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Abstract 

The problems in computer vision have traditionally been approached as recovery prob- 

lems. In active vision, perception is viewed as an active process of exploratory, probing 

and searching activities rather than a passive re-construction of the physical world. 

To facilitate effective interaction with the environment, a foveate sensor coupled with 

fast and precise gaze control mechanism becomes essential for active data acquisition. 

In this thesis, the Reciprocal-Wedge Transform (RWT) is proposed as a space- 

variant image model. The RWT has its merits in comparison with other alternative 

foveate sensing models such as the log-polar transform. The concise matrix repre- 

sentation makes it enviable for its simplified computation procedures. Similar to the 

log-polar transform, the RWT facilitates space-variant sensing which enables effective 

use of variable-resolution data and the reduction of the total amount of the sensory 

data. Most interestingly, its property of anisotropic mapping yields variable resolu- 

tion primarily in one dimension. Consequently, the RWT preserves linear features 

and performs especially well on translations in the images. 

A projective model is developed for the transform, lending it to potential hardware 

implementation of RWT projection cameras. The CCD camera for the log-polar 

transform requires sensing elements of exponentially varying sizes. In contrast, the 

RWT camera achieves variable resolution with oblique image plane projection, thus 



alleviating the need for non-rectangular tessellation and sensitivity scaling on the 

sensing elements. A camera model making use of the available lens design techniques 

is investigated. 

The RWT is applied to motion analysis and active stereo to illustrate the effec- 

tiveness of the image model. In motion analysis, two types of motion stereo are 

investigated, namely, longitudinal and lateral motion stereo. RWT motion stereo al- 

gorithms are developed for linear and circular ego motions in road navigation, and 

depth recovery from moving parts on an assembly belt. The algorithms benefit from 

the perspective correction, linear feature preservation and efficient data reduction of 

the RWT. 

The RWT imaging model is also shown to be suitable for fixation control in active 

stereo. Vergence and versional eye movements and scanpath behaviors are studied. 

A computational interpretation of stereo fusion in relation to disparity limit in space- 

variant imagery leads to the development of a computational model for binocular 

fixation. The unique oculomotor movements for binocular fixation observed in human 

system appears natural to space-variant sensing. The vergence-version movement 

sequence is implemented for an effective fixation mechanism in RWT imaging. An 

interactive fixation system is simulated to show the various modules of camera control, 

vergence and version. Compared to the traditional reconstructionist approach, active 

behavior is shown to be plausible. 



Acknowledgements 

My foremost gratitude goes to my thesis advisor, Dr. Ze-Nian Li, for his constant sup- 

port and encouragement. I have learned many things from Ze-Nian during the course 

of my working with him. I have learned from his persistence and industriousness as 

a researcher. However, I admire most his knowledge and vision. 

My deepest gratitude also goes to Dr. Brian Funt. I thank him for introducing 

me to the area of computer vision. His inspiring suggestions have always been most 

valuable. I would also like to  thank Dr. Tom Calvert for being on my advisory 

committee. I am grateful for his generosity with his time and comments. My thanks 

also go to Dr. Kamal Gupta. He is my professor, and he is also my friend. His 

thoroughness in reviewing my thesis is much appreciated. 

I also owe my gratitude to  Dr. Steven Tanimoto. I feel grateful to him for being 

my external examiner. He has been very generous with both his time and helpful 

comments. Steve is very knowledgeable in the area. His acceptance of my thesis 

makes me feel I have accomplished something valuable. 

I would like to express my appreciation to Dr. Woshun Luk. His constant concern 

and encouragement are much appreciated. I am also thankful to  Gray Hall for help 

with the proof-reading. 

My thanks also go to many of the graduate students. In particular, I would like to 



thank Graham Finlayson for the interesting and inspiring discussions. Carlos Wong 

and Xao Ou Ren shared the same office with me. I thank them for the refreshing 

chats that kept me going even in the most boring days. 

I also thank the entire staff of the Computing Science department. We are lucky 

to have a crew of supporting staff who are so friendly and helpful. They indeed have 

made a viable environment throughout my stay. 

I owe all my accomplishments to my parents. They worked so hard to raise a 

family of eight, yet they still supported us through school. It was not easy for them. 

Finally, and by no means least, I want to acknowledge the support of my wife, Mimi 

Kao. This thesis could not be possible without her caring and encouragement. 



Contents 

... 
Abstract 111 

Acknowledgements v 

1 Introduction 1 

. . . . . . . . . . . . . . . . . . . .  1.1 Active Vision and Foveate Sensors 2 

. . . . . . . . . . . . . . . . . . . . . . .  1.2 Reciprocal-Wedge Transform 4 

. . . . . . . . . . . . . . . . . . . . .  1.3 Motion Stereo in RWT Domain 6 

. . . . . . . . . . . . . . . . . . .  1.4 Active Fixation using RWT Sensor 7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5 Thesis Overview 9 

2 Survey 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Active Vision 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 Log-polar Transform 14 

. . . . . . . . . . .  2.2.1 Logarithmic mapping from retina to cortex 14 

. . . . . . . . . . . . . . . . . . . . . . .  2.2.2 The retina-like sensor 19 

. . . . . . . . . . . . . . . . . . . . . . .  2.2.3 Space-variant sensing 20 

. . . . . . . . . . . . . . . . . .  2.2.4 Form invariant image analysis 22 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 Binocular Fixation 23 



2.3.1 Stereopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

2.3.2 Fixation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

2.3.3 Oculomotor model . . . . . . . . . . . . . . . . . . . . . . . .  26 

2.4 Advances in Stereo Verging Systems . . . . . . . . . . . . . . . . . . .  29 

2.5 Non-frontal Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

2.6 Directions in Active Vision Research . . . . . . . . . . . . . . . . . .  33 

3 Reciprocal-Wedge Transform 35 

3.1 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . .  35 

3.1.1 Matrix notation . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

3.1.2 Remedy to singularity . . . . . . . . . . . . . . . . . . . . . .  38 

3.1.3 The RWT View-of- World . . . . . . . . . . . . . . . . . . . . .  40 

3.2 Transformation on Linear Structures . . . . . . . . . . . . . . . . . .  44 

3.2.1 Preservation of linear features . . . . . . . . . . . . . . . . . .  44 

3.2.2 Line detection using the Hough transform . . . . . . . . . . .  45 

3.3 Anisotropic Space-Variant Resolution . . . . . . . . . . . . . . . . . .  46 

3.4 Pyramidal Implementation . . . . . . . . . . . . . . . . . . . . . . . .  48 

3.4.1 Pyramidal mapping . . . . . . . . . . . . . . . . . . . . . . . .  49 

3.4.2 Pyramidal reduction . . . . . . . . . . . . . . . . . . . . . . .  50 

3.4.3 Local RWT transformation . . . . . . . . . . . . . . . . . . . .  52 

4 Camera Model 55 

. . . . . . . . . . . . . . . . . . . . . . .  4.1 The RWT Projective Model 55 

4.2 Non-Paraxial Focusing . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

4.2.1 The RWT lens . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

4.3 Projecting the Singularity . . . . . . . . . . . . . . . . . . . . . . . .  62 

... 
V l l l  



4.3.1 U-plane projection . . . . . . . . . . . . . . . . . . . . . . . .  63 

4.3.2 V-plane projection . . . . . . . . . . . . . . . . . . . . . . . .  64 

4.3.3 Displaced-center projection . . . . . . . . . . . . . . . . . . .  66 

4.4 A Prototype RWT Camera . . . . . . . . . . . . . . . . . . . . . . . .  68 

4.4.1 Periscopic lens design . . . . . . . . . . . . . . . . . . . . . . .  68 

4.4.2 Design of the RWT camera . . . . . . . . . . . . . . . . . . .  69 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.5 Optical Simulations 73 

5 Applications of RWT Mapping 78 

5.1 RWT Imaging in Road Navigation . . . . . . . . . . . . . . . . . . . .  78 

5.1.1 Perspective inversion by RWT . . . . . . . . . . . . . . . . . .  79 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1.2 Results 81 

5.2 Depth from Ego Motion . . . . . . . . . . . . . . . . . . . . . . . . .  82 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2.1 Motion stereo 82 

5.2.2 Longitudinal motion stereo . . . . . . . . . . . . . . . . . . . .  83 

5.2.3 Lateral motion stereo . . . . . . . . . . . . . . . . . . . . . . .  90 

5.2.4 Search in the epipolar plane . . . . . . . . . . . . . . . . . . .  93 

5.2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . .  95 

6 Active Stereo 102 

6.1 Binocular Vision in Space-variant Sensing . . . . . . . . . . . . . . .  102 

6.1.1 Panum's fusional area . . . . . . . . . . . . . . . . . . . . . .  103 

6.2 Computational Model for Binocular Fixation . . . . . . . . . . . . . .  106 

6.2.1 Fusional range in RWT . . . . . . . . . . . . . . . . . . . . . .  106 

6.2.2 Fixation mechanism . . . . . . . . . . . . . . . . . . . . . . .  111 

6.3 Binocular Fixation using RWT Images . . . . . . . . . . . . . . . . .  113 



. . . . . . . . . . . . . . . . . . . . . .  6.3.1 Disparity computation 115 

. . . . . . . . . . . . . . . . . . . . . . . . .  6.3.2 Fixation transfer 117 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  6.3.3 A system view 119 

. . . . . . . . . . . . . . . . . . . .  6.3.4 A scanpath demonstration 125 

7 Conclusions and Discussion 131 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1 Contributions 131 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.2 Future research 133 

Bibliography 151 



List of Figures 

. . . . . . . .  2.1 Images of straight lines under the logarithmic mapping 18 

. . . . . . . . . . . . . . . . . . .  2.2 The oculomotor map of visual space 27 

2.3 The sequence of events in a mixed version and vergence movement . . 28 

. . . . . . . . . . . . . . . . . . . . .  The Reciprocal-Wedge transform 36 

. . . . . . . . . . . . . . . .  Geometric transformations on u-v images 39 

. . . . . . . . . . . . . . . . . . . . . . . . .  The RWT View.of.World 41 

The Reciprocal-Wedge transform under the RWT VOW . . . . . . . .  43 

. . . . . . . .  The duality relationship of linear structures in the RWT 46 

. . . . . . . . . . . . . . . .  Mapping the image space to the pyramid 49 

. . . . . . . . . . . . . . . . . . . . . . .  The pyramidal reduction step 51 

. . . . . . . . . . . . . . . . . . . . . .  The RWT transformation step 52 

. . . . . . . . . . . . . . . . . . . . . .  4.1 A perspective projection model 56 

. . . . . . . . . . . . . . . . .  4.2 A rudimentary RWT projection camera 57 

4.3 The focusing problem of the sideway-positioned RWT projection plane . 58 

. . . . . . . . . . . . . . . . .  4.4 Optical principle in tilted plane focusing 60 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.5 The prototype RWT lens 62 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.6 U-plane projection 63 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.7 V-plane projection 

. . . . . . . . . . . . . . .  4.8 Geometry of the V-projection from P to Q 

. . . . . . . . . . . . . . . . . . . . . . . .  4.9 Displaced-center projection 

. . . . . . . . . . . . . . .  4.10 The periscopic lens and the lens design data 

. . . . . . . . . . . . . . . . . . . . . . . . .  4.11 The RWT camera model 

. . . . . . . . . . . . . . . . . . . .  4.12 Focusing test with nine grid points 

. . . . . . . . . . . . . . . . .  4.13 Ray diagrams showing the lens focusing 

. . . . . . . . . . . . . . .  4.14 Accuracy test on focusing using a dense grid 

. . . . . . . . . . . . . . . . . . . . . . .  4.15 Focusing test using real data 

. . . . . . . . .  5.1 Perspective inversion effected by the RWT projection 

. . . . . . . . . . . . . . . . . . . . .  5.2 The RWT dual of the road image 

. . . . . . . . . . . . . . . . . . .  5.3 The synthetic image of a road scene 

. . . . . . . . . . . . . . . . . . . . . . .  5.4 Epipolar-plane image analysis 

. . . . . . . . . . . . . . . . . . . . . . . .  5.5 Longitudinal motion stereo 

. . . . . . . . . . . . . .  5.6 Motion of an object in relation to the vehicle 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.7 Image motion in u-v 

. . . . . . . . . . . . . . . . .  5.8 Epipolar planes in lateral motion stereo 

. . . . . . . . . .  5.9 Depth computation using the RWT in linear motion 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  5.10 Analysis of ego motion 

. . . . . .  5.11 Depth computation using the RWT in lateral motion stereo 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  6.1 Panum's fusional area 

. . . . . . . . . . . . . . . . . . . . . . . .  6.2 An RWT binocular system 

. . . . . . . . . .  6.3 Disparity contours for the RWT binocular projection 

. . . . . . . . . . .  6.4 A verging system with uniform-resolution cameras 



6.5 Disparity contours for uniform-resolution cameras. . . . . . . . . . . . 11 1 

6.6 Ocular movement of space-variant binocular sensor. . . . . . . . . . . 114 

6.7 Disparity in different image representations. . . . . . . . . . . . . . . 116 

6.8 (a) Fixation sequence. Initially, fixation is on the computer keyboard. 120 

6.8 (b) First vergence. the peripheral disparity of the chair becomes zero. 121 

6.8 (c) Version. The chair is brought to the fovea. . . . . . . . . . . . . . 122 

6.8 (d) Second vergence. Fixation is precisely on the chair. . . . . . . . . 123 

6.9 An interactive fixation system. . . . . . . . . . . . . . . . . . . . . . . 126 

6.10 (a) Fixation sequence in binocular visual exploration of the office scene. 129 

6.10 (b) Disparities in the RWT images. . . . . . . . . . . . . . . . . . . . 130 

... 
Xll l  



Chapter 1 

Introduction 

During the last three decades, many significant advances have been accomplished in 

computer vision. Many problems, on the other hand, still remain too hard to solve. In 

view of the limitations of the existing methodologies, researchers have been striving 

for more effective approaches. In the recent years, various active approaches have 

been developed and leading to promising results. The essence of these approaches lie 

in the interactability of an active agent with the visual environment. 

In the past, the issues in computer vision research have largely been related to 

reconstruction of the physical world. The general belief was that the visual informa- 

tion flows from low-level to high-level processing. Once the world and its properties 

have been recovered from the images, high-level visual tasks can then be performed 

[Mar82]. However, since the low-level task of extracting useful visual information by 

itself is either intractable or demanding excessive amount of computation, it is not 

surprising that the research for subsequent visual processes for the higher level tasks 

have not shown much success. In one of the most effective perceptual systems, the 

human vision system, we do not just see, we look and actively interact with the visual 
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environment [Baj88]. Certain problems are only solvable with constant replenish- 

ment with visual information of the world and interactive search and exploration of 

the environment [AWB88, Ba1911. 

The lack of vision systems that can perform in real-time limits computer vision to 

the domains of image understanding based on static analysis. Oftentimes, the camera 

is pointed at a preset angle, and the image data are acquired passively. The bulk of 

computer vision is then conducted off-line, trying very hard to recover the physical 

circumstances (color, shape, depth, surface, etc.) of the imaged world. Subsequent 

visual tasks such as object recognition, shape and structure modeling, etc. then follow. 

With the advances of high performance and massively parallel computers, real- 

time or near real-time performance have been achieved for some vision problems. 

Emphasis on interactive visual processing is no longer impractical. Problems once 

deemed unsolvable can now be performed with guided search by interactive probing 

and verification. 

Questioning the reconstructionist approach [Mar82], a collection of related para- 

digms offered under various names such as active, animate, responsive, task-based, 

behavioral and purposive vision have recently been proposed which draw heavily on 

active probing and search, and emphasize on behavioral interaction. Collectively, 

these various paradigms are categorized as active vision methodologies. 

1.1 Active Vision and Foveate Sensors 

Active vision has been advocated by many researchers [AWB88, Baj88, Ba191, Tso92, 

SS931. They argue that perception is not a passive process, but rather an active 

process of exploratory, probing and searching. An active visual system differs from a 
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passive system in its purposive interaction with the world. Some interesting results in 

active vision include smart sensing using multiresolution images in a pyramid [Bur88], 

fixation for 3-D motion estimation [Ba191, FA931, active stereo using focus, vergence 

control [AA93, KB931, and purposively adjusting multiple views for 3-D object recog- 

nition [KD94, GI941. 

It has been argued that foveate sensors are central to the sensing mechanism of 

an active vision system because they are economic and effective when coupled with 

active control. Research into anthropomorphic space-variant resolution sensors now 

receives much attention. The human visual system has a special saccadic behavior of 

quickly directing the focus of attention to different spatial targets [Yar67, Car771. A 

foveate sensor coupled with fast and precise gaze control form the distinctive feature 

of the sensing mechanism of an active agent. In nature, human retina has a fovea 

which is a small region (1-2") near the optical axis. The foveal resolution is superior 

to the peripheral resolution by orders of magnitude [Car77]. A design of this kind 

realizes an economic structure of sensor hardware supporting simultaneously a wide 

visual field and local high acuity. 

The study of Schwartz [Sch77] shows that the cortical image of the retinal stimulus 

resembles a log-polar conformal mapping. Sandini and Tagliasco [ST801 argue that 

the retina sensor offers a good compromise among large visual field, acceptable resolu- 

tion, and data reduction. The log-polar transform is defined as w = (log r ,  6 )  [WC79], 

where r and 0 are the polar coordinates of the original Cartesian image. By exploiting 

the polar coordinates, it simplifies centric scaling and rotation as the transformations 

now become shift operations in the log r and 0 dimensions, respectively. As shown 

by Sandini and Dario [SD90], the scaling and centric rotational invariances of the 

log-polar transform make it a useful tool for 2-D object recognition. The transform is 
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also shown to be effective for estimation of time-to-impact from optical flow [TS93]. 

However, there is a major drawback with the log-polar transform. That the image 

patterns of linear structures and translational movements are distorted into stream- 

lines of log-sine curves [WC79] adversely complicates the analysis of these common 

phenomena in computer vision. 

1.2 Reciprocal- Wedge Transform 

In this thesis, the Reciprocal- Wedge Trans form (RWT) is proposed.1 The RWT ex- 

hibits nice properties for computing geometric transformations owing to its concise 

matrix notation. As with the log-polar, the RWT supports space-variant sensing. As 

expected, the space-variant sampling facilitates efficient data reduction. In particular, 

the resolution variation is anisotropic, predominantly in one dimension. Consequently, 

the RWT preserves linear features in the original image. This renders the transform 

especially suitable for vision problems that are related to linear structures or are 

translational in nature, such as line detection, linear motion and stereo correspon- 

dence. In the later chapters, it will be shown that vision systems for parts inspection 

in automated manufacturing and vehicle navigation in road driving benefit from the 

anisotropic space-variant RWT representation.2 

The capacity for parallel processing and the accessibility of multiple resolutions 

have made the pyramid model a widely adopted structure for fast image processing 

and parallel computational modeling for various visual processes. Burt popularized 

the pyramid architecture with his work in Gaussian pyramidal image encoding scheme 

'This part of work has been published in [TL93, TL95]. 
2The result has also been published in [TL94]. 
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[Bur84]. Tanimoto, Pavlidis [TP75], Cantoni, Levialdi [CL86] and Uhr [Uhr87] rep- 

resent some of the early works. The power promised by pyramid architectures has 

drawn researchers into implementation of the hardware image pyramids. To date, 

the Image Understanding Architecture [WB91] represents the most ambitious project 

on a large scale three-dimensional pyramid architecture. The implementation of the 

two-dimensional pyramid architecture [ELT+92] offers cost-effectiveness and versa- 

tility both in iconic [LZ93] and functional [Li91] pyramidal mappings. It is shown 

in this thesis that a fast generation of RWT image can benefit from the parallelism 

and hierarchical linkage of the pyramidal architecture. In particular, the rectangular 

image space can be mapped to the two-dimensional pyramidal structure of the SFU 

hybrid pyramid in a way that exploits the more abundant computing power in the 

bottom of the pyramid for foveal processing. 

A projective RWT model is developed in [TL93, TL951 which lends itself to a 

potential hardware implementation of the RWT projection cameras. A prominent 

problem of that rudimentary camera model is the requirement of focusing on a deep 

image plane along the optical axis. In this thesis, a new hardware camera model is 

proposed which overcomes the focus problem by using a lens focusing the non-paraxial 

non-frontal image onto an orthogonally placed RWT plane. 

