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Abstract 

The thesis investigates the design and implementation of a deductive database system 

prototype, LogicBase, and several query processing and optimization techniques in 

deductive database systems. 

LogicBase adopts the compilation-based query processing method, where logic 

programs are compiled into highly regular forms. A query is evaluated on the compiled 

form by performing iterative relational operations. LogicBase facilitates a detailed 

query analysis to select an appropriate query evaluation strategy and to  generate an 

efficient query processing plan, thus to achieve declarativeness and efficiency. 

An important feature of LogicBase is its ability to handle constraints, which are 

manipulated to determine the safety of an evaluation plan and to reduce search space 

in some expensive query processing. Constraints and monotonicity are investigated to 

benefit constraint pushing and derivation. Moreover, interaction of constraints with 

different programs is studied. 

A set of query processing strategies are proposed for efficient evaluation of pro- 

grams with multiple linear recursions, which extends the method of handling single 

linear recursions by accessing the union of separate relations. Furthermore, an ext en- 

sion of counting method to deal with cyclic data path is devised, which transforms 

the counting method into the propagations of relative distances over cyclic paths in a 

directed acyclic graph constructed from strongly connected components of the original 

data graph. 
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Chapter 1 

Introduction 

A deductive (or logic) database system combines merits of relational database systems 

and logic programming by taking logic as its data model and retaining query process- 

ing efficiency in relational databases. It extends the expressive power of a declarative 

query language from SQL to general logics. 

Significant research efforts have been spent on query evaluation and optimization 

in deductive databases. Many methods and strategies have been proposed and im- 

plemented. Several deductive database systems have been developed. Our research 

at Simon Fraser University has been on the deductive database query evaluation and 

optimization, emphasizing the declarativeness and efficiency of query processing. A 

deductive database system prototype, LogicBase, has been designed and implemented. 

The initial implementation and experimentation have shown that the approach taken 

in LogicBase has many advantages over and offers an alternative to the other currently 

available deductive database query evaluation techniques. 

Many issues concerning query processing in deductive databases, especially those 

in LogicBase, are investigated in the thesis. 

In this chapter, the background and some practice for query processing in deduc- 

tive databases are reviewed. 



CHAPTER 1. INTRODUCTION 

1.1 Deductive database: a first look 

Similar to relational databases, data in deductive databases are stored in relations. 

However, not all relations need to be stored physically. Some relations are defined 

by logic rules such that data can be derived from other physically stored data. The 

primitive concept for deductive databases can be first introduced by a simple example 

in Figure 1.1. 

parent(aaron, brian). 

parent(brian, f red). 

parent(coleen, eve). 

parent(brian, greg). 

ancestor(X, Y) : - parent(X, Y). 

ancestor(X, Y) : - parent(X, Z), ancestor(Z, Y). 

Figure 1.1: The ancestor example. 

In Figure 1.1, predicate parent(aaron, brian) represents a fact that "brian" is a 

parent of "aaron". All of the parent predicates can be considered as tuples in a rela- 

tion called parent and are physically stored in a database. However, tuples in relation 

ancestor are derived from two logic rules. Rule (1.1) states that one's parent is his 

or her ancestor, while Rule (1.2) states that one's parent's ancestor is also his or her 

ancestor. Relation ancestor can be derived from relation parent, which consists of fol- 

lowing tuples: ancestor(aaron, brian), ancestor(brian, f red), ancestor(coleen, eve), 

ancestor(brian, greg), ancestor(aaron, fred), and ancestor( arron, greg). An infer- 

ence engine is responsible to deduce facts implied by logic rules and to answer queries 

imposed on a derived relation. 

In a deductive database, a relation stored physically is called an extensional 

database (EDB) relation or a base relation. A relation defined through a set of logic 

rules is called an intensional database (IDB) relation or a derived relation. 
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1.2 Extension to the relational 

1% 

approach and Pro- 

A deductive database system extends a relational database system in expressiveness. 

A derived relation in deductive databases can be defined recursively, such as the 

ancestor relation in Figure 1.1. Many problems can be expressed and solved us- 

ing recursively defined logic rules, which are not expressible in a relational database 

system. 

Research in logic programming has contributed to the initial studies of deductive 

databases. A version of Prolog called Datalog, which uses function-free Horn clauses, 

is taken in deductive databases as a data model to define rules and queries. Although 

the Datalog syntax is similar to that of Prolog, the operational semantics and the 

evaluation strategies of Datalog are different from those of Prolog. Unlike Prolog, 

Datalog does not allow functions, and it follows the model-theoretic semantics (see 

Section 1.4) rather than the computational semantics in Prolog. Deductive databases 

inherit and extend data management facilities from relation databases. To efficiently 

cope with a large amount of data in query processing, set-oriented data accessing 

methods are used in deductive databases rather than tuple-at-a-time data accessing 

in Prolog. Deductive databases aim to be more declarative than Prolog in that the 

order among rules and the order among predicates can be independent from the 

evaluation strategy in deductive databases. 

1.3 Basic concepts of deductive databases 

The building element in a deductive database, called atomic formula, is a predicate 

of the form p(al,  aa, . . . , a,), where p is the predicate name, ai's are arguments and 

n is the number of arguments called arity of the predicate. Each argument can be 

either a constant or a variable. As a notational convention, a string starting with an 

upper-case character is a variable, otherwise it is a constant. A literal is either an 
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atomic formula (positive literal) or an atomic formula preceded by a negation sign 

not, which is a negative literal. 

The rules in deductive databases are in the form of Horn clauses, as shown in 1.3. 

The left hand side of symbol ": -" is called head, and the right hand side is body. 

A rule has at most one predicate in the head, and usually one or more predicates 

in the body. The relationship among predicates in the body is logical AND. When 

multiple rules are used to define the same predicate, the relationship among these 

rules is logical OR. The meaning of logic rules is natural and easy to understand. It 

states if all predicates in a rule body are true, then the head predicate is true. 

A predicate is ground if all of its arguments are constant. A rule is ground if all 

of its predicates are ground. A fact is a ground rule with an empty rule body, such 

as parent in Figure 1.1. When the head of a rule is empty, the body predicates form 

an integrity constraint, which has to be satisfied in a consistent database. 

A deductive database consists of a finite set of EDB predicates, IDB rules and 

integrity constraints. A set of rules in a deductive database is also referred to as a 

program. 

Definition 1.1 A predicate s is said to imply a predicate r ( S = J  r )  if there is a 

Horn clause in IDB with predicate r as the head and predicate s in the body, or there 

is a predicate t where s+ t and t+ r (transitivity). A predicate r is recursive if 

r===+ r .  If r e  s and s+ r ,  r and s are mutually recursive and are at the same 

deduction level. Otherwise, if r+ s but not s d  r ,  r is at a lower deduction level 

than s .  

Definition 1.2 A rule is linearly recursive if its body contains exactly one recursive 

predicate, and that predicate is defined at the same deduction level as that of the 

head predicate. A rule is nested linearly recursive if its body contains more than one 

recursive predicate but there is only one defined at the same deduction level as that of 
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the head predicate. A rule is nonlinearly recursive if its body contains more than one 

recursive predicate defined at the same deduction level as that of the head predicate. 

Definition 1.3 A recursion is (single) linear i f  all of its recursive predicates are 

at the same deduction level and every recursive predicate is defined by one linearly 

recursive rule and at least one nonrecursive (exit)  rule. A recursion is multiple linear 

i f  all of its recursive predicates are at the same deduction level and every recursive 

predicate is defined by one or more linearly recursive rules (but at least one is defined 

by multiple linearly recursive rules) and at least one nonrecursive rule. A recursion is 

nested linear if every recursive predicate in the recursion is defined by one linearly or 

nested linearly recursive rule (but at least one is defined by a nested linearly recursive 

rule) and at least one nonrecursive rule. A recursion is nonlinear if it contains some 

nonlinearly recursive rule(s). 

Linear recursions are particularly important, because most of the "real life" recur- 

sions are linear, and there are efficient methods to process queries on linear recursions 

1101 - 

A query in deductive database is a literal of the form "? - q(al ,  a2 , .  . . , a,)", where 

predicate q can be defined either by an EDB or an IDB predicate and arguments ai7s 

can be either constants or variables. A constant in query represents query instantiation 

and a variable designates an argument being inquired. The answer to the query is the 

set of all the instances of predicate q according to the program and the EDB relations. 

Query evaluation in deductive databases is realized by mapping a deduction rule 

to a corresponding relational expression and propagating query instantiation into the 

relational expression. To aid analysis of query evaluation, a predicate is associated 

with a notation binding, which is a string of characters 'b' or ' f ' .  If the i-th argument 

in a predicate p is instantiated, then the i-th character in p's binding is b (bound); 

if p's i-th argument is a variable, then the i-th character is f (free). If a predicate 

p has a binding string of x,  the predicate is represented in the adorned form as px. 

For example, the adorned form for query "? - ancestor(john, Y)" in Figure 1.1 is 
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ancestorbf. For a deduction rule, propagation of instantiation in its corresponding 

relational expression can be illustrated by binding propagation in the deduction rule. 

Analysis of binding propagation reveals the way a deductive query should be evalu- 

ated. For example, given a query of ancestorbf in Figure 1.1, the binding is propagated 

in Rule (1.2) as following: 

ancestorbf (x, Y) : - parentbf (x, Z),  ancestorbl(2, Y). 

Here, the instantiation on X in the rule head enables the evaluation of parent (by 

relational selection), which instantiates Z ,  and produces adorned predicate ancestorbf 

in its body again. Such binding analysis reveals the query ancestorbf can be evaluated 

by performing a number of relational selection operations on parent relation. 

1.4 Semantics of logic rules 

Intuitively, the meaning of a logic rule is that the head predicate is true if all of the 

body predicates are true. In other words, if all of the variables in a rule are substituted 

by constants and the substitution makes the right hand side of the rule true, then the 

left hand side is also true. 

Formally, there are three ways to define meanings of logic rules: proof-theoretic 

interpretation, model-theoretic interpretation and computational definition. They are 

briefly introduced here following the concepts in [132]. 

Proof-theoretic interpretation establishes the meaning of logic rules by treating 

rules as axioms, and applying them on the facts in the database to prove other facts. 

For example, the meaning of the ancestor rules in Figure 1.1 is obtained by first 

applying Rule (1.1) on base relation parent, then by repeatedly applying Rule (1.2) 

on parent and derived relation ancestor. Each time, a logic rule is applied in the 

"forward" direction, with its body predicates as the conditions and the head predicate 

as the conclusion. 
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In model-theoretic interpretation of logic rules, an interpretation of a set of pred- 

icates assigns truth or falsehood to every possible instance of those predicates, where 

the arguments of those predicates are chosen from some infinite domain of constants. 

An interpretation is represented by the true instances of the predicates. An interpre- 

tation is a model if the assignment of the interpretation makes the rules true, which 

means the rules are satisfied under all of the instances from the interpretation. 

The number of models for a given set of logic rules may be infinite. A model 

M for a given set of logic rules is a minimum model if no other model for the set 

of logic rules is a subset of M (if only truth assignments are accounted). If there 

is only one minimum model for a given set of logic rules, such model is the least 

model. A Datalog program has a nice property that it has the least model, and the 

interpretation under its least model coincides with its proof-theoretic interpretation. 

However, when negation is introduced into logic rules, the uniqueness of minimum 

model is not guaranteed. 

Computational definition to define meanings of logic rules is to provide an al- 

gorithm to determine whether a fact is true or false by executing them using the 

algorithm. Prolog is such an example. The set of facts found under such an algorithm 

is not necessarily the set of all the facts for which a proof exists. Computational 

interpret at ion enables efficient computation of logic rules. 

To ensure efficient implementation, the approach adopted in deductive databases 

is to translate logic rules into a sequence of relational operations. It can be shown 

that for Datalog without negation, such interpretation produces the least model under 

model-theoretic interpretation. 

1.5 Query processing in deductive database 

Inclusion of logic rules in deductive database poses challenge to query processing. In 

this section, some of the representative processing strategies are briefly introduced. 
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For non-recursive queries, since the relational algebra is similar to the logic in Dat- 

alog, a non-recursive logic rule can be mapped into a relational expression, such that 

the derived relation corresponding to the predicate in the rule head can be calculated 

by performing a sequence of relational operations on the relations corresponding to 

those predicates in the rule body. For example, for the following rule: 

uncle(X, Y) : - parent(X, Z ) ,  brother(2, Y). 

the derived relation uncle can be computed as following: 

uncle(X, Y) = IIx,y(parent(X, 2) KI brother(2, Y)) 

Query processing and optimization techniques well established in the relational database 

[29, 38, 63, 78, 76, 119, 127, 130, 132, 1461 can be applied to process non-recursive 

queries in deductive databases. Processing of non-recursive queries is similar to the 

processing of queries posed on views in relational databases. 

For queries on recursive rules, such a mapping has to consider recursive predicates, 

which are not directly computable based on the mapping to relational expressions. 

Recursive query evaluation methods such as the naive and semi-naive evaluation [8, 

71, the Henschen-Naqvi technique [59], the QuerylSubquery approach [I411 and the 

chain-based evaluation method [55] are developed to compute the answers for queries 

according to the semantics of recursive programs. Query optimization methods such 

as the magic sets method [9, 1031 and the counting method [9, 1121 are used to rewrite 

a recursive program into an equivalent but more efficient one to evaluate. 

Query evaluation approaches can be classified as bottom-up or top-down methods. 

A bottom-up method starts from the exit rule and applies recursive rules to EDB 

and IDB relations to produce derived literals until the derived relation is generated 

and the query is answered. The top-down method starts from a query and propagates 

instantiations from the query into the recursive rules. The query is either processed by 

the exit rule or new subqueries are generated according to the recursive rules in order 

to process the original query. New queries are processed in the same top-down fashion. 

In general, bottom-up methods are simple, top-down methods are more efficient by 

computing less fruitless intermediate literals. 
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1.5.1 Naive and semi-naive evaluation 

Naivelsemi-naive evaluation [5 ,  24, 8, 34, 1161 is one of the first bottom-up evaluation 

methods. 

Naive evaluation of a recursion works by first evaluating its non-recursive rule set, 

then iteratively evaluating the set of recursive rules on database relations (EDB and 

IDB) generated so far, until no new tuple can generated (thus a Jxed point is reached, 

for a Datalog program without negation, the fixed point is the least model for the 

recursion and is called its least Jzed point). Following is the algorithm for the naive 

evaluation from [133]. 

Algorithm 1.1 Naive Evaluation. 

Input: A collection of safe rules and relations R1, . . . , Rk, for EDB predicates men- 

tioned in the bodies of these rules. 

Out put: If it is finite, the least fixed point for the rules, with respect to the given EDB 

relations. If the fixed point is infinite, an infinite sequence of approximations 

that approaches the least fixed point as a limit is produced. 

Method: 1. Relation Pi for each IDB predicate pi is assumed empty in the begin- 

ning. 

2. Suppose during evaluation, we have approximations PI, . . . , P,, for the 

IDB predicates, pl, . . . , p,. The next approximation for p; is obtained by 

as follows. 

(a) for each of n rules defining pi, construct a relation for the head from 

that of the body as follows: 

i. For each non-built-in predicate q;(tl, . . . , tk)  in the rule body, ob- 

tain the corresponding relation Qi for qi as follows. Let Qi be 
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empty initially. Let Q: be the relation for predicate q; (Q: is one of 

the P relations if q; is an IDB predicate or one of the R relations if 

q; is an EDB predicate). For each tuple q:(sl,. . . , sk)  in Q:, if there 

is a term matching y for q;(tl, . . . , tk) and tuple q:(sl, . . . , sk), add 

tuple (sl , . . . , sk) into Q;. 

ii. compute the join Q = Q1 cu . . . BI Q, (omit Q; if q; is a built-in 

predicate). 

iii. apply to Q a selection for each of the built-in predicate if any. 

iv. perform corresponding selection and projection on Q to obtain 

relation for the rule head. 

(b) compute union on all relations from each rule of p;; the result is P;'. 

(c) compare each P; with P;'; if P;' = P; for all i, then the least fixed 

point is encountered. Else for each P;' which is a proper superset of Pi, 

replace P; with P;'. Repeat step (2). 

Improvement can be made on the naive evaluation. In every iteration of applying a 

recursive rule on P, a portion of P is reevaluated since it also participated in iterations 

before. Semi-naive evaluation [8, 7, 1161 removes such redundancies by performing 

a relational difference operation at every iteration, so that only the newly generated 

tuples of P participate in the next iteration of evaluation. 

Semi-naive evaluation method is shown as Algorithm 1.2. 

Algorithm 1.2 Semi-naive evaluation. 

Input: same as in Algorithm 1.1. 

Output: same as in Algorithm 1.1. 

Method: 1. For each recursive IDB predicate p, construct the corresponding dif- 

ferential IDB predicate Ap as follows. For each recursive rule defining p as 

follows: 

P : - g ~ , . - . , g n *  
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replace each recursive predicate p in the rule body with Ap and produce a 

rule for Ap as given below: 

2. Initialize the relation P for each IDB predicate p to be empty, and initialize 

the relation A P  for the differential predicate Ap by applying the EVAL 

procedure in Algorithm 1.1, but only to those rules with no IDB predicate. 

3. If all of AP's are empty, the least fixed point is encountered, each IDB 

predicate p has a relation P .  

4. Otherwise, replace each IDB relation P by P U A P .  

5 .  For each IDB predicate p, compute a new differential relation AP'  for 

each of the differential rules for p by applying Algorithm 1.1, using EDB 

relations R1,. . . , Rk, the current IDB relations P I , .  . . , P,, and the differ- 

ential relations APl, . . . , AP, as needed, and compute union over all of 

the differentiated rules for p. 

6. For each IDB predicate, compute A P  = AP'  - P, and go to step 3. CI 

The naivelsemi-naive evaluation methods can be applied to a wide range of re- 

cursive programs, both linear and non-linear. However, these methods generate the 

whole derived relation regardless what is being inquired. The magic sets method is 

proposed to remedy such a problem. 

1.5.2 Magic sets method 

The magic sets method [9, 13, 109, 103, 1141 is a query optimization method which 

tailors the database according to the query instantiation so that only the "useful" por- 

tion of a database is used in the evaluation, thus substantially reducing the evaluation 

cost. The method can be understood best through an example. Consider the ancestor 

example in Figure 1.1 with a query of "? - ancestor(peter, Y)". Suppose the parent 
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relation contains a large number of (e.g., more than 100,000) tuples. The query is 

to find all of peter's ancestors. Obviously, among all of the people recorded in the 

parent relation, only a small number of them are related to the derivation of peter's 

ancestors, the rest has nothing to do with the query evaluation. The essential idea of 

the magic sets method is to extract the query-relevant portion of the parent relation 

to replace parent in the query processing. To obtain the query-relevant portion, the 

original rules are rewritten to incorporate the query instantiation into the rule body. 

In practice, usually a superset of the query relevant portion is obtained for ease of 

implementation. The following shows the rewritten program for ancestor: 

magic-ancestor(peter) . 

magic-ancestor(Y) : - magic-ancestor(X), parent(X, Y). 

ancestor(X, Y) : - magic-ancestor(X), parent(X, Y). 

ancestor(X, Y) : - magic-ancestor(X), parent(X, Z), ancestor(Z, Y). 

The newly added predicate magic-ancestor (called magic predicate) represents the 

relevant portion of the parent relation to the query constant "peter". The rules for 

deriving the magic predicate are generated based on how the bindings are passed from 

the head of a recursive rule to the body. The original rules are rewritten to include the 

magic predicates so that only the relevant tuples in parent are used in the evaluation. 

The rewritten program is equivalent to the original one in that they produce the same 

answer to the given query. The magic sets method can also be applied to optimize 

evaluation of a non-recursive program [89]. 

1.5.3 Counting method 

Counting method [9, 113, 1151 works efficiently with the linear recursive query pro- 

cessing. To see how it works, let's examine the "same generation" example. 
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Suppose the query is "? - sg(janet, Y)". For Y to be an answer it has to satisfy the 

following condition: 

Here k starts from 1 to a level at which iteration no more intermediate answers can 

be generated. There are an equal number of instances of the predicate parent at both 

sides of the person predicate instance. The counting method introduces an explicit 

integer called counting level to denote such a number, which counts up (down) during 

the processing of the parent instances at the left (right) hand side of person. 

The sg program can then be rewritten as follows to incorporate the equal number 

requirement: 

u-sg(janet, 0). 

u-sg(Xp,I) : - 

d-sg(X, I) : - 

d-sg(Y,I - 1) : - 

sg(janet, Y) : - 

parent(X, Xp), u-sg(X, I - 1). 

u-sg(X, I), person(X). 

parent (Y, Yp) , d-sg (Yp, I). 

d-sg (Y, 0). 

The predicate u s g  represents the processing of sg during the counting up phase, and 

d-sg during the counting down phase. 

Counting method is more efficient than the magic sets method for linear recursion, 

with the worst time complexity of O(ne) and 0 (e2)  respectively [84]. However, count- 

ing method requires that the base relation in the "up" portion be acyclic, otherwise 

the method does not terminate. 

1.5.4 Logic programming approaches 

Prolog is a well-known declarative programming language. There are many projects 

designed to apply Prolog's logic processing to databases [15, 23, 60, 67, 86, 91, 143, 
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1441. However, Prolog's SLD computation mechanics (depth-first search with back- 

tracking resolution strategy) [77, 1081 does not suit the database application well. 

Its tuple-at-a-time access is costly for the database applications. Termination of an 

evaluation in Prolog is not guaranteed and is dependent on the orders of predicates in 

the rule body and/or the orders of rules in the program. There are also redundancy 

in the computation of answers in Prolog. 

The SLG resolution [27] in the XSB system [I181 (see also 1.8.4) is an evaluation 

method combining the Prolog evaluation with memoing. Memoing for logic program- 

ming [33, 136, 85, 98, 1451 maintains a table of goal/subgoal calls and their return 

values during a query evaluation. If the same call is made again, the answer to such 

a query is retrieved from the table rather than the query being executed again, thus 

removing redundant computation and providing better termination of evaluation. 

1.5.5 Compilation and chain-based evaluation 

The evaluation and optimization methods introduced so far treat recursive programs 

as a general form and use the same strategy to process all of them. Chain-based 

method [55, 46, 451 compiles a recursive program to extract and make use of infor- 

mation about how the recursive program behaves. Recursive programs are compiled 

into a regular form called chain by expanding the recursive rules. All linear recursive 

programs and most of the non-linear programs with a natural interpretation can be 

compiled into chains [46, 581. Since a compiled program is highly regular, the behav- 

ior of a recursive program can be analyzed and a set of evaluation strategies (within 

the scope of the chain-based evaluation method) can be applied on the compiled 

form to generate answers to the query efficiently, according to the binding passing 

patterns in the program and the efficiency criteria. Therefore, evaluation may be ei- 

ther top-down, bottom-up, or hybrid to suit different programs. Various chain-based 

evaluation strategies will be presented in Chapter 3. 

For the ancestor example shown in Figure 1.1, the derived relation for the predicate 
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ancestor can be represented as follows by expanding the recursive rule: 

which can be represented roughly as parent W parent* (parent* designates a sequence 

of joins on k 2 0 parent relations). Such a compiled form reveals that the ancestor 

query can be processed as a transitive closure. 

1.6 More about compilation of logic programs 

The basic concepts and principles for compiling logic programs into chain forms are 

introduced in this section. 

A function-free linear recursion can be compiled into a highly regular chain form 

or a bounded form [58], which has a relational expression similar to that of ancestor in 

formula (1.6). A recursion with function symbols can be transformed into its function- 

free counterpart by a function-predicate transformation which maps a function to- 

gether with its variables to a predicate that carries the result of the function with an 

extra (functional) variable [47]. For example, function "+" in a predicate p(X + Y, 2 )  

can be transformed into a functional predicate plus(X, Y, Sum) where Sum carries 

the result of the function evaluated, and the predicate p becomes p(Sum, 2). A pro- 

gram is rectified if all of its function symbols are transformed and the head predicates 

of a set of logic rules defining the same predicate have identical variables. For ex- 

ample, the ordered recursion shown in Rules (1.7) and (1.8) is rectified as shown in 

Rules (1.9) and (1.10). Notice that [Y IYs] denotes a list construction function which 

results in a list with Y as the head and Ys as the rest of the list. 
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ordered(XYYs) : - cons(X, [I,  XYYs).  (1.9) 

ordered(XYYs) : - X 5 Y, cons(X, YYs, XYYs),  

cons(Y, Ys, YYs), ordered(YYs). (1.10) 

In LogicBase, the compilation of a linear recursive program into chains is performed 

by expanding the recursive rule until regularity can be found. The regularity of 

a compiled recursion is that every argument in the head predicate is connected to 

the corresponding argument position in the recursive predicate in the body of the 

expanded rule via a set of chain predicates in the expansions of the recursive rule. 

In the compilation of a linear recursion, the first expansion refers to the (trans- 

formed) recursive rule itself. The i-th expansion of a recursive rule is the unification 

of the recursive predicate in the body of the (i - 1)-st expansion with the head of the 

(transformed) recursive rule. 

For example, for the recursive program mod shown in Rules (1.11) and (1.12), 

the recursive rule in (1.11) is transformed into Rule (1.13) by the function-predicate 

transformation, whose second expansion becomes (1.14). 

When the k-th expansion of mod unifies with the exit rule, it becomes (1.15) 

which consists of a total of k pairs of ''Xj-l 2 Y, m i n ~ s ( X j _ ~ ,  Y,Xj)" (for j = 

1 , .  . . , k )  between the head predicate and the predicates of the exit rule body. Two 

predicates in an k-th expansion form are connected if they share a common variable. 

A group of such connected predicates is called a chain element (or chain predicate if 
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the element consists of only one predicate). The regularity of a recursive program can 

be characterized by its chain element, because in each expansion of a recursive rule, 

such chain element is added into the expanded rule. The appearance of the chain 

element is called a chain iteration (or simply iteration) in the expanded rule, since it 

corresponds to the unit to be evaluated in each iteration of chain-based evaluation. 

More specifically, a chain iteration added to the expanded rule in the k-th expansion 

is called the k-th chain iteration. The predicates in successive chain iterations have 

different argument values. They are propagated from one chain iteration to the next 

via share variables during a query evaluation. 

As a notational convention, a predicate p in the i-th chain iteration is denoted as 

p(;). The j-th argument of a predicate p is represented as p : j ,  and the value of the 

argument p : j in the i-th iteration is represented as p(i) : j. 

The recursion mod is compiled into a single chain, where the connection is through 

one chain element. Some programs can be compiled into multiple chains (predicates in 

the recursive rule are partitioned into multiple groups according to their connections). 

For example, the same generation recursion sg shown in Rules (1.4) and (1.5) can be 

compiled into two chains: parent(X, Xp) and parent (Y, Yp), respectively. 

In general, a linear recursion can be compiled to an n-chain recursion (n = 1 for 

single chain recursion, n > 1 for multiple-chain recursion) or a bounded recursion 

which is equivalent to a set of non-recursive rules. The compilation is performed 

automatically [58], the methods and algorithms for the compilation are introduced in 

Chapter 3. 

For a compiled n-chain recursion, the end of a compiled chain which connects to 

the query is called query end; whereas the other end (connected to the exit rule) is 

exit end. The evaluation of a single chain recursion is essentially a traversal along 

the chain, either from the query end to the exit end (called chain-exit evaluation), 

where bindings are passed from the query to the first chain iteration, from the i-th 

chain iteration to the (i + 1)-st (i > 0) iteration, and finally to the exit rule; or in the 

reverse direction from the exit end to the query end (called exit-chain evaluation). 



C H A P T E R  1. INTRODUCTION 

For a multiple-chain recursion, the query and the exit rule are connected via several 

chains which are to be synchronized during evaluation. Evaluation is performed by 

either (1) starting with some chains by the chain-exit evaluation, then evaluating the 

exit rule, and finally evaluating the remaining chains by the exit-chain evaluation, or 

(2) evaluating all the chains by the chain-exit evaluation, or (3) starting with the exit 

rule and by performing the exit-chain evaluation on each chain. Notice that all of the 

participating chains should be synchronized in evaluation in the spirit of the counting 

method. 

The regularity of compiled chains greatly benefits constraint analysis and the gen- 

eration of efficient query evaluation plans. Dedicated (and often simpler) algorithms 

can be applied to each category of recursions: for bounded recursions, nonrecur- 

sive query processing algorithms are adequate; for single-chain recursions, transitive 

closure algorithms and chain-based evaluation algorithms are applicable; for multiple- 

chain recursions, counting, magic sets, and the chain-based evaluation methods are 

applicable. A suboptimal evaluation plan can be selected from among several can- 

didates based on binding passing, termination judgement, constraint pushing, and 

evaluation efficiency. 

Extension of Horn Clause Programs 

1.7.1 Negation 

Datalog programs without negation have a unique least model, furthermore, the fixed 

point obtained from the bottom-up evaluation coincides with the least model. There- 

fore the bottom-up evaluation on negation-free programs is guaranteed to generate 

correct and complete answer. However, when negation is introduced into a recursive 

program, its least model may not exist anymore. There could be several minimum 

models, each can be an interpretation of the program. For example, the following 
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program has two minimum models: {p(a),q(b)) and {p(b), q(a)). 

+>. 

p(X) : - not q(X),  r (X) .  

q(X) : - not p(X) , r ( X )  . 

Much research has been done on the semantics of negated programs [4, 25, 37, 

139, 102, 101, 1101. The solution to the non-uniqueness of minimum models is to give 

an intended model as the interpretation [107]. 

Stratified negation [4,25, 137,921 is an important class of programs where a recur- 

sion is not defined through a negation. Stratified programs have intuitive semantics 

and efficient evaluation methods [12, 6, 721. Each derived predicate in a stratified 

negated program can be given a stratum level so that the program can be evaluated 

from the predicate with the lowest stratum to the highest. Upon evaluation of a pred- 

icate with a stratum, all negated IDB predicates in its rule body should be available, 

because they have lower strata and should have been evaluated earlier. 

Extensions to the stratified negation include locally stratified negation [102], mod- 

ularly stratified negation [68, 110, 1041. A program is locally stratified if a recursion 

is defined through a negation, but if all the variables in each rule are substituted by 

constants then the resulting instantiated rules do not have a recursion defined through 

negation. The modular stratification concept extends the connections among data in 

the local stratification to connections among strongly connected components. 

Other models such as the well-founded model [I391 are proposed to deal with 

general query evaluation involving negation. 

1 .?.2 Aggregation 

Aggregation or set-grouping is an important feature in relational databases. Much 

research has been done to study aggregation in deductive databases [12,14,35, 36, 138, 
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69, 80, 90, 110, 111, 117, 1491. The handling of aggregation in deductive databases 

resembles that of negation. If an aggregation is defined through a recursion in a 

program, it is necessary to find an appropriate semantic model to determine the 

meaning of the program. The following bill-of-material example illustrates such a 

case, where the cost of a part is recursively defined to be the sum of costs of its 

subparts. 

bom(Part, sum(< Subcost >)) : - subpart-cost(Part, Subpart, Subcost). 

subpart-cost(Part, Pa r t ,  Cost) : - basic-part(Part, Cost). 

subpart-cost(Part, Subpart, Cost) : - assembly(Part, Subpart, Quantity), 

bom(Subpart, Subcost), 

Cost = Subcost * Quantity. 

Before the aggregation function sum is performed on Subcost attribute, all tuples 

in subpart-cost have to be available and grouped according to the P a r t  attribute. 

However, the predicate subpart-cost is defined through the born predicate, and thus 

the aggregation and the recursion are dependent on each other. 

Similar approaches to the query processing in negated programs are adopted to 

deal with query processing involving aggregation. The stratified aggregation [12] is a 

class of programs where no recursion is defined through an aggregation, which has 

intuitive semantics and efficient evaluation methods. Weaker forms of stratification 

such as group stratification and modular stratification [go, 1101 are defined in a similar 

way to the local stratification and the modular stratification in negated programs. 

For the bill-of-material example, since assembly contains no cycle, no cost of a part 

is defined through an aggregation on itself. Thus, it is a group-stratified program and 

can be evaluated according to the hierarchical order in the assembly relation. Well- 

founded and the stable models are also proposed to deal with more general aggregation 

[69] in cases that stratification cannot be found. Monotonic program is discussed in 

[3l,  32, 90, 111, 1381 where the aggregated value on a partially derived data relation 

has monotonicity as the data relation grows. 
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1.7.3 Deductive and object-oriented databases 

Deductive databases assume logic as both the specification language and the com- 

putational formalism, but it only supports flat data structures. On the other hand, 

objected-oriented database supports complex data types and concepts of object and 

data abstraction, but lacks the declarativeness and a logic semantics. Deductive and 

object-oriented database (DOOD) stems from the merging of these two separate ap- 

  roaches to yield benefits in each approach. 

F-logic [73, 741 is proposed to represent and to reason features in object-oriented 

database by logic. The significance of F-logic is that it provides a logic foundation 

for object-oriented databases, thus enabling the integration of deductive and object- 

oriented paradigms. F-logic has a higher-order syntax to deal with inheritance, meth- 

ods and schema of objects, but a natural first-order semantics to support efficient 

query evaluation. 

Some deductive database systems such as LDL++ [149], CORAL++ [125] and 

LOGRES [21] support integration of deductive and ob ject-oriented databases by in- 

corporating object-oriented features into deductive databases. 

Another issue concerning DOOD, schema integration and evolution, is discussed 

in [79]. 

1.8 Deductive Database Systems and Prototypes 

Many deductive database systems and prototypes have been developed and reported 

in recent years, such as ADITI [135], COL [I], ConceptBase [64], Coral/CORAL++ 

[105, 1251, EKS-V1 [142], Glue-NAIL! [87], Hy+ [30], LDL/LDL++ [28], LogicBase 

1551, LOGRES [21], LOLA [16], XSB [118]. It is widely recognized that the system 

implementation is a vital part in database research. We briefly overview and compare 

some representative deductive database systems in this section. 



CHAPTER 1. INTRODUCTION 

1.8.1 LDL 

Developed at MCC, LDL (Logic Data Language) [28, 931 is one of the first functional 

deductive database systems available to the database researchers and developers. 

The design philosophy of LDL is to extend the relational data model to logic 

data model and to support database management system features. The first system 

built at MCC tried to couple Prolog with a relational database system. Valuable 

lessons were learned that Prolog was not suitable to database application because its 

dependency on orders among rules and predicates. Thus MCC started to develop a 

general-purpose declarative logic language supporting full database features. 

The highlights of LDL include a declarative data model combining a relational 

language and the expressive power of Prolog. LDL supports traditional relational 

DBMS features such as crash recovery and transaction management. Logic rules can 

be defined in LDL recursively including linear and non-linear recursive rules. The 

query optimizer in LDL employs the magic sets and the counting transformations for 

linear rules and special transformation for right- or left-linear rules. LDL extends Horn 

Clause programs by supporting stratified negation and stratified set grouping and 

aggregation. LDL++ is a direct successor to LDL which incorporates object-oriented 

features such as object identity and inheritance, while still retaining its relational 

database value concept [120], interoperability with other programming languages and 

DBMS. 

1.8.2 Glue-Nail 

NAIL! (Not Another Implementation of Logic!) was developed at Stanford University 

[88, 1311 to study query optimization method in deductive databases. NAIL! sup- 

ports general recursions and stratified negations. Before a query is evaluated, NAIL! 

analyzes the binding passing using rule/goal graph to select an appropriate evalua- 

tion order. Then according to the type of programs to be evaluated, proper query 

evaluation methods such as magic sets, counting, left- or right-linear evaluation are 
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applied. 

It was later found that a declarative system alone cannot meet all the application 

demands, therefore, a procedure language called Glue was developed to augment 

NAIL! with procedural control, 110 operation and update features [87, 991, which 

becomes Glue-Nail. A predicate can be an EDB relation, a temporary local relation, a 

NAIL! rule or a Glue procedure. A Glue-Nail program consists of one or more modules 

of Glue procedures and NAIL! rule sets, each module can be compiled separately into 

a target language. Declarative and query-oriented program is expected to be written 

in NAIL! rules, while Glue is expected to take care of the interface and EDB update 

functions. Query evaluation strategies of NAIL! are incorporated into the target 

language during compilation. The target language for Glue and NAIL! structures are 

gathered into a single file for execution of the query evaluation. 

Impedance mismatch between declarative NAIL! and procedural Glue is minimized 

by providing same or close data types and objects, and "all solution" computation. 

1.8.3 Coral 

The Coral project [105, 1061 gained experience from the LDL system . A generalized 

magic sets method, magic templates [103], provides the foundation for query process- 

ing in Coral, where general recursive programs are supported. Coral also supports 

modularly stratified negation and modularly stratified aggregation and set-grouping. 

Coral employs a number of evaluation strategies, which can be applicable to different 

programs. 

Coral provides module mechanism for organizing programs. Each module exports 

a derived predicate, which can be considered to be the definition for that predicate. 

With the module structure, a number of different optimization strategies can be inte- 

grated, and user can influence the evaluation strategies. It is up to the user to deter- 

mine the basic evaluation approach for each module. A distinct feature of Coral is its 
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support for non-ground tuples. Storage manager of an extensible database called EX- 

ODUS [22] provides disk-resident data management, transaction and crash-recovery 

for Coral. 

Coral++ [I251 is a recent extension to Coral to incorporate object-orientation 

features. 

1.8.4 XSB 

XSB system developed at SUNY Stony Brook [I181 is a Prolog-based logic program- 

ming system, which employs SLG resolution (memoing or tabling). SLG extends 

Prolog's top-down tuple-at-a-time evaluation by adding tabling to make evaluation 

finite and non-redundant on Datalog, and by adding scheduling strategy and delaying 

mechanics to support well-founded negation. Another important feature is its support 

for the more expressive HiLog data model. HiLog [26] is a higher order logic with a 

first order semantics, which can be evaluated efficiently. 

