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Abstract 

An articulated figure, such as a human skeleton, can be described to a first approxima- 

tion as a hierarchical collection of rigid segments connected at revolute joints. A wide 

spectrum of techniques has been tried for animating such figures. At one end of the 

spectrum is the interpolation of keyframes which are created by explicitly setting the 

joint angles. This technique gives the animator complete control over the animation, 

but the task of creating keyframes becomes very difficult and tedious as the number 

of degrees of freedom of the figure being animated increases. At the other end of the 

spectrum are procedural animation of specific movement patterns and simulation of 

models of dynamic behavior of the figures. The former is limited in its application 

while the latter is intractable, and provides very limited control over the animation. 

If keyframe creation can be automated or expedited, it can very effectively aid the 

task of making animations while still leaving full control with the animator. This can 

be achieved by automating the inverse kinematic calculation of the joint angle values 

required to make the figure attain a specific posture. 

This thesis presents the development and implementation of a system which uses 

an iterative nonlinear constrained optimization algorithm for solving the problem 

of inverse kinematics in the presence of constraints on the figure. A function of 

the difference in the current and desired posture of the figure, called the objective 

function, is minimized to allow direct manipulation of the articulated figure. The 

algorithm displays super-linear convergence and allows interactive manipulation of 

complex figures. Physical integrity of the figure is maintained and all the constraints 

imposed on the figure are satisfied at all times. The algorithm requires first and second 

order partial derivatives of the objective function and constraints, which for a general 



articulated figure, requires symbolic computation. Algorithms for efficient procedural 

evaluation of these quantities for any tree structured planar figure are developed. 

Each iteration of the optimization algorithm requires inversion and recalculation 

of matrices. Techniques developed in the field of numerical optimization, which have 

not been previously used for articulated figure animation, are employed to factorize 

various matrices. Availability of factors allows efficient inversion and recalculation of 

the matrices involved. 

Previous attempts at direct manipulation of articulated figures have been limited 

to manipulating one part of the figure at a time to produce the keyframes, which are 

analogous to snapshots of the complete movement. Our approach extends the concept 

to allow manipulation of multiple parts of the figure simultaneously by associating a 

trajectory with each part. The use of the trajectories permits development of complete 

movement sequences. 
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Chapter 1 

Introduction 

Using the computer to generate physically realistic and visually pleasing animation 

sequences of objects and figures has been a major goal for computer graphics research. 

While creating real life interactions between inanimate objects in the presence of 

external forces is an important field of research, it is the simulation of the behavior 

of living beings which inarguably evokes maximum interest. The ability to produce a 

convincing model of a living being on a computer and to simulate its actual behavior 

and movement patterns finds application in fields as diverse as entertainment and 

ergonomics. 

The most intuitive solution for simulating the movement of a human being is to 

perform a dynamic analysis of its detailed biomechanical model under the influence 

of external forces. This approach, however, has a number of problems. Biomechan- 

ical models and dynamic and kinematic couplings between various body parts are 

not very well understood. Moreover, accurate dynamic analysis of such complicated 

systems is intractable given today's methods. However, research has been directed 

in this direction and systems have been reported which produce striking animations 

of articulated figures. But this success is limited to a very small set of movements 

and very simple figures. Moreover, the animations are not produced in real-time, nor 

do these systems provide much control to the animator. Thus, physical realism is 

obtained at the cost of artistic quality in the movement. 

The conventional approach to animating complex articulated figures has been 
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by computer interpolation of keyframes which are created manually. This approach 

gives the animator complete control over the movement. However, most keyframing 

systems require explicit setting of individual joint angles of the figure to create the 

desired pose. This process becomes very tedious and error prone as the complexity of 

the figure increases, resulting in long production times. 

If the conventional technique is augmented so as to allow direct manipulation of 

figures, then the task of keyframe creation will be greatly expedited. With such an 

approach, the user will be able to retain complete control over the animation. For 

instance, the user could interactively drag a part of the figure to the goal, and have 

the computer calculate the values for multiple joint angles to enable the requisite 

movement of the figure. 

1.1 Problem Description 

A basic requirement for creating and manipulating a realistic model of a vertebrate 

animal is the availability of means to represent its body, muscles, bones etc. The 

skeletal structure shorn of skin and muscles of the living being is the simplest approx- 

imation of its body. Then, making the skeleton move in a realistic manner represents 

the most fundamental problem that needs to be solved before a more complete model 

can be simulated effectively on the computer. 

The skeleton of a vertebrate animal, for instance a human, is a hierarchical collec- 

tion of rigid segments connected at revolute joints. A joint in the tree shaped skeleton 

is designated as the root. The root remains fixed at its location during the direct ma- 

nipulation of the figure. The whole figure can be translated, without changing the 

relative orientation of the rest of the skeleton, by moving the root. Any joint which 

is used for direct manipulation of the figure is designated as the end eflector. The 

part of the skeleton from the root to an end effector is termed as a kinematic chain. 

Calculation of the joint angles required to position the end effector at a desired point 
T .  in space is an inverse kinematic problem. If X = [xl, 2 2 ,  ... , x,] is the position vector 

of the end effector and 0 = [01, 02, ..., O,lT are the joint angles between the base of the 
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kinematic chain and the end effector, then X can be represented as a function of 8 ': 

T Given a point P in space, with the position vector X p  = [xpl, xp2, ..., xpm] , 
the problem of calculating the joint angle vector 8p = [Opl, O p 2 ,  . . . , Op,IT such that 

X = Xp is called the inverse kinematics problem and requires finding the inverse of 

Equation 1.1. 

1.2 Thesis and Demonstration 

The thesis of this dissertation is that the task of articulated figure animation can be 

expedited without relinquishing any control over the animation by direct manipula- 

tion of the figure for the purpose of creating keyframes; direct manipulation of an 

articulated figure can be facilitated by automating inverse kinematic calculation of 

the joint angles required to take the end effector to the goal; the inverse kinematic 

problem can be solved effectively by using techniques from nonlinear optimization; 

physical integrity of the entity represented by the figure can be ensured and the effort 

involved in the creation of the keyframes can be reduced by specifying constraints on 

the figure; simultaneous manipulation of multiple end effectors can be effected and 

complete movement sequences can be created by associating a trajectory with each 

end effector. 

The inverse kinematic problem of determining the joint angle vector Bp such that 

the end effector is placed at the goal is cast as an optimization problem where a 

suit able function, called the objective function, of the Euclidean distance between the 

end effector and the goal P, IIX - Xp 11, , is minimized. Constraints are allowed to 

limit the acceptable values of the joint angles and to force any point on the figure 

'See Appendix A for notation. 
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to be locked in its position. The joint angles 8 are the variables of the minimization 

and the solution of the minimization process is the required joint angle vector tip. 

Real-time performance is achieved by using an iterative optimization algorithm which 

converges rapidly. Techniques are used which improve the efficiency of each iteration 

of the algorithm. 

As a proof of the concept, a simple editor is implemented which allows interactive 

creation of tree structured, planar articulated figures. The system allows the anima- 

tor to interactively drag the end effector to the required position. The joint angle 

values required to attain the pose are determined automatically. Hence, the drudgery 

involved in the specification of the joint angles is obviated. The system also allows 

interactive specification of the limits on the acceptable values of the joint angles and 

the locking of the joints in their position. Multiple end effectors can be specified and 

a trajectory can be associated with each end effector. 

1.3 Nonlinear Optimization 

An iterative, nonlinear, constrained optimization algorithm is used to solve the inverse 

kinematic problem in the presence of constraints on the figure. The algorithm belongs 

to the class of Projected Lagrangian Methods [GMW81]. This class of algorithms 

poses a linearly constrained subproblem in each iteration, called major iteration. In 

particular, the algorithm used in this research poses a linearly constrained quadratic 

programming subproblem which is solved iteratively. Iterations associated with the 

solution of the subproblem are called minor iterations. 

If k is the index of major iteration, the solution of the quadratic programming sub- 

problem provides a search direction vector pk .  A step length cwk along the search direc- 

tion pk which produces suficient decrease in some metric, called the merit function, 

is determined. The joint angle vector 8k+l for the next iteration is set to  ek  + akpk .  

The process continues until1 the termination criteria are satisfied. 

The minimization problem solved in this dissertation is characterized as having: 

1. a non-linear, twice-continuously differentiable objective function, 
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2. linear equality/inequality constraints, 

3. non-linear equality/inequality twice-continuously differentiable constraints and 

4. initial values for variables of minimization always feasible with respect to con- 

straints. 

1.3.1 Calculation of Derivatives 

The minimization algorithm described above requires evaluation of the gradient and 

the Hessian of the objective function as well as the gradients of the nonlinear con- 

straints imposed on the figure2. Calculation of these quantities for a general ar- 

ticulated figure and general nonlinear constraints requires symbolic computation or 

forwardlcentral difference approximations. These techniques are computationally ex- 

pensive and can result in serious degradation in the performance. However, simpli- 

fications result if the figure is constrained to be planar. Algorithms for the efficient 

procedural evaluation of these quantities have been developed. 

1.3.2 Matrix Factorization 

Each iteration of the algorithm requires inversion of the projected Hessian of the 

objective function. The 0(n3)  computation involved in the process can render the 

algorithm ineffective for interactive applications. This situation is avoided by main- 

taining Cholesky Factorization of the matrix. When such a factorization is available, 

inversion becomes an 0 (n2 )  process. The matrix in question changes with every it- 

eration and recalculation of the factorization from scratch would again require 0(n3) 

operations. However, the factorization can be updated in 0 ( n 2 )  operations using a 

class of quasi-Newton updates called BFGS updates [Bro88], [Fle70], [Gol70], [Sha7O]. 

These updates utilise the old factors and curvature information obtained by the move 

along the search direction to calculate the new factors. 

The implementation of the algorithm also requires the set of vectors which form the 

basis for the Null Space and the Range Space of the constraint gradient matrix. These 

'See Appendix A for definitions. 
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are computed by maintaining Orthogonal Factorization of the constraint gradient 

matrix. The constraint gradient matrix changes during the course of minimization. 

But, efficient techniques exist to update the factors and other associated matrices. 

These techniques are employed in this research to achieve interactive performance. 

1.3.3 Treatment of Constraints 

Different types of constraints are treated separately so as to allow considerable reduc- 

tion in the computation. Far instance, the gradients of linear constraints are constant 

vectors while those of nonlinear constraints change with each iteration. Thus. only 

the nonlinear constraint gradients need to be evaluated in every iteration. The sepa- 

rate treatment of constraints also allows efficient calculation and modification of the 

matrix factorization mentioned above. 

1.4 Organization 

The rest of this thesis provides details of our approach to the direct manipulation of 

articulated figures. Chapter 2 presents an extensive discussion of previous attempts 

in the field of computer animation, and identifies their drawbacks. Chapter 3 formally 

casts the inverse kinematics problem into a nonlinear, constrained minimization prob- 

lem. It also describes the simplifications that result when a planar, tree structured 

figure is considered and presents algorithms for efficient evaluation of the objective 

function, its gradient, its Hessian, non-linear constraints and their gradients. Chapter 

4 gives a brief survey of relevant nonlinear optimization methods and details of the 

algorithm used for this research. Implementation of the techniques for animating pla- 

nar, articulated figures and their applicability to 3-D figures is discussed in Chapter 

5. Conclusions and possible directions for future work are presented in Chapter 6. 



Chapter 2 

Related Work 

Computer graphics research of the past two decades in the area of motion control 

for animation in 3-D can broadly be placed in three categories - forward kinematics, 

inverse kinematics and dynamics. 

2.1 Forward Kinernat ics 

The first approach to animation using forward kinematics involves creation of keyframes 

by explicitly setting the joint angles to obtain the desired configuration of the object 

or the figure to be animated. The computer is then used to create intermediate frames 

by interpolating the motion parameters. The figure is animated by displaying these 

frames. 

Earlier systems used linear interpolation of motion parameters such as joint coor- 

dinates, joint angles etc. to generate intermediate frames. This approach, however, 

often resulted in unnatural and jerky motion and distortion of the figure [SGWM93]. 

In an attempt to create smooth movements, methods have appeared which use splines 

to interpolate various motion parameters [Ste83], [Stu84], [KB84]. The use of quater- 

nions for specifying rigid body orientations has also been suggested [Sho85]. This 

technique removes some of the artifacts introduced by the use of splines for interpola- 

tion. These systems provide the animator with complete control over the movement 

to the animator. 
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Well understood techniques based on traditional animation [Las87] exist to impart 

expressive quality to the animation. Some beautiful animations, for example Luxo 

Jr. [Pix86], Tony de Peltrie etc. have been made using such systems. In the case of 

articulated figures, as the degrees of freedom (DOF) increase, this approach becomes 

very time consuming and error prone. For instance, the human skeleton can have in 

excess of two hundred DOF. It is a very difficult task to create keyframes for such a 

complex figure merely by setting the joint angles. For placing the end of a limb at a 

desired location, one needs to manipulate joint angles starting from the root to the 

end of the limb. This can require multiple iterations by trial and error to obtain the 

correct configuration. 

