
EFFICIENT QUERY PROCESSING IN DEDUCTIVE
DATABASES: THE LogicBase APPROACH

Ling Liu

B.Sc., Tsinghua University, China, 1986

M.Sc., Tsinghua University, China, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in the School

of
Computing Science

@ Ling Liu 1995
SIMON FRASER UNIVERSITY

March 1995

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Ling Liu

Doctor of Philosophy

EFFICIENT QUERY PROCESSING IN DEDUCTIVE
DATABASES: THE LogicBase APPROACH

Examining Committee: Dr. Ze-Nian Li
Chair

Dr. Jiaweh Han, Senior Supervisor

Date Approved:

7 7

Dr,,- Woshua Luk, Supervisor

Dr. William Havens, Supervisor

Dr. ~ a k s V.S. Lakshmanan, External Examiner

Dr. Tiko Kameda, S.F.U. Examiner

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

1 hereby grant to Simon Fraser University the right to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

Efficient Query Processing in Deductive Databases: The Logic Base Approach.

Author:
(signature)

Ling Liu

(name)

March 30, 1995

To Connie

Abstract

The thesis investigates the design and implementation of a deductive database system

prototype, LogicBase, and several query processing and optimization techniques in

deductive database systems.

LogicBase adopts the compilation-based query processing method, where logic

programs are compiled into highly regular forms. A query is evaluated on the compiled

form by performing iterative relational operations. LogicBase facilitates a detailed

query analysis to select an appropriate query evaluation strategy and to generate an

efficient query processing plan, thus to achieve declarativeness and efficiency.

An important feature of LogicBase is its ability to handle constraints, which are

manipulated to determine the safety of an evaluation plan and to reduce search space

in some expensive query processing. Constraints and monotonicity are investigated to

benefit constraint pushing and derivation. Moreover, interaction of constraints with

different programs is studied.

A set of query processing strategies are proposed for efficient evaluation of pro-

grams with multiple linear recursions, which extends the method of handling single

linear recursions by accessing the union of separate relations. Furthermore, an ext en-

sion of counting method to deal with cyclic data path is devised, which transforms

the counting method into the propagations of relative distances over cyclic paths in a

directed acyclic graph constructed from strongly connected components of the original

data graph.

Acknowledgements

I am very grateful to my senior supervisor, Dr. Jiawei Han, who lent me a great deal

of support, encouragement and pleasant cooperation. I would like to thank Dr. Tiko

Kameda and Dr. Laks V.S. Lakshmanan who spent extra effort to help me generate

a better thesis. I would also like to express my appreciation for Dr. Woshun Luk and

Dr. William Havens, who made valuable suggestions and comments.

Last but not the least, I would like to express my gratefulness to my wife and

parents, who have provided all their love and support through the years of my graduate

study.

Contents

Abstract iv

Acknowledgements v

1 Introduction

1.1 Deductive database: a first look

1.2 Extension to the relational approach and Prolog

1.3 Basic concepts of deductive databases

. 1.4 Semantics of logic rules

1.5 Query processing in deductive database

1.5.1 Naive and semi-naive evaluation

. 1.5.2 Magic sets method

. 1.5.3 Counting met hod

1.5.4 Logic programming approaches

1.5.5 Compilation and chain-based evaluation

1.6 More about compilation of logic programs 15

1.7 Extension of Horn Clause Programs 18

1.7.1 Negation . 18

1.7.2 Aggregation . 19

1.7.3 Deductive and object-oriented databases 21

1.8 Deductive Database Systems and Prototypes 21

. 1.8.1 LDL 22

. 1.8.2 Glue-Nail 22

. 1.8.3 Coral 23

. 1.8.4 XSB 24

. 1.8.5 LogicBase 24

. 1.8.6 OverviewoftheThesis 25

2 Monotonicity and Constraint Pushing 27

. 2.1 Introduction 28

. 2.2 Categories of constraints 33

2.3 Monotonicity and constraint pushing 34

2.3.1 Monotonicity constraints and monotonic arguments 34

2.3.2 Constraint pushing via monotonic argument 36

. 2.4 Constraint propagation in multiple levels of recursions 38

2.4.1 Constraint propagation via invariant arguments and by argu-

. ment shifting 39

. 2.4.2 Constraint propagation by inference rules 41

vii

2.4.3 Termination control and constraint pushing in functional pro-

. grams 45

. 2.5 Search space reduction using monotonic list constraints 48

. 2.5.1 Derivation of monotonic list 50

. 2.5.2 Pushing monotonic list constraints 51

. 2.6 Discussion 54

3 Design and Implementation of LogicBase 60

. 3.1 Motivation 60

. 3.2 Major Features of LogicBase 62

. . . . 3.2.1 Capture of more bindings in query binding propagation 62

. 3.2.2 Chain-following and chain-split evaluation 65

. 3.2.3 Constraint-based query evaluation 68

3.2.4 Chain-based evaluation of complex classes of recursions 71

. 3.3 Implement ation of LogicBase 73

. 3.3.1 LogicBase system architecture 74

. 3.3.2 Compilation of linear recursive programs 76

. 3.3.3 Plan generation 85

. 3.3.4 Chain-based evaluation 88

3.3.4.1 Chain following evaluation: chain-exit direction . . . 88

. 3.3.4.2 Chain-following: exit-chain evaluation 90

. 3.3.4.3 Counting for multiple chains 92

. 3.3.4.4 Chain-split evaluation 92

...
V l l l

. 3.4 Plan execution 94

. 3.5 Other implementation issues 95

. 3.5.1 User interface 95

. 3.5.2 Data structure 96

. 3.5.3 Negation 96

. 3.5.4 Query and evaluation plan optimization 97

. 3.5.5 Variable naming 97

. 3.5.6 Handling of functions 98

. 3.5.7 Handling of functional terms 98

4 Evaluation of Multiple Linear Recursions 100

. 4.1 Introduction 100

. 4.2 A Classification of ML Recursion 102

. 4.3 Evaluation of Single-Probe Queries in ML Recursions 106

4.3.1 Side-Relation Unioned Processing of Type I ML Recursions . . 107

. 4.3.2 Evaluation of Type I1 ML Recursions 109

4.3.2.1 First Attempt: Side-Relation Unioned Path-Tracing

. Method 110

4.3.2.2 Side-Relation Unioned Magic Sets Method 114

4.3.2.3 Refinements: Superset Counting and Superset Tran-

. sitive Closures 116

. 4.4 Evaluation of Type I11 ML Recursions 119

4.4.1 Generalized Side-Relation Unioned Magic Set Method 122

4.5 Evaluation of Complex Queries in ML Recursions 127

. 4.6 Summary 129

5 Compressed Counting Method 131

5.1 Introduction . 132

5.1.1 Background and motivation 132

5.1.2 Overview of compressed counting 134

5.2 Principles of Compressed Counting 136

5.2.1 Distance set and difference set 136

5.2.2 Offset-period representation 139

5.2.3 Derivation of OP sets . 146

5.2.4 Derivation of distance set and difference set 150

. 5.3 Compressed Counting Method 153

5.3.1 Precompilation of Data Relations 154

. 5.3.2 up processing 156

5.3.3 down processing and answer extraction 158

. 5.3.4 An example 159

5.4 Complementary counting: optimizations 160

5.4.1 Dealing with acyclic paths . 160

5.4.2 Complementary counting optimization 161

. 5.5 Discussion 164

. 5.5.1 Complexity Analysis 164

. 5.5.2 Extension to multiple source 166

. 5.5.3 Strength of compressed counting 166

. 5.6 Summary 168

6 Discussions and Conclusions 169

. 6.1 Applicable domains of the methodology 170

6.2 A comparison with other logic program implementation techniques . . 172

. 6.2.1 Comparison 172

. 6.2.2 Comparison of evaluation costs 173

. 6.2.2.1 Cost model 173

. 6.2.2.2 Cost comparison 175

. 6.3 Further development of LogicBase 178

. 6.4 Conclusions 180

A Syntax of LogicBase Input 186

B Programs For Cost Comparison 188

Bibliography 195

List of Tables

2.1 Performance comparison of different query evaluation methods. 57

xii

List of Figures

. 1.1 The ancestor example 2

The declarative n-queens recursion defined in the Prolog syntax 29

. The recursion gcd (the greatest common divisor) 32

. A permutation sort program 33

Part of the permutation sort program in which monolist is pushed . . 33

. Program travel 37

. Inference rules 41

. Rectified permutation sort program 51

. Effectiveness of constraint pushing for nqueensfb 58

Effectiveness of constraint pushing for permutation-sortbf 59

. 3.1 Overview of LogicBase 74

. 4.1 A recursion with multiple linear recursive rules 101

. 4.2 A non-side-coherent ML recursion 103

4.3 A side-coherent ML recursion where all of the recursive rules are one-

. sided (Type I) 103

...
Xll l

. 4.4 A strongly side-coherent (Type 11) ML recursion 104

4.5 A Type I11 ML recursion where the recursive rules have different sides . 104

4.6 A Type I11 ML recursion where the recursive rules have the same num-

. ber of sides but are not strongly side.coherent 104

4.7 An ML recursion which is compilable to a single linear recursion 105

. 4.8 A complex ML recursion 105

4.9 The recursion in the previous figure is a Type I11 ML recursion by

. variable vectorization 105

. 4.10 Magic rules for the ML recursion 114

. 4.11 A general side-coherent ML recursion 122

. 4.12 Side-matching test on m + k n-bit vectors 125

. 5.1 A typical linear recursion and its query 132

. 5.2 Overview of compressed counting method 135

. 5.3 A tiny example database 136

. 5.4 A path passing through SCCs 144

. 5.5 Serial merge 151

. 5.6 Parallel merge 151

. 5.7 Precompilation of data relation 155

. 5.8 OP for data nodes 157

. 5.9 Example of compressed counting method 159

. 5.10 A flipping node is shown 162

. 6.1 Rewritten rules and magic rules for ancestorbf 174

xiv

6.2 ancestorbf program for the top-down evaluation 175

6.3 Cost for nqueensbf . 176

6.4 Cost for nqueensfb . 177

6.5 Cost for permutat ionsortbf . 178

6.6 Insertion sort program . 179

6.7 Cost for inser t ionsor tb f . 180

6.8 Programtoreversealist . 181

6.9 Cost for reversebf . 182

. 6.10 Averagecost forancestorbf withtree-shaped edb-parent 183

. 6.11 Average cost for ancestorfb with tree-shaped edb-parent 184

. 6.12 Cost for the same generation query sgbf 185

. N-queens program using the chain-based evaluation method 189

N-queens program using the top-down approach for query nqueensbf . 190

. . . N-queen program nqueensbf using the magic sets method. part I 191

. . . N-queen program nqueensbf using the magic sets method. part I1 192

Magic sets program for permutation-sortbf 193

. Insertion sort program for the magic sets method 194

. . . Rewritten program for the magic sets method for query reversebf 194

. . . Rewritten rules for query ancestorfb using the magic sets method 195

. Rewritten rules for sgbf for the magic sets method 195

Chapter 1

Introduction

A deductive (or logic) database system combines merits of relational database systems

and logic programming by taking logic as its data model and retaining query process-

ing efficiency in relational databases. It extends the expressive power of a declarative

query language from SQL to general logics.

Significant research efforts have been spent on query evaluation and optimization

in deductive databases. Many methods and strategies have been proposed and im-

plemented. Several deductive database systems have been developed. Our research

at Simon Fraser University has been on the deductive database query evaluation and

optimization, emphasizing the declarativeness and efficiency of query processing. A

deductive database system prototype, LogicBase, has been designed and implemented.

The initial implementation and experimentation have shown that the approach taken

in LogicBase has many advantages over and offers an alternative to the other currently

available deductive database query evaluation techniques.

Many issues concerning query processing in deductive databases, especially those

in LogicBase, are investigated in the thesis.

In this chapter, the background and some practice for query processing in deduc-

tive databases are reviewed.

CHAPTER 1. INTRODUCTION

1.1 Deductive database: a first look

Similar to relational databases, data in deductive databases are stored in relations.

However, not all relations need to be stored physically. Some relations are defined

by logic rules such that data can be derived from other physically stored data. The

primitive concept for deductive databases can be first introduced by a simple example

in Figure 1.1.

parent(aaron, brian).

parent(brian, f red).

parent(coleen, eve).

parent(brian, greg).

ancestor(X, Y) : - parent(X, Y).

ancestor(X, Y) : - parent(X, Z), ancestor(Z, Y).

Figure 1.1: The ancestor example.

In Figure 1.1, predicate parent(aaron, brian) represents a fact that "brian" is a

parent of "aaron". All of the parent predicates can be considered as tuples in a rela-

tion called parent and are physically stored in a database. However, tuples in relation

ancestor are derived from two logic rules. Rule (1.1) states that one's parent is his

or her ancestor, while Rule (1.2) states that one's parent's ancestor is also his or her

ancestor. Relation ancestor can be derived from relation parent, which consists of fol-

lowing tuples: ancestor(aaron, brian), ancestor(brian, f red), ancestor(coleen, eve),

ancestor(brian, greg), ancestor(aaron, fred), and ancestor(arron, greg). An infer-

ence engine is responsible to deduce facts implied by logic rules and to answer queries

imposed on a derived relation.

In a deductive database, a relation stored physically is called an extensional

database (EDB) relation or a base relation. A relation defined through a set of logic

rules is called an intensional database (IDB) relation or a derived relation.

CHAPTER 1. INTRODUCTION

1.2 Extension to the relational

1%

approach and Pro-

A deductive database system extends a relational database system in expressiveness.

A derived relation in deductive databases can be defined recursively, such as the

ancestor relation in Figure 1.1. Many problems can be expressed and solved us-

ing recursively defined logic rules, which are not expressible in a relational database

system.

Research in logic programming has contributed to the initial studies of deductive

databases. A version of Prolog called Datalog, which uses function-free Horn clauses,

is taken in deductive databases as a data model to define rules and queries. Although

the Datalog syntax is similar to that of Prolog, the operational semantics and the

evaluation strategies of Datalog are different from those of Prolog. Unlike Prolog,

Datalog does not allow functions, and it follows the model-theoretic semantics (see

Section 1.4) rather than the computational semantics in Prolog. Deductive databases

inherit and extend data management facilities from relation databases. To efficiently

cope with a large amount of data in query processing, set-oriented data accessing

methods are used in deductive databases rather than tuple-at-a-time data accessing

in Prolog. Deductive databases aim to be more declarative than Prolog in that the

order among rules and the order among predicates can be independent from the

evaluation strategy in deductive databases.

1.3 Basic concepts of deductive databases

The building element in a deductive database, called atomic formula, is a predicate

of the form p(al, aa, . . . , a,), where p is the predicate name, ai's are arguments and

n is the number of arguments called arity of the predicate. Each argument can be

either a constant or a variable. As a notational convention, a string starting with an

upper-case character is a variable, otherwise it is a constant. A literal is either an

C H A P T E R 1. INTRODUCTION

atomic formula (positive literal) or an atomic formula preceded by a negation sign

not, which is a negative literal.

The rules in deductive databases are in the form of Horn clauses, as shown in 1.3.

The left hand side of symbol ": -" is called head, and the right hand side is body.

A rule has at most one predicate in the head, and usually one or more predicates

in the body. The relationship among predicates in the body is logical AND. When

multiple rules are used to define the same predicate, the relationship among these

rules is logical OR. The meaning of logic rules is natural and easy to understand. It

states if all predicates in a rule body are true, then the head predicate is true.

A predicate is ground if all of its arguments are constant. A rule is ground if all

of its predicates are ground. A fact is a ground rule with an empty rule body, such

as parent in Figure 1.1. When the head of a rule is empty, the body predicates form

an integrity constraint, which has to be satisfied in a consistent database.

A deductive database consists of a finite set of EDB predicates, IDB rules and

integrity constraints. A set of rules in a deductive database is also referred to as a

program.

Definition 1.1 A predicate s is said to imply a predicate r (S = J r) if there is a

Horn clause in IDB with predicate r as the head and predicate s in the body, or there

is a predicate t where s+ t and t+ r (transitivity). A predicate r is recursive if

r===+ r . If r e s and s+ r , r and s are mutually recursive and are at the same

deduction level. Otherwise, if r+ s but not s d r , r is at a lower deduction level

than s .

