SYNTHESES OF SULFUR-SUBSTITUTED 2,3-OXIDOSQUALENE ANALOGS AS INHIBITORS OF 2,3-OXIDOSQUALENE-LANOSTEROL CYCLASE

by

Yi Feng Zheng B.Sc., Jinan University, 1984 M.Phil., University of Hong Kong, 1988

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in the Department

of

Chemistry

© Yi Feng Zheng 1995

SIMON FRASER UNIVERSITY

May, 1995

٩

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

APPROVAL

Name:Yi Feng ZhengDegree:Doctor of PhilosophyTitle of Thesis:SYNTHESES OF SULFUR-SUBSTITUTED 2,3-
OXIDOSQUALENE ANALOGS AS INHIBITORS OF
2,3-OXIDOSQUALENE-LANOSTEROL CYCLASE

Examining Committee:

Chairperson: Prof. A. J. Bennet

Prof. A. C. Oehlschlager, Senior Supervisor

Prof. B. M. Pinto, Supervisory Committee

Prof. E. Kiehlmann, Supervisory Committee

Prof. T. J. Borgford, Internal Examiner

Brof. J. C. Vederas, External Examiner Department of Chemistry, University of Alberta

Date Approved May 11, 1995

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.

Title of Thesis/Project/Extended Essay

Syntheses of Sulfur-Substituted 2,3- Oxidosqualene Analogs as Inhibitors

of 2,3-Oxidosqualene-Lanesterol Cyclase

Author:

(signature)

(name)

May 11, 1995

(date)

Abstract

2,3-Oxidosqualene-lanosterol cyclases (OSCs) catalyze the cyclization of (3*S*)-2,3-oxidosqualene (2,3-OS) *via* a series of partially cyclized carbocationic intermediates to the tetracyclic protosterol cation. Backbone rearrangement of the latter gives lanosterol which serves as precursor of cholesterol and ergosterol in mammalian and fungal systems, respectively. This thesis focuses on the syntheses of two classes of sulfur-containing substrate analogs as mechanism-based inhibitors of OSCs. In the first series of compounds, sulfur or sulfoxide replace carbons at C-6, C-10, C-14, C-18 or C-19 in 2,3-OS which are considered to become cationic centres during the cyclization. These 2,3-OS analogs were designed to interfere with ring A, B, C or D formation by "enzyme-activated" mimicry of the presumptive cationic intermediates. In the second series of compounds, sulfur substitutes for carbons at position α (C-5, C-13 or C-20) or β (C-8 in 2,3-OS) to those carbons presumed to be cationic during the cyclization. Again, the sulfur atoms were positioned to probe the existence of monocyclic, tricyclic and tetracyclic protosterol cationic intermediates.

The syntheses of compounds in the first series were achieved by coupling the appropriate epoxy mesylates and thiols under phase-transfer conditions. Biological evaluation revealed that 18-thia-19-dehydro-2,3-OS had an IC50 of 0.22 nM for *Candida albicans* and 0.08 nM for rat liver OSCs, which is the best inhibitor for these OSCs to date. Enzyme kinetic analyses indicated that this compound was a competitive, time-dependent and irreversible inhibitor.

The syntheses of all *trans* vinylic sulfur-substituted 2,3-OS analogs involved two synthetic methodologies. A new methodology involving stereospecific coupling of trisubstituted vinylic anions with alkyl 4-methylbenzenthiosulfonates was developed and applied to the syntheses of 6(E)-

iii

8-thia- and 14(*E*)-13-thia-2,3-OS. A modified Wittig-Horner reaction was used in the syntheses of 6(E)-5-thia- and 18(E)-20-thia-2,3-OS. Biological studies showed an IC50 of 0.20 μ M for *C. albicans* and 0.32 μ M for rat liver OSCs for (18*E*)-20-thia-2,3-OS which are the lowest values among this series of compounds.

Biological studies lead to the conclusion that modification of near C-20 of region of 2,3-OS results in more potent inhibitors of OSCs.

ά.

١.

Dedication

This thesis is dedicated to my wife Heung Yeung and to my late parents Tian Ni Zheng and Wen Ying Zhang

٠.

Acknowledgment

I would like to express my gratitude to my senior supervisor, Professor A. C. Oehlschlager, for his enthusiasm and excellent suggestions throughout my research work and in the preparation of this thesis. I am grateful to him for providing the outstanding work environment, especially for giving me freedom for total control over the formulation of the synthetic strategies and the execution of syntheses.

Many individuals including those post-doctoral fellows, research associates graduate-students and technicians who have contributed to the success of my research projects are very much appreciated. I would like to thank Dr. D. S. Dodd and Ms. A. L. Perez for their invaluable discussions during the courses of my study. I really enjoyed those numerous times that we spent together for the exchange of research ideas and shared our success. I would like to thank Drs. H. D. Pierce and S. Jayaraman for their proof reading of my thesis. The technical assistance of Mrs. M. Tracy (NMR), Mr. G. Owen (Mass), and Mr. M. Yang (elemental analysis) is very grateful.

I wish to thank Dr. E. J. Kiehlmann for his kindly editing of this thesis.

I also wish to acknowledge Dr. I. Abe and Dr. G. D. Prestwich at State University of New York at Stony Brook for providing me the kinetic results of pig liver cyclase for my sulfur-substituted 2,3-oxidosqualene analogs. I wish to thank Dr. N. H. Georgopapadakou at Hoffmann-La Roche Inc. in New Jersey and Dr. P. G. Hartman and Ms. P. Scheliga at Hoffman-La Roche Ltd. in Basel, Switzerland for providing the biological results of rat liver, *Candida albicans* cyclases and biosynthesis cholesterol of my sulfur-substituted 2,3-oxidosqualene analogs.

Finally, I would like to thank my wife Heung Yeung for her patience and understanding, my uncle S. S. Cheng, my aunt Helen Cheng and their family for continuous encouragement and moral support throughout my Ph. D. Program.

vi

Table of Contents

Page Number

Chapt	Chapter 1 Introduction1		
1.1.	Overview of 2,3-oxidosqualene cyclases1		
1.2.	2,3-Oxidosqualene-lanosterol cyclase3		
1.2.1.	Characterization of 2,3-oxidosqualene-lanosterol cyclases3		
1.2.2.	Mechanistic aspects of (3S)-2,3-oxidosqualene cyclization		
	mediated by 2,3-oxidosqualene-lanosterol cyclase6		
1.2.3.	Inhibition of 2,3-oxidosqualene-lanosterol cyclase using		
	charged heteroatom substituted analogs17		
1.3.	Research objective and thesis organization21		

Chapter 2 Syntheses and Biological Evaluation of Sulfur- and

Sulfoxide-Substituted 2,3-Oxidosqualene Analogs 63-71---25

2.1. F	Rationale?	26
2.2. 8	Syntheses	29
2.2.1.	Syntheses of 63 and 67	29
2.2.2.	Syntheses of 64 and 68	32
2.2.3.	Syntheses of 65, 69 and 70	34
2.2.4.	Syntheses of 66 and 71	37
2.3.	Biological studies	38

Chapter 3 Synthesis of 18-Thia-19-dehydro-2,3-oxidosqualene (72) and Enzyme Kinetics of inhibition by 66 and 72------44

3.1.	Synthesis of 72 45	,
3.2.	Kinetics of inhibition by 66 and 724	7

Chapter 4 Syntheses of *E*-Vinylic Sulfur Substituted 2,3-Oxidosqualene

Analogs 73-76 and Evaluation of their Inhibitory Activity----53

4.1.	Rationale	54
4.2.	Syntheses of 74 and 75	60
4.3.	Syntheses of 73 and 76	67
4.4.	Biological results	72

Chapter 5	Concluding	Remarks	75
onuplet J	oonoluung		, v

×.,

ų,

Chap	ter 6 Experimental	78
6.1.	Instrumentation for spectroscopic analyses	·78
6.2 <i>.</i>	General chemical procedures	78
6.3.	Biological methods	79
6.4. E	Experimental procedures and spectral data	80
6.4.1.	Syntheses discussed in Chapter 2	80
6.4.2.	Syntheses discussed in Chapter 310	03
6.4.3.	Syntheses discussed in Chapter 41	09

eferences130

List of Tables

Page Number

Table 1.	Inhibition of OSCs by heteroatom (N and O) substituted
	substrate and transition state mimics 45-6219
Table 2.	Evaluation of compounds 63-71 as inhibitors of OSC and
	cholesterol biosynthesis39
Table 3.	Evaluation of compounds 73-76 as inhibitors of OSC73

а.

List of Figures

-

Page Number

Figure 1.	Proposed mechanism of OSC-mediated cyclization
	of 2,3-OS (1) to lanosterol (8)2
Figure 2.	Proposed mechanism of irreversible inhibition
	of rat liver OSC by 29-MOS5
Figure 3.	Proposed mechanism of cyclization of squalene
	(11) to lanosterol (8)6
Figure 4.	Proposed mechanism of "synchronous" cyclization
	of 2,3-OS (1) to lanosterol (8)7
Figure 5.	OSC-mediated cyclization of modified substrates 15 and
	16 to their lanosterol analogs 17 and 188
Figure 6.	Induced cyclization of the bicarbocyclic epoxide 19
	to 3β-hydroxy-β-onoceradiene (20)8
Figure 7.	Lewis acid induced cyclization of oxido-1,5-polyenes9
Figure 8.	Monocyclic (27) and bicyclic triterpenes (28) from
	Achillea odorata L. and Pistacia lentiscus L11
Figure 9.	Biomimetic polyene cyclizations by cation-stabilizing
	auxiliaries12
Figure 10	Lewis acid induced biomimetic polyene pentacyclization
	of fluorine-substituted 2,3-OS analog13
Figure 11	. Stabilization of carbocation intermediates by delivery of
	negative point charges by OSC13
Figure 12	. OSC formation of ring C in anti-Markovnikov addition

	generating cation 5 instead of cation 3314
Figure 13.	Lewis acid catalysis of cyclization of racemic 2,3-OS (1a)
	and its diol analog (34)15
Figure 14.	OSC-mediated cyclization of 18,19-dihydro-2,3-OS and
	18 (<i>Z</i>)-2,3-OS15
Figure 15.	OSC-mediated cyclization of 10,15-didemethyl-
	2,3-OS (41)16
Figure 16.	Nitrogen-substituted squalenes (48-49) and 2,3-OSs (45-47)
	and transition state analogs (50-55) as inhibitors of OSCs18
Figure 17.	Oxygen-substituted 2,3-OS analogs as inhibitors of OSCs20
Figure 18.	Sulfur- and sulfoxide-substituted 2,3-OS analogs (63-72)
	prepared as substrate mimics for OSCs23
Figure 19.	E-Vinylic sulfur-substituted 2,3-OS analogs 73-76
	as possible mechanism-based inhibitors of OSCs24
Figure 20.	Time dependence of inhibition by 6649
Figure 21.	Time dependence of inhibition by 7250
Figure 22.	Lineweaver-Burk plot of 72 for competitive inhibition50
Figure 23.	Irreversible inhibitory study of pig liver OSC
	by 66 , 72 and 29-MOS51
Figure 24.	Vinylic lanosterol analog 157 formed via OSC-catalyzed
	cyclization of 29-MOS56
Figure 25.	Retrosynthetic analyses of 74 and 7561
Figure 26.	nOe experiment on 17763
Figure 27.	nOe experiment on 75 66
Figure 28.	Retrosynthetic analyses of 73 and 7668

List of Schemes

Hypothetical mechanism of inhibition of OSCs by sulfur-	
substituted 2,3-oxidosqualene analogs	-27
Retrosynthetic analyses of 63-66	·28
Synthesis of epoxy mesylate 85	-29
Synthesis of allylic bromide 91	-30
Syntheses of 63 and 67	-31
Synthesis of epoxy mesylate 103	-32
Syntheses of 64 and 68	-33
Synthesis of epoxy mesylate 117	-35
Syntheses of 65 , 69 and 70	-36
Syntheses of 66 and 71	-37
Synthesis of allylic sulfone 135	45
Synthesis of mesylate 141	46
Synthesis of 72	-47
Proposed mechanism of inhibition of OSC	
by substrate analog 72	-48
Hypothetical mechanism of inhibition of OSC	
by 22,23-dihydro-18(<i>E</i>)-20-oxa-2,3-OS (61)	-54
OSC mediated cyclization of 18(E)-20-oxa-	
2,3-oxidosqualene (153) to its corresponding tetracyclic	
protosterol ketone (155)	55
Hypothetical inhibition of OSC by 6(E)-5-thia-2,3-OS (73)	
and 6(E)-8-thia-2,3-OS (74)	58
	Hypothetical mechanism of inhibition of OSCs by sulfur- substituted 2,3-oxidosqualene analogs

Scheme 18.	Hypothetical inhibition of OSC by 6(<i>E</i>)-5-thia-2,3-OS (75)
	and 6(E)-8-thia-2,3-OS (76)59
Scheme 19.	Synthesis of thiosulfonate 17462
Scheme 20.	Synthesis of 6(<i>E</i>)-8-thia-2,3-oxidosqualene (74)62
Scheme 21.	Synthesis of epoxy thiosulfonate 18365
Scheme 22.	Synthesis of 14(E)-13-thia-2,3-oxidosqualene (75)66
Scheme 23.	Synthesis of tetraene acetal 19368
Scheme 24.	Synthesis of sulfur-subsitituted Wittig-Horner agent 19769
Scheme 25.	Synthesis of 6(<i>E</i>)-5-thia-2,3-oxidosqualene (73)70
Scheme 26.	Synthesis of 18(E)-20-thia-2,3-oxidosqualene (76)71

۰.

۷.

List of Abbreviations

br	broad (¹ H-NMR)
<i>n-</i> Bu4NF	tetrabutylammonium fluoride
CI	chemical ionization (mass spectroscopy)
Ср	cyclopentadienyl
C-S	cation-stabilizing
<i>m-</i> CPBA	meta-chloroperbenzoic acid
d	doublet (¹ H-NMR)
dt	double triplet (¹ H-NMR)
δ	chemical shift in ppm downfield from tetramethyl
	silane (NMR)
DEAE-Sephacel	diethylaminoethyl sephacel
DIBAL-H	diisobutylaluminum hydride
DMAP	4-N,N-dimethylaminopyridine
DMF	N,N-dimethylformamide
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
El	electron impact (mass spectroscopy)
equiv.	equivalent
g	grams
GC	gas chromatography
IC50	molar concentration of inhibitor required to decrease
	enzymatic activity by 50% (biological inhibition
	assays)
LDA	lithium diisopropylamide

m	multiplet (¹ H-NMR)		
m/z	mass to charge ratio (mass spectroscopy)		
MDBK cells	madin darbin bovine kidney cells		
MIC	minimum concentration of inhibitor required to		
	completely inhibit cell growth (biological assays)		
29-MOS	29-methylidene-2,3-oxidosqualene		
NBS	N-bromosuccinimide		
NCS	N-chlorosuccinimide		
NMR	nuclear magnetic resonance		
nOe	nuclear Overhauser enhancement (¹ H-NMR)		
2,3-OS	(3S)-2,3-oxidosqualene		
OSC	2,3-oxidosqualene cyclase		
OTBS	tert-butyldimethylsilyloxy		
Oct4NBr	tetraoctylammonium bromide		
q	quartet (¹ H-NMR)		
S	singlet (¹ H-NMR)		
Sia ₂ BH	diisiamylborane		
SDS-PAGE	sodium dodecyl sulfate-polyacrylamide gel		
	electrophoresis		
t	triplet		
THF	tetrahydrofuran		
TBSCI	tert-butyldimethylsilyl chloride		
<i>p</i> -TsOH	para-toluenesulfonic acid		
L.			

Chapter 1

Introduction

1.1. Overview of 2,3-oxidosqualene cyclases.

2,3-Oxidosqualene cyclases (OSCs) play important roles in sterol biosynthesis through catalysis of the cyclization of (3*S*)-2,3-oxidosqualene (1, 2,3-OS) to a number of tetracyclic triterpenes.^{1,2} In mammalian and fungal systems, lanosterol (8) is the immediate cyclized product which serves as a precursor of cholesterol or ergosterol, respectively. In photosynthetic plants, cycloartenol or β -amyrin are the products. Because the enzymatic cyclization represents the most remarkable step in the biosynthesis of steroids and triterpenes, its mechanistic features have been of great interest to both chemical and biochemical communities. Woodward and Bloch first proposed a mechanism for the cyclization of squalene and rearrangement to lanosterol in 1953.³ Although this fascinating cyclization has received forty years of intensive study, the mechanism of the cyclization of 2,3-OS to lanosterol is still a matter of debate and conjecture. The generally accepted mechanism of OSC cyclization was proposed by van Tamelen (Figure 1).^{4a,b} OSCs are considered

Figure 1. Proposed mechanism of OSC-mediated cyclization of 2,3-OS (1) to lanosterol (8).

to initially bind 2,3-OS in a chair-boat-chair conformation, then catalyze the sequential formation of four new C-C bonds leading *via* cations **2-5** to a tetracyclic protosterol cation **6**. Rearrangement of **6** by hydride and methyl migrations followed by elimination of a proton gives lanosterol in fungi and mammalian systems. Although early suggestions were for a "synchronous"

process,⁵ current hypotheses center on a "stepwise" process,⁴ proceeding through a series of discrete, conformationally rigid, partially cyclized carbocationic intermediates (**2-6**, Figure 1). The natural occurrence of monocyclic^{6a} and bicyclic^{6b} triterpenes, obviously derived from 1, has been viewed as evidence for the "stepwise" mechanism. This thesis focuses on the design and syntheses of mechanism-based inhibitors for 2,3-oxidosqualenelanosterol cyclase (OSC) based on the "stepwise" process. As well the inhibitory activities of the 2,3-OS analogs prepared are examined.

1.2. 2,3-Oxidosqualene-lanosterol cyclase.

1.2.1. Characterization of 2,3-oxidosqualene-lanosterol cyclases.

2,3-Oxidosqualene-lanosterol cyclases (OSCs), which mediate the conversion of (3*S*)-2,3-oxidosqualene to lanosterol, are membrane-bound proteins which are stabilized and solubilized in the presence of detergents. Activity of the OSCs requires both detergents and the appropriate salts. For instance, solubilized yeast OSC has been reported to be strongly inhibited in solutions of high ionic strength and to be stimulated by the neutral detergent Triton[®]X-100.7 Soluble OSC from hog liver requires both anionic detergent (deoxycholate) and high salt concentration for activity.⁸ Critical dependency on additives causes difficulties in purification of active forms of these enzymes. Partial purification of OSC from hog liver⁹ and yeast^{10,11a} have been only recently reported. Yeast OSC¹⁰ was found to be negatively charged at pH 6 and its activity was stimulated by high concentrations of potassium phosphate buffer. Both partially purified hog liver⁹ and yeast¹⁰ OSCs were strongly inhibited by cysteine-modifying reagents such as N-ethylmaleimide suggesting that a cysteine residue is essential for their activity. Recent chemical modification of yeast OSC^{11b} using 3-carboxyl-4-nitrophenyl-

dithio-1,1',2-*trisnor*squalene supports the existence of an essential thiol group within the active site of the enzyme.

In the mammalian system, a 1863-fold purification of OSC from rat liver has been reported with 28% recovery.¹² The purified rat liver cyclase displays a single band on SDS-PAGE gel with a molecular mass of 75 KDa. In separate studies, pig and rat liver OSCs were purified to homogeneity and showed single bands on SDS-PAGE gel with 75 KDa and 78 KDa molecular masses, respectively.^{13a} Affinity labeling of these pig and rat liver OSCs with a mechanism-based irreversible inhibitor of OSC, (³H)-29-methylidene-2,3-OS¹⁴ (29-MOS), showed a single radioactive band at 75 KDa for pig liver cyclase and 78 KDa for rat liver cyclase.^{13a} These results confirmed that these protein bands are responsible for cyclase activity. Further study of the labeled rat liver cyclase revealed that two adjacent Asp residues in the most highly conserved region (Asp-Asp-Thr-Ala-Gul-Ala) of the cyclase were equally labeled by (³H)-29-MOS.^{13b} This result suggests that the carboxyl group of one of the two adjacent Asp residues traps the 21methylidene protosterol cation (9) to form an ester bond causing the irreversible inhibition (Figure 2).^{13b} This result also implicates this highly conserved region in the stabilization of the protosterol cation (6) during the cyclization. It is noteworthy that the same affinity labeling experiment was not successful with yeast cyclases suggesting differences in the active sites of mammalian and fundal OSCs.^{13a}

Yeast OSC from *Saccharomyces cerevisiae* was purified and showed a molecular mass of 26 KDa,¹⁵ substantially lower than that of mammalian OSCs. Very recently, the *ERG7* genes encoding oxidosqualene cyclases from the yeast *Candida albicans*¹⁶ and *S. cerevisiae*¹⁷ have been cloned by genetic complementation of a cyclase-deficient *erg7* strain, and their DNA sequence codings have been found to be very similar. Thus, the sequence in *C. albicans*

Figure 2. Proposed mechanism of irreversible inhibition of rat liver OSC by 29-MOS.

contains an open reading frame of 2187 nucleotides and encodes a predicted protein of 728 amino acids with molecular mass of 83.7 kDa,^{16a} while the sequence in *S. cerevisiae* has an open reading frame of 2196 nucleotides and encodes a predicted protein of 731 amino acids with molecular mass of 83.4 KDa.¹⁷ *S. cerevisiae* and *C. albicans* OSCs share 63% identity of amino acid sequences.¹⁷ The unusually high abundance of tryptophan and tyrosine found in the amino acid sequences in both proteins has led to the hypothesis that the electron-rich aromatic side chains of these residues are essential features of the active sites of these cyclases.¹⁷

1.2.2. Mechanistic aspects of (3*S*)-2,3-oxidosqualene cyclization mediated by 2,3-oxidosqualene-lanosterol cyclase.

The OSC-mediated cyclization of 2,3-OS to lanosterol is one of the most complex reactions in nature. The enzyme-catalyzed reaction forms four rings and establishes seven stereocenters in lanosterol (8) with precision that is not yet approached by any known synthetic methodology. After the initial proposal by Woodward and Bloch that lanosterol could be formed by the cyclization of squalene,³ Stork and Burgstahler proposed sequential ring formation based on polyene cyclization studies^{18a} (Figure 3). Eschenmoser and coworkers proposed

Figure 3. Proposed mechanism of cyclization of squalene (11) to lanosterol (8).

that the enzymatic cyclization of **11** to **8** could be a "concerted" single step process.^{18b} The first demonstration that 2,3-oxidosqualene and not squalene (**11**) was the intermediate to undergo enzymatic cyclization was independently reported by Corey *et al.*^{19a} and by van Tamelen *et al.*^{19b} Cornforth²⁰ suggested that cyclization of 2,3-OS (**1**) by the cyclase proceeded *via* a "synchronous" process. In his proposal four rings were formed by initial acid-catalyzed opening of the terminal epoxy group to generate the protosterol cation equivalent **14**. The latter underwent rearrangement followed by elimination to give

Figure 4. Proposed mechanism of "synchronous" cyclization of 2,3-OS (1) to lanosterol (8).

lanosterol (Figure 4). That only (3S)- and not the (3R)-enantiomer of oxidosqualene acted as a substrate was demonstrated by Barton and coworkers.^{19c}

Early mechanistic studies concentrated on synthesis and enzymatic transformation of unnatural modified substrates to probe the enzyme mechanism. It was found that modification of the 2,3-OS skeleton has provided acceptable substrates.²¹ The conversion of 2,3:22,23-dioxidosqualene (**15**) and 2,3-oxido-22,23-dihydrosqualene (**16**) to the corresponding 24,25-oxidolanosterol (**17**) and 24,25-dihydrolanosterol (**18**) respectively are good examples (Figure 5).^{21e,f} This result demonstrated that the side chain subunit was not involved in the cyclization. Another significant observation was that the partially cyclized epoxide **19** was cyclized to the tetracyclic product **20**^{21j} (Figure 6). This indicated that the acyclic substrate framework was not a prerequisite for enzymatic recognition. Thus, a model of full "pocket fit" does not adequately describe the substrate-enzyme interaction either for binding or catalytic activity. This result also implies that the minimal requirement for the enzymatic cyclization is the terminal epoxide with two

Figure 5. OSC-mediated cyclization of modified substrates 15 and 16 to their corresponding lanosterol analogs 17 and 18.

appropriately situated olefinic bonds. More importantly, this result revealed that the protosterol **14** proposed by Cornforth²⁰ (Figure 4) is not a requirement for the process. i.e., an X⁻ as stabilizing group is not necessary in the C-20 cation region. This gave the impetus to consider an alternative mechanism for the enzymatic cyclization.

Figure 6. Induced cyclization of the bicarbocyclic epoxide **19** to 3β-hydroxy-β-onoceradiene (**20**).

Based on entropic considerations and experimental evidence, van Tamelen⁴ suggested that the enzymatic cyclization proceeded through a series of discrete conformationally rigid, partially cyclized carbocationic intermediates (**3-6**, Figure 1) referred to as a "stepwise" process.⁴ This contrasts with the earlier proposal of Cornforth of a single polycyclization transition state referred to as a "synchronous" process (Figure 4). To support the "stepwise" hypothesis, van Tamelen's group investigated chemically induced model reactions. They compared the rates of reaction of monoene epoxides **21a-c** with that of the saturated analog **22** (Figure 7). It was observed that the rates of Lewis acid catalyzed ring-opening of the unsaturated epoxides **21a-c** were much higher than that of the saturated analog **22**.^{4b} Furthermore, the Lewis acid catalyzed cyclization of the deuterium-labelled epoxide **23** gave exclusively **24** (Figure 7) showing that the deuterium-labelled methyl group had maintained its stereochemical location in the 4 α -position.^{4b} These results provided strong evidence that ring A is formed biomimetically with a high degree of π -bond participation in an SN2-like epoxide cleavage process. To

Figure 7. Lewis acid induced cyclization of oxido-1,5-polyenes.

evaluate the influence of additional π -bonds on the rate of polycyclization, van Tamelen *et al.* selected monoene epoxide **21c**, diene-epoxide **25** and triene epoxide **26** (Figure 7). In Lewis acid catalyzed cyclization these epoxides had half-lives of 75, 100 and 100 min, respectively, suggesting that initial epoxide opening is the slow step and that additional π -bonds do not accelerate the rate of cyclization.^{4b} Based on these results, van Tamelen concluded that in the biomimetic process ring A is formed with a high degree of π -bond participation in the epoxide ring opening. He further extrapolated these results to suggest the enzymatic cyclization proceeds through a series of discrete conformationally rigid, partially cyclized cation intermediates in which formation of ring A is likely to be the slow step.

Theoretical calculations of Dewar *et al.*²² also strongly support the "stepwise" hypothesis. They found that ring formation involving cation addition to a double bond proceeds *via* formation of a cyclic π -complex. The olefin-carbenium ion π -complex intermediates require stereospecific *trans* addition of the next double bond allowing ring formation to proceed "stepwise" rather than "synchronous".²² This result is consistent with van Tamelen's proposal.

The isolation of naturally occurring monocyclic $(27)^{6a}$ and bicyclic triterpenes $(28)^{6b}$ provides further evidence to support the existence of cationic intermediates 3 and 4 (Figure 8). The structures and absolute stereochemistry of both 27 and 28 were postulated to be formed by "trapping" of partially cyclized intermediates 3 and 4 believed to be involved in the enzymatic cyclization of 2,3-OS (1). For ^v instance, 28 with a β -methyl group attached to C-8

Figure 8. Monocyclic (27) and bicyclic triterpenes (28) from Achillea odorata L. and Pistacia lentiscus L.

(steroid numbering) is suggested to be the product derived from attack of water at the α -face of C₇8 of 4. Compound 27 is an elimination product of 3. Both 27 and 28 are the first examples of monocyclic and bicyclic triterpenes isolated from partial cyclization of 2,3-OS (1) in nature.

Study of non-enzymatic polyene cyclizations has been used to gain insight about the enzymatic mechanism. "Biomimetic" cyclizations proceed in a "stepwise" manner.4c,d,23 Recently, Johnson *et al.* established that cationstabilizing (C-S) auxiliaries increase the rate of biomimetic cyclizations.^{23a-e} Introduction of isobutenyl or fluoride^{23b-g} as C-S groups adjacent to the *pro*-C-8 or *pro*-C-13 (steroid numbering) carbons increased the rate of cyclization and yield of the final product. For example, Lewis acid catalyzed cyclization of substrate **29a** (X = H) to **30a** (X = H) gave a yield of 20% after 24 h while the same cyclization of **29b** (X = CH=CMe₂) underwent complete reaction to **30b** (X = CH=CMe₂) in 1 h with an isolated yield of 80-83% after acetylation (Figure 9).^{23a} Introduction of fluoride as a C-S auxiliary allowed a one-step conversion of 2,3-OS analog **31**

to its corresponding pentacyclic derivative **32** in 10% yield (Figure 10).^{23f} Compounds such as **32** are always accompanied by partially cyclized products. These observations revealed that even assisted biomimetic cyclizations achieve limited success and are still far from the efficiency of the cyclases. Introduction of cation stabilizing auxiliaries is thought to reduce the energy of the intermediates which generally correlates with more selectivity.

Figure 10. Lewis acid induced biomimetic polyene pentacyclization of fluorinesubstituted 2,3-OS analog.

Based on his investigation of biomimetic cyclizations, Johnson recently proposed refinement in the mechanism of cyclase action. He suggested axial delivery of negative point charges by the cyclase to the individual carbons of 2,3-OS.^{23a,e} He reasoned that sterospecific delivery (from the α - or β -face) of anions would stabilize the carbocationic transition-state and lower the activation energy

2,3-OS (1)

Figure 11. Stabilization of carbocation intermediates by delivery of negative point charges by OSC.

required for their conversion to subsequent cations (Figure 11). For example, closure of ring B in a boat rather than chair conformation could be promoted by delivery of a point charge to the α -face at the *pro*-C-8 (steroid numbering) carbon. Similarly, point charge delivery to the α -face of the *pro*-C-13 to give **5** instead of the *pro*-C-14 to give **33** could promote the closure of ring C in an *anti*-Markovnikov manner (Figure 12).

Figure 12. OSC-mediated formation of ring C in *anti*-Markovnikov addition generating cation **5** instead of **33**.

The non-enzymatic cyclization of racemic 2,3-OS $(1a)^{24a}$ and its analog 34^{24b} gives exculsively five-membered ring C products 35a-b and 36 via Markovnikov addition (Figure 13). Such tricyclic systems are formed in the enzymatic transformation of 2,3-OS analogs lacking Δ^{18} (37)^{21h} or containing a C-18(*Z*) double bond (38)^{4e} (Figure 14). The tricyclic products 39 and 40a-b are derived from elimination of and capture by water, respectively, of the tertiary cation intermediates. Enzymatic transformation of 2,3-OS analog 41^{25a} in which the methyl groups at C-10 and C-15 were replaced by hydrogen gave 6.6.5-tricyclic product 44 (Figure 15). The chair-chair-boat conformation of 44

Figure 13. Lewis acid catalysis of cyclization of racemic 2,3-OS (1a) and its diol analog (34).

34

Figure 14. OSC-catalyzed cyclization of 18,19-dihydro-2,3-OS and 18(Z)-2,3-OS.

Figure 15. OSC-mediated cyclization of 10,15-didemethyl-2,3-OS (41).

suggests that **41** is folded by the cyclase to a conformation in which the 10,11olefinic subunit is rotated 180° relative to the normal conformation adopted by 2,3-OS (**1**). Such folding is unfavorable for **1** because of the large steric interaction between the C-10 and C-15 methyl groups. The course of the enzymatic transformation of **41** implies that the cyclization can proceed *via* secondary cationic intermediates. By comparison the conformation of the 14,15-olefinic subunit in **41** remains the same as during enzymatic cyclization of **1** suggesting that the rigidity of this subunit is more strongly controlled by the enzyme.

The stereochemistry at C-20 of protosterol **6** has been recently examined by Corey *et al.* Transformation of 18(E)-20-oxa-2,3-OS^{25b} and 20(E)-20,21-dehydro-2,3-OS^{25c} to their respective protosterol derivatives established that these derivatives have a 17β -side chain instead of the previously postulated 17α -orientation.²⁰

The natural occurrence of monocyclic^{6a} and bicyclic^{6b} triterpenes, theoretical calculations,²² biomimetic cyclization,^{4a-d,23} and enzymatic transformations of modified substrates^{4e,21h,25a} all point to an enzymatic process proceeding through a series of conformationally rigid, partially cyclized carbocationic intermediates (**2-5**, Figure 1).

1.2.3. Inhibition of 2,3-oxidosqualene-lanosterol cyclase using charged heteroatom substituted analogs.

Inhibition of 2,3-oxidosqualene-lanosterol cyclase (OSC) using various strategies to probe the existence of cationic intermediates during the sterol biosynthesis has been reviewed recently.^{2,26} Important strategies include the introduction of stabilizing groups at carbons considered to be cationic during the enzyme cyclization or inclusion of a heteroatom in substrate or transition state analogs to mimic the presumptive carbocationic intermediates. The use of the first strategy led to the discovery of the first mechanism-based irreversible inhibitor, 29-MOS, and its usefulness to map the active site (Figure 2).¹⁴ Use of charged heteroatom mimics has led to several good inhibitors of the enzymes involved in sterol biosynthesis.^{2,26} Indeed, this strategy has proven an effective guide in the rational design of inhibitors of sterol biosynthesis. Because it has been frequently applied to inhibitory studies of those enzymes involved in sterol²⁶⁻²⁸ and terpenoid²⁹ biosynthesis and is well documented,² we focus here only on the target enzyme: 2,3-oxidosgualene-lanosterol cyclase.

