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Abstract 

According to Edelman's (1989) theory of neuronal group selection (TNGS), reentrant cortical 

connections are proposed as the basis for processing complex information. Reentry is not simply 

feedback, but parallel signalling in the time domain between spatially disparate maps made of 

groups of neurons. These connections can be reciprocal or from a geometric range, and can be 

convergent or divergent. Reentry has variable properties existing in time and space that liken it 

more to a process of correlation between distributed systems. Processing of a Necker cube is 

an interesting example of complex visual information processing since the perceptual change 

occurs spontaneously while the stimulus remains constant. Based on the reentrant cortical 

integration (RCI) model, it would be expected that during spontaneous reversals of the Necker 

cube, increased correlations between distributed non-linear systems would be present in cortex. 

The purpose of this thesis then, is to determine if patterns of EEG and MEG activity during 

reversals are different than processing a figure in two dimensions. Since the correlation patterns 

are possibly complex and non-linear, a generalised regression neural network (GRNN) was used 

to classify the two groups. The thesis included an electroencephalography EEG (n=5) and a 

magnetoencephalography (MEG) phase (n=5). The experimental questions posed were 1) Can 

non-linear cortical patterns, present during perceptual reversals be classified as different 

compared to a two-dimensional figure? and 2) Are patterns of correlated cortical activity 

significantly higher in the Necker cube reversal condition? One second single trial EEG and 

MEG records were analyzed using the GRNN. A model based on wrtico-cortical connections 

was developed to assess the level of correlations from a subset in each condition. The GRNN 

significantly classified Necker cube reversal single trials as different compared to perception of a 

two dimensional figure for both EEG and MEG. Significantly higher patterns of correlations were 

also observed in the Necker cube reversal condition in both the EEG and MEG phases. The 

results are interpreted to be in agreement with the RCI model. Non-linear patterns unique to 

perceptual reversals and correlations of distributed neuronal groups may be fundamental to 

visual information processing. 
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Introduction 

Ambiguous figures have attracted the attention of scientists for over a century . They warrant 

interest because their physical properties remain constant, while the perception of the figure 

changes. Necker first described an ambiguous figure which eventually appropriated his name, as 

an optical observation which "has often occurred to me while examining figures and engraved 

plates of crystalline forms: I mean a sudden and involuntary change in the apparent position of a 

crystal or solid" figure, (Necker 1832, p.336). Since first descriptions, researchers from a variety 

of fields have used the Necker cube as a perceptual tool, with the hope of discovering why the 

brain alters perception of a constant stimulus, and perhaps more importantly, how it allows for 

this perceptual vacillation to occur. 

Psychophysicists have used the Necker cube in attempts to discover different aspects of how the 

brain processes complex visual information. Specifically, the research has been directed 

towards determining the nature of how new perceptions are formed from ambiguous or 

incomplete stimuli. Various theories have been generated based on this research, however, 

rarely are these theories linked to actual experimental evidence of brain function. The limited 

number of studies that do attempt to address the question of how the brain functions during 

reversals of ambiguous figures, tend to modify the stimulus, therefore altering the phenomenon 

that occurs continually during perception. An experiment that monitors brain function during 

spontaneous reversals of an ambiguous figure is required to address this question properly. 

Recently, a theory of brain function has evolved from research on the cat visual system that 

offers a fresh perspective on how complex visual information processing occurs in mammalian 

cortex. The theory proposes that during visual information processing, local neuronal groups 

oscillate synchronously, and eventually recruit distal neuronal groups that link similar information 

into a comparable oscillatory pattern. Activity of this nature recorded at cortex, is purported to be 



one of the mechanisms responsible for the binding of discrete segments of visual information 

such as depth and line orientation into perceptual wholes (Gray & Singer, 1989). Cellular models 

have been proposed to explain this synchronous phenomenon, though to oscillate in the gamma 

band (approximately between 30-70 Hz) (Llinas, 1989). However, some models extend beyond 

the standard descriptions of gamma band activity and discuss a functional model that 

incorporates correlations of cortical and subcortical sites simultaneously, through a process 

termed reentry (Edelman, 1989). Therefore, this newly developed theory may provide insight 

into the neuronal processes that occur during complex visual information processing. The 

Necker cube may be a useful tool to elicit the attributes of sensory feature binding, since newly 

formed perceptions are constantly being produced. Before a full treatment of the theoretical 

perspectives however, detailed coverage of stimulus properties should provide an appropriate 

foundation for the discussion to follow. 

Properties of the Necker Cube 

Necker cube properties have been studied by perception researchers since Necker's first report in 

1832. In the article, he discussed specific figures and crystalline forms as having properties that 

when " looking repeatedly at the same figure, you will perceive that at times the 

apparent position of the rhomboid is so changed that the solid angle X will appear the 
nearest, and the solid angle A will appear the furthest; and that the (near face) will 
recede behind the (far face), which will come forward; which effect gives to the whole 
solid a quite contrary apparent inclination. I have been a long time at a loss to 
understand the reason of the apparent accidental and involuntary change which I 
always witnessed in all sorts of forms in books on crystallography. The only thing I 
could observe was, that at the time the change took place, a particular sensation was 
felt in the eye (for it takes place as well when seen with only one eye, as with both 
eyes), which proved to me that it was an optical, and not merely as I had first thought a 
mental, operation which was performed " (Necker 1832, p.336) . 

Since then, much has been learned about the perceptual properties of the Necker cube, and how 

human behaviour is patterned during reversals of the figure, including characteristic eye 

movements. Eye movements immediately before or after cube reversals have been studied to 

determine whether specific patterns of eye movement are correlated to reversal onset. In 1978, 

Ellis and Stark used eye scanning data to investigate the underlying cognitive processes used to 

generate 3-0 interpretations of the cube. Their methodology included analysis of the loci and 



duration of fixations during perceived reversals. Experimental subjects showed a significant 

increase in fixation duration at the onset of the cube's reversal when compared to the control 

subjects. During non-directed viewing, the subject's gaze is attracted to cube loci interpreted as 

external corners, therefore the subject's scanning behaviour may be described as shifting back 

and forth diagonally between temporally changing externally appearing corners (Ellis & Stark, 

1 978). 

Complementary results were reported by Kawabata (1986) who hypothesized that the two 

vertices (points where three lines intersect) in the central area of the Necker cube are 

determinants of which perception will occur, whereas other vertices are not important in this 

process. In other words, the three dimensional interpretation of the Necker cube that occurs may 

be decided via attention to local vertex features. The results suggest that the specific 

three-dimensional depth perceived is determined by which angle is attended at a vertex. If 

attention is paid to an angle composed of neighbouring lines, this angle is perceived as the near 

surface when attention is paid to the vertex angle (Kawabata, 1986). However, Scotto, Olivia 

and Tuccio (1 990) observed that eye positioning was not the only important variable in the 

determination of subsequent reversal rates. The purpose of their study was to determine whether 

differences in reversal rates would occur during conditions where the eyes were voluntarily 

stabilised versus a condition allowing spontaneous eye movements. A decrease in the frequency 

of saccadic eye movements and an increase in reversal rates was obsewed during imperfectly 

stabilised viewing versus unrestricted viewing (Scotto et al., 1990), suggesting that the condition 

where eyes are allowed to move spontaneously does not consistently guarantee the maximum 

number of reversals. Therefore, the studies on eye movements during Necker cube perception 

are informative as to the nature of their effects on reversal rates and tri-dimensionality. They are 

also important in that they warn of pervasive eye movement related contaminants of EEG and 

MEG that occur during spontaneous reversals. 



In addition to eye movements, changes in luminance have been reported to affect spontaneous 

Necker cube reversals. Babich and Standing (1981) measured the effects of changes in 

luminance using a two adjacent Necker cube stimulus. When the luminance was constant for 

either cube, adjacent cubes reverse in synchrony. However, when luminance for either cube 

differed, the reversals become asynchronous (Babich & Standing, 1981). The effects of extreme 

variance of luminance was studied by Riani, Olivia, Selis, Ciurlo, and Rossi (1984). The authors 

were interested in answering the question of whether perceptual alteration of the Necker cube 

would occur when luminance was altered to where only a rod population is responsible for 

perception, or conversely, when only the cones were responsible for the perception. The results 

indicate that perceptual alteration is not influenced by a variation in the stimulus luminance over 

a broad range of values, ranging from inactivation of the rods to inactivation of the cones in 

retina (Riani et al., 1984). Therefore, limited support exists for the notion that changes in 

luminance affect Necker cube perception. To avoid possible confounds in the experiment, 

however, attempts to maintain luminance levels constant should be considered. 

Attentional states have been reported to modify perceptions of Necker cube reversals. Reisberg 

and O'Shaunessy (1 984) reported that during a distraction task, two significant effects on the 

Necker cube reversal rate were found. First, the initial reversal of the figure was delayed and 

second, fewer reversals were reported compared to a condition with no distraction. The authors 

conclude that attention modulates reversal rates of the Necker cube (Reisberg & O'Shaunessy, 

1984). Some investigators have indirectly reported the effects of attention on reversal rates via 

studying age effects on perception of ambiguous figures. Camp, Markley and Danielson (1 982) 

were interested in replicating previous results that suggested elderly individuals residing in a 

retirement homes had fewer reversals compared to a group of younger adults. The findings of 

their partial replication (partial because they used an all female sample) were interpreted to mean 

that middle aged women had slightly more spontaneous reversals than either the young women 

or an elderly group of women not residing in a retirement home (Camp et al., 1982), which 

conflicted with the results of the previous study. The opposing results obtained using elderly 

4 



subjects seem to depend on whether the subject resided in the community or in a retirement 

home, and therefore, the question of whether cognitive decline has an effect on Necker cube 

perception remains open to interpretation. 

In fact, it does appear that a decrease in cognitive functioning affects perception of Necker cube 

reversals. Interesting results are reported by Cohen (1959) who studied reversal rates in brain 

injured populations using a double Necker cube stimulus. Compared to control subjects, 

head-injured individuals reported fewer reversals of the Necker cube and the Rubin Vase. Within 

the brain injured population, those with right hemisphere lesions reported fewer reversals that did 

those with left hemisphere damage. In frontal lobe damaged populations, no difference was 

reported between individuals with right or left frontal lobe damage, unless the damage was 

bilateral, where an increase in reversal rates was observed (Teuber, 1964; Yacorzynski, 1965 in 

Lezak, 1976, p. 294), indicating that inhibition and control of reversal rates may involve frontal 

lobe functioning. 

Therefore, attentional status of the subject (and whether or not he or she is head injured) should 

be considered when designing an experiment that employs reversible figures. Another 

consideration thought to have modulating effects on subject attention is the instructions given to 

the subject prior to commencement of the experiment. When the instructions to the subject 

omitted explicit statements about the ambiguous properties of the Necker cube, subjects were 

often unaware of the figure's reversible properties until they were explicitly stated (Girgus, Rock 

and Egatz, 1977). Exposure to ambiguous figures is also believed to affect subsequent reversal 

rates. When subjects are instructed to attend to a particular facet of the figure during an 

adaptation phase, subsequent reversals are influenced by a bias toward perception of the 

opponent perception (Schulman, 1993). However, differences in the pattern of exposure in 

massed practice or distributed practice sessions does not appear to have an effect on ensuing 

perceptions (Schellinger & Beer, 1993). 



