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Abstract 

Hydroacoustic sampling is a widely used technique for the estimation of fish population 

sizes. The need to estimate the volume of the hydroacoustic beam makes this method 

difficult. Recent research has focused on overcoming this difficulty. Existing techniques, 

called 'duration-in-beam methods' estimate the volume of the beam assuming it is cone 

shaped. 

We present a hydroacoustic sampling technique that captures the advantages of the 

duration-in-beam method, but avoids the cone-shaped assumption. The method was specif- 

ically developed for making in-river estimates of the abundance of migrating fish, and has 

also been adapted to estimate resident fish populations. The population sizes in these cases 

can be written as sums of products of pairwise means. The problem of constructing approx- 

imate confidence intervals for such quantities is examined. Specific theory for normal data 

are provided and suggestions are made for other situations. 

Tag recovery methods are also commonly used to estimate fish (and other animal) popu- 

lations. Two sample tag recovery experiments when the tagging and recovering are stratified 

have been studied by several authors, who have provided maximum likelihood estimates and 

moment type estimators. We enrich this class of estimators by introducing the least squares 

estimates which are applicable when the numbers of tagging and recovery strata are unequal. 

The asymptotic variances of these estimates are also provided. 

A common practice in stratified tag recovery experiments is to pool the strata before or 

after the experiment. This can produce inconsistent estimates. Sufficient conditions for the 

consistency of the estimates in the case of complete pooling are already known. We examine 

sufficient conditions for the case of partial pooling. 

iii 
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Chapter 1 

Introduction 

Estimation of the sizes of animal populations is required for many purposes such as wildlife 

management, fisheries and pest control. Recently, there has been a growing interest in this 

branch of statistics. Advances in general statistical theory and instrumentation have created 

opportunities for substantive improvements. 

Hydroacoustic sampling and tag-recovery studies are two widely used methods in esti- 

mating fish populations. For example, these methods are used for the estimation of sockeye 

(Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha ) salmon in the Fraser River, 

Canada. In hydroacoustic sampling, a beam of sound waves is transmitted through water. 

The number of fish detected by the beam is then extrapolated to estimate the fish popu- 

lation. In-river hydroacoustic sampling provides quick daily estimates of abundance in the 

Fraser. Quick estimation is essential for efficient management of fisheries. Tag-recovery ex- 

periments in spawning areas provide estimates of numbers of fish reaching spawning grounds. 

These estimates are useful in post-season evaluation of the management programme, and in 

monitoring the dynamics of the stocks. 

With the development of new data collection techniques such as hydroacoustic sampling 

methods, radio telemetry, remote sensing etc., the need arises for suitable statistical methods 



Chapter 1. Introduction 2 

to extract the information from such data. The first half of this thesis focuses on hydroa- 

coustics. Chapter 2 provides a brief introduction to hydroacoustic sampling techniques. 

Our interest in this area was initiated by a request made by the Pacific Salmon Commis- 

sion. They needed to gauge the variance of a hydroacoustic abundance estimator developed 

by the International Pacific Salmon Fisheries Commission (IPSFC) in 1977. This method 

had been used by the IPSFC (from 1977 until 1986) and by its successor, the Pacific Salmon 

Commission (since 1986) for estimating the abundance of Fraser River sockeye and pink 

salmon that pass Mission, British Columbia, during their upstream migration to spawning 

grounds. 

We refined the formula for the estimator itself, with the aim of improving its statistical 

behavior while maintaining the practical advantages of the existing method. In Chapter 3, 

we describe the derivation of this estimator. As well, formulae are derived for the bias and 

the variance of the estimator. This method is now being tested for full-scale implementation 

by the Pacific Salmon Commission. In Chapter 3, we also suggest suitable modifications of 

the method to  estimate resident fish populations. 

The quantities we estimated can be written in terms of sums of products of pairwise 

means. We consider the problem of constructing confidence intervals for such quantities 

in Chapter 4. The theoretical results are derived formally for constructing approximate 

confidence intervals for normally distributed data. However, often the sample sizes in these 

kind of experiments are large, and a central limit theorem can be used to adapt the normal- 

based results for non-normal distributions. The validity of the theoretical results derived in 

this chapter is examined by a Monte Carlo study. We end Chapter 4 with a description of 

the Monte Carlo study. 

Tag recovery experiments are widely used in estimating animal populations. In the sim- 

plest kind of tag-recovery experiments, a random sample of animals is tagged and released. 

After allowing for the tagged animals to  disperse, another random sample is taken from the 

population and the number of tagged animals in the sample is recorded. These experiments 
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are therefore often called two-sample tag-recovery experiments. When the population is 

stratified geographically or temporally, this feature can be exploited to obtain more precise 

estimates of the population size. In this method, a known number of tagged animals is re- 

leased in each stratum, using a different tag for each stratum. After allowing for the tagged 

animals to disperse, a random sample is taken from each recovery stratum. The numbers of 

untagged animals and the numbers of tagged animals of each type in each sample are then 

recorded. These experiments are often called stratified tag-recovery experiments. Maximum 

likelihood estimators and moment-type estimators have already been developed for estimat- 

ing population sizes using stratified tag-recovery data. When the number of tagging strata 

and recovery strata are unequal, these require imposing restrictions on unknown survival 

probabilities to obtain the estimates. In Chapter 5, we derive least squares estimates that 

avoid this requirement. We also prove the consistency of the derived estimates and provide 

formulae for the variances of the estimates. 

In certain situations, the experimenter is unable to use different marks for different 

strata, is unaware of how the population is stratified, or, after the collection of the recovery 

data, finds only a very small number of a certain type of tags. A common practice in such 

situations is to pool the strata before or after the experiment. This can produce inconsistent 

estimates. Sufficient conditions for the consistency of the estimates in the case of complete 

pooling are already known. In Chapter 6, we discuss the estimation problem and provide 

conditions for consistent estimates to be produced after partial pooling. 



Chapter 2 

Use of Echo Sounding Techniques 

for Detecting Fish 

In hydroacoustic sampling, a beam of sound waves is transmitted through water. The 

number of fish detected by the beam is used to estimate the total number of fish in a 

given volume, or the total number of fish that pass a given point. A hydroacoustic sampling 

method for the detection of fish was first reported in the scientific literature in 1929 (Kimura 

[19]). In this experiment, continuous waves at a frequency of 200kHz were directed across 

ponds containing goldfish. Crittenden [ll] provided a review of the historical background 

up to 1970. 

The purpose of this chapter is to introduce the terminology used in the next chapter, and 

to provide a brief summary of the 'duration in beam method,' that is used to  estimate the 

volume of the hydroacoustic beam. Further details can be found in Burczynski [6], Thorne 

[39], [40], Johannesson and Mitson [16], and Crittenden [ll]. 
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2.1 Terminology 

2.1.1 Echo Sounder 

Generally speaking, an apparatus used for obtaining information about underwater objects 

and cvcnts with thc usc of sound wavcs is callcd a 'sonar system". Sonar systcms uscd in 

fisheries work produce ultrasounds, i.e. sounds with a frequency usually ranging from 12 to 

500 kHz (which are not detectable by a human ear). According to Burczynski [6], a sonar 

system that transmits vertically is usually called an 'echo-sounder' (Figure 2.1 a) while a 

sonar system that transmits horizontally is called 'a sonar' (Figure 2.1 b). 

Figure 2.1: (a) Echosounder (b) Sonar 

'sonar is an abbreviation for Sound Navigation and Ranging 
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An echo-sounder consists of four main components (Figure 2.2), the transmitter, the 

transducer, the receiver, and the recorder. The function of the transmitter is to produce 

energy in the form of pulses of electrical oscillations. A pulse is generated when a timer 

activates the electrical transmitter a t  a known frequency for a fixed period of time. Usually 

this frequency is 38kHz to  120 kHz. The time interval during which the transducer actually 

vibrates in generating each pulse, is called the 'pulse duration'. Typically this is about one 

millisecond. The electrical oscillations thus generated are then converted mechanically into 

sound waves in the water a t  the vibrating face of the transducer, which continues to generate 

sound until the timer switches off the transmitter. The result is a sound pulse of the same 

frequency, traveling through the water away from the face of the transducer. The number 

of pulses (or transmissions) sent out per unit time is called the 'pulse repetition rate'. 

time '1$4- 
Display w 

Receiver i-i 

- 
Target 

Figure 2.2: Functioning of an echo-sounder 
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After each pulse the system waits for a certain period to  receive echoes from targets 

(e.g. fish) in the ensonified volume of water. For example, when a transducer is operating 

at a pulse repetition rate of sixty transmissions per minute, it generates sound for one 

millisecond in the transmitting mode, then waits for 999 milliseconds in the receiving mode, 

then generates the next one-millisecond pulse and so on. The transducer, when in the waiting 

mode, performs the reverse of its function in the transmitting mode, i.e. it converts pressure 

oscillations produced at its face by the echo, into electrical oscillations. The function of the 

receiver is to  amplify these oscillations so that they can be recorded or displayed. 

2.1.2 Echo Trace (Target), and Echogram. 

The detectable sign on the display.unit is called the 'echo trace'. The record of echo traces is 

called the 'echogram' (see Figures 3.2 and 3.3). A trained technician can usually distinguish 

echo traces of fish, from those of other objects. In the next chapter, we loosely use the term 

'target' for an echo trace of a fish. 

2.1.3 Range 

The distance between the fish and transducer can be calculated by multiplying half the time 

interval between transmitting the pulse and receiving its echo by the sound velocity. The 

average distance of the fish from the transducer at the first detection and the last detection 

is called the 'range' of the fish. 

2.1.4 Directivity Pattern 

A transducer can be regarded as an array of point sources of sound. A point source radiates 

sound uniformly in all directions. However if two point sources that generate the same 

sound are located fairly close to  one another, the resulting sound intensity will not be the 

same in all directions. In some directions, the waves from the two sources will be in phase or 
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ncarly so, and will rcinforcc cacll othcr to producc a high dcnsity; in othcr dircctions, tlicy 

will canccl cach otllcr. This phcnomcnon, callcd intcrfcrcncc, produccs a regular but non- 

uniform distribution of sound intcnsity according Lo dircction. T l ~ c  intcnsity distribulion of a 
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Figure 2.3: Thrcc-tli~rlcnsiolld vicw 01 tllc dircctivity 
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According to Clay and Medwin [8], a cylindrical transducer produces a directivity pattern 

that is symmetrical about the acoustic axis. Figure 2.3 shows a typical directivity pattern 

of a circular transducer. Intensity is highest along the axis. With increasing deviation from 

the axis, intensity first decreases to a minimum, then increases again to a value much lower 

than the maximum on the axis, then decreases and so on. The region of high values near 

the axis is called the main lobe of the beam and the successively smaller peaks around the 

main lobe are called side lobes. 

2.1.5 Target Strength 

Experiments have shown that fish species with swim bladders reflect about 85 percent of the 

sound energy by the swim bladder. The ratio of echo intensity from a target to  the incident 

intensity is called the 'target strength'. The target strength (or scattering cross section) of a 

fish has a directivity pattern quite similar to that of a transducer. In general the directivity 

pattern depends on the anatomy of the fish, its overall size, and the dimensions of the swim 

bladder relative to the wave length. For a given species of fish, and for a given wavelength, 

there is a close relationship between the target strength and the size of the fish; the larger 

the fish, the larger its target strength. The relative intensity of sound reflected by a fish 

back to the source also depends on its orientation relative to  the source. 

2.1.6 Effective Beam 

As a sound signal propagates through water, its intensity decreases with distance. There 

are two reasons for this: the dispersal of energy due to spreading effect, which is called the 

geometric loss, and the temperature and frequency-dependent power loss, which is called 

the absorption loss. The sum of these two types of energy loss is called the transmission 

loss. The intensity of the signal is further reduced according to reflective properties of the 

target and by the subsequent transmission loss of the echo. According to Thorne [40], the 
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intensity of the signal (I,) when it returns to  the transducer can be described as 

where 

target strength, 

intensity of the signal a t  a unit range from the transducer, 

absorption coefficient (a  function of signal frequency, water temperature 

and salinity), 

distance to  the target, and 

directivity pattern. 

The absorption coefficient a is negligible for short or moderate ranges in fresh water. 

Therefore, if the receiving intensity threshold of the transducer is T, the maximum detection 

range for a fish of given target strength k, a t  bearing (+,9) can be approximated by 

The volume defined by this (R, +,9) relationship given by (2.2) is the 'effective beam' for 

fish of target strength k. It is usually hoped that the targets encountered in side lobes will 

return echoes that are below the detection threshold. Then, for a cylindrical transducer the 

effective beam can be approximated by a single lobe that is radially symmetrical about the 

acoustic axis. 

2.2 Estimation of Beam Volume: Duration-in-Beam Met hod 

Most hydroacoustic surveys attempt to  estimate the number of fish in a population by 

extrapolating the number of fish counted in the acoustic beam to the entire survey region 

according to  the ratio between the volume of water in the survey region and the volume 

sampled by the acoustic beam (e.g., Thorne and Dawson [38]). A similar method is used by 
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Skalski et al. [36] to estimate fish passage at a dam using a weighted sum of the numbers 

of fish ensonified by a beam at different depth ranges. The weights are determined by the 

dimensions of the beam and the dam passage ways. A major difficulty with these methods . 

is that the volume of the acoustic beam must be estimated. Not only is the shape of the 

beam complicated by interference patterns that can produce side lobes (Clay and Medwin 

[S], pp. 144- 146; MacLennan and Simmonds [24], pp. 13-20; and references therein), but also 

the effective dimensions of an acoustic beam vary with the size, orientation and swimming 

movements of fish that encounter the beam (Clay and Medwin [S], 245; MacLennan and 

Simmonds [24], 137; and references therein). Dependence on estimates of beam width also 

creates problems with enumerating populations that have a wide distribution of body sizes. 

Usually the effective beam is assumed to be a simple cone with an unknown angle. 

One popular method for estimating the effective sampling beam volume is the empirical 

technique called the 'duration-in-beam method'. This method was first conceived by R. 

Thorne and H. Lahore in 1970 and first applied to estimation of juvenile sockeye salmon 

in Lake Washington in 1971. (Thorne [39], Thorne and Dawson [38]). Since then several 

authors have derived alternative estimates based on the same principle (e.g. Nunnallee and 

Mathisen [27], Crittenden et al. [12], and Kieser and Ehrenberg [IS]). 

According to Thorne [39], the effective diameter of the beam at a given depth is estimated 

from the number of successive echoes received from individual fish ('duration-in-beam') as 

the transducer moves over the fish at  a known speed. Any movement of fish is assumed 

to be negligible compared to the boat speed. His estimate of the diameter at range R is 

calculated as 

where e(R) is the average number of echoes from individual fish at range R, v is the pulse 

repetition rate and u is the boat speed. The beam angle and the volume can now be 

estimated by simple trigonometry from the beam diameter and the range. 

Nunnallee and Mathisen [27] proposed an unbiased estimator for the sine of the half angle 
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of the assumed cone-shaped beam. This estimator is based on the relationship between the 

expected value of the 

transducer to the fish. 

where $ is the sine of 

number of echoes from individual fish and the range R from the 

They found that 

the half beam angle. They considered several range strata, and for 

each stratum, $ was estimated by ~ E U / T V R .  Then, taking the average of these estimates 

over strata (say a strata), $ was estimated by 

Crittenden et al. [12] suggested an alternative estimator based on weighted regression. 

They noticed that equation (2.3) can be expressed in the form of a model that is linear in 

R, has slope /3 = e, and passes through the origin, 

Finding that the variance of e is proportional to R2, they regressed e on R with weights 

w = 1/R2. Then, based on the estimated slope of this regression, they estimated $ by 

- 221 C w;e;R; 2u 
$ = -  = - Average(e/ R). 

nu E w;Rq nu 

These methods represent a substantial reduction in the information needed to  estimate fish 

abundance, because the calibration and enumeration are essentially done simultaneously 

using real targets. Nunnallee and Mathisen's [27] estimate for sine of the cone angle leads 

to an unbiased estimate of beam volume. Crittenden et al.'s [12] estimate for sine of the 

cone angle leads to a minimum variance unbiased estimate of the beam volume. However, 

these estimates do not lead to  a direct unbiased estimate of fish population size because the 

population size is not a linear function of this quantity. It is a function of the the reciprocal 

beam volume. In the next chapter, we present an alternative method that requires only that 

the beam be circular symmetric and does not require to estimate the volume by duration- 

in-beam method. 



Chapter 3 

Estimation of Fish Populations 

Using Echo Sounding Techniques 

3.1 Estimation of Migrating Fish Populations 

The purpose of this section1 is to present a hydroacoustic sampling technique that captures 

the advantages of the duration-in-beam method, but that is particularly suitable for making 

in-river estimates of the abundance of migrating fish. The technique was developed by the 

International Pacific Salmon Fisheries Commission (IPSFC) in 1977, and used by the IPSFC 

from then until 1986, and by its successor, the Pacific Salmon Commission, since then. The 

application was the estimation of abundance of Fraser River sockeye (Oncorhynchus nerka) 

and pink (Oncorhynchus gorbuscha ) salmon that pass Mission, British Columbia, during 

their upstream migration to  spawning grounds in the Fraser River watershed (Woodey 

[42]). We have refined the calculation methods to improve the statistical properties of the 

estimator and have developed formulae for estimating the variance and bias of the estimate. 

With this method, a boat-mounted echo sounder that conducts shore-to-shore transects 

'A paper based on the contents of this section has been submitted to the Canadian Journal of Fisheries and 
Acquatic Sciences as: Banneheka, S.G., R.D. Routledge, I.C. Guthrie, and J .  C. Woodey. 1995. Estimation 
of In-River Fish Passage Using a Combination of Transect and Stationary Hydroacoustic Sampling. 

13 
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across the river is used to estimate the density of fish targets per depth interval. Stationary 

soundings provide an estimate of the amount of time it takes fish in each depth interval to 

swim through the beam. Combining these estimates yields estimates of the number of fish 

that pass the transect location per unit time. The method eliminates the need to  estimate 

beam dimensions directly, as long as the same hydroacoustic equipment and settings are 

used for both the transect and stationary soundings. The sampling techniques used by the 

Pacific Salmon Commission are further described in the following section. 

3.1.1 Methods 

The hydroacoustic program conducted by the Pacific Salmon Commission in 1993 at  Mission, 

British Columbia, is briefly described below. Minor technical aspects of the methods varied 

over time as, for example, the abating spring freshet led to  declining river depths. The 

specific methods described below were applied on August 31. Data from this day are later 

used in a numerical example illustrating the calculations. 

Equipment 

The equipment that was used for both the transect and stationary soundings was in- 

stalled on a 5.8 m aluminum vessel. A BioSonics Model 105 echo-sounder operating at a 

frequency of 50 kHz was used with a 34 degree (full angle) circular-beam transducer. The 

transducer was mounted in an aluminum stabilizer and towed from a davit 1.1 m from the 

starboard gunnel at a depth of 0.5 m. Settings for the equipment included a pulse rate of 

15.3 ensonifications per second and, to  compensate for two-way spreading loss, a time-varied 

gain of 40 Log R (where R = range of target). To record the soundings, a BioSonics Model 

111 Thermal Chart Recorder was used. It was set to  record a 15 m depth range with 5 m 

depth intervals marked. This depth range encompassed the maximum river depth at the 

site, except during spring freshet, when the depth range was increased to  20 m. Paper speed 

for the recorder was 0.478 mm s-'. The equipment was serviced annually, and each day the 

crew checked the settings to  ensure that they had not been accidentally changed. 
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Site 

The data collection site was about 1 km upstream of the railway bridge across the Fraser 

River at Mission, British Columbia. River width at this site is about 437 m. This location 

has been used by the IPSFC and the Pacific Salmon Commission for echo sounding since 

1977 because it satisfies several criteria. First, fish actively migrate at this location: the 

site is in a straight stretch of the river with no eddies or deep pools where fish can hold or 

mill about. Second, it has a rapid drop-off to  deep water on both shores: there are only a 

few meters along each shore that cannot be sampled, and few sockeye salmon are believed 

to migrate this close to  shore. Third, the smooth bottom is unlikely to  acoustically obscure 

fish. Fourth, the flow of the river here is relatively even and moderately slow so that a 

small boat can cross the river at suitable speeds for echo sounding without being swept 

downstream. Finally, the site is close to  a road, dock and fuel source. 