XSB's query engine is implemented at the emulator level to make use of the effi- 

ciency of WAM (Warren Abstract Machine). The HiLog syntax predicates are com- 

piled into SLG-WAM instructions to execute. It is reported such implementation is 

efficient [118]. Being an extension to Prolog, XSB is a memory resident system. In- 

dexing and hashing are extended to suit database applications. The interface with 

disk-resident data is provided by ASCII files. 

1.8.5 LogicBase 

LogicBase is being developed at Simon Fraser University [55]. The design goal is to im- 

plement the chain-based query evaluation method with an emphasis on efficient compi- 

lation and query evaluation of application-oriented recursions in deductive databases. 

LogicBase identifies different classes of recursions and compiles recursions into chain 

or chain-like forms when appropriate. Queries posed to the compiled recursions are 
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analyzed systematically with efficient evaluation plans generated and executed, mainly 

based on a chain-based query evaluation method. Stratified negation is supported in 

LogicBase. Stratified aggregation will be supported in the future. Its most important 

feature is the pure declarativeness achieved through query-independent compilation 

and chain-based evaluation. Although other deductive database systems are declara- 

tive, they still depend on the orders of rules and predicates in a program to a certain 

extent. LogicBase incorporates a number of evaluation strategies into chain-based 

evaluation, including the bottom-up, top-down and the counting methods. 

The compilation approach in LogicBase enables a detailed analysis of a recursive 

program, which facilitates the handling of functions and constraints in deductive 

databases. Thus LogicBase system can safely evaluate many queries on programs 

involving functions that cannot be handled by other approaches. 

1.8.6 Overview of the Thesis 

After presenting the principles concerning deductive databases, the rest of the thesis 

focuses on the problem of efficient query processing and presents author's contribution 

to its solution. 

Constraints and monotonicity are discussed in Chapter 2. When functions are in- 

troduced into recursive rules, safety (whether the evaluation will terminate) becomes 

a vital issue. It is shown that constraints and monotonicity among arguments in 

the recursive rules can be employed to guarantee the terqination of an evaluation 

for many programs. For those programs with multiple level recursive rules, the in- 

teraction among constraints and monotonicity is studied. Appropriate met hods are 

proposed to propagate constraints in an efficient way to help terminate an evaluation. 

Furthermore, a novel technique is proposed to prune the large search space of some 

problems by constraint propagation and enforcement. 

Chapter 3 presents the design and implementation of LogicBase. It gives an 

overview of the compilation and query processing methods in LogicBase as well. 
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Chapter 4 investigates query processing in multiple linear recursion. Programs 

contains multiple linear recursive rules are first classified into different categories. A 

set of query processing techniques centering around side-relation unioned processing 

are proposed to efficiently process queries. Side-relation unioned processing is to 

replace multiple EDB relations in different rules by their union, such that the original 

multiple recursive rules are replaced by a single recursive rule with an unioned EDB 

relation. 

In Chapter 5, compressed counting is proposed to answer a query using counting 

method in EDB relations which contain cycles. The counting method is more efficient 

than the magic sets method, but it suffers inability to terminate when there is cycle 

in an EDB relation. The compressed counting precompiles an EDB relation and 

generalizes it into a direct acyclic graph (compressed graph) whose notes represent 

the strongly connected components in the original relation. Information about how 

data are connected cyclically in the EDB relation with respect to those strongly 

connected components is derived. Query processing is realized by propagation of the 

information over the compressed graph, which is much smaller than the data graph 

corresponding to the EDB relation and can be done efficiently. 

The last chapter discusses the advantages and restrictions on the query processing 

methods in LogicBase, and presents performance evaluation with respect to the top- 

down evaluation and bot tom-up evaluation with the magic sets optimization. The 

chain-based query processing approach is a promising new direction toward a declar- 

ative language for database query processing. 



Chapter 2 

Monotonicity and Constraint 

Pushing 

The study of monotonicity and constraint pushing is motivated by the design and 

implementation of the LogicBase deductive database system. Problems like safety 

(termination) of the evaluation of functional programs, complexity of search space 

inherent in query processing in deductive databases led to the issues of derivation and 

push of constraint by monotonicity. 

One of the most important features of a deductive database is the declarative 

semantics, i.e., which is independent of the modes of queries and the ordering of 

rules and predicates in the program. Declarativeness in deductive databases and logic 

programming relieves users of the worry about how to solve the problem. To make 

sure that a declarative program is safe and efficient, constraints and monotonicity are 

needed to accertain termination of query evaluation and to reduce the search space 

of problem solving. 

In this chapter, methods are explored for discovery of monotonicity constraints 

in deductive databases and declarative logic programs and for push of constraints 

in the evaluation of multiple level (nested) linear recursive programs with function 

symbols. The study shows that monotonicity detection and constraint pushing play 
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an important role in program termination and efficient query evaluation. 

This chapter is organized as follows. Section 2.1 introduces constraint pushing by a 

few examples. Constraints are categorized in section 2.2. Principles for monotonicity 

and constraint pushing in recursive programs are presented in section 2.3. Methods 

for constraint propagation and termination judgement are proposed in section 2.4. 

Reduction of search space by pushing monotonic list constraints is investigated in 

section 2.5. 

2.1 Introduction 

A deductive database program is considered to be a logic program with declarative 

semantics. The following is the classical eight-queens [126] example used in many A1 

studies. 

Example 2.1 A queen in the chess game can attack in all directions (up, down, and 

diagonal). The problem is to place 8 queens on an 8x8 chess board so that none of 

the queens attacks each other. If the eight-queens problem is generalized to n queens 

on an n x n chess board, it is called the n-queens problem. Treated as a purely 

declarative logic program, the n-queens program is presented in Figure 2.1. 

For the declarative program nqueens, queries with different modes, such as "? - 

nqueens(5, Qs)" (to find all chess placements for 5 queens), or "? - nqueens(N, [3, 

5, 2, 4, 11)" (given a chess board, verify whether it is a valid n-queens placement and 

if it is, return the number of queens), should be evaluated efficiently and completely 

(finding all the answers) and terminate properly, independent of the ordering of rules 

and predicates in the program. 

The chain-based evaluation method executes the program in three steps: (1) com- 

pile the program into a set of normalized recursions; (2) perform query binding and 

constraint analysis to determine whether query evaluation may terminate and, if ter- 

mination can be guaranteed, select an appropriate evaluation strategy and generate 
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nqueens(N, Qs)  : - 

range(1, N ,  N s ) ,  queens(Ns, [ I ,  Q s ) .  

range(M, N ,  [MINs])  : - 

M < N ,  M1 is M + 1 ,  range(M1, N ,  Ns ) .  

range(N, N ,  [ N ] ) .  

queens(Unplaced, Safe, Qs)  : - 

select(Q, Unplaced, Unplacedl), not attack(&, Safe), 

queens(Unplacedl, [Q(Saf  el ,  Qs) .  

queens([l, Qs,  Qs) .  

attack(X, X s )  : - attack(X, 1 ,  X s ) .  

attack(X, N ,  [YIYs])  : - 

X i s Y + N ;  X i s Y - N .  

attack(X, N ,  [YIYs])  : - 

Nl is N + 1 ,  attaclc(X, Nl,  Y s ) .  

select(X, [XIXs] ,  Xs ) .  

select(X, [YIYs] ,  [YIZs]) : - select(X, Y s ,  2 s ) .  

Figure 2.1: The declarative n-queens recursion defined in the Prolog syntax. 

an efficient evaluation plan; and (3) carry out the query evaluation according to the 

query evaluation plan. 

As a result, the method generates efficient query evaluation plans for reasonable 

query bindings, such as "? - nqueens(4, Qs)" ,  "? - nqueens(N, [2,4,1,3])", "? - 

nqueens(N, [3, X ,  Y, 2])" ,  but returns a warning without evaluation for unsafe queries, 

such as ((? - nqueens(N, [21L])". 0 

The LogicBase deductive database system prototype [54, 551 evaluates queries 

declaratively on a subset of logic programs: linear and nested linear recursions. One 

strength of this implementation is the discovery of monotonicity behavior of a pro- 

gram and utilization of different kinds of constraints in the evaluation, which will be 
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analyzed in detail in this chapter. 

A recursive program without function symbols has a finite Herbrand universe 

and the termination of its evaluation is guaranteed by the bottom-up evaluation. 

However, the Herbrand universe of a logic program with function symbols is in general 

infinite, and conventional bottom-up evaluation encounters the termination problem 

in evaluation. Constraints have been used to determine the termination or safety of 

query evaluation on recursive programs [2, 18, 19, 47, 20, 71, 89, 100, 123, 124, 128, 

1341. Although a complete solution for termination control is undecidable [75, 1211 

for logic programs with function symbols, constraint enforcement has been shown 

to be effective as a sufficient condition for terminating the evaluation of many logic 

programs. 

In this chapter, we explore the discovery of monotonicity behavior in declarative 

logic programs and the interaction between monotonicity and constraints in the eval- 

uation of multiple level recursive programs. Constraint handling has been studied 

recently by different researchers [70, 124,1281. Our techniques presented here empha- 

size its use in multi-level recursion where constraints in different levels interacts and 

depends on each other, which poses greater challenges than in a single-level program. 

The study is confined to linear and nested linear recursions with function symbols. 

In our approach, a (nested) linear recursion is first compiled into a highly regular 

chain form [58], which reveals the connections among arguments in logic rules of dif- 

ferent levels and enables a detailed constraint analysis and constraint propagation in 

recursive programs. 

The monotonic behavior of some arguments of a recursive predicate can be dis- 

closed by the analysis of compiled recursive rules. An argument of a recursive predicate 

is monotonic in a recursive rule if there exists a strict inequality relationship under 

certain mapping between variables corresponding to the same argument position of 

a recursive predicate in both sides of the rule. A query constraint on a monotonic 

argument can be pushed into the rule for efficient query evaluation and termination 

of evaluation if it bounds the monotonic growth of argument values. Furthermore, 
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constraints can be inferred from functions and existing constraints and propagated to 

different levels of recursions, which enables evaluation of some programs that other- 

wise do not have a proper way to terminate. 

The importance of monotonicity detection and constraint pushing in terminating 

recursive logic programs and reducing search space is shown in the following exam- 

ples. The principles for handling constraints in these examples are discussed in later 

sections. 

Example 2.2 Evaluation of query (2.11) on a recursion gcd defined in Figure 2.2 

terminates based on the following constraint analysis. 

The constraint "Y > 2" derived from (2.14) and (2.15) implies that "Y > Z" holds 

in (2.13), i.e., the second argument of the recursive predicate gcd in (2.13) monoton- 

ically increases in bottom-up evaluation (or decreases in top-down evaluation). Thus 

the query constraint "Y < 20" can be pushed into (2.13), which, together with the 

constraint "Y > 0" in (2.13), guarantees the termination of the evaluation of query 

on gcd. Furthermore, "Y > 0" in (2.13) infers "X > XI" in (2.15), that is, the first 

argument of the recursive predicate mod in (2.15) monotonically increases in bottom- 

up evaluation (or decreases in top-down evaluation). Since constraint "X = 6" in the 

query implies "X = 6" for the first call of mod(X, Y, Z),  whereas the query constraint, 

"Y < 20", infers "X < 20" for subsequent calls of mod(X, Y, 2 )  based on variable 

connections, the evaluation of mod terminates as well. 

Without such an inference of monotonicity and analysis of constraints on the 

compiled program, it is difficult to terminate the query evaluation. 

Besides termination judgement, another major benefit of constraint pushing is 

search space reduction by pruning futile derivatives in query evaluation. As an ex- 

tension of inequality constraint, a list containing a sequence of elements with the 

values of the elements monotonically increasing according to certain partial order is 
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gcd(X,O,X) : - X > 0. (2.12) 

gcd(X, Y, Gcd) : - Y > 0, mod(X, Y, Z ) ,  gcd(Y, 2, Gcd). (2.13) 
mod(X, Y, 2) : - X < Y, X = 2 .  (2.14) 

mod(X, Y, 2) : - X > Y, X1 = X - Y, mod(X1, Y, 2). (2.15) 

Figure 2.2: The recursion gcd (the greatest common divisor). 

called a monotonic list. Such a monotonic behavior can be discovered by inference on 

constraints and function and pushed as a constraint into a recursion to prune a large 

number of (intermediate) lists which would have been generated without enforcing 

the constraint. 

Example 2.3 Query "? - sort ([4,2,3,1], X)" on a recursion sort (permutation sort) 

defined in Figure 2.3 is to sort a list of elements by first enumerating all of the possible 

permutations and then selecting the ordered one. A monotonicity relationship among 

the elements of the list Ys in ordered(Ys) can be derived based on its definition 

in (2.21) and (2.22). A special built-in constraint, monolist(Ys, L) ,  which means 

elements in list Ys must be in non-decreasing order, can be pushed into the body 

of the rule (2.17) to enable derivation of Xs with monotonic elements, which can be 

further pushed into the body of rule (2.20) to be applied on [Y IYs]. It should be noted 

that the special constraint monolist is different from predicate ordered. Program 

ordered represents syntactial information to a query processor, whose semantics is 

unknown. Whereas monolist is a built-in predicate whose semantics and evaluation 

strategies are available to the query processor. The relevant modified rules are shown 

in Figure 2.4. Without enforcing this constraint, permutation(Xs, Ys) generates n! 

tuples, where n is the number of elements in the list to be sorted. After "filtering" by 

monolist constraint, only one tuple is fed into ordered(Ys) in (2.16). 
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sort(Xs,  Y s )  : - permutation(Ys, X s ) ,  ordered(Ys). (2.16) 

permutation(Xs, [ZIZs] )  : - select(Z, X s ,  Y s ) ,  permutation(Ys, Zs).(2.17) 

permutation([], [ I ) .  (2.18) 

select(X, [ X I X s ] ,  X s ) .  (2.19) 

select(X, [Y IYs ] ,  [Y IZs ] )  : - select(X, Y s ,  2 s ) .  (2.20) 

ordered([X]). (2.21) 

ordered([X, Y IYs]) : - X 5 Y, ordered([Y IYs]). (2.22) 

Figure 2.3: A permutation sort program. 

sort(Xs,  Y s )  : - 

permutation(Ys, X s ) ,  monolist ( Y s ,  I ) ,  ordered(Ys). 

permutation(Xs, [ZIZs] )  : - 

select(Z, X s ,  Y s ) ,  permutation(Ys, Z s ) ,  monolist(Xs, 5 ) .  
permutation([], [ I ) .  
select(X, [ X I X s ] ,  X s ) .  

select(X, [YIYs] ,  [YIZs] )  : - 

monolist([Y)Ys],  I ) ,  select(X, Y s ,  2 s ) .  

Figure 2.4: Part of the permutation sort program in which monolist is pushed. 

2.2 Categories of constraints 

A constraint in a logic program represents certain relationship that the arguments in 

the program must satisfy. Equality or inequality constraints are two typical kinds of 

constraints. Constraints can be categorized based on their appearance and function 

in a logic program into the following: 

1. Query constraint is a constraint associated with one or more arguments of a 

queried predicate, which puts restrictions in the head of a logic rule. 

2, Rule constraint is a constraint appearing in the body of a recursive logic rule. 
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3. Exit constraint is a constraint appearing in the body of the exit rule of a 

recursion. 

During recursive query evaluation, rule constraints can be applied to every itera- 

tion of a recursive query evaluation, which is not the case for query constraints or exit 

constraints. In general, pushing a query constraint into a recursive rule body does not 

generate an equivalent program. For example, for the query constraint "Fare > 800" 

in Figure 2.5 can not be pushed into rule body, otherwise, some legimate answer to 

the query will be left out. However, for a class of programs shown later, a program 

and query pair of (P, Q A C) has a query-equivalent program P I  such that (PI, Q A C) 

and (P, Q A C) have the same answer for Q under all EDB's, where P is a logic pro- 

gram, Q is a query on P, and C is a set of constraints. PI is obtained by transforming 

(if necessary) some constraints in C and appending them to the rule body of P. By 

doing so, the query constraints are said to be pushed into P. 

In our study, the push of a set of constraints in the form of X + Y and X + c are 

studied, where 4 is a partial order, c is a constant, X and Y are variables (or more 

precisely argument positions) in a logic program. Notice that X and Y are sometimes 

not directly comparable, but there may exist a mapping M on X and Y such that 

M(X) + M ( Y ) .  For example, cons(X, Y, Z )  (a list concatenation predicate) has a 

constraint length(Z) > length(Y), i.e., the length of the list Z is greater than that 

of Y. M(X) + M ( Y )  is denoted as X +M Y, or simply X + Y when the mapping 

can be neglicted to simplify presentation. 

2.3 Monotonicity and constraint pushing 

2.3.1 Monotonicity constraints and monotonic arguments 

Definition 2.1 Given a rule set r ,  two arguments X and Y in r and a mapping 

function M, a monotonicity constraint is a relationship between X and Y if and 

only if X +M Y, according to some partial order 4. 
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Definition 2.2 A n  argument p : i in  a recursive predicate p is monotonic if there 

exists a mapping function M such that in  the chain containing p, M(p(i)  : i )  + 
M (p( j+ l )  : i ) ,  for j > 0, according to partial order +. It is denoted as +M ( p  : i ) .  

A monotonic argument has monotonically increasing or decreasing M-values in 

the corresponding argument position in successive chain predicates. 

Proposition 2.1 Given a recursive program of the form: 

argument q : i of the recursive predicate is monotonic if and only if there exists a 

mapping function M ,  such that there is a monotonicity constraint, Xi +M Y, ,  in the 

recursive rule (2.23). 

Lemma 2.1 If argument q : i is monotonic +M (q : i )  and c is a constant, then 

rule constraint Y ,  +M c or Xi +M c or c # M  Y ,  or c # M  Y ,  in  (2.23) terminates 

the chain-exit evaluation, and rule constraint c +M Xi or c +M Y ,  or Xi # M  c or 

Y ,  # M  c in (2.23) terminate the exit-chain evaluation. 

Proof. Given monotonic argument of +M (q : i ) ,  the value of q : i increases monoton- 

ically according to the partial order of + under mapping M ,  thus the rule constraint 

of + M c  forms an upper bound to the value of q : i .  Therefore the chain-exit 

evaluation terminates. The other cases can be similarly proved. 

The constant c in the rule constraint serves as a bound on the monotonic growth of 

the monotonic argument q : i .  An equality constraint of either "Xi = c" or "E; = c" in 

the rule obviously terminates both chain-exit and exit-chain evaluations. A constraint 

used for termination of the evaluation of a recursive query is called the termination 

constraint of the query. 
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Besides termination constraints, EDB predicates may also serve to terminate a 

monotonic argument if the variable of the monotonic argument appears in an EDB 

predicate. This is because EDB predicates have finite number of tuples, which limits 

the monotonic growth of the monotonic argument. 

2.3.2 Constraint pushing via monotonic argument 

According to Lemma 2.1, a rule constraint may serve directly as a termination con- 

straint if it bounds a monotonic argument. Similarly, a query constraint or an exit 

constraint can be pushed into a rule from the query end or the exit end respectively 

via a monotonic argument based on the transitivity property of the partial order and 

serves as a termination constraint. Notice that for a non-recursive program, a query 

constraint can be pushed into the rule body directly. This is in general not so for a 

recursive program. 

Lemma 2.2 Given a program q defined in  (2.23) and (2.24), a monotonic argument 

of 4 ( q  : i),  and a query '? - q(X1,. . . ,X, ) ,  c 4 Xin, where c is a constant. The 

program of (2.23) and (2.24) is equivalent to the following program with respect to the 

same query. 

Proof. There exists the following relationship among the values of the monotonic 

argument q : i. 

q(l) : i -i q(2) : i -i . . . -i q(k) : i 

where q( l )  : i is Xi and q(2) : i is Y,  in (2.23). Since c 4 Xi, based on the transitivity 

of the partial order, we have c -i q(j) : i for j = 1 , .  . . , k. Since q(j) : i for j = 2, .  . . , k 

corresponds to the variable Y,  in the rule body in different expansions, the constraint 

on each q( j )  : i is equivalent to a rule constraint of c -i Y,. Thus the original rule set 
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(2.23) and (2.24) with respect to the query is equivalent to the same query on (2.25) 

and (2.26). 

Lemma 2.2 shows that a query constraint c 4 Xi can be pushed into a recursive 

rule via a monotonic argument, and becomes c 4 Y,. It is noted that c 4 Xi can be 

pushed directly into (2.23). Similarly, an exit constraint, q : i 4 c in the exit rule 

(2.24), can be pushed into the recursive rule (2.23) based on the transitivity of the 

partial order, and the recursive rule (2.23) becomes (2.27). 

Furthermore, for a query constraint Xi = c,  c 4 Y,  can be pushed into the recursive 

rule because Xi 4 Y ,  and Xi = c infers c 4 x. Similarly, for the exit constraint 

Xi = c in (2.24), Xi 4 c can be pushed into (2.23). 

Given a monotonic argument in a recursive predicate q as 4 (q : i),  a constraint 

(either from a query or an exit rule) is consistent with the monotonic argument if it 

can be pushed into the recursive rule based on the rules for monotonicity constraint 

pushing. 

travel(FnoList, Dep, Arr, Fare)  : - 

f light(Fno, Dep, Arr, Fare) ,  cons(Fno, [I,  FnoList).  

travel(FnoList, Dep, Arr, Fare)  : - 

f light(Fno, Dep, I n t ,  Fl), cons(Fno, L, FnoList),  

travel(L, In t ,  Arr, F2), F a r e  = Fl + F2. 
? - travel(FnoList, vancouver, paris, Fa re ) ,  Fa r e  < 1500, 

Fa r e  > 800. 

Figure 2.5: Program travel. 

i 
Example 2.4 Fig. 2.5 defines a recursion, travel (or connected, flights) on the EDB 
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following chain element (with three predicates): 

flight(Fn0, Dep, In t ,  Fl), cons(Fno, L, FnoList),  F a r e  = Fl + F2 

The query can be evaluated by exit-chain evaluation because the exit rule is evaluated 

to produce travelbbbb in the body of recursive rule, where b in the adorned predicate 

travelbbbb indicates that the corresponding argument is bound [134]. A monotonicity 

constraint, "Fare  > F2" can be inferred based on the integrity constraint, "Fl > O", 

and the function "Fare = Fl + F2". Thus travel : 4 is a monotonic argument, i.e., 

> (travel : 4). Query constraint "Fare  < 1500" is consistent with the monotonic 

argument. It can be pushed into the recursive rule and terminates the exit-chain eval- 

uation. Query constraint "Fare > 800" is not consistent with monotonic argument 

of > (travel : 4) and thus cannot be pushed in. 

In general, an exit-chain evaluation terminates if there is a constraint consistent 

with a monotonic argument, and it is pushed in from the query end; whereas a 

chain-exit evaluation terminates if there is a constraint consistent with a monotonic 

argument, but it is pushed in from the exit end. In other words, to determine whether 

an evaluation plan can terminate, the constraints at the finish end of a chain need to 

be examined to see whether some of them can be used as a termination constraint. 

2.4 Constraint propagation in multiple levels of 

recursions 

The derivation of monotonic arguments and termination constraints relies on con- 

straint propagation in logic programs. In a program r ,  the set of constraints held on 

r are either explicitly defined in r in the form of rule/query/exit constraints or in- 

tegrity constraints, or implicitly represented: i.e., being inferred by inference rules or 

propagated from higher or lower level programs. Thus, it is necessary to study mono- 

tonicity detection and constraint propagation. Constraint propagation in a multiple 



C H A P T E R  2. MONOTONICITY A N D  CONSTRAINT PUSHING 

level program r is to derive useful constraints which are implied by a set of known 

constraints in r to aid monotonicity detection and constraint pushing in r .  

2.4.1 Constraint propagat ion via invariant arguments and 

by argument shifting 

Definition 2.3 An argument q : i of the recursive predicate defined in (2.23) is in- 

variant if Xi = x. 

If q : i is an invariant argument, its value remains the same in every chain iteration, 

i.e., q(l) : i = q(2) : i = . . . = q ( k )  : i .  A constraint (either query, rule or exit constraint) 

on the invariant arguments of a recursive rule can be propagated universally, i.e., it 

can be applied in query, in the body of a recursive rule or an exit rule. Such a 

propagation is useful in binding passing from a query to the exit rule for the detection 

of a monotonic argument and the termination of a recursion. 

Example 2.5 Consider the program mod in Figure 2.2 with query "? - mod(2,4, Z) ,  

Z > 0, Z < 10". Program mod is a single chain recursion, with "X 2 Y, X1 = X - Y" 

as the chain element. Query modbbf can be evaluated in the chain-exit evaluation 

because modbbf instantiates X and Y in rule (2.15), both "X 2 Y" and "XI = X-Y" 

are finitely evaluable, and the evaluation produces modbbf, which can be propagated 

further in the chain-exit direction until the final evaluation of the exit rule. The 

argument mod : 3 is invariant. Both constraints, "Z > 0" and "Z  < lo", can be 

propagated into the exit rule to serve as exit constraints. Since there is a constraint 
ux = zn in the exit rule, constraint "X > 0" and "X < 10" are inferred in the exit 

rule. The monotonic argument mod : 1 is consistent with "X > 0". Thus, "X > 0" 

can be pushed into rule (2.15), which terminates the chain-exit evaluation of mod. 

Notice that without pushing the constraint "X > O n ,  the evaluation cannot terminate 

because there is no assumption that mod : 3 be a positive integer. 
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Given a recursive rule (2.23), if Xi = Y ,  (where i # j), then q(k) : i = q ( k + l )  : j, 

i.e., the value of the i-th argument in q at the k-th iteration is equal to the value of 

the j-th argument of q at the (k  + 1)-st iteration. This kind of variable connections 

in a recursive rule is called argument shifting. Since a constraint on Xi in the k-th 

iteration is also a constraint on Y ,  in the (k  + 1)-st iteration, a rule constraint on 

Y ,  is also a rule constraint for Xi for all the iterations except the first, where the 

value of Xi in the iteration depends on the query. The constraint which is defined 

on all iterations except the first is called query-dependent constraint. Similarly, a 

rule constraint on Xi may also be a rule constraint for Y ,  except the last iteration 

where value of Y ,  is determined in the exit rule, and such a constraint is called exit- 

dependent constraint. A query-dependent or exit-dependent constraint may terminate 

a monotonic argument if appropriate analysis on the query or exit rule is conducted 

to provide constraint in the missing iteration. 

Example 2.6 Let's examine query "? - gcd(6, Y, 2), Y < 20" on the program gcd 

in Figure 2.2. The gcd program is a single chain recursion, with chain element of 

"Y > 0, mod(X, Y, 2)". Query gcdbf can be evaluated in the chain-exit evaluation, 

and the exit rule can be evaluated based on the bindings passed from the query via 

an invariant argument gcd : 3, then modfbb is to be evaluated. mod is a single chain 

recursion and the query modfbb can be evaluated by the exit-chain evaluation. Because 

the exit rule of mod is (finitely) evaluable through the bindings passed from the query 

via the invariant arguments of mod : 2 and mod : 3, which instantiate variables Y and 

2, so both predicates "XI = X - Y" and "X 2 Y" are (finitely) evaluable. Since 

modfbb is evaluable, gcd is evaluable by exit-chain evaluation. 

The constraint "Y < 20" in the query "? - gcd(6, Y, 2), Y < 20" can be pushed into 

(2.13). This is because mod : 2 and mod : 3 are both invariant arguments, and the 

exit constraint Z < Y can be propagated to the query and to the rule gcd. Therefore, 

gcd : 2 is monotonic under ">" relation. Query constraint "Y < 20" is consistent with 

> (gcd : 2) and is pushed in. Moreover, the rule constraint, "Y > O n ,  is propagated 

into mod because mod : 2 is an invariant argument. Together with "XI = X - Y", 

constraint "X > X1" is inferred. So mod : 1 is monotonic, > (mod : 1). A constraint 
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on X in (2.13) is needed to terminate m o d .  From rule constraint (pushed from query), 

"Y < 20", a query-dependent constraint of "X < 20" is inferred by argument shifting 

from gcd : 2 to gcd : 1. This constraint terminates m o d  : 1 in all the iterations of gcd 

except the first, where "X = 6" (query constraint) is transformed to "X 5 6" and is 

then used to terminate m o d  in the first iteration. 

2.4.2 Constraint propagation by inference rules 

The constraints discussed here are equality or inequality constraints of on data with 

a partial order. The transitivity property of partial order can be represented in the 

form of inference rules. Figure 2.6 presents some of the most useful inference rules for 

constraint propagation, where 4 can be >, <, 2,s. 

Figure 2.6: Inference rules. 

Given a set of known constraints C on program r ,  and a set of inference rules 

1, there are many constraints implied by C. Obviously, not all of these implied 

constraints are useful in helping monotonicity detection and constraint pushing, and 

it is expensive to derive the closure of all of the derivable constraints. A method is 

proposed here which tries to propagate only the useful constraints. 

Based on our discussion, given a recursive program r with a set of querylexit con- 

straints, only those constraints which are consistent with the corresponding monotonic 

arguments can be ~ u s h e d  into the program. Therefore, our task is to first look for the 

monotonicities that are consistent with the querylexit constraints by making neces- 
r 

1 sary assumptions and verify the assumptions in r .  If an assumption is verified to be 
I 
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true, then the corresponding (possibly transformed) query or exit constraint(s) can 

be pushed into r .  Such an assumption is called a template goal and is verified by a 

procedure template-goal-verzfy as shown in Algorithm 2.1. For example, given a query 

"? - gcd(6, Y, 2), Y < 20", to test whether "Y < 20" can be pushed into the body of 

the recursive rule, a template goal "Y > 2" in (2.13) should be verified to make sure 

that gcd : 2 is a monotonic argument, i.e., > (gcd : 2). 

A template goal is an assumed constraint on r .  It can be an explicitly represented 

constraint in r or derivable from a set of constraints using inference rules. If a template 

goal g cannot be verified directly by applying inference rules but can be verified by 

first verifying an intermediate template goal g' and then use g' to verify g, g' is then 

set as a new template goal. This process is called template goal propagation. 

For example, given a template goal "X < Y" and an inference rule "X 4 

2 : - X 4 Y A Y  -4 Z" ,  unification generates "X < Y : - X < $T A $T < Y". If 

there is a constraint "X < 2" in the body of the rule, a new template goal "2 < Y" 

is generated. Otherwise, "X < $T" is generated, where $T is a meta-variable which 

may match any literal in a subsequent unification. When an inference rule is used, 

template goals can be of the form L'X 4 Y", "X 'i c" or "X 'i $T1', and a template 

goal may contain at most one meta-variable. 

For a multiple level recursion, if g cannot be verified in r but there exists a lower 

level predicate s defining r which can unify with g, then g should be verified in every 

rule that defines s. 

The template goal verification process is described in Algorithm 2.1. Given a set 

of constraints C on program r ,  it verifies whether there is a template goal g on r by 

first checking whether C contains g and then trying to unify g with the head of the 

inference rule to see whether g can be either inferred from the constraints, or there 

exists a new template goal g' such that verifying g is equivalent to verifying g'. 

Algorithm 2.1 procedure template-goal-verify(g, r )  

Input: A set of constraints C, a program r, constraint template g 
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Output: True if g is implied by C and r ,  false otherwise. 

Method: The template goal verification process given below: 

1. Collect rule constraints, integrity constraints, and constraints on functional 

predicates of r into a constraint set C. Let c E C. 

2. If g has no meta-variable and C contains g, g is verified. 

3. If g has meta-variable(s), unify g with c E C. If there is a successful 

unification, g is verified. 

4. Verify whether g can be inferred from C by an inference rule. For inference 

rule "h : -bl, b2 , .  . . , bk" such that g and h can be unified, try to  unify each 

b; (for i = 1,. . . , k)  with c E C such that all the unifications are consistent. 

5. If all the b's are successfully unified, g is verified. Apply the same unifica- 

tion on h, and h is an answer. 

6. If a b is not successfully unified with c E C but b has some argument(s) 

unified, b is a new template goal. If b can be verified in r or in every rule 

defining a lower level predicate, g is verified. 

7. If the variable in g is an invariant argument, verify g in the exit rule or 

query constraint. If it is a shifting argument, verify g by shifting g to g' 

and verifying 9'. o 

Theorem 2.1 Algorithm 2.1 for template-goal-verify(g, r )  takes polynomial time to 

verify a goal in a nested linear recursion. 

Proof sketch. In the algorithm template-goal-verify(g, r ) ,  the constraint propagation 

using inference rules takes most of the time. The number of literals in each inference 

rule is at  most two (as shown in our inference rule table Figure 2.6, an inference 

rule with more literals can always be broken into multiple inference rules with binary 

literals). 
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Let's first consider the verification of a goal in a single-level program by assuming 

r is a single-level logic program. Assume C is the set of constraints and functions 

in r ,  and V is the set of distinguished literals (variables or constants) in C, and Z 

the set of inference rules. Thus, the literals of any template goal propagated during 

template-goal-verify(g, r )  is in V ,  so the maximum number of possible template goals 

propagated (either verified to be true or false) is bounded by IZI * lv12 because there 

could be at most IZI different types of binary relationships inferred. Furthermore, 

because for any pair of constraints or functions there is at most one inference rule 

applicable, the maximum number of goals verified to be true is bounded by lV 1 2 .  Since 

a new template goal is propagated in the same recursive level if there is one predicate 

in the body of an inference rule unified with a known constraint or a function, the 

cost of verifying a goal g is the sum of the following costs: unifying the goal with a 

rule head predicate, unifying a body predicate with C to propagate a new template 

goal, and the cost of verifying g' in r .  Applying the same cost formula to g', the 

number of subgoal propagated from g directly and indirectly is bounded by 111 * 1vl2, 
with at most 3 unifications of one goallpredicate and C associated with each goal 

propagated. Since unifying a goallpredicate with C takes at most ICI unifications, the 

cost of template-goal-verify(g, r )  is bounded by 3 * 111 * IVI2 * ICI unifications, which 

is polynomial time. 

Secondly, we examine the goal verification process in a multiple-level program. 

Suppose r has a lower level predicate. Assume C is the set of constraints and functions 

on all the programs nested in r. Then the same formula above holds on a nested 

program as well. In a nested program, a template goal can be verified not only in the 

current level program, but in a lower level program as well. Comparing template goal 

propagation in the nested program with the constraint set C to that in a single-level 

program with the same constraint set C, the template goals propagated in the nested 

program is a subset of the template goals propagated in the single-level program, 

because in a nested program, C can be viewed as being partitioned by deduction 

levels. Therefore, the bound in a single-level program applies to a multiple-level 

program as well. 0 
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Example 2.7 Given query "? - travel(FnoList, vancouver,paris, Fare) ,  F a r e  < 
1500" on the program travel in Figure 2.5, to push query constraint "Fare < 150OV, 

one needs to check whether there is a monotonic argument > (travel : 4). A template 

goal "Fare > F217 is set for (2.29), the recursive rule of travel. Initially, the constraint 

set C is {Fare  = Fl + F2, Fl > 0, F2 > 0, cons(Fno, L, FnoList), length(L) < 
length(Fn0List)). The template goal is not found directly in C. Thus the inference 

rules are applied. The inference rule " X  4 Y : -X = Y + Z A Z 4 0" generates 

subgoals "Fare = F2 + $T, $T > 0''. Since $T is unifiable with Fl, the template goal 

"Fare > F2" is verified. 0 

2.4.3 Terminat ion control and constraint pushing in func- 

tional programs 

Based on the above discussion, the termination control and constraint pushing in a 

compiled single- or multiple-level linear recursion can be integrated in one algorithm 

as follows. 

Algorithm 2.2 Termination control and constraint pushing in a compiled single- or 

multiple-level linear recursion. 

Input: A query on a compiled linear recursion with function symbols, a set of query 

constraints, integrity constraints, and exit constraints. 

Output: Determine whether the query evaluation terminates and, if it does, push 

the (transformed) query constraints into the recursive rule. 

Method. 1. Identify invariant arguments and shifting arguments. 

2. For each query constraint c,, test whether c, can be pushed into the rule body 

by verifying the template goal g which leads to a monotonic argument consistent 

with c,. Do the same for each exit constraint c,. 
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3. If there exists a chain with monotonic argument(s) restrained by query con- 

s t ra int(~)  or exit constraint(s), push the corresponding transformed query con- 

s t ra int(~)  into the rule to terminate the exit-chain evaluation. If there exists 

a chain with monotonic argument(s) restrained by exit constraint(s), push the 

corresponding transformed exit constraint(s) into the rule to terminate the chain- 

exit evaluation. 

4. If the termination cannot be determined, detect if there exist other monotonic 

argument(s) by enumerating the remaining possible monotonicity on arguments 

of the recursive predicate, and verifying the corresponding template goals. 

5. If an argument is found monotonic, set template goal of termination constraint 

which is consistent with the monotonic argument. If the template goal is veri- 

fied in rule body (rule constraints imply termination constraint), both chain-exit 

and exit-chain evaluation terminate. If the template goal is verified using query 

constraint set (query constraints imply termination constraint), push template 

goal into rule to terminate exit-chain evaluation. If the template goal is veri- 

fied using exit constraint (exit constraints imply termination constraint), push 

template goal into rule to terminate chain-exit evaluation. 

6. If an argument of a chain predicate is found monotonic, and the variable in its 

position appears in an EDB predicate or a safe IDB predicate in the rule body, 

then both chain-exit and exit-chain evaluations terminate. 

7. If a chain predicate is an EDB predicate which contains only acyclic data, the 

recursion terminates. 

8. A multiple-chain recursion terminates if any of its chains terminates. 0 

Theorem 2.2 Algorithm 2.2 correctly pushes constraints and terminates a compiled 

single- or multiple-level linear recursion. 

Proof sketch. According to  algorithm 2.2, step 2 tests for each query constraint c,, 

whether i t  can be pushed into the  rule body. The  test is based on the template 

goal verification algorithm proved before. Thus if there exists a query constraint 

which is consistent with a monotonic argument, the  values of a monotonic argument 
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growlshrink monotonically in the evaluation, which sooner or later will be bounded 

by the constraint. Thus the constraint can be pushed in and the chain evaluation 

terminates. Similar reasoning can be performed for pushing exit constraints and for 

steps 3-5. 

