cells and vesicles rupture when a lateral tension of 2-15 dydcm is created in the 

lipid bilayerS(Evans and Needharn, 1987; Needham and Hochrnuth, 1989). The line tension 

that acts to close up holes in the bilayer has also been measured (Zhelev and Needham, 

1993). and has values in the range 1 - 3 x 10" dyn, depending on the lipid composition of 

the bilayer. When such values are used in the zero temperature calculation in Section 

5.2.1, they predict a barrier height to rupture of the order of tens to hundreds of k,T.  

Thermal fluctuations are clearly ineffective at initiating rupture against barriers of this 

height. Nevertheless, we observe that the model membrane does rupture in the absence of 

an applied tension. 

5.4.5 Rupture of membrane under tension 

When the membrane is placed under tension, our simulations show that the barrier 

height to rupture is reduced from the zero temperature value to approximately zero by the 

entropy of the hole perimeter. The critical hole size does not change significantly. We find 

that the fractional area change of the membrane prior to rupturing, approximately 6%, 

agrees with that observed in osmotic pressure gradient experiments (Hallett et al., 1993), 

but is larger than the value of 3% observed in electroporation experiments (Needharn and 

Hochmuth, 1989). We are unable to convert the MC time to rupture into estimates of the 

membrane's dynamical behaviaur without making an estimate of the membrane viscosity. 

However, the distribution of waiting times for rupture in the simulations shows a wide 

5 ~ h e s e  tensions are for lipids in the La phase appropriate to physiological temperatures; the range of 
values apply to vesicles composed of different lipids. 
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statistical variation that is also seen in experiments (Wilhelm et al., 1993). Wilhelm et al. 

conclude from the linear dependence of the membrane conductance with time, that only a 

single hole is required to rupture a membrane, which suggests that the rupture process at 

finite temperature, and tension, modelled in our simulations may be a reasonable 

approximation to the experimental scenario. 

5.5 Summary 

Experiments have shown that imposing a lateral tension on the fluid bilayer of a 

vesicle or cell causes it to rupture by the occurrence of one or more holes. The barrier 

height between an unbroken, stretched membrane and the ruptured state in several zero 

temperature models is predicted to be of the order of 25 - 450k,T. In this chapter we 

have described zero and finite temperature calculations of membrane stability at zero 

pressure, and presented the results of Monte Carlo simulations that explore the effects of 

thermal fluctuations on the rupture process. 

We have also presented results for membranes subject to a hydrostatic pressure at 

finite temperature. Previous work in three dimensions has found a transition from an open 

membrane to a closed sphere as a function of the line tension around the membrane 

boundary. We have worked in two dimensions to investigate the behaviour of the hole, 

which is not well-defined for a three-dimensional vesicle, and to allow the effects of 

pressure on the membrane to be explored. 

We model the fluid membrane as a network of vertices, confined to two dimensions, 

connected by tethers that are allowed to change their connectivity. The energy of the 

tethers is zero unless they are stretched beyond a maximum length, and the network is 

self-avoiding. The network is subject to a hydrostatic pressure or tension, and a single hole 

is allowed to grow, subject to a line tension imposing an energy cost per unit length on the 

hole perimeter. 
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A finite temperature calculation predicts, and we find in simulations, that there is a 

critical value of the line tension, independent of the system size, at which the hole size 

changes abruptly. The predicted and measured values of the critical line tension differ by 

approximately 12%. For line tensions larger than the critical value pha = 1.25 f 0.05, the 

hole remains negligibly small. The membrane area scales with its perimeter as a self- 

avoiding branched polymer for all line tensions from zero up to the critical value. The hole 

area and radius of gyration, by contrast, scale with self-avoiding walk exponents at the 

transition, and for line tensions pha < 1.0, the exponents, although reduced, are still well 

above the branched polymer value of unity. 

Under compressive pressure, the hole area, when sufficiently large, scales with its 

perimeter as a branched polymer from zero line tension up to the critical value, as found 

previously for simulations of ring polymers in two dimensions. Under a negative 

(stretching) pressure, the network becomes metastable. We have investigated the change 

in the barrier height against rupture for a membrane under tension, and find that thermal 

fluctuations reduce the barrier height significantly, while the critical hole size is relatively 

unchanged. The fractional area change of the membrane prior to rupture is approximately 

6% similar to that found in rupture experiments. 



CHAPTER 6 

CONCLUSIONS 

The specific conclusions arising from each of the projects described in this thesis 

have been presented in the relevant chapters. We collect here some thoughts about the 

implications of the results we have obtained, and pointers for possible future work. 

6.1 Phase transitions in discotic liquid crystals 

Discotic liquid crystals were first synthesised over fifteen years ago, and yet 

understanding of the molecular characteristics that make possible their several distinct 

mesophases remains incomplete. Our computer simulations have revealed that, unlike real 

liquid crystals, hard-core anisotropy alone is suficient to produce a nematic phase in a 

liquid of disk-like molecules in three dimensions, subject to a hydrostatic pressure, when 

the disk thickness is less than 40% of its radius. Real discotic liquid crystal molecules 

appear to require long, hydrocarbon chains attached to a central, rigid core to produce a 

nematic phase. Long-range attractive forces may help to stabilise a mesophase, while 

molecular flexibility may act to destabilise the ordered mesophases with respect to the 

liquid phase. These effects have not yet been included in computer simulations because of 

the consequent dramatic increase in computing time required. Such effects need to be 

included in simulations if the stability of real mesophases is to be related to molecular 

models more realistic than the current anisotropic, hard-core potentials. 

The isotropic-nematic transition is absent for disks with a thickness to radius ratio of 

20%, constrained to lie at an interface between two imrnsicible fluids, and with a 

differential interaction for the two fluids. This is somewhat unexpected given that previous 

work on a resmcted model showed signs of nematic ordering in a set of disks at an 
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interface. The increased orientational freedom of the disks in three dimensions appears to 

reduce the tendency of the disks to align that results from their anisotropic shape. 

The investigation of disks with a differential attraction for two fluids illustrates the 

problems associated with computer simulations of anisotropic molecules with energetic 

interactions. The molecular ansiotropy creates potential energy minima that allow 

neighbouring molecules to become computationally "stuck" in a simulation. Such groups 

of molecules can be very difficult to break up, and this can greatly slow the approach of 

the system to its equilibrium distribution. The potential energy can also contain narrow 

minima that are not easily sampled in a Monte Carlo simulation, resulting in a non- 

equilibrium distribution of the system amongst its energy states. These problems do not 

occur in systems with purely hard-core repulsive forces. For these and other reasons 

simulations of anisotropic molecules have tended to use only hard-core interactions. 