Field Sampling 

Two data collection activities were performed (Figure 3.1). The first consisted of 215 

shore-to-shore transect soundings across the river, perpendicular to the direction of fish 

movement. All transects used the same transect line, boat speed, and echo-sounder settings. 

These transect soundings took about five minutes each to  complete. 

Second, nine stationary soundings were conducted along the transect line, using the 

same equipment and settings used for the transect soundings. These soundings were taken 

at scheduled times, with one located in each of the south, center and north sections of the 

transect line during each 8-hour shift. The boat was anchored during these soundings. 

Hydroacoustic data were collected over a twenty-four hour cycle, from 5:00 a.m. to 4:59 

a.m. the next morning. Transect soundings were conducted for about eighteen hours, and 

stationary soundings for about three hours. Other activities such as refuelling, changing 

crews and setting anchors for the stationary soundings took up the remaining three hours. 
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Figure 3.1: Schematic diagram showing hydroacoustic sampling activities on the kaser  

River at Mission (courtesy of the Pacific Salmon Commission, Vancouver). 

Data processing 

After the 24-hour recording session, the resulting echogram was interpreted by a trained 

hydroacoustics biologist. For each transect, the number of fish targets in each depth stratum 

were counted (see Figure 3.2). For each stationary sounding, the widths of each echo traccs 

from fish (target widths) in each depth stratum were mcasurcd using a micrometer (see 

Figurc 3.3). Periodically, thc papcr spccd of thc rccordcr was vcrified, using marks that thc 

echo-sounder recorded on the echogram cach minute. 
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Targets (echo traces of fish) 

Figure 3.2: An echogram irom a transect sounding (courtesy of the Pacific Salmon Com- 

mission, Vancouver) 
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Figure 3.3: An echogram from a stationary sounding (courtesy of the Pacific Salmon Com- 

mission, Vancouver). 
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3.1.2 Assumptions 

1. If there are fish present that are not part of the population of interest (e.g., other 

species), then these can either be distinguished on the record or otherwise removed 

from the estimates. (In the Fraser River programme, the number of resident [i.e., 

non-migratory] fish was estimated by sampling when few salmon were in the river 

[i.e., before or after salmon runs or after commercial gillnet fisheries downstream]. 

The target density associated with resident fish was then removed from the daily 

total target density to  obtain an estimate of daily salmon density, which was used to  

estimate the salmon population. To determine the sockeye salmon component in this 

estimate, the species composition of these co-migrating salmon was obtained from 

a test fishery using a variable-mesh gillnet that was conducted downstream of the 

Mission site.) 

2. The beam has circular horizontal cross sections. (This assumption is less stringent than 

the more common requirement that the beam be a cone, and is required because the 

presence of small side lobes near the transducer caused by local interference patterns 

(Clay and Medwin [8], 144-146; MacLennan and Simmonds [24], 13-20; and references 

therein) cannot be ignored, particularly in the shallow water near the shorelines at 

the sampling site.) 

3. The hydroacoustic beam extends to  the river bottom. (In the Mission echo-sounding 

programme, the depth range recorded by the echo-sounder encompassed the maximum 

depth encountered at  the study site.) 

4. The records of fish echos do not overlap on the record. (Schooling or heavy runs could 

generate high local abundances that would lead to  substantial numbers of overlapping 

records. In extreme cases, fish density can be high enough to extinguish the bottom 

echo signal [Foote 19901. In the present application, the local abundance of sockeye 

salmon was not large enough to  cause significant overlapping of fish echoes.) 

5. Fish echos can be distinguished from the background noise. (The ability to distinguish 
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fish from noise is determined by the experience of the interpreter and the selection of 

criteria that can be consistently applied to determine whether a target is "real" [e.g., 

three successive echoes].) 

6. Fish are distributed randomly with a uniform probability density over depth within 

each stratum. (The validity of this assumption, along with the following one, can be 

promoted by choosing suitably narrow depth strata.) 

7. Fish speeds are generated independently according to  some common distribution which 

does not depend on depth within each stratum. 

8. Fish swimming speed is negligible relative to  the boat speed. (This assumption will 

later be relaxed.) 

9. Fish behavior is not altered by the survey vessel. (Although research concerning this 

issue is lacking, sockeye salmon likely swim too deep in the turbid waters of the Fraser 

River to  be very susceptible to  boat avoidance. For example, few migrating sockeye 

at the study site swim at depths above 3 m (Levy et al. [23]), and few are caught near 

the surface in test fishing nets downstream of Mission.) 

10. There are few fish swimming close enough to  the surface and to  the transducer to  go 

undetected. (Since the large majority of sockeye at  the study site migrate a t  depths 

below 3 m (Levy et al. [23]), and the minimum detection depth is likely between 1.5 

and 2.5 m. [R. Kieser, Pacific Biological Station, Nanaimo, B. C., V9R 5K6, pers. 

comm.], it is likely that few sockeye salmon were undetected.) 

11. The fish swim directly upriver. (A site should be chosen that minimizes opportunities 

for fish to mill about.) 

12. Fish that cross the beam in a stationary sounding are independently and uniformly 

distributed across the beam. (This is essentially equivalent to  a key assumption in 

Crittenden et al. [12].) 
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13. The observations from both transect and stationary soundings, though typically sys- 

tematically sampled over time, can be viewed as being randomly sampled over time. 

(If, for example, there are substantial daily cycles, departures from this assumption 

could be minimized by stratifying over shorter time intervals. Failure to  do so would 

inflate the estimated variance.) 

14. The transect and stationary soundings sample fish with the same characteristics such 

as speed, size, depth, and orientation. (The validity of this assumption can be pro- 

moted by ensuring that the stationary soundings are taken at  times that are inter- 

spersed spatially and temporally with the transect soundings.) 

15. The target widths of individual fish in the stationary soundings are generated inde- 

pendently. (This assumption would be violated if, for example, fish speeds displayed 

a strong diurnal cycle, and the results were pooled over an entire day. The measured 

widths of adjacent targets, coming from roughly the same time of day, would then be 

positively correlated.) 

3.1.3 The Estimator 

Upstream Migration Rate 

Suppose the water column is divided into several depth strata within each of which 

the number of fish per unit volume does not vary appreciably with depth. First, consider 

any depth stratum and assume that target strength is the same for each fish in the depth 

stratum. 

Let 

r = number of fish migrating upstream per second in the depth stratum: the 

quantity to  be estimated, 

cr = width of the river, 

zl = depth at the top of the depth stratum, 
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z2 = depth at the bottom of the depth stratum, 

X = average number of fish per unit volume in the depth stratum: unknown, 

and 

y = maximum speed of fish (distance per second): an unknown constant. 

Next imagine a barrier across the river. At any given moment, which will be referred to 

as 'the start', fish that are capable of crossing the barrier within one second from the start 

will be within a distance y downstream from the barrier. The volume of the river section 

that contains these fish is a(z2 - zl)y and the expected number of fish in this volume is 

Xa(z2 - z l ) ~ .  However, only a fraction of these fish cross the barrier within one second from 

the start, because not all fish travel at  the maximum speed 7. Let 

,L3 = probability that a fish will cross the barrier within one second from the start. 

Then the expected number of fish that will cross the barrier within one second is 

r = Xa(z2 - zl)yp. 

Calculation of P 

Let 

D = distance from the fish to the barrier at  the start: a random variable, 

S = speed of the fish: a random variable, and 

B = time taken by the fish to reach the barrier: a random variable. 

Suppose that S has some probability density function fs(s) whose domain is [O, y]. Over 

the small distance (7) being considered, D will be essentially uniformly distributed in [0, y]. 

Thus the probability density function of D is fD(d) = $. The variables, D and S ,  will also 

be essentially independent, with joint probability density function, 

f ~ , s ( d ,  s) = f ~ ( d )  fs(s) = fs(s), for d and s both in [0, y]. 
7 
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Note that B = 9, with B then restricted to the interval, [0,1]. Let U = S. Then D = BU. 

The joint probability density function of B and U is 

f ~ , ~ ( b ,  u) = fDYS(bu, u)J, where J = u is the Jacobian of the transformation, 
1 

= -fs(.).; (b, 4 E A, 
Y 
where A is the region with boundaries, b = 0, u = 0, u = and bu = y . 

Therefore, the marginal probability density function of B in region [O,1] is 

where ps = E(S) is the mean fish speed. 

Now, 

Substituting for P in formula (3.1) yields 

This formula shows that the number of fish passing the barrier per second is equal to  

the number of fish per unit upstream distance [Aa(z2 - zl)] times the mean fish speed (p,). 

The next step is to  calculate the mean fish speed in terms of quantities associated with 

stationary soundings. 

Calculation of Mean Fish Speed, ps 

Consider a stationary sounding. Let Z be the random variable representing the depth 

of a fish relative to the transducer. Assume that the horizontal cross section of the beam 

at depth z is a circle with radius r(z). Now consider the fish that swim through the beam 

at depth 2. Suppose that S is the speed of the fish, C is the distance that a fish swims 

through the beam (chord length) and T is the time taken to  do so. Speed is distance over 

time. However, mean fish speed is not equal to  mean distance over mean time. Because C 
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and S are independent, the mean speed can be obtained as 

l/E(l) This formula can also be written as p, = ---+. This implies that mean fish speed is 
~ / E ( F )  

equal to the ratio of harmonic mean chord length to an harmonic mean time. 

The next two steps are devoted to obtaining expressions for the numerator and the 

denominator of formula (3.3). 

Calculation of Mean Reciprocal Time, E($) 

Let 

W = width of the target in the echogram: a random variable and 

p = paper speed of the recorder. 

Then, W = Tp. For notational convenience in the subsequent calculations, let M = +. 
Then, 

This formula can also be viewed as 1/E($) = p [ l / ~ ( + ) ] ,  which means that the har- 

monic mean target width is equal to the paper speed times the harmonic mean time. 

Calculation of Mean Reciprocal Chord Length, E(&) 

Let @ be the half angle that is formed in the center of the horizontal cross section at 

depth Z by the chord that a fish travels in the beam (Figure 3.4). Then, C = 2r(Z) sin(@) 

and hence, 
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Figure 3.4: The distance that a fish swims to cross through the acoustic beam (C) can be 

calculated from the radius T(Z) of the beam at depth z and from the half angle 8 formed in 

the center of the beam 

Within each depth stratum, fish depths are distributed uniformly (Assumption 6). How- 

ever, the sampling probability for a fish at  depth z is proportional to  T(z). Hence for the 

sampled fish, the probability density function fZ(z) of Z is 

Let 

S = average diameter of the beam = 1; 2~(z)dz.  
(22 - z1) 

(3.7) 

Formulae (3.6) and (3.7) lead to 

f z ( 4  = ~ ( z ) ,  for ZI < z 5 z2. 
S(z2 - ~ 1 )  

Then, 

Now let fo(8) be the probability density function of 0. It follows from Assumption 9 (that 

fish do not respond to the survey vessel) that fish that cross the beam do so along a line 
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that is a uniformly distributed distance away from the beam centre. From this, it follows 

in turn through a change of variables that fo(8) is proportional t o  sin(8). Then, 

sin(8) 
f m  = 2 , for 0 5 19 5 n, and 

Substituting formulae (3.9) and (3.10) in formula (3.5), 

Formula (3.11) can be written as I/E(&) = as. That is, the harmonic mean chord 

length is equal to the product of (i) the average beam diameter and (ii) a correction factor, 

2/n, which adjusts for the shorter swimming distances for fish that do not cross the centre 

of the beam. The factor 2/n is valid for any beam with circular horizontal cross-sections. 

Substituting formulae (3.3), (3.4) and (3.11) into formula (3.2) leads to  

This formula still contains quantities which are not readily estimable. The next step 

shows that the quantity, Xa(z2 - z1)6, is an estimable parameter arising from transect 

soundings. 

Calculation of Expected Number of Fish per Transect 

Let 

N = number of fish detected per transect in the depth stratum. 

Ignoring river bottom irregularities, edge effects near the shorelines, and fish less than the 

minimum detection distance from the transducer, the volume of the depth stratum that is 

ensonified by a transect sounding, v, can be approximated by 
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Now consider an ideal situation where the boat is moving at  such a speed that a transect 

sounding can be considered a snapshot across the river (Assumption 8). Then, the expected 

number of fish that are ensonified during a transect sounding is 

However, in practice, there is a maximum feasible speed of the boat. Therefore the assump- 

tion of high boat speed introduces a bias to the estimator of E ( N )  and thereby to  the final 

estimator of r. This is discussed later in Subsection 3.1.4. 

Calculation of Fish Passage per Second, T 

Now we can combine formulae (3.12) and (3.14) to  obtain T ,  the number of fish migrating 

upstream per second, in terms of estimable parameters as 

Extension to Unequal Target Strengths 

So far, we have assumed that fish target strength is a constant. Now we allow it to be 

a random variable and denote it by K. For simplicity, assume that K is a discrete random 

variable that takes values in a countable set. The result for continuous K is similar, but the 

proof is technically more complex. Let r(k), X(k), v(k) and N(k) refer to  the corresponding 

quantities above, but for fish of target strength K = k. Then, 

N = E N @ ) ,  and 

Analogous to  formula (3.14), E[N(k)] = X(k)v(k). Thus formula (3.17) can be written as 
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Let E ( M  I K = k) be the conditional expectation of M given K = k. Then, 

E ( M )  = E [E(MIK = k)] = C E ( M ~ K  = k) W v ( k )  

k  Ck W v ( k ) '  

where is the probability mass function of target strengths of fish 
Y k ) v ( k )  

beam. Substitution of E ( N )  for C k  X(k)v(k) in formula (3.18) yields 

(3.18) 

in the stationary 

Analogous to formula (3.15), 

Then, formulae (3.19) and (3.20) lead to  

which again gives formula (3.16). This shows that even with fish of unequal target strengths, 

r can be written in terms of estimable quantities that do not depend on parameters relating 

to beam shape or target strengths of fish. 

Now we attach subscript i to  T, N and M to denote the corresponding quantities for the 

ith depth stratum. Finally, summing over all depth strata, we can write the total number 

of fish migrating upstream per second, T, as 

Estimation of Fish Passage per Second, T 

To estimate T, we first need to estimate E(N;)'s and E(M;)'s. We use data from transect 

soundings to estimate E(N;)'s and data from stationary soundings to estimate E(M;)'s. Let 

N; = sample average of number of targets per transect in the ith depth stratum, 

and 

M; = sample average of inverse target widths from the ith depth stratum. 
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Then, 

can be used as an estimator for T 

3.1.4 Bias 

Assuming that a transect sounding is a snapshot across the river is equivalent to assuming 

that the boat is traveling infinitely faster than the fish. Since the boat speed is limited in 

practice, this assumption is false and introduces a bias to  the estimate. If the boat speed 

is not substantially greater than the fish speed during transect soundings, then the beam 

will ensonify fish that are in the sampled volume when the boat arrives, as well as fish that 

move into the sampled volume as the boat passes. These latter fish are the source of the 

bias. As the beam detects more fish than the model predicts, this bias is positive. 

Fish that deviate from the upstream direction when migrating upriver will also contribute 

a positive bias. This includes fish that swim downstream, across the flow, or even a few 

degrees from the true upstream direction. The fish that do not swim directly upstream 

are not moving upstream as rapidly as the method assumes. For fish that swim at  an 

angle, Q, off the upstream direction, the upstream component to  the velocity will be the 

fraction, cos(Q), of their overall speed. This does no affect the calculation of average fish 

speed using stationary soundings, because of the circular symmetry of the beam. But, by 

taking this average fish speed as the average upstream fish speed, the upriver migration rate 

is overestimated. However, for Q close to  0•‹, cos(Q) is close to  1. Hence, as long as fish 

movement is strongly directed upriver, this bias will not be serious. 

Formula (3.15) now becomes 

2P 
T = -XvE(M)E [cos(Q)] 

7T 

Since Q is small, 
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Suppose that E(@) = 0 and V a r ( @ )  = a;. Then 

E [cos(@)] M E [l - m2/2] = 1 - 4 1 2 .  

So, (3.23) yields 

The relative bias (RB) of 3 is 

Since from formula (3.22) 3 for one stratum is i = $NM, the above formula becomes 

Recall that N is the average target count per transect sounding, and is based on mobile 

soundings, while M is the average of reciprocal target widths and is based on stationary 

soundings. These two quantities are therefore independent. Hence, the above equation 

simplifies to 

Now let 

u = speed of the boat. 

Then, the time taken for one transect is t = :. Boat speed relative to a fish swim- 

ming upstream at speed S is Ju2 + S2 + 2uS sin(@). Therefore, the distance that the 

boat would have traveled relative to the fish during time t is t d u 2  + S2 + 2uS sin(@) = 

zJu2 + S2 + 2uSsin(@). This corresponds to a volume, 
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Therefore, 

Then, formulae (3.25) and (3.26) lead to  

Now, note that 

= E [yl] u S2 + u2 

- - E [\im\i=] 

Therefore, (3.27) leads to  

As the bias is positive, the effect of low boat speeds is to  overestimate r. However, by 

moving the boat at a high speed relative to fish speed, the bias can be reduced. We can 

obtain bounds for the relative bias as follows. 

From Jensen's inequality (see Appendix) and the fact that 41 + $ is convex in S but 
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concave in S2, one can show that 

Therefore, 

That is, 

Hence, a lower bound can be placed on the bias if the mean fish speed and a@ are known. 

An upper bound can be added if the variance is also known, and a proper bias adjustment 
/ -\ 

factor can be computed from an estimate of 

For example, assume that a@ was 10 degrees, and the boat speed was close to  1.5 m s-'. 

Quinn and terHart [29] report for sockeye salmon (Oncorhynchus nerka) a mean fish speed 

of 0.66 m s-l, with a standard deviation of 0.21 m s-'. With these Figures the relative bias 

would be between 10% and 12%. 

3.1.5 Estimation of Variance 

The variance of .i as given in formula (3.22) can be written as 

where i and j are stratum numbers. Let 6 = ri + E; and Fj = rj + ~ j .  Assume that the 

errors E; and ~j are uncorrelated. Then, Cov (Fj,Fj) = COV(E;, ej) = 0, and 

var(F)  = v a r  (6) = [:] v a r  (&ai) . 
i i 

Recall that N; and Mj are independent for all i and j. 
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According to  Kendall and Stuart [IT], 

Var(N;M;) = V~T(N; )V~T(M; )  + v~T(N; )E~(M; )  + v a r ( ~ ; ) ~ ~ ( N , ) .  (3.31) 

Let 

1 = the number of times the boat crossed the river, (3.32) 

m; = total number of targets in depth stratum i from the stationary soundings, 

s k i  = sample variance of the number of targets per transect sounding in depth 

stratum i, and 

s k i  = sample variance of the reciprocals of m; target widths in depth stratum i 

from the stationary soundings. 

Since % and% are unbiased estimators for ~ a r ( ~ ; )  and v ~ T ( M ~ ) ,  respectively, ac- 

cording to  Kendall and Stuart [17] an unbiased estimate of the variance of 7̂  can be obtained 

by 

3.1.6 Numerical Example 

Data from August 31, 1993, are used to  demonstrate the methods described in this 

section. Table 3.1 contains the summary statistics of the data and estimates of the number 

of fish per second in each depth stratum that migrated upriver, along with the estimated 

variances. The paper speed of the recorder is 0.478 mm s-' for these calculations. 

The estimated number of fish migrating upriver per second is 3. To estimate total 

numbers migrating over a time period of duration H ,  we can use H 3  with estimated variance, 

~ ~ ~ a r ( i ) .  

The total daily abundance is estimated with H = 86400 s d-' as described above. 
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Transect Observations 

Depth 

Stratum 

(i) 

1 

2 

3 

Depth 

Range 

(meters) 

0 -  5 

5 -  10 

10 - 15 

# 

Passes 

( 1 )  

Stationary Observations Migration Rates 

Ave. 

Count 

( 4  

# 

Fish 

(mi > 

Table 3.1: Summary statistics of the data collected by the Pacific Salmon Commission on 

August 31, 1993, at Mission, B.C. Also shown are the estimated numbers of fish migrating 

upriver per second and the corresponding estimated variances. 

Var. 

(sif,) 

0.136 

0.066 

0.130 

Var. 

( 4 , )  

Ave. Recip. 