Many previous efforts have been made in developing new camera systems for com- 

puter vision applications. In general, these systems provide convenience and improve- 

ments in speed and/or quality, especially for special purposes imaging, e.g., stereopsis, 

space-variant sensing, etc. Teoh and Zhang [TZ84] described a single-lens camera for 

stereopsis. Two fixed mirrors and a rotating mirror are used to obtain stereo images 

in two snapshots. Because only one lens is needed, the camera calibration problem 

is alleviated. Goshtasby and Gruver [GG93] presented a single-lens single-shot stereo 
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camera which offers faster image acquisition and hence has potential to be used in dy- 

namic scenes. Hamit [Ham931 reported on a near-fisheye CCD camera which provides 

an alternative to variable-resolution imagery. A fisheye lens is used to acquire 180' 

hemispherical field of view. Electronically, any portion of the view can be flattened 

and corrected, thus enabling zooming in on any areas of interest. 

The prototype CCD camera for the log-polar transform [VdSKC+89, KVdS+9O] 

comprises concentric rings of different widths on the sensor chip. The space-variant 

sampling is essentially achieved by using sensing elements of highly non-uniform size 

and non-rectangular shape. Special hardware is designed to read out signals from the 

circular CCDs. A special scaling technique is also needed to obtain roughly the same 

sensitivity from all the cells in the structure. A small fovea of uniform resolution at 

the center is fabricated to overcome the singularity of the log-polar transform at r = 0 

and to provide higher resolution. 

As the RWT camera is based on a projective model, the spatially varying resolution 

is achieved from the projection of the scene on an oblique image plane. The RWT 

camera has improved on certain drawbacks of the log-polar sensor. First, variable 

sampling is not a requirement of the sensor circuit. Therefore, an ordinary sensor 

array of rectangular tessellation and uniform grid size which is cheaper to fabricate 

can be used. Also shown in the later chapter, the singularity problem is eliminated 

by projecting the central fovea in the conventional frontal orient at ion. 

Motion Stereo in RWT Domain 

One of the first applications of the RWT is a simple road navigation system. It 

demonstrates that the perspective distortion of the road image is readily corrected by 
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the variable resolution of the RWT, enabling a more efficient search of the reduced 

data for the road direction. 

The RWT is also shown to be applicable to stereo vision for depth recovery. One of 

the difficult problems in stereo vision is correspondence [MP79]. Once corresponding 

points in the pair of images are identified, their disparity values can be calculated 

and used to recover the depth. This thesis shows the application of the RWT to the 

correspondence process in motion stereo [Nev76]. Two types of motion stereo are 

discussed, namely longitudinal and lateral motion stereo. In both cases, the prop- 

erties of the anisotropic variable resolution and linear features in the RWT domain 

are exploited to yield efficient space-variant resolution algorithms which work on the 

much reduced image data. The difficult and computationally expensive correspon- 

dence problem in both motion stereo cases is effectively reduced to an easier problem 

of finding collinear points in the epipolar planes, which is later solved by a voting 

algorithm for accumulating multiple evidence. 

1.4 Active Fixation using RWT Sensor 

Since the primary motive for space-variant sensing is its application in active vision, 

this thesis also studies the applicability of the RWT model in fixation control in active 

stereo. In a common mode of stereo vision, the left and right cameras are pointed 

at the angles converging at a point which is referred as the point of fixation. This 

approach has the advantage that the object at the point of fixation has a zero disparity, 

and the disparities of the other objects in the scene are measured relative to it. The 

approach allows visual computations to be done using relative algorithms which are 

simpler than strategies that use egocentric coordinates [Balgl]. In binocular stereo, 
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fixation facilitates estimation of depth from vergence [AA93]. When both cameras are 

converged at the same point, the cameras are rotated and their optical axes intersect. 

From the triangulation geometry of the baseline camera separation and the rotation 

angles, it is possible to determine the vergence angle and the 3-D location of the 

fixation point. 

Psychological studies reveal that the eye movements involved in stereo fixation 

include both vergence and version movements[Car77]. When we shift our fixation 

from one point to another, vergence control is initiated to bring both eyes converged 

at the right depth. The versional movement, which is a synchronized panning of both 

eyes, is interleaved in between the vergence cycle to recenter both retinas at the new 

fixation point. 

We view such a fixation mechanism as natural in space-variant sensing. Stereopsis 

is most effective in the Panum's area [Ogl64]. In light of the fact that sensing space is 

space-variant, we argue that it is both logical and functional to assume the Panum7s 

area to be a narrow region near the fovea and the deep region at the periphery. In 

Chapter 6, a binocular RWT sensor is shown to support a space-variant Panum's 

area as well. When using the RWT as a foveate sensor, the vergence/version model 

for stereo fixation is naturally employed. A process of three stages - a version 

interleaved between two vergences - is implemented in a fixation system. A high- 

level intelligence component initiates the fixation shift. Based on the peripheral and 

foveal disparities, the vergence component performs the first and second vergence 

movements. The version component pans the two binocular cameras according to the 

image position of the target. 
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Functioning of the fixation system as a whole is demonstrated in a scanpath exer- 

cise of performing binocular visual exploration of an office environment, For demon- 

stration purposes, a simplistic heuristic decision is adopted to evaluate the scanpath 

in which the next fixation is chosen to be the unexplored area with the most dis- 

parate image points. From the execution record, the system is shown working with 

the various inter-component interaction that lead successfully to the consequential 

gaze transfers. 

1.5 Thesis Overview 

The organization of the rest of the thesis is as follows. Chapter 2 presents a survey 

on the existing results in the related areas. Chapter 3 introduces the RWT model 

and its properties. A pyramidal architecture for mapping the RWT image space is 

also presented. Chapter 4 delineates the projective model and the potential camera 

implementation. Chapter 5 describes application of the RWT in road navigation. 

Applications of the RWT in two motion stereo cases and preliminary test results using 

real-world images are discussed. Chapter 6 studies the applicability of the RWT in 

binocular fixation. For demonstration, a scanpath experiment is done with simplistic 

heuristics. Chapter 7 presents the conclusions and discusses the potential extensions 

for future research. 



Chapter 2 

Survey 

2.1 Active Vision 

The ability to combine vision with behavior is vital to achieving robust, real-time 

perception for a robot interacting with a complex, dynamic world. In the paradigm 

of active vision, vision does not remain as a static analysis of passively sampled image 

data. Instead, it is understood in the context of the visual behaviors that the system 

is engaged in. 

Traditionally, computer vision has been treated as to solve the problem of deriving 

an accurate 3-D description of the scene and recovering the properties of the imaged 

objects. The general idea is that if we could reconstruct the world, we would be 

able to perform various tasks such as recognizing the objects, navigating through the 

environment and avoiding obstacles. A vision system should comprise various modules 

that recover specific descriptions of the scene from the images. A methodology was 

developed for analyzing visual modules. In Marr's formulation of computer vision 

[Mar82], visual processing is realized in three levels: (1) computational theory, (2) 
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algorithms and data structures, (3) implementation. Much research was then devoted 

to the study and development of various modules [Hor86, AS891 and the integration 

of them [AS89]. 

Many researchers see the reconstructionist methodologies too stringent for prac- 

tical real-time machine vision. Despite that ample mathematical theories describing 

various modules have been published, there is still a lack of successful visual systems. 

Common problems like structure from motion, in which one wishes to reconstruct 

the shape and 3-D motion of a moving object from its images, turn out to be very 

hard. However, Aloimonos [A10901 demonstrated that we can achieve many highly 

non-trivial visual tasks in navigation without solving the general structure from mo- 

tion problem. Ballard in [Ba191] argued that many visual behaviors may not require 

elaborate categorical representations of the 3-D world. 

The structure and function of eye movements in the human visual system reveal 

the fundamental difference between an active agent (human) and a passive system 

(electronic camera). The human eye is distinguished from a camera because it pos- 

sesses a fovea which supports very high sensor density. The fovea is in a small region 

near the optical axis. It has a diameter of one to two degrees of visual angle, rep- 

resenting less than 0.01% of the entire visual field. The foveal resolution is superior 

to the peripheral resolution by orders of magnitude. A design of such features an 

economic structure of sensor hardware supporting simultaneously a large field of view 

and local high acuity. In a study by Sandini and Tagliasco [ST80], they showed a 

gain of 30 : 1 in visual coverage with a logarithmic sensor distribution simulating the 

retinal structure. 

With the small fovea in a large visual field, the human visual system is equipped 

with the saccadic behavior for quickly directing the fovea to different spatial targets. 
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An earlier systematic study of saccadic eye movements was done by Yarbus [Yar67]. 

Subjects given specific tasks related to a picture showed different scanning patterns 

as attempting to solve the visual problem at hand. The results are consistent with 

the reports from the other studies [NotTO, NS7la, NS7lcI. These observations reveal 

that eye movements, coupled with the foveate retina structure, are driven actively by 

the problem-solving behaviors to explore the visual world. 

Animate vision 

Ballard [Ba189, Ba1911 used the term animate vision for their behavioral perspective 

to active vision. In their perspective, vision is understood in the context of visual 

behaviors that the system is engaged in. One important feature of animate vision is 

gaze control. Gaze control is the mechanism for directing the fovea at  a specific spatial 

target. Traditionally, visual systems work in isolation, solving ill-posed problems 

under conditions with many degrees of freedom. In the animate perspective, the gaze 

is controlled actively. The visual processing is interlinked with the sensory-motor 

behaviors. For example, one can use physical search to look for the desired object 

in the scene. A moving camera under ego-motion provides additional constraints on 

the imaging process [AWBSS]. The blurring introduced by ego-motion while fixating 

can isolate the object being attended from the background. Similarly, one can exploit 

the near zero disparity produced in binocular vergence [CB92]. With the ability to 

fixate targets in the world, one can work with the object-centered coordinates which 

has the advantage of being invariant with respect to the observer's motion. Moreover, 

simpler approaches using relative algorithms become feasible. 
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Purposive and qualitative vision 

Aloimonos et al. [A10901 study vision in a purposive manner. Problems should be 

formulated in relevance to the task at hand versus being solved in an abstract general 

principle leading to development of a module for the whole class of problems. In 

purposive thinking, computer vision is not studied by itself, but in the context of a 

big process in which vision is used as help. A vision system thus is defined according 

to the task as a collection of processes each of which is to solve a particular subtask 

related to the original visual problem. Very often, these subtasks are simple enough 

that they require only a qualitative decision from the visual process. Robust methods 

using the approaches of qualitative techniques are applicable. In [AH90], Aloimonos 

described the design of the Medusa system that can perform complex tasks without 

reconstructing the world. 

Active sensing 

As Bajcsy [Baj88] pointed out, we do not just see, we look. Our pupil is adjusted 

to the level of illumination, our eyes are focused, converged or diverged to fixate 

the target. We even move our head or change our position to get a better view of 

the object. Perceptual activities are exploratory, probing and searching. The term 

"active sensing" is defined as a problem of control applied to the data acquisition 

process which is adaptive to the current state of the data interpretation and the goal 

of the task. A visual system in this perspective encompasses local and global models of 

sensing. The local models describe the physics and noise of the sensors, the processes 

of signal processing and data reduction mechanisms that are applied on the image 

data. The global models represent the feedback connections, how individual modules 

interact, and characterize the overall performance of the system. Control strategies 
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are devised based on how much the process is data-driven (bottom-up) and how much 

a priori knowledge is required (top-down). Krotkov [Kro89, KB931 demonstrated an 

active system using the sensor models of cooperative focus, vergence and stereo. 

Log-polar Transform 

2.2.1 Logarithmic mapping from retina to cortex 

Study of topographical mapping of receptor peripherals onto the cerebral cortex 

started quite early. Five decades ago, Polyak [Po1411 suggested the existence of a 

mathematical projection of the retina on the cortex based on the anatomy of the vi- 

sual cortex. Since then, a large volume of empirical data on the retinotopic mappings 

has been collected. Schwartz [Sch77] cleverly summarizes the data and produces an 

elegant mathematical form for the retinotopical mapping. 

Using relatively crude recording techniques, early workers such as Talbot and 

Marshall [TM41] and Apter [Apt451 established the initial understanding of the cor- 

tical projection of the retinal stimuli. Subsequent work making use of more refined 

and sophisticated measuring techniques detailed the knowledge of the various sensory 

mappings. In view of these surface mappings, Arbib [Arb721 was led to characterize 

the brain as a layered somatotopically organized computer. In addition to all these 

predecessors, Daniel and Whitteridge [DW61] conducted extensive investigation and 

provided a wealth of quantitative data for analysis. They observed that, in the corti- 

cal mapping, the magnification factor from retina to cortex is symmetric in all radii 

but tapered off in a inverse relationship with the eccentricity. Mathematically, it is 
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where M is the magnification, w is the cortical coordinates, and z is the retinal co- 

ordinates, whereas llzll measures the eccentricity from the foveal point on the retina. 

As the cortical magnification is a differential quantity, Schwartz [Sch77] inverted the 

derivative and yielded a mathematical function which describes the retinotopic map- 

ping in an analytical manner: 

w = ln(z) . (2.1) 

Denote z as a complex variable r ei6, w in eq. (2.1) will be In r + i$. Expressed in real 

variables, the mapping is popularized in its log-polar formulation, a semi-logarithmic 

mapping of the polar coordinates: 

The discovery of log-polar structure of the retinotopic mapping is not due to co- 

incidental observation. In fact, other researchers have reported experimental data 

supporting the log-polar conclusion. Allmann and Kaas [AK72, AK74, AK76] con- 

ducted tests on both the secondary and medial visual areas, and the inferior pulvinar 

region. They showed plots of log-spirals in the receptive field when stimuli along 

straight line trajectories across these visual areas were inflicted. In addition, discov- 

eries of Hubel and Wiesel [HW74] about the hypercolumn modeling of the striate 

cortex are consistent with the log-polar mapping from the radial lines of receptor cells 

to the parallel columnar structure in the striate cortex. 

Log-polar transform for image processing 

The strength of the log-polar mapping is revealed in its role in form invariant image 

analysis. Researchers have recognized the perceptual functioning of log-polar map- 

ping in its form invariance property in size and rotation [Fun77, Sch77, Sch801. For 
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example, we do not have problem in recognizing a familiar face, whether it is near 

or far from us. Although the retinal stimuli are very different, the cortical projection 

is affected only to the degree of a single translation. The reasoning is delineated as 

follows. Suppose the retinal image is magnified by a factor k, the point z is taken to 

the point z'. The cortical mapping w will become w', and the change in the cortical 

image is no more than a translation. 

In their work [WC79], Weiman and Chaikin used the properties of logarithmic 

mapping in image processing and computer graphics. When the curvilinear logarith- 

mic grid is used in place of the conventional rectilinear Cartesian coordinate lattice, 

the mathematical expressions for geometric transformations are greatly simplified. 

Magnification and rotation of image patterns are the common operations in image 

processing and display. As these operations involve matrix multiplications on the 

homogeneous coordinate representation of the image points, they often demand a 

lot of CPU time and normally represent the bottleneck in the total computation. 

Weiman and Chaikin [WC79] demonstrated the useful property that translation in the 

logarithmic space yields magnification and rotation in the Cartesian space. Suppose 

the image data in the logarithmic space is shifted k units to the right and $ units 

upward, the global translation to every point w is w + k + i$. The effect in Cartesian 

space can be seen by taking each point z to z' such that 

It is apparent in eq. (2.3) that the modulus of each image point z is multiplied by ek 

and the argument is incremented by $. The entire image is therefore magnified by a 

factor of ek and rotated through an angle 4. 
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Weiman and Chaikin [WC79] also discussed the conformal property of the log- 

polar mapping. Write the mapping as z(w) and its derivative as zl(w). The fact that 

the derivative exists yields the Taylor's series expansion: 

Eq. (2.4) indicates a localized effect of a magnification by IIzl(wo)ll, a rotation by 

arg zl(wo), and a translation by z(wo) - wo. zl(wo). Thus, if the image pattern involves 

grid cells in a small neighborhood, the shape of the pattern is virtually undistorted. 

Weiman and Chaikin argued that the property is desirable because operators which 

are rotationally symmetric such as Laplacian and smoothing operators retain their 

applicability. Dwelling on the property, Funt et al. [FBT93] demonstrated their 

result of color constancy computation in the log-polar transplant of the corresponding 

Cartesian version. 

Despite the fact that the log-polar mapping has these desirable properties, Weiman 

and Chaikin [WC79] show that the image pattern and its directional quantities (such 

as first-order derivatives) will suffer scale and rotational changes. This renders image 

registration problems difficult once the key pattern for registering the image is not 

in fixation. Hence, it is not surprising that stereo correspondence becomes extraor- 

dinarily complicated in the log-polar domain [GLW92]. The RWT model presented 

in this thesis not only does not obscure stereo correspondence, but also simplifies the 

disparity computation to a restricted operating range. 

Another disadvantage of the log-polar mapping with respect to the RWT model 

is that it complicates image translation. It is always desirable to be able to repre- 

sent straight lines in the log-polar coordinates. Nevertheless, straight lines in the 

rectilinear Cartesian lattice cut through the log-polar curvilinear grid. The result is 

a set of successive logarithmic sine and cosine curves which render the computation 
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for translation extremely difficult (Figure 2.1). On the contrary, the RWT preserves 

linear structures and is thus suitable for processing image translations. In this thesis 

(also in [TL94, TL95, LTR95]), the applicability of the RWT to problems in motion 

stereo is demonstrated. 

straight lines in Cartesian 

logarithmic curves in log-polar 

Figure 2.1: Images of straight lines under the logarithmic mapping. 

Considerations for logarithmic singularity 

In [Sch80], Schwartz addressed the problem of log-polar mapping due to its divergence 

at the zero point. He proposed a linear function of eccentricity for the logarithmic 

mapping as the revised version of eq. (2.1): 
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The Taylor's series expansion of eq. (2.5) in the vicinity of z = 0 is equal to 

As illustrated, the map is essentially linear for small z .  The magnification factor 

is constant. For large z, the mapping is close to the complex logarithm. This new 

formulation of the retinotopic mapping supports a smooth map from a linear foveal 

representation to a complex logarithmic para- and peri-foveal surround. With appro- 

priate choice of the linear constant a ,  Schwartz [Sch80] was able to achieve a good 

agreement of his model to the published data of the retinotopic mappings in a number 

of primate species. Design considerations on the number of pixels, the field radius 

and the shift parameter a are investigated in [RS90]. The complex logarithmic sensor 

offers a good space complexity of about 1/50 the pixels of a uniform-resolution sensor 

while matching the field width and foveal resolution quality of the latter. 

Problems of singularity at the zero point occur in our RWT formulation as well. 

In one of the variants to the RWT, the similar strategy of shifting the origin by a 

constant a is adopted to cope with the divergence at the singularity. 

2.2.2 The retina-like sensor 

The retinotopic mapping has been implemented in a CCD array. Collaborated effort 

has been put together by the University of Pennsylvania, DIST in Italy and IMEC 

in Belgium to realize a prototype design of the retina-like CCD sensor called Retina 

[SD90, VdSKC+89, DBC+89]. The sensor comprises three concentric areas, each 

consists of 10 circular rows whose radii increase with eccentricity. 64 photosensitive 

sites are etched on each circle. The element size increases from 30 x 30 pm2 for the 

inner circle to 412 x 412 pm2 for the outer one. For design simplicity (in contrast 
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to [RSgO]), the center of the chip is filled with 104 sensing elements measuring 30 x 

30 pm2. The elements are placed in a orthogonal pattern achieving the maximum 

resolution but uniform pixel size for the central fovea. 

Complications arise because the sensors have to be read out in circular CCDs. 

Radial shift registers are devised to transport the charge from these circles. Special 

attention is devoted to obtain uniform sensitivity from the cells of variable sizes. 

Notably, in our RWT sensor, the problems due to circular CCDs are alleviated because 

rectangular tessellation is employed for the sensor array. The optical design rather 

than the variable sensor tessellation produces the space-variant resolution. 

2.2.3 Space-variant sensing 

As Bajcsy comments [Baj92], the nature of the information for visual processing 

changes in active vision. We no longer assume high quality data across the visual field, 

nor do we try to build a model of the world in one step. Instead, we adopt the role of 

active observer, moving the cameras around to gather information in interaction with 

the visual world. However, the cost of using foveate sensors is high since the new image 

space often requires re-adapting our vision tools from the Cartesian domain.' The 

gain is a drastic reduction in the data. Retina has a hundred times fewer pixels than 

a standard television camera. It also benefits from its form invariance functioning. Its 

use in active vision brings about a new and promising direction in visual processing. 

