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Abstract 

In a typical voice codec application, we wish to maximize system capacity while at 

the same time maintain an acceptable level of speech quality. Conventional speech 

coding algorithms operate at fixed rates regardless of the input speech. In applications 

where the system capacity is determined by the average rate, better performance can 

be achieved by using a variable-rate codec. Examples of such applications are CDMA 

based digital cellular and digital voice storage. . 

In order to achieve a high quality, low average bit-rate Code Excited Linear Pre- 

diction (CELP) system, it is necessary to adjust the output bit-rate according to 

an analysis of the immediate input speech statistics. This thesis describes a low- 

complexity variable-rate CELP speech coder for implementation on the TMS320C51 

Digital Signal Processor. The system implementation is user-switchable between a 

fixed-rate 8 kbit/s configuration and a variable-rate configuration with a peak rate of 

8 kbit/s and an average rate of 4-5 kbit/s based on a one-way conversation with 30% 

silence. In variable-rate mode, each speech frame is analyzed by a frame classifier in 

order to determine the desired coding rate. A number of techniques are considered for 

reducing the complexity of the CELP algorithm for implementation while minimizing 

speech quality degradation. 

In a fixed-point implementation, the limited dynamic range of the processor leads 

to a loss in precision and hence a loss in performance compared with a floating-point 

system. As a result, scaling is necessary to maintain signal precision and minimize 

speech quality degradation. A scaling strategy is described which offers no degrada- 

tion in speech quality between the fixed-point and floating-point systems. We present 

results which show that the variable-rate system obtains near equivalent quality com- 

pared with an 8 kbit/s fixed-rate system and significantly better quality than a fixed- 

rate system with the same average rate. 
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Chapter 1 

Introduction 

Speech coding has been an ongoing area of research for over a half century. The 

first speech coding system dates back to the channel vocoder introduced by Dudley in 

1936 [I]. In recent years, speech coding has undergone an explosion in activity, spurred 

on by the advances in VLSI technology and emerging commercial applications. The 

exponential increase in digital signal processor (DSP) capabilities has transformed 

complex speech coding algorithms into viable real-time codecs. The growth in speech 

coding has also been due to the un-ending demand for voice communication, the 

continuing need to conserve bandwidth, and the desire for efficient voice storage. 

All speech coding systems incur a loss of information. However, most speech coding 

is done on telephone bandwidth speech, where users are accustomed to various degrees 

of degradation. In secure, low-rate military applications, only the intelligibility of the 

message is important. There are a wide range of tradeoffs between bit-rate and 

recovered speech quality that are of practical interest. 

There are two principal goals in the design of any voice communications network 

or storage system: 

0 maximize voice quality, and 

0 minimize system cost. 

Depending on the application, cost may correspond to complexity, bit-rate, delay, 

or any combination therein. These two goals are usually at odds with one another. 

Improving voice quality comes at the expense of increased system cost, while lowering 
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system cost results in a degradation in speech fidelity. The designer must strike a 

balance between cost and fidelity, trading off the complexity of the system with its 

performance. 

The dominant speech coding algorithm between 4-16 kb/s is code-excited linear 

prediction (CELP) introduced by Atal and Schroeder [2]. CELP uses a simple speech 

reproduction model and exploits a perceptual quality criterion to offer a synthesized 

speech fidelity that exceeds other compression algorithms for bit-rates in the range of 

4 to 16 kb/s. This has led to the adoption of several CELP based telecommunications 

standards including: Federal Standard 1016, the United States Department of Defense 

(DoD) standard at 4.8 kb/s [3]; VSELP, the North American digital cellular standard 

at 8 kb/s [4]; and LD-CELP, the low-delay telecommunications standard at 16 kb/s [5]. 

The superior quality offered by CELP makes it the most viable technique in speech 

coding applications between 4 and 16 kb/s. However, it was initially viewed as an 

algorithm of only theoretical importance. In their initial paper [2], Atal and Schroeder 

remarked that it took 125 sec of Cray-1 CPU time to process 1 sec of speech. Nu- 

merous techniques for reducing the complexity and improving performance have since 

emerged, making real-time implementations feasible. 

In trading off voice quality with bit-rate, variable-rate coders can obtain a signifi- 

cant advantage over fixed-rate coders. Many of the existing CELP algorithms operate 

at fixed rates regardless of the speech input. Fixed-rate coders continuously transmit 

at the maximum bit-rate needed to attain a given speech quality. In many applica- 

tions such as voice storage, there is no restriction on a fixed bit-rate. In a variable-rate 

system, the output bit-rate is adjusted based on an analysis of the immediate speech 

input. Variable-rate coders can attain significantly better speech fidelity at a given 

average bit-rate than fixed-rate coders. 

In most cases, speech quality is maximized subject to many design constraints. 

In cellular communications, the limited radio channel bandwidth places a significant 

constraint on the bit-rate of each channel. To be commercially viable, a low bit-rate, 

low cost implementation is needed. The growth of multi-media personal computers 

and networks has led to an increasing demand for voice, music, data, image, and video 

services. Because of the need to store and transmit these services, signal compression 

plays a valuable role in a multi-media system. An efficient solution would be to 

perform all the signal processing requirements on a single DSP. This places a constraint 
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on the complexity of any one algorithm. The same quality-cost tradeoffs are also 

present in other speech coding applications. 

With this motivation, the quality/cost trade-offs in a CELP codec are investigated. 

This thesis describes a high quality, low complexity, variable-rate CELP speech coder 

for a real-time implementation. The system is user-switchable between a fixed-rate 

8 kb/s configuration, and a variable-rate configuration with a peak rate of 8 kb/s 

and an average rate of 4-5 kb/s based on a one-way conversation with 30% silence. 

The variable-rate system includes the use of a frame classifier to control the codec 

configuration and bit-rate. A number of techniques are considered for reducing the 

complexity of the CELP algorithm while minimizing speech quality degradation. 

The 8 kb/s system embedded in the variable-rate system has been successfully 

implemented on the TMS320C5x DSP. The TMS320C5x is a low cost state of the 

art fixed-point DSP. In many applications, a real-time implementation on a fixed- 

point DSP is desirable because of its lower cost and power consumption compared 

with floating-point DSPs. However, the limited dynamic range of the fixed-point 

processor leads to a loss in precision and hence, a loss in performance. In order to 

minimize speech quality degradation, scaling is necessary in order to maintain signal 

precision. The scaling strategy may have significant impact on the resulting speech 

quality and on the system computational complexity. A scaling strategy is presented 

which results in no significant degradation in speech fidelity between the fixed-point 

and floating-point systems. 

This thesis work is in direct collaboration with Dees Communications who are 

currently embarking on a new product that will enhance and integrate the capabilities 

of the telephone and the personal computer from a user perspective. One of the 

features of this product is digital voice storage/retrieval to/from a computer disk and 

a phone line or phone device. This product requires a high quality, low complexity, 

low bit-rate digit a1 voice codec DSP implementation. 

1.1 Contributions of the Thesis 

The major contributions of this thesis can be summarized as follows: 
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1. The analysis and development of low complexity algorithms for CELP; the 

complexity of a CELP system was reduced by over 60% with only a slight 

degradation in speech quality (0.1 MOS) 

2. The development of a variable-rate CELP codec with frame classification; 

the variable-rate system offers near equivalent speech quality to an equiv- 

alent fixed-rate codec, but at nearly half the average bit-rate. 

3. The real-time implementation of an 8 kb/s CELP codec on the TMS320C5x 

fixed-point DSP using only 11 MIPS. 

4. The development of a fixed-point low complexity variable-rate simulation 

for future expansion of the real-time codec. 

Thesis Out line 

Chapter 2 is an overview of speech coding. Included is a brief review of common 

signal processing techniques used in speech coding, and a summary of current speech 

coding algorithms. In Chapter 3, the CELP speech coding algorithm is described in 

detail. Chapter 4 is an overview of variable-rate speech coding. The variable-rate 

CELP codec (SFU VR-CELP) is presented in Chapter 5. This chapter also includes a 

presentation of the low complexity techniques developed. In Chapter 6, details of the 

real-time implementation and fixed-point scaling strategies are described. The speech 

quality of the various speech coders in this thesis is evaluated in Chapter 7. Finally, 

in Chapter 8, conclusions are drawn and recommendations for possible future work 

are presented. 



Chapter 2 

Speech Coding 

The purpose of a speech coding system is to reduce the bandwidth required to repre- 

sent an analog speech signal in digital form. There are many reasons for an efficient 

representation of a speech signal. During transmission of speech in a digital commu- 

nications system, it is desirable to get the best possible fidelity within the bandwidth 

available on the channel. In voice storage, compression of the speech signal increases 

the storage capacity. The cost and complexity of subsequent signal processing soft- 

ware and system hardware may be reduced by a bit-rate reduction. These examples, 

though not exhaustive, provide an indication of the advantages of a speech coding 

system. 

In recent years, speech coding has become an area of intensive research because of 

its wide range of uses and advantages. The rapid advance in the processing power of 

DSPs in the past decade has made possible low-cost implementations of speech coding 

algorithms. Perhaps the largest potential market for speech coding is in the area of 

personal communications. The increasing popularity and demand for digit a1 cellular 

phones has accelerated the need to conserve bandwidth. An emerging application 

is multi-media in personal computing where voice storage is a standard feature. In 

a network environment, an example of multi-media is video conferencing. In this 

application, both video and voice are coded and transmitted across the network. 

With so many emerging applications, the need for standardization has become es- 

sential in maintaining compatibility. The main organization involved in speech coding 

standardization is the Telecommunication Standardization Sector of the International 

Telecommunications Union (ITU-T). Because of the importance of standardization to 
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Figure 2.1: Block Diagram of a Speech Coding System 

both industry and government, a major focus of speech coding research is in attempt- 

ing to meet the requirements set out by the ITU-T and other organizations. 

"Speech7' usually refers to telephone bandwidth speech. The typical telephone 

channel has a bandwidth of 3.2 kHz, from 200 Hz to 3.4 kHz. Analog speech is 

obtained by first converting the acoustic wave into a continuous electrical waveform by 

means of a microphone or other similar device. At this point, the speech is continuous 

in both time and amplitude. Digitized speech is obtained by sampling followed by 

quantization. Sampling is a lossless process as long as the conditions of the Nyquist 

sampling theorem are met [6]. For telephone-bandwidth speech, a sampling rate of 

8 kHz is used. Quantization transforms each continuous-valued sample into a finite 

set of real numbers. Pulse code modulation (PCM) uses a logarithmic 8-bit scalar 

quantizer to obtain a 64 kb/s digital speech signal [7]. 

A block diagram of a speech coding system is shown in Figure 2.1. At the encoder, 

the analog speech signal, x ( t ) ,  is sampled and quantized to obtain the digital signal, 

ci.(n). Coding is then performed on i ( n )  to compress the signal and transmit it 

across the channel. The decoder decompresses the encoded data from the channel 

and reconstructs an approximation, ?( t ) ,  of the original signal. 

2.1 Performance Criterion 

The transmission rate and speech quality are the most common criteria for evaluating 

the performance of a speech coding system. However, complexity and codec delay are 

two other important factors in measuring the overall codec performance. The high 

quality of speech attainable using today's speech compression systems has led to many 



C H A P T E R  2. SPEECH CODING 7 

commercial applications. As a result, the complexity of the codec is an important 

factor in emerging real-time implementations. In any two-way conversation, the delay 

is also an important consideration. In emerging digital networks, the delays of each 

component in the network add together, making the total delay an impairment of the 

system. 

The most difficult problem in evaluating the quality of a speech coding system is 

obtaining an objective measure that correctly represents the quality as perceived by 

the human ear. The most common criterion used is the signal-to-noise ratio (SNR). 

If x(n) is the sampled input speech, and r (n)  is the error between x(n) and the 

reconstructed speech, the SNR is defined as 

e SNR = 1010g, ,~ ,  
gr  

where a: and u,2 are the variances of x(n) and r(n),  respectively. A more accurate 

measure of speech quality can be obtained using the segmental signal-to-noise ratio 

(SEGSNR). The SEGSNR compensates for the low weight given to low-energy signal 

segments in the SNR evaluation by computing the SNR for fixed length blocks, elim- 

inating silence frames, and taking the average of these SNR values over the speech 

frame. A frame is considered silence when the signal power is 40 dB below the av- 

erage power over the complete speech signal. Unfortunately, SNR and SEGSNR are 

not a reliable indication of subjective speech quality. For example, post-filtering is a 

common technique to mask noise in the reconstructed speech. Post-filtering increases 

the perceived quality of synthesized speech, but generally decreases both the SNR 

and SEGSNR. 

Subjective speech quality can be evaluated by conducting a formal test using 

human listeners. In a Mean Opinion Score (MOS) test, 30-60 untrained listeners 

rate the speech quality on a scale of 1 (poor quality) to 5 (excellent quality). The 

results are averaged to obtain the score for each system in the test. Toll quality is 

characterized by MOS scores over 4.0. MOS scores may vary by as much as 0.5 due 

to different listening material and   lay back equipment. However, when scores are 

brought to a common reference, differences as small as 0.1 are found to be significant 

and reproducible [8]. 

Two common quality measures for low-rate speech coders (below 4 kb/s) are the 

diagnostic rhyme test (DRT) [9] and the diagnostic acceptability measure (DAM) [lo]. 
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The DRT tests the intelligibility of two rhyming words. The DAM test is a quality 

evaluation based on the perceived background noise. Telephone speech scores about 

92-93% on the DRT and about 65 on the DAM test [S]. 

2.2 Signal Compression Techniques 

This section includes a brief discussion of the quantization and data compression 

techniques used in speech coding. 

2.2.1 Scalar Quant izat ion 

A scalar quantizer is a many-to-one mapping of the real axis into a finite set of real 

numbers. If the quantizer mapping is denoted by Q, and the input signal by x, then 

the quantizer equation is 

Q(4 = Y (2.2) 

where y E {yl, yz, ..., yL), yk are quantizer output points, and L is the size of the 

quantizer. The output point, yk, is chosen as the quantized value of x if it satisfies 

the nearest neighbor condition [ll], which states that yk is selected if the corresponding 

distortion d(x, yk) is minimal. The complete quantizer equation becomes 

where the function ARGMINj returns the value of the argument j for which a mini- 

mum is obtained. In the case of Euclidean distance, the nearest neighbor rule divides 

the real axis into L non-overlapping decision intervals ( X ~ - ~ , X ~ ] ,  j = 1 , ..., L. The 

quantizer equation can then be rewritten as 

Qtx) = ~k iff x E (xk-1, xk] (2.4) 

In many speech applications, x is modeled as a random process with a given 

probability density function (PDF). It can be shown that the optimal quantizer should 

satisfy the following conditions [12, 131 

1 
X k  = - ( ~ k  2 + yk+l) for k = 1,2, ..., L - 1 
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In practical situations, the above system of equations can be solved numerically using 

Lloyd's iterative algorithm [12]. 

