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Abstract 

In recent years four subdifferential maps have been widely used: the Clarke subdifferen- 

tial, the Michel-Penot subdifferential, the Ioffe-Mordukhovich-Kruger approxi- 

mate  subdifferential, and the Dini subdifferential. We denote these four notions by 

'C', 'MP', 'A', and 'D' respectively. Each of them is a generalization from convex to locally 

Lipschitz functions and each of them generalizes different aspects of the convex situation. 

In this thesis, we construct Lipschitz functions with pathological properties and study the 

differences among these four subdifferential maps. 

Chapter 1 contains some basic concepts and notation from nonsmooth analysis. These 

are: subdifferentiability, subderivative, minimal usco, minimal cusco, regularity, integrabil- 

ity, and saineness of a Lipschitz function. 

In Chapter 2, we consider our subdifferential maps on the real line. For differentiable 

functions we prove that most functions have C-subdifferentials which are singleton almost 

nowhere and most have C-subdifferentials and MP-subdifferentials which differ almost 

everywhere. We also show that C-integrability and A-integrability coincide on the real 

line for any locally Lipschitz function. We then show that the C-subdifferential and A- 

subdifferential can be different at most on a countable set for any locally Lipschitz function. 

Finally using Borwein and Fitzpatrick's theorem we construct Lipschitz functions which are 

regular on sets with small measure. 

In Chapter 3, we consider the inverse problem. We provide a technique for constructing 

Lipschitz functions with prescribed subdifferentials. More precisely we show that if f l ,  

f2, ..., fk possess minimal C-subdifferential mappings on an open set U, then there exists a 

real-valued locally Lipschitz function g defined on U such that: 



As a result of this, we deduce that given a finite family of maximal cyclically mono- 

tone operators {TI, T2, ..., Tk) on an open set U there exists a real-valued locally Lipschitz 

function g defined on U such that: 

a,g(x) = conv{Tl (x), T2(x), . . , Tk(x)) for each x E U. 

In particular, we obtain that given any convex polytope P in a finite dimensional space X 

there is a locally Lipschitz function f such that 8, f (x) = P for each x E U. This shows that 

without restrictions, the C-subdifferential of a locally Lipschitz function can be a somewhat 

unwieldy beast. 

In Chapter 4, we investigate bump functions. We begin by showing that any strictly 

convex body containing 0 is the gradient range of a smooth bump function and that the 

ranges of C-subdifferentials and A-subdifferentials always contain 0 as an interior point. We 

use bump functions to construct a Lipschitz function In R2 such that its C-subdifferential 

and A-subdifferential differ on a set with large measure. Then we show that there is 

a Lipschitz function in R2 such that its A-subdifferential has nonconvex images h o s t  

everywhere. Finally we construct two Lipschitz functions with the same C-subdifferential 

but with their A-subdifferentials differing except on a set with small measure. 
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Chapter 1 

Introduction 

1.1 Directional derivatives and subgradient s 

Let f : U C R~ -+ R be a locally Lipschitz function on an open set U. That is, for each 

x E U there is a neighbourhood N(x) C U satisfying: 

Assume that a set af  (x) C X* (possibly empty) is associated with f and every x E U in 

such a way that the following is true: 

(1) 0 E af (x) if f. attains a local minimum at x; 

(2) af is upper semicontinuous at x in the following sense: 

a f (x) = lim SUP a f (u) = n u a f (u) 
U d X  6>0 UEZ+CB(O) 

where B(0) is the open unit ball in X; 

(3) For a C' - function 8 f = V f .  For a convex function 8 f is the subdifferential in 

convex analysis, namely 

Of(x) := {x* E X* : (x*, h) 5 f ( x +  h) - f(x), for all h E X); 

(4) a (  f + g) (x) c a f (x) + ag(x), provided that g is convex continuous or is c1 
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If these conditions are satisfied, we call d f a subdifferential map. In recent years four subd- 

ifferential maps have been widely used: the Clarke subdifferential, Michel-Penot sub- 

differential, Ioffe-Mordukhovich-Kruger approximate subdifferential, and Dini 

subdifferential. We denote these four notions by 'C' , 'MP', 'A', and 'D' respectively. 

Each of them is a generalization from convex to locally Lipschitz functions and each of 

them generalizes different aspects of the convex situation. 

The Clarke subdifferential map satisfies (I), (2), (3), (4). d f (x) is w* closed, convex, 

and nonempty for each x E U. It is singleton if and only if f is strictly differentiable at x. 

In RN it can be defined by 

where S is any set of Lebesgue measure 0 in RN and Qf is the set on which f is not Gateaux 

differentiable [13]. 

The Michel-Penot subdifferential satisfies (I), (3), (4) but (2) fails. df (x) is convex, w* 

closed, and nonempty for each x E U .  It is singleton if and only iff  is Gateaux differentiable 

at x. Often dmpf is much smaller than d,f. 

The Dini subdifferential map satisfies (I) ,  (3) but not (2) and (4). d- f is w* closed, 

convex and much smaller than the approximate subdifferential. Even for Lipschitz functions 

it is possibly empty. 

The Ioffe-Mordukhovich-Kruger approximate subdifferential map satisfies (I), (2), (3), 

(4). In R~ 

da f (x) := { lim x i  E a-f(xn), X, -+ X) 
n--;w 

and 

m a a  f (x) = dCf (x). 

If f is Lipschitz at x then da f (x) is not empty. It is the minimal subdifferential that satisfies 

(I), (2), (3), (4) in the sense that a, f (x) c d f (x) for any x E U [18, 201. 

Associated with these subdifferential maps are four directional derivatives: 

the Clarke derivative at point x in the direction h is given by 

f O(x; h) := limsup f (Y + th) - f (Y) 
Y+Z t 
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0 Michel-Penot derivative at x  in the direction h  is given by 

f O(x; h )  := sup limsup 
f ( x  + t y  + t h )  - f ( x  + t y )  

Y t10 t  

0 Upper Dini derivative at x  in the direction h  is given by 

f + (x ;  h )  := limsup f ( x  + t h )  - f ("1 
tl0 t 

0 Lower Dini derivative at x  in the direction h  is given by 

f - (2;  h )  := lim inf f ( x  + t h )  - f (4 
tl0 t 

The first two derivatives are Lipschitz and sublinear functions of h  while the latter two 

derivatives are only Lipschitz functions of h. Moreover 

~f f is convex, then 

f O ( x ;  .) = fO(x;  .) = f +(x;  a )  = f 7 2 ;  9. 

The link between the generalized subdifferential map and the directional derivative is: 

where 'fl' is one of '+', '-', 'o', '0 ' .  If we set further U ( x )  := {zl IIx - 211 < b ) ,  then 

Let us begin with some examples to'illustrate the advantages and disadvantages of these 

subdifferentials. 

Example 1 Define 

R 3 x  H f ( x )  := 1x1. 

This function achieves its minimum at 0  and - f achieves its maximum at 0. 8, f (0)  = 

[-I, 11 = - a c ( - f ) ( O )  and a , f ( O )  = [-1,1] but a , ( - f ) ( O )  = {-1,l). Thisshows 0  E a c f ( 0 )  

and 0  E a,(- f )  (0 )  whereas 0  E da f (0 )  and 0  8, (- f )  (0). For the C-subdifferential 

0  E aCf ( x )  is always true whenever f achieves its minimum or maximum at x ;  for the 

A-subdifferential it is always true 0  E 8, f ( x )  whenever f attains its minimum but not its 

maximum at x. 0 
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Example 2 Define { ; s i x ,  if x + o 
f (x) := 

i f x = O  

Then f is differentiable everywhere on R, but dc f (0) = aaf (0) = [-I, 11 whereas a m p f  (0) = 

a-f(o) = (01. 

Moreover, for any 0 < E < 1 there is an everywhere differentiable and globally Lipschitz 

function f : [O, 11 + R such that: 

p i x  : &f ( 4  = [-I, 11, E [O, 11) 

= p{x : f is not strictly differentiable at x, x E [0, 11) 

- - E. 

Indeed, we take a Cantor set P C [ O , l ]  with p ( P )  = E. AS shown in Lemma 2.4, there is an 

everywhere differentiable and globally Lipschitz g : [0, I] -+ R such that: 

and 

Q ( x )  = gl(x) for all x E [O,1] \ P. 

Define f by f (x) := g(x)-x. Then acf (x) = acg(x)-1. Hence &f (x) = [-I, 11 for all a: E P 

and &f(x) = g'(x) - 1 for all x E [O,1] \ P .  By contrast, dmpf (2) = 8-f (2) = ~ ' ( x )  - 1 for 

any x E [0, 11. 0 

Example 3 Define { , sin(10g XI) ,  if x # 0 
f (x) := 

i f x = O  

At x = 0, 3, f = a, f = [-E - a ,  E +  a] and a- f (0) = 0. In particular 0 E aa f (0) = 3, f (0). 

But for any 0 5 E < 1, f + € 1  - I does not attain a local minimum at 0. 

On the other hand, the Dini subdifferential has one important property. That is, for any 

locally Lipschitz function f (even for lower semicontinuous function) the function f +ell .-XI[ 

attains a strict local minimum at x for any E > 0 if 0 E a- f (x). 0 

The C-subdifferential and the MP-subdifferential are symmetric but the A-subdifferential 

and the D-subdifferential are not symmetric. 
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Example 4 Let ( 1 . 11  be the l2 norm. Define f := (2- 11 I[)+. Computing its Dini subgradient 

at 0 we get 

a - f (0 )=0  andd-(-f)(O)= B(0,l).  

Example 5 Let f : RN + R be a concave continuous function. Then for any x E R~ 

&zf (4 = limsup{Vf (Y)) 
Y-2 

and 8- f (x) is non-empty if and only if f is Gateaux differentiable at x. In this case 

8- f (x) = {V f (x)) ( from which we can easily see the Dini subdifferential lacks upper 

sernicontinuity). 

Let f : RN + R be a convex function. Then 

for al lx E RN. 0 

We close this section with two pathological examples. 

Example 6 We follow the construction in [lo, page 1901. The function f (x) := (x - a)+ 

has an infinite derivative at x = a, and a finite derivative elsewhere. Let ql ,  92, ... be an 
1 

enumeration of Q n [O, 11, and for each n E N let fn(x) := (x - 9,)s. Let 

Then F is continuous on [0, 11. Since each fn  is strictly increasing, so is F. It can be shown 

that 
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In particular ~ ' ( x )  = oo for all x E Q n [O, 11. 

Let g(x) := F(x) + x. Then g'(x) = F t ( z )  + 1 on [O,1] and g is a homeomorphism 

from [O,1] to a nondegenerate interval [a, b]. Define h by h(x) := g-l(x), that is the inverse 

function of g. Then h is strictly increasing and continuous on [a, b], and h1 = 0 on a 

dense set of [a, b]. Since i ( x )  2 1 for all x E [0, 11, h1(z) 5 1 for all x E [a, b]. Hence 

we have constructed a strictly increasing function h on [a, b] such that h is differentiable, 

0 < hl(x) 5 1 for all x E [a, b] and {x : hl(x) = 0) is dense in [a, b]; thus h is a globally 

Lipschitz function on [a, b]. Since ash and ach are uscos, we have 

0 E dah(x) and 0 E d,h(~)  for all x E [a, b]. 

However 

a,,h = a-h = h'. 

In this case only the MP-subdifferential and the D-subdifferential can adequately reflect 

the properties of h. We note that ach = ash and that they are generically single-valued. 

Example 7 Let A C R be measurable such that 

for every nonvoid open interval I C R (see Exercise 6 [28, page 3071). Then A' := R \ A, 

the complement of A, has the same property as A. Let XA and xAt be the characteristic 

functions of these two sets respectively. Now define G : R -+ R by 

Then G is globally Lipschitz but is monotonic on no interval on R and 

aCG(z) = aaG(z) = [-I, 11 for any x E R. 

It is clear that we get no information about the function G from the C-subdifferential map 

and A-subdifferential map. In fact there are uncountably many such subsets like A in 

R. Taking different such subsets we get different globally Lipschitz functions. All of these 

functions share the same A-subdifferential and C-subdifferential. 

In R~ we define F : R~ + R by F(x, y) := G(x) + G(y). Then 
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F takes the 15 unit ball as its C-subdifferential and A-subdifferential identically and they 

are too big. 0 

1.2 Minimal uscos and minimal cuscos 

D e f i n i t i o n  1.1 A multifunction F between topological spaces X and Y is called an  u s c o  

(cusco)  i f  i t  is  compact valued (convex and compact) and upper semicontinuous. That is, 

{t : F(t)  C W} is  open i n  X if W is open i n  Y .  It is called a m i n i m a l  usco ( m i n i m a l  
c u s c o )  i f  i t  is  an usco (CUSCO) whose graph is minimal with respect to  set containment 

among uscos (cuscos). When dl f is  a minimal w*-usco (w*-cusco), we will say f possesses 

a m i n i m a l  # - subd i f f e ren t ia l .  

E x a m p l e  8 Let Cl : RN + RN be a densely defined locally bounded multifunction. By 

Proposition 1.2 and 1.3 [I] we have: 

(i) There is a unique minimal cusco containing 0 and it is given by 

CSC(Cl) := conv{a : 3an -+ a, 32, + X,  a, E Cl(zn)). 

(ii) There is a unique minimal usco containing Cl and it is given by 

USC(R) := {a : 3a, + a,  x, + x, a, E O(xn)). 

The relationship between minimal cuscos and minimal uscos is the following: 

Theorem 1.1 [2] If T : X + Y is an usco then T*(x) := EEET(x) defines a cusco T* on 

X .  If T is  a minimal usco then T* is a minimal cusco. 

In finite dimensions every minimal cusco or usco defined on an open set is generically single- 

valued but a generically single-valued usco or cusco needs not be minimal (see Example 6). 

A cusco (usco) T defined on an open set U is minimal if and only if for each non-empty 

open subset W C U the restriction of T to W is a minimal cusco (minimal usco) on W 161. 

That is, minimality is inherited by open subsets. 
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Example 9 Let f : U -, R be locally Lipschitz on U with dcf almost everywhere single- 

valued. Then d c f  is a minimal cusco. In finite dimensions we have 

where S is any set of Lebesgue measure 0 and nf is the set of points at which f fails to be 

differentiable. Let S be the null set where dcf fails to be single-valued. Set N := S U Qf. 

Then dcf = C S C ( V f  l(U \ N ) )  = C S C ( b c  f ) s .  By Theorem 2.2(b) [ I ] ,  dcf is minimal. 0 

Example 10 Let RN be endowed with a smooth norm. For each non-empty closed subset 

C C R N ,  we define its distance function dc : RN + R by 

dc(x )  := inf{(lx - ell : c E C ) .  

Then dc has a minimal C-subdifferential on R N .  Indeed by Theorem 4.10 [6],  dc possesses 

a minimal C-subdifferential on RN if and only if dcdc is minimal on RN \ C. However -dc 

is C-regular on RN \ C ,  so dc is essentially strictly differentiable on RN \ C .  Hence dc is 

C-minimal on RN \ C. 0 

Definition 1.2 A set-valued map T from RN into RN is said to be a monotone operator 

provided 

(2' - y*, x - y )  > 0 

whenever x ,  y E RN and x* E T ( x ) ,  y* E T ( y ) .  W e  say that a monotone operator T is 

maximal monotone if its graph is a maximal monotone set with respect to  set inclusion. 

Let T : RN + 2RN be monotone and D C RN be an open set, we say that T is maximal 

monotone in D provided the monotone set 

G ( T )  n ( D  x R N )  = { ( x , x L )  E D x RN : x E D and x* E T ( x ) )  

is  maximal (under set inclusion) in the family of all monotone sets contained in D x R N .  

Any monotonic function from R into itself is a monotone operator. The subdifferential of 

a convex function defined on an open set is a maximal monotone operator [26]. As shown 

in Theorem 7.9 [25], every maximal monotone operator defined on an open set is a minimal 

cusco in D but it needs not be a minimal usco. We should also note that not every minimal 

cusco is monotone since any continuous non-monotonic function from R into itself is a 

counter-example. 
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Example 11 Any minimal cusco R  from R into R is a C-subdifferential. 