In [ST80], Sandini and Tagliasco demonstrated the advantages of using anthro- 

pomorphic sensing features in operations in man-oriented environments. In robotics, 

because visual processing is normally performed for specific tasks, computer resources 

'Although the differential and some other local operators have valid conformal transplants in the 
log-polar domain, in most cases, the image processing tools and vision algorithms (e.g. geometric 
transformations, stereo correspondence, etc.) indeed require re-definition of their meaning and usage 
in the new image space. 
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are normally employed to eliminate the irrelevant information in the acquired images. 

Thus, data reduction at the sensor level would support the efficiency and economy of 

visual processing. In their simulation, an efficient scheme involves a retina-like sensor 

which when directed to the attended field acquires a good amount of information 

about the relevant objects while achieving a preliminary reduction outside the fovea. 

A reduction ratio of about 30:l was demonstrated in sample images of an industrial 

environment and a painting by Caravaggio. We dwell on the data reduction property 

of our RWT images as well. A reduction ratio in the order of 90% is also achieved in 

the application of our RWT to road vehicle navigation problems [TL94]. 

Yeshurun and Schwartz [YS89] exploited multiple fixations when building the rep- 

resentation of a scene through scanning using the log-polar sensor. Since resolution 

depends on the eccentricity, an image pattern has the highest resolution when the 

fixation point is placed close to it. They placed several fixation points p = p,, . . , p, 

in different spots and produced frames with different resolution for the same image 

pattern. Their blending scheme then uses the "best" of each view to reconstruct 

the composite image. As the unified image of the scene is extracted from successive 

fixations, an attention algorithm is required to locate the fixation point for best in- 

formation at each step. Yeshurun and Schwartz used the curvature of the contours 

in the scene as the criterion for fixation point "attractor". They showed that their 

algorithm exhibited a good convergence rate. 

In our later example of binocular visual exploration, multiple fixations are devised 

to scan different objects in the scene. We adopt a similar strategy in determining our 

attention algorithm. Sizable objects lying away from the current fixation depth are 

considered the fixation point attractors. 
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2 .2.4 Form invariant image analysis 

Another thrust in exploiting the log-polar structure in visual processing capitalizes on 

the form invariance properties of the mapping. Sandini and other researchers carry 

these invariance properties to a great length in their applications in object recognition 

and motion analysis [SD90]. In the recognition task, Sandini and Dario matched the 

cortical map of the scene image against a pre-stored template. Because of the form 

invariance properties, one template for each object suffices irrespective of size and 

rotation. In another experiment, the observer is in ego-motion along its optical axis 

towards an object. The divergent optical flow in the retinal coordinates becomes 

globally consistent flow parallel to the horizontal in the cortical image. Detection 

of such global translation is greatly simplified. Earlier work by Jian et al. [JB087] 

also exploits the convenient horizontal image motion in the log-polar mapping when 

computing depth from motion stereo. With the logarithmic mapping performed with 

respect to the focus of expansion, matching across frames is appreciably restricted to 

horizontal search windows. In [TS90], the advantage is reflected in the error analysis 

of depth from motion computation. Although the flow magnitude increases from the 

fovea to periphery in the retinal image, it is reduced to similar magnitude in the 

log-polar coordinates. The same accuracy is achieved throughout the field while the 

number of pixels to be processed is minimized. Young [You891 combined the use of 

both the Cartesian image and the log-polar map in object recognition. The method 

calculates the autocorrelation of the scene image to produce a position independent 

description of the object. Log-polar mapping of the result is essentially unaffected by 

the size and rotation variance. 

In all applications, precise fixation on the pattern is required. This poses a limita- 

tion on the use of log-polar structure for eccentric stimuli processing. Problems such 
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as binocular fusion are complicated [GLW92]. The RWT provides an alternative to 

the log-polar transform for handling problems of eccentric image analysis. This thesis 

shows the use of RWT in disparity computation and binocular fixation. 

2.3 Binocular Fixation 

2.3.1 Stereopsis 

Stereopsis results from the fact that each of a pair of eyes views the three-dimensional 

world at a slightly different vantage point. Consequently, the images falling on the 

retinas of the two eyes are slightly out of alignment from each other, giving rise to the 

phenomenon of binocular parallax. As the parallax is directly related to the spatial 

location of the object in relation to the two eyes, the re-alignment of the retinal 

images yields the sensation of the three-dimensionality of the world. In machine 

vision, cameras are used in place of the eyes. The parallax is measured in disparity 

between the two camera images. Exploiting the triangulation geometry in stereo 

imaging, Marr and Poggio [MP76] showed that depth information is recoverable from 

the disparity computation. 

Stereopsis is one of the most studied areas in computer vision. Computer algo- 

rithms computing the stereoscopic disparity can be dated back to Marr and Poggio's 

work [MP76]. Disparities are computed as displacement of edge pixels between the 

left and right images. Matching for the corresponding but displaced edge pixels in 

the two images is a difficult problem. Marr and Poggio posed stereo correspondence 

as a minimization problem. Constraints for smooth surface and unique matches are 

imposed on the matching process. Other contributors to the area of research include 

[Gri85, MF81, BJ80a, BF82, OK85, Li94b, TL911. 
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Researchers have been attempting to develop computer algorithms for accurate 

disparity computation that will reconstruct the three-dimensional world from the 

stereo pair of images. Notwithstanding the persistent efforts of many fine researchers, 

the stereo correspondence problem still remains one of the difficult problems to be 

solved. The difficulty is perhaps due to the ambitious goal of total reconstruction 

of the physical world. Psychological studies in human visual perception have shown 

that many visual tasks are indeed exploratory in nature [Baj88, Ba191, AWB881. 

This thesis, therefore, adopts the active perspective to stereo vision rather than the 

reconstructionist point of view. 

2.3.2 Fixation 

Although our fovea covers only some ten-thousandth of the visual field, we manage 

to achieve a vision as good as it would be if most of our retina were packed with the 

foveal receptors. The strategy is to have our eyes continually on the move, pointing 

the fovea at whatever we wish to see. Binocular stereo requires that both foveae 

simultaneously converge at the object of interest - a process called binocular fixation 

- to maximally exploit the foveal acuity for depth perception. 

In human vision, the binocular fixation is accomplished by two components - 

version and vergence [Car77]. The version component is the conjugate movements 

of the eyes by which the gaze is transferred from one place to another, whereas the 

vergence movement, which converges the eyesight upon the new fixation point, is 

purely anti-conjugate. 
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Version 

Version is the conjugate movement of the eyes. Version movements are similar in 

amplitude and direction in the two eyes, and thus obey Hering's principle of "equal 

innervation" [Her68]. Pure version occurs when the gaze is transferred under zero 

disparity from one object to another. It requires that the two eyes maintain their 

convergence while panning synchronously at the same angle in the same direction. 

Version is the fast saccadic movement of the two eyes. In fact, the movement is 

so fast that there is no time for visual feedback to guide the eye to its final position. 

Sometimes, the magnitude of the velocities can rearch more than 700" s-' for large 

amplitudes [Car77]. The duration of complete movement increases with increasing 

amplitude. For saccades larger than 5", the duration is roughly given by 20 - 30 ms 

plus about 2 ms for every degree of amplitude [DCOl, Hyd59, Rob64]. A rate of three 

saccades per second is normally observed in common visual problem solving [Balgl]. 

Vergence 

While pure version is associated with gaze transfer under zero disparity, pure vergence 

occurs when the lines of sight of the two eyes are converged or diverged under sym- 

metric disparity. The vergence movement is initiated when the gaze is shifted from a 

distant object to a near one or vice versa. It is anti-conjugate in that the two eyes are 

rotated by the same amounts but in opposite directions. Contrary to version which is 

saccadic, vergence movements are visual guided and relatively slow. 

As the version component is characterized by ballistic displacement, the vergence 

movement is quite a different behavior. In response to a step change in disparity, 

after some 160 ms latency time, the eyes move smoothly and comparatively slowly 

to their final positions [RW61]. The whole movement takes nearly 1 sec to complete. 
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The vergence system is believed to operate with intrinsic negative feedback because 

the movements are executed extremely accurately, in the sense that the final position 

of the eyes is within at most a minute or two of the vergence required for reducing 

the disparity to zero. 

2.3.3 Oculomotor model 

The strict division into pure version and pure vergence has led to the notion of an 

oculomotor map of visual space [Car77, Lun481. Such a map is shown in Figure 2.2. 

It has the coordinates based on lines of equal version and lines of equal vergence. 

The latter (potentially called isophores) correspond exactly with the Vieth-Miiller 

circles, which are a series of circles passing through the nodal points of each eye. 

They represent the fixations of equal disparity when the lines of sight are parallel. 

The lines of equal version, which could be called isotropes, form a series of rectangular 

hyperbolas whose center is the midpoint of the interocular base-line. Fixation shift 

from one point to another can be resolved into its versional and vergence components 

along these orthogonal coordinates. 

A similar pattern of eye movements is seen when a subject shifts his gaze from 

one object to another [Yar57]. It starts with a slow symmetric vergence movement. 

A conjunct saccadic version is then superimposed in the middle of the course to bring 

the cyclopean axis in line with the target while the vergence movement is proceeding 

to completion. The sequence is shown in Figure 2.3. 

To effect good vision over the entire visual field, it is essential to be able to direct 

the fovea at the objects of interest at various visual angles over the field. Gaze control, 

which is manifested in various patterns of eye movements, is an area of research in 

human perception. When a human subject is accomplishing a visual task, a scanpath 
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Figure 2.2: The oculomotor map of visual space. 
The space coordinates are marked by lines of equal version (isophores) and lines 
of equal vergence (isotropes). The circular arcs are isophores and the rectangular 
hyperbolas are isotropes ([Car77, after [Lun48]]). 

of eye fixations is normally observed to direct the gaze to a selection of objects in 

the scene to collect the necessary visual information. Extensive research by Yarbus 

[Yar67] demonstrates the goal-specific nature of scanpaths. In [NS7lb], Noton and 

Stark postulated that memory of a pattern is formed in a sequence interleaved with 

eye movements during the recognition process. Eye movement is also shown to be 

critical for cognition. In Zinchenko and Vergiles's experiments [ZV72], subjects were 

found to be unable to solve many of the visual problems if they were not allowed to 

move their eyes. 

In this thesis, a computational model for binocular fixation is investigated. It 

leads to the development and implementation of a fixation model for space-variant 
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Figure 2.3: The sequence of events in a mixed version and vergence movement. 
The thick line on the left in each diagram shows the locus traced out by the point of 
fixation. The time course of the movement is shown on the right. 
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sensing using RWT. A scanpath experiment, inspired by the eye movement research, 

demonstrates the correct performance of our fixation system. 

2.4 Advances in Stereo Verging Systems 

In active visual following, the target is maintained at  the center of the visual field, 

i.e., its retinal slip is minimized. In their experiments with the Rochester head, 

Coombs and Brown [CB92] studied the gaze holding problem in a dynamic environ- 

ment. Binocular cue is used for vergence control. Once the cameras converge on the 

target, the near-zero disparity filter can isolate the target's image from the other scene 

objects. Smooth pursuit then keeps the target cent,ered by tracking the centroid of 

the zero-disparity filtered window. Binocular disparity is used as a visual cue to ver- 

gence error in the cameras' vergence control. Disparity is computed using the cepstral 

filtering technique introduced in [BHT63]. A peak in the power cepstrum indicates 

the disparity which is then converted to the vergence angle. 

Gaze control comprises both gaze holding and shifting. In active stereo, fixation is 

shifted from one point of attention to another. In our RWT fixation system, fixation is 

carried out in the stages of peripheral vergence, saccadic version and foveal vergence. 

This latter stage addresses the same issues as Coombs's vergence control. However, 

a simple correlation on foveal features is shown to be sufficient in our case. 

Stereo problems are greatly simplified in verging systems because vergence control 

allows redistribution of the scene disparities around the fixation point, thus reducing 

the disparities over an object of interest to near zero. Olson [Ols93] presented a simple 

and fast stereo system that is suitable for the attentive processing of a fixated object. 

In view of the narrow limits of the Panum's area, the fusible range is thought to be a 
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privileged computational resource that provides good spatial information about the 

fixation point. Assuming vergence control, Olson's stereo algorithm capitalizes on a 

restricted disparity range. It gains from the slack demand for computation and allows 

selective processing via disparity filtering. The disparities are examined in multiple 

scales so that the system does not lose track of the rest of scene even though fixation 

is attended to the target of interest. 

The Panum's area in Olson's system [Ols93] is a fixed narrow band around the 

~ i e t h - ~ i l e r  circular horopter. Empirical data [Fis24, AOG321 indicate a spatially 

varying Panum's area. Our RWT Panum's area resembles the empirically observed 

one. The narrow Panum's region near the fovea is focused on the fixated target while 

the deep Panum's area in periphery is attended to the rest of the scene. 

Vergence is guided by stereo disparity. Stereo correspondence, paradoxically, is 

difficult without fixation. An approach is to use other visual cues in cooperation with 

stereo disparity in guiding the binocular vergence. 

Pahlavan, Uhlin and Eklundh [PUE93] developed their machine fixation model af- 

ter the fixational behaviors in human vision. The vergence component in their KTH 

head-eye system is dealt with in accommodative and disparity aspects respectively. 

The accommodative vergence is driven by focusing which is measured with the gray- 

level variance. Correspondence is detected by calculating the normalized correlation 

on the centrally symmetric positions between the left and right images. The blur and 

disparity stimuli are then integrated to realize a cooperative effect on both accom- 

modation and vergence of their KTH head. Incorporated with a stabilizing process 

with symmetric version movement, the vergence system was demonstrated with an 

experiment of real-time dynamic tracking of a moving person. 
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Krotkov and Bajcsy [Kro89, KB931 developed and implemented the idea of co- 

operative ranging in their agile stereo camera system [KSF88]. Accommodation and 

vergence alone are weak depth cues [Gra65, GogGl]. Krotkov's system demonstrates 

the reliability in ranging upon fusion of the focusing and stereo vergence components. 

Initially, a focusing procedure computes the gross depth of the target scene feature 

from the master camera. Based on that result, the vergence angle is calculated to 

servo the fixation of both cameras on the target. Then execution is split into two 

paths. One path performs stereo ranging with verification by focusing. The other 

performs focus ranging. The operating windows on both cameras are related by 

the disparity predicted from the focused depth. Improved reliability is successfully 

demonstrated by sensor fusion at the level of data acquisition. This form of cooper- 

ation exhibits visual behaviors analogous to human accommodative-convergence and 

convergence-accommodation at various steps. 

Grimson at al. [GLROK94] used color in cooperation with stereo cues. In their 

work, they demonstrated how focus of attention is used to support the high level 

task of efficient object recognition. Color is used for fast indexing to the region of 

interest. Its use is combined with stereo cues to yield the disparity of the selected 

region. By converging the cameras accordingly, attention is directed to it .  A second 

stereo matching within a narrow disparity range completes the figurelground seg- 

mentation to un-clutter the scene for object recognition. The rationale is that both 

correspondence and model matching would be significantly impeded if the scene were 

cluttered. 

Abbott and Ahuja [AA93] took integration of visual cues to great length in their 

University of Illinois Active Vision System. Complementary strengths of different 

cues are exploited in integration via active control of camera focus and orientation, 
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as well as aperture and zoom settings, thus coupling image acquisition and surface 

estimation dynamically and cooperatively in an active system. The idea agrees with 

the active approach of intelligent data acquisition [Baj85]. Two phases are involved in 

the process, namely fixation selection and surface reconstruction. Fixation selection 

is posed as an optimization problem that seeks to minimize large camera movements 

and develop the surface description outward from the current fixation, favoring the 

unexplored area. Based on Sperling's energy model [Spe'iO], the surface reconstruction 

is formulated to optimize among different cues of focus, disparity, surface smoothness. 

The objective function also includes the image contrast and disagreement among the 

cues and fixations. By selecting fixations to extend smoothly the evolving surface 

map, their implementation produces dense depth information for a deep and wide 

visual field. 

Our active stereo ranging also employs the idea of active, intelligent data acquisi- 

tion. Fixation favors conspicuous objects in the periphery. The range information is 

evolved to more accurate levels from different fixations. 

2.5 Non-frontal Imaging 

In our binocular verging system, the RWT cameras represent a non-frontal imaging 

device since the sensor surface is not assumed to be in a conventional frontal orienta- 

tion. In our camera for imaging the road scene in a vehicle navigation problem [TL93], 

a horizontal sensor plane offers the RWT a spatially varying resolution that offsets the 

perspective distortion. This thesis will present a more elaborate non-frontal camera 

model for RWT space-variant imaging in Chapter 4. 

Although not aimed to achieve space-variant sensing, Krishnan and Ahuja [KA94] 
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developed a non-frontal camera model for ranging using focusing. The non-frontal 

imaging geometry is exploited in the way that varying image distance from the optical 

center to the sensor plane occurs at different viewing angles. When the camera is 

panned across the scene, an object will be imaged at different angles. At one of these 

viewing angles during the course of panning, the image distance will be just right to 

produce a sharp and focused image of the object. 

In Krishnan and Ahuja's camera, the sensor plane is equipped with three degrees of 

freedom. It can be translated, and rotated in two axes. Making use of the positioning 

and orientation of the sensor plane, up to three object points in the scene can be 

focused simultaneously. When the camera is swept across the scene, a series of images 

are generated. Each point in the scene will be imaged in focus at one instance or 

another. Therefore, the image series can then be analyzed to determine the sharply 

focused regions, the union of which will produce a composite focused image of the 

scene in a wide and deep field. 

The camera can be used to obtain range from focusing as well. When the focus 

criterion function (such as [Kro89, LG821) reaches its maximum for a scene point, 

the parameters such as the pan angle, the objective lens' focal length and the sen- 

sor's position and orientation are used to determine thk range value using the range 

from focus methods [Pen87, EL93, KA931. Problems of variation in the registered 

brightness and perspective warping are corrected at different imaging positions. 

2.6 Directions in Active Vision Research 

The National Science Foundation Active Vision Workshop held in 1991 set out the 

directions in active vision research [SS91]. The attendees laid down five major research 
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areas include attention, foveate sensing, gaze control, eye-hand coordination, and 

integration of vision with robot architectures. 

This research fits in the picture because the RWT developed here provides a model 

for foveate sensing. Motion stereo is studied in this sensing model and the fixation 

mechanism for an RWT binocular system is presented. The system is suitable for 

research into scanpath behaviors in attentive processing. It also promises applications 

in vision-based tasks for situated robots. 



Chapter 3 

Reciprocal- Wedge Transform 

3.1 The Mathematical Model 

The Reciprocal-Wedge transform (RWT) was proposed as an alternative model for 

space-variant sensing [TL93]. The RWT maps a rectangular image into a wedge- 

shaped image. Spatially varying resolution is achieved as the smaller end of the 

wedge is sampled with fewer pixels than the wider end is. Mathematically, the RWT 

is defined as a mapping of the image pixels from the x-y space to a new u-v space 

such that 

U = 1/x , v = y/x . (3.1) 

The lady's image in Figure 3.1 is used to illustrate how the Cartesian coordinates 

are mapped back and forth1 to the RWT domain. The transformed image in Figure 

3.l(b) shows a wedge-shape in an inside-out fashion because of the scaling effect of 

the x reciprocal. Note the blurring at the periphery of Figure 3.1(c). In Figure 

'Singularity occurs in the transform at x = 0 (the center strip). A variant of the RWT, which will 
be discussed in Section 3.1.2, was used in Figure 3.1 to cover the whole image including the center 
region. 
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3.l(d-f), the grid image is a template used to demonstrate the variable resolution of 

the transform. It is the differential magnification ratio across the width of the image 

that facilitates the continuously changing scale of image resolution from the center to 

the periphery. 

Figure 3.1: The Reciprocal-Wedge transform. 
(a) The lady's image. (b) The RWT image shows two inside-out wedges. (c) The 
image when transformed back to the Cartesian domain. (d) A rectangular grid. (e) 
The RWT image. (f) The grid transformed back to illustrate the resolution varying 
from the center to the periphery. 
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3.1.1 Matrix notation 

A concise representation for the transformation is derivable using the matrix nota- 

tion. Adopting the homogeneous coordinates, the RWT defined in eq. (3.1) can be 

formulated as a cross-diagonal matrix of l's, and the transformation can be computed 

as matrix operations. 

where T is the transformation matrix, z = [x y lIt and w = [u v lIt. To elaborate, 

The sign "E" means equality within the homogeneous coordinate representation. 