Models of the interactions between amphiphilic molecules necessary for simulations of 

biological systems may have to include long-range forces, such as the Coulomb interaction 

amongst charged lipid headgroups, and this suggests that pure Monte Carlo simulations 

may not be appropriate for such systems. Combined Monte Carlo-Molecular Dynamics 

simulations have been found to have faster convergence to equilibrium than pure Monte 

Carlo simulations, and may prove more adept at simulating complex molecular 

interactions. 

6.2 Elastic properties of polymerised membranes 

We have investigated the effects of temperature and hydrostatic pressure on a 

triangulated network of Hookean springs embedded in two dimensions. A mean field 

theory of a network composed only of equilateral triangles predicts the elastic properties 

of the zero temperature, or highly stretched, self-avoiding network quite well. The 

phantom network, in which the springs are allowed to overlap, agrees with the MFT at 



high tension, but collapses to a very small area at a finite, temperature-dependent tension. 

The lowest-order, finite temperature correction to the MET brings its predictions closer to 

the simulation results, but the behaviour of the network is not dominated by equilateral 

triangles except at very low temperatures. In particular, the variation of the elastic moduli 

with pressure is quite different from the zero temperature MFT prediction. Extending the 

MFT to include non-equilateral triangles may improve the description of the pressure- 

dependence of the network elastic moduli at finite temperature. Such work is currently 

underway Oischer, unpublished). 

The elastic properties of a two-dimensional network of vertices interacting via a 

square-well potential has been investigated recently (Boal, Seifert and Shillcock, 1992). 

The elasticity of this network is entropically generated, in contrast to the network of 

Hookean springs investigated here, and its resistance to deformation increases without 

limit as the strain approaches a finite value determined by the tether length. The Poisson 

ratio of both types of network is negative for a large range of applied tension, and both 

networks also exhibit the collapse transition when the self-avoidance of their bonds is 

removed. Unlike the Hooke's law network, which is amenable to approximation by MFT 

at zero and finite temperatures, the square-well network has no temperature scale and no 

unique ground-state. While being perhaps easier to simulate, the square-well network is 

plagued by extremely long correlation times. The short correlation times of the Hooke's 

law network permits the simulation of larger system sizes and the inclusion of more 

complex interactions. 

The behaviour of the membrane-associated cytoskeleton of a red blood cell has 

recently been modelled as an hexagonally-connected network of chains attached to a flat 

surface representative of the fluid bilayer (Boal, 1994). Each chain is flexible, being 

composed of a fixed number of hard beads connected by tethers. The attachment of the 

network to the bilayer plane is taken at the midpoints of the chains. Recent experiments 



(Mohandas, unpublished) suggest that the spectrin network in an RBC is attached to the 

bilayer by protein band 4.1 at the junction vertices, instead of, or possibly as well as, at the 

midpoints of the spectrin tetramers. The 2D networks investigated here represent a first 

approximation to the RBC cytoskeleton, but appear to capture the behaviour found in 

more complex models. The Hookean network is a good model of a cytoskeleton under 

moderate stress, as long as its area is within a factor of two of the unstressed, equilibrium 

value. The cytoskeleton under large tension is more accurately modelled by a square-well 

network which captures the inextensiblity of the protein chains. Detailed simulations of the 

RBC cytoskeleton are underway (Boey, unpublished) and preliminary comparison shows 

that the 2D networks investigated here provide a good description of the more detailed 

simulations. 

6.3 Fluid membrane stability and rupture 

Fluid membranes have been investigated as a natural extension of work on polymers 

and polymerised membranes. The lipid bilayer surrounding a cell is a fluid and has 

provided motivation for such investigations. Experiments have induced rupture of the lipid 

bilayer in vesicles or cells by the application of an electric field or osmotic pressure 

gradient between the inside and outside of the cell. Rupture of the bilayer is opposed by 

the hydrophobic effect of the lipids that creates a line tension around the boundary of any 

hydrophilic hole that opens in the membrane. The results of rupture experiments have 

commonly been interpreted using a zero temperature model to calculate the barrier height 

against rupture, and the critical hole size. 

We have used Monte Carlo simulation to investigate the effect of thermal 

fluctuations on the properties of a model fluid membrane. We have found that the 

membrane is unstable to forming a large hole when the line tension is less than a critical 

value, pha = 1.25f 0.05, even at zero pressure. Below this line tension, the membrane has 



the appearance, and scaling behaviour, of a self-avoiding branched polymer as found 

previously for three dimensional vesicles. When the network is subject to a compressive 

pressure the hole area shrinks, and closes up within the accuracy of the simulations for line 

tensions within 25% of the critical value. The scaling behaviour of the hole area changes 

from that of a closed self-avoiding walk at zero pressure to a branched polymer at finite 

pressure. 

When the network is subject to a stretching pressure or tension, it becomes 

metastable to rupture, as found in electroporation experiments. The MC time needed for 

the network to rupture varies strongly with the line tension and pressure. For typical 

values of the line tension we find that thermal fluctuations significantly reduce the barrier 

height from the zero temperature prediction of tens to hundreds of k,T.  The fractional 

area change of the membrane prior to rupture is similar to that found in experiments. 

Many cellular processes involve the formation of holes in the fluid membrane, and 

the stability of the fluid lipid bilayer to chemical and other stressors. A detailed 

understanding of the physical processes involved is just beginning. The edge energy of 

lipids on a hole boundary arises from a complex set of interactions amongst diverse 

molecules and is altered by the addition of lipids of different character from those 

composing the bilayer. The edge energy also may not be a constant as has commonly been 

assumed, but may vary with hole size. In addition, there are electrostatic interactions 

amongst the lipids and proteins that have so far been ignored. Such interactions are 

difficult to model accurately because of their long range, and the co-operative effects of 

the distinct forces. It is the combination of several weak forces that stabilises biological 

processes, such as protein folding, and enables cells to operate their biochemical 

machinery. Such systems cannot be accurately treated as being dominated by a single force 

subject to small perturbations from other forces. 



Improved models of biological membranes are needed to understand and explain 

advances in medical therapeutic techniques. The ease of permeabilisation of a fluid 

membrane has been linked to the onset of respiratory distress syndrome in infants 

(Exerowa et al., 1992); cell membrane damage resulting from electric bums is being 

treated via chemicals that act to reseal holes formed in the lipid bilayer (Lee et al., 1992, 

1994); and drug delivery by injected liposomes is an area of active research (Lasic, 1992; 

Litzinger and Huang, 1992). The interactions amongst the lipids, proteins and other 

surfactants in the cell plasma membrane are complicated, and the use of computer 

simulations allows their separate components to be isolated and investigated 

systematically. 