2.2.2 Vector Quantization 

A vector quantizer, Q, is a mapping from a vector in k-dimensional Euclidean space, 

Rk,  into a finite set, C ,  containing N output points called code vectors [ l l ] .  The set 

C is called a codebook where 

A distortion measure, d(:, Q(g)), is used to evaluate the performance of a VQ. 

The quantized value of r: is denoted by Q(:). The most common distortion measure 

in waveform coding is. the squared Euclidean distance 

Associated with a vector quantizer is a partition of Rk into N cells, Sj. More precisely, 

the sets Sj form a partition if S; n Sj = 0 for i # j, and uZlS; = Rk. For a VQ 

to be optimal, there are two necessary conditions: the centroid condition, and the 

nearest neighbor condition. The centroid condition states that for a given cell, Sj ,  the 

codebook must satisfy 

Y. = E{ala E Sj) 
-3 (2.9) 

The nearest neighbor condition states that for a given codebook, the cell, Sj, must 

satisfy 

s j G { + : r E ~ ~ ,  ~ [ ~ - ~ ~ ~ [ ~ ~ ~ ~ - ~ , ~ ~ a n ~ i }  (2.10) 

The above conditions are for a Euclidean distance distortion measure. The generalized 

Lloyd-Max algorithm [I I] can be used to design an optimal codebook for a given input 

source. 

2.2.3 Linear Prediction 

Linear prediction is a data compression technique where the current sample is esti- 

mated by a linear combination of previous samples defined by the equation 
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where hk are the linear prediction coefficients and M is the predictor order. Assuming 

that the input is stationary, it is reasonable to choose the coefficients hk such that 

the variance of the prediction error 

is minimized. 

Taking the derivative and setting it to zero results in a system of M linear equations 

with M unknowns which can be written as 

In vector form, the system becomes 

where Rxx is the autocorrelation matrix, or system matrix, 

and & = (hl ,  h2, ..., hk)T,T, = (rxx(l), rxx(2), ..., rxx(k))T. This system of equations 

is called the Wiener-Hopf system of equations, or Yule-Walker equations [ll]. The 

solution to this system of equations is given by 

The linear predictor can be considered as a digital filter with input x(n), output 

e(n), and transfer function given by 

It can be shown that for a stationary process, the prediction error of the optimal 

infinite-order linear predictor becomes a white noise process. The infinite-order pre- 

dictor contains all the information regarding the signal's power spectral density (PSD) 
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shape and transforms the stationary random signal, x(n),  into the white noise process, 

e(n). For this reason, A(z) is commonly referred to as the whitening filter. A good 

estimate of the short-term PSD for speech signals can be obtained using predictors 

of order 10-20. The filter l/A(z) transforms e(n) back to the original signal, x(n). 

l/A(z) is commonly referred to as the inverse filter. 

Autocorrelation Method 

The above derivation of linear prediction assumes a stationary random input signal. 

However, speech is not a stationary signal. The autocorrelation method is based on 

the local stationarity model of the speech signal [8]. The autocorrelation function of 

the input, x(n), is estimated by 

where no is the time index of the first sample in the frame of size N, and k = 

0,1, ..., N - 1. This formulation corresponds to using a rectangular window on x(n). 

A better spectral estimate can be obtained by using a smooth window, w(n), such as 

the Hamming window [ l l ] .  Hence the system of equations in 2.13 is replaced by 

where Fwxx(k) is given by 

The resulting system matrix is Toeplitz and symmetrical allowing computationally 

efficient procedures to be used for matrix inversion such as the Levinson-Durbin al- 

gorithm [14, 15, 161. The system matrix may be ill-conditioned, however. To avoid 

this problem, a small positive quantity may be added to the main diagonal of the 

system matrix before inversion. This is equivalent to adding a small amount of white 

noise to the input speech signal. This technique is often referred to as high frequency 

compensation. 
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Covariance Method 

The covariance method does not assume any stationarity in the speech signal. Instead, 

the input speech frame is considered as a deterministic finite discrete sequence. A least 

squares approach is taken in optimizing the predictor coefficients. A minimization 

procedure based on the short-time mean squared error, c2, is performed, where 

The optimal predictor coefficients are obtained by taking the derivatives of c2 with 

respect to hk, k = 1, ..., M, and setting them to zero. This leads to the following 

system of equations 

where 
no+N-1 

x ( j ,  k) = x x(n - j )x(n - k) j, k = 1,2, ..., M (2.22) 
n=no 

There are several important advantages and disadvantages between the autocor- 

relation and covariance methods. The covariance method achieves slightly better 

performance than the autocorrelation method [17]. However, the system matrix in 

the autocorrelation method is Toeplitz and symmetrical and can be efficiently inverted 

using the Levinson-Durbin algorithm. These properties do not hold for the system 

matrix in the covariance method, making it much more complex than the autocor- 

relation method. Because the inverse filter, l /A(z) ,  is used to synthesize speech, its 

stability is very important. The autocorrelation method always results in a stable 

inverse filter [8]. The covariance method requires a stabilization procedure to ensure 

a stable inverse filter. 

Pitch Prediction 

During voiced speech, a significant peak in the autocorrelation function occurs at 

the pitch period, k,. This suggests that good prkdiction results can be obtained by 

considering a linear combination of samples that are at least k, samples in the past. 

Using a predictor that is symmetrical with respect to the distant sample, k,, the pitch 
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predictor equation is given by 

The optimal predictor coefficients, a k ,  can be solved using either the autocorrelation 

method, or the covariance method as previously described. In speech coding it was 

found that good results can be obtained by using a one-tap predictor(M=O), or a 

three-tap predictor(M=l). The three-tap predictor considers fractional pitch and 

may ~rov ide  prediction gains of about 3 dB over a one-tap predictor [7]. 

2.2.4 Quantization of the LPC Coefficients 

In most speech coding systems, linear prediction plays a central role. An efficient 

quantization of the optimal filter coefficients is essential in obtaining good .perfor- 

mance. This is especially true for low-rate coders, where a large fraction of the total 

bits are used for LPC quantization. 

The LPC coefficients are never quantized directly [8]. Because of their large dy- 

namic range, direct quantization of the LPC coefficients requires a large number of 

bits. Another drawback is that after quantization, the stability of the inverse filter 

can not be guaranteed. Because of these unfavorable properties, considerable efforts 

have been invested in finding alternative quantization schemes. 

One possible approach is to quantize the reflection coefficients of the equivalent 

lattice filter. The reflection coefficients, kj, can be computed from the LPCs by a 

simple iterative procedure [17]. The magnitude of these coefficients is always less 

than one. The smaller dynamic range makes them a good candidate for quantization. 

Stability of the inverse filter can be guaranteed if the magnitude of the quantized 

coefficients remain less than one for a stable inverse filter. The reflection coefficients 

can also be converted to log-area ratio coefficients for quantization. The log-area ratio 

coefficients, vj, are computed by the equation 

1 - kj 
vj = log- 

1 + kj- 

Most of the recent work in LPC quantization has been based on the quantization 

of line spectral pairs (LSPs) [18]. Quantization of LSPs offers better results than 
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Figure 2.2: A simple speech production model 

Speech 

reflection coefficients at decreasing bit-rates [8]. The LSP parameters have a physical 

interpretation as the line spectrum structure of a lossless acoustic tube model of the 

vocal tract. The transfer functions for the lossless acoustic tube are 

Excitation u(n - 
Generator 

and 

Q(z) = A(z) + z M + l ~ ( z - l )  

where M is the order of the linear predictor. The frequencies, fj, and gj, corresponding 

to the roots of P(z )  and Q(z), make up the j th line spectral pair. Because LSPs 

Vocal Tract 
Model 

alternate on the frequency scale, the stability of the inverse filter can be easily checked 

Signal 

4.) 

by ensuring that 

fl < 91 < f 2  < 92 < < f ~ / 2  < g ~ / 2  (2.27) 

The LSPs can be easily transformed back into LPCs using the equations: 

2.3 Speech Coding Systems 

The development of many speech coding algorithms is based on the simple speech 

production model shown in Figure 2.2. The excitation generator and the vocal tract 

model comprise the two basic components of the speech production model. The 
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excitation generator models the air flow from the lungs through the vocal cords. The 

excitation generator may operate in one of two modes: quasi-periodic excitation for 

voiced sounds, and random excitation for unvoiced sounds. The vocal tract model 

generally consists of an all-pole time-varying filter. It attempts to represent the wind 

pipe, oral cavity, and lips. Typically, the parameters of the vocal tract model are 

assumed to be constant over time intervals of 10-30 ms. 

This simple model has several limitations. During voiced speech, the vocal tract 

parameters vary slowly. In this case, the constant vocal tract model works well. 

However, this assumption does not hold well for transient speech, such as onsets 

and offsets. The excitation for some sounds, such as voiced fricatives, is not easily 

modeled as simply voiced or unvoiced excitation. The all-pole filter used in the vocal 

tract model does not include zeros, which are needed to model sounds such as nasals. 

Even with these drawbacks, this simple speech production model has been used as 

the basis for many successful speech coding algorithms. 

In general, speech coding algorithms can be divided into two main categories [19]: 

wave form coders, and vocoders. Waveform coders at tempt to reproduce the original 

signal as faithfully as possible. In contrast, vocoders extract perceptually important 

parameters and use a speech synthesis model to reconstruct a similar sounding wave- 

form. Since vocoders do not attempt to reproduce the original waveform, they usually 

achieve a higher compression ratio than waveform coders. 

2.3.1 Vocoders 

The term vocoder originated as a contraction of voice coder. Vocoders are often also 

referred to as Analysis-Synthesis (A-S) coders, or parametric coders. In this family of 

coders, a mathematical model of human speech reproduction is used to synthesize the 

speech. Parameters specifying the model are extracted at the encoder and transmitted 

to the decoder for speech synthesis. 

One of the first successful vocoders was the LPC vocoder introduced by Markel 

and Gray [20]. The LPC vocoder uses the speech production model in Figure 2.2 with 

an all-pole linear prediction filter to represent the-vocal tract. The LPC analysis and 

synthesis block diagram is shown in Figure 2.3. During analysis, the optimal LPCs, 

his, a gain factor, G, and a pitch value, k,, are computed and coded for each speech 
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Figure 2.4: Sinusoidal Speech Model 

frame. Synthesis involves decoding the channel parameters and applying the speech 

production model to obtain the reconstructed speech. Typical LPC vocoders achieve 

very low bit-rates of 1.2 - 2.4 kb/s. However, the synthesized speech suffers from a 

"buzzy" distortion that does not improve with bit-rate. 

A relatively new vocoder approach is based on the sinusoidal speech model of 

Figure 2.4. In this model, a bank of harmonic oscillators are scaled and summed 

together to form the synthetic speech. The harmonic magnitudes, A;(n), are computed 

using the short-time DFT and quantized. The fundamental frequency, wo, is obtained 

at the encoder using some pitch extraction technique. In Multi Band Excitation 

(MBE) [21] and Sinusoidal Transform Coding (STC) [22], the sinusoidal model is 

applied directly to the speech signal. Time Frequency Interpolation (TFI) [23] uses 

a CELP codec for encoding unvoiced sounds, and applies the sinusoidal model to 

the excitation for encoding voiced sounds. Spectral Excitation Coding (SEC) [24] is 

a speech coding technique based on the sinusoidal model applied to the excitation 

signal of an LP synthesis filter. A phase dispersion algorithm is used to allow the 

model to be used for voiced as well as unvoiced and transition sounds. These systems 

operate in the range of 1.85 - 4.1 kb/s and show potential for better quality than 



C H A P T E R  2. SPEECH CODING 

existing CELP coders at these low rates. 

2.3.2 Waveform Coders 

Waveform coders attempt to obtain the closest reconstruction to the original signal 

as possible. Waveform coders are not based on any underlying mathematical speech 

production model and are generally signal independent. The simplest waveform coder 

is Pulse Code Modulation (PCM) [7], which combines sampling with logarithmic 8- 

bit scalar quantization to produce digital speech at  64 kb/s. However, PCM does 

not exploit the correlation present in speech. Differential PCM (DPCM) [7] obtains 

a more efficient representation by quantizing the difference, or residual, between the 

original speech sample and a predicted sample. In DPCM, the coefficients do not vary 

with time. A system that adapts the coefficients to the slowly varying statistics of the 

speech signal is Adaptive DPCM (ADPCM) [7]. ADPCM at 32 kb/s results in'speech 

quality comparable to PCM. ADPCM offers toll quality, a communications delay of 

only one sample, and very low complexity. These qualities led to its adoption as the 

CCITT standard at 32 kb/s [25]. However, for rates below 32 kb/s, the speech quality 

of ADPCM degrades quickly and becomes unacceptable for many applications. 

Analysis-by-Synt hesis Coders 

Analysis-by-Synthesis (A-by-S) coders are an important family of waveform coders. 

A-by-S coders combine the high quality attainable by waveform coders with the com- 

pression capabilities of vocoders to attain very good speech quality at rates of 4-16 

kb/s. In A-by-S, the parameters of a speech production model are selected by an opti- 

mization procedure which compares the synthesized speech with the original speech. 

The model parameters are then quantized and transmitted to the receiver. Trans- 

mitting only the model parameters instead of the entire waveform or the prediction 

residual enables a significant data compression ratio while at the same time maintains 

good speech quality. 

The block diagram of a general A-by-S system is shown in Figure 2.5. The A- 

by-S block diagram is based on the simple speech production model of Figure 2.2. 

The excitation codebook is used as the excitation generator and produces the signal 

u(n).  This excitation signal is then scaled by the gain, G, and passed through the 
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Figure 2.5: General A-by-S Block Diagram 

synthesis filter to produce the reconstructed speech. The synthesis filter models the 

vocal tract and may consist of short and long term linear predictors. The spectral 

codebook is used to quantize the synthesis filter parameters. The spectral codevector, 

excitation codebook index, and gain parameters are selected based on a perceptually 

weighted mean square error (MSE) minimization. Because the reconstructed speech 

is generated at  the encoder, the decoder (boxed area in Figure 2.5) is embedded in the 

encoder. At the receiver, identical codebooks are used to regenerate the excitation 

sequence and synthesis filter and reconstruct the speech. 