Width 

(Mi) 

Estimated abundance = HP = H C 6 = 196,998, 
i=l  

Estimated standard error = G(HF)  = H JG = H Par(+,) = 8,651, 
i=l  

Est. 

(h )  

0.39 

1.47 

0.42 

G(H3) 
Estimated coefficient of variation = -% = 4%. 

H P  

Var . 

[ P a w ]  

0.0107 

0.0815 

0.0164 

Fish abundance on this day (about 197,000 fish) was about half the largest daily abundance 

(about 403,000 fish) observed in 1993. 
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3.2 Estimation of Resident Fish Populations 

In this section we adapt the ideas developed in Section 3.1 to derive an estimator for the 

total number of fish in a resident population; for example, in a lake. For this derivation, 

we make the assumptions 1-10 stated in Subsection 3.1.2, and in addition, the following 

assumptions. 

11'. The fish swim around in random directions at slow speeds. 

12'. The fish that are crossed by the moving beam are independently and uniformly dis- 

tributed across the beam. 

13'. The survey area is randomly sampled by transect soundings. 

Here, we are not estimating the numbers of fish that pass a given point. Hence, one main 

difference of this situation from a migrating fish population in a river is that calculation of 

fish speed is not necessary. For this reason, stationary soundings no longer provide relevant 

information. 

3.2.1 The Estimator 

As in Subsection 3.1.3, suppose that the water body is divided into several depth strata 

within each of which the number of fish per unit volume does not vary appreciably with 

depth. First, we estimate the number of fish in a given depth stratum assuming that all the 

fish in the stratum have the same target strength. Later we relax this assumption. Then, 

the total number of fish is estimated by adding the stratum estimates. 

Let 

T = total number of fish in the depth stratum: the quantity to  be estimated, 

A = survey area: assumed known, 

zl = depth at the top of the depth stratum, 
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depth at  the bottom of the depth stratum, 

total volume of the water in the stratum: assumed known, 

number of fish per unit volume in the depth stratum: unknown, 

boat speed: assumed known, 

length of a transect: assumed known, 

expected number of fish to  be ensonified in the depth stratum 

during a transect :unknown, 

observed number of fish ensonified in the depth stratum 

during a transect, and 

effective volume sampled in a transect: unknown. 

By the definition of A, 

Under the random sampling assumption, 

Since vo = A(an - zl), (3.34) and (3.35) lead to  

Now let 6 be the average diameter of the effective beam defined by (3.7). Since v = a(a2 - 

z1)6 by (3.13), T can be written as 

From (3.11), 
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In (3.11),  C was the distance that a fish had to swim to cross a stationary beam. This 

formula is still valid for our purpose, but now C is the distance that the boat must travel 

for the beam to pass over the fish. 

Now let 

v = the pulse rate of the transducer, 

e = the number of echoes received from a fish, and, 

e, = l l e .  

Then, according to  Crittenden et al. [12], 

Using equations (3.36),  (3.37) and (3 .38) ,  T can be written in term of estimable quantities 

as 

Extension to Unequal Target Strengths 

Now suppose that the target strength of a fish is a random variable K .  For simplicity, 

assume that K is discrete that takes values in a countable set. Let n ( k )  and v ( k )  refer to 

the corresponding quantities above, but for fish of target strength K = k .  Then, 

and the probability mass function p ( K  = k )  of fish of target strength k that are ensonified 

in the beam is 

Let E(e , lK = k )  be the conditional expectation of e ,  given K = k .  Then, 

n ( k )  E(e , )  = E [E(e , lK = k ) ]  = E(e, lK = k ) - ,  
k 

n 



Chapter 3. Estimation of Fish Populations Using Echo Sounding Techniques 

from which we get 

Furthermore, according to  (3.39), 

2Av 
T(k) = -n(k)E(e,lK = k). 

Tau 

By summing (3.44) over k, we obtain the total population size under the new assumption 

that target strength is a random variable. Denote this total by TI. Then, 

which is again equal to  T given by (3.39). This implies that the population size can be 

written in terms of estimable quantities which are independent of the target strength dis- 

tribution. 

Estimation of T 

Suppose that 1 transects are randomly sampled. For each transect, the number of fish 

ensonified is counted and the length of the transect is recorded. The number of fish per unit 

distance is then calculated. Also, the number of echoes per fish is determined for all fish 

observed or a random sample of them. Let 

N = average number of fish observed per unit distance and 

e, = average reciprocal number of echoes per fish. 

The total number of fish in stratum, T can be estimated by 
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The total number of fish in the survey area can be estimated by adding the stratum 

estimates over the depth strata. 

Note: 

For a paper recorder, we can write e ,  in terms of the paper speed of the recorder and the 

mean reciprocal target widths. Denoting the parer speed by p and the target widths by W, 

it is easy to see that W = p(e/v). Hence, e ,  = l / e  = p/(vW) = (p/v)M, where M is the 

reciprocal target width. Therefore, (3.39) can also be written as 

Consequently, T can be estimated by 

where M is the sample average of reciprocal target widths. Note that this estimate has the 

same form as (3.22) except for the multiplicative constant. 

3.2.2 Estimation of Variance 

It is reasonable to assume that N and M for a given depth stratum are independent. Also, 

the total estimates in different strata are uncorrelated. Hence, similarly to (3.33), the 

variance of the total estimator can be estimated by 
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3.3 Discussion 

The described method for estimating the number of migrating fish in a river using hy- 

droacoustic techniques has two major advantages over similar methods used in lakes and 

reservoirs. First, the method is not sensitive to beam shape or dimensions. Second, the 

exact calculation of the expected reciprocal of the chord length allows the user to  avoid the 

use of the bootstrap to reduce bias caused by using an estimation formula with a random 

variable in its denominator. 

We identified several potential sources of bias inherent in the method. The first, which 

stems from the speed of the boat being only moderately faster than fish migration speed, 

tends to  result in overestimation of abundance. This bias can be reduced by increasing the 

boat's speed as much as practically possible, or by estimating a bias adjustment factor that 

can be extracted from formula (27). 

Second, fish swimming off the upstream direction will introduce a positive bias. The 

stationary soundings estimate overall fish speed, and the upstream component to the velocity 

will be overestimated. This source of bias can sometimes be reduced by choosing a location, 

such as the Mission site, where there are limited opportunities for the fish to mill about. 

Contrasting with these sources of positive bias are sources of negative bias. Fish that 

travel in areas of the river that cannot be acoustically sampled, such as close to  the surface 

above the minimum detection depth and close to  shore where the echo-sounding boat cannot 

travel, will be missed. Similarly, fish that sense and avoid the echo-sounding boat will lead 

to  a negative bias. Finally, when the targets of two or more fish overlap on the echogram, 

so that only one target is apparent, the population will be underestimated. These biases 

are not considered to  be significant for sockeye salmon in the Fraser River. 

In determining depth strata, we have taken the distances determined by the echosounder 

as actual depths. This can also introduce a bias. This bias can be reduced by reducing the 

beam angle. Ways of reducing bias are also being investigated through the application of 

new technology (e.g., split beam). 
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The estimated variance for the worked example could possibly be reduced further if the 

day was divided into smaller units of time. This is because a daily cyclical pattern in the 

abundance of migrating sockeye salmon is ignored in our example. Stratifying each day such 

that the strata are homogeneous with respect to  migration (e.g., into hourly strata) could 

result in more precise estimates. Daily abundance and variance can then be estimated as 

the sum of the stratum estimates. 

The fish speed calculated through target widths obtained from stationary soundings 

plays an important role in the estimation. Fish speed can vary substantially over time 

and space (depth and location in the river). Therefore, the timing and location of sta- 

tionary soundings should be re-examined, and alterations to the sampling design should be 

considered to address concerns about possible biases. 

In the example shown, the 264 targets sampled in the stationary soundings provided 

estimates with reasonable precision. On days with fewer fish in the river, the estimates will 

have a larger coefficient of variation. A scheme for optimal allocation of sampling effort 

between the two types of soundings could substantially reduce the coefficient of variation, 

particularly on such days. 

The estimators are sums of products of averages, and may have skewed distributions. 

Therefore, the usual confidence intervals, calculated by adding and subtracting standard 

errors times normal quantiles may not provide an accurate coverage. In Chapter 4, we 

investigate two alternative strategies for this purpose. 

The method described in this chapter has a strong potential to give accurate and precise 

estimates of fish passage that are robust and comparatively easy to  obtain. Methods for 

promoting and checking the validity of the underlying assumptions are discussed. The 

method provides a significant tool for managers under pressure to  make timely and effective 

management decisions. 



Chapter 4 

Confidence Intervals for a Sum of 

Pairwise Products of Means 

The purpose of this chapter is to develop methods to find confidence intervals for a sum of 

products of means. The motivation arose from the requirement to find confidence intervals 

for the migration rate estimated in Section 3.1 and the number of fish in a resident population 

in Section 3.2. Both estimators are sums of products of pairwise means. Products of means 

also arise in other practical situations. As Bergeret al. [5] pointed out, they arise in 

determining area based on measurements of length and width. Furthermore, in gypsy moth 

studies, the hatching rate of larvae per unit area can be estimated as a product of the mean 

number of egg masses per unit area times the mean number of larvae hatching area per egg 

mass. Applications also arise in forest sampling (A. Ellingsen, personal communication). 

In the fish applications described here, the independence of the individual means follows 

naturally from the assumptions about the sampling procedure. In other applications also 

approximately independent samples can be obtained for each mean (Southwood [37]). 

Berger et al. [5] considered the problem of obtaining confidence intervals for a product 

of two means from independent normal distributions with known variances when only one 

observation from each distribution is available. They proposed a Bayesian approach with 
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reference priors. We consider the problem assuming that large samples are available from 

each distribution, and explore two methods that are derived from the likelihood ratio test 

and the Wald test. In all the applications described above, the variables involved are 

positive. For this reason, in our development we assume that the variables are positive. 

Possible modifications for other cases are also suggested. 

In the area-estimation example, both variables, the length and the width, may be well- 

approximated by normal distributions. In other applications, one or both variables can 

be far from normal. In the fish problem, one variable is the number of fish detected per 

transect. The other variable in this case is the reciprocal target width of a fish on an 

echogram. The latter is proportional to fish speed. Figure 4.4 shows histograms of these 

variables based on data collected by the Pacific Salmon Commission on August 31, 1993 at 

Mission, B.C.. According to thesehistograms, the variables seem to have positively skewed 

distributions. However, when the samples are large, sample averages are approximately 

normally distributed. Hence, the methods used to construct confidence intervals for sum of 

products of normal means may be adapted in these situations as well. 

So, we first develop methods for finding confidence intervals for a sum of pairwise prod- 

ucts of means from independent normal distributions. These methods are based on the 

standard, general likelihood ratio and Wald tests. The methods are then extended to other 

distributions using the central limit theorem. In the case of normal means, Bartlett-type 

adjustments are derived to improve the confidence intervals obtained through the Wald test. 
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4.1 Notation and Assumptions 

4.1.1 Notation 

Let p  be the number of pairs of products in the sum. When we have only one pair of 

products ( p  = I) ,  we use the following notation: 

1 for the first component of the pair 

2 for the second component of the pair 

pj = the meanof the jthdistribution, 

u: = the variance of the j t h  distribution, 

nj = size of the sample from the j t h  distribution, 

j = the sample average from the j t h  distribution, 

To further simplify notation, also let 

% = (::), v =  (::), and + =  (::). 
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When p > 1, we attach an additional subscript to denote the pair. For example, for 

i = 1,2, . . . ,p ,  

j = the mean of the j th  distribution of the ith pair, 

2 
aij = the variance of the j th  distribution of the ith pair, 

n,j = size of the sample from the j th  distribution of the ith pair, and 

j = the sample average from the j th  distribution of the i th pair, etc.. 

In addition, let 

n o  = the smallest sample size 
P 

P = C~lPi2, 
k l  

S = -2 times the maximum log-likelihood ratio [as defined by (4.2)], and 

W = the Wald statistic [as defined by (4.30)] . 

4.1.2 Assumptions 

The only main assumptions we carry throughout the discussion are, 

1. all the variables involved are independent of each other, and 

2. all the observations within a sample are independently, identically distributed. 

4.2 Normally Distributed Data 

4.2.1 Likelihood Ratio Approach 

One approach is to construct approximate confidence intervals by inverting the likelihood 

ratio test. Consider the null hypothesis, H o  : p = po. The likelihood ratio for testing this 

hypothesis is 
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where 6(8; x )  is the likelihood function. According to  Wilks [41] ,  -2  times the log-likelihood 

ratio, 

S ( p o )  = -2 In W p o )  ( 4 . 2 )  

has a limiting chi-square distribution under Ho. The method proceeds by determining the 

likelihood ratio test of the null hypothesis for a specified value of po, and then inverting this 

test in the usual way to obtain a confidence interval for p  as those values which do not lead 

to the rejection of the null hypothesis. 

Product of Two Normal Means: Variances Known 

Let us first consider the case of two independent normal means with known variances. The 

likelihood ratio for testing Ho : p  = po is 

where 

is the likelihood function. It is easy to  see that the logarithm of the denominator of L R ( p o )  

is 

To determine the numerator of L R ( p o ) ,  we need to find the maximum of 1(p; x )  subject 

to the constraint p1p2 - PO = 0. This is equivalent to finding the maximum of In I(p; x )  

subject to  p1p2 - PO = 0. We use the Lagrangian multiplier method to  find the restricted 
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maximum likelihood estimates. Let 

where X is a Lagrange multiplier. The critical point of h(p,  A) is found by solving the 

equations, 

a h  - - - 31 - P1 -- X p 2 = 0  , and 
dPl u1 

The critical point thus obtained is 

where 

z1 - X U ~ ~ ~  
X X )  = 1 - X2ulu2 , and 

such that X satisfies the constraint equation, 

= Po. 

Note that b(O) is the unrestricted maximum likelihood estimate. The constraint (4.11) 

reduces to a fourth degree polynomial and gives up to  four solutions for A. Since we assume 

that both variables are positive, jil and ji2 should also be positive. Therefore, some solutions 

can be eliminated. From the other solutions, we should choose the one corresponding to 

the maximum of h(X). Then, substituting these values in (4.2), S(po) can be calculated. If 

S(po) is less than or equal to  X:,(l-,,, then po is included in the confidence interval. The 

procedure is systematically repeated for different po to  construct the confidence interval. 
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However, this can be tedious because we have to solve (4.11) for each po. Madansky [25] 

introduced a method which simplifies these computations. This method avoids the need to 

solve (4.11) for different values of po. Instead, it obtains the restricted maximum likelihood 

estimates in terms of the Lagrangian multiplier, X [as in (4.9) and (4.9)]. Then, substituting 

these in (4.2), S is obtained in terms of A. Let this be denoted by S(X). Madansky's method 

solves the equation, 

for A. Usually, this equation has two real roots, and can be solved easily if S(X) behaves 

well around the unrestricted maximum likelihood estimate. The roots are then substituted 

in the constraint function (4.11) to  get confidence limits for p = plpz. The following result 

due to Madansky [25], provides a necessary and sufficient condition for S(X) to  have such a 

behavior around zero (zero is the value of X that corresponds to  the unrestricted maximum 

likelihood estimate of p) .  

Theorem 1 (Madansky) -2 times the logarithm of the likelihood ratio is a monotonically 

decreasang (increasing) function of X for X < 0 (A > 0) if and only if the constraint function, 

as a function of A,  is monotonically decreasing. 

When the likelihood ratio and the constraint function exhibit such behavior, it is easy to 

invert the likelihood ratio test to  construct confidence intervals as described above. We now 

investigate the possibility of using Madansky's method for our problem. Figure 4.1 shows 

an example of the behavior of p(X) and S(X) when ZIZz > 0. This example was constructed 

using nl = 30, n2 = 30,Zl = 10, Z2 = 20, sl = 3 and s 2  = 5. Note that p(X) is positive and 

monotonically decreasing in an interval containing 0, and in this interval, S(X) is convex. 
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0 

LAMBDA 

LAMBDA 

Figure 4.1: Behavior of p(X) and S(A)  when f t l f t 2  > 0 (example calculation using nl = 

30, n2 = 30, 51 = 10, Z2 = 20, sl = 3 and s2 = 5). 

The following result identifies this interval in general, and shows that (4.11) has a unique 

solution Xo in this interval such that pl (Xo)  and j i 2 ( X O )  are positive. Further, it shows that 

j i ( X o )  is in fact a local maximum of 1 subject to  the constraint, h1(X)h2(X) - po = 0. So, 

the unique local maximum of the likelihood subject to the constraint can be easily found. 

In other words, this result enables us to pick up the unique set of local maxima that gives 

us a continuous relationship between fi and p for p near po. 
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Result 4.1 Let 

Suppose that il > 0, and Z2 > 0. Then, 

(a) p ( X )  is monotonically decreasing in IA,  and S (X)  is monotonically decreasing (increas- 

ing) for X < 0 ( A  > 0 )  in I A .  

(b) jl is positive in JA and (4.1 1) has a unique solution X o  in Jx.  

(c) p = f i ( X O )  is a local maximum of I(p; x) subject to the constraint p1p2 - PO = 0.  

Proof 

( a )  Note that 

Let 

To prove part (a ) ,  it is sufficient to show that the derivative of g with respect to X is negative 

in Ix. This derivative is 
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Now suppose without loss of generality that 71 < 7 2 .  Then it is clear that $ < 0 for 

X E (-PI, 0). To show that $f is negative for A E [0, PI), we simplify (4.13 ) obtaining 

Since the denominator of (4.14) is negative for X E [0, PI), we need to  show that the numer- 

ator, 

of (4.14) is positive in this interval. We show this by negating a contradiction. Suppose 

that q(X) is non-positive for some X E [0, PI). Now, note that q(X) is differentiable in [0, PI). 

Also note that 

So, q(X) must have a non-positive minimum in [O,P1). In order to examine the critical 

points of q(X), consider the derivative 

The derivative is zero at  rl and 72. But, q(rl)  = 71 (71 - 72)2 > 0, and P1 < 7 2  (since 

yl < fl < 72). Therefore, q(X) does not have a non-positive minimum in [0, PI). This 

proves that q(X) is positive in [0, PI) and conseqently that p(X) is monotonicaJly decreasing 

in I x .  Then, by Madansky's theorem, S(X) is monotonically decreasing (increasing) for 

X < 0 (A >O)in  I x .  

( b )  The denominators in (4.9) and (4.10) are positive as long as [XI  < J-, and 

numerators are positive as long as X < min(yl , 72). This implies that fi is positive in J x .  

Now notice that p(X) approaches infinity as X approaches -PI and p(P2) = 0. Therefore, 

for any po > 0, (4.11) has a unique real root Xo in JA.  

(c) We have already established that fi(Xo) is a critical point of h. According to Marsden 

and Tromba [26](pg. 274), in order to  prove that fi(Xo) is a maximum, it is enough to  show 
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that the value of the bordered Hessian determinant of h (see Appendix), when evaluated at 

fi(Xo) is positive. The bordered Hessian determinant of h is 

B H b , X ) = - p 1  Xp2- -  -p2 X p l - -  . ( 3 ( t:) 
Let BHo = BH(ji,Xo). Then, using (4.9) and (4.10), 

Since x, u and q(X) are positive in Jx (which is a subset of Ix),  BHo > 0 in JA. This proves 

the result. 

According to Result 4.1, estimates (4.9) and (4.10) do indeed specify restricted maxima. 

Therefore, substituting these values in (4.4), the logarithm of the numerator of l(po) can be 

written as 

Hence, twice the log-likelihood ratio is 

Result 4.1 confirms that S(X) monotonically decreases (increases) for X < 0 ( A  > 0) in 

IA while p(X) monotonically decreases in the interval. Therefore, S can be easily inverted 

to calculate an approximate (1 - a)100% confidence interval for p. Note that S(0) = 0 

and S(X) approaches infinity when X approaches PI. Since S(X) is continuous in J A ,  there 
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exist a Xi(< 0) such that S(X;) = x:,(,-,). If S(P2) 2 x:(l), then there also exist a 

A;(> 0) such that S(X;) = X:,(l-,). Then the confidence interval is given by [p(X;),/~(Xi)l. 

If S(&) < X:,(l-,), there does not exist a X i ( >  0) such that S(Xj) = X:,(l-,). Then the 

natural lower bound p(P2) = 0 serves as the lower limit of the interval. 