Inverse Kinematics 

The second approach employing inverse kinematics attempts to reduce the animator's 

tedium by providing means for keyframe creation without the explicit setting of joint 

angles. Typically, the user is allowed to interactively drag the end of a limb to the 

desired location while the computer calculates the joint angles required to achieve the 

goal. This approach has the advantage of complete control over the movement, as 

accorded by systems employing forward kinematics but without the drudgery involved 

in the creation of keyframes. This approach has also been extensively studied [GM85], 

[ZB90], [Sur92a], [We193]. Since inverse kinematics is the focus of this dissertation, a 

more detailed analysis of the related work follows. 

2.2.1 Jacobian Based Control 

Girard and Maciejewski [GM85] describe a system for animating legged figures which 

incorporates inverse kinematic positioning and a simple model of dynamic behavior of 

the body to provide realistic animations of a walk. They solve the problem of inverse 

kinematics by linearizing the set of forward kinematic equations (see Equation 1.1) of 

the end effector about the current operating point: 
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then A X  = Vf(8)AO 

orAX = J(8)AO 

where J ( 8 )  is called the Jacobian of f(8) .  

The linear system of simultaneous equations, given by Equation 2.1, is solved to 

find incremental changes in the joint angles of the kinematic chain for the incremental 

changes in the position of the end effector. Joint angles are integrated over time to  find 

the new state of the chain. If the Jacobian matrix is non-square, a generalized inverse 

called the pseudoinverse is employed which gives the least-square minimum norm so- 

lution to Equation 2.1. An additional term can be incorporated in Equation 2.1 which 

minimizes a certain criterion to provide a unique, desirable configuration for the kine- 

matic chain, from a set of infinitely many possible configurations. The step trajectory 

is specified using a Catmull-Rom spline which interpolates the end effector positions. 

The pseudoinverse, which needs to be updated for every time step, involves 0(n3) 

computation, making it unsuitable for interactive manipulation of complex figures. 

Moreover, the highly non-linear nature of equations, which generally occur in this 

kind of applications, requires a small time step for the relationship of Equation 2.1 to 

remain valid. The time required for computation is inversely proportional to the time 

step size. Most importantly, this system does not incorporate constraints on the fig- 

ure or the joint angles and hence cannot prevent generation of physically unrealizable 

postures. 

2.2.2 Optimization Based Methods 

Optimization techniques provide an elegant framework for tackling the inverse kine- 

matics problem in the presence of constraints on the figure. Badler et a1 [ZB90], 

[PZB9O], [BPW93] present one such algorithm for manipulating articulated figures. 

A potential function, which is a function of the joint angles in the kinematic chain be- 

ing manipulated, is associated with each end effector. The inverse kinematic problem 

is formulated as the minimization of the weighted sum of all the potential functions, 

subject to linear constraints on the joint angles. The optimization algorithm used 

is Rosen's projection method with BFGS updates. This algorithm belongs to  the 
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class of quasi-Newton methods where, instead of calculating the exact second order 

information about the objective function, an approximation to it is calculated in ev- 

ery step. This technique, in addition to providing super-linear convergence towards 

the solution, helps eliminate expensive calculation of the Hessian. In particular, the 

algorithm used by Zhao [ZB90] starts with an identity matrix as an approximation to 

the inverse of the Hessian of the objective function. This identity matrix is updated 

in every iteration such that it approximates the actual inverse of the Hessian. They 

demonstrate very convincingly the applicability of optimization techniques for the fig- 

ure manipulation. They present a variety of potential functions which can accomplish 

tasks like placing the end effector at a point in space, making it point in a desired 

direction, forcing it to move along a line or a plane etc. 

In spite of its successful application to spatial tasks, this approach has some draw- 

backs. First, for optimization to proceed in the correct direction, the Hessian or its 

approximation must be positive definite. The (Badler et al) approach of maintain- 

ing an approximation to the inverse Hessian is known to lose the important property 

of positive definiteness of the Hessian due to numerical roundoff errors, so that the 

search direction calculated is not guaranteed to produce any decrease in the objective 

function. Thus this method is not very robust. Secondly, the identity matrix that is 

taken as an approximation to the inverse at the beginning of each optimization cycle 

does not bear any resemblance to the actual inverse. This in most cases makes the al- 

gorithm expend extra effort in finding the solution. Finally, since they do not support 

nonlinear constraints, tasks like pinning an end effector to a point in space cannot be 

accomplished. Such situations often arise in pose creation when the end effector is at 

the desired location but internal joints are not. The easiest way to correct the pose 

is to immobilize the end effector at its current position and then move intermediate 

joints. 

Another very recent and relevant work is that of Surles [Sur92a], [Sur92b] who 

presents a physically-based modeling system for large proteins where the user can in- 

teract ively manipulate protein chains. A constrained optimization algorithm is used to 

arrive at physically valid configurations of the protein chains. The physical constants 

like bond lengths are modeled as nonlinear equality constraints while comparatively 



CHAPTER 2. RELATED WORK 1 1  

weaker forces like near neighbor interactions are modeled as potential energy which 

needs to be minimized. The 3-D coordinates of the atoms or nodes in the protein 

chains are taken as variables for optimization. The problem is characterized by a 

nonlinear, twice differentiable objective function and nonlinear equality constraints. 

Surles uses an optimization method which combines first order Lagrange multiplier 

estimation techniques with the steepest descent method for the calculation of the 

search direction. Since the constraints in this problem refer to a fixed number of 

optimization variables and the number of constraints in a user session remains fixed, 

a one time preprocessing of the constraint Jacobian is done to obtain a band diago- 

nal matrix whose structure remains fixed throughout the user session. This enables 

each iteration of the optimization algorithm to have linear computational complexity. 

Close to real-time performance on a higher end workstation is shown even for large 

proteins. 

Though the formulation of the problem used in Surles' work is very appropriate 

for the intended application, it is not very suitable for figure manipulation. Using 3-D 

coordinates as the variables for optimization requires one non-linear constraint to be 

introduced for each link in the figure. Moreover, to support constraints like bounds on 

the joint angles, inequality constraints would be required. In the presence of inequality 

constraints, the constraint Jacobian will change whenever an inequality constraint 

changes state from active to inactive and vice versa. This will substantially degrade 

the performance of the algorithm making it unsuitable for interactive applications. 

Moreover, the algorithm cannot have better than linear convergence rate because of 

the first order characterization of the objective function and constraints. 

2.2.3 Heuristics Based Control 

There have been attempts to solve the inverse kinematics problems using heuristics. 

Two such algorithms are reported by Welman [We193]. One method that he puts 

forward is similar to that of Girard and Maciejewski [GM85]. After making some 

simplifying assumptions, he arrives at Equation 2.2 as a solution for Equation 2.1. 
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The control accorded is fast and intuitive and the algorithm has been used as 

a basis for a powerful animation system called Lifeforms. The system also allows 

specification of simple geometric constraints on the figure. The second algorithm 

works by traversing the kinematic chain from the end effector towards the root and 

minimizing the orientational and spatial difference between the end effector and the 

goal at each joint. 

Though Welman's system is effective in its application, some drawbacks remain. 

The heuristic nature of the first algorithm can lead to unexpected problems while 

manipulating the figure. For instance, Equation 2.2 suggests that the algorithm will 

provide a vector Ae for any vector AX. The system is also prone to singularities 

in the Jacobian matrix which leads to large joint angle velocities. Moreover, the 

joint angle vector is first calculated without considering the constraints and then 

any joint angle value which violates associated constraints is truncated such that the 

constraints are satisfied. This is an ad hoc way of enforcing constraints and introduces 

unquantifiable errors in the solution. In a similar manner cases can easily be devised 

where the second algorithm would fail to work. However, Welman demonstrates the 

efficacy of even approximate inverse kinematic techniques for creating keyframes. His 

work and the understanding of the problems involved in inverse kinematic control 

generated, have provided a major impetus for this research. 

2.3 Dynamics 

The third approach to creating animations is based on a dynamic model of the object. 

While kinematics concerns itself with positions, velocities and accelerations of different 

parts of the object or the figure, the focus of dynamics is on the forces required to 

cause movement. Given applied forces, the problem of calculating accelerations in 

the various parts of the figure is called forward dynamics while the reverse problem 

is known as inverse dynamics. The model is used to simulate behavior that obeys 
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the physical laws that govern motion in real life. A large body of research in the 

past decade has been directed towards solving the forward/inverse dynamics problem 

to produce realistic animations of a variety of objects, including simple articulated 

figures. Though these systems produce realistic animations, they are mostly restricted 

to animating simple geometric objects or articulated figures with very few degrees of 

freedom because of the complexity of the system of equations that needs to be solved to 

produce dynamically correct behavior. Another drawback is that the control provided 

to the animator is in terms of the parameters of the dynamic systems. Such control 

is not very intuitive nor is it easy to produce the desired result in the movement. It is 

fair to say that some attempts, e.g. [IC87], [BB88], [WK88], [Coh92] have been made 

to rectify this drawback. Nevertheless, problems still remain which have inhibited the 

use of these systems for creating general animations of complex figures. Some of the 

works reported in this area are discussed below. 

2.3.1 Control Using Kinematic Constraints 

Amongst the earliest attempts to produce dynamically correct movement, without re- 

linquishing complete control are those of Isaacs and Cohen [IC87] and Barzel and Barr 

[BB88]. They maintain kinematic constraints on the figure/object being simulated 

by calculating the forces that will be required to keep the constraints satisfied. These 

constraining forces are then introduced into the simulation to exactly cancel out the 

components of applied forces, which would otherwise work against the satisfaction of 

the constraints. 

Barzel and Barr [BB88] describe a physically-based modeling system with libraries 

for primitive bodies such as rods, spheres etc., external forces such as gravity, springs 

etc. and geometric constraints such as point-to-point constraints and point-to-path 

constraints. Composite objects are created by specifying component objects which are 

kept together by specifying constraints. Physically valid simulations are created by 

specifying external forces acting on the composite object. The building block approach 

to object modeling facilitates creation of new models and movements quickly. 

Isaacs and Cohen [IC87] present a system for dynamic simulation of linked figures 



CHAPTER 2. RELATED WORK 14 

which allows specification of kinematic constraints and behavior functions to provide 

limited control over the movement of the figure. Simultaneous equations of motion 

are solved to obtain incremental accelerations of DOF, which are integrated in time 

to obtain the new state. Kinematic constraints help reduce the number of variables 

in the set of simultaneous equations. However, the computational effort expended is 

inversely proportional to the time step in the integration process and is exponentially 

related to the number of DOF. This severely limits the use of their method in inter- 

active applications, even though it introduces a very powerful concept of providing 

control over the movement in a dynamical setting. 

Among the attempts which used optimization techniques to produce dynamically 

correct behavior, especially noteworthy is the one by Witkin and Kass [WK88]. They 

introduce the concept of space-time constraints as a higher level control mechanism 

for influencing the animation of articulated figures. They optimize a user-specified 

criterion subject to nonlinear equality constraints which can be either kinematic or 

derived from Newtonian mechanics. The algorithm used for optimization is called 

Sequential Quadratic Programming (SQP). In addition, they implement a symbolic 

algebra system which is responsible for symbolically differentiating various functions 

and setting up modules for evaluating finite difference approximations to the deriva- 

tives. These modules can be linked with the program dynamically. They show an 

impressive animation of 'Luxo Jr.' jumping and skiing, and displaying effects like 

squash and stretch, anticipation etc. 

Since optimization takes place over the entire stretch of animation, the nonlinear 

system which needs to be solved gets very large even for a relatively simple and short 

animation sequence. Though the system facilitates creation of complete animation 

sequences which are visually appealing and dynamically correct, the complexity of 

the system that needs to be solved inhibits its use for interactive applications or for 

complex articulated figures. Moreover, the control accorded to the animator, though 

high level, is not necessarily very intuitive. For instance, varying a spring factor for a 

muscle need not produce the desired effect in the animation. An optimization criterion 

must be selected depending upon the goal of the animation. It is not clear what kind 

of criterion will produce what kind of an effect. Finally, the system requires the user 
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to provide an accurate dynamical model of the object to be animated. 

Brotman and Netravali [BN88] adapt techniques from optimal control theory to 

create natural looking animations of rigid objects. They solve a set of differential 

equations arising out of the dynamics of the object to make it move. A user can 

exercise control over the movement by specifying keyframes which impose kinematic 

constraints over the movement. Smooth control forces are introduced which make 

the movement satisfy the constraints. Overall control energy is minimized using al- 

gorithms from optimal control. However, their approach is applicable to rigid objects 

with a few degrees of freedom and is not suitable for complex articulated figures. 

Moreover, the user is expected to provide the models of dynamic behavior of the 

objects. 

Cohen [Coh92] further extends the ideas of space-time constraints [WK88] and 

optimal control [BN88] to provide support for animating simple articulated figures. 