Definition 1.2 A rule is linearly recursive if its body contains exactly one recursive

predicate, and that predicate is defined at the same deduction level as that of the

head predicate. A rule is nested linearly recursive if its body contains more than one

recursive predicate but there is only one defined at the same deduction level as that of

CHAPTER 1. INTROD UCTION

the head predicate. A rule is nonlinearly recursive if its body contains more than one

recursive predicate defined at the same deduction level as that of the head predicate.

Definition 1.3 A recursion is (single) linear i f all of its recursive predicates are

at the same deduction level and every recursive predicate is defined by one linearly

recursive rule and at least one nonrecursive (exit) rule. A recursion is multiple linear

i f all of its recursive predicates are at the same deduction level and every recursive

predicate is defined by one or more linearly recursive rules (but at least one is defined

by multiple linearly recursive rules) and at least one nonrecursive rule. A recursion is

nested linear if every recursive predicate in the recursion is defined by one linearly or

nested linearly recursive rule (but at least one is defined by a nested linearly recursive

rule) and at least one nonrecursive rule. A recursion is nonlinear if it contains some

nonlinearly recursive rule(s).

Linear recursions are particularly important, because most of the "real life" recur-

sions are linear, and there are efficient methods to process queries on linear recursions

1101 -

A query in deductive database is a literal of the form "? - q(al , a2 , . . . , a,)", where

predicate q can be defined either by an EDB or an IDB predicate and arguments ai7s

can be either constants or variables. A constant in query represents query instantiation

and a variable designates an argument being inquired. The answer to the query is the

set of all the instances of predicate q according to the program and the EDB relations.

Query evaluation in deductive databases is realized by mapping a deduction rule

to a corresponding relational expression and propagating query instantiation into the

relational expression. To aid analysis of query evaluation, a predicate is associated

with a notation binding, which is a string of characters 'b' or ' f ' . If the i-th argument

in a predicate p is instantiated, then the i-th character in p's binding is b (bound);

if p's i-th argument is a variable, then the i-th character is f (free). If a predicate

p has a binding string of x, the predicate is represented in the adorned form as px.

For example, the adorned form for query "? - ancestor(john, Y)" in Figure 1.1 is

CHAPTER 1 . INTRODUCTION

ancestorbf. For a deduction rule, propagation of instantiation in its corresponding

relational expression can be illustrated by binding propagation in the deduction rule.

Analysis of binding propagation reveals the way a deductive query should be evalu-

ated. For example, given a query of ancestorbf in Figure 1.1, the binding is propagated

in Rule (1.2) as following:

ancestorbf (x, Y) : - parentbf (x, Z), ancestorbl(2, Y).

Here, the instantiation on X in the rule head enables the evaluation of parent (by

relational selection), which instantiates Z , and produces adorned predicate ancestorbf

in its body again. Such binding analysis reveals the query ancestorbf can be evaluated

by performing a number of relational selection operations on parent relation.

1.4 Semantics of logic rules

Intuitively, the meaning of a logic rule is that the head predicate is true if all of the

body predicates are true. In other words, if all of the variables in a rule are substituted

by constants and the substitution makes the right hand side of the rule true, then the

left hand side is also true.

Formally, there are three ways to define meanings of logic rules: proof-theoretic

interpretation, model-theoretic interpretation and computational definition. They are

briefly introduced here following the concepts in [132].

Proof-theoretic interpretation establishes the meaning of logic rules by treating

rules as axioms, and applying them on the facts in the database to prove other facts.

For example, the meaning of the ancestor rules in Figure 1.1 is obtained by first

applying Rule (1.1) on base relation parent, then by repeatedly applying Rule (1.2)

on parent and derived relation ancestor. Each time, a logic rule is applied in the

"forward" direction, with its body predicates as the conditions and the head predicate

as the conclusion.

C H A P T E R 1. INTRODUCTION

In model-theoretic interpretation of logic rules, an interpretation of a set of pred-

icates assigns truth or falsehood to every possible instance of those predicates, where

the arguments of those predicates are chosen from some infinite domain of constants.

An interpretation is represented by the true instances of the predicates. An interpre-

tation is a model if the assignment of the interpretation makes the rules true, which

means the rules are satisfied under all of the instances from the interpretation.

The number of models for a given set of logic rules may be infinite. A model

M for a given set of logic rules is a minimum model if no other model for the set

of logic rules is a subset of M (if only truth assignments are accounted). If there

is only one minimum model for a given set of logic rules, such model is the least

model. A Datalog program has a nice property that it has the least model, and the

interpretation under its least model coincides with its proof-theoretic interpretation.

However, when negation is introduced into logic rules, the uniqueness of minimum

model is not guaranteed.

Computational definition to define meanings of logic rules is to provide an al-

gorithm to determine whether a fact is true or false by executing them using the

algorithm. Prolog is such an example. The set of facts found under such an algorithm

is not necessarily the set of all the facts for which a proof exists. Computational

interpret at ion enables efficient computation of logic rules.

To ensure efficient implementation, the approach adopted in deductive databases

is to translate logic rules into a sequence of relational operations. It can be shown

that for Datalog without negation, such interpretation produces the least model under

model-theoretic interpretation.

1.5 Query processing in deductive database

Inclusion of logic rules in deductive database poses challenge to query processing. In

this section, some of the representative processing strategies are briefly introduced.

C H A P T E R 1. INTRODUCTION

For non-recursive queries, since the relational algebra is similar to the logic in Dat-

alog, a non-recursive logic rule can be mapped into a relational expression, such that

the derived relation corresponding to the predicate in the rule head can be calculated

by performing a sequence of relational operations on the relations corresponding to

those predicates in the rule body. For example, for the following rule:

uncle(X, Y) : - parent(X, Z) , brother(2, Y).

the derived relation uncle can be computed as following:

uncle(X, Y) = IIx,y(parent(X, 2) KI brother(2, Y))

Query processing and optimization techniques well established in the relational database

[29, 38, 63, 78, 76, 119, 127, 130, 132, 1461 can be applied to process non-recursive

queries in deductive databases. Processing of non-recursive queries is similar to the

processing of queries posed on views in relational databases.

For queries on recursive rules, such a mapping has to consider recursive predicates,

which are not directly computable based on the mapping to relational expressions.

Recursive query evaluation methods such as the naive and semi-naive evaluation [8,

71, the Henschen-Naqvi technique [59], the QuerylSubquery approach [I411 and the

chain-based evaluation method [55] are developed to compute the answers for queries

according to the semantics of recursive programs. Query optimization methods such

as the magic sets method [9, 1031 and the counting method [9, 1121 are used to rewrite

a recursive program into an equivalent but more efficient one to evaluate.

Query evaluation approaches can be classified as bottom-up or top-down methods.

A bottom-up method starts from the exit rule and applies recursive rules to EDB

and IDB relations to produce derived literals until the derived relation is generated

and the query is answered. The top-down method starts from a query and propagates

instantiations from the query into the recursive rules. The query is either processed by

the exit rule or new subqueries are generated according to the recursive rules in order

to process the original query. New queries are processed in the same top-down fashion.

In general, bottom-up methods are simple, top-down methods are more efficient by

computing less fruitless intermediate literals.

CHAPTER 1. INTRODUCTION

1.5.1 Naive and semi-naive evaluation

Naivelsemi-naive evaluation [5 , 24, 8, 34, 1161 is one of the first bottom-up evaluation

methods.

Naive evaluation of a recursion works by first evaluating its non-recursive rule set,

then iteratively evaluating the set of recursive rules on database relations (EDB and

IDB) generated so far, until no new tuple can generated (thus a Jxed point is reached,

for a Datalog program without negation, the fixed point is the least model for the

recursion and is called its least Jzed point). Following is the algorithm for the naive

evaluation from [133].

Algorithm 1.1 Naive Evaluation.

Input: A collection of safe rules and relations R1, . . . , Rk, for EDB predicates men-

tioned in the bodies of these rules.

Out put: If it is finite, the least fixed point for the rules, with respect to the given EDB

relations. If the fixed point is infinite, an infinite sequence of approximations

that approaches the least fixed point as a limit is produced.

Method: 1. Relation Pi for each IDB predicate pi is assumed empty in the begin-

ning.

2. Suppose during evaluation, we have approximations PI, . . . , P,, for the

IDB predicates, pl, . . . , p,. The next approximation for p; is obtained by

as follows.

(a) for each of n rules defining pi, construct a relation for the head from

that of the body as follows:

i. For each non-built-in predicate q;(tl, . . . , tk) in the rule body, ob-

tain the corresponding relation Qi for qi as follows. Let Qi be

C H A P T E R 1. INTRODUCTION

empty initially. Let Q: be the relation for predicate q; (Q: is one of

the P relations if q; is an IDB predicate or one of the R relations if

q; is an EDB predicate). For each tuple q:(sl,. . . , sk) in Q:, if there

is a term matching y for q;(tl, . . . , tk) and tuple q:(sl, . . . , sk), add

tuple (sl , . . . , sk) into Q;.

ii. compute the join Q = Q1 cu . . . BI Q, (omit Q; if q; is a built-in

predicate).

iii. apply to Q a selection for each of the built-in predicate if any.

iv. perform corresponding selection and projection on Q to obtain

relation for the rule head.

(b) compute union on all relations from each rule of p;; the result is P;'.

(c) compare each P; with P;'; if P;' = P; for all i, then the least fixed

point is encountered. Else for each P;' which is a proper superset of Pi,

replace P; with P;'. Repeat step (2).

Improvement can be made on the naive evaluation. In every iteration of applying a

recursive rule on P, a portion of P is reevaluated since it also participated in iterations

before. Semi-naive evaluation [8, 7, 1161 removes such redundancies by performing

a relational difference operation at every iteration, so that only the newly generated

tuples of P participate in the next iteration of evaluation.

Semi-naive evaluation method is shown as Algorithm 1.2.

Algorithm 1.2 Semi-naive evaluation.

Input: same as in Algorithm 1.1.

Output: same as in Algorithm 1.1.

Method: 1. For each recursive IDB predicate p, construct the corresponding dif-

ferential IDB predicate Ap as follows. For each recursive rule defining p as

follows:

P : - g ~ , . - . , g n *

CHAPTER 1. INTRODUCTION

replace each recursive predicate p in the rule body with Ap and produce a

rule for Ap as given below:

2. Initialize the relation P for each IDB predicate p to be empty, and initialize

the relation A P for the differential predicate Ap by applying the EVAL

procedure in Algorithm 1.1, but only to those rules with no IDB predicate.

3. If all of AP's are empty, the least fixed point is encountered, each IDB

predicate p has a relation P .

4. Otherwise, replace each IDB relation P by P U A P .

5 . For each IDB predicate p, compute a new differential relation AP' for

each of the differential rules for p by applying Algorithm 1.1, using EDB

relations R1,. . . , Rk, the current IDB relations P I , . . . , P,, and the differ-

ential relations APl, . . . , AP, as needed, and compute union over all of

the differentiated rules for p.

6. For each IDB predicate, compute A P = AP' - P, and go to step 3. CI

The naivelsemi-naive evaluation methods can be applied to a wide range of re-

cursive programs, both linear and non-linear. However, these methods generate the

whole derived relation regardless what is being inquired. The magic sets method is

proposed to remedy such a problem.

1.5.2 Magic sets method

The magic sets method [9, 13, 109, 103, 1141 is a query optimization method which

tailors the database according to the query instantiation so that only the "useful" por-

tion of a database is used in the evaluation, thus substantially reducing the evaluation

cost. The method can be understood best through an example. Consider the ancestor

example in Figure 1.1 with a query of "? - ancestor(peter, Y)". Suppose the parent

C H A P T E R 1. INTRODUCTION

relation contains a large number of (e.g., more than 100,000) tuples. The query is

to find all of peter's ancestors. Obviously, among all of the people recorded in the

parent relation, only a small number of them are related to the derivation of peter's

ancestors, the rest has nothing to do with the query evaluation. The essential idea of

the magic sets method is to extract the query-relevant portion of the parent relation

to replace parent in the query processing. To obtain the query-relevant portion, the

original rules are rewritten to incorporate the query instantiation into the rule body.

In practice, usually a superset of the query relevant portion is obtained for ease of

implementation. The following shows the rewritten program for ancestor:

magic-ancestor(peter) .

magic-ancestor(Y) : - magic-ancestor(X), parent(X, Y).

ancestor(X, Y) : - magic-ancestor(X), parent(X, Y).

ancestor(X, Y) : - magic-ancestor(X), parent(X, Z), ancestor(Z, Y).

The newly added predicate magic-ancestor (called magic predicate) represents the

relevant portion of the parent relation to the query constant "peter". The rules for

deriving the magic predicate are generated based on how the bindings are passed from

the head of a recursive rule to the body. The original rules are rewritten to include the

magic predicates so that only the relevant tuples in parent are used in the evaluation.

The rewritten program is equivalent to the original one in that they produce the same

answer to the given query. The magic sets method can also be applied to optimize

evaluation of a non-recursive program [89].

1.5.3 Counting method

Counting method [9, 113, 1151 works efficiently with the linear recursive query pro-

cessing. To see how it works, let's examine the "same generation" example.

C H A P T E R 1. INTRODUCTION

Suppose the query is "? - sg(janet, Y)". For Y to be an answer it has to satisfy the

following condition:

Here k starts from 1 to a level at which iteration no more intermediate answers can

be generated. There are an equal number of instances of the predicate parent at both

sides of the person predicate instance. The counting method introduces an explicit

integer called counting level to denote such a number, which counts up (down) during

the processing of the parent instances at the left (right) hand side of person.

The sg program can then be rewritten as follows to incorporate the equal number

requirement:

u-sg(janet, 0).

u-sg(Xp,I) : -

d-sg(X, I) : -

d-sg(Y,I - 1) : -

sg(janet, Y) : -

parent(X, Xp), u-sg(X, I - 1).

u-sg(X, I), person(X).

parent (Y, Yp) , d-sg (Yp, I).

d-sg (Y, 0).

The predicate u s g represents the processing of sg during the counting up phase, and

d-sg during the counting down phase.

Counting method is more efficient than the magic sets method for linear recursion,

with the worst time complexity of O(ne) and 0 (e2) respectively [84]. However, count-

ing method requires that the base relation in the "up" portion be acyclic, otherwise

the method does not terminate.

1.5.4 Logic programming approaches

Prolog is a well-known declarative programming language. There are many projects

designed to apply Prolog's logic processing to databases [15, 23, 60, 67, 86, 91, 143,

CHAPTER 1. INTRODUCTION

1441. However, Prolog's SLD computation mechanics (depth-first search with back-

tracking resolution strategy) [77, 1081 does not suit the database application well.

Its tuple-at-a-time access is costly for the database applications. Termination of an

evaluation in Prolog is not guaranteed and is dependent on the orders of predicates in

the rule body and/or the orders of rules in the program. There are also redundancy

in the computation of answers in Prolog.

The SLG resolution [27] in the XSB system [I181 (see also 1.8.4) is an evaluation

method combining the Prolog evaluation with memoing. Memoing for logic program-

ming [33, 136, 85, 98, 1451 maintains a table of goal/subgoal calls and their return

values during a query evaluation. If the same call is made again, the answer to such

a query is retrieved from the table rather than the query being executed again, thus

removing redundant computation and providing better termination of evaluation.

1.5.5 Compilation and chain-based evaluation

The evaluation and optimization methods introduced so far treat recursive programs

as a general form and use the same strategy to process all of them. Chain-based

method [55, 46, 451 compiles a recursive program to extract and make use of infor-

mation about how the recursive program behaves. Recursive programs are compiled

into a regular form called chain by expanding the recursive rules. All linear recursive

programs and most of the non-linear programs with a natural interpretation can be

compiled into chains [46, 581. Since a compiled program is highly regular, the behav-

ior of a recursive program can be analyzed and a set of evaluation strategies (within

the scope of the chain-based evaluation method) can be applied on the compiled

form to generate answers to the query efficiently, according to the binding passing

patterns in the program and the efficiency criteria. Therefore, evaluation may be ei-

ther top-down, bottom-up, or hybrid to suit different programs. Various chain-based

evaluation strategies will be presented in Chapter 3.

For the ancestor example shown in Figure 1.1, the derived relation for the predicate

CHAPTER 1. INTRODUCTION

ancestor can be represented as follows by expanding the recursive rule:

which can be represented roughly as parent W parent* (parent* designates a sequence

of joins on k 2 0 parent relations). Such a compiled form reveals that the ancestor

query can be processed as a transitive closure.