For step 6, if a monotonic argument in a chain appears in an EDB predicate or a 

safe IDB predicate, the chain terminates. This is because in both cases, the predicates 

have a finite number of instances (tuples), the monotonic argument reaches the limit 

sooner or later, and thus the chain evaluation terminates. 

Step 7 deals with the case that a chain has an acyclic EDB predicate as its chain 

predicate. Since the chain predicate links arguments on the same position of recursive 

predicates in the head and the body, the number of iterations in the evaluation must 

be finite, and thus the chain evaluation terminates. 

Finally, in a multiple-chain recursion (step 8), since all of its chains are evaluated 

synchronously, its evaluation terminates if any of the chains terminates. 

Example 2.8 Query "? - gcd(6, Y, 2), Y < 20" on the gcd program of Figure 2.2 

terminates and some constraints can be pushed in based on Algorithm 2.2 as shown 

below. 

To check whether "Y < 20" can be pushed into the body of the recursive rule 

(2.13), a template goal LLY > 2" is set. Since it cannot be verified within (2.13), "Y > 
2 "  should be verified in mod(X, Y, 2). In the execution of template-goalLverify(Y > 
2, mod), the template goal is tested first in the exit rule (2.14) of mod, which infers 

"Y > 2". Since both Y and Z are invariant arguments in the rule (2.15), the 

constraint "Y > Z" holds in recursive rule as well. Thus, "Y < 20" can be pushed 

into (2.13), and the exit-chain evaluation of gcd terminates if mod is finite. 

To verify whether mod(X, Y, 2) returns finite results to the query, one needs to use 

the query constraints "Y > 0" and "Y < 20". Since mod : 2 is an invariant argument, 

one cannot judge whether mod is terminable by judging mod : 2 only, although both 

of these constraints are propagated into the body of rule (2.15). The monotonicity 
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of other arguments in the recursive predicate of mod needs to be examined. Since 

there is no mapping on mod : 1, only the template goal "X 4 XI" needs be verified. 

The initial constraint set for mod is { X  > Y, XI = X - Y, Y > 0, Y < 20). The 

template goal "X > XI" is verified by "Y > 0" and "XI = X - Y" according to the 

inference rule. So, mod : 1 is monotonically decreasing, i.e., > (mod : 1). Because 

there is no termination constraint within mod, template goal " X  < $1" is verified 

in the gcd rule to find possible query constraint, which generates query-dependent 

constraint "X < 20" due to the argument shifting and "X = 6" in the query. So, 

the first iteration of mod program has a constraint " X  5 6" pushed in, and the 

remaining iterations has "X < 20" pushed in. Therefore, the exit-chain evaluation of 

mod terminates. 

Similarly, it can be shown that query "? - gcd(X, 4,2), X < 6" terminates on gcd. 

Query constraint "X < 6" cannot be pushed in (2.13), but "Y 5 4" is transformed 

from a query constant and is pushed into rule (2.13) due to the monotonic argument 

> (gcd : 2), which terminates gcd. Whereas "X 5 4" is obtained by argument shifting 

and pushed into rule (2.15) for the mod subquery in all gcd iterations except the first 

one, where "X < 6" of gcd is pushed in (2.15). Thus the evaluation of mod terminates. 

2.5 Search space reduction using monotonic list 

constraints 

It is well known that the size of a list has monotonicity behavior (i.e., growing or 

shrinking monotonically) in many recursive programs. Interestingly, the values of list 

elements in a list may also have certain monotonicity behavior in many programs 

which can be used as an effective constraint for search space reduction in query eval- 

uation. 
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Definition 2.4 An empty list [I is a monotonic list, so is a list with a single element. 

A list L of [al, a2, . . . , an ]  is a monotonic list if there exists a mapping M such that 

M(a ; )  4 M(U;+~)  for i = 1,. . . , n - 1 according to a partial order. It is denoted by 

a special built-in functional predicate, monolist(L, +M), in a compiled logic program, 

or simply as monolist(L, 4). 

Predicate monolist does not have to be built-in predicate. During query optimiza- 

tion, the original program can be rewritten to include the following program, such 

that the rewritten program is executed more efficiently. 

monolist([], +M). 

monolist([X], 4 M ) .  

monolist([XIYIL], 4 ~ )  : - monolist([YI L], +M), M(X) 4 M(Y) .  

Hence, monolist has a completely declarative semantics and are treated in the same 

way as ordinary predicate. Although monolist has higher order syntax (function sym- 

bols appear in argument position), it has first order semantics. Since the function + 
are built-in in the program, and monolist(L, +) can be transformed into the following 

monolist-gt program during query optimization if 4 is bound to greater than function 

(>>: 

Corollary 2.1 If a list [XIL] is a monotonic list, then L is a monotonic list. A list 

[XIL] is monotonic if L is monotonic and there exists a mapping of M such that for 

the head element Y in L, M(X) 4 M ( Y ) .  

Proof. Let X = a,, and L = [al, a2,. . . ,an].  We first show that the first statement is 

true. Based on the definition, if [XIL] is a monotonic list, there must exist a mapping 
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M such that M ( a ; )  4 M ( a i + l )  for i = 0, .  . . , n - 1 according to a partial order. This 

should also be true for i = 1, .  . . , n - 1 ,  that is, L must be a monotonic list as well. 

Then we show that the second statement is also true. Since Y is the head of L, 

Y = al .  If L is monotonic, there must exist a mapping M such that M (a; )  4 M 

for i = 1, . . . , n - 1 according to a partial order. Since M ( X )  4 M ( Y ) ,  that is, 

M ( a o )  + M ( a l ) .  The monotonicity relationship M ( a ; )  4 M ( U ; + ~ )  can be extended 

to i = 0 as well. Thus [ X I L ]  is monotonic. 0 

2.5.1 Derivation of monotonic list 

Corollary 2.1 provides us with a technique of testing whether a list is a monotonic 

list. 

Definition 2.5 Given the recursive rule i n  (2.23), argument q : i is said to be a list 

construction argument if there is a variable Z (called a list element variable) such 

that list construction predicate cons(Z ,  x ,  X i )  is in  the rule body. 

List construction arguments are common in recursive rules involving lists. For 

example, in the program travel defined in Figure 2.5, travel  : 1 is a list construction 

argument, and F n o  is its list element variable. 

Corollary 2.2 Given a recursion defined i n  (2.23) and (2.24), argument q : i is a 

monotonic list monolist(q : i ,  +) if (1) it is a list construction argument in  (2.23) 

and h e a d X ;  4 head-x  where h e a d X ;  is the first element in  X i  and head-x is the 

first element i n  x, and (2) q : i is a monotonic list monol is t (q  : i ,  +) in  the exit rule 

(2.24) as well. 

Example 2.9 Considering the recursion, ordered, in rules (2.21) and (2.22). Since 

ordered : 1 is a single element in the exit rule (2.21), it is a monotonic list. Moreover, 

the first element of X Y Y s  in the head predicate of the recursive rule (2.22) is X ,  
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the first element of YYs in the body of the recursive predicate in (2.22) is Y, and 

"X 5 Y". Thus ordered : 1 is a monolist under relation "5" based on Corollary 2.2. 

0 

2.5.2 Pushing monotonic list constraints 

A query constraint of monolist(Xi, 4 )  in the recursive rule (2.23) can be pushed into 

the rule body if the implication, monolist(Xi, +)* monolist(K, 4) )  can be derived 

in the rule body. Obviously, monolist pushed into the body of a recursive rule (as a 

rule constraint) reduces more search space than serving as a query constraint in the 

query evaluation. 

Example 2.10 Figure 2.7 is the rectified program of sort defined in Figure 2.3. 

Suppose a query constraint monolist(YYs, 5) (derived in Example 2.9) is enforced 

on the program select. Since argument select : 2 has YYs in the head and Ys in the 

body where Ys is the tail of YYs, we have monolist(YYs, 5)- monolist(Ys, I). 
Thus argument select : 2 is a monotonic list, and monolist(YYs, 5 )  is pushed into 

the body of rule (2.39). 

sort(Xs, Ys) : - permutation(Ys, Xs) ,  ordered(Ys). (2.36) 
permutation(Xs, 22s) : - cons(Z, Zs,  ZZs) ,  select(Z, Xs ,  Ys), 

permutation(Ys, 2 s ) .  (2.37) 
permutation(Xs, ZZs)  : - X s  = [I ,  ZZs  = [I. (2.38) 

select(X, YYs, YZs) : - cons(Y, Ys, YYs), cons(Y, Zs,  YZs),  
select(X, Ys, 2s). (2.39) 

select(X, YYs, YZs) : - cons(X, YZs,  YYs). (2.40) 

Figure 2.7: Rectified permutation sort program. 

Monotonic list and monotonic argument are tightly related as stated in the follow- 

ing corollaries. Their inter-derivability is important to derive implications between 
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monotonic list constraints in a recursion. In general, to obtain such implications, a 

known monotonic list constraint is first mapped to a monotonic argument via the list 

construction argument, then the target monotonic list constraint is derived through 

constraint propagation and the derivation of monotonic list constraint. 

Corollary 2.3 Given a recursion in (2.23) and (2.24), suppose argument q : i is a list 

construction argument with X as its list element variable. If monolist(X;, +) holds, 

then (1) X is a monotonic argument of + ( X ) ,  (2) constraint monolist(q : i ,  +) holds 

in the exit rule, (3) if Z is the first element of the variable of q : i in the exit rule, 

X + Z .  

Proof sketch. Argument q : i is a list construction argument, then cons(X, k;, X i )  is 

in the body of (2.23). So the values of argument X ,  X ( l ) ,  X (2 ) ,  . . . , X(n)  correspond 

to the elements in Xi. Since monolist(X;, +), X(; )  + X(i+l) for i = 1, . . . , n - 1. 

With cons(X, X i ,  k;) in rule body, then monolist(X;, +)* monolist(Y,, +), there- 

fore monolist(k;, +) holds in body of (2.23). Therefore, q : i in (2.24) is monotonic 

list, and if its first element is Z ,  then X 4 Z .  

Corollary 2.4 Given a recursion in (2.23) and (2.24), if argument q : i is a list 

construction argument and X is its list element variable, then q : i is a monotonic list 

if (1) X is a variable of a monotonic under +, (2) q : i in the exit rule is a monotonic 

list: monolist(q : i ,  +), (3) X + Y where Y is the first element of q : i in the exit 

rule. 

Corollary 2.4 can be proven similarly as Corollary 2.3. 

Example 2.11 With the above preparations, we examine how the program in Fig- 

ure 2.4 is derived. 

Consider program sort in Figure 2.7. First, monolist(Ys, 5 )  is derived from 

ordered program (in Example 2.9) and is appended to the body of rule (2.36). 

Then the program permutation has a query constraint, monolist(Xs, l), in rule 
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(2.37). To push the monolist constraint into the rule body, one needs to verify that 

"monolist(Xs, I)+ monolist(Ys, I ) "  in rule (2.37), i.e., "rnonolist(YYs, 5) I+ 
monolist(YZs, I ) " ,  in rule (2.39). Both arguments select : 2 and select : 3 are list 

construction arguments with Y as their common list element variable in rule (2.39). 

Given monolist(YYs, I), Y is a monotonic argument of I (Y) and Y < head-Ys 

in rule (2.39), and monolist(YYs, <)  holds in the exit rule (2.40). Since YZs  is the 

tail of YYs in rule (2.40), monolist(YZs, 5 )  and head-YZs < head-YYs hold in 

rule (2.40) as well. Thus, head-Ys I head-Zs in rule (2.39). and Zs  is monotonic 

in rule (2.39) as well. Therefore, monolist(Xs, <) can be pushed into the body of 

rule (2.37) as well, which can be further pushed into the body of recursive rule (2.39) 

as explained in Example 2.10. The push of the monolist constraint reduces the com- 

plexity of evaluation of the same query from O(n!) to 0 ( n 2 ) ,  where n is the number 

of elements to be sorted. 

Following is another example where monolist is successfully employed to reduce 

the search space from O(n!) to 0 (n2 )  for the n-queens query. 

Example 2.12 Consider query "? - nqueens(N, [5,3,1,4,2])" where the program is 

shown in Figure 2.1. This query can be processed by 

1. passing binding Qs = [5,3,1,4,2] from head of Rule (2.1) to Qs in predicate 

queens; 

2. processing subquery "? - queens(Ns, [I, [5,3,1,4,2])" in queens program shown 

in Rules (2.5) and (2.4); 

3. processing subquery "? - range(1, N, Ns)" , where N s  is instantiated from result 

in step 2. 

Detailed analysis of evaluation of "? - queens(Ns, [ I ,  [5,3,1,4,2])" reveals that N s  

contains a set of lists of all permutation of [5,3,1,4,2]. Which means, the complexity 

for processing queries such as "nqueens(N, [5,3,1,4,2])" is O(n!), where n is the size 

of the list. 
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However, if constraint derivation and pushing are employed, the search space is 

vastly reduced to from O(n!) to 0 (n2 ) .  From the range program, constraint M < MI 

can be inferred from function L'Ml is M+1" in rule (2.2). Therefore, the first argument 

of range is monotonically decreasing, < (range : 1). Since M is the list constructing 

argument for range : 3, and range : 3 in rule (2.3) has only one argument, it can be 

derived that range : 3 is a monotonic list, thus constraint monolist(Ns, <) is derived 

in rule (2.1). 

To push constraint monolist(Ns, <) into the body of rule (2.4), the relation- 

ship of monolist( Unplaced, <)+ monolist(Unplaced1, <) needs to be established. 

Similar to the analysis in Example 2.11, from select program in rules (2.9) and 

(2.10), monolist(se1ect : 2, <)+ monolist(se1ect : 3, <). Therefore, constraint 

monolist(Ns, <) is pushed into the rule body and becomes monolist(Unplaced1, <) 

in (2.4). Such constraint prunes all the intermeidate queens predicates which are not 

in ascending order. Finally, only one queens predicate queens([l, 2, 3, 4, 51, [I,  [5, 3, 

1, 4, 2 ] ) is derived instead of 5!=120 predicates. 

2.6 Discussion 

This study of constraint pushing and termination control in multiple level linear re- 

cursive programs with function symbols has shown: 

1. termination of multiple level program requires sophisticated analysis of con- 

straints and monotonicity. 

2. monotonicity can be caused by constraints and functions and can be extracted 

by inference. 

3. monotonicity provides a vehicle for constraint pushing. 

4. transformation of querylexit constraints is needed to satisfy the consistence 

requirement of constraint pushing. 
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5 .  derivation and pushing of monotonic list constraints may substantially reduce 

the search space. 

Comparing with other approaches to incorporation of constraints into logic pro- 

grams [140,62, 70, 66, 71, 82, 100, 123, 124, 128, 1341, our approach supports pushing 

of both query constraint and rule constraint (integrity constraint), and investigates 

constraint derivation and pushing in nested linear programs which poses more chal- 

lenges. The chain-based compilation provides a good platform for the analysis of 

constraints and monotonicity, so that a good evaluation plan can be selected, which 

is flexible to best utilize the binding patterns and constraints, and to facilitate the 

interaction among constraints and monotonicity at different levels of programs. Al- 

though constraint pushing is better guided when an evaluation plan (or candidate 

plan) is available, our approach can be applied independently of evaluation schemes, 

because monotonicity detection and constraint pushing depend only on the availability 

of constraints and variable connections in the program. 

Moreover, the types of constraints considered in the program are extended, which 

may involve any constraints of partial order under certain mapping. The introduc- 

tion of monolist concept covers the monotonicity behavior of all the elements in a 

list, which opens a new route for constraint propagation in list functions for query 

optimization. Derivation and pushing of monotonic list constraint in multiple-level 

programs implies that constraints of one recursion can be extracted and applied to 

optimizing another recursion in a multiple-level recursive program, which may imply 

a new direction for optimization of declarative logic queries. 

The effectiveness of constraint pushing is demonstrated in the following example, 

which compares the performance of different evaluation strategies for queries in gcd 

and sort programs. 

Example 2.13 The query evaluation efficiency of four evaluation methods: (1) Pro- 

log, (2) magic: magic sets method, (3) chain w/o constraint: chain-based evaluation 

without constraint pushing, and (4) chain with constraint: chain-based evaluation 



CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING 

with constraint pushing (including monotonic list constraint), are compared in the 

evaluation of the gcd and sort recursions with different query bindings. 

The following four queries are used in the examination: 

Q1: "? - gcd(4,2, Z)" ,  

Q2: "? - gcd(X, 4,2), X < 6", 

Q3: "? - gcd(4, Y, 2), Y < 6", and 

Q4: "? - sort([4,3,2, I], Ys))'. 

A simple cost model is constructed to facilitate the comparison of different meth- 

ods. The following three kinds of basic steps are used in the cost estimation. 

type-a: Each execution of one built-in arithmetic or comparison operator, such as 

" M  = N - I", counts as one type-a basic step. 

type-b: Each execution of a primitive-level (non-arithmetic) predicate (including 

EDB), such as a call to "cons", counts as one type-b basic step. 

type-c: Each execution of a call to an IDB predicate counts as one type-c basic step. 

The total cost of query execution is expressed in the form: aa + ,Bb + yc, where 

a ,  b, c are the unit cost for type-a, type-b, and type-c operations respectively. Such 

a cost model represents the sum of the numbers of basic steps in the three types 

respectively. This cost model is simple to construct and easy to compute. However, 

it reflects a reasonable approximation to the amount of work involved in the query 

evaluation. A method usually costs more in comparison with others if it involves more 

basic steps in the execution of the same query on the same recursion. 

The four evaluation methods are compared based on the above programs, queries 

and the cost model. Their execution costs are presented in Table 2.1. Each slot is 
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Method\ Query 

I Prolog 

Table 2.1: Performance comparison of different query evaluation methods. 

- 
magic 

chain w/o constraint pushing 
chain with constraint pushing 

filled up by the cost of query evaluation if the program is evaluated correctly by the 

method, or " N / A  (i.e., not applicable)" otherwise. 

&I 

16a + 10c 

The table reveals the following: 

N/A 
16a + 10c 
16a + 10c 

The magic sets method cannot evaluate these queries on the gcd or sort pro- 

grams. For gcd, the process of deriving magic predicates of mod cannot ter- 

minate due to the infiniteness of functions or built-in predicates. For sort, the 

bottom-up evaluation cannot pass sufficient bindings from permutation in the 

body to its head in Rule (2.17). 

Prolog cannot evaluate Q 2  and Q3 on the gcd program due to its predicatelrule 

order dependency. 

Q4 

87a + 2373 + 185c 
Q2 

N/A 

N/A 
N/A 

53a + 19c 

With incorporation of constraint pushing, chain-based evaluation can success- 

fully evaluate Qg and Q3. The evaluation returns 3 tuples for each query. 

Q 3 

N/A 

For Q4 on sort, constraint pushing substantially reduces the evaluation cost. 0 

N/A 
N/A 

55a + 21c 

We conclude this chapter with two figures, Figure 2.8 and Figure 2.9 illustrate the 

effect of constraint pushing on reduction of search space for n-queens and permutation 

sort problems respectively, where size is number of queens to be placed in n-queens 

problem and the number of elements to be sorted in the permutation sort problem. 

N/A 
87a + 2373 + 185c 

l l a  + 71b + 43c 
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cost 
cham 

- - - chain with constraint pushing 

Figure 2.8: Effectiveness of constraint pushing for nqueensfb. 
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cost 

chain 

- - - chain with constraint pushing 

Figure 2.9: Effectiveness of constraint pushing for permutation-sortbf.  



Chapter 3 

Design and Implementation of 

LogicBase 

3.1 Motivation 

As an important extension to the relational approach, research on deductive database 

systems represents a direction towards declarative query processing, high-level database 

programming, and integration of logic programming and relational database technol- 

ogy [122]. Many deductive database systems or prototypes, such as LDL [28], Glue- 

NAIL! [87], CORAL++ [125], EKS-V1 [142], ADITI [135], XSB [118], have been 

developed and reported in recent years. 

Efficient query evaluation in deductive databases is an essential issue in the real- 

ization of deductive database systems. Previous researches [ lo ,  61, 65, 133, 28, 87, 

105, 1351 lead to two influential classes of deductive query evaluation methods: (1) 

bottom-up evaluation, represented by the magic sets computation and the semi-naive 

evaluation [ lo ,  28, 87, 105, 1351, and (2) top-down evaluation, represented by the 

query/subquery approach [142] and XSB [118]. These methods explore set-oriented 

evaluation, focus of the search on query relevant facts, with freedom of looping and 
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easy termination testing, and have achieved impressive results. However, because a 

recursion is more or less treated as a black box by these methods without a detailed 

analysis of its particular structure, it is difficult to capture the regularities of a partic- 

ular recursion and maximally utilize the information about constraints and recursion 

structures in query evaluation. 

The LogicBase project takes a different approach. LogicBase emphasizes effi- 

cient compilation and query evaluation of application-oriented recursions in deductive 

databases. It adopts query-independent compilation and chain-based query evaluation, 

where the former [58] transforms a set of deduction rules into highly regular compiled 

forms, which facilitates quantitative analysis of queries and efficient query evaluation; 

whereas the latter explores set-oriented evaluation of each compiled chain with appro- 

priate constraint transformation and push, which reduces unnecessary or redundant 

computation and facilitates the judgement of termination. The method can be viewed 

as a natural extension to relational query evaluation methods and an integration of a 

top-down evaluation (by starting with the query as a goal) and a bottom-up evalua- 

tion (by set-at-a-time evaluation without infinite looping and repeated computation 

of subgoals). 

The design goals for LogicBase are: 

0 realization of pure declarative logic programming: the evaluation of a program 

should be independent of the ordering of rules in the program and ordering of 

predicates in a rule. 

0 handling of functional program: function symbols should be allowed in a pro- 

gram, efficient and safe evaluation should be provided. 

0 support of eficient evaluation: set-oriented evaluation similar to that in the 

relational approach should be supported. 

0 exploration .of constraints: to provide safety for evaluation of functional program 

and to reduce search space. 
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3.2 Major Features of LogicBase 

Although recursions can be in complex forms, most recursions in practical applications 

can be compiled into chain or chain-like forms to which efficient query analysis and 

evaluation techniques can be explored [58, 571. The design of LogicBase is based on 

this regularity of recursion and the strength of chain-based compilation and evaluation. 

The LogicBase system has the following major features: 

Query-independent compilation, which captures the bindings that could be dif- 

ficult to be captured otherwise and derives highly-regular and precise compiled 

chain programs for query analysis and evaluation. 

Chain-based evaluation, which includes a set of interesting techniques, such as 

chain-following, chain-split, constraint pushing, etc., explores query constraints, 

integrity constraints, recursion structures, and other features of the programs 

in query evaluation. 

Eficient processing of logic programs with functions, lists and complex data 

structures. The programs in LogicBase are declarative, independent of the or- 

dering of predicates in a rule and the ordering of rules and facts in a program. 

Queries in different input/output mode combinations can be processed properly. 

For example, in the nqueens(N, Qs) recursion shown in Figure 2.1, the predi- 

cates or rules in the program can be swapped randomly, and the queries, such as 

"? - nqueens(8, Qs)" (the 8-queens problem), and "? - nqueens(N, [2,4,1,3])" 

(whether this is a valid n-queens chess board), can be answered correctly and 

efficiently [56, 54, 531. 

3.2.1 Capture of more bindings in query binding propaga- 

t ion 

LogicBase compiles complex recursions into highly regular chain forms. By such 
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compilation, the selection-pushing technique can capture more bindings in complex 

recursions than those using traditional rule rewriting techniques, such as the magic 

rule rewriting [9, 133, 101. This is illustrated by the following example [58]. 

Example 3.1 Traditional rule rewriting techniques may encounter some difficulties 

in the propagation of bindings in some recursive rules [58], which is demonstrated in 

the analysis of the following recursion. 

Suppose that query "? - r(c, cl, Y)" is posed on a linear recursion defined by 

Rules (3.1) and (3.2), where c and cl are constants, X's and Y's are variables, and r 

is a recursive predicate defined by EDB predicates a ,  b and e. 

Following the binding propagation rules [lo,  1331, the bindings in the adorned 

goal, rbbf,  are propagated to the subgoal r in the body of Rule (3.2), resulting in an 

adorned subgoal, r f b f ,  as shown in Rule (3.3), which are in turn propagated to the 

next expansion, resulting in r f f f  , as shown in Rule (3.4), which cannot propagate any 

bindings further to subsequent expansions, and the binding propagation terminates. 

This kind of binding propagation relies on the backward binding propagation only, 

in the sense that the bindings are propagated from the head to the body in a rule 

and from the IDB subgoal in the body of a rule to the head of the rule which unifies 

it. For this recursion, the propagation cannot reduce the set of data to be examined 

in the semi-naive evaluation because the derived magic set contains the entire data 

relations. Furthermore, it is easy to verify that reordering of the subgoals cannot 

improve the evaluation efficiency. 

For such recursions, bindings should also be propagated forward from the body to 

the head in a rule and from the rule unifying the IDB subgoal to the corresponding 
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IDB subgoal in the body of the original rule. Such a propagation cannot be caught by 

the traditional approaches but can be captured by the compilation (or normalization) 

of linear recursions [58]. 

For this recursion, because the second and the third arguments of predicate r are 

defined only by non-recursive predicate a in Rule (3.2), a new predicate t can be 

introduced to define the first argument of r ,  such that r is defined as following: 

where t(Xl)  is intended to replace the remaining part in Rule (3.2): r(X2, XI, K),  
b(X2, Yl). Hence t is defined as following: 

The above definition for r is the normalized, equivalent form of the original program. 

Obviously, the bindings of the query rbbf can be propagated to any expansions in the 

normalized recursion. 

This example shows that a complex linear recursion can be compiled (normalized) 

into highly regular chain forms for efficient query analysis and evaluation. Many other 

complex recursions are also compiled successfully by LogicBase and generate highly 

regular chain recursions. 

Although function-free recursions cover an interesting class of recursions in deduc- 

tive databases, many recursions in practical applications contain function symbols, 

such as structured data objects, arithmetic functions, and recursive data structures 

(lists, trees, sets, etc.). By transforming functions into functional predicates, the 

compilation and evaluation techniques developed for function-free recursions can be 

extended to functional ones [47]. Furthermore, the method can be generalized to logic 

programs containing modularly stratified negation [I051 and those with higher-order 

syntax and first-order semantics [26]. Therefore, compilation of recursions into chain 
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and pseudo-chain forms [50] represents a powerful program transformation technique 

which transforms recursion into simple, easily-analyzable forms and facilitates the 

application of efficient evaluation methods. 

In general, deduction rule compilation in LogicBase consists of two major units: 

(1) classification (classification and simplification of recursions), and (2) compilation 

(compilation and normalization of recursions). 

The classification unit takes a complex recursive program as input, rectifies it, 

eliminates mutual recursions when possible, simplifies the recursion when appropri- 

ate, and identifies the class of recursions to which the program belongs [57]. By this 

processing, a recursion is classified into one of the following classes: (1) (single) lin- 

ear recursion, (2) nested linear recursion, (3) multiple linear recursion, (4) regular 

nonlinear recursion, and (5) irregular recursion [57]. 

The compilation unit (based on [58, 571) takes the preprocessed recursion and 

compiles (normalizes) it into a chain program, when possible, based on a compilation 

(normalization) algorithm described in Section 3.3.2. Furthermore, algebraic simpli- 

fication is performed on the compiled expressions. The compiled recursion is fed to 

query analysis and evaluation. 

3.2.2 C hain-following and chain-split evaluation 

Since many recursions can be compiled into chain forms, chain-based evaluation should 

be explored on the compiled recursions. Chain-based evaluation can be viewed as an 

extension to relational database query analysis and optimization techniques, because 

a compiled cha.in consists of an infinite set of highly regular relational expressions. The 

compilation makes explicit the regularity of the operation sequences in a recursion, on 

which quantitative analysis and optimization can be explored systematically. Such a 

quantitative analysis, similar to the access path selection and query plan generation for 

relational queries [119], can be performed based on the characteristics of the compiled 

chains, query instantiations, inquiries, integrity constraints, and database statistics of 
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EDB relations [47]. Notice that quantitative analysis has been incorporated in many 

other recursion handling methods to generate different query evaluation plans as well. 

In general, the chain-based query evaluation method consists of chain-following, 

chain-split, and constraint-based evaluation techniques. 

The simplest chain-based evaluation is chain-following evaluation, which starts 

with a highly selective end of a chain (called the start end) and proceeds towards 

the other end of the chain (called the finish end) and then possibly to other chains. 

It simulates partial transitive closure processing in the case of single chain recursion 

[65, 611 and the counting method [9, 441 in the case of multiple chain recursion. 

Example 3.2 The following recursion length defined by Rules (3.5) and (3.6) can be 

compiled into a double-chain recursion. 

length( [I , O). (3.5) 

length([XIL], N + 1) : - length(L, N).  (3.6) 

Rule (3.7) shows the rectified recursive rule. 

length(XL, Nl) : - cons(X, L, XL),  plus(N, 1, Nl), length(L, N). (3.7) 

One chain has a chain element "cons(X, L, XL)", the other chain contains an element 

"plus(N, 1, Nl )" . Query "? - lengt h([a, b, c] ,3)" can be evaluated by a typical chain 

following evaluation. Both chain are instantiated at query end. At each iteration, the 

third argument of cons and the second and the third arguments of the plus functional 

predicate are instantiated, and both predicates are evaluated. The instantiation is 

then passed to the next iteration via shared variables. Therefore, both chains are 

evaluated in the chain-exit direction. At last, the exit rule is satisfied, and the query 

is returned with answer true. If the query is "? - length([a, b, c], N)", it is evaluated 

by the chain following as well. The cons chain is evaluated in the chain-exit direction, 

but the plus chain in the exit-chain direction. In this case the chain-following method 

is the same as the counting method because synchronization is needed between two 

chains. 
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Depending on the available query bindings, some functional predicates in a chain 

element may not be immediately finitely evaluable, or the iterative evaluation may 

generate a huge intermediate relation. In these cases, a chain can be partitioned 

into two portions: immediately evaluable portion and bu$ered portion. The former is 

evaluated at the begining but the latter is buffered until the exit rule is evaluated. 

Then the evaluation proceeds in a way similar to the evaluation of a multi-chain 

recursion, except that the corresponding buffered values should be patched in the 

latter evaluation. Such an evaluation technique is called chain-split evaluation [47]. 

Example 3.3 Rules (3.8) and (3.9) define a recursion append, which can be compiled 

into a single-chain recursion. For the query "? - append(U, V, [a, b])" whose adorned 

predicate is appendffb, the adorned normalized rule set. is shown in Rules (3.10) and 

(3.11). 

Since the chain element "cons(Xl,Ul,U), cons(Xl, Wl, W)" cannot be finitely 

evaluated as a whole based on the only available binding on W, the chain-split eval- 

uation technique should be applied in the evaluation. That is, the chain should be 

split into two portions: (1) the immediately evaluable predicate "cons(X1, Wl, W)", 

and (2) the bu$ered predicate "cons(X1, Ul, U)" . 

The evaluation proceeds as follows. The evaluation of the exit rule (3.10) derives 

the first set of answers: "U = [I" and "V = [a, b]" . The evaluation of the recursive rule 

(3.1 1) proceeds along the immediately evaluable predicate "cons(X1, Wl, W)", which 

derives "Wl = [b]" and "XI = a" from "W = [a ,  b]". Then XI is buffered, and Wl is 

passed to the exit rule, making "V = [b]" and "Ul = [I". Then the buffered predicate 
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becomes evaluable since XI and Ul are available. The evaluation derives "U = [a]". 

Thus, the second set of answer is {U = [a], V = [b]). Similarly, the evaluation may 

proceed along the immediately evaluable predicate "cons(X1, Wl, W)" further, which 

derives the third set of the answer: {U = [a, b], V = [I). 

3.2.3 Const raint-based query evaluation 

Besides the distinction of chain-following vs. chain-split evaluation, another impor- 

tant strength of the method is the systematic analysis and exploration of available 

constraints [47]. 

Taking the evaluation of a single-chain recursion as an example, we examine how 

to push query constraints (or instantiations) at both ends of a compiled chain. The 

processing should start at a more restrictive end (the start end) and proceeds to a less 

restrictive end (the finish end). It is straightforward to push query constraints at the 

start end of the chain. However, care should be taken when pushing query constraints 

at the finish end. 

Example 3.4 An IDB predicate, travel(FnoList, Dep, Arr,  Fare) ,  defined by Rules 

(3.12) and (3.13), represents a sequence of connected flights with the initial departure 

city Dep, the final arrival city Arr, and the total fare Fare ,  where edb-flight is an 

EDB predicate representing the stored flight information. 

travel([Fno], Dep, Arr, Fare)  : - 

edb-f light(Fno, Dep, Arr, Fare) .  (3.12) 

travel([FnolFnoList], Dep, Arr, Fare )  : - 

edb-f light(Fno, Dep, I n t ,  Fl), 

travel(FnoList, I n t ,  Arr, F2), F a r e  = Fl + F2. (3.13) 

The recursion can be compiled into a single-chain recursion shown in Rules (3.14) 
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and (3.15). 

travel(L, Dl  A, F) : - edb-flight(Fno, Dl  A, F ) ,  

cons(Fno, [I,  L), sum(F, 0, F ) .  

travel(L, D l  A, F) : - 

edb-flight(Fn0, Dl I, Fl),  sum(Fl,  S1, F), 

cons(Fno, L1, L), travel(Ll, I, A, S1). (3.15) 

The query is to "find a set of (connecting) flights from Vancouver to Zurich, with 

at most 4 hops and with the total fare between $500 to $80OV, that is, 

? - travel(FnoList, vancouver, zurich, F ) ,  

F 2 500, F 5 800, length(FnoList, N ) ,  N 5 4. 

According to the compiled form, D l  L and F are located at the query end of the 

chain; whereas A, L1 and S1 are at the exit end of the chain. The information at 

the query end is, (i) D = "vancouver", (ii) 500 5 F 5 800, and (iii) FnoList = 

L, length(FnoList, N), N 5 4; whereas that at the exit end is, (i) A = "zurich", (ii) 

L1 = [I ,  and (iii) S1 = 0. 

Since the information at the exit end is more selective than that at the query end, 

the exit end is chosen as the start end for chain evaluation (query end as the finish 

end). Thus, all the query constraints at exit end are pushed into the chain for efficient 

processing. 

The query constraints associated with the finish end cannot be pushed into the 

chain in iterative evaluation without additional information. For example, pushing 

the constraint, "Fare 2 500", into the chain will cut off a promising connection whose 

first hop costs less than 500. On the other hand, it is clearly beneficial to push the 

constraint, "Fare  I: 80OV, into the chain to cut off the hopeless connections when the 

accumulative fare is already beyond 800. However, a constraint like "Fare = 800" 

cannot be pushed into the chain directly, but a transformed constraint, "Fare 5 800", 

can be pushed in for iterative evaluation. 
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A systematic way to push query constraints at  the finish end can be derived by 

examining the interactions between query constraints and monotonicity constraints 

[47]. If the value (or the mapped value) of an argument in the recursive predicate 

monotonically increases but does not converge to a limit during the evaluation, a 

query constraint which blocks such an increase is useful at  reducing the search space 

in iterative evaluation. 

Based on the monotonicity constraint of the argument Fare ,  a termination re- 

straint template, "Fare + C", is set up, where C is a variable which can be instanti- 

ated by a consistent query constraint. For example, a constraint, "Fare 5 8OOX, 

or "Fare  = 800", instantiates the template to a concrete termination restraint, 

"Fare  + 800". However, the constraint, "Fare 2 500", is not consistent with the ter- 

mination restraint template. Thus, it cannot instantiate a termination restraint . An 

instantiated termination restraint can be pushed into the chain for efficient processing. 

Similarly, a constraint, "Dep = 'vancouver'", can be used for constraint pushing 

if we have the airport location information and a constraint: same flight direction (a 

monotonic constraint on flight direction). A concrete termination restraint, such as 

"longitude(Dep) + longitude(vancouver)", can be derived from the analysis of the 

query constraints and monotonicity constraints of the recursion, and the tuples gener- 

ated at any iteration with the departure airports located to the west of Vancouver is 

pruned in the chain processing. Also, the constraint, "length(FnoList, N), N 5 4", 

can be pushed into the chain in the iterative evaluation. 

Because of the availability of compiled chains and their precise connection informa- 

tion, it is much easier to perform a detailed analysis of the monotonicity behavior of 

each chain and perform appropriate constraint transformation and constraint pushing 

for efficient evaluation. 
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3.2.4 Chain-based evaluation of complex classes of recur- 

sions 

Since a (single) linear recursion can be compiled into a chain form or a bounded recur- 

sion 1581, chain-based evaluation can be applied to this class of recursion. Similarly, 

a nested linear recursion can also be so compiled and evaluated. The evaluation of 

nested linear recursion can be illustrated in the following. 

Example 3.5 A typical n-queens recursion defined in Figure 2.1 is a nested linear 

recursion whose query analysis can be performed as follows. 

For a query, "? - nqueens(4, Qs)" ,  the binding pattern for predicate nqueens is 

nqueensbf(N, Qs) .  The b f  binding of nqueens leads to rangebbf and queensbbf if 

range is evaluated first. Notice that it is unreasonable to evaluate queens first since 

it is easy to verify that the binding queensfbf cannot lead to a finite set of answers. 

Thus, the adorned program for nqueens is as follows. 

nqueensbf ( N ,  Qs)  : -rangebbf (1 ,  N ,  N s ) ,  queensbbf ( N S ,  [ I ,  Qs) .  

Similarly, the adorned program for the remaining program is presented below. 