Remark 

We have not imposed any sign restrictions on the means in the maximization procedure. 

Hence, the method can be used regardless of the sign of the averages. By an argument similar 

to  that in the proof of Result 4.1, one can show that p(X) is monotonically decreasing in Ix 

for all cases. Then, by Madansky's theorem, S(X) behaves well in Ix. So, S can be inverted 

easily to  construct the confidence intervals. 

Sum of p Products of pairwise Normal Means: Variances Known 

Now we extend the method to  construct confidence intervals for the sum of products, 

Here, (pil , pi2) is the pair of means of the ith product. By direct extension of Result 4.1, 

it can be proved that the following result is true. 

Result 4.2 Let 

u;1 = 

uj2 = 

Yil  = 

Yi2 = 

P1 = 

IA = 

S(A) = 

min [,/-I = , min i=l,..,p z=l,..,p 
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such that X satisfies 

Then, 

1. p(X)  is monotonically decreasing in I A ,  and S ( X )  is a monotonically decreasing (in- 

creasing) for X < 0 ( A  > 0 )  in I A .  

2. Under the null hypothesis Ho : c:=, pjlpi2 = po, the S is asymptotically distributed 

as xq. 

Therefore, an approximate ( 1  - a)100% level confidence interval can be calculated using 

Madansky's approach. 

Product of Two Normal Means: Variances Unknown 

Usually, in practical situations, the variances are unknown. We now develop likelihood ratio 

methods for the case of normal data with unknown variances. 

The likelihood function (4.4)  should now be viewed as a function of both p and u. The 

log-likelihood function is 

Method 1 

It is very easy to  find the unrestricted maximum likelihood. But it is not so easy to find the 

maximum subject to the constraint plp2 - po = 0 . The critical points of the Lagrangian 

h = In 1(p, u; x )  - X (p1p2 - pO) can be found by solving the system of equations, 
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ah -- - -- nl s: + (31 - P I ) 2  
+ 2u: 

= 0,  and 
dul 2u1 

The Maple V solution of this system o f  equations can be simplified as follows: 

b2(X) = a root o f  the equation, csPg + ~ 4 ~ ;  + C ~ P ;  + C Z P ;  + C l P 2  + CO = 0 ,  (4.24) 

where 

co = - (sz2 + q2) nl [ -22  n2 + " 1  ( s z 2  + ~ 2 ~ )  A] , 

ci = c12A2 + C I I A  + clo, 

with ell = (s12 + 3;) (s12 + 3:) , 

ell = 2 32 (s22 + 3;) (2  nl - n 2 ) ,  

C I O  = -n2 (-3;n2 + nl sz2 + 3 nl 3;) , 

c2 = c22x2 + c21x + c20, 

with c22 = -4 32 ( s z2  + 3:) (s12 + 3;) , 

c2l = -2 it1 (3  3; + s12) (nl  - n l ) ,  

c20 = 32 n2 (-2 722 + 3 721) , 

c3 = c32x2 + c31x + c30, 

with c32 = 2 (3  3; + (s12 + 3:) , 

cgl = 2 3 2  ( 2  n1 - 3 n 2 ) ,  

C 3 0  = -n2 (n l  - n2) , 

c4 = c42x2+c41x, 

with ~ 4 2  = -422 s1 + xl , ( - 2 )  

c41 = -31 (n l  - 2 n 2 ) ,  and 

c5 = ( s l 2 + s : ) x 2 ,  
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and 

where X satisfies p(X) = ji1(A)b2(A) = PO. 

In general, an algebraic solution of (4.24) is not possible. So it has to  be solved nu- 

merically. This can easily be done with IMSL subroutine 'zplrc'. If more than one root is 

real, we have to choose the root that corresponds to the maximum of the likelihood. In the 

present case, we can ignore all the negative roots because we assume that the means are 

positive. We found that for negative A, bl(X) is greater than 31 and b2(X) is greater than 

22. Also, for positive A, both estimates are smaller than the corresponding sample averages. 

Obviously, the case X = 0 corresponds to the unrestricted maximum likelihood. We found 

that p(X) is monotonically decreasing in an interval including the origin. Therefore it is easy 

to invert the likelihood ratio using Madansky's approach to find confidence intervals. 

This procedure has the advantage that it can be extended for a sum of products of 

means. However as the p2 has to be estimated numerically, and the valid root has to be 

selected from five roots, this procedure can be computationally intensive. We now suggest 

another method which is computationally more attractive, but can be used to construct 

confidence intervals for one positive product of means only. 
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Method 2 

Suppose that p = pip2 > 0. We can now formulate our restriction as 1n(Plp2) = ln(po). 

Hence, the critical points of the Lagrangian, 

can be found by solving the following set of equations: 

nl s12 + (31 - ~ 1 1 ) ~  -- + = 0 ,  and 
2  "'1 2  u12 

The MAPLE V solution is as follows. f i l ( X )  and f i 2 ( X )  are roots of equations, 

( n i  + X)p i2  - ( nl + 2  X ) 1 1 ~ 1  + (s12 + 3:) A  = 0 ,  and (4.25) 

( n 2 + ~ ) ~ 2 ~ - ( n 2 + 2 ~ ) 3 2 p 2 + ( ~ 2 ~ + 3 ~ ) ~  = 0 ,  (4.26) 

respectively. The estimates of variances are 

fil(A) = s12 + (31 - i q 2 ,  and (4.27) 
n1 

f i 2 ( X )  = ~2~ + (32 - f i2 )2  
(4.28) 

n2 

Considering the facts that f i l (0)  = il and ji2(0) = 32, valid roots can be chosen from (4.25) 

and (4.26) as 

f i l (A)  = 

f i l ( -n l )  = 

f i 2 ( X )  = 

fi2(-712) = 

31 ( nl+ 2  X )  + \ l ~ : n l 2  - 4  nl s12 A - 4s12 ~2 

2 ( n 1 +  A) 
, for X # - n l ,  

x n 2 - 4 n 2 s 2 2 X - 4 s 2 2 X 2  3 2 ( n 2 + 2 ~ )  + J-f 2 
, for X # -n2, and 

2 ( n 2 +  A) 



Chapter 4. Confidence Intervals for a Sum of Pairwise Products of Means 

where X satisfies jil(X)ji2(X) = PO. TO ensure real roots, the appropriate interval for X is 

IA = [Il, 121, where 

We can show that jil(X) is non-increasing in Ix. To see this, consider the derivative, 

The denominator 

To end this, let 

is positive in IA. We can show that the numerator is non-positive in IA. 

??nl2 + 2 nl x s12 + 2 n12s12, and 

(z;n12 - 4 nl x s12 - 4 ~ ~ s ~ ~ )  2;nl2 - (z;?n12 + 2 nl x s12 + 2 n12s12l2 

-4 n12s12 (A + nll2 (s12 + 3:) . 

Suppose that both averages are positive (If both averages are negative, all the calcula- 

tions can be done neglecting the signs). Then, a is positive in IA. When A > - F ( 2 + $  $), 
b is positive. Since Il > -7 (2 + $), it implies that b is positive in IA. So, the fact that Q 

is negative in IA except a t  -nl, proves that (4.29) is negative in IA. This in turn shows that 

bl(X) is monotonically decreasing in Ix except a t  -nl ,  at which it has an inflection point. 

Similarly b2(X) is also monotonically decreasing in Ix. Consequently, p(X) = ji1(X)ji2(X) is 

monotonically decreasing in Ix. Hence, again the likelihood ratio test may be inverted using 

Madansky's approach to  construct confidence intervals for p. It is possible that there does 

not exist a A;(> 0) at which the likelihood ratio is equal to  X$l-,). For example, this can 

happen when I2 is very close to zero, or in other words, when at least one of the coefficients 

of variation is very high (see Figure 4.2). If this happens, p(12) may be taken as the lower 

confidence limit. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

-20 -1 5 -1 0 -5 0 
LAMBDA 

Figure 4.2: An example where S(X;) < X:,(l-,): (example calculation using nl = 30,nl = 

30,Z1 = 10, S2 = 20,sl = 15, s2 = 5 and cr = .05. Vertical dotted line represents X = 12. 

Horizontal dotted line represents x:,,~~.) 

Sum of p Products of Pairwise Normal Means: Variances Unknown 

Method 1 described above can be extended to construct confidence intervals for a sum of p 

products of pairwise means. The method proceeds by calculating the restricted maximum 

likelihood estimates of one of the means in each pair using the formulae provided. 

As mentioned earlier, Method 2 cannot be extended for sums of products of means. 

However, it can be easily extended to construct confidence intervals for a product of q(> 2) 

means. This could be especially useful in situations where volumes (q = 3) have to be 

estimated. 
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4.2.2 Wald Test Approach 

Another way of constructing confidence intervals is to invert the Wald test. According to 

Silvey [35](pp. 115-117 ), the hypothesis Ho : g(8) = 0, can be tested by calculating the 

unrestricted maximum likelihood estimate 9 of 8 and basing our decision on the proximity 

to zero of g(9). This method has the advantage that we do not need to calculate the 

restricted maximum likelihood estimates. The general 

(1943). Accordingly, the Wald statistic, 

idea was first exploited by Wald 

(4.30) 

has a limiting chi-square distribution with one degree of freedom when Ho is true. Here, 

the prime denotes the transpose and I is the information matrix. 

When the variances are known, for the one product case, 

The information matrix is 

and the derivative of g is 

Therefore, the Wald statistic in this case is 

Because of the simple form of this statistic, = , can be easily used to 

construct confidence intervals. Since f l  has a limiting standard normal distribution under 
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Ho, an approximate (1 - a)100% confidence interval can be calculated as 

f l f 2  f za12\Iu1E~ + u2f? 

In general, for the p product case, the interval is 

Similarly, when the variances are unknown, the corresponding Wald statistic leads to the 

approximate confidence interval, 

Remark 

The usual confidence interval obtained by adding and subtracting a multiple of the standard 

error is 

For large samples, the intervals (4.33) and (4.34) are almost the same because v;j and G;j 

are asymptotically equivalent and the terms, GilG,2, are of smaller order. 

Bartlett-Type Adjustments 

Bartlett [4] introduced the idea of adjustment factors t o  improve the chi-squared approxi- 

mation to  the null hypothesis distribution of the log-likelihood ratio statistic. Suppose that 

under the null hypothesis, the expected value of twice the log-likelihood ratio statistic S is 

where either b is known or can be estimated consistently. Then, 
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has an expected value closer to that of X 2  than has S. Bartlett showed that for the test of 

homogeneity of variances, the first three moments of 3 agree with those of Xi with error 

~ ( n - ~ l ~ ) ,  giving strong grounds for thinking that the density of 3 is better approximated 

by the X j  density. Barndorff-Nielsen and Cox [3] gave a proof of this useful result, namely 

that 3 has the xi distribution with error ~ ( n - ~ / ~ ) .  

It may be possible to use this idea to improve the confidence interval (4.33) by calculating 

an adjustment factor. Since the Wald statistic is asymptotically equivalent to the likelihood 

ratio, it is reasonable to expect that a Bartlett-type adjustment will improve the confidence 

intervals calculated through the Wald statistic as well. 

Consider the statistic, 

obtained by respectively replacing v ; ~  and vj2 by 5il and 5;2 in the Wald statistic corre- 

sponding to the interval (4.33). Because the 6's are unbiased estimators of the u's, the 

expected values of many terms in the Taylor expansion of w become zero. This simplifies 

the calculation of adjustment factors. Noting that both W and w have the same asymp- 

totic distribution under the null hypothesis, Ho : C:=l p;lp;2 = po, we suggest the use of 

w instead of W to calculate the adjustments. 

We calculated the derivatives using Maple V functions. The first order derivatives, 

when evaluated at O1 are zero. The second order derivatives are O(1) and contribute to 

the approximate distribution of W .  The expected value of these terms is 1. The third 

order derivatives, when evaluated at 9 are zero. We found that in order to obtain the 

terms of order l /no2, w should be expanded in a Taylor expansion up to fourth order 

derivatives. The higher order derivatives are ~ ( n ; ~ ' ~ ) .  The following Conjecture condenses 

the derivatives produced by Maple V and suggests an adjustment factor to W. 

- 

'0 is the vector of all parameters defined as in Subsection 4.1.1 
2no = min(n l l ,n~z , .  . . , npl,npz) 
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Conjecture 4.1 Let 

Then, the fourth order derivatives of W ,  evaluated at 8, are 

a4 w (e) 
= 0. aqm 

The fourth order expected values are 

E [ ( ~ i l  - pil)4] = 3u:', and 

Let 



Chapter 4. Confidence Intervals for a Sum of Pairwise Products of Means 

c = ( I + A + B ) - l ,  

C = estimated C obtained by replacing means and variances by the corresponding sample 

averages and unbiased sample variances, and (4.38) 

no = . min(n11, n12,. a ,  npl, np2). (4.39) 

Then, 

-312 1. E(W) = 1 + A +  B + O ( n o  ), and 

- 
-312) 2. w = cw has an approzimate X: distribution with error O(no . 

So, the confidence interval, 

is expected to perform better than (4.33). Some numerical comparisons are presented in 

Section 4.4. 

4.3 Adaptation to Distributions other than Normal 

Now, we address the problem for non normal data with the particular application of the fish 

problem in mind. Recall that in this problem, one variable is the reciprocal target width 

(M) of a fish on an echogram, which is proportional to the fish speed (stem and leaf plots of 

target widths W, are shown in Figure 4.3). The other variable is the number of fish detected 

per transect (N). Figure 4.4 shows histograms of these variables based on data collected by 

the Pacific Salmon Commission on August 31, 1993 at  Mission, B.C.. According to  these 

histograms, the variables seem to have positively skewed distributions. In the following 

table, we have reproduced the summary data in Table 4.1. 

One way to construct confidence intervals in this case is to model the data by suitable 

probability distributions and then to  invert the likelihood ratio in the usual way. But this 
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Varmblc = W, 
No. oC obscrv~~ions = 77 
Mcdian = 1 
QuarLilcs = 0.8, 1.3 

Dccimrl poinL is aL L ~ I C  colon 

0 : 66 
0 : GGGGGGGGGGG777 
0 : 000000000000090000000 
1 : OOOlililllllli 
1 : 223333333 
1 : 4444444666 
1 : GGGGG 
1 : o  
2 : o  

Variablc = W2 
No. or obscrvaLio~~s = 145 
Mcdian = 1.5 
Qusrlilcs = 1.1, 1.8 

Dccinlal poinL is 3L L I I C  colon 

vaiiab~c = wJ 
No. of obscrvaLions = 42 
Mcdian = 1.45 
Quarlilcs = 1, 1.0 

Figure 4.3: Stem and leaf plots of target widths, Wi9s (based on hydroacoustic data collected 

by the Pacific Salmon Commission on August 31, 1993 at  Mission, B.C.). 

Table 4.1: Summary statistics of the data collected by the Pacific Salmon Commission on 

August 31, 1993, a t  Mission, B.C. 

Depth stratum ( i )  n; N s ~ ,  CV(N)% m; M SM, CV(M)% 
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Figure 4.4: Histograms of N;'s and M;'s (based on hydroacoustic data collected by the 

Pacific Salmon Commission on August 31, 1993 at Mission, B.C.). The height of each bar 

is the proportion of observations in the corresponding interval on the horizontal axis. 



Chapter 4. Confidence Intervals for a Sum of Pairwise Products of Means 6 7 

method requires a parametric assumption which may be difficult to justify. We recommend 

the following alternative. 

With large samples3, by the central limit theorem, we can.expect the sample averages to 

be fairly normal. Also, the unknown variances can be estimated with high accuracy. So, the 

unbiased estimates of variances may be treated as true population variances. Therefore, the 

methods developed for normal data with known variances may be adapted for this problem. 

First we adapt the likelihood ratio methods. Now, the maximum likelihood estimates of 

variances cannot be derived. Hence exact likelihood ratios cannot be calculated. However, 

an approximate likelihood ratio may be calculated using the the approximate likelihood 

function, 

It is easy to see that this (approximate) likelihood is proportional to that given by (4.4). 

Therefore, when the samples are large enough, the likelihood ratio methods developed for 

the case of known variances may still be used. 

Similarly, approximate confidence intervals may also be calculated using (4.33). For 

samples of moderate sizes, one may replace the normal quantiles by t quantiles. As a 

conservative approach, the size of the smallest sample may be taken as the corresponding 

degrees of freedom. Some comparisons and further discussion are presented in Section 4.4. 

4.4 Worked Example and Monte Carlo Studies 

4.4.1 Worked Example 

To illustrate the methods suggested for constructing confidence intervals in the case of 

non normal means, we constructed approximate 95% confidence intervals for the migration 

rate for the Fraser River fish problem. We first constructed confidence intervals for p = 

3This is usually the case in the Fraser River hydroacoustic application. See Table 4.1. 
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c:=~ E(Nj)E(Mi) using statistics S given by (4.22). 

(a) -2 times the log likelihood ratio 

0 5 
LAMBDA 

(b) The sum of pairwise products of means 

0 5 
LAMBDA 

Figure 4.5: Calculation of 95% confidence interval for p = c:=~ E(N;)E(M;). 

To explain the calculation of confidence intervals through S ,  let Z1 = N, Z2 = M ,  s; = 

(s&,), S; = (sk,) ,  nl = n and n2 = m. Treating the sample variances as true population 

variances, let u; = s;/ni. The resulting S(X) and p(X) as given by (4.22) and (4.23), and 

the calculation of confidence intervals are schematically shown in Figure 4.5. The dotted 

horizontal line in (a) represents the value x ~ ~ ~ , ~  = 3.841459. From this figure, it is clear that 

S(X) cuts this line at two values between -10 and 10. Using the bisecton method, we found 

the corresponding X values to  be X = -6.242009 and 6.678391. Substituting them in p(X), an 

approximate 95% confidence interval for p was calculated. Then, by multiplying the limits 

by x 86,400, a confidence interval for the total abundance can be calculated. We also 

calculated confidence intervals for those quantities through the Wald statistic with normal 

and t quantiles. These confidence intervals are presented in Table 4.2. In this Table, W, 

and Wt denote the confidence intervals obtained with normal and t quantiles respectively. 
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95% confidence intervals 

Table 4.2: 95% confidence intervals for the fish problem 

P = E L  E ( M ; ) E ( N ; )  

Daily abundance 

4.4.2 Monte Carlo Studies 

Next we describe several Monte Carlo studies that were performed to assess the appropri- 

ateness of the suggested methods. 

S 

(6.92, 8.11) 

(181,940, 213,227) 

First, to  assess the appropriateness of the methods suggested for non normal data, we 

generated large samples from different distributions with the means and variances that are 

equal to  sample averages and sample variances in the above example (in the case of Poisson, 

only the mean can be matched). Treating the sample variances as true population variances, 

we conducted 10,000 Monte Carlo simulations. For each simulation, we calculated confidence 

intervals based on S given by (4.22) and W given by (4.33). Since the usual confidence 

intervals calculated by adding and subtracting the standard errors are almost the same as 

those calculated using W (traditional intervals are slightly narrower; see (4.34)), in this 

way we can compare the the likelihood ratio intervals and the traditional intervals. The 

W intervals calculated using normal quantiles and t quantiles are denoted by W, and Wt 

respectively. The results are presented in Tables 4.5 and 4.6. To conserve space in the 

tables, we give a group number for each combination of distributions and sample sizes as 

identified in Tables 4.3 and 4.4. 

w* 

(6.91,8.10) 

(181,745, 213,023) 

wt 

(6.89, 8.12) 

(181,281, 213,486) 
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Group of 

1 2 1 Poisson ( Gamma 

Distributions 

1 

Dist of xl Dist of x2 

Poisson Log-Normal 

3 

I 5 I Poisson I Log-Normal 

Gamma 

4 

Gamma 

Gamma 

I Log-Normal 

Gamma 

Poisson Log-Normal 

Table 4.3: Group numbers for combinations of distributions 

Log-Normal 

Group of 

Sample sizes 

Sample sizes of xl Sample sizes of x2 

Table 4.4: Group numbers for combinations of sample sizes 



Chapter 4. Confidence Intervals for a Sum of Pairwise Products of Means 

Group 

of 

Distns. 