1.6 More about compilation of logic programs

The basic concepts and principles for compiling logic programs into chain forms are

introduced in this section.

A function-free linear recursion can be compiled into a highly regular chain form

or a bounded form [58], which has a relational expression similar to that of ancestor in

formula (1.6). A recursion with function symbols can be transformed into its function-

free counterpart by a function-predicate transformation which maps a function to-

gether with its variables to a predicate that carries the result of the function with an

extra (functional) variable [47]. For example, function "+" in a predicate p(X + Y, 2)

can be transformed into a functional predicate plus(X, Y, Sum) where Sum carries

the result of the function evaluated, and the predicate p becomes p(Sum, 2). A pro-

gram is rectified if all of its function symbols are transformed and the head predicates

of a set of logic rules defining the same predicate have identical variables. For ex-

ample, the ordered recursion shown in Rules (1.7) and (1.8) is rectified as shown in

Rules (1.9) and (1.10). Notice that [Y IYs] denotes a list construction function which

results in a list with Y as the head and Ys as the rest of the list.

C H A P T E R 1. INTRODUCTION

ordered(XYYs) : - cons(X, [I, XYYs). (1.9)

ordered(XYYs) : - X 5 Y, cons(X, YYs, XYYs),

cons(Y, Ys, YYs), ordered(YYs). (1.10)

In LogicBase, the compilation of a linear recursive program into chains is performed

by expanding the recursive rule until regularity can be found. The regularity of

a compiled recursion is that every argument in the head predicate is connected to

the corresponding argument position in the recursive predicate in the body of the

expanded rule via a set of chain predicates in the expansions of the recursive rule.

In the compilation of a linear recursion, the first expansion refers to the (trans-

formed) recursive rule itself. The i-th expansion of a recursive rule is the unification

of the recursive predicate in the body of the (i - 1)-st expansion with the head of the

(transformed) recursive rule.

For example, for the recursive program mod shown in Rules (1.11) and (1.12),

the recursive rule in (1.11) is transformed into Rule (1.13) by the function-predicate

transformation, whose second expansion becomes (1.14).

When the k-th expansion of mod unifies with the exit rule, it becomes (1.15)

which consists of a total of k pairs of ''Xj-l 2 Y, m i n ~ s (X j _ ~ , Y,Xj)" (for j =

1 , . . . , k) between the head predicate and the predicates of the exit rule body. Two

predicates in an k-th expansion form are connected if they share a common variable.

A group of such connected predicates is called a chain element (or chain predicate if

C H A P T E R 1. INTRODUCTION

the element consists of only one predicate). The regularity of a recursive program can

be characterized by its chain element, because in each expansion of a recursive rule,

such chain element is added into the expanded rule. The appearance of the chain

element is called a chain iteration (or simply iteration) in the expanded rule, since it

corresponds to the unit to be evaluated in each iteration of chain-based evaluation.

More specifically, a chain iteration added to the expanded rule in the k-th expansion

is called the k-th chain iteration. The predicates in successive chain iterations have

different argument values. They are propagated from one chain iteration to the next

via share variables during a query evaluation.

As a notational convention, a predicate p in the i-th chain iteration is denoted as

p(;). The j-th argument of a predicate p is represented as p : j , and the value of the

argument p : j in the i-th iteration is represented as p(i) : j.

The recursion mod is compiled into a single chain, where the connection is through

one chain element. Some programs can be compiled into multiple chains (predicates in

the recursive rule are partitioned into multiple groups according to their connections).

For example, the same generation recursion sg shown in Rules (1.4) and (1.5) can be

compiled into two chains: parent(X, Xp) and parent (Y, Yp), respectively.

In general, a linear recursion can be compiled to an n-chain recursion (n = 1 for

single chain recursion, n > 1 for multiple-chain recursion) or a bounded recursion

which is equivalent to a set of non-recursive rules. The compilation is performed

automatically [58], the methods and algorithms for the compilation are introduced in

Chapter 3.

For a compiled n-chain recursion, the end of a compiled chain which connects to

the query is called query end; whereas the other end (connected to the exit rule) is

exit end. The evaluation of a single chain recursion is essentially a traversal along

the chain, either from the query end to the exit end (called chain-exit evaluation),

where bindings are passed from the query to the first chain iteration, from the i-th

chain iteration to the (i + 1)-st (i > 0) iteration, and finally to the exit rule; or in the

reverse direction from the exit end to the query end (called exit-chain evaluation).

C H A P T E R 1. INTRODUCTION

For a multiple-chain recursion, the query and the exit rule are connected via several

chains which are to be synchronized during evaluation. Evaluation is performed by

either (1) starting with some chains by the chain-exit evaluation, then evaluating the

exit rule, and finally evaluating the remaining chains by the exit-chain evaluation, or

(2) evaluating all the chains by the chain-exit evaluation, or (3) starting with the exit

rule and by performing the exit-chain evaluation on each chain. Notice that all of the

participating chains should be synchronized in evaluation in the spirit of the counting

method.

The regularity of compiled chains greatly benefits constraint analysis and the gen-

eration of efficient query evaluation plans. Dedicated (and often simpler) algorithms

can be applied to each category of recursions: for bounded recursions, nonrecur-

sive query processing algorithms are adequate; for single-chain recursions, transitive

closure algorithms and chain-based evaluation algorithms are applicable; for multiple-

chain recursions, counting, magic sets, and the chain-based evaluation methods are

applicable. A suboptimal evaluation plan can be selected from among several can-

didates based on binding passing, termination judgement, constraint pushing, and

evaluation efficiency.

Extension of Horn Clause Programs

1.7.1 Negation

Datalog programs without negation have a unique least model, furthermore, the fixed

point obtained from the bottom-up evaluation coincides with the least model. There-

fore the bottom-up evaluation on negation-free programs is guaranteed to generate

correct and complete answer. However, when negation is introduced into a recursive

program, its least model may not exist anymore. There could be several minimum

models, each can be an interpretation of the program. For example, the following

C H A P T E R 1. INTRODUCTION

program has two minimum models: {p(a),q(b)) and {p(b), q(a)).

+>.

p(X) : - not q(X), r (X) .

q(X) : - not p(X) , r (X) .

Much research has been done on the semantics of negated programs [4, 25, 37,

139, 102, 101, 1101. The solution to the non-uniqueness of minimum models is to give

an intended model as the interpretation [107].

Stratified negation [4,25, 137,921 is an important class of programs where a recur-

sion is not defined through a negation. Stratified programs have intuitive semantics

and efficient evaluation methods [12, 6, 721. Each derived predicate in a stratified

negated program can be given a stratum level so that the program can be evaluated

from the predicate with the lowest stratum to the highest. Upon evaluation of a pred-

icate with a stratum, all negated IDB predicates in its rule body should be available,

because they have lower strata and should have been evaluated earlier.

Extensions to the stratified negation include locally stratified negation [102], mod-

ularly stratified negation [68, 110, 1041. A program is locally stratified if a recursion

is defined through a negation, but if all the variables in each rule are substituted by

constants then the resulting instantiated rules do not have a recursion defined through

negation. The modular stratification concept extends the connections among data in

the local stratification to connections among strongly connected components.

Other models such as the well-founded model [I391 are proposed to deal with

general query evaluation involving negation.

1 .?.2 Aggregation

Aggregation or set-grouping is an important feature in relational databases. Much

research has been done to study aggregation in deductive databases [12,14,35, 36, 138,

C H A P T E R 1. INTRODUCTION

69, 80, 90, 110, 111, 117, 1491. The handling of aggregation in deductive databases

resembles that of negation. If an aggregation is defined through a recursion in a

program, it is necessary to find an appropriate semantic model to determine the

meaning of the program. The following bill-of-material example illustrates such a

case, where the cost of a part is recursively defined to be the sum of costs of its

subparts.

bom(Part, sum(< Subcost >)) : - subpart-cost(Part, Subpart, Subcost).

subpart-cost(Part, Pa r t , Cost) : - basic-part(Part, Cost).

subpart-cost(Part, Subpart, Cost) : - assembly(Part, Subpart, Quantity),

bom(Subpart, Subcost),

Cost = Subcost * Quantity.

Before the aggregation function sum is performed on Subcost attribute, all tuples

in subpart-cost have to be available and grouped according to the P a r t attribute.

However, the predicate subpart-cost is defined through the born predicate, and thus

the aggregation and the recursion are dependent on each other.

Similar approaches to the query processing in negated programs are adopted to

deal with query processing involving aggregation. The stratified aggregation [12] is a

class of programs where no recursion is defined through an aggregation, which has

intuitive semantics and efficient evaluation methods. Weaker forms of stratification

such as group stratification and modular stratification [go, 1101 are defined in a similar

way to the local stratification and the modular stratification in negated programs.

For the bill-of-material example, since assembly contains no cycle, no cost of a part

is defined through an aggregation on itself. Thus, it is a group-stratified program and

can be evaluated according to the hierarchical order in the assembly relation. Well-

founded and the stable models are also proposed to deal with more general aggregation

[69] in cases that stratification cannot be found. Monotonic program is discussed in

[3l, 32, 90, 111, 1381 where the aggregated value on a partially derived data relation

has monotonicity as the data relation grows.

CHAPTER 1. INTRODUCTION

1.7.3 Deductive and object-oriented databases

Deductive databases assume logic as both the specification language and the com-

putational formalism, but it only supports flat data structures. On the other hand,

objected-oriented database supports complex data types and concepts of object and

data abstraction, but lacks the declarativeness and a logic semantics. Deductive and

object-oriented database (DOOD) stems from the merging of these two separate ap-

 roaches to yield benefits in each approach.

F-logic [73, 741 is proposed to represent and to reason features in object-oriented

database by logic. The significance of F-logic is that it provides a logic foundation

for object-oriented databases, thus enabling the integration of deductive and object-

oriented paradigms. F-logic has a higher-order syntax to deal with inheritance, meth-

ods and schema of objects, but a natural first-order semantics to support efficient

query evaluation.

Some deductive database systems such as LDL++ [149], CORAL++ [125] and

LOGRES [21] support integration of deductive and ob ject-oriented databases by in-

corporating object-oriented features into deductive databases.

Another issue concerning DOOD, schema integration and evolution, is discussed

in [79].

1.8 Deductive Database Systems and Prototypes

Many deductive database systems and prototypes have been developed and reported

in recent years, such as ADITI [135], COL [I], ConceptBase [64], Coral/CORAL++

[105, 1251, EKS-V1 [142], Glue-NAIL! [87], Hy+ [30], LDL/LDL++ [28], LogicBase

1551, LOGRES [21], LOLA [16], XSB [118]. It is widely recognized that the system

implementation is a vital part in database research. We briefly overview and compare

some representative deductive database systems in this section.

CHAPTER 1. INTRODUCTION

1.8.1 LDL

Developed at MCC, LDL (Logic Data Language) [28, 931 is one of the first functional

deductive database systems available to the database researchers and developers.

The design philosophy of LDL is to extend the relational data model to logic

data model and to support database management system features. The first system

built at MCC tried to couple Prolog with a relational database system. Valuable

lessons were learned that Prolog was not suitable to database application because its

dependency on orders among rules and predicates. Thus MCC started to develop a

general-purpose declarative logic language supporting full database features.

The highlights of LDL include a declarative data model combining a relational

language and the expressive power of Prolog. LDL supports traditional relational

DBMS features such as crash recovery and transaction management. Logic rules can

be defined in LDL recursively including linear and non-linear recursive rules. The

query optimizer in LDL employs the magic sets and the counting transformations for

linear rules and special transformation for right- or left-linear rules. LDL extends Horn

Clause programs by supporting stratified negation and stratified set grouping and

aggregation. LDL++ is a direct successor to LDL which incorporates object-oriented

features such as object identity and inheritance, while still retaining its relational

database value concept [120], interoperability with other programming languages and

DBMS.

1.8.2 Glue-Nail

NAIL! (Not Another Implementation of Logic!) was developed at Stanford University

[88, 1311 to study query optimization method in deductive databases. NAIL! sup-

ports general recursions and stratified negations. Before a query is evaluated, NAIL!

analyzes the binding passing using rule/goal graph to select an appropriate evalua-

tion order. Then according to the type of programs to be evaluated, proper query

evaluation methods such as magic sets, counting, left- or right-linear evaluation are

CHAPTER 1. INTRODUCTION

applied.

It was later found that a declarative system alone cannot meet all the application

demands, therefore, a procedure language called Glue was developed to augment

NAIL! with procedural control, 110 operation and update features [87, 991, which

becomes Glue-Nail. A predicate can be an EDB relation, a temporary local relation, a

NAIL! rule or a Glue procedure. A Glue-Nail program consists of one or more modules

of Glue procedures and NAIL! rule sets, each module can be compiled separately into

a target language. Declarative and query-oriented program is expected to be written

in NAIL! rules, while Glue is expected to take care of the interface and EDB update

functions. Query evaluation strategies of NAIL! are incorporated into the target

language during compilation. The target language for Glue and NAIL! structures are

gathered into a single file for execution of the query evaluation.

Impedance mismatch between declarative NAIL! and procedural Glue is minimized

by providing same or close data types and objects, and "all solution" computation.

1.8.3 Coral

The Coral project [105, 1061 gained experience from the LDL system . A generalized

magic sets method, magic templates [103], provides the foundation for query process-

ing in Coral, where general recursive programs are supported. Coral also supports

modularly stratified negation and modularly stratified aggregation and set-grouping.

Coral employs a number of evaluation strategies, which can be applicable to different

programs.

Coral provides module mechanism for organizing programs. Each module exports

a derived predicate, which can be considered to be the definition for that predicate.

With the module structure, a number of different optimization strategies can be inte-

grated, and user can influence the evaluation strategies. It is up to the user to deter-

mine the basic evaluation approach for each module. A distinct feature of Coral is its

C H A P T E R 1. INTRODUCTION

support for non-ground tuples. Storage manager of an extensible database called EX-

ODUS [22] provides disk-resident data management, transaction and crash-recovery

for Coral.

Coral++ [I251 is a recent extension to Coral to incorporate object-orientation

features.

1.8.4 XSB

XSB system developed at SUNY Stony Brook [I181 is a Prolog-based logic program-

ming system, which employs SLG resolution (memoing or tabling). SLG extends

Prolog's top-down tuple-at-a-time evaluation by adding tabling to make evaluation

finite and non-redundant on Datalog, and by adding scheduling strategy and delaying

mechanics to support well-founded negation. Another important feature is its support

for the more expressive HiLog data model. HiLog [26] is a higher order logic with a

first order semantics, which can be evaluated efficiently.

XSB's query engine is implemented at the emulator level to make use of the effi-

ciency of WAM (Warren Abstract Machine). The HiLog syntax predicates are com-

piled into SLG-WAM instructions to execute. It is reported such implementation is

efficient [118]. Being an extension to Prolog, XSB is a memory resident system. In-

dexing and hashing are extended to suit database applications. The interface with

disk-resident data is provided by ASCII files.

1.8.5 LogicBase

LogicBase is being developed at Simon Fraser University [55]. The design goal is to im-

plement the chain-based query evaluation method with an emphasis on efficient compi-

lation and query evaluation of application-oriented recursions in deductive databases.

LogicBase identifies different classes of recursions and compiles recursions into chain

or chain-like forms when appropriate. Queries posed to the compiled recursions are

CHAPTER 1. INTRODUCTION

analyzed systematically with efficient evaluation plans generated and executed, mainly

based on a chain-based query evaluation method. Stratified negation is supported in

LogicBase. Stratified aggregation will be supported in the future. Its most important

feature is the pure declarativeness achieved through query-independent compilation

and chain-based evaluation. Although other deductive database systems are declara-

tive, they still depend on the orders of rules and predicates in a program to a certain

extent. LogicBase incorporates a number of evaluation strategies into chain-based

evaluation, including the bottom-up, top-down and the counting methods.

The compilation approach in LogicBase enables a detailed analysis of a recursive

program, which facilitates the handling of functions and constraints in deductive

databases. Thus LogicBase system can safely evaluate many queries on programs

involving functions that cannot be handled by other approaches.

1.8.6 Overview of the Thesis

After presenting the principles concerning deductive databases, the rest of the thesis

focuses on the problem of efficient query processing and presents author's contribution

to its solution.