The perceptual weighting filter in A-by-S systems is a key element in obtaining 

high subjective speech quality. Without the weighting filter, an MSE criterion results 

in a flat error spectrum. The weighting filter emphasizes error in the spectral valleys 

of the original speech and deemphasizes error in the spectral peaks. This results in 

an error spectrum that closely matches the spectrum of the original speech. The 

audibility of the noise is reduced by exploiting the masking characteristics of human 

hearing. For an all-pole LP synthesis filter with transfer function A(z), the weighting 

filter has the transfer function 

The value of y is determined based on subjective quality evaluations. This technique 

is based on the work on subjective error criterion done by Atal and Schroeder in 
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1979 [26] .  

The most notable A- by-S system is code-excited linear prediction (CELP) [2]. 

Most CELP systems use a codebook of white Gaussian random numbers to generate 

the excitation sequence. CELP is the dominant speech coding algorithm between the 

rates of 4-16 kb/s and will be described in detail in Chapter 3. Examples of earlier A- 

by-S systems include Multi-Pulse LPC (MP-LPC) [27], and Regular Pulse Excitation 

(RPE) [28]. 



Chapter 3 

Code Excited Linear Prediction 

Code excited linear prediction (CELP) is an analysis-by-synthesis procedure intro- 

duced by Schroeder and Atal[2]. Initially CELP was considered an extremely complex 

algorithm and only of theoretical importance. However, soon after its introduction, 

several complexity reduction methods were introduced that made CELP a potential 

practical system [29, 30, 311. It was quickly realized that a real-time CELP imple- 

mentation was feasible. Today, CELP is the dominant speech coding algorithm for 

bit-rates between 4 kb/s and 16 kb/s. This is evidenced by the adoption of several 

telecommunications standards based on the CELP approach. 

3.1 Overview 

The general structure of a CELP codec is illustrated in Figure 3.1. In a typical CELP 

system, the input speech is segmented into fixed size blocks called frames, which are 

further subdivided into subframes. A linear prediction (LP) filter forms the synthesis 

filter that models the short-term speech spectrum. The coefficients of the filter are 

computed once per frame and quantized. The synthesized speech is obtained by ap- 

plying an excitation vector constructed from a stochastic codebook and an adaptive 

codebook every subframe to the input of the LP filter. The stochastic codebook con- 

tains "white noise" in an attempt to model the noisy nature of some speech segments, 

while the adaptive codebook contains past samples of the excitation and models the 

long-term periodicity (pitch) of speech. The codebook indices and gains are deter- 

mined by an analysis-by-synthesis procedure, as described in Section 2.3.2, in order 
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Figure 3.1: CELP Codec 

to minimize a perceptually weighted distortion criterion. 

The CELP analysis depicted in Figure 3.1 suffers from intractable complexity due 

to the large search space required by the joint optimization of codebook indices. As 

a result, a reduced complexity CELP analysis procedure, as in Figure 3.2, is often 

used to efficiently handle the search operation [29,30]. This analysis procedure differs 

from Figure 3.1 in four major ways: 

Combining the synthesis filter and the perceptual weighting filter 

Decomposing the synthesis filter output into its zero input response(Z1R) and 

zero state response(ZSR) 

Searching the codebooks sequentially 

Splitting the stochastic codebook into multiple stages 

ted 
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The synthesis filter and perceptual weighting filter are combined to produce a 

weighted synthesis filter of the form 

Combining the filters allows the use of a technique called ZIR-ZSR decomposi- 

tion [30]. By applying the superposition theorem, the output of the weighted synthe- 

sis filter, y., for the ith excitation vector, can be decomposed into its ZIR and ZSR 
-a 

components 

y .  = yZIR +g,.  yaSR = y Z ~ R  +gi. H~~ 
-t -3 - (3.1) 

where c, is the i th codebook entry, g; is the codevector gain. H is the impulse response 

matrix of the weighted synthesis filter given by 

where N, is the subframe size. Since - yZIR only depends on filter memory, a new 

target vector, t,  can be defined as 

r ZIR t = g - y  - - 

where 3' is the weighted input speech vector. 

The optimal analysis of the excitation sequence involves jointly searching the adap- 

tive and stochastic codebooks. However, this procedure is unrealistic in a practical 

CELP codec. Instead, the codebooks can be searched sequentially with the residual 

error from the adaptive codebook, el, used as the target vector for the stochastic 

codebook. To further reduce complexity, the stochastic codebook may be split into 

multiple stages and searched sequentially. This structure is suboptimal but offers a 

significant reduction in search complexity. 
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3.2 CELP Components 

3.2.1 Linear Predict ion Analysis and Quantization 

Linear prediction is used to obtain an estimate of the transfer function for the vocal 

tract in the speech production model described in Section 2.3. It is assumed that 

the parameters defining the vocal tract are constant over time intervals of 10-30 ms. 

This assumption is commonly referred to as the local stationarity model 181. Good 

short-term estimates of the speech spectrum can be obtained using predictors of order 

10-20[8]. The short-time linear predictor may be written as 

where i ( n )  is the nth predicted speech sample, hk is the kth optimal prediction co- 

efficient, s (n)  is the nth input speech sample, and M is the order of the predictor. 

Most forward-adaptive CELP systems today use a predictor of order 10. The filter 

coefficients are calculated using either the autocorrelation method or the covariance 

method. Bandwidth expansion [32] is a common technique applied to the optimal 

predictor coefficients, hj, 
h .  - h .  

3 -  3 4  (3.4) 

where y = 0.994 is a typical value. Bandwidth expansion compensates for a large 

bandwidth underestimation which results during LP analysis for high-pitched utter- 

ances. By spectral smoothing, bandwidth expansion also results in better quantization 

properties of the LP coefficients. 

The LPCs are computed once per frame and quantized. Because of unfavorable 

properties, the LPCs are not quantized directly. The LPCs are converted to reflection 

coefficients, log-area ratio coefficients, or line spectral pairs for quantization. For 

example, VSELP uses scalar quantization of the reflection coefficients using 38 bits, 

while the DoD standard uses 34-bit scalar quantization of the LSPs. The LPC-10 

speech coding standard uses log-area ratios to quantize the first two coefficients, and 

reflection coefficients for the remaining coefficients. All of these schemes use scalar 

quantization despite the potential advantages of vector quantization. The main reason 

for this is complexity. Typically, 25-40 bits are available for the LPC parameters; an 

optimal VQ of this size is not practical. The use of a sub-optimal VQ structure 
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Figure 3.3: Time Diagram for LP Analysis 

reduces the gain with respect to scalar quantization. Still, VQ achieves a significant 

improvement over SQ and is essential in obtaining good performance at low rates. 

Most of the current work on LPC quantization is based on VQ of the LSPs. A tree 

searched multi-stage vector quantization approach using LSPs has been shown to 

achieve low spectral distortion with low complexity and good robustness using only 

18-24 bits [33]. 

In order to ensure a smooth transition of the spectrum from frame to frame, the 

filter coefficients are interpolated every subframe. For the case of using LSPs, a 

possible interpolation scheme is shown in Figure 3.3. The LPC analysis frame offset, 

L P o f f ,  is given by 
Ns N LPorr = (- - 0.5) . (-) 
2 Ns 

where N, is the number of subframes per frame, and N is the length of the frame. 

Linear interpolation of the LSPs is done as follows: 

where -k lsp<s the vector of LSPs in the i t h  subframe of the kth  speech analysis frame, 

and lsp is the vector of LSPs calculated for the kth LPC analysis frame. The LPCs 
k 

are not interpolated because the stability of the filter can not be guaranteed. 
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3.2.2 Stochastic Codebook 

In the linear prediction model of speech synthesis, speech can be synthesized by feed- 

ing a white noise process to the input of an infinite order synthesis filter. In practical 

systems, a predictor of order 10-20 is used. The prediction residual of the finite or- 

der predictor has a nearly Gaussian distribution [34]. As a consequence, the initial 

stochastic codebook consisted of independently generated Gaussian random numbers. 

However, an exhaustive search of such an unconstrained codebook led to very high 

complexity. Structural constraints have been introduced to reduce complexity, de- 

crease codebook storage, or increase speech quality. 

A method for reducing both complexity and storage is the overlapped code- 

book [35]. The excitation vector is obtained by performing a cyclical shift of a larger 

sequence of random numbers. As a result, end-point correction can be used for effi- 

cient convolution calculations of consecutive codevectors [36]. The overlapped nature 

of the codebook also results in a significant decrease in memory requirements. In order 

to further reduce the complexity, sparse ternary codevectors may be used in combina- 

tion with an overlapped codebook [30, 351. Sparse codevectors contain mostly zeros, 

reducing the computations required for convolution. Ternary-valued codevectors con- 

tain only +1, - 1, or 0 and allow for further convolution complexity reduction. The 

resulting codebook causes little degradation in speech quality. 

The number of bits available for stochastic excitation often results in a very large 

codebook. To reduce the search time, a multi-stage codebook can be used with each 

stage having the quantization error to the previous stage as input. This codebook 

structure is sub-optimal but introduces a significant reduction in search complexity. 

3.2.3 Adaptive Codebook 

During periods of voiced excitation, the speech signal exhibits a long term correlation 

at multiples of the pitch period. This property suggests the use of pitch prediction. 

An important advance in CELP came with the introduction of the adaptive codebook 

for representing the periodicity of voiced speech in the excitation signal. This method 

was introduced by Singhal and Atal [37] and applied to CELP by Kleijn et al. [38]. 

During the analysis stage of the encoder, the adaptive codebook is searched by 

considering pitch periods possible in typical human speech. Typically, 7 bits are used 
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to allow a 128 codevector adaptive codebook search, with coding delays ranging from 

20 to 147 samples. The adaptive codebook is updated every subframe by shifting in 

the excitation samples from the previous subframe and shifting out an equal number 

of samples that now lie outside the possible pitch period. Each adaptive codebook 

vector is applied to the synthesis filter and the index of the vector that best repro- 

duces the original speech is transmitted to the decoder. At the decoder, an identical 

adaptive codebook is kept by following the same update procedure as in the encoder, 

and a simple table lookup in the adaptive codebook is performed to obtain the exci- 

tation vector. When the pitch period is less than the dimension of the subframe, the 

codebook entries are replicated to obtain the excitation vector. 

The above procedure corresponds to using only integer pitch lags. Better results 

can be obtained by considering fractional pitch. There are two common methods 

for increasing pitch resolution. In the first method, fractional pitch resolution is ob- 

tained by means of interpolation [39]. In the second method, a number of consecutive 

adaptive codebook vectors are combined to form the excitation ua 

where g is a gain factor, gi is the ith vector in the codebook, and k, is the integer 

pitch index. This method is known as an M-tap adaptive codebook. 

3.2.4 Optimal Codevector Selection 

During the analysis stage of the encoder, the optimal codevectors for the adaptive 

and stochastic codebooks are determined by minimizing the weighted mean squared 

error ,e, 

2 " IIIt - g;II (3.8) 

where is the weighted target vector, and -1 y .  is the weighted synthesized speech 

generated using the i th codebook entry with ZIR removed. Assuming for a moment 

that y, is generated by only one codevector c;, equation 3.8 can be rewritten as 
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where g; is a gain factor, H is the impulse response matrix, and c ,  is the ith codevector. 

By expanding equation (3.9), it is seen that 

T 
c = llt1I2 + 9 : l l ~ ~ i l l ~  - 2git HG (3.10) 

Minimizing c with respect to g; in equation (3.10), the optimal gain ĝ i is found to be 

If ij; is substituted into (3.10), realizing that Ilt112 
the selection process reduces to maximizing 

(3.11) 

does not depend on the codevector, 

where tTHGi  and 1 1  H G ; ~  l 2  are referred to as the cross-correlation and norm terms 

respectively [8]. 

This selection process is used in the usual sequential search of multiple stage code- 

books. However, a sequential search is suboptimal in comparison with a joint search. 

The drawback of a joint search is excessive complexity. Orthogonalization can be used 

to approach the quality of a joint search with manageable complexity. VSELP uses a 

joint search optimization procedure based on the Gram-Schmidt orthogonalization [4]. 

3.2.5 Post-Filtering 

To further enhance the perceptual quality of the reconstructed speech, a filter may 

be added to the decoder output. The adaptive post-filter introduced by Chen and 

Gersho [40] is the most widely used in CELP. The post-filter is based on the charac- 

teristics of human auditory perception and the observation that speech formants are 

much more important to perception than spectral valleys. The post-filter consists of 

a short-term filter based on the quantized short-term predictor coefficients followed 

by an adaptive spectral-tilt compensation. The transfer function is of the form 

reduces Typical values of y and a are 0.5 and 0.8 respectively. The term - 
4 z l a )  

the perceived noise but muffles the speech due its lowpass qualities or spectral tilt. 
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The term A(z/y)  is used to compensate for this spectral tilt. Spectral tilt is also 

compensated by the slightly high-passed filter 

where p = 0.5 is a typical value. Automatic gain control is also used to ensure that 

the output power of the speech is unaffected by post-filtering. 

3.3 CELP Systems 

This section gives a brief description of three major CELP based standards. 

3.3.1 The DoD 4.8 kb/s Speech Coding Standard 

The advances in CELP based speech coding led to the development of the U.S. De- 

partment of Defense (DoD) 4.8 kb/s standard (Federal Standard 1016) [41]. The 

standard uses a 10th order synthesis filter computed using the autocorrelation method 

on a frame size of 240 samples (30ms). The coefficients are quantized using a 34-bit 

non-uniform scalar quantization of the LSPs. Each frame is divided into 4 subframes 

of 60 samples. The excitation is formed from a one-tap adaptive codebook and a sin- 

gle stochastic codebook using a sequential search. The stochastic codebook is sparse, 

ternary, and overlapped by -2 samples. The adaptive codebook provides for the pos- 

sibility of using non-integer delays. The gains are quantized using scalar quantizers. 

3.3.2 VSELP 

Vector Sum Excited Linear Prediction (VSELP) is the 8 kb/s codec chosen by the 

Telecommunications Industry Association (TIA) for the North American digital cel- 

lular speech coding standard [4]. VSELP uses a 10th order synthesis filter and three 

codebooks: an adaptive codebook, and two stochastic codebooks. The search of the 

codebooks is done using an orthogonalization procedure based on the Gram-Schmidt 

algorithm. The excitation codebooks each have 128 vectors obtained as binary lin- 

ear combinations of seven basis vectors. The binary words representing the selected 

codevector in each codebook specify the polarities of the linear combination of basis 

vectors. Since only the basis vectors of each codebook must be filtered, the search 
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complexity is vastly reduced. The performance of VSELP is characterized by MOS 

scores of about 3.7; which is considered to be close to toll quality. 