He uses the divide and conquer approach to reduce to some extent the complexity 

inherent in earlier systems by subdividing the space-time into discrete pieces called 

space-time windows. Each of these windows poses an independent subproblem to the 

numerical optimization process. The subproblems are solved to obtain sub-sequences 

of animation. The sub-sequences are smoothly interpolated from window to window 

to get an integrated animation. The graphic interface to the system facilitates control 

over the animation by allowing interactive specification of constraints. The user is 

also given the ability to monitor the progress of the optimization process and guide 

it if it gets stuck in local minima. The higher order information about the objective 

function and the constraints is obtained by symbolic computation. However, as is 

the case with other systems based on the models of dynamic behavior of the objects, 

the system is quite slow. Even simple animation sequences of figures with a very few 

DOF take up to several seconds. 

2.3.2 Dynamic Programming Based Methods 

Girard [Girgl] describes a dynamic programming approach to producing expressive 

movement of legged figures. This approach embeds resolved motion rate control 
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[GM85] into a broader system which attempts to produce movements where cer- 

tain criteria such as jerk in the end effector or energy expended in the movement 

are minimized. Both kinematics and dynamics based variables are optimized subject 

to constraints. A recursive Newton-Euler formulation and the concept of gradual 

refinement are employed to mitigate the complexity of the algorithm. 

2.3.3 Control Schemes Derived from Biomechanical Models 

Lee et a1 [LWZB9O] extend the earlier work of Zhao and Badler [ZB90] by incorporat- 

ing a variation of the inverse dynamics algorithm to calculate trajectories for the end 

effector for tasks such as lifting a load. Heuristics, such as strength, comfort, perceived 

exertion etc., which are derived from anthropometric data, are used as constraints in 

the selection of appropriate trajectories. The algorithm is shown to be suitable for 

task level control for a limited set of tasks. 

Another step in the same direction is by Phillips and Badler [PB91] who use kine- 

matic constraints to model behavioral tendencies of humans and provide interactive 

control over the figure's balance and stability. This work could be grouped along with 

that of [TBM+88], [BC89], [RG91] as an attempt to provide human figure animation 

based upon a biomechanical model of the human body. By definition, such systems 

are very specialized in nature and cannot be used for creating general animations. 

2.4 Summary 

Animating an articulated figure like a human skeleton and modeling physically correct 

movement patterns are complex tasks. Animation of a body requires coordinated 

movement of its various parts, for example arms, legs, torso etc. A simple forward 

kinematics based system is inadequate for animating complex articulated figures. 

We see from the discussion in the previous sections that many researchers have 

attempted to create realistic animations by simulating the dynamics of the motion. In 

spite of providing a powerful concept, they are severely restricted in their applicability 

by their inability to handle all but very simple figures or by the lack of interactive 
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performance. Moreover, most of these systems are very specific in terms of objects 

that they can animate. Those which are not require the user to provide a model of the 

dynamic behavior of the figure to be animated. Certainly an animator, though skilled 

in producing expressive movements, is neither equipped nor expected to understand 

the myriad details of the mechanics of complex objects. This further inhibits the 

usability of these systems. The movement produced in these systems can be physi- 

cally correct. However, it falls short of the requirements for sophisticated animations. 

These systems make it difficult for the animator to impart expressive quality to the 

animation because of the limited control that they provide for influencing the anima- 

tion. Moreover, in the case of articulated figures, where the object of animation is a 

living being, factors like comfort, objective, culture, etc. play an important role in 

determining the resulting motion. A system based only on a dynamic model cannot 

account for all such effects that make a movement look realistic. 

We believe that it is not only of paramount importance to leave complete control 

of the movement with the animator, it also makes pragmatic sense to do so consid- 

ering the scant existing knowledge of what goes into producing a realistic movement. 

It will be quite some time before human body movement is completely understood 

and efficient techniques are developed which can handle such large scale dynamics 

based problems. To date, inverse kinematics techniques, though leaving the onus of 

imparting realism to the animation with the animator, have been most successful in 

providing fast and intuitive means for manipulating articulated figures. Besides, since 

the dynamics based methods cannot address all the issues involved in the movement 

of humans/living beings, it appears reasonable to leave the animator in complete con- 

trol of the not so well understood movement design process, while providing him/her 

with a fast prototyping system by solving a simpler problem. This is the rationale 

for this research. The next few sections detail the techniques which are proposed to 

achieve this end. 



Chapter 3 

Articulated Figures and Inverse 

Kinematics 

An articulated figure, such as a human skeleton, is a tree structured hierarchy of rigid 

segments connected by joints. By and large such figures have revolute joints. The 

joints can be simple, permitting rotation in a plane only, as for instance in a human 

knee. They can be complex, making two or three degrees of freedom possible, as in 

an elbow or a shoulder joint. However, complex joints can always be approximated 

by a succession of simple joints providing rotation in different planes. 

The figures considered in this research are planar and are made of rigid segments 

connected at  simple revolute joints, each of which allows rotation in only one plane. 

One joint in the figure is designated as the root (see Figure 3.1). Other segments in 

the figure move with respect to the root. The root can be used to translate the whole 

figure without changing the relative position of other parts of the figure with respect 

to  the root. Any point on the figure used for manipulation is referred to  as the end 

eflector. The set of segments and joints from the root to the end effector constitutes a 

em kinematic chain. I refer to a kinematic chain and all the branches originating from 

it as a kinematic subtree. A figure can have multiple kinematic subtrees. Manipulation 

of an end effector affects only its own subtree. 

For the purpose of kinematic analysis, only a simple kinematic chain, extending 

from the root to the end effector will be considered. For an n-segment chain, the 
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Kinematic Chain 

I Revolute 
I I 
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Figure 3.1: Articulated Figure 

f ector 

Joint 

Segment 

segments and joints are numbered 1 to n starting from the proximal and going to 

the distal. The ith joint is the joint connecting the ith and ( i  + l ) th  segments. By 

convention, the root is designated as joint 0 and is assumed to be the joint between a 

zero length segment and segment one. The end effector is referred to as the joint n. 

A coordinate frame is a set of three concurrent, orthonormal vectors called coordi- 

nate axes. The point of concurrence is called the origin of the coordinate frame. Any 

point in 3-D space can be represented as a unique triplet of projections made by the 

line joining the origin and the point with each of the coordinate axes. This triplet is 

termed the coordinate vector or coordinates of the point with respect to the coordi- 

nate frame. Homogeneous coordinates of a point are the coordinates augmented with 

a fourth component. Homogeneous coordinates allow a unified treatment of rotations 

and translations when applied to a vector. 

The root is assumed to be placed at the origin of a coordinate frame, called the 

base frame or coordinate frame 0. One coordinate frame is rigidly attached to each of 
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Figure 3.2: Coordinate Frames Using Denavit-Hartenberg Convention 

the segments such that the coordinates of the ith segment and the ith joint never vary 

with respect to the ith coordinate frame. Homogeneous coordinates of points given in 

the ith coordinate frame can be converted into coordinates in the ( i  - l ) th  coordinate 

frame by a transformation matrix M;. 

3.1 The Denavit-hart enberg Convention 
I 

The Denavit-hart enberg [DH55], [SV89] convention establishes a framework for sys- 
I 

I 

tematic specification of coordinate axes for different segments in the chain. The 

convention uniquely specifies the coordinate axes for each degree of freedom of the 

articulated figure. The axes obey the right hand rule. So, specification of any two 

axes results in a unique specification for the third axis. The axes for each segment 

are fixed such that the axis x; is perpendicular to and intersect the axis 2;-1. 

For a three-dimensional figure, the homogeneous transformation Mi between the 

ith and (i - l ) th coordinate frames is characterized by the following four parameters 

(see Figure 3.2): 

1. length ai of the ith segment: It is the shortest distance between the axes z; and 

measured in the direction of x;. The corresponding translation matrix is 
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given by TZyai, where: 

2. segment twist a;: It is measured as the angle between the axes z; and z;-1, in 

3. distance d; between the segments: It is the distance between the origin of the 

frame i - 1 and the intersection of the axes xi and z;-1. The positive direction 

is the direction of 2;-1. The translation matrix TZldt is given by: 

the plane normal to xi. The corresponding rotation matrix R,,,, is given as 

follows: 

4. angle 6; between the segments: It is the angle between x; and x;-1 axes, mea- 

RX,,, = 

sured in the plane normal to z;-l axis. The corresponding rotation matrix RZ,ei 

- - 
1 0  0  0  

0  cos a; - sin a; 0  

0  sina; cos a; 0  

0  0  0  1 - - 

The composite transformation matrix Mi is a product of the rotation and translation 

matrices described above: 

is: 

RZ,ei = 

- - 
cos 6; - sind; 0  0  

sin 6; cos 6; 0  0  

0  0  1 0  

0  0  0 1  - - 
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Figure 3.3: Kinematic Chain In xy Plane 

Simplifications result for a planar kinematic chain. As shown in Figure 3.3, joint i 

becomes the origin of the ith coordinate frame. All z axes are parallel to each other and 

the axis x; is directed along the ith segment, away from the root. The intersection 

of the x; and 2;-1 axes is also the origin of the ( i  - l ) th  coordinate frame. Thus, 

quantities a; and d; are zero such that R,,,, and TZldl become identity matrices. 8; is 
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the only variable for all i E (1,2, . . . , n). The matrix M; reduces to the form: 
I 

cos 8; - sin 8; 0 a; cos 8; 1 

The transformation matrix Mn,o required to convert coordinates of points in the nth 

coordinate frame into coordinates of the base frame is given by cascaded multiplication 

M; = 

of transformation matrices from the root to the end effector: 

MnYo = MI . M 2 .  - - Mn 

sin 8; cos 6; 0 a; sin 8; 

0 0 1 0 

- sin EOi 

The last column of Mn,0 gives the homogeneous coordinates of the origin of the nth 

frame, which coincides with the end effector, with respect to the base frame. Thus 

for a planar chain, the x and y coordinates of the end effector, which are the first two 

elements of the last column of MnTo, are given by Equations 3.4 and 3.5. 

3.2 Inverse Kinematics 

For an n-segment kinematic chain, the coordinates of the end effector with respect 

to the base frame are completely determined by the joint angles from the root to 

the end effector (see Equations 3.4 and 3.5). Thus, the relationship between a vector 
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T X = [xl, 2 2 ,  ... , x,] of end effector coordinates (m = 2 for planar case) and a vector 

of joint angle variables 8 = [el, 02, ..., O,lT can be represented by Equation 3.6. 

The calculation of the position of a point on a kinematic chain for a given joint 

angle vector is called the forward kinematic problem. Equation 3.6 has a unique 

solution for any vector 8. The chain can be brought to any desired configuration by 

specifying appropriate values for joint angles. 

The complementary problem of determining the joint angle vector 8 for a given 

position vector X of the end effector is an inverse kinematic problem. To move the 

end effector to a desired location, joint angles need to be determined so that the goal 

is achieved. This requires finding the inverse of Equation 3.6, which is a set of non- 

linear equations. The simultaneous solution required is not easy to  find, and there 

may not be any solution. Even if a solution exists, it is not guaranteed to  be unique. 

The same end effector position can be achieved by different sets of joint angles (see 

Figure 3.4). No closed form solution exists for an arbitrary chain. 

The inverse kinematic problem of finding the joint angle vector Op,  which will 

make the end effector position vector X = Xp, where Xp is the vector of coordinates 

of any point P, can also be stated as a problem of minimizing the Euclidean distance 

between X and Xp. 

3.3 Constrained Minimization 

The Euclidean distance between the current position X of the end effector and the 

desired position Xp is given by I/X - Xpl12 . Any suitable function of the Euclidean 

distance can be taken as an objective function for the minimization process. The 
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Figure 3.4: Redundant Kinematic Chain 

square of the Euclidean distance F(8) has been used as the objective function in this 

research (see Equation 3.7) as it leads to simpler equations. 

Indeed, as shown by Zhao and Badler [ZB90] various other kinds of objective functions 

can be formulated to accomplish different spatial positioning tasks. 

A kinematic chain with more DOF than required for a spatial positioning task is 

called a redundant chain. For a kinematically redundant chain, many different config- 

urations are possible to accomplish a spatial positioning goal. Thus constraints need 

to be incorporated in the optimization procedure so that only a desirable configura- 

tion is produced. For instance, the range of operation of a particular joint can be 

limited by imposing simple bounds (e.g. lB; < 8; 5 UB; where lB; and UB; are the 

lower and upper limits respectively). Linear equality constraints (lB; = uB;) can be 

used to fix a joint angle to a specific value. 

Functional dependencies between joint angles can be linear or nonlinear in nature. 

A linear relation between joint angles can be represented by a general linear constraint 

of type lLi 5 a:; - 8 5 u ~ j ,  where a ~ ;  is an n-vector of coefficients of the joint angles 

for the i th general linear constraint and lL; and UL; are the lower and upper limits 

respectively. A nonlinear functional dependency can be represented by a constraint 

of the form IN; 5 c;(8) 5 UN;, where c; is the ith nonlinear constraint and lN; and UN; 
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are the associated lower and upper limits respectively. 