Constraints and monotonicity are discussed in Chapter 2. When functions are in-

troduced into recursive rules, safety (whether the evaluation will terminate) becomes

a vital issue. It is shown that constraints and monotonicity among arguments in

the recursive rules can be employed to guarantee the terqination of an evaluation

for many programs. For those programs with multiple level recursive rules, the in-

teraction among constraints and monotonicity is studied. Appropriate met hods are

proposed to propagate constraints in an efficient way to help terminate an evaluation.

Furthermore, a novel technique is proposed to prune the large search space of some

problems by constraint propagation and enforcement.

Chapter 3 presents the design and implementation of LogicBase. It gives an

overview of the compilation and query processing methods in LogicBase as well.

C H A P T E R 1. INTRODUCTION

Chapter 4 investigates query processing in multiple linear recursion. Programs

contains multiple linear recursive rules are first classified into different categories. A

set of query processing techniques centering around side-relation unioned processing

are proposed to efficiently process queries. Side-relation unioned processing is to

replace multiple EDB relations in different rules by their union, such that the original

multiple recursive rules are replaced by a single recursive rule with an unioned EDB

relation.

In Chapter 5, compressed counting is proposed to answer a query using counting

method in EDB relations which contain cycles. The counting method is more efficient

than the magic sets method, but it suffers inability to terminate when there is cycle

in an EDB relation. The compressed counting precompiles an EDB relation and

generalizes it into a direct acyclic graph (compressed graph) whose notes represent

the strongly connected components in the original relation. Information about how

data are connected cyclically in the EDB relation with respect to those strongly

connected components is derived. Query processing is realized by propagation of the

information over the compressed graph, which is much smaller than the data graph

corresponding to the EDB relation and can be done efficiently.

The last chapter discusses the advantages and restrictions on the query processing

methods in LogicBase, and presents performance evaluation with respect to the top-

down evaluation and bot tom-up evaluation with the magic sets optimization. The

chain-based query processing approach is a promising new direction toward a declar-

ative language for database query processing.

Chapter 2

Monotonicity and Constraint

Pushing

The study of monotonicity and constraint pushing is motivated by the design and

implementation of the LogicBase deductive database system. Problems like safety

(termination) of the evaluation of functional programs, complexity of search space

inherent in query processing in deductive databases led to the issues of derivation and

push of constraint by monotonicity.

One of the most important features of a deductive database is the declarative

semantics, i.e., which is independent of the modes of queries and the ordering of

rules and predicates in the program. Declarativeness in deductive databases and logic

programming relieves users of the worry about how to solve the problem. To make

sure that a declarative program is safe and efficient, constraints and monotonicity are

needed to accertain termination of query evaluation and to reduce the search space

of problem solving.

In this chapter, methods are explored for discovery of monotonicity constraints

in deductive databases and declarative logic programs and for push of constraints

in the evaluation of multiple level (nested) linear recursive programs with function

symbols. The study shows that monotonicity detection and constraint pushing play

C H A P T E R 2. MONOTONICITY AND CONSTRAINT PUSHING

an important role in program termination and efficient query evaluation.

This chapter is organized as follows. Section 2.1 introduces constraint pushing by a

few examples. Constraints are categorized in section 2.2. Principles for monotonicity

and constraint pushing in recursive programs are presented in section 2.3. Methods

for constraint propagation and termination judgement are proposed in section 2.4.

Reduction of search space by pushing monotonic list constraints is investigated in

section 2.5.

2.1 Introduction

A deductive database program is considered to be a logic program with declarative

semantics. The following is the classical eight-queens [126] example used in many A1

studies.

Example 2.1 A queen in the chess game can attack in all directions (up, down, and

diagonal). The problem is to place 8 queens on an 8x8 chess board so that none of

the queens attacks each other. If the eight-queens problem is generalized to n queens

on an n x n chess board, it is called the n-queens problem. Treated as a purely

declarative logic program, the n-queens program is presented in Figure 2.1.

For the declarative program nqueens, queries with different modes, such as "? -

nqueens(5, Qs)" (to find all chess placements for 5 queens), or "? - nqueens(N, [3,

5, 2, 4, 11)" (given a chess board, verify whether it is a valid n-queens placement and

if it is, return the number of queens), should be evaluated efficiently and completely

(finding all the answers) and terminate properly, independent of the ordering of rules

and predicates in the program.

The chain-based evaluation method executes the program in three steps: (1) com-

pile the program into a set of normalized recursions; (2) perform query binding and

constraint analysis to determine whether query evaluation may terminate and, if ter-

mination can be guaranteed, select an appropriate evaluation strategy and generate

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

nqueens(N, Qs) : -

range(1, N , N s) , queens(Ns, [I , Q s) .

range(M, N , [MINs]) : -

M < N , M1 is M + 1 , range(M1, N , Ns) .

range(N, N , [N]) .

queens(Unplaced, Safe, Qs) : -

select(Q, Unplaced, Unplacedl), not attack(&, Safe),

queens(Unplacedl, [Q(Saf el , Qs) .

queens([l, Qs, Qs) .

attack(X, X s) : - attack(X, 1 , X s) .

attack(X, N , [YIYs]) : -

X i s Y + N ; X i s Y - N .

attack(X, N , [YIYs]) : -

Nl is N + 1 , attaclc(X, Nl, Y s) .

select(X, [XIXs] , Xs) .

select(X, [YIYs] , [YIZs]) : - select(X, Y s , 2 s) .

Figure 2.1: The declarative n-queens recursion defined in the Prolog syntax.

an efficient evaluation plan; and (3) carry out the query evaluation according to the

query evaluation plan.

As a result, the method generates efficient query evaluation plans for reasonable

query bindings, such as "? - nqueens(4, Qs)" , "? - nqueens(N, [2,4,1,3])", "? -

nqueens(N, [3, X , Y, 2])" , but returns a warning without evaluation for unsafe queries,

such as ((? - nqueens(N, [21L])". 0

The LogicBase deductive database system prototype [54, 551 evaluates queries

declaratively on a subset of logic programs: linear and nested linear recursions. One

strength of this implementation is the discovery of monotonicity behavior of a pro-

gram and utilization of different kinds of constraints in the evaluation, which will be

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

analyzed in detail in this chapter.

A recursive program without function symbols has a finite Herbrand universe

and the termination of its evaluation is guaranteed by the bottom-up evaluation.

However, the Herbrand universe of a logic program with function symbols is in general

infinite, and conventional bottom-up evaluation encounters the termination problem

in evaluation. Constraints have been used to determine the termination or safety of

query evaluation on recursive programs [2, 18, 19, 47, 20, 71, 89, 100, 123, 124, 128,

1341. Although a complete solution for termination control is undecidable [75, 1211

for logic programs with function symbols, constraint enforcement has been shown

to be effective as a sufficient condition for terminating the evaluation of many logic

programs.

In this chapter, we explore the discovery of monotonicity behavior in declarative

logic programs and the interaction between monotonicity and constraints in the eval-

uation of multiple level recursive programs. Constraint handling has been studied

recently by different researchers [70, 124,1281. Our techniques presented here empha-

size its use in multi-level recursion where constraints in different levels interacts and

depends on each other, which poses greater challenges than in a single-level program.

The study is confined to linear and nested linear recursions with function symbols.

In our approach, a (nested) linear recursion is first compiled into a highly regular

chain form [58], which reveals the connections among arguments in logic rules of dif-

ferent levels and enables a detailed constraint analysis and constraint propagation in

recursive programs.

The monotonic behavior of some arguments of a recursive predicate can be dis-

closed by the analysis of compiled recursive rules. An argument of a recursive predicate

is monotonic in a recursive rule if there exists a strict inequality relationship under

certain mapping between variables corresponding to the same argument position of

a recursive predicate in both sides of the rule. A query constraint on a monotonic

argument can be pushed into the rule for efficient query evaluation and termination

of evaluation if it bounds the monotonic growth of argument values. Furthermore,

CHAPTER 2. MONO TONICITY AND CONSTRAINT PUSHING

constraints can be inferred from functions and existing constraints and propagated to

different levels of recursions, which enables evaluation of some programs that other-

wise do not have a proper way to terminate.

The importance of monotonicity detection and constraint pushing in terminating

recursive logic programs and reducing search space is shown in the following exam-

ples. The principles for handling constraints in these examples are discussed in later

sections.

Example 2.2 Evaluation of query (2.11) on a recursion gcd defined in Figure 2.2

terminates based on the following constraint analysis.

The constraint "Y > 2" derived from (2.14) and (2.15) implies that "Y > Z" holds

in (2.13), i.e., the second argument of the recursive predicate gcd in (2.13) monoton-

ically increases in bottom-up evaluation (or decreases in top-down evaluation). Thus

the query constraint "Y < 20" can be pushed into (2.13), which, together with the

constraint "Y > 0" in (2.13), guarantees the termination of the evaluation of query

on gcd. Furthermore, "Y > 0" in (2.13) infers "X > XI" in (2.15), that is, the first

argument of the recursive predicate mod in (2.15) monotonically increases in bottom-

up evaluation (or decreases in top-down evaluation). Since constraint "X = 6" in the

query implies "X = 6" for the first call of mod(X, Y, Z), whereas the query constraint,

"Y < 20", infers "X < 20" for subsequent calls of mod(X, Y, 2) based on variable

connections, the evaluation of mod terminates as well.

Without such an inference of monotonicity and analysis of constraints on the

compiled program, it is difficult to terminate the query evaluation.

Besides termination judgement, another major benefit of constraint pushing is

search space reduction by pruning futile derivatives in query evaluation. As an ex-

tension of inequality constraint, a list containing a sequence of elements with the

values of the elements monotonically increasing according to certain partial order is

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

gcd(X,O,X) : - X > 0. (2.12)

gcd(X, Y, Gcd) : - Y > 0, mod(X, Y, Z) , gcd(Y, 2, Gcd). (2.13)
mod(X, Y, 2) : - X < Y, X = 2 . (2.14)

mod(X, Y, 2) : - X > Y, X1 = X - Y, mod(X1, Y, 2). (2.15)

Figure 2.2: The recursion gcd (the greatest common divisor).

called a monotonic list. Such a monotonic behavior can be discovered by inference on

constraints and function and pushed as a constraint into a recursion to prune a large

number of (intermediate) lists which would have been generated without enforcing

the constraint.

Example 2.3 Query "? - sort ([4,2,3,1], X)" on a recursion sort (permutation sort)

defined in Figure 2.3 is to sort a list of elements by first enumerating all of the possible

permutations and then selecting the ordered one. A monotonicity relationship among

the elements of the list Ys in ordered(Ys) can be derived based on its definition

in (2.21) and (2.22). A special built-in constraint, monolist(Ys, L) , which means

elements in list Ys must be in non-decreasing order, can be pushed into the body

of the rule (2.17) to enable derivation of Xs with monotonic elements, which can be

further pushed into the body of rule (2.20) to be applied on [Y IYs]. It should be noted

that the special constraint monolist is different from predicate ordered. Program

ordered represents syntactial information to a query processor, whose semantics is

unknown. Whereas monolist is a built-in predicate whose semantics and evaluation

strategies are available to the query processor. The relevant modified rules are shown

in Figure 2.4. Without enforcing this constraint, permutation(Xs, Ys) generates n!

tuples, where n is the number of elements in the list to be sorted. After "filtering" by

monolist constraint, only one tuple is fed into ordered(Ys) in (2.16).

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

sort(Xs, Y s) : - permutation(Ys, X s) , ordered(Ys). (2.16)

permutation(Xs, [ZIZs]) : - select(Z, X s , Y s) , permutation(Ys, Zs).(2.17)

permutation([], [I) . (2.18)

select(X, [X I X s] , X s) . (2.19)

select(X, [Y IYs] , [Y IZs]) : - select(X, Y s , 2 s) . (2.20)

ordered([X]). (2.21)

ordered([X, Y IYs]) : - X 5 Y, ordered([Y IYs]). (2.22)

Figure 2.3: A permutation sort program.

sort(Xs, Y s) : -

permutation(Ys, X s) , monolist (Y s , I) , ordered(Ys).

permutation(Xs, [ZIZs]) : -

select(Z, X s , Y s) , permutation(Ys, Z s) , monolist(Xs, 5) .
permutation([], [I) .
select(X, [X I X s] , X s) .

select(X, [YIYs] , [YIZs]) : -

monolist([Y)Ys], I) , select(X, Y s , 2 s) .

Figure 2.4: Part of the permutation sort program in which monolist is pushed.

2.2 Categories of constraints

A constraint in a logic program represents certain relationship that the arguments in

the program must satisfy. Equality or inequality constraints are two typical kinds of

constraints. Constraints can be categorized based on their appearance and function

in a logic program into the following:

1. Query constraint is a constraint associated with one or more arguments of a

queried predicate, which puts restrictions in the head of a logic rule.

2, Rule constraint is a constraint appearing in the body of a recursive logic rule.

C H A P T E R 2. MONOTONICITY AND CONSTRAINT PUSHING

3. Exit constraint is a constraint appearing in the body of the exit rule of a

recursion.

During recursive query evaluation, rule constraints can be applied to every itera-

tion of a recursive query evaluation, which is not the case for query constraints or exit

constraints. In general, pushing a query constraint into a recursive rule body does not

generate an equivalent program. For example, for the query constraint "Fare > 800"

in Figure 2.5 can not be pushed into rule body, otherwise, some legimate answer to

the query will be left out. However, for a class of programs shown later, a program

and query pair of (P, Q A C) has a query-equivalent program P I such that (PI, Q A C)

and (P, Q A C) have the same answer for Q under all EDB's, where P is a logic pro-

gram, Q is a query on P, and C is a set of constraints. PI is obtained by transforming

(if necessary) some constraints in C and appending them to the rule body of P. By

doing so, the query constraints are said to be pushed into P.

In our study, the push of a set of constraints in the form of X + Y and X + c are

studied, where 4 is a partial order, c is a constant, X and Y are variables (or more

precisely argument positions) in a logic program. Notice that X and Y are sometimes

not directly comparable, but there may exist a mapping M on X and Y such that

M(X) + M (Y) . For example, cons(X, Y, Z) (a list concatenation predicate) has a

constraint length(Z) > length(Y), i.e., the length of the list Z is greater than that

of Y. M(X) + M (Y) is denoted as X +M Y, or simply X + Y when the mapping

can be neglicted to simplify presentation.

2.3 Monotonicity and constraint pushing

2.3.1 Monotonicity constraints and monotonic arguments

Definition 2.1 Given a rule set r , two arguments X and Y in r and a mapping

function M, a monotonicity constraint is a relationship between X and Y if and

only if X +M Y, according to some partial order 4.

C H A P T E R 2. MONOTONICITY A N D CONSTRAINT PUSHING

Definition 2.2 A n argument p : i in a recursive predicate p is monotonic if there

exists a mapping function M such that in the chain containing p, M(p(i) : i) +
M (p(j+ l) : i) , for j > 0, according to partial order +. It is denoted as +M (p : i) .

A monotonic argument has monotonically increasing or decreasing M-values in

the corresponding argument position in successive chain predicates.

Proposition 2.1 Given a recursive program of the form:

argument q : i of the recursive predicate is monotonic if and only if there exists a

mapping function M , such that there is a monotonicity constraint, Xi +M Y, , in the

recursive rule (2.23).

Lemma 2.1 If argument q : i is monotonic +M (q : i) and c is a constant, then

rule constraint Y , +M c or Xi +M c or c # M Y , or c # M Y , in (2.23) terminates

the chain-exit evaluation, and rule constraint c +M Xi or c +M Y , or Xi # M c or

Y , # M c in (2.23) terminate the exit-chain evaluation.

Proof. Given monotonic argument of +M (q : i) , the value of q : i increases monoton-

ically according to the partial order of + under mapping M , thus the rule constraint

of + M c forms an upper bound to the value of q : i . Therefore the chain-exit

evaluation terminates. The other cases can be similarly proved.

The constant c in the rule constraint serves as a bound on the monotonic growth of

the monotonic argument q : i . An equality constraint of either "Xi = c" or "E; = c" in

the rule obviously terminates both chain-exit and exit-chain evaluations. A constraint

used for termination of the evaluation of a recursive query is called the termination

constraint of the query.

C H A P T E R 2. MONOTONICITY AND CONSTRAINT PUSHING

Besides termination constraints, EDB predicates may also serve to terminate a

monotonic argument if the variable of the monotonic argument appears in an EDB

predicate. This is because EDB predicates have finite number of tuples, which limits

the monotonic growth of the monotonic argument.