It is interesting to observe that the inverse of T is T itself, i.e., both the forward 

and backward transformations have the same matrix form. 

The concise matrix notation yields an advantage for the RWT. Coupling their 

geometric transformation matrices with the RWT matrix, geometric transformations 

in the RWT domain become rather straightforward. If M is the transformation matrix 

in the x-y space and M' is the corresponding matrix in the u-v space, then 

Using rotation, translation and scaling as examples, it is well-known that the 

respective matrices M are: 
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Since both T and T-' are cross-diagonal matrices of 1's (eq. (3.2)), their effect on 

M involves only row and column interchange. Thus, the respective matrices for the 

RWT domain can easily be derived as: 

0 1 0 0  1 0 0  [ t  coso si:o], I t g  1 o ] ,  l o  sy 0 1 ,  

0 -sin 0 cos 0 t ,  0 1 0 0 s, 

Figure 3.2 shows the direct application of the transformation matrices in the RWT 

domain. In Figure 3.2(a), the matrices are applied directly in the u-v space. For visual 

apprehension, the x-y representation of the transformed results is reconstructed in 

Figure 3.2(b) to demonstrate the effects of the three matrices. 

3.1.2 Remedy to singularity 

The singularity of the RWT exists at x = 0, i.e., u = 110 = cc and v = y/O. Two 

remedies to the problem are proposed: patching and shifting. 

Assuming the origin of the x-y space is at the center of the image, the patching 

method provides an expedient fix to the singularity problem. The method excludes 

a strip of width 26 at the center, where x value is zero or near zero, from the range 

of the RWT. The center strip from the original uniform-resolution image is then used 

to patch up the two wedge images from the RWT.2 It is convenient in many cases 

to use a uniform-resolution model for the fovea because it is essential to maintain a 

high acuity within the extent of the fovea for most visual behaviors. Besides, the rich 

repertoire of existing computer vision techniques could be used for foveal processing. 

The shifting method is an alternative way of fixing the singularity problem. It 

is to introduce a shift parameter a in the RWT.3 This variant formulation is called 

'The log-polar transform also has the singularity problem at r = 0. A uniform-resolution patch 
at the center of the image is constructed in the prototype camera [VdSKC+89, KVdS+SO]. 

3A similar shift parameter is also used in log-polar transform to the same effect [Sch80, RS901. 
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Figure 3.2: Geometric transformations on u-v images. 
(a) Direct application of the scaling, rotational and translational transformations 
on the u-v lady's image. (b) The x-y representation of the transformation results 
are reconstructed for visual apprehension of the effects of the scaling, rotation and 
translation. 

Shifted Reciprocal- Wedge Transform (S-RWT)4 [TL93]. 

Both the forward and backward transformations for the S-RWT remain the same 

cross-diagonal matrix (eq. (3.2)) except the additional parameter a. 

41n fact, S-RWT has been used for the transformation in Figure 3.1 to take care of the singularity 
inherent in the original RWT equations (eq. (3.1)) 
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The effect of the parameter a is to horizontally shift the center strip (and the 

rest of the image) away from x = 0, or equivalently, shift the x axis in the Cartesian 

image. The parameter a should be of opposite sign for the left and right halves of the 

Cartesian image, i.e., the two halves of the image are respectively shifted in opposite 

directions. There is an advantage with the inclusion of the shift parameter in the S- 

RWT. As the space-variant resolution in RWT is caused by the x-reciprocal function 

(eq. (3.1)), the use of a on x in eq. (3.3) allows adjustment on the speed of changing 

scale of the resolution from fovea to periphery. Meanwhile, since a leads only to a 

horizontal shift in the Cartesian image, for simplicity we can still use eq. (3.1) for the 

RWT for analysis of its properties. 

It is not difficult to see that a combination of both patching and shifting can be 

adopted to take advantage of both techniques. Each of the single techniques can then 

be viewed as a special case where either S = 0 or a = 0. Our camera design in Section 

4.4.2 will readily accommodate all these choices. 

3.1.3 The RWT View-of- World 

We now examine the effects of the forward and backward RWT. (The patching method 

is used for illustration in Figure 3.3. The S-RWT or the combination of the patching 

and shifting methods would yield similar results.) 

Figure 3.3(a) depicts the effect of the forward RWT (T). Excluding the strip of 

width 6, one half of the rectangular x-y image is turned into a wedge in an inside- 

out fashion because of the scaling effect of the x reciprocal. Figure 3.3(b) shows the 

reassembled version which comprises the two halves of the RWT image and the center 

patch for the purpose of visual apprehension. The reassembled version is also referred 

as the bipolar representation of the RWT image because the origins for the left and 
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Figure 3.3: The RWT View-of-World. - 

(a) Forward RWT on a half-image. (b) A rectangular x-y image is turned into a 
bipolar RWT image with a center patch. (c) Backward RWT on a half-image. (d) A 
rectangular RWT image corresponds to the RWT View-of-World in the x-y domain. 
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right half-spaces are independently flipped to the two antipodes. As shown, the two 

pieces of the wedges have been properly flipped before the merging. 

Figure 3.3(c) depicts the backward RWT (T-I). Since T = T-l, Figure 3.3(c) and 

3.3(a) appear similar, except that the RWT images in both cases are much smaller 

because of the data reduction. Nevertheless, Figure 3.3(c) reveals that an RWT 

rectangular region corresponds to a wedge-shape area in the x-y space. Figure 3.3(d) 

shows the complete mapping including the center patch, the resulting image in the 

x-y space is the RWT View-of- World (VOW). The RWT-VOW is the effective space- 

variant view from a RWT camera using square/rectangular sensing elements. The 

center part (fovea) of the VOW obtains the highest resolution, which drops rapidly 

towards both sides (periphery). 

Figure 3.4 illustrates how images in the Cartesian coordinates are mapped to the 

RWT domain, and then mapped back. The lady's image in Figure 3.4(a) is the 

original image (resolution 400 x 200) in the x-y space. The combination method is 

applied where S = 5 and a = 30. The transformed image in Figure 3.4(b) shows the 

two wedges. The image is reduced to approximately 10% of its original size. Figure 

3.4(c) shows the bipolar representation of the RWT image. Note the nice feature that 

the bipolar image is continuous at the two borders of the patch. Figure 3.4(d) is the 

restored lady's image. The blurring at the periphery is due to the inevitable (and 

desirable) loss of details after the image was reduced by the RWT. 

In Figure 3.4, a grid image is also provided to clearly demonstrate the extent of the 

spatially varying resolution produced by the transformation. A continuously changing 

scale of resolution from the center to the periphery across the width of the image is 

supported. 
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Figure 3.4: The Reciprocal-Wedge transform under the RWT VOW. 
(a) The original image. (b) The RWT image shows two inside-out wedges. (c) The 
bipolar RWT image including the center patch. (d) The restored image when trans- I 
formed back to the Cartesian domain. 
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3.2 Transformation on Linear Structures 

Exploiting the polar coordinate representation, the log-polar transform gracefully sim- 

plifies the computation of centric transformations. Rotation and scaling about the 

origin become operations along the log r and 8 axes. However, the polar coordinate 

representation adversely obscures other geometric patterns. For instance, linear struc- 

tures get mapped to complicated patterns of logarithmic sine curves. Since both linear 

features and translations are very common in image analysis, this seems to be a major 

drawback of the log-polar transform. 

RWT, on the contrary, does not employ the polar coordinates. It does not perform 

as well in computation of centric transformations. However, linearity of lines in the x- 

y domain is preserved over the transformation. Furthermore, we argue that the RWT 

does not complicate curves in general. If a curve is represented with a polynomial, 

the degree does not change after the transformation. 

3.2.1 Preservation of linear features 

Lines exhibit interesting properties in the RWT. In fact, the following transformation 

dual (L,, and L,,) of a line can be derived: 

Given L,,, the equation for L,, is readily obtained by substituting x and y in L,, 

with llu and vlu respectively. It is obvious that the transformed structure L,, is also 

a line, which implies that the linearity of the line is preserved.5 It is interesting to 

note that the values for the slope and intercept are interchanged between the trans- 

formation dual. Inferring from that, parallel lines with the same slope in x-y will be 

5Linear features are also preserved in the S-RWT. A line LZy : y = m + c is mapped to a line 
L,, : v = ( c  - ma)u + m. 
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mapped to u-v lines concurrent at the same v-intercept. Inversely, lines concurrent at 

the same y-intercept will form parallel lines in the u-v domain. 

Extension to curves. Let a curve in x-y be denoted as: 

By substituting l / u  for x and v/u for y, and rewriting the indices, the polynomial in 

u-v becomes: 
n n-i 

i = O  j = O  

This shows that the degree of the polynomial is preserved over the transformation. 

The shape of the curve may be different in the transform domain as the coefficients 

have been interchanged. For instance, a circle in x-y would be mapped to an ellipse 

in u-v. (It would be a hyperbola or parabola should the circle be transversed by 

the y-axis.) The significance is that the RWT does not complicate curve patterns. 

In comparison, after the log-polar mapping, the resulting curve no longer keeps its 

polynomial form. One disadvantage is that undesirable complexity is introduced when 

problems of shape analysis or image data modeling are dealt with. 

3.2.2 Line detection using the Hough transform 

The Hough transform [DH72] provides a powerful tool for feature detection. The 

technique is most effective for line detection [TL92]. The preservation of the linearity 

of lines over the RWT implies that line detection using the Hough transform would 

be as simple in the RWT as in the Cartesian domain. With the switching between 

the slope and intercept parameters (eq. (3.4)),  the vote patterns in the Hough space 

for the Cartesian and the RWT images form an interesting dual of reflection about 
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the main diagonal of the Hough space. (See Figure 3.5(c)). 

Figure 3.5: The duality relationship of linear structures in the RWT. 
(a) A line in the x-y domain with a slope 0.5 and the intercept 1. (b) The dual in the 
u-v domain. The slope is 1 and the intercept is 0.5, inversely. (c) The Hough space 
showing the peaks from (a) and (b) respectively. They form a reflection about the 
main diagonal. 

3.3 Anisotropic Space-Variant Resolution 

Like the log-polar transform, the RWT facilitates space-variant sensing which enables 

effective use of variable-resolution data and the reduction of total amount of the 

sensory data. Nevertheless, the variable resolution supported is anisotropic. 

The essence of the RWT is the introduction of the reciprocal transformation. The 

variable resolution is primarily embedded in the x dimension. It yields a grid whose 

resolution is variable for different x's, but uniform along the y dimension for any fixed 

x. The result is an anisotropic space-variant resolution, which is evident from the 

wedge-shaped grid in Figure 3.1 (e). 

The anisotropy can also 

pressions from eq. (3.1): 

IP(% v)laxll 

be inferred from the partial derivatives of the RWT ex- 
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where )I.II denotes the vector norm. Eqs. (3.5) and (3.6) show that the pixel resolution 

does not vary in the same manner for different directions. The grid width in the x 

direction (for a fixed y) is mapped to a size diminishing in reciprocal of x2. In the y 

direction, the grid height is mapped by a function of 1/x to a uniform size independent 

of the y value. Furthermore, 

Hence, the absolute value of the above Jacobian determinant is 

which indicates that the area of a pixel is reduced by a factor of l / x 3  after the RWT. 

On the contrary, the log-polar transform provides an isotropic variable resolution. 

The grid when mapped to the log-polar image changes size in the same scale in 

all directions. Sampling along the radial direction, the rate of change of the pixel 

resolution is 

Ildwldrll = Id(logr)/drl = l / r  

The area of a pixel thus diminishes isotropically in the rate of l / r 2 .  

The log-polar transform benefits from its conformal mapping. As the differential 

and local operators have valid conformal transplants in the log-polar domain, the 

related image processing tools and vision algorithms can also be available for pro- 

cessing in the log-polar domain with minimum overhead [WC79]. Compared to the 

log-polar, the RWT is neither conformal nor isotropic. The RWT, however, can also 

benefits from its matrix representation. Its matrices facilitate convenient mapping 

of linear transformations from the Cartesian to the RWT coordinates. As a result, 



CHAPTER 3. RECIPROCAL- WEDGE TRANSFORM 

the established linear transformations for the Cartesian image processing are readily 

applicable in the RWT as well. (The application of geometric transformations on the 

RWT images has been demonstrated in Section 3.1.1.) 

In the log-polar, the isotropic mapping facilitates the form invariance properties 

for centric patterns. In the RWT, it is the anisotropic mapping that enables the 

directionally biased RWT variable resolution. The directional variable resolution does 

not only benefit linear feature processing, but is also generally suitable for problems 

of translational in nature, such as motion stereo and binocular disparity computation. 

Hence, the anisotropic mapping of the RWT makes it distinguished from the log- 

polar transform. On one hand, it is comparable to the log-polar for its space-variant 

resolution and data reduction. On the other hand, it is complementary to the log-polar 

for its suitability for linear transformations, lines and translations. 

3.4 Pyramidal Implementat ion 

The capacity for parallel processing and versatility of multiple resolutions have made 

the pyramidal architecture a widely adopted structure for fast image processing and 

parallel modeling for various visual processes. The Image Understanding Architecture 

[WB91] is an ambitious project on a three-dimensional pyramidal architecture. How- 

ever, the two-dimensional pyramids have their advantages of cost-effectiveness and 

flexibility. The SFU hybrid pyramid [ELT+92] is a heterogeneous system offering the 

versatility in both iconic [LZ93] and functional [Li91] pyramidal mappings. In this 

section, a pyramidal implementation on the SFU pyramid for fast generation of RWT 

images is presented. 



CHAPTER 3. RECIPROCAL- WEDGE TRANSFORM 

3.4.1 Pyramidal mapping 

col0  col 16 co132 co164 col 128 

level 0 level 1 level 2 level 3 level 4 

Figure 3.6: Mapping the image space to the pyramid. 

The 2-D image space is conveniently mapped to the 2-D pyramidal structure in a way 

that exploits the more abundant computing power in the bottom of the pyramid for 

the image fovea. As an example for illustration, let us assume the entire image has 

a size of 1024 pixels across and 256 pixels down. The center strip of 32x256 is the 

image fovea. The two half images are thus 512x256 each with a 16x256 strip for 

the fovea. Here, the RWT singularity is handled by using the patching method. The 

patching method was chosen without particular preference. As a matter of fact, the 

shifting method is equally implementable. 

In a global view, the rectangular image space is mapped to the pyramid as shown 

in Figure 3.6. In the figure, the left half of the image is shown, and our discussion 

on the implementation will be based on the left half-image only. Since the right half- 

image is symmetrically mapped to the pyramid in the same way, its implementation is 

exactly the same. The SFU pyramid has 63 T-800 transputer nodes inter-connected 



CHAPTER 3. RECIPROCAL- WEDGE TRANSFORM 50 

in a binary tree. Together they form a two-dimensional pyramid of 6 levels. For 

illustration, a simpler version of 5 levels are used in the explanation. The dotted 

circles and arcs in Figure 3.6 are showing the 5 levels of the pyramid. The bottom 

level is reserved for uniform-resolution processing for the image fovea. In the figure, 

they are the level 0, and are not participating in the RWT image generation. 

The pyramid nodes and their corresponding image blocks are labelled with the h 

and k indices. The h index is related to the level number of the node, and the k index 

is the node's position within the level. Refer to Figure 3.6 for the k ordering of the 

nodes within different levels. 

The pyramidal algorithm can be described in 2 steps. First, A pyramidal reduction 

process transfers the image segments up the pyramid from the bottom level. At each 

node, the image segment is reduced to half the resolution of the one from below. In 

the second step, each node performs the transformation to obtained an RWT segment 

for the local node. When the pyramid program is running, these 2 steps are actually 

pipelined together. 

3.4.2 Pyramidal reduction 

The rectangular image is loaded onto the pyramid from the bottom level up. Our 

mapping algorithm partitions the rectangular image space into segments of size of 

two's powers, and distributes the segments to the pyramid nodes in the way depicted 

in Figure 3.6. The segments, however, are stored in reduced resolution at each level. 

When the image is first loaded onto the level 0 nodes, each of the nodes gets a ribbon 

of 512 x 8. These foveal nodes then retain a block of 16 x 8  as the uniform-resolution 

fovea. The rest of the ribbon is then passed to the parent at level 1. 

From level 1 on, the nodes are in the variable resolution region. They are involved 
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in the RWT image generation. Now, each level 1 node merges the 2 8-ribbons from its 

children to generate a 16-ribbon. A 16x 16 block is retained as a local segment. This 

segment will get mapped to the RWT image in the later step. The merge operation 

can be formulated as follows: 

A10i,j+16 if z < 8 

Aooi-s,j+16 otherwise 

where Ahi,j is the image segment at the level h, and A ~ ~ - ~ ~ , ~  is the kth child the level 

h - 1. It is the right child when k = 0 and the left child when k = 1. Figure 3.7 

presents a graphical description of this step. The segment of the level h node is a 

merged version from both children at the level h - 1. 

Figure 3.7: The pyramidal reduction step. 

From level 2 on, every node takes 2 16-ribbons from its children, reduce-merges 

them into a 16-ribbon at half resolution. Again, a 16x16 block is retained for the 

local segment (Figure 3.7). The reduce-merge operation can be formulated as follows: 

h ~ l ~ - ~ ~ ~ , ~ ~ + ~ ~  if i < 8 A ; . =  J 

A ~ ~ - ~  2i-16,2j+16 otherwise 

At the end of this image distribution phase, each node has a 16x 16 local segment 

of the original image. These segments have different resolutions according to their 
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levels in the pyramid. The segment at level h represents a 16 2h-1 square portion 

of the original image. Of course, this portion is stored in a reduced resolution at the 

size of 16x16.  

3.4.3 Local RWT transformation 

Having received its local segment, each node can perform a local RWT transformation 

on its local data, producing a segment of the entire RWT image. Before deriving the 

algorithm for the local RWT, we have to clarify the local image coordinates and how 

they are related to the global ones. 

Right now, the 1 6 x 1 6  local block is indexed by i, j for the rows and columns as 

shown in Figure 3.8. First of all, we set the local origin at the midpoint of the left 

edge, and the 2 axes as x and y, like that in Figure 3.8. The local coordinates are not 

specified by (x, y)  where x ranges from 0 to 15 and y ranges from -8 to 7. 

J ,  

i y - j - T J  

16 x 16 block 

Figure 3.8: The RWT transformation step. 

Let us denote the global coordinates with ( 2 ,  y"). From the recursive structure of 
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the pyramidal reduction, the local coordinates (x,  y )  can be related to the global ( 2 ,  i j) 

as follows: 

where m is the height (maximum level) of the pyramid. 

Let (u, v )  be the coordinates for the global RWT image. The global transformation 

is (eq. (3.1)) 
1 62 u = -  16.  ij - , v = - .  
x x 

Since it is desirable to have the resolution of the RWT image be continuous with the 

foveal resolution at the boundary between the two, scale factors have been put in the 

above equations to adjust the u-v resolution. By eqs. (3.8) and (3.9), 

Alternatively, the global transformation in eqs. (3.10) and (3.11) can be performed 

in 3 simple operations for easy implementation. 

1 62 
u=- 

16 - y 
Local transform : v = --- 

x + 1 6  ' x + 1 6  ' 
(2k - 2m-h + 1) 

v shearing : 
2 ' U  , 

1 
u scaling : - 

2h-1 * (3.14) 

Let A;,j be the local image segment, B,,, be the remapped image of Ai j  with 

the origin set to the center row and the y axis is upright. R,,, is the local RWT 

segment. Figure 3.8 indicates the relationships among the 3 coordinate systems. By 

eqs. (3.12-3.14), the transformation can be formulated as in the following 4 steps: 
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1. Move the axes: B,,, = 

2. Local transform: R,, = B g -  IS,% 

3. v-shear: RU,V = 8 ( ~ k - ' 2 m - ~ + l  
u,u- 2 

4. u-scale: &,V = RP-~~,V 

At the end, each node will have its local RWT segment as illustrated in Figure 

3.6. 



Chapter 4 

Camera Model 

4.1 The RWT Projective Model 

Figure 3.l(b) appears like the view of a picture from a grazing angle. In fact, one 

could regard the RWT as a projection of an image on a plane perpendicular to it. 

Examine the perspective projection in which the three-dimensional X Y Z  space is 

projected onto the two-dimensional 2 - Y  plane at X = 1 (Figure 4.1). Let the three- 

dimensional point be (X, Y, 2) and the projection be (Z', Y'). 