APPENDIX A 

MONTE CARL0 SIMULATIONS 

In this thesis we have used computer simulations to investigate some of the 

thermodynamic properties of three simple model systems. Nicholas Metropolis devised an 

algorithm in the 1950s to simulate a system of disks in a square box with periodic 

boundary conditions that is now almost universally known as the Metropolis Monte Carlo 

(MC) algorithm (Metropolis et al., 1953). An extensive review of applications of the MC 

method is given by Binder (1986, 1987). In this appendix we describe the Metropolis MC 

technique. We also define the autocorrelation function of an observable, and show how it 

may be used to estimate the reliability of the results of a simulation. 

A.l Metropolis Monte Carlo algorithm 

The basic problem in classical statistical mechanics is the evaluation of the partition 

function of a system. The thermodynamic quantities of interest may then be obtained from 

this function and its derivatives. We first calculate the partition function for a system at 

constant volume, and then extend the method to a system maintained at constant pressure. 

Consider a box of fixed volume containing N particles interacting via a specified 

central potential ~({r,}), that depends on the set of inter-particle distances {r,}. The 

partition function is defined as 

where ( p , q )  are the canonical momentum and position coordinates of the N particles, h is 

Planck's constant, P is the inverse temperature ( l /k ,~) ,  k, is Boltzmann's constant, and H 

is the Hamiltonian of the system 



where m is the mass of a particle, 4, is the distance between particles i and j and the 

position coordinates are restricted to lie within the volume of the box. The thermodynamic 

quantities of interest are derived from the Helmholtz free energy 

This is the free energy appropriate to a system held at constant particle number, volume 

and temperature (the NVT ensemble). 

When the potential u ({<,I) is independent of the particles' momenta, the momentum 

degrees of freedom can be integrated out to give 

X 
where h = ( h2 ) is the thermal wavelength and Q, is the configuration integral. 

2 m k B T  

Evaluation of the free energy and its derivatives is reduced to the problem of integrating 

Eq. (AS) given the form of the inter-particle potential. For example, the equilibrium value 

of an observable (x) in the NVT ensemble is 

However, evaluation of integrals of the form of Eq. (A.6) is complicated by the enormous 

number of dimensions in the integrand, for a physical system, and the ability of the 

Boltzmann weight to vary over many orders of magnitude depending on the temperature 
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and potential energy function. A simple numerical integration of IEq. (A.6) is not feasible 

because of the enormous inefficiency of sampling the integrand at evenly spaced points1 

many of whose weighted contributions to the integral are negligible. Nicholas Metropolis 

and co-workers (1953) produced an algorithm that effectively removes these difficulties 

and which forms the basis of almost all Monte Carlo simulation techniques in use today. 

The Metropolis algorithm replaces simple random sampling of the integrand in Eq. 

(A.6) by importance sampling in which configurations with internal energy U are 

generated with relative probability exp(-pu). This reduces the wasteful generation of 

configurations that do not contribute to the integral because of their low statistical weight. 

The algorithm then replaces an average of the form Eq. (A.6) by a sum over a finite 

number of configurations 

where X i  is the value of the observable in the ith configuration. The replacement of the 

integral by a sum obviously limits the accuracy of the averages, but the accuracy can be 

improved by making the number of configurations M large enough. A standard 

implementation of the Metropolis algorithm is as follows. 

Consider N particles placed at arbitrary positions in a box with the number of 

particles, box volume and temperature held constant. Configurations for use in the 

averaging procedure, Eq. (A.7), can be generated by the following sequence of steps: 

1. Select a particle from the N available. 

2. Generate small, random displacements Ax, Ay, Az in its position 

coordinates, each uniformly distributed on the interval (- A12 ,+ ~ 1 2 ) .  with A a parameter. 

'It does not improve matters to select the points randomly. 
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3. Calculate the change in potential energy AU on displacing the particle. 

4. If AU c 0 accept the new configuration. 

5.  If AU > 0 generate a random number o uniformly distributed on the 

interval (0,l) and accept the new configuration if o < exp(-pdu), otherwise retain the 

old configuration. 

6.  Repeat steps 1-5 for all particles in the system (a single iteration of steps 1 

to 5 for all particles in a system we call a sweep). 

This procedure is repeated until a sufficient number of sample configurations have been 

generated to estimate averages using Eq. (A.7) to the required statistical accuracy. A 

proof that this method produces configurations that are asymptotically weighted according 

to the equilibrium probabilities of the canonical ensemble is given by Zannoni (Ch. 9, 

Luckhurst and Gray, 1979). 

The maximum size of the particle steps, A, is not determined by the algorithm so its 

size may be chosen to optirnise convergence of the simulation to equilibrium. Commonly, 

A is chosen so that approximately one half of the attempted moves are accepted. Too high 

an acceptance rate means the system is moving too slowly through its phase space, while 

too low an acceptance rate is inefficient in the use of computing time. 

The above algorithm generates averages for the NVT ensemble. We have mainly 

performed simulations with the pressure, not the volume, held constant. This is the NFT 

ensemble, also known as the isobaric-isothermal ensemble. In the NPT ensemble the 

Helmholtz free energy Eq. (A.3) is replaced by the Gibbs free energy via a Legendre 

transformation 



The partition function in the NPT ensemble is 

where we have written Qv for the configuration integral defined in Eq. (AS). This 

procedure is described by Wood (1968) and Hansen and McDonald (1986). The algorithm 

given by steps 1-6 now has an extra sequence added to sample the configuration space of 

the variable box volume. 

7. Generate small random changes in the box side lengths, Mx , My, M, 

uniformly distributed on the interval (-El2 ,E/2), with 2 a parameter, and scale the 

particle coordinates by the factor ( 1  + ALx/ L,), for the x coordinate and similarly for the y 

and z coordinates. 

8. Calculate the change in internal energy AU as a result of the rescaling, and 

form the function: AU' = AU + pAV - Nk,T In (' iAV ), where AV is the change in 

computational box volume V = Lx Ly L, . 

9. If AU' < 0 accept the new configuration. 

10. If AU' > 0 generate a random number o uniformly distributed on the 

interval (0,l) and accept the new configuration if 61 < ~ X ~ ( - ~ A U ' ) ,  otherwise retain the 

old configuration. 

Note that the pseudo-Boltzmann weight for the box rescaling includes terms resulting 

from the internal energy change, the volume change and the ideal-gas entropy of the 
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particles. The box side length parameter E is commonly chosen to keep the acceptance 

rate for box rescaling close to one half. 