Group 

of Sam. 

sizes 

Nominal Coverage=90% 

Observed Coverage 

S wz wt 

0.891 0.891 0.900 

0.891 0.890 0.899 

0.897 0.896 0.903 

0.893 0.892 0.902 

0.899 0.899 0.906 

0.895 0.892 0.902 

0.896 0.896 0.904 

0.898 0.899 0.906 

0.895 0.894 0.903 

0.896 0.896 0.904 

0.885 0.884 0.893 

0.893 0.894 0.901 

0.893 0.893 0.902 

0.904 0.902 0.910 

0.898 0.898 0.905 

Nominal Coverage=95% 

Observed Coverage 

S wz wt 

Nominal Coverage=99% 

Observed Coverage 

S wz wt 

Table 4.5: Observed coverage in 10,000 simulations: E(x1)=(1.20, 6.38, 1.74), V(x1)=(1.53, 

17.4, 2.36), E(x2)=(1.07, 0.76, 0.79), V(x2)=(0.136, 0.066, 0.130). 
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Group 

of 

Distns. 

Group 

of Sam. 

sizes 

Nominal Coverage=90% 

Observed Coverage 

S wz wt 

Nominal Coverage=95% 

Observed Coverage 

S wz wt 

0.936 0.934 0.945 

0.946 0.945 0.952 

0.944 0.941 0.949 

0.948 0.948 0.954 

0.946 0.946 0.953 

Nominal Coverage=99% 

Observed Coverage 

wz wt 

0.986 0.983 0.988 

0.987 0.985 0.989 

0.986 0.984 0.988 

0.986 0.986 0.989 

0.988 0.987 0.992 

Table 4.6: Observed coverage in 10,000 simulations: E(xr)=(1.20, 6.38, 1.74), 

V(x1)=(1.53,1 7.4, 2.36), E(x2)=(1.07, 0.76, 0.79), V(x2)=( 0.136, 0.066, 0.130). 
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Sample size groups 4 and 5 contain the largest sample sizes. From these rows in Tables 

4.5 and 4.6, there is evidence that for large samples, all three methods work well. For small 

samples (sample size groups 1-3) S and W, coverages are slightly lower than the nominal 

value. However, from Wt column, it is apparent that the W intervals calculated using 

t quantiles with smallest sample size degrees of freedom, work fairly well even for small 

samples. 

To compare S and W confidence intervals for normal data, we considered several combi- 

nations of variance-to-mean ratios. First, we considered the one product case. The results 

are presented in Tables 4.7 and 4.8. In these tables, Adjusted W is denoted by W,. 

Means 1 Standard / S:mple 1 Coefl. of Observed Coverage 

(Nominal Coverage=.95) 

s wz wa 

0.948 0.933 0.956 

0.949 0.942 0.953 

0.949 0.945 0.954 

0.950 0.946 0.953 

Deviations 

Continued on next page 

Table 4.7: Observed coverage in 10,000 simulations for normal data. (Nominal 

=95%) 

Sizes 

coverage 

Var. of 

These simulated results suggest that likelihood ratio intervals are superior to  Wald test 

intervals for small samples. However, the adjusted Wald test intervals seem to be as good 

as likelihood ratio intervals. When the coefficients of variation of the distributions are 

substantial, large samples are necessary even for the likelihood ratio intervals to be accurate. 
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Means 

P1 P2 

Standard 

Deviations 

61 0 2  

Sample 

Sizes 

Coeff. of 

Var. of 

Observed Coverage 

(Nominal Coverage= .95) 

Table 4.8: Observed coverage in 10,000 simulations for normal data. (Nominal coverage 

=95%) 
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Results are similar for more than one products. However, then the calculation of likelihood 

ratio intervals is much more time consuming. As an example, we generated 5,000 samples, 

and computed 95% confidence intervals for sums of three pairwise products of means. The 

means and standard deviations for this example were set equal to those in the fish problem. 

The results from this simulation are presented in Table 4.9. 

I Sample sizes I Nominal Coverage=95% I 

Table 4.9: Observed coverage in 5,000 simulations for normal data. (Nominal coverage 

=95%) 

4.5 Summary 

In this chapter we discussed the problem of finding confidence intervals for sums of products 

of pairwise means. These confidence intervals were constructed by gathering all the param- 

eter values that were not rejected by a formal hypothesis test. We looked at two approaches 

in detail; one based on the likelihood ratio test and the other on the Wald test. 

In the case at  hand, the direct inversion of the likelihood ratio test and the Wald test are 

not numerically attractive. Using Madansky's [25] approach, we suggested simplifications to 

the computational problem. Related theoretical details were provided for the normal data. 

Bartlett- type adjustment factors were computed to  improve the accuracy of the coverage 

probabilities of the confidence intervals obtained using the Wald test approach. We also 

suggested a procedure (Method 2), particularly designed for a product of normal means, 

which is numerically more tractable than the approach described under Method 1. While 

this approach has the advantage that it can be easily extended to a product of any finite 
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number of means, it has the limitation that it cannot be extended to a sum of products 

of means. Suggestions were made for other distributions when the sample sizes are large 

enough to justify an appeal to  the central theorem. 

The applicability of the methods was examined by a Monte Carlo study. For non normal 

data, a conservative approach with t quantiles was found to work well even with samples of 

moderate sizes. With very large samples, both likelihood ratio and Wald test approaches 

seem to work well. In the fish example, the sample sizes were daily aggregates. In order to 

produce more precise estimates accounting for daily cycles, it may be necessary to stratify 

the day into smaller time intervals. Then, the number of transects within a time interval 

may be as small as 30-40. Similarly, when fewer fish are in the river, the numbers from 

stationary soundings may be smaller. In this case it may be better t o  construct confidence 

intervals through W with t quantiles. 

For normal data, in situations such as when the coefficients of variation of the distribu- 

tions are large, confidence intervals based on Wald test were often found to  have smaller 

than the nominal coverage. Monte Carlo study shows that the confidence intervals obtained 

using the adjusted Wald statistic are as appealing as those obtained from the likelihood 

ratio test. 



Chapter 5 

St rat ified Two-Sample Tag 

Recovery Census of Closed 

Populations 

In the simplest type of tag recovery experiments a simple random sample of m animals is 

taken from a population, tagged and released. After allowing enough time for the tagged 

animals to  mix with others, a second sample is taken and the numbers of tagged animals 

( n )  and untagged animals ( v )  are counted. Assuming every animal has the same probability 

p of being sampled, and the death and emigration rates are negligible, p is estimated by 

p̂  = nlm. The number V of untagged animals in the population at  the time of recovery is 

then estimated by ? = v/p^ = mvln. This leads to the well known Petersen estimator of 

the total population size ? = P + m = m(v + n)/n.  

Very often a population is stratified geographically, so that the total population may be 

regarded as consisting of separate strata living in different areas. Sometimes, the stratifica- 

tion may be with respect to time instead of place. In this case, the population size can be 

estimated by a stratified version of the Petersen estimate. In this method, a known number 

of tagged animals is released in each stratum, using a different tag for each stratum. After 
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allowing for the tagged animals to disperse, a random sample is taken from each recovery 

stratum. The numbers of untagged animals and tagged animals of each type in each sample 

are then recorded. Several authors have investigated this method. For example, Schaefer 

[30] stratified both the tagging and recovery with respect to  time to  estimate a migrating 

salmon run. Chapman and Junge [7] showed that Schaefer's estimator is not in general 

consistent. They estimated the numbers of animals in recovery strata from sets of equations 

relating to the expected values of observed frequencies. Darroch [13] derived the maximum 

likelihood estimators for the case of equal numbers of tagging and recovery strata. For 

other cases, he provided alternative estimators. Seber [32](Ch. 1 1), presented an overview 

of Darroch's paper. Plante [28] derived maximum likelihood estimators for cases where 

the number of tagging strata is not equal to the number of recovery strata. In a similar 

experiment, Cormack and Skalski [9] employed log-linear models to  analyze coded-wire tag 

returns from commercial catches, when the sampling proportions from commercial catches 

were known. 

In this chapter we closely follow Chapman and Junge, and Darroch, but derive least- 

squares estimators of stratum sizes. These estimators are shown to overcome some difficulties 

that arise in the existing methods. The estimators are shown to be consistent. As well, the 

formulae for calculating asymptotic variances of the estimators are derived. 
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5.1 Notation 

Let 

s = number of tagging strata, and 

t = number of recovery strata. 

The numbers of animals in tagging and recovery stages are denoted by symbols as in Table 

5.1. 

Marked 

Unmarked 

I Total 

Tagging stage 

Population 

Recovery stage 

Population I Sample 

Table 5.1: Symbols for Numbers of Animals 

Subscripts are attached to  the above symbols to  denote the corresponding tagging or 

recovery stratum as follows. 

m; = number of tagged animals released in stratum i, 

U, = number of untagged animals in stratum i at the time of tagging, 

Njj = number of tagged animals migrating from stratum i to  stratum j, 

Vj = number of untagged animals in stratum j at the time of recovery, 

Tj = total number of animals in stratum j at the time of recovery, 

n;j = the number of marked animals released in stratum i and recovered in stratum j, 

vj = number of untagged animals in j t h  recovery sample, and 
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k j  = size of sample from stratum j. 

The moving, survival, and sampling probabilities are denoted as follows. 

8.. 'J = probability that a marked animal moves from stratum i to stratum j ,  
t 

4; = x B, = survival probability of a marked animal released in stratum i, 
j=1 

pj  = sampling probability in stratum j :  assumed non-zero, 

pj = l /pj ,  and 

; = Bijpj = probability that a marked animal released in stratum i 

will be caught in stratum j. 

A sum over any subscript is denoted by replacing the subscript by '+'. For example, 

S 

m+ = m; = total number of tagged animals released, 
i=l 
S 

U+ = x U, = total number of untagged animals in tagging strata, 
i=l 

t 

N;+ = x Nij = total number of tagged animals successfully migrated to  recovery strata 
j=1 

from the ith tagging stratum. 
t 

V+ = x Vj = total number of untagged animals a t  the time of recovery, 
j=1 

t 

T+ = Tj = total population size, 
j=1 

s t 
- n;j = total number of tagged animals in the t recovery samples, and n++ - 

i=l j=1 

t 

v+ = vj = total number of untagged animals in t recovery samples. 
j=1 
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Vectors and matrices are denoted by boldface letters. For example let 

Expected values are denoted by an overline. For instance, 

- - 
n = E ( n ) ,  V = E ( V ) ,  and V = E ( v ) .  

In addition, let 

D, = the diagonal matrix formed from the vector, x, 

A' = the transpose of matrix A ,  

A+ = the Moore-Penrose inverse of matrix A, 

1 i f i = j  
6 . .  = 

13 and 
0 otherwise, 

1 = vector of 1's: the dimension to be understood from the context 
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5.2 Estimation 

First, we provide a brief overview of the estimators derived by Schaefer [30], Chapman and 

Junge [7], Darroch [13], and Seber [32]. One purpose of this is to point out the difficulties 

that can arise in using these estimators. The other purpose is to show the close relationships 

between these estimators and the least-squares estimators that we derive in this section. 

Schaefer's [30] estimator for the total is 

Chapman and Junge [7] showed that this estimator is not consistent in general, but con- 

sistent if the samplings in recovery strata are proportional to the population sizes in each 

strata. They estimated the unknown stratum sizes (Tj's) from sets of equations relating to 

the expected values of the observed frequencies. Schaefer as well as Chapman and Junge 

assumed that each animal has zero probability of dying or emigrating between tagging and 

recovering, or in other words that the 'survival probability' is one. As this assumption is not 

often justified, Darroch framed the likelihood theory in such a way that it may be avoided 

if desired. The price paid for dropping this assumption is that one has to be content with 

estimating the stratum sizes that would have prevailed had there been no deaths or migra- 

tion. These authors discussed the estimation in three cases, according to the relative sizes 

of s and t .  

Case 1: s = t 

If the tagged and untagged animals have the same probability of being captured, then 

Observing that 

Tj 
C--E(n; j IN; j )  = Ni+ = rn; for all i, 
j=1 k j 
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Chapman and Junge formed the set of equations, 

which led to  the estimator, 

Darroch [13] adopted a product-multinomial sampling model to  develop the following 

probability distributions to derive the maximum likelihood estimators: 

and 

Under this model, the maximum likelihood estimators of V and qb = O D p  are 

A 

= D v s ,  and qb = ~ g n  

respectively. If p can be estimated, so can V .  However, as Darroch pointed out, {Bij) 

and {pj) are non-identifiable to the extent of a multiplicative constant, for the likelihood of 

{B;j), {pj) is the same as that of {@;j), {pj/y). Hence, neither p nor V can be calculated. 

To tie down this non-identifiability, he assumed a common survival probability, 4i r 4 for 

all i, and worked with new parameters O* = O/+,  p* = 4p, and the corresponding p*, and 

V* = V/$. Using the facts that qb = O*Dp*, and 0 * 1  = 1, he derived an estimator for p* 

as 

Since 
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substitution of (5.6) into (5.7) led to the estimator 

A 

V* = Dvn-'m. 

Consequently, 

Darroch pointed out that if the marked and unmarked animals have the same probability of 

survival, then (5.9) is roughly the total unmarked size at the time of tagging. When 4 = 1, 

the resulting estimator of T+ is the same as Chapman and Junge's total estimator (5.3). 

Case 2: s > t 

In this case, Chapman and Junge's set of equations (5.2) contain more equations than 

the number of unknown Tj's. So, they suggested to estimate the unknown stratum sizes 

by pooling enough tagging strata to form a system that has a unique solution. Seber [32] 

suggested replacing a set of s equations of t unknown Vj's by a linear combination of them, 

giving the estimator, 

Here, G is a t x s matrix of rank t such that G n  is nonsingular. 

Recall that in Case 1, Darroch assumed that 4; z 4 Vi, imposing s - 1 restrictions on 

the survival probabilities. When s > t, his approach requires to impose t - 1 restrictions 

instead. To see why, note that under assumption of common survival probabilities, there are 

s t  + t - s independent {qj}, {p;] parameters while there are s t  {+;j) parameters. Hence, 

when s > t, there are more {$;j) parameters than {qj), {pj*) parameters. Therefore, apart 

from the relation + = O*Dp*, there must be other dependencies between the two systems. 

Hence, the simple estimation procedure used in Case 1 is no longer valid. So, Darroch took 

an alternative approach by allowing 4; to differ. He defined $ = xi 4;/s and worked with 

new parameters 4y = I$,/$, 9; = eij/$, pjn = $pj and V* = v/$ . Then, he imposed 
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t - 1 restrictions on 4;fs. These, including the inherent restriction C, +F"t/ = 1, can be 

written in matrix form as 

Here, A is a t x s matrix of rank t with each element in the last row equalling l / s ,  and b 

is the 1 x t vector defined as b' = (0, . . . ,0,1). Now, the system {OF), {p?) has the same 

number of independent parameters as the system {+;j). Hence, following the same steps as 

in Case 1, but using the facts that 1C, = O"Dp*t and AO"1 = b, estimators for pf* and 

V" were respectively derived as 

- 
p* = ( ~ D z n ) - ' b ,  and ?*f = D,(AD:~)-'~. 

Case 3: s < t 

In this case, Chapman and Junge's system of equations cannot be solved uniquely. 

However, they commented that with additional assumptions, the total population size can be 

estimated. Darroch also used moment equations to derive estimators in this case. Assuming 

that the untagged and tagged animals have the same movement pattern, he formed the 

moment equations, 

x U i + i j  = vj, and 

which led to the following set of t equations of s unknown U,'s: 

Since there are more than enough equations to estimate U, he suggested replacing the system 

of equations by s linear combinations of them or increasing the number of parameters by 

relaxing the equality of some of movement probabilities or by introducing some immigration 

parameters. Following the first suggestion, Seber proposed the estimator 
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where H is an s x t matrix of rank s such that (Hn') is nonsingular. 

In practice, calculating the estimators (5.10), (5.12) and (5.14) might cause problems. 

For example, the estimators (5.10) and (5.14) can be influenced strongly by the choice of 

matrices G and H. Hence, these estimators can be unappealing unless the matrices G and 

H are chosen sensibly. Calculation of (5.12), may be difficult because it requires imposing 

restrictions (5.11) on unknown survival probabilities. Since 6;'s cannot be estimated from 

our data, extra information is needed to  impose these restrictions. 

In the next three subsections of this chapter, we closely follow Chapman and Junge, and 

Darroch, but derive least-squares estimators. We will show that these estimators are special 

cases of the estimators (5.10) and (5.14). They provide sensible choices for matrices G and 

H ,  and thereby avoid the subjectivity that can arise in using estimators (5.10) and (5.14). 

They also overcome the difficulties that arise by the requirement of imposing restrictions on 

unknown survival probabilities. 

5.2.1 Assumptions 

To derive the least-squares estimators we make the following assumptions. 

1. Animals behave independently of one another in regard to  moving between strata. 

2. All tagged animals released in a given stratum have the same probability distribution 

of movement to recovery strat a. 

3. All animals in the j t h  recovery stratum behave independently in regard to  being 

caught, and have the same (non-zero) probability of being caught in the sample. 

4. The matrices 5, and n are of full rank. This assumption is required for the consistency 

of the estimates. In Section 5.5, we show that this assumption can be relaxed under 

certain conditions. 
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5. There are negligible numbers of births, deaths, immigration, or emigration, between 

the two sampling times; i.e., 

(In situations like the samplings of dead fish at the spawning grounds, this assumption 

means that the numbers of fish that die before they reach the spawning grounds is 

negligible.) 

This assumption is required in order to estimate the numbers of animals at  the recovery 

stage. For some animal populations, it may be valid if the time interval between 

tagging and recovery are short. But, for many animal populations, this assumption is 

not valid. For example, it is certainly not valid if fish are caught in the interim. In 

such cases, the investigator has several choices: 

(a) Be content with the estimators of scaled numbers of animals at the recovery 

stage; e.g. Darroch's estimators (5.8) or (5.12). 

(b) Use additional information to estimate the survival probabilities and using these 

estimators, unscale Darroch's estimators to get actual numbers at the recovery 

stage. 

(c) Estimate the numbers at the tagging stage based on Assumption 6 instead. 

6. The movement pattern as well as the death and migration rates are the same for 

tagged animals and untagged animals in a given stratum. 

This assumption is useful in order to derive estimators of the numbers at the tagging 

stage. It is more reasonable than Assumption 5 for many animal populations. There- 

fore, we will often make this assumption and estimate the numbers of animals at the 

tagging st age. 
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5.2.2 Estimation of the Numbers of Animals in the Recovery Strata (v) 

Suppose that Assumptions 1-5 hold. Assumptions 2 and 3 imply that 

- 
E ( v j )  = E I E ( v j l V , ) ] = V j p j ,  ( j = 1 ,  ..., t ) ,  and (5.15) 

E ( n ; j )  = m j p j  ( = 1 ,  . . , s and j = 1,2 , .  . . , t ) .  (5.16) 

If an estimator of p were available, then (5.15) could be used to derive an estimator for v. 
We shall derive estimators for p from (5.16). First note that the system of equations (5.15) 

can be written in matrix form as 

Dv = DvDp. 

The system (5.16) in matrix form is 

n = DmODp. 

Assumption 5 implies that 

Equations (5.17), (5.18), and (5.19) are the three key equations that we use to  derive 

estimators in this case. Equations (5.18) and (5.19) lead to, 

So, it is reasonable to  estimate p by a 5 that comes as close as possible to satisfying 

n5 = m. (5.21) 

When s = t ,  under Assumption 4 ,  system (5.21) has a unique solution with high probability. 

This solution is given by 

5 = n-'m when s = t .  (5.22) 

When s > t ,  the system (5.21) does not have a solution since it contains s linear equations 

of t unknowns pj. One can at best attain a good approximation. Under Assumption 4, a 
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least-squares solution that minimizes the sum of squares of errors, 

2 = [(nln)-ln'] m when s 2 t .  

Now, note that from (5.17), 

By replacing T and p by v and 5 respectively, an estimator of V can be derived as 

when s = t 

( Dv [(n1n)-'n'] m when s > t. 

Consequently, v+ can be estimated by 

,. v'n-' m when s = t 
v+ = 1'V = 

V' [(n1n)-'n'] m when s > t. 