Accordingly, several factors must be considered when entering into research using ambiguous 

figures. In a paradigm where spontaneous eye movements are allowed and encouraged in order 

to facilitate a spontaneous reversal process, eye movement artifact in the EEG and MEG must 

be considered prior to analysis. Luminance should be maintained at constant levels and 

attempts should be made to maintain a constant level of attention in the subject. As with most 

research endeavours, instructions to the subject should be consistent across subjects, since 

variations could result in varied perceptions of the figure. 

The studies discussed above have discovered many important stimulus properties of the Necker 

cube, however, what can research of this nature reveal about the underlying neuronal 

organization which allows for ambiguities in perception? One of the earliest and most popular 

theories stems from Gestalt principles that focus on passive mechanisms in visual cortex. 

Proponents of this position, dubbed the fatigue model, suggest that reversals of ambiguous 

figures are modulated by channels of cortical neurons that initially perceive the image, and then 

fatigue and give way to the second perspective (Long, Toppino, Kostenbauder, 1983). Central to 

this theory is the assumption that processing in visual cortex during reversals is serial in nature 

and therefore the neural system is incapable of complex interactions between distributed 

systems. In later studies, this position has been modified to include processing in parallel in 

multiple independent "neural channels" (Toppino & Long, 1987, p. 46). Other theoretical 

perspectives suggest linear relationships between various learning and memory centres are 

necessary for the perception of multistable figures (Girgus et al., 1977). 

Still others have proposed more complex non-linear dynamical models for multistable figure 

perception (Ta'eed, Ta'eed, & Wright, 1988). The authors summarised three fundamental points 

that theories of visual ambiguities should acknowledge: 



(1) The illusions are not conceptual but are perceptual (the knowledge that an illusion 
exists does not diminish the strength of that illusion). (2) That illusions do not result 
from eye movements, and do not originate in the retina. (3) That prior and past 
experience play a part in resolving the equivocal sensory image when the resolving 
information is absent, present, or reduced (Ta'eed et al., 1988, p.97). 

The authors propose that some illusions such as the multistable perception of reversible figures 

cannot be understood within the limitations of linear mathematics. As a result, a non-linear 

catastrophe model was created using several stimulus parameters thought to be important for 

oscillations of multistable stimuli. Two abstract factors, Necker cube shape and change in detail 

from two to three dimensions were essential to their non-linear model. By varying the two 

parameters, the experimenters were able to fit a non-linear pattern to the data that provided a 

closer fit than the nearest linear model. The results indicate that shading and bias are decisive 

factors in perception of the cube, exerting their effects in opposition, neither reinforcing the other 

(Ta'eed et al., 1988). 

This mode of non-linear modelling focuses primarily on stimulus properties and not the underling 

cortical organization that may also be part of an dynamical non-linear system. Many recent lines 

of evidence suggest that distributed non-linear systems exist in the brain, and that they may be 

the basis for various forms of complex information processing. The dynamical systems are not 

limited to local neuronal groups or channels but include local networks connected to other 

distributed networks via cortico-cortical and subcortical systems. Coupled with the principles of 

non-linear mathematics and theories of neuronal organization extending beyond common 

feedback systems, this line of research holds out the promise of explaining how perceptions are 

processed at the cellular level and are eventually realised at the level of human awareness. The 

focus of this thesis will now turn to an overview of evidence for these systems in the mammalian 

brain, with an emphasis on theories of non-linear systems and procedures that are the tools of 

this emerging perspective. 



Non-linear Distributed Systems in the Mammalian Brain 

It was once considered that information processing in the mammalian brain was a serial process, 

operating similar to a message travelling along a telephone wire. Over the past quarter century 

this perspective has changed dramatically as a considerable amount of evidence has surfaced 

suggesting that a complex anatomical organization exists at the cortical level with parallel 

streams of information being integrated via intricate connections. Among the first to engage in 

enlightened descriptions of complex cortical organization were Hubel and Wiesel (1962), who 

provided a description of how the visual system in particular had a columnar organization, with 

cells between pia and white matter having common functional properties such as ocular 

dominance, orientation specificity and similar receptive fields. However, questions remained 

about the nature of horizontal connections in cortex between columns, and their role in 

integrating information. 

The horizontal connections in visual cortex were initially described by Gilbert and Wiesel (1983). 

The authors injected horseradish peroxidase into individual cells in cat striate cortex to provide a 

detailed analysis of intrinsic cortical connections at the cellular level. This methodology resulted 

in the reconstruction of 47 cells in various layers of cat visual cortex. The results showed that 

collaterals extending from the columns did not have a uniform radial distribution but were 

clustered in a manner similar to the collaterals of thalamic afferents. The cells with the longest 

collaterals were primarily pyramidal and spiny stellate cells. Individual cortical cells were said to 

form numerous projections of remarkable intricacy and extent, and when axons extend over 

considerable cortical areas, collaterals were observed to form a number of distinct repeating 

clusters. Axonal projections extending up to four mm tangentially tended to be asymmetric, 

branching further along a specific cortical axis, and axonal fields and were more elongated than 

their dendritic fields. From the horseradish peroxidase reconstruction it was discovered that 

many of the axons extended beyond the receptive field area of the cells from which they 

originated (Gilbert & Wiesel, 1983). 



These results were extended by Gilbert (1985) who observed that horizontal cortical connections 

may extend beyond wide cortical columns and in fact, extended beyond hypercolumns. A 

hypercolumn in this case was defined in primates as "a full cycle of orientation of ocular 

dominance columns," in the primate being approximately 700-800 micrometers wide. Gilbert's 

position was that collaterals projecting more than 4 mm tangential to the cortical surface were 

presumably connecting non-overlapping areas of the visual field. Further, he stated that 

collateral organization originally observed in V1 has been shown in several areas of extrastriate 

cortex. The purpose of these lengthy extensions is therefore thought to represent some form of 

intrinsic connectivity in cortex, possibly between columns separated by considerable distances 

that respond to similar forms of information, and were thought to be excitatory in nature. 

Evidence of the functional significance of tangential collaterals is that, retinotopically, a much 

larger number of cells may be labelled in area 17 than are labelled in area 18, indicating 

considerable convergence. Other features of the projections are that they are clustered and 

distinct, projecting to specific layers of V2 and V3. Experimental evidence of their functional 

significance was reported in that when slices were made one mm apart, thereby severing the 

extended tangential connections, a reduction in contour orientation acuity was observed (Gilbert, 

1985). Subsequent studies tended to reveal a consistent organization of these tangential 

connections. When retrograde tracing techniques were employed, the cells appeared to connect 

in what looked like a honeycomb lattice, indicating the existence of consistent organization 

(Gilbert & Wiesel, 1989). 

The existence of extensive horizontal connections extending over 4 mm and several 

hypercolumns is worthy of emphasis, since they are obvious candidates in a system that could 

integrate visual information. Therefore the question to ask at this point is what function do these 

tangential connections serve? As stated previously, the collaterals are convergent, organised in 

a honeycomb lattice and project to areas V2 and V3. The convergent nature of these 

connections and their projections to cortical areas involved in "higher" processing is similar to the 

convergent nature of three parallel pathways of visual information processing described by 

9 



Livingstone and Hubel (1988). The retino-geniculo-striate pathway contains considerable 

divisions of the type of information it processes. The distinction is evident early in the pathway 

as the larger type A retinal ganglion cells project to the magnocellular (M) division while the 

smaller type B cells project to the parvocellular (P) division of the lateral geniculate nucleus of 

thalamus (LGN). The M and P divisions differ in four major ways - colour, acuity, speed, and 

contrast sensitivity. The authors describe three pathways, one extending from primarily P input, 

one with M input and one with both M and P input. Each of the parallel paths, after the initial 

interface with layer 4C in striate cortex, tend to show a convergent organization, beginning with 

projections to simple and complex cells within columns and eventually extending to areas of 

specialized processing such as mid-temporal lobe (MT) and parietal association cortex. It is 

possible then, that the horizontal cortical connections provide a system of interaction between 

each of these distinct parallel paths. 

Consistency of cortical connections was one of the focal tenets discussed by Zeki and Shipp 

(1988). One point discussed by the authors was that many of the connections that exist in one 

level of the visual system are found to exist at several other levels. Further, some of the 

anatomical strategies observed in visual cortex are observed repeatedly in other cortical areas. 

Common principles regarding the functional logic of cortical connections also allow predictions 

about the general functional organization of uncharted cortical areas. One common principle of 

cortex is the increase of complex response properties of cells within a specialized pathway 

accompanied by spatially convergent connections repeated at each successive stage (i.e. spiny 

stellate-simple-complex-hypercomplex model of cells). Another is the complex unification of 

hierarchical and parallel strategies supplying cortex with connectivity able to facilitate intricate 

interactions between different specialisations. The third involves intercommunication between 

specialized systems which quite possibly involves horizontal connections between parallel paths. 

Zeki and Shipp stated that the anatomical mechanism for assembling information is 

convergence. Two types of convergence were discussed, topical and confluent, with four types 

of convergent directions, forward, backward, lateral and intrinsic. Through the combination of 

10 



convergence types and directions, including horizontal collaterals between parallel systems, the 

authors concluded that the functional logic of cortical connections is to first achieve segregation 

(the retino-geniculo-striate pathway), and then integration (via convergence) (Zeki & Shipp, 

1 988). 

The complex nature of neural organization discussed thus far is incomplete without the addition 

of an important factor - non-linearity. One of the first authors to discuss non-linearities in sensory 

systems was Freeman (1979). His model, based on the mammalian olfactory bulb and limbic 

system, used the known anatomy and physiology of the bulb and paleocortex as design criteria to 

synthesize, evaluate and solve a set of non-linear differential equations that represented grouped 

bulbar dynamics. In a subsequent article (Freeman, 1981), he described a method of modelling 

invertebrate olfactory and limbic system processes to discuss non-linear principles common to 

perceptual systems. The level of brain hierarchy discussed in his model was masses of neurons 

operating in parallel. Freeman suggested that for the activation of single neurons to be 

transduced to actual perceptions, a degree of co-operation or co-ordination must exist between 

the neurons within a system. His work centred on 40-80 Hz filtered oscillations (within the 

gamma band) in the olfactory system. During respiration, wave packets were objectified by 

analysis of phase and frequency of simultaneous bursts from numerous cells, and these coherent 

oscillations were thought to carry information. The olfactory bulb has several recurrent 

connections with primary olfactory and prepyriform cortex. High covariance of these areas was 

often noted and the three types of feedback loops were discussed in detail. The key to the model 

is a non-linear conversion bulbar function which, when stimulated, responds in an oscillatory 

manner. The state of oscillations increased the internal gain of the bulb which, in turn, initiated 

its own pattern of activity, eventually resulting in massed oscillatory activation. The oscillations 

end during expiration, due to inhibitory neurons with the same non-linear gain (Freeman, 1981). 

Van Essen, Anderson and Fellman (1 992) have developed a non-linear model based on primate 

cortical function. The basis for their model is a systems engineering perspective, grounded in 

11 



basic principles of signal processing constrained by properties of the brain's underlying neural 

circuitry. The authors described 32 distinct cortical areas based on anatomical, physiological and 

behavioural information, 25 of which are primarily visual in function. A total of 305 pathways 

interconnecting the 32 cortical visual areas were identified with modern tracing techniques. 