In most simulations, periodic boundary conditions are used to reduce the effects of 

the edges of the simulation box, and allow a finite system to mimic an infinite system. If a 

particle moves across the boundary of the simulation box, it is brought back in at the 

opposite edge. The distance between two particles, used in calculating the internal energy 

of the system, is taken to be the shortest distance between one particle and all of the 

periodically repeated images of its neighbour. 

A.2 Autocorrelation function analysis 

A typical Monte Carlo simulation starts with an initial configuration of a system in 

which the particles are randomly or sequentially placed in the simulation box, and the 

Metropolis algorithm generates configurations for use in calculating ensemble averages via 

Eq. (A.7). There are several sources of inaccuracy in this procedure that can be reduced to 

obtain results to a specified accuracy. The initial configuration may be far from 

equilibrium, and so skew the ensemble averages. Further, successive configurations 

produced by the Metropolis algorithm are highly correlated as they differ only in the 

position of a single particle. The system must be allowed to evolve for many sweeps 

between sample configurations to ensure that positional (and orientational) correlations 

between the particles have decayed away, and that the sample configurations are 

distributed according to the equilibrium probabilities of the ensemble. Finally, the rate at 

which the system moves through its phase space may be too slow to provide a 

representative average over the accessible region. 

The correlation between the values of an observable in successive configurations in 

an MC simulation is measured by the observable's autocorrelation function. This quantity 

can be determined from a simulation, and a correlation time estimated. The correlation 
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time is a measure of the number of sweeps that must separate sample configurations to 

ensure their statistical independence. It also allows us to estimate how many 

configurations to discard at the start of a simulation to reduce any dependence on the 

initial state. We now describe how to calculate the autocorrelation function for an 

observable. 

Given a set of N values {xi} of an observable X obtained from successive samples in 

an MC simulation, the autocorrelation function of X is defined as 

(A. 11) 

where the ensemble average and standard deviation of the set { x i }  are defined by 

l N  
(x) = - E x . ,  

N i=l 

(A. 12) 

(A. 13) 

The autocorrelation function is restricted to the range (0,l) with this definition, and 

complete correlation gives C, (n) = 1, while complete randomness gives C2 (n) = 0. If we 

approximate the autocorrelation function at small times as a single exponential, that is, 

C, (n) = ~,e-*', (A. 14) 

then the correlation time z gives a measure of the number of configurations to be 

discarded between samples to ensure statistically independent values of the observable X. 

Usually, we perform preliminary simulations to estimate the relevant correlation times in a 

system, and then arrange for subsequent simulations to produce sample configurations 

separated by the appropriate numbers of sweeps. The assumption that the correlation time 

is a simple exponential breaks down if there are many different relaxation mechanisms in 
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the system. However, we are usually interested only in some features of a system, whose 

relaxation may be governed by one dominating mechanism. In this case we can measure 

the autocorrelation function for the observables of interest and neglect the others. The rate 

at which a system moves through its phase space during an MC simulation is controlled by 

the particle move parameter A, and box side rescaling parameter S. The values of these 

parameters are chosen from experience to expedite the simulations. 

The final point to be made about the Metropolis algorithm is the question of how 

many configurations to keep in calculating ensemble averages. We cannot generate an 

unlimited number of samples because of finite computer time and memory. We use a fixed 

number of configurations for most results and occasionally perform a simulation with a 

much larger number of configurations. If the averages do not change significantly on 

extending a simulation, we can be confident that keeping more configurations would not 

greatly improve the accuracy of the results. Additionally, we repeat several simulations 

and check that average values of observables are reproduced with the accuracy expected 

from a single simulation. 



APPENDIX B 

SIMULATION DETAILS AND ERROR ANALYSIS 

In this appendix we describe the details of the simulation techniques used to 

investigate the three model systems of interest in the thesis. Section B.l describes the 

simulations of discotic liquid crystal molecules presented in Chapter 2, Section B.2 

describes the polymerised membrane simulations of Chapter 4, and Section B.3 gives the 

details of the fluid membrane simulations presented in Chapter 5. We also present here the 

relevant error analyses for the simulations. 

B.l Liquid crystal simulation details 

B. 1. 1 Isotropic-nematic transition in 30 

We consider a system of N hard disks confined to a cubical box subject to periodic 

boundary conditions. The disks are initially positioned randomly throughout the box. Each 

MC step consists of an attempt to make small, random changes to the position and 

orientation of each disk. For the position coordinates this displacement is of the form 

2. D S . ( ~  - a ) ,  where DS is the maximum allowed step size, and o is a random number 

uniformly distributed on the interval (0,l). The angular moves are treated slightly 

differently. The polar and azimuthal angles ( 8 , ~ )  are sampled so that the normal vector to 

an isolated disk uniformly samples the surface of a unit sphere. The probability of the 

orientation defined by the spherical polar coordinates (8.0) is thus 

The angles are restricted to their usual ranges, 0 I 8 I x, 0 I $ 1 2 ~ .  A random change, 

A$, is made in the azimuthal angle, but it is the cosine of the polar angle that is altered, 
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~ ( c o s e ) .  The maximum step size for the translational and azimuthal angle moves is DS 

and xxDS respectively, while that for the cosine of the polar angle is 0. lxDS. Values for 

DS are given later. The new position and orientation are accepted if the disk does not 

intersect another disk. The Boltzmann factor associated with the disk moves is zero or one 

given the hard-core repulsion of the disks. 

After an attempt has been made to move each of the disks, a random change is made 

in the length of the box sides. The algorithm used to generate the new box sides is 

where DL is the maximum step size for the box resealing, and o is a random number 

uniformly distributed on the interval (0,l). The same rescaling factor is applied to each box 

side. The new box size is accepted according to the pseudo-Boltzmam factor 

where AV = V' -V  is the change in volume of the box and p the applied pressure. The 

move is accepted if the weight w is greater than one, or less than one but greater than a 

random number uniformly distributed on the interval (0,l). The move is rejected if it 

causes any disk to intersect another. Note that the temperature only appears in 

combination with the pressure as P ~ R ~ .  A sweep across the system consists of an attempt 

to move and rotate each disk by random amounts, followed by an attempt to rescale the 

box volume. 

The systems were evolved for 1,000,000 sweeps to equilibrate, and then sample 

configurations were collected every 50,000 sweeps. The ensemble averages were usually 

constructed from 50 configurations, although some simulations used 100 -200 

configurations. At the time these simulations were performed this was considered 

reasonable (Bod and Blair, 1990). The disk move step size was in the range 0.02-0.1, and 
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the volume rescaling step size was in the range 0.001-0.01. This resulted in acceptance 

rates of 40-90% for disk moves and 15-50% for volume rescalings. 