To see this, define f ( t )  := sup R ( t )  and g ( t )  := inf R ( t ) .  Then f and g are locally-bounded 

measurable functions and { f  ( t ) )  U { g ( t ) )  C R ( t )  for all t .  Set 

F ( x )  := [ f ( t ) d t  and G ( x )  := l z g ( t ) d t .  

Since R  is minimal we get 8,F = acG = 0 .  

Let I be an open interval in R and suppose T : I -+ 2R has nonempty values and is maximal 

monotone in I. As shown in Theorem 7.9 [25] T is a minimal cusco in I. By Theorem 2.28 

[25] T is locally bounded in I. Rockafellar has shown that if T is a maximal cyclically 

monotone operator on a Banach space E with D ( T )  # 0 then there exists a proper lower 

semicontinuous convex function on E such that T = a, f .  He constructed the function using 

the cyclical property of T .  The proof is much simplified for a maximal cyclically monotone 

T from R to 2R.  In fact, letting s ( t )  := s u p R ( t )  we see that s  is a locally bounded and 

measurable selection of T since T ( x )  is closed for each x  E I and locally bounded. Set 

f ( x )  := s ( t ) d t .  Then 8, f = T in I .  Proposition 2.2.9 [13] says that a locally Lipschitz 

function defined on an open convex set U  is convex if and only if d,f is monotone on U. 
Since T is monotone, so f is actually convex on I. 0 

As shown in [ I ] ,  convex functions, saddle functions, and the difference of any two continuous 

convex functions defined on an open set always have minimal C-subdifferential maps. In any 

separable Banach space regular, pseudo-regular, and essentially strictly differentiable locally 

Lipschitz functions (see Definition 1.5 and Definiton 1.6) have minimal C-subdifferential 

maps. Moreover the C-subdifferential map is the smallest cusco containing the gradient but 

the A-subdifferential map is not the smallest usco containing the gradient: 

Example 12 Consider f ( x )  := lx 1. Then 

So 8, f is the smallest cusco containing V f but is not the smallest usco containing V f since 

we can remove ( - 1 , l )  from 3, f ( 0 ) ;  f is C-minimal and - f is A-minimal. 0 
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Definition 1.3 A locally Lipschitz function f defined on an open convex set U is #-integrable 

if for any g satisfying d ig (x)  C dfl f ( x )  for all x E U we may deduce that f and g differ only 

by a constant. 

Example 13 Let '#' denote 'c', 'mp'. Following Proposition 4.4 [I], we give a similar result 

for 'mp'-integrability. Suppose U C R~ is open and convex and that f and g are locally 

Lipschitz functions such that 

dl tg(x)  c f ( x )  for each x E U. 

Then f is #-integrable if and only if dl(  f - g )  is #-minimal. 

To see this, letting h := f - g ,  we have d8f C atth(x) + dig(x)  C at lh(x)  + a f l f ( x ) .  Since 

f ( x )  and ath(x)  are closed, bounded convex sets so 0 E dtlh(x) for all x E U. If dnh is 

minimal then a#h(x)  = (0) and the Mean Value Theorem [13, 41 shows h is constant. 0 

In a separable Banach space every function that is strictly Gateaux differentiable except 

possibly at points of a Haar-null set is C-integrable and A-integrable [I, 181. In particular 

convex functions are C-integrable and A-integrable. We note that in a Banach space if a lo- 

cally Lipschitz function is C-integrable then it is A-integrable [18]. In R both integrabilities 

coincide for all locally Lipschitz functions. It is very important to note that integrability is 

not inherited by open subsets (see [6]). Minimality and integrability are closely related: 

Example 14 Every C-integrable Lipschitz function on R has a minimal C-subdifferential. 

To see this, suppose dc f is not C-minimal then there is a minimal cusco s : R + 2 R  such 

that s ( t )  C dc f ( t )  for all t .  Just as in Example 11, we can find a locally Lipschitz function 

g satisfying &g(t) s s ( t )  for any t E R. Thus a,g C acf but f - g is not a constant, a 

contradiction. 0 

Example 15 Any function f defined on R with Riemann integrable f is both C-integrable 

and C-minimal. Since f' is Riemann integrable if and only if f f  is continuous almost ev- 

erywhere, this implies f is strictly differentiable almost everywhere. 0 

We close this section with the Goffman function showing that a function with minimal 

subdifferentials needs not be integrable. For examples in several dimensions see Theorem 4.6. 
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Example 16 We follow the construction given in [I]. Let C be a Cantor set in [O, 11 

corresponding to the sequence an = 2-n-1 + 3-n . 2-I and let In's be an enumeration of 
1 the component intervals of [O,1] \ C .  Then p ( C )  = 9 and C z = l  [In[ = 4. Let Jn be the 

open interval concentric with In for which IJnI = 1 1 ~ 1 ~ .  Let fn : [O ,1 ]  + [O, 11 be a function 

that is continuous on [O,l], is equal to 1 at the midpoint c, of I,, and is identically 0 on 

[O, 11 \ Jn . Define 

Then f is continuous on each In, discontinuous at each point of C, and is not Riemann 

integrable over [0, 11. However, f is Lebesgue integrable. Define the Goffman function by 

As shown in [28, page 2791 F ' ( x )  = 0 = f ( x )  for all x  E C and F ' ( x )  = f n ( x )  = f ( x )  if 

x  E In for some n. Since each point of C is a limit point of the set {c~):!~ we obtain: 

d,F(x) = [0, I] if x  E C 

and 

dcF(x)  = f ( x )  if x  $ C. 

Moreover, dF is both C-minimal and A-minimal since any selection agrees with dF on 

[O, 11 \ C. We show F  is not C-integrable. Indeed, let h  : [O, 11 + [O, 11 be any Lebesgue 

measurable function with supp(h) C C and let S ( x )  := Jt h(s)ds.  Then since V S  = 0 in 

[O, l ] \C  and0 5 h ' s  1 in C, d c ( F + S )  = & F  but S =  ( F + S )  - F  is not aconstant on 

[O, 11. 

Let h  := xc. Since F  is differentiable, d - ( F  + S ) ( x )  = ~ ' ( x )  + 8 - S ( x )  for all x  E [0, 11. 

On [O, 11 \ C, a - ( F  + S )  = F'; On C, 8 - ( F  + S )  = 8 - S .  Noting that gn is continuous for 

each n we have 

da(F + S ) ( X )  = dc(F + S ) ( X )  = [O, 11 if x E C 

and 

aa(F + S ) ( X )  = dc(F + S ) ( X )  = f ( x )  if x $! C. 

This shows F  is not A-integrable either even though F  has a minimal A-subdifferential. O 
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1.3 Regularity and saineness of Lipschitz functions and the 

essentially strictly differentiable functions 

In this section we suppose that U is a connected open set in R ~ .  

D e f i n i t i o n  1.4 W e  say a function f : U --r R is sa ine  provided f is locally Lipschitz and 

(& f ( ~ ( t ) ) ,  x l ( t ) )  is almost everywhere single-valued for all absolutely continuous x : [O, 11 -, 

U .  W e  denote the set of saine Lipschitz functions by L,(U). 

D e f i n i t i o n  1.5 A locally Lipschitz function defined on U is called C-regular at x E U i f  

f - ( x ;  .) = f + ( x ;  .) = f ' ( x ;  .) = f O(x; .) and C-pseudo-regular if the latter three coincide 

( f  + ( x ;  .) = fO(x ;  .)). W e  say f is C-regular or C-pseudo-regular on U if f is  C-regular or 

C-pseudo-regular at each point x E U .  W e  denote the set of C-regular functions by L, (U) .  

D e f i n i t i o n  1.6 A locally Lipschitz function defined on U is essent ia l ly  s t r i c t l y  d i f f e r -  

e n t i a b l e  on U if i t  is strictly Gateaux differentiable on U except possibly at points of a 

Lebesgue-null set. W e  denote the set of essentially strictly diflerentiable functions by S e ( U ) .  

Any convex function f : U -+ R is saine, regular, and essentially strictly differentiable [13]. 

The three classes of functions are well-behaved. By Corollary 3.10 and Corollary 4.6 in [I] 

all functions in the three classes are C-integrable and C-minimal. By Corollary 5.16 [6] 

and Theorem 2 [32] we know both S e ( U )  and L,(U) are closed under addition, subtraction, 

multiplication and division (when this is defined), as well as, the lattice operations. We give 

some facts from [31] and [32] to show other relations. 

Fact 1.1 In R we have f E S e ( U )  ++ f E L s ( U ) .  

To see this, letting f E L,(U),  then we take x ( t )  := t. Hence (8, f ( ~ ( t ) ) ,  z l ( t ) )  = a, f ( t) .  

By definition a, f is single-valued almost everywhere and so f E Se(U) .  Conversely, letting 

x : [O, 11 + U be any absolutely continuous curve, by Theorem 6.93 [28] we have: 

( f  0 x ) ' ( t )  = f l ( x ( t ) )  x l ( t )  a.e. on [O, 11. 

Since f E S e ( U )  we have 8, f ( x ( t ) )  = f ( x ( t ) )  whenever the derivative of f exists at x (t).  

Therefore 

( f  0 x f ( t )  = ( & f  ( ~ ( t ) ) ,  x l ( t ) )  a-e. on [O, 11 
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and f E L,(U). 0 

Fact 1.2 Let f E L,(U). Then f E L,(U). 

To see this, by the Lebourg Mean Value Theorem [13] there exists a point u in the line 

segment [x (t + h) , x (t)] such that: 

Since f is locally Lipschitz and x is absolutely continuous, (f o x)' exists a.e. on [0, 11. Let 

t E [O,1] be such a point, then letting h -+ 0 we get: 

Fact 1.3 Let f E Ls(U). Then f E Se(U). 

To see this, it suffices to consider affine maps xk(t) := 3 + t . ek for k = 1,2, . . . , N. Then 

(ac f (3 + t . ek), ek) = (i3cf)k(3 + t . ek) is singleton a.e. on [0, 11. 

SO (ac f ) k(xl, . . . , xk- 1, t, xk+l, . . . , x,,) is single-valued if t fZ Nk which is a Lebesgue null 

set in R. Let M := u ~ = ~ { ( N ~  x R ~ - ' )  f l  U). It is clear M is a Lebesgue null set in R ~ .  It 

follows that if x E U \ M then a, f (x) is singleton, and so f E Se(U). 

There are many locally Lipschitz functions which are not in the three classes. 

Example 17 Let C C R~ be nonempty. We consider its distance function dc. 

(i) Let C C U be convex. Then dc is convex and dc E L,(U); 

(ii) Take C C U with p(C) > 0, intC = 0, and C is closed. Then dc is a.e. C-irregular 

on C. To see this, letting x E C,  we have 0 E acdc(x). Since dc is Lipschitz it is 
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Gateaux differentiable almost everywhere on C. Let dc be Gateaux differentiable at 

x E C then dc is not C-regular. Suppose it is C-regular then dcdc is singleton, that 

is acdc(x) = (0). Then Nc(x) = (0). But any x E C is a boundary point of C. 

By Corollary 1 of Theorem 2.5.6 in [13] Nc(x) contains nonzero points, which is a 

contradiction. Thus dc is C-irregular almost everywhere on C. Note that dc is not 

strictly differentiable on a positive measure set so dC 4 S,(U); 

(iii) Let 11 11 be a smooth norm on RN. Then for each nonempty closed subset C of RN, 

we have that dc E se(RN) if and only if p(dC) = 0. Indeed, since no point of a C  can 

be a point of strict differentiability we immediately have p(dC) = 0. Conversely by 

Theorem 8 [4], we see that -dc is C-regular on (RN \ C) U intC. Therefore if dC is 

a Lebesgue-null set then dc is strictly differentiable almost everywhere in RN. 

Example 18 In R we will see later that f E Se(U) if and only if f' is Riemann integrable. 

There are many functions which are everywhere differentiable but their derivatives are not 

Riemann integrable. 

Let P C [ O , l ]  be a Cantor set with p(P) > 0. We can construct a Volterra function 

F : [O, 11 -+ R as follows (see [28, page 3121). Let 4(t) := t2 sin(+) for t # 0. For x E P, put 

F(x) := 0. If (a, 6) is a component interval of [0, 1]\P, let c := sup{t : 0 < t 5 9, +'(t) = 

0) and define F ( a + t )  = F(b-t)  := 4(t) if 0 < t 5 c and F(x) := 4(c) if a + c  5 x 5 6-c. 

Then 

(i) F is differentiable on [0, 11; 

(ii) ~ ' ( x )  = 0 for every x E P; 

(iii) IF' (x)l < 3 for every x E [0, 11; 

(iv) F' is discontinuous at every point of P; 

(v) F(x)  = Jt ~ ' ( s ) d s  for all x E [0, 11. 

Thus F $! Se([O, 11). 

In R2 we define F : [O, 11 x [O,1]  -+ R by F(x,  y) := f (x)+ f (y) where f is a Volterra function. 

Then F is not strictly Gateaux differentiable on P x P. Therefore F $! Se([O, 11 x [0, I]). 



Chapter 2 

Subdifferentials on the real line 

2.1 Everywhere differentiable functions 

It is very instructive to discuss everywhere differentiable functions on R to understand what 

nonsmooth analysts have done. We have different subdifferentials: A natural question is: 

"Are they really different?" Because nonsmooth analysts generalize the notion of differ- 

entiability from a convex analysis point of view, they lose some essential properties for 

differentiable functions. 

Definition 2.1 A real-valued function f defined on afi interval I is called a Darbow 

function i f  i t  has the intermediate value property. That is, if whenever X I  and x2 are in 

I ,  and y is any number between f ( x l )  and f ( x 2 ) ,  there is a number x3 between x i  and 2 2  

such that f ( x 3 )  = y. 

Theorem 2.1 (Darbouz) Let f : [a, b] + R be differentiable on [a, bj and suppose that v is  

a number strictly between f;(a) and f l ( b ) .  Then t h e n  ezists E € ] a ,  b[ such that f I ( < )  = v .  

Since the proof of the Darboux Theorem essentially uses the Rolle Theorem (see [28, page 

186]), we omit it. By the Darboux Theorem we can show that the A-subdifferential and 

the C-subdifferential coincide for differentiable functions on R. 
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We claim a, f ( x )  = dc f ( x ) .  Let a E dcf ( x ) .  Then there exists x ,  and y, such that 

f (x ,)  5 a 5 f l ( y n )  for sufficiently large n. Since f '  is a Darboux function we see that 

there exists z, with f l ( z n )  = a. Note that zn E [x,, y,] so z, + x .  Therefore a E a, f ( x )  

and dc f ( x )  C d, f ( x ) .  Hence d, f ( x )  = dc f  ( x ) .  

We can also give a direct proof via the characterization of the Approximate subdifferen- 

tial in R given in [5]. By Theorem 2.2 [5] we have 

d,g(x) = [ l i E f  i ( y ) ,  lim supg' ( y ) ]  U [lim i n f i  ( Y ) ,  lim SUP~ ' (Y) I  
I C N  I,-++ 

y - t -  u-= 
r 4 N  y 4 N  v 4 N  

for any Lebesgue null set N. By the Darboux property there exists two sequences {x,) and 

{y,) such that x ,  4 x 'with g1 (2,) --+ g' ( 2 )  and y, x with g ' (yn)  + g' (x) .  Hence &,g(x) is 

connected and so d,g(x) = dcg(x).  Let d,g denote the symmetric subdifferential defined 

by d s g ( x )  := dag(x)n(-a , ( -g)(x) ) .  Then d s g ( x )  = dcg(x)  = a,g(x). Hence we have shown 

the following: 

Theorem 2.2 Let f : I t R be differentiable. Then 

8, f ( x )  = 3, f ( x )  = as f ( x )  for all x E I.  

Corollary 2.1 Let f be differentiable everywhere. Then f is  C-integrable i f  and only i f f  

is A-integrable. 