According to these authors, there exists a basic distinction in area V1 between simple and 

complex cells. They suggest that simple cells act as quasilinear filters and complex cells have 

pronounced spatial non-linearities providing image power within a restricted range of coding 

properties (Van Essen et al., 1992). 

The organization of the visual system discussed thus far hinges on several fundamental 

principles of cortical organization, common throughout the visual system. The first is 

convergence, which is evident early in the retino-geniculo-striate pathway and persists through 

cortical areas of increasingly abstract processing. Convergence is a repetitive anatomical 

occurrence that may be a necessary component for integration of information over increasing 

levels of complexity. Similarly, tangential cortical connections are prevalent within and between 

cortical columns. These connections, like convergence, may share equally in their importance 

for integration of information across distributed cortical areas. Third, the acknowledgement of 

the non-linear nature of the olfactory system is one example of how the function of a discrete 

neural system can be optimally explained with a non-linear model of cellular interaction. With 

the above conditions of convergence, tangential connections and non-linearity in place, we can 

now ask, "How are the discrete segments of information that are transduced by the visual system 

integrated into an actual percept?" One perspective suggests that synchronous oscillations 

between assemblies of cortical neurons serve as the basis for linking sensory information. The 

oscillations are often reported to be within the gamma range (30 - 110 Hz) (Eckhom et al., 1988), 

and are present in cortex and thalamus of several mammalian species. 

Stimulus-induced rhythmic oscillations in cat visual cortex have been reported by several 

researchers. Among the first to discuss this phenomenon were Gray and Singer who liken the 
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organization of this activity to the studies on olfaction by Freeman and co-workers. In 1989, Gray 

and Singer recorded local field potential (LFP) and multiunit activity (MUA) to determine whether 

oscillatory responses could be detected in cat visual cortex during varying conditions of 

anaesthesia. This permitted a more qualitative analysis of stimulus specificity and temporal 

properties. The results are interesting in that local groups of neurons within functional columns of 

cortex were reported to oscillate at a gamma frequency near 40 Hz when presented with a light 

bar of optimal orientation, in both areas 17 and 18. No comparable responses were observed in 

thalamus, suggesting that synchronous oscillations are a purely cortical phenomenon. In 

addition, the oscillatory responses within columns tend to occur preferentially in complex cells 

(Gray & Singer, 1989). 

Subsequent studies (Gray, Konig, Engel and Singer, 1989) show, however, that synchronous 

gamma band oscillations also extend beyond cortical columns. When recording from neurons 

with pairs of electrodes in area 17, the authors observed that oscillatory responses in 

non-adjacent columns were synchronized if their orientation preferences were similar, but 

showed no fixed phase relationships when orientation preferences differed. A particularly 

interesting finding was that correlated oscillations were recorded from two sites separated by 7 

mm, with no overlap in receptive fields, but with similar orientation preferences. Two different 

stimuli were used, a long light bar and two short light bars. When the short light bars were 

moved in a divergent manner over the two receptive fields, there was no evidence of phase 

locking. When the bars were moved in the same direction, the responses were weakly 

synchronous and when a long light bar co-stimulated both receptive fields, the responses were 

enhanced. The results were interpreted to mean that the system of tangential intracortical 

connections and reciprocal connections from distributed cortical areas may provide an 

anatomical substrate for synchrony between remote columns (Gray et al., 1989). 

Synchronous oscillations were recorded from even greater inter-columnar distances by Engel, 

Konig, Gray and Singer (1990). The authors recorded LFP and MUA in the 40-60 Hz range from 
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area 17 of the cat cortex with inter-electrode distances of 4 - 12 mm. For cells with 

non-overlapping receptive fields that coded for similar line orientations, the oscillations were 

more synchronous. Conversely, if their receptive fields did overlap, but they responded to 

different line orientations, they also showed a high incidence of synchrony. For electrode 

distances up to 12 mm, a high incidence of synchrony was observed between sites with similar 

orientation preferences. Therefore, oscillatory responses at separate cortical sites can transiently 

synchronize. The probability and strength of synchronizations are affected by the distance 

between cells and their orientation preference (Engel et al., 1990). 

Differences in the oscillatory nature of simple, standard complex, and special complex cells have 

also been reported. Standard complex cells responded to their optimal stimuli in an oscillatory 

mode in 56% of the cells sampled, while simple cells and special complex cells responded at 

12% and dl%, respectively. Cells responding in an oscillatory mode were primarily in 

supragranular and infragranular layers of cortex. Oscillations were enhanced by binocular 

stimulation and degraded by combined stimulation of light bars. Stimulus velocity and 

movement were effective in inducing oscillatory responses. The results were interpreted to mean 

that functional heterogeneity exists among cells within striate cortex based on temporal firing 

patterns and, that these patterns are influenced by changes in stimulus properties (Gray, Engel, 

Konig & Singer, 1990). This suggests that as the amount of information converging on a cell 

increases, so does its need to fire synchronously in order to synthesize information. 

Synchronized oscillations have also been recorded by neuronal groups between two different 

areas of cat visual cortex. Coherence of stimulus evoked resonances was found within vertical 

columns, between neighbouring hypercolumns and between two different cortical areas. 

Coherent stimulus evoked resonances between LFPs of areas 17 and 18 were found to extend 

over two hypercolumns. In addition, oscillations of groups of neurons in area 17 were correlated 

with LFP oscillations in area 18. The authors interpret the high correlations between visual areas 



to mean that phase locking among assemblies occurs as a process to link features of the visual 

scene (Eckhom et al., 1988). In addition, binocular stimulation with a whole field grating evoked 

large amplitude oscillations of about 45 Hz that were strongly correlated in areas 17 and 18. 

After the stimulus stopped moving, the oscillatory component vanished and only broad band 

activity remained. The effects of the stimulus evoked high frequency oscillations among two 

assemblies in different cortical areas that can be neither explained by far field volume conduction 

nor by entrainment of the frequency components of the stimulus. Spectral coherence was often 

high (0.6) during stimulus movement and low (0.1) while stationary (Eckhorn, Reitboeck, Arndt & 

Dicke, 1989). 

Eckhom and co-workers (Eckhorn, Schanze, Brosch, Salem & Bauer, 1992) have subsequently 

hypothesized that "synchronization of neural activities forms the basis of a flexible mechanism 

for feature linking in sensory systems" (Eckhom et al., 1992, p.47). Further, they reasoned that 

synchronized activity between discrete neuronal assemblies is responsible for linking proximal 

and distal regions of visual space in cortex. The basis for their hypothesis is that receptive fields 

that code similar information will have strong connections compared to those with large inter-field 

distance and different receptive field properties. In their experiments, correlated gamma band 

activity was recorded from local cortical columns, between different areas of visual cortex as well 

as between hemispheres. The authors conclude by stating their belief that oscillations are most 

probably generated locally (at cortex) and synchronized globally. Additionally, links to higher 

mental processes such as focal attention may organize independent sense modality activation 

into a single system of common cortical oscillatory activity (Eckhom et al., 1992). 

Singer (1 993) concluded by suggesting that time as a variable received little attention as a 

dimension for coding sensory information. Similarly, gamma band activity was once considered 

desynchronized, reflecting temporally incoherent activity of spatially distributed neurons. These 

distributed neuronal systems occur in parallel at different sites and always involve vast numbers 

of neurons that, depending on the complexity of the task, may be distributed throughout the 
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whole cortical sheath. The frequency of these oscillations usually fluctuate over a range of 5-1 0 

Hz, even within a single oscillatory response. If groups of cells with overlapping receptive fields 

but different orientation preferences are activated with a single moving light bar, they 

synchronize their responses, even if some of these groups are suboptimally activated. However, 

if a group is stimulated with two independent stimuli that move in different directions, they no 

longer form one coherently active assembly but split into two independent synchronously active 

assemblies, (i.e., those groups join the synchronously active assembly that shows a preference 

for the same stimulus). Thus the two stimuli become represented by two spatially interleaved but 

temporally segregated assemblies. Therefore, the coupling between distributed cell groups is 

dynamic and can change in a stimulus-dependent way (Singer, 1993). 

The research completed thus far on cat visual cortex is quite compelling, however, if cat is the 

only mammalian species capable of generating gamma band activity, there would not be much 

point in continuing this line of academic pursuit. Reports of gamma oscillations recorded from 

single units or field potentials have been reported less frequently in primate cortex, and when 

they are observed, manifest slightly different characteristics. In alert macaque monkeys for 

instance, synchronized oscillations between spatially separate sites in extrastriate cortex were 

observed, though they appeared to be more irregular than those observed in the cat (Engel, 

Konig, Kreiter, Schillen & Singer, 1992). Perceptual feature linking in humans has rarely been 

addressed, due to the obvious problems of embarking on a research project of this nature at the 

cellular level. Very recent attempts to investigate feature linking in humans have confronted this 

issue at the macrocellular level. In an EEG study, Desmedt and Tomberg (1994) recorded 32 

channels of EEG during a brief randomly mixed electrical stimulation of the subjects fingers. 

One finger was designated the target, which the subject was to identify by pressing a button with 

the right big toe. Oscillations in the 40 Hz range were recorded and filtered using a 35-45 Hz 

window. The results were interesting in that the sensory input from the target finger elicited 

contralateral activity first in the primary somatic parietal cortex (P30, P40), then in the posterior 

parietal cortex (P80, PlOO), and finally in the dorsolateral prefrontal cortex (N140). The gamma 
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waves recorded were not phase locked to the stimuli and therefore any synchrony would have 

been obliterated by averaging. A clear phase locking of 40 Hz oscillations was observed 

between contralateral parietal and dorsolateral prefrontal cortex "in spite of their wide separation 

(about 9 cm)" (Desmedt & Tomberg, 1994, p. 127). The phase locking continued for 

approximately 125 ms or 5 cycles. Thus transient phase locked oscillations in the gamma range 

are recordable using macroelectrode recording techniques. The authors bring up the important 

point that the oscillations were not phase locked to the stimulus, meaning that averaging of 

repeated trials would nullify any synchronous response. This point raises important 

methodological concerns, and will be re-addressed at the conclusion of this section. 

Research using MEG has also provided some evidence for feature linking in the human brain. In 

another recent study, 37 channels of MEG data were collected from right hemisphere during the 

presentation of an auditory stimulus. Subjects were asked to report whether they heard one or 

two clicks, the double click occurring at varying interclick intervals. The data were averaged 

using the onset of the first stimulus as the trigger. A power spectral analysis revealed a 

significant component near 40 Hz. The pattern of response for a two click sequence was that 

click one triggered a 40 Hz response and the second stimulus induced a similar response only 

after a specific time interval. The interpretation of the results was that, at interstimulus intervals 

less than or equal to 14.2 msec, the first stimulus alone is sufficient to elicit a 40 Hz response, 

while longer intervals allow each stimulus to induce its own 40 Hz activity. The abruptness of the 

response was considered to be linked to non-linear single cell oscillatory properties. The authors 

interpreted the results to indicate that 40 Hz oscillatory activity is not restricted to primary sensory 

processing, but forms part of a binding property that integrates sensory events into a single 

experience (Joliot, Ribary & Llinas, 1994). 