3.3.3 LD-CELP 

In 1988, the CCITT established a maximum delay requirement of 5 ms for a new 

16 kb/s speech coding standard. This resulted in the selection of the LD-CELP 

algorithm as the CCITT standard G.728 in 1992 [ 5 ] .  Classical speech coders must 

buffer a large block of speech for linear prediction analysis prior to further signal 

processing. The synthesis filter in LD-CELP is based on backward prediction. In this 

method, the parameters of the filter are not derived from the original speech, but 

computed based on previous reconstructed speech. As such, the synthesis filter can 

be derived at both encoder and decoder, thus eliminating the need for quantization. 

The backward-adaptive L.P filter used in LD-CELP is 50th order. The excitation is 

obtained from a product gain-shape codebook consisting of a 7-bit shape codebook 

and a 3-bit backward-adaptive gain quantizer. LD-CELP achieves toll quality at 16 

kb/s with a 5 ms coding delay. 



Chapter 4 

Variable-Rate Speech Coding 

4.1 Overview 

Variable-rate coders can be divided into two main categories [42]: 

network-controlled variable-rate coders, where the data rate is determined 

by an external control signal; 

source-controlled variable-rate coders, where the data rate is a function of 

the short-term speech statistics. 

Network-controlled variable-rate coders select different encoding modes, or even com- 

pletely different coding algorithms, to obtain the bit-rate and quality required by the 

network. As such, they may be called multi-mode variable-rate coders. The cat- 

egory used in this thesis is source-controlled variable-rate coders which attempt to 

code speech segments using the least amount of bits while maintain acceptable speech 

quality. 

There are a number of speech communication characteristics in speech which allow 

for more efficient coding of the waveform. Perhaps the largest gains are obtained by 

silence detection. During typical conversations, speech is characterized by bursts 

of activity followed by periods of pause or silence. Studies on voice activity have 

shown that the average speaker in a two-way conversation is talking about 36% of 

the time [43]. By exploiting periods of silence and reducing the bit-rate, significant 

savings can be obtained. The differing characteristics of voiced and unvoiced speech 
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frames can also be used. For unvoiced frames, it is unnecessary to estimate the long- 

term periodicity. In addition, due to the non-stationarity of unvoiced speech, the 

speech quality of unvoiced frames may be improved by updating the spectral envelope 

estimate more frequently than for voiced frames. However, the spectral resolution of 

unvoiced speech may be reduced without significant degradation in perceptual quality 

[42]. These examples, though not exhaustive, demonstrate the possibility of improved 

speech quality by adapting the coding algorithm to the speech source. 

Variable rate speech coding can be efficiently incorporated into many communica- 

tions applications such as voice mail, voice response systems, cellular networks, and 

integrated multi-media terminals. In each of these applications, variable-rate speech 

coding offers significant advantages over fixed-rate coding. 

The advances in memory technology now make it feasible to store speech messages. 

However, compression of the signal before storing is still economically advantageous. 

In voice storage, there are no constraints on coding delay or fixed bit-rate, making 

speech compression more flexible than in transmission systems. 

Despite the increased bandwidth provided by microwave and optical communica- 

tion systems, the need to conserve bandwidth remains important. A central objective 

in the design of a communications system is to maximize capacity while at the same 

time maintain voice quality. Wireless personal communications are expected to use 

CDMA which offers a natural and easy way to benefit from variable-rate coding in 

cellular networks. The interference between users in a CDMA system depends on the 

traffic level. A lower average bit-rate reduces interference and increases the system's 

capacity. Multi-media applications are expected to use asynchronous transfer mode 

(ATM) networks [44] designed to exploit variable-rate coding. 

Voice Activity Detection 

Significant bit-rate reduction may be obtained by the successful detection of pauses, 

or silence, during conversations. This process of separating speech from background 

noise is referred to as voice activity detection, VA-D. The desired characteristics of a 

VAD algorithm include reliability, robustness, accuracy, adaptation, and simplicity. 

In many applications, such as mobile cellular networks, the decision must be made 

in the presence of a wide range of noise sources and variable energy content. The 
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decision process is also made difficult by the non-stationary noise-like nature of un- 

voiced speech. If the VAD algorithm classifies speech segments as background noise, 

speech quality will be reduced. If, however, background noise is perceived as speech, 

the overall required bit-rate will increase unnecessarily. 

Because of the substantial rate reductions possible, much research has taken place 

in VAD. One method is based on the short time energy of the signal, in which the 

decision threshold may be either fixed or variable. A fixed threshold was used by 

Lupini, Cox, and Cuperman [45], but such a technique may only be successful in 

constant background noise environments. In QCELP [46], the decision is based on a 

threshold that floats above a running estimate of the background noise energy. Such 

an algorithm is more robust and adaptable to changing background noise energy than 

a fixed threshold. Both methods, however, are not always able to differentiate between 

speech and noise when the background noise energy is comparable or larger than low 

energy speech frames. In such cases, it is necessary to consider other characteristics 

such as zero rate crossings, sign bit sequences, and time varying energy [43,47,48,49]. 

In order to improve performance, most VAD algorithms employ a hangover time. 

The transition from active speech to silence is delayed in order to avoid premature 

declaration of background noise and avoid clipping of the speech signal. In mobile 

applications and other environments where the background noise energy varies, it 

is desirable to employ a variable hangover time. During periods of low noise, the 

voice activity decision is more reliable and only a short hangover time is required. In 

contrast, high noise environments require a long hangover time to maintain speech 

quality. Excessive hangover times result in an unnecessarily high data rate, while a 

time which is too short results in speech degradation. 

In order to preserve the naturalness of the synthesized speech, it is necessary to 

reproduce the background noise in some respect. The noise can either be coded at 

very low bit-rates, or statistically similar noise can be regenerated at the receiver, in 

which case, it is necessary to encode the energy of the original noise. 

Active Speech Classification 

Further reduction in average bit-rate may be obtained by analyzing the frame once it 

has been classified as active speech. The coding scheme may be varied according to 
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the importance of different codec parameters in representing distinct phonetic features 

and maintaining a high perceptual quality. Indeed, the bits required to accurately 
code a segment of speech and attain a certain speech quality varies widely with the 

distinct phonemes present [42]. 

Several approaches to rate selection have been proposed including thresholding 

and phonetic segmentation. In thresholding, one or more parameters are derived 

from the speech source and a decision on the current frame is made. In phonetic 

segmentation, the speech is segmented according to the location of distinct phonemes 

and specialized algorithms are used for each class. 

One problem with frame based algorithms occurs when two or more phonetically 

distinct events occur within the same frame. One example is the onset of an utter- 

ance where LPC analysis of the entire frame will smooth out the abrupt change of 

the spectrum and lose the distinguishing features of the onset. Phonetic segmenta- 

tion attempts to segment the speech waveform at the boundaries between distinct 

phonemes. A coding scheme is then employed that best preserves the features im- 

portant in ensuring a high perceptual quality. Wang and Gersho [50] segment the 

speech according to five distinct phonetic classes. The lengths of each segment are 

constrained to an integer multiple of unit frames which reduces the amount of side 

information needed to indicate the position of the segment boundaries. 

Although phonetic classifiers have the advantage of adapting the rate and frame 

boundaries according to the phonetic content of the speech, they are more complex and 

require different coding algorithms for each class. The threshold approach analyzes 

the speech on a fixed frame basis and makes a rate decision based on short-term 

speech characteristics. The same basic coding algorithm can then be used for all 

rate classes. The parameters typically considered in making rate decisions include: 

short-term energy, zero-crossing rate, low-band energy, normalized autocorrelation 

coefficient at lag equal to 1, gain of the LPC filter, and normalized autocorrelation 

coefficient at one pitch period [43,45, 511. These parameters each have some inherent 

ability to discriminate between certain phonetic classes. 

Short term speech energy has a large dynamic range making it a candidate for 

rate decisions by allocating more bits to higher energy frames. QCELP, the speech 

coding standard for CDMA wireless communications, uses an adaptive algorithm, 

based on speech energy, to select one of four data rates: 8kb/s, 4kb/s, 2kb/s, and 
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Figure 4.1: Typical Voiced Segment of Speech 

lkb/s. The rate is selected based on a set of three thresholds that float above an 

adaptive background noise estimate. 

In many applications, it is sufficient to classify the speech frame as either voiced, 

unvoiced, or onset. In voiced speech, vibrations of the vocal chords produce quasi- 

periodic excitations to the vocal tract that result in a periodic speech waveform whose 

period is equal to the pitch. In unvoiced speech, the excitation to the vocal tract is 

aperiodic. The resulting speech waveform is turbulent, or noise like in nature, with 

no inherent periodicity. Onsets occur during a transition from an unvoiced speech 

segment to a voiced speech segment. Typical voiced, unvoiced, and onset speech 

segments are shown in Figure 4.1, 4.2, and 4.3, respectively. About 65% of active 

speech is voiced, 30% is unvoiced, and 5% is onset or transition. 

The unvoiced/ voiced decision could be made by considering only one of the above 

parameters [45]. However, only limited accuracy can be obtained because the value of 

any one parameter usually overlaps between classes. Better results may be obtained 

by considering many parameters in some combination at the expense of increased 

complexity. One approach is to train a neural net with a large database of speakers [51, 

521. Results indicate that classification rates with 2 - 4 % error can be obtained. This 
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Figure 4.2: Typical Unvoiced Segment of Speech 
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Figure 4.3: Transition from Unvoiced to Voiced Speech 
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method, however, suffers from complicated training procedures and high complexity 

implementation. Other approaches include using a finite state machine [53, 541 and 

defining decision regions within a multidimensional axis 1491. 

Efficient Class Dependant Coding Techniques 

Due to the distinct phonetic and short-term characteristics of voiced, unvoiced, and 

onset frames, a different coding strategy and bit allocation may be adopted for each 

class. The bit allocation strategies discussed are dependent upon the coding algo- 

rithm used. The focus here is on CELP which is the algorithm used in this thesis. 

Specifically, possible variations in the CELP algorithm include the frame size, LPC 

analysis order, presence or absence of an adaptive codebook ( long-term pitch filter), 

update rate for filter parameters, differential coding of frame correlated parameters, 

and the bit allocation. 

The periodicity of voiced speech can 'be modeled by an adaptive codebook, as 

described previously. The bit-rate can be reduced for voiced frames since the pitch 

generally exhibits a slow temporal variation, resulting in a strong correlation between 

the pitch period in adjacent frames and making delta or differential encoding possible 

1551. In this technique, the delay in the adaptive codebook is searched in a limited 

region. By coding the difference between the current and previous pitch delays, com- 

plexity is reduced and the bits required is decreased. Kuo, Jean, and Wang 1531 

report that the pitch between consecutive subframes in the voiced state are within 

f 7 samples; reducing the number of bits required to encode the pitch delay to four. 

Another possible bit-rate reduction exploits slow formant temporal variation. The 

inter-frame correlation of the spectrum makes differential encoding and interpolation 

of the short-term predictor parameters possible [42]. A longer frame size could also 

be used to exploit this stationarity. 

A substantial reduction in bit-rate is possible during unvoiced speech. The adap- 

tive codebook can be omitted because the excitation does not involve vibration of the 

vocal chords and hence, does not exhibit any periodicity. Increased performance may 

also be obtained by adjusting the bit allocation of the LPC parameters. Unvoiced 

speech is noise-like and non-stationary in nature, with significant energy in high fre- 

quencies. This suggests that a higher update rate for short-term LPC parameters, 
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as compared to voiced frames, would improve the perceived speech quality. On the 

other hand, increased efficiency may be obtained by using fewer bits to quantize the 

LPC coefficients, since the spectral resolution of unvoiced frames is less critical than 

for voiced frames [50, 561. 

Onsets represent an abrupt transition from unvoiced to voiced speech, correspond- 

ing to rapid changes in both the energy and the spectrum. The timing of these changes 

play a crucial role in distinguishing consonants, but the ear is relatively insensitive 

to spectral quantizing errors [50]. This suggests placing more emphasis on excitation 

coding by reducing the dimension of the excitation vectors, either by increasing the 

number of subframes, or decreasing the frame length. The reduction in frame length 

will also reduce the spectral smoothing during onsets. Onsets may contain the first 

pitch period of the oncoming voiced segment, resulting in a weak correlation with 

the preceding samples, and a stronger correlation with subsequent pitch cycles. How- 

ever, the adaptive codebook contains samples of previous excitations only, suggesting 

it may be advantageous to eliminate its use during onsets. In any case, onsets are 

relatively infrequent but perceptually important. Accurate encoding can result in 

significant improvement in speech quality [42]. 



Chapter 5 

SFU VR-CELP 

CELP has emerged as the leading speech compression algorithm at rates between 

4-16 kb/s, and is the basic algorithm of many international standards. However, the 

quality degrades rapidly below 4 kb/s due to the scarcity of bits to code both the 

excitation and filter parameters. Variable-rate coding can be used to dynamically 

allocate the bits among different CELP components according to their perceptual 

importance in reconstructing the input speech. 

The high quality of speech attainable using CELP has led to many applications 

in communication and voice storage. In many systems, the voice codec is only one 

application that the DSP must service in real-time. In a multi-media environment, 

other services might include voice-over-data, audio coding, or imagelvideo coding for 

example. Even though the speed of DSPs is increasing at an exponential rate, there 

is still a constraint on complexity. 

The complexity of a CELP system implementation employing full codebook searches 

is in the range of 30-100 MIPS. This complexity is too high for many commercial ap- 

plications. SFU researchers developed a real-time implementation of an 8 kb/s CELP 

codec in about 10 MIPS on the TMS320C5x DSP. The codec provided reasonably 

good quality, but little attention was paid to the complexity/ quality trade-offs in 

reducing the complexity. It was evident that substantial quality improvement could 

be attained at the same complexity by a more in depth study of complexity reduction 

methods in CELP and the resulting quality degradations. 

This chapter describes SFU VR-CELP, a CELP speech codec which is user- 

switchable between a fixed-rate 8 kb/s system, and a variable-rate system with a 
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peak-rate of 8kb/s and an average rate of 4-5 kb/s. A low complexity configuration 

is presented for a real-time implementation. The reduced complexity algorithms used 

to obtain the low complexity real-time system are described. 