2.3.2 Constraint pushing via monotonic argument

According to Lemma 2.1, a rule constraint may serve directly as a termination con-

straint if it bounds a monotonic argument. Similarly, a query constraint or an exit

constraint can be pushed into a rule from the query end or the exit end respectively

via a monotonic argument based on the transitivity property of the partial order and

serves as a termination constraint. Notice that for a non-recursive program, a query

constraint can be pushed into the rule body directly. This is in general not so for a

recursive program.

Lemma 2.2 Given a program q defined in (2.23) and (2.24), a monotonic argument

of 4 (q : i), and a query '? - q(X1,. . . ,X,) , c 4 Xin, where c is a constant. The

program of (2.23) and (2.24) is equivalent to the following program with respect to the

same query.

Proof. There exists the following relationship among the values of the monotonic

argument q : i.

q(l) : i -i q(2) : i -i . . . -i q(k) : i

where q(l) : i is Xi and q(2) : i is Y, in (2.23). Since c 4 Xi, based on the transitivity

of the partial order, we have c -i q(j) : i for j = 1 , . . . , k. Since q(j) : i for j = 2, . . . , k

corresponds to the variable Y, in the rule body in different expansions, the constraint

on each q(j) : i is equivalent to a rule constraint of c -i Y,. Thus the original rule set

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

(2.23) and (2.24) with respect to the query is equivalent to the same query on (2.25)

and (2.26).

Lemma 2.2 shows that a query constraint c 4 Xi can be pushed into a recursive

rule via a monotonic argument, and becomes c 4 Y,. It is noted that c 4 Xi can be

pushed directly into (2.23). Similarly, an exit constraint, q : i 4 c in the exit rule

(2.24), can be pushed into the recursive rule (2.23) based on the transitivity of the

partial order, and the recursive rule (2.23) becomes (2.27).

Furthermore, for a query constraint Xi = c, c 4 Y, can be pushed into the recursive

rule because Xi 4 Y , and Xi = c infers c 4 x. Similarly, for the exit constraint

Xi = c in (2.24), Xi 4 c can be pushed into (2.23).

Given a monotonic argument in a recursive predicate q as 4 (q : i), a constraint

(either from a query or an exit rule) is consistent with the monotonic argument if it

can be pushed into the recursive rule based on the rules for monotonicity constraint

pushing.

travel(FnoList, Dep, Arr, Fare) : -

f light(Fno, Dep, Arr, Fare) , cons(Fno, [I, FnoList).

travel(FnoList, Dep, Arr, Fare) : -

f light(Fno, Dep, I n t , Fl), cons(Fno, L, FnoList),

travel(L, In t , Arr, F2), F a r e = Fl + F2.
? - travel(FnoList, vancouver, paris, Fa re) , Fa r e < 1500,

Fa r e > 800.

Figure 2.5: Program travel.

i
Example 2.4 Fig. 2.5 defines a recursion, travel (or connected, flights) on the EDB

C H A P T E R 2. MONOTONICITY A N D C O N S T R A I N T PUSHING

following chain element (with three predicates):

flight(Fn0, Dep, In t , Fl), cons(Fno, L, FnoList), F a r e = Fl + F2

The query can be evaluated by exit-chain evaluation because the exit rule is evaluated

to produce travelbbbb in the body of recursive rule, where b in the adorned predicate

travelbbbb indicates that the corresponding argument is bound [134]. A monotonicity

constraint, "Fare > F2" can be inferred based on the integrity constraint, "Fl > O",

and the function "Fare = Fl + F2". Thus travel : 4 is a monotonic argument, i.e.,

> (travel : 4). Query constraint "Fare < 1500" is consistent with the monotonic

argument. It can be pushed into the recursive rule and terminates the exit-chain eval-

uation. Query constraint "Fare > 800" is not consistent with monotonic argument

of > (travel : 4) and thus cannot be pushed in.

In general, an exit-chain evaluation terminates if there is a constraint consistent

with a monotonic argument, and it is pushed in from the query end; whereas a

chain-exit evaluation terminates if there is a constraint consistent with a monotonic

argument, but it is pushed in from the exit end. In other words, to determine whether

an evaluation plan can terminate, the constraints at the finish end of a chain need to

be examined to see whether some of them can be used as a termination constraint.

2.4 Constraint propagation in multiple levels of

recursions

The derivation of monotonic arguments and termination constraints relies on con-

straint propagation in logic programs. In a program r , the set of constraints held on

r are either explicitly defined in r in the form of rule/query/exit constraints or in-

tegrity constraints, or implicitly represented: i.e., being inferred by inference rules or

propagated from higher or lower level programs. Thus, it is necessary to study mono-

tonicity detection and constraint propagation. Constraint propagation in a multiple

C H A P T E R 2. MONOTONICITY A N D CONSTRAINT PUSHING

level program r is to derive useful constraints which are implied by a set of known

constraints in r to aid monotonicity detection and constraint pushing in r .

2.4.1 Constraint propagat ion via invariant arguments and

by argument shifting

Definition 2.3 An argument q : i of the recursive predicate defined in (2.23) is in-

variant if Xi = x.

If q : i is an invariant argument, its value remains the same in every chain iteration,

i.e., q(l) : i = q(2) : i = . . . = q (k) : i . A constraint (either query, rule or exit constraint)

on the invariant arguments of a recursive rule can be propagated universally, i.e., it

can be applied in query, in the body of a recursive rule or an exit rule. Such a

propagation is useful in binding passing from a query to the exit rule for the detection

of a monotonic argument and the termination of a recursion.

Example 2.5 Consider the program mod in Figure 2.2 with query "? - mod(2,4, Z) ,

Z > 0, Z < 10". Program mod is a single chain recursion, with "X 2 Y, X1 = X - Y"

as the chain element. Query modbbf can be evaluated in the chain-exit evaluation

because modbbf instantiates X and Y in rule (2.15), both "X 2 Y" and "XI = X-Y"

are finitely evaluable, and the evaluation produces modbbf, which can be propagated

further in the chain-exit direction until the final evaluation of the exit rule. The

argument mod : 3 is invariant. Both constraints, "Z > 0" and "Z < lo", can be

propagated into the exit rule to serve as exit constraints. Since there is a constraint
ux = zn in the exit rule, constraint "X > 0" and "X < 10" are inferred in the exit

rule. The monotonic argument mod : 1 is consistent with "X > 0". Thus, "X > 0"

can be pushed into rule (2.15), which terminates the chain-exit evaluation of mod.

Notice that without pushing the constraint "X > O n , the evaluation cannot terminate

because there is no assumption that mod : 3 be a positive integer.

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

Given a recursive rule (2.23), if Xi = Y , (where i # j), then q(k) : i = q (k + l) : j,

i.e., the value of the i-th argument in q at the k-th iteration is equal to the value of

the j-th argument of q at the (k + 1)-st iteration. This kind of variable connections

in a recursive rule is called argument shifting. Since a constraint on Xi in the k-th

iteration is also a constraint on Y , in the (k + 1)-st iteration, a rule constraint on

Y , is also a rule constraint for Xi for all the iterations except the first, where the

value of Xi in the iteration depends on the query. The constraint which is defined

on all iterations except the first is called query-dependent constraint. Similarly, a

rule constraint on Xi may also be a rule constraint for Y , except the last iteration

where value of Y , is determined in the exit rule, and such a constraint is called exit-

dependent constraint. A query-dependent or exit-dependent constraint may terminate

a monotonic argument if appropriate analysis on the query or exit rule is conducted

to provide constraint in the missing iteration.

Example 2.6 Let's examine query "? - gcd(6, Y, 2), Y < 20" on the program gcd

in Figure 2.2. The gcd program is a single chain recursion, with chain element of

"Y > 0, mod(X, Y, 2)". Query gcdbf can be evaluated in the chain-exit evaluation,

and the exit rule can be evaluated based on the bindings passed from the query via

an invariant argument gcd : 3, then modfbb is to be evaluated. mod is a single chain

recursion and the query modfbb can be evaluated by the exit-chain evaluation. Because

the exit rule of mod is (finitely) evaluable through the bindings passed from the query

via the invariant arguments of mod : 2 and mod : 3, which instantiate variables Y and

2, so both predicates "XI = X - Y" and "X 2 Y" are (finitely) evaluable. Since

modfbb is evaluable, gcd is evaluable by exit-chain evaluation.

The constraint "Y < 20" in the query "? - gcd(6, Y, 2), Y < 20" can be pushed into

(2.13). This is because mod : 2 and mod : 3 are both invariant arguments, and the

exit constraint Z < Y can be propagated to the query and to the rule gcd. Therefore,

gcd : 2 is monotonic under ">" relation. Query constraint "Y < 20" is consistent with

> (gcd : 2) and is pushed in. Moreover, the rule constraint, "Y > O n , is propagated

into mod because mod : 2 is an invariant argument. Together with "XI = X - Y",

constraint "X > X1" is inferred. So mod : 1 is monotonic, > (mod : 1). A constraint

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

on X in (2.13) is needed to terminate m o d . From rule constraint (pushed from query),

"Y < 20", a query-dependent constraint of "X < 20" is inferred by argument shifting

from gcd : 2 to gcd : 1. This constraint terminates m o d : 1 in all the iterations of gcd

except the first, where "X = 6" (query constraint) is transformed to "X 5 6" and is

then used to terminate m o d in the first iteration.

2.4.2 Constraint propagation by inference rules

The constraints discussed here are equality or inequality constraints of on data with

a partial order. The transitivity property of partial order can be represented in the

form of inference rules. Figure 2.6 presents some of the most useful inference rules for

constraint propagation, where 4 can be >, <, 2,s.

Figure 2.6: Inference rules.

Given a set of known constraints C on program r , and a set of inference rules

1, there are many constraints implied by C. Obviously, not all of these implied

constraints are useful in helping monotonicity detection and constraint pushing, and

it is expensive to derive the closure of all of the derivable constraints. A method is

proposed here which tries to propagate only the useful constraints.

Based on our discussion, given a recursive program r with a set of querylexit con-

straints, only those constraints which are consistent with the corresponding monotonic

arguments can be ~ u s h e d into the program. Therefore, our task is to first look for the

monotonicities that are consistent with the querylexit constraints by making neces-
r

1 sary assumptions and verify the assumptions in r . If an assumption is verified to be
I

C H A P T E R 2. MONOTONICITY AND CONSTRAINT PUSHING

true, then the corresponding (possibly transformed) query or exit constraint(s) can

be pushed into r . Such an assumption is called a template goal and is verified by a

procedure template-goal-verzfy as shown in Algorithm 2.1. For example, given a query

"? - gcd(6, Y, 2), Y < 20", to test whether "Y < 20" can be pushed into the body of

the recursive rule, a template goal "Y > 2" in (2.13) should be verified to make sure

that gcd : 2 is a monotonic argument, i.e., > (gcd : 2).

A template goal is an assumed constraint on r . It can be an explicitly represented

constraint in r or derivable from a set of constraints using inference rules. If a template

goal g cannot be verified directly by applying inference rules but can be verified by

first verifying an intermediate template goal g' and then use g' to verify g, g' is then

set as a new template goal. This process is called template goal propagation.

For example, given a template goal "X < Y" and an inference rule "X 4

2 : - X 4 Y A Y -4 Z" , unification generates "X < Y : - X < $T A $T < Y". If

there is a constraint "X < 2" in the body of the rule, a new template goal "2 < Y"

is generated. Otherwise, "X < $T" is generated, where $T is a meta-variable which

may match any literal in a subsequent unification. When an inference rule is used,

template goals can be of the form L'X 4 Y", "X 'i c" or "X 'i $T1', and a template

goal may contain at most one meta-variable.

For a multiple level recursion, if g cannot be verified in r but there exists a lower

level predicate s defining r which can unify with g, then g should be verified in every

rule that defines s.

The template goal verification process is described in Algorithm 2.1. Given a set

of constraints C on program r , it verifies whether there is a template goal g on r by

first checking whether C contains g and then trying to unify g with the head of the

inference rule to see whether g can be either inferred from the constraints, or there

exists a new template goal g' such that verifying g is equivalent to verifying g'.

Algorithm 2.1 procedure template-goal-verify(g, r)

Input: A set of constraints C, a program r, constraint template g

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

Output: True if g is implied by C and r , false otherwise.

Method: The template goal verification process given below:

1. Collect rule constraints, integrity constraints, and constraints on functional

predicates of r into a constraint set C. Let c E C.

2. If g has no meta-variable and C contains g, g is verified.

3. If g has meta-variable(s), unify g with c E C. If there is a successful

unification, g is verified.

4. Verify whether g can be inferred from C by an inference rule. For inference

rule "h : -bl, b2 , . . . , bk" such that g and h can be unified, try to unify each

b; (for i = 1,. . . , k) with c E C such that all the unifications are consistent.

5. If all the b's are successfully unified, g is verified. Apply the same unifica-

tion on h, and h is an answer.

6. If a b is not successfully unified with c E C but b has some argument(s)

unified, b is a new template goal. If b can be verified in r or in every rule

defining a lower level predicate, g is verified.

7. If the variable in g is an invariant argument, verify g in the exit rule or

query constraint. If it is a shifting argument, verify g by shifting g to g'

and verifying 9'. o

Theorem 2.1 Algorithm 2.1 for template-goal-verify(g, r) takes polynomial time to

verify a goal in a nested linear recursion.

Proof sketch. In the algorithm template-goal-verify(g, r) , the constraint propagation

using inference rules takes most of the time. The number of literals in each inference

rule is at most two (as shown in our inference rule table Figure 2.6, an inference

rule with more literals can always be broken into multiple inference rules with binary

literals).

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

Let's first consider the verification of a goal in a single-level program by assuming

r is a single-level logic program. Assume C is the set of constraints and functions

in r , and V is the set of distinguished literals (variables or constants) in C, and Z

the set of inference rules. Thus, the literals of any template goal propagated during

template-goal-verify(g, r) is in V , so the maximum number of possible template goals

propagated (either verified to be true or false) is bounded by IZI * lv12 because there

could be at most IZI different types of binary relationships inferred. Furthermore,

because for any pair of constraints or functions there is at most one inference rule

applicable, the maximum number of goals verified to be true is bounded by lV 1 2 . Since

a new template goal is propagated in the same recursive level if there is one predicate

in the body of an inference rule unified with a known constraint or a function, the

cost of verifying a goal g is the sum of the following costs: unifying the goal with a

rule head predicate, unifying a body predicate with C to propagate a new template

goal, and the cost of verifying g' in r . Applying the same cost formula to g', the

number of subgoal propagated from g directly and indirectly is bounded by 111 * 1vl2,
with at most 3 unifications of one goallpredicate and C associated with each goal

propagated. Since unifying a goallpredicate with C takes at most ICI unifications, the

cost of template-goal-verify(g, r) is bounded by 3 * 111 * IVI2 * ICI unifications, which

is polynomial time.

Secondly, we examine the goal verification process in a multiple-level program.

Suppose r has a lower level predicate. Assume C is the set of constraints and functions

on all the programs nested in r. Then the same formula above holds on a nested

program as well. In a nested program, a template goal can be verified not only in the

current level program, but in a lower level program as well. Comparing template goal

propagation in the nested program with the constraint set C to that in a single-level

program with the same constraint set C, the template goals propagated in the nested

program is a subset of the template goals propagated in the single-level program,

because in a nested program, C can be viewed as being partitioned by deduction

levels. Therefore, the bound in a single-level program applies to a multiple-level

program as well. 0

C H A P T E R 2. MONOTONICITY AND CONSTRAINT PUSHING

Example 2.7 Given query "? - travel(FnoList, vancouver,paris, Fare) , F a r e <
1500" on the program travel in Figure 2.5, to push query constraint "Fare < 150OV,

one needs to check whether there is a monotonic argument > (travel : 4). A template

goal "Fare > F217 is set for (2.29), the recursive rule of travel. Initially, the constraint

set C is {Fare = Fl + F2, Fl > 0, F2 > 0, cons(Fno, L, FnoList), length(L) <
length(Fn0List)). The template goal is not found directly in C. Thus the inference

rules are applied. The inference rule " X 4 Y : -X = Y + Z A Z 4 0" generates

subgoals "Fare = F2 + $T, $T > 0''. Since $T is unifiable with Fl, the template goal

"Fare > F2" is verified. 0

2.4.3 Terminat ion control and constraint pushing in func-

tional programs

Based on the above discussion, the termination control and constraint pushing in a

compiled single- or multiple-level linear recursion can be integrated in one algorithm

as follows.