Bursting of 40 Hz oscillations has been reported in the human brain for over a decade, but what 

the Desmedt article in particular indicates is that the simultaneous oscillations can be transiently 

phase locked between distributed cortical areas. This serves as evidence for cortical function 
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similar to that observed in cat visual cortex. The human studies however, limit their focus to 40 

Hz activity, which differs from the perspective of Gray, Singer and Eckhorn's efforts somewhat. 

Let us then turn to theoretical perspectives of how synchronous cortical systems within the 

gamma band operate, to develop some testable hypotheses about this organization in humans. 

Llinas (1 992) has proposed a cellular model for such a system that includes cortical layer IV 

interneurons, cortex layer VI pyramidal cells, reticular thalamic nuclei, and thalamus. He begins 

by stating that thalamus may serve a linking function between various cortical sites and this 

position has been upheld by evidence that thalamic projections have been reported to fire 

between 30-40 Hz after brainstem cholinergic stimulation. Similarly, cortical interneurons, 

primarily in layer IV, are capable of subthreshold rhythmic oscillations at frequencies akin to 

those recorded cortically. Therefore layer IV inhibitory neurons, when depolarised, oscillate at 40 

Hz when the optimal stimulus for that cortical column is presented. Inhibitory neurons then 

produce IPSP's in surrounding cells, including layer V pyramidal cells, in the presence of EPSP's 

generated in cortex from thalamic sources. Rhythmic inhibition of layer five pyramidal cells 

oscillate at 40 Hz, which has been clearly demonstrated in IPSP's in visual cortex pyramidal cells 

(Ferster, 1988). Llinas continues by stating that rhythmic cortical oscillations may communicate 

40 Hz excitation to reticular thalamic nuclei establishing a "resonance state in the thalamocortical 

system via feedback through layer IV neurons" (Llinas, 1992,278). Cortically recorded 40 Hz 

rhythms may then constitute both intrinsic rhythms and resonance in the thalamocortical system. 

Finally, rhythmic firing of pyramidal cells could become synchronous with similarly activated 

cortical columns and would, via resonance, generate a 40 Hz EPSP-IPSP resonance in thalamus 

(Llinas, 1992). 

Another theoretical perspective, which goes beyond the limitations of a 40 Hz model has been 

proposed by Edelman (1989). According to Edelman's theory of neuronal group selection 

(TNGS), reentrant cortical connections are proposed as the basis for processing complex 

information. Reentry is a process of temporally continuous parallel interactions between 
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distributed maps along ordered anatomical pathways (see Figure 1). Reentry is not simply 

feedback, but parallel signalling in the time domain between spatially disparate maps of neuronal 

groups. Feedback loops differ from the intrinsically parallel nature of reentry, as they usually 

involve only a single signal channel or pair of wired connections. Reentrant connections can be 

reciprocal or from a geometric range and can be convergent or divergent. Reentry has variable 

temporal and spatial properties, similar to a process of correlation between distributed systems. 

Activity distributed within and between maps must be correlated temporally and spatially, and for 

high order reentrant correlations to be associated with sensory activity, one map must be 

topographic. Other maps in the same modality must be reentrantly connected to that topographic 

map in order to maintain correlations of properties related to the external world. It is a dynamic 

process with a variety of temporal properties: cyclic, intermittent, synchronous, asynchronous. 

Therefore, the characteristics of reentry depend upon the various latencies and temporal 

properties of neurons and synapses (Edelman, 1989). 

Edelman (1989) discusses a specific model of striate and extrastriate cortex to illustrate the 

TNGS. Within the visual system, the integration of multiple functionally segregated areas with 

potentially conflicting information (i.e., motion, shape, depth, colour) must be combined to form 

visual perceptions. The visual cortex of higher animals is functionally segregated (Van Essen, 

1992, describes 32 distinct cortical areas based on anatomical, physiological and behavioural 

information, 25 of which are primarily visual in function). Edelman makes an important point that 

no single dominant integrative area has been located. On the contrary, every visual cortical area 

is connected to some subset of other areas. Within a specific cortical area, cells respond 

optimally to a particular attribute of the visual scene, and respond at suboptimal rates to others. 

The perceptual problem to address in vision is how do distributed mapped regions with varied 

cell types integrate their function to produce coherent and unified representations of the visual 

scene? The problem is magnified when you consider that this integrated system must respond to 

partial, conflicting or ambiguous stimuli, as is demonstrated by visual illusions (Edelman, 1989). 



Figure 1. Schematic overview of reentrant connections between distributed 
systems in visual cortex. (Adapted from Edelman (1 989), p. 71). 

Computer models simulating the principles of TNGS have been successful in demonstrating 

some of these theoretical principles (Finkel & Edelman, 1989). The computer model simulates 

three interconnected cortical areas in striate and extrastriate cortex of the macaque (simplified 

Vl,  V3 and V5). The simulated networks were very complex, containing over 222,000 units and 

8.5 million connections. The computer model is able to simulate several of the features of visual 

integration via reentrant connections such as determining structure from motion. The network 

also responds in a consistent manner to novel illusions. Three reentrant system types are 

specified as important to this process: 1) competitive elimination of conflicting responses among 

segregated neuronal groups, 2) information leaving an area is used optimally by a different area 

3) information leaving an area is reentered into that area through lower areas, and can be used 

iteratively to synthesize responses to complex or illusory stimuli. Removal of reentrant 

connections however, abolished integrative processes, resulting in a failure of figural synthesis 

(Finkel & Edelman, 1989). 



Edelman also discusses the results of Gray, Singer and Eckhorn's data which, he suggests, all 

provide support for the TNGS. In fact, Edelman (1 993) discusses computer simulations based 

on cat and monkey cortex showing that reentrant interactions within a single cortical area can 

give rise to temporal correlations between neighbouring cell groups as well as distant groups with 

a near zero phase lag. In addition, he discusses another simulation where neuronal groups 

oscillated in much the same manner in response to moving bars as did cat cortex in Gray and 

Singer's experiments. Similar to the previously described simulation, the correlations of neuronal 

activity depended critically on reentry, and disappeared when the underlying connectivity was 

disrupted (Edelman, 1993). 

In a review of his TNGS and reentrant processes, Edelman (1993) makes an excellent point that 

can be extended throughout neuroscience. He suggests that 'What is needed to connect the 

growing body of evidence in biology and psychology is a theoretical framework sufficiently broad 

to connect biology and psychology in a fashion consistent with developmental and evolutionary 

systems" (Edelman, 1993, p. 115). In his words, to be useful a global brain theory should 

accomplish at least two things. The first is that it should help to predict fundamental structure 

and function of the CNS. Second, it should provide a basis for recording and understanding 

morphological, physiological and behavioural observations generated by the multitude of 

research options available in neuroscience today. As was previously discussed, the theory does 

not invoke coded signals acting in precisely defined linear circuits, but instead emphasises 

spatial and temporal correlations occurring within volumes of tissue. This statement implies at 

least two things. The first is that some connections between neuronal groups are inherently 

non-linear. The second is that correlations of neuronal groups operating within a distributed 

system should be present during information processing. The two points are testable using EEG 

and MEG methodologies and should serve as a suitable initial test of Edelman's TNGS. 

The remainder of this thesis will focus on the cortical correlates of Necker cube reversals, 

recorded with EEG and MEG. The EEG phase will serve as the preliminary phase where two 



methodologies will be used to test the TNGS. The MEG phase will serve the purposes of 

replication and extension of optimal strategies found during the EEG phase. An ambiguous 

figure, like the Necker cube will be a useful tool to elicit the features of sensory feature linking, 

since newly formed percepts are constantly being produced. However, several studies that 

attempted to address the question of how the brain functions during reversals of ambiguous 

figures, modified the stimulus, therefore altering the phenomenon that occurs continually during 

perception. In order for spontaneous brain responses that occur during continuous perceptual 

reorganisation of the cube to be recorded, the stimulus will be presented in its standard form, with 

no alterations. This sentiment is echoed by Freeman (1981) who states: 

"if by assumption a main function of the brain is to construct representations, then the key 
studies must be done as those representations are made, that is, by making observations 
within the normal brain as it performs this function" (Freeman, 1981, p. 566). 

The first hypothesis to be tested is that non-linear patterns of cortical activity will exist during 

perception of Necker cube reversals. When compared to processing of a two-dimensional figure 

using a generalised regression neural network (GRNN). The GRNN is a non-linear classifier, 

developed by Specht (1991), and discussed by Wassennan (1993). In general terms, the 

GRNN, like the back-propagation neural network, is able to approximate any functional 

relationship between input and output. The GRNN performs a bayesian classification, and will, 

in fact, approach an optimum Bayesian classifier given a large enough number of training 

exemplars (Wasserman, 1993). A complete description of the GRNN can be found in Appendix 

A. 

Hypothesis two is that increased correlations of neuronal groups operating within distributed 

systems should be present during Necker cube reversals, and correlations should be somewhat 

lower during processing of the two-dimensional figure. The model of correlations of EEG and 

MEG data will be similar to those observed in Edelman (1989, p. 71), where reentrant 

connections are described between visual areas of primate cortex. The reentrant connections 



between areas of visual processing will be replaced by correlations between EEG electrode 

positions and MEG sensor sites over parieto-temporo-occipital cortex. 



Method 

Subjects and Recording Conditions 

Five (5) adult right handed subjects, three males and two females, participated in the EEG 

phase. Subjects were between 18 - 34 years of age, with a mean age of 26.6 years. The data 

from one subject (male) was excluded due to an equipment malfunction during data collection. 

Twenty-two silver-silver chloride electrodes were applied according to the international 10-20 

system (Jasper, 1958). Linked ear references and an Fpz ground were used. One electrode, 

placed at the nasion and referenced to Cz was used to trigger EEG data collection when subjects 

closed their eyes. Electrode impedances were maintained below 5 kOhms. Subjects were 

seated in a comfortable chair in a natural laboratory environment (not a soundproof room). The 

illumination in the room was natural light (to reduce 60 Hz noise) for all subjects and was 

measured to be 0.493 ft L. The EEG amplifiers were Nihon-Kohden model EEG-4217 linked to a 

software interface via a National Instruments model ATMi064-F analog to digital board. The 

software1 was specifically designed to record single EEG trials. Single trial recording epochs 

occurred between -1 000 to 0 milliseconds, encapsulating a one second period prior to the trigger, 

digitised at 1024 points per second. Each single trial was triggered externally by an electrical 

potential generated from the nasion electrode referenced to Cz. The sensitivity for the trigger 

was 7 ~Vlmm, with the time constant at 0.03 and the high filter at 70 Hz2. The sensitivity for the 

EEG amplifiers was 20 ~Vlmrn with time constant of 5, the high filter set to 70 Hz and the notch 

filter IN. 

1 Brainwave V1.l Q Procet Engineering 1993, Nanaimo, B.C., Canada. 

2 During experimental preparation for each subject, the first attempt to trigger EEG trials 
was always with sensitivity set to 7 uV1cm. Depending on the strength of electrical potential 
elicited from the eyes, the sensitivity setting was increased or decreased to allow for optimal 
triggering with as few "false triggers" as possible. 



Visual stimuli consisted of two geometric figures, each presented on an 8 112 x 11" piece of white 

paper (both of which are presented in Appendix C). One figure was a square with side lengths of 

15.5 cm. The second figure was a Necker cube, first described by Necker (1832), with a vertical 

side length 10.8 cm and a diagonal length of 6.5 cm. The line thickness for the experimental and 

control figures was 2.8 mm. The 2-D square served as the control stimulus, while the Necker 

cube was used to elicit two perceptual effects. The first effect was designated to be when the 

Necker cube was perceived to shift "up", so that the upper left-most comer of the cube face was 

in the upper left-most quadrant of the figure. The second perceptual effect (down) was 

designated to be the opposite in direction of shift from the previous effect. The two figures and 

their perceptual effects are shown in Figure 2. 