Notice that "MI  = M + f b b  1" denotes the bindings of the three arguments of the plus 

predicate. 

rangebbf ( M ,  N ,  M N s )  : - M <bb N ,  Ml = M +jbb 1, 

rangebbf ( ~ 1 ,  N ,  N s ) ,  consbbf ( M ,  N s ,  M N s ) .  (3.16) 

rangebbf ( M ,  N ,  M N s )  : - M =bb N ,  consbbf ( N ,  [ I ,  M N s ) .  (3.17) 

queensbbf (U, S,  Qs)  : - s e l e d f b f ( ~ ,  (I, Ul) ,  not a t t a c k b b ( ~ ,  S ) ,  

c o n s b b f ( ~ ,  S ,  S l ) ,  queen.sbbf(U1, S1, Qs) .  (3.18) 

queensbbf (u, S ,  Qs )  : - U =bb [I, S = b f  Qs. (3.19) 

se lec t fb f (x ,  Y Y s ,  Y Z s )  : - c o n s f f b ( x ,  Y Z s ,  Y Y s ) .  (3.20) 

se lec t fb f (x ,  Y Y s ,  Y Z s )  : - cons f f b ( y ,  Y s ,  Y Y s ) ,  
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selectfbf (x, Ys, Zs),  consbfb(y, Zs,  YZs). (3.21) 

attackbb(x, Xs )  : - attkbbb(x,  1, XS). 

at tkbbb(x,  N, YYs) : - 

( X  = Y + b f b N ;  X = Y  -bfbN), 

consbfb(y, Ys, YYs). 

at tkbbb(x,  N, YYs) : - consbfb(y, Ys, YYs), 

Nl = N +jbb 1, at tkbbb(xl  Nl, Ys). 

The binding propagation analysis determines both the appropriate query eval- 

uation strategy and the predicate evaluation order. For example, the analysis on 

adorned program rangebbf indicates that chain-split evaluation should be performed 

on rangebbf(M, N, M N s )  because the compiled chain " M  < N, MI = M + 1, 

cons(M, Ns,  MNs)"  must be split into two portions: " M  < N, MI = M + 1" 

and "cons(M, Ns,  MNs)",  in the evaluation (in order to guarantee finite evalu- 

ation) according to the binding propagation ordering shown in (3.16). Similarly, 

chain-following evaluation should be performed on peensbbf(U, S, Qs), chain-split 

evaluation on selectf bf (X, Y Ys, Y Zs),  and existence-checking evaluation [44] on 

attkbbb(X, N, YYs). 

Queries with other adornments can be analyzed and evaluated similarly. For 

query "? - nqueens(N, [2,4,1,3])", the predicate queens should be evaluated first. 

Otherwise, it is unsafe to evaluate rangebf f . Thus, the adorned program becomes, 

n q u e e n s f b ( ~ ,  Qs) : - 

p e e n s f b b ( ~ s ,  [I,  Qs), rangebfb(l,  N, Ns).  (3.25) 

p e e n s f  b b ( ~ ,  S, Qs) : - 

queens f fb (~ l ,  Sl, Qs), consfbb(&, S,  S1), 

not attackbb(Q, S) ,  selectbfb(&, U, Ul). (3.26) 

p e e n s f  b ( ~ ,  S, Qs) : - 

peensffb(u1,  S1, Qs), consffb(&, S, S1), 
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not attackbb(&, S) ,  s e l e c t b f b ( ~ ,  U, Ul). (3.27) 

queensffb(u, S, Qs) : - U = f b  [I, S =f Qs. (3.28) 

selectbfb(x, YYs, YZs) : - consbbf (x, YZs,  YYs). (3.29) 

selectbfb(x, YYs, YZs) : - consbfb(y, Zs,  YZs),  

selectbfb(x, Ys, Zs),  consbbf (Y, Ys, YYs). (3.30) 

rangebfb(M, N, MNs)  : - 

consbfb(M, Ns, MNs) ,  Ml = M + f b b  1, 

rangebfb(M1, N, Ns) ,  M < b b  N. (3.31) 

rangebfb(M, N, MNs)  : - M =bf N, c o n s b b b ( ~ ,  [I, MNs) .  (3.32) 

Binding propagation analysis derives the predicate evaluation ordering: first evalu- 

ate q u e e n s f b b ( ~ s ,  [I, Qs) and then rangebfb(l, N, Ns) .  Similarly, q u e e n s f b b ( ~ s ,  [I ,  Qs) 

implies that queens(U1, Sl , Qs) (the recursive predicate in the body) should be eval- 

uated first. The bindings in the head queensfbb are propagated to the body as shown 

in Rule (3.26), which results in queensff b(Ul, Sl, Qs). The further propagation in the 

recursive rule leads to the same binding pattern in the recursive predicate in the body, 

as shown in Rule (3.27). This evaluation order can be naturally viewed as evaluating 

first the exit rule portion and then the chain portion in the chain-based evaluation. 

Based on such binding analysis, appropriate query evaluation plans can be generated 

and queries can be processed efficiently. 

3.3 Implementation of LogicBase 

In this section, the design principles and implementation details for the LogicBae sys- 

tem are presented. LogicBase consists of three phases: compilation of logic programs, 

generation of an evaluation plan and execution of the plan. The overall picture of 

LogicBase is introduced first, followed by algorithms for each phase. 
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3.3.1 LogicBase system architecture 

Figure 3.1 presents an overview of LogicBase. 

1. Compilation of a program: Classification, normalization and compilation of a 
program. 

2. Plan generation: Analysis of binding passing, determining evaluation direction 
for each chain, determining termination for the plan, generating an evaluation 
plan and optimizing the query plan. 

3. Plan execution: Execution of relational operations according to the generated 
plan. 

Figure 3.1 : Overview of LogicBase. 

A more detailed description of the three phases in LogicBase is as follows: 

1. Compilation: Recursive programs are first classified into the following classes: 

(1) (single) linear recursion, (2) nested linear recursion, (3) multiple linear re- 

cursion, (4) regular nonlinear recursion and ( 5 )  irregular recursion. Then they 

(except irregular nonlinear recursion) are compiled and normalized into chain 

or chain-like forms to facilitate query processing. Linear mutual recursions are 

compiled into one or a set of linear recursions or pseudo-linear recursions which 

can be evaluated in the same way as normal linear recursions. The compilation 

is query-independent . 

2. Query plan generation and query optimization: A systematic and quantitative 

analysis is performed to determine an appropriate evaluation strategy and to 

generate a query processing plan. LogicBase takes the binding passing on the 

compiled chain forms and evaluation cost into consideration to select a query 

processing strategy. For each chain, bindings can be propagated in either direc- 

tions: (1) chain-exit: where bindings are first passed from the query to the chain 

(via the query end of the chain), then through the chain (via shared variables 
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among successive chain elements), finally to the exit rules (via the exit end of 

the chain); (2) exit-chain: where bindings in the query are passed to the exit 

rule via shared variables between the head predicate and the recursive predi- 

cates in the body, then from the exit rule into the chain (via the exit end of the 

chain) and passed through the chain (via shared variables in successive chain 

elements), finally bindings are passed back to the query (via the query end of 

the chain). According to the binding propagation, query processing strategies 

are categorized into the following: 

a non-recursive processing, which handles a query on a non-recursive pro- 

gram. 

all-up chain following evaluation, where all the chains are evaluated in the 

chain-exit direction. It is similar to the top-down evaluation with respect 

to the binding passing. 

a all-down chain following evaluation, where all chains are evaluated in the 

exit-chain direction. It is similar to the bottom-up evaluation with respect 

to the way bindings are passed. 

a up-down chain following evaluation, where some chains are evaluated in the 

chain-exit direction and the rest are evaluated in the exit-chain direction. 

It is similar to the counting method. 

a chain-split evaluation, where a chain is split into two portions: immediately 

evaluable portion and buflered portion such that the immediately evaluable 

portion is evaluated first in the chain-exit direction whereas the buffered 

portion is buffered and its evaluation is delayed until all of the immediately 

evaluable portion of the chain is fully evaluated and the bindings from the 

chain-exit evaluation are passed to the exit rule, such bindings are then 

passed to the buffered portion to enable evaluation on the buffered portion. 

Termination analysis and constraint pushing are also important tasks done at 

this stage. Termination on evaluation of function-free program is guaranteed 

by the chain-based evaluation. However, for a functional program, analysis on 
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monotonic constraints is employed to ensure termination of chain-based evalu- 

ation. In LogicBase, an evaluation plan for a functional program is considered 

to be safe only if a constraint is found in the program to restrain an argument 

whose values monotonically increase or decrease. If no such constraint(s) can be 

located, LogicBase strives to push other constraints found in the query or the 

exit rules if possible. For an evaluation plan of functional program without such 

constraints, the plan is abandoned and another alternative plan is examined. 

Besides plan generation, plan optimization is performed in this stage. Given 

a valid and safe evaluation plan, statistics on EDB relations is used to give an 

estimated cost for the query evaluation under the plan. When multiple strategies 

are applicable, the one with the least estimated cost is taken as the evaluation 

plan. The query plan can be further optimized by rearranging the order of 

predicates within the plan, which can be accomplished by making use of query 

optimization techniques in the relational database, because evaluation in chain- 

based approach is an extension to the relational database query processing. 

3. Plan execution: The query evaluation plan, generated at the last phase, is exe- 

cuted to obtain answers to the query. A query plan is represented in an internal 

data structure which specifies what needs to be done in plan execution. Various 

relational operations such as relational join, selection, project ion, set difference, 

are performed according to the plan. 

The following subsections will introduce techniques and algorithms used in these 

three phases in detail. 

3.3.2 Compilation of linear recursive programs 

The methods and algorithms presented here for the automatic compilation of linear 

recursive programs are from Han and Zeng [58]. They are included here to present a 

complete view for the LogicBase system. 
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A variable connection graph-matrix, V-matrix is used to register the structure of 

a linear recursive program, and also to discover the minimal necessary expansions in 

the compilation of complex linear recursions. Furthermore, the compiled forms of a 

linear program can be generated automatically through the expansion operation on 

V-matrix. 

The compiled form of a recursive program is generated by expanding recursive rules 

and identifying regularity of the expansion. The expansion behavior of a recursion is 

closely related to the variable connections among its predicates. 

The following concepts are used to introduce the necessary algorithms for auto- 

matic generation of chain form, to which the compilation portion of the LogicBase 

system is implemented accordingly. 

Definition 3.1 Two predicates in the body of a rule are connected if they share vari- 

ab le(~)  with each other or with a set of connected predicates. Two nonrecursive pred- 

icates in  the body of a rule are U-connected if they share variable(s) with each other 

or with a set of U-connected predicates. A set of variables are U-connected if they are 

in the same nonrecursive predicate or in the same set of U-connected (nonrecursive) 

predicates. 

Definition 3.2 The variable connection graph-matrix, V-matrix, for a linear recur- 

sive rule of arity n (the arity of the head predicate) consists of a sequence of rows. 

Each row consists of n columns with the i-th one corresponding to the i-th argument 

position of the recursive predicate. Moreover, there are possibly U-connection edges 

between some columns in  a row. 

The contents of an initial V-matrix reflect the variable connection information 

in the corresponding arguments in the original recursive rule. Its expansions reflect 

similar information in the expanded recursive rules. The compilation procedure in 

LogicBase expands recursion by manipulating V-matrix. 
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The initial V-matrix, which consists of the first two rows (row [O] and row [I]) of 

the V-matrix, is constructed according to the following V-matrix initialization rules 

shown as follows, while the remaining rows, if any, are constructed based on the 

V-matrix expansion rules to be presented later. 

A V-matrix is initialized in the following four steps: 

1. Partition the variables in the rule according to the U-connections (and each 

partition is called a U-connected set); 

2. Copy the variables in the recursive predicate in the head and the body to the 

corresponding columns in row [O] and row [l] respectively; 

3. Replace the variable at each column of row [I], say x ,  by the set of distinguished 

variables U-connected with x ,  if any; and 

4. Set up a U-connection edge between each pair of columns in the corresponding 

row if the pair of columns are in row [O] and contain U-connected distinguished 

variables, or if they are in row [I] and contain U-connected nondistinguished 

variables. 

A V-matrix can be partitioned into one or more unit V-matrices based on the 

connections among matrix columns. 

Definition 3.3 TWO columns of a V-matrix are connected if the two columns in the 

initial V-matrix share a variable or a set of U-connection edges with each other or 

with a set of connected columns. A set of connected columns form a unit V-matrix. 

A linear recursive rule whose V-matrix consists of only one unit is a single-unit rule; 

otherwise, it is a multiple-unit rule. 

New rows of a V-matrix can be generated from its initial V-matrix by a set of 

V-matrix expansion rules, and the generated rows reflect the U-connectivities of the 

corresponding expanded recursive rules. 
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Definition 3.4 A variable y is a derivative of a distinguished variable x in a V-  

matrix if y is derived by x, that is, y and x are at the same column in the V-matrix 

but y 's row number is x's row number + 1. 

In general, the V-matrix expansion rules can be summarized as follows, where the 

row NewRow (= LastRow + 1) is generated from the row LastRow of the V-matrix: 

1. Row generation: for each distinguished variable x in V-matrix [LastRow, i ] ,  add 

x's derivatives to V-matrix [NewRow, i]. 

2. U-connection Propagation: the U-connection edges are copied from Last Row to 

NewRow and then from LastRow -1 to LastRow. If such copying makes a dis- 

tinguished variable x U-connected to the set of variables in V-matrix [NewRow, 

i], x is added to the set of variables in V-matrix [NewRow, i]. 

It is proved in [58] that each row of the V-matrix generated by following the 

above V-matrix expansion rules correctly registers the set of distinguished variables 

U-connected to each column of the recursive predicate in the body at  each expansion. 

Furthermore, after certain number of expansions (stable level), newly generated rows 

start to repeat rows generated some number of expansion (period) before in the V- 

matrix. Such stable level is no greater than the arity of the head predicate. 

Equality of two rows in a V-matrix is defined in the following. 

Definition 3.5 The DV-set of a column is the set of all the distinguished variables 

U-connected to the variable(s) in  the column. Two rows, row [i] and row [j], in  a V -  

matrix are identical (denoted as row[i] == rowb]) if each pair of their corresponding 

columns has the same DV-set. 

Based on such definition of identicality, for a single-unit recursive rule of arity n ,  it 

can be proved that there exists integers S (stable level) and T (period) such that for 

any k-th expansion with k > S ,  it is identical to ( k  - T)-th expansion in its V-matrix, 

and S + T 5 n. 
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Definition 3.6 If starting at row S, there exists a T such that the row of a single- 

unit V-matrix repeats at every T more expansions, that is, row [S + k x T] == row 

[S] for all k > 0,  then S is called the stable level and the smallest T the period of the 

V-matrix. If row [S] contains no distinguished variables, T is defined as 0. 

The following algorithm is used in LogicBase for the  expansion of a single-unit 

V-matrix and the derivation of its stable level S and the  period T. 

Algorithm 3.1 The expansion of a single-unit V-matrix and the derivation of its 

stable level S and the period T. 

Input: An initial single-unit V-matrix. 

Output: An expanded V-matrix, the stable level S and the  period T. 

Method: begin 

LastRow := 0; CurrentRow := 1; 

while not RowRepeating (CurrentRow, ExistingRow) 

LastRow := CurrentRow; CurrentRow := CurrentRow + 1; 

/* Generate the contents of the CurrentRow. */  
for each column i /* Every column in CurrentRow is initially empty. */ 

for each distinguished variable x in V-matrix[LastRow, i] 

Add x's derivatives to  V-matrix[CurrentRow, i]; 

/* U-connection Propagation. */ 
Copy the U-connections from LastRow to CurrentRow; 

Copy the U-connections from LastRow - 1 to LastRow; 

for each column i 

for each x in V-matrix[CurrentRow, i] 

if x is U-connected to  a distinguished variable y which is not already in 

V-matrix[CurrentRow , i] 

then Add y to  V-matrix[CurrentRow, i] and remove, if any, 

nondistinguished variables there; 

S := ExistingRow; 
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if there is no distinguished variable in CurrentRow 

then T := 0; 

else T := CurrentRow - ExistingRow; 

end. 

Notice the RowRepeating is a Boolean function which returns true if the there is a 

row in the V-matrix called ExistingRow identical to the CurrentRow. Such function 

is used to identify the stable level S and the period T acd terminate the expansion 

of the V-matrix. 

The generation of chain-predicates for nonnull chains from the recursive rules in 

the (S + T)-th expansion consists of the following three steps: 

1. Take the set of nonrecursive predicates generated from the (S + 1)-st expansion 

to the (S + T)-th expansion as the candidate set of the chain predicates. 

2. Replace the predicates in the candidate set which are not U-connected to any 

set of distinguished variables or which corresponds to a distinct DV-set but are 

not U-connected together by their corresponding predicates in the previous ex- 

pansions to make the predicates corresponds to a DV-set U-connected together. 

Each chain is a set of predicates in the replaced set corresponding to a distinct 

DV-set . 

3. Rename and index the variables in the (S+T)-th expansion. Ignore the variables 

not shared with any predicate outside of the chain. Let the set of variables in the 

recursive predicate at the S-th and the (S + T)-th expansions be S-set and ST- 

set, respectively. For the remaining variables in the chain predicate, rename and 

index them when necessary to make each variable in the ST-set have the same 

name as the corresponding variable in the S-set but with the index increased 

by one. If a variable in the ST-set appears also in the S-set, the same variable 

should be the same (name and index) in the new set of variables. Renaming and 

indexing of a variable should be performed consistently for every occurrence of 

the variable. 
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Algorithm 3.2 Generation of the compiled form for a single-unit linear recursion. 

Input: A linear recursion R, its stable level S and period T .  

Output: The compiled form of the recursion. 

Method. Case 1: T = 0. The recursion is bounded and the compiled form is the 

union of the expanded exit rules from 0-th to S-th expansions. That is, 

Case 2: T # 0. The compiled form for the recursion can be generated as 

follows: 

If a recursion contains only null chain predicates, it is bounded and its 

compiled form is the union of the k-th expanded exit rules for 0 5 k 5 
S + T - 1. That is: 

R(xl, x2,. . . , x,) = Eo(x1, ~ 2 , .  . . ,x,) U E ~ ( x I , x ~ , .  . . , x , ) ~ , .  . . , 
UES+T-I ( X I ,  X2,. . - xn). 

Otherwise, the recursion is a single- or multiple- chain recursion with the 

following compiled form: 

R = SS U (U(MM, CCi, TT)), 

which consists of four portions: (i) prestable exit rule portion (SS), (ii) 

miscellaneous portion (MM), (iii) chain-portion (CC), and (iv) stable exit 

rule portion (TT).  

The SS-portion represents the rule expansion before reaching its stable 

stage, which is the union of Ek for k from 0 to S - 1 if S > 0 or empty 

otherwise. That is: 
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The TT-portion consists of the bodies of the exit rules contributing to the 

period of the recursion, which is formed by the union from Eo to ET-1. 

That is: 

The chain-portion CC consists of a set of nonnull chains in the exponential 

form with the same exponent i. Each nonnull chain predicate is generated 

following the chain-generating rules and is in the form of A(X;-~,  xi), where 

A is the chain predicate, and xi-l and xi are connection variable vectors. 

The formula consists of a set of unions starting from i = 0 to infinity. The 

variable indices outside of the chain predicates should be set accordingingly 

based on i = 1. 

Finally, the miscellaneous portion, MM, if any, is composed of the predi- 

c a t e (~ )  left in the (S+T)-th expansion, i.e., those not used in the formation 

of the chain predicate(s). 

The V-matrix expansion and compilation of chains on single unit linear recursions 

are generalized to multiple unit ones. Because each unit reaches its own stable level 

independent of other units, the stability for the whole can be determined by examining 

each unit separately. Thus the stable level for multiple level recursion is the maximum 

of the stable level of each unit. 

Algorithm 3.3 The expansions of a multiple-unit V-matrix. 

Input. An initial V-matrix V which is partitioned into k unit V-matrices, Vl, . . . , Vk. 

Output. A stable level S of the V-matrix and the period Ti (1 5 i 5 k) for each 

unit V-matrix K .  

Method. For each unit V-matrix x, derive its S; and Ti based on Algorithm 3.1. 

Then S = maximum(S1,. . . , Sk), and each unit V, maintains its own period Ti. 

0 



CHAPTER 3. DESIGN A N D  IMPLEMENTATION OF LOGICBASE 

The compiled form for multiple unit recursion can be derived by merging inde- 

pendent compiled form of each unit. In order to generate a combined compiled form, 

all independent compiled forms should be aligned to a common S, and T should be 

the least common multiplier of the nonzero T's of each unit. The following algorithm 

describes how to generate compiled chain form for multiple unit recursions. 

Algorithm 3.4 Generation of the compiled form for a multi-unit linear recursion. 

Input: A multiple-unit linear recursion R, its stable level S and the period Ti (1 5 
i < k) for each unit V,. 

Output: The compiled form of the recursion. 

Method. Generation of compiled form consists three steps: 

1. For each unit V-matrix V,,  generate its compiled form Ri according to 

Algorithm 3.2; 

2. Generate the aligned compiled form for each unit V,  based on the common 

stable level S and the common period T, where S = max(S1,. . . , Sk) and 

T = lcm(Tl,. . . , Tk); 

3. Merge the multiple aligned compiled forms into one combined compiled 

form in which: 

(a) the SS-portion consists of the union of Eo to Es-l if S > 0 or empty 

otherwise; 

(b) the TT-portion consists of the union of Ei's for i from 0 to T - 1; 

(c) the chain-portion consists of all the nonnull chains, with each chain 

predicate determined within its unit and then aligned up for merging. 

All the chain predicates are in the exponential form with the same 

exponent i, and each variable connected to the set of distinguished 

variables is in the form of for a distinct x, and that connected to 

the set of variables in the recursive predicate is in the form of xi; and 
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(d) the MM-portion consists of the predicates at the ( S  + T)-th expansion 

which does not participate the chain predicates. 

3.3.3 Plan generation 

The second phase of query evaluation in LogicBase is the plan generation, in which a 

compiled chain form of a recursion is passed from the compilation phase, and a plan 

generator analyizes whether a given query can be answered on the compiled form and 

determines how bindings should be propagated along each chain. Due to the presence 

of functions and multiple level recursions, several issues need to be addressed for the 

plan generator phase: 

binding propagation, to consider how the binding from the query instantiation 

can be propagated in the chain. Bindings can be passed in either chain-exit or 

exit-chain direction. The plan generator determines the evaluation direction for 

each chain to provide sufficient binding passing and evaluation efficiency. 

safety of plan, to make sure that an evaluation will terminate for functional pro- 

grams. Given a tentative evaluation plan for a functional program, if there exists 

a constraint or base relation bounding an monotonic argument, the evaluation 

under the plan is safe. 

query optimization by constraint pushing, in some cases even though a program 

does not contain a constraint, an external constraint in its query or exit rules 

can be pushed into the program and can be served as a bound to a monotonic 

argument, therefore the program can be safely evaluated. Another benefit of 

such query optimization is reduced search space for some query evaluation. 

nested recursive program, where queries and answers are exchanged between 

rules at different deduction levels. During query evaluation in a higher level 

rule, an IDB predicate appeared in the rule body is queried with instantiation 

from the rule. Such query is processed in a program with lower deduction 



CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE 

level and the answer is used in query evaluation in the higher level rule. Such 

query processing is accomplished by recursively calling the query processor in 

LogicBase. Besides the exchange of query and answers, constraints need to  be 

exchanged as discussed in chapter 2. 

Following is the algorithm for query plan generation in LogicBase, the actual plan 

is stored in an  internal data  structure which is filled during plan generation phase and 

accessed during plan execution phase. 

Algorithm 3.5 Plan generation. 

Input: query predicate q, binding b. 

Output: true if evaluation plan for q is generated, false otherwise. Evaluation plan 

is stored in a structure Plan. 

Method: the algorithm is as following: 

procedure plan-generator(q, b )  

begin 

Plan := 0 
if q is an EDB predicate 

then 

register q in Plan 

return true 

else if q is a functional symbol 

then 

if q is evaluable under b 

then 

register q in Plan 

return true 

else 

return false 

else if q is a non-recursive IDB predicate defined by rule T 
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then 

store in I the instantiated variables in the r's head under binding b 

Uneval := set of all predicates in the r's body 

return predicateset-evaluable(Uneva1, I) 

else if q is a recursive IDB predicate defined by a recursive rule r and an exit rule 

exit 

then 

if chain-exit-plan(r, exit, b)=true 

/* strategy is chain-exit chain following */ 
then return true 

else if exit-chainplan(r, exit, b)=true 

/* strategy is exit-chain chain following * /  
then return true 

else if chainsplit-plan(r, exit, b)=true 

then return true 

else return false /* none of the strategies works */ 
end 

It should be noticed that plan-generator is a recursive algorithm to  deal with 

nested program. The  algorithm for function predicate-set-evaluable is shown in al- 

gorithm 3.6. It  accepts a set of predicates as input and determines their ordering t o  

ensure proper binding propagation. 

Algorithm 3.6 Determine the evaluation order for a set of predicates. 

Input: a set of predicates Uneval, a set of instantiated variables I. 

Output: if the set of predicates are evaluable, return t rue  and the order, other return 

false .  

Method: the algorithm is as following: 

procedure predicateset-evaluable(Uneva1, Instantiated) 

begin 
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while Uneval # 0 
if (there exists p, such that (p E Uneval) and 

(b' is the binding of p under I) and 

(plan-generator(p, b') = true)) 

then 

Uneval := Uneval - p 

register p in Plan 

I := I U  set of all variables in p 

else /* no predicate in Uneval is evaluable */ 
return false 

return true /* Plan contains predicates should be evaluated */ 
end 

LogicBase has employed four evaluation strategies so far: chain following in the 

chain-exit direction; chain following in the exit-chain direction; chain-split and count- 

ing. The plan generation for chain-split and counting is merged as a single one. These 

plan generation algorithms are given in algorithm 3.7, 3.8 and 3.9 respectively. 

3.3.4 C hain-based evaluation 

Chain-based evaluation accepts compiled chain form of a recursive program as input, 

classifies the program according to the binding passing patterns and evaluates the 

query using either chain-following, chain-split or counting method. 

3.3.4.1 Chain following evaluation: chain-exit direction 

In the chain following evaluation in chain-exit direction (chain-exit evaluation for 

short), all chains in the program are evaluated from the query end of the chain to the 

exit end. Assume that the chain predicates for a recursive program defining r are a 

and b (either single chain or multiple chain), the chain expansion form is: 
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where (a(;)b(;)) is the i-th iteration of the chain and exit is (set of) the exit rule body 

predicate(s). The chain-exit evaluation passes binding from the query to the first 

chain iteration ~ ( ~ ) b ( ~ ) ,  which becomes evaluable from the query instantiation. Then 

binding in is passed to ~ ( ~ ) b ( ~ ) ,  which becomes evaluable in turn. Therefore, 

all iterations of the chain are evaluable and finally exit becomes evaluable, thus the 

query is answered. 

Plan generation for chain-exit evaluation needs to verify the successful binding 

passing from query to the first chain iteration, from the i-th chain iteration to the 

(i + 1)-st, and from the last chain iteration to the exit rule. Algorithm 3.7 gives the 

algorithm of plan generation for chain-exit evaluation. 

Algorithm 3.7 Plan generation for the chain-exit evaluation. 

Input : compiled recursive rule r ,  exit rule exit, query binding b. 

Output : true if query can be evaluated by chain-exit evaluation, false otherwise. 

Method : the algorithm is as following: 

procedure chain-exit-plan(r, exit, b) 

begin 

/* verify the evaluability of the first chain iteration */ 
I := set of instantiated variables in r's head under binding b; 

for each chain in r 

Uneval := all predicates in the chain; 

if predicate-set-evaluable(Uneva1, I)=false 

then 

return false; 

/* verify evaluability of the following chain iteration */ 
I' := all variables in the recursive predicate in r's body; 

for each chain in r /*  passing binding from one iteration to the next */  
Uneval' := all predicates in the chain; 

if predicateset-evaluable(Uneval', I1)=false 

then 
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return false; /* unevaluable chain */  
/* pass binding from r to exit */ 

I" := all variables in the exit's head predicate; 

Uneval" := all predicates in the body of exit; 

if predicate-set-evaluable(Uneval", I1')=false 

then return false; 

else return true; 

end. 

3.3.4.2 Chain-following: exit-chain evaluation 

In the chain following evaluation in exit-chain direction (chain-exit evaluation for 

short), all chains in the program are evaluated from the exit end to the query end. 

For the chain expansion shown in Formula (3.33), the exit-chain evaluation passes 

binding from the query to the exit rule by shared variables in the same argument 

position between the head predicate of the exit rule and the recursive predicate in 

the recursive rule body. The exit rule is then evaluated, which provides binding 

passing from the exit rule to the last chain iteration. The binding is then passed from 

one chain iteration backward to the previous chain iteration, and finally to the first 

iteration. Thus all chain iterations are evaluated and the query is answered. 

Plan generation for the exit-chain evaluation needs to verify successful binding 

passing from query to exit rule, binding passing from one chain iteration to the pre- 

ceding chain iteration. Algorithm 3.8 gives the algorithm for the plan generation of 

the exit-chain evaluation. 

Algorithm 3.8 Chain-exit evaluation plan generation. 

Input: A compiled recursive program r ,  its exit rule exit and the query binding b. 

Output: true if the query can be evaluated by the chain-exit evaluation, false oth- 

erwise. 
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Method: the algorithm is as following: 

procedure chain-exitplan(r, exit, binding) 

begin 

/* passing binding from query to exit rule */ 
Instantiated, := set of the instantiated variables in head predicate of r under 

b; 
I, := those variable in Instantiated, s.t. they appear at the same argument 

positions in r's head predicate and the recursive predicate in r's body; 

bezit := binding of exit's head predicate under instantiation I,; 

/ *  evaluability of exit under bindingexit */ 
IeXit := set of the instantiated variables in exit's head predicate under bezit; 

Unevalexit := all predicates in exit's body; 

if predicate-set-evaluable(Unevalexit, IeXit)=false 

then /* insufficient binding to evaluate exit rule */ 
return false; 

/* pass binding from exit to r's chain */ 
I, := set of all variables in the recursive predicate in r's body; 

for each chain in r 

Uneval, := set of all predicates in the chain; 

if predicate-set-evaluable(Uneval,, I,)=false 

/* last chain iteration unevaluable */ 
then 

return false; 

/* pass binding from one chain iteration to the previous */ 
I, := set of variables in the r's head; 

for each chain in r 

Uneval, := set of predicates in the chain; 

if predicate-set-evaluable(Uneval,, I,)=false 

then /* insufficient binding to propagate evaluation in chain */ 
return false; /*  unevaluable chain */ 

return true; 
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end. 

3.3.4.3 Counting for multiple chains 

For a multiple chain program, not all chains can be evaluated in the same direction, 

some are evaluated in the chain-exit direction, whereas the rest in the exit-chain 

direction. This is similar to the counting method approach, because synchronization is 

needed between the various evaluations in two directions. Assume in Formula (3.33), 

predicates a ,  b belong to two different chains. Query instantiation enables a-chain 

to be evaluated in the chain-exit direction, but not the b-chain, because the query 

instantiation is not sufficient for the evaluation of b-chain. However, after evaluation 

of the exit rule, new bindings can be passed to the last iteration of b-chain, which 

enables the evaluation of b-chain in the exit-chain direction. Synchronization between 

these two chains by counting levels ensures proper termination of b-chain. 

3.3.4.4 Chain-split evaluation 

The chain-split evaluation is similar to the counting method, in that the chain-exit 

and the exit-chain evaluation are employed to process a query. Instead of two chains in 

different evaluation directions, a chain can be split into two parts which are evaluated 

in different directions in the chain-split evaluation. A portion of the chain, immediately 

evaluable portion (IMP), can be evaluated in the chain-exit direction, the rest of the 

chain, bu$ered portion (BP), has to be evaluated in the exit-chain direction. BP needs 

the bindings passed from the IMP and the exit rule to evaluate. Synchronization 

between IMP and BP is needed via counting levels. The difference between the chain- 

split evaluation and the counting evaluation for multiple chains is that there are shared 

variables between IMP and BP in the chain-split evaluation, whose value have to be 

stored in a buffer during the evaluation of IMP, whereas in the counting evaluation for 

multiple chains, there is no shared variable between chains, thus no buffer is needed. 

The plan generation algorithm shown in Algorithm 3.9 works for both counting 
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and chain-split evaluations, where IMP represents the immediately evaluable portion 

in case of the chain-split evaluation, or chains evaluated in the chain-exit direction 

in case of counting, and BP stands for the buffered portion in chain-split or chains 

evaluated in the exit-chain direction in counting. Information about creating and 

maintaining a buffer is recorded in the plan for the chain-split evaluation. 

In Algorithm 3.9, analysis of the following binding passing is carried out: binding 

passing from the query to the first iteration of IMP; from one iteration of IMP to 

the next; from the last iteration of IMP to the exit rule; from the exit rule to the 

last iteration of BP; from one iteration of BP to its preceding one; and from one 

iteration of IMP to the same iteration of BP. 

Algorithm 3.9 Plan generation for the chain-split and the counting evaluation. 

Input: a compiled recursive rule r ,  its exit rule exit and a query binding b. 

Output: true if the query can be evaluated either by the chain-split or the counting 

method, false otherwise. 

Method: the algorithm is as following: 

procedure chainsplit-plan(r, exit, b) 

begin 

IT := set of instantiated variables in r7s head predicate under b; 

IMP := 0; BP := 0; 
for each chain in r 

Uneval := set of predicates in the chain; 

I' := IT; 

while Uneval # 0 
if there exists a predicate p E Uneval s.t. b, is binding of p under I' 

and plan-generator(p, b,)=true 

then /*  p is evaluable */ 
insert p into IMP; 

Uneval := Uneval - p; 
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I' := I 'U set of variables in p; 

else /* there is no evaluable predicate in Uneval */ 
BP := BP U Uneval; /* BP is the set of buffered predicates */ 
Uneval := 0; 

if IMP = 0 /* not suitable for chain-split */ 
then return false; 

/* verify binding passing from IMP part of chain to exit rule */ 
IIMP := set of variables in all predicates of IMP; 

bezit := binding of the recursive predicate in r's body under IIMP; 

IeXit := set of instantiated variables in exit's head predicate under bezit; 

Unevalexit := set of the predicates in exit's body; 

if predicate-set-evaluable(Unevalezit~ Iexit) = false 

then /* insufficient binding for exit */ 
return false; /* verify binding passing from exit to BP in r */ 

IBP := set of variables in the recursive predicate in r's body; 

IBP := IBPU set of all variables in IMP; 

UnevalBp := set of predicates in BP; 

if predicate-set-evaluable(unevalBp) Isp)=false 

then /* insufficient binding to evaluate buffered portion */ 
return false; 

/*  verifying binding passing from one iteration of BP to the previous one 

*I 
/* is the same as binding passing verification from exit to BP */ 

return true; 

end. 

3.4 Plan execution 

An internal structure stores the evaluation plan. LogicBase adopts an unified ap- 

proach towards plan execution. Every evaluation can be viewed as going through the 
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following evaluation stages, the plan executor takes appropriate actions according to 

the instructions specified in the evaluation plan structure: 

1. chain-exit stage: where the query instantiation is passed to the chain(s) and 

each chain (whole or part) is evaluated in the chain-exit direction (if possible). 

2. exit-rule stage: instantiation is passed to the exit rule from either a chain or the 

query, and exit rule is evaluated. 

3. exit-chain stage: instantiation is passed from the exit rule to the chain(s) and 

each chain is evaluated in the exit-chain direction. 

Each query evaluation strategy consists of a sequence of these stages. For the chain 

following method in chain-exit direction, only stage 1 and 2 are involved; whereas stage 

2 and 3 are needed for the chain following in exit-chain direction. Counting and chain- 

split need all stages. A single plan executor is implemented to perform all actions. It 

would have costed more implementation effort if a dedicated plan executor had been 

implemented for each method in LogicBase. 

3.5 Other implementation issues 

Issues of termination control and constraint pushing are discussed in Chapter 2, cyclic 

counting method for function-free program is discussed in Chapter 5, and processing of 

multiple linear rules is presented in Chapter 4. We discuss some other implementation 

related issues in this section. 

3.5.1 User interface 

A simple graphical user interface and a terminal-oriented user interface are provided. 

LogicBase reads in definitions for EDB, IDB and query, from either interfaces and 

performs syntax analysis using YACC and LEX to transfer them into an internal 
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data representation. The specification of the syntax for LogicBase can be found in 

Appendix A. 

3.5.2 Data structure 

Static data structures and dynamic structures are blended in LogicBase to provide 

efficiency and flexibility for query evaluation. Static structures are adopted where 

frequent access is needed, such as the table for schema information, structures for 

const ant and variable arguments, and the internal representation for the query eval- 

uation plans. Dynamic structures are employed to support complex structures such 

as list and functional term, which can be nested each other to any level. The ba- 

sic argument type can be one of the following types: integer, constant, variable, list 

or functional term. A list has a head of argument type and a tail of list type. A 

functional term has a number of elements, each of argument type. 

Such implementation is flexible and efficient. Most work for query processing is 

efficiently done on the static structures to reduce overhead for dynamic data structure 

access and maintenance, whereas representation and manipulation of complex objects 

is achieved. 

3.5.3 Negation 

Stratified negation is supported in LogicBase. In the compilation phase, negative 

literals are treated in the same way as positive literals. During the plan generation 

phase, evaluation of a negative predicate is scheduled only after all of its variables 

are instantiated. In the plan execution phase, a negated subgoal is computed by first 

obtaining its corresponding positive subgoal, then performing a relational difference 

operat ion. 
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3.5.4 Query and evaluation plan optimization 

LogicBase utilizes various query optimization strategies. Search space reduction by 

constraint derivation and pushing discussed in Chapter 2 is one kind of optimiza- 

tion. Compilation of a recursive program into bounded form is another kind of query 

optimization, where recursive program is compiled into an equivalent non-recursive 

one. 

Furthermore, like optimization in relational query processing, optimization can be 

performed on query evaluation plan using statistical information available in EDB 

relations. Since in LogicBase, query evaluation is not carried out until a thorough 

evaluation plan is devised on the compiled program, a detailed analysis is possible to 

facilitate query optimization similar to that in relational databases, such as pushing 

a selection deeply into relational expression and optimization on join operations. 