When s < t, p cannot be estimated from the system (5.21). Therefore, V also cannot be 

estimated. However, as Chapman and Junge [7], and Darroch [13] pointed out, an estimator 

of U is available if Assumption 6 is satisfied. This estimator is derived in the next subsection. 
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5.2.3 Estimation of the Numbers of Animals in the Tagging Strata (U) 

Suppose that Assumptions 1-4 and 6 hold. Under Assumption 6, 

E(vj) = u,fIijpj ( j  = 1, .  . . , t), 
i 

or in matrix notation, 

This is the first key equation that we use in this case to  derive estimators. The second key 

equation is (5.18). That is, 

Now, obtaining 

qb = O D  - D-'5 P -  m 

from (5.28), substituting in (5.27), and taking the transpose, yields 

- 4 v = n D ~ U .  

Now, let 

We propose to  estimate U by 6 that minimizes the sum of squares of the errors, 

Under Assumption 4, this estimator is given by 

D,[(nnf)-'n]v when s < t 6 = 
( ~ ~ ( n ' ) - ' v  when s = t 

The resulting estimators of the total untagged animals are, 

A - v'[nl(nn')-']m when s < t u+ = U ' l =  
vl(n)-' m when s = t . 
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5.2.4 Some Remarks 

Remark 1 

Suppose 01 # 1 ,  but 4; = 4 V i. Then, following Darroch, we can define scaled parameters 

0:' = 0,/4, p; = 4pj, and = vj/$. Then, the new parameters satisfy key equations 

(5.17), (5.18) and (5.19). Therefore, (5.25) now estimates v. When s = t, estimator (5.25) 

is essentially the same as Darroch7s estimator (5.8). However, this is not particularly useful 

unless the survival probabilities can be estimated. 

Remark 2 

The estimators (5.25) and (5.32) are special cases of (5.10) and (5.14) respectively. These 

suggest that G = n1 and H = n are sensible choices to  be used in (5.10) and (5.14) 

respectively. 

Remark 3 

According to Searle [31], the Moore-Penrose inverse nt  of n is a unique matrix such that 

(i) nn tn  = n, 

(iii) nn t  is symmetric, and 

(iv) n t n  is symmetric. 

One can show (e.g., Albert [I], pp. 20-21) by direct verification of (i)-(iv) that if n is of 

full rank, then 

n'(nnt)-I when s < t 

when s = t 

(nln)-In' when s > t .  
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Therefore, the estimators derived above can be summarized as follows. 

Remark 4 

In deriving the least squares estimates 9 and 6, we have neglected the variance-covariance 

structures of c;'s and C3s. Better estimates may be derived by taking these into account. 

\ 

= ntm when s 2 t, 
A - 
V = ~ , n ~ m  when s 2 t, 
A - 
V +  = v'ntm when s 2 t, 

6 = ~ , ( n ' ) ~ v  w h e n s < t , a n d  

o+ = v'ntm when s < t. 
/ 

In order to calculate the variance-covariance matrix of E ,  we should adopt a suitable 

probability model. Under Assumptions 1-3, probability di~t~ributions (5.4) and (5.5) provide 

such a model. For this model, the variance of c; = C&l n;jpj - m, is 

+ 

The covariance 

estimators may 

terms are zero; i.e, Cov(e;,q) = 0 Qi # 1. Weighted least-squares (WLS) 

be derived by minimizing 

where 

with 4ij's defined by 

These estimates can be obtained by solving the estimating equations, 
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Since the weights are functions of unknown pj's, these estimating equations are biased. 

However, an estimate which is unbiased conditional on n ,  can be derived using an iteratively 

reweighted least-squares method. 

Let C ( p )  be the diagonal matrix with diagonal elements 6:'s. Suppose that po is an 

initial guess for p. So, a t  this point, the initial guess of the variance-covariance matrix is 

given by C ( p o ) .  Let 

z0 = m - npo, and 

So = [m - np]' X-'(po) [m - n p l -  

* 

Now, we minimize So with respect to  p. The requirement, = 0, leads to 

n'C-'(p0)n5 = n ' z - ' ( p o ) m  (5.39) 

= n ' ~ - ' ( p o )  [zo + W o l  , 

n'z- ' (po)n [? - pol = n ' X - ' ( p o ) ~ O ,  and hence 

6 = po + [nlC-'(po)n] -' nlX-'(&)zo. 

This gives rise to  the iterative equation, 

with zk defined as 

This procedure typically does not minimize S .  But it converges, when it converges, t o  a 

root of the equation (5.39) with po replaced by p; i.e., 
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This estimating equation is unbiased conditional on n under the model which justifies (5.36). 

In order to derive a similar estimate for U,  we need the variance-covariance structure 

of C. Recall that the estimator 6 was derived under Assumptions 1-4 and 6. Under these 

assumptions, it is reasonable to assume a probability model for the unmarked animals that 

is parallel to (5.4). I.e, 

where 

v,j = the number of unmarked animals which are in the ith stratum at the tagging stage 

and in the j t h  recovery sample. 

Then, from (5.31) 

Therefore, under probability models (5.5) and (5.42), 

Let C(U)  be the matrix (yij), but with the $;j's replaced by estimators given by (5.38). 

Now, suppose that Uo is a suitable initial guess for U. Then, by similar arguments to those 

above, the iterative procedure, 

can be used to  derive an estimate for U.  

In the subsequent sections, we refer to  the estimators derived via iterative procedures 

(5.41) and (5.43) as iteratively reweighted least squares estimates (IRLSE). 
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R e m a r k  5 

When s > t, by premultiplying (5.20) by ii' , and performing simple matrix manipulation 

under Assumption 4, p can be expressed as 

p = [(ii'ii)-lii'lm. (5.44) 

Substitution of (5.44) in (5.24) yields 

- 
V = ~ ~ [ ( i i ' i i ) - l i i ' ] m  when s > t . (5.45) 

Consequently, 

- 
V +  = 1'9= $[(i?ii)-'-ir']m when s > t . 

Similarly, when s 5 t, by premultiplying (5.30) by ii, and performing simple matrix 

manipulation under Assumption 4, U can be written as 

Hence, 

Now, note that under Assumption 4, 

--I ---, -1 n ( n n )  w h e n s < t  

when s = t 

i i ' )  w h e n s > t .  

Therefore, the above quantities can be written as 
\ 

p = d m  when s > t ,  
- 
V = D$m when s > t, 
- 
V +  = g i i t m  when s 2 t, 

U = ~ , ( i i ' ) t i f  when s < t, and 

U+ = giitm when s 5 t. 
/ 

+ (5.50) 

These representations are useful in proving the consistency of the estimators in Section 5.3, 

and calculating the variances in Section 5.4. 
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5.3 Consistency 

As Chapman and Junge pointed out, the consistency of estimators based on samples from 

finite populations has been variously defined. According to one such usage, an estimator 
A 

X of parameter X would be called consistent if = X whenever the sample taken without 

replacement exhausts the population. However, from a practical point of view, in a study of 

populations that number several hundred thousands or millions (e.g. salmon populations), 

it is unreasonable to  think of a sample equaling or nearly equaling the population size. Yet, 

at the same time, it is possible that the samples are random and very large so that the 

weak law of large numbers should be applicable. Hence we consider the limit process: { O j j ) ,  

{pj} constant, all m; t oo and V,  -t oo such that m;/m+, V,/V+ and m+/V+ approach 
A 

fixed constants. We say that V is a consistent estimator of if under these conditions, 
A - - 
Vj/Vj -. 1 in probability for all j. Similarly, we say that 6 is consistent for U if @;/u; + 1 

in probability for all i. 

First notice that under probability mode1 (5.4), and in the above limit process, n;j/fi;j + 

1 in probability, for all i and j. In other words, n is consistent for ii. The matrix product 

is a continuous function and the matrix inverse is locally continuous in a neighborhood 

of an invertible matrix. Therefore, under Assumption 4, the Slutsky-Frechet theorem (see 

Appendix) implies that the Moore-Penrose inverse nt of n is consistent for the Moore- 

Penrose inverse fit of ii. This, in turn implies that 5 = n t m  is consistent for d m ,  which 

by (5.50) is equal to p. 

Next, notice that under probability model (5.5) and the above limit process, v is con- 

sistent for 7. Further notice that the only random variable involved in 5 is n. Since v and 

n are independent by Assumptions 1 and 3, so are v and 6. Therefore, = ~ , n t m  is 

consistent for ~ & m ,  which by (5.50) is equal to  V. A similar argument will show that 6 
is consistent for U. 
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5.4 Variance 

Darroch used probability distributions (5.4) and (5.5), to derive the formulae for the ap- 

proximate variances of his estimators. Accordingly, when s = t ,  

A 

Var(p*) = C x X-'D,D~(X-')~, (5.51) 

v a r ( V )  x DvXDy + DV(Dp - I), and (5.52) 

4 v a r ( Q )  x v CF + V1(p - I).  (5.53) 

Here, p; = Cj Oijpj - 1. 

In the next two subsections, we derive formulae for the variances of estimators (5.35). 

A 

5.4.1 Variance of 

Recall from (5.50), (5.34) and (5.35) that when s > t ,  
- 
V = Dvp,  and 
A 

V = D ~ <  = ~~n~ rn = Dv [(nln)-'nl] rn. 

Now let 

Then, 

Y = (V - F). 

A - 
V - V  = D d s - p ) + D y s .  

The only random variable involved in 5 is n. Since v and n are independent by Assumptions 
A 

1 and 3, so are y and 5. Furthermore, E(y)  = 0. Therefore, the bias of V is 

A 

E(V - V )  = DvE(s  - p). (5.57) 

A 

The mean squared error of v is 
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Again, because y and 5 are independent and E ( y )  = 0, the last term is zero. Hence, 

E - ) (  - ) I ]  = DvE [ ( 5  - p)(* - p)'] DT + E [Dy5$Dy] . (5.58) 

A 

We need the bias and the mean squared error of 5 to  calculate those of v. So, let us 

calculate those quantities first. 

Calculation of bias and mean squared error of 5 

This calculation contains the following steps. 

Step 1. Recall that when s 2 t ,  

Step 2. Let 

Show that 

5 = p - iitxp + a random quantity with expected value ~ ( r n ~ ' ) .  (5.61) 

Thereby show that the bias of 5 is O(rn7'). The expression (5.61) is obtained by 

expanding the inverse matrix in (5.59) using the following identity: 

If A = A + Z and both A and A are nonsingular, then, 

A-' = [I - A-l~1A-l  + ( A - ~ z ) ~ A - ~ .  (5.62) 

Step 3. Show that the leading term in the approximate mean squared error is 

which is O(rn~') .  Hence, the bias is asymptotically negligible compared to the root 

mean squared error, which is ~ ( r n ; " ~ ) ,  and (5.63) can be considered as the approxi- 

mate variance-covariance matrix of 5. 



Chapter 5. Stratified Two-Sample Tag Recovery Census of Closed Populations 99 

Now, we present the detailed calculation in Step 2. Let X be defined as in (5.60). Then, 

n'n = (ii' + X1)(ii+ X) 

4- = nn+ii 'X+X'i i+XX'X 

= r + z ,  

where 

Hence, substitution of'A = (n'n) and A = I' in (5.62) yields 

Therefore, 

nt = (nln)-'nl = [I - r-'Z]I'-'(Ti' + X') + ( I ' - l ~ ) ~ n ~ .  (5.67) 

Post-multiplying (5.67) by m and substituting ii'X+X1ii+X'X for Z in the square bracket, 

leads to  

where 

b = I'-'(ii'x + ~ ' i i ) I ' - ' ~ ' r n  + r- ' (~'~)I ' - l ( i i '  + X1)m, (5.70) 

and 

Since E(X) = 0, (5.69) implies that the bias, E(6) - p = E(-b + r). Now, we show 

that this bias is ~ ( r n ~ ' ) .  For this, consider the limit process: {Oij), { p j )  constant and 
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all m; + oo in such a way that m;/m+ approach fixed constants. First, note that ii = 

O(m+), I'-' = ~ ( r n ~ ~ )  in this limit process, and m = O(m+). 

Next note that since (n;l, n;2, . . . , nit) are multinomial random variables, E(XijXlk) = 

6,10(m+) and E(XijXlkXab) = 6,&O(m+). Hence, 

Now, in order to find out the order of E(r) ,  let 

Then, 

Using Jensen's inequality and Cauchy-Schwarz inequality (see Appendix), we can see that 

In F,j, the contribution from I?-' is ~(m;') .  So, its contribution to E(F$) is ~ ( m ; ~ ) .  The 

terms in Z that contribute the largest order terms to E(Ffk) are K'X + X'Z. So, the highest 

order of moments of X generated in <; by these terms is 4. Since these are multinomial 

moments, the maximum contribution is O(m:). Finally, the highest contribution of terms 

ii that come from Z is O(m:). Therefore, the terms E[Ffk] are O ( ~ T ~ + ~ + ' )  = 0 (  m+ -2). 

Furthermore, the order of E(6:) is the same as that of $, which is O(1). Therefore, 

E ( r )  = [ ~ ( r n ; ~ ) ]  ' I 2  = ~(rn;'). (5.73) 

Order expressions, (5.72) and (5.73) imply that the bias of 5 is ~(m; ' ) .  



Chapter 5. Stratified Two-Sample Tag Recovery Census of Closed Populations 101 

Now, we proceed to Step 3. From (5.69), the leading term in E [(g - p)(z - p)')] is 

Note that lit = 0 ( m ~ ' ) ,  second order moments of X are O(m+) and p = O(1). Hence, C 

is ~(m; ' ) ,  and the bias of 5, which is ~(m; ' ) ,  is negligible compared to the root mean 

squared error. Therefore (5.74) is the approximate variance of 5. 
A 

Calculation of the mean squared error of V 
A 

First, in order to find the approximate bias of V, augment the above limit process by 

supposing that all Vj -, oo in such a way that Vj/V+ and m+/V+ approach fixed constants. 
A 

Equation (5.57) gives the bias of V as 

A 

E(V - V )  = DvE[5 - p]. (5.75) 

A 

Since i 7  is O(V+) and the bias of 5 is ~(m; ' ) ,  the bias of V is O(V+/m+) = O(1) in the 

above limit process. 

A 

As given by (5.58), the mean squared error of is 

The first term in (5.76) is DvCDV, where E is as given by (5.74). This is O(V:)O(~;') = 

O(V+) = O(m+) in the augmented limit process. 

Substituting p - l i t x p  - b + r for 5, the second term can be written as 

E [DYI3I3'~,] = E [DypplDy] + 0(vc1) .  

A 

This leading term is O(V+) = O(m+) in the limit process. So, the mean squared error of V 
A 

is O(m+). Since the bias of V is 0(1), it is negligible compared to the root mean squared 
A 

error. So, the approximate variance of V is 
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Estimation of variances 

First, to  calculate (5.74), note that the (i, 1)th element of EIXpplX'] is Cjk pj~kEIXijXlk]. 

According to the probability models (5.4) and (5.5), 

Therefore, 

where pi = Cj Bijpj - 1 = C. 3 +ijp! - 1. Noting that this is the (i, 1)th element of DmDp, 

the approximate variance (5.74) of 6 can be written as 

Next, in order to calculate the second term in (5.77) note that 

Hence, 

E(DypplDy) = DV(Dp - I). (5.82) 

Then, (5.80) and (5.82) lead (5.77) to  

var(?) r~ DyCDv + Dy(Dp - I), and (5.83) 

var(P+) r~ V'XV + V1(p - 1). (5.84) 

The approximate variances may be estimated by replacing the unknown parameters by 

their estimates. An estimator for p is, 
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Remark 6 

When s = t, Darroch's formula (5.51) can be deduced from (5.80) by noting that iit = ii-'. 

Consequently, (5.52) and (5.53) are also equivalent to  (5.83) and (5.84) respectively. 

5.4.2 Variance of 6 

Now, we derive a formula for the approximate variance of 6 given by (5.35). Since the 

derivation is similar to that in Subsection 5.4.1, here we present only the main steps. 

When s 5 t, let 

B = Dm(iii?)-'ii = Dm(*)', and 

B = Dm(n n')-'n = ~ ~ ( n ' ) ~ .  

Then, from (5.50) and (5.35), 

U = BJ,  and 

6 = 6 v  

respectively. Let y be defined as in (5.55). Then, 

6 - u = (B - B)v+ By, and 

var( f i )  r~ E [(B - ~ ) i i i i ' ( B  - B)'] + E [BYY'B'] 

= E [(B -B)V+(B - B)'] + B E  [yyl] B'. (5.90) 

Letting v a r ( 6 )  = n, E [(B - B)BV'(B - B)'] = A, and E [yy l  = Y, respectively, we 

have 
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Calculation of A 

Let X be defined as in (5.60). Then, 

nn' = (E+ X)(ii'+ X') 

= ETi'+Ex'+Xi?++X1 

= r + z ,  

where I' = iiTi' and Z = EX'+ Xi? + XX' (Note the new definition for I'. It was previously 

defined as I' = Z' ii). Then, using the identity (5.62), 

Pre-multiplying (5.92) by Dm and substituting EX' + XX' + XX' for Z in the square 

bracket, 

A 

B = D ~ ~ - ~ H + D ~ I ' - ' x ( I - H ~ E ) - D ~ I ' - ' Z X ' ~ - ' Z + R  

= B + AXQ - ~ ~ ' ( i i ' ) ~  + R, (5.93) 

where 

and R is the remainder term with expected value of order ~ ( r n ; ' ) .  Post-multiplication of 

(5.93) by V leads to  

(B - B)V m AXQV - BX'(X')~J, and 

A = E [(B - B )BV'(B - B )'I i~ A E [XQBJ'Q'X'] A' + BE [xt(Zi') 'V iif(ii) 'XI B' 

-A E [xQiW'iitx] B' - BE [x'(T~')~~W'Q'X'] A' 

= A E [ X a a ' ~ ' ]  A' + BE [X'PP'X] B' 

-AE [XaP'X] B' - BE [X'Pa'X'] A', (5.94) 
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where 

a = QV, and 

p = (Yip .  

Now letting 

D = E [Xaa'X'] , 
F = E [X'PP'X] , and 

G = E [XaP'X] , 

and noting that Q = 0 when s = t, A can be written as 

ADA' + BFB' - AGB' - BG'A', if s < t, and 

BFB', if s = t. 

Calculation of ~ a r ( 6 + )  

From (5.35), 

But, since this is a scalar, it can also be written as 

6+ = mt(n')tv. 

Similarly, from (5.50), 

Letting 

b' = mt(ii')t , and 

b = m'(n1)t, 

(5.96) and (5.97) can be written as 

6+ = b'v, and 

U+ = b ' ~ .  
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Comparing (5.89) and (5.88) with (5.100) and (5.101) respectively, we can see that the 

calculations in Subsection 5.4.2 can be repeated with U and B replaced by U+ and b' 

respectively, to calculate the variance of 6+. This also requires replacing A by 

Consequently, a formulae for the variance of 6+ can be obtained by replacing A and B in 

the variance formula for 6 by a' and b' respectively. Letting 

a'Da + b'Fb - a'Gb - b'G1a, if s < t, and 

b'Fb, if s = t, 

the approximate variance of 6+ can be written as 

Est imation of  variances 

Since E ( X i j X l k )  = 6irmi[6jk$;j - $ij$ik], the matrices D ,  F and G can be evaluated as 

follows: 

and 
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Now we evaluate 

Since p cannot be estimated when s < t, the expression (5.81) cannot be used to estimate 

Y. Instead, we should express it in terms of the estimable quantities, $;j. According to 

(5.81), Y is a diagonal matrix. Under probability models (5.5) and (5.42), the j t h  diagonal 

element of Y is 

= Var C v;j l;:, I 

Now, the approximate variances may be estimated by replacing all the parameters by their 

estimates. 

5.5 Relaxing Assumption 4 

So far, all the calculations were done under the assumption that Ti and n were of full rank 

(Assumption 4). As long as Assumptions 1-3 and 5 or 6 are satisfied, this is sufficient for 

the estimators to  be consistent. This assumption was also useful in deriving formulae for 

the approximate variances of the estimators. 

According to Seber [33](pg. 327), and Albert [l](see Appendix), regardless of whether 

or not X is of full rank, f i  = xty minimizes Ily - XPII. So, regardless of whether or not 

n is of full rank, (5.35) provides least-squares estimates. But now, nt is not necessarily 

defined by (5.34). In general, nt can be calculated via a singular-value decomposition. Even 
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though least-squares estimates are available in this way under any circumstances, they may 

not necessarily be consistent. 