Procedure 

The experimental (shift up or down) and control effects were recorded in random order, each for 

a period of time that allowed a minimum of 20 single trials to be collected3. During all single trial 

recordings, the electrical potential generated from an eye closure was used to trigger EEG data 

collection During perception of the control stimulus, the subject was instructed to spontaneously 

close the eyes while focusing on the stimulus to trigger data collection. During perception of the 

experimental effects, data collection occurred as a result of eye closure immediately after a 

reversal occurred in the correct direction. While focusing on the Necker cube, subjects were 

instructed to close their eyes only when a "clear" reversal had occurred and were told to ignore 

those occurring incompletely or in rapid succession. Therefore, single EEG trials did not include 

all reversals, but a subset of reversals that were of a subjective "high quality". Subjects were 

also instructed to allow perceptions of the cube to reverse spontaneously without attempting to 

change the perception by moving the eyes. The data for the three effects were collected until 20 

- 30 single trials were available for analysis. To ensure that eye closure and not eye movement 

artifact was triggering data collection, all subjects were video monitored during the experiment. If 

3 During the EEG phase, it was first thought that early Necker cube reversals may be more 
easily classified due to the brain's response to a novel stimuli. Therefore, an arbitrary number of 
a minimum of 20 single trials was chosen in an attempt to obtain a homogeneous data set that 
contained novel responses. 
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a) Necker cube perception 
shifts up 

b) Necker cube perception 
shifts down 

c) 2-D figure (control) 

data collection occurred while 

the subject was viewed to 

have their eyes open, 

completely or incompletely, 

that trial was manually 

rejected. 

Preprocessing. All EEG 

single trials were 

pre-processed prior to neural 

Figure 2. The perceptual effects of experimental stimuli used during recording of analysis. Since the 
single trials: a) perception of the Necker cube shifting "up". b) perception of the 
Necker cube shifting "down". c) the 2-D control figure. EEG phase served as the 

preliminary phase for the second (MEG) phase, several different preprocessing attempts were 

made before one method was selected (a full description of all processing and analytical 

techniques attempted is described in Appendix B). Although the original single trials consisted of 

19 electrodes of 1024 points, a reduced number of electrode positions were eventually selected 

since increased signal to noise is believed to be important for neural network classifications. This 

subset included central, temporal, parietal and occipital positions (T3, C3, C4, T4, T5, P3, P4, 

T6, 0 1  and 02). Correlation matrices were calculated for this subset of electrode positions, 

resulting in a 10 x 10 matrix for each of the single trials. Since redundant information exists in 

the upper and lower quadrant of each matrix, these values were removed. Additionally, the 

diagonal of each correlation matrix was removed since all values equal one. The lower 

quadrants were then transformed into one row vectors (1 x 45). 

The first step toward creation of network training matrixes was to "stack" the vectors from each 

experimental condition and for each subject separately. For instance, if 20 single trial vectors 

from Subject 1, condition 1 were combined, a 20 x 45 matrix would be the result. Matrixes from 



two categories were then combined (i.e., experimental condition and control condition for each 

subject) to form a training matrix. An additional column (column 46) was added to each training 

matrix, containing dummy codes for vector category membership; 0 for control vectors and 1 for 

experimental vectors. Therefore two training matrixes were created for every subject, for a total 

of eight training matrixes. A visual description of training matrix construction for EEG single 

trials is shown in Figure 3. 

Network Analysis. The purpose of the network analysis was to determine whether the single 

EEG trials could be classified as representing either the Necker cube reversal or the 2-D control 

condition, on the basis of correlation matrix vectors. The network used for analysis was the 

generalised regression neural network (GRNN) developed by Specht (1 99l), and discussed by 

Wasserman (1993). In the present case, the input to the GRNN consisted of individual exemplar 

row vectors from the network training matrix. The corresponding output of the GRNN was the 

probability that the input vector belonged to a category. The smoothing parameter chosen for all 

EEG classifications was set to 0.25. 

Because of the limited number of exemplars, a jack-knifing procedure was adopted and was 

carried out as follows. From the network training matrix, a single exemplar vector was removed. 

The network was trained on the remaining exemplars in the network training matrix. The network 

was then tested by presenting the single withheld exemplar. The result was a number indicating 

the probability of the single exemplar belonging to its imputed category, given the exemplars 

remaining in the training matrix. The GRNN is thus performing a Bayesian classification, and 

will, in fact, approach an optimum Bayesian classifier given a large enough number of training 

exemplars (Wasserman, 1993). A graphical representation of the GRNN is shown in Figure 4. 

A complete description of the GRNN procedure and algorithm can be found in Appendix A. 



Figure 3. Training matrix construction. a) Correlation 
matrixes were calculated for a subset of the total electrode 
positions. Non redundant values were chosen from the 
matrix and were transformed into a 1 x 45 vector for each 
single trial. b & c) Vectors were stacked to form n x 45 
training matrixes (where n = the number d single trials 
included for each condition). d) The stacked experimental 
and control vectors were then combined. e) Dummy codes 
(0 = control; 1 = experimental effect) were added as the 48th 
column. f) The complete training matrix. 

EEG Hypothesis 1: The GRNN jack-knife 

classifications resulted in a number 

representing the probability that each single 

trial vector (either a 0 = control vector, or 1 = 

experimental vector) was similar to those in 

the experimental group. The probabilities 

were then grouped into control and 

experimental vectors within subject for 

statistical analyses (i.e., for each subject, two 

comparisons of probabilities were generated, 

experimental condition 1 vs. control and 

experimental condition 2 vs. control). Two 

statistical analyses, one tailed equal variance 

t-tests4 and the Kendall's Tau procedure (one 

tailed) were used (significance p.< 0.05). 

EEG Hypothesis 2: EEG single trials were analyzed to determine whether, as Edelman's theory 

predicts, higher correlations between distributed cortical systems exist during visual information 

processing. An a priori model was developed (see Figure 5a) based on Edelman's description of 

reentrant pathways in primate visual cortex made up of the scalp positions used in the GRNN 

analysis. These included electrode pairings over occipital cortex, parietal association cortex and 

posterior temporal cortex. The subset of correlations chosen (12 of 45) were intended to 

represent occipito-occipital connections both within and between hemispheres, occipito-parietal 

association cortex connections, occipto-posterior temporal connections and posterior temporal 

lobe connection via the corpus callosum. Average correlations were calculated across single 

4 It was found after a preliminary descriptive analysis that EEG single trial variance was 
remarkably similar for experimental and control conditions and thus, equal variance t-tests were 
used in the analysis. A one tailed test was chosen because the direction of prediction was 
known. 
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Where: fAl(W = the PDF estimate 
i = the pattern number 
m = the total number of training patterns 

X ,, = i th training pattern from categoryOA 
o = "smoothing parameter" 

Figure 4. The Oenmllsed Regresalon Nwm Nelwwk ( G R ~ ~ ) f r o m  simulnet 

(Copyflgh11993-1994). 

trials, within subject and 

experimental condition, and were 

subsequently summed. The 

summed averages were then 

analyzed using the stepwise 

Bonferroni procedure for multiple 

comparisons, with an overall 

significance level of p.< 0.05. An 

overview of this analysis procedure 

is shown in Figure 6. 

MEG 

Subjects and Recording 

Conditions 

An additional five (5) adult right handed subjects, three males and two females participated in the 

second (MEG) phase. Subjects were between 18 - 32 years of age, with a mean age of 26.4 

years. A 64 channel MEG system5 was used for data collection. Subjects were seated in a 

pneumatically adjustable chair that raised and lowered the subject into and out of the MEG 

dewar. The MEG system is located in a natural laboratory environment (not a soundproof room) 

and the illumination in the room was natural lighting for all subjects. The luminance in the room 

was measured at 7.472 ft L. The visual stimuli in experimental and control conditions were 

identical to those described in the EEG methodology. 

Procedure 

The experimental and control conditions were presented in random order. Data were recorded 

during 15 trials that were each 15 seconds in duration. There were two experimental trials for 

5 64 Channel MEG System Q CTF Systems Inc. 1993, Port Coquitlam, B.C., Canada. 



Figure 5. The lines represent correlations between electrode/sensors that 
were included in the respective subsets. a) EEG subset of correlations used 
in paired t-tests. b) MEG sensor subset of correlations used in paired t-tests. 

each direction of reversal (i.e., 2 x up + 2 x down = 4 experimental conditions) and one control 

condition6. The sampling rate was 250 points per second. During the control condition, the 

subject was instructed to spontaneously close the eyes at approximately 2 second intervals while 

focusing on the subjective centre of the control stimulus. In the experimental conditions, 

subjects were instructed to close their eyes for approximately 0.5 - 1.0 second immediately after 

a reversal occurred in the appropriate direction. While focusing on the Necker cube, subjects 

were instructed to close their eyes only when a "clear" reversal had occurred and were told to 

ignore those occurring incompletely or in rapid succession. Therefore, single MEG trials did not 

a) n x 45 test matrix 

Experimental 

21 

22  
C) 23 

=x - 24 

Control 

d) t-test at p< 0.05 

Figure 6. The subset of correlation averages calculated based on the models in Figure 5. 
a) An n x 45 matrix consisting of either experimental or control data. b) Averages were 
calculated across single trial vectors for correlations represented as lines between 
electrode/sensors in Figure 5. c) Summed averages are entered into columns for analysis. 
d) Paired t-tests are calculated on the summed averages. 



include all reversals, but a subset of reversals that were of a subjective "high quality". To ensure 

that subjects were closing their eyes at the appropriate times, they were instructed to "blink 

repeatedly" if they needed to blink, or if a spontaneous eye closure had occurred. 

Preprocessing. Each 15 second MEG trials was subjected to a visual analysis before single trials 

were extracted. Two frontal sensor locations (SL 31 and SR 31) were used to observe eye 

closures in each trial. A one second data segment of 250 points was extracted from the entire 

record, only if an unambiguous eye closure (which resembled a square wave) ensued. For the 

-1 000 - 0 millisecond epoch, the 0 point was objectively defined as the first data point where the 

deflection of an eye closure was evident. Unlike the first phase of the experiment, the actual 

number of single trials was determined by the number of reversals a subject experienced within 

the time frame of the experiment. 

A subset of the original 64 MEG sensors was selected to replicate those chosen in the EEG pilot 

phase. This subset included central, temporal, parietal and occipital positions. This subset is 

shown in Figure 4b. Correlation matrices were calculated for this subset of sensor positions, 

resulting in a 32 x 32 matrix for each of the single trials. Since redundant information exists in 

the upper and lower quadrant of each matrix, these values were removed. Additionally, the 

diagonal of each correlation matrix was removed since all values equal one. The lower 

quadrants were then transformed into one row vectors (1 x 496). MEG network training matrixes 

were created in a similar manner as described in the EEG phase (see Figure 2) with the 

exception that 1 x 496 value vectors were used instead of the 1 x 45 value EEG vectors. 