Proof. By Proposition 3.4 and Proposition 3.3 [18] we know the C-integrability implies A- 

integrability in finite dimensions. So it suffices to show the other direction. Suppose f is A- 

integrable. Let g be any locally Lipschitz function such that &g(x)  C dcf  ( x )  for any x E I. 

By Theorem 2.2 we deduce d,g C dcg C d, f .  Thus f - g is constant. 0 

Example .l9 Stromberg and Katznelson 128, pages 217-2181 have constructed an every- 

where differentiable F : R -+ R which is monotone on no nonvoid open interval of R and 

I F '  (x)I < 1 for all x E R. Since F is nowhere monotonic both { x  E R : F' ( x )  < 0 )  and 

{ x  : F 1 ( x )  > 0 )  are dense in R. Hence 0 E dcf ( x )  = d, f ( x )  for all x E R. This implies F 

is not C-minimal and not C-integrable and so it is not A-minimal and not A-integrable. 

However F' is Lebesgue integrable. Here we note that the Lebesgue integrability of F' is 

not sufficient for F to be C-integrable or A-integrable (see Theorem 2.9). 0 
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2.1.1 The MP-subdifferential and the C-subdifferential may be different 

almost everywhere 

Since the derivative function of any locally Lipschitz everywhere differentiable function f is 

generically continuous, we know 8, f and amp f must agree generically. However we do have 

the following theorem. 

Theorem 2.3 There exists a n  everywhere differentiable function defined o n  [0, 11 such that 

lIc f and amp f are dzfferent almost everywhere. 

Proof. Let {Cm}z=l be a sequence of Cantor sets in [O,1] satisfying: 

(i) Cm C Cm+l for each m E N; 

(ii) p(Cm) = 1 - 2-m. 

Let fm be the Goffman function associated with Cm (see Example 16) such that: 

(1) fh(x)  exists with 0 5 fk(x)  L 1 for each x E (0, 11; 

(2) fh is continuous on each open interval in [0, 11 \ Cm; 

(3) fh is discontinuous at each point of Cm and dcfm(~) = [O, 11 for all x E Cm; 

(4) fm(x) = So" fh(s)ds for all x E [0, I]. 

Define w 

f (x) := C 4-m fm(x). 
m = l  

Set Om := [O, 11 \ Cm and G := nz=lOm.  Since 0 5 f k  5 1 and fm(0) = 0, by Theorem 

4.56 in [28] we have 
w 

fl(x) = fh(x) for all x E [0,1]. 
m=l  

Since f, is continuously differentiable at each point of G and so f is continuously differen- 

tiable at x E G. If x @ G then choose the first m with x @ Om. Since afm(x) = [O, 11 and 

lI f k(x) = f;(x) for k < m, it follows that diam[a f (x)] > F. Thus f is a differentiable 

Lipschitz function which is strictly differentiable exactly on the null G6-set G .  In particular 

the C-subdifferential and MP-subdifferential differ on [O,1]  \ G  with p([O, 11 \G) = 1. 0 
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Corollary 2.2 There is an everywhere digerentiable Lipschitz function on [O,1] that is 

almost everywhere C-irregular on [0, 11 . 

Proof. Since regularity and Gateaux differentiability together imply 8, f is singleton, it 

follows that f is C-irregular on [O,l] \ G. 0 

2.2 Typical properties 

Definition 2.2 A function f : [0,1] + R is said to be of Baire class 1 on [ O , l ]  i f  there 

exists some sequence of real-valued functions which are continuous on [O,1] that converges 

to f at every point of [0, 11. 

Definition 2.3 A function f : [O, 11 -+ R is said to be a derivative function i f  there is 

F : [0,1] + R such that F1(x) = f ( x )  for all x E [0, 11. 

It  is clear that every derivative function is of Baire class 1. A derivative function can be 

very badly discontinuous but it can not be discontinuous everywhere 19, 101. 

2.2.1 Functions with subdifferentials containing 0 identically 

Lemma 2.1 Let A' denote the class of derivative functions. Suppose f,, E A', n = 1, 2, 

3,.  . . and f ,  -, f (uniformly), then f E A'. 

Since the proof of this lemma can be found in any of a number of standard texts (see 

Theorem 4.56 [28]), we omit it. 

Let MA' denote the space of bounded derivative functions on [O,l] with 

By Lemma 2.1 we know (MA', p) is complete. Let 

MA::= { f  E MA' : f = O  on adense set). 

Weil has proven the following lemma [9]. 
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Lemma 2.2 The set of functions in M&[o, 11 which are positive on one dense subset of 

[O, 11 and negative on another dense subset of [0, 11, fomns a residual subset of (MA:, p). 

Proof. Step 1. We show that MA: is closed under addition and complete topologically. 

Let f ,  g E MA:. Since f ,  g are Baire-1 functions, the set {x : f (x) = 0) and {x : g(x) = 0) 

are of type G6. But the intersection of two dense sets of type G6 is also of type G6 and dense. 

Thus f + g E MA:. Similarly, if { f,) is a sequence from MA: and fn  + f uniformly, then 

f E MA:. To see this, let A, = {x : f,(x) = 01, and A = A,. Each of the sets is 

dense and of type G6, so the same is true of A. But A C {x : f (x) = 0). It follows that 

f E MA:. Thus MA: is closed in MA1, and therefore complete topologically. 

Step 2. Note that the derivative of Stromberg and Katznelson's function (Example 19) 

belongs to MA:. Thus MA: # 8. Let I be an interval in [O,l], and let 

By Step 1, P is closed in MA:. 

Now we show P is nowhere dense in MA:. Let B(f,  c) be an open ball in MA:. If 

f @ P, we have shown that n B(f ;  c) # 0. If f E P,  then f is Baire-1 and continuous 

on a dense G6 set. Let x, be a point of continuity of f in the interval I. It is clear that 

f (xo) = 0, since {x : f (x) = 0) is dense in [0, 11. Choose an open interval J C I such that 

f (x) < $ on J. By Zahorski's Theorem (see Lemma 2.9) we can choose g E MA: such that 

-g E P and 

sup(-g(x)) = sup(-g(x)) = €. 

[OJI J 

By Step 1, f + g  E MA: and 

On J we have 0 2 f (x) < 5. In addition, there exists xl E J such that -g(xl) > 5, so 

g(xl) < -$. Thus f (xl) + g(xl) < 0. It follows that f + g E B(f ;  c) \ P ,  and that P is 

nowhere dense in MA:. In a similar way, we show that 

is closed and nowhere dense in MA:. 
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Step 3. By Step 2, given any open interval I C [0, 11, the set 

A ( I )  := { f  E MA: : 3x1, x2 E I such that f ( X I )  > 0 and f (x2)  < 0 )  

is a dense open subset of MA:. Let { I k )  be an enumeration of the open interval in [O,1] 

with rational endpoints. Let Ak := A ( I k ) .  Then A := ngl Ak is a dense subset of type Gg 

in MA:. If f E A ,  then { x  : f ( x )  > 0 )  and { x  : f ( x )  < 0 )  are dense in [0, I ] .  Thus f is a 

bounded derivative which takes both signs in every open interval contained in [0, 11. 

Remark 2.1 By the Fundamental Theorem of Calculus we know for any nondegenerate 

interval I both I n { x  : f ( x )  > 0 )  and I n { x  : f ( x )  < 0 )  have positive Lebesgue measures if 

f E A given in  the previous proof. 

Let f E MA:. Define F ( x )  := Jl f (s)ds.  Then F is globally Lipschitz and F' = f on [0, 11. 

Theorem 2.4 Let A, denote the set of diflerentiable functions F on [0, I ]  such that F ( 0 )  = 

0 and F' E MA:. For F ,  G E A,, let 

p(F,G) = sup I F ' ( X )  - G ' ( x ) ~ .  
4 O J I  

Then: 

( i )  (A,, p) is a complete metric space; 

(ii) Every member in the space has a C-subdiflerential with 0 i n  it identically; 

(iii) For any nondegenerate interval I C [0, 11, a typical F in  the space has a C-subdifferential 

which is not singleton on a positive measure set, hence F is not C-regular on the cor- 

responding positive measure set. 

Corollary 2.3 Let f E C[0,1] and F E A,. Define j ( x )  := Jt f ( s )ds  and g := f + F .  

Then &g contains f and in the topologically complete space ( j  + A,, p) every member has 

a C-subdiflerential containing f and a typical g i n  the space is C-irregular on a positive 

measure set within each nondegenerate interval. 

Corollary 2.4 A typical F E A, has the following properties: 
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(i) F is not C-minimal and not C-integrable; 

(ii) F is not A-minimal and not A-integrable. 

However every member in A, is MP-minimal and MP-integrable. 

2.2.2 Regularity 

We begin with an example showing that a derivative function can be discontinuous almost 

everywhere. 

Example 20 Let E c [O,1]  be a union of a sequence of closed nowhere dense sets with 

Lebesgue measure X(E) = 1. Suppose for any x E E we have d(x, E)  = 1 (where d represents 

the metric density; see Definition 2.5). Then by Zahorski's Theorem (see Lemma 2.9) there 

exists a differentiable Lipschitz function F : [O, 11 + R such that 

0 < F1(x) 5 1 for all x E E 

and 

~ ' ( z )  = 0 for all x E [O, 11 \ E. 

Therefore F' is discontinuous almost everywhere on [0, 11. 0 

As in section 2.2.1, let MA' denote the space of bounded derivative functions on [O,1]  with 

We have seen that   MA',^) is a complete metric space. We will show that a typical 

derivative f in MA' is almost everywhere discontinuous (due to Bruckner and Petruska 

[ll]).  Define F(x) := J; f (s)ds. Then F is not regular at x whenever f is not continuous 

at x. In a measure space X ,  we say that a property P is true almost everywhere on X 

provided there exists A C X such that p(X \ A) = 0 and P is true on A.  In a complete 

metric space X we say a property P is true typically provided that all members in X satisfy 

P except for a set of the first category. In this section for any function f we denote by Cf 

the set of continuity points. Lebesgue measure is denoted by X and any Bore1 measure is 

denoted by p. 
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Definition 2.4 A measurable function f is  said to  be approximately continuous at x i f  

for every pair of real numbers kl and k2 such that kl < f ( x )  < k2 the set { y  : kl < f ( y )  < 
k2) has metric density 1 at x ,  that is 

W e  write this as l i~l ly+~ app f (y) = f ( z ) .  

It is obvious that if f is continuous at x ,  then f is approximately continuous at x .  As shown 

in [9] a real-valued function f on I is almost everywhere approximately continuous if and 

only if f is Lebesgue measurable. Let f be bounded in a neighborhood I of x and lower (or 

upper) semicontinuous at x .  Then f is approximately continuous at x if and only if f is the 

derivative of its integral at x .  

We give some lemmas from [ll] which will be used in the proof of the main Theorem. 

Lemma 2.3 Let p be an arbitrary Bore1 measure on [O,1] and 6 > 0 .  Define 

Then A,,a i s  closed i n  MA' 

Proof. Let f n  E and f n  + f uniformly. We consider C := r)T=l UFZN Cfn.  For any 

x E C we have x E Cfn for infinitely many n, hence C C C f .  Thus p ( C f )  2 p ( C )  > 6 and 

this proves f E 4 ~ .  0 

Lemma 2.4 Let I, := (a,, b,) = ( c ,  - h,, c, + h,) be a sequence of pairwise disjoint open 

intervals in [ O , l ]  such that the open set H := UrZl I ,  is everywhere dense in [0, I ] .  Let 

g, (n = 1,2 , .  . .) be the piecewise linear continuous function, for which 

1, i f x = c ,  
9n ( 2 )  := 

0 ,  i f x  < cn - i h ,  o r x  2 cn+$hn 

and g, connects 0 and 1 linearly on [c, - i h , ,  c,] and [c,, cn + ih.1. Let g := xr=l 9,. 

Then 

( i )  gl[an,bn~ is continuous on [a,, b,] for n = 1,2,  . . ., Cg = H and g ( x )  = 0 for x $! H ,  

(i i)  g is approximately continuous on [ O , l ] ,  that is g E MA'.  
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Proof. For any x there exists at most one n with g,(x) # 0, thus the definition of g makes 

sense. Obviously glIan,bnl = gn hence it is continuous on [a,, b,]. Therefore Cg > H. 

For any x $Z H, g,(x) = 0 for any n, this implies g(x)  = 0; since H is an everywhere dense 

open set, any point x 4 H is the limit point of some subsequence of {c,), thus x 4 Cg 
and this proves Cg = H. Since g is continuous on H ,  it suffices to show g is approximately 

continuous for x @ H. We consider two cases: 

Case 1. If x = a ,  for some n then g is continuous from the right at a,. 

Case 2. Every right-hand side neighborhood ( x ,  x + h )  meets infinitely many intervals 

In. Let n = N be the smallest index with I, n ( x ,  x + h )  # 0. Then 

where the summation is always extended to the indices n such that In c ( x ,  x + h).  
N-1 

Since n 2 N, v 2 N ,  2 2 7, , > in both cases we have 

and we obtain limy+,+o app g(y)  = 0 = g(x)  , because h -+ 0 implies N + oo. Similarly we 

can show g is left-hand approximately continuous and hence the proof is complete. 0 

Lemma 2.5 Let F := {f E MA' : ,Cf does not  contain any open interval). Then  F i s  a 

dense Ga set of MA'. 

Proof. Let Fz := {f E MA' : Cf > I )  where I is a given open interval. It is clear that Fz 

is closed and MA' \ Fz is everywhere dense in MA' with the supremum norm. Let I range 

over the open intervals with rational endpoints, then Uz Fz is a first category and F, set. 

Hence the result follows by noticing that F = n1(MA1 \ Fz). 0 

Lemma 2.6 Let p be a n  arbitrary Bore1 measure o n  [0, 11. Then 

i s  a dense Gb set in (MA', P ) .  
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Proof. By Lemma 2.3 the set AHq6 is closed. We show that it is nowhere dense in MA'.  If 

not, then there exists an open ball B ( f ,  E )  C By Lemma 2.5 we can also suppose that 

f E F since P is dense in M A 1 .  Now we cover the everywhere dense set. [O, 11 \ Cf by an 

open set H  such that p(Cf  n H )  < 6. By Lemma 2.4 we can define a bounded derivative g 

on H  such that g is continuous on H  and discontinuous on [O,1] \ H. Define h := f + gg. 

Then h E MA' and llh - f ( 1  < 5 ,  that is h E B ( f ,  E ) .  F'urthermore, g is discontinuous out of 

H, whereas f is continuous there, and hence Ch C C f  n H .  This implies p(Ch) < 6, that is 

h g' APr,  a contradiction. Let A := ( M A '  \ A,,L). Then A is a dense G s  set in MA' 
n 

and each function in A is discontinuous almost everywhere on [0, 11. 0 
Let f E MA'. Define F ( x )  := f (s)ds.  Then F is globally Lipschitz on [0, 11. 

Theorem 2.5 Let M A  denote the set of differentiable functions F on [0, I] such that 

F ( 0 )  = 0 and F' E M A 1 .  For F ,  G E M A ,  let 

p(F, G )  = sup IF '  ( x )  - G I  ( x )  1 .  
~ € [ O , l l  

Then ( M A ,  p )  is a complete metric space i n  which a typical member has a C-subdifferential 

map which is nonsingleton almost everywhere. Hence a typical member is C-irregular almost 

everywhere on [0, 11. 

Proof. Note that d,F is a singleton at x if and only if F' is continuous at x .  Thus if F' 

is not continuous almost everywhere then &F is not a singleton almost everywhere. Since 

differentiability and C-regularity together imply that F' is continuous, we know that if F' 

is discontinuous almost everywhere then F must be C-irregular almost everywhere. Hence 

Lemma 2.6 applies. 0 

Corollary 2.5 A typical member F in  M A  has different &F and dmpF almost everywhere 

on [O, 11. 

Corollary 2.6 A typical member in  M A  is not sainely Lipschitz. 

Remark 2.2 The Baire Theorem shows that every Baire-1 function is continuous except 

at the points of a set of the first category. Therefore every member i n  M A  is generically 

regular and has a C-subdifferential which is generically single-valued. This doesn't contradict 

Theorem 2.5 since a dense Ga set can have measure 0. 
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2.3 Two differentiable Lipschitz functions with the same C- 

subdifferential 

In this section we construct two globally Lipschitz functions which are differentiable every- 

where and different by more than a constant but have the same C-subdifferential. 