It is well known that OSC can be inhibited either by substrate^{26d,30} or transition state³¹ analogs. Substrate and transition state analogs containing secondary and tertiary amine functionalities are thought to be good inhibitors because they are protonated at physiological pH and thereby resemble the structure and charge of carbocationic intermediates. Substrate analogs containing

nitrogen replacing C-2, C-10 or C-19 in the 2,3-OS skeleton^{26d,30a-c} such as **45**-**47** (Figure 16) inhibited OSC from mammalian and fungal sources (Table 1). Compound **47** containing nitrogen in place of C-19 is considered to be

48

Figure 16. Nitrogen-substituted squalenes (**48-49**), 2,3-OSs (**45-47**) and transition state analogs (**50-55**) as inhibitors of OSCs.

	Enz	Enzyme (IC50 ^{<i>a</i>} : μM)		
Compound	Pig Liver	Rat liver	Yeast	C. albicans
45	NDb	1.5	2.5	NDb
46	5	4.8	5	22
47	1.5	7.5	35	ND ^b
48	ND ^b	7.5	10	ND ^b
49	5	ND ^b	NDb	ND ^b
50	1.4	ND ^b	ND ^b	0.23
51	0.3	ND ^b	ND ^b	0.67
52	ND ^b	20	ND ^b	NDb
53	ND ^b	2	NDb	ND ^b
54	ND ^b	0.11	ND ^b	ND ^b
55	ND ^b	> 300	NDb	ND ^b
56	ND ^b	21.3	ND ^b	ND ^b
57	ND ^b	13.0	ND <i>b</i>	ND <i>b</i>
58	ND ^b	NIC	ND ^b	ND ^b
59	ND ^b	0.11	ND ^b	ND ^b
60	ND ^b	142	ND ^b	ND ^b
61	ND ^b	80	NDb	ND ^b
62	ND ^b	120	ND ^b	ND ^b

Table 1. Inhibition of OSCs by heteroatom (N and O) substituted substrate and
transition state mimics (45-62).

a: mole concentration of inhibitor required to reduce enzyme activity by 50%.

^b: Not determined. ^c: No inhibition in the 1-40 μ M concentration range.

an analog of the cation formed during the OSC-mediated cyclization. It showed potent activity against mammalian cyclase (IC₅₀ = 1.5μ M, pig liver). Compounds **48** and **49** are transition state analogs in which a nitrogen atom replaces C-2 of the

squalene skeleton (Figure 16).^{28a,31a} In derivatives **50-55** the *pro*-C-8, *pro*-C-10 and *pro*-C-13 (steroid numbering) positons of monocyclic, bicyclic, and tricyclic compounds, respectively, are replaced by nitrogen^{31b-9} (Figure 16). Except for **55**, these compounds were designed as mimics of cationic intermediates **2-5** and display a good to potent inhibitory activity against cyclases from mammalian and fungal sources (Table 1).

Figure 17. Oxygen-substituted 2,3-OS analogs as inhibitors of OSCs.

Inhibition of OSC by substrate analogs containing oxygen in the 2,3-OS skeleton is exemplified by dioxido analogs such as **56-60**,^{30d,e} *E*-vinylic ether **61** and *Z*-vinylic ether **62** ^{30f}(Figure 18). All dioxido analogs except **58** showed good inhibitory activity in rat liver cyclase (Table 1). Both vinylic ethers **61** and **62** were competitive inhibitors exhibiting very weak inhibition of OSC (IC₅₀ = 80 μ M and 120 μ M, respectively, rat liver OSC). Among the heteroatom analogs, compound
59 proved to be the best OSC inhibitor (IC₅₀ = 0.11 μ M, rat liver OSC) and showed time-dependent, non-competitive behavior.^{30d,e} These results highlight substrate analogs as attractive targets for further study.

The heteroatom-containing compounds **45-48** and **50** showed modest different inhibitory activity against cyclases from different sources (mammalian or fungal) suggesting the active sites of these cyclases could be different.

1.3 Research objective and thesis organization.

In view of the important role that charged heteroatom substrate analogs have played in the study of OSC and the observation that **59** was the most potent inhibitor of OSC,^{30e} my research focused on the design and synthesis of substrate analogs containing heteroatoms at key structural points. The introduction of heteroatoms into the skeleton of **1** could lead to analogs having sufficiently flexible conformations to be recognized by the cyclases. Such analogs could cyclize *in situ* to generate heteroatom analogs of the presumptive cationic intermediates **3-6** (Figure 1). The latter could be potent inhibitors through intra- or intermolecular interaction with native nucleophilic sites. I considered that the information derived from study of heteroatom-containing 2,3-OS analogs would be of use in designing more potent inhibitors of OSCs.

In this thesis, two sets of 2,3-OS analogs have been prepared and examined for their ability to inhibit OSCs. In one set of 2,3-OS analogs sulfur or sulfoxide functions replace the olefinic carbons considered to become cationic during the enzymatic cyclization (**63-72**, Figure 18). These strategically placed heteroatoms were expected to interfere with ring A, B, C, D formation by acting as mimics of presumptive cationic intermediates **3-6**. Another set of 2,3-OS analogs contained sulfur α or β to carbons considered to become cationic during the cyclization (**73-76**, Figure 19). The underlying assumption was that these vinylic

sulfide analogs of 2,3-OS would cyclize to the point that the carbocation formed could be stabilized by an adjacent sulfur. Such stabilization could provide a sufficiently long life to the thiocarbenium ions that they might react with the nucleophilic residues involved in the stabilization of the presumptive cationic intermediates. If this occurred, it was expected that this series of 2,3-OS analogs would act as irreversible inhibitors. Methodology for the synthesis of *E*-vinylic sulfides has been developed by Dodd and Oehlschlager^{31h}, and two *E*-vinylic sulfide 2,3-OS analogs in which sulfur replaced carbons C-9 and C-16 of 1 have previously been synthesized.

This thesis is divided into six chapters. Chapter 2 describes the synthesis of sulfur- and sulfoxide-substituted 2,3-OS analogs 63-71 (Figure 18) and their evaluation as inhibitors of fungal and mammalian OSCs. Synthetic methodologies such as zirconium-catalyzed carboalumination, barium allylic-allylic coupling, and phase-transfer catalysis have been applied to achieve the synthetic goals. Due to the observation that 66 in which sulfur replaces C-19 of 1 is the most potent inhibitor of OSCs, the synthesis of 72 (Figure 18) in which sulfur replaces C-18 of 1 was undertaken (Chapter 3). The inhibitory activities of these two 2,3-OS analogs were compared. An enzyme kinetic analysis of the actions of 66 and 72 is also presented and discussed in Chapter 3. Chapter 4 outlines the successful synthesis of vinylic sulfide analogs 73-76. Two synthetic strategies were used for the preparation of the required E-vinylic sulfides. A new methodology involving stereospecific coupling of trisubstituted vinylic anions with alkyl 4methylbenzenthiosulfonates was developed and applied to the synthesis of 74 and 75. An alternative method involved the modified Wittig-Horner reaction. This synthetic strategy affords 73 and 76 via a set of common intermediates.

.

Figure 18. Sulfur- and sulfoxide-substituted 2,3-OS analogs (**63-72**) prepared as substrate mimics for OSCs.

Figure 19. *E*-Vinylic sulfur-substituted 2,3-OS analogs (**73-76**) as possible mechanism-based inhibitors of OSCs.

Chapter 5 summarizes the results of the inhibition studies and outlines further possible investigations. Chapter 6 contains the experimental details.

Chapter 2

Synthesis and Biological Evaluation of Sulfur- and Sulfoxide-Substituted 2,3-Oxidosqualene Analogs 63-71

This chapter describes the synthesis and inhibitory activity of 2,3-OS analogs **63-71** in which sulfur or sulfoxide replaces the olefinic carbons C-6, C-10, C-14 and C-19 of **1** that are considered to become positively charged during OSC-mediated cyclization.

2.1. Rationale.

Our choice of sulfur-substituted 2,3-OS analogs³² was guided by several considerations. In the native cyclization, π bonds are the intramolecular nucleophiles that react with each cation (2-5). The excellent nucleophilic properties of sulfur³³ compared to candidates such as nitrogen or oxygen were considered to be an advantage if **63-66** acted as substrate mimics. We reasoned that initial enzymatic interaction with **1** would be primarily with the π orbitals of the sp² carbons normally at the sites now occupied by sulfur and the latter could mimic these interactions.

As each ring is formed in the native cyclization, the carbon positions replaced by sulfur or sulfoxide normally become positively charged and require an enzymatic nucleophile for stabilization. The sulfoxide analogs 67-71 provide electron-deficient centers at the relevant locations which could take advantage of this interaction to inhibit OSC.

Finally, it is possible that **63-66** could bind to OSCs and cyclize to **77-80**, respectively (Scheme 1). In this event, the new sulfonium ions formed would each be positioned near OSC nucleophilic sites normally stabilizing **3-6**. Since formation of rings A^{4a} and B^{34} has been shown to be the rate-determining step in the biomimetic polyene cyclization of analogs of **1**, one might reasonably expect that analogs **63** and **64** leading to **77** and **78**, respectively, would be the most potent inhibitors. If cyclization of **63-66** occurred, one would expect the thioethers to be stronger inhibitors than their sulfoxide analogs **67-71** since **77-80**, the cyclized derivatives of **63-66**, should be better mimics of enzyme-intermediate complexation.

If both the thioether and sulfoxide analogs of 1 behave as substrate mimics, the sulfoxides should be the more potent inhibitors. While interactions between

Scheme 1. Hypothetical mechanism of inhibition of OSCs by sulfur-substituted 2,3-oxidosqualene analogs.

OSC and the sulfoxides mimic enzyme-intermediate complexation, the interactions between OSC and the corresponding thioethers mimic enzyme-substrate complexation which is generally weaker.

The target compounds **63-66** require construction of terminal oxirane and thioether functionalities in unsaturated backbones. Retrosynthetic analysis reveals that they can be assembled from the epoxy carbocation and thiolate anion equivalents (Scheme 2). We selected the phase-transfer catalysis reaction³⁵ developed by Herriott and Picker which has the advantages of high yield, mild

Scheme 2. Retrosynthetic analyses of 63-66.

:0

reaction conditions and inexpensive reagents. The application of mild phasetransfer conditions [NaOH, methyltrioctylammonium chloride, H₂O-benzene (5:4)] should prevent nucleophilic opening of the epoxy ring by the thiolate anion.³⁶ The epoxy-containing reactants and products would be expected to remain in the organic phase, most of the thiolate anions in the aqueous phase. Among the many oxidation methods leading to sulfoxides (67-71) from thioethers,³⁷ we selected the potassium peroxymonosulfate oxidation described by Trost *et al.*³⁸ This reaction is selective, tolerates olefins and proceeds rapidly with high yield and easy work-up. With these rationales in mind, I commenced the syntheses of 63-71.

2.2. Syntheses.

2.2.1. Syntheses of 63 and 67.

The synthesis of **63** (Scheme 3) commenced with conversion of alcohol **81** to its protected form **82** in 94% yield. Epoxidation of **82** with *m*-CPBA in methylene chloride gave **83** in 86% yield. Deprotection of **83** followed by mesylation gave cation synthon **85** in 68% yield over two steps (Scheme 3). Epoxy alcohol **84** can also be prepared by direct epoxidation of alcohol **81** with *m*-CPBA in methylene chloride. However, a much lower yield of **84** (31%) was obtained in this reaction. We believe that the lower yield is due to high solubility of compound **84** in water and high volatility causing loss of the compound during work-up. Introduction of a silyl protecting group for the alcohol **81** during the epoxidation and use of less water (Bu4NF, H₂O <5 %) to remove the silyl protecting group of **83** avoids these problems and provides a high yield of **84**.

(a)TBSCI, Et₃N, DMAP, CH₂Cl₂; (b) *m*-CPBA, CH₂Cl₂; (c) Bu₄NF, THF;

(d) MeSO₂Cl, Et₃N, -50 °C, CH₂Cl₂.

Scheme 3. Synthesis of epoxy mesylate 85.

The anion synthon 97, a tetraenic thiol (Scheme 5), was prepared from the corresponding alcohol 95 which was obtained by allyl-allyl coupling of farnesyl chloride (93) with allylic bromide 91.39 The synthesis of 91 commenced with

zirconium-catalyzed carboalumination of 4-pentyn-1-ol (**86**) followed by iodine trapping to give the desired *E*-iodide **87** in 82% yield ⁴⁰ (Scheme 4). Capillary GC analysis of **87** revealed a single peak which contained *E*- and Z-isomers. Reaction of **87** with *tert*-butyldimethylsilyl chloride and Et₃N gave **88** in 95% yield. Analysis of **88** by GC/MS revealed two components (*E:Z* ratio 96:4). Conversion of **88** to its vinylic lithium derivative with 1.1 equiv. *n*-BuLi at -78°C followed by addition of ethyl chloroformate gave conjugated ester **89**. This product was then reduced with DIBAL-H to allylic alcohol **90** which was converted to allylic bromide **91** (Scheme 4).³⁹ Reaction of farnesol (**92**) with NCS-DMS complex⁴¹ gave farnesyl

(a) Zr(Cp)₂Cl₂, AlMe₃, then l₂, CH₂Cl₂; (b) TBSCl, DMAP, Et₃N, CH₂Cl₂;
(c) *n*-BuLi, -78 °C, THF, then ClCO₂Et; (d) DIBAL-H, ether; (e) MeSO₂Cl, Et₃N, -40 °C, LiBr, CH₂Cl₂.

Scheme 4. Synthesis of allylic bromide 91.

chloride (93) ih 81% yield (Scheme 5). Coupling of allylic bromide 91 with farnesyl chloride was achieved *via* the barium derivative of 93 to give the protected tetraenol 94 in 58% yield.³⁹ Removal

(a) NCS, DMS, CH₂Cl₂; (b) Li, Ph-Ph, 2 h, THF, then Bal₂, 0.5 h, then, **93**, 0.5 h, -78 °C, THF, then **91**, 12 h, THF; (c) Bu₄NF, THF; (d) PPh₃, i-PrO₂C-N=N-CO₂Pr-i, MeCOSH, 0 °C, THF;
(e) LiAlH₄, 0 °C, ether; (f) 50% NaOH, **85**, Oct₄NBr, 40 °C, H₂O-Toluene; (g) KHSO₅, 2 min, -5 °C, MeOH.

Scheme 5. Syntheses of 63 and 67.

of the silyl protecting group of **94** followed by Mitsunobu reaction gave thioacetate **96** which was reduced to thiol **97** (73% yield over three steps).⁴² Coupling of epoxy mesylate **85** and tetraenic thiol **97** to give **63** was achieved in 81% yield by treatment with 50% NaOH in toluene:H₂O (1:1) in the presence of

tetraoctylammonium bromide as a phase-transfer agent.³⁵ The structure of **63** was confirmed by ¹H-NMR which revealed a triplet at δ 2.82 (J = 6.2 Hz) for the oxirane hydrogen (C-3) and two multiplets at δ 2.52 and 2.68 for four hydrogens on C-5 and C-7 carbon. Oxidation of **63** with KHSO5 in MeOH gave sulfoxide **67** in 80% yield.³⁸ The structure of **67** was also confirmed by ¹H-NMR which revealed a double doublet at δ 2.88 (J = 4.6, 7.9 Hz) for the oxirane hydrogen (C-3) and a multiplet at δ 2.68 for the four hydrogens on C-5 and C-7.

2.2.2. Syntheses of 64 and 68.

The syntheses of **64** and **68** in which the sulfur or sulfoxide replaces C-10 of 2,3-OS involved coupling of epoxy mesylate **103** with trienic thiol **109** (Scheme 7). The former was prepared from homogeraniol (**98**)⁴³ which was initially protected (to **99**), converted *via* NBS in THF-H₂O (3.8:1)⁴⁴ to bromohydrin **100** and hence to oxirane **101** (Scheme 6). Deprotection of **101** using Bu₄NF gave epoxy alcohol **102** which was converted to the required epoxy mesylate **103**. The preparation of

(a) TBSCI, Et₃N; DMAP, CH₂Cl₂; (b) 1.0 eq. NBS, 0 °C, THF-H₂O; (c) K₂CO₃, MeOH;
(d) Bu₄NF, THF; (e) MeSO₂Cl, Et₃N, -50 °C, CH₂Cl₂.

Scheme 6. Synthesis of epoxy mesylate 103.

trienic thiol **109** commenced with the conversion of commercially available (E,E)farnesol (**92**) to farnesyl bromide (**105**) in 91% yield (Scheme 7).⁴⁵ Alkylation of **105** with the lithium enolate of ethyl acetate in the presence of CuI at -100 °C gave **106** in 91% yield according to the procedure of Coates.⁴⁶ Reduction of **106** with LiAlH4 gave the alcohol **107** in 92% yield. Mitsunobu reaction of **107** with thiolacetic acid gave thioacetate **108** which was reduced to the required trienic thiol

(a) PBr3, ether; (b) MeCO₂Et, Cul, LDA, -100 °C, THF; (c) LiAlH₄, ether; (d) PPh₃, i-PrO₂C-⁴ N=N-CO₂Pr-i, MeCOSH, 0 °C, THF; (e) LiAlH₄, 0 °C, ether; (f) 50% NaOH, **103**, Oct₄NBr, 40 °C, H₂O-Toluene; (g) KHSO₅, 2 min, -5 °C, MeOH.

Scheme 7. Syntheses of 64 and 68.

109 (74% yield over two steps).⁴² Coupling of 103 and 109 with the aid of a phase-transfer agent gave 64 in 73% yield.³⁵ Oxidation of 64 with KHSO5 in MeOH gave sulfoxide 68 in 84% yield (Scheme 7).38 The structures of 64 and 68 were confirmed by ¹H NMR analysis. The ¹H-NMR spectrum of **64** revealed a triplet at δ 2.71 (J = 6.2 Hz) due to the oxirane hydrogen (C-3) and a triplet at δ 2.51 (J = 8.0 Hz) for the four hydrogens on C-9 and C-11 adjacent to sulfur. The ¹H-NMR spectrum of 68 revealed overlapping signals of δ 2.56-2.76 for the oxirane hydrogen (C-3) and the four hydrogens on C-9 and C-11 adjacent to sulfoxide. An ¹H-¹H COSY ¹H-NMR analysis of **68** permitted the distinction of these signals and the establishment of H-H connectivities. A double triplet at δ 2.49 (J = 7.5, 7.5 Hz), was assigned to the two hydrogens on C-8. It showed a cross-peak in the COSY spectrum at δ 2.63 and δ 2.60 which indicated that these two signals are due to the two hydrogens on the carbon adjacent to the sulfoxide (C-9). Similarly, the quintet at δ 1.81 (J = 7.2 Hz), assigned to the two hydrogens on C-12, displayed a crosspeak in the COSY spectrum at δ 2.69 and δ 2.59 which indicated that these two signals are due to the two hydrogens on C-11.

2.2.3. Syntheses of 65, 69 and 70.

The syntheses of **65**, **69** and **70** in which sulfur or sulfoxide replaces C-14 of 2,3-OS involved coupling of epoxy mesylate **117** and dienic thiol **121** (Scheme 9). The former was prepared from homofarnesol $(112)^{47}$ obtained by chain extension of farnesol (**92**) in a procedure which was described for the synthesis of homogeraniol⁴³ (**98**, Scheme 8), and conversion of homofarnesol (**112**) to mesylate **117** followed by a sequence involving hydroxyl protection to **113**, addition of aqueous NBS to **114**, dehydrobromination to **115**, hydroxyl deprotection to **116** and mesylation to **117**. Dienic thiol **121** was prepared from geranylacetone (**118**) *via*

(a) CICOCOCI, DMSO, -60 °C, CH₂Cl₂, then **92**, Et₃N (Swern oxidation); (b) CH₂=PPh₃, THF; (c) Sia₂BH, THF, H₂O₂, NaOH; (d) TBSCI, Et₃N, DMAP, CH₂Cl₂; (e) 1.0 eq. NBS, 0 °C, THF-H₂O; (f) K₂CO₃, MeOH; (g) Bu₄NF, THF; (h) MeSO₂Cl,Et₃N, -50 °C, CH₂Cl₂. **Scheme 8.** Synthesis of epoxy mesylate **117**.

reduction to alcohol **119**, Mitsunobu reaction of the latter with thiolacetic acid to give thioacetate **120** and reduction. Coupling of mesylate **117** and thiol **121** under phase-transfer conditions was more difficult than for previous cases because a

(a) LiAlH₄, ether; (b) PPh₃, i-PrO₂C-N=N-CO₂Pr-i, MeCOSH, 0 °C, THF; (c) LiAlH₄, 0 °C, ether;
(d) 50% NaOH, 117, Oct₄NBr, 40 °C, H₂O-Toluene; (e) KHSO₅, 2 min, -5 °C, MeOH.
Scheme 9. Syntheses of 65, 69 and 70.

secondary sulfide was involved; the maximum yield of **65** was 31%. The structure of **65** was confirmed by ¹H NMR which revealed a sextet at δ 2.76 (J = 6.7 Hz) for the hydrogen on C-15 and a triplet signal at δ 2.51 (J = 7.7 Hz) for the two hydrogens on C-13. Oxidation³⁸ of **65** with KHSO5 in MeOH gave the two diastereoisomers **69** (24% yield) and **70** (33% yield) which were separated by column chromatography.⁴⁸ The ¹H-NMR spectra of **69** and **70** showed identical features except signals attributable to the methyl and hydrogen attached to C-15. The less polar (TLC) diastereoisomer **69** is assigned the *syn*-configuration with δ 1.23 (d, J = 6.9 Hz) for the CH3 and δ 2.73 for the hydrogen attached to C-15 while the more polar diastereomer **70** is assigned the *anti*-configuration with δ 1.27 (d, J = 6.9 Hz) for the CH3 and δ 2.67 for the hydrogen attached to this carbon. These ¹H-NMR assignments are consistent with those of axial and equatorial sulfoxides derived from oxidation of 5-thioglucose derivatives.^{49,50}

2.2.4. Syntheses of 66 and 71.

Similar chemistry was applied to the synthesis of **66** and **71** in which sulfur or sulfoxide replaces C-19 of 2,3-OS. Thus, **66** was prepared by coupling of epoxy mesylate **125** and thiol **128** (Scheme 10). The former was prepared from **94** by

(a) 1.0 eq. NBS, 0 °C, THF-H₂O; (b) K₂CO₃, MeOH; (c) Bu₄NF, THF; (d) MeSO₂Cl,Et₃N, -50 °C, CH₂Cl₂ ; (e) PPh₃, i-PrO₂C-N=N-CO₂Pr-i, MeCOSH, 0 °C, THF; (f) LiAlH₄, 0 °C, ether; (g) 50% NaOH, **125**, Oct₄NBr, 40 °C, H₂O-Toluene; (h) KHSO₅, 2 min, -5 °C, MeOH.

Scheme 10. Syntheses of 66 and 71.

addition of aqueous NBS to 122,⁴⁴ dehydrobromination and deprotection to 124 and mesylation to 125 (Scheme 10). Thiol 128 was prepared from the corresponding alcohol 126.⁴² Coupling of 125 and 128 to 66 was achieved in 80% yield. Oxidation of 55 with KHSO5 in MeOH gave sulfoxide 60 in 82% yield. The structures of 66 and 71 were confirmed by ¹H NMR. Thus, the ¹H NMR spectrum of 66 showed a triplet at δ 2.70 (J = 6.2 Hz) for the oxirane hydrogen (C-3) and two overlapping triplets at δ 2.50 and 2.48 (J = 7.7 Hz) for the four hydrogens on C-18 and C-20 while the ¹H NMR spectrum of 70 displayed a multiplet at δ 2.62 for the four hydrogens on C-18 and C-20.

2.3. Biological Studies.

2,3-Oxidosqualene analogs **63-71** were examined for their ability to inhibit *C. albicans* and rat liver OSC in cell-free extracts as well as cholesterol biosynthesis in intact MDBK cells (Table 2). These biological studies were performed by Dr. N. H. Georgopapadakou at Hoffmann-La Roche Inc. in Nutley, New Jersey and Dr. P. G. Hartman at F. Hoffmann-La Roche Ltd. in Basel, Switzerland. Comparison of activity is best measured in cell-free systems since adventitious adsorption and differing penetration into cells distorts relative activities in whole-cell systems. All 2,3-OS analogs prepared in this study possess sufficient conformational flexibility to assume conformations that should allow them to be recognized by OSCs as substrates.

The 2,3-OS analogs **63** and **67**, which situate sulfur at the position normally occupied by C-6, designed to interfere with the formation of the A ring, showed more potent inhibition in fungal and rat liver OSC [For **63**, IC₅₀ = 0.069 μ M, *C. albicans;* 0.0084 μ M, rat liver, (Table 2)] than previously reported inhibitors.²⁶ It is remarkable that thioether **63** is 2.3 fold more potent in *C. albicans* and 145 fold more potent in rat liver cyclase than the sulfoxide **67**. If **63** and **67** are acting as

	IC50 ^{<i>a</i>} (μM)		
	C. albicans cyclase	Rat liver cyclase	MDBK ^b
Compounds	(cell-free)	(cell-free)	(intact-cell)
63	0.069	0.0084	1.16
64	0.069	0.55	2.31
65	2.24	5.15	76.2
66	0.0023	0.00082	4.62
67	0.16	1.22	1.11
68	0.26	ND ^e	0.45
69	3.90	1.73	0.87
70	5.41	7.78	0.87
71	0.065	0.29	0.45
Keto ^C	NDe	ND ^e	0.94
Naftid	NDe	ND ^e	10.4

Table 2. Evaluation of compounds 63-71 as inhibitors of OSC and cholesterol biosynthesis.

a: molar concentration of inhibitor required to reduce enzyme activity by 50%.

b: Madin darbin bovine kidney cells.

c: Ketoconazole 51 (14 α -demethylase inhibitor).

d: Naftifine 52 (squalene epoxidase inhibitor).

e: not determined.

unmodified substrate analogs, these relative activities reveal for **63** a strong interaction with OSC binding sites normally stabilizing the initially formed cation **3**.

The 2,3-OS analogs **64** and **68** possess sulfur at the position normally occupied by C-10 and were designed to interfere with B ring formation. Again, thioether **64** was more potent (3.7-fold in *C. albicans*) than its sulfoxide **68**. For *C. albicans* OSC, **64** was as potent as **63** which qualified it as a more potent inhibitor than any previously reported²⁶ (Table 2). In rat liver OSC, **64** was 65 fold less potent than **63**. Thioether **64** was the only thioether examined in this study to be more active in *C. albicans* than rat liver cyclase (~8 fold). The stronger inhibition of **63** compared to **64** in *C. albicans* OSC is consistent with stronger interaction of cation **3** compared with **4** which would be expected if ring A is formed more slowly than ring B.

The 2,3-OS analogs **65** and **69** possess sulfur at the position normally occupied by C-14 and were expected to interfere with the *anti*-Markovnikov cyclization leading to ring C. Inhibition observed for thioether **65** in the cell-free *C. albicans* OSC revealed that it was 32 fold less potent than **63** or **64** and 613 fold less potent than **63** or **64** and 613 fold less potent than **63** for rat liver cyclase (Table 2). The low activity of **65** compared to **63** or **64** could be due to misplacement of the sulfur in **65**. Thus, formation of ring C could proceed *via* cyclization to a five-membered ring and formation of a tertiary carbocation followed by a 1,2 shift.^{4e,21h} In this event, the sulfurs in **65** and **69** should be more effective at the position normally occupied by C-15. The van Tamelen and Krief groups have examined this question by cyclization of 2,3-OS analogs lacking Δ^{18} unsaturation and possessing *Z*-geometry of Δ^{18} (Figure 14). These derivatives cyclized to produce a five-membered ring C suggesting preferential cation formation at C-15 if one interfered with subsequent ring D formation.^{4e,21h} For both *C. albicans* and rat liver cyclases, thioether **65** exhibited activity similar to the corresponding sulfoxides **69** and **70** with **69** being slightly

more inhibitory (~3 fold) than **65** in the latter. This is the only case in which a sulfoxide was more inhibitory than the corresponding thioether and is consistent with the action of both 2,3-OS analogs as unmodified substrate mimics.

The 2,3-OS analogs **66** and **71**, possessing sulfur at C-19, were designed to interfere with the formation of the protosterol cation **6** (Figure 1). Analog **66** is the most powerful inhibitor prepared in this study [IC₅₀ = 0.0023 μ M, *C. albicans;* 0.00082 μ M, rat liver, (Table 2)]. This 2,3-OS mimic is some 30 fold more potent than **63** or **64** and 974 fold more potent than **65** in *C. albicans* and 102, 670 and 6,280 fold more active than **63**, **64** and **65**, respectively, for rat liver cyclase. It is the most powerful OSC inhibitor reported to date and suggests 2,3-OS modifications in the region of C-19 as good candidates for further investigation.

Sulfoxides were generally less active than their corresponding thioethers. In C. albicans cyclase, sulfoxide analogs of the thioethers were 2 to 4 fold less potent except for 71 which was 28 fold less potent than its thioether analog 66. In rat liver cyclase, the differences between thioethers and the corresponding sulfoxides were more striking. Thioether 63 was 145 fold more active than sulfoxide 67 whereas differences between 65 and its sulfoxides 69 and 70 were less than 3-fold. The largest difference between a thioether and the corresponding sulfoxide was observed for 66 vs 70. The former was 353 fold more active than the latter for the rat liver cyclase. An interesting feature of sulfoxide activity is the relative activity of diastereoisomers 69 and 70. In rat liver cyclase, they exhibited noticeably different activities which actually bracket the activity of the corresponding thioether (0.33 and 1.5 fold differences compared with 65). We attribute the activity of the sulfoxides to coulombic interactions of the electron deficient sulfurs with the sites normally stabilizing cationic intermediates 3-6 (Figure 1). It is noteworthy that 71, which possesses a sulfoxide in place of C-19 of 2,3-OS, exhibited the strongest inhibitory activity of any sulfoxide in both C. albicans and rat liver cyclases.

The superior activity of thioethers in comparison to their sulfoxide analogs is puzzling if both types of analogs behave as unmodified substrate mimics. In the event that **63-66** are cyclized to the sulfonium ions **77-80** (Scheme 1) or close structural relatives, then one would expect the observed stronger inhibition for thioethers than for the corresponding sulfoxides. The mode of action of **66** with pig liver OSC^{13a} has been probed in preliminary kinetic studies in collaboration with Professor G. D. Prestwich at State University of New York at Stony Brook. With this mammalian OSC **66** acts as a competitive inhibitor and its inhibition is reversible in contrast to 29-methylidene-2,3-OS.¹⁴ This result suggests that **66** is recognized as a pseudo substrate and competes with the substrate for the same binding site. This issue will be discussed in the next chapter.

Activity of **63-71** in intact mammalian MDBK cells was significantly lower than in the cell-free systems. Thioethers **63-65** exhibited the same relative order of activity in this system as they did in the cell-free systems. Thus, **63** was more potent than **64** and the latter was more potent than **65**. In MDBK cells **66** was observed to be less active than both **63** and **64**. Indeed, in this system sulfoxides were either as active as (**63** *vs* **67**) or more active (**64** *vs* **68**, **65** *vs* **69** and **70**, **66** *vs* **71**) than their thioether analogs. We suspect the lower activity of **63-71** in MDBK cells is due to low permeability of the thioethers relative to the sulfoxides and possibly also to adventitious adsorption. Interestingly, none of the compounds were toxic to MDBK cells up to 100 µg/mL. Several of the compounds prepared in this study were more potent inhibitors of cholesterol synthesis in MDBK cells than Ketoconazole⁵¹ (a 14 α -demethylase inhibitor) and all except **65** were more active than Naftifine⁵² (^xa squalene epoxidase inhibitor) (Table 2).

The 2,3-OS analogs **63-71** were examined for their antifungal activity against *C. albicans*. All exhibited MIC values over 100 μ g/mL compared to an MIC of 20 μ g/mL for the commercial antifungal agent, Ketoconazole. Furthermore, none

inhibited ergosterol biosynthesis in growing *C. albicans* cells up to 100 μ g/mL. We suspect that the poor activity of **63-71** in growing *C. albicans* cells is due to low permeability of these compounds.^{31b}

In summary, efficient routes have been developed for the preparation of 2,3oxidosqualenes containing sulfur or sulfoxide replacing those carbons considered to develop cationic character during the OSC mediated cyclization of 1. Thioethers **63-66** showed powerful inhibitory activity in fungal and mammalian OSCs while the corresponding sulfoxides were less potent. It is difficult to rationalize the superior inhibition of thioethers **63-66** compared to the sulfoxides **67-71** unless one assumes cyclization of the former to sulfonium ions **77-80** (Scheme 1) or structural relatives. The relative activities of **63-66** suggest that placement of heteroatoms near C-19 of 2,3-OS results in the most significant inhibition. Thioether **66** exhibits IC50 values of 0.0023 and 0.00082 μ M for *C. albicans* and rat liver cyclase, respectively, and is the most potent OSC inhibitor reported to date. Preliminary kinetic studies of the inhibition of pig liver OSC of **66** reveal that it is a competitive inhibitor. This is consistent with its activity in an unmodified form and suggests that **66** acts as a substrate mimic. The kinetics of inhibition of **66** in comparison with **72** (in which a sulfur atom replaces C-18 of **1**) will be discussed in the next chapter.

