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Abstract 

The discrete spectrum model for a general viscoelastic material expresses the shear 

relaxation and creep functions as a sum of decaying exponential9 and a constant term. 

This idealization of real viscoelastic materials provides an adequate and computation- 

ally efficient model for practical problems. The problem of a crack in a viscoelastic 

material subject to an asymmetric bending moment causing closure at only one end 

is solved for the case of a discrete spectrum model in that equations for displacement 

and pressure are obtained. These equations have kernels which are infinite series of 

integrals involving the creep and relaxation functions of the material. In the case of 

a standard linear model, evaluation of these kernels can be reduced to summation of 

geometric series. For the more general spectrum model, this method breaks down. A 

different method is used to express the kernels of the integral equations for displace- 

ment and pressure as solutions of other integral equations which allows them to be 

determined in closed form. The specific model (N = 2) is studied in detail and the 

results of numerical calculations are presented. The standard linear model (N = 1) 

is recovered as a special case. The method used is of considerable generality, having 

been previously applied to the three-dimensional normal indentation problem and the 

problem of a fixed length crack under a fluctuating normal load. 
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Chapter 1 

Introduction 

The Viscoelastic Model 

The very simplistic but yet effective visualization of viscoelasticity as a combination of 

hookean solid-like and newtonian liquid-like characteristics captures the fundamentals 

that underlie polymer behaviour on a macroscopic level. Yet, to fully appreciate the 

molecular basis of viscoelastic phenomena, it is advantageous to be aware of some 

basic polymer structure. 

A polymer is a chain of molecules which contains atoms held together by covalent 

bonds. When monomer molecules react together by means of a chemical process 

called polymerization, either linear chains or a three-dimensional network of polymer 

chains is produced. Some examples of this structure are shown in Fig.(l.l). The main 

characteristic of such chains is that the chemical bonding is strong and directional 

along the chains, but bonding sideways is by weak Van DerWaals forces. 

There are three main classes of polymers : thermoplastics, elastomers and ther- 

mosets. The viscoelastic properties of the rubberlike materials classified as elastomers 

are the focus of this thesis. As machine elements, perhaps the most important function 

of elastomers is their ability to attenuate vibrations. Two examples of applications 

in civil engineering are bridge bearings and earthquake-proof foundation isolation in 

skyscraper buildings as discussed by Moore [I]. Such resilient layers of viscoelastic 

material effectively allow movement due to changing temperature as well as static and 
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(1) (2) (3) 

Figure 1.1: Schematically represented polymer molecules : (1) linear; (2) branched; 
and (3) network. 

dynamic loading. Additionally, resilient seatings prevent corrosion, wear, the ingress 

of water and moisture as well as acting as a barrier against noise transmisssion. Ta- 

ble 1.1 presents a few viscoelastic materials and their more interesting features and 

applications. A more detailed characterization is given by Hertzberg [2]. 

The importance of such materials in our daily lives has generated considerable 

interest in the phenomenological theory of linear viscoelasticity. Summarizing phe- 

nomenological theory in an elegant and attractive form offers some mathematical 

challenges as well as practical benefits. The calculations are of practical value in 

permitting prediction of the behaviour of a material in a certain situation perhaps 

inaccessible to direct experiment. In addition, the panorama of time or frequency 

scale of a function's behaviour can be mapped out. To this end, various assumptions 

have been made about the form of the relaxation function. Golden and Graham [3], 

[4] state that there are perhaps three broad categories 

1. Continuous and discrete spectrum models and degenerate forms of these; 

2. Power law and associated models; 

3. Forms deriving from molecular theories. 

The development of a discrete spectrum model for the problem of a fixed length crack 

subject to an asymmetric bending moment is the focus of this thesis. 
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Material 

Polymet hyl- 
met hacrylate 
(Plexiglas) 
Polyvinyl 

I fluoroethylene I weight; extraordinary ( coatings; bearings and 

Major Characteristics 

Amorphous; brittle; 
general replacement 

chloride 

Polytetra- 

I (teflon) I resistance to chemical I gasket& nonstick, 

Applications 

Signs; 
canopies; 

for glass 
Primarily amorphous; 

windows 
Floor coverings; 

fire self-extinguishing; 
relatively inexpensive 
Extremely high molecular 

film; toys; 
water pipes 
Cooking utensil 

Nylon 66 

Table 1.1 : Characteristics of Selected Polymers 

I high strength 

Certain molecular theories, for example Rouse theory as described by Ferry [5], do 

indeed predict discrete spectra. In fact, any experimentally observed stress relaxation 

curve which decreases monotonically can in principle be fitted with any desired degree 

of accuracy to such a model by taking a sufficiently large number of terms. In the 

analysis of experimental data, however, it is difficult to resolve more than a few 

decay times, and it has been found that most viscoelastic materials do not decay 

exponentially but instead obey a power law [5]. 

In spite of these apparent difficulties, the discrete spectrum model is widely used 

by engineers to solve problems. The main reasons are, first, as was already mentioned, 

the ease with which data can be fit and second, from the computational view point, 

the exponential model provides much greater efficiency for a desired degree of accuracy 

when compared to a corresponding power law function. 

at tack; nonsticking 
Excellent wear resistance; 

components; wheels; 
~ullevs. rollers 

1.2 The History of the Crack Problem 

load- bearing pads 
Fabric; light machinery 

The problem under consideration is that of a fixed length crack in a viscoelastic 

medium subject to an asymmetric bending moment. Asymmetry is arrived at by 
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having the bending moment spend more time and have a greater maximum in one 

direction than in the other. Plane strain conditions are presumed, and a discrete 

spectrum model is considered for the viscoelastic material. Equations for the dis- 

placement and pressure are obtained, and the "angular advancen in the crack opening 

and "angular delayn in the crack closing are considered to solve the problem. 

This type of problem was considered in the elastic case by Bowie and Freese [6] 

and Comninou and Dundurs [7]. The crack was found to close over part of its length, 

including one end, with the end which closed depending on the sign of the applied 

bending moment. Also, the closures were instantaneous over the entire extent of these 

regions, rather than gradually starting at the end. 

The Classical Correspondence Principle is known to cover the problem of a fixed 

length or stationary crack in a viscoelastic medium where the crack has always been 

open [4]. This means that its solution is closely related to the corresponding elastic 

solution. A less trivial problem which has been considered by Graham and Sabin [8] 

and Graham [9] is that where crack closure can occur. They present solutions and 

detailed numerical results for Maxwell and Voigt materials as well as for the more 

general standard linear model. 

The generalized Classical Correspondence Principle has been used [9] to solve 

the problem of a viscoelastic crack in a field of pure bending for certain bending 

histories and materials. The solution is obtained from elastic solutions some of which 

involve material overlap and some of which do not. This solution suggests that a 

viscoelastic crack can close down gradually when its elastic analogue would close 

down instantaneously. 