Overview 

Figure 5.1 shows a block diagram of the encoder. The synthesis filter parameters 

are then computed and the excitation signal is formed as a summation of gain-scaled 

vectors from a four stage shape codebook and a three-tap adaptive codebook. The 

system can operate in fixed-rate mode with a bit-rate of 8 kb/s (SFU 8k-CELP), or 

in variable-rate mode (SFU VR-CELP). In variable-rate mode, each speech frame is 

analyzed by a frame classifier and classified as either voiced, unvoiced, transition, or 

silence in order to determine the desired coding rate. The appropriate configuration is 

selected by specifying the allowed ranges for the shape and adaptive codebook indices 

(indicated by control signals). The system switches between three distinct codec 

configurations: 8.0 kbit /s for voiced and transition frames, 4.3 kbit /s for unvoiced 

frames, and 667 bit/s for silence frames with an overall average bit-rate of 4-5 kbit/s 

based on averaging of typical malelfemale speech files with 30% silence 

5.2 Configuration 

5.2.1 Bit Allocation Optimization 

Different configurations were considered in the design of the 8 kb/s system. The 

main parameters in the configuration design include: the frame size, the number of 

subframes, the number and size of stochastic codebooks, and the size of the VQs for 

gain quantization. The configuration optimization was performed based on both the 

quality of the speech, and the estimated complexity of the system. Table 5.1 shows the 

parameter ranges considered during configuration optimization of the 8 kb/s system. 
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Figure 5.1: Block Diagram of SFU VR-CELP 
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Subframes 
ACB Gain VQ Size 
SCB Codebook Size 
SCB Codebook Stages 
SCB Gain VQ Size 

PARAMETER 
Frame Size 

4-6 
5-10 bits 
5-8 bits 

2-7 
5-10 bits 

Range considered 
160 - 320 samples 

Table 5.1 : Allocation Ranges 

5.2.2 Bit Allocations 

Table 5.2 gives the detailed bit allocations for each class: silence (S), 

and transition or voiced (T/V). 

unvoiced (UV) , 

PARAMETER 
Frame Size(samp1es) 
Subframes . 

STP bits 
RMS gain bits 
ACB Index 
ACB Gain 
SCB Index 
SCB Gain 
Classification bits 
Total Bits 
Bits/s 

Table 5.2: Bit Allocations 

S 
144 
1 
6 
4 

2 
12 

667 

The fixed-rate 8 kb/s codec uses one of the two T/V configurations in the table 

depending on the complexity requirements. T/V-L is a low complexity configuration, 

employing 34-bit scalar quantization of the LSPs and 7-bit gain VQs. On the other 

hand, T/V-H is a high complexity configuration using a 24-bit LSP VQ and 8-bit 

gain VQs. The 8 kb/s systems using T/V-L and T/V-H will be referred to as SFU 

8k-CELP-L and SFU 8k-CELP-H, respectively. Likewise, the variable-rate codecs 

will be referred to as SFU VR-CELP-L and SFU-VR-CELP-H. The systems for an 

11 MIP real-time implementation use the low complexity configuration and will be 

referred to as SFU 8k-CELP-11 and SFU VR-CELP-11. 
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5.2.3 Voiced/Transition Coding 

The voiced/ transition class uses a frame length of 288 samples and a subframe size 

of 48 samples. By using a long frame, more bits can be allocated to excitation. 

However, the expanded frame size results in a degradation in the LPC representation 

of the speech spectrum due to its non-stationarity. Experimental results indicated 

that a good trade-off is obtained for a frame size of 288 samples. 

The excitation to the synthesis filter is obtained from an adaptive codebook and 

a stochastic codebook. In Section 4.4, it was suggested that delta encoding of the 

adaptive codebook index could be used to reduce the bit-rate and decrease the com- 

plexity. Experiments conducted found that restricting the range of the pitch index 

resulted in a noticeable degradation in quality. The main cause for this degradation 

is that delta encoding restricts the ability of the adaptive codebook to use pitch mul- 

tiples for excitation. As a result, the pitch index is not restricted in any subframe. 

Because of the importance of transition frames in overall perceptual quality, they are 

also encoded at the peak bit-rate configuration of the codec. 

5.2.4 Unvoiced Coding 

Unvoiced speech is noiselike and non-stationary in nature. This suggests that a higher 

update rate for the LPC parameters compared with voiced speech should be used. 

With this motivation, the frame size for unvoiced speech is reduced from 288 samples 

for voiced speech to 144 samples. Four subframes are used giving excitation vector 

lengths of only 36 samples from 48 samples for voiced frames. Because the excitation in 

unvoiced speech does not involve vibration of the vocal chords, there is no periodicity, 

and the adaptive codebook is omitted resulting in a substantial reduction in bit-rate. 

5.2.5 Silence Coding 

Silence is encoded using a frame size of 144 samples. Even though the frame may 

not contain active speech, it is still necessary to reproduce the background noise to 

preserve the naturalness of the reconstructed speech. The LPC coefficients are still 

computed, but are quantized using only 6 bits. Both the adaptive and stochastic 
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codebooks are omitted resulting in a substantial reduction in the bit-rate. The ex- 

citation vector is obtained from a stochastic codebook using a pseudo-random index 

which can be identically generated at the encoder and the decoder. The RMS energy 

of the silence frame is used to scale the reconstructed frame to have the same energy 

as the original background noise. 

5.2.6 Variable Rate Operation 

Classification is performed on 144 sample frames. However, if the frame is classified 

as transition or voiced, the 8 kbit/s configuration is used for two classification frames, 

regardless of the class of the second frame. 

Frame Classifier 

The frame classifier employed is based on thresholding. The threshold approach an- 

alyzes the speech on a fixed frame basis. One or more parameters are derived from 

the speech source and a class decision is made. Other approaches have been pro- 

posed including voice activity detection (VAD), and phonetic segmentation [42, 571. 

VAD algorithms try to detect the presence or absence of speech and are generally 

used for two-class systems. Phonetic segmentation techniques segment speech into 

phonetically distinct categories and specialized algorithms are used for each category 

[57]. Although phonetic classifiers may have advantages in adapting the rate to the 

phonetic characteristics of the speech, they are more complex and assume different 

coding algorithms for different phonetic classes. A design goal for our system was to 

use the same basic coding algorithm for all rates. 

We evaluated several parameters for thresholding including: frame energy, the 

normalized autocorrelation coefficient at the pitch lag, the normalized low-band en- 

ergy (measured on speech processed with a 100 Hz - 800 Hz band pass filter), the 

normalized short-term autocorrelation coefficient (lag=l), and the zero-crossing rate. 

All these parameters have an inherent ability to discriminate between certain phonetic 

classes. However, the value of any one parameter *overlaps between classes resulting 

in limited accuracy if only one parameter is considered alone. 
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5.3.1 Frame Energy 

The energy of voiced frames is generally greater than energy in unvoiced frames, 

making it a possible candidate for discriminating between classes. However, we found 

that there is no clear boundaries between voiced, unvoiced and transition frames. 

Frame energy is however, an excellent parameter for discriminating silence frames from 

active speech in conditions of low background noise. In noisy environments, silence 

frames may have comparable energy to some active speech resulting in a significant 

increase in incorrectly classifying active speech as silence. 

5.3.2 Normalized Autocorrelation at the Pitch Lag 

The possibility of using the normalized autocorrelation coefficient evaluated at the 

pitch lag was investigated in [45]. The normalized autocorrelation coefficient ,, p(k), is 

evaluated at  all possible pitch lags, k. The maximum value p,,, is retained where 

and 

During calculation of p(k), the previous speech is buffered for s(k), where k is negative. 

Voiced frames exhibit significant correlation at the pitch period due to its quasi- 

periodic nature, whereas unvoiced speech is generally uncorrelated due to its noisy 

nature. It can be expected then that p,,, will be higher for voiced frames than 

for unvoiced frames. Initially, p,,, was evaluated over the entire frame. However, a 

problem occurred during voiced speech when the pitch period and shape were changing 

rapidly causing p,,, to decrease. The problem was rectified by using a majority 

decision rule based on p,,, calculated over smaller subframes rather than over the 

whole analysis frame. 

5.3.3 Low Band Energy 

Voiced sounds usually have most of their energy in the low band due to its periodicity. 

In contrast, the energy in unvoiced sounds is typically in the high band due to its 
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noise-like nature. The low band energy is obtained by passing the speech through a 

band pass filter with a lower cutoff frequency of 100 Hz and an upper cutoff frequency 

of 800 Hz. 

This feature needs to be normalized to the average speech level so that the classifier 

performs properly for a wide range of speaking levels. The average speech energy is 

estimated by averaging the energy of previous voiced frames. Unvoiced frames are 

not included in the estimate because they generally have lower energy than voiced 

frames. 

5.3.4 First Autocorrelation Coefficient 

Voiced frames tend to have a higher correlation between adjacent samples compared 

with unvoiced frames and makes the first autocorrelation coefficient a candidate for 

frame classification. The first autocorrelation coefficient can be written as: 

where s(n)  is the speech signal. 

5.3.5 Zero Crossings 

Zero crossings may be used to discriminate between voiced and unvoiced speech. 

The zero crossing rate for voiced speech is typically lower than the unvoiced zero 

crossing rate due to the periodicity inherent in voiced speech compared with the noise 

like nature of unvoiced speech. When using zero crossing rates as a classification 

parameter, it is imperative that the speech signal be passed through a high pass filter 

that attenuates dc and 60 Hz noise, which can reduce the zero crossing rate in low 

energy unvoiced frames. 

5.3.6 Classification Algorithm 

In order to investigate the classification possibilities of the above parameters, four 

speech files (2 male and 2 female) containing over 1200 frames of speech (160 sample 

frames at a sampling rate of 8kHz) were hand classified as either voiced, unvoiced, 

transition, or silence. Threshold values were determined by an analysis of histograms 
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Figure 5.2: Zero Crossing Histogram 

obtained for each classification parameter. Figure 5.2 is the histogram obtained for 

the zero crossings for a frame size of 160 samples. Similar plots were used for each pa- 

rameter. The thresholds were obtained by maximizing the number of frames correctly 

classified while maintaining an error rate of less than 5%. 

The frame classifier uses all five parameters to classify the speech frame as silence, 

unvoiced, voiced, or transition. Frame energy is first used to determine if the frame 

contains silence or active speech. A method based on QCELP [46] was used in the 

frame classifier as the VAD algorithm. The algorithm keeps a running estimate of the 

background noise from which a threshold is calculated and used to decide if the frame 

contains active speech. In each frame, the frame energy is compared to the threshold 

calculated in the previous frame. If the energy is less than the threshold, the frame is 

classified as silence, else it is classified as speech. The noise estimate and threshold are 

then updated. If the estimate is greater than the current frame's energy, the estimate 

is replaced by that energy. Otherwise, the estimate is increased slightly. 

The other four parameters mentioned above are then used to classify active speech 

frames as voiced or unvoiced. The thresholds for each parameter are summarized in 

Table 5.3, where t ,  is the voiced threshold, and t,, is the unvoiced threshold. The 

parameters are used sequentially, in the order given in Table 5.3. Each parameter 

attempts to make a voiced/unvoiced decision. If such a decision can not be made, 

the next parameter is used for classification. If no parameter can classify the frame 
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I Parameter I t ,, I t,,,, I 

Table 5.3: Voiced/ Unvoiced Thresholds 

~ ( 1 )  
ZcTo3, 

as voiced or unvoiced, the frame is classified as transition. The complete algorithm 

used is as follows: 

1. Use the VAD algorithm to classify the frame as silence or active speech: 

1 .o 
0.1251 sample 

- if the frame is silence, goto step 7. 

- if the frame is active, goto next step. 

0.2 
0.34751 sample 

2. Use the normalized autocorrelation at the pitch lag: 

- if p(kp) > t,, class = voiced, goto step 7. 

- if p(kp) 5 t,,, class = unvoiced, goto step 7. 

- if t,, < p(kp) < t,, goto next step. 

3. Use the low band energy: 

- if Elowband > t,, class = voiced, goto step 7. 

- if Elowband 5 tuv, class = unvoiced, goto step 7. 

- if tuv < Elowband < t,, got0 next step. 

4. Use the short-term autocorrelation: 

- if p(1) 2 t,, class = voiced, goto step 7. 

- if p(1) 5 t,,, class = unvoiced, goto step 7. 

- if t,, < p(1) < t,, goto next step. 

5. Use the zero crossings: 

- if Zcross 5 t,, class = voiced, goto step 7. 

- if ZcroSs 2 tuv, class = unvoiced, gdto step 7. 

- if t, < ZcT0,, < t,v, goto next step. 

6. Classify frame as transition, goto step 7. 
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7. Done Classification. 

The transition class in this algorithm is an "undecided" class that is used when a 

voiced/unvoiced decision can not be made by a parameter. Table 5.4 summarizes the 

classification errors for speech files outside of the training set. Errors in classifying 

silence as speech (Sil + Speech) and unvoiced as voiced (U -, V) increase the bit-rate 

needlessly, whereas classifying speech as silence (Speech -, Sil) and voiced as unvoiced 

(V + U) causes a degradation in speech quality. Misclassification of active speech as 

I ERROR I Male I Female I 

v + u  
Table 5.4: Classification Errors 

silence occured during speech offsets. In order to alleviate the problem, a two frame 

hangover time was added to the classifier. As a result, the S p e e c h 4 i l  errors were 

reduced to almost 0%. A design goal of the classifier was to keep the algorithm simple 

and easy to implement. The order in which the parameters are used in the algorithm 

is based on their effectiveness and reliability to classify correctly. The classification 

errors are lower than a complicated neural network classifier which reports a 3.4% 

overall error rate [52]. 

For a low-complexity implementation, the normalized autocorrelation at the pitch 

lag is omitted from the classifier. Exclusion of this parameter resulted in a relatively 

small increase in classification errors. The complexity of the classifier was reduced 

from about 2 MIPS to 0.2 MIPS by omitting the pitch autocorrelation. 

5.4 LPC Analysis and Quantization 

The synthesis filter l/A(z) is a tenth order LPC all-pole filter. A perceptual weighting 

filter of the form H(z)  = A(z)/A(z/y) is derived from A(z). The filter coefficients 

are calculated using the autocorrelation method. Bandwidth expansion and high- 

frequency compensation are used during the LPC analysis. 
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The LPC coefficients are computed once per frame and converted to LSPs for 

quantization and interpolation. The LSPs are linearly interpolated every subframe 

and converted back to LPCs to update the synthesis filter. One of two quantization 

schemes may be used for the voiced/ transition class. The first method is a 34-bit, 

independent, non-uniform, scalar quantization of the LSPs. The second method is a 

tree-searched, multi-stage, vector quantizer with four stages of six bits for a total of 24 

bits [33]. The two methods offer about the same quality, but allow a trade-off between 

bit-rate and complexity. In order to reduce the bit-rate during unvoiced and silence 

frames, the vector quantization scheme of the LSPs is used for these classes. This 

method is more complex than scalar quantization, but the complexity of the unvoiced 

and silence codec configurations is well below that of the voiced configuration. 