During the process of keyframe creation, it often happens that the end effector is 

at the desired location but the pose is not correct. The easiest way to correct the 

pose is to pin the end effector at its current position and manipulate an intermediate 

joint. This is typically done by introducing nonlinear equality constraints of the form 
T IN; < ~ ~ ( 0 )  5 UN;, where IN; = U N ~  = 0. If X = [x1,x2, ..., xm] is the vector of 

the coordinates of the point which is constrained to be at a point P in space, and 

Xp = [xpl, x p ~ ,  .. . , xpmlT is the vector of the coordinates of the point P, the rn non- 

linear constraints to accomplish the goal can be given as follows: 

The optimization problem can 

minimize 
O e R n  

subject to 

then be stated formally as: 

The minimization process, as is detailed in Chapter 4, requires evaluation of the 

objective function, its gradient and its Hessian. The gradients of the nonlinear con- 

straint also need to be determined. The next section introduces a notation and gives 

equations for various quantities mentioned above. 

3.4 The Definitions and Results 

Let P be the point where the end effector is to be placed. For the planar case, the 

coordinates of P are Xp = [xp, yp]T. Substituting Xp and Equations 3.4 and 3.5 in 

Equation 3.7 for an n-segment planar chain and expanding the terms we get: 
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( i=l ( cos ( j=1 0 ) )  - x p )  + (2 i= 1 (a;  sin (t j=1 o j ) )  - y p )  

(a l  sin (01) + a2 sin (01 + 02) . - . a,  sin (61 + O2 . . . 6,) - yp) (3.11) 

Similarly, the two nonlinear equality constraints c, and c,, required to pin a point 

on the chain to point P in the plane, are given by Equation 3.12: 

C, = a1 cos (01)  + a2 cos (01 + 02) . . a, cos (01 + O2 - - 0,) - x p  = 0 
(3.12) 

c, = a1 sin (01) + a2 sin (01 + 02)  . . . a,  sin (01 + O2 . . . 0,) - yp = 0 

The regularity in the structure of Equations 3.11 and 3.12 suggests that there 

should be some regularity in their derivatives as well. However, this regularity is 

completely lost and the task of calculating the derivatives becomes very difficult due 

to proliferation of terms. The notation given below allows concise representation of 

the objective function, nonlinear constraints and their derivatives. 

3.4.1 The Definitions 

Definition 1 SigmaTheta (Ow,+,) denotes the angle between the x-axes of the wth and 

(v - l ) th  coordinate frames, measured in the plane normal to the z axis of the ( v  - l) th 

coordinate frame: 

w 

0; for w 2 v 
&,w = 

1 o otherwise 

Definition 2 SigmaSin (S&J denotes the distance between the origins of the nth 

and ( w  - l)th coordinate frames, measured along the y axis of the ( v  - l)th coordinate 

frame: 
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C (a; sin ( B j , , ) )  forn > w > v > 1 
S;," = i=w 

l o otherwise 

Definition 3 SigmaCos (C&) denotes the distance between the origins of the nth 

and (w - l ) th  coordinate frames, measured along the x axis of the (v - l ) th  coordinate 

frame: 

1 O otherwise 

3.4.2 The Results 

The definitions given above can be used to derive the results which are highlighted 

by the boxes around them. The detailed derivations can be found in Appendix B. 

Corollary 2 

Corollary 1 

q, = s:,, + s::;, + . . + s:,, 
C = Cn % I  + Cn-l n-1,l + . - +  C:,, 

(3.16) I 
! 
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Theorem 1 Partial derivatives of SigmaSin and SigmaCos are given b y  

I 
a n 

'ma, (u,w),u f o r n > u > v > l  ~ ( c : , ~ )  = 
otherwise 

It can be shown that using the definitions given above the objective function, its 

gradient, its Hessian, non-linear constraints and their gradients can be represented as 

shown in the following sections. For the sake of brevity two additional terms K, and 

K, are defined as follows: 

The Objective Function 

The Gradient 

d 
First partial derivative of F(B) with respect to O;,g. - - ( F ( 8 ) )  is given by: " -0; 
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The Gradient g of F ( 8 )  is given by the following equation: 

The Hessian 

Second partial derivative of F ( 8 )  with respect to 19; and B j ,  h;,j, where i 2 j is given 

by: 

The Hessian H of function F ( 8 )  is an n x n symmetric matrix of second partial 

derivatives of F(B) ,  such that, if h;,j is the element in the ith row and jth column of 

H then h;,j = hj,;. To completely determine H only the lower triangular part of the 

matrix needs to be determined; i.e., those values of hitj where i varies from 1 to n and 

j varies from 1 to i .  

The Nonlinear Constraints and Gradients 

Using the notation introduced earlier in the chapter, the non-linear constraints cx and 

c, given by Equation 3.12 can be represented by: 
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their gradients can be given by: 

Vc, = - 

3.5 Evaluation 

In our system an articulated figure is represented as a tree whose ith node contains 

the length a; of the ith segment, and the angle 0; between the x axes of ith and i - lth 

coordinate frames (see Figure 3.5). Each node has a pointer to its parent node which 

is returned by the function parent(). This allows tree traversal from the end effector 

to the root. In addition to the fields mentioned above, two more fields, SigmaCos 

and SigmaSin, are present in each node. These fields are used for storing the values 

of C:,l = a; cos(O1 + O2 - . 0;) and S:,, = a, sin(& + O2 . . - Oi) respectively. These values 

are typically updated by the drawing routine which visits each node in the tree during 

the drawing process. 

3.5.1 The Objective Function, the Gradient and the Hessian 

Algorithm FGH given below computes the objective function, its gradient and its 

Hessian by traversing the tree once from the end effector to the root. It takes the 

following arguments: 

real : xp, yp, ObjFunc, Grad[l : n], Hess[l : n][l : n] 

integer : mode,n 

treenode : node 
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Figure 3.5: Data Structure for an Articulated Figure 
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xp, yp, mode and n are the input arguments. xp and yp contain the coordinates of 

the point P. mode is a flag for indicating which quantities are to be computed (valid 

values are FUNC, GRAD and HESS). If the mode is FUNC, only the objective 

function is calculated. If it is GRAD, both the objective function and the gradient 

are computed. The value HESS results in calculation of the objective function, the 

gradient and the Hessian. n gives the number of segments in the kinematic chain. 

ObjFunc, Grad and Hess are used for output of the results of computation. node is 

the pointer of type treenode and is used for tree traversal. It is set to endeflector in 

the initialization step (FGH-I). endefector is also of type treenode and contains the 

pointer to the end effector of the kinematic chain for which the calculation is to be 

carried out. 

The following internal variables are defined for storing the intermediate results: 

real : K,, Icy, ASigmaCos[l : n], ASigmaSinIl : n] 

integer : depth,j 
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K, and K, are used for storing the quantities given by Equations 3.19 and 3.20. 

ASigmaCos[l : n] and ASigmaSin[l : n] store the values Ct,  and St ,  respectively. 

depth indicates the depth of the current node in the tree. Both depth and j are also 

used as counters. 

The algorithm (FGH-111) calculates K, and K, using Equation 3.16 and C:, and 

Scl using Equation 3.17 while traversing the tree from the end effector to the root. The 

last two quantities are stored in the appropriate elements of arrays ASigmaCos and 

ASigmaSin respectively. For the calculation of the Hessian, two additional quantities, 

(Cz, - K,) and (S;, - K y )  are required. These are calculated once and the appropriate 

elements of ASigmaCos and ASigmaSin are overwritten by them (FGH-VII), after 

they are not required any longer. 

Algorithm FGH 

FGH-I Initialization 

K, t -xp 

Ky t -YP 

depth +-- n 

node t endeflector 

FGH-I1 Objective Function Pass: if the current node is root, go to FGH-IV 

if depth = 0 

depth t I 

go to FGH- V 
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FGH-I11 Calculate K,, K,, SigmaCos (C,?,) and SigmaSin (S;) 

Kx t K, + node :: SigmaCos 

KY t Ky + node :: SigmaSin 
if depth < n 

ASigmaCos [depth] t ASigmaCos[depth + 1]+ 

node :: SigmaCos 

ASigmaSin[depth] t ASigmaSin[depth + 1]+ 

node :: SigmaSin 

else 

ASigmaCos [depth] t node :: SigmaCos 

ASigmaSin [depth] t node :: SigmaSin 

node t parent(node) 

depth t depth - 1 

go to FGH-I1 

FGH-IV Calculate Objective Function 

ObjF2lnc t K: + Ki  

if mode is FUNC stop 

FGH-V Calculate elements of the Gradient 

FGH-VI Calculate elements of the Hessian: If the mode is not HESS then go 

to  FGH-VIII else for j t 1 to depth do the following 

if j < depth 

Hess [depth] [ j ]  t 2 (ASigmaCos[j] ASigmaSin[depth]- 

ASigmaSin[j] - ASigmaCos[depth]) 

Hess[j] [depth] t Hess[depth][j] 

else 

Hess[depth][depth] t 2 ((ASigmaCos[depth] - I<,) . ASigmaSin[depth] - 

(ASigmaSin[depth] - ICY) . ASigmaCos[depth]) 
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FGH-VII Update ASigmaCos and ASigmaSin 

FGH-VIII Termination check 

if depth = n then stop 

else 

depth t depth+l 

go to FGH-V 

3.5.2 The Nonlinear Constraints and their Gradients 

The nonlinear constraints and their gradients, given by Equations 3.25 and 3.26 re- 

spectively, are calculated by traversing the tree from the point to be constrained to 

the root. To conclude the chapter we present algorithm CG, which calculates the 

two constraint values required to constrain a point in space, and their gradients. The 

quantities K,, Kg, Cc, and Sc, are computed using Equations 3.16 and 3.17, in a 

manner analogous to the algorithm FGH. The algorithm has the following arguments: 

real : xp, yp, ConstraintX, ConstraintY, 

ConstrGradX[l : n ] ,  ConstrGradY[l : n]  

integer : n 

treenode : node 

xp, yp, node and n are the inputs to the algorithm. X P  and yp are the x and 

y coordinates of the point P to which the end effector is pinned. node is a pointer 

of type treenode. It is set to endeflector in the initialization step CG-I. endeflector 

is also a pointer of type treenode and contains the pointer to the end effector of the 

kinematic chain for which the computation is to be carried out. n gives the depth of 

node. An internal variable depth of type integer is used to store the depth of current 

node. 
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ConstraintX, ConstraintY, ConstrGradX and ConstrGradY are the output 

parameters. ConstraintX and ConstraintY contain the values K, and K, respec- 

tively. ConstrGradX and ConstrGradY are vectors containing the gradients of the 

two constraints, respectively. 

Algorithm C G  

CG-I Initialization 

ConstraintX t -xp 

ConstraintY t -yp 

depth t n 

node t endeflector 

CG-I1 Termination Check 

i f  depth = 0 then stop 

CG-I11 Calculate ConstraintX, ConstraintY, ConstrGradX and ConstrGradY 

ConstraintX t 

ConstraintY t- 

if depth < 

else 

node t 

depth C- 

go to CG-I1 

ConstraintX + node :: SigmaCos 

ConstraintY + node :: SigmaSin 

n 
I 

ConstrGradX[depth] t ConstrGradX[depth + 11- 

node :: SigmaCos 

ConstrGradY [depth] t ConstrGradY[depth + 1]+ 

node :: SigmaSin 

ConstrGradX [depth] t -node :: SigmaCos 

ConstrGradY [depth] t node :: SigmaSin 

parent (node) 

depth - 1 



Chapter 4 

Nonlinear Optimization 

The problem of inverse kinematic calculation of the joint angle vector required to place 

an end effector at a point in space was cast as an optimization problem in the last 

chapter. This chapter gives a description of the algorithm used for carrying out the 

optimization. A brief introduction to optimization is given followed by the necessary 

conditions for optimality. Different classes of algorithms, relevant for solving the type 

of problem that arises in this research, are discussed. Simplified steps of the specific 

algorithm used in this research are presented and details of important steps are given. 

Most of the discussion in this chapter is adapted from Gill et a1 [GMW81]. [Fle87] 

is another important source of information. [Hes75] contains an excellent theoreti- 

cal discussion on optimization. Details of different aspects of the actual algorithm 

used can be found in several sources such as [GMSW84], [GMSW85], [GMSW86a], 

[GMSW86b]. 

The notation used in this thesis in general, and in this chapter in particular, is 

recapitulated in Appendix A. 

4.1 Introduction to Optimization 

An optimization problem is characterized by a vector of independent variables 8, 

restrictions on acceptable values, called constraints (aT8, c(8)) and a metric for com- 

paring one set of values of the independent variable with another, called the objective 
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Figure 4.1: Minima and Maxima 

function (F(8)) .  The theory of optimization concerns itself with making the objective 

function attain a "good" value, usually a minimum or a maximum. The process is 

accordingly termed a minimization or a maximization. 

A point 8* on the graph of the objective function is termed as a feasible point 

if it satisfies all the constraints. Only a feasible point can be optimal. A feasible 

point 8* is called a local minimum (maximum) if the objective function attains a 

minimum (maximum) value at that point as compared to all other points in the 

immediate neighborhood of 8* (see Figure 4.1). The point 8* is a global minimum 

(maximum) if the function has the lowest (highest) value at 8* with respect to all 

other points. Finding a global minimum is a hard problem. Methods like simulated 

annealing [KGV83], can be used to find a global minimum, but are unsuitable for 

interactive applications because of the enormous computation time involved. The 

problem addressed in this thesis, however, requires only a strong local minimum, 

making it possible to use a faster algorithm. 