Definition 2.5 Let A C R be measurable and x ,  E R. The upper metric density of A at 

- 
d(z,, A )  = lim sup 

X(A i l  I )  

I 

and the lower density is defined by 

X(A n I )  
d(x,, A )  = lim inf 

I + z o  X(I )  ' 

~f Z(z,, A )  = d(x,, A ) ,  we call this number the density of A at x ,  and denote it by d(x,, A ) .  

Since the following lemmas can be found in 19, 271, we omit their proofs. 

Lemma 2.7 (Lebesgue Density Theorem) Let A C R be measurable. Then 

p ( A  \ { x  E A : d ( x ,  A )  = 1 ) )  = 0. 

That is for almost all x E A it has metric density 1. 

Lemma 2.8 Let A C R be measurable. Then there is an Fu set F C A such that p(A\ F )  = 

0.  

Lemma 2.9 (Zahorski's Theorem) Let E be a set of type Fu with d ( x ,  E )  = 1 for all x E E.  

Then there exists an approximately continuous function f such that 

0 < f ( x )  1 for all x E E 

and 

f ( x )  = 0 for all x 4 E .  

The function f is also upper semicontinuous. 

Lemma 2.10 Let f and g be approximately continuous at x,, then the same is true for 

f + g .  
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2.3.1 Construction 

Let P C [O,1] be a Cantor set with p(P) > 0. We can construct a Cantor-like differentiable 

function g which is constant on each interval contiguous to P. 

Step 1. Let A := { x  : d(x,  P )  = 1) .  Then A c P and p(P) = p(A). Thus p(A) > 0. 

Let E be a set of type F, such that E C A and p(E) = p(A). Then d(x, E )  = d(x,  P )  = 1  

for all x  E E. 

Step 2. By Lemma 2.9, there exists an approximately continuous f such that 

and 

f ( x )  = 0  for all x  fZ E. 

Define F : [0,1] + R by F(x)  := 5; f(t)dt. Then ~ ' ( x )  = f ( x )  for all x  E [0,1]. In 

particular, F' = 0  on each interval contiguous to P, so F is constant on each such interval. 

Let I  be an open interval intersecting P with p(P n I) > 0. Then p(E n I )  > 0  and we 

see that ~ ' ( x )  > 0  for all x  E E n I and so F is not constant on any such interval. Since 

p(P)  > 0  there must be such an interval and we know F is not a constant function. 

Step 3. Set P := [O, 11 \ P. Then P = Ur=l(an, b,) and P is everywhere dense in [0, 11. 

By Lemma 2.4, we can find g on [0, 11 such that 

(i) g is approximately continuous on [0, 11; 

(ii) g is continuous on [a,, b,] for each n = 1,2,. . . and Cg = P and g(x) = 0  for x  E P; 

(iii) On (a,, b,) = (c, - h,, c, + h,) we have g(c,) = 1  and g, connects 0  and 1  linearly 

on [c, - ih,, c,] and [c,, c, + i h,] and 0  otherwise. 

Consider h  := f +g. Then h  is approximately continuous and so it is a bounded derivative on 

[O,  11. Define G : [O, 11 + R by G(x )  := 5; g(t)dt and H : [O,  11 + R by H(x )  := 5; h(t)dt. 

Thus H = G +  F. 

Step 4. We claim &G(x) = &H(x)  for all x  E [ O , l ] .  Indeed, h(x)  = g(x) for all x  E P 

and h(x )  = f ( x )  for all x  E P. Noting that 0  < f (x) 2 1 we have 

dcH(x) = aCG(x) = [O,1] for all x  E P. 
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Since F  is continuously differentiable on P we have d c H ( x )  = a c G ( x )  + V F  ( x ) .  However 

V F ( x )  = 0  for all x  E P. Therefore 

& H ( x )  = a c G ( x )  = g ( x )  for all x  E P. 

We summarize our construction as a theorem. 

Theorem 2.6 There are two Lipschitz and everywhere differentiable functions H  : [O, 11 + 

R and G : [O,  11 + R differing by more than a constant such that 

d c H ( x )  = d c G ( x )  for all x E [0 ,  11. 

Remark 2.3 From the construction, each Cantor set with positive measure gives a pair of 

such functions. Choosing different Cantor sets with positive measure will give us  different 

pairs of such functions. In  fact, given one Cantor set with positive measure we can make 

uncountably many differentiable functions differing by more than constants such that they 

share the same C-subdifferential. It is not because the functions themselves are pathological, 

such a pathological situation arises from the upper semicontinuity which nonsmooth analysts 

impose on the C-subdifferential map. 

Combining Theorem 2.6 and Theorem 2.2 we have: 

Corollary 2.7 There are two Lipschitz and everywhere differentiable functions H : [O, 11 + 

R and G : [O, 11 + R differing by more than a constant such that 

da H ( x )  = a a G ( x )  for all x E [O, 11. 

2.4 Locally Lipschitz functions 

It  is easy to construct a locally Lipschitz function on R whose acf  and 8, f differ on a 

given countable set. However for a locally Lipschitz function on R its C-subdifferential and 

A-subdifferential must coincide except on a countable set (due to Katriel [ 2 2 ] ) .  

Lemma 2.11 Let g  be a locally Lipschitz function defined on I ,  x  E I and r E d c g ( x )  \ 
a a g ( x )  and let g , ( y )  := g ( y )  - T - y .  Then there is  a e > 0  such that g, is strictly increasing 

o n  [x  - e ,  x ]  and g, is strictly decreasing on [ x ,  x  + € 1 .  
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Proof. By assumption 0 E &g,(x) and 0 $! aag,(x). Denote g, by f .  Suppose f is not 

decreasing on (x, x+e) for any e > 0, then there are y, y1 with x 2 y < y' 5 x+e and f (y) < - 
f (yr). Since dc f (x) = iWZ& f (x) and a, f (x) is compact, we have dc  f (x) = convd, f (x) 

by Theorem 1.4.3 [17]. Hence 0 E a, f (x) implies 8, f (x) contains a negative number. Thus 

each neighborhood of x contains a point z such that a E a- f (z) for some cr < 0 because 

a, f (x) = lim sup,,, d -  f (2). In particular we may choose z E (x - e, y). The fact that 

a E d- f (z) and a < 0 implies that for some zf < z close enough to z, f (2') 2 f (2). We 

choose any such z1 which also satisfies zf E (x - e, y). Therefore we have the following 

situation: x - e < z1 < z < y < y' < x + e and f (2') 2 f (z), f (y) 5 f (y'). Thus f attains 

its minimum at an interior point w E (zl, yt), so 0 E aa f (w) while Iw - X I  < c. Since such w 

can be found for every e > 0 and that a, f is upper semicontinuous we get 0 E aa f (x). This 

contradicts the assumption 0 $! da f (x). Therefore for some e > 0, f is strictly decreasing 

on (2, x + e). The fact that for some e1 > 0, f is strictly increasing on (x - el, x) is proved 

in an analogous way. 0 

Theorem 2.7 Let f : R + R be locally Lipschitz. Then 

is at most countable. 

Proof. Let A := {x E RI 8, f (x) # a, f (x) ). Letting Q denote the rationals, we define for 

each T E Q: 

Ar := {X € P I  T E acf(z),r $! aa f (~ ) ) .  

We claim A = UrEO A,. Suppose that x E A but x $! UrEQ A,. Then for any r E Q we have 

T E a, f (x) if r E dc f (x), that is a, f (x) n Q = aa f (x) nQ. Since acf (x) and a a f  (x) are 

both closed, so a, f (x) = a, f (x), a contradiction. Applying Lemma 2.11 we see that each 

A, is at most countable so is A. 0 
In fact for a locally Lipschitz function on R if we know a, f we actually know a, f .  That 

is, if two locally Lipschitz functions have the same C-subdifferentials then they have the 

same A-subdifferentials. To see this we use Borwein and Fitzpatrick's Theorem [5] .  It  

states that d a  f is either a single closed interval or a union of two closed intervals and we 

can calculate d a  f from a, f .  [Compare Theorem 4.81 
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Theorem 2.8 Let g be locally Lipschitz on I and x E I .  Suppose dcg(y) = [a(y), P(y)] then 

&g(x) = [lirnninf ~ ( y ) ,  limsupfl(y)] U [liminf cr(y), limsupp(y)] 
YEN y-z+ 

y-2- Y - 2  

YCN uCN YEN 

for each Lebesgue null set N .  

Proof. We need to show that r E dcg(x) \ d,g(x) if and only if 

lim supp(y) < r < lim inf a(y). 
y+z+ y--*z- 

Let l i r n s ~ p ~ , ~ +  P(y) < r < liminfY,,- a(y). Then there are e > 0 and 6 > 0 such 

that p(y) 5 r - E for x < y < x + 6 and a(y) 2 r + e for x - 6 < y < x. Now let 

y* E d-g((x - 6, x + 6)). Then there is y E (x - 6, x + 6) such that g-(y) 2 y* 2 g-(y). We 

consider two cases: 

(i) 

(ii ) 

If y 2 x then for t < 0 with x - 6 < y + t  we have 

9(y + t )  - g(y) 
a,g(z) t 

for some z E (x - 6, y) by the Lebourg Mean Value Theorem [13] and so y* > r + e .  

If y > x then for t > 0 with y + t < x + 6 we have 

S(Y + t )  - g(y) 
acg(z) t 

for some z E (y, x + 6) by the Lebourg Mean Value Theorem again, so y* 5 r - e. 

Thus (y* - rl > e and so 

$Z d-g((x - 6, x + 6)). 

Since this is true for any sufficiently small 6 > 0, it follows that r E &(x) \ dag(x). 

Conversely suppose r E dcg(x) \ dag(x). Since d,g(x) is closed there are q < r < s such 

that (q, s) C dcg(x) \ dag(x). By Lemma 2.11 there is e > 0 such that both gq(y) := g(y) -qy 

and g,(y) := g(y) - sy are strictly increasing on [x - e, x] and strictly decreasing on [x, x + €1. 
Thus dcg,(y) c [0, +m) for any x - e < y < x and dqg(y) C (-m, 01 for any x + e > y > z. 

Thus 

dcg(y) C [s, +m) for x - e < y < x 
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and 

Hence 

limsupp(y) 5 q < r < s < liminf a ( y )  
y-x+ y-+z- 

as required. 

Example 21 Let us take the Rockafellar function f : R -+ R such that 8, f (x) = [O, 11 for 

all x E R (see Example 7) .  By Theorem 2.8 we get a, f ( x )  = 8, f ( x )  = [O,  11 identically for 

all x E R. 

Let a and P be any two continuous functions defined on I such that a 5 P. Then 

by Theorem 1.2 [5] there is a locally Lipschitz function g : I + R such that & g ( x )  = 

[a("), P ( x ) ] .  By Theorem 2.8 we have 

In fact we can say much more for a locally Lipschitz function on R. 

Theorem 2.9 Let f be locally Lipschitz on I .  T h e n  the following are equivalent: 

( i )  f i s  A-integrable o n  I C R ;  

(iz) f i s  C-integrable o n  I C R ;  

(i i i)  f i s  almost everywhere strictly differentiable; 

( i v )  f '  i s  R i e m a n n  integrable. 

Proof. (iii) -+ (ii): Let f be almost everywhere strictly differentiable. Then f is an 

essentially strictly differentiable function. By Corollary 4.6 [ I ]  f is C-integrable. 

(ii) --+ (iii): Let f be C-integrable. Then d, f is singleton almost everywhere. Indeed if 

not, set gl ( t )  := sup dc f ( t )  and g2(t)  := inf a, f ( t) .  Since 3, f is a cusco we deduce gl and g2 

are locally-bounded measurable selections of d, f .  Then { t  E I : g l ( t )  # g 2 ( t ) )  is of positive 

measure. Define 

F ( x )  := & g l ( t ) d t  and G ( x )  := & g2(t)dt.  
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Thus F and G are locally Lipschitz functions and their C-subdifferentials lie in dc f but 

F - G # constant. Since dc f is C-integrable it has a minimal subdifferential and we get 

This implies f is not C-integrable, a contradiction. 

( i )  (j (ii): Let f be C-integrable. Suppose that dag C aa f .  Then convdag(x) C 

convd, f ( x ) ,  that is dcg(x)  C dc f ( x ) .  Thus f - g is constant. Conversely let f be A- 

integrable. Suppose acg C d c f .  By Theorem 0.2 [5] there exist a and P ,  a < P ,  which 

are essentially lower semicontinuous and essentially upper semicontinuous respectively such 

that dcf ( x )  = [ a ( x ) , @ ( x ) ]  for all x E I .  Similarly for g there are & and 6,  & 5 6,  which 

are essentially lower semicontinuous and essentially upper sernicontinuous respectively such 

that dcg(x)  = [ & ( x ) ,  &x)]  for all x E I .  Thus a 5 & and 6 5 P. By Theorem 2.8 we know 

da f ( x )  = [lim,ninf a ( y  ) , lim sup P(y)]  U [lim inf cr ( y )  , lim sup p ( y ) ]  
Y C N  U - Z +  

I -r-  U 4 z 

u C N  u C N  v 4 N  

and 

It is clear that 

liminf a ( y )  < liminf&(y) and limsup@(y) 2 l i m s ~ ~ & ~ ) .  
y - z -  8 - z -  p z +  y - z +  

Y C N  Y C N  r 4 N  v C N  

Therefore dag C da f .  Hence f - g is a constant on I. 

(iii) (j ( i v )  is Theorem 6.29 in [28]. 0 
Combining Theorem 2.9, Theorem 2.5 and Fact 1.1, we are now ready to state two 

important results. 

Corollary 2.8 In  the complete metric space ( M A , p ) ,  the set of functions which are C- 

integrable forms a set of first category. 

Corollary 2.9 In  R the four classes of locally Lipschitz functions are equivalent: 

( i )  Sainely Lipschitz functions; 
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(ii) Essentially strictly differentiable Lipschitz functions; 

(iii) C-integrable Lipschitz functions; 

( iv)  A-integrable Lipschitz functions. 

2.5 Locally Lipschitz functions with prescribed subdifferen- 

t ials 

It is natural to ask now whether we can construct locally Lipschitz functions with sev- 

eral continuous curves inside their subdifferentials. Here is a result due to Borwein and 

Fitzpatrick [5]. 

Theorem 2.10 Let I be an open interval i n  R and a and P on I such that a < P ,  a is  

essentially lower semicontinuous and /3 is essentially upper semicontinuous. Then there is  

a locally Lipschitz function g : I + R such that dcg(x)  = [a(%), P ( x ) ]  for all x E I .  

They also give a generalization of the classical result about the uniform convergence of 

derivatives. By adding the C-integrability condition, we get an improved result. 

Theorem 2.11 Let { h g )  be a sequence of locally Lipschitz functions on an open interval 

I such that &hk converges uniformly i n  the Hausdorff metric to  an upper semicontinuous 

compact interval-valued multifunction R on I .  Let hk be C-integrable and h k ( 0 )  = 0 for 

each k .  Then there exists a locally Lipschitz function go on I which is C-integrable such 

that acgo = R and hk  converges uniformly to  go on compact subintervals of I .  

Proof. Let achk = [ak, Pk] for each k = 1,2,  .... Then ag and Pk converge to a0 and Po 
uniformly with R = [ao, Po]. By Theorem 1.3 [5],  we can find a sequence of locally Lipschitz 

functions gk with &gk = [ak,  P g ]  and gk(0) = 0 such that gg converges to go uniformly 

on compact subintervals of I and &go = [cuo,Po]. Since hk is C-integrable, we see that 

hg - gg = ck. Note that gg(0) = hg(0) = 0 and so hg = gg on I .  

To see go is integrable we can use Theorem 2.9. Since each hg is C-integrable, hg is 

almost everywhere strictly differentiable and so achk is single-valued except a null set Nk. 