5.5 Excitation Codebooks 

The voiced/ transition class uses a 3-tap adaptive codebook with pitch lags ranging 

from 20 to 147 samples. The search algorithm of the codebook will be described 

in Section 5.8.3. The stochastic codebooks contain Gaussian white noise sequences 

which are sparse (contains 77% zeros) with ternary-valued samples and overlapped 

shift by -2 codevectors. The resulting codebook is compact, has the potential for fast 

search procedures, causes little degradation in speech quality relative to other types 

of codebooks, and significantly reduces computation by allowing for fast convolution 

and energy computations. In order to reduce the search time, a multi-stage codebook 

is used in the 8 kbit/s configuration, with each stage having the quantization error 

of the previous stage as its target. Specifically, a four stage codebook with 5 bits per 

stage is employed. In the 4.3 kbit/s configuration, a single stage 8-bit shape codebook 

is used. 

5 .6 Gain Quantization 

5.6.1 Gain Normalization 

Quantization can be done on the optimal gains directly. However, the optimal gains 

tend to exhibit a large dynamic range and are not conducive to efficient coding. For 
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example, the adaptive codebook gains tend to be large in magnitude during the onset 

of voiced speech. Also, the stochastic codebook gains tend to vary with the input 

speech power. Another disadvantage is that a transmission error effecting the gain 

parameters can cause a large energy error and degrade speech quality. 

From the above observations, the gains should be quantized independent of input 

speech energy and shape codevector energy. To do this, consider the optimal gain, i j ,  

in Equation 3.11. Define a normalized target vector, in ,  

and a normalized filtered excitation vector, un, 

Define a normalized gain, in, as 
j - i t .  

n - -n g n  

The relationship between the normalized gain and unnormalized gain can then be 

written as 

The normalized gain, j,, is unaffected by scale changes in t or 21. Instead of quantizing 

i j  directly, jn ,  lltll, and llull can be quantized. The norm of the target vector can be 

approximated by 

where 

and s ( k )  is the first speech sample in the current frame. G,,, is quantized every 

frame by a logarithmic scalar quantizer. 

We can calculate llgll indirectly as 
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where g, is the gain of the synthesis filter given by 

M is the order of the synthesis filter, and k; are the reflection coefficients. Equa- 

tion 5.12 is derived from the minimum mean square value of the prediction error for 

u. In our case, equation 5.11 is only an approximation since the filter is optimized - 

using the autocorrelation method and is interpolated for each subframe. Also, does 

not match exactly with the prediction error because of the finite size of the codebooks. 

5.6.2 Quantization Codebook Structure 

Quantization can be done either using scalar quantization or vector quantization (VQ). 

Currently, SFU VR-CELP uses vector quantization to quantize the codevector gains. 

SFU VR-CELP has three adaptive codebook gains and four stochastic codebook gains 

to quantize with 14-16 bits. A sub-optimal VQ structure must be used for the gains 

because a VQ of such size cannot be searched in real-time under our complexity 

constraints. Generally, there are two methods for low complexity gain VQ: split VQ 

and multi-stage VQ. In a split VQ, the gains are partitioned and quantized by separate 

VQs. In a multi-stage VQ, the quantization task is divided into successive stages, with 

the quantization error from the previous stage used as input to the next stage of the 

VQ. The quantized gain vector is obtained by summing the outputs of all the stages. 

Both techniques result in a substantial reduction in search complexity and memory 

storage. It was found experimentally that, for SFU VR-CELP, a split VQ partitioned 

with the adaptive codebook gains in one VQ, and stochastic codebook gains in a 

second VQ, outperformed a multi-stage configuration for the same search complexity. 

The split VQ approach obtains better results because the quantized adaptive codebook 

gains can be used for calculation of the target vector for the stochastic codebook 

search. This can not be done if a mult-stage VQ is used. 

5.6.3 Search Procedure 

Two gain search procedures may be used in vector quantization: open-loop search, or 

closed-loop search. In an open-loop search, each gain VQ codevector is compared to 
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the optimal gain vector, and the vector which minimizes an MSE criterion is selected 

as the optimal codevector. In this search procedure, there is no consideration to 

the speech quality obtained using each gain codevector. Better speech quality can 

be obtained by using a closed loop search. In a closed loop search, the weighted 

synthesized speech, generated using each gain codevector in the gain VQ, is compared 

to the weighted input speech. The vector that minimizes an MSE is selected as the 

optimal gain codevector. 

Though a closed-loop search outperforms an open-loop search, it suffers from 

greater complexity and becomes impractical for large VQs. A sub-optimal approach is 

to first search open-loop and retain the best P candidates which are then considered 

closed-loop. This technique results in speech quality close to a full closed loop search, 

but with a significant reduction in complexity. Details of this technique will be given 

in Section 5.8.1. 

5.7 Post-Filtering 

We use an adaptive post-filter which consists of a short-term pole-zero filter based on 

the quantized short-term predictor coefficients followed by an adaptive spectral-tilt 

compensator [40]. The pole-zero filter is of the form H ( z )  = A(z/y)/A(z/a). We 

use y = 0.5 and a = 0.8. An automatic gain control is also used to avoid large gain 

excursions. The energy is calculated before post-filtering. The output samples are 

scaled such the energy remains the same. 

5.8 Complexity Reduction Techniques 

Improved quality is obtained often at the expense of increased complexity. Due to 

the computational constraints of a real- time implementation, the algorithm must be 

optimized to reduce computational complexity. Two general forms of complexity 

optimization methods can be used: 

0 Algorithmic Optimizations - are made to reduce the system's complexity while 

at the same time minimize system degradation; 
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Programming Optimizations - used when writing the software to reduce the 

complexity; this can be accomplished both in the development software and in 

real-time software. 

This section describes the algorithmic optimizations used in SFU VR-CELP, while 

programming optimizations will be presented in Section 6.2.2. 

The reduced complexity CELP analysis block diagram of Figure 3.2 offers a sub- 

stantial decrease in complexity over the original CELP block diagram of Figure 3.1. 

However, the complexity of a typical implementation of Figure 3.2 may be in the range 

of 30-100 MIPS. A real-time 8 kb/s CELP codec using 10 MIPS was earlier developed 

at SFU. In this baseline system, scalar quantization of gains and very constrained 

adaptive and stochastic codebooks were needed to attain a complexity of 10 MIPS. In 

order to improve the quality, better codebook search techniques and the use of vector 

quantization is needed. In this section, the complexity reduction techniques used in 

SFU VR-CELP are presented. 

5.8.1 Gain Quantization 

A split-VQ structure is used to quantize the excitation gains. The quality of the 

codec was found to be very sensitive to the quantization of the ACB gains. A first 

approach was to quantize the 3-tap gains without any constraints. In this case, 

considerable degradation resulted unless a 10-bit VQ was used. In order to improve 

the quantization, it was necessary to constrain the gains in some manner. 

The best approach was to constrain the ACB vectors such that the middle-tap 

gain has the largest absolute value. The constraint causes a small degradation in 

unquantized results, but significantly improves quality after quantization. Other ap- 

proaches considered included constraining the first and third tap gains to be equal 

[59], and hard limiting the gains within a given range. 

A combined open-loop/ closed-loop search procedure described in Section 5.6.3 

is used. In Figure 5.3, the SEGSNR is plotted against the number of open-loop 

candidates, P, for the adaptive codebook gains and the stochastic codebook gains. 

The best complexity-quality tradeoff is obtained for P = 2 for the adaptive codebook 

gains, and P = 1 for the stochastic codebook gains. 

The gains in SFU 8k-CELP are calculated and quantized as follows: 
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Figure 5.3: Quality-Gain Candidate Tradeoff 

Perform a 3-tap adaptive codebook search 

0 Reoptimize the adaptive codebook gains by minimizing E where 

Normalize - ga as in Section 5.6.1 to obtain ga -n 

Quantize the normalized gains 

Obtain the target vector for the stochastic codebook search, 2 

Search the stochastic codebooks sequentially and obtain the optimal codevec-. 

tors, for each stage, i 

0 Reoptimize the stochastic codebook gains by minimizing 6 where 
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Normalize gC as in Section 5.6.1 to obtain gc - -n 

Quantize the normalized gains 

5.8.2 Codebook Search 

By far the largest complexity component of the CELP algorithm is in the search of the 

adaptive and stochastic codebooks. There have been proposed methods of reduced 

complexity searches [38, 601. However, they generally only apply to the stochastic 

codebook search and do not provide the degree of complexity reduction required. 

During the analysis stage of the encoder, the optimal codevectors for the adaptive 

and stochastic codebooks are determined by minimizing the weighted MSE, c, 

where t is the weighted target vector, G; is the i th codebook entry, g is the codevector 

gain, and H is the impulse response matrix of the weighted synthesis filter. It was 

shown in Section 3.2.4 that the selection process reduces to maximizing i 

The complexity in the codebook searches lies mainly in the filtering of each 

(5.16) 

codebook 

entry, c , .  However, if an estimate of the norm term is used, the cross term can be 

obtained by computing ( tTH)c i  called backward filtering. As a result, filtering of each 

codebook entry can be avoided. 

One possible approach is to calculate the norm term only once per frame, and use 

this as an estimate for all subframes in the current frame. In this case, all codevectors 

are filtered once per frame and the norm terms are stored for use as estimates in the 

subframes. This technique does not offer the complexity reduction needed and also 

increases memory usage. Further complexity reduction can be achieved by using a 

reduced length impulse response 

impulse response for calculating 

becomes 

for the norm term while maintaining a full length 

the cross term. The new selection criterion then 
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where H is the reduced impulse response matrix. Table 5.5 summarizes the results for 

using a reduced length impulse response for the adaptive and stochastic codebooks. 

The results are the SEGSNR measured in dB calculated on the reconstructed speech. 

These results show a small degradation in quality for the adaptive codebook search as 

I Impulse Length I Full(48) 1 16 1 8 1 4 1 2 / 1 I 
L - \ , ,  I 1 I I 

1 ACB Search (dB) 1 10.40 1 10.37 1 10.30 1 10.25 1 10.13 1 10.01 ] 
I SCB Search (dB) 1 10.40 1 10.41 1 10.35 1 10.37 1 10.42 1 10.35 1 

Table 5.5: Complexity-Quality Search Trade-off 

the impulse response length is reduced, while the stochastic codebook search shows 

no degradation. For SFU VR-CELP-11, an impulse response length of one is used. 

For an impulse response length of 1, the norm term of Equation 5.17 becomes the 

norm of the codevector, and the selection criterion reduces to 

In the adaptive codebook search, consecutive vectors contain only one new sample 

with one sample shifted out. The norm for the next vector can be obtained by 

subtracting the contribution of the old sample and adding the contribution of the 

new one, producing a further reduction in complexity. For the stochastic codebook 

search, the norms of the codevectors can be stored in a table. As a result, the complex 

filtering operation is reduced to a simple table look-up with little reduction in quality. 

The complexity of a one-tap adaptive codebook search is reduced from 7.2 MIPS to 

3.5 MIPS, while the stochastic codebook search for a 5 bit codebook is reduced from 

2.1 MIPS to 0.5 MIPS. 

5.8.3 Three-Tap ACB Search 

A multi-tap adaptive codebook search provides a substantial improvement in quality 

over a one-tap codebook. However, the complexity of even a three-tap search is over 

20 MIPS. In order to obtain the increased speech quality offered by a 3-tap system in 

a real-time implementation with the complexity constraint of 11 MIPS, it is necessary 

to reduce the complexity of the search. Our approach is to first do a l-tap search and 
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retain the best C1 candidates. A 3-tap limited search is then performed around each 

of these Cl candidates. If the limited 3-tap search considers C2 indices, where the 

search is centered around a 1-tap candidate, then a 1-tap search and C1 x C2 3-tap 

searches must be performed. For the 1-tap search, the reduced complexity search 

described in Section 5.8.2 is used. Investigation of the quality degradation versus 

complexity found the best trade-off with C1 = 1 and C2 = 3. Thus, a 1-tap search 

is performed and only the best index is considered in the 3-tap search. This search 

method provides quality close to that of a full three-tap search but at nearly half the 

complexity of the full one-tap search. 

In order to reduce the bits needed for quantization, the 3-tap gains are constrained 

with the middle tap having the largest magnitude as described in Section 5.8.1. This 

constraint must be considered during the codebook search. One possible method is 

to compute the optimal 3-tap gains for each 3-tap search candidate and consider only 

those indices which meet the constraint. In computing the optimal gains, we wish to 

minimize, E, 
2 

c = )It - giHs1 - 92H~2 - g3H6II (5.19) 

where 6, is the ith vector being considered in the 3-tap search, and g; is the corre- 

sponding gain. If we let 

g = ( ~ l , g 2 , 9 3 ) ~  - (5.20) 

then E can be rewritten as 
2 

E = Ilt - Ugll 

By minimizing c with respect to - g, the optimal gains, s P t ,  are obtained where 

The purpose is to determine if the middle tap gain is the largest. However, computing 

the optimal gains results in an increase in complexity, since the excitation vectors must 

be filtered in order to compute U. Further investigation found that 3-tap vectors 

meeting the constraint could be reliably determined by estimating the gains as 
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This estimate neglects the cross correlation terms in the matrix (UTU) and uses [Isi 11' 
as an estimate for I[ ~ ~ 1 1 ~ .  Since both the numerator and denominator are computed 

during the 1-tap search, using this estimate results in no extra computational com- 

plexity and gives equivalent results to using the optimal gains. 

The complete 3-tap adaptive codebook search algorithm for SFU 8k-CELP-11 is 

as follows: 

Perform a 1-tap search of the full ACB using the procedure in Section 5.8.2 and 

retain the best index, kpl. 

Consider indices in order kpl - 1, kpl, and kpl + 1 as candidate center-taps. 

Estimate the 3-tap gains using Equation 5.24 and select as the optimal indice, 

kp, the first indice whose middle tap has the largest absolute gain. 

If no 3-tap index meets the constraint in step 2, set kp = kpl. 

In Table 5.6, the full 3-tap search is compared to the reduced complexity (RC) search 

for a high complexity system using unquantized gains. These results show a small 

degradation using the RC search. 

Table 5.6: Quality of ACB Searches in an Unquantized System 

Results are given in Table 5.7 for SFU VR-CELP-11 in fixed-rate 8 kb/s mode 

using a full complexity 3-tap search and the reduced complexity 3-tap search just 

described. These objective results indicate no degradation in speech quality between 

P 

- 

SNR 

12.95 
12.21 

METHOD 
Full 3-tap 
RC 3-tap 

- -- 

Table 5.7: Quality vs. ACB Search Complexity for SFU 8k-CELP-11 

SEGSNR 

10.76 
10.23 

the full search and the reduced complexity search for a reduction in complexity of 

MIPS 

20.2 
4.1 

SEGSNR 

8.72 
8.85 

. 