ŝ

Chapter 3

Synthesis of 18-Thia-19-dehydro-2,3-oxidosqualene (72) and Kinetics of Inhibition by 66 and 72

In view of the observation that substrate analog **66** with sulfur replacing C-19 of **1** is a potent OSC inhibitor (Chapter 2), structural modification near C-19 of **1** became of interest for the development of new OSC inhibitors. An additional sulfide analog, **72**, in which sulfur replaced the olefinic carbon C-18 of **1** was prepared to examine its inhibitory power. This chapter outlines the synthesis of 18-thia-19-dehydro-2,3-QS (**72**) and the kinetics of its inhibitory action on OSC from fungal (*C. albicans*) and mammalian (rat and pig liver) sources.

3.1. Synthesis of 72.

Chemistry similar to that used for the preparation of sulfides 63-66 was applied to the synthesis of 72. Thus, analog 72 was synthesized by coupling triene mesylate 141 and thiol 144 (Scheme 13). Synthesis of mesylate 141 commenced with carboalumination of 3-butynol (129) followed by iodine trapping to give 4-iodo-3-methyl-3(*E*)-butenol (130)⁴⁰ in 80% yield (Scheme 11). Conversion of alcohol 130 to its protected form 131 followed by addition of 1.1 equiv. *n*-BuLi at -78 °C to generate the vinylic anion and addition of ethyl chloroformate gave the conjugated ester 132 in 74% yield over two steps. Reduction of ester 132⁴⁷ with DIBAL-H gave allylic alcohol 133 which reacted with NCS-DMS⁴¹ complex to give allylic chloride 134. Reaction of chloride 134 with NaSO₂Ph in DMF gave sulfone 135⁴⁷

(a) Zr(Cp)₂Cl₂, AlMe₃, then I₂, CH₂Cl₂; (b) TBSCI, DMAP, Et₃N, CH₂Cl₂; (c) *n*-BuLi, -78 °C, THF, then ClCO₂Et; (d) DIBAL-H, ether; (e) NCS-DMS, CH₂Cl₂; (f) NaSO₂Ph, DMF.

Scheme 11. Synthesis of allylic sulfone 135.

in 84% yield (Scheme 11). Metalation of **135** with 1.1 equiv. *n*-BuLi generated the allylic anion which was alkylated by farnesyl bromide (**105**) to give tetraene-sulfone **136** in 85% yield⁴⁷ (Scheme 12). Reductive elimination of the benzenesulfonyl group of sulfone **136** with Li in EtNH₂ at -78 °C gave the required protected alcohol **137**⁴⁷ in 87% yield. Reaction of **137** with 1 equiv. NBS in THF-H₂O (3.8:1)⁴⁴ gave terminal bromohydrin **138** which was converted to the terminal oxirane **139** by K₂CO₃ in MeOH in 37% yield over two steps. Removal of the silyl protecting group

(a) *n*-BuLi, -78 °C, THF, then **105**; (b) Li, EtNH₂, THF; (c) 1.0 eq. NBS, 0 °C, THF-H₂O; (d) K₂CO₃, MeOH; (e) Bu₄NF, THF; (f) MeSO₂Cl, Et₃N, -50 °C, CH₂Cl₂.

Scheme 12. Synthesis of mesylate 141.

of 139 followed by mesylation of the resulting epoxy alcohol 140 provided the corresponding mesylate 141 (Scheme 12). The required thiol 144 was prepared in two steps in an overall 76% yield from thioacetate 143 which was obtained from alcohol 142 by the Mitsunobu reaction⁴² (Scheme 13). Synthesis of 72 involved coupling of 141 and 144 in 74% yield (Scheme 13) under phase-transfer conditions³⁵ as described for the syntheses of 63-66 in Chapter 2.

(a) PPh3, i-PrO2C-N=N-CO2Pr-i, MeCOSH, 0 °C, THF; (b) LiAlH4,
0 °C, ether; (c) 50% NaOH, 141, Oct4NBr, 40 °C, H2O-Toluene;
Scheme 13. Synthesis of 72.

3.2: Enzyme kinetics of inhibition by 66 and 72.

The 2,3-OS analog 72 was tested for its ability to inhibit *C. albicans* and rat liver OSC in cell-free extracts and showed superior activity against these cyclases (biological tests were conducted by Dr. P. G. Hartman at F. Hoffmann-La Roche Ltd. in Basel, Switzerland.). In *C. albicans*, 72 displayed an IC50 value of 0.00022 μ M which is nearly 10 fold more potent than the previously known best inhibitor 66

 $(IC_{50} = 0.0023 \mu M$, Chapter 2, Table 2) for the cyclase. Similarly, analog **72** showed an IC₅₀ value of 0.00008 μ M which is 10 fold more potent than **66** (IC₅₀ = 0.00082 μ M) in rat liver cyclase. These biological results confirm that situating sulfur near C-18 and C-19 of the 2,3-OS skeleton yields analogs with significant inhibitory power and suggest future guidelines for the development of new substrate analog inhibitors of OSC. Because both **66** and **72** were the most potent inhibitors reported to date, we undertook a kinetic study. The initially proposed mode of action was that either or both **66** and **72** bound to OSC and were cyclized by the enzyme to form sulfonium ions which complexed with the enzyme (Schemes 1 and 14). Alternatively, **66** and **72** could act as unmodified substrate analogs. If the first mechanism prevailed, we expected that both **66** and **72** would

exhibit time-dependent⁵³ inhibition. With this in mind, we collaborated with Dr. G. D. Prestwich at State University of New York at Stony Brook, NY, in a study of the inhibition kinetics^{14,54} of **66** and **72**. In purified pig liver cyclase, both **66** and **72** have comparable IC₅₀ values of 1.0 μ M and 2.3 μ M, respectively. Both **66** and **72** showed time-dependent inactivation of the cyclase (Figure 20-21) exhibiting rate constants of inactivation (kinact) of 0.00014 min⁻¹ and 0.06 min⁻¹, respectively.^{14,53} This results reveals that **72** has a much faster inactivation rate than **66**. Preliminary kinetic studies of the effect of **72** on purified pig liver OSC revealed that **72** is a competitive inhibitor (Figure 22). Similar kinetic behavior was found for **66** (figure not shown). The irreversible inhibition of pig liver OSC by **66** and **72** was studied in comparison with the known irreversible inhibitor

Figure 20. Time dependency of inhibition by 66.

Figure 21. Time dependency of inhibition by 72.

Figure 22. Lineweaver-Burk plot of 72 for competitive inhibition.

(1) inhibitor 66; (2) inhibitor 72; (3) 29-MOS.

29-MOS.^{13a} Thus, inhibitors **66**, **72** and 29-MOS (at the three concentrations 0, 1 x IC₅₀, and 2 x IC₅₀) were incubated with pig liver OSC at 37 °C for 30 min and the non-bound inhibitor was removed by adsorption of protein on a DEAE-sephacel column.⁵⁵ The remaining enzymatic activity of eluted protein for pig liver OSC was re-assayed using [¹⁴C]-2,3-OS. In this study (Figure 23), **72** and 29-MOS showed significant ability to decrease the activity of pig liver OSC while **66** showed no evidence of irreversible inhibition. With the information that **72** displayed time-dependent inhibition and **66** showed very weak time-dependent inhibition (Figures 20-21), we reasoned that **72** may act as a mechanism-based inhibitor and **66** as an unmodified substrate analog. Incubation of radio-labelled **66** and **72** with OSC

would establish covalent binding to the enzyme and the formation of released cyclic product. Indeed, the synthesis of 3 H-labeled **72** is underway.

*

ź

Chapter 4

Syntheses of sulfur substituted 2,3-oxidosqualene analogs 73-76 and evaluation of their inhibitory activities

This chapter describes the syntheses and inhibitory activity of 2,3-OS analogs **73-76** in which sulfur replaces carbons C-5, C-8, C-13 or C-20 in **1**. A new methodology was developed for the preparation of **74** and **75**. Analogs **73-76** were expected to be mechanism-based inhibitors of OSC.

4.1. Rationale.

The use of vinylic sulfides **73-76** as possible mechanism-based inhibitors of OSC arises from work of Ceruti *et al.* on a vinylic ether analog of 2,3-OS^{30f} and of Xiao and Prestwich on (³H)-29-methylidene-2,3-OS.¹⁴ 22,23-Dihydro-18(*E*)-20*oxa*-2,3-oxidosqualene (**61**), a vinylic ether with oxygen replacing C-20 of **1**, was synthesized by Ceruti *et al.* as a mechanism-based inhibitor of OSC to probe the existence of protosterol **6**. It was originally thought that **61** would be recognized and cyclized by OSC to the C-20 cation intermediate **150** which is stabilized by resonance with an oxocarbenium ion **151** (Scheme 15). Cation **151** was expected to undergo nucleophilic attack by the amino acid residue which is responsible for stabilization of the C-20 protosterol cation **6** and to form a covalent bond within the active site of the enzyme leading to irreversible inhibition. However, **61** was a very weak competitive inhibitor of rat liver OSC but not, as expected, an irreversible

Scheme 15. Hypothetical mechanism of inhibition of OSC by 22,23-dihydro-18(*E*)-20-oxa-2,3-OS (61).

inhibitor. This result led to the postulation that the presumed oxocarbenium ion **151** may undergo hydrolysis faster than nucleophilic attack by an amino acid. If this were the case, one would expect to obtain the hydrolysis product, the corresponding tetracyclic ketone. Ceruti and his coworkers did not provide evidence for such a cyclized product. Corey and Virgil recently demonstrated cyclization of a radiolabelled derivative of **153** to protosterol **156**.^{25c} The ³H-label

Scheme 16. OSC mediated cyclization of (18*E*)-20-oxa-2,3-oxidosqualene (**153**) to its corresponding tetracyclic ketone protosterol (**156**).

of **153** allowed Corey to locate the cyclization product. Thus, the existence of a ³H-labelled protosterol tetracyclic ketone **156** was confirmed as a product of yeast OSC mediated cyclization of **153** (Scheme 16). This result implied that oxocarbenium ion **155** did occur as an intermediate in the reaction and this cation could be attacked by water producing a hemiacetal which released isopentenyl alcohol to give tetracyclic ketone **156**. The stereochemistry of **156** revealed that the side chain at C-17 (steroid numbering) of **6** is β -oriented.

In a separate study, Xiao and Prestwich¹⁴ introduced an olefinic unit adjacent to C-19 (*pro*-C-20 cation, steroid numbering) of **1** (Figure 9, Chapter 1) to stabilize the presumptive protosterol cation **6**. The cyclization of (³H)-29methylidene-2,3-OS (29-MOS) by rat liver OSC yielded initially 21-methylene protosterol cation **9** (Figure 2, Chapter 1) and subsequently the vinylic lanosterol **157** (Figure 24) through the usual series of 1,2-hydride/ methyl migrations and proton loss, or cation **9** was stabilized by reaction with an active site nucleophile of the enzyme (Figure 2, Chapter 1).^{13b} In the case of the latter process, species **10** was formed by covalent bonding, causing the irreversible inhibition of rat liver OSC.^{13b}

Figure 24. Vinylic lanosterol analog **157** formed *via* OSC-catalyzed cyclization of 29-MOS.

In the present study, sulfur was selected for its ability to stabilize the carbocation.⁵⁶⁻⁶⁵ Theoretical studies have shown that sulfur is a better π - and σ -donor than oxygen to electron deficient α -carbon.^{56,57} Thus, we prepared four analogs of 2,3-OS (**73-76**) in which sulfur was located at a position α or β to those carbons presumed to possess a positive charge during the normal cyclization of **1**. Our presumption was that these 2,3-OS analogs would cyclize to the point of formation of resonance-stabilized thiocarbenium ions.⁵⁹ We reasoned that this stabilization would decrease the reactivity of the cation and interrupt further
cyclization. Also, thiocarbenium ions are more stable to hydrolysis ^{63,65} than the corresponding oxocarbenium ions derived from vinylic ethers. This might provide a sufficiently long life to the thiocarbenium ions to allow their attack by nucleophilic amino acids in the active site. Our hope was that the presumptive thiocarbenium ions would either react with nucleophilic amino acids to irreversibly bond to OSC as in the case of 21-methylene protosterol cation **9** or be captured by water to form an alcohol (Scheme 17-18). Both pathways could provide opportunities to gain further insight into the involvement of carbocationic intermediates in the OSC-mediated cyclization of **1**.

Analogs **73** and **74** in which sulfur replaces C-5 and C-8 of **1**, respectively, were designed to interfere with ring B formation (Scheme 17). Analogs **75** and **76** in which sulfur replaces C-13 and C-20 of **1**, respectively, were designed to interrupt ring D formation or the rerrangement of protosterol cation **6** (Scheme 18).

The syntheses of **73-76** required construction of trisubstituted (*E*)-vinylic sulfides using conditions which tolerate the sensitive epoxy group and a highly unsaturated backbone. Previous methodologies for preparation of vinylic sulfides have usually produced mixtures of *E* and *Z* stereoisomers.⁶⁶⁻⁶⁸ Stereospecific methodologies such as catalytic hydroboration-coupling⁶⁹ or metal-catalyzed sulfenylation of alkenyl halides^{70,71} are not applicable to the present synthesis because of the highly unsaturated backbone of the target molecule. A stereospecific method to prepare *Z*-divinylic sulfides involves cross-coupling of cuprous thiolates with alkenyl halides but requires high temperature and gives relatively low yields.⁷² Two synthetic methods are preferred for the

Scheme 17. Hypothetical inhibition of OSC by 6(E)-5-thia-2,3-OS (73) and 6(E)-8-thia-2,3-OS (74).

Scheme 18. Hypothetical inhibition of OSC by14(E)-13-thia-2,3-OS (75) and 18(E)-20-thia-2,3-OS (76).

present synthetic targets. One involves the modified Wittig-Horner reaction (see, for example, Scheme 25) that has been developed by Dodd in this laboratory.^{31h} This method originated from the work of Ceruti et al.30f and later Corev et al.25b for the synthesis of E-vinylic ether analogs of 2,3-OS. Its disadvantage is that condensation of Wittig-Horner reagents with aldehydes generally produces mixtures of syn and anti diastereomers. Only the syn isomer can be transformed to the required E-vinylic sulfides. Although the syntheses of 73 and 76 have been carried out by this method and proven to be satisfactory (section 4.3), we sought an improvement. Thus, a new methodology for the stereospecific coupling of trisubsitituted vinylic anions with alkyl 4-methylbenzenethiosulfonates has been developed in the present study. The reaction was first studied by Scholz⁷³ who used it for preparation of β -keto sulfides by reaction of enolate anions with alkyl 4methylbenzenethiosulfonates. We reasoned that by preparation of an E-vinylic halide, its conversion to the corresponding vinylic anion and reaction with an appropriate alkyl 4-methylbenzenethiosulfonate well-defined E-vinylic sulfides could be produced. The following two sections describe the use of this new coupling as well as the Wittig-Horner method for the syntheses of 74-76.

4.2. Syntheses of 74 and 75.

Retrosynthetic analysis revealed that both **74** and **75** can be assembled from allylic sulfonium ion equivalents and vinylic anion synthons (Figure 25). The synthesis of **74** commenced with conversion of available alcohol **95** (Chapter 2) by Swern oxidation⁷⁴ to aldehyde **170** in 93% yield (Scheme 19). Aldehyde **170** was then treated with (carbethoxyethylidene)triphenyl phosphorane in refluxing methylene chloride to generate the desired (*E*)- α , β -unsaturated ester **171** in 90% yield (*E*-isomer > 97%). The *E*-geometry of **171** was confirmed by ¹H NMR which

Figure 25. Retrosynthetic analyses of 74 and 75.

.

(a) Swern oxidation; (b) Ph₃P=C(CH₃)CO₂Et, CH₂Cl₂; (c) DIBAL-H, Et₂O;

(d) NCS, DMS, CH₂Cl₂; (e) KSSO₂C₆H₄CH₃, DMF.

Scheme 19. Synthesis of thiosulfonate 174.

(a) *n*-BuLi, -78 °C, then **174**, THF; (b) Bu₄NF, H₂O, THF; (c) Swern oxidation; (d) Ph₂S(*i*-Pr)BF₄, *t*-BuLi, THF.

Scheme 20. Synthesis of 6(E)-8-thia-2,3-oxidosqualene (74).

revealed a triplet of quartets at δ 6.76 (J = 7.3, 1.4 Hz) for the hydrogen attached to C-3. Reduction of 171 with DIBAL-H gave an allylic alcohol 172 which was converted with NCS-DMS⁴¹ to allylic chloride **173** in 74% yield over two steps. The latter was converted to 174 in excellent yield by reaction with potassium otoluenethiosulfonate in DMF.73a The required vinylic anion synthon 88 was prepared by zirconium-catalyzed carboalumination of 4-pentyn-1-ol (86) followed by iodine trapping and alcohol protection as described in Chapter 2. Conversion of 88 to 175 (91%) was effected via the vinylic lithium intermediate (with n-BuLi in THF at -78°C) followed by addition of 174 (Scheme 20). This new coupling reaction is the key step in the generation of the E-vinylic sulfide 74. The structure of 175 was confirmed by ¹H NMR which revealed a quartet at δ 5.58 (J = 1.0 Hz) for the vinylic sulfide hydrogen (C-5) and a singlet at δ 3.19 for the two hydrogens on the methylene carbon (C-7) adjacent to sulfur. Assignments were confirmed by decoupling experiments. Deprotection of 175 with Bu4NF in methylene chloride followed by Swern oxidation⁷⁴ gave **177** in 85% yield over the two steps. The ¹H NMR nOe difference spectrum of 177 confirmed the stereochemistry of the vinylic sulfide. When the C-5 vinylic hydrogen (δ 5.62, J = 1.0 Hz) was irradiated, no the methyl enhancement of protons attached to C-4

ŝ

R=(E),(E)-Farnesyl chain

(177)

Figure 26. nOe experiment on 177.

(δ 1.72, J = 1.0 Hz) was observed. In this experiment enhancement of the signal attributed to the C-3 hydrogens (δ 2.37, J = 7.4 Hz) was observed (Figure 26). These results indicate that the methyl attached to C-4 and the C-5 vinylic hydrogen are *trans* to each other while the C-5 vinylic hydrogen and the C-3 hydrogens are *cis*.⁷⁵ Generation of the sulfonium ylide of Ph₂S(i-Pr)BF₄ by treatment with *t*-BuLi in THF at -78°C under argon followed by reaction with **177** gave **74** in 90% yield.⁷⁶ Preparation of **74** from **95** in 9 steps proceeded with an overall yield of 37%.

The synthesis of 75 commenced with conversion of commercially available (E,E)-farnesol (92) to 178 in 95% yield. Reaction of the latter with NBS in THF-H₂O⁴⁴ followed by treatment with K₂CO₃ in methanol gave **180** in 37% yield over two steps (Scheme 21). Deprotection of 180 with Bu4NF in THF gave 181 which was converted to the allylic chloride 182 by reaction with NCS-DMS complex⁴¹ (72% over two steps). Reaction of **182** with potassium p-toluenethiosulfonate in DMF gave epoxy thiosulfonate 183 in 85% yield.^{73a} Reaction of geraniol (184) with NCS-DMS complex ⁴¹ gave geranyl chloride (185)⁷⁷ in 80% yield. The latter was then converted to 186 in 78% yield according to the procedure of Hooz.78 Treatment of 186 with AlMe3 in the presence of Zr(Cp)2Cl2 followed by treatment with iodine gave 187 in 81% yield⁴⁰ (Scheme 22). Reaction of 187 with *n*-BuLi in THF at -78°C under argon followed by addition of 183 gave 75 in 28% yield (7 steps from 92, overall yield 6.1 %). We believe that the lower yield in this coupling reaction is due to epoxide cleavage by the vinylic anion.⁷⁹ The E-geometry of vinylic sulfide 75 was again confirmed by an nOe difference experiment. Irradiation of the C-14 vinylic hydrogen (δ 5.64) enhanced the signal of the hydrogens attached to C-16 (δ 2.07) while no enhancement of the signal due to the methyl attached to C-15 (δ 1.73) was observed (Figure 27).⁷⁵

(a) TBSCI, DAMP, Et₃N, CH₂Cl₂; (b) NBS, H₂O, THF, O °C; (c) K₂CO₃, CH₃OH; (d) Bu₄NF, H₂O, THF; (e) NCS, DMS, CH₂Cl₂, -20 °C; (f) KSSO₂C₆H₄CH₃, DMF.

Scheme 21. Synthesis of epoxy thiosulfonate 183.

ś

(a) NCS, DMS, CH_2Cl_2 , -20 °C; (b) $CH_2=C=CH_2$, *n*-BuLi, Et₂O; (c) $Zr(Cp)_2Cl_2$, AlMe₃, then I_2 , CH_2Cl_2 ; (d) *n*-BuLi, -78 °C, then **183**, THF.

Scheme 22. Synthesis of 14(E)-13-thia-2,3-oxidosqualene (75).

Figure 27. nOe experiment on 75.

ź

In summary, we achieved the total syntheses of 6(E)-8-thia and 14(E)-13thia-2,3-oxidosqualenes (**74**) and (**75**), respectively. The key to the syntheses was a new methodology for the generation of *E*-vinylic sulfides involving stereospecific coupling of tri-substituted vinylic anions with appropriate alkyl 4methylbenzenethiosulfonates. The commercial availability of potassium *p*toluenethiosulfonate and the convenient generation of vinylic anions by reaction of vinylic iodides with alkyl lithiums make this a useful method.

4.3. Syntheses of 73 and 76.

Syntheses of 2,3-OS analogs **73** and **76** containing sulfur at C-5 and C-20 of **1** involved Wittig-Horner methodology developed by Cattel^{30f} and Corey^{25b} for the synthesis of 18(E)-20-*oxa*-2,3-OS analogs and by Dodd for the syntheses of 10(E)-9-thia- and 14(E)-16-thia-2,3-OS analogs in this laboratory.^{31h} This method was effective for the synthesis of compounds **73** and **76** because it can utilize a set of common intermediates. Retrosynthetic analyses of **73** and **76** reveal that both can be derived from **193** (Figure 28).

Synthesis of **73** in which sulfur replaces C-5 of 2,3-OS commenced with construction of key intermediate 193^{31b} (Scheme 23). In comparison with the previously reported procedure,^{31b} the synthetic route to **193** was shortened by two steps. Reaction of geranyl chloride (**185**) with NaSO₂Ph in DMF gave sulfone **188** in 85% yield.⁸⁰ Selective epoxidation of **188** gave epoxide **189** in 93% yield and the latter was oxidatively cleaved to **190** which was converted to acetal **191**. The latter was subjected to metalation-alkylation to furnish the tetraene sulfone **192**. Reductive elimination of the sulfone moiety gave the key tetraene acetal **193** (Scheme 23). The required 1-(diphenylphosphinoyl)-ethanethiol (**194**)⁸¹ was prepared by a procedure similar to that used for the synthesis of

Figure 28. Retrosynthetic analyses of 73 and 76.

(a) NaSO₂Ph, DMF; (b) *m*-CPBA, NaOAc, CH₂Cl₂; (c) HIO₄-H₂O, THF-Et₂O; (d) (CH₂OH)₂, TsOH, toluene; (e), *n*-BuLi, -78 °C, farnesyl bromide (105), (f) Li, EtNH₂,-78 °C.
Scheme 23. Synthesis of tetraene acetal 193.

(a) *m*-CPBA, CH₂Cl₂,-50 °C; (b) MeSO₂Cl, Et₃N, CH₂Cl₂; (c) 50% NaOH, Oct₄NBr, **194**, toluene-H₂O (1:1).

Scheme 24. Synthesis of sulfur-substituted Wittig-Horner agent 197.

diethylphosphorylthiol.⁶⁶ Conversion of commerically available alcohol **195** to the corresponding epoxy mesylate **196** was executed by epoxidation followed by mesylation (Scheme 24). The required Wittig-Horner agent **197** was obtained in 23% overall yield by coupling available thiol **194** with mesylate **196** under phase-transfer conditions³⁵ (Scheme 24).

Deacetalization of **193** in aqueous acetone generated **198** in 92% yield (Scheme 25). Metalation of **197** followed by addition of aldehyde **198** gave a mixture of *syn* and *anti* α -hydroxydiphenylphosphinoyl isomers **199** and **200** (~60/40; by ¹H-NMR analysis) (Scheme 25). Analysis of this mixture by thin layer chromatography revealed two overlapping spots. Repeated flash column chromatography partially separated the two isomers to give pure **199** (*syn*) in 31% yield. The *anti* isomer **200** was contaminated with ~15% of **199**. Reaction of **199** with NaH in THF gave isomerically pure (6*E*)-5-thia-2,3-OS (**73**) in 86% yield (Scheme 25). ¹H-NMR of **73** revealed a triplet of quartets at δ 5.55 (*J* = 7.1, 1.21 Hz) for the vinylic hydrogen attached to C-7. The nOe difference ¹H-NMR spectrum of **73** confirmed the *E*-stereochemistry of the vinylic sulfide. A nOe enhancement was observed between the C-7 vinylic hydrogen (δ 5.55, *J* = 7.1, 1.2

(a) TsOH, acetone-H₂O (85:15), reflux, 92%; (b) LDA, -100 °C, **198**, THF, and (c) NaH, THF (modified Wittig-Horner reaction).

Scheme 25. Synthesis of 6(E)-5-thia-2,3-oxidosqualene (73).

Hz) and C-4 hydrogens (δ 2.92), but not between the C-7 vinylic hydrogen and the methyl attached to C-6. This indicates that the C-7 vinylic hydrogen and the C-6 methyl are *trans* to each other.^{25c,82}

The synthesis of **76** in which sulfur replaces C-20 of 2,3-OS commenced with conversion of **193** to terminal bromohydrin **201** in 38% yield.⁴⁴ Hydrolysis of the acetal followed by treatment with K_2CO_3 in methanol gave epoxy aldehyde **203**^{25c} in 37% yield over two steps (Scheme 26). Coupling of thiol **194** with allylic

(a) 1.0 eq. NBS, THF-H₂O, 0 °C; (b) TsOH, acetone-H₂O, reflux; (c) K₂CO₃, MeOH, 0 °C; (d) 50% NaOH, Oct₄NBr, Me₂CH=CH-CH₂Cl ,**204**, toluene-H₂O (1:1); (e) LDA, -100 °C, then **203**, THF; (f) NaH, THF.

Scheme 26. Synthesis of 18(E)-20-thia-2,3-oxidosqualene (76).

chloride 204 under phase transfer conditions³⁵ gave the required Wittig-Horner agent 205 in 73% yield. Reaction of 203 with the anion of 205 at -100 °C in THF followed by addition of acetic acid gave a mixture of *syn* and *anti* (~65/35; by ¹H NMR analysis) α -hydroxydiphenylphosphinoyl isomers (206 and 207) in 71% yield (Scheme 26). Partial separation using flash column chromatography gave pure 206 (*syn*) in 33% yield. The *anti* isomer 207 was contaminated with ~15% of 206. Treatment of 206 with NaH/THF gave isomerically pure 18(*E*)-20-thia-2,3-OS (76) in 89% yield (Scheme 26). The structure of 76 was confirmed by ¹H NMR analysis, which revealed a triplet of quartets at δ 5.35 (*J* = 7.0, 1.2 Hz) for the vinylic hydrogen attached to C-18. The *E*-geometry of the vinylic sulfide was confirmed by observation of a nOe enhancement between the C-18 vinylic and the C-21 hydrogen.^{25c,82}

4.4. Biological results.

All four sulfur 2,3-OS analogs (**73-76**) were found to be inhibitors of OSC from fungal (*C. albicans*) and mammalian (rat liver cyclase) sources (biological results were provided by Dr. P. G. Hartman, F. Hoffmann-La Roche Ltd., Basel, Switzerland.). Both **73** and **76** inhibited cell-free OSC of *C. albicans* with IC₅₀ values of 47 and 0.2 μ M, respectively. Sulfide **76** is 235 fold more potent than **73** in *C. albicans* cyclase. With rat liver OSC, **73** displayed an IC₅₀ value of 7.7 μ M and **76** showed an IC₅₀ value of 0.32 μ M. i.e., **76** is 24 fold more potent than **73** (Table 3). **73** is over 69 fold less potent than **74** toward *C. albicans* OSC and showed comparable activity with **75**, while **76** has the best inhibitory activity being 3.4 fold more potent than **74** and 225 fold more potent than **75**. With rat liver OSC, **73** displayed good activity being 4.4 fold and nearly 8 fold more potent than **74** and **75**, respectively. In this system, **76** again showed the best inhibitory activity being 106

IC ₅₀ <i>a</i> (μM)		
compound	<i>C. albicans</i> cyclase (cell-free)	Rat liver cyclase (cell-free)
73	47	7.7
74	0.68	34
75	45	61
76	0.2	0.32

Table 3. Evaluation of compounds 73 -76 as inhibitorsof OSC.

a: molar concentration of inhibitor required to reduce enzyme activity by 50%.

fold more potent than 74 and nearly 191 fold more potent than 75. 2,3-OS analog 76 which contains a sulfur in place of C-20 displayed the highest activity among the vinylic sulfides tested in both C. albicans and rat liver cyclases. This result is consistent with the observation for sulfur-substituted 2,3-OS analog 72 (Chapter 3, section 3.2) and suggests that modification of the C-20 region of 1 leads to the most potent inhibitors of OSC. All vinylic sulfides showed good inhibitory activity in agreement with the hypothesis that partial cyclization (Scheme 17) may occur and that the α -thiocarbenium ions generated might bind to the enzyme. It is worth noting that vinylic sulfide 76 showed superior activity (IC₅₀ = 0.32 μ M, rat liver) in comparison to the corresponding oxygen analog 22,23-dihydro-20-oxa-2,3-OS (61)^{30f} (IC₅₀ = 80 μ M, rat liver). This result may be interpreted as being due to the greater stability of the presumptive α -thiocarbenium ion compared to the corresponding oxocarbenium ion. Considering only the IC50 values of this series, it is difficult to rationalize the mode of action of these inhibitors (see Scheme 17). The modest inhibitory power of these vinylic sulfides leads us to speculate that they act as competitive inhibitors of OSC similar to the oxygen-substituted 2,3-OS analog **61** and the related sulfur-substituted analogs **66** and **72** (Chapter 3). Lack of evidence for sulfur-containing cyclized products and of kinetic data limits the further discussion. The IC₅₀ value of **76** (0.2 μ M, *C. albicans*; 0.32 μ M, rat liver) is comparable with that of 2,3-iminosqualene⁸³,⁸⁴ (0.15 μ M, *C. albicans*; 0.4 μ M, rat liver), a potent inhibitor of OSC.

46 .

ŝ

Chapter 5

Concluding Remarks

We achieved the total syntheses of two classes of sulfur-containing 2,3-OS analogs (63-72 and 73-76 ,respectively) as inhibitors of OSC. The strategic substitution of sulfur in the skeleton of 1 allowed us to probe the existence of carbocationic intermediates 2-6, which are presumed to be formed during OSCmediated cyclization of 1 to 8 according to the "step-wise" hypothesis and led to the preparation of the best inhibitor for both mammalian and fungal OSCs to date.

All compounds of the first series (63-72) were found to be good to potent inhibitors of OSCs. Sulfides 63, 64, 66, 72 and sulfoxide 71 displayed IC50 values of 69, 69, 2.3, 0.23 and 65 nM, respectively, for OSC from fungal C. albicans which are the lowest values reported for inhibitors of this enzyme. These compounds were more powerful than the previously reported most potent inhibitor, 2,3-iminosqualene^{83,84} (IC₅₀ = 0.15 μ M, *C. albicans*). Similarly, with rat liver OSC, sulfides 63, 66 and 72 showed IC50 values of 8.4, 0.82, 0.08 nM, respectively, which are the best inhibitors known for this enzyme. These compounds were 13, 134 and 1375 fold, respectively, more potent than the previously known best rat liver OSC inhibitors such as 2,3:18,19dioxidosqualene (59)^{30d,e} (IC₅₀ = 0.11 μ M, rat liver OSC) and N-(1oxododecyl)-4 α -10-dimethyl-8-aza-trans-decal-3 β -ol (54)^{31f} (IC₅₀ = 0.11 μ M. rat liver OSC). Sulfides 66 and 72 displayed the first reported nanomolar IC50 values for both mammalian (rat liver) and fungal (C. albicans) OSC. These results highlight the potency of sulfur-containing 2,3-OS analogs as inhibitors of OSCs. It is noteworthy that the most potent inhibitors 66 and 72 have sulfur in

place of C-19 or C-18 in the skeleton of 1. This suggests that substrate analogs with modification in the region of C-18 and C-19 of 1 have high affinity for the active site of OSCs. It implies that nucleophilic residues of OSCs which are responsible for the stabilization of protosterol C-20 cation 6 develop a stronger interaction with the cation than those responsible for stabilization of cationic intermediates 2-5. Kinetic analysis of the inhibition by 66 and 72 of pig liver OSC was carried out to reveal the inhibition mechanism. Both 66 and 72 were competitive inhibitors of pig liver OSC while 72 displayed strong timedependency. We suspect that 72 irreversibly deactivates pig liver OSC with the same facility as 29-MOS, a known irreversible inhibitor of OSC (Figure 23, Chapter 3). In the same study, 66 showed no evidence of irreversible inhibition (Figure 23, Chapter 3). It seems appropriate to conclude that 72 acts as an irreversible mechanism-based inhibitor of OSC while 66 acts as an unmodified substrate analog, reversibly binding to OSC. The preparation of ³H-labeled 72 is underway to probe the active site of pig liver OSC. Incubation of ³H-labeled 72 with OSC will hopefully reveal which amino acid residue is responsible for stabilization of the protosterol cation in pig liver OSC.