Algorithm 2.2 Termination control and constraint pushing in a compiled single- or

multiple-level linear recursion.

Input: A query on a compiled linear recursion with function symbols, a set of query

constraints, integrity constraints, and exit constraints.

Output: Determine whether the query evaluation terminates and, if it does, push

the (transformed) query constraints into the recursive rule.

Method. 1. Identify invariant arguments and shifting arguments.

2. For each query constraint c,, test whether c, can be pushed into the rule body

by verifying the template goal g which leads to a monotonic argument consistent

with c,. Do the same for each exit constraint c,.

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

3. If there exists a chain with monotonic argument(s) restrained by query con-

s t ra int(~) or exit constraint(s), push the corresponding transformed query con-

s t ra int(~) into the rule to terminate the exit-chain evaluation. If there exists

a chain with monotonic argument(s) restrained by exit constraint(s), push the

corresponding transformed exit constraint(s) into the rule to terminate the chain-

exit evaluation.

4. If the termination cannot be determined, detect if there exist other monotonic

argument(s) by enumerating the remaining possible monotonicity on arguments

of the recursive predicate, and verifying the corresponding template goals.

5. If an argument is found monotonic, set template goal of termination constraint

which is consistent with the monotonic argument. If the template goal is veri-

fied in rule body (rule constraints imply termination constraint), both chain-exit

and exit-chain evaluation terminate. If the template goal is verified using query

constraint set (query constraints imply termination constraint), push template

goal into rule to terminate exit-chain evaluation. If the template goal is veri-

fied using exit constraint (exit constraints imply termination constraint), push

template goal into rule to terminate chain-exit evaluation.

6. If an argument of a chain predicate is found monotonic, and the variable in its

position appears in an EDB predicate or a safe IDB predicate in the rule body,

then both chain-exit and exit-chain evaluations terminate.

7. If a chain predicate is an EDB predicate which contains only acyclic data, the

recursion terminates.

8. A multiple-chain recursion terminates if any of its chains terminates. 0

Theorem 2.2 Algorithm 2.2 correctly pushes constraints and terminates a compiled

single- or multiple-level linear recursion.

Proof sketch. According to algorithm 2.2, step 2 tests for each query constraint c,,

whether i t can be pushed into the rule body. The test is based on the template

goal verification algorithm proved before. Thus if there exists a query constraint

which is consistent with a monotonic argument, the values of a monotonic argument

C H A P T E R 2. MONOTONICITY AND CONSTRAINT PUSHING

growlshrink monotonically in the evaluation, which sooner or later will be bounded

by the constraint. Thus the constraint can be pushed in and the chain evaluation

terminates. Similar reasoning can be performed for pushing exit constraints and for

steps 3-5.

For step 6, if a monotonic argument in a chain appears in an EDB predicate or a

safe IDB predicate, the chain terminates. This is because in both cases, the predicates

have a finite number of instances (tuples), the monotonic argument reaches the limit

sooner or later, and thus the chain evaluation terminates.

Step 7 deals with the case that a chain has an acyclic EDB predicate as its chain

predicate. Since the chain predicate links arguments on the same position of recursive

predicates in the head and the body, the number of iterations in the evaluation must

be finite, and thus the chain evaluation terminates.

Finally, in a multiple-chain recursion (step 8), since all of its chains are evaluated

synchronously, its evaluation terminates if any of the chains terminates.

Example 2.8 Query "? - gcd(6, Y, 2), Y < 20" on the gcd program of Figure 2.2

terminates and some constraints can be pushed in based on Algorithm 2.2 as shown

below.

To check whether "Y < 20" can be pushed into the body of the recursive rule

(2.13), a template goal LLY > 2" is set. Since it cannot be verified within (2.13), "Y >
2 " should be verified in mod(X, Y, 2). In the execution of template-goalLverify(Y >
2, mod), the template goal is tested first in the exit rule (2.14) of mod, which infers

"Y > 2". Since both Y and Z are invariant arguments in the rule (2.15), the

constraint "Y > Z" holds in recursive rule as well. Thus, "Y < 20" can be pushed

into (2.13), and the exit-chain evaluation of gcd terminates if mod is finite.

To verify whether mod(X, Y, 2) returns finite results to the query, one needs to use

the query constraints "Y > 0" and "Y < 20". Since mod : 2 is an invariant argument,

one cannot judge whether mod is terminable by judging mod : 2 only, although both

of these constraints are propagated into the body of rule (2.15). The monotonicity

C H A P T E R 2. MONOTONICITY AND C O N S T R A I N T PUSHING

of other arguments in the recursive predicate of mod needs to be examined. Since

there is no mapping on mod : 1, only the template goal "X 4 XI" needs be verified.

The initial constraint set for mod is { X > Y, XI = X - Y, Y > 0, Y < 20). The

template goal "X > XI" is verified by "Y > 0" and "XI = X - Y" according to the

inference rule. So, mod : 1 is monotonically decreasing, i.e., > (mod : 1). Because

there is no termination constraint within mod, template goal " X < $1" is verified

in the gcd rule to find possible query constraint, which generates query-dependent

constraint "X < 20" due to the argument shifting and "X = 6" in the query. So,

the first iteration of mod program has a constraint " X 5 6" pushed in, and the

remaining iterations has "X < 20" pushed in. Therefore, the exit-chain evaluation of

mod terminates.

Similarly, it can be shown that query "? - gcd(X, 4,2), X < 6" terminates on gcd.

Query constraint "X < 6" cannot be pushed in (2.13), but "Y 5 4" is transformed

from a query constant and is pushed into rule (2.13) due to the monotonic argument

> (gcd : 2), which terminates gcd. Whereas "X 5 4" is obtained by argument shifting

and pushed into rule (2.15) for the mod subquery in all gcd iterations except the first

one, where "X < 6" of gcd is pushed in (2.15). Thus the evaluation of mod terminates.

2.5 Search space reduction using monotonic list

constraints

It is well known that the size of a list has monotonicity behavior (i.e., growing or

shrinking monotonically) in many recursive programs. Interestingly, the values of list

elements in a list may also have certain monotonicity behavior in many programs

which can be used as an effective constraint for search space reduction in query eval-

uation.

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

Definition 2.4 An empty list [I is a monotonic list, so is a list with a single element.

A list L of [al, a2, . . . , an] is a monotonic list if there exists a mapping M such that

M(a ;) 4 M(U;+~) for i = 1,. . . , n - 1 according to a partial order. It is denoted by

a special built-in functional predicate, monolist(L, +M), in a compiled logic program,

or simply as monolist(L, 4).

Predicate monolist does not have to be built-in predicate. During query optimiza-

tion, the original program can be rewritten to include the following program, such

that the rewritten program is executed more efficiently.

monolist([], +M).

monolist([X], 4 M) .

monolist([XIYIL], 4 ~) : - monolist([YI L], +M), M(X) 4 M(Y) .

Hence, monolist has a completely declarative semantics and are treated in the same

way as ordinary predicate. Although monolist has higher order syntax (function sym-

bols appear in argument position), it has first order semantics. Since the function +
are built-in in the program, and monolist(L, +) can be transformed into the following

monolist-gt program during query optimization if 4 is bound to greater than function

(>>:

Corollary 2.1 If a list [XIL] is a monotonic list, then L is a monotonic list. A list

[XIL] is monotonic if L is monotonic and there exists a mapping of M such that for

the head element Y in L, M(X) 4 M (Y) .

Proof. Let X = a,, and L = [al, a2,. . . ,an]. We first show that the first statement is

true. Based on the definition, if [XIL] is a monotonic list, there must exist a mapping

C H A P T E R 2. MONOTONICITY A N D CONSTRAINT PUSHING

M such that M (a ;) 4 M (a i + l) for i = 0, . . . , n - 1 according to a partial order. This

should also be true for i = 1, . . . , n - 1 , that is, L must be a monotonic list as well.

Then we show that the second statement is also true. Since Y is the head of L,

Y = al . If L is monotonic, there must exist a mapping M such that M (a;) 4 M

for i = 1, . . . , n - 1 according to a partial order. Since M (X) 4 M (Y) , that is,

M (a o) + M (a l) . The monotonicity relationship M (a ;) 4 M (U ; + ~) can be extended

to i = 0 as well. Thus [X I L] is monotonic. 0

2.5.1 Derivation of monotonic list

Corollary 2.1 provides us with a technique of testing whether a list is a monotonic

list.

Definition 2.5 Given the recursive rule i n (2.23), argument q : i is said to be a list

construction argument if there is a variable Z (called a list element variable) such

that list construction predicate cons(Z , x , X i) is in the rule body.

List construction arguments are common in recursive rules involving lists. For

example, in the program travel defined in Figure 2.5, travel : 1 is a list construction

argument, and F n o is its list element variable.

Corollary 2.2 Given a recursion defined i n (2.23) and (2.24), argument q : i is a

monotonic list monolist(q : i , +) if (1) it is a list construction argument in (2.23)

and h e a d X ; 4 head-x where h e a d X ; is the first element in X i and head-x is the

first element i n x, and (2) q : i is a monotonic list monol is t (q : i , +) in the exit rule

(2.24) as well.

Example 2.9 Considering the recursion, ordered, in rules (2.21) and (2.22). Since

ordered : 1 is a single element in the exit rule (2.21), it is a monotonic list. Moreover,

the first element of X Y Y s in the head predicate of the recursive rule (2.22) is X ,

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

the first element of YYs in the body of the recursive predicate in (2.22) is Y, and

"X 5 Y". Thus ordered : 1 is a monolist under relation "5" based on Corollary 2.2.

0

2.5.2 Pushing monotonic list constraints

A query constraint of monolist(Xi, 4) in the recursive rule (2.23) can be pushed into

the rule body if the implication, monolist(Xi, +)* monolist(K, 4)) can be derived

in the rule body. Obviously, monolist pushed into the body of a recursive rule (as a

rule constraint) reduces more search space than serving as a query constraint in the

query evaluation.

Example 2.10 Figure 2.7 is the rectified program of sort defined in Figure 2.3.

Suppose a query constraint monolist(YYs, 5) (derived in Example 2.9) is enforced

on the program select. Since argument select : 2 has YYs in the head and Ys in the

body where Ys is the tail of YYs, we have monolist(YYs, 5)- monolist(Ys, I).
Thus argument select : 2 is a monotonic list, and monolist(YYs, 5) is pushed into

the body of rule (2.39).

sort(Xs, Ys) : - permutation(Ys, Xs) , ordered(Ys). (2.36)
permutation(Xs, 22s) : - cons(Z, Zs, ZZs) , select(Z, Xs , Ys),

permutation(Ys, 2 s) . (2.37)
permutation(Xs, ZZs) : - X s = [I , ZZs = [I. (2.38)

select(X, YYs, YZs) : - cons(Y, Ys, YYs), cons(Y, Zs, YZs),
select(X, Ys, 2s). (2.39)

select(X, YYs, YZs) : - cons(X, YZs, YYs). (2.40)

Figure 2.7: Rectified permutation sort program.

Monotonic list and monotonic argument are tightly related as stated in the follow-

ing corollaries. Their inter-derivability is important to derive implications between

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

monotonic list constraints in a recursion. In general, to obtain such implications, a

known monotonic list constraint is first mapped to a monotonic argument via the list

construction argument, then the target monotonic list constraint is derived through

constraint propagation and the derivation of monotonic list constraint.

Corollary 2.3 Given a recursion in (2.23) and (2.24), suppose argument q : i is a list

construction argument with X as its list element variable. If monolist(X;, +) holds,

then (1) X is a monotonic argument of + (X) , (2) constraint monolist(q : i , +) holds

in the exit rule, (3) if Z is the first element of the variable of q : i in the exit rule,

X + Z .

Proof sketch. Argument q : i is a list construction argument, then cons(X, k;, X i) is

in the body of (2.23). So the values of argument X , X (l) , X (2) , . . . , X(n) correspond

to the elements in Xi. Since monolist(X;, +), X(;) + X(i+l) for i = 1, . . . , n - 1.

With cons(X, X i , k;) in rule body, then monolist(X;, +)* monolist(Y,, +), there-

fore monolist(k;, +) holds in body of (2.23). Therefore, q : i in (2.24) is monotonic

list, and if its first element is Z , then X 4 Z .

Corollary 2.4 Given a recursion in (2.23) and (2.24), if argument q : i is a list

construction argument and X is its list element variable, then q : i is a monotonic list

if (1) X is a variable of a monotonic under +, (2) q : i in the exit rule is a monotonic

list: monolist(q : i , +), (3) X + Y where Y is the first element of q : i in the exit

rule.

Corollary 2.4 can be proven similarly as Corollary 2.3.

Example 2.11 With the above preparations, we examine how the program in Fig-

ure 2.4 is derived.

Consider program sort in Figure 2.7. First, monolist(Ys, 5) is derived from

ordered program (in Example 2.9) and is appended to the body of rule (2.36).

Then the program permutation has a query constraint, monolist(Xs, l), in rule

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

(2.37). To push the monolist constraint into the rule body, one needs to verify that

"monolist(Xs, I)+ monolist(Ys, I) " in rule (2.37), i.e., "rnonolist(YYs, 5) I+
monolist(YZs, I) " , in rule (2.39). Both arguments select : 2 and select : 3 are list

construction arguments with Y as their common list element variable in rule (2.39).

Given monolist(YYs, I), Y is a monotonic argument of I (Y) and Y < head-Ys

in rule (2.39), and monolist(YYs, <) holds in the exit rule (2.40). Since YZs is the

tail of YYs in rule (2.40), monolist(YZs, 5) and head-YZs < head-YYs hold in

rule (2.40) as well. Thus, head-Ys I head-Zs in rule (2.39). and Zs is monotonic

in rule (2.39) as well. Therefore, monolist(Xs, <) can be pushed into the body of

rule (2.37) as well, which can be further pushed into the body of recursive rule (2.39)

as explained in Example 2.10. The push of the monolist constraint reduces the com-

plexity of evaluation of the same query from O(n!) to 0 (n 2) , where n is the number

of elements to be sorted.

Following is another example where monolist is successfully employed to reduce

the search space from O(n!) to 0 (n2) for the n-queens query.

Example 2.12 Consider query "? - nqueens(N, [5,3,1,4,2])" where the program is

shown in Figure 2.1. This query can be processed by

1. passing binding Qs = [5,3,1,4,2] from head of Rule (2.1) to Qs in predicate

queens;

2. processing subquery "? - queens(Ns, [I, [5,3,1,4,2])" in queens program shown

in Rules (2.5) and (2.4);

3. processing subquery "? - range(1, N, Ns)" , where N s is instantiated from result

in step 2.

Detailed analysis of evaluation of "? - queens(Ns, [I , [5,3,1,4,2])" reveals that N s

contains a set of lists of all permutation of [5,3,1,4,2]. Which means, the complexity

for processing queries such as "nqueens(N, [5,3,1,4,2])" is O(n!), where n is the size

of the list.

CHAPTER 2. MONOTONICITY A N D CONSTRAINT PUSHING

However, if constraint derivation and pushing are employed, the search space is

vastly reduced to from O(n!) to 0 (n2) . From the range program, constraint M < MI

can be inferred from function L'Ml is M+1" in rule (2.2). Therefore, the first argument

of range is monotonically decreasing, < (range : 1). Since M is the list constructing

argument for range : 3, and range : 3 in rule (2.3) has only one argument, it can be

derived that range : 3 is a monotonic list, thus constraint monolist(Ns, <) is derived

in rule (2.1).

To push constraint monolist(Ns, <) into the body of rule (2.4), the relation-

ship of monolist(Unplaced, <)+ monolist(Unplaced1, <) needs to be established.

Similar to the analysis in Example 2.11, from select program in rules (2.9) and

(2.10), monolist(se1ect : 2, <)+ monolist(se1ect : 3, <). Therefore, constraint

monolist(Ns, <) is pushed into the rule body and becomes monolist(Unplaced1, <)

in (2.4). Such constraint prunes all the intermeidate queens predicates which are not

in ascending order. Finally, only one queens predicate queens([l, 2, 3, 4, 51, [I, [5, 3,

1, 4, 2]) is derived instead of 5!=120 predicates.

2.6 Discussion

This study of constraint pushing and termination control in multiple level linear re-

cursive programs with function symbols has shown:

1. termination of multiple level program requires sophisticated analysis of con-

straints and monotonicity.