3.5.5 Variable naming 

It is necessary to distinguish two sets of variables: (1) external variables, which are 

defined in an IDB predicate and/or queried by the user; (2) internal variables, which 

are internal representations of arguments during query processing and are created 

during the compilation phase. 

It is noted that one external variable in a logic rule is independent of another 

external variable with the same name in a different logic rule, even if both rules may 

define the same IDB predicate. For example, suppose the following program is defined 

in LogicBase: 

r (X,  Y) : - a(X,  Z), r(Z,  Y). 

r (X ,Y)  : - b(X,Z),c(Z,Y).  

the second argument of predicate a in rule (3.34) has nothing to do with the second 

argument of predicate b in rule (3.35), although variable Z is used in both places. 
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However, if they are replaced by the same internal variable, query evaluation may lead 

to error because an extra equality relationship is mistakenly added to this program. 

A variable naming mechanism in LogicBase is responsible to prevent such an un- 

desirable situation. The internal variables in one logic rule are independent of the 

internal variables in other logic rules, and are independent of the external variables 

as well. The only exception is that the external variables in the query are actually 

used during query processing to facilitate query answer extraction. 

3.5.6 Handling of functions 

Inclusion of functions in a deductive database results in more effort to ensure a safe 

and finite evaluation. In LogicBase, a built-in function is transformed into a new 

equivalent form which contains an extra argument as the returned value for the func- 

tion. For example, a predicate p with a list argument "p([XIL])" is transformed 

into "p(X-L), cons(X, L, X-L)" where "cons(X, L, X-L)" is the equivalent functional 

predicate. For each built-in function, the binding patterns under which it can be 

evaluated and the way it should be evaluated are supplied internally in LogicBase. A 

table is used to store information about the evaluable bindings, which is consulted 

during plan generation to determine whether the function is evaluable. During plan 

execution, the function is actually evaluated by built-in routines. 

3.5.7 Handling of functional terms 

A functional term is a dynamic data type. It is considered to be a constant if every 

argument is instantiated, e.g., LLperson(johnson, birth-date(l0, J a n ,  1970))". It is 

considered to be a variable if some of its arguments are variables, e.g., the following 

person predicate: 

person(johnson, birth-date(Day , Month, Year)) (3.36) 
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The constant functional term is transformed into an internal dynamic structure. Sim- 

ilar to the transformation of functions, a variable functional term is transformed into 

a special predicate which contains all the arguments in the functional term and an 

extra argument designating the value of the functional term. For example, the above 

person predicate in (3.36) is transformed into the following: 

person(johnson, X) ,  birth-datep(Day, Month, Year, X) ,  

where birth-date-p is a special predicate for the functional term birth-date. 

Such functional term birth-date-p(Day, Month, Year, X) is evaluable if: (1) X is 

instantiated, then Day, Month and Year can be derived; or (2) Day, Month and 

Year are all instantiated, then X becomes instantiated. 



Chapter 4 

Evaluation of Multiple Linear 

Recursions 

So far, query processing in single linear recursion using chain-based method has been 

investigated. In this chapter, efficient query processing in multiple linear recursion is 

discussed. 

4.1 Introduction 

The efficient evaluation of function-free linear recursions has been studied extensively 

in deductive database research [ lo ,  9, 48, 59, 94],Ullm88. Most studies on linear 

recursions assume that a linear recursion consists of one linear recursive rule and 

one or more nonrecursive rules. We call such kind of recursions single linear (SL) 

recursions in contrast with the recursions to be studied here, multiple linear (ML) 

recursions. 

A multiple linear (ML) recursion is a recursion which consists of multiple linear 

recursive rules and one or more nonrecursive rules. ML recursions occur in many 

applications. For example, sg (same generation cousin) can be defined by more than 
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one linear recursive rule as shown in the Figure 4.1. Moreover, ML recursions can be 

generated by the compilation of some mutual recursions or multiple levels of recursions 

[57]. Since SL recursions have been studied extensively, it is natural to extend the 

domain of study to ML recursions. 

sg(X, Y)  : - parent(X, W),  parent(Y, V), sg(W, V). 
sg(X, Y) : - child(W, X), child(V, Y), sg(W, V). 

sg(X, Y) : - cousin(X, W), sg(W, Y). 

sg(X, Y)  : - sibling(X, Y). 

Figure 4.1: A recursion with multiple linear recursive rules. 

There have been some interesting studies on the evaluation of ML recursions. 

Henschen and Naqvi 1591 presented a formula derived by the expansions of an ML 

recursion and proposed a technique similar to their evaluation of SL recursions. Beeri 

and Ramakrishnan 1131 developed Generalized Counting and Generalized Magic Sets 

methods which are applicable to the evaluation of ML recursions. Han and Henschen 

[48] presented a side-relation unioned compilation technique for a special class of 

ML recursions where each recursive rule is a one-sided recursive rule. Naughton [94] 

performed a detailed study on such kind of ML recursions, which he called separable 

recursions, and showed that an efficient algorithm similar to a transitive closure query 

processing algorithm is applicable. Naughton, Ramakrishnan, Sagiv and Ullman [96] 

further extended the technique to right-linear, left-linear and multi-linear rules. 

This study provides a systematic study on different kinds of ML recursions and 

their query evaluation techniques. We classify ML recursions into side-coherent and 

non-side-coherent ML recursions, while the former is further classified into three types. 

Efficient query evaluation techniques are developed for side-coherent ML recursions, 

which integrate side-relation unioned processing [48] with the transitive closure algo- 

rithms [ lo ,  481, the Magic Sets method [9], and the Counting method [9]. Moreover, 

flexible methods can be applied to the evaluation of queries with complex instantia- 

tions and inquiries on ML recursions. 
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4.2 A Classification of ML Recursion 

We assume without loss of generality that all the rules in a recursion are rectified, 

where the rules for a predicate r are rectified [I321 if all the heads of its rules are 

identical and in the form of r(X1,. . . , Xn) for distinct variables XI,. . . , Xn. We also 

assume that there is exactly one default nonrecursive (exit) rule in an ML recursion 

in the form of 

r (Xl , .  . . , Xn) : - e(X1,. . . , Xn). 

where n is the arity of r .  

We first introduce the concepts of a k-sided recursive rule and side-coherency. 

Definition 4.1 A k-sided recursive rule is a linear recursive rule in  which there 

are k + 1 variable vectors (where k > 0 and 1 2 0 )  in the head predicate, where each 

of the k variable vectors is connected to the same argument position of the recursive 

predicate in  the body via a nonrecursive predicate (called a side-relation) and each of 

the remaining 1 variables retains the same argument position of the recursive predicate 

in the body. Notice that diflerent side-relations in  a k-sided rule do not share variables. 

It is called one-sided when k = 1 or multiple-sided when k > 1 .  Each of such k 

variable vectors is called a side-vector, and each of the remaining 1 variables in the 

head predicate is called an exit variable. 

For example, the following rule is a k-sided recursive rule, 

where Xo is an exit variable and each Xi, for 1 5 i 5 k is a side-vector connected 

to its corresponding argument position of the recursive predicate in the body via a 

nonrecursive predicate pi. 

Definition 4.2 An  ML recursion is side-coherent if each of its recursive rules 

is one- or multiple-sided and each side-vector of every recursive rule is either a 
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side-vector or an exit variable vector of every other recursive rule. Otherwise, it is 

non-side-coherent . Furthermore, a side-coherent ML recursion is strongly side- 

coherent if each side-vector of its every recursive rule is exactly one side-vector of 

its every other recursive rule. In a side-coherent recursion, a side-vector of the re- 

cursion is a side-vector of at least one recursive rule, and the exit-vector of the 

recursion is the set of exit variables shared b y  all of the recursive rules. 

Figure 4.2: A non-side-coherent ML recursion. 

Figure 4.3: A side-coherent ML recursion where all of the recursive rules are one-sided 

(Type 1). 

Example 4.1 The recursion which consists of one default nonrecursive rule and two 

one-sided recursive rules shown in Figure 4.2 is non-side-coherent because the side- 

vector of the first rule is < XI, X2 > while that of the second one is < XI, Yl >. 

The recursion which consists of one default nonrecursive rule and four one-sided 

recursive rules shown in Figure 4.3 is side-coherent. It has two side-vectors, X and 

Z, and one exit-vector Y. 

The recursion which consists of one default nonrecursive rule and two two-sided 

recursive rules shown in Figure 4.4 is strongly side-coherent. It has two side-vectors, 

X and Z, and one exit-vector Y. Notice that all of the recursive rules in a strongly 

side-coherent recursion have the same number of sides. 
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Figure 4.4: A strongly side-coherent (Type 11) ML recursion. 

To facilitate the development of efficient query processing methods, we further 

classify side-coherent ML recursions into the following three types: 

0 Type I: multiple one-sided. A side-coherent ML recursion is in Type I if all 

of its recursive rules are one-sided, e.g., Figure 4.3. 

0 Type 11: multiple balanced k-sided. A side-coherent ML recursion is in 

Type I1 if it is strongly side-coherent and all of its recursive rules are multiple- 

sided, e.g., Figure 4.4. 

0 Type 111: multiple mixed k-sided. A side-coherent ML recursion is in Type 

I11 if it does not belong to the above two types, e.g., Figure 4.5 and 4.6. 

Figure 4.5: A Type I11 ML recursion where the recursive rules have different sides. 

Figure 4.6: A Type I11 ML recursion where the recursive rules have the same number 
of sides but are not strongly side-coherent. 

Conceptually, non-side-coherent ML recursions cover a large set of ML recursions. 

However, many of such ML recursions are transformable to side-coherent ML recur- 

sions or SL recursions by compilation and/or variable vectorization [43]. 
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Figure 4.7: An ML recursion which is compilable to a single linear recursion. 

Figure 4.8: A complex ML recursion. 

Example 4.2 The ML recursion shown in Fig 4.7 is transformable to a two-sided SL 

recursion because (i) the first recursive rule becomes a two-sided recursive rule after 

one more expansion on itself, (ii) the second recursive rule is a bounded recursive rule 

which, together with a nonrecursive rule, forms a bounded recursion [97], and (iii) 

further expansions of the second recursive rule on itself or on the first recursive rule 

are absorbed by the existing rules and thus treated as part of the nonrecursive rule 

set [43, 951. 

The ML recursion shown in Fig 4.8, though quite complex, is a side-coherent 

recursion because it becomes a typical Type I11 side-coherent ML recursion by taking 

"pq(X, Y, XI, K )  : - p(X, Y), q(X1, Y, K)." and treating < X, Y >, < XI, K >, 
< Z, W >, and < Z1, Wl > as vectors V, &, T and Tl respectively, as shown 

in Fig 4.9. Such a variable vectorization process reduces the arity of the recursive 

predicate and simplifies the computation. A similar technique of reducing the arity 

Figure 4.9: The recursion in the previous figure is a Type I11 ML recursion by variable 
vectorization. 
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of a recursive predicate is studied recently in [96]. 

Some non-side-coherent ML recursions cannot be transformed to SL recursions or 

side-coherent ML recursions. The recursion shown in Fig 4.2 is one such example. 

However, it is difficult to find appropriate semantic interpretations and application 

models for such kind of ML recursions. Therefore, our study of efficient evaluation of 

ML recursions is confined to side-coherent ML recursions. 

4.3 Evaluation of Single-Probe Queries in ML Re- 

cursions 

A single-probe query is a query in which one variable of the recursive predicate is 

instantiated by one or a set of constants. A typical such query is 

where the predicate r (X,  Y, Z )  is a ternary predicate in which Y is the exit-vector 

and X and Z are two side-vectors, "a" indicates that X is instantiated by one or a 

set of constants, "-" indicates that Y is irrelevant to the query, and "2" indicates 

that the third argument of r is inquired. Notice that if "a" denotes a set of constants, 

the semantics of the query is to find the set of all 2 's  such that a tuple "(a ,  -, 2)" 

exists. If we want to find the set of corresponding Z's for each Xo in a set of constants 

satisfying a predicate s, the query should be written as, "? - s(Xo), r(Xo, -, Z)" ,  and 

a binary algorithm should be used, when necessary, to trace the (source, sink) pairs 

in the derivation [42]. 

In this section, we study the efficient evaluation of the single-probe query (4.1) on 

different side-coherent ML recursions. 
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4.3.1 Side-Relation Unioned Processing of Type I ML Re- 

cursions 

We first examine the compilation of Fig 4.3, a typical Type I recursion. An expansion 

of the recursion may either (i) add an pl or pa to the left side of r ,  or (ii) add a ql or 

q 2  to the right side of r ,  or (iii) change r to e to generate an expanded formula, where 

e, the body of the exit rule, is called the exit expression of the recursion. Therefore, a 

possible expanded formula (with the variables inside the predicates omitted) should 

be 

(pl u ~ 2 ) ~  e (ql u q2)j 

where i ,  j 2 0. If we define 

the compiled formula (the EDB expressions generated by all the possible expansions 

of the recursion) of Fig 4.3 should be 

where the notation pi(Xi-l,Xi) is defined as (i) a tautology when i = 0, and (ii) a 

sequence of compositions of i p's when i > 0, that is, 

Moreover, if the variables inside the predicates are omitted, we have 

R = p* e q*. 

Obviously, the processing of query (4.1) on such recursions should be similar to the 

processing of two transitive closure queries. It proceeds as follows. First, the single 

probe a is used to derive a unary query-relevant transitive closure of p. Then it joins 
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with the exit expression e, and the derived set of elements is used as the probe to 

derive a unary query-relevant transitive closure of q. The set of 2's so derived should 

be the answer set to the query. 

Here, the evaluation adopts a side-relation unioned processing technique [48], 

where iterative processing is performed on the union of the side-relations at the same 

side of multiple recursive rules. In comparison with the side-relation separate pro- 

cessing (the processing performed on each side-relation), the side-relation unioned 

processing has the following advantages: 

1. It saves the interleaved accessing of multiple side-relations. A relation is usually 

stored in a B-tree or a hash table. If there are k side-relations at one side, side- 

relation separate processing requires the interleaved accessing of k file structures 

while the side-relation unioned processing needs to access only one file structure 

(the unioned relation) at each iteration. 

2. It saves redundant processing of overlapped tuples. An overlapped tuple is a tu- 

ple shared by more than one side-relation. In side-relation separate processing, 

overlapped tuples will be stored in more than one side-relation and be accessed 

more than once. In side-relation unioned processing, overlapped tuples are com- 

bined into one, which will not only reduce the storage space but also save the 

accessing cost. 

3. Side-relation unioned technique may even benefit relation partitioned process- 

ing. Relation partitioning techniques have been popularly used in distributed 

database query processing [132]. At the first glance, it seems that the side- 

relation unioned processing contradicts the philosophy of relation partitioning. 

However, by first performing union on several side-relations at  the same side 

and then partitioning and distributing the unioned relation according to its ac- 

cessing structure, for example, index range, only the drivers which match the 

specified accessing structure will be transmitted to the corresponding site. Thus 

both message transmission and accessing cost will be saved in comparison with 

the side-relation separate processing. 
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The side-relation unioned processing technique is applicable to any Type I ML 

recursion which consists of k side-vectors, for k 2 1. We consider a special case where 

there exists a unary nonrecursive predicate associated with an exit variable in some 

k-sided recursive rule. For example, if we change the first recursive rule in Fig 4.3 

from 

r(X, Y, 2) : -p1(X, W),  r(W, YlZ) 

to 

.(X,YlZ) : -~1(X1 W), r(W,Y, Z), c1(Y) 

the evaluation plan needs some slight modification as follows. For each element derived 

via at least one tuple in p which is originally from pl only, the evaluation of the exit 

expression should be on "e(W, Y, Z), cl(Y)" instead of on "e(W, Y, 2)". This can be 

considered as the special case of removal of recursively redundant literals studied by 

Naughton [95]. Similar modifications of the evaluation plans should be adopted in 

Type I1 and Type I11 ML recursions as well. 

The method discussed above applies equally well to those Type I11 recursions 

whose compiled formulas are the same as Type I recursions. For example, if the side- 

relation at each side of every k-sided recursive rule ( k  > 1) of a Type I11 recursion 

is a subset of the union of the side-relations of its one-sided recursive rules, e.g., 

adding "r : -pl, r ,  ql." to the recursion of Fig 4.3, each such k-sided recursive rule is 

redundant and can be eliminated from the recursion, and the processing should be 

the same as a Type I recursion. 

4.3.2 Evaluation of Type I1 ML Recursions 

Similar to a multiple-sided single linear recursion [lo], a Type I1 ML recursion requires 

the synchronization of its different sides in the processing. This can be seen from the 

expansions of the recursion of Figure 4.4 as below: 

where i j ( l  5 j 5 n) is either 1 or 2 [59], and pi3 and qi3 are symmetric to e. 
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Such a recursion can be evaluated based on a technique proposed by Henschen and 

Naqvi [59], which registers the accessed paths (predicate sequences) in the evaluation 

of up-relations (p-part) and matches in reverse sequences in the evaluation of down- 

relations (q-part). It can also be evaluated by the generalized counting method [13], 

where the side-relation information is encoded in the counting sets. 

However, there are two difficulties in these methods. First, the interleaved ac- 

cessing of multiple relations at the same side is costly as shown in the last section. 

Secondly, it is difficult to handle cyclic data on ML recursions. This is because syn- 

chronization is not only on the length of the paths but also on the corresponding 

side-relations along the paths, and the time complexity of such synchronized process- 

ing is exponential to the length of the paths on ML recursions [40]. 

4.3.2.1 First Attempt: Side-Relation Unioned Path-Tracing Method 

To solve the first problem, we propose an improvement of the above methods using 

the side-relation unioned processing technique. At the first glance, it seems difficult 

to apply side-relation unioned processing because the union of the two side-relations 

of Figure 4.4 forms a rule : -p, r, q.", which is not equivalent to  the original recur- 

sion. However, if (i) each tuple in a unioned relation is associated with appropriate 

information to indicate its origin, that is, from which side-relation(s), as shown in 

Algorithm 4.1, and (ii) each derived value is associated with an origin-path (a se- 

quence of origins) to register its accessing history, correct synchronization can still be 

achieved without suffering interleaved accesses. 

Algorithm 4.1 Side-information associated union (notion: U) of relations at the 

same szde. 

Input : A set of relations pl, . . . , pk. 

Output : The side-information associated union relation p :=u . . . , pk) 



C H A P T E R  4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 11 1 

Method: Perform union of the participating relations pl, . . ., and pk, with each tu- 

ple of the unioned relation p associated with a k-bit origin, in which each bit 

represents one side-relation participating the union. The corresponding bit is 

LL1" if the tuple is from that side-relation, or otherwise. 

For example, for p :=u (pl,p2), the origin of a tuple t in p is "01" if it is from the 

relation p~ only, "10" if from pl only, and "1 1" if from both pl and p2. 

Then we present an algorithm similar to the Counting method [9]: 

Algorithm 4.2 Side-relation unioned path-tracing evaluation of Type I1 recursions. 

Input : A Type I1 ML recursion (Figure 4.4) and a single-probe query (4.1). 

Output : The set of answers to the query. 

Method : First, perform side-information associated union of the relations at the 

same side, that is, p :=u (pl, p2) and q :=u (ql, q 2 ) .  Then: 

1. Perform up-relation processing, which is similar to the up-relation process- 

ing in Counting [9] except that each derived (unary) element is associated 

with an origin-path which inherits its driver's origin-path and appends the 

origin of the currently accessed tuple in relation p. The resulting closure 

(up-closure) consists of the set of derived elements each associated with its 

origin-pat h. 

2. Perform flat-relation processing, that is, join the up-closure with the exit 

expression e ,  which is similar to  the flat processing in Counting except that 

each derived element inherits the origin-path of its driver. 

3. Perform down-relation processing, which is similar to the down-relation 

processing in Counting except that it performs an origin-matching test in 

accessing each tuple of q to test the match of the tail in the origin-path 

of a driver and the origin of the currently accessible tuple. The test is 
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performed by first bitwise-anding the two origins and then oring all of the 

resulting bits. The test is passed if the result is 1 and failed otherwise. 

Each derived element inherits the origin-path of its driver but with the tail 

of the origin-path removed. The derivation from an element discontinues 

if the element carries an empty origin-path. 

4. The answers to the query are the derived elements with empty origin-paths. 

0 

Theorem 4.1 Algorithm 4.2 terminates and derives all of the answers to the query 

for Type 11 ML recursions on acyclic (unioned) relations. 

Proof: 

First, we show that every element so derived is in the answer set. Assume that an 

element c, is derived by accessing the unioned side-relation n times in the up-relation 

processing. Thus c, must carry an origin-path of length n, equivalent to the accessing 

of a sequence of separate side-relations, p;, , p;, , . . . , pi,. In the flat-relation processing, 

d, is derived by accessing a tuple (c,, d,) in e and the origin-path of c, is passed to d,. 

In the down-relation processing, the origin-matching test is performed, which tests the 

match of the origins between the tail of the origin-path and the current tuple in the 

side-unioned relation q. Therefore, if there is a sequence of n accesses of the down- 

relation from d,, it must be equivalent to the accessing of the side-separate down- 

relations in the sequence of q;,, . . . , qiz, qi,. Such an accessing sequence is equivalent 

to the compiled formula of the recursion and makes the origin-path empty. Therefore, 

each element so derived is in the answer set. 

Secondly, every answer to the query is derivable by the algorithm. Suppose an 

element d is in the answer set. Then d must satisfy the compiled formula of the 

recursion. That is, it should be derivable by starting with a ,  passing an equivalent 

length of side-relation strings at each side, and matching the corresponding side- 

relations. This follows the algorithm exactly. Thus, d should be derivable by executing 

the algorithm. 
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Thirdly, we show that the process terminates on acyclic unioned relations. In 

the up-relation processing, since every derivation path must be finite in an acyclic 

relation, the length of the origin-path of each derived element is finite. In the down- 

relation processing, the length of the origin-path associated with each derived element 

decreases at  each iteration and its derivation cannot proceed when its origin-path 

decreases down to 0. Thus the process terminates. 

An obvious benefit of the method is that a driver accesses only one unioned relation 

at each iteration instead of k relations where k is the number of recursive rules in the 

recursion, which reduces the database accessing cost. Similar to the analysis of the 

counting method on single linear recursions [84], the worst case complexity of the 

algorithm on acyclic databases is O(ne), where n and e are the number of nodes and 

the number of edges of the two unioned relations, respectively. 

The algorithm can be refined by associating one element with a set of origin- 

paths if the element is derived via several paths [48]. Thus one DB access using such 

an element is equivalent to several accesses of an element associated with a single 

origin-path. When an element is associated with a set of origin-paths, a new origin 

should be appended to each path in the set in the up-relation processing, and the 

origin-matching test should be performed on each origin-path in the down-relation 

processing. A path which failed the test should be dropped from the origin-path set 

of the derived element since the element cannot be derived via that path. 

The side-relation unioned processing reduces the interleaved accessing of multiple 

side-relations. However, it may lead to another inefficiency problem, the growth of 

the associated origin-paths. For example, if the up-relation processing involves 1000 

iterations, the length of each origin-path of the derived element may grow to 1000 

as well. Moreover, similar to the Counting method, the algorithm cannot terminate 

on cyclic databases. Notice that a database usually contains more cycles in an ML 

recursion than in an SL recursion because cycles can also be formed by interleaved 

traversing of multiple side-relations. Although such cycles can be detected by exam- 

ining a unioned side-relation, it is difficult to perform path synchronization involving 
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cycles in ML recursions, as we discussed in the analysis of the proposal of Henschen 

and Naqvi [59]. Therefore, the side-relation unioned path-tracing method should not 

be considered as a general evaluation technique. 

4.3.2.2 Side-Relation Unioned Magic Sets Method 

Since the magic sets method handles both cyclic and acyclic data uniformly for SL 

recursions, it is promising to apply the method to Type I1 ML recursions. According 

to [ lo ,  91, three magic rules for the single-probe query (4.1) on the Figure 4.4 recursion 

can be generated as shown in Figure 4.10 which forms a Type I ML recursion. 

magic(a). 

magic(Y) : - pl(X, Y), magic(X). 

magic(Y) : - p2(X, Y), magic(X). 

Figure 4.10: Magic rules for the ML recursion. 

According to the above discussion on Type I recursions, the magic set is the probe- 

relevant transitive closure of p, where "p :=u (pl, p2)". Then p', the portion of p 

relevant to the query, can be derived easily from, "p1(X, Y) : - p(X, Y), magic(X).". 

A side-matched semi-naive evaluation can be performed on p', e and the side-unioned 

relation q. We describe the method as follows. 

Algorithm 4.3 Side-relation unioned magic sets evaluation of Type 11 ML recur- 

sions. 

Input and Output: the same as Algorithm 4.2. 

Method: 1. Derive (i) the magic set based on the rule set of Figure 4.10, which 

can be implemented using the query-relevant transitive closure techniques 

on p, where p :=u ( P ~ , ~ ~ ) ,  and (ii) p', the query-relevant portion of p, 

based on "p'(X, Y) : -p(X, Y), magic(X).". 
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2. Perform side-matched-semi-naive-evaluation (p', el, q), where 

is a projection of the query relevant portion of e on the relevant attributes. 

It is performed similar to the semi-naive evaluation 11321 as follows: 

A := el(X, 2);  

closure := A; 

repeat 

joinsesult := side-matched-join(pl, A, q); 

new-A := joinresult - closure; 

closure := closure U new-A; 

A := new-A; 

until A = 0. 

Notice that the side-matched join results in a binary relation which is the 

join results of the A with relations p' and q projected onto the two non- 

join attributes, where the join results are those joinable tuples which have 

passed the origin-matching test. 

Theorem 4.2 Algorithm 4.3 generates all of the answers to the query (4.1) and ter- 

minates on all kinds of EDBs. 

Proof: First, the magic rule set computed by the algorithm is the same one as that 

obtained by the rule rewriting technique in the magic sets method (according to the 

rules for the generation of magic rules [lo]). Thus the relation p' so obtained collects 

the set of query-relevant facts in pl and pz (with side-information associated). 

Secondly, the second step of the algorithm performs side-matched semi-naive eval- 

uation on (i) p', the query-relevant portion of p, (ii) el, the query-relevant portion of e, 

and (iii) q, the side-information associated union of ql and q2. Based on the correct- 

ness and termination of the semi-naive evaluation 11321, the evaluation terminates on 

all kinds of data, and any answer set derivable from the query must also be derivable 
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by such an evaluation. Moreover, the side-matched join in the semi-naive evaluation 

collects only those joinable tuples which are from relations p' and q respectively and 

have passed the origin-matching test. Thus only those tuples which match both sides 

of the corresponding recursive rules can be derived in the evaluation. Therefore, all 

of the results generated by the algorithm belong to the answer set. 

Similar to the analysis of the magic sets method on single linear recursions [84], 

we can derive that the algorithm works on all kinds of data with the worst case 

complexity of 0(edge2), where edge is the number of edges in the relations p', e' and 

q respectively. 

4.3.2.3 Refinements: Superset Counting and Superset Transitive Clo- 

sures 

The side-relation unioned magic sets method can be refined by restricting the portions 

of the relations at the uninstantiated side to be enclosed in the side-matched semi- 

naive evaluation, which results in two alternatives to the side-relation unioned magic 

sets method: a superset counting method and a superset transitive closures method. 

The superset counting method is performed as follows. First, it applies the counting 

method (without enforcing side-information matching in its evaluation) to evaluate 

the same query "? - r(a, -, 2)" on the recursion "r : - p, r,  q.", where p and q are 

the two unioned side-relations, that is, "p :=u (p1, p,)", and "q :=u (q,, q2)". The 

evaluation derives q' (similarly p'), a smaller q-side relation which collects the tuples 

in relation q accessed in the Counting evaluation. The q' so obtained is essentially 

the query-relevant portion of q on the recursion formed by Fig 4.4 recursion plus two 

more rules: 

Clearly, q' is a subset of q ,  but a superset of the portions of ql and q2 truly relevant 
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to the query (since side-matching is not considered in the Counting). Then the side- 

matched semi-naive evaluation is performed on such a q'. The algorithm is presented 

below. 

Algorithm 4.4 Superset counting evaluation of Type II ML recursions. 

Input and Output: the same as Algorithm 4.2. 

Method : 

1. Perform side-information associated union, that is, "p :=u (pl,p2)" and 

LLq :=u (ql,  42)". Applying the counting method (or the cyclic counting 

method ([48, 40, 811) if the unioned relation contains cycles), evaluate 

query (4.1) on the SL recursion: 

It derives p', q', and el, (Note: p' and e' are the same as Algorithm 4.3), 

the sets of query-relevant facts of relation p, q, and e respectively. 

2. Similar to Step 2 of Algorithm 4.3, side-matched-semi-naive-evaluation (p', 

el, q') is performed, where el, p' and q' are the query-relevant portion of e, 

p and q determined in Step 1. 

Since counting on acyclic databases and cyclic counting on general databases ter- 

minates for single linear recursions [9, 401, Step 1 terminates on all kinds of databases. 

Furthermore, according to the proof in Theorem 4.2, side-matched semi-naive evalu- 

ation in Step 2 derives all of the correct answers and terminates on all kinds of EDBs 

[132]. Therefore, we can easily prove that Algorithm 4.4 generates all of the answers 

to the query (4.1) and terminates on all kinds of EDBs. 

We then examine the worst-case time complexity of Algorithm 4.4. The worst- 

case time complexity in Step 1 is O(n * edge) where n and edge (edge is used here 
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to not confuse with relation e) are the number of nodes and the number of edges in 

the database graph of the original database respectively 140, 841. The worst-case time 

complexity of Step 2 is 0(edget2 + edge,,), where edge' is the sum of the number of 

edges of the unioned relations, p' and q', that is, edge1 =  edge,^ +  edge,^, and edge,/ is 

the number of edges of e'. Since the relation q' is derived based on query instantiations, 

it is usually substantially smaller than q. Therefore, the method in general results in 

substantial savings in comparison with the side-relation unioned magic sets method. 

Another technique can also be used to restrict the size of the q-side relations. 

Based on the expansion formula: 

where i j  (1 5 j 5 n) is either 1 or 2 1591, we can easily find another formula: 

where "p :=u (pl,p2)", and "q :=u (ql, q2)", to compute the restricted supersets. This 

leads to another version of the refinement of Algorithm 4.3, the superset transitive 

closures method. 

The superset transitive closures met hod applies two transitive closure operations 

to derive the portions of each side relation relevant to the query "? - r(a,  -, 2)". The 

evaluation derives (i) p', the query relevant portion of p by computing the magic set, 

and (ii) q', the superset of the query relevant portion of q, by first joining the magic 

sets with e to obtain source drivers of q and then using them to compute the partial 

transitive closure of q, the union of the two side-relations ql and qz ,  relevant to those 

source drivers. The algorithm is presented as follows: 

Algor i thm 4.5 A superset transitive closures method for the evaluation of Type 11 

ML recursions. 

I n p u t  and Ou tpu t :  the same as Algorithm 4.2. 

M e t h o d  : 
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1. Perform side-information associated union, that is, "p :=u (pl,p2)" and 

"q :=u (ql, ~ 2 ) " .  Then derive the transitive closure, magicp(X), on relation 

p using the query constant a. Join magicp(X) and e(X, -, Z) to obtain 

the set of Z7s (the source drivers for q) and use them to compute the 

probe-relevant transitive closure of q, magicq(&). Finally, pl(X, XI) and 

ql(Z1, 2) are obtained by 

2. Similar to Step 2 of Algorithm 4.3, side-matched-semi-naive-evaluation (p', 

el, q') is performed, where el, p' and q' are the query relevant portion of e, 

p and q determined in Step 1. 

Similarly, we can prove that Algorithm 4.5 generates all of the answers to the query 

(4.1) and terminates on all kinds of EDBs. The difference between algorithms 4.4 and 

4.5 is the way to reduce the portion of q for semi-naive evaluation. The former applies 

Counting while the latter applies transitive closure operations. Transitive closure is 

easier to implement than Counting. The worst-case time complexity of Counting 

is O(ne), while that of the transitive closures method is O(e), where n and e are 

the number of nodes and the number of edges in the database graph respectively. 

However, Counting enforces more restrictions than the transitive closures method on 

the relevant portion of q and thus makes the semi-naive evaluation more efficient. 

4.4 Evaluation of Type I11 ML Recursions 

Since a Type I11 recursion may not have balanced side-relations, it requires more 

complex synchronization than a Type I1 recursion. We first examine the recursion 

shown in Figure 4.5 which is essentially: 
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Its compiled formula is: 
03 

r = U(P; (P~P ; )~~  ql). 
i = O  

The superset counting method does not work properly for this recursion because 

we have to  either treat the p-side as pip;, a huge relation, or derive a query-relevant 

transitive closure of p2 for each element derived in the accessing of pl at each iter- 

ation. Similarly, it is difficult to apply the path-tracing method to this recursion. 

However, the side-relation unioned magic sets method, if modified appropriately, is 

still applicable to such kind of recursions. 

A novel technique in our implementation is to view the Type I11 recursion as a Type 

I1 one with a faked (pseudo-) side-relation q2. The faked side-relation q2 consists of 

only one pseudo-tuple (X, X), which plays the role of passing all of the values through 

this missing side. However, since the pseudo-tuple carries the corresponding origin 

of q2,  it will not mistakenly pass through any value of ql in the side-relation unioned 

processing. A similar pseudo-tuple can be added to a corresponding p-side relation 

to make it a Type I1 one if an p-side relation is missing in a Type I11 recursion. We 

present the algorithm as follows: 

Algorithm 4.6 A side-relation unioned magic sets method for the evaluation of a 

Type 111 ML recursion. 

Input : A Type I11 ML recursion (Figure 4.5) and a single-probe query (4.1). 

Output : The set of answers to the query. 

Method: 1. (The same as Step 1 of Algorithm 4.3.) Derive the magic set and p' by 

evaluating the partial transitive closure of p relevant to the query constant 

a ,  where "p :=u (pl, p2).", and "pl(X, Y) : - p(X, Y), magic(X).". 

2. Perform side-matched-semi-naive-evaluation (p', el, q ) ,  where p' and e' are 

the same as Algorithm 4.3, q is the side-information associated union of 

ql and the pseudo-tuple (X, X) which carries an origin with only the bit 
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corresponding to the missing q 2  set to 1. Notice that the pseudo-tuple 

matches any value of a driver and passes it to the second column as long 

as the driver passes the origin-matching test. 

Theorem 4.3 Algorithm 4.6 generates all of the answers to the query (4.1) and ter- 

minates on all kinds of EDBs. 

Proof: We only need to verify the modified portion of the algorithm since the remain- 

ing is the same as Algorithm 4.3. In the side-matched semi-naive evaluation, by setting 

a pseudo-tuple for the missing relation q2, the recursion becomes a Type I1 recursion. 

Since the pseudo-tuple (X, X) does not carry the origin bit for ql, the side-matched 

semi-naive evaluation of the rule "r : - pl , r,  ql ." will not be influenced by the pseudo- 

tuple. Moreover, since it carries the origin bit for q 2  and passes the value of a driver 

from the first column to the second one as long as the driver passes the origin-matching 

test, it derives exactly the results derivable from the rule "r : - p2,r.". Therefore, 

based on the proof of Theorem4.2, the correctness and termination of the algorithm 

can be verified. 

In comparison with the magic sets method, the algorithm takes an advantage of 

side-relation unioned processing both in the derivation of magic sets and in the semi- 

naive evaluation. The worst-case time complexity of the algorithm should be the same 

as Algorithm 4.3. 

The algorithm can also be refined by superset transitive closure processing, which 

is similar to that discussed in the evaluation of Type I1 recursions and thus omitted 

in our discussion. 

If we add to the recursion one more one-sided rule as below: 

the recursion is still in Type 111, as shown below: 
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The recursion can be evaluated in a similar way as Algorithm 4.7. Notice that one 

pseudo-tuple should be added to each unbalanced side to represent the corresponding 

missing relation. That is, the pseudo-tuple (X, X) and (2, Z)  should be added, with 

the corresponding origin bit set to represent the missing relation p3 and q 2  respectively. 

The evaluation algorithm can then be derived accordingly. 

4.4.1 Generalized Side-Relation Unioned Magic Set Met hod 

We generalize the above discussion to the recursions which consist of multiple side- 

vectors. We assume that a recursion of Fig 4.11 consists of n recursive rules, each 

having at most m + k side-vectors. The recursion is in Type I1 if no side-relation is 

missing. It is in Type I if there is only one side-relation left (that is, all the other side- 

relations are missing) in each rule. Otherwise, it is a Type I11 ML recursion. Since 

a Type I recursion can be easily handled by a transitive closure query processing 

method, we assume that it is either a Type I1 or a Type I11 recursion. 

Figure 4.1 1: A general side-coherent ML recursion. 

We examine a query of the form (4.2) which provides highly selective instantiations 
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on m side-vectors and inquires the information for the remaining k side-vectors. 

Since the side-relation unioned magic sets method has been proved to be applicable 

to both Type I1 and Type I11 ML recursions on both acyclic and cyclic databases, we 

present our algorithm based on this method. 

Algorithm 4.7 A generalized side-relation unioned magic sets method for Type II 

and Type 111 recursions. 

Input : The recursion Fig 4.11 and the query (4.2). 

Output : The set of answers to the query. 

Method : 

1. Perform side-information associated union of the side-relations at each side, 

that is, 

pi(Xi, Wi) =CJ (pli(Xi? Wi)) - .  . ,pni(Xi, Wi)) 

where 1 5 i 5 m, and 1 5 j 5 k. Each tuple in every unioned relation 

carries an n-bit vector (origin) where n equals to the number of recursive 

rules in the recursion. Notice if pii is missing in the I-th rule, a pseudo-tuple 

in the form of (XI;, Xl;) is added to the relation pl with only the 1-th bit set 

in its origin. Similar treatment is performed for the missing side-relations 

at the q-side. 