The biological study of sulfur-substituted 2,3-OS analogs **73-76** showed they were all good inhibitors of OSCs (Table 3, Chapter 4). Analog **76** in which sulfur replaced C-20 of **1** showed the strongest activity among the vinylic sulfides against both *C. albicans* (IC₅₀ = 0.20 μ M) and rat liver (IC₅₀ = 0.32 μ M) OSCs. This suggests that modification of C-20 of **1** causes the most significant inhibition of OSC by interrupting formation of the C-20 protosterol cation **6**. Analogs **73-76** have sufficient conformational flexibility to be cyclized by OSC. Generation of thiocarbenium ions **158**, **161**, **164** and **167** (Scheme 17-18) should lead to rather long-lived cationic species that would allow nucleophilic

attack from amino acid residues of OSC. We expect to observe the covalent modification of OSC by analogs **73-76** according to Schemes 17-18. Thus, preparation of ³H-labeled vinylic sulfide analogs of 2,3-OS to allow the isolation of cyclized products or to conduct affinity labelling experiments is suggested.

Chapter 6

Experimental

6.1. Instrumentation for spectroscopic analyses.

¹H and ¹³C-NMR spectra were recorded on a Bruker AMX-400 spectrometer. ¹H and ¹³C chemical shift are reported in parts per million (ppm, δ) and relative to CHCl₃ (7.26 ppm) and (77.0 ppm) respectively. Mass spectra were obtained on a Hewlett-Packard 5985B GC/MS equipped with a DB-1 capillary column (30 m x 0.25 mm ID; with 0.25 μ M film) operating at 70 ev for electron impact (EI) ionization. Chemical ionization (CI) was performed using isobutane as the proton source. High resolution mass spectra were performed on a Kratos/AEI MS 50 spectrometer at the University of British Columbia. IR spectra were recorded on a Perkin-Elmer Model FT 1605 spectrophotometer. Elemental analyses were performed using a Carlo Erba Model 1106 Elemental Analyzer. Gas chromatographic analyses were recorded on a Hewlett-Packard 5890 instrument equipped with a DB-1 capillary column (15 m x 0.25 mm ID; with 0.25 μ M film) and flame-ionization detector.

6.2. General chemical procedures.

Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled from sodium and benzophenone-ketyl. Triethylamine (Et₃N) and dichloromethane (CH₂Cl₂) were freshly distilled from CaH₂ prior to use. Diisopropylamine [(*i*-Pr)₂NH] was freshly distilled from sodium prior to use. N,N-Dimethylformamide (DMF) was dried over 4A molecular sieves. Iodine was purified by sublimation. N-Bromosuccinimide and N-chlorosuccinimide were recrystallized from glacial acetic acid, washed with icewater, and dried under high vacuum prior to use. Triphenylphosphine was dried over phosphorus pentoxide under high vacuum for 4 h in a drying pistol using

acetone as solvent. Anhydrous Bal2 was prepared by drying Bal2 H2O (Aldrich, 95%) at 160°C for 2 h under high vacuum (<5 torr). Ethyl chloroformate (Sigma) was freshly distilled under argon prior to use. Other chemicals obtained from commercial sources were used without further purification. All moisture- and airsensitive reactions were conducted under argon in vacuum-dried glassware. A nitrogen glovebag was used to weigh all the moisture-sensitive compounds. Syringes and cannulas were used to transfer reagents. Unless otherwise stated, standard work-up refers to the combined organic extracts being washed with icecold brine, dried over anhydrous MgSO4, filtered, and the filtrate being concentrated in vacuo. Thin layer chromatography (TLC) was the usual analysis method and was performed on aluminum plates precoated with Merck silica gel 60 F-254 as the adsorbent. The TLC plates were developed in the specified solvent and spots were visualized by iodine or sprayed with a solution of Ce(SO4)2 (1%) and molybdic acid (1.5%) and gently heated on a hot plate. Flash column chromatography was performed on silica gel 60 (E. Merck No. 9385, 230-400 mesh) as described by Still and coworkers.85

6.3. Biological methods.

Cell culturing, *in vitro* antifungal activity and mammalian cell toxicity measurements, and cholesterol biosynthesis inhibition assays of MBDK cells were carried out by Dr. N. H. Georgopapadakou at Hoffmann-La Roche Inc. (Nutley, New Jersey) as described in reference 32. Cell-free enzyme inhibition assays of rat liver and *C. albicans* OSCs were performed by Dr. Peter G. Hartman and Ms. Petra Scheliga at F. Hoffmann-La Roche Ltd. (Basel, Switzerland) as described in references 32 and 84, and enzyme kinetic and inhibition studies on pig liver OSC by Dr. I. Abe and Professor G. D. Prestwich (Department of Chemistry, State University of New York at Stony Brook, NY) as described in references 14 and 55a.

6.4. Experimental procedures and spectral data.

6.4.1. Syntheses discussed in Chapter 2.

4-Methyl-3-pentenyl *tert-***butyldimethylsilyl ether (82)**: To a solution of 4methyl-3-penten-1-ol (81) (0.45 g, 4.5 mmol) in CH₂Cl₂ (30 mL) and Et₃N (0.485 g, 4.8 mmol) at 0 °C was added TBSCI (0.694 g, 4.6 mmol) and DMAP (0.02 g). This was stirred at 0°C for 0.5 h and at room temperature for 6 h. The reaction mixture was poured into water (20 mL). The organic phase was separated and the aqueous layer was extracted with diethyl ether (4 X 30 mL). Standard work-up followed by flash column chromotography using diethyl ether:pentane (1:9) as the eluant gave **82** (0.91 g, 94% yield) as colourless oil: IR (film) 2957, 2930, 2859, 1672, 1473, 1257 and 1100 cm⁻¹; CIMS *m/z* (rel. intensity) 215 (M⁺+1, 1.0), 157 (6.2), 95 (2.9), 91 (2.4), 89 (2.2), 85 (9.1), 84 (7.4), 83 (100), 81 (9.0); ¹H NMR (CDCl₃, ppm) 5.12-5.08 (m, 1H), 3.57 (t, *J* =7.2 Hz, 2H), 2.21 (dt, *J* = 7.2, 7.2 Hz, 2H), 1.69 (s, 3H), 1.59 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H). Anal. Calcd for C1₂H₂₆OSi: C, 67.22; H, 12.22. Found: C, 67.36; H, 12.30.

4-Methyl-3,4-epoxy-pentyl *tert*-butyldimethylsilyl ether (83): To a stirred solution of 82 (0.91 g, 4.25 mmol) in CH₂Cl₂ (35 mL) at -40 °C was added *m*-CPBA (1.08 g, 5.0 mmol, 80% pure) in one portion. The reaction mixture was stirred for 0.5 h at this temperature and warmed to 0 °C over 1 h. The mixture was poured into saturated aqueous Na₂S₂O₃ solution (10 mL) and the organic phase was separated. The aqueous phase was extracted with CH₂Cl₂ (3 X 20 mL) and the combined organic phase was washed with saturated NaHCO₃ (2 X 20 mL). Standard work-up followed by flash column chromatography using diethyl ether:pentane (3:7) as the

eluant gave pure **83** (0.843 g, 86% yield): IR (film) 2957, 2929, 2858, 1775, 1472, 1378, 1256, 1097, 1005, 939 and 836 cm⁻¹; CIMS *m/z* (rel. intensity) 231 (M⁺+1, 100), 213 (44), 173 (44.3), 145 (32.6),133 (4.1),115 (2.2), 99 (79.2), 89 (23.4); ¹H NMR (CDCl₃, ppm) 3.79-3.75 (m, 2H), 2.84 (t, J = 6.2 Hz, 1H), 1.86-1.68 (m, 2H), 1.31(s, 3H), 1.27 (s, 3H), 0.89 (s, 9H), 0.06 (s, 6H). Anal. Calcd for C12H26O2Si: C, 62.55; H, 11.37. Found: C, 62.68; H, 11.45.

4-Methyl-3,4-epoxy-pentanol (84): To a solution of **83** (0.81 g, 3.52 mmol) in THF (10 mL) at room temperature was added tetrabutylammonium fluoride (10 mL, 1 M solution in THF, 10 mmol). This was stirred for 8 h at room temperature. Then water (10 mL) was added and the mixture was extracted with ether (4 X 20 mL). Standard work-up followed by flash chromatography using diethyl ether:pentane (9:1) as the eluant afforded **84** (0.295 g, 72% yield; GC purity 91%): IR (film) 3428, 2950, 2929, 2870, 1459, 1379 and 1064 cm⁻¹; CIMS *m/z* (rel. intensity) 117 (M⁺+1,100), 99 (43), 85 (4.2), 81 (4.0) MS, *m/z* (rel. intensity) 116 (M⁺, trace), 101 (4.0), 85 (100),73 (4.6), 71 (4.2), 59 (97), 57 (25.5), 45 (15.5),43 (40.6), 42 (20.3), 41 (47.2); ¹H NMR (CDCl₃, ppm) 3.88-3.79 (m, 2H), 2.90 (dd, *J* = 4.7, 7.8 Hz, 1H), 1.92-1.84 (m, 2H),1.74-1.66 (m, 1H), 1.32 (s, 3H), 1.29 (s, 3H).

3,4-Epoxy-4-methyl-pentyl methanesulfonate (85): To a solution of **84** (0.174 g, 1.5 mmol) in CH₂Cl₂ (20 mL) at -50 °C was added triethylamine (0.202 g, 2.0 mmol) and methanesulfonyl chloride (0.208 g, 1.8 mmol). This was stirred at -50 °C for 10 min, warmed to 0 °C over 1 h then poured into water (10 mL) and the organic phase separated. The aqueous phase was extracted with ether (3 X 20 mL). Standard work-up followed by high vacuum drying gave **85** (0.276 g, 95% yield) of high purity (GC purity >99%). CIMS m/z (rel. intensity) 195 (M⁺+1, 100), 177 (10.2);

¹H NMR (CDCl3, ppm) 4.43 -4.32 (m, 2H), 3.03 (s, 3H), 2.86 (dd, *J* = 4.9, 7.4 Hz, 1H), 2.13-2.05 (m, 1H), 1.91-1.81(m, 1H), 1.33 (s, 3H), 1.29 (s, 3H).

5-lodo-4-methyl-4(*E***)-pentenol (87):** To a slurry of ZrCp₂Cl₂ (2.54 g, 8.75 mmol) in dry CH₂Cl₂ (100 mL) at -20 °C under argon was added AlMe₃ (10.38 mL, 105 mmol) dropwise over 5 min. 4-Pentynol (86) (3.01 g, 35 mmol) in CH₂Cl₂ (5 mL) was then added dropwise. The mixture was warmed to room temperature and stirred for 15 h, then cooled to -30 °C and iodine (10.15 g, 40 mmol) in THF (50 mL) was added slowly. Twenty minutes after addition of iodine, excess AlMe₃ was destroyed (caution!!) by the addition of 5 mL of distilled water under argon at 0°C. The slurry was diluted with 100 mL of hexane and the precipitated salt was removed by filtration through a pad of Celite. The pad was rinsed with 50 mL of hexane. Standard work-up of the filtrate followed by flash chromatography using ethyl acetate:hexane (3:7) as the eluant gave pure **87** (6.49 g, 82% yield): IR (film) 3347, 1617, 1062 and 769 cm⁻¹; ¹H NMR (CDCl₃, ppm) 5.91 (s, 1H), 3.61 (t, *J* = 6.4 Hz, 2H), 2.28 (t, *J* = 7.5 Hz, 2H), 1.83 (s, 3H),1.80-1.60 (m, 3H); ¹³C NMR (CDCl₃, ppm) 147.46, 74.90, 62.04, 35.78, 30.61, 23.84; Anal. Calcd for C6H₁₁IO: C, 31.86; H, 4.91. Found : C, 32.13; H, 5.04 .

5-lodo-4-methyl-4(*E*)-pentenyl-*tert*-butyldimethylsilyl ether (88): To a solution of TBSCI (4.04 g, 26 mmol) in CH₂Cl₂ (80 mL) and Et₃N (27.3 g, 27 mmol) at 0 $^{\circ}$ C was added 87 (5.65 g, 25 mmol) and DMAP (0.05 g). This was stirred at room temperature for 6 h and the mixture was poured into water (20 mL). The organic phase was separated and the aqueous layer was extracted with diethyl ether (3 X 30 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (5:95) as the eluant gave 88 (8.08 g, 95% yield) as

colourless liquid: IR (film) 1618, 1105, 836 and 775 cm⁻¹; CIMS *m/z* (rel. intensity) 341 (M⁺+1, 28.0), 283 (27.6), 251 (3.6), 210 (7.2), 209 (100), 123 (10.4); ¹H NMR (CDCl₃, ppm) 5.88 (q, J = 1.10 Hz, 1H), 3.58 (t, J = 6.27 Hz, 2H), 2.26 (t, J = 7.65 Hz, 2H), 1.83 (d, J = 1.10 Hz, 3H), 1.68-1.60 (m, 2H), 0.89 (s,9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, ppm) 147.79, 74.60, 62.15, 35.85, 30.84, 25.93, 23.87, 18.33, -5.32.

Ethyl 6-[tert-Butyldimethylsilyloxy]-3-methyl-2(E)-hexenoate (89): To a stirred solution of 88 (0.681g, 2.0 mmol) in THF (30 mL) under argon at -78 °C was added dropwise n-BuLi (0.8 mL, 2.0 mmol, 2.5 M solution in hexane). The reaction was stirred for 20 min. Freshly distilled ethyl chloroformate (0.21 mL, 2.2 mmol) was added dropwise and the mixture was allowed to stand at -78 °C for 1 h. After warming to room temperature over 3 h, it was guenched by pouring into water (10 mL) and extracted with diethyl ether (3 X 20 mL). Standard work-up followed by flash colunm chromatography using ethyl acetate:hexane(1:9) as the eluant gave 89 (0.48 g. 84% vield): IR (film) 2953, 2931, 2858, 1719, 1649, 1472, 1384, 1256, 1223, 1148, 1105, 837 and 776 cm⁻¹; CIMS m/z (rel. intensity) 288 (M⁺+2, 22.1), 287 (M++1, 100), 242 (3.6), 230 (2.2), 229 (13.3), 155 (16.8); ¹H NMR (CDCl₃, ppm) 5.65 (s, 1H), 4.12 (g, J = 7.1 Hz, 2H), 3.60 (t, J = 6.2 Hz, 2H), 2.19 (t, J = 7.7Hz, 2H), 2.15 (s, 3H), 1.71-1.64 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H), 0.89 (s, 9H), 0.045 (s, 6H); ¹³C NMR (CDCl₃, ppm) 166.75, 159.73, 115.71, 62.31, 59.38, 37.26, 30.60, 25.90, 18.75, 18.22, 14.30, -5.37. Anal. Calcd for C15H30O3Si: C, 62.89; H, 10.56. Found: C, 63.01; H, 10.75.

6-[*tert*-butyldimethylsilyloxy]-3-methyl-2(*E*)-hexenol (90): To a solution of 89 (0.45 g,1.57 mmol) in diethyl ether (20 mL) at -78 °C under argon was added diisobutylaluminum hydride (DIBAL-H) (4 mL, 4 mmol, 1 M solution in hexane). The mixture was warmed to 0 °C and stirred for 1.5 h, then excess DIBAL-H was destroyed by addtion of water (1 mL) and the resulting mixture was poured into an ice-cold 5% aqueous solution of tartaric acid (10 mL). The mixture was extracted with ether (3 X 30 mL) and the combined organic phase was washed with NaHCO3 solution. Standard work-up followed by flash column chromatography using ethyl acetate:hexane(1:4) as the eluant gave **90** (0.36 g, 94% yield) as colourless liquid: IR (film) 3344, 2965, 2929, 2857, 1669, 1471, 1387, 1255, 1101, 836 and 775 cm⁻¹; CIMS *m/z* (rel. intensity) 245 (M⁺+1, 3.8), 227 (100), 228 (17.9), 133 (2.0); ¹H NMR (CDCl₃, ppm) 5.41 (t, *J* = 7.0 Hz, 1H), 4.14 (d, *J* = 6.8 Hz, 2H), 3.59 (t, *J* = 6.5 Hz, 2H), 2.05 (t, *J* = 7.5 Hz, 2H), 1.67 (s, 3H), 1.65-1.60 (m, 2H), 0.89 (s, 9H), 0.045 (s, 6H). Anal. Calcd for C1₃H₂₈O₂Si: C, 63.88; H, 11.55. Found: C, 64.05; H, 11.70.

6-Bromo-4-methyl-(4*E***)-hexenyl** *tert***-butyldimethylsilyl ether (91):** To a solution of **90** (0.244 g, 1.0 mmol) in CH₂Cl₂ (15 mL) at -50 °C under argon was added Et₃N (0.19 mL, 1.36 mmol) and methanesulfonyl chloride (0.138 g, 1.2 mmol). This was stirred at -50 °C for 30 min. A solution of LiBr (0.217 g, 2.5 mmol) in THF (5 mL) was added into the mixture. The mixture was warmed to 0 °C and stirred for 1 h. Water (5 mL) was added and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (2 X 20 mL). Standard work-up gave **91** (0.27 g, 88% yield) as a liquid: IR (film) 2975, 2929, 2857, 1663, 1472, 1387, 1255, 1101, 836 and 661 cm⁻¹; CIMS *m/z* (rel. intensity) 309/307 (M⁺+1, 7.8, 8.5), 263 (13.4), 261 (16), 193 (6.7),191 (7.4); ¹H NMR (CDCl₃, ppm) 5.45 (t, *J* = 8.0 Hz, 1H), 4.09 (d, *J* = 8.0 Hz, 2H), 3.59 (t, *J* = 6.4 Hz, 2H), 2.09 (t, *J* = 7.7 Hz, 2H), 1.72 (s, 3H), 1.68-1.58 (m, 2H), 0.89 (s, 9H), 0.045 (s, 6H); ¹³C NMR (CDCl₃, ppm) 142.60, 120.39, 62.51,41.04, 35.67, 30.75, 29.69, 25.95, 18.31, 16.05.

1-Chloro-3,7,11-trimethyldodeca-2(*E*),6(*E*),10-triene (farnesyl chloride) (93): To a stirred solution of NCS (1.22 g, 9.1 mmol) in dry CH₂Cl₂ (50 mL) at 0 °C under argon was added dropwise DMS (0.73 mL, 10.0 mmol). The mixture was cooled to -20 °C and (*E*,*E*)-farnesol (92) (1.112 g, 5.0 mmol) in CH₂Cl₂ (5.0 mL) was added dropwise over 5 min. The mixture was warmed to 0 °C and stirred for 3 h, then poured into ice-cold distilled water (20 mL) and extracted with diethyl ether (4 X 30 ml). Standard work-up followed by flash column chromatography using ethyl acetate:hexane(1:99) gave 93 (0.946 g, 80%) as an oil: IR (film) 2965, 2922, 2850, 1662, 1448, 1382, 1253, 838 and 668 cm⁻¹; ¹H NMR (CDCl₃, ppm) 5.44 (t, *J* = 8.0 Hz, 1H), 5.10-5.06 (m, 2H), 4.10 (d, *J* = 8.0 Hz, 2H), 2.15-2.02 (m, 6H), 2.00-1.94 (m, 2H), 1.73 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H).

4,9,13,17-Tetramethyloctadeca-4(*E*),8(*E*),12(*E*),16-tetraenyl tert-butyl dimethylsilyl ether (94): This was prepared by coupling farnesyl barium and 91 according to the procedure of Corey et al.³⁹ To a freshly cut piece of lithium (41 mg, 5.9 mmol) under argon was added a solution of biphenyl (0.924 g, 6.0 mmol) in THF (18 mL). This was stirred at room temperature for 2.5 h at which time a greenish-blue solution of lithium biphenylide was observed. To a suspension of anhydrous Bal₂ (1.15 g, 2.94 mmol) in THF (5 mL), at room temperature, was added the lithium biphenylide solution through a cannula. The reaction mixture was stirred for further 45 min. at room temperature at which time a brown suspension of barium powder was formed. To this under argon at -78°C was added dropwise a solution of 93 (0.708 g, 2.94 mmol) in THF (5 mL) and the mixture was stirred for 45 min forming a red solution. Into this red solution at -78 °C was added *via* cannula a solution of 91 (0.354 g, 1.15 mmol) in THF (5 ml). The mixture was stirred at -78°C for 2 h, at room temperature for 14 h, then poured into the ice-cold saturated

aqueous NH4Cl solution and extracted with diethyl ether (4 X 30 ml). The organic phase was washed with dilute Na₂S₂O₃ solution. Standard work-up followed by flash column chromatography using ethyl acetate:hexane (1:20) as the eluant gave **94** (0.289 g, 58% yield) as an oil: IR (film) 2950, 2928, 2856, 1668, 1462, 1383, 1255, 1101, 836 and 775 cm⁻¹; CIMS m/z (rel. intensity) 433 (M++1, 16.1),432 (M+, 3.5), 375 (12.0), 302 (23.2), 301 (100), 219 (24.8), 191 (24.1), 177 (28.0), 163 (25.0), 151 (29.2), 137 (60.3), 123 (18.5); ¹H NMR (CDCl₃, ppm) 5.18-5.08 (m, 4H), 3.58 (t, J = 6.6 Hz, 2H), 2.10-1.95 (m, 14H), 1.68 (s, 3H), 1.63-1.58 (m, 2H), 1.60 (s, 12H), 0.89 (s, 9H), 0.043 (s, 6H). IR and ¹H NMR spectra are in agreement with those reported in-reference 25c.

4,9,13,17-Tetramethyloctadeca-4(*E*),8(*E*),12(*E*),16-tetraen-1-ol (95): This was prepared from 94 in 93% yield by the procedure described for the preparation of **84**. **95**: IR (film) 3330, 2958, 2923, 2855, 1669, 1447, 1382, 1058 and 839 cm⁻¹; CIMS *m/z* (rel. intensity) 319 (M⁺+1, 100), 318 (M⁺,11.1), 301 (10.8), 263 (7.7), 249 (10.4), 237 (26.2), 219 (21.4), 193 (20.5), 163 (19.1); ¹H NMR (CDCl3, ppm) 5.21-5.16 (m, 1H), 5.13-5.08 (m, 3H), 3.64 (dt, J = 5.9, 6.2 Hz, 2H), 2.10-1.95 (m, 14H), 1.74-1.64 (m, 2H), 1.68 (s, 3H), 1.62 (s, 3H), 1.60 (s, 9H), 1.29 (t, J = 5.5 Hz, 1H); ¹³C NMR (CDCl3, ppm) 135.27, 134.92, 134.75, 131.22, 124.89, 124.44, 124.29, 124.18, 62.86, 39.74, 36.02, 30.84, 28.25, 28.19, 26.81, 26.67, 25.65, 17.65, 16.04, 15.99, 15.89. Anal.Calcd for C22H38O: C, 82.95; H, 12.02. Found: C, 82.85; H, 12.05.

4,9,13,17-Tetramethyloctadeca-4(E),8(E),12(E),16-tetraenyl thioacetate (96): To a solution of triphenylphosphine (0.81 g, 3.0 mmol) in THF (30 mL) was added diisopropyl azodicarboxylate (0.63 g, 3.0 mmol) at -20 °C. The mixture was

stirred efficiently and warmed to 0 °C for 1 h by which time a thick white precipitate formed. Then a solution of thioacetic acid (0.23 g, 3.0 mmol) and 95 (0.48 g, 1.51 mmol) in THF (5 mL) was added dropwise over 20 min at -20 °C. The mixture was warmed to 0 °C over a period of 0.5 h, allowed to stand at 0 °C for 1 h, then stirred overnight at room temperature, poured into water (10 mL) and extracted with diethyl ether (3 X 40 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (5:95) as the eluant gave 96 (0.49 g. 86% vield) as an oil: IR (film) 2964, 2922, 2854, 1695, 1447, 1382, 1135, 1107, 954, 836 and 626 cm⁻¹; CIMS *m/z* (rel. intensity) 377 (M⁺+1, 100), 335 (45.2), 293 (15.1), 267 (12.6), 253 (37.4), 225 (15.9), 213 (28.3), 199 (13.1), 185 (36.2), 171 (12.8), 151 (22.4), 137 (42.8), 123 (17.7); ¹H NMR (CDCl₃, ppm) 5.19-5.06 (m, 4H), 2.82 (t, J = 7.3 Hz, 2H), 2.32 (s, 3H), 2.10-1.93 (m, 14H), 1.70-1.63 (m, 2H), 1.68 (s, 3H), 1.60 (s, 6H), 1.58 (s, 6H); ¹³C NMR (CDCl₃, ppm) 196.00, 135.24, 134.91, 133.78, 131.21, 125.42, 124.46, 124.31, 124.21, 39.75, 38.69, 30.59, 28.67, 28.26, 28.18, 27.75, 26.82, 26.69, 25.65, 17.66, 16.05, 15.80. Anal.Calcd for C24H40OS: C, 76.54; H, 10.71. Found: C. 76.38; H. 10.56.

4,9,13,17-Tetramethyl-4(*E***),8(***E***),12(***E***),16-octadecatetraen-1-thiol (97)**: A solution of **96** (0.475 g, 1.26 mmol) in dry ether (5 mL) was slowly added to a stirred suspension of LiAlH4 (0.303 g, 8.0 mmol) in dry ether (40 mL) under argon at 0 °C. After 0.5 h at 0 °C, excess LiAlH4 was destroyed at -30 °C by slow addition of water (1.0 g). The reaction mixture was filtered and the white precipatate was washed with diethyl ether (3 X 20 mL). Standard work-up followed by flash columm chromatography using ethyl acetate:hexane (1:20) as eluant gave **97** (0.381 g, 91% yield) as an oil: IR (film) 2950, 2926, 2853, 1666, 1448, 1382, 1151, 1107 and 838 cm⁻¹; CIMS *m/z* (rel. intensity) 335 (M⁺+1, 100), 334 (M⁺, 8.5), 333 (10.6), 265

(8.9), 257 (3.0), 211 (2.0); ¹H NMR (CDCl3, ppm) 5.18-5.06 (m, 4H), 2.48 (dt, J = 7.1, 7.6 Hz, 2H), 2.10-1.95 (m, 14H), 1.74-1.66 (m, 2H), 1.68 (s, 3H), 1.60(s, 9H), 1.59 (s, 3H), 1.33 (t, J = 7.9 Hz, 1H). Anal.Calcd for C22H38S: C, 78.98; H, 11.46. Found: C, 79.10; H, 11.62.

6-Thia-7-dehydro-2,3-oxidosqualene (63): To a solution of NaOH (2.5 g, 62.5 mol) in H₂O (10 mL) and toluene (10 mL) was added tetraoctylammonium bromide (0.05 g), **85** (0.194 g, 1.0 mmol) and **97** (0.244 g, 0.73 mmol) at room temperature. This mixture was warmed to 40 °C, stirred for 10 h and then extracted with ether (3 X 20 mL). Standard work-up followed by chromatography using ethyl acetate:hexane(1:20) as the eluant gave pure **63** (0.255 g, 81% yield) as a colourless oil: IR(film) 2950, 2924, 2854, 1667, 1448, 1378, 1249 and 1123 cm⁻¹; CIMS *m/z* (rel. intensity) 433 (M⁺+1, 100), 432 (M⁺, 9.0), 391 (1.30), 363 (1.8), 335 (4.0), 333 (4.2), 301 (1.9), 295 (8.3), 257 (2.3); ¹H NMR (CDCl₃, ppm) 5.18-5.06 (m, 4H), 2.82 (t, *J* = 6.2 Hz, 1H), 2.78-2.58 (m, 2H), 2.56-2.48 (m, 2H), 2.10-1.93 (m, 14H), 1.86-1.77 (m, 2H), 1.76-1.66 (m, 2H), 1.68 (s, 3H), 1.59 (s, 9H), 1.58 (s, 3H), 1.32 (s, 3H), 1.28 (s, 3H); ¹³C NMR (CDCl₃, ppm) 135.22, 134.92, 134.08, 131.02, 125.16, 124.44, 124.28, 124.21, 63.25, 58.50, 39.74, 38.75, 31.85, 29.30, 29.01, 28.23, 27.91, 26.80, 26.68, 25.66, 24.76, 18.66, 17.73, 16.05, 15.89. Anal. Calcd for C₂₈H₄₈OS: C, 77.71; H, 11.18. Found: C, 77.50; H, 10.95.

6-Sulfinyi-7-dehydro-2,3-oxidosqualene (67): This was prepared by oxidation of **63** according to the procedure of Trost *et al.*³⁸ for the oxidation of thioanisole to its corresponding sulfoxide except the reaction time was 2 min and the temperature was -5°C. Chromatography using ethyl acetate:hexane (7:3) as the eluant gave **67** in 80% yield: IR (film) 2963, 2923, 2850, 1444, 1378 and 1056 cm⁻¹;

CIMS m/z (rel. intensity) 449 (M++1, 78), 448 (M+, 5.0), 391 (44.5), 351 (82.7), 299 (39), 149 (100); ¹H NMR (CDCl₃, ppm) 5.21-5.16 (m, 1H), 5.15-5.06 (m, 3H), 2.88 (dd, J = 4.6, 7.9 Hz, 1H), 2.85-2.52 (m, 4H), 2.22-2.10 (m, 4H), 2.10-1.8 (m, 14H), 1.68 (s, 3H), 1.60 (s, 9H), 1.56 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H). Anal. Calcd for C₂₈H₄₈O₂S: C, 74.94; H, 10.79. Found: C, 74.86; H, 10.67.

4,8-Dimethyl-3(*E***),7-nonadienyl** *tert*-butyldimethylsilyl ether (99): This was prepared in 94% yield by the procedure described for the preparation **82. 99**: IR (film) 2956, 2928, 2857, 1663, 1463, 1382, 1255, 1103 and 836 cm⁻¹; CIMS *m/z* (rel. intensity) 284 (M⁺+2, 2.4), 283 (M⁺+1, 10.3), 225 (27.2) 151 (100), 149 (9.6), 137 (4.0), 123 (4.9); ¹H NMR (CDCl₃, ppm) 5.12-5.09 (m, 2H), 3.58 (t, J = 7.2 Hz, 2H), 2.23 (dt, J = 7.2, 7.1 Hz, 2H), 2.08-1.98 (m, 4H), 1.68 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 0.892 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, ppm) 136.95, 131.27, 124.35, 120.35, 63.12, 39.76, 31.87, 26.71, 25.96, 25.62, 18.35, 17.61, 16.13, -5.26. Anal. Calcd for C₁₇H₃₄0Si: C, 72.27; H, 12.13. Found: C, 72.16; H, 12.29.

7-Bromo-8-hydroxy-4,8-dimethyl-3(*E*)-nonenyl *tert*-butyldimethylsilyl ether (100): To a vigorously stirred solution of 99 (1.58 g, 5.60 mmol) in THF (106 mL) and water (28 mL) at 0 °C was added dropwise over 30 min a solution of NBS (1.0 g, 5.61 mmol) in THF (16 mL) and water (4.9 mL). The mixture was stirred for 1 h at 0°C, the THF was removed *in vacuo*, and the aqueous phase was extracted with diethyl ether (3 X 30 mL). Standard work-up followed by flash column chromatography gave recovered starting material 99 (0.42 g) and pure 100 (0.85 g, 40% yield) as a colourless oil: IR (film): 3443, 2929, 2857, 1461, 1384, 1255, 1103 and 836 cm⁻¹; CIMS *m/z* (rel. intensity) 379 (M⁺+1, 31.8), 321 (8.3), 249 (76.5), 247 (73.8), 229 (17.1), 167 (31.9), 149 (100); ¹H NMR (CDCl3, ppm) 5.21 (t, J = 7.2

Hz, 1H), 3.98 (dd, J = 1.9, 11.3 Hz, 1H), 3.59 (t, J = 7.0 Hz, 2H), 2.34 (m, 1H), 2.23 (dt, J = 7.1, 7.2 Hz, 2H), 2.13-2.07 (m, 1H), 2.01-1.93 (m, 2H), 1.86-1.74 (m, 1H), 1.61 (s, 3H), 1.59 (s, 3H), 1.34 (s, 3H), 1.32 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, ppm) 135.13, 122.08, 72.45, 70.84, 62.97, 38.29, 31.84, 26.65, 25.85, 25.65, 18.39, 16.07, -5.24. Anal. Calcd for C₁₇H₃₅BrO₂Si: C, 53.81; H, 9.30. Found: C, 53.63; H, 9.34.