This same problem is approached by Golden and Graham [lo] more directly by 

solving the equations of Linear Viscoelasticity rat her than using the Correspondence 

Principle. The solutions emerge naturally and not as a result of an intuitively based, 

detailed construction. In essence, it is a boundary value problem where conditions 

on the boundary are not known a prior;, but must be determined in the course of 

solving the problem. Two noteworthy physical results are obtained. Firstly, that 

in contrast to the elastic case, smooth closure occurs. Secondly, that there exists a 

frequency-dependent class of materials for which the crack does not close (at least 
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initially) at the negative end. It is thus concluded that, if a steady-state phenomenon 

of this kind exists, then the fracture propagation properties of such materials will 

exhibit interesting asymmetric features. 

The solution of the problem of a crack in a viscoelastic medium subjected to a 

sinusoidal bending moment is formulated in terms of non-singular integral equations 

in space and time by Golden, Graham and Trummer [ll]. The integral equation 

method used to solve the problem is of considerable generality having been used 

previously to solve problems with transversely moving indentors on viscoelastic media. 

The numerical treatment yields physically meaningful results, most notably, that in 

contrast to elastic behaviour, the partial closure is not instantaneous. An approximate 

method of solution which is simple and gives good results is also presented. 

Previously, Golden and Graham [12], investigated steady-state solutions which 

close at only one end of the crack subjected to an alternatively positive and negative 

asymmetric bending moment. The method developed is in general terms the same as 

that applied to obtain the steady-state solutions of the normal contact problem [13]. 

Numerical results are presented for the standard linear model. Viscoelastic behaviour 

is characterized by the angular delay, which is a measure of the delay in closure once 

the stress has become compressive on the positive end of the crack, and the angular 

advance, a measure of how early the crack opens before the stress has become tensile. 

Both of these are a result of creep effects from previous cycles tending to keep the 

crack open. The relationships derived provide the basis for the work presented in this 

thesis. 

A more general approach, which is applicable to materials with viscoelastic re- 

sponse given by discrete spectrum models, is presented by Golden and Graham [14] 

for the case of a fixed length crack under a fluctuating normal load. The relaxation 

and creep functions are given by a sum of decaying exponentials and a constant term. 

It is shown that the kernels of the integral equations for pressure and displacement 

obey integral equations which allow them to be determined in closed form. 

In the context of a different problem, namely that of three-dimensional steady-state 

indentation, Golden, Graham and Lan [15] extend the method to a contact problem 

for a viscoelastic material described by a discrete spectrum model. Considerable 
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analytical progress is made before resorting to numerical calculation. 

The results of both of these works [14], [15] are called upon extensively to obtain 

the equations describing the fixed length crack subject to an asymmetric bending mo- 

ment which causes closure only at one, the positive, end. Chapter 2 discusses some 

of the fundamental background of the problem based on the work of Muskhelishvili 

[17]. By using complex potentials and conformal maps, some of the most powerful 

tools of mathematics, the two-dimensional problem is cast in the form of a Hilbert 

problem from the Kolosov-Muskhelishvili equations. In Chapter 3, the decomposition 

of hereditary integrals is used to obtain expressions for displacement and pressure 

which are then completely determined for the general viscoelastic model in Chapter 4 

by obtaining the integral equations for the kernels. Finally, Chapter 5 presents nu- 

merical results for the case of the crack being subjected to an asymmetric sinusoidal 

bending moment. 

Chapters 4 and 5, except where the standard linear model is described, form 

the contribution to the acquired body of knowledge in this field. The closed form 

representation of displacement and pressure as a function of the general viscoelastic 

model parameters and the applied bending moment is the most significant result. For 

the special case of an asymmetric bending moment, constraints for the N = 2 general 

viscoelastic model parameters are numerically obtained such that closure of the crack 

is restricted to the positive end. These constraints are of practical importance in that 

they determine a specific class of viscoelastic materials to which the analytical results 

may be applied. 



Chapter 2 

The Fundamental Equations 

To establish a general acquaintance with the nature of crack problems in viscoelastic- 

ity, a brief presentation will be made of the constitutive relations, dynarnical equations 

and the form of the boundary conditions that characterize the boundary value problem 

for the crack subject to an asymmetric bending moment. 

2.1 Plane Non-inert ial Crack Problems 

The non-inertial approximation for viscoelastic materials is analagous to the approx- 

imation in the theory of simple harmonic motion through a frictional medium, where 

the acceleration term is neglected compared with the frictional resistance term. In 

materials with high internal friction losses, inertial effects depending on p, the density 

of the material, may be neglected compared with viscous effects. This non-inertial 

approximation results in a major simplification of the equations of motion 

where u;(r', t) are the components of the displacement vector G(F, t) giving the dis- 

placement of the point r' from its equilibrium position, b; are the contributions of 

body forces and a;, are the Cartesian components of stress. The acceleration term is 

dropped from (2.1) to obtain 
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in the absence of body forces. 

Now let us confine our attention to the case where the crack lies along a single 

line in an infinite viscoelastic medium, taken to be the x-axis. Consider the stress 

distribution of such a problem. If the applied stresses at infinity are subtracted from 

this stress distribution, thus giving the distribution for the problem where the stresses 

tend to zero at infinity and have uniform applied stress, of the same magnitude and 

opposite sign, on the open crack faces, then this distribution obeys (2.2). This follows 

from the fact that the applied stresses, which are independent of position, contribute 

nothing. 

For problems involving a crack in a field of bending, at distances far from the origin, 

the stress is zero on the open face and linear in x along the x-axis. By subtracting 

this linear term, we obtain a linear stress distribution on the open crack face and no 

divergent stresses at infinity. Also, the equilibrium equations still hold. 

2.2 The Kolosov-Muskhelishvili Equations 

A very powerful complex variable technique for solving two-dimensional boundary 

value problems in elasticity is based on the Kolosov-Muskhelishvili equations [4]. The 

viscoelastic Kolosov-Muskhelishvili equations also provide a useful starting point for 

considering two-dimensional viscoelastic boundary value problems. 

As in the case of the contact problem, the approach used for the crack problem is 

based on the viscoelastic Kolosov-Muskhelishvili equations given in general form by 
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t 
2 J__  dttp(t - t ' )~ ' ( r ,  t') - dttn(t - tt))(z, t') - b ( i ,  t) - z&i, t )  + d ( i ,  t), (2.5) 

where 

a 
Dt(r', t) = -[ul(r', t) + iu2(F, t)]. ax (2.6) 

The quantity n(t) is related to v(t), the generalized Poisson's ratio for the material 

by 

where i)(w) is given by 

and D(w), i ( w )  may be regarded as a generalization of Lam6's constants. TheAdenotes 

the Fourier transform. C(r', t) and Dt(r', t) are sometimes referred to as the complex 

stress and the complex displacement derivative, respectively. The causal function p(t) 

[4] is given by 

~ ( t )  = c(o)s(t) + ~ ( t ) ~ ( t )  

where H(t) is the Heaviside step function defined by 

and the singular Delta function is 
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The relaxation function of the material is G(t). 

For the problem of a crack in an infinite plane, assuming that stresses and rotations 

vanish at infinity and the resultant of all the forces acting on the crack face is assumed 

to cancel to zero, then the complex potentials b(z, t), +(z, t )  behave as 

at large z. The functions 4(z, t) and $(z, t) are analytic everywhere except on some 

or all of the real axis. 