Letting N : = U g  Ng , we know R is single-valued on I \ N and so 52 is single-valued almost 

everywhere. By Theorem 2.9 we know go is C-integrable. 0 
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Example 22 In Theorem 2.11 the uniform convergence in the Hausdorff metric is essential. 

Let { fn : n E N) be defined on R such that a, fn(x) = [O,Pn(x)) with Pn(x) := min(nlx1, 1) 

for each x E R, as ensured by Theorem 2.10. Then the point-wise limit of Pn is Po defined 

0, i f x = O  
Po(4  := 

1, otherwise. 

Now let n(x) := [0, Po(x)]. a, fn does not converge uniformly in the Hausdorff metric to Q. 

It is obvious that Q is not a C-subdifferential since 0 is not an usco or Po is not essentially 

upper semicontinuous at 0. 0 

We can use Theorem 2.10 to construct a large class of pathological Lipschitz functions. 

Example 23 Let cu < P and cu and P are continuous on I. Then by Theorem 2.10 there 

exists a locally Lipschitz function g : I + R such that 

for all x E I. Then g is not sainely Lipschitz. By Theorem 1.1 in [29] we know the set 

of points where g is C-regular but not differentiable is at most countable. Hence g is also 

C-regular at no more than countably many points. 

It is clear that g is nowhere strictly differentiable on I. Giles and Sciffer have shown that 

for a locally Lipschitz function defined on an open set the set of points where it is Gateaux 

differentiable but not strictly differentiable is of first category [15]. Hence g is differentiable 

only on a first category subset of I. The set of points where g is C-pseudo-regular is residual 

but is disjoint from the set of points where g is differentiable. 0 

Example 24 Every G6 subset of (a, b) is the set of points of strict differentiability of a 

Lipschitz function on (a, b). 

To see this, let G be a G6 subset of (a, b) then there are closed subsets Fn of (a, b) such 

that G := (a, b) \Un Fn. Let R(x) := [0, C, ~ ~ , , / 2 ~ ] .  Q is cusco because En ~ ~ ~ / 2 ~  is upper 

semicontinuous as a uniform limit of upper semicontinuous functions. En ~ ~ , , / 2 ~  can be 

decomposed into two bounded essentially upper semicontinuous continuous functions. By 

Theorem 2.10 there is a locally Lipschitz g : I + R such that diam[dcg(x)]=diam[f2(x)] 

for all x E (a ,  b). Now g is strictly differentiable at x if and only if 0 = diam[a,g(z)] = 
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diam[R(x)]. But diam[R(x)] = 0 if and only if x F, for all n, so G is the set of points at 

which g is strictly differentiable. 

Theorem 2.2 [9] shows that a set A C [a, b] is the set of points of continuity of a bounded 

derivative if and only if A is dense and of type G6. Hence if G is dense in (a, b), we can in 

fact find a locally Lipschitz function whose derivative function is continuous at each point 

of G and discontinuous at each point of (a, b) \ G. 0 

Example 25 We can use Example 24 to construct a locally Lipschitz function on R such 

that it is almost everywhere C-irregular but C-regular on a set of second category. 

Indeed, by Theorem 1.6 in [24] we can decompose R into two sets: one is of first category, 

the other is a Gb set with zero measure. Denote them by F and G respectively. Then there 

is a Lipschitz function f on R such that f is strictly differentiable on G. obviously f is 

C-regular on G. On F we see that f is almost everywhere C-irregular since C-regularity 

and Gateaux differentiability together result in a, f singleton. It follows that f is C-regular 

at least on a second category set but C-irregular almost everywhere. 0 

Example 26 Let C be a Cantor set in I. Let a := 0 and P(x) := dc(x). Then there exists 

a locally Lipschitz g on I such that &g(x) = [0, dC(x)] for each x E I. It follows that g is 

nondecreasing and strictly differentiable exactly at the points of C.  

We close with a result by Sciffer [29] which says that a locally Lipschitz function can be 

C-irregular everywhere. 

Theorem 2.12 There exists a locally Lipschitz function f : (0 , l )  + R which is nowhere 

C-regular. 

We sketch his construction. Let E C R be a ubiquitous set (see Example 7). That is, for 

any nondegenerate open interval I C R we have 0 < p(E  i l  I )  < p(I). Define 

Then f is locally Lipschitz and C-regular at most at countably many points. The metric 

interior of E corresponds to those points where f '(x) = 1, and the metric interior of (0 , l )  \ E 

to where f l (x )  = 0. The metric boundary of E is those points where either f or - f is C- 

regular but not differentiable. Sciffer constructed E in a special way such that the metric 
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boundary of E in (0 , l )  is empty. Thus f is nowhere C-regular on (0, l ) .  However, we 

should note that the set of points where f is C-pseudo-regular but not differentiable is a 

dense Gg set with measure 0. These points where f is C-pseudo-regular lie in the "fuzzy 

metric" boundary of E. . 



Chapter 3 

Clarke subdifferent ial 

We begin with two examples to illustrate that given any countable set we can construct a 

globally Lipschitz function with its C-subdifferential not singleton exactly on the countable 

set. For examples in several dimensions see Example 40 and Corollary 4.2. 

Example 27 Let {T,):=~ be an enumeration of Q. Define f, by fn  (x) := 1 if x > rn and 

f,(x) := 0 for all other x E R (see [16] page 113). Let f (x) := CT=l 2-nfn (~)  for all x E R. 

Then f is Lebesgue measurable and satisfies the following properties: 

(a) f is strictly increasing; 

(b) f is left continuous; 

(c) f is continuous at each irrational number; 

(d) f is discontinuous at each rational number; 

(e) limz*m f (x) = 1; 

(f) lim,,-, f (x) = 0. 

Define g(x) := Jt f ( s ) d s .  By the Criterion of Increasing Slopes [17] we know g is convex 

and Lipschitz on R. It is clear that &g(rk) = [f (rk), f (rk) + $1 for each r* and at any 

irrational point &g is singleton. 0 
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Example 28 Define 

u, i f u < O  
1 m, i f & < u < i  

1, if u > 1. 

1 Consider the function g(x) := Jt q!(u)du. Again g is convex and &g(i) = 41 for 
k = 1,2, ... 0 

Definition 3.1 A set-valued map T : RN -+ 2RN is  said to be n-cyclically monotone 

provided 

whenever n > 2 and xo, X I , .  . . , x, E R ~ ,  x, = xg, and x i  E T(xk), k = 1,2,3,.  . . , n. W e  

say T is  cyclically monotone if it is n-cyclically monotone for every n. A monotone 

operator T is said to be maximal cyclically monotone provided T = S whenever S is  

cyclically monotone and G(T) C G(S). 

Clearly, a 2-cyclically monotone operator is monotone; and a maximal monotone operator 

which is cyclically monotone is necessarily maximal cyclically monotone. As shown in [26], 

on a Banach space the subdifferential of every lower semicontinuous proper convex function 

is a maximal cyclically monotone operator and every maximal cyclically monotone operator 

is a maximal monotone operator. Every C-subdifferential is a cusco but our next example 

shows the converse may fail. 

Example 29 Following Example 2.21 in [25], we set T(x, y) := (y, -x). Then T is a cusco 

and a monotone operator. We claim there is no locally Lipschitz function in R~ such that 

8, f = T. Indeed, by Proposition 2.2.4 [13] we know 8,. (x) reduces to a singleton at x if 

and only if f is strictly differentiable at x, and so T = V f = 8, f .  Since T is monotone so f 

is convex. It is known that 8, f is cyclically monotone. However, checking the points (1, I), 

(0 , l )  and (l,O), we find T is not 3-cyclically monotone, a contradiction. 0 

In convex analysis, a convex function defined on an open set U is characterized by its 

subdifferential 8, f .  That is, f is convex on U if and only if 8, f is a maximal cyclically 

monotone operator. Most importantly f can be uniquely determined by its 8,f up to 

a constant [26]. In other words, convex functions are integrable. For locally Lipschitz 
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functions which are not convex, there may be many functions whose differences are not a 

constant but they share the same C-subdifferential (see Example 16). 

3.1 Convex case 

Let us suppose that T is a C-subdifferential map, can we recover a locally Lipschitz function 

such that dc f = T ? The following theorem is due to Rockafellar [26]. 

Theorem 3.1 If T : U --t 2RN is a maximal cyclically monotone operator, with D(T) # 0 ,  
then there exists a proper convex lower semicontinuous function f on U such that T = dc f . 

In his proof, Rockafellar used the cyclical property of T to get the following function: 

where the supremum is taken over all finite sets of elements xk E D(T) and x; E T(xk) 

for k = 1,2, ..., n, n = 1,2,3, .... He showed that f is proper convex lower semicontinuous 

and dc f = T. If we require T ( x )  # 0 for each x E U, then f is locally Lipschitz on U (see 

Theorem 3.1.2 [17]). 

3.2 Lipschitz case 

Our main goal in this section is to provide a technique for constructing a class of Lipschitz 

functions with prescribed Cs~bdiffe~entials in several dimensions. Using this construction 

we construct some examples of pathological locally Lipschitz functions. For example we can 

show that given any polytope P C R~ there exists a real-valued globally Lipschitz function 

g,  defined on RN, such that 0, f = P identically. Here is the main result by Borwein, Moors, 

and Wang [7]. The theorem is actually true in the separable Banach spaces, we only give a 

version in R ~ .  

Theorem 3.2 Let f l ,  f 2 ,  . .-, f n  be real-valued locally Lipschitz functions defined on a 

non-empty open subset U C RN. If each function f j  possesses a minimal C-subdifferential 

mapping on U ,  then there exists a real-valued locally Lipschitz function g defined on U such 

that d,g(x) = conv{dc fi (x), dc f i ( x ) ,  - .  . , dc fn(x)) for each x E U. 
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3.2.1 Lemmata 

Lemma 3.1 Let g,  f l ,  f 2 ,  - a ,  f n  be real-valued locally Lipschitz functions defined on a non- 

empty open subset U C R ~ .  If V g ( x )  E { V  f l ( x ) ,  V f 2 ( x ) ,  . . a ,  V f n ( x ) )  almost everywhere 

i n  U ,  then dcg(x )  C conv{dc f l ( x ) ,  d c f 2 ( x ) ,  . . . , a C f n ( x ) )  for all x E U .  

Proof. Consider the set-valued mapping T : U + 2RN defined by T ( x )  = U{dc  f j ( x )  : 1 5 

j < n ) .  Clearly T is an usco mapping on U ,  hence by Lemma 7.12 in [25] the mapping 

T* : U -+ 2X* defined by 

is a cusco on U .  By Theorem 1.4.3 [17] the closure operation is superfluous since T ( x )  is 

a compact set for each x .  Now from the hypothesis we have that V g ( x )  E T 8 ( z )  almost 

everywhere in U .  Since C-subdifferential is the minimal cusco containing V g ,  so &g(x)  C 

T 8 ( x )  for all x E U .  0 

Lemma 3.2 Let { G ,  : n E N) be a family of Lebesgue measurable subsets of R. If for each 

n E N ,  G ,  has positive measure and inG, # 0 ,  then there exists a subset E r U { E n  : n E 

N )  of R such that: 

( i )  Each set En is compact and nowhere dense i n  R; 

(ii) For each n E N ,  p(Gn n E )  > 0 and G n  \ ( U { E j  : 1 < j 5 n ) )  # 0; 

(iii) If  p(Gn \ ( U { E j  : 1 < j < n ) ) )  > 0 ,  then p(Gn \ E )  > 0 .  

Proof. We proceed by induction. 

S t e p  1. Set E ,  0 and T ,  E 1. Now suppose the compact nowhere dense sets E,, a ,  En 

and positive numbers r,, . -, T ,  have been chosen. 

S tep  n+l. We consider two cases: 

(a) if p(Gn \ (U&O E m ) )  = 0 ,  let En+1 = 0 and r,+l = T ,  

(b) if p(Gn\(Uz=o E m ) )  > 0 ,  then choose 0 < rn+l < min{r,, ..., rn,  p(Gn\(Uk=o E m ) ) ) .  

By Exercise 5 on page 307 in [28], there exists a compact nowhere dense set En+1 C 

G, \ (U;=, Em)  with 0 < ~ ( E n + l )  < a. 
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We claim that the set E E U,"=-, Em satisfies the requirements of the Lemma. By the 

construction, each set Em is compact and nowhere dense. Therefore G n  \ U { E j  : 0 2 j 5 
n )  # 0.  That p(Gn n E) > 0 for each n follows, in the first case, from the fact that 

and in the second case from the fact p(Gn r l  E )  2 P ( E ~ + ~ )  > 0. So to complete the proof 

we need only show that the set E satisfies condition (iii). This follows from the following 

calculation: 

Remark 3.1 For us, the most important application of Lemma 3.2 is  to sets constructed 

i n  the following manner. Let f be a real-valued locally Lipschitz function defined on an open 

interval I .  Let M be a dense and Lebesgue measurable subset of I .  Then 

( i )  f ( M )  is  Lebesgue measurable; 

(ii) i f  p ( f  ( M ) )  > 0, then intf ( M )  # 0 .  

(i) Since Lebesgue measure on R is regular, there exists a family {Cn : n E N )  of 

compact subsets of M such that p ( M  \ U{Cn : n E N ) )  = 0. NOW f ( M )  = f (U{Cn : n E 

N ) )  U f ( M  \ U{Cn : n E N ) )  and 

f ( u { C n  : n E N ) )  = ~ { f  (C,) : n E N ) .  

The latter is a-compact. Therefore to see that f ( M )  is Lebesgue measurable, we need only 

observe that since f is locally Lipschitz f ( M  \ U { C n  : n E N ) )  is Lebesgue measurable, 

with Lebesgue measure zero by Lemma 6.87 [28]. 

(ii) Since f is Lipschitz, f ( I )  is a connected subset of R. However, since p ( f  ( I ) )  2 

p ( f  ( M ) )  > 0, f ( I )  must be a non-degenerate interval in R. Since M is dense in I ,  f ( M )  is 

dense in f ( I )  and so intf ( M )  = int(f ( I ) )  # 0. 0 
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Lemma 3.3 Let X : R -+ R be locally Lipschitz on R. Suppose @ : U -+ R is locally 

Lipschitz where U is an open set in RN. Define f : U -+ R by f (x) := X(@(x)). Then 

V f (x) = X1(@(x))~@(z)  a.e. on U 

Proof. By the Rademacher Theorem 1141 V f (x) and V@(x) exist on U a.e. and A' exists 

a.e. on R. 

Suppose that Vf (x) # X1(@(z))~@(x) on E C U with p(E) > 0, then for some i, we have 

has positive measure. .Express RN as R(e;) $ e l .  By the Fubini Theorem (Theorem 6.124 

[28]), for some 2 € eel, A := {tl 3 + te; E E;) c R has positive measure. Note that X is 

absolutely continuous and @ is locally Lipschitz. By Lemma 6.87 [28] and the Rademacher 

Theorem, we can use Theorem 6.93 [28] to get 

a f a@ 
-(3 + te;) = X1(@(3 + tei))-(3 + tei) a.e. on A. 
ax ax; 

This is a contradiction. 0 
Note that the function XI is really short-hand notation for any function agreeing a.e. 

with A'. We now give an example showing that Lemma 3.3 is not true if the range of @ is 

in higher dimensions. 

Example 30 Let @ : R -+ R ~ ,  @(x) := (x,0) for any x E R and X : R2 -+ R, X(a, b) 0 

for any ( a ,  b) E R2. Now take h : R2 + R2, h(a,b) = (1,O) if b = 0 and (0,O) otherwise. 

Then VX = h a.e. on R2, f 1  G 0 on R, but (h(@(x)), V@(x)) = 1 for any x E R. 0 

The next Lemma is a special case of Lemma 6.92 in [28]. 

Lemma 3;4 Suppose that f is a locally Lipschitz real-valued function defined on an open 

interval (a, b) of R. If E is a Lebesgue measurable subset of (a, b) and p(f (E)) = 0, then 

f = 0 almost everywhere on E. 