Optimization of general nonlinear functions, subject to general constraints is an 

open research problem. Most of the popular algorithms in use for optimization impose 

certain qualifications on the objective functions and the constraints. In particular, 

both the constraints and the objective function are expected to be at least twice- 

continuously differentiable. The constraints and the objective functions that arise in 

this research satisfy these requirements. 
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Optimality Conditions 

Optimality conditions or necessary conditions for a minimum are a set of practical 

tests that a feasible point must pass for it to be considered as a minimum. An inequal- 

ity constraint of the form lL; 5 aEi8* 5 UL;, if present, is termed an active constraint 

if it is exactly satisfied at 8*, i.e. azj8* = lL; or a:#* = UL;. If the constraint 

is satisfied but not at one of the bounds, then the constraint is termed an inactive 

constraint. An equality constraint (where lLi = uL;), by definition, is always active. 

Only the constraints active at the optimal point appear in the optimality conditions. 

However, the optimal point must be feasible with respect to all the constraints. 

When specifying optimality conditions, it makes it clearer if only one type of 

constraint is considered. The necessary conditions for 8* to be a minimumof nonlinear 

programming with only linear constraints and only nonlinear constraints, respectively, 

are given in the next two subsections [GMW81], [Pow74]. 

4.2.1 Linear Constraints 

It is illustrative to look at the derivation of optimality conditions in detail as they 

provide the motivation for the various steps of the algorithm described in the later 

part of this chapter. 

A point 8* will be a minimum of Equation 4.1 if and only if F(8*) 5 378) for 

every 8 in a suficiently small neighborhood of 8*. 

minimize F(8) 
8 E Rn 

subject to A  - 8  = b 

However, only those 8 need be considered which are feasible with respect to the 

constraints such that A  - 8  = b. If p  is a vector orthogonal to the rows of matrix A  

such that Equation 4.2 is true, 

A - p = O  (4a2) 

then any point 8 = 8* + cup will be a point feasible with respect to the constraints. 
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If Z is a matrix with columns orthogonal to the rows of A such that Equation 4.3 

is satisfied, 

A . Z = O  (4.3) 

then Z represents a basis for the null space of A and any vector orthogonal to A can 

be represented as a linear combination of columns of Z i.e. p can be written as in 

Equation 4.4 for some vector pz. 

Using Equation 4.4 a feasible point 8 can be represented as in Equation 4.5: 

The behavior of the function .F can be observed at a feasible point in the neigh- 

borhood of the minimum 8*  by expanding F ( 8 )  using Taylor expansion as shown in 

Equation 4.6: 

It is clear from Equation 4.6 that the term ps . Z T .  g must vanish or else an r can 

be found such that F ( 8 )  < .F(B*) ,  which will imply that 8*  is not a minimum. Thus, 

for 8*  to be a minimum, Equation 4.7 must be true: 

Equation 4.3 and Equation 4.7 imply that the gradient g can be written as a 

linear combination of rows of A (see Equation 4.8), where X is termed as the vector 

of Lagrange multipliers. 

g = ~ T . ~  (4.8) 

It can also be shown that if ZT.H.Z is not positive semi definite, the neighborhood 

of 8' will contain points 8 such that F ( 8 )  < F(8*) .  Thus, zT. H .  Z must be positive 

semidefinite for 8* to be a minimum of Equation 4.1. 
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From the preceding discussion it is clear that the necessary conditions for 8* to be 

a minimum of a similar minimization problem given by Equation 4.9 can be stated 

minimize F ( 8 )  
8 E Rn 

subject to lL  5 ALe I U L  

8* is feasible, i.e. lL  5 AL8* 5 U L .  AL is a matrix with ith row as the gradient 

a: of the ith constraint. 

Projected Gradient is zero ( z T g ( 8 * )  = 0)  or in other words, the gradient g(8*)  - T 
is a linear combination of active constraint gradients (g(8*)  = ALXL*), where - T 
XL* is the vector of Lagrange Multipliers at 8* and AL is the submatrix of AL 

with rows corresponding to active constraints only. 

ALi 2 0 if a:; = Z L i  and A;; 5 0 if a:; = uLj .  

Projected Hessian Z ~ H ( O * ) Z  is positive semi-definite. 

4.2.2 Nonlinear Constraints 

Necessary conditions for 8' to be a minimum of a nonlinear programming problem 

with nonlinear constraints can be stated similarly. The matrices A and Z in this case 

are functions of 8*: 
minimize F ( 8 )  

8 E Rn 
subject to I N  5 c ( 0 )  5 U N  

8* is feasible, i.e. lN 5 c(B*) 5 U N .  

Projected Gradient is zero ( ~ ~ ( 8 * ) ~ ( 8 * )  = 0)  or in other words, the Gradient 
. T  

g(8*) is a linear combinations of constraint Gradients (g(8*)  = AN (8*)XN*).  

A;; > 0 if ci(8*) = I N ;  and A;, 5 0 if c;(8*) = U N ; .  

Projected Hessian of the Lagrangian Z T ( 0 * ) ~ ( 0 * ) ~ ( 8 * )  is positive semi-definite. 
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4.3 Optimization Methods 

Over the years many different classes of algorithms have emerged which can tackle 

various types of optimization problems. In recent years both the theory and the 

practice of nonlinear optimization have made tremendous strides and a host of very 

sophisticated techniques have emerged making the algorithms very efficient. How- 

ever, these techniques have not yet found extensive use in the Computer Graphics 

community. This thesis demonstrates the efficacy of these techniques for providing 

interactive control over an articulated figure. 

Typically, these methods transform the original nonlinearly constrained problem 

into an unconstrained or a linearly constrained problem whose unconstrained/linearly 

constrained minimum is also the nonlinearly constrained minimum of the original 

problem. 

4.3.1 Penalty Function Methods 

These methods [Rya74] add a penalty term to the original function to get a new 

function to which techniques of unconstrained minimization are applied. The penalty 

term is such that it increases with the increase in constraint violations and thus tries 

to guide the solution in the direction which will satisfy the constraints. However, 

these methods are very sensitive to the choice of penalty parameter and the problem 

can become defective or ill conditioned for a low or a high value of the parameter 

[Loo72]. Besides, discontinuities in the function result in the presence of inequality 

constraints. 

4.3.2 Reduced Gradient Met hods 

The motivation for this class of methods [RosGl] (also known as Gradient Projec- 

tion Methods) is to exploit the reduction in the search space which results from the 

presence of constraints. Such algorithms are known to be successful for linearly con- 

strained problems (e.g. [ZB90], [RosGO]). This success prompted attempts to extend 

them to nonlinearly constrained problems. The search for solutions in these methods 
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is restricted to a subset of points which exactly satisfy the constraints. These methods 

get their name from the fact that the function to be minimized is "projected" onto 

a "reduced" subset of points. These methods are suitable for problems where the 

constraints are nearly linear. In the presence of highly nonlinear constraints, as is the 

case in our problem, these methods make very slow progress towards the solution. 

4.3.3 Augmented Lagrangian Methods 

Augmented Lagrangian methods [Hes80], like penalty function methods, are also de- 

rived from the idea of converting a nonlinearly constrained problem into an uncon- 

strained problem. However, they avoid the problems of ill conditioning and loss of 

differentiability, which are inherent in penalty function methods. The objective func- 

tion is the Lagrangian function of the original function, augmented with a penalty 

term. Estimation of Lagrange multipliers is required during the course of minimiza- 

tion of the augmented Lagrangian objective function. Though these methods can be 

applied to the problem in this research, they have a few drawbacks. The convergence 

of the algorithm is limited by the accuracy of the Lagrange multipliers. If the La- 

grange multiplier estimates converge linearly towards true multiplier values, even a 

quadratic convergence algorithm applied to the unconstrained minimization subprob- 

lem will result in only linear convergence. toDetailed discussion of Lagrange multiplier 

estimates can be found in Gill and Murray [GM79]. Gill et a1 [GMSW92] should be 

consulted for convergence properties of the augmented Lagrangian objective function. 

Since the original problem has linear constraints as well, the advantages which can 

accrue out of posing an unconstrained subproblem are diminished. 

4.3.4 Projected Lagrangian Methods 

Algorithms belonging to this class use first order Taylor series approximations of non- 

linear constraints to pose a linearly constrained subproblem. The objective function 

for the subproblem is related to the Lagrangian of the original function. Hence, an 

estimate of the Lagrange multipliers for the subproblem can also act as an estimate 

of multipliers for the original problem. Moreover, this class of algorithms is not as 
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sensitive to the accuracy in multiplier estimates as augmented Lagrangian methods. 

This class of algorithms appears to be most promising for this research since methods 

developed for minimization in the presence of linear constraints can also be utilized 

for nonlinear constraints. Different algorithms of this class can be further classified 

according to the linearly constrained subproblem that they pose. 

General Linearly Constrained Subproblem 

The linearly constrained subproblem is solved iteratively. These algorithm are quadrat- 

ically convergent in the neighborhood of a solution. An example of this approach can 

be found in Rosen and Kreuser [RK72]. 

A Quadratic Programming Subproblem 

The previous case solves an adaptive problem. The effort expended in finding a 

solution to the subproblem may not be justified if it does not provide a good estimate 

for a step which will satisfy the constraints. Here, in an attempt to address this 

problem, a quadratic programming subproblem is posed, the solution to which can 

be found in one step. Thus, even if the resulting solution to the subproblem is not 

a good estimate for the right step, not much effort is spent in finding the solution 

either. 

Proposed System 

This research investigates the application of optimization techniques to provide a 

means for interactively manipulating articulated figures. The figures which come un- 

der the ambit of this research are tree-structured hierarchies of planar chains. How- 

ever, the algorithm is equally applicable to three dimensional figures. 
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4.4.1 Overview of the Algorithm 

As outlined in the previous section, augmented Lagrangian and projected Lagrangian 

methods are relevant for solving problems arising out of inverse kinematic manipula- 

tion of an articulated figure, though both have some drawbacks. Thus the algorithm 

that has been used is a combination of the methods stated above. It is an active set 

method where a prediction of the set of constraints active at the solution is made to 

form a working set of constraints. The search direction is computed so as to remain 

feasible with respect to the constraints in the working set. Constraints leave and join 

the working set as the iterations proceed. The "distance" to move along the search 

direction, or the step length, which produces "sufficient" decrease in an augmented 

Lagrangian merit function, is computed. 

A linearly constrained quadratic programming subproblem is solved to calculate 

the search direction. A quadratic approximation to the augmented Lagrangian is 

taken as the objective function, and a subset of the original linear constraints and a 

linearized version of the original nonlinear constraints is the constraint set in the sub- 

problem. The method can also be categorized as Sequential Quadratic Programming 

(SQP). 

Sophisticated matrix factorization techniques are used to improve the efficiency of 

the algorithm. In addition, simple bounds, general linear constraints and nonlinear 

constraints are treated separately. This greatly reduces the work involved in factoring 

and updating the matrices. 

The simplified high level steps of the algorithm SQP are given below. 

Algorithm SQP 

SQP-I Initialization: Given a starting point 00, form various matrices. 

SQP-I1 Termination Criteria: Terminate with Ok as the solution if it satisfies 

optimality conditions 
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SQP-I11 Search Direction (pk): Solve the linearly constrained quadratic pro- 

gramming subproblem 

minimize 
p€Rn 

subject to 

where 

and set pk to the solution. gk is the Gradient of the augmented La- 

grangian function, evaluated at the point O k .  W k  is the positive-definite, 

symmetric, quasi-Newton approximation of the Hessian of the augmented 

Lagrangian at  O k .  

SQP-IV Step Length (a): Calculate a which produces sufficient decrease in the 

augmented Lagrangian L ( O k 7  X k 7  S )  where s are the slack variables and p 

is the vector of penalty parameters. 

SQP-V Update Values: set  8k+l to the solution of Equation 4.11, Xk+l  to the 

Lagrange multiplier estimates of Equation 4.11 at the solution. Calculate 

the new Hessian. Set k to k+l  and go to SQP-11. 
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4.4.2 Initialization 

Working Set 

A working set of constraints is defined by forming a set of constraints which are exactly 

or nearly satisfied at the initial point eO. Let m be the number of total constraints in 

the working set. In an active set method, the search direction is computed such that 

the constraints in the working set remain exactly satisfied. Hence, if there are n ~ x  

simple bounds in the working set, the components of the search vector corresponding 

to the variables with the simple bounds are set to zero. These variables are then said 

to be fixed. Components of 8 are reordered such that the fixed variables come at the 

end. In addition to the linear bounds, if there are (t = m - n ~ x )  general and nonlinear 

constraints in the working set, then At,, denotes the matrix composed of t  linear and 

nonlinear constraint gradients as its rows. Let (nFR = n - nFx)  denote the number 

of remaining variables, i.e. the free variables. The matrix A can be partitioned as: 

If c is the (n x n )  matrix whose rows are Gradients of all the m constraints in the 

working set, and whose first n ~ x  rows correspond to the linear bounds in the working 

set, then it can be partitioned as: 

TQ decomposition of the (t x nFR) matrix AFR is calculated, where QFR is an 

(nFR x nFR) Orthonormal matrix which reduces the first ( 2  = nr; .~  - t  = n - m )  

columns of AFR to zeros and last t  columns to a t  x t  reverse triangular matrix T F R  

such that t ; j  = 0, if i $ j 5 t .  
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Clearly, the first z columns of QFR are orthogonal to the rows of AFR . Hence these 

columns can be taken as ZFR the matrix which spans the null space of rows of AFR. 