2. Derive the magic set, magic, based on the following magic rule set, 
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The magic set is the side-relation matched (partial) transitive closure of 

"pl (XI, Wl), . . . , p, (X,, W,)" relevant to the query probe (al, . . . , a,). 

It is derived by starting with the query probe, iteratively evaluating the 

side-relation unioned relations pl, . . . , p, with the side-matching test for 

all the m sides. (The side-matching test for multiple sides is described in 

detail in Step 3). The evaluation terminates when no new tuple can be 

added to magic. Then magic is used to derive pl (1 < i < m), the query 

relevant portion of p;, by: 

p:(X;, W;) : -p;(X;, W;), magic(X1,. . . , X,). 

3. Perform the side-matched semi-naive evaluation as follows. Assume that a 

driver is of the form t(Wl, . . . , W,, &, . . . , Vk) (Y  is dropped since it is irrel- 

evant to the query), and a derived tuple is of the form t (XI, . . . , X, , Zl , . . . , 
Zk). Each driver examines m + k side-relations, p: (1 < i < m) and qj  

(1 < j < k), with a total of m + k n-bit vectors as shown in Fig 4.12. The 

side-matched-semi-naive evaluation accesses each tuple in the side-relation 

p; in the form of p;(X;, W;) using W;, and extracts the origin (n-bit vec- 

tor) from each accessed tuple. A similar operation is performed at the 

qj side. The origin-matching test is performed on each obtained tuple by 

bit-oring of the n-bit vector obtained by bitwise anding of all the m + k 

origin-vectors. The test is passed if the following holds: 

where "A" represents bitwise-and, and "V" represents bit-or. The newly 

derived tuples are appended to the closure and are used as the drivers at 

the next iteration. The evaluation terminates when no new tuple can be 
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derived at an iteration. The final answers to the query are those obtained 

by performing selection on the closure using the query constants. 

m n-bit vectors k n-bit vectors 

Figure 4.12: Side-matching test on m + k n-bit vectors. 

Theorem 4.4 Algorithm 4.7 generates all the answers to the query (4.2) and termi- 

nates on all kinds of EDBs. 

Proof: First, the magic rule set is the same as those derived by rule rewriting in the 

magic sets method [lo].  The side-relation matched transitive closure computation 

terminates (based on the termination of the corresponding transitive closure algo- 

rithm) and derives all of the query-relevant facts at the p; side for 1 5 i 5 m. The 

correctness of the origin-matching test can be verified in the same way as that in the 

side-matched semi-naive evaluation. 

Secondly, the side-matched semi-naive evaluation is similar to that of Algorithm 4.7 

We only need to verify the correctness of the origin-matching test. Since the corre- 

sponding side of different recursive rules is represented by the same bit in each n-bit 

vector, the n-bit vector obtained by bit-wise anding of all the m + k n-bit vectors of 

the joinable tuples in the relations, pl and q j  (for 1 5 i 5 m and 1 5 j 5 k), should 
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have at least one bit set to 1 if the evaluation passes all the participating sides for at 

least one recursive rule. Therefore, it is correct to perform the bit-or on the result of 

the bit-wise and of the n-bit vectors of all the participating sides. 

In comparison with the magic sets method, the algorithm reduces the cost of in- 

terleaved accessing of separate side-relations by side-relation unioned processing. The 

worst-case time complexity of the algorithm should be the same as that of Algo- 

rithm 4.7, in which the calculation of the total number of edges should include all the 

relations involved in the computation. 

Notice that another way to compute the set of query-relevant facts by magic sets 

is to derive one separate magic set at each side, that is, to derive m unary magic 

sets, magic;, for 1 < i < m, which is the partial transitive closure of p; relevant to 

the query probe a;. The computation of m unary magic sets does not take advantage 

of side-matching test which eliminates the side-unmatched facts, thus it may result 

in deriving a larger set of query-relevant facts, p i , .  . . ,pL than the computation of 

one m-ary magic set. However, it avoids the computation of the combinations of the 

values from the m sides. In the worst-case, the size of the magic relation derived 

by such possible combinations may reach n;"=, Ip;l, where [pi[ is the number of the 

distinct values in relation pi. However, the total size of m unary magic sets by 

computing m side-separate transitive closures is Czl Ip; I in the worst-case. Obviously, 

the choice between the two variations depends on the characteristics of data. For 

example, if the derivation starting at the constants a;, where 1 5 i 5 m, terminates 

at only a small number of iterations, it is unnecessary to compute the probe-relevant 

transitive closures for other relations beyond this iteration in the computation of one 

m-ary magic set. In this case, computing one m-ary magic set is more efficient than 

computing m unary magic sets. However, the situation is reversed if cyclic data are 

dominant in each of the m-sides. For example, if a1 is in a cycle of 1000, and a2  is in 

a cycle of 1001, the binary magic set (suppose m = 2) will contain 1,001,000 binary 

elements while the two unary magic sets have only 2001 unary elements. 

Similar to the previous discussion, Algorithm 4.7 can be refined by the superset 
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transitive closure method. The refinement is performed as follows. First, one m-ary 

magic set or m unary magic sets are derived based on the query constants. Then the 

result is joined with the exit relation e to derive the instantiated driver set for each 

unioned side-relation qj, where 1 5 j 5 k. After that, a partial transitive closure 

operation can be performed on each q j  to reduce the size of the qj relations to be 

participated in the semi-naive evaluation. 

4.5 Evaluation of Complex Queries in ML Recur- 

sions 

The previous section has discussed the evaluation of single-probe queries on ML re- 

cursions. It is natural to examine whether the technique can be applied to complex 

recursive queries. The evaluation of complex queries on SL recursions has been stud- 

ied in [42], which shows that flexible strategies should be applied to the evaluation 

of complex queries, and the selection of appropriate processing strategies should be 

determined based on the kinds of recursions, query instantiations and inquiries, and 

EDB statistics. Since the evaluation of side-coherent ML recursions follows the frame- 

work of the evaluation of SL recursions as shown in the previous discussion, the tech- 

niques obtained in the study of SL recursions can be transferred to side-coherent ML 

recursions. 

Here we examine the evaluation of complex queries on Type I1 ML recursions only. 

Methods for other types of ML recursions can be derived accordingly. 

First, query processing may proceed in different processing direction combinations, 

which is mainly determined by the selectivities of query constants. We suggest three 

major processing direction combinations: up-down, all-down, and all-up. The terms 

up and down are from Bancilhon and Ramakrishnan [lo]. 

1. up-down: The up-down processing starts at  some side-vectors (driving sides), 

climbs up to the center (the exit-expression), and then steps down to the set 
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of the remaining side-vectors (driven sides). It should be used when the query 

provides highly selective information at driving sides, such as queries (4.1) and 

(4.2) on the recursion of Fig 4.5. 

2. all-down: The all-down processing starts at the center and steps down towards 

all the side-vectors. It should be used when the exit-vector carries the highly 

selective information. 

3. all-up: The all-up processing starts at all of the side-vectors and proceeds to- 

wards the center. It should be used when the query provides highly selective 

information at all side-vectors. 

The up-down processing has been studied in the last section. Here we present 

some queries which need other processing direction combinations. 

Example 4.3 We examine the evaluation of the query 

on the same ML recursion of Fig 4.5. 

Suppose f is an EDB predicate and f (a, Y) provides highly selective instantiation 

for r .  Since only the exit-vector provides highly selective information, the all-down 

processing is appropriate. Similar to the previous discussion, side-relation unioned 

processing can be adopted by first performing side-information associated union of the 

side-relations at each side, which derives p and q, and then performing side-matched 

semi-naive evaluation on p, e' and q, where "el(X, 2) = IIx,z(ay=,e(X, Y, Z))." 

In comparison with the up-down processing, the all-down processing performs 

semi-naive evaluation without derivation of magic sets. This is because the instanti- 

ation at  the exit vector makes both sides directly and synchronously evaluable. 

Similarly, if f (a, X) and g(b, 2) provide highly selective instantiations, 
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the query above should be evaluated by all-up processing which derives a binary magic 

set by starting with both sides. Here the semi-naive evaluation is unnecessary since 

the join of the query-relevant portion of the up-relation with e derives the required 

answer set. 0 

Clearly, both all-down processing and all-up processing can be viewed as special 

cases of Algorithm 4.7, in which the former (that is, the all-down processing) omits 

the computation of magic sets while the latter omits the semi-naive evaluation. 

Although many queries require to derive query-relevant closures (using the query 

closure strategy), some queries may require different evaluation strategies, such as 

nonrecursive, total closure, and existence checking [42]. Moreover, although binary 

algorithms may be necessary for some queries to register (source, sink) pairs in the 

processing, unary algorithms, which do not trace (source, sink) pairs, may be sufficient 

for other queries. The use of unary algorithms, when possible, may substantially 

improve the processing efficiency according to the performance study by Bancihon 

and Ramakrishnan [lo]. Among the algorithms developed in this paper, the magic 

set-based algorithms are binary algorithms while the counting or transitive closure- 

based algorithms are unary ones. Furthermore, quantitative analysis based on the 

selectivities of query instantiations and the sizes and join selectivities of side-relations 

play an important role in the determination of evaluation directions and algorithms. 

The selection of appropriate processing strategies for complex queries on single linear 

recursions has been studied in [42]. The principles derived from the study of SL 

recursions are applicable to the evaluation of ML recursions as well. 

4.6 Summary 

We have developed some efficient query evaluation techniques for side-coherent multi- 

ple linear recursions by an integration of side-relation unioned processing with transi- 

tive closure algorithms, the Counting method, and the Magic Sets method. Therefore, 

the processing of side-coherent multiple linear recursions is mapped to the framework 
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of the processing of single linear recursions. Most of the evaluation techniques devel- 

oped in the study of single linear recursion can be applied to multiple linear recursions. 

Our study of efficient evaluation of side-coherent multiple linear recursions can be 

extended to the evaluation of other kinds of multiple linear, nonlinear and mutual 

recursions. Although such kind of recursions can be evaluated by Generalized Magic 

Sets method [13], it is often beneficial to integrate side-relation unioned processing 

with the Generalized Magic Sets or other evaluation techniques. A detailed study 

of the compilation and optimization of recursions containing other kinds of multiple 

recursive rules is an interesting topic for the future research. 



Chapter 5 

Compressed Counting Met hod 

In this chapter, the evaluation of function-free recursion by counting method in cyclic 

base relations is explored. Counting method is one of the query processing strategies 

used in LogicBase system, however, if base relation contains cycles, termination is not 

guaranteed by the counting method. Thus extension of the counting method (cyclic 

counting) is made to handle cycles and to retain efficiency of counting method. 

We propose a counting method called compressed counting which combines the 

merits of several proposed cyclic counting algorithms and processes linear recursive 

queries in both cyclic and acyclic databases as efficiently as the counting method does 

in acyclic databases. The method precompiles database digraphs, compresses each 

strongly connected component (SCC) into a single node, and reduces the database 

digraph into a small DAG for guidance of query processing. Thus, query processing 

involving cyclic paths at both sides is simplified to the propagation and transforma- 

tion of the precomputed offset-period information. Moreover, further optimization 

is performed on the computation involving both acyclic and cyclic paths. The de- 

rived algorithm uniformly handles both cyclic and acyclic data and facilitates parallel 

processing of queries in deductive databases. 
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5.1 Introduction 

5.1.1 Background and motivation 

Counting and Magic Sets are two well-known methods [9] for the efficient processing 

of queries on (single) linear recursions in deductive databases. Both complexity anal- 

ysis and performance studies on a set of interesting linear recursive query processing 

algorithms [ lo ,  11, 841 have shown that Counting has the time complexity of O(ne) 

on acyclic databases, where n is the number of nodes and e is the number of edges in 

a database digraph, that is more efficient than Magic Sets which has the time com- 

plexity of 0 (e2) .  Unfortunately, Counting encounters termination problems when the 

database digraph contains cycles. 

r (X ,Y)  : -  up(x, U, , r(U, ')1 down(v, Y). 
r (X,Y)  : -  f lat(X, Y). 

?- r (a ,Y) .  

Figure 5.1: A typical linear recursion and its query. 

The problem can be easily shown using a typical linear recursion problem defined in 

Figure 5.1 (essentially, the same-generation recursion [ lo ,  132]), where R is recursive 

predicate, up, down and flat  are base relations [lo], a is a query constant and Y is an 

inquired variable. The first rule in Figure 5.1 is a linear recursive rule, the second one 

is a nonrecursive (exit) rule, and the last one is a query on the recursive predicate R. 

The recursion can be compiled into the form UE,(upk f flat downk), which indicates 

that the answer set to the query should be those starting at a ,  traversing k times 

of the up relation, passing the f la t  relation, and then traversing k times of down 

relation. This is the spirit of Counting. When up and down relations contain cyclic 

data, Counting cannot terminate since these relations can be traversed infinite number 

of times. 

Much efforts have been paid on studying cyclic counting technique [3, 17, 39, 49, 
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41,59,115,147] and several interesting algorithms have been proposed, which includes 

Sacca and Zaniolo's Magic Counting [115], Haddad and Naughton's Cyclic Counting 

[41], Han and Henschen's Level-Cycle Merging [49], Aly and Ozsoyoglu's Synchro- 

nized Counting [3], etc. Unfortunately, these proposals suffer from either efficiency or 

complex implementation problems. For example, Cyclic Counting [41] is elegant at 

handling cyclic paths in both up and down relations, but it cannot uniformly handle 

the mixture of acyclic and cyclic data, and moreover, all the information relevant to 

an SCC (strongly connected component) must be recomputed when different source 

nodes entering the same SCC in the query processing. Level-Cycle Merging [49] rep- 

resents the counting-level by a level-cycle set and processes a query by level-cycle 

merging along paths. However, the derivation of pre-stable level set involves com- 

plicated computation and relatively large storage overhead during pre-compilation. 

Synchronized Counting [3] traverses cyclic database until the intermediate result be- 

comes stable, that may take up to 0(n2)  semi-join operations over data relations. 

This motivates our further study on cyclic counting algorithms. The study leads 

to the development of a compressed counting method that combines the merits of 

several counting algorithms, especially, Cyclic Counting, Level-Cycle Merging and 

Synchronized Counting, and processes queries in acyclic data, cyclic data and their 

mixtures as efficiently as the counting method does in acyclic databases. The method 

precompiles database digraphs, compresses each (maximal) strongly connected com- 

ponent (SCC) into a single node, and reduces the database digraph into a small 

directed acyclic graph (DAG) for guidance of processing. Query processing involv- 

ing cyclic paths at both sides is simplified to the propagation and transformation of 

the precomputed information about relative distance set designated by oflset-period 

pair. Moreover, further optimization is performed on the computation involving both 

acyclic and cyclic paths by a complementary counting technique. The derived algo- 

rithm uniformly handles both cyclic and acyclic data and facilitates the development 

of highly parallel processing algorithms. 



C H A P T E R  5. COMPRESSED COUNTING METHOD 

5.1.2 Overview of compressed counting 

In compressed counting, the answer set R to the query constitutes two parts: Racy, 

and R,,,. Racy, is a set of nodes in (the digraph of) down that can be reached from 

the query constant(s) by a path of length 1 in up, then an edge in f lat ,  and a path 

of length 1 in down, and at least one path in up or down is acyclic. R,,, corresponds 

to a similar set of nodes but can be reached by cyclic paths in both up and down. 

If the acyclic counting algorithm [9] is applied until the counting level equal to the 

length of the longest acyclic path in up and down, R,,,, is obtained. Therefore, the 

major challenge is to find an efficient approach to deriving R,,,. Based on the previous 

studies [41, 491, an infinite set of path lengths can be mapped to a finite set of periodic 

measurement for the derivation of R,,,. Regardless of the absolute cyclic path length, 

two nodes linked by a cyclic path can be characterized by the period of the cyclic path 

and the offset of the path length to that period. Thus, an offset-period (OP) pair is 

used in the compilation and representation of cyclic data, where a cyclic path length 

is measured by the period of the path and the offset of the length to the period. 

To efficiently derive OP pairs for nodes in data digraphs, up and down digraphs 

are precompiled into two compressed graphs, CG,, and CGd,,,, each of which is a 

small DAG that consists of a set of nodes and edges. Each node represents a maximal 

strongly connected components (SCC) , i.e., a cluster of interconnected cycles. Each 

inter-SCC edge reflects how offset values change as one traverses from one SCC to 

another. Using such a compressed graph, OP's are propagated among SCCs, and each 

data node in an SCC gets its corresponding OP readily. 

Figure 5.2 outlines the paradigm of the compressed counting method. 

Example 5.1 Before a systematic presentation of the method, a tiny example is 

presented in Figure 5.3 to illustrate the idea of the technique. Edges in up and down 

(digraphs) are illustrated with solid lines whereas that in f lat  with dash line. Each 

data node is associated with an offset-period pair in the form of [offset set, period]. 

In up, nodes b,c,d and e form an SCC with a period of 4. The distance from a to 



CHAPTER 5. COMPRESSED COUNTING METHOD 

0 Precompilation Phase: 
Precompilation of Gup and Gdown: (1) partition each digraph (Gup/Gdown) into a 
set of SCCs, (2) derive internal OP's for the nodes in each SCC, and (3) construct 
compressed graphs, CGup and CGdOwn. 

0 Query Processing Phase: 

1. up-Processing: compute distance-0P's for all data nodes reachable from query 
constants in Gup. This includes the computation of counting levels for acyclic 
node from query constants in Gup, initialization of OP's of SCCs reachable from 
the constants in GuP, derivation of distance-0P's for all SCC nodes in CGup by 
merging OP's in topological order, and computation of OP's for the reachable 
nodes. 

2. down-Processing and Rcyc Extraction: It contains 3 steps: (1) instantiate 
nodes in Gdown via flat and pass the OP's computed in Gup; (2) compute 
difference-0P's for all data nodes in Gdoum: (i) obtain counting levels for acyclic 
nodes from instantiated nodes in Gdown, (ii) initialize difference-OP's of SCCs in 
CGdow, reachable from instantiated nodes, and (iii) derive difference-0P7s for 
all SCCs and the nodes along in Gdown by merging difference-0P's in topological 
order in CGdown; and (3) extract Rcyc by detecting whether the difference-0P 
of a node in Gdown contains 0. 

3. Complementary Counting for Extraction of Racy,. 

Figure 5.2: Overview of compressed counting method. 

them can be measured as [1,4], [2,4], [3,4], [0,4] respectively, where the first number 

in a pair is the offset and second is the period for a cyclic distance. In down, f and 

g form a cycle with period of 2 and distance from f measured as [0,2] and [1,2]. The  

difference-OP for a node in down is the subtraction of the inherited O P  from its own 

distance-OP. Since f has an O P  of [3, 41 inherited from d in up relation, f 's  difference- 

O P  is [I, 21. Similarly, g's difference-0P is [O, 21. Since only g's difference-0P contains 

0, g is the only answer to  the query. 
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UP FLAT DOWN 

Figure 5.3: A tiny example database. 

5.2 Principles of Compressed Counting 

The theoretical foundation for the derivation of R,,, is presented in this section, which 

includes representation of and operations on offset-period pairs. The correctness and 

completeness of the method is proven here, the actual compressed counting method 

is presented in next section. 

In this section, it is shown that a distance set can be replaced by its partial 

periodic subset to derived R,,,; and this subset can be represented by OP; thus the 

derivation of the distance set and difference set is accomplished by the derivation of 

OP; and finally the query answer extraction becomes 0-containment test on difference 

set, which is actually done on the corresponding OP set. 

5.2.1 Distance set and difference set 

The concepts of distance set and difference set are introduced to formalize query 

answering. 

Without loss of generality, EDB relations are assumed to be binary relations. A 

binary relation A can be represented as a digraph (directed graph) G(V, E), where 

a E V, b E V, and (a, b) E E if and only if there is a tuple ( a ,  b) E A. G,, and Gdown 

denote digraphs for up and down relations. 

Distance set defined below is to represent the length of paths from one node to 

another in a digraph. The length of each edge in the digraph is 1, and the length of 
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a path is represented by an integer 

Definition 5.1 For nodes c,x E V in digraph G, distance set D(c,x) = {I : 3 a 

path c t x of length I in G).  

Distance set D(c, x)  contains an infinite set of integers when there exists a cyclic 

path between c and x. If there is no path from c to x, D(c, x) = 0. D(x, x) = (0) 

when there is no cycle passing through x. The answer for the recursive query in 

Figure 5.1 can be expressed by distance sets: {z : z E boWn and 32 E V,, and 3 y  E 

hown s.t. (x, y) E f la t  and D(a, x)  n D(Y, z )  # 0). That is, there exist paths from a 

to x in G,, and from y to z in Gdown of the same length and joined by an edge (x, Y) 

in Gjlat. 

The addition and subtraction operations on distance sets are defined as follows: 

Definition 5.2 For integer set C1 and C2, addition C1 $ C2 = {cl + cg : c1 E C1 and 

c2 E C2). For integeri, C1 $ i  = { c + i :  c E  C1). 

Definition 5.3 For integer set C1 and C2, subtraction C1 8 C2 = {cl - c2 : c1 E C1 

and c2 E C2). For integer i, C1 8 i = {c - i : d E C1). 

C1 $ C2 and Cl 8 C2 are 0 if either C1 or C2 is 0. Addition and subtraction on 

integer sets are commutative. 

The answer to the recursive query can be represented as the following set: { z  : z E 

Gown and 3x E V,, and 3y E Gown s.t. (5, y) E f la t  and 0 E (D(y, z)  8 D(a, 2))) .  

Modulus operation on integer set is defined as following: 

Definition 5.4 For integer set C and integer i, C mod i = {c mod i : c E C). 

Difference set is defined to denote the subtraction of two distance sets, particularly 

in this paper, the subtraction of distance sets in Gdown and Cup. 
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Definition 5.5 For a  E Vup and z  E Vdown, difference set Di f f ( a ,  Z )  = { I  : 32 E 

V,, and 3y E Vdown s.t. ( x ,  y )  E f [at and 1 E ( D ( y ,  z )  €3 D(a, x ) ) ) .  

Lemma 5.1 states that distance set can be derived progressively through addition 

operation. 

Lemma 5.1 For x ,  z  E V, D ( x ,  z )  = UyEV(D(x ,  y )  $ D(y ,  z ) ) .  

Proof: If d E D ( x ,  z ) ,  then there exists a node y' such that path x  t z passing 

through Y' (Y' could even be x  or z ) .  So there is a path x  t y' with length dl 

and a path y' t z with length d2 such that d = dl + d2.  Since dl E D ( x ,  y')  and 

d2 E D(yl ,  z ) ,  d E D ( x ,  y')  $ D(yl ,  z ) .  Hence d  E UYEV(D(x ,  y )  $ D(y ,  2 ) ) .  SO we have 

D ( x , z )  C UYEv(D(x7 Y )  @ D ( Y ,  2 ) ) .  

If d  E UyEv(D(x ,  y )  $ D ( y , z ) ) ,  there exists a y' E V such that d  E D ( x ,  y') $ 

D( y l , z ) .  There exist dl  E D ( x ,  y')  and d2 E D(y ' , z )  such that d  = dl + d2.  So 

there is a path from x  to y' of length dl and there is a path from y' to z  of length 

d2.  So there is a path from x  to z  via y' of length dl + d2.  Hence d E D ( x ,  z ) .  So 

U,,v(D(x, Y )  63 D ( Y ,  4 )  G D ( x ,  4 

Lemma 5.2 states that although difference set is defined by difference of distance 

sets, it can be derived through addition of difference set and distance set. Which 

ensures that the distance set in Gup and difference set in Gdown are treated in the 

same way. 

Proof: We first prove (& Di) €3 D = u ; ( ~ i  €3 D).  If d € Di) €3 D,  then there 

exist dl E u!=, Di and d2 E D  such that d = dl - d2. Hence dl  E Dj(O < j 5 k) and 

d E ( D j  €3 D )  . So d  E & ( ~ i  9 D).  That is, ( u . X , ~  Di) 9 D  L u.L,l(Di 9 D) .  
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On the other hand, if d E u;~=,(D; e D ) ,  then there exists 0 < j < k ,  such that 

d E D j  8 D. So there exist dl E D j  and d2 E D such that d = dl - d2. Hence 

dl E Ui=, kDi and dl - d2 E (U;=, kDi)  8 D. SO, U;=, k (D;  8 D )  C (U;=l kD;)  8 D. 

Thus, k (D;  D )  = (UiZ1 kDi)  D. 

Now we prove the lemma. From the definition of difference set, we have: 

From Lemma 5.1 

Answer set for recursive query in Figure 5.1 can be rewritten by difference set as 

{ z  : z E Vdown s.t. 0 E Di f f ( a ,  2 ) ) .  The principle of the compressed counting method 

is to find those nodes in Gdown whose corresponding difference sets contain 0. 

5.2.2 Offset-period representat ion 

The distance set is infinite if there is a cycle in data digraph, which makes handling 

of distance set difficult. In this section, a special representation of distance set is 

presented to catch the regularity of distance set and map the infinite sets into finite 

ones. Both distance set and difference set can be represented by the offset-period 

(OP) representation to derive R,,,. 

It is first proved in the following lemma that if two distance sets for cyclic paths 

intersect, the intersection is an infinite set. 
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Lemma 5.3 If paths a --+ x and y + z are cyclic in up and down relations respectively 

and D(a, x) n D(y, z) # 0, then D(a, x)  n D(y, z) is an infinite set. 

Proof: Since D(a,  x)  n D(y , z) # 0, we assume d E D(a, x)  n D(y, z) and cl E D(x1, x') 

where x' is a node on the path a -t x and c2 E D(yl, y') where y' is a node on the 

path y -+ z (cl,c2 > 0). We h a v e d + c l  x i  E D(a ,x)  a n d d + c 2  x i  E D(y,z)  

for i = 0,1, .  . .. Hence, d + cl x c2 x i E D(a, x)  and d + cl x c2 x i E D(y, z) for 

i = 0,1 , .  . .. So D(a ,x )  n D(y,z)  is infinite. 

The concept of strongly connected component is employed to help analyze the 

cyclic behavior in digraph. A strongly connected component (SCC) in a digraph is a 

subgraph in which there is a path between any pair of nodes. In the following context, 

we assume that SCC refers to maximal SCC. A directed cyclic graph is composed of 

several SCCs connected by acyclic paths. 

Definition 5.6 The period of an SCC is the greatest common divisor of the lengths 

of all the cycles in the SCC. 

An O(escc) method is presented in [49, 411 to calculate the period of an SCC, where 

escc is the number of edges in the SCC. 

Lemma 5.4 states that in an SCC, all paths between two nodes have the same 

offset to the SCC period, which ensures the uniqueness of offset to the period of the 

SCC, and path length pattern (captured by OP) between two nodes are independent 

on the actual path. 

Lemma 5.4 Suppose SCC S(V, E) has the period of p and x, y E V. Then D(x,  y) mod 

p has only one integer in the result set. 

Proof: We prove that any two paths from x to y will have the same value after 

D(x, y) modp. Suppose there are two paths from x to y with lengths lI and l2 

respectively, and there is a path from y to x with length k. Then, there are two cycles 
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in SCC with the lengths of l1 + k and l2 + k. According to the definition of the SCC 

period, ll + k = nl x p, l2 + k = n2 x p, where nl,  n2 are positive integers. Hence we 

have l1 - nl x p = 12 - n2 x p, and (Il - nl x p) mod p = (12 - n2 x p) mod p. Thus, 

ll mod p = 12 mod p. 

Lemma 5.7 states that self cycle in an SCC becomes periodic after certain levels. 

Lemma 5.5 and Lemma 5.6 are two auxiliary lemmas helping prove Lemma 5.7. 

Lemma 5.5 For k positive integers nl, n2,. . . , nk such that gcd(nl, 122, .  . . , nk) = 1, 

there exists an integer No such that for any integer N > No, N = Xlnl+ X2n2 + . . + 
Xknk where XI, X 2 , .  . . , Xk E &, where & denotes the set of integers greater than or 

equal to 0. 

Proof: Without loss of generality, it is assumed that nl > n2 > . . . > nk > 0, and 

that n; = a;n;+l + y; where a;,y; E JI& for i = 1 ,2 , .  . . , k - 1. Since the set of y; 

(i = 1. .  . k-1) and nk have the samegcd as the set of n;, gcd(yl, 7 2 , .  . . , yk-1, nk) = 1. 

This means that we have a set of smaller numbers with gcd equals 1. By sorting this 

new set of numbers and performing the above procedure finite times, we will have a 

y value of 1, which is the arithmetic combination of the original n; numbers. In other 

words, 1 = Plnl + P2n2 . - + Pknk where Pi are integers for i = 1,2, .  . . , k.  Now 

we set NO = InkPllnl + lnkP2ln2 + + InkPklnk. For any N > No, assume N - No 

is mnk + y where m, y E Nb and y < nk. N can be represented as No + mnk + y. 

Hence N = NO + mnk + y(P1nl-k P2n2 +. . - + Pknk) which is ~fgt(( lni ; /?; l+ yb)n;)  + 
(1nkPkl-t yPk + m)nk. Since y < nk, so InkP;I + yP; > O and InkPkl +yPk + m > 0, so 

N is rewritten as Xlnl + X2n2 + + Xknk, where Xi = InkPiI + yP; for 1 < i > k - 1, 

and Xk = lnkPkl + yPk + m, which proves the lemma. 0 

Proof: Assume gcd(a1,. . . , ak, a l+cl , .  . . , ak+ck) = p, and gcd(a1,. . . , ak, cl, . . . , ck) = 

q, where p, q 2 1. Hence it can be assumed that a; = I; x q, c; = mi x q. We have 
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a; + c; = (1;  + mi) x q. So q is a common divisor of a l ,  . . . , ak, a1 + e l , .  . . , ak + ck. 

Then p mod q = 0. 

On the other hand, since p is the gcd of set of a; and a; + c;, it can be assumed 

that a; = n; x p and a; + c; = o; x p, so c; = (0; - n ; )  x p. Hence p is a common 

divisor of a l ,  . . . , ak, e l , .  . . , ck. SO q mod p = 0. So, we have p = q. 

Lemma 5.7 For any node x in SCC, there exists an integer no such that for n 2 
no, n x p E D ( x ,  x ) ,  p is the period of SCC. 

Proof: Although the period of SCC is defined as gcd of all the cycles in SCC, there 

exist a finite set of cycles {cyclel, .  . . , cyclek) with lengths of c l ,  . . . , Q such that 

p = gcd(c1, C Z ,  . . . , ck) .  For any node x ,  there exist self cycles {scyclel, . . . , scyclek) 

with the lengths of scl, . . . , sck, such that scycle; starts at  x ,  reaches a node on cycle;, 

and returns x .  Hence c; + sc; is the length of a self cycle of x ,  that is, c; + sc; E D ( x ,  x ) .  

Since period is the gcd of all cycles in SCC, gcd(cl, . . . , ck, scl ,  . . . , sck)  = p. From 

Lemma 5.6, we have gcd(cl + scl,  . . . , ck + sck)  = p. Assume c; + sc; = n; x p(i = 

1 , .  . . , k),  we have gcd(nl,  nz , .  . . , n k )  = 1. Based on Lemma 5.5, there exists no such 

tha t fo rn  >no,n=Xlnl+X2n2+...+Xknk. I no the rwords ,nxp=X1xn lxp+X2x  

n2 xp+. - .+Ak xnk xp .  Hence n x p  = X 1  x (cl+scl)+X2 x ( c~+scz )+ .  - .+Xk x ( c ~ + s c ~ ) .  

This is equivalent to the ~ a t h  length of cycle passing through corresponding self cycles 

of length c; + sc; A; times respectively. So, for n 2 no, n x p E D ( x ,  x ) .  

Since period p of an SCC is the gcd of all cycles, if d E D ( x ,  x )  in SCC, then 

d = n x p. Hence we have integer set { n  x p : n = no, no + 1, .  . .) which is equivalent 

to the subset of D ( x , x )  of {d  : d E D ( x , x )  and d 2 no x p). Such integer set is 

called asymptotically equivalent to D ( x ,  x ) .  The distance set of cyclic path in an SCC 

is measured by its asymptotically equivalent set. 

Definition 5.7 Integer set C1 and C z  are asymptotically equivalent if there exists 

an integer no such that if c E C1 and c 2 no then c E C2;  if c E C2 and c > no then 
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c E C1. C1 H C2 denotes asymptotical equivalence. no is called the stable level of C1 

and Cz. 

Asympototic equivalence of a distance set intends to represent the cyclic portion 

of the distance set and difference set with a regular formula of np + c, n 2 no, where 

[c,p] forms the OP representation for the distance set and difference set. 

The above lemmas suggest a simple representation of D(x,  y) in an SCC. Since 

only synchronized cyclic paths in the up and down digraphs may contribute to the 

answer set R,,,, and the distance set in the cyclic portion becomes periodic after 

certain level, instead of comparing the whole distance sets in up and down relations, 

the periodic partial sets are adequate for that purpose. Therefore, the distance set 

D(x, y) in an SCC can be simply expressed as [c,p], where p is the period of the SCC, 

and c is the distance from x to y moduled by p (called the internal offset of y in 

terms of x in SCC). Notice that there is only one c value according to Lemma 5.4. 

This offset-period pair represents an integer set which is asymptotically equivalent 

to D(x, y) in an SCC. It captures the regularity of distances set when the distance 

becomes greater than the stable level. OP[c,p] (indicating [offset, period]) is used to 

denote the represent at ion. 

In each SCC, one node r is assumed to be the reference node with 0 as its offset. 

Thus, the internal OP (OP represent distance set within an SCC) of any other node 

q in the SCC is represented by a unique OP tuple [c,p], where p is the period of SCC, 

and c = D(r ,  q) mod p, the relative distance from the reference node. The distance 

set between any two nodes x and y in the SCC can be inferred from OP of x to the 

reference node and OP of reference node to y.  Furthermore, the internal offset c of a 

node in SCC is relative to the reference node such that if a new offset C' is assigned 

to the reference node, every node in SCC with the offest c will have the same offset 

"drifting" with new offset value of (c + c') mod p. 

The offset-period representation of distance set in SCC can be extended to rep- 

resenting distance set in general cyclic data relations, where the digraph G(V, E) is 

composed of several SCCs. For X ,  y E V, there might be many paths from x to y, and 
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each path might traverse through different SCCs. 

Theorem 5.1 states that the distance set of a cyclic path becomes periodic over 

the greatest common divisor of all the SCC periods along the path. 

Theorem 5.1 For cyclic path x -+ y i n  G passing through SCCl, S C C 2 ,  . . . , S C C k  

with periods of p 1 , p 2 , .  . . ,pk ,  there exists a n  integer do such  that  if d E D ( x ,  y )  and 

d > do, t h e n  d + p E D ( x ,  y )  where p = gcd(pl ,p2 , .  . . , pk) .  

Figure 5.4: A path passing through SCCs. 

Figure 5.4 illustrates the case, in which the distance from x to y is periodic on p 

when the distance is greater than do. 

Proof: Suppose that a path x to y passes through SCCl, SCC2,. . . , SCCk via acyclic 

paths. Its length can be represented as 1 + nl x pl + n2 x p2 + . . - + n k  x pk where 

n; E &, n; x p; represents the length of self cycles within SCC;, and 1 represents the 

accumulated acyclic path length from x to y. From Lemma 5.7, for SCC; there exists 

no;, such that self cycle in SCC; becomes periodic after level no;. 

Assume that p; = a; x p for i = 1,. . . , k, we then have g c d ( a l ,  a2,. . . , a k )  = 1. 

From Lemma 5.5, there exists a0 E & such that for any a 2 a o ,  a = PI x a1 + p2 x 

a2 + . . . + P k  x C Y ~  for Pi E &. 

We may now set do = a. x p + Cf=,no; x p; + e ,  where e is the number of edges in 

data digraph. If d 2 do and d E D ( x ,  y ) ,  it can be assumed that d = I + nl x pl + 
n2 x pa + . . . + n k  x pk. Because d > do,  d may be represented as d = do + p', which 

is 1 + Cf==,no; x p; + p', where p' > 0 and p' mod p = 0 .  Hence d > do is equivalent to 

I + Cf=lno; x p; + p' > a0 x p + CfZlno; x p; + e .  Since 1 < e ,  we have p' > aop.  Since 

p' mod p = 0 ,  p' can be represented as Cf=,P; x a; x p, which is Cf=,P; x pi. Hence 

d + p = 1 + Cf==,no; x p + p' = I + Cf==,(no; + Pi) x p;. Since each (no; + Pi)  x p; is the 

length of a self cycle in SCC;, 1 + Cr="=,noi + @;)pi is the length of path x -+ y. So 

d + P E D ( x ,  Y ) .  0 
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Definition 5.8 The period of a cyclic path in a digraph is defined as the greatest 

common divisor of the periods of the SCCs along the path. 

To extend OP representation of distance set from a single SCC to a digraph of 

multiple SCCs, we first assume that all the paths from one node to another traverse 

the same set of SCCs in the same order. This gives us the same period for all paths, the 

presence of multiple acyclic paths joining SCCs results in multiple offsets to the period, 

and hence the OP representation should contain a set of offsets, such as OP[C, p] 

where C is a set of offsets, called (external) offsets in contrast to internal offset within 

an SCC. Now assume that different paths traverse different SCCs and/or in different 

order. There are multiple OP's corresponding to each set of paths traversing the same 

set of SCCs in the same order, namely [C1,pl], . . . , [Ck,pk]. Since the distance set is the 

union of distance set along each path, the OP representation of the distance set should 

be able to express unioned set of integers expressed by OP's along each path, which 

is obtained by expanding each OP from [Ci, pi] to [C;',p] where p = lcm(pl,. . . , pk) 

and C;' = { c ,  c + pi,. . . , c + (A - l)pi : c E Ci and p = Xp;); and then unioning all 

these C;'. Thus, the OP representation for distance set is [& C;',p]. This is proved 

in a later section. 

Now consider the presence of a reference node in an SCC. Since the distance set 

is represented in the OP form, it is necessary to know the OP set for each node of 

an SCC in order to answer a recursive query. However, we will show later that it is 

adequate to derive the OP set only for a reference node in each SCC. The OP set of 

every other node in the SCC can be inferred from their internal offset and the OP of 

the reference node. 