3.2.2 Proof of the main theorem 

Proof. The proof is presented in two parts. 
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Part I. Let { y ,  : n E N )  be a dense subset of S ( R ~ )  and let { x ,  : n E N )  be a dense 

subset of U .  In this part we show that given any finite family of real-valued locally Lipschitz 

functions { h l  , ha,  . . ., h i )  defined on U ,  there exists a real-valued locally Lipschitz function 

g  defined on U  such that: 

(a j )  &g(x )  c conv{achl(x) ,  &h2(x ) ,  - .  9 ,  d c h j ( x ) )  for each x  E U  and 

V g ( x )  E { V h l ( x ) ,  V h 2 ( x ) ,  - - .  , V h j ( x ) )  almost everywhere in U ;  

(bj)  for each 1 5 k  5 j and n , p  E N, the subsets M j ( n , p ,  k )  C R defined by M j ( n , p ,  k )  E 

{t E R : g l (xn  + ty,; yp) = h;(x,  + ty,; y,)) meet every open interval in {t E R : 

x ,  + ty ,  E U )  positively. 

We proceed by induction. 

Step 1. Let hl be any real-valued locally Lipschitz function defined on U  and let g  G h l .  

Then clearly g  satisfies (al) and (bl)  with respect to the locally Lipschitz function h i .  

Suppose the first m steps of the induction have been completed. That is, suppose that 

given any m locally Lipschitz functions k l ,  ka,  ., k ,  defined on U ,  there exists a locally 

Lipschitz function g defined on U  such that (am) and (bm) are satisfied with respect to the 

functions k l ,  kq, . -, k,. 

Step m+l. Let h l ,  hq, . - -, h,+~ be real-valued locally Lipschitz functions defined on 

U .  For each 1 5  i 5 m, define c; : U  + R by c; h i -hm+l  and c,+l : U  -t R by 

C,+l E 0. 

By the induction hypothesis, there exists a real-valued locally Lipschitz function g  de- 

fined on U  such that g  satisfies (a,) and (b,) with respect to the locally Lipschitz functions 

C 1 ,  C 2 ,  .", C m -  

For each n , p  E N,  let {U,(n,p)  : r E N) be a family of bounded open intervals in 

{ t  E R : x ,  + t y p  E U ) ,  which form a topological base for the relative topology on {t  E R : 

x ,  +typ E U ) .  Note that without loss of generality, we may assume that for each n , p ,  r E N ,  

U T ( n , p )  C {t E R : x ,  + ty ,  E U ) .  

For each 1 5 k  5 m and each n , p ,  r E N,  let 
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Let us also set 

G {G, : n E N )  

{ G ( n , p , r , k ) : l I k I r n ,  n , p ,  r E N a n d p ( G ( n , p , r , k ) ) > O ) .  

It follows from Remark 3.1 that each member of G is Lebesgue measurable and that i n t K  # 
0 for each n E N. Therefore the family of sets G satisfies the hypothesis of Lemma 3.2. Let 

E = U{E, : n E N) be the subset of R given in Lemma 3.2 associated with the family of 

sets G. Define gm+l : U + R by gm+l(x) XE(~(X)) where 

t 1, if s E E 
XE(t) - /O x,y(~)ds and X E ( ~ )  = 

0, otherwise. 

Clearly g,+l is real-valued and locally Lipschitz on U. We claim that gm+l satisfies (a,+l) 

and (b,+l) with respect to the locally Lipschitz functions cl, cz, . - ., cm+l defined on U. 

To see that g,+l satisfies (a,+l). Observing that since E is a Bore1 subset of R, we may 

apply Lemma 3.3 to get that Vgm+l (x) = xE(g(x)) . Vg(x) almost everywhere in U. Now 

by assumption Vg(x) E {Vcl (x), Vc2(x), . a ,  Vcm(x)) almost everywhere in U. Therefore, 

almost everywhere in U. Furthermore, by Lemma 3.1 we also have that 

Next we show that gm+l satisfies (b,+l). To this end, fix 1 5 k 5 m and n ,p  E N. Also 

fix r E N, corresponding to the open interval U, (n, p). We consider two cases: 

(i) Suppose p(G(n,p,r, k)) > 0. Then by the construction of the set E given in 

Lemma 3.2, p(G(n, p, r, k) n E )  > 0. Let 

Since the mapping t + g(x, + typ) is locally Lipschitz on U,(n,p), so p(A) > 0. Therefore 

by Lemma 3.3 

for almost all t E A. Hence, p(Mm+l(n, p, k) n Ur(n, p)) > 0. 
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(ii) Suppose that p ( G ( n , p ,  T ,  k ) )  = 0.  Then by Lemma 3.4, d ( x n  + t yp ;  yp)  = 0 for 

almost all t E M m ( n , p ,  k )  n U,(n ,p)  and so by Lemma 3.3, we have that 

for almost all t E M m ( n ,  p, k )  n U,(n, p).  From this, it follows that 

We now show that ~ ( M , + ~ ( n , p ,  m + 1)  n U r ( n , p ) )  > 0 for each n, p, T E N .  Again, fix 

n, p, T E N and consider the set G ( n , p ,  T ,  1) (in fact, it suffices to consider any one of the 

sets G ( n , p ,  T ,  k )  with 1 5 k 5 m). We examine three more cases: 

(iii) Suppose that p ( G ( n ,  p, T ,  1 ) )  = 0. Then by Lemma 3.4, g' ( x ,  + t yp ;  yp)  = 0 for 

almost all t E M m ( n , p ,  1 )  fl U r ( n , p )  and so by Lemma 3.3 

for almost all t E M m ( n , p ,  1 )  n U,(n,p) .  Hence p(Mm+l(n ,p ,  m + 1) n V,(n ,  p ) )  > 0.  

(iv) Suppose that p ( G ( n ,  p, r ,  1 )  \ E )  > 0.  Let 

Since the mapping t + g ( x ,  + t y p )  is locally Lipschitz on U,(n ,p) ,  p ( A )  > 0.  Now by 

Lemma 3.3 

for almost all t E A. Therefore p(Mm+i(n ,  p, m + 1)  n U,(n, p ) )  > 0.  

( v )  Suppose that p(G(n ,p , r ,  1 ) )  > 0 and p(G(n ,p , r ,  1 )  \ E )  = 0. Recall that since 

p ( G ( n , p ,  r ,  1 ) )  > 0 ,  G ( n , p ,  r ,  1 )  = G s  for some s  E N and so by the construction of the set 

E given in Lemma 3.2, we know that p(GS \ U { E j  : 1 5 j 5 s ) )  = 0 and G s  \ U { E j  : 1 I 
j 5 s )  # 8. Let 
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We claim that A has positive measure. To see this, observe that since g is locally Lipschitz 

and U{Ej  : 1 5 j 5 s) is closed, {t E U,(n,p) : g(xn + typ) $! U{Ej : 1 2 j 5 s)) V is 

a non-empty open subset of U,(n, p). The proof of the claim is completed by noticing that 

A = M,(n,p, 1) r) V. Now, by Lemma 3.4 we must have gl(xn + typ; yp) = 0 for almost all 

t E A and so 

for almost all t E A. Hence p(Mm+i(n,p, m + 1) n U,(n,p)) > 0. 

At this stage, we have shown that gm+l satisfies (am+l) and (bm+i) with respect to 

the locally Lipschitz functions ci, ~ 2 ,  . ., c,, cm+l. 

Define e : U + R by e(x) gm+l(x) + h,+l(x). It is clear that Ve(x) = Vgm+l(x) + 
Vhm+l(x) almost everywhere in U. Hence by the above argument 

almost everywhere in U. In addition to this, we note that for each 1 5 i 5 m, Vc;(x) = 

Vh;(x) - Vh,+i(x) almost everywhere in U. Thus 

almost everywhere in U. Now by Lemma 3.1 we also have 

for each x E U. Further to this, for each n, p E N 

for almost all t E {t E R : xn + typ E U). It  now follows that the function e satisfies (am+i) 

and (bm+i)  with respect to the locally Lipschitz functions hi, h2, - .  a ,  hm+i defined on U; 

which completes the induction. 

Part 11. Let f l ,  f2, . . ., fn  be real-valued locally Lipschitz functions defined on U whose 

C-subdifferential mappings are minimal. By Part I we know that there exists a real-valued 
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locally Lipschitz function defined on U which satisfies (a,) and (b,) with respect to the 

locally Lipschitz functions f l ,  f 2 ,  . ., f,. In this part we shall show that for this function g 

Of course, it suffices from Part I to show that 

Since each function f j ,  1 5 j 5 n, possesses a minimal subdifferential mapping, by Theorem 

1.2 [2] there exists a dense Ga subset G j  of U such that f j  is strictly differentiable at each 

point of G j .  Let G ( I { G j  : 1 5 j 5 n ) .  Clearly G is a dense G a  subset of U. We show 

that {V f l ( x ) ,  V f 2 ( ~ ) ,  . - a ,  V f n ( x ) )  C ag(x)  for each x E G. 

Suppose that this is not the case. Then there exists an element xo E G ,  y  E s ( R ~ ) ,  

a E R and 1 5 j  5 n such that 

Moreover, since dcg(xo) is a bounded subset we may choose y  = yp E {yn : n E N). By 

the definitions of gO(xo; y )  and strict differentiability, we know that there exists an open 

neighbourhood V of xo contained in U such that g+(z; yp) < a for all z  E V and f +(z ;  yp) > 
a for all z  E V. Choose x ,  E { x k  : k E N) n V and U,(m,p) such that { x ,  + t yp  : t  E 

U,(m, p ) )  C V .  Now consider a point x ,  + typ,  where t E M,(m, p, j )  n U,(m, p). Then 

I ' 

a < f j ( x m  +typ;  yp) = g l ( xm  +typ;  yp) < a which is a contradiction. 

Therefore {V f l ( x ) ,  V f2(x) ,  . . . , V fn (x ) )  C &g(x)  for each x  E G.  

Next, we fix 1 2 k 5 n and consider the function f k .  Since a, f k  is minimal, by Theorem 

2.2 [I] we have a, f k  = C S C ( a )  where a is any densely defined selection a E ac f k .  Define 

a ( x )  := V f k ( x )  when x  E G .  Then a is a densely defined selection of acg and dc f k .  As 

shown in Corollary 4.2 [2] C S C ( a ) ( x )  C a,g(z) for all x  E U. Thus dc f k ( x )  C acg(x) for 

each x  E U. Since k, 1 5 k 5 n, is arbitrary and &g(x) is convex, we must have 
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3.2.3 Application 

Theorem 3.2 provides a rich source of pathological examples. 

Example 31 Let f l ,  fp, . a ,  f n  € Se(U). Then there exists a real-valued locally Lipschitz 

function g defined on U such that 

Moreover g is C-minimal and C-integrable if and only if a, fi = dc fi = . - = 8, f,. 

To see this, it suffices to know that all functions in Se(U) are C-minimal and C- 

integrable. 0 

Example 32 Let a l ,  ap,. -, a, E RN. That is any finite number of vectors in RN. For 

each 1 5 k 5 n,  define f k :  RN + R by f k ( ~ )  := (ak,x). Then we know fk E se(RN)  for 

1 < k 5 n and so there exists a real-valued locally Lipschitz function g : RN + R such that 

d,g(x) = conv{al, ap, . - .  , a,) for all x E RN. 

Therefore every polytope arises as the constant C-subdifferential of a class of globally Lip- 

schitz functions. Moreover, g has prescribed derivatives. That is, Vg takes every point a;, 

1 5 i < n,  positively in every neighborhood and takes no other values except possibly on 

sets of measure zero. 

Let f : RN + R be locally Lipschitz and strictly Gateaux differentiable on U. Then by 

Proposition 2.3.3 [13] 

&(f + g)(x) = Vf (x) + P for all x E U. 

Thus any c1 polytope is a C-subdifferential map. CI 

Example 33 Let {TI, Tp, . - , Tn ) be a finite family of maximal cyclically monotone oper- 

ators defined on an open set U C RN.  Then Tk is a minimal cusco on U for each 1 5 k 5 n 

by Theorem 7.9 [25] .  By Theorem 3.1, for each 1 < k 5 n we can find a locally Lipschitz 

function f k  : U -+ R such that dfk(x) = Tk(x) for any x E U. By Theorem 3.2 there exists 

a real-valued locally Lipschitz function g defined on U such that 
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Thus the convex hull of a finite family of maximal cyclically monotone operators is still a 

C-subdifferential. 0 

Example 34 Let f l ,  f2, . . a ,  f, be continuously Gateaux differentiable on U and such that 

for all x E U there are i # j such that Vfi(x) # Vfj(x). By Theorem 3.2 there exists 

g : U + R locally Lipschitz such that 

&g(x) = conv{V fl(x) ,  V fi(x), . . . , V f,(x)) for all x E U. 

Note that &g is nowhere singleton on U. In [15] Giles and Sciffer proved that every locally 

Lipschitz function is generically C-pseudo-regular on the separable Banach spaces. Observe 

that if f is pseudo-regular and Gateaux differentiable at x,, then 8, f (x,) is singleton. The 

function we constructed is locally Lipschitz and Gateaux differentiable almost everywhere. 

It shows that g is Gateaux differentiable only on a first category set even though this set 

is big in measure. In addition, g is almost everywhere C-irregular. We also note that g is 

nowhere strictly differentiable. 0 

Example 35 Let f : R~ -+ R be a locally Lipschitz function with &f being a polytope, 

as ensured by Theorem 3.2. By Proposition 2.9.6 [13, page 1021, we have 

Thus N e ~ f  is a constant set map. This gives us a globally Lipschitz function on R~ whose 

C-normal cone to its epigraph is always a constant set. 0 

Example 36 Theorem 3.2 provides i s  a technique to construct the globally Lipschitz func- 

tions which are nowhere monotonic. 

Let [a, b] = [-I, 11 in R. Then there exists a globally Lipschitz function f on R with 

&f (x) = [-I, 11. Our construction shows that both {x : f l(x)  = 1, x E R) and {x : 

f l (x)  = -1, x E R) are dense in R. Thus f is nowhere monotonic on R. 0 

3.3 A convergence theorem for C-subdifferentials 

Example 37 Let { fk)  be a sequence of convex functions converging pointwise to a convex 

function f and take x E dom f . For any sequence sk E dc fk (x), the cluster points of {sk ) 
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are all in Ocf (x). But the converse inclusion is not true in general. Define f k  : R + R 

by f k ( x )  := d q .  When k - +my f k  converges uniformly to f given by f ( x )  := IrJ. 

However 

OCfk(0) = (0) and Ocf  (0) = [-I, 11. 

In order to discuss the convergence of convex sets, we need to have a measure of the "dis- 

tance" between two subsets A and B of R N .  We would like the distance between two sets 

to be small only if the two sets are nearly the same, both in shape and position. 

Definition 3.2 Let A be a nonempty convex subset of R N .  The parallel body A, is 

defined to be 

A,  := A + B,(O) 

where B,(O) is the ball centered at 0 with radius E. 

Definition 3.3 Let A and B be nonempty compact convex subsets of R ~ .  Then the distance 

D between A and B is defined as 

D ( A ,  B )  := inf{e : A C B, and B C A,). 

As shown in [23] D is a metric on the collection C of all nonempty compact convex subsets 

of R ~ .  D is a special case of Hausdorff metric for compact sets. Knowing that D makes C 

into a metric space enables us to consider the convergence of sequences of convex sets. 

Definition 3.4 A sequence { A , )  of compact convex subsets of R N  is said to converge to a 

set A i f  

lim D ( A i , A )  = 0 
i-.m 

W e  say that A is the limit of the sequence {A;)  and Emi,, A,  = A.  

The limit of a sequence of convex sets is also a convex set. The Blaschke Selection Theorem 

[23] asserts that a uniformly bounded infinite subcollection of C contains a sequence that 

converges to a member of C. Using this metric, we obtain the following convergence theorem 

for C-subdifferentials. 
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Theorem 3.3 Suppose { f,};OO=l are Lipschitz on R ~ ,  CZl f i (xo)  < 00 for  some z, E R~ 

and Cgl IIVfilloc < CQ in RN. Then f  := Cr=l fn is Lipschitz in R~ 

and 
k 

3, f  ( x )  = Lim 3 , ( x  f ; ) ( x )  for any x  E RN. 
k+oo i= 1 

Proof. First we prove sk : R~ -+ R defined by s k ( x )  := & f i ( x )  converges uniformly on 

any compact set in R~ as k + m. Applying the Fundamental Theorem of Calculus to the 

function sm - sn to obtain 

If we take y = x,, we have 

It follows that on any compact subset of RN, fi converges uniformly to a function f .  