2. monotonicity can be caused by constraints and functions and can be extracted

by inference.

3. monotonicity provides a vehicle for constraint pushing.

4. transformation of querylexit constraints is needed to satisfy the consistence

requirement of constraint pushing.

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

5 . derivation and pushing of monotonic list constraints may substantially reduce

the search space.

Comparing with other approaches to incorporation of constraints into logic pro-

grams [140,62, 70, 66, 71, 82, 100, 123, 124, 128, 1341, our approach supports pushing

of both query constraint and rule constraint (integrity constraint), and investigates

constraint derivation and pushing in nested linear programs which poses more chal-

lenges. The chain-based compilation provides a good platform for the analysis of

constraints and monotonicity, so that a good evaluation plan can be selected, which

is flexible to best utilize the binding patterns and constraints, and to facilitate the

interaction among constraints and monotonicity at different levels of programs. Al-

though constraint pushing is better guided when an evaluation plan (or candidate

plan) is available, our approach can be applied independently of evaluation schemes,

because monotonicity detection and constraint pushing depend only on the availability

of constraints and variable connections in the program.

Moreover, the types of constraints considered in the program are extended, which

may involve any constraints of partial order under certain mapping. The introduc-

tion of monolist concept covers the monotonicity behavior of all the elements in a

list, which opens a new route for constraint propagation in list functions for query

optimization. Derivation and pushing of monotonic list constraint in multiple-level

programs implies that constraints of one recursion can be extracted and applied to

optimizing another recursion in a multiple-level recursive program, which may imply

a new direction for optimization of declarative logic queries.

The effectiveness of constraint pushing is demonstrated in the following example,

which compares the performance of different evaluation strategies for queries in gcd

and sort programs.

Example 2.13 The query evaluation efficiency of four evaluation methods: (1) Pro-

log, (2) magic: magic sets method, (3) chain w/o constraint: chain-based evaluation

without constraint pushing, and (4) chain with constraint: chain-based evaluation

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

with constraint pushing (including monotonic list constraint), are compared in the

evaluation of the gcd and sort recursions with different query bindings.

The following four queries are used in the examination:

Q1: "? - gcd(4,2, Z)" ,

Q2: "? - gcd(X, 4,2), X < 6",

Q3: "? - gcd(4, Y, 2), Y < 6", and

Q4: "? - sort([4,3,2, I], Ys))'.

A simple cost model is constructed to facilitate the comparison of different meth-

ods. The following three kinds of basic steps are used in the cost estimation.

type-a: Each execution of one built-in arithmetic or comparison operator, such as

" M = N - I", counts as one type-a basic step.

type-b: Each execution of a primitive-level (non-arithmetic) predicate (including

EDB), such as a call to "cons", counts as one type-b basic step.

type-c: Each execution of a call to an IDB predicate counts as one type-c basic step.

The total cost of query execution is expressed in the form: aa + ,Bb + yc, where

a , b, c are the unit cost for type-a, type-b, and type-c operations respectively. Such

a cost model represents the sum of the numbers of basic steps in the three types

respectively. This cost model is simple to construct and easy to compute. However,

it reflects a reasonable approximation to the amount of work involved in the query

evaluation. A method usually costs more in comparison with others if it involves more

basic steps in the execution of the same query on the same recursion.

The four evaluation methods are compared based on the above programs, queries

and the cost model. Their execution costs are presented in Table 2.1. Each slot is

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

Method\ Query

I Prolog

Table 2.1: Performance comparison of different query evaluation methods.

-
magic

chain w/o constraint pushing
chain with constraint pushing

filled up by the cost of query evaluation if the program is evaluated correctly by the

method, or " N / A (i.e., not applicable)" otherwise.

&I

16a + 10c

The table reveals the following:

N/A
16a + 10c
16a + 10c

The magic sets method cannot evaluate these queries on the gcd or sort pro-

grams. For gcd, the process of deriving magic predicates of mod cannot ter-

minate due to the infiniteness of functions or built-in predicates. For sort, the

bottom-up evaluation cannot pass sufficient bindings from permutation in the

body to its head in Rule (2.17).

Prolog cannot evaluate Q 2 and Q3 on the gcd program due to its predicatelrule

order dependency.

Q4

87a + 2373 + 185c
Q2

N/A

N/A
N/A

53a + 19c

With incorporation of constraint pushing, chain-based evaluation can success-

fully evaluate Qg and Q3. The evaluation returns 3 tuples for each query.

Q 3

N/A

For Q4 on sort, constraint pushing substantially reduces the evaluation cost. 0

N/A
N/A

55a + 21c

We conclude this chapter with two figures, Figure 2.8 and Figure 2.9 illustrate the

effect of constraint pushing on reduction of search space for n-queens and permutation

sort problems respectively, where size is number of queens to be placed in n-queens

problem and the number of elements to be sorted in the permutation sort problem.

N/A
87a + 2373 + 185c

l l a + 71b + 43c

C H A P T E R 2. MONOTONICITY AND CONSTRAINT PUSHING

cost
cham

- - - chain with constraint pushing

Figure 2.8: Effectiveness of constraint pushing for nqueensfb.

CHAPTER 2. MONOTONICITY AND CONSTRAINT PUSHING

cost

chain

- - - chain with constraint pushing

Figure 2.9: Effectiveness of constraint pushing for permutation-sortbf.

Chapter 3

Design and Implementation of

LogicBase

3.1 Motivation

As an important extension to the relational approach, research on deductive database

systems represents a direction towards declarative query processing, high-level database

programming, and integration of logic programming and relational database technol-

ogy [122]. Many deductive database systems or prototypes, such as LDL [28], Glue-

NAIL! [87], CORAL++ [125], EKS-V1 [142], ADITI [135], XSB [118], have been

developed and reported in recent years.

Efficient query evaluation in deductive databases is an essential issue in the real-

ization of deductive database systems. Previous researches [lo , 61, 65, 133, 28, 87,

105, 1351 lead to two influential classes of deductive query evaluation methods: (1)

bottom-up evaluation, represented by the magic sets computation and the semi-naive

evaluation [lo , 28, 87, 105, 1351, and (2) top-down evaluation, represented by the

query/subquery approach [142] and XSB [118]. These methods explore set-oriented

evaluation, focus of the search on query relevant facts, with freedom of looping and

C H A P T E R 3. DESIGN A N D IMPLEMENTATION OF LOGICBASE

easy termination testing, and have achieved impressive results. However, because a

recursion is more or less treated as a black box by these methods without a detailed

analysis of its particular structure, it is difficult to capture the regularities of a partic-

ular recursion and maximally utilize the information about constraints and recursion

structures in query evaluation.

The LogicBase project takes a different approach. LogicBase emphasizes effi-

cient compilation and query evaluation of application-oriented recursions in deductive

databases. It adopts query-independent compilation and chain-based query evaluation,

where the former [58] transforms a set of deduction rules into highly regular compiled

forms, which facilitates quantitative analysis of queries and efficient query evaluation;

whereas the latter explores set-oriented evaluation of each compiled chain with appro-

priate constraint transformation and push, which reduces unnecessary or redundant

computation and facilitates the judgement of termination. The method can be viewed

as a natural extension to relational query evaluation methods and an integration of a

top-down evaluation (by starting with the query as a goal) and a bottom-up evalua-

tion (by set-at-a-time evaluation without infinite looping and repeated computation

of subgoals).

The design goals for LogicBase are:

0 realization of pure declarative logic programming: the evaluation of a program

should be independent of the ordering of rules in the program and ordering of

predicates in a rule.

0 handling of functional program: function symbols should be allowed in a pro-

gram, efficient and safe evaluation should be provided.

0 support of eficient evaluation: set-oriented evaluation similar to that in the

relational approach should be supported.

0 exploration .of constraints: to provide safety for evaluation of functional program

and to reduce search space.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

3.2 Major Features of LogicBase

Although recursions can be in complex forms, most recursions in practical applications

can be compiled into chain or chain-like forms to which efficient query analysis and

evaluation techniques can be explored [58, 571. The design of LogicBase is based on

this regularity of recursion and the strength of chain-based compilation and evaluation.

The LogicBase system has the following major features:

Query-independent compilation, which captures the bindings that could be dif-

ficult to be captured otherwise and derives highly-regular and precise compiled

chain programs for query analysis and evaluation.

Chain-based evaluation, which includes a set of interesting techniques, such as

chain-following, chain-split, constraint pushing, etc., explores query constraints,

integrity constraints, recursion structures, and other features of the programs

in query evaluation.

Eficient processing of logic programs with functions, lists and complex data

structures. The programs in LogicBase are declarative, independent of the or-

dering of predicates in a rule and the ordering of rules and facts in a program.

Queries in different input/output mode combinations can be processed properly.

For example, in the nqueens(N, Qs) recursion shown in Figure 2.1, the predi-

cates or rules in the program can be swapped randomly, and the queries, such as

"? - nqueens(8, Qs)" (the 8-queens problem), and "? - nqueens(N, [2,4,1,3])"

(whether this is a valid n-queens chess board), can be answered correctly and

efficiently [56, 54, 531.

3.2.1 Capture of more bindings in query binding propaga-

t ion

LogicBase compiles complex recursions into highly regular chain forms. By such

CHAPTER 3. DESIGN AND IMPLEMENTATION O F LOGICBASE

compilation, the selection-pushing technique can capture more bindings in complex

recursions than those using traditional rule rewriting techniques, such as the magic

rule rewriting [9, 133, 101. This is illustrated by the following example [58].

Example 3.1 Traditional rule rewriting techniques may encounter some difficulties

in the propagation of bindings in some recursive rules [58], which is demonstrated in

the analysis of the following recursion.

Suppose that query "? - r(c, cl, Y)" is posed on a linear recursion defined by

Rules (3.1) and (3.2), where c and cl are constants, X's and Y's are variables, and r

is a recursive predicate defined by EDB predicates a , b and e.

Following the binding propagation rules [lo, 1331, the bindings in the adorned

goal, rbbf, are propagated to the subgoal r in the body of Rule (3.2), resulting in an

adorned subgoal, r f b f , as shown in Rule (3.3), which are in turn propagated to the

next expansion, resulting in r f f f , as shown in Rule (3.4), which cannot propagate any

bindings further to subsequent expansions, and the binding propagation terminates.

This kind of binding propagation relies on the backward binding propagation only,

in the sense that the bindings are propagated from the head to the body in a rule

and from the IDB subgoal in the body of a rule to the head of the rule which unifies

it. For this recursion, the propagation cannot reduce the set of data to be examined

in the semi-naive evaluation because the derived magic set contains the entire data

relations. Furthermore, it is easy to verify that reordering of the subgoals cannot

improve the evaluation efficiency.

For such recursions, bindings should also be propagated forward from the body to

the head in a rule and from the rule unifying the IDB subgoal to the corresponding

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

IDB subgoal in the body of the original rule. Such a propagation cannot be caught by

the traditional approaches but can be captured by the compilation (or normalization)

of linear recursions [58].

For this recursion, because the second and the third arguments of predicate r are

defined only by non-recursive predicate a in Rule (3.2), a new predicate t can be

introduced to define the first argument of r , such that r is defined as following:

where t(Xl) is intended to replace the remaining part in Rule (3.2): r(X2, XI, K),
b(X2, Yl). Hence t is defined as following:

The above definition for r is the normalized, equivalent form of the original program.

Obviously, the bindings of the query rbbf can be propagated to any expansions in the

normalized recursion.

This example shows that a complex linear recursion can be compiled (normalized)

into highly regular chain forms for efficient query analysis and evaluation. Many other

complex recursions are also compiled successfully by LogicBase and generate highly

regular chain recursions.

Although function-free recursions cover an interesting class of recursions in deduc-

tive databases, many recursions in practical applications contain function symbols,

such as structured data objects, arithmetic functions, and recursive data structures

(lists, trees, sets, etc.). By transforming functions into functional predicates, the

compilation and evaluation techniques developed for function-free recursions can be

extended to functional ones [47]. Furthermore, the method can be generalized to logic

programs containing modularly stratified negation [I051 and those with higher-order

syntax and first-order semantics [26]. Therefore, compilation of recursions into chain

C H A P T E R 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

and pseudo-chain forms [50] represents a powerful program transformation technique

which transforms recursion into simple, easily-analyzable forms and facilitates the

application of efficient evaluation methods.

In general, deduction rule compilation in LogicBase consists of two major units:

(1) classification (classification and simplification of recursions), and (2) compilation

(compilation and normalization of recursions).

The classification unit takes a complex recursive program as input, rectifies it,

eliminates mutual recursions when possible, simplifies the recursion when appropri-

ate, and identifies the class of recursions to which the program belongs [57]. By this

processing, a recursion is classified into one of the following classes: (1) (single) lin-

ear recursion, (2) nested linear recursion, (3) multiple linear recursion, (4) regular

nonlinear recursion, and (5) irregular recursion [57].

The compilation unit (based on [58, 571) takes the preprocessed recursion and

compiles (normalizes) it into a chain program, when possible, based on a compilation

(normalization) algorithm described in Section 3.3.2. Furthermore, algebraic simpli-

fication is performed on the compiled expressions. The compiled recursion is fed to

query analysis and evaluation.

3.2.2 C hain-following and chain-split evaluation

Since many recursions can be compiled into chain forms, chain-based evaluation should

be explored on the compiled recursions. Chain-based evaluation can be viewed as an

extension to relational database query analysis and optimization techniques, because

a compiled cha.in consists of an infinite set of highly regular relational expressions. The

compilation makes explicit the regularity of the operation sequences in a recursion, on

which quantitative analysis and optimization can be explored systematically. Such a

quantitative analysis, similar to the access path selection and query plan generation for

relational queries [119], can be performed based on the characteristics of the compiled

chains, query instantiations, inquiries, integrity constraints, and database statistics of

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

EDB relations [47]. Notice that quantitative analysis has been incorporated in many

other recursion handling methods to generate different query evaluation plans as well.

In general, the chain-based query evaluation method consists of chain-following,

chain-split, and constraint-based evaluation techniques.

The simplest chain-based evaluation is chain-following evaluation, which starts

with a highly selective end of a chain (called the start end) and proceeds towards

the other end of the chain (called the finish end) and then possibly to other chains.

It simulates partial transitive closure processing in the case of single chain recursion

[65, 611 and the counting method [9, 441 in the case of multiple chain recursion.

Example 3.2 The following recursion length defined by Rules (3.5) and (3.6) can be

compiled into a double-chain recursion.

length([I , O). (3.5)

length([XIL], N + 1) : - length(L, N). (3.6)

Rule (3.7) shows the rectified recursive rule.

length(XL, Nl) : - cons(X, L, XL), plus(N, 1, Nl), length(L, N). (3.7)

One chain has a chain element "cons(X, L, XL)", the other chain contains an element

"plus(N, 1, Nl)" . Query "? - lengt h([a, b, c] ,3)" can be evaluated by a typical chain

following evaluation. Both chain are instantiated at query end. At each iteration, the

third argument of cons and the second and the third arguments of the plus functional

predicate are instantiated, and both predicates are evaluated. The instantiation is

then passed to the next iteration via shared variables. Therefore, both chains are

evaluated in the chain-exit direction. At last, the exit rule is satisfied, and the query

is returned with answer true. If the query is "? - length([a, b, c], N)", it is evaluated

by the chain following as well. The cons chain is evaluated in the chain-exit direction,

but the plus chain in the exit-chain direction. In this case the chain-following method

is the same as the counting method because synchronization is needed between two

chains.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE 67

Depending on the available query bindings, some functional predicates in a chain

element may not be immediately finitely evaluable, or the iterative evaluation may

generate a huge intermediate relation. In these cases, a chain can be partitioned

into two portions: immediately evaluable portion and bu$ered portion. The former is

evaluated at the begining but the latter is buffered until the exit rule is evaluated.

Then the evaluation proceeds in a way similar to the evaluation of a multi-chain

recursion, except that the corresponding buffered values should be patched in the

latter evaluation. Such an evaluation technique is called chain-split evaluation [47].

Example 3.3 Rules (3.8) and (3.9) define a recursion append, which can be compiled

into a single-chain recursion. For the query "? - append(U, V, [a, b])" whose adorned

predicate is appendffb, the adorned normalized rule set. is shown in Rules (3.10) and

(3.11).