It is interesting to note that in the case of a half-plane under load, assuming again 

that the stresses and rotations vanish at infinity and the boundary stresses along the 

x-axis fall off as 5 or faster at large distances from the origin, then at large Izl 

where Q = X + iY is the resultant of the external forces acting on the x-axis [4]. This 

implies that @(z, t), Q(z, t) defined by 

have logarithimic singularities at infinity and, it means physically, that absolute (as 

opposed to relative) displacements cannot be calculated. Clearly, from (2.13) and 

(2.14)) this difficulty will not arise in crack problems. 

The method generally employed to solve the non-inertial crack problem is, in the 

first instance, to reduce (2.3)) (2.4), (2.5) to a Hilbert problem in precisely the manner 

developed by Muskhelishvili (1963), and then to handle the specifically viscoelastic 

aspects. 

2.3 The Hilbert Problem 

With the following definitions, we first explicitly state the boundary conditions. Let 

the region of the x-axis, on the crack face, be F(t), made up of two disjoint sets, O(t) 

and C(t), O(t) being the region on which the crack face is open and C(t) being the 
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region on which it is closed. All stresses are zero at infinity and off the crack face, and 

the displacements are continuous everywhere, in particular along the x-axis. Then, 

on O(t), we have 

where 0* denotes y approaching zero from above (+) and below (-). The quantities 

p(x, t), s(x, t)  are the specified pressure and shear on the crack face. On C(t), frictional 

forces between the faces will be neglected. Therefore, on C(t), 

o12(X, o+, t) = 612(X,  0-, t) = -s(z, t). 

From (2.4), this has the consequence that 

at every point on the x-axis, where $* (x, t) are the limits of $(z, t)  from above and 

below the real axis. We write (2.22) as 

$+(z, t) - $+(x, t) - X$+~(X,  t) - $+(x, t) 

= 4-(3, t) + &(x, t) - x4-'(x, t)  - 4-(x, t), 
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so that the function 4 ( z ,  t )  - $( z ,  t )  - z$ ( z ,  t )  - $ ( z ,  t )  is analytic everywhere. By 

virtue of (2.13) it is also zero at infinity. It follows from Liouville's Theorem that it 

is zero everywhere so that [4] 

$ ( z ,  t )  = 4(E, t )  - $ ( E l  t )  - Z@(Z, t ) ,  

and we write (2.3) ,  (2.4),  (2.5) as 

2 d ( i ,  t )  = [K.* dl(%, t )  - d(Z, t )  - ( z  - E)@(E, t )  (2.27) 

where 

t 

d ( i ,  t )  = dttp( t  - t') Dt ( i ,  t') 

and the convolution notation 

has been used. Approaching the x-axis from above and below in (2.27), and subtract- 

ing gives 

1 t 

5 dttl(t - t t )A'(x,  t t )  = q5+(x, t )  - $- (x ,  t ) ,  (2.31) 

where l ( t )  is defined by 
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and A1(x, t ) is the x derivative of the complex displacement across the gap, given by 

A1(x, t) = D1(x, o+, t) - D1(x, 0-, t). (2.33) 

In the case of fully open cracks that are stationary or growing, C(t) is empty 

and F( t )  is expanding or stationary. We expect to obtain solutions closely related to 

the corresponding elastic solutions since this is the type of problem covered by the 

Extended Correspondence Principle [4]. For the crack problem, whenever $(z, t) is 

known, all the quantites of interest can be evaluated from the Kolosov-Muskhelishvili 

equations. 

From (2.26) we obtain 

Also, for x E F1(t) (the complement of F(t) on the x-axis) off the crack face, the 

left-hand side of (2.31) is known to be zero for all t ,  since if x E F1(t) it follows 

that x E F'(tl), t' 5 t and the complex displacement A(x, t') is zero for all t' 5 t. 

Therefore, the function $(z, t) is continuous on F1(t). This condition together with 

(2.34) constitutes a Hilbert problem, the solution of which is 

where P(z, t)  is a polynomial, as yet undetermined, and X(z, t)  is given by 

the union of intervals [a;(t), bi(t)] being F(t). We choose the branch of X(z,t) such 

that znX(z, t)  + 1 as 121 + 00. Note that singularities have been allowed at the end 

points since it is not clear a prion' whether they can be excluded. 

For the case of a single crack, the correct behaviour at infinity is obtained by 

choosing P(z, t) = 0. 
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2.4 The Problem of a Crack Subject to an Asym- 

metric Bending Moment 

The constitutive equations will be written in the form 

t t 
a ( ,  t )  = 2 d t f ( t - t f ) ( ,  t f ) + &  dtfl\(t-tf)ekk(r,  t f ) ,  i ,  j = 1,2 ,3  (2.37) L 

where a i j ( r ,  t )  and e j j ( r ,  t )  are the stress and strain tensors at position r = ( x l ,  2 2 ,  x3 )  

= ( 2 ,  y, z )  and time t .  Both p( t )  and X(t) are zero for negative t  and 

where H ( t )  is the Heaviside step function and S(t)  is the singular Delta function 

described by equations (2.10), (2.11) and (2.12). The relaxation functions of the 

material for shear and dilation are GI and G2. The integrals are taken up to t+ so 

the entire contribution of the Delta function is included. 

The Fourier transform of the constitutive equations, using the Faltung theorem 

yields 

00 iw = 1, dte-jfw f ( t ) .  

Consider the problem of a crack under plane strain conditions of which we consider 

the particular cross-section of the medium lying in the xy plane. The crack is assumed 

to be along the x-axis occupying the fixed interval [ -c ,c ] .  The neutral axis of the 

crack in a field of pure bending is the y-axis. The ratio of the bending moment to the 

moment of inertia of the cross section about the y-axis will be termed ~ ( t ) .  The sign 

convention is that when ~ ( t )  is positive, there will be compression across the positive 
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Figure 2.1: Partially closed crack along the x-axis. 

x-axis, at least at points far from the origin. It will be assumed that closure will occur 

only at the positive end. Then on the open portion of the crack 

The boundary conditions, neglecting friction between the faces, may be stated as 

follows : on the open portions of the crack from (2.16), (2.17), (2.18) 

u12(x, o+, t)  = 612(X,  0-, t) = 0, 

and on the closed portions from (2.19), (2.20), (2.21) 
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in terms of the stress tensor aij(x, y, z), i, j = 1,2,3 and the normal displacement 

u2(x, y , z). The contribution of q(t) is included explicitly in the boundary conditions 

which is equivalent to adding a term q(t)x to the conventional stress component 022. 

From the symmetry of the problem u2(x, 0+, Z) = -u2(x, 0- , 2). 

Denote u2(x, 0+, t) by u(x, t) and its derivative with respect to x by w(x, t). Then 

the relationship between displacement and pressure [lo] valid in the quasi-static ap- 

proximation is 

where 1 is the inverse Fourier transform of 

in which ~ ( w )  is the viscoelastic generalization of 

ji(w), X (w) by the standard formula. 