Now, the equations in (3.1) can be made equivalent to those in eq. (4.1) if the 

terms x, y ,  1, u ,  v in (3.1) are unified with the X ,  Y, Z, Z',  Y' in (4.1), respectively. 

In that sense, the RWT described by eq. (3.1) can also be viewed as a perspective 

reprojection in which the original image is on the X-Y plane at Z = 1, and it is 

projected onto the 2 -Y  plane at X = 1.' 

'For simplicity, both focal lengths have been chosen as 1 in the above discussion. In general, the 
two images planes are at Z = f and X = f'. As a result, the projective model will yield u = l / x .  f .  f' 
and u = ylx . f', which differ from eq. (3.1) by constant factors. 
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original P2  

image - 
\ I 
\ 
\ 

center of 
projection 

plane 

Figure 4.1: A perspective projection model. 
The original image is placed on the X-Y plane at Z = 1. It is reprojected onto the 
2-Y projection plane at X = 1. The pixels pl and p2 are projected to pi and p',, 
respectively. 

It is interesting to notice that potentially the RWT could be implemented in 

hardware. Since the RWT image can be considered as another perspective projection 

of the Cartesian image onto an orthogonal projection plane, in a simplistic point of 

view, we can cascade the two processes into one. Figure 4.2 illustrates the idea. The 

sensor is fitted directly on the RWT projection plane mounted sideways. Thereby, 

the rays from the imaged objects strike directly onto the RWT sensor plane. The 

sensor plane is installed in two half-planes, the left and right ones, respectively, for 

the convenience of taking care of objects on each side of the optical axis. 

The RWT camera can use a uniform sensor, which is cheap to fabricate. Space- 

variant sensing is realized by the oblique perspective projection on the sensor plane. 

The same sensor area on the plane yields variable area coverage of the visual field 

depending on the angle of projection. As shown in Figure 3.3, rectangular x-y images 

are turned into wedge-shaped RWT images. A rectangular RWT sensor array inversely 
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corresponds to a wedge-shaped x-y image - providing a foveate view-of-world. In 

fact, one can also alter the position, orientation or even the shape of the sensor plane 

to produce different space-variant sensors. 

PI \ \  optical 
\ 

left 

- 

RWT plane 
right 

RWT plane 

Figure 4.2: A rudimentary RWT projection camera. 
The camera has its sensor placed on the left and right horizontal planes. Instead of 
forming an image on the frontal focal plane, lights from PI and P2 passing through 
the lens are further projected onto the sideway-positioned RWT sensor planes to form 
images pl and p i .  
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4.2 Non-Paraxial Focusing 

The above discussion delineates a rudimentary idea of the RWT camera design. A 

prominent problem of Figure 4.2 is the necessity of focusing on a deep image plane in 

parallel to the optical axis. As shown in Figure 4.3 the object forms a sharp image 

on the focal plane normal to the optical axis. However, upon further projection onto 

the RWT plane which is positioned sideways and off-axis, the rays diverge, casting a 

blurred image on the RWT plane. 

Figure 4. 3: The focusing problem c 

sharp blurred 
image image 

RWT 
image 
plane 

)f the sideway-positioned RWT projection plane. 

In general, it is difficult to get a focused image on an off-axis plane. Ordinary 

cameras have paraxial focal planes, i.e., only objects that are near the optical axis 

will form focused images on the focal plane. The pair of object and image points are 

called conjugate points and the planes through these points are the conjugate planes. 

This is true only under paraxial conditions. However, the RWT image plane in Figure 

4.3 is located off-axis, and the condition for lens focusing is not paraxial. 
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4.2.1 The RWT lens 

In addition to its off-axis position, the RWT image plane also assumes a non-frontal 

orientation like the one in the Krishnan's camera [KA94]. An optical condition of such 

non-frontal projection is known as the Sheimpflug condition [Bro65]. It occurs between 

tilted object and image planes (as shown in Figure 4.4). In fact, the projective model 

of the RWT can be achieved as non-frontal focusing between orthogonal conjugate 

planes. 

Consider an image plane oriented at an angle to the optical axis of a lens. Without 

loss of generality, the problem is dealt with in the 2-D 2 - X  plane. The result can 

be readily extended to the 3-D X Y Z  space. Let the optical axis be aligned with the 

Z axis, and the lens be on the X axis. The normal of the image plane is on the 

2-X plane. The resulting configuration is as shown in Figure 4.4. A point on the 

image plane is denoted as PI(ZI, XI), and its conjugate object point is Po(Zo, Xo). 

In the 2-D Z-X space, the image plane is a line. Let us denote it with the equation 

XI = m ~ .  ZI + CI, where r n ~  and CI are the slope and X-intercept of the line. As Po 

and PI are related by the lens refraction formula and are collinear along the principal 

ray which travels through the optical center of the lens, the conjugate relationship 

between the object and image plane can be derived by solving the equations involving 

the lens formula, the ~rincipal  ray geometry and the plane equation. 

1 1 1  
Lens formula : - -+ -= -  

20 21 f ' 

Principal ray : 
x o  XI 

- 
z o  21'  

Image plane : XI = r n ~ .  21 + C I  
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Resolving for Xo and Zo, a linear equation is obtained. 

Generalized to 3-D, eq. (4.5) states that the objects which form focused images on 

the image plane are themselves on a plane as well. If denoted by Xo = m o  . Zo + co, 

the object plane is related to the image plane by 

optical 
D 

axis 
Z 

object plane \ v \ 
image plane 

Figure 4.4: Optical principle in tilted plane focusing. 

Note that the lens formula of paraxial focusing is still employed in the derivation of 

the off-axis conjugates. In fact, we are using the first-order lens formula (eq. (4.2)) in 

obtaining the simple linear relationship between the off-axis conjugates. The shortfall 

of the paraxial approximation in off-axis focusing is manifested in various kinds of 

lens aberrations which has to be compensated by a careful lens design [HZ74]. In 

Section 4.5, a choice of the periscopic lens design is made to that end. 

An interesting case involves non-frontal focusing between two orthogonal conjugate 

planes. It realizes the projective model of the RWT transformation discussed in 
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Section 4.1, and successfully overcomes the focusing problem which would render 

the simple camera model in Figure 4.2 impractical. In the new camera model, the 

orthogonal conjugate planes are realized with a lens system constructed as in Figure 

4.4. Both the object and image planes are at 45' to the X axis. If -mo = m~ = 

tan 45" = 1, from eq. (4.6), 

It means that the planes are installed at 90' to each other. They are arranged sym- 

metrically on both sides of the lens. For the lens having a focal length f ,  the planes 

intersect at 2 f below the lens. 

The lens is re-drawn in Figure 4.5. Herein, the lens system is rotated by 45" to 

ease the distance computation for the next step. Now, the object plane is the vertical 

plane and the image plane is the horizontal one. The lens is located at the origin of 

the X Y Z  coordinate space. For simplicity, the normal distance of the planes to the 

lens is again assigned a unit value. This makes the lens parameters consistent with 

the projective model in Figure 4.1, thus realizing the RWT transformation as defined 

in eq. (3.1). If the normal distance is not equal to one, then all the other distance 

measurements will simply be scaled by constant factors, as explained in Section 4.1. 

From the geometry, 0F0 is (Xo, Yo, 1), and O ~ O  is collinear with 0?1. Therefore, 

This can be denoted as: 

which illustrates that such an projection between orthogonal planes through the origin 

achieves the RWT transformation. 



CHAPTER 4. CAMERA MODEL 

object I\, 

Figure 4.5: The prototype RWT lens. 
The object and image planes are at 45' symmetrically on both sides of the lens. The 
normal distance of the planes from the lens is assigned a unit value. The principal 
ray from Po, traveling through the optical center 0 to PI is shown. 

4.3 Projecting the Singularity 

Similar to the singularity problem at x = 0 in eq. (3.1), the projective model from 

Figure 4.2 also fails for points near the Z axis. In this section, the patching and 

shifting methods discussed in Section 3.1.2 are employed as the practical fix in the 

design for the camera. The following proposes three techniques, namely the U-plane 

projection, the V-plane projection and the displaced-center projection. The U-plane 

projection implements the patching method whereas the latter two provide alternative 

techniques for implementing the shifting method. 
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b 2a t 4  original image 

X 

space-variant 
resolution 

U-shape 
proiection plane 

1 
A - 

uniform- esolution 

Figure 4.6: U-plane projection. 
The center region of width 26 forms a uniform-resolution projection at the bottom 
portion of the U-plane, whereas the peripheral regions are projected in space-variant 
resolution onto the sideway-positioned arms of the U-plane. 

4.3.1 U-plane projection 

The patching method provides an expedient fix to the singularity problem. It excludes 

the center strip of width 26 of the original image from the space-variant mapping. The 

uniform-resolution data for the strip is used directly to patch up the two wedge images 

from the transform. 

In the projective model, the method corresponds to two different projection strate- 

gies for the center strip and the peripheral region respectively. Figure 4.6 shows a 

U-shape projection plane implementing the two projections. The center region of the 

original image is projected normally onto the frontally oriented portion of the U-plane, 

producing a normal uniform-resolution image. The regions to the sides in the original 

image are projected as illustrated in Figure 4.1, forming the RWT projections on the 

sideway-positioned arms of the U-plane. 

The advantages of using uniform-resolution model for the fovea were discussed in 
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Section 3.1.2. In fact, the U-plane model supports a seamless joint between the central 

rectangular fovea and the peripheral wedge-shaped regions. On the contrary, the 

spatially uninterrupted connection between the fovea and periphery is not supported 

in the log-polar implementation [VdSKC+89]. The square grid for the fovea and the 

ring structures for the log-polar periphery cannot simply be patched together. 

4.3.2 V-plane projection 

The shifting method discussed in Section 3.1.2 has been formulated in eq. (3.3) as 

the S-RWT. The following shows that the S-RWT can also be implemented with a 

V-plane projection. 

Figure 4.7 depicts the V-plane projection. The two projection planes in Figure 

4.2 are joined to form a V in this figure. The left arm of the V forms the projec- 

tion plane for the right half of the original image and the right arm of the V is the 

projection plane for the left half. The singularity problem disappears because the 

center region of the original image gets projected to a u position on the V-plane. It 

can be observed that the orientation of the V arms is not as steep as that of the 

sideway-positioned projection plane in Figure 4.1. A less drastic space-variant reso- 

lution should be expected. In fact, it can be shown that such a V-plane projection 

implements the space-variant resolution of the S-RWT of eq. (3.3). 

Since the projection occurs independently on each side of the image, without loss 

of generality we examine the projection from the right side of the original image onto 

the left arm of the V. Figure 4.8 shows the ray diagram of the projection. A point 

P on the original image is projected to Q on the projection plane. 0 is the center 

of projection, and E is the origin of the x-y space. To be consistent with the S- 

RWT formulation in eq. (3.3), the origin of the u-v space F is defined as the point of 
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I original image 

projection plane 

Figure 4.7: V-plane projection. 
The left arm of the V forms the projection plane for the right half of the original image 
and the right arm of the V is for the left half. The singularity problem is resolved, 
and space-variant resolution is effected on both projection planes. 

projection when x = oo and y = 0. 

From the geometry in Figure 4.8, LPRO = LROF = 0. 

- - r 
OF = RF = --- 

2 cos 0 , 
- 
RE = rcos0 . 

From the similar triangles, 
- - 
R E + x  OF 

Using (4.9) and (4.10) in (4.11), 

by letting f = r l ( 2  cos O ) ,  and a = r cos 0 - r l ( 2  cos 6 ) .  

Imagine the vertical dimension inlout of the paper. It defines the y coordinates 

on the image plane and the v coordinates on the projection plane. Again, from the 
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original image x = o  
E x P 

Figure 4.8: Geometry of the V-projection from P to Q. 

similar triangles, 

Combining (4.13) and (4.14), 

From (4.12) and (4.15), we conclude that the u and v coordinates from the V- 

plane projection are effectively computing the S-RWT as defined in eq. (3.3) within 

a constant factor f .  

4.3.3 Displaced-center project ion 

Alternatively, the S-RWT can be implemented with the displaced-center projection 

technique. The inspiration is from the shift parameter in eq. (3.3). The parameter 

a is hinting at a shift on the x-origin when comparing eq. (3.3) with the formulation 

of the RWT in eq. (3.1). As Figure 4.1 is the projective model of eq. (3.1),  a natural 
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original image 

left half right half 

Figure 4.9: Displaced-center projection. 
The centers of projection of the two half images are displaced away from the origin 
by a. Effectively, the right(1eft) half of the image appears to have been shifted by 
+a(-a) upon its projection through the displaced center of projection. 

- 
/ ./A. 

d. - 
..-Ye a . / 

displaced 
,/ center of 

I projection 
,' for right half 

implementation of eq. (3.3) could be one like Figure 4.1, but modified by shifting the 

- 
\ . X . 

++ 
> 

X-origin or, relatively, by displacing the center of projection. 

Figure 4.9 illustrates the displaced-center projection met hod. The center of pro- 

jection for the right half of the original image is displaced by -a. Effectively, the 

right half image appears to have been shifted by +a upon its projection through the 

displaced center of projection onto the left projection plane. Similarly, the center of 

projection for the left half of the original image is displaced by +a, causing the data 

to be shifted by -a upon its projection onto the right projection plane. 

As both the V-plane and the displaced-center projection methods are able to 

implement the S-RWT to the same effect, either one of them can be used in place 

of the other. As a matter of fact, the displaced-center projection has advantages 

over the V-plane projection method. First, it offers a more natural interpretation of 

eq. (3.1). Second, the displaced-center method does present an easier implementation 
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of the S-RWT. Consider that altering the parameter a in the S-RWT would change 

the parameters r and 0 in the equations (4.12) and (4.15). This may involve adapting 

the lens focusing in the V-plane projection (Figure 4.8). 

In our design of the prototype RWT camera (Section 4.4.2), a combined use of the 

patching and shifting methods is implemented to support the flexibility in dealing with 

the singularity problem. The U-plane and the displaced-center projection techniques 

are employed for the patching and shifting methods respectively. 

4.4 A Prototype RWT Camera 

The RWT is implemented as a lens projection between orthogonal planes under the 

Sheimpflug condition [Bro65] discussed in Section 4.2.1. The lens focusing is modeled 

with the first-order paraxial approximation. Practical considerations of various kinds 

of lens aberrations become an issue when performing the actual design of the lens. 

4.4.1 Periscopic lens design 

As mentioned above, the first-order paraxial approximation is used to its advantage 

for deriving the off-axis focusing. The lens aberrations thus encountered in off-axis 

focusing are compensated with a careful lens design. In the RWT lens design, the pro- 

jection between 90" planes imposes a stringent requirement on the lens performance. 

Light rays reflected off the intermediate screen normally strike the RWT lens at a 

wide-angled oblique incidence. Lens aberrations are adverse under such conditions. 

As an initial attempt, we have chosen to use the periscopic lens as the candidate for 

the RWT lens. The design data is generally available [Kin78]. The periscopic lens has 

a symmetrical configuration of two meniscus-convex lens positioned on both sides of 
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a central stop (Figure 4.10). 

The periscopic lens has the advantages that it has little distortion and lateral 

color aberrations [Kin78]. Coma aberration can be ignored as it will be corrected 

automatically by the symmetry of the lens configuration. Moreover, the field curvature 

can be flattened by selecting the appropriate stop diameter. The periscopic lens is 

shown to be necessary in our simulation tests. It will be shown later that when an 

ordinary simple lens is used, the field curvature aberration causes poor focusing. 

front-meniscus outer 

inner 

stop 

rear-meniscus inner 

outer 

front-meniscus stop rear-meniscus 

Curvature(cm-l) Separation(cm) Refractive Index 

Figure 4.10: The periscopic lens and the lens design data. 
The effective focal length of the periscopic lens is 70 mm and the stop diameter is 
8.87 mm. 

4.4.2 Design of the RWT camera 
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Figure 4.11: The RWT camera model 
The camera objective lens projects the image on the two intermediate screens on either 
side through the deflecting mirrors. The RWT lenses then focus the images from the 
screens onto the orthogonal RWT image planes. A center slot is opened between the 
deflecting mirrors enabling uniform-resolution projection onto the bottom wall. The 
full RWT image comprises segments from the RWT sensors on either side merged 
with the center patch from the bottom. 
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The design of the camera is based on the model from the previous section. The light 

rays are split into left and right halves by using the deflecting mirrors. A similar setup 

of image splitting mirrors is also used in a stereo camera system by Teoh and Zhang 

[TZ84], except that the deflecting mirrors used in our camera split the visual field in 

the middle. The left field is projected onto the right screen and the right field to the 

left screen. This facilitates the implementation of the two half planes in RWT to take 

care of objects on each side of the visual field. 

The two intermediate screens on either side of the camera play the role of the 

object planes for the RWT lenses. Each RWT lens projects from the respective screen 

onto an orthogonally located RWT image plane at the front wall of the camera. The 

RWT transformation is realized by projection between these two orthogonal planes. 

A practical consideration is how to take care of the singularity of the RWT at 

x = 0. The patching and shifting techniques as discussed in Section 3.1.2 are employed 

in this design. In Figure 4.11, a center slot is opened between the two deflecting 

mirrors. Objects near to the optical axis (P3 and P4) are now projected to the center 

of the bottom wall of the camera (pg and p4). As in the ordinary cameras, the image 

at the center is a uniform-resolution projection. 

To implement the shift parameter in eq. (3.3), a shift by a on the x-y images 

from both intermediate screens needs to be performed. However, the shift can also 

be realized by relative repositioning of the RWT lens. The lens is required to be 

positioned at the X Y Z  origin in Figure 4.5. Moving the lens and the projection 

plane along the X axis in relation to the object plane effectively achieves the shifting 

operation on the object's Xo coordinate. A shift by a on Xo thus causes eq. (4.8) 

to realize the S-RWT which is defined in eq. (3.3). Practically, the RWT lens-sensor 

units on either side of the camera in Figure 4.11 can be adjusted up and down in the 
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diagram to implement the shift. 

Now, three segments of the RWT image are formed at three locations. Merging 

of the three pieces (left RWT, center patch, right RWT) will yield a connected image 

like the bipolar RWT image shown in Figure 3.:3. Note that the sensors are delimited 

in the way that the RWT image is continuous over the boundary between the left 

and the center segments, and also between the center and the right segments. Proven 

technologies from the 3-chip color cameras can be employed to deal with the problems 

of synchronization and alignment among the three sensors. 

Further design considerations for perfecting the camera design require deeper un- 

derstanding of optical instruments. For example, a practical concern about the use 

of the intermediate screens would be the weakness of the resulting irradiance a t  the 

RWT sensor planes after the diffuse reflection by the intermediate screens. The light 

energy entering the camera through the field objective lens will get dispersed in all 

directions due to the diffuse reflection by the screens. Consequently, only a small 

portion of the energy will be collected by the RWT lenses and get projected onto 

the sensor planes. Ultra-sensitive CCD sensors may be needed for recording the dim 

image when it arrives at the end of the optical path. 

Another concern is the diffraction effects caused by the center slot. When the slot 

gets smaller, the diffraction effects become more eminent. Special measures may be 

required to alleviate the diffraction or the foveal patch sensor should be mounted on 

the side-wall alongside the screens to eliminate the need for the center slot altogether. 

Despite all these detailed design considerations, the model depicted in Figure 4.11 

is used to illustrate the basic principles of the optical construction which shows the 

unique RWT projection and the implementation of the S-RWT and foveal patch. Any 

practical design could be developed based on this basic model. In fact, camera design 
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from this model would be appealing on three counts. First, the RWT obtains space- 

variant resolution by using oblique projection between orthogonal planes. It does not 

require sensing elements of variable sizes to achieve variable resolution. The main 

advantage of using uniform sensors is thus realized. Second, the rectangular shape of 

the sensors allows merging of the sensors to deliver a connected bipolar RWT image. 

Third, the design accommodates a flexible implementation of both methods of S-RWT 

and foveal patch. The foveal patch is adjustable by varying the aperture of the center 

slot between the two deflecting mirrors. The shift parameter for the S-RWT can be 

adjusted by shifting the RWT lens-sensor units. 

Optical Simulations 

Before a hardware prototype is built, the design for the RWT camera has been tested 

using an optical ray tracing simulation software. The Beam Optical Ray Tracer2 is 

used to provide a test environment in which the optics of lens refraction is simu- 

lated. Since the optics of uniform-resolution projection for the center patch is well 

proven in the conventional cameras, and since the optical path comprising the camera 

objective through the intermediate screens is primarily adopted from the design of 

ordinary stereo cameras, our tests are conducted mainly on the optics of the RWT 

lens projection. 