Table B. 1 shows the single-particle, polar angle correlation times for representative 

simulations of disks of thickness T / R  = 0.02,0.2,0.4,1.0. Except near the I-N transition at 

PpR3 = 3.5, the correlations are of the order of the 50,000 sweep standard we used for all 

applied pressures. We have used the single particle correlation time, instead of the 

collective correlation time, because it better represents the orientational behaviour of a 

disk. The orientational correlation time is small for pressures PpR3 < 3, but grows rapidly 

at higher pressures. This reflects the fact that the disks are closely packed at pressures 

PpR3 > 3 and unable to rotate freely, hence their orientations are expected to be 

Table B. 1 Single-particle polar angle autocorrelation times for 64 and 100 disks 
in three dimensions, subject to a hydrostatic pressure PpR3. The 
results for T / R  = 0.2 are from 64 disk simulations, the other results 
are taken from 100 disk simulations. (NA=Not available) 

constrained. As a result of the limited number of configurations used for the averages, the 

Pressure 

accuracy of the simulations is limited to 10% away from the I-N transition, and 

0.1 300 2000 300 250 

Correlation time 
for T/ R  = 0.2 

(sweeps) 

Correlation time 
for TI R = 0.02 

(sweeps) 

approximately 15% near the transition. We show in Table B.2 the orientational order 

parameter, defined in Section 2.2, and its standard error for systems of 64 and 100 disks. 

Correlation 
time for 

T / R  = 0.4 
(sweeps) --- 

In the isotropic phase, the order parameter is consistent with zero to within statistical 

Correlation time 
for T / R  = 1.0 

(sweeps) 



error, while the fluctuations in the order parameter in the nematic phase are less than 1%. 

Near the I-N transition the error in the order parameter rises to about 15%. Towards the 

end of this work, quantitatively similar results on the I-N phase transition were published 

by Veerman and Frenkel(1992) and it was not felt worthwhile to continue the simulations 

to greater accuracy. 

100 disks 
0.003M.006 

Table B.2 Orientational order parameter for 64 and 100 disks in three 
dimensions subject to a hydrostatic pressure P ~ R ~ .  The data 
displayed are constructed from 100-200 configurations separated 
by 20-50,000 sweeps. (NA=Not available) 

B. 1.2 Isotropic-nematic transition at a 20 interface 

The algorithm used for the simulation of platelets confined to a two-dimensional, 

planar interface is similar to that used for the three-dimensional simulations. The N 

platelets are placed randomly at the interface, subject to the constraint that part of their 

body intersects the interface. The interfacial plane is continued using periodic boundary 

conditions. An MC step consists of an attempt to move and rotate each platelet 

independently using the procedure described in Section B. 1. A move is rejected if it causes 

a platelet to intersect another platelet or if it removes the platelet from intersecting the 

interface. 
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An attempt to rescale the interfacial area is made once every 10 sweeps. The box 

sides are rescaled independently in the x and y directions. The z dimension of the box is 

not rescaled. The algorithm used to generate the new box sides is 

where DL is the area rescaling step size, and o, , 0 2  are random numbers uniformly 

distributed on the interval (0.1). The new box s i x  is accepted according to the pseudo- 

Boltzmann factor w = exp(-ppM+ N ln(A'/A)), where M = A'- A = L:L; - L,L, is 

the change in area of the box and p the applied pressure. Because there is an energy scale 

in these simulations, the factor of p is relevant. Note that the energy of the platelets does 

not change when the interfacial area is rescaled, because the area of contact of each 

platelet with the interface is unchanged. A sweep now consists of an attempt to move and 

rotate each platelet, followed by an attempt to rescale the interfacial area. 

The systems were evolved for 1,000,000 sweeps to equilibrate and sample 

configurations were taken every 50,000 sweeps. The acceptance rates for particle moves 

and box rescaling were around 70% and 50% respectively. The correlation times were less 

than the standard 50,000 sweeps except at temperatures (P~,R')-' < 1, where they rose to 

around 150,000 sweeps. The ensemble averages were constructed from 100 

configurations. We estimate the accuracy of the results to be approximately 20%. 

8.2 Polymerised membrane simulation details 

This section describes the details of the simulations of a network of Hooke's law 

springs in two dimensions. The initial configuration of the Hooke's law network is taken as 

a rectangular patch of N vertices cut from a regular, hexagonal lattice with all bond lengths 

equal to the unstretched spring length s,, . An exception is made for the network at infinite 



155 

temperature, for which an initial bond length of (pk)-' is used. A sweep across the 

network consists of an attempt to move each vertex by random amounts in the x and y 

directions, followed by an attempt to rescale the rectangular shape of the network 

independently in the x and y directions. The algorithms for such moves are similar to those 

already described. The bonds in the self-avoiding network are prevented from crossing one 

another by forbidding the cross-product of bond vectors from changing sign during a 

vertex move. This constraint is not present for the phantom network. 

All networks are allowed to relax for 100,000 sweeps to equilibrate, and then 

sample configurations are extracted every 5,000-10,000 sweeps. The ensemble averages 

are usually constructed from 1000 configurations. The step sizes for the vertex moves and 

box rescaling are usually 0.5 and 0.05 respectively, resulting in acceptance rates of 

approximately 50-70% for vertex moves and 40-50% for box rescaling. 

8.2.1 Step size dependence of ensemble averages 

The number of configurations needed for a system to reach equilibrium in an MC 

simulation depends on the step size used for particle moves. The ensemble average of the 

observables, however, is independent of the magnitude of the step size. In Table B.3 we 

show the effect of changing the step size on the ensemble averages for the phantom 

Hooke's law network. We have set the box rescaling step size to 0.1 times the vertex 

move step size for these simulations. We only show the results for the phantom network 

because its errors are greater than or equal to those of the self-avoiding network. 



Table B.3 Variation of representative observables with the vertex move 
step size for a phantom Hooke's law network at a temperature 
k,T/kr: = 1, for two pressures p/k. The results shown are 
obtained from simulations of 256 vertices using 1000 
configurations, separated by 1000 sweeps, to form the averages. 
(See text for a definition of the errors shown.) 

Table B.3 is compiled from simulations of a phantom network with 256 vertices at a 

temperature k,T/k.s: = 1. The errors quoted in the table are the standard error of the 

mean value (the standard error is l / f i  times the ensemble standard deviation, where N 

is the number of independent configurations used to construct the averages). The 

statistical error in the network observables is approximately 1%, and the sample 

configurations are effectively indpendent as will be shown in the next section. We 

conclude that the results of Chapter 4 are not unduly affected by the step size used in the 

simulations. 

8.2.2 Autocorrelation function analysis 

We have measured the autocorrelation functions, as defined in Section A.2, for the 

simulation box side lengths and area. These are the observables used to calculate the 

elastic constants using the results of Chapter 3. 