Recall from (5.18) that 

The matrix ii has full rank if and only if O is of full rank. If ii has full rank and the samples 

are large, a non-full rank matrix n is extremely unlikely. So, as long as O has full rank, and 

samples are large, we can estimate the numbers of animals in each of the strata (tagging 

or recovery, depending on relative sizes of s and t, and on validity of Assumptions 5 or 6) 

consistently. 

As Darroch noted, there are a few obvious instances where the O matrix is not of full 

rank. For example, 

1. Ojj = 0 Vi, 

2. Oij/Olj is constant independent of j ,  and 

3. Oij/Ojk is constant independent of i. 

In the first instance, the j t h  stratum is effectively non-existent, and can be ignored. In 

the other two instances, the relevant strata may be pooled to avoid the non-full rank ii 

matrices. In Chapter 6, we show that such poolings do not affect the consistency of the 

pooled estimators. So, even if O is of less than full rank, we are still able to consistently 

estimate numbers of animals in unpooled strata and totals in pooled strata. It is possible 

to  test for the above two collinearities in the O matrix as follows. 
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Test for collinearity of two rows of O matrix 

Tagging 

stratum 

# marked 

released 

Total 

nil ni 2 . . . nit I m, - n;+ I 

# marked recovered in stratum j 

1 2 . . . t 

m;+ml  nil + nil ni2 + nl2 . . . nit + nrt 1 mi + ml - (ni+ + nl+) I 

# marked 

not recovered 

We are interested in testing the hypothesis Ho : O i j / O l j  =constant for all j .  Equivalently, 

we can test 

Under Ho, for a = i or I ,  

Let e;j be the expected number of marked animals which are released in stratum i and 

recovered in stratum j. Then, 

Under Ho, the test statistic 

has an approximate X 2  distribution with t - 1 degrees of freedom. 

As Darroch pointed out, the goodness of fit of the special hypothesis Ho : 9ij = B l j  V j  

is equivalent to a test of homogeneity for the rows of 2 x ( t  + 1 )  contingency table including 

the last column in the above table. Now, under the null hypothesis, T, has an approximate 

X 2  distribution with t degrees of freedom. 
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Test for collinearity of two columns of O matrix 

Similarly, the hypothesis Ho : O;j/O;k=constant for a l l  i, can be tested using the test 

statistic 

Here, 

n+,(n;j + nik) 
e;, = 

n+j 4- n+k 

Under Ho, T, has an approximate X2 distribution with s - 1 degrees of freedom. 

5.6 Discussion 

In this chapter we addressed the problem of estimating the population size using stratified 

two-sample tag recovery data. We derived least-squares estimators and provided algorithms 

for obtaining weighted least-squares estimates. These estimators have the advantage that 

they can be easily applied even when the numbers of tagging strata and recovery strata are 

unequal. 

However, these estimators share some weaknesses that are inherent to  the existing 

methodology. For example, the unrestricted nature of estimation procedure can lead to 

probability estimators that are out of range, and population size estimators that are nega- 

tive. These problems are particularly likely to  arise when the data are sparse or the model is 

inadequate. Although the deficiencies should be dealt with directly, it is possible to impose 

direct restrictions on estimates of population sizes and probabilities. For instance, the pro- 

cedure for estimating neglected that 0 < pj < 1 tl j .  This restriction can be incorporated 

into the estimation procedure by minimizing the error sums of squares subject to  constraints 

or by converting the problem into an unconstrained one. The latter may be accomplished by 

re-parameterizing the problem using aj = log (pj/ l  - pj) and minimizing the sum of squares 

of the errors, E; = CiZ1 nij(l  + e-"1) - m;, with respect to  the aj's. Similarly, in estimating 
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U, we neglected that U; > 0 V i. This restriction may be imposed by writing U,  = eQi and 

minimizing the sum of squares of errors with respect to these a;'s. This approach does not 

necessarily provide reasonable estimates. However, it avoids unacceptable estimates. 

Example 1 in Section 6.6 shows that least-squares estimation leads to reasonable esti- 

mates which are close to  those obtained by other methods with more assumptions. 



Chapter 6 

Pooling in a Stratified 

Two-Sample Tag Recovery Census 

Investigators often pool strata for various reasons. The pooling can occur before or after the 

experiment. For instance, if the investigators do not know how the population is stratified, 

then they may conduct an unstratified experiment and use the Petersen estimator. Also, if 

they are unable to use different tags for some of the tagging strata, then those strata may 

be pooled together. Investigators often pool data after the experiment when the numbers 

of tagged animals recovered in some strata are small. One such pooling can be found in 

Darroch's [13] paper, where he used Schaefer's sockeye salmon data set to estimate a run of 

migrating salmon. This data set has eight tagging strata and nine recovery strata. Darroch 

pooled the first three and last three weeks of tagging into single strata and the first three 

and last four weeks of recovery into single strata because frequencies in these weeks were 

too small to be used in large sample theory. As pointed out in Section 5.5, experimenters 

may also pool strata to avoid non-full rank matrices. 

In any case, when the strata are pooled, the estimators can be inconsistent. For example, 
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the Petersen estimator, 

is not in general consistent. Darroch showed that (6.1) is consistent under each of the 

following practically appealing conditions: 

i. A constant proportion of each recovery stratum is sampled (pj = p for j = 1, .  . . , t). 

ii. A constant proportion of each stratum is tagged (m;/V, = m+/V+ for i = 1, . . . , s) 

and the movement pattern for tagged animals and untagged animals is the same. 

iii. Complete mixing of the whole population ( O j j  = O j  for all i and j) and the movement 

pattern for tagged animals and untagged animals is the same. 

In the next three sections, we extend Darroch's work by finding sufficient conditions 

for pooling strata partially, so that the estimates may be consistent. We first consider 

pooling tagging and recovery strata separately, and finally combine the results to facilitate 

both types of pooling simultaneously. Then in Section 6.5, we examine the biases that can 

occur in the estimators if these conditions are not satisfied. Throughout the rest of this 

chapter, the pooled quantities are denoted by attaching a superscript '*'. The numbers of 

tagging and recovery strata after pooling are denoted by s* and t* respectively ( '*' used 

in the subsequent sections should not be confused with the '*' used previously to  describe 

Darroch's estimates.) 
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6.1 Partial Pooling of Tagging Strata 

Suppose that two of the tagging strata are pooled. To simplify the notation, without loss 

of generality, renumber the strata such that the pooled strata are the last two. The pooled 

quantities are, 

Naturally, one would use 

A - 
V = ~ , , ( n * ) ~ r n *  when s* > t .  

and 

C* = Dm*([n*It)tv when S* 5 t ,  (6.3) 

to estimate v and U* respectively. Here, n*+ is the Moore-Penrose inverse of n* defined 

similarly to (5.34). 

Arguing as in Section 5.3, it can be shown that (6.2) and (6.3) are consistent for 

Ddfi;*)trn* and ~,*([iT+l')tV respectively. So to  derive sufficient conditions for the consis- 

tency of (6.2) and (6.3), we find conditions under which D&P)trn* = v and D , * ( Z ) ~  = 

U* respectively. For this, it is enough to  find conditions under which the pooled quantities 

satisfy the key equations in Sections 5.2.2 and 5.2.3. Then, by the same line of calculations 

as in these Sections, and in Remark 5, the consistency of the pooled estimators will follow. 



Chapter 6.  Pooling in a Stratified Two-Sample Tag Recovery Census 115 

Result 6.1 Suppose that two of the tagging stmta are pooled. Also suppose that Assump- 

tions 1-3 are satisfied and matrices i? and n* are of full rank. 

R.6.1.1 

If Assumption 5 is satisfied, and s* 2 t ,  then the estimator given by (6.2) is consistent 

for V. 

R.6.1.2 

If Assumption 6 is satisfied, and s* 5 t ,  then the following Conditions 1 and 2 are 

individually suficient for the estimator given by (6.3) to be consistent for U*. 

Condition 1 

The ratios of the numbers of tagged to untagged animals are the same in the two pooled 

stmta. Le, 

U; = cm; for the two pooled tagging strata. 

(This is the analogue of Darroch's suficient condition (ii) for the Petersen estimator 

to be consistent.) 

Condition 2 

The patterns of moving from pooled tagging stmta to any given recovery stratum are 

the same. Le., 

B(s- l ) j  = Bsj for all recovery stmta j .  

(This is analogous to Darroch's condition (iii)). 
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Proof 

To prove R.6.1.1, it is enough to show that the pooled data satisfy the three key equations 

in Subsection 5.2.2. Since we pool only the tagging strata, the first key equation (5.17) in 

Subsection 5.2.2 is unchanged. That is, 

Next, we show that there exists a matrix 6 ,  such that 

rr* = D, .~D, ,  

and 

For this, let 

where &s-l)j's are probabilities such that x;=, 5 1. Then, for i = 1,. . . , s - 2 and 

j = 1, .  . . , t ,  

and for j = 1,. . . , t ,  
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Therefore, if 

then, 6 satisfies (6.5). Further note that if O satisfies (5.15), then so does 6; i.e., it 

satisfies (6.6). Therefore, from (6.4), (6.5), and (6.6), by the same line of calculations as in 

Subsection 5.2.2 and Remark 5, it follows that = ~ d i P ) t m * .  This proves R.6.1.1. 

To prove R.6.1.2, we find conditions under which the pooled data satisfy the two key 

equations (5.27), and (5.28) in Subsection 5.2.3. Note that for j = 1, . . . , t, 

s-2 ~ ~ - ~ e ( ~ - , , ,  + u e = C ~ i ' e i j p j  + ( U S - I  + U S )  
' 'J ]  

i=l [ U s - l + u s  

This can be written as 

U.,- le(s- l) j  t uses j  - I = O ( s - l ) j  for j = 1, .  . . , t .  

We have already shown that the second key equation (5.28) in Subsection 5.2.3, which is 

identical to (5.18) is satisfied by the pooled data if (6.8) is satisfied. So, both key equations 

in Subsection 5.2.3 are satisfied by the pooled data if 

I for j = 1, .  . .,t. (6.12) 

Conditions 1 and 2 individually satisfy (6.12). This completes the proof. 

R e m a r k  

As pointed out in Section 5.5, investigators may have to pool some tagging strata if the 

O is non-full rank due to collinearity of the rows. As we showed in Result 6.1, the pooled 

estimates are consistent if the corresponding rows in the O matrix are equal. However, if the 
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rows are not equal, but collinear, then such pooling does not necessarily lead to  consistent 

estimates of U (although the estimate of is still consistent). Recall that 6' is consistent 

if (6.12) is satisfied. From this we can see that the estimates 6' obtained by pooling tagging 

strata corresponding to two collinear rows of the O matrix are consistent if Condition 1 is 

also satisfied. That is, if 

e i j / e l j  = a constant not equal to 1, and 

Ui = cmi, 

for some tagging strata, then the investigator can pool those tagging strata to  get consistent 

estimates of U. 

6.2 Partial Pooling of Recovery Strata 

Now, we consider the partial pooling of recovery strata. Suppose that two of the recovery 

strata are pooled. Without loss of generality, renumber the recovery strata such that pooled 

strata are the last two strata. Then, the pooled quantities are 

and 

Naturally, one would use the estimators, 
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A* 

V = ~ " . ( n * ) ~ r n  when s > t* ,  

and 

6 = ~ ~ ( n * ' ) ~ v *  when s 5 t*,  

to  estimate V and U respectively. 

Result  6.2 Suppose that two of the recovery strnta are pooled. Also suppose that Assump- 

tions 1-3 are satisfied and matrices i? and n* are of full rank. 

(a) If Assumption 5 is satisfied, and s 2 t*, then the following Condition 3 is SUB- 
cient for the estimator given by (6.1 6) to be consistent for v. 

(b) If Assumptions 5 and 6 are satisfied, and s > t*, then the following Condition 4 

is suflcient for the estimator given by (6.16) to be consistent for v. 

R.6.2.2 

If Assumption 6 is satisfied, and s 5 t*, then the following Conditions 3 and 4 are 

individually suficient for the estimator given by (6.17) to be consistent for U .  

Condit ion 3 

The sampling proportion is the same for both pooled strnta; i.e, pt-1 = pt. (This 

is the analogue of Darmh's suficient condition (i) for the Petersen estimator to be 

consistent.) 

Condit ion 4 

The probabilities of moving to pooled recovery strata from any given tagging stratum 

are constant multiples of each other; i.e., 8;t/8;(t-1) = k (a constant) for i = 1, .  . . , s. 
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Proof 

Let 

for some 0 < 5 1. 

Note that if 

then 

Next, note that for i = 1, .  . . , s  and j = 1 , .  . . ( t  - 2 )  

E(nTj) = E(nij) = miOijpj = miBrjpj, 

and for i = 1,. . . , s 

E n 1 ]  = E(n+l) t nit) = m;&(t-l)~t-l t mi&tpt 

Hence, if 

then 

8i(t-l)pt-l + Bitpt 
i - 1  = [ I for i = 1,. . . , s ,  

oi(t-1) + 8it 
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I.e, if 
- 
vt-1pt-1 - + V t p t  + &tpt I , for i = 1, ..., s 

V t - 1  + V t  ei(t-1) + 8it 

then pooled data satisfy key equations in Subsection 5.2.2. Since Condition 3 satisfies (6.25), 

this condition is sufficient for the the pooled data to satisfy the first two key equations in 

Subsection 5.2.2. If Assumption 5 is satisfied, the third key equation is satisfied by a*. 
This proves part (a) of R.6.2.1. 

To prove part (b) of R.6.2.1, suppose that both Assumptions 5 and 6 are satisfied. Then 

f o r j  = 1, ..., t - 2 ,  

and 

If (6.23) is satisfied, then (6.27) and (6.28) can be written as (6.20). We have already 

shown that (6.24) is satisfied if (6.23) is satisfied. So, now, it is sufficient that 

q t - 1 ) ~ t - 1  + &tpt 1 = a constant for i = 1,. . . , s ,  
ei(t-1) + Bit 

for the pooled data to satisfy the key equations in Subsection 5.2.2. Condition 4 satisfies 

(6.29). This proves part (b) of R.6.2.1. 

Next, to prove R.6.2.2, recall that (6.24) is valid if (6.23) is satisfied. Also, note from 

(6.26) and (6.28) that if (6.23) is satisfied, then 



Chapter 6. Pooling in a Stratified Two-Sample Tag Recovery Census 122 

In other words, both two key equations in Subsection 5.2.3 are satisfied if (6.29) is satisfied. 

Conditions 3 and 4 both individually satisfy (6.29). This proves R.6.2.2. 

6.3 Partial Pooling of Tagging and Recovery Strata 

Usually, in practice, the investigator may need to pool tagging strata as well as recovery 

strata. Then U *  and V- will be estimated by 

1 8  

V = ~ , p ( n * ) ~ m *  when s* > t*, (6.31) 

and 

6* = ~ ~ * ( n * ) ~ v *  when s* 5 t*. (6.32) 

to  estimate and U respectively. We now combine Results 1 and 2 to derive sufficient 

conditions for these estimators to  be consistent. 

Result 6.3 Suppose that two of the tagging strata and two of the recovery are pooled. Also 

suppose that Assumptions 1-3 are satisfied and matrices P and n* are of full rank. 

(a) If Assumption 5 is satisfied, and s* 2 t*,  then Condition 3 is sufficient for the 

estimator given by (6.31) to be consistent for V-. 

(b)  If Assumptions 5 and 6 are satisfied, s* 2 t*, then Condition 4 is sufficient for 

the estimator given by (6.31) to be consistent for V'. 

R.6.3.2 

If Assumption 6 is satisfied, and s* 5 t*, then the following combinations of conditions 

are sufficient for the estimator given by (6.32) to be consistent for U * .  

(a) Conditions 1 and 3. 
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(b) Conditions 1 and 4. 

(c)  Conditions 2 and 3. 

(d) Conditions 2 and 4. 

So far we have considered pooling two tagging strata and two recovery strata only. But, 

investigators often pool more than two tagging and recovery strata to form more than one 

group of pooled strata of each type. Sufficient conditions for such poolings can be derived 

from Results 6.1, 6.2 and 6.3. In such cases, the conditions should be true for each group 

of strata that is pooled. 

We can use Results 6.1, 6.2 and 6.3 to  verify Darroch's conditions (for the particular 

case where all the tagging and recovery strata are pooled). To see this, first suppose that 

Assumptions 1-3 and 5 are satisfied and Darroch's condition (i) is true. Then, R.6.3.l(a) 

implies that c+ is consistent for V+. Secondly suppose that Assumptions 1-3 and 6 are 

satisfied and Darroch's condition (ii) or (iii) is true. Then, by R.6.1.2, all the tagging strata 

can be pooled without affecting consistency of 0:. At this point, the corresponding 6 is 
1 x t ,  and automatically satisfies Condition 4. So, by R.6.2.2, all the recovery strata can 

be pooled to get a consistent estimator of U+. If in addition Assumption 1 is satisfied, this 

estimates V+. 

6.4 Variances of Pooled Estimates 

Having listed various conditions under which the pooled estimates are valid, let us now 

suppose that the investigator correctly assumes that one of them is satisfied and conducts 

an appropriate pooling. Although the investigator can consistently estimate the number of 

animals by substituting the pooled data in an estimator derived in Section 5.2, the variance 

formulae derived in Section 5.4 may no longer be valid for the pooled data. We now examine 

sufficient conditions for those formulae to  correctly estimate the variances. The following 

discussion considers the variance formula for 9. The complicated form of the variance 
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formula for 6 causes difficulties in determining the effect of pooling on that formula, and 

is not considered here. 

Complete Pooling 

First, suppose that one of Darroch7s conditions is valid, and an unstratified experiment has 

been conducted. According to Darroch, then the approximate mean squared error of the 

Petersen estimate is 

where v = E(v+) = C .  3 V .  )PI . and 7 = E(n+) = Cij mifl;,jpj. In order to estimate the mean 

squared error, the investigator has no course but to substitute estimates: 

in (6.33). Darroch showed that this leads to overestimation, unless the sampling probabilities 

(the pj7s) are equal. 

Partial Pooling 

Now suppose that some of the tagging and recovery strata are partially pooled under suffi- 

cient conditions provided by Result 6.3. Then, the calculations (5.54)-(5.77) in Subsection 

5.4.1 and (5.86)-(5.104) in Subsection 5.4.2 are valid for pooled quantities. However, the 

evaluation of second moments of X and y, based on probability models (5.4), (5.5) and 

(5.42) may or may not be valid. 

A 

For example, we shall show that when the tagging strata are pooled, the variances of 

are estimated correctly. By contrast, when the recovery strata are pooled, the variances are 

overestimated unless the sampling probabilities are equal. To see this, first suppose that 

two of the tagging strata are pooled under conditions stated in Result 6.1. Without loss of 

generality, change the labels of tagging strata so that the pooled strata will be the last two. 
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Now, to  check the validity of variance formulae (5.83) for the pooled data, it is enough to 

examine the validity of equations (5.79) and (5.81) for the pooled data. 

It is easy to see that equation (5.81) is valid since only the tagging strata are pooled. 

Following (5.79), the investigator is obliged to  use 

in place of Cjk p j p k E [ X v s ] ,  the (i, i)th element of E[X8pp'X*'] .  Clearly, this is correct 

for i = 1, .  . . , s - 2, since those strata are not pooled. Let us check its validity for i = s - 1. 

Note that for j = 1,.  . . , t ,  

Next note that for j # k, 

Therefore, the (s - 1, s - 1)th element of E[X8pp'X*'] is 

= x (m8-l0(,-l)j + mso(3)j) pj  - (m3-l f ms). 
i 

But, according to (6.8), 
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Hence, ~ j k p j p k E I X ~ , - l ) j X ~ ~ - l ) k ]  is in fact equal to  (6.34). This implies that when only 

tagging strata are pooled under sufficient conditions, then, the variance formulae given in 

Section 5.4.1 are valid for pooled data. 