Our first experiment uses nine grid points placed on the object plane as shown 

in Figure 4.12(a).~ Pencils of rays radiated from the points are propagated through 

'Beam Optical Ray Tracer is the product of Stellar Software at  Berkeley, CA, U.S.A., copyright 
1990. 

3Because it is easier to generate (or obtain) rectangular z-y images, they are used in this simula- 
tion. As a result, the generated RWT images are of the wedge shape. A real hardware RWT camera 
will have a rectangular sensor array and the corresponding view of the world will be of the wedge 
shape as pointed out in Section 3.1.3. Since T = T- l ,  the simulation result is equally valid. 
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the lens and converged onto the image plane. The refraction process is simulated. 

Figure 4.12(b) plots the images of the focused grid points. The distinctive wedge 

shaped pattern can be recognized. The ray diagram from the Beam Optical Tracer is 

drawn in Figure 4.13(a). From the diagram, it can be observed that good focusing is 

achieved. The reported error (standard deviation) of the landing position of different 

rays from the same grid point is below 0.02 cm. For appreciation of the periscopic 

design for the RWT lens, a comparison is made between a simple biconvex lens and 

the periscopic lens. Figure 4.13(b) clearly shows the adverse blurry condition arising 

from the lens aberrations. 

Figure 4.12: Focusing test with nine grid points. 
(a) Nine grid points on the object plane. (b) The focused image as viewed on the 
RWT plane. 

In Figure 4.14, a dense grid is placed on the object plane and the projected pat tern 

on the RWT image plane is obtained. This test reveals the accuracy of the lens in 

performing the RWT transformation. The error measured against the computed RWT 

image is very small - rms  error = 0.038 cm. 
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Figure 4.13: Ray diagrams showing the lens focusing. 
(a) Good focusing is achieved with the use of periscopic design for the RWT lens. (b) 
Poor focusing arises from lens aberrations with the use of a simple biconvex lens. The 
ray diagram reveals the intolerable field curvature aberration. 

Our experiment is concluded with a test on real image data. The assembly belt 

image from the motion stereo experiments in [TL94] is used.4 Figure 4.15(a) is an 

image of the assembly belt scene from the intermediate screen of the RWT camera 

(it looks just like a normal uniform-resolution image), and Figure 4.15(b) is the RWT 

image achieved through simulation on the RWT lens. 

41n some applications, it is better to  use only one half of the image where x > 0 (and hence 
u > 0). In this test case the origin is located at the middle of the left border in the original x-y 
assembly belt image. A small patch (6 = 15) at the left side of the x-y image is not transformed. 
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Figure 4.14: Accuracy test on focusing using a dense grid. 
(a) A grid placed on the object plane. (b) The projected image as viewed on the 
RWT plane. The rms error measured against the computed RWT image is 0.038 cm. 
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Figure 4.15: Focusing test using real data. 
(a) The belt image as view on the intermediate screen. (b) The image on the RWT 
plane. 



Chapter 5 

Applications of RWT Mapping 

5.1 RWT Imaging in Road Navigation 

In the problem of road following, an efficient search for road features can be effected 

with the variable resolution offered by the RWT. 

Different approaches have been devised for road detection in various experimental 

autonomous land vehicles. An area-based voting scheme based on the Hough trans- 

form is applied to compute the direction of the road in the CMU Navlab [THKS88]. 

In the VaMoRs project [DM92], visual features of the road edges are detected based 

on the "Gestalt" hypothesis under adverse situations of shadows and absent lane- 

markings. 

Both methods search over the perspective images for road features. The drawback 

is that the nearby section of the road gets overly attended whereas the far side toward 

the horizon is disproportionately under-sampled. Arguably, this differential scale of 

attention to detail is not suitable for driving on the road. One has to pay sufficient 

attention to a reasonable distance to see the general direction of the road, while at 
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the same time remaining aware of the road segment immediately ahead. 

Lotufo, et  al. [LMD+SO] presents the plan-view transformation method for road 

navigation. The original perspective road image is projected to a grid inclined by a pan 

angle 6, which is chosen so that the road edges are nearly parallel to the boundaries 

of the grid. It is also reported that the new images are of a reduced size (typically by 

a factor of 32). 

5.1.1 Perspective inversion by RWT 

RWT 
plane 

camera 
0 

0 . 
0 

0 . 
0 

0 
, I 

0 , 
0 , I 

0 / 

I v ground 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 5.1: Perspective inversion effected by the RWT projection. 
The image size (p - q )  varies with the position of the segment (P, Q),  whereas the 
size of the RWT image (p' - q') does not. 

Effectively, the RWT re-samples the image to a variable resolution which counter- 

balances the differential scale of details in the perspective projection. Figure 5.1 

illustrates the perspective inversion. With the road (P, Q) on the ground projected 

onto a horizontal plane in the RWT camera, the projection (p', q') does not change 

in magnification, and the perspective projection is practically inverted. 
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The road in the RWT image appears as though it were from an aerial view (Figure 

5.3(b)). However, an important difference is that the RWT camera is pointing toward 

the front which is vital to driving. Moreover, the nearby section is sampled at a 

much reduced resolution. The overall data volume can be greatly reduced to achieve 

a comparable performance. 

Cartesian Domain RWT Domain 

Figure 5.2: The RWT dual of the road image. 
The vanishing point in the Cartesian domain just becomes the direction in the RWT 
domain and vice versa. 

In the CMU Navlab project [THKS88], a road is perceived as converging at one 

point on the vanishing line, and is parameterized by P and 0 (Figure 5.2). As discussed 

in section 3.2.2, the detection of converging lines at the vanishing point for finding 

the road direction can be carried out by detecting parallel road boundaries in the 

RWT image. The technique of the Hough transform is equally applicable. While edge 

tracking is employed to calculate the geometric model of the road in the VaMoRs 
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project, the RWT image benefits by eliminating the variable search ranges for roa,d 

features in the near and distant sections of the road. In all cases, the RWT supports 

an efficient representation of the road image as the data volume is greatly reduced by 

its spatially variable sampling. 

5.1.2 Results 

Figure 5.3(a) is a synthetic image of a road scene. The image has a resolution of 

128 x 256. Figure 5.3(b) is its RWT image of size 32 x 128. The remote section of the 

road has retained its resolution whereas the excessive information at the near side is 

suppressed. The total area of the search region is significantly reduced. The direction 

of the road is detected using the Hough method described above. In the RWT image, 

the road direction is detected as tan q5 = -22, yielding the position of the vanishing 

point P in the original Cartesian image. 

Figure 5.3: The synthetic image of a road scene. 
(a) The road image of resolution 128 x 256. (b) The RWT image of size 32 x 128. 
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5.2 Depth from Ego Motion 

5.2.1 Motionstereo 

Okutomi and Kanade pointed out in [OK931 that the distance between the pair of 

cameras in stereo vision greatly affects the precision and error rate of the correspon- 

dence process. A short baseline will provide less precision; whereas, a longer baseline 

will result in a higher error rate due to false matches. To alleviate the dilemma, they 

proposed the multiple-baseline stereo method wherein different baselines are generated 

by lateral displacements of a camera. 

Consider a manufacturing environment with intelligent robots working on assembly 

lines where the belts are moving at constant speed. Multiple snapshots of the moving 

objects on the belt can be taken in a rapid succession by a single camera. The 

controlled belt movement provides the necessary stereo disparity. Moreover, it can 

guarantee that the disparity occurs only along the epipolar lines. This method is called 

Motion Stereo [Nev76]. Its greatest advantage is the simplicity in camera control and 

calibration. Suppose the camera is looking down the Z direction, i.e., its optical axis 

is the Z-axis. We call the above moving belt situation lateral motion stereo where 

objects move on a Z = Zo plane, perpendicular to the Z-axis. Another type of motion 

stereo is longitudinal motion stereo in which objects move along the Z direction, such 

as when an autonomous vehicle travels along a highway. 

Bolles, Baker, and Marimont [BBM87] proposed a technique of epipolar-plane im- 

age analysis for determining structure from motion. It was pointed out that for 

straight-line and constant-speed camera motions, simple linear structures will be 

formed on the epipolar-planes (Figure 5.4), where the slope of these lines indicates 

the depth of the feature points. 
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epipolar 

/ 
plane 

Figure 5.4: Epipolar-plane image analysis. 
(a) A feature point moves along the epipolar line in the x-y plane with a constant 
speed. (b) A linear locus is formed on the epipolar (x-t) plane in the xyt space. 

This section presents the adaptation of epipolar-plane analysis for depth recovery 

using RWT images from motion stereo sequences. The longitudinal motion stereo and 

lateral motion stereo will be examined in Section 5.2.2 and Section 5.2.3. In Section 

5.2.4 a voting scheme for searching the collinear points on the epipolar plane in both 

motion stereo cases will be discussed. 

5.2.2 Longitudinal motion stereo 

Depth recovery in autonomous vehicle navigation provides an example of the longitu- 

dinal motion stereo in which the relative object movement is along the Z direction at 

a constant speed. Figure 5.5(a) illustrates a point moving from position Po(Xo, Yo, Zo) 

at to to position Pl(Xo, Yo, Z1) at t l .  The x-coordinates of its projections on the ordi- 

nary x-y image plane are xo and xl. The corresponding images on the RWT u-v plane 

are uo and ul. As shown, the focal lengths are f and f' respectively. For simplicity 

(and with the deviation of a constant factor), it is assumed that f = f' = 1. 
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Figure 5.5: Longitudinal motion stereo. 
(a) Imaging the longitudinal motion. (b) The x-t plane from ordinary longitudinal 
motion stereo images. ( c )  The u-t plane after the RWT. 
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From similar triangles, 
x 
- - - 

X 
- 

1 Z 

Since there is no change in X, X = Xo, 

where C = 5 is the known constant speed. 

If multiple images of the longitudinal motion stereo are used, then xk, x f ,  . . . and 

2: are a sequence of corresponding points for the point Pk at t = to, t = t l ,  . . . and 

t = t ,  in the x-t epipolar plane. As shown in Figure 5.5(b), their locus is nonlinear 

(a curve), which is implied by eq. (5.1). 

It can be shown that the reciprocal function used in the RWT happens to coun- 

terbalance t he above nonlinearity. From Figure 5.5(a) 

It follows, 

Therefore, ut,  u f ,  . . . and u t  in the u-t epipolar plane are collinear points, and the 

slope of their connecting line is the constant 5. Moreover, the line equation is 

where T is the t-intercept. Since at t = to = 0, u = uo; and uo = a Xo ' it can be derived 

that 
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This result immediately turns the problem of depth recovery in the longitudinal 

motion stereo into a simpler problem of detecting lines in the u-t plane, where t- 

intercepts are proportional to depth of the point Pk. 

Extension to ego motion 

In the following, the longitudinal stereo model is extended to a general case of ego 

motion in which the vehicle is moving on the Y - Z  plane with an axial velocity .i and 

a rotational speed 8. Such a model typifies the road driving motion in which the 

vehicle is curving along the road. Within a short time span, the vehicle motion can 

be satisfactorily approximated with a circular course; that is, changes in both .i and 

6 over the time span of investigation are assumed to be negligible. 

R 1 

I vehicle motion 
I 

I 

Figure 5.6: Motion of an object in relation to the vehicle. 
In the world coordinates, the vehicle is traveling at an axial velocity of .i and rotational 
speed of 6, describing a circular path of radius S/O. In the viewer-centered coordinates 
of the vehicle driver, the object is moving in the opposite direction with the same 
speed. It also appears to move on a circular trajectory at the same center. 

Assuming the vehicle is moving in an otherwise static world, the apparent motion 
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of the world in the view of the vehicle driver is a composite motion of axial translation 

-i and centric rotation -0. Take the vehicle driver as the center of reference and 

align the Z axis with the direction of travel as depicted in Figure 5.6. At time t,  the 

position of the object is at (X, Y, 2 ) .  

Solving the differential equations, 

Y = R cos(do - 8t) - i / 0  , 

Z = Rsin(Oo - Ot) . 

The form of the equations indicates a circular path for the object's apparent motion. 

R is the radius of the circular path and the center is at Y = -.4/0, Z = 0. At 

t = to = 0, the object is at the position (Yo, Zo), where Yo = R  cos Oo - i / 0  and 

Zo = R  sin 00. Hence, Oo is the arc angle on the circular path at which the object is 

initially located. 

From Figure 5.5(a), the mapping from (Y, 2) to (u,  v )  is 

Apply the mapping on eq. (5.2-5.3). The image motion on the u-v plane now is 

Let r = $ R  and a = $8. The u-v motion equations can be rewritten as 
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Apparently, the u-v motion is along a circular trajectory with the radius r ,  and the 

center of curvature is at u = 0 and v = -a  (see Figure 5.7(a)). 

Use w for the arc distance measured from the v axis along the circular trajectory as 

shown in Figure 5.7(a). The advantage of using w is that it shows a linear relationship 

with t (see Figure 5.7(b)). 

u = r(OO - Ot) . (5.7) 

One useful property of using the w-t line is the readily computable extrapolated 

t-intercept. Putting w = 0 in eq. (5.7), the t indicates the time in which a point comes 

to the v axis. This time measure yields the time-to-contact.' 

motion 

t 2 

v 

Figure 5.7: Image motion in u-v. 
(a) The image motion is a circular arc centered at -a = - f ' / X  i / B  and has a 
radius of r = f ' / X  - R. The initial arc angle is O0 for the point position (uo, vo) at 
t = to = 0. The point is approaching at an angular speed 6. (b) When the arc length 
w is measured against t ,  it shows a linear relationship. The t-intercept is Oo/6. 

The x- y uniform resolution image represents the perspective projection of the driv- 

ing scene. The reciprocal function used in the RWT counterbalances the perspective 

'The intuitive interpretation of the time-to-contact is the time that the observer takes to come 
into contact with the plane in which the object resides. 
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nonlinearity and yields a linear mapping of the road surface (eq. (5.4)). The linear 

mapping enables the preservation of the circular image motion as corresponding to 

the original vehicle motion. Such is not the case in the x-y image because of the 

perspective distortion 

which results in a complicated movement on the x-y plane. 

A search algorithm can be devised to find the circular trajectories on the u-v plane 

as described in eqs. (5.5-5.6). When visualized in the 3-D uvt space, the circular 

trajectory becomes a helical curve. The search is essentially a problem of fitting the 

helical model to the uvt data. Nevertheless, the search space is much restricted by 

exploiting the constraints due to the simple vehicle motion. The helical trajectory in 

uvt has no more than two degrees of freedom even if none of the constants f', B,  0 are 

known a priori. From eqs. (5.5-5.6), the center of the helix is on the v axis. Choose 

a for the position of the center in eq. (5.6). The radius r and the arc length w for 

each feature point (u, v ,  t )  from the RWT image sequence can be determined from 

eqs. (5.5-5.7). The helical trajectory of the point (uo,vo) corresponds to a straight 

line passing through wo in the w-t projection (Figure 5.7). Now, choose a value for the 

line slope such that the line passing through wo would fit to the w-t projection of the 

feature points. The best fitted line over different values of a yields the best solution 

to the helical trajectory of (uo,vo). By eq. (5.8), the t-intercept of the w-t indicates 

the time-to-contact. 

The model of the longitudinal motion stereo for linear vehicle motion is a special 

case of this general model for ego motion. When j -+ 0, 618 approaches m and so do 

r and a in eq. (5.5-5.6). The circular trajectory therefore approaches a line along the 

u direction, and the arc length w now directly corresponds to the u coordinate. In 
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the general model, the t-intercept in w-t (eq. (5.8)) indicates the time-to-contact for 

an object if the vehicle motion were to prevail. In the special case of linear vehicle 

motion, the time-to-contact conveniently gives a direct measure of the depth of an 

5.2.3 Lateral motion stereo 

This section uses the example of the moving assembly line mentioned earlier. For 

simplicity, we first assume that the belt moves in the X dimension in the 3-D space. 

Its projected movement on the x-y plane is therefore along the x direction only. For 

l k a point xk at y = y , x,, xf ,  . . .and xk is a sequence of corresponding points at 

t = to, t = t l ,  . . .and t = t, in the x-t epipolar plane from the original (ordinary) 

lateral motion stereo images, where the epipolar lines are horizontal (Figure 5.8(a)). 

When the speed of the belt is constant and images are taken at equal intervals, xk, 

xf ,  . . .and xk fall on a single line in the x-t plane, and % cx disparity d. Hence, 

the correspondence problem in the lateral motion stereo is equivalent to a problem 

of finding collinear points in the x-t epipolar plane. Since the disparity is inversely 

proportional to the actual depth in the 3-D scene, it follows that cx depth of the 

point xk. 

After the RWT, the epipolar line corresponding to y = yhemains  a line in the 

u-v space, and v = ylu. The new epipolar line is generally at an angle with respect 

to the u-axis passing through the origin. We denote the distance between the point 

w(u ,  v) and the origin as w .  For a point (x, y') on y = y', 

The epipolar plane for the lateral motion stereo becomes the w-t plane as shown in 
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Figure 5.8: Epipolar planes in lateral motion stereo. - - - 

(a) The x-t plane from ordinary lateral motion stereo images. (b) The w-t plane where 

w = Jl+(y')Z/x.  ( c )  The w-T plane where w = J m / x  and r = t l x .  
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Figure 5.8(b). Note the new sequence of the corresponding points w,k, w,k, . . . and w,k 

do not generally fall on a single line in the w-t plane. 

Creation of a new w-T epipolar plane 

To recover the linearity, an additional transformation 

can be applied to the variable t which is similar to what is applied to y in the RWT. 

The x-t  epipolar plane from lateral motion stereo images is now converted into a new 

W-T epipolar plane of the RWT images (Figure 5.8(c)). The horizontal epipolar lines 

in the x-t plane become concurrent epipolar lines converging toward the origin in the 

w-T plane. The lines that connect the corresponding points also remain linear. 

Suppose LZt is a line in the x-t plane, 

Its transformation dual (derivable from eqs. (5.9, 5.10)) in the w-T plane is L,,: 

The slope m' of line Lxt becomes the T-intercept of L,, in the RWT motion st ere^.^ 

Instead of 2 m depth, it is now the case that the T-intercept of the line that connects 

the corresponding points in the w-T plane is cx depth of the point wk. 

Extension to any linear motion on Z = Zo plane 

Although it was assumed above that the belt moves along the X dimension only, this 

can be relaxed to any linear movement on a Z = Zo plane in the 3-D scene. The 

?-This is similar to the transformation dual in eq. (3.4), except the slope of L,, is not c' because 
of the additional transformation on t (eq. (5.10)). 
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projected locus on the x-y plane is the epipolar line L,, of which the slope m and 

y-intercept c are known parameters. 

As shown by eq. (3.4), after the RWT the line L,, is transformed to the new line 

L,, . Let ( be the length of the line segment L,, from the y-axis to (x, y ) ,  

Apparently, ( and x have a linear relationship. A (-t epipolar plane (similar to the 

x-t plane) can thus be constructed for the ordinary lateral motion stereo in which 

corresponding points are collinear. Let the line that connects the collinear points in 

the (-t plane be 

L C t :  t = m t - ( + c t .  (5.12) 

Now, let w be the length of the line segment L,, from the v-axis to (u, v), 

Because u = l / x ,  use eq. (5.11), 

If we introduce a new parameter T = t/(, then the line in the (-t plane (eq. (5.12)) 

will be converted into a line in the W-T plane, 

In this way, the previous method for the lateral motion stereo can be extended to 

handle known linear motions on any Z = Zo plane. 

5.2.4 Search in the epipolar plane 

As described above, the correspondence problem in both the longitudinal and lateral 

motion stereo can be reduced to a problem of searching for collinear points in the 
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epipolar planes (u-t plane for the longitudinal, w-T for the lateral). Similar to the 

procedures for the Hough transform [DH72], a voting algorithm for accumulating 

multiple evidence can be developed. Without loss of generality, the search for linear 

motion on the u-t plane in the longitudinal stereo will be used here to illustrate the 

method. (The extension to circular ego motion requires a somewhat different search, 

i.e., search for helical curves in the uvt space. By introducing w as the arc length, the 

problem was shown in Section 5.2.2 to be equivalent to finding collinear points on the 

w-t plane. For efficiency, a slightly different search algorithm was suggested earlier in 

Section 5.2.2.) 