6 It was expected that the spontaneous eye closures in the control condition would 
outweigh the number in a single experimental condition of the same length. Therefore, both 
experimental conditions were repeated twice to ensure a sufficient number of single trials for 
experimental conditions. 
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Network Analysis. The network analysis for the MEG phase was identical to that described in the 

EEG methodology, with the exception that several smoothing values were used during GRNN 

analysis (0.1, 0.25, 0.5, 1, 2, 4). 

MEG Data Analysis (1): The GRNN jack-knife classifications resulted in a number representing 

the probability that each single trial vector (either a 0 = control vector, or 1 = experimental 

vector) was similar to those in the experimental group (1). The probabilities were then grouped 

into control and experimental vectors within subject for statistical analyses. Two analyses, one 

tailed equal variance t-tests and the Kendall's Tau procedure (one tailed) were used with 

significance levels of p.c 0.05. The stepwise Bonferroni procedure for multiple comparisons was 

used with an overall probability of p.c 0.05 per experimental vs. control group comparison. A 

table of all comparisons and p values is shown in the Results section. 

MEG Data Analysis (2): MEG single trials were analyzed in an attempt to partially replicate the 

EEG results of higher correlations between a subset of sensors locations. An a priori model was 

developed (see Figure 4b) that included the sensor positions used in the GRNN analysis. These 

included sensors over occipital cortex, parietal association cortex and posterior temporal cortex. 

The subset of correlations chosen (95 of 496) were intended to represent spatially similar 

connections to those in Edelman's model. Averages across all single trials, within subject and 

experimental condition were calculated and summed. The summed averages were then 

analyzed using the stepwise Bonferroni procedure for multiple comparisons, with an overall 

significance level of p.c 0.05. This stage of the analysis is identical to the analytical procedure 

shown in Figure 5 for EEG, with the exception of 95 summed averages for MEG, instead of 12 

for EEG. 



Results 

Hypothesis 1: GRNN Classification Analysis 

Significant classifications were observed for each of the four subjects. As shown in Table 1 ., 

both one tailed equal variance t-tests and the one tailed Kendall's Tau procedure resulted in 

significant classifications of GRNN generated probabilities. For two subjects, experimental effect 

1 vs. control and experimental effect 2 vs. control classified significantly based on GRNN 

probabilities, while for the remaining two subjects, only one of the two comparisons classified 

significantly. No dominant direction for reversal was observed based on the classifications and 

appeared to be variable across subject. 

I I I Kendall's Tau I One Tailed T-test 11 
Subject 1 

Subject 2 

Subject 3 

Table 1. P values for one tailed t-tests and the Kendall's Tau procedure for all subjects and 
training matrixes (smoothing value set to 0.25). The "up" effect is a perceived shift of the cube 
face to the upper left quadrant of the Necker cube. "Down" was a perceived shift in the opposite 
direction. An asterisk (*) is used to indicate p values significant at the 0.05 level. 

Hypothesis 2: Correlation Subset Analysis 

The summed averages analyzed using the stepwise Bonferroni t-test for multiple comparisons 

are shown in Table 2. Since the overall p value was 0.05, each of the two comparisons were 

tested at the 0.025 level on the first iteration. The p value for the control vs. the upward shift 

effect was p = 0.01 9205. The p value for the control vs. the downward shift effect was p = 

0.02926. Since the control vs upward shift comparison was significant at the p. < 0.025 level, it 

was removed from the next iteration, and the remaining p value was significant at the p.c 0.05 

Up vs control 

Down vs control 

Subject 4 

Up vs control 

Down vs control 

Up vs control 

Down vs control 

0.091815 

0.001055' 
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0.042055' 

8.35e-1 O* 

0.0001 5' 

1 

5.8e-9' 

0.00867' I 



level. Since the correlation subset was chosen a priori, no further corrections were deemed 

necessary. 

1 l~ont ro l  sum lshift up sum lshift down sum 11 
Subject 1 1 7.213921 ( 7.37913411 

Table 2. The summed averages from the subsets of correlations used in the stepwise Bonferroni 
procedure for EEG. 

MEG 

Hypothesis 1 : GRNN Classification Analysis 

Significant classifications were observed for each of the five subjects. As shown in Tables 3a 

and 3b., both one tailed equal variance t-tests (Table 3a) and the one tailed Kendall's Tau 

procedure (Table 3b) resulted in significant classifications of probabilities. For all subjects, 

experimental effect 1 vs. control and experimental effect 2 vs. control classified significantly 

based on GRNN probabilities. No dominant direction for reversal was observed based on the 

classifications and appeared to be variable across subject. 

Table 3a. P values for one tailed t-tests for all subjects and training matrixes. The "up" effect is 
a perceived shift of the cube face to the upper left quadrant of the Necker cube. "Down" was a 
perceived shift in the opposite direction. All comparisons are significant at the p. c 0.05 level 
after a Bonferroni correction ( p = 0.05 / 60 comparisons equals p = 0.00083 for each 
comparison). 



Smoothing Parameter Values 
I I n 4 I n q r  I n r I 1 I - 1 

Subject 3 lup vs cntrl 1 6.14 a 9  1 1.63 e-8 1 1.31 a 9  1 4.79 6-10 1 6.85 e-15 1 2.37 6-10 

Idown vs cntrll 5.02 6-8 1 2.63 e-9 1 9.94 e-9 1 6.49 a 9  1 7 85 e-10 1 I 3 e-f3 

[Subject I (up vs cntrl 1 2.2 8-21 1 1.35 a22 

1 Idown vs cntrll 1.47 8-9 1 3.04 e-7 

Table 36. P values for one tailed Kendall's Tau for all subjects and training matrixes. "Up" is a 
perceived shift of the cube face to the upper left quadrant of the Necker cube. "Down" was a 
perceived shift in the opposite direction. All comparisons are significant at the p. < 0.05 level 
after a Bonferroni correction ( p = 0.05 / 60 comparisons equals p = 0.00083 for each 
comparison). 

Hypothesis 2: Correlation Subset Analysis 

The summed averages analyzed using the stepwise Bonferroni t-test for multiple comparisons 

are shown in Table 4. Since the overall p value was 0.05, each of the two comparisons were 

tested at the 0.025 level on the first iteration. The p value for the control vs. the upward shift 

effect was p = 0.039891. The p value for the control vs. the downward shift effect was p = 

0.016712. Since the control vs downward shift comparison was significant at the p. < 0.025 

level, it was removed from the next iteration, and the remaining p value was significant at the p.< 

0.05 level. Since the correlation subset was chosen a priori, no further corrections were 

5.67 a18 

2.13 8-7 

deemed necessary. 

Subject 5 1 44.01119 1 46.10864 1 45.49712 

3.66 e-I8 

1.16 e-9 

Table 4. The summed averages from the subset of correlations used in the stepwise Bonferroni 
procedure for MEG. 

7.67 a20 

1.52 6-13 

1.76 e-16 

7.95 8-1 1 I 



Discussion 

Implicit in Edelman's theory of neuronal group selection (TNGS) (1989) is the idea that 

distributed groups of neurons operating within a system will display complex patterns of activity 

that will be correlated. The purpose of the present thesis was to test two aspects of this theory, 

1) that non-linear patterns of activity will be present between distributed neuronal groups during 

a visual information processing task, and 2) that increased patterns of correlations will be 

observed between distributed neuronal groups during a complex processing task, consistent with 

reentrant pathways in the cortex. 

For both EEG and MEG phases, evidence in support of hypotheses one and two was obtained. 

The GRNN classifications for hypothesis one were able to find non-linear patterns in the 

experimental effects that were different than those observed in the control effect. The EEG 

single trial classifications were somewhat weaker than the MEG classifications however, in that 

only six of eight experimental effects were classified differently than control effects at the p. c 

0.05 level. MEG single trials on the other hand were classified in 10 of 10 attempts. The 

magnitude of classifications for MEG was considerably larger as evidenced by the high t-test and 

Kendall's Tau values shown in Tables 3a and 3b. 

At least three possible reasons for this difference in classification significance levels will be 

discussed. Firstly, the MEG has far better spatial resolution of the underlying cortical sources. 

The subset chosen to represent visual information processing areas contained 32 sensors while 

the EEG subset covering a comparable area contained a mere 10. Therefore, the GRNN had 

more spatial information to process for MEG classifications compared to the EEG. This may 

have increased the signal to noise ratio somewhat, as more signal behaving as correlations 

between sensor locations would be available in the MEG phase compared to the EEG signal 

which had fewer correlations and a degraded original signal due to attenuation from 



cerebrospinal fluid, bone, skin etc. Second, the MEG phase consisted of more single trials 

which is important, because with enough information, the GRNN "is guaranteed to converge to a 

Bayesian classifier (the usual definition of optimality) despite an arbitrary and complex 

relationship between the training vectors and the classification" (Wasserman, 1993, p.35). 

Finally, MEG is primarily sensitive to tangentially oriented sources while EEG is more sensitive to 

radially oriented sources. Gilbert and Wiesel (1983) discuss tangentially oriented collaterals of 

extraordinary richness and extent, extending over considerable areas of cortex, forming a 

number of distinct repeating clusters. These horizontal cortical connections may extend beyond 

wide cortical columns and, in fact, extended beyond hypercolumns (Gilbert, 1985). Consistency 

of cortical connections is one of the focal tenets discussed by Zeki and Shipp (1988) and 

probably involve intercommunication between specialized systems. Tangential interconnections 

between distributed neuronal groups are presumably important components of cortico-cortical 

non-linear networks active during complex visual information processing. Therefore non-linear 

relationships between neuronal groups have an anatomical basis in the tangential network of 

collaterals that MEG is most sensitive to detecting. 

It is important to emphasise at this point the role the GRNN classifications had in the selection of 

the transformation type and subset of electrode positions used in the EEG phase that eventually 

led to the methodology for the entire thesis. As is discussed in Appendix B, correlation and 

covariance transformations were used in order to discover which of the two transformations 

would contain enough information for GRNN classifications. The optimal transformation used for 

non-linear analysis is essential as this type of classifier (the GRNN as well as other neural 

network algorithms) is extremely sensitive to the signal to noise characteristics of the data. 

Similarly, the number and location of electrode positions that were optimal for GRNN 

classifications were not known at the outset of the project, and only after several different 

combinations of transformation and electrode array did the optimal combination surface. In 

retrospect, correlation transform data over the parieto-temporo-occipital cortex seems to be the 

obvious choice, especially when Edelman's position is taken into account. However, initially it 
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was not known what contribution frontal lobe would have, or how variance in non-linear systems 

would affect the GRNN's ability to classify the data. The point is that GRNN analysis was not 

only an important index of non-linearity of neuronal groups active during processing of the 

Necker cube. It was an important indicator of the nature of neuronal activity and the spatial 

distribution of importance in this non-linear system. Consequently, consideration of GRNN 

analysis should not be limited to classification of non-linear systems, but should also be included 

as a method to parse salient information about a non-linear system from the universe of possible 

alternatives. 

Hypothesis two was also supported by both the EEG and MEG phases of the thesis. According 

to Edelman's TNGS, reentry "varies statistically or regularly in time and space and, therefore, has 

components that relate it more to a process of correlation than signal control" (Edelman, 1989, p. 

68). Therefore, one would expect correlations between proximal and distal electrodelsensor sites 

to be an appropriate index of this type of system. Significantly increased correlations between a 

subset of a priori selected electrodelsensor positions were observed for all paired comparisons. 