NOW, suppose that two of the recovery strata are pooled under sufficient conditions given 

by Result 6.2. Without loss of generality, change the labels of recovery strata so that the 

pooled strata will be the last two. Now, to estimate ~ a r ( ? * ) ,  the investigator is obliged to 

use 

in place of Eigi pjpkE[XGX:k], the (i ,  i)th element of E[X*$$'X*']. To check the 

validity of this, note that 
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t - 2  

-2mi  x ~ j P t - 1  ( e i jP je i ( t -1 )~ t -1  e i j ~ j e i t ~ t )  - 
j=1 

Now, recall from (6 .15)  and ( 6 . 2 3 )  that under sufficient conditions, 

Hence, the above can be written as 

This implies that (5 .79)  is correctly estimated if the pooling is done under the sufficient con- 

ditions. However, we can show that (5 .81)  is overestimated unless the sampling probabilities 

are equal. To see this, note that the investigator is obliged to  use 

in place of E [ ( Y ; ) ~ ] .  This is correct for j = 1 , .  . . , t - 2 ,  since those recovery strata are not 

pooled. To check its validity for t - 1 ,  note that 

E [ ( ~ ; - l ) ~ ]  = E [(Yt-1 + Yt)2] 
- 

= V t - l P t - l ( 1  - pt-1) + V t p t ( 1  - pt ) .  
- 

Recalling from (6 .19)  that under sufficient conditions, @t-l = V t ~ t - l f " t p t  one can show 
Vt-1 +Vt 

that 

This shows that the term E [ ( y t - , ) 2 ]  is overestimated unless pt-1 = pt. So, the overall effect 

of pooling recovery strata is to  overestimate the variances unless the sampling probabilities 

in the pooled recovery strata are equal. This result is consistent with Darroch7s finding that 

the variance of the Petersen estimate will be overestimated unless the sampling probabilities 

are equal. 
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6.5 Biases of Pooled Estimates 

In general, pooling can produce biased estimators. If the pooling is done under sufficient 

conditions stated above, then the estimators are consistent and asymptotically unbiased. 

To calculate the bias that can occur otherwise, first suppose that s* 2 t * ,  and 3 and n* 

are of full rank. Then, 

2 = (n8)tm* = (n8'n*)-'n*'] m*, and 
h 
-* A 

I 
V = DV8p  = ~ ~ * ( n * ) ~ m * .  (6.36) 

By repeating arguments in Subsection 5.4.1 with pooled quantities, we can show that 

E (?) = Dg* (3'3) -' (h ) 'm8  + O(1) 

= ~ g * ( i T ) + m *  + O(1). (6.37) 

To see this, first let 

Then, 

n* = 3 + X*. (6.38) 

n8'n* = I" + Z*, 

where 

Now, using the identity (5.62), we can get 

(n8'n*)-' = [I - r*-'z*]r*-' + ( r*- '~*)~(n* 'n*)- ' ,  and 

(n*lt = (,*In*)-In*' = [I - I'*-'Z*]I'*-'(S' + x*') + ( I ' * - ' z* )~ (~*)~ .  (6.41) 

Now, Post-multiplying (6.41) by m*, substituting S I X *  + X * ' 3  + X8'X* for Z* in the 

square bracket, and arguing as in Subsection 5.4.1, it can be shown that 

A 

p = r*- ' i t 'm* + a random quantity with expected value ~ ( r n ; ' ) .  
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In other words, 

Next, let 

Then, from (6.36) 

Since y and 5 are independent, and E(y8) = 0, it follows that 

If the sufficient conditions stated in Result 6.3 are satisfied, then DV*(n*)trn8 = 7, 
h 

and hence is asymptotically unbiased. Otherwise, it can be biased. 

Now recall from (5.50) that V = D4ii) t rn.  Therefore, actual expected numbers of 

untagged animals in pooled recovery strata can be obtained by adding the corresponding 
- - * 
V in . Let this be denoted by (v) . Then, the asymptotic bias of Y is given by 

DV*(iT)trn8 - (v)*. 

The bias can be positive or negative depending on the movement patterns and sampling 

probabilities. To see this consider the following hypothetical examples. Let 
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First, let 

Then, 

Pooling the last two tagging strata, and the last two recovery strata, we get 

2000 

* [ 20.0) 3 = [ I: i' ) , and V = ( 4400 ) . m = 
11550 

9500 78 157.5 

Hence, 

So, the bias of the total estimate is 

Next, suppose that the sampling proportions in the last two recovery strata were inter- 

changed. I.e, 
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Then, 

Pooling the last two tagging strata, and the last two recovery strata, we get 

m * = "= [ Y  I': 1,  and V =  ( 4 4 0 0 ) .  9950 

9500 78 122.5 

Hence, 

So, the bias of the total estimate is 

~ i a s ( c )  = (271077 + 381681) - (220000 + 430000) = 2758 

Similar results can be shown for the bias of 6, when s* 5 t*. 

6.6 Worked Examples and Monte Carlo Studies 

6.6.1 Example 1: Schaefer's sockeye salmon data 

As the first example, we illustrate our methods using a data set provided by Schaefer(l951). 

Darroch also used this data set to demonstrate his methods. So, to compare results from 

both approaches and to point out the advantages of our method, we reproduce main points 

of Darroch's calculation as well. 

In this experiment both stratifications are with respect to time instead of place. The 

population consisted of adult sockeye salmon passing a certain point of a river in British 
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Columbia. The experiment was conducted by Schaefer. A total of 2,351 fish were tagged 

on the way to their spawning grounds, over an 8-week period. Later, samples were drawn 

regularly over a 9-week period as the fish spawned and died on the spawning grounds further 

upstream: 10,472 fish, of which 520 had been tagged were recovered in these samples. The 

data from the experiment are set out in Table 6.1. 

Week of 

tagging (i) mi 

Total 2351 

v.i 

Week of recovery ( j )  

1 2 3  4 5 6 7 8 9 Tot a1 

3 

11 

76 

180 

183 

60 

6 

1 

Table 6.1: Schaefer's data on sockeye salmon: n;j, m; and vj for s = 8, t = 9 (from Darroch 

[1961:Table 11) 
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Darroch's approach 

1. He reduced s and t to four by grouping the first three and last three weeks of tagging 

into two single strata and the first three and last four recovery strata into two single 

strata, since the n;j in some of the outer weeks were too small. The new values of 

nfj, mf and v; are given in Table 6.2. 

Week of 

tagging (i) mf 

Week of recovery (j) 

1-3 4 5 6-9 Total ni;/mf 

Table 6.2: Schaefer's data on sockeye salmon: nfj , mf and vj* for s* = 4, t* = 4 (from 

Darroch [1961:Table 21) 

2. He assumed that the 4;" are equal, and estimated p* through (5.6) as 

He pointed out that the unsatisfactory value of may be just a symptom of the 

general inadequacy of the estimators, or it may indicate that the model is incorrect in 

assuming the 4; equal. 

3. He argued that n>/mf indicate where the possible differences in the 4; lie. Since the 

middle two are appreciably larger than the outer two (cf. Table 6.2), he suggested 
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imposing constraints, = 44 and d2 = 43, and using (5.12), and (5.12) to  obtain. 

estimates. 

4. To evaluate (5.12), ADZ n should be a square matrix. To accomplish this, two more 

recovery strata should be pooled. It is permissible to group two recovery strata if 

R.6.2.1 (b) is satisfied. In Table 6.2, the only two columns that might satisfy this are 

the third and fourth columns. He pooled those columns. 

5. Equations (5.12) and (5.52) led to  the following estimates. 

Recovery 

Stratum 

Tot a1 

Table 6.3: Darroch's Estimates of V* 

Our approach 

Now, we present our approach on Schaefer's data. We think that it is more meaningful to 

estimate the numbers at the tagging stage rather than the numbers at the recovery stage. 

The reason is that the survival probabilities are not equal to  one. So, the estimated numbers 

at the recovery stage would actually estimate the numbers that would have reached recovery 

strata if the survival probabilities were one. However, in order to  compare with Darroch's 

approach, we also estimate the numbers at the recovery stage. The steps followed were: 
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1. Pool only the recovery strata. As Darroch did, we pool the first three and last four 

recovery strata. Then, s = 8, t* = 4. 

2. Derive the least-squares estimate (LSE) and an iteratively re-weighted least-squares 

estimate (IRLSE) of p using (5.35) and (5.41) respectively. The least-squares estimate 

is taken as the initial guess for deriving the weighted least-squares estimate. The mean 

squared errors are estimated using (5.77). These estimates are shown in Table 6.4 

Table 6.4: Our Estimates of V* 

Recovery 

Stratum 

1-3 

4 

5 

6-9 

Total 

Even though the least-squares method produced an unacceptable estimate of the sam- 

pling probability in recovery stratum 4, the iteratively re-weighted least-squares estimate 

is acceptable and may be reasonable too. High root mean squared errors indicate that the 

estimates of individual stratum sizes are not reliable. However, the root mean squared error 

of the total estimate implies that this estimate can be reliable. 

Next, we present our estimation of the numbers at the tagging stage. For this, we pooled 

only the tagging strata. The steps followed were: 

1. Pool the same tagging strata as Darroch did; i.e, first three and last three tagging 

strata. Then, s* = 4 and t = 9. 

LSE IRLSE 

P 

0.1314 

1.7899 

0.2084 

0.1005 

A 

P 
- 

0.1562 

0.4344 

0.3054 

0.0988 

h 

V* 

5,422 

6,133 

10,860 

31,625 

54,040 

F 

6,444 

1,488 

15,914 

31,055 

54,900 

&z@j 
1,648 

9,128 

14,134 

12,520 

6,528 
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2. Derive the least-squares estimate (LSE) and an iteratively re-weighted least-squares 

estimate (IRLSE) of U* using (5.35) and (5.43), respectively. The least-squares es- 

timate is taken as the initial guess for deriving the weighted least-squares estimate. 

The mean squared errors are estimated using (5.91). These estimates are shown in 

Table 6.5. 

Tagging 

Stratum 

Total 

LSE 11 IRLSE 

Table 6.5: Our Estimates of U* 

Again, the high root mean squared errors indicate that the estimates of individual stratum 

sizes are not reliable. However, the estimates of total seem to be more reliable. This 

phenomena is common when the samples are not large enough. 

6.6.2 Monte Carlo Studies 

As an investigation of the accuracy of the above estimation for the total, we performed 

three Monte Carlo studies. Since the estimated U+ in this problem is close to  50,000 fish 

and the total number of tagged animals is 2351, the proportion of untagged fish to tagged 

fish is close to  20:l. So, in our first simulation we matched this proportion with a little 

variation. In the other two simulations we gradually decreased this proportion allowing 
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a large variation. But, the released numbers of tagged animals were doubled to produce 

reasonably large numbers of recovered tagged animals. The steps taken in the simulations 

are as follows: 

1. Let m be the numbers of tagged fish released in Schaefer's data. 

2. 4 = D d n  was calculated from Schaefer's data. 

3. Matrix 4 was augmented by including the ( t  + 1)th column of probabilities ( 1  - 41) .  

Let the augmented matrix be denoted by 4. 

4. Let Y(a, b) denote a rounded uniform random number in the interval (a, b). In the 

three Monte Carlo studies, the numbers of untagged animals at the tagging stage (U) 

were simulated as, 

U' = 20 m' + [Y(O, 50), Y(0, 50), Y(0, loo), Y (0, 2, OOO), 

Y(0, 2,000), Y(0, 5, OOO), Y(0, 1,000), Y(0, 500), Y(0, 400)], 

(b) U; = 2 mi x Y(lOO,3OO), and 

(c) U; = 2 m; x Y(250,400) 

5.. The recovered numbers of tagged and untagged numbers ( n  and v) were simulated 

according to a multinomial model with probabilities given by 4 and numbers at the 

tagging stage as follows. 

(a) the numbers of tagged animals = m ,  and the numbers of untagged animals = U 

as in (a) above. 

(b) the numbers of tagged animals = 2m, and the numbers of untagged animals = 

U as in (b) above. 

(c) the numbers of tagged animals = 2m, and the numbers of untagged animals = 

U as in (c) above. 
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6. The least squares estimates of the total numbers of untagged fish at the tagging 

stage (U+) were calculated based on the generated data, using the same steps as in 

estimation of Example 1 ( pooling first three and last three tagging strata, and so on). 

X 100. 7. Percent relative error of the total was calculated as 
U+ 

8. Repeated steps 4-7 1000 times. 

The histograms and box-plots of the observed percent relative errors of overall totals are 

shown in Figure 6.1. The figures corresponding to three studies are labeled as (a), (b) and 

(c) respectively. 

(a) 

Figure 6.1: Percent relative error of U+ in three Monte Carlo studies (each study is based 

on 1000 simulations). 
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In the first study, the tagging proportions were close to 1/20. But the released numbers- 

of tagged animals were rather small (as in Schaefer's data). Because of this, the nij's were 

of the same sizes as in Schaefer's data set. In a number of simulations, the estimates of 

individual stratum sizes were negative. However, on average, the total estimates seem to 

be very reliable. It can be seen from the histogram (a) and the box-plot (a), that the 

percent absolute relative errors of the totals are reasonably low. In the second Monte Carlo 

study, the numbers of marked animals were twice the amount in Schaefer's data set. The 

tagging proportions were smaller; between 1/100 and 11300. In the third study, the tagging 

proportions were further reduced to proportions between 1/250 and 11400. In both studies, 

a number of negative estimates of stratum sizes were observed. However, the total number 

of fish at  the tagging stage appears to have been estimated accurately with high probability. 

6.6.3 Example 2: Schwarz's pink salmon data 

Now we derive estimates using a data set provided by Dr. Carl Schwarz of the Department 

of Mathematics and Statistics, Simon Fraser University. These data were collected in the 

Fraser River, British Columbia. In this experiment, tagged male pink salmon were released 

over 6 weeks. As the fish reached each of 6 spawning areas, they were again sampled over 

several weeks. This produced 31 recovery strata, considering each recovery week at each 

spawning ground as a stratum. The numbers of marked and unmarked animals released 

and recovered are presented in Tables 6.6 and 6.7. 
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Area of 

recovery 

Table 6.6: Fraser River pink salmon data: Areas 1-3 

Total number of 

unmarked fish 

recovered 

9,004 

9,279 

5,984 

3,287 

745 

1,299 

8,374 

18,843 

19,401 

8,975 

916 

5,837 

3,960 

1,710 

29 

Week of 

recovery 

2 

3 

4 

5 

6 

3 

4 

5 

6 

7 

3 

4 

5 

6 

7 

Week of tagging 

1 2 3 4 5 6 

Number of marked fish released 

3479 5354 4219 4227 1588 327 

Number of marked fish recovered 

14 15 7 3 0 0 

5 12 7 3 0 0 

0 4 4 6 1 0 

0 5 1 4 0 0 

0 0 2 0 1 1 

0 1 1 6 1 1 

0 2 6 22 15 1 

0 1 7 29 38 2 

1 2 5 23 42 10 

0 1 1 8 17 11 

0 3 3 0 0 0 

0 5 7 7 7 1 

0 0 1 1 5 2 

0 0 1 3 2 0 

0 0 0 0 0 0 

Continued on next page 
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Total number of 

unmarked fish 

recovered 

Table 6.7: Fraser River pink salmon data: Areas 4-6 
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From these data, it is more meaningful to  estimate the numbers of fish at  the tagging 

strata than to estimate the numbers of fish at the recovery strata. There are two reasons 

for this: The first is that Assumption 6 may be more reasonable than Assumption 5. The 

second is that the number of tagging strata is smaller than the number of recovery strata 

(s < t ) .  Following is a list of the more noteworthy features. 

1. In this data set, there are several recovery strata in which the numbers of tagged fish 

are zero or very small. It may be reasonable to  assume that within each recovery area, 

the sampling proportions are kept roughly equal. Then, it is permissible t o  pool strata 

within areas. So, we pool recovery strata as follows: 

Area 1: weeks 4-6, Area 2: weeks 3-4, 

Area 3: weeks 3-4, and 5-7, Area 4: weeks 4-5, 

Area 5: weeks 1-2, and 5-6, Area 6: weeks 1-2, and 4-7. 

The pooled data set is shown in Table 6.8. 

Week of 

tagging (i) 

Area of Recovery 

Table 6.8: Fraser River pink salmon data: Recovered numbers of marked fish ( after pooling). 
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2. The least squares estimates obtained using the pooled data is shown in Table 6.9. One 

of the estimates is unacceptable since it is negative. Such an unacceptable estimate 

Table 6.9: Estimated numbers of unmarked fish at  the tagging stage 

Week of tagging (i) 

1 2 3 4 5 6 

can be a result of incorrect modeling or near singularities of the matrix n. Table 

6.8 suggests that there may be a collinearity between the second and third rows of 

corresponding 6 matrix (p-value =.12). So we pool those two tagging strata. In 

addition, the counts in the last row are very small except in Area 2. So, we pool the 

last two tagging strata as well. The least-squares and weighted least-squares estimates 

Tot a1 

obtained using pooled data are presented in Table 6.10 

Week of 

tagging 

Total 

LSE IRLSE 

Table 6.10: Estimated numbers of unmarked fish at the tagging stage 
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6.7 Discussion 

In stratified tag recovery experiments it is common to pool of some or all of the strata. The 

estimate of the population size in such a case may be inconsistent. Darroch [13] has described 

conditions for complete pooling which are sufficient for the resulting pooled estimate to be 

consistent. 

We discussed the case of partial pooling and suggested conditions which are sufficient 

to  preserve the consistency of the estimates. Conditions 1 and 3, proportional tagging 

and proportional sampling are potentially a t  the investigator's control, although they are 

difficult to  implement without prior knowledge of the population sizes. However, preliminary 

estimates of proportional sizes of strata may be obtained from other sampling methods such 

as the 'CPUE' (catch per unit effort) method. Then it may be possible to  maintain the 

conditions of proportional tagging and proportional sampling. 

Naturally, the Conditions 2 and 4, which are on the movement probabilities, are not 

at the investigator's control. However, when they are satisfied, it is possible to detect the 

presence of collinearity caused by these conditions. Then the corresponding strata may be 

pooled to  obtain consistent estimates. 

If these conditions are met, the investigators can use the pooled data to  derive estimates 

of the stratum sizes. However, the variance estimators provided for unpooled estimates are 

not necessarily be valid for the pooled data. For example, as Darroch showed that when 

all the tagging and recovery strata are pooled, the variance can be overestimated unless the 

sampling probabilities (the pj's) are equal. We showed that under partial pooling of tagging 

strata, the variance of ?* is correctly estimated using formula (5.83) with pooled data. We 

also showed that effect of pooling recovery strata on this formula is to  overestimate the 

variances unless the sampling probabilities are equal in the pooled strata. We were unable 

to determine the effect of pooling on the variance formula for 6, because of its complicated 

form. This problem is open for further research. 



Appendix: Some Useful Results 

In this appendix, we present some o f  the  important results that were used throughout the 

thesis. 

According t o  Sen and Singer [34](pg. 43) ,  

Theorem 1 (Jensen's inequality) Let X be a random variable, and g ( x )  , x E R, be a 

convex function such that E [ g ( X ) ]  exists. Then, 

with the equality sign holding only when g is linear almost everywhere. 

According t o  Marsden and Tromba [26](pg. 274), 

Theorem 2 Let f : U C R~ -+ R and g : U C R2 -+ R be smooth functions. Let 

vo E U, g (vo)  = c,  and S be the level curve for g with value c. Assume that V g ( v o )  # 0 

and that there is a real number X such that V f ( v o )  = XVg(vo) .  Form the auxiliary function 

h = f - Xg and the bordered Hessian determinant 

evaluated at vo. 

1. If > 0, then vo is a local maximum point o f f  restricted to S .  
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2. If < 0 ,  then vo  is a local minimum point o f f  restricted to S .  

3. If = 0 ,  the test is inconclusive and vo  may be a minimum, a maximum, or neither. 

According to Kotz and Johnson [21](pp. 386-387 ), 

Theorem 3 (Cauchy-Schwarz inequality) Let ( X ,  Y) be a bivariate random variable. 

Then, 

E ( x ~ Y ~ )  E ( x ~ ) E ( Y ~ ) ,  

provided the expectation on the left hand side exists. 

According to  Kotz and Johnson [22](pg. 515), 

Theorem 4 (Slutsky-Frechet) If the sequence of random variables {X,) converges in 

probability to a mndom variable X ,  then so does f (X,)  to f ( X )  for any continuous function 

f .  

According to  Albert [l](pg. 30), 

Theorem 5 xo minimizes 

if and only i f  xo is of the form 

xo = H ~ Z  + ( I  - H ~ H ) ~  

for some y.  The value of x which minimizes llz - Hx1I2 is unique if and only i f  H t H  = I .  
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