(2.50) 

Poisson's ratio, given in terms of 

Under the Correspondence Principle, the above relationship can be seen as the vis- 

coelastic generalization of the standard relationship between displacement and pres- 

sure on the half-plane. If the variable x is in a region where p(x,t) is non-zero, the 

integral on the right-hand side is understood to be a principal value integral. 

Define k(t), zero for negative t, to be the inverse of l(t) in the sense that 

t J,1 dtfk(t - t')l(tt) = / dtll(t - t')k(tt) = 6(t) (2.51) 
0 

so that the above relationship can be rewritten as 

where 

t 
q(x, t) = /__ dttk(t - t l )~ (x ,  t'). (2.53) 

If the open portion of the crack at time t is [-c, b(t)], b(t) 5 c we have 
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Figure 2.2: A priori possible behaviour of the quantity b(t) schematically portrayed, 
with the quantities &(t) indicated. 

Times t for which b(t) is decreasing will be considered. 



Chapter 3 

Decomposition of Hereditary 

Integrals 

It is of interest to observe that the Generalized Partial Correspondence Principle [4] 

may be used to generate the results of this chapter, but an approach based on the 

decomposition of hereditary integrals is taken to deduce rather than assume that 

closure of the crack is instantaneous. As such, the unknown quantity is C(zt, t) as 

given by (2.34) with s(x, t) being equal to zero. In this chapter the problem will be 

transformed to determine p(x, t)  based on the decomposition of q(x, t). Note that 

if b(t) was considered to be increasing at time t, then a somewhat different set of 

equations could be constructed based on a decomposition of p(x, t). 

3.1 Decomposition Method 

Now q(x, t) will be decomposed analagously to [4], [13] as 

where Wq(t) is the set of all times t' 5 t such that b(t1) < b(t) and Wp(t) is the set 

t' 5 t such that b(t1) 2 b(t). Also 
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and the N, ( t  , t') are defined by 

No(t, t') = k(t  - t') (3.5) 

&Yt) d t ' ~ , - ~ ( t ,  tU)l(t" - t ') ,  r odd 

J $ ( ~ )  dt'Nr-l(t, t") k(t1' - t'), r even 

where the Or(t), I = 1,2,. . . are the earlier times, taken in order, at which b(t1) = b(t). 

The second term on the right-hand side can be written as 

dt1rp(t , t1)p(x, t') = B ( t ) x ,  -c 5 x < b(t), (3-7) 

using the definition of W,(t) and the expression for p(x, t ) .  
Using the expression for q(x,  t )  in the above and the definition of W, ( t ) ,  we obtain 

' w (x', t ) - v,(xi, t )  
= -B ( t ) x ,  -c 5 x < b(t), 

x' - x (3.9) 

where 

v,(x, t )  = J dtirq(t ,  t l )w(x ,  t'). 
W d t )  

When the Hilbert transform is inverted, the following integral equation for w(x ,  t )  

is obtained : 
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-c 1 x = <  

Figure 3.1: Behaviour of b(t) for one-sided partial closure. 

where 

The arbitrary constant that arises on inversion of finite Hilbert transforms can be 

put to zero because u(x, t)  vanishes at both ends of the open region and because, for 

t' E W,(t), b(tt) < b(t). Let some partial closure be present at time t by considering 

b(t) < c. Then for t' E Wq(t) partial closure will also be present. It follows that in the 

above w(x, t)  and w(x, t') will have no singularities at the positive end. Therefore, 

we(x, t) can have no singularities either, at x = b(t). So if partial closure occurs at 

the positive end only 
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The only other option permitted by the equation is a singularity at x = c, correspond- 

ing to a fully open crack. Therefore, we can only have instantaneous partial closing 

and reopening, of the kind that occurs in elastic theory, for a crack that is closing at 

only one end. 

Since the choices of Wp(t)  and Wq(t)  adopted are not unique, emphasis will be 

shifted to P(t)  and O(t)  which will be defined as the sets of times t' 5 t  such that 

partial closure is present and for which the crack is fully open, respectively. 

Let the crack be partially closed at time t  so that the times immediately preceding 

time t  must be regarded as belonging to Wp(t) .  This suggests that P(t)  C Wp(t)  and 

O(t)  c Wp(t) .  Thus Wp(t)  = (-oo,t] and Wq(t)  is empty. Then during times of 

partial closure 

t 
M(t)  = / dtlk(t - t')tl(t'). (3.18) 

-00 

When the crack is fully open it is natural [12] to put Wp(t)  = O(t) ,  Wq(t)  = P(t)  
so that 

and 
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where O,(t) are now the times of opening and closing. If M ( t ) ,  t E O( t )  is decomposed, 

we obtain 

M ( t )  = dt'r, ( t ,  t') M( t t )  + dt1rp(t,  t')r)(tl) 
P( t )  O( t )  

Let (3.19), (3.20) hold at all times but where during times of partial closure we 

have, instead of (3.21), (3.22)) A ( t )  = M ( t ) ;  B ( t )  = 0; t E P( t ) .  Note that it is always 

true that A ( t )  - B ( t )  = M ( t ) .  

3.2 Equations for Displacement and Pressure 

It follows from (3. l g ) ,  (3.20) that the displacement is given by 

The condition that u ( x ,  t )  remains nonnegative and that no closure occurs at 

x = -c is [12] for all t 

We then have 

t 
~ ( x ,  t )  = 1 dtfl(t  - t t )w(x, t ' )  = -C(t)wo(x) + D(t )wl (x )  (3.27) 

-00 

where 

t  t  
C ( t )  = J dt1l(t - t ')A(t1); D( t )  = / dt'l(t - t') B(t'). (3.28) 

-00 -00 

Then by extending the integral in (2.54) over all space and transferring the hereditary 

integral from q(x ,  t )  to w(xt,  t )  we obtain 
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where 

with the aid of the Hilbert transforms in [ lo ] ,  [4]. 

Since (2.42) must hold on the open part of the crack 

C ( t )  - D ( t )  = q ( t ) .  

The boundary conditions require that 

c ( t )  > 0,  t  E P ( t ) .  

Note that 

C ( t )  = 0, t  E O ( t ) .  

Decomposing the hereditary integral for D ( t ) ,  we obtain 

where 

with T,(t , t') defined by 
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To(t, t') = l(t - t') (3.38) 

J$ dt"Tr-l(t, tn)k(t" - t'), r odd 
(3.39) 

J$ dt"TT-l (t, tM)l(t" - t'), r even 

and where el, 02, . . . are the previous times of closing, opening etc.. Thus it can be 

deduced [12] that 

Now the general strategy for solving the problem will be outlined. 

Let the crack be open at time t and let the previous times of opening, closing etc., 

be 01, 02, . . . which are presumed to be known. Then from (3.2), (3.3), (3.8), (3.23), 

(3.33) and (3.35) 

D(t) = -rl(t), (3.44) 

where O0 = t. The time of the next partial closing, t,, is determined by 

During the closed phase 
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c ( t )  = ~ ( t )  + D ( t ) ,  (3.48) 

where D ( t )  is given by (3.40). The time of next opening, to,  is determined by 

As shown in [12], the various coefficients are continuous at times of opening and 

closing. 