SNR 

10.24 
10.22 

- 
METHOD 
Full 3-tap 
RC 3-tap 
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80%. The constraints and other complexity reduction techniques used in the real- 

time system mask the degradation seen in Table 5.6. Listening tests indicate a slight 

degradation in quality using the reduced complexity search. 
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Real-Time Implement at ion 

The quality of speech attainable using CELP and the ease of a real-time implementa- 

tion with single-chip DSPs has led to widespread implementations in communication 

and voice storage systems. In many applications, a real-time implementation on a 

fixed-point DSP is desirable because of its lower cost and power consumption corn- 

pared with floating-point DSPs. However, the limited dynamic range of the fixed-point 

processor leads to a loss in precision, and hence, a loss in performance. In order to 

minimize speech quality degradation, scaling is necessary in order to maintain signal 

precision. The scaling strategy may have significant impact on the resulting speech 

quality and on the system computational complexity. 

This chapter describes the fixed-point implementation of SFU VR-CELP using 11 

MIPS on the TMS320C5x DSP. 

6.1 Fixed-Point Considerat ions 

In a discrete-time system, the algorithms are often designed on the basis of infinite- 

precision arithmetic. However, when the system is implemented in real-time on a 

fixed-point platform, only finite precision is available. This section describes a scaling 

strategy employing a combination of block floating-point, dynamic scaling, and static 

scaling for a CELP codec which results in no significant quality degradation compared 

with the equivalent floating-point system, and minimal complexity overhead. 

Errors in a fixed-point model are said to be due to finite-length register effects 

(or quantization effects). In analyzing the effects of quantization, it is assumed that 
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each data value is represented in memory by B+1 bits(sign and magnitude). The 

quantization of a data value from an infinite-precision floating-point representation 

y(n), to a fixed-point representation ij(n), may be modeled by introducing an additive 

noise 

!xn) = Q[y(n)l = y(n> + 7(n) (6.1) 

where Q[Y] denotes the fixed point quantization of y. The quantization noise ~ ( n )  can 

be modeled as uniformly distributed random noise with zero mean and variance 

Each additional bit in word length adds 6.02 dB gain in signal-to-quantization noise 

ratio. 

Finite-length words in arithmetic may cause overflow, and roundoff or truncation 

noise. Typically, in a fixed-point system, each fixed-point number represents a frac- 

tion. Consequently, each node in the system must be constrained to have a magnitude 

less than unity to avoid overflow. Multiplication does not pose an overflow problem. 

However, addition may result in a sum that is greater than unity. The technique used 

to avoid overflow is scaling. In our fixed-point CELP system, a combination of static 

scaling, dynamic scaling, and block floating-point is used. 

Because samples in a fixed-point system represent a value less than 1, we can 

define an inherent (negative) exponent associated with each sample. In static scaling, 

the exponent A,  defined by 

3(n) = Q[y(n)l . 2X (6.3) 

does not vary with n, and is determined such that 

In dynamic scaling, we select 

where cr(n) varies with n. Dynamic scaling is especially important in fixed-point DSPs 

with an internal double-precision accumulator, where normalization before storage can 

minimize arithmetic truncation noise. 
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In block floating-point, we consider a set of vectors, z j .  ,with static scale A, such 
-a 

that 

max [Gimaz] < 1 (6.6) 

where zj;,,, is the magnitude of the maximum component in vector z j . .  For a given 
-1 

vector -8 z j . ,  the magnitude of the largest sample may not be close to unity. A shift of 

y; is calculated where 

5 .2?' < 2P 5 1 (6.7) 

The integer p is chosen to minimize arithmetic error and maintain precision in subse- 

quent codec operations applied to the set of vectors --a z j . .  

6.1.1 LPC Analysis 

The LPC coefficients are computed once per frame using the autocorrelation method 

and converted to LSPs for quantization and interpolation. A block floating-point 

analysis is performed on the speech frame to obtain y,, with p = -1, in (6.7). The 

speech is then normalized by y, and used in the LPC analysis. If the windowed input 

speech is s ( n ) ,  then the optimal LPC coefficients are found by solving the equation 

as in Section 2.2.3. If the input speech frame is normalized by y,, then 

and Equation 6.8 becomes 

Using the fact that 

it is seen that 

i ( n )  = s ( n )  .2'" 

R& = Q. 

ri i (m) = 227sr,s (m)  

h = h  - 

Hence, the optimal LPC coefficients are not affected by a scaling of the input speech. 

Because of the block normalization, the autocorrelation function has a relatively small 

dynamic range among frames, and a static scaling procedure can be used. A static 
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scale of X = -3 is also applied to the LPC coefficients because of their small dynamic 

range. 

Recall that the LPC coefficients are converted to LSPs for quantization. The roots 

of P ( z )  and Q(z) 

determine the LSPs. Solving these equations directly requires the evaluation of 

trigonometric functions and is not appropriate for a real-time environment. A method 

proposed by Kabal and Ramachandran [62] is used to quantize the LSPs with no 

prior storage or calculation of trigonometric functions required. By using the fre- 

quency mapping x = cosw, Equation 6.14 can be expressed in terms of Chebyshev 

polynomials. This transformation maps the upper semicircle in the z-plane to the real 

interval [- 1, +I]. The roots of the Chebyshev polynomials, xi, are then determined 

numerically, and can be related to the LSPs by w; = arccosx;. In order to avoid 

the evaluation of cosine and arc-cosine functions, the xi's are quantized directly. A 

quantization table containing the corresponding LSPs,w;, is then used during inverse 

quantization. 

6.1.2 Codebook Search 

By far the largest complexity and precision sensitive component of the CELP algo- 

rithm is in the search of the adaptive and stochastic codebooks. Figure 6.1 is a block 

diagram of the codebook search for the fixed-point CELP system. The input speech 

for the current subframe is perceptually weighted and the zero input response (ZIR) 

of the synthesis filter is removed to form the target vector t for the codebook searches. 

The fixed-point target vector is related to the floating-point target by 

where At is a static scale. Assuming the input covers the full dynamic range of the 

processor, At = - B. In order to maintain precision and minimize scaling complexity 

throughout the encoder, a block floating-point analysis is performed on i every sub- 

frame to obtain the shift y,, as in Equation 6.7. A normalized target 1 is then used 
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Error 4 
Figure 6.1 : Codebook Search Scaling Block Diagram 
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for codebook analysis, where 

t = i . p  - - 

The codebook searches are performed sequentially starting with the ACB, and then 

each SCB, where the residual error from the previous codebook is used as the target 

for the next codebook. It was found experimentally that there is a danger of overflow 

during calculation of the residual error, especially for low level speech subframes. To 

avoid this, p (equation 6.7) is made a function of I M A X ( ~ ( ~ ) ) ~ .  The best values for 

p were found experimentally to be: 

Once all codebooks are searched, the optimal gains are computed using in order 

to maximize precision and minimize scaling overhead. The true optimal gains are 

then obtained by multiplying by Ft. 

In floating-point, the optimal codevectors for the adaptive and stochastic code- 

books are determined by minimizing the weighted mean squared error, E ,  

It was shown that the selection process reduces down to maximizing i, where 

The challenge is to compute i with maximum precision for the entire dynamic 

range of t and minimize complexity needed for scaling. First consider the filtering of 

the codebook entry, gj, as the convolution 

where N is the subframe size, h(n) is the impulse response of the synthesis filter and 

h(n) = 0 for n < 0. To maintain precision during multiplication, max, ~R(n)l and 

max, J?j(n) ( should be made as close to 1 as possible. Because the dynamic range of 
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the LPC coefficients is known and relatively small, a static scaling can be applied to 

h where - 7  

it = Q[b] - 2Ah - (6.20) 

Because the stochastic codebooks contain only 1, 0, -1, a static scaling factor of 

Xcb = -1 is applied resulting in codebooks containing 0.5, 0, -0.5. A fixed scaling 

factor is also applied to the adaptive codebook 

where P,,, is the maximum pitch, and Xcb = -14. Due to the dynamic nature of 

the ACB, max,[l&b(n)l] may not be close to 1 for a given subframe. This results 

in a loss of precision during the calculation of gj. Our solution is to apply a block 

floating-point analysis of the ACB in each subframe and obtain ~ , , b ,  with p = 0, in 

Equation 6.7. 

The computation of uj(n) ipvolves a maximum of N multiply and accumulate 

(MAC) operations. In order to avoid overflow during addition, each intermediate 

MAC should be right-shifted by M ,  where 

However, due to the sparsity of the stochastic codebooks, the non-uniform nature of 

the adaptive codebook, and the stability of the synthesis filter, this upper restriction 

on M is overly pessimistic and can be adjusted to  maintain greater precision and still 

avoid overflow. 

The fixed point convolution can then be performed as 

where a,,, = -M for the SCB search, and am,, = y,,b - M for the ACB search. The 

scaled, filtered codevector is then 

Rewriting i using fixed-point vectors, we obtain 
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Since At + yt is independent of the codevector j, there is no scaling overhead within 

the search loop. This method also guarantees no overflow while maintaining precision 

for the full dynamic range of the input speech and the adaptive codebook. 

During computation of the target vector for the next codebook search, the recon- 

structed speech vector must be aligned with 6 The fixed-point gain for the optimal 

codevector in the current codebook is related to the floating-point gain by the dynamic 

scale, a,, where 

jopt = Q[goptl 2ag (6.26) 

For alignment, we must have that 

This equation is solved in terms of a,l;,,. The new target vector for the r th  codebook 

is obtained as - - 
* . 2aalign tr = t r - 1  - Gopt uopt (6.28) 

6.2 Real-time Implementat ion 

This section describes specific details of the real-time implementation on the TMS320C51 

DSP. A brief description of the TMS320C51 is presented followed by programming 

optimizations that were used in the real-time code. Finally, details of the implemen- 

tation are described. 

The DSP used for implementationof SFU VR-CELP is the Texas Instruments TMS320C51. 

The TMS320C51 is a high-speed CMOS digital signal processor with 16-bit pro- 

gram/data memory that features a double precision (32-bit) accumulator. The key 

features of the DSP are listed below [61]: 

1K x 16-bit single-cycle on-chip programldata RAM 

8K x 16-bit single-cycle on-chip program ROM 

1056 x 16-bit dual-access on-chip RAM 
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0 224Kx 16-bit maximum addressable external memory space 

32-bit arithmetic logic unit(ALU), 32-bit accumulator(ACC), and 32-bit accu- 

mulator buffer(ACCB) 

0 16-bit parallel logic unit (PLU) 

0 16 x 16-bit parallel multiplier with 32-bit product capability 

Single-cycle multiply /accumulate instructions 

0 Eight auxiliary registers with a dedicated arithmetic unit for indirect addressing 

0 Single-instruction repeat and block repeat operations for program code 

Four-deep pipelined operation for delayed branch, call, and return instructions 

The TMS320C51 is configured in microprocessor mode with the corresponding 

memory map in Figure 6.2. The program space contains the instructions to be ex- 

Program 

0030h 

On-Chip RAM / R A M  = 1 I 
External 

(CNF = 1) FFFFd External (CNF=O)] 

Data 

OOOOh r ~ e m o r ~ - ~ a ~ ~ e d  I 

U.>UULL 

Ion-chip RAM B1 

0500h 
Reserved 

0800h 
On-Chip RAM 

(OVLY = 1) 

External 

OCOOh 

Figure 6.2: TMS320C51 Memory Map 

ecuted as well as tables used in execution. Data space stores data used by the in- 

structions. The TMS320C51 includes considerable amount of on-chip memory to aid 
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in system performance and integration. Program and data memory configuration is 

flexible and can be customized using the RAM, CNF, and OVLY control bits. On- 

chip RAM can be accessed in a single machine cycle to perform a read or a write. 

On-chip RAM includes 1056 words of dual-access RAM configured in three blocks: 

block 0 (BO), block 1 (Bl) ,  and block 2 (B2). Dual-access RAM can be read from 

and written to in the same cycle. 

The School of Engineering Science is equipped with the TMS320C5x Evaluation 

Module (EVM). The EVM is a low-cost, PC-AT plug-in card for chip evaluation and 

system development. The EVM includes voice quality analog I/O capabilities and a 

windows-oriented debugger. The EVM was used for development and testing of the 

SFU VR-CELP- 11 real-time implementation. 

6.2.2 Programming Optimizations 

This section describes the programming optimizations employed in the real-time im- 

plementation of SFU VR-CELP-11. Unlike the algorithmic optimizations described 

in Section 5.8, programming optimizations do not involve changing the algorithm, 

and hence, do not result in a degradation in system performance. 

Avoiding Division 

Division is one of the most computationally expensive operations in a typical DSP. 

While addition, subtraction, and multiplication can be executed in a single cycle, 

division can take up to 20 cycles on the TMS320C51. 

In the codebook searches, recall that the selection criterion used for the real-time 

system involves maximizing i, where 

This selection process requires one division for every codevector. The i th  codevector 

becomes the best candidate in the search if 

where ibest is the maximum value from the previous i - 1 codevectors. Substituting 

Equation 6.29 into Equation 6.30 and rearranging, an equivalent search criterion can 
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be found. A new best candidate codevector is selected whenever 

The division operation is replaced by two multiplications, representing a significant 

reduction in search complexity. A similar procedure is used in the 3-tap adaptive 

codebook search to determine if the middle tap of the current 3-tap candidate has the 

largest absolute gain, where the gains are estimated using Equation 5.24. 

Avoiding Subroutines and Branching 

The TMS320C51 uses a four-deep instruction pipeline that effectively allows most 

instructions to be executed in a single clock cycle. Most instructions that change the 

program counter cause the pipeline to be flushed and should be avoided. These 

instructions include subroutine calls and branches. Delayed subroutine calls and 

branches can be used, but are still inefficient. In critical loops, macros can be used in 

place of subroutine calls to avoid a pipeline flush at the expense of greater program 

memory usage. 

Stochastic Codebook Search with In-line Code 

Computation of the cross term (numerator) in Equation 6.29 involves the dot product 

of the codevector with the backward-filtered target. Since the stochastic codebook is 

sparse, most of the multiplications are zero. The dot product with each codevector is 

hard-coded to multiply only non-zero entries. A significant decrease in complexity is 

obtained at the expense of an increase in memory usage. For SFU 8k-CELP-11, this 

method results in a complexity savings of 0.8 MIPS with a memory increase of 1.6 

kwords of ROM. 

Calculation of the norm term (denominator) involves the dot product of each 

codevector with itself. Substantial complexity savings are obtained by storing the 

norm term of each codevector in a look-up table. For SFU 8k-CELP-11, this results 

in a complexity savings of 1.0 MIPS with a memory increase of 128 words. 
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Figure 6.3: Direct Form I1 Filter 

Adaptive Codebook Search with Norm and Cross Term Storage 

Recall from Section 5.8.3 that the adaptive codebook search involves estimating the 

optimal 3-tap gains by the equation 

A one-tap search is completed using Equation 6.29 prior to the gain estimation. In 

order to avoid recomputing (f H) and llci112, the norm and cross terms are saved 

during the 1-tap search for use in the gain estimation procedure. 