The offset-period representation of distance sets and the corresponding operations 

lay the foundation for the discussion of recursive query processing in cyclic databases 

using counting method. 

It should be noted that there could be multiple OP representations with different 

C sets and/or p for the same distance set, and each of them can be used to determine 

the answer to the query. However, it is desirable to use the normal form of OP. 
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Two OP's are equivalent if they denote the same integer set, although their rep- 

resentation may not be the same. 

Definition 5.9 OPIC,p] is in normal form if for c E C, 0 5 c < p, and for any 

OPIC1, p'] which is equivalent to OP[C, PI, p' 2 p. 

Normalization operation denoted as Norm(OP[C,p]) transforms an OP repre- 

sentation of the distance set into a normal form OP representation by simplifying 

OP[C,p] into an equivalent OP set of OP'[C1,p'] with the smallest p'. For example, 

OP[( l ,  2,3,7,8,9), 121 can be replaced by OP[( l ,  2,3), 61. 

Offset-Period representation of the distance set maps an infinite set into a pair: 

period and a small set of offsets. As shown in the following sections, the operations 

defined on an OP map the derivation and comparison of distance sets to the operations 

on OP sets. Although OP cannot represent a complete difference set, it will be shown 

that OP representation is perfect for difference set to facilitate efficient test of 0 

containment. Therefore, it is adequate to derive R,,, using OP representation. 

5.2.3 Derivation of O P  sets 

In this section, it is shown that operations on distance set and difference set can be 

replaced by operations on OP. 

Addition of OPICl,pl] and OP[C2,p2], denoted as OPICl,pl] $ 0P[C2,pn], is an 

integer set: {(el + kl x pl)  + ( ~ 2  + k2 x pa) : cl E Cl and c2 E C2 and kl, k2 E &). 

Since (el + k1 x pl) + (c2 + k2 X p2)i equals to cl + c2 + k x gcd(pl,p2) which is 

(ci + ~ 2 )  mod &(pi, p2) + k' x &(pi, p2), OP[Cl, pi] $OP[C2, p2] can be represented 

as OP[(Cl $ C2) mod p, p] where P = gcd(p1, p2). 
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Theorems 5.2 and 5.3 state that the addition and union of distance sets can be 

obtained through the addition of OP sets. 

Theorem 5.2 Let OPICl,pl] and 0P[C2,p2]  be the O P  representation for distance 

sets Dl and D2 respectively. OPICl,pl] $ 0P[C2,p2]  is the OP representation for 

Dl $ D2. 

Proof: This is to prove that OPICl, pl] $ 0P[C2,  p2] is asymptotically equivalent to 

Dl $ D2, given that OPIC1, pl] and 0P [C2 ,  p2] are asymptotically equivalent to Dl 

and D2 respectively. 

Assume that nol, no2 are the stable levels for Dl,  D2 respectively. Let N = 

max(nO1, no2), and No = 4 x N. 

If d E D1$D2 and d 2 No, then d = d l + d 2  for dl E D1,d2 E D2. I fd l  2 N a n d  

d2 2 N ,  then dl E OP[Ci,pl] and d2 E OP[C2,p2]. So, d E OP[Cl,pl] $OP[C2,p2]. 
Suppose that dl < N (d2 < N case is proved in the same way). It can be assumed that 

on the path corresponding to Dl,  there is a self cycle with length 1, which is a multiple 

of pl from the definition of SCC period, and without loss of generality 1 is assumed to 

be less than N .  Then there exists an integer X > 0 such that N 5 dl + X x 1 < N + 1. 

Further, d can be rewritten as dl + X x 1 + d2 - X x I .  It is clear that dl + X x 1 is 

a path length, so dl + X x 1 E Dl, and can be rewritten as cl + kl x pl for cl E C1. 

Since dl + d2 2 4N and X x 1 < 2N,  d2 - X x 1 > N.  Thus d2 can be written as 

c2 + k2 x p2 for c2 E C2 since d2 E 0P [C2 ,  p2]; and 1 as a x pl since 1 is the length of 

self cycle. So d = cl + kl x pl + c2 + kg x pa - a  x pl = cl + c2 + k x gcd(pl,p2), that 

is, d E OPl $OP2. 

If d E OPl BOP2 and d 2 No, d = cl + c2 + k x gcd(pl,p2). Thus d can be written 

as sum of cl + kl x gcd(p1, p2) > N and c2 + k;! x gcd(pl, p2) > N for k1 + k2 = k. 

since cl + kl x gcd(p1, pz) E Dl and c2 + k2 x gcd(p1, p2) E D2,  d E Dl $ D2. It has 

been proved that 0 P [Cl , pl] $ O P  [C2, pz] * Dl $ D2. 

The union of OPICl, pl] and OP[C2, p2], denoted as OPICl, pl] U 0P[C2,  p2] is 

defined below. The result of the union should be {cl + k x pl, c2 + k x p2 : c1 E 
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C1 and c2 E C2 and k E N o ) .  If pl and p2 are the same, an OP set can be constructed 

with C1 U C2 as its offset set and pl as its period. Otherwise, each OP can be 

transformed into an OP with its period equivalent to the least common multiplier of 

Pl and P2. 

Definition 5.11 Expansion operation, denoted as Exp(OP[C, p ] ,  Xp) = OPIC1, Xpl, 

transforms OP[C,p] into an equivalent OP with a larger period, where OP[C,p] is 

normalized and X is a positive integer, C1 = {c+ kp : c E C and k = O , l , .  . . , ( A  - 1 ) ) .  

Definition 5.12 Union operation OPICl,pl] U 0P[C2,p2]  is [(Ci U C;),  p] ,  where 

P = Icm(p1, p2) and [C:, PI = E ~ P ( [ C ~ , P ~ ] ,  P ) ,  [C;, ~ 2 1  = Exp([C2, ~ 2 1 1  P ) .  

The following theorem states the union of distance sets can be obtained by union 

of OP. 

Theorem 5.3 Suppose OPICl,pl] and 0P[C2 ,p2]  are the OP representation for dis- 

tance sets Dl and D2 respectively, then OPICllpl] U 0P[C2 ,p2]  is the OP represen- 

tation for Dl U D2. 

Proof: It is to prove that OPICl, pl]  uOP[C2, p2] and Dl u D2 are asymptotically equiv- 

alent given that OPICl, pl]  and OP[C2, p2] are asymptotically equivalent to Dl, D2 

respectively. 

Assume no1 , no:! are the stable levels for Dl and D2. Let N = max(nol, no2). 

If d E Dl U D2 and d > N ,  then d E Dl or d E D2. Since d > max (nol, no2), 

d E OP[Cl,pl] or d E OP[C2,p2]. Hence d E OP[Cl,pl] U OP[C2,p2]. 

If d E OPIC1,pl] u OP[C2,p2] and d > N, then d E OP[Cl,pl] or d E OP[CZlp2]. 

Since d > - max(nol, no2), d E Dl or d E D2. Hence d E Dl U D2. Thus the theorem is 

proved. 
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The above theorems map the derivation of distance sets to that of OP sets. Since 

addition and union on distance sets are commutative, the addition and union opera- 

tions on OP's are commutative. 

We now prove that OP (either distance or difference OP) of a node in an SCC can 

be inferred from its internal offset and the reference node OP, so that an SCC can be 

collapsed into a single node in simplied data digraph. 

Lemma 5.8 If node u, y, x E S C C  and there is a cyclic path from node a to the SCC, 

D(a, u) $ D(u, x)  is asymptotically equivalent to D(a, y) $ D(y, x). 

Proof: D(a, u) $ D(u, x)  and D(a, y) $ D(y, x) represent the lengths of the paths 

a + u + x and a + y + x. Since u, y are in the same SCC, D(a ,u )  $ D(u,x)  

and D(a,  y )  $ D(Y,  x) have the same period po. Assume N = max(stab1e levels of 

D(a,  u)$ D(u,  x), D(a,  y )  $ D(y, x), D(a,  u)). Since D(u,  x) is within SCC, D(u,  x) W 

O P [ C , , ~ ]  where p is the period of the SCC. Since period of D(a, u) is the gcd of 

SCC periods, p mod po = 0 and po 5 p. So, D(a,  u) may have OP representation of 

OPICu,p] with period of p instead of po. So, D(a,  u)$D(u, x)  w OPICu,p]$OP[c,,p], 

which is D(a,  u) $ D(u, x) W OPICu $ c,,p]. 

If d E D(a,u)$D(u,x)  and d > N+p ,  then d E OPICu$c,,p], d = cu+c,+kxp.  

So d-c, = c u + k x p E  OPICu,p]. Sinced > N + p a n d  d-c, > N, d-c, E D(a ,u) .  

Since u, y are nodes in SCC, it is assumed D(u, y) w OP[c,,p]. A path from u to y 

hasthelengthofc,+k'xp. Henced-c,+cY+k1xpisthelengthofapatha+ u -+ y ,  

and d - c, + c, + k' x p E D(a,  u) $ D(u, y) G D(a, y). Assume D(y, x) w OP[c,,,p]. 

Since path u -+ y + x + u is a self cycle within SCC, and D(x, u) w OP[(p - c,), p], 

c, + c,, + (p - c,) mod p = 0. So D(y, x)  w OP[(c, - c,), p]. So there is a path y + x 

with length of c, -c, + kt' x p .  So d-c,+c, + k' x p + c ,  -c, + kl' x p  is the length 

of path a + y + x, in other word, d + (k' + k") x p E D(a, y )  $ D(y, x) .  Assume 

that D(a ,  y) $ D(y, x) H OP[C,,p]. So, d + (k' + k") x p = c' + k"' x p for c' E C,. 

d = c'+(kl"-- kt'- k') x p  E OP[C,,p]. Since d > N ,  we have d E D(a ,y)$  D(y,x). 

It can be proved in the same way that if d E D(a,  y) $ D(y,x) and d > N + p, 
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d E D(a,  u) $ D(u, x). 

If the equivalence relationship is relaxed to asymptotical equivalence, the following 

theorem states that D(a, x)  can be obtained from D(a,  u) $ D(u, x), where u is any 

node in SCC. Thus a node in SCC can be designated as a reference node, the distance 

set from a to the rest of nodes in SCC can be derived from the reference node. 

Theorem 5.4 For nodes u, x E SCC,  D(a, x) is asymptotically equivalent to D(a,  u)$ 

D(% 4, 

Proof: Since every path from a to x will involve at least a node in SCC, and based on 

lemma 5.1, D(a, x)  = UyEscc(D(a, y) $ D(y, x)). Since for any y E SCC,  D(a,  y)  $ 

D(Y,  2) % D(a, 4 D(u, 4 (lemma 5 4 ,  UyEscc(D(a, Y) D(Y, 4) = D(a,  u) 
D(u,  x). So D(a, x) % D(a, u) $ D(u, x). 

Corollary 5.1 If there is a cyclic path from a to an SCC, the distance OP for any 

node x in SCC is the addition of OP for  the reference node and the internal o$set of 

x.  

5.2.4 Derivation of distance set and difference set 

Since SCCs are the source of cycles in digraph, a cyclic path can be studied by de- 

composing a digraph into DAG of SCCs, deriving period for each SCC and extracting 

interconnections among SCCs. A digraph may consist of a set of SCCs connected 

by directed edges. Connection among SCCs can be either serial or parallel as shown 

in Figure 5.5 and Figure 5.6. Serial connection occurs when an SCC has only one 

precedent SCC, while parallel connection occurs when an SCC has multiple precedent 

SCCs. In the context of OP derivation, two SCCs joining at a node followed by an 

SCC is equivalent to two SCCs joined at the third SCC. 

The following theorems state how to derive distance set. 
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Figure 5.5: Serial merge. 

Theorem 5.5 For SCC S1,  Sz connected in serial with u ,  v  as their reference nodes 

as in Figure 5.5, D(a, v )  is asymptotically equivalent to D(a,  u )  $ D(u,  v ) .  

Proof: First it is assumed that there is only one acyclic path connecting S1 and S2 ,  

node x  E S1 is the its start node. Then all the paths from a  to v  pass x. So D(a,  v )  = 

D(a, x )  $ D(x ,  v )  and D(u,  v )  = D(u,  x )  $ D ( x ,  v) .  From above theorem, D(a,  x )  * 
D(a ,u )$D(u , x ) .  Hence D(a ,v )  * (D(a ,u )$D(u , x ) )$D(x ,  v )  =D(a ,u)$(D(u ,x )$  

D ( x ,  v ) )  = D(a, u )  $ D(u,  v ) .  

Now consider there are multiple path connecting S1 and S2. Let X I , .  . . xr, be their 

starting nodes. D(a, v )  = uf=,(D(a, xi) $ D(xi ,  v ) ) ,  and D(u,  v )  = uk 2=1 ( D ( u ,  x i )  $ 

D(G, v ) ) .  Since D(a, xi) * D(a, u )  $ D(u,  x i ) ,  then D(a, v )  * & ( ~ ( a ,  u )  $ 

D(u1 xi)  fB D(xi7 v ) )  = D(a1 u )  @ (U;=,(D(U, xi) $ D(xi ,  v ) ) ) .  SO, D(a,  V )  H D(a,  U )  $ 

D(u ,v ) .  0 

Figure 5.6: Parallel merge. 

Theorem 5.6 If SCC1, SCC2,  SCC3 are connected in parallel as shown in Figure 5.6 

with u ,  v ,  w  as their reference nodes, D(a,  w )  is asymptotically equivalent to (D(a ,  u )  $ 

D(u1 w ) )  U (D(a1 v )  @ D(v1.w)). 

Proof: Paths from a  to w consist of two parts: paths via SCCl and paths via SCC2. 

Since these two parts do not mix up, D(a, w )  is the union of the path lengths of the 
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two. From the above theorem, the length of the path via SCCl is asymptotically 

equivalent to D(a, u) $ D(u, w), and that via SCC2 is asymptotically equivalent to 

D(a,  v )  CB D(v, w). Hence D(a,  w) w (D(a, u) $ D(u, w)) U (D(a, v )  $ D(v, w)). 

Based on the above theorems, when SCCs are connected in serial, the distance OP 

for Sz is the addition of distance OP for S1 and S1 + S2. It is called the serial merge 

of OP's (of SCCs). When SCCs are connected in parallel, the distance OP for SCC3 

is the union of two additions: SCCl and SCCl + SCC3, SCC2 and SCC2 + SCC3. 

It is called the parallel merge of OP's (of SCCs). 

We now discuss how to derive difference set in Gdown. Suppose in G,, D(a,  x) is 

known, and in Gdown D(Y, z) is known and (x, Y )  E f la t .  Then z is an answer to the 

query if Di  f f (a, x)  = D(y, z) 8 D(a,  x) contains 0. Although Di  f f (a, z)  is an infinite 

set, it is possible to use offset-period pair to represent it. All the following derivation 

of difference set follows the principle Di  f f (a, z) = Uw+-Gd,,, (Di f f (a, w) $ D(w, z ) ) .  

Based on the above analysis, subtraction of OP's can be defined accordingly. 

The following theorem transforms the problem of distance set comparison into 

that of 0 containment test of difference set. It guarantees the correctness of OP 

representation for the difference set in terms of 0 containment test. It also guarantees 

the correctness of derivation method of difference set. 

Theorem 5.7 If D(a, x) OPICl,pl] and D(y, z) w OP[C2,p2], then 0 E D(y, z ) 8  

D(a, x)  is equivalent to 0 E 0P[C2 ,  pa] 8 OP[Cl, pl]. 

Proof: Assume N = max(the stable levels of D(a,  x) ,  D(y , z ) ) .  

If 0 E D(y, z )  8 D(a, x),  then from lemma 5.3 and its proof, there exists d 2 N 

and d E D(y,z) ,d  E D(a,x).  So d E OP[Cl,pl] and d E 0P[C2,p2] ,  and d can 

be written as cl + kl x pl and cz + k2 x p2 for cl E Cl, c2 E C2 and kl, kz E &. 



CHAPTER 5.  COMPRESSED COUNTING METHOD 

SO, c2 - cl = kl x pi - k2 x pa, and (c2 - c1) mod gcd(pl,p2) = 0. Hence, 0 E 

(C2 0 C1) mod gcd(p1,p2), and 0 E OP[C2,p2] 0 OPIC1,pl]. 

If 0 E 0P[C2,p2] e OP[C1,pl], there exist cl E Cl,c2 E C2 such that (c2 - 

cl) mod gcd(pl, p2) = 0. c2 - cl = k x gcd(pl, p2) for integer k. Assume pl = pi x 

gcd(pl, p2), p2 = p; x gcd(pl, p2), then gcd(~; ,  P',) = 1. From lemma 5.5, there exists 

No such when N 2 No N = X1 x p i  + A 2  xp; ,  and N +  1 = X3 ~ p ;  + A 4  xp; .  

1 = (A3 - X I )  x pi + (A4 - X 2 )  x p;. It can be denoted as 1 = ,L? x p', - a x pi 

for a, ,B E without loss of generality. Multiplying gcd(pllp2) at both sides of the 

equation, gcd(p1 ,p2) = ,B x p2 - a x pl. Hence c2 - cl = k x ,B x p2 - k x a x pl. 

So, c2 + k2 x p2 = c1 + k1 x PI. Algebraic manipulation like multiplying ,B x p; 

with 1 = (p x p; - a x pi)  gives (P2 x p2)p2 - (a x P x p;)pi = 1, that means a 

new set of coefficients is found which are larger. So, there exist kl, k2 E a, such that 

c l + h  xpl  = c2+k2 xp2 > N .  Hence,cl+kl xpl  E D(a ,x)  andc2+kl xp2  E D(y,z) .  

Therefore, 0 E D(y, z) 0 D(a,  x). 

As a summary for this section: it has been discussed how to derive R,,,. First, 

distance sets are replaced by its partial periodic subset. Second, periodic partial dis- 

tance set is captured by the offset-period representation. Third, derivation of distance 

sets is transformed into that of OP sets. Fourth, for the purpose of 0 containment 

test, difference set is managed in the same way as distance set. 

The derivation of R,,, is as follows. In up relation, OP's for the distance set 

(called distance OP) are derived. The f la t  relation passes those distance OP to the 

down relation, where OP's for the difference set (called difference OP) are initialized. 

Difference OP's in down are derived in the same way as the distance OP are in up. 

A query answer is obtained if the difference set contains 0. 

5.3 Compressed Counting Method 

The compressed counting method computes both R,,, and R,,,,. The former is stud- 

ied in this section; whereas the latter in the next one. In this section, we discuss (1) 
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precompilation of up and down digraphs, and (2) query processing for the derivation 

of R,,,, which consists of (i) the derivation of distance-OP in up, (ii) the derivation 

of difference-OP in down and (iii) answer extraction. 

5.3.1 Precompilation of Data Relations 

Since a database digraph is composed of a set of SCCs and their connections, pre- 

compilation of a database digraph before query processing will avoid rederivation of 

the SCC information when multiple queries are posed to the same data relation or 

the same SCC is used many times during query processing. 

Precompilation of a digraph (up or down relation) consists of three steps: (1) par- 

tition the digraph into a set of SCCs, (2) derive the internal OP's for the nodes in each 

SCC, and (3) construct a compressed graph by extraction of inter-SCC connections. 

Studies in [49, 41, 1291 contribute to a simple algorithm that derives SCCs and 

their periods in a digraph G in O(e) time, where e is the number of edges in G. At 

the same time, the nodes in an SCC of period p can be partitioned into p equivalence 

classes. Let one class be the reference class (labeled 0) in which every node is a 

reference node with internal offset 0. Other classes are labeled from 1 to (p - 1) 

according to their distance (shortest traversal length) from the reference class. Every 

node in class j has internal offset j. A node in class j of SCCk with period p is 

registered as (k ,  [j ,p]),  where k is the SCC-id, j the internal offset, p the period, and 

[j,p] is the internal OP of the node. 

The compressed graph (CG, or CG,,/CGd,,, for the up/down relation) is a di- 

rected acyclic graph (DAG) in which a node represents an SCC, and an edge be- 

tween two nodes (called an inter-SCC edge) represents t he inter-SCC connection(s) 

between two connected SCCs. An inter-SCC edge from SCCl to SCC2, denoted as 

SCCl + SCC2, is labeled by the offset of the distance OP for SCCl + SCC2, which 

is an integer or a set of integers, obtained by a set of path lengths 11, 12,. . . , lk moduled 

by gcd(pl, p2), where pl and p2 are ~e r i ods  of SCCl and SCC2, and I; (for 1 < i 5 k)  
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is the length of the i-th inter-SCC connection path, calculated by the length between 

two SCC reference nodes in the digraph. 

Example 5.2 Figure 5.7 shows how the precompilation is done on a small digraph. 

The graph is partitioned into four SCCs. The period of each SCC and the internal 

OP of the nodes in each SCC are computed. Finally, the graph is compressed into a 

compressed graph C G  with four nodes and four labeled inter-SCC edges. 

Data Digraph 

SCC 3 

sccz 

Compressed Digraph 

Internal Offset of Data Nodes in SCCs 

SCC period 

data node 

internaloffset 

Figure 5.7: Precompilation of data relation. 

A digraph of a data relation usually contains only a small number of SCCs. Thus, 

a compressed graph (CG) is a small DAG. The mapping of a large data digraph into a 

tiny CG which contains rich information about SCCs and their interconnections will 

save the recomputation of periods and internal offsets of the nodes in each SCC and 

guide efficient query evaluation. This will be discussed in the query processing phase. 

SCC =6 

b c d e f  g q  r 

0 1 2 3 4 5 1 2 

SCC =3 

h i j  

0 1 2 

SCC =4 

k l m n  

0 1 2 3 

SCC =2 

o p 

1 0 
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5.3.2 u p  processing 

When a query is posed to the system, the up relation processing starts, which derives 

the distance-OP for every data node reachable from the query constant(s). 

If query constant a is not in any SCC, the distance-OP of a is initialized to [0,0]. 

A breadth-first search (join operation) starting from a is performed in G,, to find out 

all the SCCs reachable from query constant a via acyclic path(s) only. The offset 1 

keeps increasing along the acyclic path with the OP of the derived node assigned to 

be [l, 0] until it reaches an SCC. When the derivation reaches an SCC S at  the node 

n with internal OP = [c,p], the distance-OP of S (which is the distance OP of S's 

reference node) is initialized to Norm([l - c,p]), where I is the current offset. If there 

are multiple paths from a to the same SCC, the distance-OP for the SCC is the union 

of the distance-OP derived from each path. If query constant a is in an SCC, the 

SCC is initialized in the same way as above except the offset 1 is 0 and the node n is 

node a itself. 

As proved in the previous section, OP representing distance set for an SCC in 

CG,, is derived by adding and unioning distance OP's of its preceding SCCs. So once 

an SCC is instantiated, all the SCCs in CG,, reachable from it can be instantiated 

immediately using the compressed graph CG,, following the topological order. 

In a digraph, the distance-0P of every node in each reachable SCC is inferred 

from distance-OP of the SCC (which is the distance-OP for the reference node of the 

SCC) and the internal offset of the node. For node n E SCC S; with OPICilpi] and 

internal offset of m,  the distance-OP for n is NORM(OP[C;, pi] $ m). 

Example 5.3 Suppose up relation is shown in Figure 5.7. Since length(a -+ b) = 1, 

and the internal OP of the reference node b is [O, 61 (0 is the internal offset, 6 is the 

period of SCC1), the distance-0P for SCCl is initialized to [l, 61. OP propagation 

in the compressed graph proceeds as follows. Since label(SCC1 t SCC2) = 0, and 

SCCl is the only predecessor of SCC2, OP of SCC2 can be derived by adding OP of 

SCCl with SCCl -+ SCC,, that is, NORM([l ,  61 $ [O,gcd(6,3)]) = [I, 31. Similarly, 
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the OP for SCC3 is [I, 21. Since SCC4 is connected with other SCCs in parallel, 

the OP for SCC4 is obtained by adding OP's for SCC3, SCC3 -+ SCC4, adding 

OP's for SCC2, SCC2 -+ SCC4 and unioning the two addition results, which is 

NORM(([l ,  21 $ [O,gcd(4,2)]) U ( [ I ,  31 $ [O,gcd(3,2)])), or [0, 11. Once the OP for 

each SCC is known, OP's for data nodes are inferred easily. The result is shown in 

Figure 5.8. 

SCC 4 

i 

h I > ,  PdO 
f0,31 fa, 11 lo, 11 

D,31 

Figure 5.8: OP for data nodes. 

Notice that distance-0P's should be derived for non-SCC nodes along an inter- 

SCC path. The nodes following an SCC carries the same merged period of the SCC, 

and the offset set carried is incremented by one for each traversal along the path. A 

parallel merge is performed when the paths following two or more SCCs merge at a 

non-SCC node. Such distance-OP propagation proceeds until it reaches a node on 

another SCC. 

An implementation issue concerning OP representation should be mentioned here. 

It has been assumed that all OP is represented in [C,p] pair so far, which can be 

referred to  as explicit OP representation. However, it is not necessary to represent 

OP explicitly in OP derivation. An implicit OP representation is available which 

represents the same information with much less computation and storage overhead. 

For SCC node, the pair of SCC-id and internal offset is the implicit OP representation, 

since the explicit OP representation can be inferred from it. Let's assume that for 

non-SCC node, the SCC that derives it is its driver SCC. Then for non-SCC node 

the pair of its driver SCC-id and the distance from the driver SCC reference node is 
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the implicit OP representation. The explicit OP representation is only required when 

necessary, i.e., when passing of distance OP to down relation, OP initialization and 

the answer extraction. An SCC OP buffer associating SCC-id with SCC OP is needed 

to transform the implicit OP representation into the explicit one. 

5.3.3 down processing and answer extract ion 

The nodes reachable from the query constant a in the up digraph are joined with 

the f la t  relation, which results in a set of instantiated nodes for down processing. 

The distance-0P of participating node(s) in G,, is passed as an inherited OP to the 

corresponding instantiated node(s) of Gdown. 

Derivation of the difference-OP in Gdown is very similar to the distance-OP deriva- 

tion in G,,, with some difference in the OP initialization. 

The initialization for difference-OP in Gdown starts from the instantiated nodes. 

Suppose an instantiated node has an inherited OP of [C,pl]. If it is on an SCC and 

has an internal offset of c and the period of p2, the initial difference-OP for the SCC 

is NORM([p2 - c, pz] 8 [C, pl]). If it is not on any SCC but has a path of length 1 to 

node n on SCC S with period p2, and the internal offset for n is c,  then the difference 

OP for S is initialized to NORM([l + p2 - c,  p2] 8 [C, pl]). If an SCC has more than 

one path from one or more instantiated nodes, its initial difference-OP is the union 

of the individually initialized difference-OP's. 

Once the initialization of difference-OP has finished, the derivation of difference- 

OP for the remaining SCCs and the nodes in the SCCs in down relation resembles 

the OP derivation in up relation. 

Finally, for answer extraction, it is easy to assert that R,,, is the set of data nodes 

in Gdown whose difference-OP contains 0, that is, the offset set of the difference-OP 

contains 0. 
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5.3.4 An example 

Example 5.4 Figure 5.9 is an example showing how compressed counting method 

derives R,,,, where the up relation is shown in Figure 5.8, f k t  relation is shown here 

with dash lines and data nodes in down digraph are denoted with upper case letters. 

Since distance-OP's for node 1 and m are [O, 21 and [l, 21, difference-OP for SCCs is 

initialized to [O, 41 8 [O, 21 U [3,4] 8 [I,  21, which is [O, 21. Since the inherited distance- 

OP for node J and M are [2, 31 and [I,  61 respectively, the difference OP for SCC7 is 

initialized to ([2, 31 $ 2 8 [2, 31) U ([2, 31 $ 4 8 [I,  6]), which is [2, 31. Consider the 

topological order in compressed graph, OP for SCCs is [O, 21 and OP for SCC7 is [0, 

21 U [I,  31, which is [{0,1,2,4), 61 in its normal form. The OP for each data node is 

shown in the table. The answer nodes for cyclic portion are A, C, E, G, I since their 

difference-OP contain 0. 

.-- ._--._..---...--____ -. . - 
M 

D i e  for UP relation -7 
D C F G 

Data Digraph 

Internal OPs and Difference OPs of Data Nodes in DOWN Relation 

SCCS 0 SCC, SCC 
0 - P o  ' 

Compressed Digraph for DOWN Relation 

SCC period 

datanode 

Figure 5.9: Example of compressed counting method. 

SCG =4 SCC 6 =2 SCC 7 =3 

A 6 c D E F G H I 
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5.4 Complementary counting: optimizations 

5.4.1 Dealing with acyclic paths 

In principle, the derivation of Racy, where the derivation path in either G,, or Gdown 

is acyclic, can be performed by simply applying the acyclic Counting method [9] to 

count the acyclic path length starting from a in G,, and from instantiated nodes in 

Gdown. The counting method terminates when the counting level reaches the longest 

acyclic path length. 

However, a complete separation of the derivations of R,,, and Racy, may not lead to 

good performance because it is easy to observe that much of counting in both G,, and 

Gdown are performed separately but redundantly in the two derivations. Therefore, 

it is desirable to devise an integrated approach in the processing of both cyclic and 

acyclic data. As an integral part of compressed counting, we propose a complementary 

counting technique for the derivation of Racy,. 

Assume path a + x in G,,, edge (x, y) E f lat ,  and path y z in Gdown. Let 

lbc denote the length of path b t c in G,, (or Gdown). There are three cases to be 

considered: (1) a + x is acyclic, (2) both a + x and y + z are cyclic, and (3)  a + x 

is cyclic but y -+ z is acyclic. 

The second case is the derivation of R,,,, where z is an answer if 0 E difference-OP 

of z ,  which has been studied in the last section. 

In the first case, the counting level of node x is registered in up and passed to y in 

down. The counting level decreases as the paths from y are traversed in down until 

the level reaches 0 or the paths terminate, no matter whether the paths are cyclic or 

acyclic. Node z is an answer if it has counting level of 0. 

A node x in G,, with an acyclic path from a has the counting level for x, la,, 

derived during distance-OP initialization, so do nodes with acyclic path from an 

instantiated node y in Gdown during difference-OP initialization. The acyclic length 
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(counting level) is represented by the same offset-period notation, where an acyclic 

node has 0 as the period and the actual length as the offset. This kind of OP can be 

referred to as acyclic OP in contrast to cyclic OP as discussed before. 

This implies that the computation of R,,, can be minorly modified to incorpo- 

rate the computation in the first case. The modification is presented as follows. In 

difference-OP initialization in Gdown, if an instantiated node y has an acyclic inher- 

ited OP of [c, 01, the OP of node y becomes 0 8 [c ,  01, i.e., [-c, 01. The path(s) (both 

cyclic and acyclic) starting from y is traversed in Gdow, and the counting level (offest) 

is increased by one and passed to the next node along the path at each step. This 

process proceeds until either the path terminates or the counting level reaches 0, and 

at this point the corresponding data node is registered in the answer set. 

In the third case, since the compressed counting derives only distance-OP for x 

instead of the lengths from a to x, a traversal from a to x is necessary to obtain all the 

counting levels of x up to level of I,, to facilitate the length matching of I,, and l,,. 

Such a process can be optimized by a complementary counting technique presented 

below. 

5.4.2 Complementary counting optimization 

To facilitate the improved processing of acyclic data, two extra pieces of information 

need to be stored in the up processing during the R,,, computation. The first is 

flipping nodes, where a flipping node is a node in an SCC reached via acyclic path(s) 

from a query constant, i.e., a node whose internal period is nonzero but is derived by 

a zero-period driver in the processing, e.g. node x in Figure 5.10. Suppose xl is a 

flipping node reached from a query constant a at counting level 11. Then the flipping 

node (a, xl, 11) is stored in aflipping node huger during the R,,, computation. Flipping 

nodes are the starting points when a retraversal of up relation becomes necessary. The 

second is driver SCC(s) which should be registered for every data node not in any 

SCC but derived by some SCC in the computation. If a non-SCC node x is derived by 

an SCC S via an acyclic path, S is a driver-SCC of node x. Driver-SCC information 
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is used to prune the irrelevant SCCs in the retraversal of the up relation. 

Figure 5.10: A flipping node is shown. 

For the same purpose, candidate nodes need to be stored in the down processing 

during Rcyc computation, where a candidate node is a node reached via acyclic path(s) 

only from an instantiated node in down, and 0 E ((1 8 C) mod p), where [CYp] is the 

inherited-OP and 1 is the acyclic path length from an instantiated node to the current 

node. Suppose zl is a candidate node reached from an instantiated node yl (driven 

from the query constant a )  at counting level ml. The candidate node (a, y l ,  zl, ml) is 

stored in the candidate node buffer. Candidate nodes are those in the down relation 

that might be the answer to the query. Notice that 0 E ((1 0 C) mod p) is a necessary 

condition for the node to be an answer. 

After the computation of Rcyc, and the extraction of the answers for those travers- 

ing via acyclic paths only in the up processing (Case l), a complementary counting 

process starts to derive those answers derivable by traversing cyclic path(s) in up and 

acyclic path(s) in down. 

Complementary counting strives for efficiency in four aspects: (1) traversal in up 

restarts at the flipping nodes rather than at the query constants; (2) search only the 

subgraphs of the compressed graph CG,, which may contribute to the derivation of 

answers; (3) the search terminates immediately when the counting level reaches the 

corresponding maximum acyclic counting level in down (since further processing will 

be fruitless to match levels in down); and (4) answers are extracted directly from the 

candidate node buffer rather than retraversal of the down graph (that is, there is no 

acyclic path in down to be retraversed in complementary counting). 

We analyze how to realize these four aspects. Aspect 1 is realized easily by starting 

the complementary counting at the flipping nodes. The stored flipping node informa- 

tion (a, x, l) indicates that there is an acyclic path a -+ x which reaches the node x 
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at the counting level I. 

The key to Aspect 2 is to know via which set of SCCs, a flipping node (a, X I ,  -) 

may derive an instantiated node yl in down for a candidate node (a, y l ,  -, -). Since the 

SCC-id's of x1 and xi (where (xi,  yl) E f la t )  are known in up processing, the relevant 

SCCs can be obtained by analysis of the compressed graph CG,,. Only those SCCs 

in CG,, which are along the path from xl to x', are traversed. 

Realization of Aspect 3 requires to find the corresponding maximum acyclic count- 

ing level in down. A simple solution is to take the maximum counting level m 

for query constant a found among the candidate nodes driven by a ,  that is, m = 

maximum(ml, . . . , mi) for all the candidate nodes in the form of (a, -, -, mi). An 

improved solution is to associate with the subgraph (found in Aspect 2) only those 

corresponding maximum counting level which are derivable from the subgraph. Such 

maximum counting level can be easily found from the candidate nodes in the form of 

(a, y, -,mi), where y is in the set of instantiated nodes derivable by the subgraph. 

Aspect 4, the direct extract of answer from the candidate node buffer, can be easily 

implemented since a node z with a cyclic path in up and an acyclic one in down is in 

the answer set if and only if there exists (i) a node x derived from a with counting 

level = 1 in up, (ii) (x, y) E f lat ,  and (iii) (a, y, z, 1) in the candidate node buffer. 

Thus, we have the following algorithm for complementary counting: (1) for each 

query constant a and its instantiated node y, find the maximum (down) counting level 

maxlevel(a, y) from among all the candidate nodes in the form of (a, y, z ,  m); (2) the 

maximum (up) counting level maxlevel(a, x') = maxlevel(a, y ) if (x', y) E f lat ;  (3) 

starting at St, the SCC associated with x', or the driver SCC of x' if x' is not on any 

SCC, propagate backward to each SCC in CG,, three pieces of information: (i) query 

constant a ,  (ii) maxlevel(a, x'), and (iii) a set of SCC-id's along the path; (4) starting 

at each SCC containing the flipping nodes of a ,  traverse G,, forward and increment 

the counting level until it reaches maxlevel(a, x'), and notice that a new SCC will 

be explored only if a is associated with the SCC and the SCC-id is in the associated 

SCC-id set, and ( 5 )  perform join of (a, xt, I) with (XI ,  Y )  E f lat ,  and with (a, y, z, I) 
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in the candidate node buffer, the result set of z's is the set of answers derived by 

complementary counting. 

Discussion 

5.5.1 Complexity Analysis 

The compressed counting method has the worst case time complexity of O(ne) where 

n and e are the number of nodes and the number of edges respectively in the database 

digraph. This is analyzed for both precompilation and query processing. 

Precompilation consists of the following four steps : (1) partition a digraph into 

a set of SCCs, (2) compute the period of each SCC, (3) partition nodes in each 

SCC into equivalence classes, and (4) map the digraph into a compressed graph CG. 

According to the studies in [49,41], steps 1 to 3 takes O(e) time. The worst case time 

complexity for graph compression (step 4) is O(ne) because it takes at most n joins 

to derive all the inter-SCC connections. Such a complexity makes precompilation 

feasible for a relatively large database, even considering data updates. Moreover, 

partial recompilation can be explored if the updated data influences only one or a 

small number of SCCs. 

The cost for storage of precompiled results is minimal. Each node in an SCC 

needs to store only two integers: an SCC-id and an internal offset. Since the number 

of SCCs is much less than the number of data nodes in a digraph, the cost for storage 

of the compressed graph is negligible in most databases. 

Theorem 5.8 The time complexity for query processing in compressed counting method 

is O(ne), where n, e are the number of nodes and edges in digraph G,, and Gdoum. 

Proof: For query processing, initialization of OP and traversal of inter-SCC paths 

can be done with each edge in acyclic paths being traversed once, it takes at most 
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O(ne) time. The computation of Racy, is bounded by the worst case time of acyclic 

counting, which takes at most O(lacYce) time where I,,,, is the length of the longest 

acyclic path in up and down, so it is bounded by O(ne). 

The following paragraph is a proof of time complexity for OP derivation. The OP 

derivation in query processing consists of two parts: OP derivation for SCC nodes 

and OP derivation for non-SCC nodes. 