7,8-Epoxy-4,8-dimethyl-3(*E***)-nonenyl** *tert***-butyldimethylsilyl ether (101): To a solution of 100 (0.5 g, 1.32 mmol) in methanol (25 mL) was added K₂CO₃ (0.365 g, 2.64 mmol) at room temperature. This mixture was stirred for 1 h, then most methanol was removed** *in vacuo***. The slurry was diluted with water (20 mL) and the aqueous phase was extracted with diethyl ether (3 X 20 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (1:9) as the eluant gave pure 101 (0.373 g, 95% yield) as a colourless oil: IR (film): 2957, 2923, 2857, 1670, 1472, 1463, 1378, 1254, 1098 and 836 cm⁻¹; CIMS** *m/z* **(rel. intensity) 300 (M⁺+2, 6.2), 299 (M⁺+1, 27.2), 281 (25.4), 241 (12.4), 167 (63.3), 149 (100); ¹H NMR (CDCl₃, ppm) 5.17 (t,** *J* **=7.2 Hz, 1H), 3.58 (t,** *J* **= 7.1 Hz, 2H), 2.70 (t,** *J* **= 6.3 Hz, 1H), 2.23 (dt,** *J* **= 7.2 Hz, 7.2 Hz, 2H), 2.18-2.04 (m, 2H), 1.71-1.64 (m, 1H), 1.63 (s, 3H), 1.62-1.56 (m, 1H), 1.29 (s, 3H), 1.25 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, ppm) 136.06, 121.13, 64.15, 63.03, 58.24, 36.36, 31.89, 27.49, 25.98, 24.89, 18.75, 18.38, 16.17, -5.23. Anal. Calcd for C17H34O2Si: C, 68.40; H, 11.49. Found: C, 68.38; H, 11.53.**

7,8-Epoxy-4,8-dimethyl-3(*E***)-nonen-1-ol (102):** This was prepared by the same procedure as described for the preparation of **84**. Flash chromatography using hexane:ethyl acetate (2:3) as the eluant gave **102** in 91% yield: IR (film) 3424,

2960, 2827, 1668, 1451, 1379, 1122, 1049 and 874 cm⁻¹; CIMS *m/z* (rel. intensity) 186 (M⁺+2, 15.9), 185 (M⁺+1, 68.6), 167 (100), 149 (24.4), 123 (18.6), 109 (8.4); ¹H NMR (CDCl₃, ppm) 5.20 (t, J = 7.2 Hz, 1H), 3.62 (dt, J = 2.3, 6.3 Hz, 2H), 2.69 (dd, J = 5.3, 7.0 Hz, 1H), 2.36-2.11 (m, 5H), 1.74-1.61 (m, 2H), 1.66 (s, 3H), 1.29 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, ppm) 137.79, 120.97, 64.34, 62.52, 58.21, 36.78, 31.66, 27.37, 24.92, 18.86, 16.27. Anal. Calcd for C₁₁H₂₀O₂: C, 71.70; H, 10.94. Found: C, 71.60; H, 10.82.

7.8-Epoxy-4,8-dimethyl-3(*E***)-nonenyl methanesulfonate (103):** This was prepared in 98% yield by the procedure described for the preparation of **85**. Compound **103** was obtained sufficiently pure to be used for the next reaction without purification. **103**: ¹H NMR (CDCl₃, ppm) 5.17 (t, J =7.2 Hz, 1H), 4.18 (t, J = 7.0 Hz, 2H), 2.99 (s, 3H), 2.69 (t, J =6.2 Hz, 1H), 2.46 (dt, J = 7.1,7.0 Hz, 2H), 2.23-2.10 (m, 2H), 1.65-1.58 (m, 2H), 1.66 (s, 3H), 1.30 (s, 3H), 1.26 (s, 3H).

1-Bromo-3,7,11-trimethyl-2(*E*),6(*E*),10-dodecatriene (farnesyl bromide) (105): This was prepared according to the procedure of Katzenellenbogen *et al.*⁴⁵ in 91% yield. ¹H NMR (CDCl₃, ppm) 5.55 (t of partially resolved m, 1H), 5.25-4.91 (m, 2H), 4.05 (d, J = 8.0 Hz, 2H), 2.28-1.90 (m, 8H), 1.74 (d, J = 1.3 Hz, 3H), 1.69 (s, 3H), 1.61 (s, 6H).

Ethyl 5,9,13-trimethyl-4(*E*),8(*E*),12-tetradecatrienoate (106): This was prepared according to the procedure of Coates *et al.*⁴⁶ To a slurry of Cul (5.33 g, 56 mmol) and ethyl acetate (2.75 mL, 28 mmol, freshly distilled from CaH₂) in THF (120 mL) at -100 °C under argon was added dropwise a solution of LDA (28 mmol), prepared from *n*-BuLi (11.2 mL, 28 mmol, 2.5 M in hexane) and diisopropyl amine (3.95 mL, 28.1 mmol) in THF (30 mL) at -78 °C. This was stirred for 1 h at -100 °C. A solution of farnesyl bromide (**105**) (4.0 g, 14 mmol) in THF (20 mL) was added slowly to the reaction mixture. The reaction mixture was allowed to warm to 0 °C over a period of 5 h. A solution of saturated NH₄Cl (120 mL) was added, the mixture was stirred open to air for 0.5 h and then extracted with diethyl ether (4 X 60 mL). Standard workup followed by chromatography using ethyl acetate:hexane (15:85) as the eluant gave **106** (3.74 g, 91% yield) as an oil : IR (film) 2977, 2924, 1738, 1447, 1375, 1179, and 1098 cm⁻¹; CIMS *m*/*z* (rel. intensity) 293 (M⁺+1, 100), 292 (M⁺,9.3), 247 (45.6), 225 (22.1), 211 (56.6), 197 (27.8), 183 (30), 169 (49), 157 (29), 137 (71), 123 (32); ¹H NMR (CDCI₃, ppm) 5.08 (m, 3H), 4.12 (q, *J* = 7.6 Hz, 2H), 2.30 (m, 4H), 2.04 (m, 4H), 1.97 (m, 4H), 1.67 (s, 3H), 1.61 (s, 3H), 1.59 (s, 3H), 1.58 (s, 3H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCI₃, ppm) 173.3, 136.6, 135.0, 131.2, 124.4, 124.1, 122.4, 60.1, 39.7, 39.6, 34.5, 26.8, 26.7, 25.6, 23.6, 17.6, 14.2. The ¹H NMR spectrum is in agreement with that reported in reference 46.

5,9,13-Trimethyl-4(*E***),8(***E***),12-tetradecatrienol (107): To a solution of LiAlH4 (2 g, 50 mmol) in dry ether (50 mL) at 0 °C under argon was added dropwise a solution of 106** (7.32 g, 25 mmol) in ether (20 mL). The mixture was warmed to room temperature and stirred for 3 h. Excess LiAlH4 was destroyed at -20 °C by slow addition of water (1 mL) followed by 15% NaOH (1 mL). The reaction mixture was filtered and the white precipitate was washed with ether (3 X 20 mL). Standard work-up followed by flash chromatography using ethyl acetate:hexane (3:7) as the eluant gave **107** (5.75 g, 92% yield): IR (film) 3346, 2963, 2927, 2850, 1448, 1381, 1058 and 833 cm⁻¹; CIMS *m/z* (rel. intensity) 251 (M⁺+1, 62), 250 (M⁺, 9), 233 (18), 205 (4), 181(22), 169 (35), 137 (100), 123 (52); ¹H NMR (CDCl₃, ppm) 5.17-5.04 (m, 3H), 3.63 (t, *J* = 5.88 Hz, 2H), 2.10-1.94 (m, 10H), 1.67 (s, 3H), 1.61 (m,
2H), 1.60 (s, 3H), 1.59 (s, 6H); ¹³C NMR (CDCl3, ppm) 135.8, 135.0, 131.2, 124.4, 124.1, 123.8, 62.7, 39.7, 32.8, 26.8, 26.6, 25.6, 24.3, 17.6, 16.0.

5,9,13-Trimethyl-4(*E***),8(***E***),12-tetradecatrienyl thioacetate (108): This was prepared in 80% yield by the procedure described for the preparation of 96. 108: IR (film): 2965, 2923, 2854, 1695, 1446, 1382, 1353, 1134, 1108, 936 and 835 cm⁻¹; MS** *m/z* **(rel intensity): 309 (M⁺+1, 1.3) 308 (M⁺, 5.2), 265 (14.1), 197 (9.3), 136 (27.0), 129 (37.4), 121 (11.1); ¹H NMR (CDCI₃, ppm) 5.10-5.09 (m, 3H), 2.86 (t, J = 7.20 Hz, 3H), 2.32 (s, 3H), 2.09-1.96 (m, 10H), 1.68 (s, 3H), 1.62 (m, 2H), 1.60 (s, 9H); ¹³C NMR (CDCI₃, ppm) 195.89, 136.33, 135.11, 131.30, 124.53, 124.25, 123.19, 39.81, 30.67, 29.68, 28.84, 27.15, 26.88, 26.69, 25.74, 17.75, 16.14, 16.09. Anal. Calcd for C19H₃₂OS: C, 73.97; H, 10.45. Found: C, 73.83; H, 10.34.**

5,9,13-Trimethyl-4(*E***),8(***E***),12-tetradecatrienthiol (109):** This was prepared in 92% yield by the procedure described for the preparation of **97**. **109**: IR (film) 2964, 2924, 2855, 1442, 1377, 1259, 1222 and 834 cm⁻¹; CIMS *m/z* (rel. intensity) 267 (M⁺+1, 100), 266 (M⁺, 10.3), 195 (7.5), 177 (10.9), 137 (2.2), 136 (1.2), 123 (1.1); ¹H NMR (CDCl3, ppm) 5.11-5.07 (m, 3H), 2.51 (dt, J = 7.3, 7.2 Hz, 2H), 2.12-1.95 (m, 10H), 1.68 (s, 3H), 1.65 (m, 2H), 1.61 (s, 3H), 1.60 (s, 6H), 1.32 (t, J = 7.82Hz, 1H). Anal. calcd for C17H30S: C, 76.62; H, 11.36. Found: C, 76.55; H, 11.50.

10-Thia-11-dehydro-2,3-oxidosqualene (64): This was prepared in 73% yield by the procedure described for the preparation of **63**. **64**: IR (film) 2961, 2920, 2854, 1681, 1448, 1377, 1249, 1122, 1043 and 834 cm⁻¹; CIMS *m/z* (rel. intensity) 435 (M⁺+3, 9.6), 434 (M⁺+2, 30.6), 433 (M⁺+1, 100), 415 (9.9), 283 (6.9), 201 (11.3), 167 (14.9), 151 (1.6), 149 (14.7), 137 (4.9), 123 (3.4); ¹H NMR (CDCl3, ppm)

5.21 (t, J = 7.0 Hz, 1H), 5.12-5.07 (m, 3H), 2.71 (t, J = 6.2 Hz, 1H), 2.51 (t, J = 8.0 Hz, 4H), 2.28 (dt, J = 7.4, 7.4 Hz, 2H), 2.17-1.95 (m, 14H), 1.72-1.62 (m, 2H), 1.68 (s, 3H), 1.63 (s, 3H), 1.60 (s, 9H), 1.30 (s, 3H), 1.26 (s, 3H); ¹³C NMR (CDCi₃, ppm) 135.95, 135.71, 134.99, 131.25, 124.42, 124.18, 123.49, 123.22, 64.07, 58.25, 39.72, 36.30, 32.17, 31.78, 29.84, 28.44, 27.41, 27.12, 26.79, 26.62, 25.64, 24.86, 18.74, 17.65, 16.06. Anal. Calcd. for C₂₈H₄₈OS: C, 77.71; H, 11.18. Found: C, 77.80; H, 11.14.

10-Sulfinyl-11-dehydro-2,3-oxidosqualene (68): This was prepared in 84% yield by oxidation of **64** using the same procedure described for the preparation of **67. 68**: IR (film) 2961, 2922, 2860, 1665, 1449, 1377 and 1047 cm⁻¹; CIMS *m/z* (rel. intensity) 449 (M⁺+1, 14.5), 283 (100), 265 (55), 167 (59), 149 (76); ¹H NMR (CDCl₃, ppm) 5.20 (t, J = 7.0 Hz, 1H), 5.12-5.05 (m, 3H), 2.76-2.56 (m, 5H), 2.49 (dt, J = 7.5, 7.5 Hz, 2H), 2.25-1.93 (m, 14H), 1.81 (quintet, J = 7.2 Hz, 2H), 1.67 (s, 6H), 1.59 (s, 9H), 1.30 (s, 3H), 1.26 (s, 3H). Anal. Calcd. for C28H48O2S: C, 74.94; H, 10.79. Found: C, 74.90; H, 10.75.

3,7,11-Trimethyl-2(E),6(E), 10-dodecatrienal (farnesal) (110): This was prepared by Swern oxidation of farnesol **92** according to the method of Dodd and Oehlschlager.⁴⁷ Chromatography using ethyl acetate:hexane (1:9) as the eluant gave **110** in 93% yield: IR (film) 2966, 2917.7, 2854, 1676, 1632, 1443, 1381, 1194, 1120 and 832 cm⁻¹; MS, *m/z* (rel intensity) 220 (M+, 1.5), 191 (2.7), 177 (4.9), 151 (2.8), 136 (9.8), 123 (6.4), 121 (8.3), 84 (49.5), 69 (100); ¹H NMR (CDCl₃, ppm) 9.99 (d, J = 8.11 Hz, 1H), 5.88 (dq, J = 1.16, 8.1 Hz, 1H), 5.10-5.04 (m, 2H), 2.23-2.20 (m, 4H), 2.17 (d, J = 1.27 Hz, 3H), 2.06-2.03 (m, 2H), 2.00-1.95 (m, 2H), 1.67 (s, 3H), 1.60 (s, 3H), 1.59 (3, 3H); ¹³C NMR (CDCl₃, ppm) 191.15, 163.62, 136.59,

131.45, 127.45, 124.15, 122.49, 40.63, 39.63, 26.65, 25.71, 25.64, 17.65, 17.58, 16.04.

4,8,12-Trimethyl-1,3(*E***)**,7(*E***)**,11-tridecatetraene (111): This was also prepared according to the method of Dodd and Oehlschlager⁴⁷ in 90% yield. **111**: IR (film) 3084, 2966, 2924, 2855, 1651, 1598, 1447, 1379, 986 and 896 cm⁻¹; CIMS, *m/z* (rel. intensity) 219 (M⁺+1, 100), 218 (M⁺, 17.4), 205 (19.5), 191 (9.1), 177 (7.1), 163 (23.7), 149 (26.4), 137 (37.8), 123(19.4), 121(14.2); ¹H NMR (CDCl₃, ppm) 6.55 (ddd, *J* = 10.4, 10.5, 16.8 Hz, 1H), 5.87 (d, *J* = 10.7 Hz, 1H), 5.14-5.07 (m, 3H), 4.98 (dd, *J* = **1**.70, 10.2 Hz, 1H), 2.19-2.04 (m, 6H), 1.98 (t, *J* = 8.2 Hz, 2H), 1.77 (s, 3H), 1.68 (s, 3H), 1.61 (s, 6H); ¹³C NMR (CDCl₃, ppm) 139.44, 135.33, 133.44, 131.24, 125.53, 124.39, 123.89, 114.48, 39.86, 39.71, 26.77, 26.45, 25.65, 17.65, 16.65.

4,8,12-Trimethyl-3(*E***),7(***E***),11-tridecatrienol (112): Hydroboration of 111 (3.20 g, 14.7 mmol) with disiamylborane followed by oxidation with H₂O₂/NaOH gave 112** in 88% yield according to the method of Dodd and Oehlschlager.⁴⁷ **112**: IR (film) 3348, 2965, 2926, 2854, 1668, 1448, 1377, 1104, 1048 and 835 cm⁻¹; mass spectrum *m*/*z* (rel intensity) 236 (M⁺, 1.6), 193 (3.0), 152 (2.7), 149 (2.1), 136 (15.2), 123 (13.0), 121 (8.5), 81 (42.0), 69 (100); ¹H NMR (CDCl₃, ppm) 5.11-5.06 (m, 3H), 3.60 (t, *J* = 6.5 Hz, 2H), 2.27 (dt, *J* = 6.6, 6.8 Hz, 2H), 2.10-1.96 (m, 8H), 1.67 (s, 3H), 1.64 (s, 3H), 1.59 (s, 6H); ¹³C NMR (CDCl₃, ppm) 138.78, 135.24, 131.24, 124.34, 123.98, 119.88, 62.41, 39.78, 39.69, 31.51, 26.74, 26.49, 25.64, 17.63, 16.18, 15.99.

4,8,12-Trimethyl-3(E),7(E),11-tridecatrienyl *tert*-butyldimethylsilyl ether (113): This was prepared in 91% yield by the procedure described for the

preparation of **82**. **113**: IR (film) 2965, 2928, 2857, 1669, 1462, 1382, 1255, 1103, 836 and 775 cm⁻¹; MS *m/z* (rel. intensity) 350 (M+,1.8), 293 (22.1), 217 (12.0), 191 (18.1), 157 (10.1), 135 (10.3), 123 (7.1), 121 (8.3), 109 (12.7); ¹H NMR (CDCl₃, ppm) 5.16-5.04 (m, 3H), 3.57 (t, J = 6.3 Hz, 2H), 2.23 (dt, J = 7.1, 7.1 Hz, 2H), 2.09-1.95 (m, 8H), 1.68 (s, 3H), 1.62 (s, 3H), 1.59 (s, 6H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, ppm) 137.12, 135.08, 131.31, 124.52, 124.31, 120.41, 63.73, 39.86, 31.99, 26.89, 26.72, 26.07, 25.74, 17.74, 16.25, 16.07, -5.14. Anal. Calcd. for C₂₂H₄₂OSi: C, 75.36; H, 12.07. Found: C, 75.58; H, 12.30.

11-Bromo-12-hydroxy-4,8,12-trimethyl-3(*E***),7(***E***)-tridecadienyl** *tert* **butyldimethylsilyl ether (114):** This was prepared in 37% yield by the same procedure as described for the preparation of **100**. **114**: IR (film) 3450, 2954, 2928, 2856, 1667, 1471, 1446, 1384, 1101 and 836 cm⁻¹; CIMS *m/z* (rel. intensity) 447 (M⁺+1, 7.9), 429 (1.2), 315 (33.3), 299 (22.4), 297 (24.8), 235 (25.3), 217 (100); ¹H NMR (CDCl3, ppm) 5.20 (t, J = 6.4 Hz, 1H), 5.13 (t, J = 7.2 Hz, 1H), 3.98 (dd, J =1.8, 11.9 Hz, 1H), 3.58 (t, J = 7.2 Hz, 2H), 2.35-2.28 (m, 1H), 2.23 (dt, J = 7.2, 7.2 Hz, 2H), 2.14-2.06 (m, 4H), 2.02-1.92 (m, 2H), 1.83-1.73 (m, 1H), 1.62 (s, 3H), 1.59 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl3, ppm) 136.77, 133.09, 125.93, 120.52, 72.44, 70.87, 63.11, 39.65, 38.18, 32.21, 31.88, 26.67, 26.60, 25.97, 25.85, 18.36, 16.14, 15.83, -5.23. Anal. Calcd for C₂₂H₄₃O₂BrSi: C, 59.04; H, 9.68. Found: C, 58.98; H, 9.59.

11,12-Epoxy-4,8,12-trimethyl-3(*E***),7(***E***)-tridecadienyl** *tert*-butyldimethylsilyl ether (115): This was prepared in 95% yield by the same procedure as described for the preparation of **101**. **115**: IR (film) 2956, 2928, 2857, 1667, 1472, 1378, 1254, 1102, 836 and 776 cm⁻¹; CIMS *m/z* (rel. intensity) 367 (M⁺+1, 12), 349 (3.4), 309 (5.0), 235 (76.1), 218 (16.7), 217 (100), 191 (22.1); ¹H NMR (CDCl3, ppm) 5.17-5.10 (m, 2H), 3.57 (t, J = 7.2 Hz, 2H), 2.70 (t, J = 6.2 Hz, 1H), 2.22 (dt, J = 7.1, 7.2 Hz, 2H), 2.17-2.00 (m, 6H), 1.69-1.60 (m, 2H), 1.61 (s,6H), 1.30 (s, 3H), 1.26 (s,3H), 0.89 (s, 9H), 0.045 (s, 6H); ¹³C NMR (CDCl₃, ppm) 136.87, 134.10, 124.87, 120.44, 64.18, 63.12, 58.23, 39.69, 36.32, 31.88, 27.52, 26.64, 25.98, 24.98, 18.75, 18.37, 16.16, 15.98, -5.23; Anal. Calcd for C₂₂H₄₂O₂Si: C, 72.07; H, 11.56. Found: C, 72.03; H, 11.44.

11,12-Epoxy-4,8,12-trimethyl-3(*E*),7(*E*)-tridecadienol (116): This was prepared in 92% yield by same procedure as described for the preparation of **102**. **116**: IR (film) 3439, 2960, 2823, 2856, 1669, 1449, 1378, 1122, 1049 and 874 cm⁻¹; CIMS *m/z* (rel. intensity) 253 (M⁺+1, 85.5), 235 (100), 217 (33.1), 191 (21.1), 167 (14.0), 153 (39.9),149 (18.7), 135 (31.1), 123 (17.2), 121 (13.4); ¹H NMR (CDCl3, ppm) 5.15-5.10 (m, 2H), 3.61(dt, J = 6.3, 6.1 Hz, 2H), 2.70 (t, J = 6.3 Hz, 1H), 2.28 (dt, J = 6.6, 6.7 Hz, 2H), 2.18-2.02 (m, 6H), 1.72-1.61 (m, 2H), 1.64 (s, 3H), 1.61 (s, 3H), 1.48 (t, J = 5.84 Hz, 1H), 1.29 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl3, ppm) 138.52, 134.34, 124.69, 120.12, 64.16, 62.43, 58.29, 39.71, 36.31, 31.54, 27.46, 26.48, 24.88, 18.74, 16.19, 16.00. Anal. Calcd for C16H₂₈O₂: C, 76.14; H, 11.18. Found: C, 76.30; H, 11.23.

11,12-Epoxy-4,8,12-trimethyl-3(*E*),7(*E*)-tridecadienyl methanesulfonate (117): This was prepared in 95% yield by the procedure described for the preparation of **85**. Compound **117** was used for the next reaction without further purification: ¹H NMR (CDCl₃, ppm) 5.26-5.00 (m, 2H), 4.19 (t, J = 7.0 Hz, 2H), 3.01 (s, 3H), 2.71 (t, J = 6.4 Hz, 1H), 2.47 (dt, J = 7.3, 7.2 Hz, 2H), 2.21-2.00 (m, 6H), 1.72-1.59 (m, 2H), 1.63 (s, 6H), 1.31 (s, 3H), 1.27 (s, 3H). **6,10-Dimethyl-5(***E***)**,**9-undecadien-2-ol (119):** A solution of 118 (2.23 g, 11.5 mmol) in dry ether (10 mL) was slowly added to a stirred suspension of LiAlH4 (0.95 g, 23.8 mmol) in dry ether (40 mL) at 0 °C. After 0.5 h at 0 °C, excess LiAlH4 was destroyed at -30 °C by slow addition of water (1 mL) followed by 15% NaOH (1 mL). The resulting mixture was filtered and the white precipitate was washed with ether (2 X 10 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (3:7) as the eluant gave **119** (2.16 g, 96% yield) as a colourless liquid: IR (film) 3346, 2966, 2925, 2856, 1450, 1376, 1128, 1084 and 833 cm⁻¹; MS *m/z* (rel intensity) 196 (M⁺, 1.4),153 (96), 135 (52.9), 123 (20.0), 109 (100), 81 (23.8), 69 (66.4); ¹H NMR (CDCl3, ppm) 5.14 (m, 1H), 5.08 (m, 1H), 3.82-3.76 (m, 1H), 2.10-1.98 (m, 6H), 1.67 (s, 3H), 1.62 (s, 3H), 1.59 (s, 3H), 1.52-1.46 (m, 2H), 1.19 (d, *J* = 6.2 Hz, 3H); ¹³C NMR (CDCl3, ppm) 135.76, 131.47, 124.38, 124.06, 68.04, 39.81, 39.32, 26.77, 25.73, 24.47, 23.56, 17.75, 16.06. Anal. Calcd for C13H24O: C, 79.52; H, 12.33. Found: C, 79.40; H, 12.29.

6,10-Dimethyl-5(*E***),9-undecadien-2-yi thioacetate (120):** This was prepared in 80% yield by the procedure described for the preparation of **96**. **120**: IR (film) 2965, 2923, 2855, 1692, 1449, 1376, 1352, 1113 and 952 cm⁻¹; CIMS *m/z* (rel. intensity) 255 (M⁺+1, 26.6), 214 (15.3), 213 (100), 211 (13.4), 179 (11.7), 173 (5.3), 131 (12.7); ¹H NMR (CDCl₃, ppm) 5.11-5.06 (m, 2H), 3.59-3.50 (m, 1H), 2.30 (s, 3H), 2.09-2.03 (m, 6H), 1.69 (s, 3H), 1.61-1.54 (m, 2H), 1.60 (s, 3H), 1.59 (s, 3H), 1.30 (d, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, ppm) 135.89, 131.31, 124.32, 123.29, 39.69, 39.35, 36.43, 30.73, 26.69, 25.64, 25.51, 23.80, 21.38, 17.66, 15.97. Anal. Calcd for C15H₂₆OS: C, 70.81; H, 10.30. Found: C, 70.94; H, 10.41.

6,10-Dimethyl-5(*E***),9-undecadien-2-thiol (121):** This was prepared in 91% yield by the procedure described for the preparation of **97**. **121**: IR (film) 2965, 2922, 2854, 1668, 1449, 1376, 1109 and 833 cm⁻¹; CIMS, *m/z* (rel intensity) 212 (M⁺, 7.6), 169 (4.3), 143 (11.5), 141 (14.4), 109 (21.2), 101 (30.7), 81 (21.0), 69 (100); ¹H NMR (CDCI₃, ppm) 5.10-5.05 (m, 2H), 2.97-2.87 (m, 1H), 2.14-2.04 (m, 4H), 2.00-1.96 (m, 2H), 1.68 (s, 3H), 1.62 (s, 3H), 1.60 (s, 3H), 1.59-1.52 (m, 2H), 1.47 (d, *J* = 6.3 Hz, 1H), 1.33 (d, *J* = 6.7 Hz, 3H). Anal. Cacld for C1₃H₂4S: C, 73.52; H, 11.39. Found: C, 73.60; H, 11.31.

14-Thia-15-dehydro-2,3-oxidosqualene (65): This was prepared in 31% yield by the procedure described for the preparation of **63**. **65**: IR (film) 2961, 2918, 2871, 1668, 1449, 1376, 1248, 1122 and 874 cm⁻¹; CIMS *m/z* (rel. intensity) 448 (M⁺+2, 34.5), 447 (M⁺+1, 100),446 (M⁺, 5.5),429 (11.6), 377 (2.6), 269 (3.1), 217 (3.7); ¹H NMR (CDCl₃, ppm) 5.18-5.14 (m, 2H), 5.11-5.07 (m, 2H), 2.76 (sextet, J = 6.7 Hz, 1H), 2.70 (t, J = 6.2 Hz, 1H), 2.51 (t, J = 7.7 Hz, 2H), 2.26 (dt, J = 7.4, 7.6 Hz, 2H), 2.15-1.97 (m, 14H), 1.68 (s, 3H), 1.61 (s, 9H),1.60 (s, 3H), 1.45-1.51 (m, 2H), 1.30 (s, 3H), 1.27 (d, J = 6.7 Hz, 3H), 1.26 (s, 3H); ¹³C NMR (CDCl₃, ppm) 136.42, 135.61, 134.17, 131.30, 124.80, 124.36, 123.81, 122.80, 64.14, 58.24, 39.74, 38.64, 39.60, 37.15, 36.33, 30.35, 28.75, 27.53, 26.74, 26.60, 25.66, 25.49, 24.90, 23.37, 21.45, 18.76, 17.67, 16.15, 16.07. Anal. Calcd for C29H50OS: C, 77.97; H, 11.20. Found: C, 78.07; H, 11.40.

14-Sulfinyl-15-dehydro-2,3-oxidosqualenes (69) and (70) These were prepared by the procedure described for the preparation of 67. Chromatography using ethyl acetate:hexanes (7:3) as the eluant gave the two diastereomers 69 and 70 in 24% and 33% yields, respectively. 69: R_f 0.44 (silica, ethyl acetate:hexanes 7:3); IR (film) 2963, 2922, 2856, 1666, 1450,1377, 1116 and 1047 cm⁻¹; CIMS *m/z* (rel. intensity) 463 (M⁺+1, 6.5), 285 (10), 269 (14), 229 (100), 217 (30.6); ¹H NMR (CDCl3, ppm) 5.20-5.11 (m, 2H), 5.11-5.03 (m, 2H), 2.73 (m, 1H), 2.70 (t, *J* = 6.3 Hz, 1H), 2.61-2.53 (m, 2H), 2.53-2.44 (m, 2H), 2.28-1.94 (m, 14H), 1.62-1.70 (m, 2H), 1.68 (s, 3H), 1.65 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 1.57 (s, 3H), 1.30 (s, 3H), 1.26 (s, 3H), 1.23 (d, *J* = 6.9 Hz, 3H). Anal.Calcd for C₂₉H₅₀O₂S: C, 75.27; H, 10.90. Found: C, 75.26; H, 11.04. **70**: Rf 0.35 (ethyl acetate:hexanes 7:3); IR (film) 2962, 2922, 2850, 1666, 1450,1377, 1117 and 1047 cm⁻¹; CIMS *m/z* (rel. intensity) 463 (M⁺+1, 11.6), 285 (16.3), 269 (40), 229 (100), 217 (27.7); ¹H NMR (CDCl3, ppm) 5.20-5.11 (m, 2H), 5.11-5.03 (m, 2H), 2.70 (t, *J* = 6.3 Hz, 1H), 2.67 (m, 1H), 2.61-2.53 (m, 2H), 2.53-2.44 (m, 2H), 2.27-1.93 (m, 14H), 1.62-1.70 (m, 2H), 1.67 (s, 3H), 1.65 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 1.57 (s, 3H), 1.30 (s, 3H), 1.27 (d, *J* = 6.9 Hz, 3H), 1.26 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 1.57 (s, 3H), 1.30 (s, 3H), 1.27 (d, *J* = 6.9 Hz, 3H), 1.26 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 1.57 (s, 3H), 1.30 (s, 3H), 1.27 (d, *J* = 6.9 Hz, 3H), 1.26 (s, 3H). Anal.Calcd for C₂₉H₅₀O₂S: C, 75.27; H, 10.90. Found: C, 75.20; H, 11.05.

16-Bromo-17-hydroxy-4,9,13,17-tetramethyl-4(*E*),8(*E*),12(*E*)-octadeca**trienyl** *tert*-butyldimethylsilyl ether (122): This was prepared in 36% yield form **94** by the procedure described for the preparation of **100**. **122**: IR (film) 3456, 2958, 2856, 1462, 1384, 1254, 1101, 836 and 775 cm⁻¹; ¹H NMR (CDCl₃, ppm) 5.20 (t, J = 6.5 Hz, 1H), 5.17-5.10 (m, 2H), 3.98 (dd, J = 1.9, 11.4 Hz, 3.58 (t, J = 6.6 Hz, 2H), 2.33-2.28 (m, 1H), 2.13-2.06 (m, 4H), 2.01-1.90 (m, 10H), 1.83-1.74 (m, 1H), 1.64-1.61 (m, 1H), 1.60 (s, 9H), 1.34 (s, 3H), 1.33 (s, 3H), 0.89 (s, 9H), 0.05 (s, 6H). IR and ¹H NMR spectra are in agreement with those reported in reference 25c.

16,17-Epoxy-4,9,13,17-tetramethyl-4(*E***),8(***E***),12(***E***)-octadecatrienol (124)**: To a solution of **122** (0.456 g, 0.86 mmol) in methanol (20 mL) was added K₂CO₃ (0.276 g, 2.0 mmol) at room temperature. This mixture was stirred for 1 h after which time most of methanol was removed *in vacuo*. The resulting slurry was diluted with water (20 mL) and the aqueous phase was extracted with diethyl ether (3 X 20 mL). Standard work-up gave the protected epoxy alcohol **123** (0.364 g). To a solution of **123** (0.364 g, 0.81 mmol) in THF (20 mL) at room temperature was added tetrabutylammonium flouride (8 mL, 1 M solution in THF, 8 mmol). The resulting mixture was stirred overnight at room temperature. Water (10 mL) was added and the mixture was extracted with diethyl ether (3 X 20 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (4:6) as the eluant gave **124** (0.255 g, 89% yield, over two steps): IR (film) 3440, 2957, 2925, 2856, 1667, 1448, 1379, 1058 and 871 cm⁻¹; ¹H NMR (CDCl3, ppm) 5.20-5.08 (m, 3H), 3.63 (dt, *J* = 6.4, 6.4 Hz, 2H),2.70 (t, *J* = 6.3 Hz, 1H), 2.18-1.97 (m, 13H), 1.69-1.97 (m, 4H), 1.69-1.64 (m, 4H), 1.61 (s, 6H), 1.56 (s, 3H), 1.30 (s, 3H), 1.26(s, 3H). IR and ¹H NMR spectra were in agreement with those reported in reference 25c.

16,17-Epoxy-4,9,13,17-tetramethyl-4(*E*),8(*E*),12(*E*)-octadecatrienyl

methanesulfonate (125): This was prepared in 97% yield by the procedure described for the preparation of **85**. Compound **125** was used in the next reaction without further purification:¹H NMR (CDCI₃, ppm) 5.20-5.10 (m, 3H), 4.20 (t, J = 6.5 Hz, 2H), 3.00 (s, 3H), 2.70 (t, J = 6.2 Hz, 1H), 2.18-1.96 (m, 12H), 1.90-1.80 (m, 2H), 1.76-1.60 (m, 2H), 1.61(s, 3H), 1.60 (s, 3H), 1.57 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H).

4-Methyl-3-pentenyl thioacetate (127): This was prepared in 75% yield by the procedure described for the preparation of **96** except that the solvent was carefully distilled off at atmospheric pressure using 20-cm Vigreux column. The

residue was purified by flash chromatography using diethyl ether:pentane (2:3) as eluant and the solvent was removed again through a Vigreux column to give **127**: GC purity 96%; IR (film) 2965, 2920, 2853, 1691, 1450, 1374 and 1113 cm⁻¹; MS, m/z (rel. intensity) 159 (M⁺+1, 5.5), 158 (M⁺, 59.9), 115 (2.9), 101 (2.0), 82 (100), 69 (22.8), 67 (29.1); ¹H NMR (CDCl₃, ppm) 5.14-5.06 (m, 1H), 2.86 (t, J = 7.4 Hz, 2H), 2.32 (s, 3H), 2.25 (dt, J = 7.2, 7.4 Hz, 2H), 1.70 (s, 3H), 1.62 (s, 3H).