3.2.1 Steady-State Limit 

Consider q ( t )  to be periodic with period A and assume that sufficient time has passed 

to establish steady-state conditions. Let [to, t,] be a given time period for which the 

crack is completely open and [t,, to + A ]  be the subsequent period when it is partially 

closed. For t  E ( to ,  t , ] ,  we have 

el = to; 0 2  = tc  - A; e3 = to - A ,  etc., (3.50) 

while for t  E ( t , ,  to + A ]  

81 = t ,;  62 = to; e3 = tc  - A ,  etc.. (3.51) 

The coefficients A ( t ) ,  B ( t ) ,  C ( t ) ,  D ( t )  will all have period A. Then B ( t ) ,  as given 

by (3.41),  becomes 

where 
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while (3.40) becomes 

where 

II(t, t') = C T2r+l( t ,  t' - kA). 
k=O 

A ( t )  and C ( t )  are given by (3.41) and (3.48), respectively. 



Chapter 4 

Integral Equations 

It will now be shown that the kernels of (3.52), (3.54) obey certain integral equations, 

which at least for spectrum models of viscoelastic behaviour, allow them to be de- 

termined in closed form. Formulas for these kernels are then presented for both the 

standard linear model and the general viscoelastic model. 

4.1 Integral Equations for Kernels 

The viscoelastic material will be assumed to have a unique Poisson ratio v. (The 

viscoelastic functions characterizing bulk and shear deformation in the material are 

proportional.) Consider shear relaxation and creep functions of the form [15] 

Then the singular functions l(t) and k(t) have the form 

where 

1 N 
l o = - -  h - hG; 

- h[Go + C Gi] = -. Ji , ki=-- 1; = -. 
b i=l Jo' Ti ~ ; ' h '  

(4.3) 
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1 
cyi = -' 1 pi = -. 

T!' h = ( 1  - v)- ' .  
7; 

(4.4) 

It follows from the inverse function relationship of l ( t )  and k ( t )  given by 

1; dtf l ( t2  - tf)k(t'  - t l )  = dttk(t2 - tf)l(t '  - t l )  = 6(t2 - t l )  1: (4.5) 
that the coefficients l i ,  k;, i = 0 , 1 , 2 , .  . . , N are related by 

First consider n ( t ,  t') in (3.54), as given by (3.55). According to the definition of 

Tn(t ,  t'), we have 

Tn( t ,  t') = Jon  dt"' Jon-' dtt'Tn-2(t, t")l(tft - t")k(tt" - 
t' t" 

it> 

for odd numbers n 2 3. 

In fact the integral over t" can be extended at the lower limit to t' since 1(tf' - t"') 

vanishes over this interval. Thus the integrals can be interchanged to obtain 

Tn(t9 t ' )  = Jon-' dt"Tn-2(t,t")Gn(tt', t'), 
t' 

(4.12) 

where 
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Gn(tM, t') = dttnl(t" - tu')k(t"' - t'). 
t' 

(4.13) 

From the inverse relationship (4.5) between k( t )  and l ( t ) ,  it can be deduced that 

~ , ( t " ,  t t )  = 6(t11 - t t ) ,  tN c en 
so that 

en-1 

Tn(t, t') = Tn-2(t, t') + J dt"Tn-2(t, t")Gn(tN, t'), t' < On. (4.15) 
On 

By making the subscript explicitly odd, we have [14] 

T2n+1 ( t ,  t' - n A )  = T2,-1 ( t ,  t' - n A )  + Jhn dt"~2.-l(t, tM)GZn+l (t", t' - n A )  (4.16) 
h n + ~  

where 

@ant1 

Gzn-l(t", t' - n A )  
= it-n* 

dt"'l(tN - tU')k(t"' - t' + n A )  (4.17) 

= llel dul(t" - u + nA)k(u  - t') (4.18) 

= G(tN + nA,  t') (4.19) 

on transforming the variable of integration according to u = t'" + nA.  The function 

G(tN, t') given by 

G(tt', t ' )  = Jel  dul(tl' - u)k(u - t') (4.20) 
t' 

has the same functional form as TI ( t ,  t') with t" replaced by t .  Now (4.16) and (4.19) 

yield (using a further change of variable u = tN + ( n  + l ) A )  

so that n ( t ,  t '), given by (3.55), obeys the equation 
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n ( t ,  t') = Tl(t ,  t') + n ( t ,  t' - A )  + /" dun(t, u)G(u + A,  t'). (4.22) 
63 

Thus 

@l 

n ( t ,  t' - A )  = ~ l ( t ,  t' - A )  + n(t , t1 - 2A) + / dun(t, u)G(u + A,  t' - A). (4.23) 
4 

Repeated substitution of (4.23) and its successors into (4.22) together with the as- 

sumption that 

lim n ( t ,  t' - n A )  = 0, 
n-+m 

(4.24) 

which is justified in [15], gives an integral equation for n ( t ,  t') of the form 

where 

K(u,t1) = G(u,t1 - nA) .  
n=O 

Recall that G(t, t' - n A )  = Tl(t,  t' - nA).  

The integral equation (3.52) with kernel r ( t ,  t') given by (3.53) can be solved in a 

similar fashion. I'(t , t') obeys [12] the integral equation 

r ( t ,  t') = J( t ,  t') + Jel duI'(t, u)L(u, t') (4.27) 
62 

where 

00 

L(u, t') = H(u, t' - n A )  
n=l 

H(t", t') = Jh dul(tf' - u)k(u - t') (4.29) 
t' 

and 
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duk(t - u)L(u, t') + k(t - t' + nA) 
n=l 

provided that 

lim r ( t ,  t' - nA) = 0. 
n+ca 

(4.31) 

4.2 Solutions of Integral Equations for Kernels 

In the previous section, the steady-state crack problem was reduced to the solution of 

two integral equations. The two kernels in these equations are infinite sums of terms 

involving integrals of the viscoelastic functions. In section 4.2.1, we present formulas 

for these kernels for the standard linear solid given by Golden and Graham [12]. Then 

we proceed to solve the integral equation (3.54) with kernel n( t ,  t') for the general 

viscoelastic case in section 4.2.2. 

4.2.1 Standard Linear Model 

As before, a unique Poisson's ratio v will be assumed. Consider 

l(t) = lob(t) + Ireeat; k(t) = kS(t) + kle-Ot, (4.32) 

where 

Note that b, lo, kl, a and /3 are positive, while ll is negative. Under steady-state 

conditions, by adapting the results of [13], 

TT+2(t, t' - A) = TT(t, tl)E; E = expi-(a - /3)(to - tc) - QA). (4.35) 
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Also for t E (t,, to  + A] 

T1( t , t t )  = l l ~ e x p { - a ( t  - t,) - P( t ,  - t ' ) ) .  (4.36) 

Using these results in (3.52), (3.54), we obtain 

kle-PtI(to, t,) 
B(t)  = - k q ( t )  + kle-Otl(t, t,) - 

1 - E  , t E (to, tc] 

where 

I ( t l ,  t2 )  = 1'' dt'em'.q(t'). (4.39) 
tl 

The second term on the left-hand side of (4.37) is a consequence of the fact that the 

non-singular part of k ( t  - t') = No(t ,  t') in (3.52) is included in the infinite summation 

while the integration range of this term stops at t. 