This is consistent with Edelman's process of reentry between distributed systems active during 

visual information processing. 

In this instance however, no difference in magnitude of significance levels for EEG or MEG was 

observed, indicating that EEG and MEG are equally suited for this type of analysis. It is possible 

that radially oriented sources are affected equally, compared to tangentially oriented sources, in 

terms of their reentrant connections. The only difference may be that radial sources may 

connect to a higher proportion of subcortical neuronal groups, while tangential sources may 

contain more cortico-cortical projections. A more plausible explanation might be the optimal 

subset of correlations was not chosen in the initial a priori selection. As a result, the most 

appropriate subset of correlations could be drawn from the total number available to be more 

representative of the areas involved in processing information. In fact, there are probably 

numerous subsets that operate optimally at variable locations in time and space and that an a 



priori, equally distributed subset that encapsulates the entire epoch only captures a fraction of the 

activity available for analysis. Due to the apparent non-linear nature of this process, the optimal 

subset of correlations that represent a reentrant process may not even be attainable with this 

simplistic mode of analysis. The initial results of this thesis then, look to be in agreement with 

the most elementary tenets of Edelman's theory. A non-linear pattern of activation is present in 

both of the reversal conditions that is classified differently than processing of a two dimensional 

figure. This complex pattem of activation results in higher correlations between electrode or 

sensor sites, and can be considered consistent with the process of reentry. 

Certain experimental design issues should be addressed as they may be partially responsible for 

the results obtained. The first issue is the choice of the control stimulus. It has been rightly 

brought to the attention of the author that the simplistic two-dimensional figure (a square with 

side lengths of 15.5 cm contained in Appendix C) may not have been of sufficient complexity to 

serve as the control figure for the Necker cube reversal condition. Unfortunately the problem 

with selection of an appropriate control figure for the Necker cube condition is that a 

non-reversing figure is required. This limits the selection to a number of simple two-dimensional 

figures, as most figures that have a three-dimensional quality, also exhibit the property of 

perceptual reversal. Bergum and Flamm (1979) discuss and demonstrate the perceptual 

qualities of very simple figures, all of which have the quality of perceptual reversal to greater of 

lesser degrees. What may be responsible for even simple figures having this quality are what 

Kawabata (1 986) called vertices, or intersections of three lines at a single point. Vertices were 

described in the introduction as important features for Necker cube reversals, and must also be 

considered important for a variety of other figures. 

Since vertices appear to be responsible for perceptual reversals of several figures, using a 

two-dimensional figure such as a square is somewhat more justifiable. Nonetheless, a 

two-dimensional square is probably not the optimal control figure. A possible alternative would 

be to reorganise the lines and orientation of the Necker cube to remove all vertices. A 
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two-dimensional control figure of this nature would maintain the content of the Necker cube 

without the properties of perceptual reversal. This would ensure that processing of line 

orientation of the control figure would not be confused with processing of figure-ground and depth 

of the Necker cube. 

Another design issue to be considered is the use of single trials instead of an average time 

locked to the stimulus or an event in the record. Investigations of Necker cube reversal have 

been performed using averaged evoked potentials. O'Donnell, Hendler and Squires, (1 988) 

investigated the effects of changes in perceived orientation of the Necker cube in visual evoked 

potentials (VEPs). VEPs were recorded to a Necker cube and to two non-reversing stimuli. The 

non-reversing figures were described as perceptually invariant cubes shown in two different 

orientations at 180 degrees intended to be analogous to the two orientations of the Necker cube. 

All stimuli were projected for 700 msec on a translucent screen with a 3.3 second ISI. VEPs 

were recorded from Fz, Cz, and Pz and EOG was recorded from an electrode below the 

infraorbital ridge. Reversal trials were added to the average only after not reversing for the 

previous three trials. 

Both the Necker cube and non-reversing figures produced VEP changes. A late positive 

component appeared to both the Necker cube and non-reversing stimuli. The late positive 

component was largest over Cz and peaked at 550 msec for non-reversing figures. The Necker 

cube on the other hand peaked positively at 625 msec frontally and did not appear at Oz and did 

not return to baseline within the 700 msec recording epoch. The authors conclude that 

attentional and cognitive processes are integral to figure reversals (O'Donnell, Hendler, Squires, 

1988). 

The central methodological issue with the type described above is that in avoiding the problems 

associated with time locking the response to the stimulus, the study also avoided the most 

interesting question, that being "What is the brain doing to create the perception of a reversing 
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cube when the actual stimulus remains constant?". This issue harkens back to Freeman (1981) 

who generally states that important results will come from studies that observe the brain as it 

performs the function of interest. The most interesting thing about the Necker cube as a 

perceptual tool is that even though the stimulus remains constant, the perception of the stimulus 

is progressively changing. Therefore, while averaging responses to a stimulus momentarily 

flashed on a screen offers the promise of a concise response, it also strays from the response of 

interest - the brain's activity that causes the spontaneous reversal of the Necker cube. 

If the purpose of a research endeavour is to monitor brain function during spontaneous 

perceptual reversals, averaged responses are not a realistic option since no phase locked events 

are likely to occur. Even when an event is phase locked to a stimulus, other responses that are 

not phase-locked to the stimulus, such as transient synchronous oscillations would be blurred or 

lost during averaging (Desmedt & Tomberg, 1994). As for the current study, there was no 

guarantee that the patterns of correlations occurring prior to a reversal were related on a trial by 

trial basis. In fact, one should almost expect that over a number of successive trials, variability 

in the duration and intensity of the response will occur if the system is dynamic and non-linear. 

Therefore single trial EEG and MEG responses appear to be an effective index of non-linear 

cortical activity provided the noise floor is sufficently low. This point especially salient with MEG 

as a variety of environmental magnetic fields can contaminate records in unshielded 

environments. 

A final design issue to be discussed is the use of bandpass filtering as a method of enhancement 

of synchronous signals. Appendix B (analysis 3) describes the band pass filtering attempted on 

the EEG single trials based primarily on the literature that suggests increased 40 Hz activity 

present during information processing can be enhanced using this procedure. Considerable 

effort was expended to arbitrarily divide each EEG single trial into four 256 point quadrants 

(0-256; 257-512; 51 3-768; 769-1 024) with the intention of locating the section of the single trials 

with the highest mean difference in 40 Hz (35-45 Hz) activity. Each single trial was subjected to 
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band pass filtering for each 256 point quadrant within subject. No obvious difference in 40 Hz 

activity was observed in the single trial records between experimental and control conditions for 

any of the subjects. 

Others have shown beneficial results from band pass filtering as a method of enhancing 40 Hz 

activity. Desmedt and Tomberg (1994) used two limited frequency windows (35 - 45 Hz) while 

Joliot et al., (1994) employed a wider window (20 - 50 Hz) to obtain images of gamma 

oscillations in the 40 Hz range. Consequently, band pass filtering appears to benefit researchers 

who are interested in parsing out activity within a narrow frequency band, however, there are at 

least two points to consider when using this method. The first is a technical consideration. 

Issues concerning narrow band pass filtering have been discussed by Bullock (1992), who 

cautions against their use in certain situations. Wide-band activity in short epochs or where 

activity is transient in frequency, damps out, or is not time locked to the event. An example he 

gives is that even when a sudden burst of noise containing a variety of frequencies is passed 

through a fairly broad band pass filter, burst of spindles in the gamma band can be artificially 

produced (Bullock, 1992). 

The second is an anatomical reason. Singer (1993) describes variability in synchronous 

oscillations fluctuating between 30 and 60 Hz. Further, he states that the "frequency of these 

oscillations usually fluctuates over a range of 5 to 10 Hz even within a single oscillatory 

response" (Singer, 1993, p. 356). Constant frequencies are reported to be stable for 100 - 300 

msec and reoccur several times while responding to a stimulus (Singer, 1993). More importantly, 

oscillations in primate cortex are reportedly more irregular than those observed in the cat (Engel 

et al., 1992). Therefore a narrow band pass filter may not be the optimal method of analysis 

especially for dynamic systems for several reasons. When used improperly, narrow band pass 

filtering could generate artifacts that resemble real oscillations in the 40 Hz range. More 

importantly, there is evidence that suggests synchronous activity is transient in nature and 

fluctuates dynamically within the gamma range. This point appears to be more salient when 
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discussing primate cortex. For a variety of reasons then, band pass filtering may not be the 

optimal analytical tool for monitoring gamma activity in cortex. In the current thesis, it failed to 

provide an indication of synchronous activity in the 40 Hz range, even though complex patterns 

of correlations were classified by the GRNN. It is possible that synchronous oscillations in other 

frequency bands such as alpha and beta were responsible for the majority of synchrony observed 

during reversals although that position would contradict most of the data presented thus far on 

gamma band synchrony in cortex during information processing. A more plausible explanation is 

that to analyze a dynamic system requires a dynamic method, such as neural network analysis 

which bypasses these shortcomings, especially when accompanied by appropriate 

transformations. 

Therefore, future endeavours should capitalise on the use of neural network and correlation 

analysis to extend the results of the present thesis along the lines of Edelman's TNGS. The next 

logical step for research using ambiguous figures should be to detail the temporal sequence of 

events in visual cortex that occur immediately prior to perceived reversals, since it is unlikely that 

processing related to reversals occurs throughout the entire one second epoch prior to their 

occurrence. One way to accomplish this would be to use MEG single trial data similar to that 

collected for this thesis. If MEG single trials were scrutinised for increased correlation patterns 

over the 1000 msec epoch, on an individual basis, relationships between sensor locations 

represented by increased correlations should surface. A sliding window of 150 Hz for example 

could be used to gain information about increased correlations in that epoch, within one single 

trial. The window could then be moved by a predetermined value (e.g., 50 msec), and the 

processes of calculating which sensor sites had the maximal correlations could be repeated. 

Eventually, one could make comparisons between subjects as to which sensor locations shared 

the highest correlations, and most importantly, the temporal sequence in which the correlation 

patterns occurred. Of course, this would be a lengthy process, but the eventual possibility of 

answering the question of how temporal activity in visual cortex occurs during processing of a 

complex figure may outweigh the costs of lengthy periods of analysis time. 
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To conclude, as a preliminary test of Edelman's TNGS, neural network classifications coupled 

with correlation matrix transformations were successful in demonstrating the presence of 

non-linear patterns of activity during reversals of the Necker cube as different than processing of 

a two-dimensional figure. Significantly higher correlations in the experimental conditions were 

interpreted to be consistent with reentrant processes between distributed neuronal groups. The 

results provide evidence that although consistent with Edelman's TNGS, do not provide 

information about the temporal characteristic of information processing during reversals. Future 

research will focus on a detailed analysis in the time domain of each epoch prior to reversals, to 

further elucidate the nature of cortical activity during visual information processing. Increased 

use of neural network algorithms are advocated as methods for the detection of non-linear 

biological systems. Furthermore, neural network analysis should not be limited to classification 

of non-linear systems, but should also be included as a method to delineate meaningful 

information about a non-linear system, from the universe of possible alternatives. 