The last t columns are taken as YFR whose columns span the range space of AFR. 

Thus an implicit partitioning of QFR takes place as shown in Equation 4.16: 

An n x n Orthonormal matrix Q is composed using QFR and an (nFx x nFx) 

Identity matrix IFX as: 

The matrix Q can be partitioned into matrices Z and Y which span the null and 

range space of matrix C respectively: 

Postmultiplying c with Q results in: 

[O]nFXxt IFX 
where [TImxm = [ 

TFR AFX I 
Factorization of the Hessian 

If Wp denotes the permuted Hessian of the Lagrangian, such that the elements cor- 

responding to the fixed variables are in the lower right corner, then Wp can be 

partitioned as shown in Equation 4.21. WFR and WFx are square symmetric matri- 

ces of dimensions (nFR x nFR) and (nFx x nFx) respectively and correspond to free 

and fixed variables. 
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The ~ e r m u t e d  Hessian of the Lagrangian Wp is projected on the orthogonal matrix 

Q and the Cholesky factors of the projected Hessian are calculated as shown in Equa- 

tion 4.22. The matrix RQ in Equation 4.22 is an upper triangular matrix such that 

T Q ; ~  = 0 if i > j. 
Q ~ - w ~ - Q = R : . R ~  (4.22) 

Then, the Cholesky factor Rz of the Hessian of the Lagrangian, corresponding to the 

free variables, projected on the null space of AFR (ZFR) is the top left z x z corner 

of the matrix RQ such that: 

The availability of Cholesky factorization of the Hessian allow efficient calculation 

of the search direction. The advantage of forming ZFR from a TQ factorization 

of AFR is that the columns of ZFR are orthonormal vectors. Thus the condition 

number of the projected Hessian z $ ~ w ~ ~ z ~ ~  is the same as that of WFR, which 

would not be the case if the columns of ZFR were not orthonormal. This has an 

important implication for the solvability of the problem, as a high condition number of 

zgRwFRzFR results in numerical inaccuracies in the solution of a system of equations 

involving Z$~WFRZFR.  

4.4.3 Search direction 

The search direction pk is taken as the solution of the positive-definite, quadratic 

programming problem represented by Equation 4.11. Solution of Equation 4.11 is 

also an iterative process. The search direction pQp for the quadratic programming 

problem is constructed by solving the quasi-Newton equations, such that a move 

along that direction will be strictly feasible with respect to all the constraints in the 

working set. A unit step along this direction will minimize the objective function 

in the subspace of constraints in the active set, if they are assumed to be the only 

constraints which hold with equality at the solution. However, it is possible that one 

or more of the inequality constraints, not present in the working set will get violated 

by a unit step in the search direction. Thus a maximum step length ~ Q P ,  is calculated 
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which takes the joint angle vector to the "nearest" inactive constraint. If a ~ p ,  is less 

than the unit step length, then a step to the corresponding constraint is taken. This 

constraint enters the working set of constraints for the next iteration. Otherwise a 

unit step in the search direction is taken to the minimum of the quadratic function 

in the subspace of constraints in the working set. 

At the end of a quadratic programming iteration, Lagrange multipliers for all the 

constraints in the active set are calculated. The Lagrange multiplier estimates are 

used for predicting if any of the constraints in the working set will not be active at  

the solution of the quadratic programming problem. Such constraints are deleted 

from the working set for the next iteration. 

Important steps in the process of minimization of the quadratic programming 

subproblem are given below. 

Search Direction 

The search direction is calculated by solving the quasi-Newton Equations given by: 

Solution of Equation 4.24 requires inversion of the ( z  x z )  matrix Wz and hence 

requires 0(z3)  operations. However, availability of a Cholesky factorization of Wz 

(see Equation 4.23) permits an efficient solution for Equation 4.24. The system of 

equations given by Equation 4.24 is better solved by solving two triangular systems 

of equations given by Equations 4.25 and 4.26. The number of operations required 

for solving a triangular system is only 0(z2) .  An intermediate vector f, is found 

by solving Equation 4.25, which is then used in the Equation 4.26 to calculate the 

vector pZ. Search vector component pFR corresponding to the free variables is given 

by Equation 4.27. pFR and a zero vector corresponding to the fixed variables taken 

together constitute the complete search vector p as shown in Equation 4.28. 
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Addition of Constraints  

In an active set method, the working set constitutes the subset of constraints which 

are predicted to be active at the solution. As the iterations proceed, the prediction 

of active constraints changes and some constraints enter the working set and some 

constraints leave the working set. Changes in the working set A induce changes in 

other matrices also. 

In particular, when a general linear constraint becomes active and enters the work- .. .. 
ing set, the row dimension of C, A, and AFR increases by one. As can be seen from 

Equation 4.15, the row and column dimensions of TFR increase by one while the col- 

umn dimension of ZFR decreases by one. If the new constraint gradient is aT and is 

assumed to join at the end of the list of active constraints, then the relationship given 

by Equation 4.15 can be represented as in Equation 4.29. 

where [ wT I tT ] = aT Q F R  

An (nFR x nFR) orthonormal matrix Q, is constructed which when postmultiplied on 

both sides of Equation 4.29, reduces the first ( z  - 1) elements of wT to zero by taking 

linear combinations of the first z  columns of the right hand side of Equation 4.29. 

Then, the last column of wT becomes the first column of the last row of the new 

factor T. This transforms the right hand side to the appropriate form. 

Postmultiplying Q F R  with Q results in a new orthonormal matrix BFR which has 

the first z columns as linear combinations of the first z  columns of Q F R  and the last 

t columns the same as those of QFR.  Reduction in the column dimension of ZFR 

is reflected by partitioning QFR such that the zth column of QFR becomes the first 

column of YFR. Since ZFR and Rz are related by Equation 4.23, reduction in the 

column dimension of ZFR results in reduction in the row and column dimension of Rz. 
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Post-multiplication of QFR by Q results in post-multiplication of Rz with Q. The 

new matrix Rz - Q has an extra subdiagonal element in each column. An orthonormal 

matrix Q is constructed such that premultiplying it with Rz results in elimination of 

subdiagonal elements in columns 1 to (z - 1) by taking linear combinations of rows. 

The matrix Q - Rz . Q without its zth row and column is the new Cholesky factor Rz 
- T  

such that Z F R .  WFR Z F R  = R; - RZ 
When a simple bound enters the working set, the number of fixed variables in- 

creases by one. The variable corresponding to the new constraint in the working set 

is assumed to be the last variable in the list of free variable and the new constraint 

Gradient becomes the first row of the active constraint matrix C. The addition of a 

bound constraint in the working set thus results in reduction in the column dimension 

of AFR. Thus the row and column dimension of QFR and the row dimension of Z F R  

is reduced by one. Reduction in the row dimension of Z F R  results in reduction in the 

row and column dimension of Rz. Various matrices are updated in a manner similar 

to when a general constraint enters the working set. 

Deletion of Constraints 

When a general constraint is deleted from the working set of constraints, the row 

dimension of the matrix AFR decreases by one resulting in a decrease in the row and 

column dimension of the matrix TFR and an increase in the column dimension of 

the matrix Z F R  . If the ith row of AFR is deleted because of the constraint leaving 

the active set and AFR is the new matrix of constraint gradients, then Equation 4.15 

results in 

where columns 1 to ( t  - i) of .i.FR have one extra element on the top. An orthonormal 

matrix Q is constructed such that it reduces the extra elements to zero when post- 

multiplied to the right hand side of Equation 4.30, by taking the linear combination 

of columns ( t  - i + 1) to 1, while leaving all other columns untouched. The resulting 

matrix without its first column is the required ( ( t  - 1) x (t - 1)) matrix TFR.  The result 

of the same multiplication on the left hand side of the equation is an orthonormal 
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matrix QFR whose first z and last ( i  - 1) columns are same as that of QFR while the 

( z  + l ) th to ( z  +t - i)th columns are linear combinations of appropriate columns of QFR 

. The increase in the column dimension of the new ZFR is reflecting by partitioning 

the of QFR where the ( r  + l ) th  column of QFR becomes the last column of ZFR.  

An increase in the column dimension of Z F R  results in an increase in the row and 

column dimension of Wz and hence in the row and column dimension of Rz. The 

new Cholesky factor Rz has the form given by Equation 4.31 where the vector r and 

element y are determined by a step of Cholesky factorization [GGMS74]. 

Similar methods for updating various matrices are employed when a simple bound 

leaves the working set of constraints. 

4.4.4 Step Length 

The solution of the quadratic programming subproblem is used as the search vector for 

the original nonlinearly constrained problem. A scalar a is calculated by a linesearch 

algorithm which produces a sufficient decrease in the augmented Lagrangian such 

that Equation 4.32 holds. The penalty parameter vector p is increased, if required, to 

produce sufficient decrease in the merit function. Details of various schemes to select 

the sufficient decrease parameter S can be found in [GMW81]. 

4.4.5 Update Values 

The solution of the quadratic programming subproblem provides the search vector. 

The set of constraints in the final working set of the subproblem corresponding to 

the nonlinear constraints give a prediction of the set of active nonlinear constraints. 

Corresponding Lagrange multipliers AN at the solution of the subproblem are taken 

as estimates of the Lagrange multipliers for the nonlinear constraints. The estimate 
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of the solution vector 8 is updated as 8k+l tek  + a p k .  The change in 8 makes 

it necessary to recalculate the Hessian of the Lagrangian, and hence the projected 

Hessian. Calculation of the Hessian from scratch is an expensive operation. However, 

it is possible to obtain an approximation of the new Hessian from the old Hessian 

and curvature information obtained from the move along the search vector. Various 

schemes exist (DFP [FP63], PSB [Pow70], BFGS [Bro88], [Fle70], [Go170], [Sha7O]) 

which allow construction of the new Hessian by addition of a low rank matrix to the old 

Hessian. The BFGS update scheme, which has been used here, is known to be more 

effective than other earlier schemes, and makes a rank two update to  the old Hessian 

to obtain the new Hessian. The process can be carried out in 0 ( n 2 )  operations. 

BFGS updates ensure that the new Hessian is positive definite, a property which is 

very important for calculating the correct search direction. These updates also have 

the property of preserving the symmetry of the new Hessian. The updates for the 

projected Hessian can be represented by Equation 4.33, where WQ is the updated 

projected Hessian, WQ is the old projected Hessian, yQ = Q ~ ( ~ ~ + ~  - ANk+1XN - 

gk  + ANkXN), SQ = QT(Bk+l - Ok), ANk+l is the matrix of the nonlinear constraint 

gradients evaluated at  Bk+1 and ANk  is the corresponding matrix evaluated at Bk. 

The rank-two update given by Equation 4.33 can be translated into a rank-one update 

to the Cholesky factor RQ of WQ to obtain the updated Cholesky factor iiQ of WQ 
as given by Equation 4.34, 

& = R ~ + u v  T (4.34) 

where u = JqRQ sp and v = 
sT WQSQ 

WQSQ 



Chapter 5 

The Animation System 

A simple system was created for demonstrating the efficacy of algorithms for providing 

interactive and intuitive control over articulated figures. This chapter describes the 

system and rationale behind various design decisions. Many interesting issues, which 

emerged from the experience gained by the development and use of the system, are 

analyzed. 

The system has a built-in interactive editor for creating articulated figures. A 

figure can be directly manipulated for the purpose of creating keyframes. Constraints 

can be specified on the figure to maintain the physical integrity of the underlying 

entity. Ability to create complete motion sequences is also provided. This is done by 

specifying a trajectory for an end effector. The end effector moves along the trajectory 

over a period of time resulting in a movement sequence. The use of trajectories allows 

for the manipulation of multiple parts of the figure simultaneously. The ability to 

create complete movement sequences allows fast prototyping of animations. However, 

the system described is not intended to be a comprehensive package for animation. 

Rather, it consists of a set of services which provide a means for testing techniques for 

articulated figure animation, and will be a powerful set of tools for direct manipulation 

within the framework of a keyframe animation system. 
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Planar Articulated Figures 

5.1.1 Interactive Figure Editor 

Articulated figures such as human skeletons or vertebrate animals are best represented 

as trees. A simple interactive editor has been implemented to allow the user to create 

such figures on the fly (see Figure 5.1). The system has a work area window where 

the figures are drawn and animated, labeled Animator, and a control panel window 

which allows the user to issue commands to draw or animate the figure, labeled Figure 

Menu. The user session is started by pressing the Edit button, which results in a dot 

representing the root to appear on the screen. 