In general, any point at t = ti can be paired with any point at t = t j  ( j  > i) to 

form a hypothetical line segment. Its intercept on the t-axis suggests a possible depth 

value which is inversely proportional to the disparity d. A 3-D uvd voting space is 

created3 and each hypothetical line will cast a vote at the position (u, v, d) in the uvd 

space. Since n + 1 collinear points can form 0 ( n 2 )  hypothetical lines and they will 

vote to the same (u ,v ,  d), a peak will be formed in the uvd space which indicates 

the consensus on the correct disparity value for the point (u, v). The line detection 

problem can thus be solved by this voting procedure followed by a peak-detection 

procedure. 

On each u-t plane at t = ti there are ki edge points, i.e., u,l, ul,  . . . and uft .  

A complete pairing of two possible end points at ti and t j  will produce numerous 

hypothetical line segments and therefore clutter the uvd voting space. The following 

heuristics are employed to improve the voting process: 

Use relatively long hypothetical voting lines. Due to limitations of the 

image resolution there is always some error in the u-v coordinates, especially at the 

3Since the concerned depth in the scene can be very large whereas disparity d usually has a small 
range, it is preferable to use d for the voting space. 
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periphery of the RWT images. If the short hypothetical lines were to be used for 

voting, a small amount of error in the u-v coordinates would result in relatively large 

errors in the calculation of the slope and intercept, and consequently the disparity 

values. A minimum length is therefore chosen to exclude the short voting lines. 

Specify a reasonable range for depth. A range of concerned depth can be 

represented as IT,;,, T,,,] to reduce the number of candidate pairs. The vertices T,;, 

and T,,, on the t-axis and the lower end point ut form a triangle which defines the 

search region for the possible pairing end point uj. 

5.2.5 Experimental results 

Longitudinal motion stereo 

A vehicle navigation example is used to illustrate the longitudinal motion stereo. 

Figure 5.9(a) shows a CMU image sequence of a road scene obtained from a driving 

expedition. Four frames of the 8-snapshot sequence (each has a size of 512 x 512 

pixels) are shown to visualize the forward motion from driving. The RWT images of 

the motion sequence have been generated in software. The data reduction factor is 

over 90%. Figure 5.9(b) shows the RWT edge images. 

Some implementation details should be followed when generating the RWT images. 

First, the X-axis in the world coordinate system is the vertical axis as indicated in 

Figure 5.1. Accordingly, the x-axis in the x-y images and the u-axis in the RWT (u-v) 

images are the vertical axes in these images. Second, the model of our longitudinal 

stereo requires both the camera movement and its optical axis be along the Z-axis. 

According to this simple model, the FOE (Focus of Expansion) is always at the 

center of the x-y road images. When dealing with a FOE which is significantly off 

center because of intentional pan/tilt on the camera orientation, the FOE must be 
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Figure 5.9: Depth computation using the RWT in linear motion. 

(a) A sequence of a driving scene, only images 1, 3, 5 ,  and 8 are shown. (b) Edge 
images from the above RWT images. (c) Gray-level coded depth map computed from 
all eight images. (d) The depth map transformed back to the x-y space (uniform- 
resolution) for visual apprehension. 
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determined and used as the origin of the x-y space for the RWT transformation. This 

is the situation in the CMU image sequence which apparently had the camera pointing 

slightly toward the ground. 

Even under the best effort to align the camera orientation with the vehicle move- 

ment, the FOE could still be off center slightly. As a result, the epipolar line may not 

align perfectly with the u-axis. To accommodate the resulting error, the search region 

for collinear points used in the Hough method discussed in Section 5.2.4 has been re- 

laxed accordingly. That is, instead of searching on an epipolar plane, a neighborhood 

of the plane was employed as the search region. 

In the images in Figure 5.9(b), some portions of the trees and buildings are not 

shown, because they are either above the FOE or too close to the singularity (x = 0) 

line to be included. The rest of the scene is very well captured in all the RWT images. 

One can also observe the advantage of the variable-resolution imaging in this example 

as the excessive details in the near side of the road, which are not as relevant to the 

driving task, are averaged out in the coarse resolution periphery of the RWT images. 

The algorithm described in Sections 5.2.2 and 5.2.4 has been implemented. The 

correspondence ambiguities are resolved successfully and good depth recovery results 

are obtained, Figure 5.9(c) shows the grey-level coded depth map. In Figure 5.9(d), 

the RWT depth map is transformed back to the uniform-resolution x-y space so that 

the relationship to the original road image can be better apprehended. Note that 

the depth values of the traffic cones, the trash can and the tree trunks are correctly 

resolved. 



C H A P T E R  5. APPLICATIONS OF R W T  MAPPING 

Extension of longitudinal motion stereo to ego motion 

A sequence of 20 motion images (400 x 494) of a table scene was taken in the lab 

using the SFU hybrid pyramidal vision machine [LTR95]. Four of them are shown 

in Fig. 5.10(a). The camera was mounted on the NOMAD 200 mobile robot. The 

NOMAD was moving forward while turning left. 

As before, the X-axis in the world coordinate system, the x-axis in the x-y images 

and the u-axis in the RWT (u-v) images are the vertical axes. 

By calibrating the camera it is determined that the Y - Z  plane on which the camera 

makes the circular movement is slightly below the whiteboard. In this way, the y-axis 

(where x = 0) on the x-y image is determined. The center of the axis is taken as 

the origin for the RWT. The whiteboard in the scene is above the origin which is 

not in the lower half of the x-y image in consideration here. Fig. 5.10(b) shows the 

edge maps for the RWT images for the lower half of the table scene. As before, the 

top portion of the tape boxes and cup are excluded because they are too close to the 

origin. The effect of spatially variable-resolution sensing is apparent. In this case, the 

front edges of the table are in the periphery and compressed in the RWT images. 

Since the projections of the movement in the uvt space follow a helical curve, 

search is conducted along such possible curves in the 3-D uvt space, which reduces the 

complexity of matching significantly. For a given a and (uo, vo), the helical trajectory 

is well-defined and incurs little ambiguity in possible matching candidates on the 

locus. After gathering the matching points, their arc length w is calculated and used 

to derive the "time-to-contact". Fig. 5.10(c) is the grey-level coded map of time-to- 

contact in the RWT domain and Fig. 5.10(d) is the map in the original x-y domain 

generated by an inverse RWT. 
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Figure 5.10: Analysis of ego motion. 
(a) A dynamic sequence of an office scene, only images 1, 7, 13, and 19 are shown. (b) 
Edge images from the above R,WT images. ( c )  Map of time-to-contact computed from 
all twenty images. (d) Map of time-to-contact transformed back to the x-y space. 
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Lateral motion stereo 

For obtaining lateral motion stereo images in our lab, a pyramidal wooden block is 

placed on a conveyor belt that moves from left to right. A sequence of eight snapshots 

(each has a size of 512 x 512 pixels) from a conventional CCD camera is used in the 

experiment (Figure 5.11(a)) since the RWT camera is not available yet. As before, 

the RWT images (Figure 5.11(b)) are generated in software by mapping the original 

images from x-y to u-v. The middle point of the left boundary of the x-y image plane 

is used as the origin for this mapping. In our experiment, the area of the resulted 

RWT images is chosen at approximately 1/10 of the original images. 

Gradient-based edge detection is first performed on the RWT images. Figure 

5.11(c) shows the edge map from the first RWT image. Collinear points in the w-r 

plane are detected and their T-intercept yields the depth and, indirectly, the dispar- 

ity. The voting in the uvd accumulator space results in clusters yielding the correct 

disparity. Figure 5.11(d) displays the depth map. The result shows that most of the 

disparity changes along the edges of the pyramid are computed successfully. 
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Figure 5.11: Depth computation using the RWT in lateral motion stereo. 
(a) Ordinary lateral motion stereo images of a pyramidal block on a moving belt. 
(b) Software-generated RWT images. (c) Edge map of the first RWT image. (d) 
Grey-level coded depth map for the pyramidal block from variable-resolution lateral 
motion stereo. 



Chapter 6 

Active Stereo 

Binocular Vision in Space-variant Sensing 

Experiments have shown that the human stereopsis accepts only a very limited range 

of disparities. The Panum's area forms a limited zone about the fixation point. Be- 

yond the Panum's area, we can no longer fuse the stereo images. In computer vision, 

stereo correspondence is linked to the fusion of two disparate retinal images. The 

problem is formulated as computing the image disparity within an operating range. 

Correspondence algorithms are normally incorporated with the various matching 

constraints to render the problem solvable. Uniqueness, continuity [MP76], and the 

figural continuity [MF81] are the commonly used ones. Burt and Julesz [BJ80b] con- 

ducted some experiments on fusion in the context of disparity gradient. An amend- 

ment to the previous understanding of Panum's fusional area was made. Binocular 

fusion occurs only when the disparity gradient does not exceed a critical value of - 1. 

Li [Li94a] generalized the notion of disparity gradient to subsume various constraints 

for stereo matching. 
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After more than three decades of intensive research in stereo vision, the compu- 

tational framework for stereopsis from uniform resolution images has been relatively 

well-established. The link to psychological vision is that correspondence is computed 

as the fusional result, and the disparity yields the 3-D percept. As the methods 

devised are mostly for accurate recovery of the image disparity, the process can be 

considered as computing the foveal fusion in the domain of space-variant sensing. 

However, the structure and functional objective of the peripheral vision are distin- 

guished from those of the foveal processing. The issues of peripheral fusion have not 

received much attention. This may be in part due to the lack of research in anthro- 

pomorphic sensors. With the invention of the space-variant sensor [VdSKCS89], the 

issues related to active stereo has received attention in recent years. 

In this chapter, we shall investigate the Panum's fusion in the context of space- 

variant binocular sensing. Specifically, the computational view of the Panum's fusional 

area in the space-variant RWT sensing space will be studied, and a model of the 

fixation mechanism in an RWT binocular system will be presented. 

6.1.1 Panum's fusional area 

Objects on the horopter form stereo images on the corresponding retinal elements 

in the two eyes. Images of zero disparity as such are perfectly fusible, and are seen 

single. Panum (1861) showed that zero disparity is not the necessary condition for 

singleness [Og164]. An image on one eye would fuse with a similar image on the retina 

of the other eye within a small area about the corresponding point. 

Consider the zero disparity case. Suppose the eyes are fixating an object PHoTopter 

(Figure 6.1). PHoTopteT is on the horopter. The object forms zero disparity images in 

the two eyes, and thus is seen single. Another object PI,,,, is located to the inner 
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side of PHoTopteT. As PI,,,, is moved towards the viewer, at a certain point, one will 

no longer be able to fuse the images and start to see double. Similarly, the object 

Pouter  to the outer side of PHoTopteT is seen double when it is sufficiently away from 

the horopter. This type of doubling is known as physiologic diplopia. The images 

produced are said to be crossed disparate, and uncrossed disparate, respectively. The 

interval between PI,,,, and Pout,,, where no doubling is seen, defines the limits of 

the Panum's fusional area. 

Panum's area 
Outer limit I \ 

a I \ 

Uncrossed disparate 

00 
L R 

Horopter . 

Inner limit 

Left eye Right eye 

Figure 6.1 : Panum's fusional area. 

Zero disparity 

0 

Crossed disparate 

00 
R L 

- 

Within a region about the horopter, disparate images are fused despite their images 
not falling on the corresponding retinal elements. To the outer side of the Panum's 
area, uncrossed disparate images are seen. Objects to the inner side yield crossed 
disparate images. 
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In human vision, it is functional to address only a small range of disparities near 

the fovea because thereby one can filter out the irrelevant visual information and 

concentrate on the object of interest about the fixation point. One wants to keep 

a visual account, albeit coarse, of the environment in the visual periphery, because 

monitoring of the general environment is crucial for smooth ego motion and fast 

response to impending activities. Quantitative studies by Fischer (1924) and Ames 

(1932) yield data that plot out the size of the Panum's area at different visual angles 

[Og164]. Fender and Julesz [FJ67] reported that binocular fusion occurs in regions 

vary from 6 min. of arc at the center of the visual field to 20 min. of arc at the 

peripheral angle of 6". 

An extended Panum's fusional area is perhaps ideal for accurate spatial perception 

of the scene. However, it is unrealistic because it represents too great a demand on the 

fusion process, as fusion would be expected to be performed over an excessive range of 

disparity. Olson [Ols93] believed that stereopsis plays an ecological role of privileged 

computational resource, like the fovea that provides information about fixated targets 

only. The severe limitation of the size of the Panum's area is seen as beneficial, since 

binocular single vision is focused on the fixated target while stimuli from the rest of 

the scene are largely filtered out as irrelevant. 

While Olson compares the role of Panum's area to the functional value of the 

retinal fovea, we relate the rapid dilation of the Panum's area at the peripheral visual 

angles to the coarse sensor resolution at the retinal periphery. When one interacts 

with the environment, accurate foveal processing serves well for attentive inspection 

of the fixated target. However, general monitoring of the wide visual field is obviously 

important for detection of activities, smooth maneuvering and the spatial percept of 

the external environment. 
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In this thesis, a functional perspective that relates the spatial extent of the Panum's 

area to space-variant sensing resolution is adopted. A uniform resolution image does 

not meet the requirements of this fovea-periphery structure for visual processing. It 

has neither the sufficient resolution for foveal vision, nor the coarse resolution for 

peripheral processing. In particular, to achieve a deep sensing range at large eccen- 

tricity, the disparity calculation has to be carried out over an excessively wide range. 

This is because the uniform resolution image data contain information far too detailed 

for peripheral vision purposes. In this respect, the space-variant resolution is highly 

desirable. The RWT image is suitable for space-variant processing as it can support a 

good foveal resolution and, at the same time, a desired level of coarse resolution in the 

periphery. Furthermore, the RWT simplifies the disparity computation because its 

variable resolution is affected primarily in the horizontal dimension. The horizontal 

displacement inflicted in stereo images due to the binocular disparity is well captured 

in the RWT representation. 

6.2 Computational Model for Binocular Fixation 

6.2.1 Fusional range in RWT 

In computer vision, the fusional range is computationally modeled by disparity limits. 

Olson and Coombs [OC91, CB921 perform real-time pursuit on a fixated object by 

running a near-zero-disparity filter on the stereo images. The verging system of Olson 

[Ols93] operates in a limited range of disparities (-3 to 3). Based on the studies of 

anomalous stereopsis [Ric71], Barnard [BF90, Bar901 computes image disparities at 

3 values only, namely 1 for crossed disparate, 0 for near-zero disparity and -1 for 

uncrossed disparate images. 



CHAPTER 6. ACTIVE STEREO 107 

The significance of the variable extent of the Panum's area has not been attended 

to. We address the issue of variable Panum's area in relation to the space-variant 

retinal resolution. In particular, the RWT we develop in this thesis supports space- 

variant resolution. It also achieves a variable fusional region. In the following, a 

binocular system of RWT cameras is studied. We set up the projection equations 

and fed them to Maple V [Red941 (a numerical software for scientific computation) 

to obtain the plots of the disparity contours for the different fusional limits. 

z 

Fixation point 

Left camera Right camera 

Figure 6.2: An RWT binocular system. 

Figure 6.2 gives a schematic diagram of the RWT binocular system. The cameras 

are placed symmetrically on the two sides about the Z-axis, with their nodal points on 

the X-axis, and imaging the positive Z half-space. Let 2b be the baseline separation 
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of the cameras. The focal length of the cameras is denoted by f ,  and the inter- 

projection-plane angle is 24. The cameras are fixating the point Zo on the Z-axis. 

Let P be a point located at (X, Y, 2); ul and u, are the RWT coordinates of the 

left and right images of P respectively. Let the disparity be denoted by d. The 

triangulation geometry in Figure 6.2 yields the following equations: 

The system of equations are solved for X and Z at different disparity values, d. 

Without loss of generality, set b = 200, f = 200, 4 = 45O, and Zo = 6000 (in 1/100 

inch unit). The numerical values of X and Z are calculated for d ranging from -4 

to $4. Figure 6.3 plots the (X, Z )  coordinates for d = 0, f 2, f 4. Each of the curves 

represents a disparity contour of a particular d. All points on the same contour 

will form disparate images in the two RWT cameras with the disparity d. These 

contour are due to the specific imaging configuration of the RWT binocular system. 

However, the corresponding fusional region indeed exhibits the desired property of 

fovea-periphery variable extent. In this example, the fusional region at  the peripheral 

angle of 36" is twice as deep as that at the central position. 

Comparison of the RWT binocular system are drawn with the conventional uniform- 

resolution cameras. The model of a verging system of uniform-resolution cameras is 



CHAPTER 6. ACTIVE STEREO 

Figure 6.3: Disparity contours for the RWT binocular projection. 
The plot is obtained by setting the baseline separation 2b = 400, the focal length f 
= 200, and the inter-plane angle q5 = 45'. The cameras are converged at the fixation 
point of 6000 on the cyclopean axis. From the outermost contour to the innermost 
one, the disparity contours are plotted in the order of d = $4, +2,0, -2, -4. 

given in Figure 6.4. This time, the set of equations yielded read as follows: 

Again, the system of equations are solved in Maple V for X and 2. Similarly, a plot 
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of the (X, 2) coordinates is performed for d = 0, f 2, f 4, with the settings of b = 200, 

f = 200, and 2, = 6000 (Figure 6.5). 

The graph shows that the desired fovea-periphery variable fusional region is not 

achieved in the uniform-resolution case. Inversely, the dimension of the fusional region 

decreases with eccentricity. With the set of settings in use, the fusional region is 

reduced to half at the peripheral angle of 36'. Apparently, it is not suitable for a 

peripheral field which is both wide and deep. 

z 

Fixation point 

1 / 
Left camera Right camera 

Figure 6.4: A verging system with uniform-resolution cameras. 
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Figure 6.5: Disparity contours for uniform-resolution cameras. 
The plot is obtained by setting the baseline separation 2b = 400, the focal length 
f = 200, and the fixation distance Z,, = 6000. From the outermost contour to the 
innermost one, the disparity contours are plotted in the order of d = +4, +2,0,  -2, -4. 

6.2.2 Fixat ion mechanism 

Psychological studies have shown that the oculomotor mechanism for binocular fixa- 

tion is effected by a mixed movement of vergence and version of the two eyes (Figure 

2.3). In this thesis, we develop a computational model for the similar camera move- 

ment in relation to the computation with space-variant image resolution. 

Experiments show that when one changes fixation to a nearer target point, the two 

eyes first undergo a symmetrical vergence to bring the fixation nearer to the target. 

In the middle of the vergence movement, a conjunctive saccade is superimposed to 
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swing the gaze in line with the target. The vergence then proceeds to completion in 

the final stage to bring the fixation accurately to the target. 

If cameras of uniform sensing resolution were used, the binocular fixation process 

would be much simplified. Shifting from one fixation to another would involve calcu- 

lating the exact image disparity and angular position of the target. The process could 

then be accomplished by generating independent pan-tilt movement to each camera, 

since it is possible to complete exact calculation for the target at the previous fixation. 

To assume such a retina, ignores all the problems ranging from hardware requirements 

to processing complexity. After all, to make such an assumption would beg the ques- 

tion of whether the fixation process was genuinely necessary to perception, since the 

high resolution sensory data of the scene is already available without the need for 

specific gaze control. 

There is no doubt that uniform resolution cameras could hardly be supported. In 

fact, it is apparent that there is a strong relevance of space-variant sensor resolution 

to the unique camera movement for binocular fixation. 

From the computational point of view, space-variant sensor resolution supports 

fusional area of variable size. This is because a disparity near the point of fixation 

yields refined and narrow depth range; whereas, the same disparity at the periphery 

corresponds to an coarse but deep depth range. Thus, the variable fusional area is 

not only functional, it also represents a logical structure in space-variant sensing. 

The unique camera movement now becomes natural in a binocular system with 

space-variant sensors. Consider the case when the cameras are fixating an object A 

in the scene, and is about to change gaze to a nearer one B at periphery. A is fixated 

in the fusional region at the fovea. B, although located in the periphery, is covered 

in a deeper fusional area. Computationally, the fusional area's limit is used to the 
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advantage for restricting the disparity range. Under the limited operating range for 

disparity, B's disparity is readily resolvable even though its depth differs very much 

from that of the fixation. If the cameras were straightforwardly gazed at  B at this 

time, B might become out of the fusional limit when it is brought into the foveal 

direction. The depth of B would be difficult to calculate and the fixation would fail. 

A more effective mechanism is to have a first vergence to change the fixation distance 

so that B is lying close to the horopter after the vergence. This also prepares for the 

versional movement so that when B is brought to the foveal direction, it will still be 

imaged within the fusional limit. Next, based on the rough estimate of B's visual 

angle, a pan movement is launched to direct both cameras to the direction near B. 