The sequence of values of an uncorrelated observable plotted against simulation time 

shows random fluctuations about a constant mean value.The values of the area and box 

side lengths generated in each simulation are plotted and inspected by eye to see if there is 

any secular trend. The best-fit straight line through the data is compared with the long- 

time average of the same data. The two curves coincide for an observable in an 

equilibrated system. This method showed that the observables were uncorrelated in almost 

all simulations, except near the collapse transition for the phantom networks. 

A typical measure of the correlation time for a polymer system is given by the Rouse 

time, r = N/DS' , where N is the number of vertices and DS is the vertex move step size. 

We have used 5000-10000 sweeps between sample configurations which is approximately 

3-6 Rouse times for the 400 site network, and even greater for smaller networks. The 

Table B.4 Autocornlation times for network side lengths r, ,z, and area z,, 
and vertex move and area rescaling acceptance rates for phantom 
Hooke's law networks as a function of vertex move step size. (See 
Table B.3 for description of simulations used to compile the data.) 

correlation time analysis described in Section A.2 shows that the configurations used to 

generate the results of Chapter 4 are uncorrelated. The measured correlation times for the 

runs used in the step size analysis discussed above are shown in Table B.4. 



SA 1 .O 256 
Phantom 1.0 256 

I Phantom I 1.0 1 400 
S A 0.75 256 

Phantom 0.75 256 
I Phantom 1 0.75 1 256 1 Phantom 1 1 :;z Phantom 

Phantom 0.65 400 
Phantom 0.65 400 

- 

Phantom 0.65 400 
Phantom 0.65 900 
Phantom 0.64 400 

SA2 0.5 1 44 

Table B.5 Statistical error in the irea per vertex ( A ) / N S :  , and elastic 
moduli for self-avoiding (SA) and phantom networks at a 
temperature k,T/ks: = 1, and various pressures p / k ,  for 
several system sizes showing the reproducibility of results in 
i n r l ~ w n d ~ n t  simiilrrtinns 

Table B.4 shows that the correlation times for the observables used to construct the 

elastic constants are negligible for pressures less than p / k  = -1. Near the collapse 

transition, p / k  = -0.65 at a temperature k,T/ks: = 1, only simulations using the smallest 

step size 0.1 show a significant rise in the correlation times. The acceptance rates for 

vertex moves and box rescaling are around 70% and 40% respectively for the step size of 

0.5 used in almost all simulations. As a further test of the accuracy of the results, Table 

B.5 shows the ensemble averages for networks at several pressures calculated from 1000 

2The errors in the elastic constants for these three SA simulations are not available. 
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to 5000 configurations. There is no significant change in the results using the larger 

number of configurations to form the averages. 

Most production runs used 256 vertices for phantom networks and 144 for self- 

avoiding networks. For pressures close to the collapse transition, plk > -0.75, the 

phantom networks have 400 and 900 vertices. There is a negligible difference between the 

observables obtained from the phantom and self-avoiding networks at pressures p/k c -1. 

At pressures plk > -1 the values of observables from independent simulations of the 

phantom network show some variation. The shear modulus shows the largest deviation, 

but even this is negligible for pressures plk c -0.75. 

The results in Table B.5 show that the statistical error in the area per vertex of the 

self-avoiding network is less than 1% for all pressures. The elastic constants are accurate 

to 10%. For the phantom network, the error in the area per vertex is less than 1% for 

pressures plk c -0.75, but near the collapse transition the area per vertex approaches 

zero and its error increases to 25%. The elastic constants near the collapse transition are 

close to zero and difficult to measure accurately. The systematic errors due to correlations 

between successive configurations may be as high as a factor of two between independent 

simulations. We conclude that the errors in the data presented in Chapter 4 are less than 

the symbol size used in the figures, except for the elastic constants of the phantom 

network close to the collapse transition. 

8.2.3 System size dependence of ensemble averages 

Most of the results presented in Chapter 4 were for networks containing 144 or 256 

vertices. We have also investigated phantom networks with 400 and 900 vertices to see if 

the network properties are affected by its finite size. The results of simulations using the 

larger numbers of vertices are shown in Table B.5. We find no appreciable dependence of 

the network's elastic properties on system size. 



8.3 Fluid membrane simulation details 

The fluid membrane described in Chapter 5 is represented by a two-dimensional, 

self-avoiding network of vertices connected by bonds, or tethers, that can migrate through 

the network. The simulation technique is similar to that for the polymerised network 

described in Section B.2 with two additions: the vertices are allowed to change their 

connectivity; and a hole is allowed to develop in the network. The initial configuration of 

the network is a rectangular patch of N vertices excised from a regular hexagonal lattice. 

The energy of a tether is given by Eq. (5.10). The initial bond lengths are all equal to 

0 . 9 ~ ~ .  A sweep across the network consists of an attempt to move each vertex by random 

amounts in the x and y directions, followed by an attempt to rescale the network area, and 

two additional algorithms to simulate the fluidity of the network and the growth of a hole. 

All networks are allowed to relax for 1,000,000 sweeps before sample 

configurations are collected. Most results are derived from ensemble averages of 400- 

1000 configurations separated by a variable number of sweeps that depends on the 

simulation parameters (line tension and pressure). We present the correlation time analysis 

for the relevant observables after describing the network fluidity and hole growth 

algorithms. 

8.3.1 Bond fluidity algorithm 

An algorithm for simulating a fluid network was introduced by Baumgartner and Ho 

(1990). This algorithm allows bonds to migrate between neighbouring pairs of vertices, 

changing the connectivity of the network. As illustrated in Fig. B. 1, a bond initially 

connected to two end vertices, 1 and 2, may be disconnected and reconnected to the two 

"adjacent" vertices, 3 and 4. 



Figure B. 1 Bond move showing the reconnection of a bond from its two end 
vertices 1, 2 to its "adjacent" vertices 3, 4. 

The bond move must satisfy the following conditions. The new bond must be less than the 

maximum tether length so, and the coordination number of the four vertices involved must 

not drop below three or exceed nine. The lower limit is set to maintain the triangulation of 

the network, while the upper limit is for computational convenience. A final test is applied 

to the bond move to prevent the network intersecting itself. A typical move that is 

forbidden by this test is shown below in Fig. B.2. 

Figure B.2 Example of a forbidden bond move from end vertices 1 ,2  to 
"adjacent" vertices 3,4: the dashed line does not represent an 
allowed bond configuration as two bonds are intersecting. 

In this attempted move, the bond represented by the solid line connecting vertices 1,2 is 

allowed to move to its adjacent vertices 3,4 by the previous tests of length and 

coordination number, so an extra test is used to prevent the consequent bond crossing. 