The figure is drawn by selecting the root or an end point of a segment and pressing 

the Add Segment button. This causes a new segment to appear at the end of the 

selected segment. The new segment is a child of the selected segment. The angle that 

the new segment makes with its parent segment and its length can be changed by 

dragging the endpoint of the segment away from the root using the mouse, or by the 

associated sliders on the control panel. Each segment has associated with it an upper 

and lower limit on the angle it makes with its parent. When a segment is added, 

these limits appear on the screen as two lines by its sides. The limits can be changed 

either by dragging or from the control panel. By default the free endpoint of the most 

recently drawn segment is the selected joint. Thus pressing the Add Segment button 

again results in a new segment appearing at that point. 

In order to delete a segment, the user first selects the segment by clicking on it, 

and then presses the Remove Segment button from the control panel. If the segment 

being deleted has any children, then they become the children of its parent segment. 

Any joint can be made the root by first selecting the joint and then pressing the 

Make Root button on the panel. All the segments connected at that joint become 

children of the root. Parent-child relationships are reversed along the chain from the 

old root to the new root. The process is illustrated in the Figure 5.2. 
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Figure 5.1: The Screen 
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Original Parent-Child Relations Changed Relations 

Figure 5.2: Changing the Root 
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Figure 5.3: Direct Manipulation Of A Movable Kinematic Chain 

5.1.2 Keyframing and Animation 

When manipulating a figure, the root remains fixed and other segments move with 

respect to the root. The figure can be translated as a whole by dragging the root. 

With inverse kinematic control, this system allows the user to directly manipulate 

a part of the figure for creating a keyframe. The part may consist of more than one 

segment. This is a marked improvement over a system without inverse kinematic 

control, which would require setting of individual joint angles. For a part to be 

manipulated, there has to  be an end effector, which is used for dragging the part. 

Any joint can be made an end effector by selecting the joint by clicking on it. The 

system then determines the movable part by traversing the figure hierarchy from 

the end effector to the root. A joint locked in its position or the root, whichever 

is encountered first, becomes the de facto root. The set of segments between the de 

facto root and the end effector constitutes the movable part. The user can manipulate 

the part by dragging the end effector to the goal. Different parts of the figure are 

manipulated in this manner to get a desired keyframe. Figure 5.3 shows snapshots of 

a movable kinematic chain during a user session of dragging the end effector to the 

goal. 

The keyframes created are analogous to the snapshots of a movement sequence 
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Figure 5.4: Manipulation Of A Movable Kinematic Chain Using A Trajectory 

which is constructed by suitable interpolation of the keyframes. However, the abil- 

ity to interactively create a complete movement sequence can markedly reduce the 

production time. The system incorporates this feature by associating a trajectory, 

which is just a curve in space, with the end effector. Pressing the Animate button 

on the control panel results in animation of the movable part such that the end effec- 

tor follows the trajectory. Figure 5.4 shows the manipulation of a movable chain by 

associating a trajectory with the end effector. 

A trajectory is created by pressing the Record Trajectory button and tracing out 

a curve in the work area with the left mouse button depressed. The Delete Trajectory 

button on the control panel can be used to delete a trajectory. 

Multiple parts of the figure can be animated by making two or more joints end 

effectors. This is done by first selecting a joint and then pressing the Power Segment 

button. However, the mouse cannot be used to animate multiple parts of the figure 

simultaneously. Hence, a trajectory is associated with each end effector. Pressing the 

Animate button results in the movement of each part corresponding to an end effector 

such that the end effector follows the associated trajectory. 

These abilities demonstrate the efficacy of inverse kinematic control for facilitat- 

ing the task of articulated figure animation. However, many fruitful directions still 
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remain to be explored. This implementation stores a trajectory as a list of points, 

hence subsequent modification of the trajectory is not possible. The use of splines 

can provide considerable flexibility in the creation and modification of trajectories. 

Presently we allow only the synchronized movement of end effectors along their tra- 

jectories with constant speed. A control over the speed of different end effectors is 

highly desirable. 

5.1.3 Constraints 

When animating an articulated figure, it becomes imperative to impose some con- 

straints on it so that the physical integrity of the entity being represented by the 

figure is maintained. For example, if the figure represents a human skeleton, the seg- 

ment representing the lower arm can only make an angle within the limits of 0 and 

180 degrees with the segment representing the upper arm. Such constraints on joint 

angles are effected by the limits associated with the segments. 

Other useful constraints are the ones which constrain a point on the figure at a 

point in space. This type of constraint can be specified by pressing the Constrain 

Segment button, which results in two constraints, one for each coordinate. The end 

of the selected segment farthest from the root then becomes locked at its current 

position. However, the orientation of the segment can still change. This type of 

constraint is useful for situations such as keeping the feet of the figure fixed to the 

ground. They are also very effective for the task of keyframe creation. Normally, 

the process of creating keyframes involves bringing an extremity of a limb to a goal 

with the limb in a particular pose. For such a task the end effector of the articulated 

chain representing the limb can first be dragged to the goal and then constrained to 

remain at that position. Any of the interior segments can then be manipulated to 

attain the desired pose without dislodging the end effector from the goal. In addition, 

constraints which lock the orientation of a segment or make an end effector stay in a 

plane can also be incorporated. 

Normally for an entity being modeled by the articulated figure, variations in joint 
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angles display some functional relationship. For example, in a human walk, a rela- 

tionship can be deduced between the variations in angles at the knee and the heel 

during a step cycle. Such relationships can be linear or nonlinear. A library of such 

entity-specific constraints can be defined which can then be the default constraints 

when animating a figure modeling a particular entity. A library of entity specific 

constraints and a library of predefined figures for different entities can be a useful ad- 

dition to any animation system. The system   resented in this thesis can handle such 

constraints. However, the techniques developed are for the whole class of articulated 

figures and no attempt has been made to define any entity-specific constraints. 

5.1.4 Data Structures 

An articulated figure is represented as a tree which consists of a set of nodes, a pointer 

to the root node and a linked list of pointers to the leaf nodes. Each node of the tree 

stores the length, angle, lower limit, upper limit and type attributes of a segment. 

In addition, each node has a pointer to its parent and a linked list of pointers to 

its children. The value of the type field determines if the endpoint of the associated 

segment away from the root is an end effector or is locked in its position. 

For tasks involving manipulation of a part of the figure using an end effector, 

angles at the joints from the root to the end effector need to be determined by solving 

an inverse kinematic problem. The corresponding kinematic chain of segments, from 

the root to the end effector is termed a movable chain. Any subtrees from the movable 

chain only change in their position and orientation, while the angles at the joints of 

these subtrees remain fixed. However, if a subtree emanating from a movable chain 

has a constrained joint, then the joint angles of the kinematic chain from the movable 

chain to the constrained joint also become a part of the inverse kinematic problem, 

but the subtrees rooted at the constrained joint become impervious to any changes in 

the configuration of rest of the tree. Such subtrees can then be taken as independent 

subproblems for animation. Any subtree which does not have an end effector does 

not change its configuration during the course of the animation. Such subtrees, called 

static, are effectively discarded from the ~roblem of inverse kinematic calculation of 
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root 
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Figure 5.5: Partition of a Tree into Subproblems 

the joint angles. 

We see from the description given above that end effectors and constrained joints 

induce a partitioning of the tree into subtrees, some of which are movable and the 

rest static subtrees. The movable subtrees are treated as independent subproblems by 

the inverse kinematic control algorithm. A linked list of movable subtrees is created 

before every animation session. Nodes in the list represent independent problems, 

which are solved sequentially. After all nodes in the problem tree list are visited, the 

figure on the screen is updated to reflect the new state. Figure 5.5 shows the process 

of partitioning the tree into subtrees representing independent problems. 

Three-Dimensional Figures 

Throughout this thesis emphasis has been laid on planar figures. However, the tech- 

niques presented earlier can be applied to three-dimensional figures as well. This 

section gives a brief outline of how this can be accomplished. 

One way of manipulating a three dimensional figure is by calculating the Gradient 
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and the Hessian of the associated distance function. The technique for procedural 

evaluation of these quantities, as described in Chapter 3, is based on the observation 

that the end effector position with respect to the base frame is given by the cascaded 

multiplication of matrices, all of which display a particular structure. This observation 

also holds for a three dimensional figure. Thus, there is a possibility of arriving at a 

similar procedural formulation of the gradient and the Hessian for a three-dimensional 

figure. 

The use of the Denavit-Hartenberg convention for specifying coordinate frames 

also assumes more importance in the context of three dimensional figures. Routines 

have been developed in the field of Robotics which can symbolically evaluate the 

gradient and the Hessian for a figure specified using the convention. Thus extension 

of the system is possible where a module constructs the Denavit-Hartenberg speci- 

fication of a figure and another module symbolically evaluates the necessary higher 

order information. Such a system however is likely to have a substantially degraded 

performance. 

However, a simpler technique can be developed by working with the planar pro- 

jections of a three dimensional figure. It is instructive to note that an articulated 

figure can be made to move in space by allowing rotation at the joints to be in two 

planes instead of one. Moreover, a planar projection of a three dimensional figure is 

of the type handled in this research, and all the techniques described earlier apply. 

From this it follows that a three dimensional figure can be animated by sequentially 

applying the inverse kinematic algorithm to its projections in two orthogonal planes. 

Let F be a three dimensional chain, C be a fixed coordinate frame. Let E be 

the coordinate vector of the end effector and P be the coordinate vector of the goal, 

both given with respect to C. As shown in Figure 5.6, Fxy, Ex, and Pxy are the 

projections of F, E and P respectively on the x-y plane of C and F,,, E,, and P,, 

are the corresponding projections on y-z plane of C. Animating E to P involves the 

following steps. The inverse kinematic control algorithm for planar chains is invoked 

on F,,. The joint angles of F,, change so that Ex, is at P,, at  the end of the iterations. 

Let FIX, and El,, be the updated projections of F,, and Ex, on the x-y plane. 

Lengths of the segments of Fxy do not change if the joints of F rotate only in the 
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Figure 5.6: Initial Planar Projections of F 

Figure 5.7: Projections of F after Manipulation of F,, 
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Figure 5.8: Projections of F after Manipulation of Fy, 

x-y plane. Thus lengths of corresponding segments of Fxy and Ftxy are the same. 

The changes when applied to F ,  however, do change the projection F,,. Lengths of 

the segments as well as joint angle values of Fyz change, but the z coordinates of all 

joints remain the same. At the end of the inverse kinematic manipulation of Fxy , the 

projection of F on the y-z plane is recalculated. Let the new projections of Fy, and 

E,, be Fly, and Etyz respectively (see Figure 5.7). The y coordinate of Ety, is the 

same as Pyz. 

Now, the inverse kinematic control algorithm is invoked on Fty,. At the end of this 

step the end effector is at  P,,. The change in joint angle values of Fty, induces changes 

in the projection Ftxy,  but the x coordinates of all joints and x and y coordinates of 

the end effector Et,, remain fixed (see Figure 5.8). The end effector of F is at the 

desired point P at  the end of this step. The projections Ftxy and El,, are updated 

to FttXy and E",, respectively. The figure F is drawn by a traversal of the chain from 

the root to  the end effector. F",, and EMy,  denote the final configuration of Fty, and 

Ety, respectively. 

There is a clear computational advantage in this apparently circuitous way of 

animating a three dimensional figure. Each iteration of the inverse kinematic control 



C H A P T E R  5. T H E  ANIMATION SYSTEM 

algorithm involves 0 (m2)  operations, where m is the number of degrees of freedom. 

The technique outlined above reduces the problem with 2n degrees of freedom into 

two smaller problems with n degrees of freedom, where n is the number of segments 

in the chain. However, in situations where the point P is near the surface of the 

envelope of the accessible space of the end effector, more than one iteration of this 

technique may be required to  get the end effector to the goal. 

5.3 Implement at ional Details 

The notion of trees, subtrees and lists recurs many times in the preceding discussion. 

Indeed, the implementation of the system described earlier contains different types of 

trees, lists and lists of trees. This lends itself to an object oriented design. A set of 

generic container classes pertaining to lists and trees was created to allow reusability of 

the code and to make interaction with various program entities uniform. These generic 

classes provide very basic services to support functionality of lists and trees such as 

data insertion and retrieval and different types of list and tree traversal. Specialized 

classes supporting the notion of an articulated figure, movable trees, lists of movable 

trees and so on were derived from the generic classes. The derived classes provide 

services which support the functionality of the underlying entity. These services were 

built on top of services provided by the generic classes. Objects, which are instances 

of the derived classes, were used for program development. 

The articulated figure class provides services which allow partitioning of the tree 

into movable and static subtrees and for drawing the figure. These services are invoked 

to obtain a set of independent subproblems each element of which is an instance of the 

movable tree class. The movable tree class provides services for querying the following 

information: joint angle vector, objective function value, the gradient, the Hessian, 

constraint values, constraint bounds and constraint gradients. In addition there is a 

service to update the joint angle values. 