4.2.2 General Viscoelastic Model 

For the discrete spectrum model, equation (4.20) becomes 

l;kj 
G ( u ,  t') = C exp{-ai ( U  - 01) - P j  (01 - t') ) , u > el (4.40) 

ai - Pj 

and (4.26) can be expressed as 

N 
K ( u ,  t') = K;, exp{-a;(u - e l )  - &(el - t ' ) ) ,  

i,j=l 

To solve (4.25), we make the ansatz for n(t, t') of the form 
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which clearly obeys (4.24).  When substituted into (4.25),  an algebraic equation is 

obtained [15] 

which will certainly be satisfied if the stronger condition that term by term cancella- 

tion takes place in the variable i. This may be expressed as a matrix equation 

where P is a square matrix formed by Pij and 

The formal solution of (4.45) is 

P = K l ( I  - AK2) - I .  

Similarly, for the integral equation (4.27) 

and 
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N 
L(u,  t') = x L;, exp{ -a ; (u  - 82) - P,(% - t ' ) } ,  

i,j=l 

Then 

satisfies (4 .  

N 
r ( t ,  t') = C ~ij(t)e'"' 

i j=l 

31) and will satisfy (4.27) if 

Q = Li + QBLz 

where Q is a square matrix formed by Qi j  and [15] 

B,, = ( e ( ~ - a n ) e ~ + a n ~ 2  - eLe2)/(Pm - a n ) .  

The formal solution of (4.54) is 

Substituting the kernels into the periodic equations (3.52) and (3.54) we have 

N t N 

B ( t )  = -koq(t)  - k; / dt'e-8i(t-t')7(t') - Q i j ( t ) I ( t o ,  t , )  for t  E ( to ,  t J  (4.60) 
i=l '0 i,j=i 
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and 

where 

- 1; dt'8jt'7)(t'). I(t1, t2) - 
The equations for displacement and pressure given by (3.25) and (3.30) thus be- 

come for t he closed phase 

and for the open phase 



Chapter 5 

Asymmetric Sinusoidal Moment 

A numerical determination of the limits of material behaviour to which the preceding 

formulae apply is of importance for their effective application. Results concerning 

the standard linear model and the general viscoelastic model for the case N = 2 are 

developed in terms of dimensionless quantities. Essentially, the restriction that closure 

must occur only on the positive end of the crack places limits on the dimensionless 

parameters describing the viscoelastic material. These material limits are presented 

in the form of a series of plots obtained by solving equations developed in Chapters 3 

and 4. 

5.1 Standard Linear Model 

The results presented in this section are those obtained by Golden and Graham [12]. 

The following asymmetric sinusoidal moment will be considered for the case of a 

standard linear model 

A = 2?r/w. 

A plot of this is shown in Fig.(5.1). Notice that 
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wt 

Figure 5.1: Plots of v ( t ) / v o  for three values of d. 

for all integers n. By virtue of (2.46), (2.47) and (2.48) partial closure can occur at 

the positive end only when ~ ( t )  is positive. We consider a period of closure [t, ,  to + A] 
in the time interval [-t, -1. The quantity I ( t l ,  t 2 )  given by (4.62) has the form 

where the phase 1C, is defined by 
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W 
t a n $ = -  

P ' (5.7) 

By virtue of (3.45), (3.49), (4.37) and (4.38), the equations determining t,, to are 

t)o(d + sin(wt0)) - Ilk, exp{-~~(to - tc + A) - Pt,)I(to, t,) = 0. 
1 - E  (5.9) 

The quantity M(t), defined in (3.18), has the form 

= rlo{d%(O) + (%(w) 1 sin(wt - 4)) (5.11) 

where Tl(w) is a quantity proportional to the complex modulus for creep and has the 

form 

and 4 is the loss angle for the material [12] defined by 

kl w 7r tan 4 = 
k0(P2 + w2) + klP ' 0 5 4 5 -  2 ' 

Thus 

If we set 
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Q = 7 - ?r - wt,,, @ = wtc + 7, 
where 

then 8 is a measure of the "angular advancen in the crack opening, before the effect of 

the applied moment on the positive x-axis changes from compression to tension, while 

@ is the "angular delayn in the crack closing, once the effect of the applied moment 

has become compressive on the positive x-axis [12]. The quantitiy 9 measures the 

amount of time that the crack is closed down on the right-hand side in each cycle. In 

terms of these quantities and the angles +, + defined by (5.7), (5.13) the equations 

(5.8), (5.9) become 

where E is given as in [12] to be 

-9 sin(+) 
E =  exp(sin($) sin($ - 4) - 2.lr cot ($)) 

and the dimensionless quantities f ,  g are defined as 

Thus we have that 
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Equations (5.18) and (5.19) may be combined to give 

Certain particular solutions of the above are discussed by Golden and Graham [12] 

for Voigt and Maxwell materials. For a Voigt material 1C, = 4 ,  and thus from (5.19) 

or (5.23) 8 = 0. Then (5.18) implies that @ satisfies 

A Maxwell material is characterized by 4 = 5. In this case (5.18), (5.23) reduce to 

5.1.1 Numerical Results 

The condition that closure takes place only at one end is (3.26). This may be 

written as 

together with the non-negativity requirements on A ( t )  and B ( t ) .  Equality in this 

condition implies a relation between the dimensionless parameters f and g for each 

value of d. A sample of a plot of M ( t ) / B ( t )  is shown in Fig.(5.2). The equations 

determining the relation between the dimensionless parameters are (5.8) ,  (5.9) and 

(5.27),  which in terms of f and g yield a system of four equations, namely 
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Figure 5.2: M(t)/B(t) for dimensionless parameters f = 20, g = 70 and d = 0.8, 
to  = -2.2, tc = -0.8. Note that M(t)/B(t) is greater than -0.08144 for to  5 t 5 tc. 

and the fourth equation being the derivative of (5.30). Here 

f 27r E = exp[-(2n - wt, - wt,) - -1 
9 9 
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Figure 5.3: Curves outside of which partial closure on one side only is possible. 
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and 

as follows from (4.35), (5.5) and (5.6). 

Equation (5.30) is the form of 

in terms of f and g. The derivative of this equation is used to determine the value of 

t such that (5.30) is a minimum. 

Equations (5.28), (5.29) are equivalent to (5.8), (5.9) and consequently help de- 

termine t, and to. 

Curves of the relationship between values of f and g which satisfy (5.28)-(5.30) 

and the derivative of (5.30) are shown on Fig.(5.3). These results are in agreement 

with those presented by Golden and Graham [12]. 