Efficient Filtering and Convolution 

The transfer function of an IIR filter can be expressed in Direct I1 form as 

Figure 6.3 is the equivalent Direct I1 form filter with input x ( n ) ,  and output y(n). 

The Direct I1 form filter can be efficiently implemented on the TMS320C51 using the 

multiply and accumulate with data move (MACD) instruction [61]. This instruction 

is able to shift the filter memory bank by one sample without any overhead during the 

multiply and accumulation of filter coefficients with filter memory. When repeated, 

the MACD instruction effectively takes one cycle (because of the instruction pipeline) 
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as long as filter coefficients and filter memory are stored in dual-access RAM. If this 

is not the case, the instruction takes at least 2 cycles. 

If a filtering operation is implemented using convolution, the multiply and accu- 

mulate (MAC) instruction is used. As with MACD, the MAC instruction becomes a 

single cycle instruction as long as the impulse response and input vectors are stored 

in dual-access RAM. Therefore, whenever using either filtering method, dual-access 

RAM is used for efficient computation. 

6.3 Testing, and Verification Procedures 

The SFU VR-CELP speech codec was developed in floating-point C in a Sun worksta- 

tion environment. This codec is user-switchable between a fixed-rate 8kb/s system and 

a variable-rate system. Different configurations and complexity reduction techniques 

can also be selected to vary the codec complexity from 11 MIPS to about 20 MIPS. 

The configuration for real-time implementation is SFlJ VR-CELP-11.Transferring the 

speech coder from the Sun workstation floating-point C version to TMS320C5x as- 

sembly code version was done in two steps: 

development of a Sun workstation fixed-point simulation written in C; 

0 development of the TMS320C51 Assembly version. 

6.3.1 Design and Testing Procedure 

Development of a fixed-point C simulation is needed for two reasons: 

to develop a scaling scheme for the fixed-point codec that provides near equiv- 

alent quality to the equivalent floating-point system with low complexity over- 

head; 

to verify the accuracy and performance of the real-time system 

The fixed-point simulation was obtained using a step-by-step modular approach. A 

module, or independent section of code, was converted to fixed-point C and added to 

a partial fixed-point simulation. The performance of the codec was evaluated using 

objective measures before and after the addition of the module to verify its accuracy. 
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At the same time, the overall scaling strategy was developed until a complete fixed- 

point simulation was obtained. 

The fixed-point simulation was then used to verify the accuracy of the real-time 

code. Each module was written in assembly code and debugged using the correspond- 

ing fixed-point simulation module until the complete assembly version was complete. 

The real-time codec was then debugged by using identical speech input as the simu- 

lation. Since both systems are identical, the accuracy of the real-time codec could be 

determined by a bit-by-bit comparison with the simulation. This method provided a 

systematic approach to obtaining a bug-free real-time system. Because of the com- 

plexity constraints and inefficient code produced by the C cross-compiler, all code was 

written in assembly manually. 

6.4 Implementation Details 

The real-time implementation work completed for this thesis is the 8kb/s configuration 

(SFU 8k-CELP-11) which is embedded in the variable-rate system (SFU VR-CELP- 

1 1). This constitutes the vast majority of assembly code required for SFU VR-CELP- 

11. However, due to time constraints, the complete variable-rate implementation was 

not completed. 

Table 6.1 is the complexity breakdown for SFU 8k-CELP-11 implementation on 

the TMS320C51 including an estimate for frame classification for future completion of 

SFU VR-CELP-11. Complexity of the decoder is 1.7 MIPS without post-filtering, and 

BLOCK 
Frame Classification 
LPC 
Target Speech 
ACB Search 
SCB Search 
Gain Quantization 
Excitation 
Total 

MIPS 
0.20 
0.80 
0.82 
4.08 
2.16 
2.36 
0.58 
11.0 

Table 6.1: Peak Codec Complexity 

6.5 MIPS with post-filtering. The total of 11 MIPS represents the peak complexity 
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of an implementation of SFU VR-CELP-11, since the unvoiced and silence coding 

configurations require much less than 11 MIPS. 

Table 6.2 is a breakdown of the program memory required for SFU 8k-CELP-11. 

The total of 15.9 Kwords of ROM represents most of the memory which would be 

MODULE 
Speech scaling, windowing, autocorrelation 

Table 6.2: Codec ROM Summary 

Kwords (ROM) 
0.97 

LPC Calculation 
LSPs to LPCs Conversion 
LPCs to LSPs Conversion 
LSP Quantization 
Subtotal LPC Related 

Adaptive Codebook Search 
Inline SCB Search 
Remainder of SCB Search 
SCB Codebooks 
Subtotal Search Related 

Gain Normalization and Quantization 
Gain Codebooks 
Subtotal Gain Quantization Related 
Main Program 
Perceptual Weighting 
ZIR/ZSR 
Post Filter 
Initialization 
Misc. 
Subtotal Misc. Codec 

Channel Bit Packing/ Unpacking 
Codec State Swapping (Full Duplex Operation) 
Subtotal Channel Packing/Swapping Related 

Total Codec ROM 

required for an implementation of SFU VR-CELP-11. It is expected that the total 

ROM required for the variable-rate codec is less than 20 Kwords. The real-time 

implementation package includes the possibility of full duplex operation. The current 

state of the encoder, or decoder, can be swapped intolout of internal memory on a 

frame-by-frame basis. This enables the use of multiple encoders and/or decoders to 

0.19 
0.32 
1 .OO 
0.45 
2.93 
2.20 
1.71 
2.05 
0.44 
6.40 
2.91 
1.15 
4.06 

0.16 
0.13 
0.12 
0.57 
0.03 
0.83 
1.84 

0.52 
0.16 
0.68 

15.9 Kwords 
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operate alternately. 



Chapter 7 

Results 

Performance Evaluation 

Performance was evaluated throughout the development of the real- time system. Dur- 

ing development of the system on the Sun workstation, quality improvements and 

complexity reduction were evaluated objectively using SNRs and SEGSNRs, as well 

as subjectively by informal listening tests. During the development of the fixed-point 

C version, the system was compared to the floating-point version using SNRs and 

SEGSNRs to ensure the accuracy of fixed point modules and evaluate the degrada- 

tion introduced by various scaling and complexity reduction techniques. 

During development of assembly code modules, the complexity reduction tech- 

niques were evaluated. The reduction in complexity was estimated before-hand, but 

the exact reduction was not known until implementation on the DSP. The limitations 

of the processor instruction set resulted in various modifications in scaling strategy and 

complexity reduction techniques during development. The complexity of the modules 

was measured using the timer feature on the TMS320C51 evaluation module. The 

memory requirements were also evaluated at this time. 

The complete system was evaluated using SNRs and SEGSNRs, and also subjec- 

tively by conducting MOS tests. In the Mean Opinion Score (MOS), 30-60 untrained 

listeners rate the speech quality on a scale of 1 (poor quality) to 5 (excellent quality) 

and the results are averaged. Toll quality is characterized by MOS scores over 4.0. 

For the MOS scores quoted in the next section, the variance of the absolute scores 

of each system are also listed. These variances indicate that the uncertainty in the 
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absolute scores is high. However, relative differences as small as 0.1 MOS have been 

found to be significant and reproducible. 

7.2 Codec Results 

Two MOS tests were conducted in order to evaluate the quality of SFU VR-CELP, 

and compare it to other systems. The first MOS test had three goals: 

to evaluate the degradation in the fixed-point systems compared with the floating- 

point systems; 

to compare the variable-rate codec to fixed-rate codecs; 

to evaluate the degradation of the reduced complexity methods used in the 

real-time system. 

Table 7.1 shows the subjective results of the MOS test and objective results using 

SNRs and SEGSNRs. The MOS test results were obtained from a panel of 17 un- 

trained listeners using 4 male and 4 female phonetically balanced sentences. These 

Table 7.1: MOS-1 Results 

results indicate the following: 

Rate 

8000 b/s 
8000 b/s 
8000 b/s 
4196 b/s 
4196 b/s 
4125 b/s 

SYSTEM 
SFU 8k-CELP-H 
SFU 8k-CELP-11 
SFU 8k-CELP-11-F 
SFU VR-CELP-11 
SFU VR-CELP-11-F 
SFU 4k-CELP 

r virtually no degradation between the floating-point simulations (SFU 8k-CELP- 

11, SFU VR-CELP-11) and the fixed-point implementations (SFU 8k-CELP-11- 

F, SFU VR-CELP-11-F); 

r the variable-rate system (SFU VR-CELP- 11) offers near equivalent quality to 

the fixed-rate system (SFU VR-CELP-11) but at nearly half the average rate; 

MOS VAR 

3.60 0.34 
3.50 0.42 
3.52 0.45 
3.51 0.36 
3.44 0.41 
3.10 0.45 

SNR 
11.28 
10.39 
10.34 
10.03 
9.95 
6.78 

SEGSNR 

9.81 
8.91 
8.84 
8.29 
8.23 
6.11 
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the variable-rate system offers a substantial improvement in quality (0.41 MOS) 

over a similar fixed-rate CELP system with the same average rate; 

the reduced complexity system (SFU 8k-CELP-11) at 11 MIPS suffers from only 

a small degradation (0.1 MOS) compared with the high complexity codec (SFU 

8k-CELP-H) at approximately 20 MIPS. 

The goal of the second MOS test was to compare SFU VR-CELP to other compet- 

ing codecs and industry standards. Comparisons were made with: VSELP, the North 

American digital cellular standard at 8 kb/s; QCELP, the proposed variable-rate 

standard for CDMA; and Baseline SFU 8k, the previous 8 kb/s implementation on 

the TMS320C51. In order to make fair comparisons, SFU VR-CELP was configured 

to have approximately the same complexity as VSELP and QCELP. The estimated 

complexities of VSELP and QCELP on the TMS320C51 were 15 MIPS and 17 MIPS, 

respectively. A 15 MIP 8 kb/s codec (SFU 8k-CELP-15) was configured as follows: 

use the T/V-H bit allocation of Table 5.2; 

use Cl = 3, and Cz = 7 in the three-tap ACB search (see Section 5.8.3); 

use low complexity SCB searches; 

use P = 4 for both the ACB gain search, and the SCB gain search (see Sec- 

tion 5.8.1). 

A variable-rate 17 MIP codec (SFU VR-CELP-17) was configured by using the SFU 

8k-CELP-15 for the voiced/transition class, and using the 2 MIP version of the frame 

classifier (see Section 5.3.6). Both VSELP and QCELP use a frame size of 160 samples 

and incur an encoding delay of approximately 25 ms, whereas the coding delay of the 

SFU codecs is 50 ms. Results of the MOS test are shown in Table 7.2 which were 

obtained with a panel of 24 untrained listeners using 2 male and 2 female spoken 

sentences. 

These results indicate that the SFU codec at 8 kb/s with a complexity of 15 MIPS 

(SFU 8k-CELP-15) has quality equivalent to VSELP. The variable-rate codec at a 

complexity of 17 MIPS (SFU VR-CELP-17) achieves quality equivalent to QCELP, 

but with an average rate of over 600 b/s less. Finally, the new implementation on the 
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SYSTEM 
SFU 8k-CELP-15 
VSELP 
SFU VR-CELP-17 
QCELP 
SFU 8k-CELP-11-F 
Baseline SFU-8k 

MOS VAR 
3.73 0.21 
3.76 0.34 
3.64 0.23 
3.62 0.21 
3.40 0.28 
2.66 0.31 

Rate 

8000 b/s 
8000 b/s 
4196 b/s 
4809 b/s 
8000 b/s 
8000 b/s 

Table 7.2: MOS-2 Results 

TMS320C51 with a complexity of 11 MIPS (SFU 8k-CELP-11) offers a substantial 

quality increase over the original implementation at 10 MIPS (Baseline SFU-8k). 



Chapter 8 

Conclusions 

This thesis presented a high-quality, low-complexity, variable-rate CELP codec for 

a real-time implementation. The system is user-switchable between a fixed-rate 8 

kb/s system and a variable-rate system with frame classification. The variable-rate 

system operates at a rate of 8 kb/s for voiced and transition frames, 4.3 kb/s for 

unvoiced frames, and 667 b/s for silence frames with an average rate of 4-5 kb/s. 

A MOS test was conducted to compare the SFU speech coders with current speech 

communications standards. The fixed-rate 8 kb/s codec obtained quality equivalent 

to VSELP, the North American digital cellular standard at 8 kb/s. The variable- 

rate system achieved the same quality as QCELP, the proposed variable-rate digital 

cellular standard for CDMA. However, the SFU codec operated at over 600 b/s less 

than QCELP. 

A number of complexity reduction techniques were studied for reducing the com- 

plexity of the CELP algorithm while limiting speech quality degradation. The com- 

plexity of the CELP codec was reduced by over 60% with only a small degradation in 

speech fidelity. While the goal of this study was to obtain a low complexity system 

for implementation, the codec complexity remained flexible. The reduced complexity 

algorithms can be altered by simple software switches to trade off complexity with 

quality. 

The 8 kb/s codec was successfully implemented in real-time on the TMS320C5x 

fixed-point DSP using only 11 MIPS. The development of a fixed-point low complex- 

ity variable-rate simulation was also completed for future expansion of the real-time 
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codec. The fixed-point processor has the advantage of lower cost and power consump- 

tion compared with floating-point DSPs. However, its limited dynamic range leads to 

a loss in precision and hence, a possible loss in speech quality. A scaling strategy was 

developed which results in no significant speech degradation and a minimal increase 

in complexity. 

This thesis work was in direct collaboration with Dees Communications who are 

currently developing a new multi-media product for the personal computer. One of the 

features of this product is digital voice storage from a phone to the computer's hard 

drive. The product requires a high-quality, low-complexity, low bit-rate digital voice 

codec DSP implementation. The implementation presented in this thesis represents a 

significant upgrade (0.74 MOS) to the baseline implementation previously developed 

for use in the product. 

Suggestions for Future Work 

Some suggestions for future work include the following: 

1. Complete the real-time implementation of the variable-rate codec. The 8 

kb/s implementation represents the vast majority of the real-time variable- 

rate code. The fixed-point simulation of the variable-rate has also already 

been completed. 

2. Perform a quality/ complexity analysis for different methods of increas- 

ing the codec complexity. The reduced complexity methods can easily be 

changed to adjust the codec complexity. However, it is not known in what 

manner to increase the complexity to obtain the best quality. 

3. Investigate the post-filtering used in the codec. Informal listening tests 

performed just before completion of the thesis indicated that significant 

improvement may be obtained by considering a different post-filter. 
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