Since { s n ) F ! l  are equi-Lipschitz, it is obvious that f  is Lipschitz globally. 

To prove the second claim, we consider two cases. On R, let s n ( x )  := Cy=l f , ( x ) .  Using the 

Rademacher Theorem, we have 

n 
in ( 2 )  = f' ( x )  a.e. on R. 

i= 1 

Then for any t E R, using Theorem 6.85 [28] 
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= sn (t) - sn (a). 

Since in(x)  5 CZl IIVfilloo a.e. for all n, we use the Lebesgue Dominated Convergence 

Theorem (Theorem 6.22 [28]) to get 

t 
f (t) - f (a) = 1 g(x)dx where g(x) = Cgl fi (x) a.e. on R. 

Hence f1  = g a.e. on R. 

On RN, consider the partials for f .  By the above, 

a f " a f k  S; = { x :  -(x)= C-(2) .  x E R ~ }  axi 
k = l  ax, 

is full measure in RN. If S; is not full measure in RN, then there exists a E C RN with 

p(E) > 0 such that g ( x )  # xEl g ( x )  on E. Since RN can be expressed as R(ei) + e:, 
using the Fubini Theorem, we have for some 3 E e l ,  the set A := {tl I + tei E E} has 

positive measure. Since A c R, g ( 3  + te,) = CEl g ( z  + tei) a.e. on A, which is a 

contradiction. So S := r)E1 S; is full measure in RN. By the Rademacher Theorem, Vf 

exists a.e. Denoting these differentiability points in RN by G( f ), we see that G( f )  is full 

measure in RN . Thus G( f )  n S is full measure in R ~ ,  which means 

00 

V f (x) = x V fi(x) a.e. on RN . 
i=l 

Now for any r > 0, there exists No such that whenever k 2 No, I1Vf - v(& f;)llw 5 r 

in RN. This means for k 2 No and fixed x 

Hence 8, f (x) = limk,, a , ( ~ f = ~  fi)(x) in the Hausdorff metric. 0 

Conjecture 1 Since any compact convex body in RN can be approximated by polytopes in 

the Hausdorff metric, we wonder whether we can construct a locally Lipschitz function on 

RN with any given compact convex body as its C-subdifferential identically by using the 

Lipschitz functions whose C-subdifferentials are polytopes. 
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Jouini [21] has given a construction showing that there is a locally Lipschitz function with 

any given convex compact set as its C-subdifferential identically in R ~ .  However his proof 

has some difficulty using the canonical projection from 1' onto its subspace and seems 

irrevocably flawed. 

Remark 3.2 It is impossible to construct a globally Lipschitz function with a polytope as 

its MP-subdifferential identically since ampf is singleton if and only i f  f is Gateaux dif- 

ferentiable. Thus i t  is also impossible to construct two locally Lipschitz functions such that 

they have the same MP-subdifferential but their difference is a not constant. This shows 

that MP-subdifferential determines the original function uniquely up to a constant. 



Chapter 4 

Approximate subdifferent ial 

In this chapter we construct some Lipschitz functions with prescribed A-subdifferentials. 

4.1 Examples 

We begin with some Lipschitz functions whose C-subdifferential and A-subdifferential are 

different on a given countable set. 

Example 38 Let h : R -r R be a monotonically decreasing function which is discontinuous 

at a countable set of points { a , ) .  Define g ( x )  := h ( s ) d s .  Then g  is a concave continuous 

function and at each an we have 

Thus for a concave function { x  : a a g ( x )  # d , g ( x ) )  = {x : g l ( x )  does not exist). 

For a nonconcave Lipschitz function a, f and 8, f can be different exactly at a given countable 

set while 8, f (a,) is the union of disjoint intervals for each n, as we show in the next example. 
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Example 39 We follow the construction in [5]. Suppose we are given a sequence {a, : n = 

1,2 , .  . .) of [0, 11. Assume a, # a, for m # n. Let 

- I x I + ~ x ~ . s i n ( l / x ) ,  i f x # O  
4(x) := 

otherwise 

where 0 5 E < 1 and define 

Then g is strictly differentiable except at a,. Also aa4(0) = [-I- E, -1 + E] U [I - E, 1 + E] 

and d+,(O) = [-1 - € , I +  €1. Letting 

Since g, is strictly differentiable at  a,, we have 

and 

Then 

(i) When E = 0, d,g(a,) # acg(an) while aag(an) consists of only the extreme points of 

a d a n ) ;  

(ii) When 0 < E < 1, aag(an) # dcg(an) while aag(an) is a union of two disjoint intervals; 

(iii) When E = 1, aag(x) = &g(x) for all x E [O,l]. 

Definition 4.1 A set E C X is called connected if there do not exist open sets O1 and O2 

i n X ,  with E c 0 1 U 0 2  a n d E n 0 1 n 0 2 = 0 .  

The next example shows that in R~ we can make daf (a,) # acf (an) even when aaf (an) is 

connected. 
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Example 40 Let f ( x )  := -11x11 on R ~ .  If the norm is the I2 norm then 

a a f  ( 0 )  = S(B12(0)) and 8 C f  ( 0 )  = BIZ ( 0 )  

where S(B12 ( 0 ) )  and Bp ( 0 )  are the unit ball sphere and the unit ball of the l2 norm respec- 

tively. 

If the norm is the l 1  norm then 

Let the norm be the l2 norm. Define f : [O, 11 x (0, 11 -+ R by 

where the an's are points in [0, 11 x [ O , l ]  with rational coordinates. Then f is Lipschitz and 
1 is strictly differentiable except at each an. Letting g,(z) := - CrZm 11" - anll, then g, 

is strictly differentiable at a,  and we see that Elc f ( an )  # a, f (an)  since 

and 

4.2 The gradient ranges of differentiable bump functions 

Definition 4.2 A convex body i n  R~ is a bounded convez subset C such that in t (C)  # 0. 

~ k m a  4.1 Let S be a strictly convez rtonempty closed set. Then for each d # 0 the face 

Fs(d) := { s  E S : ( s ,  d )  = a d d ) }  

is  at most singleton. 

Proof. Let s l ,  s2 E Fs(d). Then we have ( s l ,  d )  = as (d )  and ( s2 ,  d )  = a s ( d ) .  Thus 

(*, d )  = os (d ) .  Since s is strictly convex, E i n t S .  Taking e > 0 sufficiently small 

such that + cd E S we obtain 9 is not a maximizer of (., d) ,  a contradiction. Hence 

S1 = S2. 0 
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Definition 4.3 Let C be a closed convex set containing the origin. The function vc defined 

by 

v c ( x )  := inf{X > 0 : x E XC} 

is called the gauge of C. As usual, we set v C ( x )  := +oo i f  x E XC for no X > 0 .  

As shown by Theorem 1.2.5 [17] if 0 E intC then v~ is finite everywhere and v c  is a 

nonnegative closed sublinear function. Our constructions used later are based on the bump 

functions built from gauges. The following two lemmas from [17] show the relationship 

between gauges and support functions. 

Lemma 4.2 Let C be a closed convex set containing the origin. Its gauge uc is the support 

function of a closed convex set containing the origin, namely 

C0 := { s  E RN : ( s ,  d )  5 1 for all d E C )  

which defined the polar of C 

Proof. Since v c  is closed, sublinear and nonnegative, it is the support function of some 

closed convex set containing 0 ,  say D. Then 

D := { s  E RN : ( s , d )  5 r for all ( d , ~ )  E epi UC). 

However epi v~ is the closed convex conical hull of C x {I); we can use the homogeneity to 

write 

D = { s  E RN : ( s ,  d )  5 1 for all d such that ~ ( d )  5 1). 

The result follows from the observation that C = {d E R~ : vC(d)  I 1). 

Lemma 4.3 Let f : RN + R be convex. For all z and d in  R ~ ,  we have 

Fs,rcz,(d) = & [ f l ( x ,  .)l(d). 

Proof. If s E aC f ( x )  then 

f f ( x , d ' )  2 ( s , d f )  for alld1 E R N  

simply because f l ( x ,  .) is the support function of d, f ( x ) .  If, in addition, ( s ,  d)  = f l ( x ,  d ) ,  

we get 

f f ( x , d f )  2 f ' ( x , d ) + ( s , d f  - d )  for all dl E RN 
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which proves the inclusion Fac (,) ( d )  C & [ f  ' ( x ,  .)] ( d ) .  

Conversely, let s  E ac[f ' ( x ,  . ) ] (d ) .  Then 

f ' ( x , d l )  > f l ( x , d )  + ( s ,d l  - d )  for all d' E RN. 

Set dl' := d' - d  and deduce from the subadditivity 

f l ( x , d )  + f ' ( x , b l )  > f ' ( x , d l )  > f l ( x , d )  + (s ,dl ' )  for all dl1 E RN 

which implies f l ( x ,  .) 2 ( s ,  .), hence s  E 8, f ( x ) .  Also, putting d1 = 0  in Equation 4.1 shows 

that ( s ,  d )  2 f l ( x ,  d) .  Altogether, we have s E Fg. f(,)(d). 0 
Let C be a convex body. Define F ( x )  := 9 [ ( 1 -  u$ (x))+I2. That is, 

Theorem 4.1 Let F  be defined as above. If C0 is strictly convex then F  is smooth and 

R ( V F )  = CO. 

Proof. Let x  # 0. By Lemma 4.1, Lemma 4.2 and Lemma 4.3 we have: 

&uc ( x )  = FCO (2) .  

By Theorem 2.3.10 [13, page 451 

Hence 
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where Y u ( 1 -  u2) is maximized at with value 1. Observing that VF(0) = {0), we see 

that 

R ( V F ) =  U V F ( x ) = C O .  
zEC 

YC(.)<* 

0 

Definition 4.4 A bump function on RN is a real-valued function q5 which is bounded and 

has nonempty bounded support supp(q5) := {x E R~ : q5(x) # 0). 

The following lemma is from [23]. 

Lemma 4.4 Let C be a closed convex body with 0 E int(C). Then C0 is a closed convex 

body and 0 E int(CO). 

Proof. Since 0 E int(C), there exists T > 0 such that the closed ball B(0, T) C C. Thus 

which implies C0 is bounded. It  is clear that C0 is closed and convex. Similarly, since 

C is bounded, there exists R > 0 such that C C B(0, R). But then B(O,l/R) C CO, so 

0 E int(CO). 0 

Theorem 4.2 Every strictly convex closed body containing 0 in its interior is the gradient 

range of a continuous Gateaux diferentiable bump function. 

Proof. Let C be any strictly convex closed body with 0 E int(C). Define uco and F 

respectively by 

vCo(x) := infit > 0 : x E tCO) 

and 

F(x)  := @((I 8 - U ~ ~ ( X ) ) + ] ~ .  

Then by Theorem 4.1, F is strictly Gateaux differentiable and R(VF) = C. By Lemma 4.4, 

F is a bump function. 0 
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Theorem 4.3 Let C;  be strictly convex closed bodies with 0 E int(C,) for i E I (a finite 

set). Then there is a continuous Gateaux differentiable bump function F such that 

R ( V F )  = U C;. 
i €  I 

Proof. Let F; be a bump function with R ( V F i )  = C; and with suppF, C C;O. Define Gi by 

Since C;O is bounded and contains 0, we can choose x; and ei appropriately such that 

suppGi n suppGj = 0 if i # j .  Set A, := suppG, and define 

Then G is a continuously Gateaux differentiable bump function and R ( V G )  = UicI Ci. 

Q 

Remark 4.1 It is the shape of the range of the gradient of a C 1  bump function that deter- 

mines the images of the subdifferentials which are constructed later. Theorem 4.3 shows we 

can intersperse different bumps to get interesting images. 

Example 41 Gauges and support functions of elliptic sets deserve a more detailed study. 

Given a positive definite operator Q, define 

R~ 3 x c f ( x )  := JG. 
Then f is the gauge function of the sublevel-set EQ := {x : f ( x )  5 1).  To see this, we write 

f ( x )  = inf{X > 0 : (Qx, x) < X2) 
x x 

= inf{X > 0 :  (Q- A '  -) X 5 1) 

x 
= inf{X>O:-EEQ).  X 

Consider the polar of EQ: 

EG := {y : (y, x )  5 1 for all x satisfying (Qx, x )  < 1). 
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Letting Q1I2 be the square root of Q ,  the change of variable p = Q1I2x gives 

which is the dual ball of EQ. By Lemma 4.2 the support function UE; is exactly f .  Let 

F ( x )  := v [ ( 1  - f ( x ) ~ ) + ] ~ .  Then 

which is an elliptic set. By choosing different positive definite operators Q we can get 

different elliptic sets as the gradient ranges of bump functions. In particular, when Q = I, 

we get EQ = EG and this is the only norm on RN having this property. 0 

A more general fact about nonsmooth bump functions is as follows: 

Theorem 4.4 Let b : R~ + R be a Lipschitz bump function with supp(b) C BK(0)  for 

some K > 0. Suppose there exists yo with b(yo) # 0. Then the following hold: 

(11) I f  there is yo with b(yo) < 0 then for any 6 5 max..~,(~, .al[ we have 
b(u)<O 

Proof. Part I. Fix 4 E B6(0)  and I > 1. Suppose b(y,) > 0. Consider 

f (x) := { +:) + (rn,.,, if, E B,K(O) 
otherwise 

Since B I K ( 0 )  is compact, f is lower semicontinuous and bounded below. By the Deville, 

Godefroy and Zizler version of the Smoath Variational Principle [25] for all 0 < e < 1 there 

is a Lipschitz function $ having a bounded Gateaux derivative such that: 
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(ii) g := f + II) attains its minimum at some x, E R~ with llxO1l < 1K. 

Since llyoll 5 K we have 

(-b + 4 + $) (Yo)  < +YO) + 11411 . llvoll+ E 

5 -b(Yo) + 611voll + 
If K 5 llxll <1K we have 

(-b + 4 + II)W = 4 ( 4  + II)(x) 

> -11411 IK - E 

2 -6 -ZK-E.  

Observing that E can be arbitrarily small, to show xo E BK(0) it s d c e s  to show 

-6.1K > -b(yo) + 6l l~ol l .  

Let 6 < *w. Then llxoll 5 K and so 0 E &(f + $)(xo).  By Proposition 2.3.3 [13] 

0 E - W x o )  + &$(xo) + 4. 

Then there exists ( E &b(z,) such that 114 - (11 5 E .  Since E > 0 is arbitrary and &b is 

upper semicontinuous we have 4 E dcb(BK(0)) and so Ba(0) C W(BK(O) ) .  

If b(yo)  < 0 consider 

f ( x )  := { ,,- (4, x,, if . E B,K(O) 
otherwise 

Similarly we get 

For the same reason we get Bs(0) C acb(BK(0)). In either case 6 is majorized by .&!$$$iN for 

any yo with b(yo) # 0. Then for any 6 < m%cB,,(o) .m the inclusion is true. Noting 

that &b is a cusco and BK(0)  is compact, so &b(BK(0)) is compact [8]. Letting 1 --t 1 we 

see that for any 6 < maxyE~,(o) the inclusion is true. 

Part 11. Let b(y,) < 0. Consider 

f ( x )  := 
( 1  - 4 if x E BlK(0) 

otherwise 
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Again by the Smooth Variational Principle for all 0 < e < 1 there is a locally Lipschitz 

function having a bounded Gateaux derivative such that: 

(ii) g := f + $ attains its minimum at some xo E R~ with llxoll 5 ZK. 