5.2 General Viscoelastic Model 

Following a brief discussion of the N = 1 case of the general model (equivalent to 

the standard linear model), a procedure analogous to that employed for the stan- 

dard linear model is applied to the general viscoelastic model for the case N = 2. 

Generalization to N = 3,4,. . . follows easily. 

5.2.1 Case N = 1 

The asymmetric sinusoidal moment will now be considered for the case N = 1 for the 

equations obtained for the general model and then compared to the standard linear 

model. 

As before let (5.1) be the form of this asymmetric sinusoidal moment. Equations 

(5.3) - (5.7) hold a s  for the standard linear model. 

By virtue of (4.61), (4.60), (3.45) and (3.49) the equations determining t,, to are 
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f l o p  + sin(wt0)) - Pll(t0 + A)I(to, t,) = 0. (5.35) 

The quantity M ( t )  is defined as in (3.18) with the loss angle given by (5.13). 

Defining 8, @ and 9 as in (5.16) - (5.17) we have 

where Qll(tc) = k~e-&'~&,  Pll (to + A)  = - ee-@lto fil and the dimensionless quan- 

tities f and g are defined as in (5.21). 

The above equations (5.36), (5.37) can be compared to those given by (5.18), 
(5.19) to find that since 

and 

,-(l+f )*lgeW-2*) cot($) 
Pll = - E -- 

1 - E  1 - E  
where E is given by (5.20), the results given in [12] follow directly. 

The relationship between pll and Qll can then be expressed as 

Pll = E(1 + ~ 1 1 ) .  
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Figure 5.4: M ( t ) / B ( t )  for dimensionless parameters gl = 150, fl = 1.5, g2 = 100 and 
1 2  = 0.5 with d = 0.5, to  = -2.0 and t ,  = -0.44. 

5.2.2 Numerical Results for N = 2 

For the N = 2 case, again consider the asymmetric sinusoidal moment to be of the 

form given by (5.1).  Now, by virtue of (3.45),  (3.49), (4.60) and (4.61),  the equations 

determining tc , to  are 

Note that the definitions for the dimensionless parameters and related quantities 

are like those of the standard linear model : 
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Figure 5.5: M ( t )  for dimensionless parameters gl = 150, fl = 1.5, g2 = 100 and 
f2 = 0.5 with d = 0.5, to = -2.0 and t ,  = -0.44. 
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Figure 5.6: Curves outside of which partial closure on one side only is possible for 
f2 = 0.02 and g2 = 100. 
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Figure 5.7: Curves outside of which partial closure on one side only is possible for 
f2 = 0.5 and gz = 100. 
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The quantity M(t), defined by (3.18), has the form 

and from (4.60), 

The values off and g which correspond to partial closure at only one end must thus 

satisfy (5.41), (5.42) expressed in terms of these dimensionless quantities as well as 

the equation determined by (5.33) and its derivative for the N = 2 case. Alternately, 

it is possible to approximate equation (5.33) by noticing that the constant on the 

right of (5.27) is small. If it is replaced by zero the condition that 

min M(t) = 0 (5.47) 
to<t<tc 

may be used instead. The quantity M(t) is plotted in Fig.(5.5) for sample parameters. 

Consequently, Fig.(5.6) and Fig.(5.7) are curves determined by either condition (5.47) 

or (5.27) outside of which partial closure on one side only is possible. 

It is important to note that f2 must be chosen relatively small and g2 relatively 

large if the N = 2 term is to act as a correction to the N = 1 model. If the 

dimensionless parameters are not chosen in this manner, then (5.41), (5.42) need 

not converge to a feasible solution. For Fig.(5.6), f2 and g2 are chosen to provide 

minimal correction, and thus the curves are virtually identical to those obtained for 

the standard linear model in Fig.(5.3). For Fig.(5.7), they are chosen for a larger 



C H A P T E R  5. ASYMMETRIC SINUSOIDAL MOMENT 50 

correction. The results correspond to intuition since the larger correction permits a 

wider range of fl and gl values which satisfy condition (5.27). Since the larger fl 
is the more viscoelastic the material, this would indicate that the correction allows 

a tendency towards more elastic materials. If in addition d is sufficiently large, all 

physically reasonable ( fl, gl > 0) values of fl and gl are acceptable. 

Energy Loss 

The average rate of dissipation of mechanical energy per cycle will now be considered 

for the cracked viscoelastic body subject to an asymmetric bending moment. As was 

shown by Golden and Graham [la], the average energy loss per cycle under steady- 

state conditions is derivable from the rate of work done by the boundary forces. Since 

the isothermal approximation was assumed in the derivation, the results remain valid 

for a sufficiently small rate and magnitude of deformation when considered in the 

context of the thermal conductivity and specific heat capacity of the material. 

5.3.1 The General Viscoelastic Model 

The average rate of dissipation of mechanical energy in heat per cycle, Dc, may be 

determined for a general viscoelastic model by the procedure shown in the Appendix. 

Using partial integration and periodicity, D, can be written [18] in the form 

D, = -,,Ow /Yt0+2r dt{KpiM(t) - (Kfi - Kpi)B(t)) COS(W~). (5.48) 
wt  0 

The equations for M(t) and B(t) for the case N = 2 are given by (5.45) and (5.46), 

respectively. The times of partial closing and opening are determined by (3.45), (3.49) 

and the condition expressed by (5.27), toget her with the non-negativity requirements 

on A(t) and B(t), which must be satisfied at all times to ensure that partial closure 

occurs only at the positive end. The resulting integral may be evaluated to determine 

the quantity D c / ( r 1 , 2 ~ ~ 4 )  in terms of dimensionless parameters. The reason for the 

incompleteness of the curves for lower values of II, in Fig.(5.8) is the need to apply 

condition (5.27) to ensure that closure takes place at only one end. 
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Figure 5.8: The quantity D , / ( f l , 2 ~ ~ ~ 4 )  plotted as a function of 4 for various values 
of $ [18]. 
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Conclusion 

The Kolosov-Muskhelishvili equations, a form of the Papkovich-Neuber solution of the 

elastostatic equations under plane strain conditions, form the basis for the solution 

of the two-dimensional boundary value problem of the crack subject to an asymmet- 

ric bending moment. Underlying this formulation is the non-inertial approximation 

for viscoelastic materials which lends itself to transferring the applied stresses at in- 

finity to the open crack faces. Although not described in detail, the Correspondence 

Principles permeate aspects of the solution which may be ascribed to their Papkovich- 

Neuber foundation. 

The method of solution relies on a decomposition of hereditary integrals. This 

approach is taken to deduce, rather than assume, that closure of the crack is instan- 

taneous. An area-based decomposition method, as opposed to point-based methods 

where it is necessary to trace the history of each point on the boundary, is undertaken 

due to the special time behaviour, characterized by the parameter b ( t ) ,  of the bound- 

ary region. Thus, in the steady-state limit, expressions for the kernels of the integral 

equations defining the decomposed quantities are found to obey integral equations 

which, for spectrum models of viscoelastic behaviour, allow them to be determined in 

closed form. Equations for the displacement and pressure are consequently available. 