4-Methyl-3-pentene-1-thiol (128): This was prepared in 57% yield by the procedure described for the preparation of **97** except that the solvent was carefully distilled off at atmospheric pressure using Vigreux column to give **128**: GC purity 94%; IR (film) 2962, 2920, 2855, 1666,1450, 1378 and 832 cm⁻¹; MS *m/z* (rel. intensity) 117 (M⁺+1, 1.0), 116 (M⁺, 12.4), 101 (100), 83 (2.6), 69 (92.0), 67 (33.2), 55 (15.1), 53 (14.2), 47 (14.0), 41 (69.0); ¹H NMR (CDCl₃, ppm) 5.12-5.08 (m, 1H), 2.52 (dt, J = 7.2, 7.4 Hz, 2H), 2.30 (dt, J = 7.1, 7.2 Hz, 2H), 1.72 (s, 3H), 1.63 (s, 3H), 1.40 (t, J = 7.7 Hz, 1H).

18-Dehydro-19-thia-2,3-oxidosqualene (66): This was prepared in 80% yield by the procedure described for the preparation of **63**. **66**: IR (film) 2965, 2924, 2863, 1666, 1449, 1377, 1281, 1122 and 875 cm⁻¹; CIMS *m/z* (rel. intensity) 433 (M⁺+1, 100), 432 (M⁺, 5.0), 415 (33.8), 391 (7.5), 377 (6.3), 351 (2.0), 279 (5.8), 185 (4.2), 143 (11.1), 127 (2.3); ¹H NMR (CDCl₃, ppm) 5.20-5.10 (m, 4H), 2.70 (t, J = 6.2 Hz, 1H), 2.50, 2.48 (overlap of two triplets, J = 7.7, 7.7 Hz, 4H), 2.26 (dt, J = 7.2, 7.5 Hz, 2H), 2.16-1.96 (m, 14H), 1.70 (s, 3H), 1.67-1.62 (m, 2H), 1.62 (s, 6H), 1.59 (s, 6H), 1.30 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, ppm) 135.07, 134.23, 134.03, 132.99, 125.02, 124.95, 124.33, 122.74, 64.18, 58.23, 39.68, 38.81, 36.33, 32.28, 31.73, 28.58, 28.26, 28.24, 28.02, 27.53, 26.70, 25.65, 24.89, 18.75, 17.78, 16.04,16.00.

Anal.Calcd for C28H48OS: C, 77.71; H, 11.18. Found: C, 77.78; H, 11.04.

18-Dehydro-19-sulfinyl-2,3-oxidosqualene (71): This was prepared in 82% yield by the procedure described for the preparation of **67**. **71**: IR (film) 2963, 2924, 2850, 1667, 1449, 1378 and 1048 cm⁻¹; CIMS *m/z* (rel. intensity) 449 (M⁺+1, 54.4), 448 (M⁺, 52.5), 367 (67.7), 349 (68.8), 317 (10.6), 133 (100); ¹H NMR (CDCl₃, ppm) 5.20-5.08 (m, 4H), 2.70 (t, J = 6.3 Hz, 1H), 2.70-2.54 (m, 4H), 2.45 (dt, J = 7.2, 7.3 Hz, 2H), 2.20-1.95 (m, 14H), 1.92-1.80 (m, 2H), 1.71 (s, 3H), 1.65 (s, 3H), 1.61 (s, 3H), 1.60 (s, 3H), 1.59 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H). Anal. Calcd for C₂₈H₄₈O₂S; C, 74.94; H, 10.79. Found: C, 74.92; H, 10.73.

6.4.2. Syntheses discussed in Chapter 3.

4-lodo-3-methyl-3(*E*)-butenyl *tert*-butyldimethylsilyl ether (131): This was prepared by the procedure of Negishi *et al.*⁴⁰ To a slurry of ZrCp₂Cl₂ (1.68 g, 5.8 mmol) in dry CH₂Cl₂ (50 mL) at -20 °C under argon was added AlMe₃ (6.88 mL, 69.6 mmol) dropwise over 5 min. A solution of 3-butynol (129) (1.62 g, 23.2 mmol) in CH₂Cl₂ (3 mL) was then added dropwise. The mixture was warmed to room temperature, stirred for 12 h, then cooled to -30 °C and iodine (7.11 g, 28 mmol) in THF (50 mL) was added slowly. After iodine addition (20 min), excess AlMe₃ was destroyed (caution!!) by the addition of 5 mL of distilled water under argon at 0°C. The slurry was diluted with 80 mL of hexane and the precipitated salt was filtered through a pad of Celite. The pad was rinsed with 50 mL of hexane. The organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvents, crude 4-iodo-3-methyl-3(*E*)-butenol (130) (3.95 g, 80% yield) was obtained.

To a solution of 130 (3.82 g, 18 mmol) in dry CH₂Cl₂ (50 mL) at 0 °C was

added Et₃N (1.87 g, 18.5 mmol), TBSCI (2.83 g, 18.2 mmol) and DMAP (0.05 g). The reaction mixture was warmed to room temperature and stirred for 12 h. Water (20 mL) was then added and the organic phase was separated. The aqueous phase was extracted with diethyl ether (3 X 30 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (5:95) as eluant gave **131** (5.33 g, 91% yield) as an oil: IR (film) 2953, 2928, 2857, 1618, 1472, 1380, 1256, 1103 and 835 cm⁻¹; ¹H NMR (CDCl₃, ppm) 5.93 (q, J = 1.1 Hz, 1H), 3.68 (t, J = 6.6 Hz, 2H), 2.41 (t, J = 6.6 Hz, 2H), 1.85 (d, J = 1.1 Hz, 3H), 0.89 (s, 9H), 0.043 (s, 6H); ¹³C NMR (CDCl₃, ppm) 145.26, 76.30, 61.4, 42.70, 25.96, 24.33, 18.31, -5.26. IR, ¹H NMR and ¹³C NMR spectra of **131** are in agreement with those reported in reference 40.

Ethyl 5-[*tert*-butyldimethylsilyloxy]-3-methyl-2(*E*)-pentenoate (132): This was prepared by the procedure as described for the synthesis of **89**. **132**: IR (film) 2955, 2930, 2858, 1718, 1652, 1472 and 1100 cm⁻¹; CIMS *m/z* (rel. intensity) 273 (M⁺+1, 100), 257 (1.9), 215 (26.5), 141 (49.3); ¹H NMR (CDCl₃, ppm) 5.67 (s, 1H), 4.13 (q, J = 7.1 Hz, 2H), 3.73 (t, J = 6.9 Hz, 2H), 2.33 (t, J = 6.9 Hz, 2H), 2.17 (d, J = 1.3 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 0.87 (s, 9H), 0.04 (s, 6H); ¹³C NMR (CDCl₃, ppm) 166.61, 156.90, 117.26, 61.32, 59.40, 44.01, 25.97, 25.86, 19.10, 14.31, -5.40. IR, ¹H NMR and ¹³C NMR spectra of **132** are in agreement with those reported in reference 47.

5-[tert-ButyIdimethyIsilyIoxy]-3-methyI-2(*E***)-pentenol (133):** This was prepared by the same procedure as described for the synthesis of 90. 133: IR (film) 3352, 2929, 2858, 1669, 1472, 1254 and 1097 cm⁻¹; CIMS, *m/z* (rel. intensity) 231 (M++1, 1.6), 213 (100), 173 (5.2), 141 (43.4); ¹H NMR (CDCl3, ppm) 5.42 (t, J = 6.9

Hz, 1H), 4.13 (d, J = 6.9 Hz, 2H), 3.69 (t, J = 7.0 Hz, 2H), 2.23 (t, J = 7.0 Hz, 2H), 1.68 (s, 3H), 0.87 (s, 9H), 0.03 (s, 6H); ¹³C NMR (CDCI₃, ppm) 136.90, 125.28, 62.07, 59.29, 42.78, 25.91, 18.29, 16.64, -5.32. IR, ¹H NMR and ¹³C NMR spectra of **133** are in agreement with those reported in reference 47.

1-Chloro-5-[*tert*-butyldimethylsilyloxy]-3-methyl-2(*E*)-pentene (134): This was prepared by the method of Dodd *et al.* ⁴⁷ 134: IR (film) 2955, 2929, 2857, 1663, 1472, 1255 and 1099 cm⁻¹; CIMS, *m/z* (rel. intensity) 249 (M⁺+1, 20.3), 213 (100), 191 (10.7), 155(16.9), 145 (94.5), 123 (12); ¹H NMR (CDCl₃, ppm) 5.48 (t, *J* = 8.0 Hz, 1H), 4.09 (d, *J* = 6.9 Hz, 2H), 3.69 (t, *J* = 6.8 Hz, 2H), 2.25 (t, *J* = 6.8 Hz, 2H), 1.74 (d, *J* = 1.1 Hz, 3H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (CDCl₃, ppm) 140.02, 122.06, 61.75, 42.67, 40.81, 25.90, 16.45, -5.35. IR, ¹H NMR and ¹³C NMR spectra of **134** are in agreement with those reported in reference 47.

1-(Benzenesulfonyl)-5-[tert-butyldimethylsilyloxy]-3-methyl-2(E)-

pentene (135): This was prepared by the method of Dodd *et al.* ⁴⁷ **135**: IR (film) 2929, 2857, 1663, 1308 and 1086 cm⁻¹; CIMS, *m/z* (rel. intensity) 355 (M⁺+1, 100), 325 (14.4), 223 (16.0), 217 (24), 143 (34.3); ¹H NMR (CDCI₃, ppm) 7.87 (dd, *J* = 1.3, 7.3 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 2H), 3.80 (d, *J* = 8.0 Hz, 2H), 3.59 (t, *J* = 6.9 Hz, 2H), 2.20 (t, *J* = 6.9 Hz, 2H), 1.32 (s, 3H), 0.87 (s, 9H), 0.04 (s, 6H). IR and ¹H NMR spectra of **135** are in agreement with those reported in reference 47.

5-(Benzenesulfonyl)-1-[*tert***-butyldimethylsilyloxy]-3,8,12,16-tetramethyl-3(E),7(E),11(E),15-heptadecatetraene (136):** This was prepared by the method of Dodd *et al.* ⁴⁷ IR (film) 2953, 2928, 2856, 1665, 1447, 1384, 1305, 1253, 1147 and 1086 cm⁻¹; CIMS, *m/z* (rel. intensity) 559 (M⁺+1, 5.4), 419 (2.5), 417 (26.5), 285 (100), 259 (18.9), 257 (46.3), 217 (15.9), 143 (36.3); ¹H NMR (CDCl₃, ppm) 7.84 (d, J = 7.9 Hz, 2H), 7.61 (t, J = 7.3 Hz, 1H),7.50 (t, J = 7.9 Hz, 2H), 4.90-5.10 (m, 4H), 3.71 (dt, J = 3.3, 8.9 Hz, 1H), 3.53 (dt, J = 1.9, 7.2 Hz, 2H), 2.89 (ddd, J = 3.6, 7.0, 14 Hz, 1H), 2.35 (ddd, J = 3.6, 7.0, 14 Hz, 1H), 2.16 (t, J = 7.2 Hz, 2H), 1.90-2.10 (m, 8H), 1.67 (s, 3H0, 1.60 (s, 3H), 1.58 (s, 3H), 1.56 (s, 3H), 1.20 (s, 3H), 0.87 (s, 9H), 0.04 (s, 6H). IR and ¹H NMR spectra of **136** are in agreement with those reported in reference 47.

3,8,12,16-Tetramethyl-3(*E***),7(***E***),11(***E***)-15-heptadecatetraenyl** *tert*-butyldimethylsilyl ether (**137**): This was prepared by the method of Dodd *et al.*⁴⁷ **137**: IR (film) 2928, 2857, 1668, 1447, 1383, 1255, 1096 and 836 cm⁻¹; CIMS, *m/z* (rel. intensity) 419 (M⁺+1, 12), 418 (M⁺, 1.3), 361 (12.6), 287 (100), 261 (33), 231(13.2), 205 (35), 177 (20.7), 149 (25.2); ¹H NMR (CDCI3, ppm) 5.05-5.20 (m, 4H), 3.65 (t, J = 7.2 Hz, 2H), 2.19 (t, J = 7.2 Hz, 2H), 2.10-1.92 (m, 12H), 1.68 (s, 3H), 1.61 (s, 3H), 1.60 (s, 9H), 0.89 (s, 9H), 0.04 (s, 6H). IR and ¹H NMR spectra of **137** are in agreement with those reported in reference 47.

3-Bromo-17-[tert-butyldimethylsilyloxy]-2,6,10,15-tetramethyl-6(E),

10(*E*),**14**(*E*)-heptadecatrien-2-ol (**138**): This was prepared in 39% yield from **137** by the procedure as described for the preparation of **100**. **138**: IR (film) 3454, 1666, 1462, 1383, 1255 and 1098 cm⁻¹; CIMS *m/z* (rel. intensity) 517/515 (M⁺+1, 9.7/10.2), 385 (33.5), 383 (37.4), 367 (38.4), 365 (40.4), 303 (47.2), 285 (100), 231 (14.3), 229 (11), 205 (11.9), 203 (16.6), 191 (13.4), 189 (8.1), 135 (30.2), 133 (42.4); ¹H NMR (CDCl₃) δ 5.22-5.10 (m, 3H), 3.98 (dd, *J* = 11.3, 1.6 Hz, 1H), 3.65 (t, *J* = 7.2 Hz, 2H), 2.36-2.28 (m, 1H), 2.19 (t, *J* = 7.2 Hz, 2H), 2.16-1.90 (m, 10H), 1.84-1.73 (m, 1H), 1.68 (m, 1H), 1.61 (s, 3H), 1.59 (s, 6H), 1.34 (s, 3H), 1.32 (s, 3H), 0.88 (s,

9H), 0.04 (s, 6H); ¹³C NMR (CDCl₃) δ 134.96, 133.06, 132.27, 126.24, 126.03, 124.47, 72.45, 70.84, 62.60, 43.13, 39.66, 38.22, 32.29, 28.33, 28.20, 26.71, 25.97, 25.92, 18.33, 16.45, 16.00, 15.87, -5.25; Anal. Calcd for C₂₇H₅₁BrO₂Si: C, 63.00; H, 9.99. Found: C, 63.16; H, 10.10.

15,16-Epoxy-3,8,12,16-tetramethyl-3(*E***),7(***E***),11(***E***)-heptadecatrienyl** *tert***butyldimethylsilyl ether (139): This was prepared in 96% yield by the procedure described for the preparation of 101**. **139**: IR (film) 2957, 2928, 2856, 1666, 1462, 1378, 1252, 1096 and 836 cm⁻¹; CIMS *m/z* (rel. intensity) 435 (M++1, 6.3), 418 (6.3), 303 (62.9), 285 (100), 259 (12.6), 191 (28.0), 163 (37.2), 155 (22.7), 149 (30.5), 135 (38.2), 123 (16.3); ¹H NMR (CDCl₃) δ 5.20-5.10 (m, 3H), 3.65 (t, *J* = 7.2 Hz, 2H), 2.70 (t, *J* = 6.3 Hz, 1H), 2.19 (t, *J* = 7.2 Hz, 2H), 2.16-1.95 (m, 12H), 1.61 (s, 6H), 1.59 (s, 3H), 1.30 (s, 3H), 1.26 (s, 3H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C NMR (CDCl₃) δ 135.28, 134.26, 132.48, 126.48, 125.20, 124.60, 64.41, 62.82, 58.45, 43.36, 39.92, 36.57, 28.56, 28.42, 27.78, 26.96, 26.20, 25.12, 18.98, 18.57, 16.68, 16.23, -5.02; Anal. Calcd for C₂₇H₅₀O₂Si: C, 74.59; H, 11.60. Found: C, 74.66; H, 11.78.

15,16-Epoxy-3,8,12,16-tetramethyl-3(*E*),7(*E*),11(*E*)-heptadecatrienol (140): This was prepared in 92% yield by the procedure described for the preparation of **102. 140**: IR (film) 3418, 2955, 2927, 2852, 1667, 1448, 1379, 1250, 1049 and 875 cm⁻¹; CIMS *m/z* (rel. intensity) 321 (M++1, 61.1), 303 (100), 285 (15.6), 221 (11.7), 217 (10.6), 207 (12.6), 191 (37.1), 163 (27.5), 153 (50.3), 149 (30.4); ¹H NMR (CDCl₃) δ 5.24 (dt, *J* = 1.2, 6.3 Hz, 1H), 5.18-5.08 (m, 2H), 3.64 (dt, *J* = 5.9, 6.0 Hz, 2H), 2.70 (t, *J* = 6.3 Hz, 1H), 2.24 (t, *J* = 6.0 Hz, 2H), 2.20-1.95 (m, 12H), 1.63 (d, *J* = 1.2 Hz, 3H), 1.61 (s, 3H), 1.59 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃)

δ 135.40, 134.07, 131.43, 127.76, 124.91, 122.50, 64.18, 60.19, 58.21, 42.77, 39.64, 36.34, 28.26, 28.10, 27.57, 26.65, 24.86, 21.01, 18.74, 16.03, 15.98, 15.8; Anal. Calcd for C₂₁H₃₆O₂: C, 78.68; H, 11.33. Found: C, 78.66; H, 11.17.

15,16-Epoxy-3,8,12,16-tetramethyl-3(E),7(E),11(E)-heptadecatrienyl

methanesulfonate (141): This was prepared in 97% yield by the procedure described for the preparation of **85**. Compound **141** was used for the next reaction immediately without further purification: ¹H NMR (CDCl₃) δ 5.30-5.00 (m, 3H), 4.27 (t, *J* = 6.8 Hz, 2H), 3.00 (s, 3H), 2.70 (t, *J* = 6.3 Hz, 1H), 2.42 (t, *J* = 6.8 Hz, 2H), 2.25-1.86 (m, 12H), 1.66 (s, 3H), 1.58 (s, 6H), 1.30 (s, 3H), 1.26 (s, 3H).

1,5-Dimethyl-4-hexenyl thioacetate (143): This was prepared in 84% yield by the procedure described for the preparation of **96**. **143**: IR (film) 2965, 2924, 2856, 1692, 1450, 1378, 1353, 1115 and 952 cm⁻¹; CIMS *m/z* (rel. intensity) 187 (M++1, 13.4), 186 (M+, 2.3), 146 (10.3), 145 (100), 101 (3.9); ¹H NMR (CDCl₃) δ 5.07 (tq, *J* = 7.2, 1.3 Hz, 1H), 3.54 (sextet, *J* = 6.9 Hz, 1H), 2.30 (s, 3H), 2.04 (dt, *J* = 7.4, 7.4 Hz, 2H), 1.68 (s, 3H), 1.59 (s, 3H), 1.61-1.50 (m, 2H), 1.29 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃) δ 195.60, 132.14, 123.41, 39.26, 36.42, 30.63, 25.59, 23.92, 21.36, 17.58; Anal. Calcd for C₁₀H₁₈OS: C, 64.48; H, 9.75. Found: C, 64.60; H, 9.75.

1,5-Dimethyl-4-hexenethiol (144): This was prepared in 91% yield by the procedure described for the preparation of **97**. **144**: IR (film) 2966, 2921, 2850, 1667, 1449, 1376, 1115 and 826 cm⁻¹; CIMS *m/z* (rel. intensity) 147/145 (M⁺+1, 5.6/100), 111 (12.2), 109 (1.4), 103 (4.5), 101 (19.8); ¹H NMR (CDCl₃) δ 5.07 (tq, *J* = 7.2, 1.3 Hz, 1H), 2.92 (heptaplet, *J* = 6.7 Hz, 1H), 2.09 (dt, *J* = 7.2, 7.2 Hz, 2H), 1.68 (s, 3H),

1.62 (s, 3H), 1.59-1.49 (m, 2H), 1.47 (d, J = 6.3 Hz, 1H), 1.33 (d, J = 6.7 Hz, 3H); ¹³C NMR (CDCl₃) δ 131.93, 123.42, 40.91, 34.96, 25.85, 25.54, 21.98, 17.57; Anal. Calcd for C₈H₁₆S: C, 66.60; H, 11.18. Found: C, 66.73; H, 11.30.

18-Thia-19-dehydro-2,3-oxidosqualene (72): This was prepared in 74% yield by coupling of **141** and **144** according to the procedure described for the preparation of **63**. **72**: IR (film) 2960, 2922, 2855, 1667, 1449, 1376, 1248, 1119 and 826 cm⁻¹; CIMS *m/z* (rel. intensity) 447 (M⁺+1, 100), 429 (48.8), 335 (11.4), 293 (26.8), 285 (14.6), 145 (9.2); ¹H NMR (CDCl3) δ 5.22-5.05 (m, 4H), 2.75 (sextet, *J* = 6.7 Hz, 1H), 2.70 (t, *J* = 6.3 Hz, 1H), 2.57 (t, *J* = 7.3 Hz, 2H), 2.23 (t, *J* = 7.3 Hz, 2H), 2.20-1.95 (m, 12H), 1.68 (s, 3H), 1.65-1.58 (m, 2H), 1.61 (s, 9H), 1.59 (s, 3H), 1.51-1.44 (m, 2H), 1.29 (s, 3H), 1.27 (d, *J* = 6.8 Hz, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl3) δ 135.12, 134.05, 133.80, 131.90, 125.69, 124.97, 124.29, 123.98, 64.16, 58.16, 40.16, 39.68, 39.63, 37.19, 36.35, 29.11, 28.27, 28.13, 27.58, 26.74, 25.63, 24.87, 21.41, 18.75, 17.68, 16.04, 15.99, 15.90; Anal. Calcd for C₂₉H₅₀OS: C, 77.96; H, 11.29. Found: C, 78.10; H, 11.44.

6.4.3: Syntheses discussed in Chapter 4

5,9,13-Trimethyl-4(*E*),8(*E*),12-tetradecatrienal (170): To a vigorously stirred solution of oxalyl chloride (2 mL, 22 mmol) in CH₂Cl₂ (60 mL) at -60 °C under argon was added dimethylsulfoxide (3.4 mL, 44 mmol). The mixture was allowed to stir for 5 min. A solution of 107 (5.0 g, 20 mmol) in CH₂Cl₂ (10 mL) was added over 5 min. After 30 min stirring, triethylamine (14 mL, 100 mmol) was added over 10 min and the mixture was allowed to warm to room temperature. Water (100 mL) was then added and the organic phase was separated. The aqueous layer was extracted with

CH₂Cl₂ (4 X 30 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (1:9) as eluant gave **170** (4.61 g, 93% yield): IR (film) 2965, 2922, 2857, 1727, 1448, 1383, 1108 and 835 cm⁻¹; CIMS, *m/z* (rel. intensity) 249 (M⁺+1, 46), 231(85), 205 (7.7), 167 (41), 149 (44), 137 (100), 123 (32); ¹H NMR (CDCl₃, ppm) 9.75 (t, J = 1.6 Hz, 1H), 5.18-5.00 (m, 3H), 2.58-2.41 (m, 2H), 2.25-1.98 (m, 8H), 1.67 (s, 3H), 1.63 (s, 3H), 1.61 (s, 3H), 1.59 (s, 3H); ¹³C NMR (CDCl₃, ppm) 202.50, 136.79, 135.12, 131.28, 124.29, 123.88, 122.01, 43.87, 39.69, 39.65, 26.70, 26.41, 25.57, 20.78, 17.58, 16.02. The ¹H NMR spectrum of **170** is in agreement with that reported in reference 46.

Ethyl 2,7,11,15-tetramethyl-2(E),6(E),10(E),14-hexadecatetraenoate

(171): To powdered (carbethoxyethylidene)triphenylphosphorane (3.90 g, 10.1 mmol) under argon was added a solution of 170 (2.49 g, 10 mmol) in CH₂Cl₂ (100 mL) and the mixture was refluxed under argon for 12 h. Water (40 mL) was added to the cooled mixture and the organic phase was separated. The aqueous phase was extracted with CH₂Cl₂ (3 X 40 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (5:95) as eluant gave pure 171 (2.90 g, 90% yield): IR (film) 1711, 1649 cm⁻¹; CIMS *m/z* (rel. intensity) 333 (M⁺+1, 100), 287 (24.3), 259 (43.1), 251 (53.5), 237 (21.9), 223 (30), 209 (38.3), 205 (23.8), 197 (37.0), 193 (20.6), 183 (31.7), 177 (24.2), 149 (31.8), 137 (73.0), 123 (41.1); ¹H NMR (CDCl₃ ppm) 6.76 (tq, *J* = 7.3, 1.4 Hz, 1H), 5.16-5.05 (m, 3H), 4.18 (q, *J* = 7.1 Hz, 2H), 2.25-1.91 (m, 12H), 1.81 (s, 3H), 1.67 (s, 3H), 1.61 (s, 3H), 1.58 (s, 6H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃ ppm) 168.14, 141.76, 136.16, 134.93, 131.11, 127.87, 124.36, 124.08, 123.13, 60.25, 39.66, 28.96, 26.92, 26.73, 25.60, 17.58, 15.97, 15.91, 14.23, 12.23. Anal. Calcd for C₂₂H₃₆O₂: C, 79.46; H, 10.91. Found: C, 79.59; H, 10.68.

2,7,11,15-Tetramethyl-2(E),6(E),10(E),14-hexadecatetraenol (172): To a solution of 171 (2.50 g, 7.53 mmol) in anhydrous diethyl ether (80 mL) at -78 °C under argon was added DIBAL-H (19 mL, 19 mmol, 1 M solution in THF). The mixture was allowed to warm to 0 °C and stirred for 2 h. Excess DIBAL-H was destroyed by addition of distilled water (2 mL) and the mixture was poured into an ice-cold 5% aqueous solution of tartaric acid (20 mL). The mixture was extracted with ether (3 X 40 mL) and the combined organic phase was washed with NaHCO3 solution. Standard work-up followed by flash column chromatography using ethyl acetate:hexane (2:8) as the eluant gave 172 (1.98 g, 91% yield): CIMS m/z (rel. intensity) 291 (M++1, 8.7), 290 (M+, 4.3), 273 (8.7), 217 (19), 205 (41), 191 (36), 177 (26.2), 163 (35.5), 149 (71.1), 137 (100), 123 (76); ¹H NMR (CDCl₃, ppm) 5.45-5.37 (m, 1H), 5.18-5.06 (m, 3H), 3.98 (s, 2H), 2.12-1.92 (m, 12H), 1.68 (s, 3H), 1.66 (s, 3H), 1.60 (s, 3H), 1.35 (br s, 1H); ¹³C NMR (CDCl₃, ppm) 135.50, 134.95, 134.91, 131.20, 126.15, 124.44, 124.24, 123.95, 69.03, 39.72, 27.95, 27.88, 26.80, 26.66, 25.61, 17.62, 16.03, 15.99, 13.64. Anal. Calcd for C20H34O: C, 82.69; H, 11.80. Found: C, 82.47; H, 11.69.

1-Chloro-2,7,11,15-tetramethyl-2(*E*),6(*E*),10(*E*),14-hexadecatetraene (173): To a solution of NCS (0.735 g, 5.5 mmol) in anhydrous CH₂Cl₂ (30 mL) at 0 $^{\circ}$ C under argon was added dropwise DMS (0.45 mL, 6.0 mmol). The mixture was cooled to -20 $^{\circ}$ C and 172 (1.39 g, 4.79 mmol) in CH₂Cl₂ (3 mL) was added over 5 min. The mixture was allowed to warm to 0 $^{\circ}$ C, stirred for 1 h and then poured into ice-cold brine. The organic phase was separated and the aqueous phase was extracted with diethyl ether (3 X 30 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (1:9) as the eluant gave pure 173 (1.19

g, 81% yield): IR (film) 1667, 1264 and 685 cm⁻¹; CIMS *m/z* (rel. intensity) 309 (M++1, 10.3), 308 (M+, 3.1), 273 (35.2), 217 (14.2), 205 (34.3), 191 (29.0), 177 (18.1), 163 (23.6), 149 (53.0), 137 (100), 123 (72.8); ¹H NMR (CDCl3, ppm) 5.57-5.50 (m, 1H), 5.16-5.04 (m, 3H), 4.02 (s, 2H), 2.24-1.92 (m, 12H), 1.73 (s, 3H), 1.68 (s, 3H), 1.60 (s, 9H); ¹³C NMR (CDCl3, ppm) 135.84, 134.99, 131.82, 131.21, 130.68, 124.45, 124.23, 123.57, 52.48, 39.74, 28.36, 27.53, 26.83, 26.65, 25.63, 17.65, 16.06, 16.00, 14.12; Anal. Calcd for C₂₀H₃₃Cl: C, 77.76; H, 10.77. Found: C, 77.48; H, 10.69.

2,7,11,15-Tetramethyl-2(E),6(E),10(E),14-hexadecatetraenyl 4'-methylbenzenethiosulfonate (174): To a solution of potassium 4methylbenzenethiosulfonate (0.90 g, 3.8 mmol) in DMF (20.0 mL) was added a solution of 173 (1.11 g, 3.6 mmol) in DMF (5 mL). The mixture was stirred at room temperature for 24 h and then poured into ice-cold water (30 mL). The mixture was extracted with diethyl ether (4 X 30 mL) and the ethereal solution was washed with saturated NaHCO3 solution (20 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (15:85) as the eluant gave pure 174 (1.42 g, 86% yield): IR (film) 1666, 1595, 1329, 1142 and 812 cm⁻¹; CIMS *m/z* (rel. intensity) 461 (M++1, 2.2), 305 (14.0), 295 (8.7), 279 (18.0), 273 (17.2), 157 (100), 156 (2.9), 139 (16.2), 123 (4.5); ¹H NMR (CDCl₃, ppm) 7.78-7.32 (AA'BB', 4H), 5.38-5.30 (m, 1H), 5.12-5.00 (m, 3H), 3.65 (s, 2H), 2.44 (s, 3H), 2.10-1.88 (m, 12H), 1.67 (s, 3H), 1.59 (s, 6H), 1.57 (s, 3H), 1.51 (s, 3H); ¹³C NMR (CDCl₃, ppm) 144.40, 142.62, 135.81, 135.00, 131.42, 131.21, 129.63 (2C), 127.71, 127.06 (2C), 124.42, 124.19, 123.50, 45.69, 39.73, 28.48, 27.50, 26.81, 26.65, 25.64, 21.57, 17.66, 16.06, 16.00, 15.00; Anal. Calcd for C27H40O2S2: C, 70.39; H, 8.76. Found: C, 70.11; H. 8.88.

6-Thia-4,8,13,17,21-pentamethyl-4(E).8(E),12(E),16(E),20-docosapentenyl tert-butyldimethylsilyl ether (175): To a stirred solution of 88 (0.558 g, 1.64 mmol) in dry THF (40 mL) at -78 °C under argon was added dropwise n-BuLi (0.66 mL, 1.65 mmol, 2.5 M solution in hexane) and the mixture was stirred for 20 min. To this mixture, at -78 °C under argon, was added dropwise a solution of 174 (0.75 g, 1.63 mmol) in THF (3 mL) over 3 min. The mixture was stirred at -78 °C for 15 min and water (10 mL) was added. The mixture was warmed to room temperature and extracted with diethyl ether (4 X 30 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (5:95) as eluant gave pure 175 (0.767 g. 91% yield): IR (film) 1668, 1104 and 836 cm⁻¹; CIMS *m/z* (rel. intensity) 519 (M++1, 100), 518 (M+,7.0), 461 (2.1), 387 (3.8), 305 (11.1), 303 (51.8), 273 (42.3), 247 (18.0), 231 (20.0), 191 (16.2), 149 (15.0), 137 (33.0), 123 (23); ¹H NMR (CDCl₃, ppm) 5.58 (q, J = 1.0 Hz, 1H), 5.35-5.28 (m, 1H), 5.17-5.06 (m, 3H), 3.57 (t, J = 6.5Hz, 2H), 3.19 (s, 2H), 2.12-1.94 (m, 14H), 1.72 (d, J = 1.0 Hz, 3H), 1.69 (s, 3H), 1.67 (s, 3H), 1.64-1.56 (m, 2H), 1.60 (s, 3H), 0.89 (s, 9H), 0.04 (s, 6H); ¹³C NMR (CDCl3, ppm) 136.38, 135.40, 134.88, 131.43, 131.10, 128.22, 124.46, 124.27, 123.96, 117.75, 62.59, 43.33, 39.75, 35.53, 31.12, 28.47, 28.06, 26.69, 26.59, 26.04, 25.87, 25.84, 18.29, 18.05, 17.64, 16.05, 15.99, 14.90, -5.27; Anal. Calcd for C32H58SiOS: C, 74.07; H, 11.28. Found: C, 74.25; H, 11.49.