Appendix A 

Probabilistic Networks 

The operation of the Probabilistic Network function in Simulnet is based on the principles of the 

generalised regression neural network (GRNN) developed by Don Specht (Specht, 1991), and 

discussed by Wasserman (1993). In general terms, the GRNN, like the back-propagation neural 

network, is able to approximate any functional relationship between input and output. The 

following description will be based on a GRNN being used as a classifier; that is, to learn to place 

test exemplars into one of two or more categories. The GRNN can, however, also function as an 

associator, learning the association between the values of one or more predictor variables, with 

the values of one or more criterion variables. 

Structurally, the GRNN resembles the back-propagation neural network. The GRNN has a 

number of inputs equal to the number of predictor values in the training or testing exemplars. 

The input nodes of the GRNN, like those of a back-propagation network, are merely connection 

points to which the elements of the test exemplars are applied, one at a time. The GRNN has a 

number of hidden units equal to the number of training exemplars. There is one hidden unit for 

each training exemplar. Unlike the back-propagation network then, the GRNN does not require 

an estimate of the number of hidden units to be made before training can begin. Finally, the 

GRNN has a number of outputs equal to, if the GRNN is used as a classifier, the number of 

categories being discriminated, or more generally, the number of criterion variables being 

predicted. 

Functionally, however, the GRNN differs from the back-propagation neural network. First, there 

is no counterpart to the iterated back-propagation network training phase. Instead, the entire 

training matrix is installed in the GRNN, as the weights between the input and hidden layers. In 

more detail, the weights between the input nodes and each hidden node represent a single 



training exemplar. Thus, the weights between the input layer and hidden node 1 are the 

components of the predictor part of training exemplar 1 (remember that each exemplar, whether 

in the training matrix or the testing matrix, consists of two parts: the first part consists of the 

predictor values representing the values of the variables being used to predict some outcome, 

while the second part consists of the criterion values representing the values of the variables 

being predicted). The equivalent of training the GRNN thus takes no more time than is required 

to load the contents of the training file into working (RAM) memory. This scheme is in direct 

contrast with back-propagation networks which iteratively apply a heuristic, such as the method 

of steepest descent, to adjust the values of the input node to hidden node weights. 

The testing phase of the GRNN similarly differs significantly from that of the back-propagation 

network. In order to describe the GRNN testing phase, it is useful first to state what the outputs 

of the GRNN represent (again, when the GRNN is used as a classifier). The outputs of the 

GRNN are the probabilities that the test exemplars belong to the categories being discriminated. 

The GRNN implements a procedure for estimating the probability of a test exemplar vector given 

a set of training exemplars, based on the principle of bayesian classification. The GRNN will, in 

fact, approach an optimum Bayesian classifier, given a large enough number of training 

exemplars (Wasserman, 1993). The algorithm used for GRNN testing may be described as 

follows. 

The testing phase begins with a testing exemplar being applied to the input nodes. Each hidden 

node will thus receive the product, and more precisely the vector dot-product, of the testing 

exemplar and the training exemplar corresponding to that hidden node. This vector dot-product 

is a direct measure of the wllinearity, or in general terms the similarity, between the test vector 

and a training vector. Other similarity measures can also be used. The algorithm used in 

Simulnet uses the sum of squares of the difference between the test and training vectors. 



Each hidden node then performs a non-linear transformation on this dot-product. While in the 

back-propagation network the transformation generally involves the sigmoidal function, in the 

case of the GRNN the corresponding transformation involves the exponential function. The 

meaning of this transformed dot-product is that it represents the probability of obtaining the 

testing exemplar, given a probability density function with a mean equal to the training exemplar, 

and standard deviation defined by a parameter referred to as smoothing (generally, smoothing is 

the only parameter than needs to be selected when using the GRNN). Straightfonvardly, the 

GRNN computes at each hidden node the probability of the current test exemplar, given the 

existence of the training exemplar corresponding to that hidden node. In sum, the more similar 

or collinear the testing and training exemplars are, the greater the probability of that testing 

exemplar belonging to the training exemplar category will be. 

These individual probabilities need to be combined in order to generate the desired output of the 

GRNN. That is, the probability of the test exemplar, given all of the training exemplars. This 

combining is performed in the hidden to output section of the GRNN. The transformed output of 

each hidden node is connected to each output node. As in the back-propagation network, these 

connections between the hidden and output nodes contain weights. However, and again in 

contrast with the back-propagation network, these weights in the GRNN are not trained, but 

rather are assigned values. These values are dummy codes representing the category of each of 

the hidden nodes. Remember that each hidden node represents one training exemplar, and that 

that exemplar belongs to one of the categories being discriminated. The dummy codes between 

a hidden node and all the output nodes are 1 for the output node which represents the same 

category as the training node, and 0 for all other output nodes. As an example, if there are two 

categories, A and B, being discriminated, the GRNN will have 2 output nodes, node A and node 

B. 

Let us assume that hidden node 1, representing training exemplar 1, belongs to category A. The 

weight between hidden node 1 and output node A will be 1, and the weight between hidden node 
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1 and output node B will be 0. The effect of this coding is to connect only hidden and output 

nodes of the same category, with the result that an output node of a particular category will 

receive inputs only from hidden nodes of the same category. The output node then simply sums 

these individual inputs. While each of these inputs represents the probability of the current test 

exemplar given a particular training exemplar, this sum represents the probability of the current 

testing exemplar given all of the training exemplars in one category. Finally, in order to generate 

an output which represents the actual probability, the value at each output node is normalised by 

dividing by the sum of all hidden node outputs. 

Thus, for the 2 category example, the value generated by the network at output node 1 is the 

probability that the currently-applied test exemplar belongs to category A. The value at output 2 

is the probability that the testing exemplar belongs to category B. 

This technique of combining the probability density functions of individual exemplars of a 

category to approximate the probability density function of the category is due to Parzen (1 962). 

Parzen showed that with a sufficient number of exemplars of a class, the result will approach the 

true probability density function of the category. 

An advantage that the probabilistic network has over the neural network and the genetic network 

is the single pass nature of the algorithm. Training and testing can typically be several orders of 

magnitude faster for the probabilistic network than for the neural or genetic networks. A potential 

limitation is that, since all training examples are stored in working memory (RAM), the size of the 

training data set is limited by the amount of available memory. With 4 Mb of extended memory, 

a training file can consist of up to roughly several thousand examples with several hundred 

variables in each example. 



Algorithm: 

The following algorithm describes the testing phase of the GRNN. 

For each test exemplar x, 

For each training exemplar u, 

Compute an estimate of the probability of qgiven the probability density function of u,: 
h, = exp[- (x, - u,)T(x, - u,) / (2sZ)] (where s is smoothing) 

Compute the sum over the probabilities for all training exemplars: Sum (h,) 
For each output (category) c, 

Compute the sum of the probabilities hi for training exemplars from category k. 
ck= Sum (h, = k) 

Convert this sum to a probability by dividing c, by the sum over all h,: 
ck = [Sum (h,=k)] / [Sum (h,)] 

c, now represents an estimate of the probability of test exemplar xi given all training exemplars h, 
from category k. 
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Appendix B 

The following is a step by step procedural description of the EEG phase of this project. Several 

analytical attempts were made in this phase, and it is hoped that a review of these attempts may 

help the reader understand how the final methodology was developed. The data discussed in 

this review are EEG data only, since the EEG phase was intended to be the exploratory phase of 

the project. 

Analysis 1. As stated, the original EEG single trials consisted of 19 electrodes, each with 1024 

points. Early in the analysis procedure, it was found that single trials would classify based on the 

small eye movements present during Necker cube reversals. To avoid this confound, Fpl and 

Fp2 were removed from the analysis, leaving 17 electrode positions for analysis. From this 

point, four different processing conditions were carried out. For each single trial, covariance and 

correlation matrices were calculated, resulting in two 17 x 17 matrixes. Since reductions of 

signal to noise were believed to be important for neural network classifications, a reduced 

number of electrode positions were also selected from areas of cortex thought to be involved in 

this type of processing. This subset included central, temporal, parietal and occipital positions 

(T3, C3, C4, T4, T5, P3, P4, T6, 0 1  and 02). Covariance and correlation matrices were 

calculated for this subset of electrode positions, resulting in two 10 x 10 matrixes. Therefore, 

four matrix types were processed for each of the single trials. 

Each of the four matrix types were analyzed using one-tailed equal variance t-tests and the 

one-tailed Kendall's Tau procedure. Two classification attempts were made per matrix 

(experimental condition 1 vs. control; experimental condition 2 vs. control) for a total of 8 

classification attempts. Clearly, the 10 x 10 correlation matrix classified significantly more often 

than did any other matrix. In order of classifiability, the four matrixes, from best to worst were as 

follows: 



1. 10 x 10 correlation matrix (6 of 8) 

2. 17 x 17 correlation matrix (4 of 8) 

3.10 x 10 covariance matrix (3 of 8) 

4.17 x 17 covariance matrix (3 of 8) 

As shown above, covariance matrixes did not classify as well in comparison. In general, the 17 x 

17 matrixes mimicked the 10 x 10 matrix classifications, correlation matrixes resulting in 

significantly more classifications per subject. Therefore, the decision to use the 10 x 10 

correlation matrix data was obvious, as it appeared to hold more important information than did 

any of the others. 

Analysis 2. To ensure that high correlation subsets of were not restricted to posterior locations, 

a subset of correlations between frontal (F7, F3, Fz, F4, F8) and parietal, posterior temporal and 

occipital (TS, P3, Pz, P4, T6, 0 1  02) electrode positions were analyzed for mean and variance 

differences between experimental and control groups. No consistent differences were observed 

between the conditions, and intersubject variability was high. Interestingly, a consistent pattern 

found across all subjects and conditions was low mean values for correlations between electrode 

positions over left fronto-temporal cortex. Specifically, drastically low or even negative 

correlations were observed when any posterior electrode was compared to either F7 or T3. No 

low correlations were found in the homologous electrode positions, suggesting that this area of 

cortex may be involved in processing different from posterior cortex or right hemisphere. 

Analysis 3. Band pass filtering was also attempted, primarily based on the literature that 

suggests increased 40 Hz activity may be present during complex visual information processing. 

Considerable effort was expended to arbitrarily divide each EEG single trial into four 256 point 

quadrants (0-256; 257-512; 51 3-768; 769-1 024) with the intention of locating the section of the 

single trials with the highest mean difference in 40 Hz (35-45 Hz) activity. Each single trial was 

subjected to band pass filtering for each 256 point quadrant within subject. No obvious 

difference was observed in the single trial records between experimental and control conditions 
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for any of the subjects. A discussion as to the appropriateness of band pass filtering for complex 

cortical activity can be found in the discussion section. 

Analysis 4. Preliminary attempts were made to observe slow shifts in the data. A limited number 

of single trial (5 per conditionlsubject) were plotted and scrutinised for consistent slow shifts at a 

point in time related to eye closure. The data appeared heterogeneous in nature, especially 

between subjects, and no further frequency analysis of slow wave activity was undertaken. 

Analysis 5. Other neural network algorithms were used in attempts to determine the best 

non-linear classifier. A back-propagation neural network and a genetic algorithm from 

SIMULNET were employed to classify data that had been successfully classified using the GRNN 

network. Neither the back-propagation or genetic algorithm classified any of the training-testing 

files, and subsequently they were not used in any further analyses. 

7 The software used during the frequency analysis was developed by a member of the 
Brain Behaviour Laboratory (KJ Jantzen). 
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Appendix C 

The Necker Cube 



Appendix C cont. 

The 2-D control figure 
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