This test requires that the area of the two triangles adjacent to the bond that is being 

moved be the same before and after the move. 
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The fluidity algorithm allows a bond to move through the network by changing its 

connectivity step by step. Because there is no energy scale for the bonds (as long as they 

are less than the maximum length) there is no Boltzrnann weight for a bond move. An 

attempt is made to move each internal bond once per sweep. An internal bond is one that 

satisfies the conditions specified above of having two end vertices and two "adjacent" 

vertices. 

B.3.2 Simulation of a hole in a fluid network 

When a hole is present in the network we have to distinguish between internal 

vertices in the bulk of the network, and external vertices on the perimeter of the hole. 

External vertices have only one adjacent vertex, and are forbidden from changing their 

connectivity via the bond fluidity algorithm just described. In addition, the hole is enabled 

to grow and shrink by attempts to cut and add bonds on its perimeter. After several 

attempted algorithms for hole growth were found to be biased in some way, the final 

algorithm used produces hole growth statistics that appear to satisfy detailed balance. The 

hole perimeter is prevented from intersecting itself by means of a new self-avoidance 

routine. We now discuss these algorithms in turn. 

A hole is introduced into the network by removing one bond from the initial 

configuration. This creates a hole with a perimeter of four external vertices (and, of 

course, four external bonds). All other vertices are labelled internal. A sweep across the 

network includes N attempts to cut or add a bond around the holes. Each attempt is 

randomly chosen to be a cut or add move. The number of attempts is made equal to the 

system size to ensure an attempt rate comparable to the vertex move algorithm. 

3 ~ s  usual, N is the number of vertices in the network and is constant, although the number of bonds varies 
as the hole grows and shrinks. 
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The hole growth algorithm is as follows. A bond is randomly selected on the hole 

perimeter and an attempt is made either to remove it, or to add a bond across one of its 

end vertices. A bond cut move is forbidden if either of the following two conditions are 

met: 

The vertex adjacent to the bond to be removed is already on the hole 

perimeter. This prevents the perimeter passing through the same vertex twice, 

which would cause it to be not simply connected. 

The coordination of the vertices at either end of the bond falls below 3. 

A Boltzmann factor is used to weight the bond cut. The energy change comes only from 

the line tension around the hole, and is given by AU = h AL., where h is the line tension 

(energy per unit length of the perimeter) and AL. is the change in perimeter length due to 

the bond cut. For a positive line tension, the energy of the system is always increased by 

removing a bond, and the move is accepted with probability ~ X ~ ( - P A U ) .  If the bond cut 

is rejected, another vertex is randomly selected and the add/cut process repeated. If it is 

accepted, the two bonds revealed by the cut bond are labelled external and become 

candidates for future bond cut or add attempts. 

The bond add routine attempts to make the hole shrink by adding a bond between a 

pair of next-nearest neighbour vertices on the perimeter. In a similar manner to the bond 

cut move, an external vertex is randomly chosen and one of its next-nearest neighbours is 

also randomly selected. An attempt is made to add a bond between the two vertices 

subject to the following checks: the new bond length must be less than the maximum 

tether length, and the new bond must not intersect any other bond. A move that is 

prevented by this test is illustrated below in Fig. B.3. 



Figure B.3 An attempt to add a bond between vertices A and B fails because 
the new bond would intersect a bond already present in the 
network. 

The bond to be added to the vertices labelled A, B in Fig. B.3 would intersect another 

bond and so the attempt is forbidden. The test used to prevent this move is shown below 

in Fig. B.4. 

Figure B.4 Definition of bond vectors used in checking a bond add move. 
Vertices V1, V2, V3, are on the hole perimeter, vertex V4 is in 
the interior of the network. 

The external vertices V1, V2, V3 lie on the hole perimeter, the vertex V4 is that internal 

vertex closest to V1. The vectors B, are defined in Fig. B.4. An attempt to add a bond 
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between vertices V1 and V3 is accepted if sign(g.b_) # sign(gG). This test ensures that the 

hole perimeter is concave between the two vertices which are to be connected by the new 

bond. The Boltzmann weight is always unity for the bond add move because it is always 

energetically favourable to reduce the hole perimeter given a positive line tension. 

The problem of keeping the perimeter of the hole from intersecting itself is a highly 

non-local one. Protuberances of the bulk network that project into the hole, such as those 

seen in Fig. 5.4, occur frequently when the hole is large because they are entropically 

favoured. After several attempts at finding an elegant, geometrical method of preventing 

the hole perimeter from intersecting itself, we finally used a lookup table containing the 

nearest neighbours of each vertex, and used it to check vertex moves for both internal and 

external vertices. 

The lookup table contains a list of vertices within a fixed distance of each vertex. 

When an attempt is made to move a vertex, the code checks with the vertices on this list 

to ensure that its new position does not cause two vertices to intersect, or two bonds to 

cross. Two vertices are prevented from intersecting by requiring that the distance between 

their centres be greater than the hard-core vertex diameter a, and vertices are prevented 

from crossing neighbouring bonds by keeping the maximum tether length less than 

so < &. We use the value so = 1.688~. because the fmite step size in the simulations 

could allow a vertex to pass through a bond if so = &a exactly. The lookup table is 

updated every 10 sweeps, and this was found to be frequent enough to prevent any 

intersections occuning. 

The order of execution of the various algorithms was found to be unexpectedly 

significant in the fluid network simulations. Initially, a fixed number of bond cut attempts 

were followed by a fixed number of bond add attempts. However, unless the bond add/cut 

moves were separated by a randomising process, such as the vertex moves, the hole only 



oscillated about its initial state. The algorithms were ordered so as to remove these 

spurious oscillations. The order in which the various algorithms are executed is: 

Attempt to move each of the N vertices. 

Attempt to addcut N bonds around the hole. 

Attempt to reconnect each internal bond to its "adjacent" vertices. 

Attempt to rescale the network area. 

8.3.3 Autocorrelation function analysis 

Similarly to the polymerised network, the sequences of values of the network area, 

hole inertia tensor eigenvalues and hole area generated in a simulation were inspected by 

eye to see if there was any secular trend. Most of the data sets showed no trend, but some 

had to be discarded because they had not reached equilibrium in the time allowed for the 

simulation. This suggests the presence of very long correlation times in the square-well 

network, which was confirmed when the autocorrelation functions of the observables were 

measured. Most simulations used configurations separated by 50,000 sweeps. We show 

the correlation times for some typical simulations at zero pressure in Table B.6 for a range 

of line tensions from pha = 0.8 to 1.5. 