6-Thia-4,8,13,17,21-pentamethyl-4(E),8(E),12(E),16(E),20-docosapentaen-

1-ol (176): To a solution of **175** (0.67 g, 1.29 mmol) in THF (15.0 mL) at room temperature was added tetrabutylammonium fluoride (5 mL, 5 mmol, 1 M solution in THF). The mixture was stirred at room temperature for 10 h, then poured into ice-cold water (5 mL) and extracted with diethyl ether (3 X 30 mL). Standard work-up

followed by flash column chromatography using ethyl acetate:hexane (3:7) as eluant gave pure **176** (0.49 g, 94% yield): IR (film) 3348, 1666 and 1063 cm⁻¹; CIMS *m/z* (rel. intensity) 405 (M⁺+1, 100), 404 (M⁺, 6.3), 307 (14.4), 273 (38.3), 205 (6.7), 191 (12.1), 173 (16.5), 149 (12.2), 137 (19.9), 123 (12.9); ¹H NMR (CDCl₃, ppm) 5.61 (q, J = 1.0 Hz, 1H), 5.35-5.28 (m, 1H), 5.18-5.06 (m, 3H), 3.61 (t, J = 6.5 Hz, 2H), 3.20 (s, 2H), 2.15-1.93 (m, 14H), 1.73 (d, J = 1.0 Hz, 3H), 1.70-1.63 (m, 2H), 1.69 (s, 3H), 1.66 (s, 3H), 1.59 (s, 9H), 1.42 (br s, 1H); ¹³C NMR (CDCl₃, ppm) 136.09, 135.45, 134.91, 131.40, 131.11, 128.25, 124.41, 124.22, 123.88, 118.19, 62.45, 43.30, 39.69, 35.53, 30.79, 28.40, 27.99, 26.78, 26.65, 25.56, 17.90, 17.57, 15.99, 14.84; Anal. Calcd for C₂₆H₄₄OS: C, 77.17; H, 10.97. Found: C, 77.48; H, 11.20.

6-Thia-4,8,13,17,21-pentamethyl-4(E),8(E),12(E),16(E),20-docosapentenal

(177): To a vigorously stirred solution of oxalyl chloride (0.10 mL, 1.15 mmol) in CH₂Cl₂ (15 mL) at -60 °C under argon was added dimethyl sulfoxide (0.16 mL, 2.25 mmol). The mixture was stirred for 5 min at -60 °C, then a solution of 176 (0.37 g, 0.91 mmol) in CH₂Cl₂ (2 mL) was added. After stirring for 30 min, triethylamine (0.84 mL, 6.0 mmol) was added over 2 min and the mixture was allowed to warm to room temperature. Water (10 mL) was added and the organic phase was separated. The aqueous layer was extracted with CH₂Cl₂ (4 X 20 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (1:9) as eluant gave 177 (0.33 g, 90% yield): IR (film) 1727, 1667 and 1069 cm⁻¹; CIMS *m/z* (rel. intensity) 403 (M⁺+1, 100), 402 (M⁺, 5.1), 273 (47.7), 205 (6.4), 191 (11.0), 171 (12.2), 149 (12.3), 137 (12.0); ¹H NMR (CDCl₃, ppm) 9.74 (t, *J* = 1.7 Hz, 1H), 5.62 (q, *J* = 1.0 Hz, 1H), 5.35-5.27 (m, 1H), 5.17-5.05 (m, 3H), 3.20 (s, 2H), 2.55-2.49 (m, 2H), 2.37 (t, *J* = 7.4, 2H), 2.10-1.92 (m, 12H), 1.72 (d, *J* = 1.0 Hz, 3H), 1.68 (s, 3H), 1.67 (s, 3H), 1.59 (s, 9H); ¹³C NMR (CDCl₃, ppm) 201.66, 135.53, 134.96, 133.71,

131.22, 128.54, 124.41, 124.20, 123.84, 119.31, 43.21, 42.04, 39.72, 31.48, 28.42, 28.01, 26.79, 26.65, 25.64, 18.07, 17.64, 16.05, 15.98, 14.84; Anal. Calcd for C26H42OS: C, 77.55; H, 10.51. Found: C, 77.28; H, 10.74.

6(E)-8-Thia-2,3-oxidosqualene (74); To a stirred solution of diphenylisopropylsulfonium fluoroborate (0.167 g. 0.53 mmol) in dry THF (15 mL) at -78°C, under argon, was added dropwise t-BuLi (0.31 mL, 0.53 mmol, 1.7 M in hexane). The mixture was stirred at -78 °C under argon for 1 h, and a solution of 177 (0.209 g, 0.52 mmol) in THF (3 mL) was added dropwise. The mixture was maintained at -70 °C for 1 h and between -70 °C and -50 °C for 1 h, then treated with distilled water (10 mL) and extracted with diethyl ether (3 X 30 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (5:95) as eluant gave 74 (0.208 g, 90% vield): IR (film) 1669, 1247 and 1122 cm⁻¹; CIMS m/z (rel. intensity) 445 (M++1, 65.5), 444 (M+, 3.9), 403 (35.1), 305 (19.5), 273 (45.2), 191 (12.3), 173 (12.5), 149 (11.7), 139 (100), 123 (12.0); ¹H NMR (CDCl₃, ppm) 5.63 (s, 1H), 5.35-5.27 (m, 1H), 5.16-5.03 (m, 3H), 3.20 (s, 2H), 2.68 (t, J = 6.2Hz, 1H), 2.28-2.11 (m, 2H), 2.10-1.92 (m, 12H), 1.73 (s, 3H), 1.69 (s, 3H), 1.68 (s, 3H), 1.66-1.61 (m, 2H), 1.60 (s, 9H), 1.30 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, ppm) 135.51, 135.25, 134.97, 131.35, 128.38, 124.42, 124.23, 123.87, 118.53, 63.90, 58.29, 43.29, 39.74, 36.01, 28.45, 28.04, 27.49, 26.81, 26.68, 25.64, 24.84, 18.72, 18.07, 17.65, 16.00, 14.99; Anal. Calcd for C29H48OS: C, 78.32; H, 10.89. Found: C. 78.22: H. 11.02.

3,7,11-Trimethyl-2(E),6(E),10-dodecatrienyl *tert*-butyldimethylsilyl ether (178): This was prepared in 95% yield by the procedure described for the preparation of 88. 178: IR (film) 1669, 1110 and 1065 cm⁻¹; ¹H NMR (CDCl₃, ppm)

5.31 (t, J = 6.2 Hz, 1H), 5.10 (t, J = 6.0 Hz, 2H), 4.19 (d, J = 6.5 Hz, 2H), 2.04 (m, 8H), 1.68 (s, 3H), 1.62 (s, 3H), 1.59 (s, 6H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (CDCl₃, ppm) 136.89, 135.16, 131.23, 124.47, 124.40, 124.01, 60.35, 39.72, 39.56, 26.78, 26.35, 26.03, 25.65, 18.41, 17.65, 16.35, 15.98, -5.04.

10-Bromo-11-hydroxy-3,7,11-trimethyl-2(*E***),6(***E***)-dodecadienyl** *tert*-butyldimethylsilyl ether (179): This was prepared in 39% yield by the procedure described for the preparation of 100. 179: IR (film) 3452, 1668 and 1064 cm⁻¹; ¹H NMR (CDCl₃, ppm) 5.30 (t, J = 6.1 Hz, 1H), 5.20 (t, J = 6.0 Hz, 1H), 4.19 (d, J = 6.5Hz, 2H), 3.96 (dd, J = 10.0 Hz, 1.5 Hz, 1H), 2.03 (m, 8H),1.62 (s, 3H), 1.58 (s, 3H), 1.34 (s, 3H), 1,31 (s, 3H), 0.90 (s, 9H), 0.06 (s, 6H); ¹³C NMR (CDCl₃, ppm) 136.63, 133.29, 125.73, 124.63, 72.45, 70.79, 60.35, 39.41, 38.17, 32.17, 26.63, 26.30, 26.03, 25.89, 18.43, 16.35, 15.85, -5.03.

10,11-Epoxy-3,7,11-trimethyl-2(*E***),6(***E***)-dodecadienyl** *tert*-butyldimethylsilyl ether (180): This was prepared in 97% yield by the procedure described for the preparation of 101. 180: IR (film) 1668, 1253, 1110, 1065 and 835 cm⁻¹; ¹H NMR (CDCl3, ppm) 5.30 (t, J = 6.0 Hz, 1H), 5.15 (t, J = 6.0 Hz, 1H), 4.13 (d, J = 7.4Hz, 2H), 2.68 (t, J = 6.2 Hz, 1H), 2.09 (m, 6H),1.61 (m, 2H), 1.60 (s, 6H), 1.29 (s, 3H), 1,25 (s, 3H), 0.90 (s, 9H), 0.05 (s, 6H); ¹³C NMR (CDCl3, ppm) 136.70, 134.27, 124.64, 124.55, 64.16, 60.30, 58.23, 39.44, 36.30, 27.48, 26.31, 26.01, 24.86, 18.73, 18.40, 16.33, 15.97, -5.06.

10,11-Epoxy-3,7,11-trimethyl-2(E),6(E)-dodecadienol (181): This was prepared by the procedure described for the preparation of **176**. Flash column chromatography using ethyl acetate:hexane (6:4) as eluant gave **181** in 91% yield as

a colourless liquid: IR (film) 3424, 1642, 1249, 1120 and 836 cm⁻¹; CIMS *m/z* (rel. intensity) 239 (M⁺+1, 1.6), 221 (100.0), 203 (59.3), 186 (18.0), 153 (45.9), 135 (35.1); ¹H NMR (CDCl₃, ppm) 5.40 (t, J = 6.0 Hz, 1H), 5.15 (t, J = 6.0 Hz, 1H), 4.13 (d, J = 7.4 Hz, 2H), 2.68 (t, J = 6.2 Hz, 1H), 2.08 (m, 6H), 1.66 (s, 3H), 1.62 (m, 2H), 1.60 (s, 3H), 1.29 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, ppm) 139.17, 134.36, 124.55, 123.77, 64.15, 59.29, 58.30, 39.40, 36.33, 27.34, 26.20, 24.83, 18.75, 16.20, 15.96.

1-Chloro-10,11-epoxy-3,7,11-trimethyl-2(*E***),6(***E***)-dodecadiene (182):** This was obtained by the procedure described for the preparation of **173**. Flash column chromatography using ethyl acetate:hexane (15:85) as eluant gave **182** in 79% yield: IR (film) 1662, 1252, 874 and 678 cm⁻¹; CIMS *m/z* (rel. intensity) 257 (M⁺+1, 88), 239 (53.2), 221 (100), 203 (47.3), 153 (43.2), 135 (36.9); ¹H NMR (CDCI3, ppm) 5.43 (t, *J* = 8.0 Hz, 1H), 5.13 (t, *J* = 6.1 Hz, 1H), 4.08(d, *J* = 8.0 Hz, 2H), 2.69 (t, *J* = 6.2 Hz, 1H), 2.10 (m, 6H), 1.71 s, 3H), 1.61 (s, 3H), 1.60 (m, 2H), 1.29 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCI3, ppm) 142.51, 134.76, 124.09, 120.52, 64.12, 58.20, 41.01, 39.34, 36.31, 27.49, 26.11, 24.88, 18.75, 16.04; HRMS *m/z* calcd for C15H25CIO: 256.1594, found: 256.1598.

10,11-Epoxy-3,7,11-trimethyl-2(*E***),6(***E***)-dodecadienyl 4'-methylbenzenethiosulfonate (183): This was prepared in 85% yield by the procedure described for the preparation of 174**. **183**: IR (film) 1659, 1594, 1326, 1142 and 813 cm⁻¹; CIMS m/z (rel. intensity) 409 (M++1, 3.5), 222 (6.7), 201 (3.1), 157 (100), 155 (6.1), 141 (15.8), 127 (10.5); ¹H NMR (CDCl₃, ppm) 7.32-7.84 (AA'BB', 4H), 5.07 (m, 2H), 3.67 (d, J = 7.9 Hz, 2H), 2.68 (t, J = 6.2 Hz, 1H), 2.44 (s, 3H), 2.03 (m, 6H), 1.61 (m, 2H), 1.59 (s, 3H), 1.58 (s, 3H), 1.29 (s, 3H), 1,25 (s, 3H); ¹³C NMR (CDCl₃, ppm) 144.51, 143.32, 142.44, 134.78, 129.73, 127.04, 124.00, 115.47, 64.10, 58.20, 39.34, 36.30, 34.22, 27.52, 26.07, 24.88, 21.57, 18.76, 16.24, 16.01; HRMS *m/z* calcd for C₂₂H₃₂O₃S₂: 408.1792, found: 408.1786. Anal. Calcd for C₂₂H₃₂O₃S₂: C, 64.67; H, 7.89. Found: C, 64.84; H, 7.78.

1-Chloro-3,7-dimethyl-2(*E*),6-octadiene (geranyl chloride) (185): This was prepared in 80% yield by the procedure described for the synthesis of 173. 185 :IR (film) 2968, 2927, 2856, 1662, 1450, 1377, 1253, 1109 and 839 cm-1; ¹H NMR (CDCl₃, ppm) 5.45 (m, 1H), 5.25-4.91 (m, 1H), 4.10 (d, J = 8 Hz, 2H), 2.28-1.98 (m, 4H), 1.73 (d, J = 1.4 Hz, 3H), 1.69 (s, 3H), 1.61 (s, 3H). IR and ¹H NMR spectra are in agreement with those reported in reference 77.

1-lodo-2,6,10-trimethyl-1(*E***),5(***E***),9-undecatriene (187):** To a solution of AlMe3 (0.241 g, 0.32 mL, 3.3 mmol) and ZrCp₂Cl₂ (0.122 g, 0.41 mmol) in CH₂Cl₂ (10 mL) at -10 °C under argon was added dropwise a solution of **186** (0.287 g, 1.63 mmol) in CH₂Cl₂ (5 mL). After stirring for 20 h at room temperature, the reaction mixture was cooled to -30 °C and a solution of iodine (0.508 g, 2 mmol) in THF (10 mL) was added dropwise over 20 min. The mixture was allowed to warm to 0 °C and a saturated aqueous solution of K₂CO₃ (10 mL) was added to destroy the excess AlMe3 under argon. The slurry was diluted with 40 mL of hexane and the precipitated salt was removed by filtration through a pad of Celite. The pad was rinsed with ether (3 x 30 mL). Standard workup followed by flash column chromatography using ethyl acetate:hexane (1:9) as eluant gave **187** (0.421 g, 81% yield): CIMS *m/z* (rel. intensity) 319 (M⁺+1, 3.9), 263 (2.6), 249 (1.9), 235 (2.4), 192 (16.2), 191 (100), 178 (1.6) 163 (1.8); ¹H NMR (CDCl₃, ppm) 5.87 (s, 1H), 5.07 (m, 2H), 2.11 (m, 8H), 1.84 (s, 3H), 1.68 (s, 3H), 1.64 (s, 3H), 1.59 (s, 3H); ¹³C NMR

(CDCl₃, ppm) 147.81, 136.07, 131.37, 124.26, 123.00, 74.65, 39.68, 39.50, 26.73, 26.31, 25.66, 23.94, 17.68, 16.00.

14(*E***)-13-Thia-2,3-oxidosqualene (75):** This was prepared in 28% yield by the procedure described for the preparation of **175**. **75**: IR (film) 1663, 1248 and 1122 cm⁻¹; CIMS *m/z* (rel. intensity) 445 (M⁺+1, 48.4), 237 (11.5), 221 (100), 204 (10.3), 191 (44.6), 153 (28.5), 135 (22.6); ¹H NMR (CDCl₃, ppm) 5.64 (s, 1H), 5.28 (t, J = 7.8 Hz, 1H), 5.15 (t, J = 6.8 Hz, 1H), 5.09 (m, 2H), 3.27 (d, J = 7.8 Hz, 2H), 2.70 (t, J = 6.2 Hz, 1H), 2.07 (m, 14H), 1.73 (s, 3H), 1.68 (s, 6H), 1.61 (s, 3H), 1.60 (m, 2H), 1.59 (s, 3H), 1.58 (s, 3H), 1.29 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, ppm) 138.71, 137.38, 135.44, 134.42, 131.26, 124.52, 124.38, 123.77, 120.57, 117.62, 64.15, 58.20, 39.72, 39.56, 39.38, 36.33, 31.50, 27.53, 26.81, 26.54, 25.63, 24.88, 18.75, 18.07, 17.65, 16.17, 16.00; HRMS. Calcd for C₂₉H₄₈OS: 444.3426, found 444.3425. Anal. Calcd for C₂₉H₄₈OS: C, 78.32; H, 10.88. Found: C,78.28; H, 10.79.

3,7-Dimethyl-1-(benzenesulfonyl)-2(*E***),6-octadiene (188):** To a solution of geranyl chloride (**185**) (3.66 g, 21.2 mmol) in DMF (40 mL) at 0 °C was added NaSO₂Ph (3.78 g, 23 mmol). The reaction mixture was stirred for 12 h. Water (60 mL) was added and the aqueous layer extracted with diethyl ether (4 x 40 mL). Standard work-up followed by chromatography using ethyl acetate:hexane (4:6) as the eluant gave the sulfone **188** (5.03 g, 85%) as an oil: IR (film) 1663, 1447, 1307, 1150, 1085 and 742 cm⁻¹; CIMS *m/z*(rel. intensity) 279 (M⁺+1, 2.9), 185 (1.0), 143 (11.2), 137 (100); ¹H NMR (CDCl₃, ppm) 7.87 (d, *J* = 7.0 Hz, 2H), 7.62 (t, *J* = 7.0 Hz, 1H), 7.52 (t, *J* = 7.0 Hz, 2H), 5.18 (t, *J* = 7.3 Hz, 1H), 5.03 (m, 1H), 3.80 (d, *J* = 8.0 Hz, 2H), 1.99 (s, 4H), 1.68 (s, 3H), 1.58 (s, 3H), 1.30 (s, 3H); ¹³C NMR (CDCl₃, ppm)

146.33, 138.83, 133.47, 132.07, 128.93, 128.57, 123.47, 110.38, 56.16, 39.69, 26.22, 25.65, 17.66, 16.18; Anal. calcd. for C₁₆H₂₂O₂S: C, 69.03; H, 7.96. Found: C, 68.92; H, 7.89.

6,7-Epoxy-3,7-dimethyl-1-(benzenesulfonyl)-2(E)-octene (189): To a solution of 188 (4.7 g, 16.9 mmol) and NaOAc (1.48 g, 18 mmol) in CH₂Cl₂ (50 mL) at -40 °C to -20 °C was added m-CPBA (3.66 g, 85% pure, 18 mmol) in three portions over 1 h. The mixture was warmed to -10 °C and stirred for an additional 1.5 h. Saturated NaHCO₃ solution (50 mL) was added to the mixture and the organic layer was separated. The aqueous layer was extracted with CH₂Cl₂ (3 x 30 mL) and the combined organic layer was washed with ice-cold 1N NaOH. Standard work-up followed by chromatography using ethyl acetate:hexane (1:1) as the eluant gave the epoxy sulfone **189** (4.63 g, 93%) as an oil: IR (film) 1664, 1585, 1447, 1306, 1248, 1151, 1085 and 739 cm⁻¹; CIMS m/z (rel. intensity) 295 (M⁺+1, 89), 277 (39), 153 (100), 143 (40.6), 135 (60); ¹H NMR (CDCl₃, ppm) 7.85 (d, J = 7.0 Hz, 2H), 7.64 (t, J = 7.0 Hz, 1H), 7.54 (t, J = 7.0 Hz, 2H), 5.21 (t, J = 7.9 Hz, 1H), 3.81 (d, J = 7.9 Hz, 2H), 2.66 (t, J = 6.3 Hz, 1H), 2.25-2.05 (m, 2H), 1.62-1.45 (m, 2H), 1.36 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H); ¹³C NMR (CDCl₃, ppm) 145.55, 138.92, 133.57, 129.03, 128.50, 110.96, 63.62, 58.32, 56.09, 36.42, 27.17, 24.83, 18.72, 16.26; Anal. calcd. for C₁₆H₂₂O₃S: C, 65.28; H, 7.53. Found: C, 65.36; H, 7.70.

1-(Benzenesulfonyl)-(2*E***)-hexen-6-al (190):** To a stirred solution of **189** (4.5 g, 15.3 mmol) in diethyl ether (80 mL) at 0 °C was added dropwise a solution of $HIO_4 \cdot 2H_2O$ (3.76 g, 16.5 mmol) in THF (35 mL) over 1 h. The mixture was stirred for an additional 0.5 h and water (50 mL) was added. The organic phase was separated and the aqueous phase was extracted with diethyl ether (4 x 30 mL). The combined organic extract was washed with saturated NaHCO₃ solution (2 x 30 mL). Standard

work-up followed by chromatography using ethyl acetate:hexane (6:4) as the eluant gave aldehyde **190** (3.25 g, 84%) as an oil: IR (film) 1722, 1447, 1305, 1150, 1085 and 742 cm⁻¹; CIMS *m/z* (rel. intensity) 253 (M⁺+1, 100), 235 (63), 143 (15.5); ¹H NMR (CDCl₃, ppm) 9.74 (t, J = 1.4 Hz, 1H), 7.84 (d, J = 7.0 Hz, 2H), 7.64 (t, J = 7.0 Hz, 1H), 7.53 (t, J = 7.0 Hz, 2H), 5.21 (t, J = 8.0 Hz, 1H), 3.81 (d, J = 8.0 Hz, 2H), 2.49 (dt, J = 1.4, 7.4 Hz, 2H), 2.32 (t, J = 7.4 Hz, 2H), 1.34 (s, 3H); ¹³C NMR (CDCl₃, ppm) 200.94, 144.27, 138.76, 133.60, 129.04, 128.43, 111.45, 55.95, 41.53, 31.56, 16.28; Anal. calcd. for C₁₃H₁₆O₃S: C, 61.88; H, 6.39. Found: C, 61.80; H, 6.38.

6-(Ethylenedioxy)-1-(benzenesulfonyl)-3-methyl-2(*E***)-hexene (191): A mixture of 190** (3.0 g, 11.9 mmol), (CH₂OH)₂ (1.49 g, 24 mmol) and *p*-TsOH (50 mg) in toluene (50 mL) was refluxed for 4 h under nitrogen using a Dean-Stark trap to remove the water. Saturated NaHCO₃ solution (30 mL) was added to the cold mixture and the organic phase was separated. The aqueous phase was extracted with ether (3 x 30 mL). Standard work-up followed by chromatography using ethyl acetate:hexane (6:4) as the eluant gave acetal **191** (3.25 g, 92%) as an oil: IR (film) 2955, 2885, 1664, 1586, 1447, 1306, 1240, 1150, 1085, 1034 and 741 cm⁻¹; CIMS *m/z* (rel. intensity) 297 (M⁺+1, 100), 235 (19), 155 (16.7), 143 (8.6); ¹H NMR (CDCl₃, ppm) 7.84 (d, *J* = 7.0 Hz, 2H), 7.64 (t, *J* = 7.0 Hz, 1H), 7.53 (t, *J* =7.0 Hz, 2H), 5.21 (tq, *J* =1.3, 7.96 Hz, 1H), 4.80 (t, *J* = 4.7 Hz, 1H), 3.95 (m, 2H), 3.84 (m, 2H), 3.80 (d, *J* = 7.96 Hz, 2H), 2.10 (t, *J* = 7.8 Hz, 2H), 1.70-1.58 (m, 2H), 1.30 (s, 3H); ¹³C NMR (CDCl₃, ppm) 145.61, 138.81, 133.51, 128.97, 128.53, 110.76, 103.84, 64.93, 56.10, 33.76, 31.94, 16.15. IR and ¹H NMR spectra of **191** are in agreement of those reported in reference 31b.

1-(Ethylenedioxy)-6-(benzenesulfonyl)-4,9,13,17-tetramethyl-4(E),8(E),

12(*E***),16-octadecatetraene (192):** This was prepared in 91% yield according to the procedure described in reference 31b. **192**: 2926, 1664, 1446, 1304, 1145, 1108 and 734 cm⁻¹; CIMS *m/z* (rel. intensity) 501 (M⁺+1, 100), 455 (0.9) 415 (1.3), 359 (16.1), 297 (16.6), 283 (5.4), 143 (100), 126 (15); ¹H NMR (CDCl₃, ppm) 7.86 (d, J = 7.0 Hz, 2H), 7.62 (t, J = 7.0 Hz, 1H), 7.51 (t, J = 7.0 Hz, 2H), 5.10-4.98 (m, 3H), 4.95 (t, J = 7.3 Hz, 1H), 4.78 (t, J = 4.7 Hz, 1H), 3.98-3.92 (m, 2H), 3.86-3.82 (m, 2H), 3.72 (dt, J = 3.2, 10.6 Hz, 1H), 2.87 (ddd, J = 3.1, 7.2, 14.1 Hz, 1H), 2.34 (ddd, J = 3.1, 7.2, 14.1 Hz, 1H), 2.08-1.90 (m, 10H), 1.66 (s, 3H), 1.65-1.60 (m, 2H), 1.59 (s, 3H), 1.58 (s, 3H), 1.56 (s, 3H), 1.19 (d, J = 1.2 Hz, 3H); ¹³C NMR (CDCl₃, ppm) 144.31, 138.75, 138.26, 135.21, 133.31, 131.26, 129.13, 128.72, 124.33, 123.88, 118.55, 117.54, 103.86, 64.91, 39.72, 33.81, 32.02, 26.78, 26.60, 26.50, 25.65, 17.66, 16.48, 16.37, 15.95. IR and ¹H NMR spectra of **192** are in agreement of those reported in reference 31b.

1-(Ethylenedioxy)-4,9,13,17-tetramethyl-4(E),8(E),12(E),16-octadeca-

tetraene (193): This was prepared in 88% yield according to the procedure described in ref 31b. **193**: IR (film) 2922, 2853, 1665, 1445, 1381, 1140, 1041 and 745 cm⁻¹; CIMS *m/z* (rel. intensity) 361 (M⁺+1, 52.5), 300 (22.7), 299 (100), 217 (29.8), 175 (15.7), 163 (13.3), 149 (31.8); ¹H NMR (CDCl₃, ppm) 5.20-5.05 (m, 4H), 4.84 (t, J = 4.8 Hz, 1H), 3.97 (m, 2H), 3.85 (m, 2H), 2.12-1.93 (m, 14 H0, 1.78-1.72 (m, 2H), 1.68 (s, 3H), 1.60 (s, 3H), 1.59 (s, 9H); ¹³C NMR (CDCl₃, ppm) 135.19, 134.92, 134.28, 131.23, 124.60, 124.46, 124.31, 124.24, 104.44, 64.88, 39.77, 33.94, 32.52, 28.28, 28.19, 26.81, 26.70, 25.68, 17.68, 16.03.

Diphenylphosphinoyl ethanethiol (194): This was prepared in 80% yield according to the procedure described by Dodd^{31h} and Mikolajczyk⁶⁶ for the synthesis of diethyl (1-mercaptoethyl)phosphonate. **194**: IR (KBr) 3055, 1619, 1185, 1120, 1070, 1029, 745 and 698 cm⁻¹; ¹H NMR (CDCl₃, ppm) 7.90 (m, 4H), 7.50 (m, 6H), 3.45 (m, 1H), 2.07 (dd, $J_{H-H} = 7.0$ Hz; $J_{P-H} = 10$ Hz, 1H), 1.50 (dd, $J_{H-H} = 7.5$ Hz; $J_{P-H} = 15.0$ Hz, 3H). IR and ¹H NMR spectra of **194** are in agreement of those reported in reference 31h.

Diphenylphosphinoyl 1-(3-methyl-2,3-oxido-butylthio)ethane (197): To a solution of 195 (1.82 g, 21.1 mmol) in CH₂Cl₂ (60 ml) at -40 °C was added m-CPBA (4.88 g, 85% pure, 24 mmol). The reaction mixture was stirred at -40 °C for 1 h and warmed to -20 °C for an additional 1 h. Excess *m*-CPBA was destroyed by addition of saturated Na₂S₂O₃ solution (20 mL) and the organic phase was washed with saturated NaHCO₃ solution (2 X 30 mL). The aqueous layer was extracted with CH₂Cl₂ (3 X 20 mL) and the combined organic layer was washed with ice-cold 1N NaOH. Standard work-up gave epoxy alcohol (0.705 g, ~33% yield): GC purity: 100%; IR (film) 3429, 1119 and 1064 cm⁻¹; CIMS m/z (rel. intensity) 103 (M⁺+1, 100), 97 (2.3), 95 (2.2), 93 (2.9), 91 (4.2); ¹H NMR (CDCl₃, ppm) 3.76 (m, 2H), 3.0 (dd, J = 5.1, 6.4 Hz, 1H), 2.6 (m, 1H), 1.36 (s, 3H), 1.31 (s, 3H). The epoxy alcohol was converted to the mesylate 196 by reaction with MeSO₂Cl in the presence of Et₃N at -50 °C (96% yield) as described for the preparation of 85. Mesylate 196 was sufficiently pure (GC purity >98%) for use in the subsequent reaction. For 196: CIMS m/z (rel. intensity) 181 (M⁺+1, 100); ¹H NMR (CDCl₃, ppm) 4.43 (dd, J = 11.7, 4.2Hz, 1H), 4.23 (dd, J = 11.7, 4.2 Hz, 1H), 3.08 (s, 3H), 3.07 (m, 1H), 1.36 (s, 3H), 1.33 (s. 3H).

To a solution of NaOH (5.0 g, 125 mmol) in H₂O (10 mL) and toluene (10 mL)

was added tetraoctylammonium bromide (0.05 g), **194** (0.472 g, 1.8 mmol) and **196** (0.413 g, 2.3 mmol) at room temperature. The reaction mixture was stirred for 12 h and then extracted with ether (3 x 30 mL). Standard work-up followed by chromatography using ethyl acetate:hexane (7:3) as the eluant gave **197** (0.45 g, 72%) as an oil: IR (film) 3055, 1630, 1183, 1118, 1072, 723 and 695 cm⁻¹; CIMS *m/z* (rel. intensity) 347 (M⁺+1, 100), 346 (M⁺, 9.0), 331 (1.3), 329 (7.5), 275 (1.4), 261 (12); ¹H NMR (CDCI₃, ppm) 7.96-7.75 (m, 4H), 7.60-7.40 (m, 6H), 3.59 (dq, $J_{H-H} =$ 7.4 Hz, $J_{P-H} =$ 16.0 Hz, 1H), 2.90 (m, 2H), 2.77(m, 1H), 1.56 (dd, $J_{H-H} =$ 7.5 Hz, $J_{P-H} =$ 15.0 Hz, 1H), 1.28 (s, 3H), 1.23 (s, 3H); ¹³C NMR (CDCI₃, ppm) 131.93-128.50 (12C, m), 63.46, 58, 38, 37.28, 36.80, 24.40, 18.65, 16.20; Anal. calcd. for C₁₉H₂₃PO₂S: C, 65.88; H, 6.69. Found: C, 65.60; H, 6.56.

4,9,13,17-Tetramethyl-4(*E***),8(***E***),12(***E***),16-octadecatetraenal (198): This was prepared in 92% yield according to the procedure described in ref 31b. 198**: IR (film) 2964, 2923, 2855, 1728, 1446, 1383 and 1108 cm⁻¹; CIMS *m/z* (rel. intensity) 317 (M⁺+1, 100), 299 (88), 235 (20), 217 (56.7), 193 (54.7), 179 (15.4), 165 (15.6), 149 (30.7), 137 (66.2); ¹H NMR (CDCl3, ppm) 9.74 (t, J = 1.8 Hz, 1H), 5.21-5.04 (m, 4H), 2.51 (dt, J = 1.8, 7.5 Hz, 2H), 2.31 (t, J = 7.5 Hz, 2H), 2.12-1.90 (m, 12H), 1.67 (s, 3H), 1.61 (s, 3H), 1.59 (s, 9H); ¹³C NMR (CDCl₃, ppm) 202.51, 135.39, 134.94, 133.06, 131.23, 125.51, 124.43, 124.26, 124.01, 42.20, 39.74, 31.91, 28.22, 28.06, 26.81, 26.67, 25.65, 17.66, 16.10, 16.04. IR and ¹H NMR spectra of **198** are in agreement of those reported in reference 31b.

6(E)-5-Thia-2,3-oxidosqualene (73): To a solution of **197** (0.173 g, 0.5 mmol) in THF (10 mL) was added dropwise a solution of LDA [0.5 mmol, prepared from diisopropyl amine (0.07 mL, 0.5 mmol) and *n*-BuLi (0.2 mL, 0.5 mmol, 2.5 M in

hexanes at -78 °C] in THF (5 mL) under argon, at -100 °C. After 20 min, aldehyde 198 (0.159 g, 0.5 mmol) in THF (5.0 mL) was added dropwise to the orange-coloured solution. The resulting light-yellow solution was stirred for 30 min and treated with acetic acid (100 mg) and H₂O (100 mg). The solvent was removed in vacuo and the resulting slurry filtered through a small column of silica gel using ethyl acetate:hexanes (7:3) as the eluant to give **199** and **200** (~6:4) (0.225 g, 68% yield). Thin layer chromatographic analysis on silica gel revealed two overlapping components. The major, faster eluting isomer 199 (syn) was purified by column chromatography on silica gel in two cycles using ethyl acetate:hexanes (2:8 to 1:1) as the eluant. This gave pure 199 (0.103 g, 31%) and a mixture of 199 and 200. Major isomer 199 (syn): IR (film) 3322, 2960, 2924, 2854, 1725, 1665, 1590, 1437, 1377, 1319, 1249, 1159, 1111, 1072, 850, 746 and 696 cm⁻¹; ¹H NMR (CDCl₃, ppm) 8.35 (m, 2H), 8.07 (m, 2H), 7.50 (m, 6H), 5.53 (bm, 1H), 5.17 (m, 1H), 5.10 (m, 3H), 4.07 (t, J = 8.8 Hz, 1H), 2.68 (m, 2H), 2.43 (dd, J = 11.0, 6.6 Hz, 1H), 2.28 (m, 1H), 2.10-1.90 (m, 15H), 1.67 (s, 3H), 1.64 (s, 3H), 1.59 (s, 6H), 1.56 (s, 3H), 1.40 (d, J_{P-} H = 16.0 Hz, 3H), 1.27 (s, 3H), 1.24 (s, 3H); Anal. calcd. for C₄₁H₅₉O₃PS: C, 74.28; H, 8.97. Found: C, 74.56; H, 9.06.