The numerical results obtained for the N = 1 or standard linear model are in 

agreement with the work done by Golden and Graham [12]. It is found that the 

general viscoelastic model for the case N = 2 supports the same type of solutions as 
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the standard linear model. 

The average rate of dissipation of mechanical energy in heat per cycle may be 

arrived at by introducing a Spencer [19] modification to the Kolosov-Muskhelishvili 

equations. The resulting functional form describing the rate of dissipation of mechan- 

ical energy is such that there is a dependence on certain constants incorporating the 

Spencer modification and the appropriate expressions for M(t)  and B(t) .  
The techniques and methods of solution described must be attributed chiefly to the 

pioneering work in the field of viscoelasticity of Golden and Graham. Novelty lies in 

the application of these procedures to the problem of a fixed length crack subject to an 

asymmetric bending moment for the case of a general viscoelastic material. This work 

contributes to understanding the fracture characteristics of viscoelastic materials. 

Both analytical and numerical results allude to future projects which may be of 

interest to orientations either applied or theoretical in nature. For example, further 

insight into the analytical equations might be gained from a detailed description of the 

relationships to the Correspondence Principles. A substantially less trivial matter lies 

in investigating the effects of relaxing the non-inertial approximation. Experimentally, 

optimal problem formulation, implying how many terms of the general model must 

be retained to accurately determine desired quantities, would be of great practical 

interest. Also, determining parameters and bending moments likely to cause alternate 

forms of crack closure or lack of closure based on the techniques described in this work 

might prove useful. Finally, the formulation of the stress intensity factors related to 

this problem would make the results more accessible to engineering applications. 



Appendix: Energy Considerat ions 

The developments presented here are ascribed to the work of Golden and Graham 

[IS]. They formulated an expression for the average rate of dissipation of mechanical 

energy per cycle in terms of M(t) and B(t), quantities for which formulae were derived 

in Chapter 4. Consequently, these energy considerations are an important practical 

application of the equations for the fixed length crack in a general viscoelastic material 

allowing closure at only the positive end. 

When inertial effects are neglected, the rate of work done by the boundary stresses 

is 

R = /g d ~ n ~ ~ ~ ~ t i ~  = E + D, (4 
where the integral is over the boundary of the body and the dot indicates time differ- 

entiation. The quantity E is the rate of increase of stored energy in the viscoelastic 

body, and D is the rate of dissipation of mechanical energy into heat. Of interest is 

the plane strain configuration for which ds reduces to a line element. 

The quantity E is a unique function of the state of the system and is thus periodic 

whereas the rate of dissipation is not. Therefore, averaging over a cycle, we obtain 

where D, is the average rate of dissipation of mechanical energy in heat, per cycle. 

This means that D, is equal to the rate of work done by the boundary forces, averaged 

over a cycle. 

The rate of input of energy by the boundary forces (for plane strain configurations 

the rate of input per unit length) is 
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where 0 is the outer boundary of the body, presumed to be very distant from the 

crack, and where the second integral results from considering the boundary stresses 

transferred to the crack face with a$), and uy), i, j = 1,2, referred to as the 

associated problem first described in section 2.1. This is true if there is total or 

partial contact on the crack face because either the stress component a;jni or the 

displacement derivative component uj is always zero on the crack face. The term 

u$)tiF' will give a negligible contribution compared with the others. 

The quantity 

(1) . (1) dS aij uj n; (A.4) 

is the work done on the body in the absence of the crack and will be infinite for an 

infinite body. The contribution due specifically to the presence of the crack is given 

by 

This is a finite quantity. As was pointed out by Spencer [19] in the context of elastic 

crack problems, one must introduce a modified solution which falls-off rapidly at large 

distances from the crack. The first term of (A.5) becomes negligible with the Spencer 

modification. It emerges that Rc is the same as the expression for the rate of work 

done by the boundary forces that would be obtained in the associated problem - with 

the stresses and displacements determined on the open crack face. 

To evaluate Q, it is necessary to consider the Kolosov-Muskhelishvili equations 

(2.3)-(2.5) with an introduced Spencer modification. A convenient way of ensuring 

that the modified stresses and displacements obey the field equations is to add a 

polynomial to the standard form of d(z,t). Consequently, d(z,t) will not vanish at 

infinity although, formally speaking, it diverges as zn where n is the degree of the 

polynomial. This is not of concern since the solution is considered to apply within a 

large but finite circle. 
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One now obtains 

q ( z ,  t )  = + ( E ,  t )  - J ( z ,  t )  - z$(z,  t )  + ij(2, t )  ( A 4  

where @ ( E ,  t )  is a polynomial in 2, and the Kolosov-Muskhelishvili equations become 

To obtain an explicit form of $ ( z ,  t ) ,  results presented earlier for the crack subject 

to an asymmetric bending moment such that sudden partial closure occurs at the 

positive end only will be modified according to the work of Golden and Graham. 

Consider 

so that 

where 
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Then, from (3.25), the displacement on the crack face has the form 

2 1 ul(x) = x(c2 - x ) a  (A.15) 

where the explicit forms of A(t) and B(t) are given by (4.37), (4.38), respectively, 

for the standard linear model and by (4.60), (4.61), respectively, for the general vis- 

coelastic model. Also, 

The discontinuity in q5(z,t) across the open crack face is related [4] to v(x,t) by 

where q5* (x, t )  are the limits of +(z, t) from above and below the real line. Also, from 

(2.34) 

By virtue of these two relations and certain Hilbert transform formulae, we deduce 

that 



Appendix 

c x'(c2 - x ' y 2  

- 2 4 9 - c 3 y  LC dz' + B1 + B2z + B3z2 + B4z3.(A.21) 
2' - Z 

In the large z limit 

where 

No=-K@C(t); Ni=KflD(t)-KplC(t)  (A.23) 

where 

In the partially closed case, the leading term, varying as z-', vanishes. 

To evaluate R,, it is convenient to consider 0 to be a large circle centered at the 

origin and to express the various quantities in polar coordinates (r, 8) .  The displace- 

ments in polar and Cartesian coordinates are related by 

ul + iu2 = ei8(u, + iue). (A.27) 

The stress tensor in polar coordinates is determined by the relations (171 
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Thus R, can be written as 

In this case we take q(z, t) to be a third degree polynomial. As mentioned in the 

previous section, it is required that the l / r2  and l / r3  terms in c?) vanish on a large 

circle r = r,. For d(z, t) given by (A.22), this condition may be satisfied by taking 

From (A.9) we obtain 

where 

W(E, t) = B5Z + (B6z2)/2 + (B7z3)/3 + (B8z4)/4. (A.35) 

Thus it can be obtained that 
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If we consider a time period [t,,t,] when the crack is completely open and a 

subsequent period (t , ,  to + A) when it is partially closed, we have that 

d 
Rc = -2*l ) ( t )d t { -Kp~M(t)  + (Kit  - Kpl )B( t ) ) ,  for all t. (A.37) 

Thus, from (A.2), Dc can be calculated by evaluating 

Detailed solutions for the standard linear model are presented by Golden and Graham 

P81. 
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