Since llyoll 5 K we have 

If K I llxll 5 ZK we have 

Observing that e can be arbitrarily small, to show xo E B K ( 0 )  it again suffices to show 

Let 6 < a. Then xo E B K  (0 ) .  By Theorem 5.6 [20] we have 

Therefore there exists e E dab(xo) such that 114 - < I (  5 E .  Since E > 0 is arbitrary and dab 

is upper semicontinuous so 4 E aab(BK(0) ) ,  which implies B s ( 0 )  C aab(BK ( 0 ) ) .  

Since 6 is majorized by .af for any yo with b(yo) < 0 ,  thus for any 6 < max.~~,,(o) -a 
b(v)<O 

the inclusion is true. Noting that aab is an usco and B K ( 0 )  is compact, so a a b ( B ~ ( 0 ) )  is 

compact (see Proposition 6.2.11 [8]). Letting Z + 1 we get for any 6 5 max..~,(~) a)I 
b(.)<O 

the inclusion is true. 0 

Remark 4.2 The Theorem shows that i f  0 $! i n tdab(BK(0) )  then b 2 0 everywhere and 

0 E i n t a a ( - b ) ( B K ( 0 ) ) .  W e  have no example with b > 0 but 0 $! i n taab(BK(0) ) .  B y  contrast 

0 is always i n  the interior of the range of C-subdiflerential of a locally Lipschitz bump 

function. 
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Remark 4.3 W e  say that a Banach space E has property (HG)  provided there exists on E 

a bump function b which is Gateaux differentiable and globally Lipschitz. The DGZ version 

of the Smooth Variational Principle holds on a Banach space with (HG) property [25]. Let 

E admit an equivalent Gateaux differentiable norm (at nonzero point), then E is called 

smooth and necessarily has property (HG). Hence the results of Theorem 4.4 are still true 

for the Banach spaces with the (HG) property and the smooth Banach spaces if we substitute 

d c b ( B K ( 0 ) )  and dab(BK(0) )  by their norm closures respectively. Note that if a set i n  E* 

is w*-closed then i t  is norm closed, thus the results of Theorem 4.4 hold i f  we replace the 

norm closure by w*-closure. 

Lemma 4.5 Let R : X + Y be an usco. Suppose for each x E X ,  R ( x )  is connected. Then 

R ( S )  is  connected i n  Y i f  S is connected i n  X .  

Proof. Suppose R ( S )  is not connected, then there exist two open sets O1 and 0 2  such that 

We show K := R- l (O1)  n W1(02) = 0. Since R ( x )  is connected for any z, we see that if 

R ( x )  n O 1  # 8 then R ( x )  C 0 1 .  Otherwise R ( x )  is not connected. As R is an usco, both 

R- ' (01)  and W1(02) are nonempty and open. Let x E K. Then there exists yl E 0 1  and 

y2 E 0 2  such that yl E R ( x )  and y2 E R ( x ) .  Thus we have R ( x )  C 0 1  U 0 2  which implies 

R ( x )  is not connected. Hence K = 0 and S c !X1(01)~W1(02) and so S is not connected. 

The Lemma follows by contraposition. 0 

Theorem 4.5 Let b : RN + R be a Lipschitz bump function with supp(b) C BK(O).  Then 

d c b ( B ~ ( 0 ) )  is compact connected with nonempty interior. 

Proof. Since dcb is a cusco, dcb(x) is connected for each x E RN. Hence Theorem 4.4 and 

Lemma 4.5 apply. 0 

Remark 4.4 In R we saw that for an everywhere differentiable function f we have dc f  = 
13, f by the Darboux property . Thus the range of the A-subdifferential of a differentiable 

bump function is always connected compact with nonempty interior. W e  don't know whether 

this is true i n  R 2 .  
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We close this section with an open question: Is the range of the Csubdifferential of a 

Lipschitz bump semi-closed? That is cl[ int (acb(BK(0)))]  = d c b ( B ~ ( O ) ) ?  We note that in 

R this is true. 

4.3 Constructions of the nonconvex A-subdifferentials 

In R ~ ,  following [22] we use bump functions to construct the Lipschitz functions whose 

A-subdifferentials are not convex on sets with large measure. 

Theorem 4.6 Let E > 0 .  Then there exists a Lipschitz function defined on R~ such that 

P{x : a a f  (2) = 8 c f  ( 4 )  < E .  

Proof. By Theorem 4.3 we choose a bump function h : B ( 0 , l )  -+ R satisfying the following 

conditions: 

( 1 )  h ( x )  > 0 on B ( 0 , l ) ;  

(2) h ( x )  = 0 for 11x11 = 1; 

( 3 )  h t ( x )  = 0 for Ilsll = 1; 

( 4 )  The set ht(B(O, 1 ) )  = { h l ( x )  : llxll 5 1 )  is not convex. 

Now let { B n )  be a sequence of closed balls, B, := B(z,, r,), r ,  > 0, such that: 

(5) The Bi's are pairwise disjoint; 

(6) Uz=l Bn is dense in R ~ ;  

(7) P(U?=~ Bn)  < E .  

Let S := Ur=l B:. We define: 

f ( x )  := { ; h ( ( ~  - h ) / r n ) ,  if x B: 
if x 51 S. 
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If x E S then x E BE for some n, so f is continuously differentiable around x ,  with 

a-f(.) = h f ( ( x  - z,)/r,). 

If x @ S ,  then f ( x )  = 0 so x is a local minimum by assumption so f - (x ;  v )  >_ 0 for any 

v.  Fixing a direction v ,  there are two possibilities: Either there is a decreasing sequence of 

positive numbers t ,  + 0 such that x + t,v 4 S or there is a E > 0 such that x + tv E S for 

all t E (0,  E ) .  In the first case we have 

f - ( x ;  V )  5 lim inf f ( X  + tnv) - f ( x )  = 0. 
n+w t n 

Since we already know f - ( x ;  v )  >_ 0, we have f - (x ;  v )  = 0. In the second case, there must 

be some n such that x + tv E B, for all t E (0, e). Since the balls are closed we have x E Bn 

and since x 4 S ,  x E aB,. Using the fact that x + tv E Bn for small t we get , 

Therefore in each case when x 4 S we get f - ( x ;  v )  = 0 in any direction, so d- f ( x )  = (0) .  

For every x E R~ we have 

&, f ( x )  c hf ( B ( 0 , l ) )  U ( 0 )  = hf (B(0, 1)).  

If x @ S ,  and U is any neighborhood of z then U contains a ball B,. Therefore hf ( B ( 0 , l ) )  C 

a, f ( x ) .  So for x @ S we have 8, f ( x )  = h f (B(0 ,  I)), which is nonconvex, so in particular 

8, f ( x )  # & f  ( x )  for x @ S. Since p(S)  < E ,  we are done. 

Corollary 4.1 f has the following properties: 

(I) not A-integrable; 

(11) Aminimal; 

(111) not C-integrable; 

(IV) C-minimal. 

Proof. Here we only prove ( I ) ,  (11), the other two cases are similar. Let hf(B(O, 1) )  = 

Ci where C,'s are elliptic sets. Take a Cantor set C in [O,1] with positive measure. Let 

Ur=l B, be dense in R~ but miss C x R. We define: 
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Let g(x) := Jz, xc(s)ds .  Choose e appropriately such that €(a-g(x), 0 )  C u:=~ C;. Then 

. a , f , ( ~ , y ) = ~ ~ f ( x , y ) f o r a l l ( x , y ) E  R2. However f , -  f #constant.  

Let S := Uzl BP. From the construction we get 8, f = USC(a, f IS). Suppose f2 is an 

usco and !2 c 3, f .  As da f is single-valued on S, 8, f IS = fils. Then 8, f = USC(a, f IS) = 

USC(f2IS) C 52. Thus 19, f is a minimal usco. 0 

Remark 4.5 On the Cantor set C with p(C) > 0, we can use the Zahorski Theorem (see 

Lemma 2.9) to get an everywhere differentiable g instead of using the indefinite integral of 

an indicator function. 

Corollary 4.2 Let E > 0 and C C R2 be a strictly convex closed body with 0 E int(C). 

Then there exists a Lipschitz function defined on R~ such that 

Proof. From the proof of Theorem 4.6 we see that a, f (x) = hl(B(O, 1)) when x 4 S. By 
- 1  - 

Theorem 4.2 we can find a bump function k with h (B(0,l)) = C. Substituting h by k we 

get a Lipschitz function j such that: 

where p(S) < e. 

4.3.1 An A-subdifferential that is almost always nonconvex 

In this section using bump functions we construct the locally Lipschitz functions defined 

on R2 with nonconvex A-subdifferentials almost everywhere. We follow a proof given by 

Borwein (private communication). 

Theorem 4.7 There is a Lipschitz function f : R2 -+ R such that 

p{x : 3, f (x) is convex} = 0. 

Proof. Step 1. Construct sequences of closed balls {Bin) such that 

(1) For fixed i, Bin's are pairwise disjoint; 
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(2) Ur=l B(j+l)n is dense in Sj := UF==l B&; 

(4) UFzl Bon is dense in R ~ .  

For fixed i on each Bin := B(zi ,  rh) we define 

where h is any bump function with R(Vh) nonconvex. 

Since R(Vh) is nonconvex we take p E conv(hl(B)) such that dist(p, h f ( ~ ) )  = d > 0. 

Let M := sup{llx*ll : x" E h f ( ~ ) )  and 0 < k < min(d/4M, 112). Set 

0 0 .  00 

f (x) := C kn fn(x) and Fm(x) := C kn fn(x). 
n =O n=m 

We prove that {x : aa f (x) = a, f (x)) c n?=-, Sn. 

Step 2. If x $! Sm then 8-Fm(x) = (0). In fact, Fm(x) = 0 and, therefore, x is a local 

minimum of Fm and F; (x; v) 2 0 for all v. Fixing a direction v, there are two possibilities: 

Either there exists a tn -r 0 such that x + tnv $! Sm or there exists a e > 0 such that 

x + tv E Sm for all t E (0, E). In case one F;(x; v) = 0. In case two, there exists an n such 

that x + tv E Bmn for all t E (0, E) because {Bmn) are pairwise disjoint and closed. AS Bmn 

is closed we obtain x E aBmn. Then x $! Uzl B(;), for any i 1 m + 1. Therefore, there 

must be tn -t 0 such that x + tnv $! Sm+1. Thus 

Fm (X + tv) - F m  (x) 
lim inf 

t-O+ t 

kmhf ((x - z ~ ) / r ~ ) v  

Therefore F;(x; v) = 0 for all v, which is to say a-Fm(x) = (0). For any x E R~ we have 

aaFm(~)  C a-Fm(Bmn) U (0) = a - F m  (Bmn). 
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If x $ Sm, and U is any neighbourhood of x then U contains a ball Bmn. Therefore 

8- Fm (Bmn) C 8, Fm (x). SO for any x $ Sm we have 8, F,(x) = 8-Fm(Bmn). 

Step 3. If x $! S m  then daFm(x) is nonconvex. Since all Fm have the same structure 

we prove this only for m = 0. Let x E R~ \ So. By the Step 2, we deduce that da f (x) = 

a- f (Ban). We only need to show d- f (Ban) is not convex. Indeed, for any neighborhood 

U of x there is Bon E So such that Bon c U. For any such Bon, by the definition of fo, 

there exists ry, rb E Bo, such that p E [fi(ry), fi(rb)] and dist(p, f i ( ~ o , ) )  = d. For any 

such BOn and y E Ban, x* E d-Fl(y), we have IIx*II < 2kM < d/2. Since fo is continuously 

differentiable on Bon we have 

Thus dist(p, d- f (Ban)) > d/2. On the other hand, 

This implies that there exists a q such that 

Therefore q $! d- f (Ban). This shows a- f (Ban) is not convex. 

To conclude the proof, it suffices to consider any x $! n2=l Sn, but there exists an N 

such that x E SN \ S N + ~ .  We have 

Since a a F N + l ( ~ )  is not convex so is 8, f (x). Hence aa f (x) is not convex for any x 4 nr=l Sn.  

0 

Definition 4.5 We call fi+l a generalization of fi if they are constructed from the same 

bump function and satisfy: 

- .  . 
(I) For fixed i on each Bin := B(zi ,  r;) 

( ( x  - ) / )  if x E B;O, 
f,(x) := { 0; if x 4 s; 

where h is any bump function with R(Vh) nonconvex; 
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(11) For each i ,  UF=l B(,+l), is  dense i n  Si := UF==l BiO, 

Corollary 4.3 Let f i  be defined as above. Then  g := CEl k i f i  is  A-minimal and C- 
minimal for each m. 

Proof. By Corollary 3.2 [6] we know that to show dag is a minimal usco is equivalent 

to showing that for each nonempty open subset W in R~ the restriction of dag to W is a 

minimal usco on W. 

By the definition of g it suffices to show g is minimal on Bin for any n since g has the 

same structure on different balls. Let R be an usco and f l  C dag. On Bmn, dag is singleton 

because all f;'s are continuously differentiable on the ball. Then R = dag on Bmn. On 

B(m-1)n \ Bmn we have 

Since aa f m  is minimal so it is minimal on B(m-l)n \ Bmn. Observing that zzll kk' f: ( x )  is 

single-valued it is obvious that 

Inductively we get 

for 1 5 1 5 m - 1. Hence dag = R on Bin. Let S := Ur=l Bin. Note that dag = 

USC(daglS) = USC(flJS)  C f l .  Therefore sag is minimal. It is known that if F is a minimal 

usco then G defined by G(x)  := ZED7[F(x)] defines a minimal cusco (see Proposition 3.4 

[ 6 ] ) .  Since d,g = conv[dag] we see that d,g is minimal. 0 

4.3.2 Two functions with the same C-subdifferential but different A- 
subdifferentials except on a small measure set 

Theorem 4.8 For any given 1 > e > 0 there exist two locally Lipschitt functions f ,  f ,  

defined o n  the set [O, 11 x [ O , l ]  such that 



CHAPTER 4. APPROXIMATE SUBDIFFERENTIAL 

Proof. Step 1. Let h : B ( 0 ;  1)  + R be a bump function with (1,O) @ hl(B(O,  1 ) )  but 

(1,O) E conv(hl(B(O, 1 ) ) .  Suppose C is a Cantor set with positive measure in [0, 11. Let - 
{B,) be a sequence of closed balls, Bn = B(zn ,  r,), rn > 0,  such that: 

(1 )  The Bi's are pairwise disjoint; 

(2) Ur=l Bn is dense in [0, 1) x [0, 11 but misses C x [0, 11; 

( 3 )  meas(U~, ,  Bn)  < C. 

Step 2. Let S := Ur=l B:. we define: 

We show that dcf , (x ,  y )  = acf ( x ,  y)  for all ( x , Y )  E [O, 11 x [O, 11 but dafe(x, Y )  # a a f  ( x ,  Y )  

almost everywhere on C x [0, 11. 

Indeed if x @ C we have 8- f,(x, y) = a- f ( x ,  y);  if x E C ,  d- f , (x ,y)  = (d-g(x ) ,  0) .  

Noting that for almost all x E C we have g ' ( x )  = 1. ' Thus (1,O) E ( Z g ( x ) ,  0 )  almost 

everywhere on C x [0, 11. Since for ( x ,  y)  E C x [O,1] 

It follows that da f ( x ,  y)  # 8, fe (x ,  y)  almost everywhere on C x [ O , l ]  since (1,O) E dafe(x,  Y )  

almost everywhere on C x [O,1] whereas (1,O) @ aa f ( x ,  y)  = h1 ( B ( 0 , l ) )  for all ( x ,  Y )  E 

C x [0, 11. By Theorem 2.82 [28] for any 0 5 /3 < 1 we can make p(C)  = P. Observing 

that p(C x [0, 11) = p we can make p > 1 - e. Then aa f and da f ,  differ on a set with 

measure bigger than 1 - E .  By contrast (1,O) E c m v ( d a f  ( x ,  y ) )  for any ( x ,  Y )  E C x [O,  11 

and da f ( x ,  y)  = da f ,  ( x ,  y)  for any (2 ,  y)  E ( [ O , l ]  \ C )  x [O, 11. Therefore 
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Corollary 4.4 Suppose f is defined as i n  the previous proof. Then f is not C-integrable. 
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