The driver program for the optimizer gets the object representing the list of mov- 

able subtrees. It retrieves a node from the list, retrieves from the node the information 
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required by the optimizer and invokes the optimizer. The optimizer returns the so- 

lution to the problem, which is an updated joint angle vector corresponding to the 

movable subtree represented by the node. The driver program then updates the mov- 

able subtree. Updating of the joint angle vector in the movable subtree object is also 

reflected in the corresponding parts of the articulated figure. After all the nodes in 

the list of movable subtrees are visited by the driver program, it invokes the drawing 

routine of the articulated figure, which results in the updated picture on the screen. 

These iterations are carried out until1 all the subproblems are solved. 

As is clear from the description given above, the optimizer is completely insulated 

from the design of the application. Thus future changes in the application will not 

require any modification to the optimizer. The class design has been done using C++. 

The drawing routines embed Silicon Graphic Graphics Library calls in the C++ code. 

The FORMS library is used for the user interface design. 

The optimizer uses routines from packages like BLAS [LHKK79], LAPACK [ABB+92], 

LSSOL [GMSW86a] and NPSOL [GMSW86b]. BLAS and LAPACK provide general 

linear algebra routines and NPSOL and and LSSOL are a collection of optimization 

related routines. All packages are written in FORTRAN-77 and are an excellent 

repository of stable and robust code for numerical computations. 



Chapter 6 

Conclusions 

This thesis has presented the development and implementation of a system which 

allows direct manipulation of articulated figures, represented as planar, hierarchical, 

skeletal structures, for the purpose of creating animations. Applicability for animating 

three-dimensional figures has been discussed. The system allows for the interactive 

creation of keyframes (which can later be interpolated suitably to make an animation) 

and complete animation sequences. Various techniques have been tried in the past 

for animating articulated figures. A survey of these techniques has been presented 

and their limitations have been identified. The new approach to inverse kinematics 

presented here addresses some of these limitations. 

Direct manipulation of articulated figures is supported by automating the inverse 

kinematic calculation of joint angles for placing the end effector at a point in space. 

Reformulation of the inverse kinematic problem as an optimization problem, where a 

function of the distance between the end effector and the goal is the objective func- 

tion to be minimized, has been described. A particular contribution of this work 

is the range of constraints which can be incorporated. Constraints can be used to 

impose limits on the possible values for the joint angles; Another class of constraints 

reduces the effort required for the creation of keyframes. Previous attempts at ar- 

ticulated figure animation have been limited to providing direct manipulation of the 

figure with only one end effector at a time. Our approach takes the concept of direct 
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manipulation a step further by making it possible to manipulate multiple end effec- 

tors simultaneously by associating trajectories with t hem. The end effectors follow 

associated trajectories over a period of time, thereby creating an animation sequence. 

The process of optimization of a function in the presence of constraints requires 

higher order information about the function and the constraints. Algorithms for 

efficient procedural evaluation of these quantities have been developed. 

Optimization of nonlinear functions is an iterative process where each iteration 

involves potentially expensive steps of matrix inversion and recalculation of different 

matrices and vectors. Techniques from the field of nonlinear optimization, which have 

not been previously used for articulated figure animation, allow efficient inversion and 

modification of relevant matrices in each iteration by maintaining suitable factors 

of different matrices. Real-time direct manipulation of articulated figures has been 

ensured by the use of these techniques and an optimization algorithm which displays 

super-linear convergence. 

6.1 Future Work 

We have chosen only a function of the distance between the end effector position and 

the goal as the objective function which is minimized to provide direct manipulation 

of an articulated figure. However, a variety of other functions can be defined to ac- 

complish different tasks. For instance a function of the difference in the orientation 

of the end effector and a user specified vector can be minimized to make the end 

effector point in a desired direction. A weighted sum of the distance function and the 

orientation function can be used if both the end effector position and the orientation 

are important. A kinematic subtree with more than one end effector can be manip- 

ulated by using an objective function which is a weighted sum of objective functions 

associated with each end effector. 

Similarly, many different kinds of constraints in addition to those discussed can 

be incorporated in the system. For example types of constraints which constrain a 

joint on the articulated figure to lie on a twice-continuously differentiable curve can 

be defined. 
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It is easy to show that higher order information about the types of objective func- 

tions and constraints discussed above can be derived from the material presented in 

Chapter 3. Any set of functions and constraints for which the higher order informa- 

tion can be derived are suitable for the optimization algorithm used in this research. 

Thus, an optimization approach to inverse kinematics is a very powerful paradigm 

which can very conveniently and uniformly handle various kinds of situations that 

can arise in the direct manipulation of articulated figures. 

However, for any set of goals and constraints, an articulated figure can have more 

than one solution. An optimization algorithm selects the nearest solution in the 

solution space. The nearest solution however, may not result in the best posture 

for the articulated figure. The best posture for a given set of goals and constraints 

depends on the entity which the figure represents. Incorporation of entity specific 

knowledge in the form of constraints, as mentioned in Chapter 6, can greatly enhance 

the functionality of the system. 

This implementation represents trajectories as a list of points. This, however, 

makes it difficult to modify trajectories. Use of splines as a representation for trajec- 

tories offers a very attractive and flexible solution to this problem. 



Appendix A 

Notation 

Vectors and matrices are shown in bold with lower case and upper case letters respec- 

tively. All vectors are column vectors. Superscript T is used to denote the transpose 

of a vector or a matrix. An element of a vector is represented by the same letter as 

the vector, and is italicized. An element of a matrix is represented with a lower case, 

italicized letter which is the same as that used for the matrix. Subscripts are used to 

denote the order of the element within a vector or a matrix. For example, g; is the ith 

element of vector g and is the element in the ith row and jth column of matrix H. 

1 1  11, 2-norm of a vector 

n number of variables 

8 n x 1 vector of variables of optimization 

8* n x 1 vector of variables at the optimal point 

F(8)  the objective function 
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g(8) = VF(8) n x 1 vector of first partial derivatives of F ( B ) ,  
called the gradient 

H(8) = V2.F(8) n x n symmetric matrix of second partial derivatives 
of F(8)  called the Hessian 

number of simple bounds in the constraint set 

number of simple bounds in the working set 

number of variables with no corresponding simple bound in the 
working set 

number of general linear constraints 

number of general linear constraints active at the optimal point 
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i t h  general linear constraint 

n~ x n matrix with aEi's as its rows 

tL x n matrix corresponding to active linear constraints only 

number of nonlinear constraints 

number of nonlinear constraints active at the optimal point 

ith nonlinear constraint 

n~ x 1 vector of nonlinear constraint 

tN x 1 vector of active nonlinear constraint only 

aN;(B) = Vc;(B) n x 1 vector of first partial derivatives of ith nonlinear 
constraint, called constraint Gradient 

A d o )  n~ x n matrix with nonlinear constraint gradients a:; 
as its rows 

AN (6) tN x n matrix corresponding to 2(8) 

t = tL + tN number of active general constraints 
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m = nFx + t~ + t~ total number of constraints in the working set 

c m x n matrix of active constraints 

4 6 )  t x n matrix of active general constraint gradients 

t x n ~ x  partition of A corresponding to n ~ x  variables with 
simple bounds in the working set 

AFR t x ~ F R  matrix of rest of the columns of A 

r = ~ F R  - t = n - m dimension of Null space of AFR and c 

Z n x z matrix whose columns are orthogonal to the rows of c 

ZFR ~ F R  x z matrix whose columns are orthogonal to the rows of A 

Y n x m matrix whose columns are basis for the rows of c 

YFR ~ F R  x t matrix whose columns are are basis for rows of A 

QFR = [ ZFR I YFR ] TZFR x n ~ n  matrix composed of ZFR and YFR 

Q = [ Z ~ ]  n x n matrix composed of Z and Y 

X m x 1 vector of Lagrange multipliers 

t L  x 1 vector of Lagrange multipliers corresponding to active 
general linear constraints 

tN x 1 vector of Lagrange multipliers corresponding to active 
nonlinear constraints 
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A* m x 1 vector of Lagrange multipliers at  the optimal point 

Jv, A) Lagrangian of the objective function 

w, 4 s) Augmented Lagrangian of the objective function 

W Hessian of the Lagrangian function 

W, = Q ~ W Q  Hessian of the Lagrangian function projected on the matrix Q 

WFR ~ F R  x ~ F R  submatrix of W corresponding to variables 
not with simple bounds in the working set 

W z  = zTFRwFRzFR z x 2 matrix resulting from projecting WFR on ZFR 



Appendix B 

Proofs 

Formulae for SigmaTheta, SigmaCos, Sigmasin, IIj, and I(, defined in Chapter 3 are 

repeated here for ease of reference. 

1 o otherwise 
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B.2 Proofs 

B.2.1 Proof of Corollary 1 

By definition of Ccl 

The proof for SCl is given in exactly the same way. 

B.2.2 Proof of Corollary 2 

By definition of Ccl 
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The proof for Sc, is given in exactly the same way. 

B.2.3 Proof of Theorem 1 

Case I: u > w 

terms independent of 8, 
a 

%(s ; ,~ )  = lw sin (ow + . - .  + ow) + - - :+ au-1 sin + - - .  + j 
80, 

+ 

terms containing 8, 

If w > u, all terms of Sz  will contain 6, and hence all will be differentiable with 

respect to 8, 

Case 11: w > u 
a a 

( S v )  = - (aw sin (8, + . + 8, + . - - + 8,) + . - + 
do, 
a, sin (8, + . . + 8, + . . + 8, + . . + 0,)) 
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Combining Case I and 11, we get 

Similarly, it can be proved that 

B.2.4 The Objective Function 

The objective function as given by Equation 3.1 1 is shown below: 

F ( 8 )  = (al cos (dl) + a2 cos (01 + 6'2) . . . an cos (81 + O2 . . '8,) - X P ) ~  + 
2 

(al sin (01) + a2 sin (dl + 02) . . . an sin (01 + O2 . . . On) - yp) 

Using the definition of SigmaTheta (Equation B.l) in the equation given above we 

get: 

2 
F(8) = (al cos (01,l) + a2 cos ( 0 2 ~ )  + . - - an cos (@,,I) - YP) 

Furthermore using the definitions of SigmaSin and SigmaCos (Equations B.2 and B.3) 

in the equation above, we get: 
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Substituting Kz for C;,, - xp and I(, for Sy,, - yp in the equation above we get: 

B.2.5 The Gradient 

The Gradient g(8) of F(8) is a vector of first partial derivatives of F ( 0 )  and is given 

by the following equation: 

First partial derivative of g; of F(8) (Equation B.8) with respect to O;, g; = 
a 

-(F(8)), is given as follows: ae; 

using Equations B.6 and B.7 we get 

= 2(CCl - X~)(-S*:~ - 0) + 2(Sn 1,l - ~p)(C*:l - 0) 

rearranging terms in the Equation above we get: 

I 
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substituting KX and K,, we get 

Substituting Equation B. 12 in Equation B.10 we get: 

g(8) = VF(8) = 

B.2.6 The Hessian 

The Hessian H(8) of function F(8)  is an n x n matrix of second partial derivatives 

of F(8)  and is given by: 

If hi,j is the element in ith row and jth column of H(8), then h;,j is the second partial 

derivative of F(8)  with respect to 0; and O j .  Formula for hi$ given by Equation 3.24 

can be proved as follows: 
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d 
Substituting for -(F(O)) from Equation B.11, we get: 

doj 

substituting Kx and KY above 

= 2(c2y;1 - KYS2Y1 + sty;l - I<zc;l) 

rearranging the terms results in: 

B.2.7 Non-linear Constraints 

Constraints required to pin the end effector of an n-segment kinematic chain to a 

point P in space, with x p  and yp as its x and y coordinates respectively, are given as 
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follows: 

a1 sin (01) + a:! sin (01 + 02) + - 0  . + 
Cy = = 0 

a ,  sin (01 + O2 + . . - + O n )  - xp 

using the definition of SigmaTheta (see Equation B.l ) in Equations above: 

cx = a1 cos ( 0 1 ~ )  + a2 cos (02,1)  + - . + cos ( O n , , )  - xp = 0 

cx = a1 sin ( & , I )  + a2 sin (02,1) + + sin ( O n Y l )  - xp = 0 

using the definitions of SigmaCos and SigmaSin in the Equation above: 

substituting KX and K, above, we get: 
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B .2.8 Constraint Gradients 

The Gradient Vc(6) of c((.l), where 0 is an n-vector, is an n-vector of first partial 

derivatives of c(8) and is given by the following equation: 

Using Equation B.16 first partial derivative of c,(B) and cy(8) with respect to 4; 
are given as follows: 

using Equations B.19 and B.18 the Gradients of c, and cy can be written as: 

d a 
( (  80 j = as,(cb - XP) 

d d 
-(cY(@)) dB; = z ( s ; ~  - YP) 

Using results given by Equations B.7 and B.6, above equations become: 

d 
-(cx(e)) 80; = -s;?1 
d 

-(cy(W = CtI dB; 

(B.19) I 
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