The correlation times for the network area and hole observables are within the 

standard 50,000 sweeps, except for line tensions near the critical value. The step size for 

vertex moves was between 0.15 and 0.25, and the area rescaling step size was set to 0.1 

times the vertex move step size. The acceptance rate for vertex moves was in the range 

30-60%, while that for area rescalings was in the range 20-60%. No significant variation in 

the network's properties with step size was found. 



The correlation times for the networks under compression, shown in Table B.7, are 

much shorter than those for networks at zero pressure. We only show the data for positive 

pressure because the correlation times for negative pressure simulations are comparable. 

The correlation times for positive pressure simulations are always much less than the 

standard number of sweeps, and in most cases the correlation between configurations 

separated by 100 sweeps is essentially zero. We allow between 5000 and 50,000 sweeps 

between configurations for the positive pressure simulations. The largest correlation times 

Table B.6 Autocorrelation times for the hole eigenvalues z, ,z, and hole 
area z, and acceptance rates for fluid networks at zero pressure, 
with N = 196 vertices (top of table), and N = 400 vertices 
(bottom of table), for various line tensions pha. 

were found for pressures close to zero, showing that correlations in the square-well 

network under pressure decay more rapidly than the zero pressure networks. This result is 

also found for simulations of polymerised networks in Chapter 4: the Hookean spring 

networks have correlation times smaller by an order of magnitude than the equivalent 

square-well networks (unpublished data). 



When the measured correlation time exceeds the allowed 50,000 sweeps, we use the 

estimated correlation time to reduce the number of configurations used in constructing the 

ensemble averages, thus creating a smaller, uncorrelated set of configurations from the 

original, correlated set. The standard error of the mean value correspondingly increases. 

Given a simulation with N configurations, in which z is the measured correlation time (in 

sweeps), and v is the number of sweeps between sample configurations in the original 

Table B.7 Autocorrelation times for hole eigenvalues z, , z2 , and hole area z,, 
and acceptance rates for a fluid network with N = 196 vertices, 
subject to a line tension pha and compressive pressure ppa2. 
(<I00 means that the correlation between two successive data 
points separated by 100 sweeps was negligible.) 

simulation, the number of statistically independent configurations is approximately given 

Line 
Tension 

1.2 
1.2 
1.2 
1 
1 
1 
1 

0.8 
0.8 
0.8 
0.8 
0.8 
0.8 

by the formula 

NO of 
points 

1000 
1000 
1000 
1000 
1000 
1000 
500 
1000 
388 
644 
500 
1000 
500 

ppa2 

0.5 
1 
2 
1 
2 
3 
4 
1 
2 
3 
4 
6 
8 

1 

(lo3 
sweeps) 

1000 
270 

<200 
600 

<lo0 
<lo0 
<200 
4200 
870 

<lo0 
4 0 0 .  
<lo0 
<400 

22 
(lo3 

sweeps) 
1000 
220 
<200 
560 

<lo0 
<lo0 
<200 
5600 
940 
4 0 0  
4 0 0  
<lo0 
<400 

2 3  

(lo3 
sweeps) 

1050 
220 

R O O  
590 

<lo0 
<lo0 
R O O  
3800 
950 

4 0 0  
<500 pp 

<lo0 
<400 

Vertex 
move 

0.40 
0.38 
0.35 
0.38 
0.35 
0.32 
0.52 
0.41 
0.22 
0.32 
0.29 

0 . 2 3  
0.39 

Box 
rescaling 

0.30 
0.29 
0.22 
0.3 1 
0.24 
0.19 
0.33 
0.32 
0.14 
0.18 
0.14 
0.10 
0.20 



Based on the measured correlation time, we recalculate the ensemble averages using the 

number of configurations defined by Eq. (B.5)4. This does not change the average values 

of observables significantly, but it does change the accuracy of the standard error defined 

where o, is the standard deviation of the set of sample configurations. When the data 

points are not truly uncorrelated we replace N in Eq. (B.6) by M determined from Eq. 

(B.5). We show in Table B.8 typical values of the network and hole areas for networks 

with 196 vertices, before and after the correction. It is seen that the result of this analysis 

is a moderate increase in the standard error of the ensemble averages for line tensions 

close to the transition. The errors change by less than a factor of 2 for networks in which 

the hole is small. Below the transition point, pha = 1.25, the errors increase by up to a 

Table B.8 Calculation of the standard error of ensemble averages using 
the original number of configurations N and the smaller 
number of data points M determined from Eq. (B.5) for a 
range of line tensions @a. The two observables are the total 
network area  l la') and the hole area ( A , ~ / u ' ) ,  and the 

standard errors shown are calculated from Eq. (B.6). 

4We use every N /  M th point for constructing the averages instead of all N. 

Original 
('hole/' 2 ,  

4.4k0.4 
1 2 3 0 . 7  

58k4 
3 7 5 s  
5 0 5 s  

Line 
tension 

1.4 
1.25 
1.2 
1.0 
0.8 

i 

Modified 

('hole la 2 ,  

4.6H.5 
11.9f1.3 

5 8 s  
369f13 
493f 15 

Original 
(A/a2 ) 

290.1k0.3 
300.W.5 

3 3 2 s  
575k5 
6 9 M  

Modified 

('Ia2 ) 

290.2kO.5 
300.M0.9 

33 1k4 
569k13 
679f15 

N 

200 
715 
321 
400 
400 

M 

167 
179 
107 
69 
67 



factor of 3. This partly reflects the large fluctuations in the hole size as the membrane 

disintegrates. The mean values of the observables are seen not to change very much as a 

result of this analysis. 

As a further test of the accuracy of the results, we perform several simulations 

keeping 1000 configurations to calculate the ensemble averages. The results are shown in 

Table B.9 below. It is found that 400 configurations give an accuracy of better than 5% 

for most observables. The elastic constants are an exception. Because the compression and 

shear moduli are calculated from fluctuations in the box side lengths and area, their 

accuracy is intrinsically poorer than that of the quantities froin which they are derived. 

Table B.9 Comparison of membrane area (A/a2), elastic constants P K ~ '  
and Ppa2 and hole area (A,,/a2) obtained from simulations with 

approximately twice the usual number of configurations at two 
line tensions pha for system sizes N = 196,400 vertices. 

We conclude that the statistical errors in the network area, average bond length and 

asymmetry are less than 5% for all values of the line tension. The compression modulus is 

accurate to 5% for line tensions greater than pha > 1.3. For line tensions pha < 1.3, the 

compression modulus is indistinguishable from zero to within statistical error. The shear 

modulus is always consistent with zero to within statistical error. The errors in the 

observables presented in Chapter 5 are usually less than the symbol size used in the 

figures, and we have omitted the error bars on the figures for clarity. 
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