OP derivation for SCC nodes accesses each data node in SCC only once, hence the 

I/O time is O(n). OP merging is by arithmetic computation which takes only CPU 

time. If SCC1, SCC2 with periods of pl,p2 are connected in serial, the result OP has 

the period of gcd(p1, p2)  5 min(nl, n2), where n; is the number of nodes in SCC;. 

Since it takes O(plpz) for serial merge of SCCl and SCC2, it is bounded by O(nl n2). 

If SCCl, SCC2 and SCC3 with periods of pl,  p2, p3 are connected in parallel as shown 

in Figure 5.6, then the result OP has period of lcm(gcd(pl , p3), gcd(p2, p3)), which 

is equivalent to gcd(lcm(pl, p2), p3), hence the result period is less than n3. It takes 

O(plp3 + p2p3 + p3) time for parallel merge, or it is bounded by O(nln3 + n2n3 + n3). 

It can be stated that the period of an SCC OP (either distance-0P or difference-OP) 

is less than n s c c  In other words, cost of an SCC by OP merging is bounded by 

the n(nl + . . . + nk)  where n is the number of nodes in the SCC, and n l , .  . . , nk are 

the number of nodes in the preceding SCCs. Hence, the cost for OP derivation in 

compressed graph is Cscc,+scc,EcG(n;nj). Inferring OP for a node on SCC; takes 

O(n;), so the cost for inferring OP for all SCC nodes takes C;n?. The total cost of OP 

derivation for SCC nodes is Gin? + CSCC,ISCCJECG(ninj), which is less than (Cini)2. 

n; is the number data nodes in SCC;, so Cini < n, the cost of OP derivation for SCC 

nodes is 0 (n2 ) .  

Using the implicit representation of OP, the derivation of OP for non-SCC nodes 

resembles the counting level derivation in acyclic counting and takes O(ne). The 

transformation from an implicit representation into the corresponding explicit one 

requires one or more [C;, pi] $ 1  operation, which takes O(ni) each. Hence one trans- 

formation takes O(n), and the transformation for all non-SCC nodes takes 0 (n2) .  So, 
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the cost of OP derivation for non-SCC nodes is O(ne). 

Test for 0 containment in difference OP takes O(1) for each node in down assuming 

offset set in difference OP is sorted or O(nscc) if it is not sorted. So answer extraction 

takes at most 0 (n2 ) .  

Hence, the worst case time complexity for query processing is bounded by O(ne). 

0 

5.5.2 Extension to multiple source 

So far, we have assumed that there is only one node in up instantiated from the query. 

Nevertheless, if there are multiple nodes in G,, instantiated, it is straightforward to 

extend the single source approach. 

The precompilation phase remains the same for multiple source nodes. In the 

query processing phase, each OP carries a source origin designating which source 

node it is derived from. For any operations on OP such as addition, subtraction and 

merge, only two OP's with the same origin are allowed to be operated on. The query 

answer is extracted from Gdown whose difference OP contains 0, hence the origin of 

its OP establishs which query instantiation derives such answer node. 

If there are k nodes instantiated in G,,, the worst case time complexity for com- 

pressed counting is O(kne). 

5.5.3 Strength of compressed counting 

Compressed counting has absorbed the major ideas from the previous studies on cyclic 

counting. Separation of the computation of R,,, and R,,,, is from Magic Counting 

[I151 and Cyclic Counting [41]. SCC extraction and equivalence class derivation is 
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from [3, 49, 411. Precompilation of database digraph is from [49]. However, com- 

pressed counting integrates the strength of these studies, develops a graph compres- 

sion technique and an integrated cyclic and acyclic data processing technique and 

provides a simple and efficient solution to the problem. 

In comparison with the previous studies on cyclic counting, the compressed count- 

ing has the following advantages. 

First, precompilation of up and down relations saves the recomputation of periods 

and offsets for nodes and SCCs not only among different queries but also within the 

same query but with multiple SCC entry points. Most of the computation for OP 

merging and transformation are performed at the SCC level. Only offset adjustment 

are performed on individual nodes in an SCC, which requires minimum computation. 

Secondly, the use of compressed graphs facilitates computation, propagation and 

merge of offset-period information in group mode. It also facilitates the analysis of 

data flow in the computation of both R,,, and Racy,. 

Thirdly, the algorithm is highly parallel in nature. When one SCC is reached in 

the up or down processing, merge and propagation of OP's are performed in the small 

compressed graph. Then the computation of all the data nodes in relevant SCCs can 

be performed in parallel. 

Fourthly, both acyclic and cyclic data are computed in one uniform algorithm, 

which reduces redundant processing in the derivation of R,,, and Racy,. 

Some optimization techniques explored in other studies, such as the golden-cycle 

optimization [49], can be adopted naturally in the compressed counting as well. 

Finally, it is worth mentioning that the counting technique is not confined to the 

evaluation of queries in "well-formed" (single) linear recursions as shown in Figure 5.1. 

It can be applied to the evaluation of more general classes of recursions, such as 

compiled general linear recursions [49] and certain classes of multiple linear recursions 

[51, 521. 
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5.6 Summary 

The compressed counting method has been studied for the extension of acyclic count- 

ing method to general databases. The method integrates the merits of several pro- 

posed cyclic counting algorithms and provides a uniform handling of both acyclic and 

cyclic data in the processing of linear recursive queries. The method precompiles 

and compresses database digraphs into a small compressed graph which guides the 

efficient query evaluation and optimization. The method processes linear recursive 

queries in both cyclic and acyclic databases as efficiently as the counting method does 

in acyclic databases. Also, it facilitates parallel processing and the exploration of 

many optimization techniques. 



Chapter 6 

Discussions and Conclusions 

The author's contribution to the problem of efficient recursive query processing in 

deductive databases has been discussed in the previous chapters, including the de- 

sign and implementation aspects on LogicBase; how constraints and monotonicity are 

employed to ensure the safety of query evaluation and increase its efficiency; exten- 

sions to the chain-based evaluation to deal with multiple linear recursions and cyclic 

databases in the counting method. The application scope, strength and limitation and 

performance evaluation in comparison with other popular approaches are discussed 

in this chapter. 

The analysis of the evaluation of different query instantiations for the nqueens re- 

cursion (in section 3.2.4) discloses an interesting fact: a logic program can be executed 

declaratively, independently of query modes and rulelpredicate ordering. Moreover, 

it derives the complete set of answers and terminates properly. Obviously, this is 

quite different from the implementations of Prolog [I261 which perform no systematic 

rule compilation and query analysis, and therefore, cannot judge termination, enforce 

sophisticated constraints, determine appropriate rulelpredicate ordering, or derive ef- 

ficient query evaluation plans. Recent studies on constraint logic programming, such 

as [140, 831, enforce more constraints than Prolog but still mainly confine the program 

evaluation ordering to those given by programmers. 
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The question is how far we can push this methodology towards declarative pro- 

gramming in general logic programs. 

6.1 Applicable domains of the methodology 

The chain-based query evaluation method is based on the compilation of each recur- 

sion in a program into a highly regular chain form on which the systematic query 

analysis can be performed to determine an efficient query evaluation plan and the 

termination of query evaluation. Based on the studies in [47, 581, linear and nested 

linear recursions can be compiled into highly regular chain forms. 

Many complex recursions, though they cannot be compiled into highly regular 

chains, may still have interesting regularities among the variable connections in the 

recursive rules. For example, the recursion tower-o f -hanoi shown in Example 6.1 

with the head predicate "hanoi(N, A, B, C, Moves)" is a typical nonlinear recursion 

which cannot be compiled into highly regular chain forms. However, because of the 

regularity of its binding passing across two recursive subgoals in the recursive rule, 

the expansions of the recursive rule still demonstrate certain chain-like regularity and 

the portion in front of or behind each recursive subgoal in subsequent expansions 

can be treated as a pseudo-chain in the query analysis. Thus, the chain-based query 

evaluation method can still be applied to such recursions, and queries such as "? - 

hanoi(3, a ,  b, c, Moves)" or "? - hanoi(N, a ,  b, c, [a to b, a to c, b to c, a to b, c to a ,  

c to b, a to b])" can still be analyzed systematically and evaluated efficiently [50]. 

Example 6.1 The recursion hanoi, defined by Rules (6.1) and (6.2), is a functional 

nonlinear recursion. It defines the Towers of Hanoi puzzle [126], that is, moving N 

discs from peg A to peg B using peg C as an intermediary. 

hanoi(1, A, B, C, [A to B]). (6.1) 

hanoi(succ(N), A, B, C,  Moves) : - 

hanoi(N, A, C, B, Msl) ,  hanoi(N, C, B, A, Ms2), 
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append(Msl, [ A  to BIMs2], Moves). 

However, this does not imply that chain-based evaluation can be applied effectively 

to all kinds of recursions. This is because some recursions may not have regular 

variable passing patterns and cannot be compiled into chain or even pseudo-chain 

forms. For example, the nonlinear recursion r ,  defined by Rules (6.3) and (6.4), 

belongs to this class. 

Therefore, a major limitation of the chain-based evaluation method is its limited 

applicability to complex classes of irregular recursions. 

Nevertheless, according to our survey and experience, most practically interesting 

recursions are in relatively simple forms or are compilable to highly regular forms 

to which the query analysis and evaluation techniques studied here are applicable. 

Theoretically, the recursions solvable by our method cover only a subset of all the 

possible recursions. However, it is difficult to find semantically meaningful recursions 

to which the method cannot be applied. One possible explanation of this fact could 

be based on the simplicity and regularity of human reasoning processes which guides 

the writing of recursive programs. It seems that a recursive program with no obvious 

expansion regularities is difficult for human to comprehend. There should exist certain 

regularities (such as connections between the corresponding argument positions in the 

head predicate and the same recursive predicate in the body) in a meaningful recursive 

program, and such regularity should be characterizable by their semantic linkages (i-e., 

either by shared variables or by connected predicates). That is the intuition behind our 

claim that the techniques discussed here are applicable to a large class of interesting 

recursions. This is also the basis of our design of LogicBase, which takes chain-based 

evaluation as a major evaluation technique and leaves a more general technique, such 
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as the generalized magic sets method, as an assistant one to be applied only when 

chain-based evaluation cannot derive efficient query evaluation plans. 

6.2 A comparison with other logic program im- 

plementat ion techniques 

6.2.1 Comparison 

To the best of our knowledge, current implementations of logic programming lan- 

guages cannot evaluate logic programs independently of the order of rules or predicates 

or query mode to find the complete set of answers and terminate properly. 

Recent studies on deductive databases have developed bottom-up query evaluation 

methods, such as the magic sets method and its variations, for efficient evaluation of 

recursions [28, 105, 135, 1331. These methods apply set-oriented processing, confine 

their search to the portion of the database relevant to a query, and evaluate order- 

independent and query mode-independent function-free logic programs completely 

and correctly. Several deductive database system prototypes, such as LDL [28], ADITI 

[135], NAIL! [133], CORAL [105], are constructed based on this approach. However, 

without normalizing recursions and performing a detailed analysis of the behavior 

of compiled recursions, it is difficult to fully explore query constraints and behavior 

properties of a particular recursion or a particular query in the evaluation, which 

may encounter difficulties when evaluating sophisticated function-bearing logic pro- 

grams. For example, the magic sets method cannot evaluate the nqueens recursion in 

predicate order-independent and query-mode independent fashion [105]. Similar com- 

ments can be applied to the EKS-V1 system [142] which adopts the query-subquery 

evaluation approach. 

Prolog represents an effort toward declarative computing from the logic program- 

ming community. However, it does not have the ability to deal with a large amount 
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of data, or the declarativeness found in LogicBase. 

The limitation of the chain-based query evaluation technique is in that the com- 

pilation method is confined to the recursions that can be compiled into highly regular 

forms [58]. In contrast, the magic sets method is applicable to general function-free 

recursions. However, the chain-based method facilitates quantitative analysis of com- 

piled recursions and, therefore, can reduce search space more accurately than the 

magic sets method. Thus, it represents an interesting direction towards sophisticated 

query analysis and evaluation of complex, declarative logic programs. 

6.2.2 Comparison of evaluation costs 

6.2.2.1 Cost model 

We briefly compare the cost to evaluate queries using the top-down (Prolog), the magic 

sets and the chain-based evaluation approaches. Prolog adopts depth-first state space 

search with backtracking strategy, thus it processes one tuple at a time. To derive 

the complete set of answers, Prolog has to traverse essentially the whole state space. 

A top-down set-oriented processing is taken as the method to be compared instead 

of Prolog itself, which should traverse the same number of states for all solutions but 

with less overhead of accessing EDB or relations for intermediate results. From our 

observation, the cost for compilation of a recursive program is negligible comparing 

that of query processing. Therefore, only the query processing cost is considered. 

The same cost model as in Chapter 2 is used to do performance comparison for 

various query evaluation strategies independent of system implementation. Cost for 

each evaluation is based on three aspects: cost for evaluating arithmetic and "cons" 

functions (type a ) ;  cost for accessing EDB relations (type b);  and cost for processing 

IDB rules (type c ) .  Of these three types of costs, accessing an EDB relation is the 

most expensive, and cost for evaluating a function is the least expensive. For exam- 

ple, calculating "X + Y" only needs a few machine instructions for each X, Y tuple 

whereas a selection in a relation needs thousands of machine instructions, which can 
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be translated into a few dozens of machine instructions for each query instance. To 

provide a reasonable and measurable basis for performance comparison, it is assumed 

that on average each arithmetic function incurs one unit of cost; each LLcons" function 

incurs 3 units of cost; accessing EDB relations incurs 10 units of cost for each tuple 

and processing IDB rules incurs 5 units of cost for each tuple. 

The magic sets and the top-down evaluation method are implemented under the 

same environment as where LogicBase is implemented. For query evaluation using 

the magic sets method, the complete set of rewritten rules (including rules generating 

the magic predicates) is fed into the LogicBase system and the semi-naive evaluation 

is applied to the magic rules to derive the magic predicates, and then to rewritten 

rules to obtain answers to the original query. For example, Figure 6.1 shows the set 

of rewritten rules for the ancestor program, which is first defined in Figure 1.1 in 

Chapter 1 using Prolog syntax. In Figure 6.1, m-ancestor is the magic predicate, and 

edbparent is an EDB predicate. 

m-ancestor(john). 

m-ancestor(2) : - m-ancestor(X), edb-parent(X,Z). 

ancestor(X, Y) : - m-ancestor(X), edb-parent(X, Y). 
ancestor(X, Y) : - ancestor(2, Y), m-ancestor(X), edbparent(X, 2). 

? - ancestor(john, Y). 

Figure 6.1: Rewritten rules and magic rules for ancestorbf. 

The top-down method can be viewed as a set-at-a-time Prolog evaluation method. 

It follows the same unification process as in Prolog, but adopts set-at-a-time data 

accessing strategy. Therefore, no backtracking is needed. It treats each predicate 

in a rule body as a new subgoal, when a query is made against an IDB rule, query 

instantiation is passed to the rule body by unification between the query and the rule 

head. Each predicate in the rule body becomes a subgoal (or a new query) and is 

evaluated by the same top-down approach. The original query is processed if all its 

subgoals are evaluated. Figure 6.2 shows the program for query ancestorbf using the 
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top-down method, in which the ordering of rules and predicates has to be carefully 

specified to ensure safe query processing. 

ancestor(X, Y) : - edb-parent(X, Y). 

ancestor(X, Y) : - edb-parent(X, Z) ,  ancestor(Z, Y). 

? - ancestor(john, Y). 

Figure 6.2: ancestorbf program for the top-down evaluation. 

Programs used in cost comparison for the top-down and the magic sets methods 

can be found in Appendix B. 

For simplicity, chain, magic and top-down are used to refer to the chain-based 

evaluation method, the top-down set-oriented evaluation method and the magic sets 

evaluation met hod, respectively. 

6.2.2.2 Cost comparison 

Figure 6.3 shows the cost for query nqueensbf, where a placement of N queens on an 

N x N chess board is searched so that none of the queens attacks each other. 

Figure 6.3 illustrates that top-down and chain methods have very close costs, 

whereas query processing using magic costs significantly more for the same type of 

query. For example, evaluating query "? - nqueens(4, Qs)" costs 3385, 3490 and 7668 

units for top-down, chain and magic, respectively. Magic costs more than top-down 

and chain because in this program the magic predicate cannot reduce the size of 

an EDB relation. The program for the magic method is shown in Figure B.3 and 

Figure B.4 in Appendix B. 

Figure 6.3 also indicates finding all valid chess board placements for N queens has 

a very high complexity. The size of search space is O(n!). 

Figure 6.4 shows the cost for query queensfb, such as query "? - nqueens(N, [3, 1, 

4,2])", where given a particular N x N chess board it is verified whether the queens on 
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cost 

chain 

- - - - - -  magic sets 

Figure 6.3: Cost for nqueensbf. 

the board attack each other, and if they do not, N is returned. Top-down and magic 

are unable to evaluate such kind of query no matter how the predicates or the rules 

in the program are reordered. Therefore, only the cost using chain is shown, with and 

without constraint pushing as discussed in Chapter 2. It is shown that the complexity 

for queensfb is substantially reduced, from O(n!) to 0 (n2 ) ,  when constraint derivation 

and pushing is employed. Notice that the chain method uses the same program in 

processing nqueensbf and nqueensfb queries, thus a greater level of declarativeness is 

achieved. 

Figure 6.5 shows the costs for sorting a list using the permutation sort method. 

Corresponding programs are shown in Appendix B. Top-down and chain have the 

same costs, whereas magic costs more. However, when equipped with constraint 

pushing, chain has a much lower cost than that of top-down. Constraint pushing in 

the chain method reduces complexity from O(n!) to 0 ( n 2 )  in this case. 
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cost 
chain 

- - - chain with constraint pushing 

Figure 6.4: Cost for nqueens fb  

For the insertion sort program shown in Figure 6.6 and Figure B.6 in Appendix B, 

chain has a slightly higher cost than top-down, whereas magic costs significantly more 

than both, as shown in Figure 6.7. 

Figure 6.9 illustrates the costs for reversing a list. The programs are defined in 

Figure 6.8 and Figure B.7. The cost curves have similar shape as those in Figure 6.7. 

In Figure 6.10, processing of query ancestorbf is considered, whose programs are 

shown in Figure 6.2 and Figure 6.1 for its version of the magic sets method. This 

program contains no function, and the cost for accessing EDB relations dominates 

the overall cost. To offset the effect that different data entry points have on the cost, 

the average cost for queries of type ancestorbf with entry point from each data node 

is shown. To maintain consistency among EDB relations of different size, all EDB 

relations have the same shape (tree or inverted-tree) and the same branch factor. 
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cost + 

Figure 6.5: Cost for permutat ionsortbf  
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The costs for query ancestorfb is shown in Figure 6.11. Magic and chain have 

significant lower cost than the top-down method. 

Figure 6.12 shows the cost for evaluating queries of sgbf  for the same generation 

program. 
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insertionsort([],  [I) .  
insertionsort([XIXs], Ys) : - 

insert ionsort(Xs,  Zs),  insert(X, Zs, Ys). 

insert (X, [ I ,  [XI). 
insert(X, [Y IYs], [X, Y IYs]) : - X 5 Y. 

insert(X, [YIYs], [YIZs]) : - 

X > Y, insert(X, Ys, 2s). 

? - insert ionsort([4,3,2,1],  X). 

Figure 6.6: Insertion sort program. 

Aggregation and modularly stratified negation: 

Stratified aggregation can be easily incorporated into LogicBase. Once the syn- 

tax for aggregation is parsed, the compilation phase may treat aggregate predi- 

cate as an ordinary predicate. During the plan generation phase, the evaluation 

of an aggregate predicate should be scheduled only after the predicate being 

aggregated has been available. 

To support modularly stratified negation, some kind of delaying mechanism is 

needed during the evaluation of the negated predicate so that all the data within 

each strongly connected component can be evaluated together. More study is 

needed to gain an insight about how negation can be accommodated in the 

chain- based compilation. 

Secondary storage management: 

Current LogicBase prototype implementation is a main memory based system, 

appropriate interface is needed to hook up with a storage manager or a relational 

database system to provide full-fledged database management system features. 

Such extension will surely expand the application domain of LogicBase. 

Towards a deductive and object-oriented database system: 
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Figure 6.7: Cost for inser t ionsor tb f .  

cost 

Merging of deductive and object-oriented data models in LogicBase presents an 

important direction and exciting challenge. A possible solution to incorporate 

object-oriented features into LogicBase is to adopt part of F-logic [74] as the 

logic representation and to extend the chain-based compilation and evaluation 

methods to support F-logic. Initial study indicates that in principle the intro- 

duction of F-logic will not interfere with the compilation of recursive [148], but 

the chain-based evaluation needs appropriate modification. 
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The LogicBase system has been implemented with a focus on the compilation and 

query evaluation of application-oriented recursions. The performance simulation among 
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reverse([l, [I). 
reverse([X IXs], 2s) : - 

reverse(Xs, Ys), append(Ys, [XI, 2 s ) .  

append([], L, L). 
append([XI Ll] ,  L2, [X(L3]) : - append(L1, L2, L3). 

? - reverse([l, 2,3] ,  Y). 

Figure 6.8: Program to reverse a list. 

different deductive query evaluation strategies demonstrates the potential of Log- 

icBase as a declarative and efficient deductive database system. The system identifies 

different classes of recursions, and compiles recursions into regular chain forms when 

appropriate. Queries posed to the compiled recursions are analyzed systematically 

and efficient query evaluation plans are generated. Queries are executed mainly by 

chain-based evaluation, together with several other query evaluation methods, such as 

the generalized magic-sets method [13], etc. The system has been tested and demon- 

strated on some interesting deductive database and logic programming programs, with 

satisfactory results and good performance. 

Based on our experimentation, it is felt that the LogicBase system prototype may 

represent an interesting alternative direction to efficient query evaluation in deductive 

databases and logic programming systems and may be worth further examination and 

development in the deductive database research. 
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Figure 6.9: Cost for reversebf .  
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Figure 6.10: Average cost for ancestorbf  with tree-shaped edb-parent. 
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cost 

Figure 6.12: Cost for the same generation query sgbf . 
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Syntax of LogicBase Input 

Syntax for LogicBase input (specified in BNF): 

program ::= definitions actions. 

definitions ::= [ edb ] idb 

actions ::= compilation-only I { query ) 

edb ::= 'define-edb' '{' edb-tables ')' 

edb-ables ::= { an-edb-table ) 

an-edb-table ::= 'table' ':' constant ':' int ';' 'heading' '-' . attr-pair ';' 'tuples' '.' . tu- 

ple-set '.' 
attr-pairs ::= one-attr-pair I attr-pairs ',' oneattr-pair 

one-attr-pair ::= constant ':' int 

tuple-set ::= a-tuple ( tuple-set ';' a-tuple 

a-tuple ::= arg I a-tuple ',' arg 

idb ::= 'defineidb' constant '{' rules ')' 

rules ::= { arule  ) 

aru le  ::= a-pred '.' I a-pred '< -' preds '.' 
preds ::= sa-pred 1 preds ',' s-a-pred 

sa-pred ::= a-pred I 'not' ',' s-a-pred 

a-pred ::= constant '(' arglist ')' I arg 'is' arg math-op arg I arg relation-op arg 
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arglist ::= arg I arglist ',' arg 

arg ::= item-arg ( list-arg ( afunct 

afunction ::= constant '(' arglist ')' 

item-arg ::= string ( var ( int ( constant 

list-arg ::= '[' '1' ( '[' head 'I' I '[' head ' I '  tail 'I' 
head ::= arg I arg ',' head 

tail ::= var I list -arg 

math-op ::= '+' I '-' 
relation-op ::= '>' 1 '<' I '=' I '>=' ( '<=' 
list-op ::= 'cons' 

op ::= math-op I relation-op I list-op 

compilation-only ::= 'compile' constant 

query ::= '?-' a-query '.' 
a-query ::= preds 

low-caseletter ::= 'a' 1 'b' 1 .... J'z' 

upper-caseletter ::= 'A' I 'B' I .... I '2' 

digit ::= '0' 1 '1' 1 '2' 1 ,... 1 '9' 

letter ::= lower-caseletter 1 upper-caseletter 1 digit 

int ::= { digit ) 

constant ::= lower-caseletter [ letter ] 
var ::= upper-caseletter [ letter ] 



Appendix B 

Programs For Cost Comparison 

Programs used in cost comparison in chapter 6 are listed here. 

Figure B . l  shows the N-queen program using the chain-based evaluation approach for 

both query nqueensbf and query nqueensfb.  

Figure B.2 shows the N-queen program using top-down approach for query nqueensbf .  

Figure B.3 and Figure B.4 together show the rewritten rule set for query nqueensbf of 

N-queen program using the magic sets method. 

Figure B.5 gives the magic sets program for permutation sort. 

Figure B.6 is the insertion sort program using the magic sets method. 

Figure B.7 is the program for reverse a list using the magic sets method. 

Figure B.8 shows the rewritten ancestor programs for the queries ancestorfb using the 

magic sets method. 

Figure B.9 contains the rewritten same generation program for the query sgbf  for the 

magic sets method. The data in EDB relations satisfy following rules: 

1. r ( a ; , ~ ; + ~ )  for 1 5 i < n .  

2. r ( a l , a i )  for 3 5 i 5 n .  
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nqueens(N,  Q s )  : - range( l ,  N ,  N s ) ,  queens (Ns ,  [ I ,  Q s ) .  

range (M,  N ,  [ M J N s ] )  : - M  < N ,  M 1  i s  M + 1, range(M1,  N ,  N s ) .  

range (N ,  N ,  [ N l ) .  

sueens([ l ,  Q s ,  Q s ) .  
queens(Unplaced, S a f e ,  Q s )  : - 

select(&, Unplaced, Unplacedl) ,  not attack(&, S a f e ) ,  

queens(Unplaced1, [QISa f  el, Q s ) .  

a t t ack (X ,  X s )  : -a t t ack l (X ,  1, X s ) .  

a t t a c k l ( X ,  N ,  [ Y I Y s ] )  : - X  i s  Y + N .  

a t t a c k l ( X ,  N ,  [ Y I Y s ] )  : - X  i s  Y - N. 

a t t a c k l ( X ,  N ,  [ Y I Y s ] )  : - N l  i s  N  + I ,  a t t a c k l ( X ,  N l ,  Y s ) .  

se lec t (X ,  [ X I X s ] ,  X s ) .  

se lec t (X ,  [ Y I Y s ] ,  [ Y I Z s ] )  : -select(X,  Y s ,  2 s ) .  

? - nqueens(4,  Q s ) .  

? - nqueens(N,  [3,1 ,4 ,2]) .  

Figure B. l :  N-queens program using the chain-based evaluation method. 
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nqueens(N, Qs )  : -range(l,  N ,  N s ) ,  queens(Ns, [I ,  Qs).  

range(M, N ,  M N s )  : - 

M < N ,  MI is  M + 1, range(M1, N ,  N s ) ,  cons(M, N s ,  M N s ) .  

range(M, N ,  M N s )  : -M = N ,  cons(N, [I ,  M N s ) .  

queens(Unplaced, S a f e ,  Qs)  : -Unplaced = [I ,  S a f e  = Qs. 

queens(Unplaced, S a f e ,  Q s )  : -select(&, Unplaced, Unplacedl), 

not attack(&, S a f e ) ,  cons(&, Sa f e ,  QSa f e ) ,  

queens(Unplaced1, QSa f e, Qs) .  

at tack(X, X s )  : -attackl(X,  1, X s ) .  

a t tackl(X,  N ,  Y Y s )  : -cons(Y, Y s ,  Y Y s ) ,  X is  Y + N.  

at tackl(X,  N ,  Y Y s )  : -cons(Y, Y s ,  Y Y s ) ,  X is  Y - N.  

attackl(X,  N ,  Y Y s )  : -cons(Y, Y s ,  Y Y s ) ,  

N1 is  N + 1, attackl(X,  N1,  Y s ) .  

select ( X ,  X X s ,  X s )  : -cons(X, X s ,  X X s ) .  

select(X, Y Y s ,  Y Z s )  : -cons(Y, Y s ,  Y Y s ) ,  

select(X, Y s ,  Z s ) ,  cons(Y, Z s ,  Y Z s ) .  

? - nqueens(4, Qs) .  

Figure B.2: N-queens program using the top-down approach for query nqueensbf. 
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nqueens(N, Qs )  : -range(l, N ,  N s ) ,  queens(Ns, [ I ,  Qs) .  

m-range(M, N )  : -range(M, N ,  M N s ) .  

m-range(M1, N )  : -mrange(M,  N ) ,  M < N ,  M1 is  M + 1. 

range(M, N ,  M N s )  : -m-range(M, N ) ,  M = N ,  cons(N, [ I ,  M N s ) .  

range(M, N ,  M N s )  : -range(Ml, N ,  N s ) ,  m-range(M, N ) ,  

M < N ,  M1 is  M + 1 ,  cons(M, N s ,  M N s ) .  

m-queens(Unplaced, S a f e )  : -queens(Unplaced, Sa f el Qs) .  

m-queens(Unplaced1, QSa f e )  : -m-queens(Unplaced, S a f e ) ,  

selectfbf ( Q ,  Unplaced, Unplacedl), not attack(&, S a f e ) ,  

cons(&, Sa f el QSa f e) .  

queens(Unplaced, Sa f el Qs )  : -m-queens(Unplaced, S a f e ) ,  

Unplaced = [ I ,  S a f e  = Qs. 

queens(Unplaced, S a f e ,  Qs )  : -queens(Unplacedl, QSa f e ,  Qs) ,  

cons(&, Sa f e ,  QSa f e ) ,  m_queens(Unplaced, S a f e ) ,  

notattack(Q, S a f e ) ,  selectbbb(&, Unplaced, Unplacedl). 

Figure B.3: N-queen program nqueensbf using the magic sets method, part I .  
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attack(X, X s )  : -attackl(X,  1 ,  X s ) .  

m-attackl(X,  N ,  Y Y s )  : -attackl(X, N ,  Y Y s ) .  

m-attackl(X,  N1,  Y s )  : -m-attackl(X, N ,  Y Y s ) ,  N1 is  N  + 1, cons(Y, Y s ,  Y Y s ) .  

a t tackl(X,  N ,  Y Y s )  : -m-attackl(X, N ,  Y Y s ) ,  cons(Y, Y s ,  Y Y s ) ,  X  is  Y + N. 

at tackl(X,  N ,  Y Y s )  : -m-attackl(X, N ,  Y Y s ) ,  cons(Y, Y s ,  Y Y s ) ,  X  is  Y - N. 

at tackl(X,  N ,  Y Y s )  : -attackl(X, N1,  Y s ) ,  m-attackl(X, N ,  Y Y s ) ,  

N1 is  N  + 1, cons(Y, Y s ,  Y Y s ) .  

m-selectbbb(x, Y Y s ,  Y Z s )  : -selectbbb(x, Y Y s ,  Y Z s ) .  

mse lec tbbb(x ,  Y s ,  Z s )  : -m-selectbbb(x, Y Y s ,  Y Z s ) ,  

cons(Y, Y s ,  Y Y s ) ,  cons(Y, Z S ,  Y Z s ) .  

selectbbb(x, Y Y s ,  Y Z s )  : -mselectbbb(x ,  Y Y s ,  Y Z s ) ,  cons(X, Y Z s ,  Y Y s ) .  

selectbbb(x, Y Y s ,  Y Z s )  : -selectbbb(x, Y s ,  Z s ) ,  

m-selectbbb(x, Y Y s ,  Y Z s ) ,  cons(Y, Y s ,  Y Y s ) ,  cons(Y, Z s ,  Y Z s ) .  

mse l ec t f b f  ( X X S )  : -se lect fb f (x ,  X X s ,  X s ) .  

mse lec t fb f  ( X S )  : -m- se l ec t f b f ( xx s ) ,  cons(X, X s ,  X X s ) .  

se lec t fb f (x ,  X X s ,  X s )  : -mse1ectfbf ( X X S ) ,  cons(X, X s ,  X X s ) .  

s e l ec t f b f ( x ,  Y Y s ,  Y Z s )  : -selectfbf (x,  Y s ,  Z s ) ,  

m s e l e c t f b f ( ~ ~ s ) ,  cons(Y, Y s ,  Y Y s ) ,  cons(Y, Z s ,  Y Z s ) .  

? - nqueens(1, Qs) .  

Figure B.4: N-queen program nqueensbf using the magic sets method, part 11. 
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permutationsort ( X s ,  Y s )  : -permutation(Ys, X s ) ,  ordered(Ys). 

mpermutat ion(ZZs)  : -permutation(Xs, 2 2 s ) .  

m-permutation(Zs) : -m-permutation(ZZs), cons(Z, Z s ,  2 2 s ) .  

permutation(Xs, Z Z s )  : -mpermutat ion(ZZs) ,  X s  = [ I ,  Z Z s  = [ I .  
permutation(Xs, Z Z s )  : -permutation(Ys, Z s ) ,  m-permutation(ZZs), 

cons(Z, Z s ,  Z Z s ) ,  select(Z, X s ,  Y s ) .  

mse l ec t (X ,  Y Z s )  : -select(X, Y Y s ,  Y Z s ) .  

mse lec t (X ,  Z s )  : -mse lec t (X ,  Y Z s ) ,  cons(Y, Z s ,  Y Z s ) .  

select(X, X X s ,  X s )  : -mselect (X,  X s ) ,  cons(X, X s ,  X X s ) .  

select(X, Y Y s ,  Y Z s )  : -select(X, Y s ,  Z s ) ,  

mse lec t (X ,  Y Z s ) ,  cons(Y, Z s ,  Y Z s ) ,  cons(Y, Y s ,  Y Y s ) .  

m-ordered(Y) : -ordered(Y). 

m-ordered(YYs) : -m-ordered(XY Y s ) ,  cons(X, Y Y s ,  X Y Y s ) .  

ordered(Y) : -m-ordered(Y), cons(X, [ I ,  Y ) .  
ordered(XYYs) : -ordered(YYs), m-ordered(XYYs),  

cons(X, Y Y s ,  X Y Y s ) ,  cons(Y, Y s ,  Y Y s ) ,  X <= Y. 
? - permutationsort([5,4,3,2,1], Y s ) .  

Figure B.5: Magic sets program for permutation-sortbf. 
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m-inser t ion-sor tb f (xxs )  : - inser t ionsor t (XXs,  Y s ) .  

minsertion-sortbf ( X S )  : -minser t ionsor tb f  ( X X S ) ,  cons(X,  X s ,  X X s ) .  

insert ionsortbf  ( [ I ,  [ I ) .  
insert ionsortbf  ( X X S ,  Y s )  : -insertionsortbf ( X S ,  Z s ) ,  

minsertion-sortbf ( X X S ) ,  cons(X,  X s ,  X X s ) ,  insertbbf (x,  Z s ,  Y s ) .  

m inser tbb f  (x,  Y Y s )  : - i n s e r t b b f ( x ,  Y Y s ,  Y Z s ) .  

m- inser tbb f (x ,  Y s )  : -minser tbb f  (x, Y Y s ) ,  cons(Y, Y s ,  Y Y s ) .  

insertbbf (x ,  Y Y s ,  Y Z s )  : - m i n s e r t b b f ( x ,  Y Y s ) ,  

cons(Y, Y s ,  Y Y s ) ,  X <= Y, cons(X,  Y Y s ,  Y Z s ) .  

insertbbf (x,  Y Y s ,  Y Z s )  : -m-insertb" (x, Y s ) ,  

Y Y s  = [I, cons(X, [ I ,  Y Z s ) .  
insertbbf (x,  Y Y s ,  Y Z s )  : -insertbbf (x,  Y s ,  Z s ) ,  

m inser tbb f  (x ,  Y Y s ) ,  cons(Y, Y s ,  Y Y s ) ,  X > Y, cons(Y, Z s ,  Y Z s ) .  

? - insertionsortbf ( [ 5 , 4 , 3 , 2 , l ] ,  X ) .  

Figure B.6: Insertion sort program for the magic sets method. 

m r e v e r s e ( X X s )  : -reverse(XXs,  Z s ) .  

m r e v e r s e ( X s )  : - m r e v e r s e ( X X s ) ,  cons(X,  X s ,  X X s ) .  

reverse([l, [ I ) .  
r everse(XXs,  Z s )  : -reverse(Xs,  Y s ) ,  

m-reverse(XXs),  cons(X,  X s ,  X X s ) ,  

cons (x ,  [I, X I ) ,  appendbbf ( Y S ,  X I ,  2 s ) .  
m-appendbbf ( x L ~ ,  L2) : -appendbbf ( x L ~ ,  L2, XL3) .  

m-appendbbf ( ~ 1 ,  L2) : -rnappendbbf ( x L ~ ,  L2), cons(X,  L1, X L 1 ) .  

a P p e n d b b f ( X ~ 1 ,  L2, X L 3 )  : -m-appendbbf ( X L I ,  L2), X L 1  = [I, L2 = XL3.  

a p P e n d b b f ( X ~ 1 ,  L2, X L 3 )  : -appendbbf ( ~ 1 ,  L2, L3), 

m n p p e n d b b f ( ~ ~ l ,  L2), cons(X,  L1, X L l ) ,  cons(X,  L3, X L 3 ) .  

? - reverse([l, 2,3,4,5,6,7,8,9,10], Y ) .  

Figure B.7: Rewritten program for the magic sets method for query reversebf.  
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mances tor fb ( jack ) .  

ances tor fb (x ,  Y )  : - m a n c e s t o r f b ( ~ ) ,  edbparen t (X ,  Y ) .  
ances tor fb (x ,  Y )  : a n c e s t o r f b ( 2 ,  Y ) ,  

m a n c e s t o r f b ( y ) ,  edb-parent(X, 2 ) .  

? - a n c e s t o r f b ( x ,  jack).  

Figure B.8: Rewritten rules for query ancestorfb using the magic sets method. 

Figure B.9: Rewritten rules for sgbf  for the magic sets method 

4. s(b; ,  b ; - l )  for 2 5 i 5 n. 
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