To a solution of **199** (90 mg, 0.136 mmol) in THF (10 mL) was added NaH (pre-washed with hexanes, 15 mg, 0.625 mmol). This mixture was stirred for 3 h under argon and the reaction was quenched by addition of water (0.1 mL). The solvent was removed *in vacuo*, and column chromatography using ethyl acetate:hexanes (5:95) as the eluant gave pure **73** (52 mg, 86%) as an oil: IR (film) 2963, 2921, 2854, 1717, 1666, 1630, 1449, 1377, 1249, 1124 and 838 cm⁻¹; CIMS *m/z* (rel. intensity) 445 (M⁺+1, 6.4), 359 (11.9), 327 (3.1), 295 (3.0), 217 (2.8), 191(5.0), 189 (5.4), 177 (11), 171 (100) 163 (7.5), 161 (5.9); ¹H NMR (CDCl₃, ppm) 5.55 (tq, J = 7.1, 1.20 Hz, 1H), 5.12 (m, 4H), 2.92 (m, 2H), 2.67 (dd, J = 2.2, 8.8 Hz,

1H), 2.18 (dt, J = 7.3, 7.4 Hz, 2H), 2.0 (14 H, bm), 1.92 (d, J = 1.20 Hz, 3H), 1.68 (s, 3H), 1.60 (s, 12H), 1.32 (s, 3H), 1.29 (s, 3H); ¹³C NMR (CDCl₃, ppm) 138.61, 135.27, 134.45, 132.87, 131.19, 129.45, 125.01, 124.90, 124.47, 124.39, 63.20, 59.01, 39.82, 39.21, 39.15, 30.90, 30.32, 28.53, 27.94, 26.87, 26.78, 25.51, 24.50, 24.20, 18.81, 18.16, 17.62, 16.10, 16.02; Anal. calcd. for C₂₉H₄₈OS: C, 78.32; H, 10.89. Found: C, 78.23; H, 10.95.

1-(Ethylenedioxy)-4,9,13,17-tetramethyl-16-bromo-17-hydroxy-4(E), 8(E), 12(E)-octadecatriene (201): To a vigorously stirred solution of 193 (2.15 g, 6.0 mmol) in THF (100 mL) and water (30 mL) at 0 °C was added dropwise a solution of NBS (1.07 g, 6.0 mmol) in THF (15 mL) and water (5.0 mL) over 30 min. The mixture was stirred for 1 h at 0 °C, the THF was removed in vacuo and the aqueous layer was extracted with diethyl ether (4 x 30 mL). Standard work-up followed by flash column chromatography using ethyl acetate:hexane (65:35) as the eluant gave pure 201 (1.04 g, 38%) as an oil: IR (film) 3477, 1667, 1630, 1446, 1384, 1141 and 1037 cm⁻¹: CIMS m/z (rel. intensity) 459/457 (M⁺+1, 42.7/45.5), 441/439 (M⁺+1-H₂O, 17.4/18.2), 397/395 (100/97.9) 379/377 (52.2/92.7), 359 (51.5), 315 (97.1), 297 (77.3), 243 (18.3), 205 (22.6); ¹H NMR (CDCl₃, ppm) 5.22-5.10 (m, 3H), 4.85 (t, J = 4.82 Hz, 1H), 3.98 (dd, J = 1.8, 11.3 Hz, 1H), 3.96 (m, 2H), 3.85 (m, 2H),2.38-2.25 (m, 1H), 2.22-1.92 (m, 12H), 1.82-1.72 (m, 3H), 1.60 (s, 3H), 1.59 (s, 6H), 1.34 (s, 3H), 1.32 (s, 3H); ¹³C NMR (CDCb, ppm) 134.93, 134.28, 133.00, 125.98, 124.52, 124.38, 104.41, 72.43, 70.87, 64.84, 39.62, 38.17, 33.89, 32.49, 32.21, 28.22, 28.15, 26.64, 25.84, 16.03, 15.84; Anal. calcd. for C₂₄H₄₁BrO₃: C, 63.13; H, 9.06. Found: C, 63.30; H, 9.09.

4,9,13,17-Tetramethyl-16-bromo-17-hydroxy-4(E),8(E),12(E)-octadeca-

trienal (202): This was prepared in 42% yield by the procedure described for the preparation of **198**. **202**: IR (film) 3440, 2933, 2850, 1725, 1445, 1383, 1178 and 907 cm⁻¹; CIMS *m/z* (rel. intensity) 415/413 (M⁺+1, 0.86/0.74), 397/395 (8.8/7.4), 379/377 (4.5/4.6), 333 (75.6), 315 (100), 297 (21.9), 191 (24), 149 (19.5), 135 (27.3); ¹H NMR (CDCl₃, ppm) 9.74 (t, J = 1.7 Hz, 1H), 5.25-5.06 (m, 3H), 3.98 (dd, J = 1.8, 11.4 Hz, 1H), 2.51 (dt, J = 1.8, 7.5 Hz, 2H), 2.32 (t, J = 7.5 Hz, 2H), 2.38-2.25 (m, 1H), 2.20-1.92 (m, 10H), 1.82-1.72 (m, 1H), 1.61 (s, 3H), 1.59 (s, 6H), 1.34 (s, 3H), 1.32 (s, 3H); ¹³C NMR (CDCl₃, ppm) 202.55, 135.17, 133.10, 126.00, 125.49, 124.20, 72.47, 70.90, 42.19, 39.65, 38.20, 32.21, 31.92, 28.22, 28.06, 26.67, 25.88, 16.13, 16.03, 15.86. ¹H-NMR and IR spectra of **202** are in agreement with those reported in reference 30f.

4,9,13,17-Tetramethyl-16,17-epoxy-4(*E*),8(*E*),12(*E*)-octadecatrienal (203): This was prepared in 87% yield by ring closure of bromohydrin 202 in a procedure similar to that described for the synthesis of **101**. **203**: IR (film) 2978, 2926, 2870, 1727, 1667, 1448, 1378 and 1123 cm⁻¹; CIMS *m/z* (rel. intensity) 333 (M⁺+1, 60.8), 316 (22.3), 315 (100), 297 (20.2), 191 (24.4), 175 (15.1), 153 (24.1), 149 (19.4), 109 (17.9); ¹H NMR (CDCl₃, ppm) 9.74 (t, *J* = 1.8 Hz, 1H), 5.20-5.05 (m, 3H), 2.70 (t, *J* = 6.3 Hz, 1H), 2.51 (dt, *J* = 1.8, 7.5 Hz, 2H), 2.32 (t, *J* =7.5 Hz, 2H), 2.20-1.93 (m 12H), 1.61 (s, 6H), 1.59 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H). ¹H-NMR and IR spectra of **203** are in agreement with those reported in reference 25c.

Diphenylphosphinoyl 1-(prenylthio)ethane (205): This was prepared in 73% yield by coupling **194** and 1-chloro-3-methyl-2-butene (**204**) under phase-transfer conditions as described for the preparation of **197**. **205**: IR (film) 3055, 1667,

1186, 1118, 1072, 722 and 697 cm⁻¹; CIMS *m/z* (rel. intensity) 333/331 (M++1, 7.8/100), 263 (2.0), 231 (5.8), 230 (11.7), 229 (4.6); ¹H NMR (CDCl₃, ppm) 7.95-7.75 (m, 4H), 7.58-7.40 (m, 6H), 5.07 (t, J = 7.7 Hz, 1H), 3.27 (dq, $J_{H-H} = 7.4$ Hz, $J_{P-H} = 14.7$ Hz, 1H), 3.12 (dd, J = 3.3, 7.7 Hz, 2H), 1.71 (s, 3H, 1.58 (s, 3H), 1.55 (dd, $J_{H-H} = 7.4$ Hz, $J_{P-H} = 15.0$ Hz, 3H); ¹³C NMR (CDCb, ppm) 136.90, 132.58, 132.15, 131.94, 131.86, 131.62, 131.53, 130.61, 128.50, 128.40, 128.29, 119.49, 36.50, 30.03, 25.68, 17.73, 16.14; Anal. calcd. for C₁₉H₂₃POS: C, 69.07; H, 7.02. Found: C, 68.92; H, 6.89.

18(E)-20-Thia-2,3-oxidosqualene (76): This was prepared by the procedure described for the synthesis of **73**. A mixture of *syn* and *anti* isomers **206** and **207** (~65:35) was obtained by condensation of **194** with **203**. Flash column chromatography partially separated this mixture to give the pure *syn* isomer **206** in 33% yield: IR (film) 3315, 2960, 2927, 2854, 1730, 1666, 1590, 1438, 1377, 1319, 1156, 1112, 745 and 699 cm⁻¹; ¹H NMR (CDCl₃, ppm) 8.40 (m, 2H), 8.10 (m, 2H), 7.54 (m, 6H), 5.66 (bm, 1H), 5.51 (m, 3H), 4.96 (t, J = 8.0 Hz, 1H), 4.05 (t, J = 8.8 Hz, 1H), 2.84 (dd, J = 8.3, 10.9 Hz, 1H), 2.70 (t, J = 6.3 Hz, 1H), 2.41 (dd, J = 8.0, 10.9 Hz, 1H), 2.34 (m, 1H), 2.20-1.90 (m, 15H), 1.67 (s, 3H), 1.61 (s, 3H), 1.59 (s, 6H), 1.54 (s, 3H), 1.42 (d, $J_{P-H} = 16.2$ Hz, 3H), 1.29 (s, 3H), 1.25 (s, 3H); Anal. calcd. for C₄₁H₅₉O₃PS: C, 74.28; H, 8.97. Found: C, 74.04; H, 9.02.

For **76**: IR (film) 2960, 2923, 2858, 1663, 1630, 1448, 1376, 1247 and 1120 cm⁻¹; CIMS *m/z* (rel. intensity) 445 (M⁺+1, 90), 427 (28.5), 375 (44.4), 343 (100), 325 (32.3); ¹H NMR (CDCl₃, ppm) 5.35 (tq, J = 7.1, 1.20 Hz, 1H), 5.23 (tm, J = 7.4 Hz, 1H), 5.19-5.10 (m, 3H), 3.30 (d, J = 7.4 Hz, 2H), 2.70 (t, J = 6.3 Hz, 1H), 2.20-1.94 (bm, 16H), 1.87 (s, 3H), 1.72 (s, 3H), 1.68 (s, 3H), 1.61 (s, 3H), 1.60 (s, 6H), 1.30 (s, 3H), 1.26 (s, 3H); ¹³C NMR (CDCl₃, ppm) 138.20, 135.08, 134.60, 131.06,
129.56, 126.91, 125.00, 124.59, 124.38, 119.73, 64.18, 58.19, 39.70, 39.40, 36.35, 29.95, 29.28, 28.30, 27.65, 27.58, 26.75, 25.62, 24.89, 24.04, 18.76, 18.09, 17.75, 16.10, 16.00; Anal. calcd. for $C_{29}H_{48}OS$: C, 78.32; H, 10.89. Found: C, 78.41; H, 11.01.

References

(1) (a) Schroepfer, G. J. Jr. Ann. Rev. Biochem., 1982, 51, 555. (b) Poulter, C. D.;
Rilling, H. J. In Biosynthesis of Isoprenoid Compounds; Porter, J. W., Spurgeon, S. L., Eds.; John Wiley and Sons: New York, 1981; Vol.1.

(2) (a) Abe, I.; Rohmer, M.; Prestwich, G. D. *Chem. Rev.*, **1993**, *93*, 2189. (b) Oehlschlager, A. C.; Czyzewska, E. in *Emerging Targets in Antibacterial and Antifungal Chemotherapy*; Sutcliffe, J., Georgopapadakou, N. H., Eds.; Routledge, Chapman & Hall: New York, **1992**.

(3) Woodward, R. B.; Bloch, K. J. Am. Chem. Soc., 1953, 75, 2023.

(4) (a) van Tamelen, E. E. J. Am. Chem. Soc., 1982, 104, 6480. (b) van Tamelen,
E. E.; James, D. R. J. Am. Chem. Soc., 1977, 99, 950. (c) Nishizawa, M.;
Takenaka, H.; Hayashi, Y. J. Am. Chem. Soc., 1985, 107, 522. (d) Nishizawa, M.;
Takenaka, H.; Hayashi, Y. J. Org. Chem., 1986, 51, 806. (e) Krief, A.; Schauder,
J.R.; Guittet, E.; Herve du Penhoat, C.; Lallemand, J.Y. J. Am. Chem. Soc., 1987, 109, 7910. (f) Nishizawa, M.; Takao, H.; Kanoh, N.; Asoh, K.; Hatakeyama, S.
Tetrahedron Lett., 1994, 35, 5693.

(5) (a) For a thorough review of this topic, see: Johnson, W.S. Angew. Chem., Int. Ed. Engl., **1976**, *15*, 9. (b) Johnson, W.S. Bioorg. Chem., **1976**, *5*, 51.

(6) (a) Barrero, A. F.; Alvarez-Manzaneda, E. J.; Alvarez-Manzaneda, R. *Tetrahedron Lett.*, **1989**, *30*, 3351. (b) Boar, R. B.; Couchman, L. A.; Jaques, A. J.;

130

Perkins, M. J. J. Am. Chem. Soc., 1984, 106, 2476.

(7) Shechter, I.; Sweat, F. W.; Bloch, K. Biochim. Biophys. Acta, 1970, 220, 463.

(8) Yamamoto, S.; Lin, K. Bloch, K. Pro. Natl. Acad. Sci. U.S.A., 1969, 63, 110.

(9) Duriatti, A.; Schuber, F. Biochem. Biophys. Res Commun., 1988, 151, 1378.

(10) Hoshino, T.; Williams, H. J.; Chung, Y.; Scott, A. I. *Tetrahedron*, **1991**, *47*, 5925.

(11) (a) Balliano, G.; Viola, F.; Ceruti, M.; Cattel, L. Arch. Biochem. Biophys., 1992, 293, 122. (b) Balliano, G.; Grosa, G.; Milla, P.; Viola, F.; Cattel, L. Lipids, 1993, 28, 903.

(12) (a) Kusano, M.; Abe, I.; Sankawa, U.; Ebizuka, Y. *Chem. Pharm. Bull.*, **1991**, *39*, 239.

(13) (a) Abe, I.; Bai, M.; Xiao, X. Y.; Prestwich, G. D. *Biochem. Biophys. Res. Commun.*, **1992**, *187*, 32. (b) Abe, I.; Prestwich, G. D. *J. Biol. Chem.*, **1994**, *269*, 802.

(14) Xiao, X. Y.; Prestwich, G. D. J. Am. Chem. Soc., 1991, 113, 9673.

(15) Corey, E. J.; Matsuda, S. P. T. J. Am. Chem. Soc., 1991, 113, 8172.

(16) (a) Buntel, C. J.; Griffin, J. H. J. Am. Chem. Soc., 1992, 114, 9711. (b)

Roessner, C. A.; Min, C.; Hardin, S. H.; Harris-Haller, L. W.; McCollum, J. C.; Scott, A. I. *Gene*, **1993**, *127*, 149. (c) Kelly, R.; Miller, S. M.; Lai, M. H.; Kirsch, D. R. *Gene*, **1990**, *87*, 177.

(17) Shi, Z.; Buntel, C. J.; Griffin. J. H.; Pro. Natl. Acad Sci. U.S.A., 1994, 91, 7370.

(18) (a) Stork, G.; Burgstahler, A. H. J. Am. Chem. Soc., 1955, 77, 5068. (b)
Eschenmoser, A. Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta, 1955, 38, 1890.

(19) (a) Corey, E. J.; Russey, W. E.; Ortiz de Montellano, P. R. *J. Am. Chem. Soc.*, **1966**, *88*, 4750. (b) van Tamelen, E. E.; Willet, J. D.; Clayton, R. B.; Lord, K. E. *J. Am. Chem. Soc.*, **1966**, *88*, 4752. (c) Barton, D. H. R.; Jarman, T. R.; Watson, K. G.; Widdowson, D. A.; Boar, R. B.; Damps, K. *J. Chem. Soc. Chem. Commun.*, **1974**, 861.

(20) Cornforth, J. W. Angew. Chem., Int. Ed. Engl., 1968, 7, 903.

(21) (a) Corey, E. J.; Krief, A.; Yamamoto, H. J. Am. Chem. Soc., 1971, 93, 1493.
(b) Corey, E. J.; Lin, K.; Yamamoto, H. J. Am. Chem. Soc., 1969, 91, 2132. (c) Corey, E. J.; Lin, K.; Jautelat, M. J. Am. Chem. Soc., 1968, 90, 2724. (d) Corey, E. J.; Oritiz De Montellano, P. R.; Yamamoto, H. J. Am. Chem. Soc., 1968, 90, 6254.
(e) Corey, E. J.; Gross, S. K. J. Am. Chem. Soc., 1967, 89, 4561. (f) van Tamelen, E. E. Sharpless, K. B.; Willet, J. D.; Clayton, R. B.; Burlingame, A. L. J. Am. Chem. Soc., 1967, 89, 3920. (g) van Tamelen, E. E.; Willet, J. D.; Clayton, R. B.; Clayton, R. B.; Hanzlik, R.; Clayton, R. B.; Burlingame, A. L.; Wszolek, P. C. J. Am. Chem. Soc., 1967, 89, 3071. (H) van Tamelen, E. C. Sharpless, K. B.; Hanzlik, R.;

7150. (i) Clayton, R. B.; van Tamelen, E. E.; Nadeau, R. G. J. Am. Chem. Soc.,
1968, 90, 820. (j) van Tamelen, E. E.; Hopla, R. E. J. Am. Chem. Soc., 1979, 101,
6112.

(22) Dewar, M. J. S.; Reynolds, C. H. J. Am. Chem. Soc., 1984, 106, 1744.

(23) (a) Johnson, W. S.; Lindell, S. D.; Steele, J. J. Am. Chem. Soc., 1987, 109, 5852. (b) Johnson, W. S.; Chenera, B.; Tham, F. S.; Kullnig, R. K. J. Am. Chem. Soc., 1993, 115, 493. (c) Johnson, W. S.; Fletcher, V. R.; Chenera, B.; Bartlett, W. R.; Tham, F. S.; Kullqig, R. K. J. Am. Chem. Soc., 1993, 115, 497. (d) Johnson, W. S.; Buchanan, R. A.; Bartlett, W. R.; Tham, F. S.; Kullnig, R. K. J. Am. Chem. Soc., 1993, 115, 504. (e) Johnson, W. S.; Plummer, M. S.; Reddy, S. P.; Bartlett, W. R. J. Am. Chem. Soc., 1993, 115, 504. (e) Johnson, W. S.; Plummer, M. S.; Reddy, S. P.; Bartlett, W. R. J. Am. Chem. Soc., 1993, 115, 504. (e) Johnson, W. S.; Plummer, M. S.; Reddy, S. P.; Bartlett, W. R. J. Am. Chem. Soc., 1993, 115, 515. (f) Fish, P. V.; Johnson, W. S. J. Org. Chem., 1994, 59, 2324. (g) Johnson, W. S.; Daub, G. W.; Lyle, T. A.; Niwa, M. J. Am. Chem. Soc., 1980, 102, 7800.

(24) (a) van Tamelen, E. E.; Willet, J.; Schwartz, M.; Nadeau, R. J. Am. Chem. Soc., 1966, 88, 5937. (b) Sharpless, K. B. J. Am. Chem. Soc., 1970, 92, 6999.

(25) (a) Corey, E. J.; Virgil, S. C.; Liu, D. R.; Sarshar, S. J. Am. Chem. Soc., 1992, 114, 1524. (b) Corey, E. J.; Virgil, S. C.; Sarshar, S. J. Am. Chem. Soc., 1991, 113, 8171. (c) Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc, 1991, 113, 4025.

(26) (a) Abe, I.; Tomesch, J. C.; Wattanasin, S.; Prestwich, G. D. *Natl. Prod. Rep.*, **1994**, *11*, 279. (b) Taton, M.; Benveniste, P. *Biochem. Soc. Trans.*, **1990**, *18*, 48. (c) Taton, M.; Benveniste, P.; Rahier, A. *Pure and Appl. Chem.*, **1987**, *59*, 287. (d) Ceruti, M.; Viola, F.; Galliano, G.; Grosa, G.; Caputo, O.; Gerst, N.; Schuber, F.;

133

Cattel, L. Eur. J. Med. Chem., 1988, 23, 533.

(27) (a) Oehlschlager, A. C.; Singh, S. M.; Sharma, S. J. Org. Chem., 1991, 56, 3856. (b) Croteau, R.; Wheeler, C. J.; Aksela, R.; Oehlschlager, A. C. J. Biol. Chem., 1986, 261, 7257. (c) Oehlschlager, A. C.; Angus, R. H.; Pierce, A. M.; Pierce, H. D. Jr.; Srinivasan, R. Biochemistry, 1984, 23, 3582. (d) Avruch, L.; Fisher, S.; Pierce, H. D. Jr.; Oehlschlager, A. C. Can. J. Biochem., 1976, 54, 657.

(28) (a) Cattel, L.; Ceruti, M.; Balliano, G.; Viola, F.; Grosa, G.; Schuber, F. Steroids, 1989, 53, 363. (b) Ator, M. A.; Schmidt, S. J.; Adams, J. L.; Dolle, R. E. Biochemistry, 1989, 28, 9633. (c) Balliano, G.; Viola, F.; Ceruti, M.; Cattel, L. Biochem. Biophys. Acta, 1988, 959, 9. (d) Cattel, L.; Ceruti, M.; Viola, F.; Delprino, L.; Balliano, G.; Duriatti, A.; Bouvier-Nave, P. Lipids, 1986, 21, 31. (e) Rahier, A.; Genot, J. C.; Schuber, F.; Benveniste, P.; Narula, A. S. J. Biol. Chem., 1984, 259, 15215. (f) Delprino, I.; Balliano, G.; Cattel, L.; Benveniste, P. J. Chem. Soc. Chem. Commun., 1983, 381. (g) Narula, A. S.; Rahier, A.; Genot, J. C.; Benveniste, P.; Schuber, F. J. Am. Chem. Soc., 1981, 103, 2408.

(29) (a) Poulter, C. D.; Capson, T. L.; Thompson, M. D.; Bard, R. S. *J. Am. Chem. Soc.*, **1989**, *111*, 3734. (b) Sandifer, R. M.; Thompson, M. D.; Gaughan, R. G.; Pouter, C. D. *J. Am. Chem. Soc.*, **1982**, *104*, 7376. (c) Steiger, A.; Pyun, H. J.; Coates, M. *J. Org. Chem.*, **1992**, *57*, 3444. (d) Cane, D. E.; Yang, G.; Coates, R. M.; Pyun, H. J. Hohn, T. M. *J. Org. Chem.*, **1992**, *57*, 3454.

(30) (a) Ceruti, M.; Balliano, G.; Viola, F.; Grosa, G.; Rocco, F.; Cattel, L. *J. Med. Chem.*, **1992**, *35*, 3050. (b) Balliano, G.; Milla, M.; Ceruti, M.; Viola, F.; Carrano, L.; Cattel *FEBS Lett.*, **1993**, *320*, 203. (c) Ceruti, M.; Rocco, F.; Viola, F.; Balliano, G.;

Grosa, G.; Dosio, F.; Cattel, L. *Eur. J. Med. Chem.*, **1993**, *28*, 675. (d) Abad, J. L.;
Casas, J.; Sanchez-Baeza, F.; Messeguer, A. *Bioorg. Med. Chem. Lett.*, **1992**, *2*, 1239. (e) Abad, J. L.; Casas, J.; Sanchez-Baeza, F.; Messeguer, A. *J. Org. Chem.*, **1993**, *58*, 3991. (f) Ceruti, M.; Viola, F.; Dosio, F.; Cattel, L.; Bouvier-Nave, P.; Ugliengo, P. J. Chem. Soc. Perkin Trans. 1, **1988**, 461.

(31) (a) Anstead, G. M.; Lin, H. K.; Prestwich, G. D. *Bioorg. Med. Chem. Lett.*, **1993**, *3*, 1319. (b) Dodd, D. S.; Oehlschlager, A. C.; Georgopapadakou, N. H.;
Polak, Hartman, P. G. *J. Org. Chem.*, **1992**, *57*, 7226. (c) Perez, A.; Oehlschlager,
A. C.; Abe, I.; Prestwich, G. D. unpublished results. (d) Taton, M.; Benveniste, P.;
Rahier, A.; Johnson , W. S.; Liu, H. T.; Sudhakar, A. R. *Biochemistry*, **1992**, *31*,
7892. (e) Gerst, N.; Duriatti, A.; Schuber, F.; Taton, M.; Benveniste, P.; Rahier, A. *Biochem. Pharmacol.*, **1988**, *37*, 1955. (f) Wannamaker, M. W.; Waid, P. P.; Van
Sickel, W. A.; Mccarthy, A. R.; Wilson, P. K.; Schatzman, G. L.; Moore, W. R. *J. Med. Chem.*, **1992**, *35*, 3581. (g) Wannamaker, M. W.; Waid, P. P.; Moore, W. R.;
Schatzman, G. L.; Van Sickel, W. A.; Wilson, P. K.; Bioorg. Med. Chem. Lett., **1993**, *3*, 1175. 31 (h) Dodd, D. S. Ph. D. Thesis, Chemistry, Simon Fraser University, **1992**.

(32) Zheng, Y. F.; Oehlschlager, A. C.; Georgopapadakou, N. H.; Hartman, P. G.; Scheliga, P. *J. Am. Chem. Soc.*, **1995**, *117*, 670.

(33) Peach, M.E. In *The Chemistry of the Thiol Group;* Patai, S. Eds.; John Wiley and Sons: New York, **1974**; 721.

(34) Kronja, O.; Orlovic, M., Humnski, K.; Borcic, S. J. Am. Chem. Soc., **1991**, *113*, 2306.

(35) Herriot, A. W.; Picker, D. Synthesis, 1975, 447.

(36) Peach, M.E. In *The Chemistry of the Thiol Group;* Patai, S. Eds.; John Wiley and Sons: New York, **1974**; 772.

(37) Review of the synthesis of sulfoxides by oxidation of thioethers see: Madesclaire, M. *Tetrahedron*, **1986**, *42*, 5459.

(38) Trost, B. M.; Curran, D. P. Tetrahedron Lett., 1981, 1287.

(39) Corey, E. J.; Shieh, W. C. Tetrahedron Lett., 1992, 6435.

(40) (a) Rand, C. L.; Van Horn, D. E.; Moore, M.W.; Negishi, E. J. Org. Chem., **1981**, 46, 4093. (b) Negishi, E. Pure Appl. Chem., **1981**, 53, 2333.

(41) Corey, E. J.; Kim, C. U. Tetrahedron Lett., 1972, 42, 4339.

(42) (a) Volante, R. P. *Tetrahedron Lett.*, **1981**, 3119. (b) Mitsunobu, O. *Synthesis*, **1981**, 1.

(43) (a) Leopold, E. J. *Org. Synth.*, **1986**, *64*, 164. (b) The preparation of **98** was carried out by Alice L. Perez in this laboratory according to the procedure of reference 43(a).

(44) (a) van Tamelen, E. E.; Curphey, T. J. Tetrahedron Lett., 1962, 121. (b) van

Tamelen, E. E.; Sharpless, K. B. Tetrahedron Lett., 1967, 2655.

(45) Katzenellenbogen, J. A.; Lenox, R. S. J. Org. Chem., 1973, 38, 326.

(46) Coates, R. M.; Ley, D. A.; Cavender, P. L. J. Org. Chem., 1978, 43, 4915.

(47) Dodd, D. S.; Oehlschlager, A. C. J. Org. Chem., 1992, 57, 2794.

(48) Pitchen, P.; Dunach, E.; Deshmukh, M. N.; Kagan, H. B. J. Am. Chem. Soc., **1984**, *106*, 8188.

(49) Yuasa, H.; Takenaka, A.; Hashimoto, H. Bull. Chem. Soc. Jpn., **1990**, 63, 3473.

(50) Yuasa, H.; Hashimoto, H. Tetrahedron, 1993, 49, 8977.

(51) Heel, R. C.; Brogden, R. N.; Carmine, A.; Morley, P. A.; Speight, T. M.; Avery,G. S. *Drugs*, **1982**, *23*, 1.

(52) Ryder, N. S.; Dupont, M. C. Biochem. J., 1985, 230, 765.

(53) Sliverman, R. B. in *Mechanism-Based Enzyme Inactivation: Chemistry and Enzymology*, CRC, Press Inc.: Boca, **1988**.

(54) (a) Rawn, J. D. in *Biochemistry*, Carolina Biological Supply Company:Burlington **1989**. (b) Kitz, R.; Wilson, I. B. *J. Biol. Chem.* **1962**, *237*, 3245. (55) (a) Sen, S. E.; Prestwich, G. D. *J. Am. Chem. Soc.*, **1989**, *111*, 8761. (b) Stack, D.; Zheng, Y. F.; Perez, A. L.; Oehlschlager, A. C.; Abe, I.; Prestwich, G. D. "Synthesis and Inhibition Studies of Sulfur-Substituted Squalene Oxide Analogues as Mechanism-Based Inhibitors of 2,3-Oxidosqualene-Lanosterol Cyclase", manuscript in preparation for *J. Am. Soc. Chem.*, **1995**.

(56) Bernarni, F.; Csizmadia, I. G.; Schlegel, H. B.; Wolfe, S. *Can. J. Chem.*, **1975**, *53*, 1144.

(57) Bernarni, F.; Mangini, A.; Epiotis, N. D.; Larson, J. R.; Shaik, S. *J. Am. Chem. Soc.*, **1977**, *99*, 7465.

(58) Okuyama, T.; Fujiwara, W.; Fueno, T. J. Am. Chem. Soc., 1984, 106, 657.

(59) Modena, G.; Scorrano, G.; Venturello, P. J. Chem. Soc. Pekin Trans. 2, 1979,1.

(60) (a) Weeks, D. P.; Field, F. H. J. Am. Chem. Soc., 1970, 92, 1600. (b) Weeks,
D. P. J. Am. Chem. Soc., 1970, 92, 6521.

(61) Pau, J. K.; Ruggera, M. B.; Kim, J. K.; Caserio, M. C. J. Am. Chem. Soc., **1978**, *100*, 4242.

(62) Taft, R. W.; Martin, R. H.; Lampe, F. W. J. Am. Chem. Soc., 1965, 87, 2490.

(63) McClelland, R. Can J. Chem., 1977, 55, 548.

(64) Santry, L. J.; McClelland, R. A. J. Am. Chem. Soc., 1983, 105, 3167.

(65) Hooz, S.; Aurbach, D.; J. Org. Chem., 1984, 49, 3285.

(66) Mikolatajczyk, M.; Grzejszczak, S.; Chefczynska, A.; Zatorski, A. J. Org. Chem., **1979**, 44, 2967.

(67) Corey, E. J.; Shulman, J. J. Org. Chem., 1970, 35, 777.

(68) Grayson, J. I.; Warren, S. J. Chem. Soc., Perkin Trans. 1, 1977, 2263.

(69) Gridnev, I. D.; Miyaura, N.; Suzuki, A. J. Org. Chem., 1993, 58, 5351.

(70) Murahashi, S. I.; Yamamoto, M.; Yanagisawa, K. I.; Mita, N.; Kondo, K. *J. Org. Chem.*, **1979**, *44*, 2408.

(71) Foa, M.; Santi, R.; Garavaglia, F. J. Organomet. Chem., 1981, 206, C29.

(72) (a) Corey, E. J.; d'Alarcao, M.; Kyler, K. S. *Tetrahedron Lett.*, **1985**, *26*, 3919.
(b) Corey, E. J.; Cashman, J. R.; Eckrich, T. M.; Corey, D. R. *J. Am. Chem. Soc.*, **1985**, *107*, 713.

(73) (a) Scholz, D. *Liebigs Ann. Chem.*, **1984**, 259. (b) Scholz, D. *Synthesis*, **1983**, 944.

(74) Mancuso, A. J.; Swern, D. Synthesis, 1981, 165.

(75) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. In *Spectrometric Identification of organic compounds*; 5th. Ed. John Wiley & Sons: New York, **1991**; pp 281.

(76) Corey, E. J.; Jautelat, M.; Oppolzer, W. Tetrahedron Lett., 1967, 2325.

(77) Calzada, J. G.; Hooz, J. Org. Synth., 1988, 6, 634.

(78) (a) Hooz, J.; Cabezas, J.; Musmanni, S.; Calzada, J. *Org. Synth.*, **1990**, *67*,
120. (b) The preparation of **186** was carried out by Dr. Dodd in this laboratory according to procedure of reference 78(a).

(79) Cahiez, G.; Bernard, D.; Normant, J. F. Synthesis, 1976, 245.

(80) Grieco, P. A.; Masaki, Y. J. Org. Chem., 1974, 39, 2135.

(81) Compound **194** was also prepared by Dr. Dodd in this laboratory (see reference 31h).

(82) Zheng, Y. F.; Oehlschlager, A. C.; Hartman, P. G. J. Org. Chem., **1994**, *59*, 5803.

(83) Corey, E. J.; Ortiz de Montellano, P. R.; Lin, K.; Dean, P. D. G. J. Am. Chem. Soc., **1967**, *89*, 2797.

(84) Jolidon, S.; Polak, A. M.; Guerry, P.; Hartman, P. G. *Biochem. Soc. Trans.*, **1990**, *18*, 47.

(85) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem., 1978, 43, 2923.

•

-