Now, B is in a near-foveal direction, and located wit,hin the fusional limit. This is 

true owing to the first vergence. Finally, a second vergence can be executed to bring 

B accurately into fixation. 

Figure 6.6 summarizes the camera movement of a space-variant binocular sensor. 

As a matter of fact, it resembles the eye movements observed in the human visual 

system [Yar57] (Figure 2.3). 

6.3 Binocular Fixation using RWT Images 

RWT fits in the model described above. The RWT supports a space-variant sensing 

resolution. As we have discussed, the unique camera movement of binocular fixation 

is closely related to space-variant sensor resolution. 
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Figure 6.6: Ocular movement of space-variant binocular sensor. 
(a) The cameras are fixating A. (b) First vergence brings the fixation point to close 
to B's depth. (c) Version brings the cameras in line with B. (d) Second vergence, the 
cameras fixate precisely on B. 
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6.3.1 Disparity cornputat ion 

Another property that renders RWT suitable for stereo vision is the anisotropy of 

its space-variant resolution. In stereo vision, the disparate images formed in the 

binocular cameras differ from each other by a horizontal displacement. It is this 

disparity that indicates the depth of the imaged object. In the conventional images, 

disparity is computed by correlation along the horizontal dimension. A rectangular 

pattern in the Cartesian image appears as shifted along the horizontal streamlines 

(Figure 6.7(a)). Recall from Section 3.2.1, the horizontal streamlines are mapped to 

radials in the RWT domain. Figure 6.7(c) shows the bipolar RWT image. The radial 

streamlines converge at the two antipodes on the u-axis. In the RWT image, the 

rectangular pattern is transformed into a wedged rectangle displaced along the radial 

streamlines. 

Disparity computation may become very complicated in other schemes of image 

representation. In the log-polar model, horizontal streamlines are mapped to com- 

plicated log-sine curves (Figure 6.7(b)). The difficulty is at least two-fold. First of 

all, disparate images are not related in a linear structure any more. Search for stereo 

correspondence has to be conducted along these log-sine curves which are expensive 

to compute. In addition, the image pattern gets rotated and scaled while being trans- 

lated along the log-sine curve. A complicated procedure is required to calculate the 

image motion in order to make it possible for a correlation operator to be used for 

the disparity computation [GLW92]. 

The anisotropic property of the RWT space-variant resolution effects the mapping 

primarily along the x dimension only. The y dimension is largely unaffected except by 

being scaled according to l /x .  The verticals in the x-y grids are invariantly mapped 

to verticals. The horizontals are mapped into radial lines. In spite of that the image 



CHAPTER 6. ACTIVE STEREO 

Figure 6.7: Disparity in different image representations. 
(a) Disparity is manifested in horizontal translation in the Cartesian image. (b) 
Horizontal translation becomes a complicated image motion in the log-polar domain. 
(c) Horizontal translation is mapped to translation along the radial streamlines in the 
RWT image. 

pattern gets scaled under space-variant resolution when translated along the grid 

lines, image rotation which occurs in log-polar transform is not inflicted in the RWT 

domain. The equations for correspondence in RWT domain do not contain rotational 

components. If d is the image disparity, the left and right RWT image coordinates 

can be written as: 

Left image point : ( u , v ) , 
d 

Right image point : ( u + d , v + - v ) . 
U 

In the experimental tests, application of the correlation operator along the radial 
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streamlines yields good estimates of the RWT image disparities. 

6.3.2 Fixation transfer 

For simplicity, the correlation method is used as an operator for disparity computation. 

A windowed correlation is performed on the RWT stereo images within a limited 

operating range of disparity that corresponds to the space-variant fusional area. 

In an RWT binocular system, when changing from the current fixation to another 

target at the visual periphery, the model for camera movement described in Section 

6.2.2 is followed. A variable fusional area results from the space-variant pixel reso- 

lution. Upon changing gaze from the current fixation point to the next target, the 

target may be located well within the fusional limit at the periphery. A rough es- 

timate for the target's peripheral disparity is calculated. The two cameras are then 

converged/diverged to reduce this disparity. This corresponds to the first vergence 

movement. Next, the cameras are panned to the viewing angle of the target to bring 

the target to the fovea of the RWT cameras for higher resolution imaging. This opera- 

tion corresponds to the versional movement. The target now in the foveal direction of 

the cameras is likely imaged with a residual foveal disparity. Correlation is performed 

in the fovea. Based on the resulting disparity the cameras are convergedldiverged to 

zero in on the target precisely. This movement corresponds to the second vergence. 

Figure 6.8(a-d) shows a test on a computer simulation of the fixation process in 

an RWT binocular system. An office scene is originally imaged with a camera at two 

viewing positions. In the simulation, pan-tilt movements of the camera are simulated 

by centering the image at the appropriate pixel. Figure 6.8(a) shows the images 

corresponding to a fixation on the computer keyboard in the office scene. It shows 

the RWT images of the scene and the disparity map. These RWT images are the data 
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used in the actual computation. The Cartesian edge map is also shown here for the 

reader's apprehension of the disparate scene images and the camera orientations. 

As the chair is located at a closer range to the cameras in relation to the keyboard 

(the current fixation point), it exhibits a non-zero disparity. The disparity value, 

however, is small as it is located in the periphery. The image disparities in this 

example are well within the fusional limit. The disparities are computed by applying 

a 3 x 3 windowed correlation over a range of [-5,5]. The disparity results reveal 

different disparities for objects at  different depth from the keyboard. The chair has a 

large crossed disparity whereas the magazine organizer on the desk shows a non-zero 

uncrossed disparity. 

The fixation exercise in this test is to change the gaze from the computer keyboard 

to the chair. Three intermediate steps are involved. Initially, the cameras are fixated 

at the keyboard. A disparity of -4 is detected with the chair at a peripheral angle 

corresponding to u = -72 pixels. By the RWT inverse transformation, a -4 disparity 

at u = -72 is translated back to the Cartesian domain to a disparity of -10 pixels at 

x = -101. Should there be a real hardware camera control to the binocular system, 

a mapping function is required to map the -10 disparity to the disjunctive vergence 

angle that converge the cameras so that the peripheral disparity of the chair image 

becomes zero. In this exercise, the vergence is simulated by re-centering the left 

Cartesian scene image by 5 pixels to the right and the right scene image by 5 pixels 

to the left. The RWT images are then obtained from the Cartesian scene images for 

the new camera orientations as though they are from the real RWT cameras. Figure 

6.8(b) now shows the result of the first vergence. The chair images at u = -70 are 

now well aligned as seen in the edge map in (b), and the disparities shown in the 

disparity map demonstrate that zero disparity is achieved with the chair images. 
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Next, the cameras are panned to the left for an angle corresponding to 72 pixels in 

the RWT domain. Again, this is accomplished by re-centering both Cartesian images 

by 101 pixels to the left. Figure 6.8(c) shows the result of this conjunctive versional 

movement. The chair images now come to the foveal region of the cameras. It is 

observable that the estimate for the peripheral disparity during the first vergence is 

not accurate enough for high resolution processing inside the fovea. The disparity 

map in (c) shows that the residual disparity in the chair images becomes apparent 

once they are shifted to the fovea. This foveal disparity, however, has a value well 

within the operating range of the fusional limit since the first vergence has already 

achieved a good approximation. 

Figure 6.8(d) now takes the vergence to completion. The foveal disparity of the 

chair is computed. It is a small residual disparity of 1 pixel. The cameras are then 

diverged by an angle corresponding to 1 pixel in the RWT images. Carried out in 

simulation, the right Cartesian scene image is re-centered by 1 pixel to the right. The 

RWT is applied to obtain the new images as the result of the second vergence. The 

disparity map in (d) shows that the cameras are precisely fixating the chair in the 

fovea. 

The RWT supports the fixation mechanism in an effective way. If fixation were 

performed on the conventional uniform-resolution image data, large disparities would 

have to be calculated. Eminent problems associated with large disparity, such as 

multiple ambiguous matches and slow computation have to be resolved. 

6.3.3 A system view 

This thesis reports on the design and simulation of a system for the interactive fixa- 

tion process described above. Figure 6.9 shows the system. It comprises the vergence 



CHAPTER 6. ACTIVE STEREO 120 

edge map 

left RWT right RWT 

disparity 

Figure 6.8: (a) Fixation sequence. Initially, fixation is on the computer keyboard. 
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edge map 

left RWT right RWT 

disparity 

Figure 6.8: (b) First vergence. the peripheral disparity of the chair becomes zero. 
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edge map 

left RWT right RWT 

disparity 

Figure 6.8: (c) Version. The chair is brought to the fovea. 
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edge map 

left RWT right RWT 

disparity 

Figure 6.8: (d) Second vergence. Fixation is precisely on the chair. 
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and version components interfacing with the controller of the camera pan-tilt plat- 

form. The next fixation which initiates vergence and version oculomotor sequence is 

computed by the "where-next" component. Vergence is a slow and visually guided 

process. It is adjusted according to the disparity, thus completing the feedback loop. 

The camera platform houses two cameras each of which has the two degrees of 

freedom for pan and tilt respectively. Examples of pan-tilt platforms can be found 

in the previous research [CB92, Kro89, AA93, PUE931 and the reports collected in 

[CBB93]. In our system, the cameras are RWT cameras which output RWT images of 

the scene directly. If ordinary cameras were used, the RWT images could be generated 

from the uniform-resolution images with a Reciprocal-Wedge transformation routine. 

The gaze angles for vergence and version are mapped to the mechanical movements 

of pan and tilt for individual camera. The version angle drives identical movements 

of pan and tilt for both cameras, whereas the vergence is split evenly into disjunctive 

convergence or divergence between the two cameras. 

The component "where-next" represents the high-level intelligent process for se- 

lecting the next fixation point in the scene. The left and right RWT images are 

combined to yield a cyclopean image of the scene (for convenience the left image is 

used in our simulation). The "where-next" component searches in this cyclopean im- 

age for features of interest. In fact, the next-fixation computation is a highly involved 

process [Yar67]. Although this high-level intelligent process for computing the next 

fixation is an interesting topic for research, it is beyond the scope of this thesis. In 

the fixation exercise which involved shifting attention from the computer keyboard 

to the office chair, the next fixation (the chair) is actually typed in by hand. In the 

following demonstration of an active fixation system, simplistic heuristic criteria are 

used to show the usual scanpath behavior in binocular visual exploration. 
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Once the next fixation has been decided, vergence and version are initiated. Dif- 

ferent strategies are employed when computing disparities in the foveal and peripheral 

regions. Area-based techniques are used in the peripheral regions and feature-based 

techniques are used in the foveal region. As image data are imprecise under the coarse 

resolution and reduced size in the peripheral regions, accurate localization of fine fea- 

tures is not expected. Area-based windowed correlation techniques matching image 

areas are more appropriate at the periphery. Inside the fovea, acute sensitivity is facil- 

itated. More sophisticated feature-based techniques can be employed. Edge features 

are detected and matched with attributes such as edge orientation and gradient. 

In Figure 6.9, two disparity modules are simulated, namely the peripheral dis- 

parity and foveal disparity described above. The former is used in the first vergence 

to eliminate the peripheral disparity. The latter is used in the second vergence to 

converge precisely on the target inside the fovea. 

The position of next fixation is used to drive the versional movement. Synchronous 

panning motion is produced to swing the cameras in line with the target. Due to 

the coarse resolution in the periphery, the initial estimate for the magnitude of the 

panning motion is not able to put the fovea precisely on a feature of the target for 

foveal processing. The module for foveal-feature position detects the image features 

inside the fovea. A small adjustment is then initiated by the versional control to bring 

the target feature in line. 

6.3.4 A scanpath demonstration 

Scanpath is the sequence of fixation that one exercises during a visual scan. The 

scanpath behavior of the system is demonstrated in an experiment of binocular visual 

exploration. Although the cognitive modeling of scanpaths is a rigorous research 
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Figure 6.9: An interactive fixation system. 
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topic in psychology [Yar57, Yar67, NS7lc, NS7lb, SE81, Gou761, we do not delve into 

the issues raised therein. Instead, at  each stop, simplistic heuristics are employed 

to determine the next fixation. The resulting scanpath is used to demonstrate the 

working of our fixation system. 

The experiment is conducted with the image data of the office scene in Figure 

6.8. Initially, the fixation is set on the computer keyboard on the desk. The next 

point of interest is chosen based on three considerations. (1) It is a sizable object 

worth exploring. (2) It has the most disparate image in the current scene. (This 

drives the system to sweep the entire depth of the scene efficiently.) (3) It has not 

been explored in detail as yet so that the system would not come to the same object 

repeatedly. The heuristics are simple enough, yet work successfully in transferring 

the initial fixation from the computer keyboard to the magazines standing next to 

t,he monitor. As shown in Figure 6.10(a), the gaze is then changed to the chair, the 

computer terminal, and then to the roller wheels of the chair.' 

The prime observation we emphasize from the outcome of this experiment is the 

successful working of the fixation system as a whole in implementing the fixation trans- 

fer mechanism at each fixation. For example, the initial fixation is on the computer 

keyboard (Figure 6.10(a-1)). The RWT disparity image in Figure 6.10(b-1) shows 

an extended area (325 pixels) of 2-pixel disparity occur at the position of u = 51 

and v = 33 (corresponding to the magazines in the scene). The execution log of the 

simulation program indeed has recorded the following inter-component interactions 

that happened in the system. 

As the "where-next" component evaluated the next fixation to (51,33), the fixation 

'Perhaps, that the scanpath is comparable to a scan made by a human subject represents a 
side-result of this experiment. It may worth further exploration to  search for heuristics for visual 
scanning. 
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transfer routine was initiated in the vergence and version components. The first 

vergence was effected by a vergence control to the camera for a divergence angle 

corresponding to a 2-pixel peripheral disparity at the position (51,33). Then the 

version component was initiated with a pan-tilt corresponding to 51 right and 33 up in 

the RWT coordinates (equivalent to 55 right and 46 up in the Cartesian coordinates). 

A foveal disparity then was evaluated to -1 pixel, causing the vergence component to 

launch the second vergence for a convergence angle corresponding to a 1-pixel foveal 

disparity. Finally, an edge feature was detected by the foveal feature component at 

a position 2 pixels to the left of the center. This resulted in a versional adjustment 

of 2 pixels, placing the fovea precisely on the edge feature (i.e., on the magazines). 

The result can be appreciated in Figure 6.10(a-2) which shows a dark edge of the 

magazines positioned right at the center of both stereo images. The process then 

continued with the "where-next" selecting position (-90,54) for the new fixation, 

and the fixation routine was repeated. Overall, the log records indicate the successful 

execution by the fixation system as a whole with correct interactions between the 

various components. 
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Figure 6.10: (a) Fixation sequence in binocular visual exploration of the office scene. 
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Figure 6.10: (b) Disparities in the RWT images. 



Chapter 7 

Conclusions and Discussion 

Departing from the conventional reconstructionist approach, various active vision 

methodologies have recently been proposed which draw heavily on active probing 

and search, and emphasize behavioral interaction. One central issue in active vision 

is foveate sensing. Log-polar mapping has been developed by researchers as a space- 

variant sensor model for active data acquisition. In this thesis, I have developed an 

alternative image model called the Reciprocal- Wedge transform (RWT). This chapter 

summerizes the contributions and suggests some extensions for future research. 

7.1 Contributions 

1. I have developed the Reciprocal-Wedge transform (RWT) as an image model 

for space-variant sensing. 

The RWT is presented as an alternative model to the log-polar transform. Ex- 

ploiting the polar coordinate representation, the log-polar does well on centric 

rotational and scaling transformations. It, however, complicates linear features 
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and translational transformations. Complementary to the log-polar, the RWT 

preserves linear features in the image, and its anisotropic variable resolution is 

suitable for directional space-variant sensing for many vision problems which are 

translational in nature, such as stereo and linear motion. A concise matrix rep- 

resentation is presented. Properties of the RWT in geometric transformations 

are described. A pyramidal algorithm for the RWT image mapping is presented. 

The pyramidal implementation realizes the fast generation of RWT image by 

exploiting the parallelism and hierarchical linkage of the pyramidal architecture. 

2. A camera model is proposed. The optical problem of focusing has been rectified. 

The projective model for the transform leads to a simple RWT camera design. 

A prominent problem of the simple camera model is the requirement of focusing 

on a deep image plane along the optical axis. A new hardware camera model is 

proposed which realizes the RWT in real-time. The new model overcomes the 

focus problem by using a lens focusing the non-paraxial non-frontal image onto 

an orthogonally placed RWT plane. Unlike the log-polar sensor, the variable 

sampling is not a requirement of the RWT sensor circuit. Hence, an ordinary 

sensor array of rectangular tessellation and uniform grid size can be used which 

is much cheaper to fabricate. 

3. The RWT is shown suitable for recovering depth in both the longitudinal and 

lateral motion stereo. 

The primary advantage of the proposed method of motion stereo using RWT 

images is its efficiency since the variable-resolution RWT images have a signif- 

icantly reduced volume of data. The variable-resolution motion stereo offers 

more detail and precision in depth recovery at the fovea than at the periphery 
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of the RWT images, which seems to be natural. Its implication to active sensing 

appears to be direct. 

4. The work of the longitudinal motion stereo is also extended to more general ego 

motion, especially circular movements (rotations). 

The RWT mapping is shown preserving the circular image motion as corre- 

sponding to the original vehicle motion, indicating that the RWT is applicable 

to general ego motions where world-centered coordinates are employed. This 

contrasts with the limitations of handling moiton in a viewer-centered coordi- 

nate system using the log-polar transform in which only the object at the center 

is nicely represented. 

5. A computational model for binocular fixation is developed. 

The model provides a computational interpretation of the Pa~lum's fusional area 

in relation to disparity limit in space-variant sensor space. The unique oculomo- 

tor pattern for binocular fixation observed in human system appears natural to 

space-variant sensing. The vergence-version movement sequence is implemented 

for an effective fixation mechanism in the RWT imaging. In addition, an in- 

teractive fixation system is presented to show the various modules of camera 

control, vergence, version and where-next work together. 

7.2 Future research 

This research does not stop here. It is important that the enthusiasm is maintained 

by on-going investigation in areas such as space-variant processing, gaze control, or 

active vision at large. Some suggestions are made in the following as extension of this 
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work or future directions related to other areas in a wider context. 

1. From software to hardware implementation of the RWT. 

Presently, the RWT images are generated from the conventional CCD camera 

data using software. The slow speed does not meet the requirement of real-time 

space-variant sensing using RWT. Although the execution on pyramid machine 

can significantly speed up the process, it is desirable to have the camera model 

implemented in real hardware. The development of the camera model in this 

thesis is preliminary. Obviously, the delicate optics of the proposed camera could 

incur high cost, and the optical design of the RWT lens can be further enhanced. 

One such problem is that it requires a strong lens or else the camera could be 

bulky. An interesting feature is that the camera has the potential to implement 

an adjustable shift RWT with that the scale of space-variance can be adjusted. 

Presently, the camera model does not address these issues. Future research in 

these directions would certainly be contributive to the actual implementation of 

the camera. 

Before an actual hardware camera is available, a hardware video remapper can 

be an alternative. Weiman, in the work [WJ89], was using a video remapper for 

generating in video rate the log-polar map from the conventional CCD camera 

image. As a future research, issues of design and development of the hardware 

remapper algorithm can be investigated. 

2. From restricted motion stereo to general ego-motion. 

The motion stereo models are restricted to longitudinal and lateral motion of the 

observer. When extended to ego-motion, circular ego-motion is modeled to ap- 

proximate the course of general motion within a short time span. The immediate 
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extension can be an investigation into the general planar ego-motion. A more 

ambitious one would be the research into genuine 3-D ego-motion. Potential ap- 

plications include the navigation problems for mobile robots whose motions are 

largely planar, or motion problems such as docking and maneuvering problems 

related to vision systems ranging from hand-mounted to aircraft-ridden ones. 

3. From fixation to active vision. 

Binocular fixation fits in the general direction of active vision. The RWT sup- 

ports a foveate sensor, and fixation provides the essential gaze control mecha- 

nism in an active system. Issues of other types of gaze control such as monocular 

gaze control for problems ranging from text processing to pattern locator or an- 

alyzer can be investigated. This thesis has touched slightly the problem area of 

camera movements and scanpath modeling. These problems have the potential 

of applications in attention and visual exploration in situated robots. 
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