Since the chain element "cons(Xl,Ul,U), cons(Xl, Wl, W)" cannot be finitely

evaluated as a whole based on the only available binding on W, the chain-split eval-

uation technique should be applied in the evaluation. That is, the chain should be

split into two portions: (1) the immediately evaluable predicate "cons(X1, Wl, W)",

and (2) the bu$ered predicate "cons(X1, Ul, U)" .

The evaluation proceeds as follows. The evaluation of the exit rule (3.10) derives

the first set of answers: "U = [I" and "V = [a, b]" . The evaluation of the recursive rule

(3.1 1) proceeds along the immediately evaluable predicate "cons(X1, Wl, W)", which

derives "Wl = [b]" and "XI = a" from "W = [a , b]". Then XI is buffered, and Wl is

passed to the exit rule, making "V = [b]" and "Ul = [I". Then the buffered predicate

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE 6 8

becomes evaluable since XI and Ul are available. The evaluation derives "U = [a]".

Thus, the second set of answer is {U = [a], V = [b]). Similarly, the evaluation may

proceed along the immediately evaluable predicate "cons(X1, Wl, W)" further, which

derives the third set of the answer: {U = [a, b], V = [I).

3.2.3 Const raint-based query evaluation

Besides the distinction of chain-following vs. chain-split evaluation, another impor-

tant strength of the method is the systematic analysis and exploration of available

constraints [47].

Taking the evaluation of a single-chain recursion as an example, we examine how

to push query constraints (or instantiations) at both ends of a compiled chain. The

processing should start at a more restrictive end (the start end) and proceeds to a less

restrictive end (the finish end). It is straightforward to push query constraints at the

start end of the chain. However, care should be taken when pushing query constraints

at the finish end.

Example 3.4 An IDB predicate, travel(FnoList, Dep, Arr, Fare) , defined by Rules

(3.12) and (3.13), represents a sequence of connected flights with the initial departure

city Dep, the final arrival city Arr, and the total fare Fare , where edb-flight is an

EDB predicate representing the stored flight information.

travel([Fno], Dep, Arr, Fare) : -

edb-f light(Fno, Dep, Arr, Fare) . (3.12)

travel([FnolFnoList], Dep, Arr, Fare) : -

edb-f light(Fno, Dep, I n t , Fl),

travel(FnoList, I n t , Arr, F2), F a r e = Fl + F2. (3.13)

The recursion can be compiled into a single-chain recursion shown in Rules (3.14)

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE 69

and (3.15).

travel(L, Dl A, F) : - edb-flight(Fno, Dl A, F) ,

cons(Fno, [I, L), sum(F, 0, F) .

travel(L, D l A, F) : -

edb-flight(Fn0, Dl I, Fl), sum(Fl, S1, F),

cons(Fno, L1, L), travel(Ll, I, A, S1). (3.15)

The query is to "find a set of (connecting) flights from Vancouver to Zurich, with

at most 4 hops and with the total fare between $500 to $80OV, that is,

? - travel(FnoList, vancouver, zurich, F) ,

F 2 500, F 5 800, length(FnoList, N) , N 5 4.

According to the compiled form, D l L and F are located at the query end of the

chain; whereas A, L1 and S1 are at the exit end of the chain. The information at

the query end is, (i) D = "vancouver", (ii) 500 5 F 5 800, and (iii) FnoList =

L, length(FnoList, N), N 5 4; whereas that at the exit end is, (i) A = "zurich", (ii)

L1 = [I , and (iii) S1 = 0.

Since the information at the exit end is more selective than that at the query end,

the exit end is chosen as the start end for chain evaluation (query end as the finish

end). Thus, all the query constraints at exit end are pushed into the chain for efficient

processing.

The query constraints associated with the finish end cannot be pushed into the

chain in iterative evaluation without additional information. For example, pushing

the constraint, "Fare 2 500", into the chain will cut off a promising connection whose

first hop costs less than 500. On the other hand, it is clearly beneficial to push the

constraint, "Fare I: 80OV, into the chain to cut off the hopeless connections when the

accumulative fare is already beyond 800. However, a constraint like "Fare = 800"

cannot be pushed into the chain directly, but a transformed constraint, "Fare 5 800",

can be pushed in for iterative evaluation.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

A systematic way to push query constraints at the finish end can be derived by

examining the interactions between query constraints and monotonicity constraints

[47]. If the value (or the mapped value) of an argument in the recursive predicate

monotonically increases but does not converge to a limit during the evaluation, a

query constraint which blocks such an increase is useful at reducing the search space

in iterative evaluation.

Based on the monotonicity constraint of the argument Fare , a termination re-

straint template, "Fare + C", is set up, where C is a variable which can be instanti-

ated by a consistent query constraint. For example, a constraint, "Fare 5 8OOX,

or "Fare = 800", instantiates the template to a concrete termination restraint,

"Fare + 800". However, the constraint, "Fare 2 500", is not consistent with the ter-

mination restraint template. Thus, it cannot instantiate a termination restraint . An

instantiated termination restraint can be pushed into the chain for efficient processing.

Similarly, a constraint, "Dep = 'vancouver'", can be used for constraint pushing

if we have the airport location information and a constraint: same flight direction (a

monotonic constraint on flight direction). A concrete termination restraint, such as

"longitude(Dep) + longitude(vancouver)", can be derived from the analysis of the

query constraints and monotonicity constraints of the recursion, and the tuples gener-

ated at any iteration with the departure airports located to the west of Vancouver is

pruned in the chain processing. Also, the constraint, "length(FnoList, N), N 5 4",

can be pushed into the chain in the iterative evaluation.

Because of the availability of compiled chains and their precise connection informa-

tion, it is much easier to perform a detailed analysis of the monotonicity behavior of

each chain and perform appropriate constraint transformation and constraint pushing

for efficient evaluation.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

3.2.4 Chain-based evaluation of complex classes of recur-

sions

Since a (single) linear recursion can be compiled into a chain form or a bounded recur-

sion 1581, chain-based evaluation can be applied to this class of recursion. Similarly,

a nested linear recursion can also be so compiled and evaluated. The evaluation of

nested linear recursion can be illustrated in the following.

Example 3.5 A typical n-queens recursion defined in Figure 2.1 is a nested linear

recursion whose query analysis can be performed as follows.

For a query, "? - nqueens(4, Qs)" , the binding pattern for predicate nqueens is

nqueensbf(N, Qs) . The b f binding of nqueens leads to rangebbf and queensbbf if

range is evaluated first. Notice that it is unreasonable to evaluate queens first since

it is easy to verify that the binding queensfbf cannot lead to a finite set of answers.

Thus, the adorned program for nqueens is as follows.

nqueensbf (N , Qs) : -rangebbf (1 , N , N s) , queensbbf (N S , [I , Qs) .

Similarly, the adorned program for the remaining program is presented below.

Notice that "MI = M + f b b 1" denotes the bindings of the three arguments of the plus

predicate.

rangebbf (M , N , M N s) : - M <bb N , Ml = M +jbb 1,

rangebbf (~ 1 , N , N s) , consbbf (M , N s , M N s) . (3.16)

rangebbf (M , N , M N s) : - M =bb N , consbbf (N , [I , M N s) . (3.17)

queensbbf (U, S, Qs) : - s e l e d f b f (~ , (I, Ul) , not a t t a c k b b (~ , S) ,

c o n s b b f (~ , S , S l) , queen.sbbf(U1, S1, Qs) . (3.18)

queensbbf (u, S , Qs) : - U =bb [I, S = b f Qs. (3.19)

se lec t fb f (x , Y Y s , Y Z s) : - c o n s f f b (x , Y Z s , Y Y s) . (3.20)

se lec t fb f (x , Y Y s , Y Z s) : - cons f f b (y , Y s , Y Y s) ,

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE 72

selectfbf (x, Ys, Zs), consbfb(y, Zs, YZs). (3.21)

attackbb(x, Xs) : - attkbbb(x, 1, XS).

at tkbbb(x, N, YYs) : -

(X = Y + b f b N ; X = Y -bfbN),

consbfb(y, Ys, YYs).

at tkbbb(x, N, YYs) : - consbfb(y, Ys, YYs),

Nl = N +jbb 1, at tkbbb(xl Nl, Ys).

The binding propagation analysis determines both the appropriate query eval-

uation strategy and the predicate evaluation order. For example, the analysis on

adorned program rangebbf indicates that chain-split evaluation should be performed

on rangebbf(M, N, M N s) because the compiled chain " M < N, MI = M + 1,

cons(M, Ns, MNs)" must be split into two portions: " M < N, MI = M + 1"

and "cons(M, Ns, MNs)", in the evaluation (in order to guarantee finite evalu-

ation) according to the binding propagation ordering shown in (3.16). Similarly,

chain-following evaluation should be performed on peensbbf(U, S, Qs), chain-split

evaluation on selectf bf (X, Y Ys, Y Zs), and existence-checking evaluation [44] on

attkbbb(X, N, YYs).

Queries with other adornments can be analyzed and evaluated similarly. For

query "? - nqueens(N, [2,4,1,3])", the predicate queens should be evaluated first.

Otherwise, it is unsafe to evaluate rangebf f . Thus, the adorned program becomes,

n q u e e n s f b (~ , Qs) : -

p e e n s f b b (~ s , [I, Qs), rangebfb(l, N, Ns). (3.25)

p e e n s f b b (~ , S, Qs) : -

queens f fb (~ l , Sl, Qs), consfbb(&, S, S1),

not attackbb(Q, S) , selectbfb(&, U, Ul). (3.26)

p e e n s f b (~ , S, Qs) : -

peensffb(u1, S1, Qs), consffb(&, S, S1),

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE 73

not attackbb(&, S) , s e l e c t b f b (~ , U, Ul). (3.27)

queensffb(u, S, Qs) : - U = f b [I, S =f Qs. (3.28)

selectbfb(x, YYs, YZs) : - consbbf (x, YZs, YYs). (3.29)

selectbfb(x, YYs, YZs) : - consbfb(y, Zs, YZs),

selectbfb(x, Ys, Zs), consbbf (Y, Ys, YYs). (3.30)

rangebfb(M, N, MNs) : -

consbfb(M, Ns, MNs) , Ml = M + f b b 1,

rangebfb(M1, N, Ns) , M < b b N. (3.31)

rangebfb(M, N, MNs) : - M =bf N, c o n s b b b (~ , [I, MNs) . (3.32)

Binding propagation analysis derives the predicate evaluation ordering: first evalu-

ate q u e e n s f b b (~ s , [I, Qs) and then rangebfb(l, N, Ns) . Similarly, q u e e n s f b b (~ s , [I , Qs)

implies that queens(U1, Sl , Qs) (the recursive predicate in the body) should be eval-

uated first. The bindings in the head queensfbb are propagated to the body as shown

in Rule (3.26), which results in queensff b(Ul, Sl, Qs). The further propagation in the

recursive rule leads to the same binding pattern in the recursive predicate in the body,

as shown in Rule (3.27). This evaluation order can be naturally viewed as evaluating

first the exit rule portion and then the chain portion in the chain-based evaluation.

Based on such binding analysis, appropriate query evaluation plans can be generated

and queries can be processed efficiently.

3.3 Implementation of LogicBase

In this section, the design principles and implementation details for the LogicBae sys-

tem are presented. LogicBase consists of three phases: compilation of logic programs,

generation of an evaluation plan and execution of the plan. The overall picture of

LogicBase is introduced first, followed by algorithms for each phase.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

3.3.1 LogicBase system architecture

Figure 3.1 presents an overview of LogicBase.

1. Compilation of a program: Classification, normalization and compilation of a
program.

2. Plan generation: Analysis of binding passing, determining evaluation direction
for each chain, determining termination for the plan, generating an evaluation
plan and optimizing the query plan.

3. Plan execution: Execution of relational operations according to the generated
plan.

Figure 3.1 : Overview of LogicBase.

A more detailed description of the three phases in LogicBase is as follows:

1. Compilation: Recursive programs are first classified into the following classes:

(1) (single) linear recursion, (2) nested linear recursion, (3) multiple linear re-

cursion, (4) regular nonlinear recursion and (5) irregular recursion. Then they

(except irregular nonlinear recursion) are compiled and normalized into chain

or chain-like forms to facilitate query processing. Linear mutual recursions are

compiled into one or a set of linear recursions or pseudo-linear recursions which

can be evaluated in the same way as normal linear recursions. The compilation

is query-independent .

2. Query plan generation and query optimization: A systematic and quantitative

analysis is performed to determine an appropriate evaluation strategy and to

generate a query processing plan. LogicBase takes the binding passing on the

compiled chain forms and evaluation cost into consideration to select a query

processing strategy. For each chain, bindings can be propagated in either direc-

tions: (1) chain-exit: where bindings are first passed from the query to the chain

(via the query end of the chain), then through the chain (via shared variables

C H A P T E R 3. DESIGN A N D IMPLEMENTATION OF LOGICBASE

among successive chain elements), finally to the exit rules (via the exit end of

the chain); (2) exit-chain: where bindings in the query are passed to the exit

rule via shared variables between the head predicate and the recursive predi-

cates in the body, then from the exit rule into the chain (via the exit end of the

chain) and passed through the chain (via shared variables in successive chain

elements), finally bindings are passed back to the query (via the query end of

the chain). According to the binding propagation, query processing strategies

are categorized into the following:

a non-recursive processing, which handles a query on a non-recursive pro-

gram.

all-up chain following evaluation, where all the chains are evaluated in the

chain-exit direction. It is similar to the top-down evaluation with respect

to the binding passing.

a all-down chain following evaluation, where all chains are evaluated in the

exit-chain direction. It is similar to the bottom-up evaluation with respect

to the way bindings are passed.

a up-down chain following evaluation, where some chains are evaluated in the

chain-exit direction and the rest are evaluated in the exit-chain direction.

It is similar to the counting method.

a chain-split evaluation, where a chain is split into two portions: immediately

evaluable portion and buflered portion such that the immediately evaluable

portion is evaluated first in the chain-exit direction whereas the buffered

portion is buffered and its evaluation is delayed until all of the immediately

evaluable portion of the chain is fully evaluated and the bindings from the

chain-exit evaluation are passed to the exit rule, such bindings are then

passed to the buffered portion to enable evaluation on the buffered portion.

Termination analysis and constraint pushing are also important tasks done at

this stage. Termination on evaluation of function-free program is guaranteed

by the chain-based evaluation. However, for a functional program, analysis on

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

monotonic constraints is employed to ensure termination of chain-based evalu-

ation. In LogicBase, an evaluation plan for a functional program is considered

to be safe only if a constraint is found in the program to restrain an argument

whose values monotonically increase or decrease. If no such constraint(s) can be

located, LogicBase strives to push other constraints found in the query or the

exit rules if possible. For an evaluation plan of functional program without such

constraints, the plan is abandoned and another alternative plan is examined.

Besides plan generation, plan optimization is performed in this stage. Given

a valid and safe evaluation plan, statistics on EDB relations is used to give an

estimated cost for the query evaluation under the plan. When multiple strategies

are applicable, the one with the least estimated cost is taken as the evaluation

plan. The query plan can be further optimized by rearranging the order of

predicates within the plan, which can be accomplished by making use of query

optimization techniques in the relational database, because evaluation in chain-

based approach is an extension to the relational database query processing.

3. Plan execution: The query evaluation plan, generated at the last phase, is exe-

cuted to obtain answers to the query. A query plan is represented in an internal

data structure which specifies what needs to be done in plan execution. Various

relational operations such as relational join, selection, project ion, set difference,

are performed according to the plan.

The following subsections will introduce techniques and algorithms used in these

three phases in detail.

3.3.2 Compilation of linear recursive programs

The methods and algorithms presented here for the automatic compilation of linear

recursive programs are from Han and Zeng [58]. They are included here to present a

complete view for the LogicBase system.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

A variable connection graph-matrix, V-matrix is used to register the structure of

a linear recursive program, and also to discover the minimal necessary expansions in

the compilation of complex linear recursions. Furthermore, the compiled forms of a

linear program can be generated automatically through the expansion operation on

V-matrix.

The compiled form of a recursive program is generated by expanding recursive rules

and identifying regularity of the expansion. The expansion behavior of a recursion is

closely related to the variable connections among its predicates.

The following concepts are used to introduce the necessary algorithms for auto-

matic generation of chain form, to which the compilation portion of the LogicBase

system is implemented accordingly.

Definition 3.1 Two predicates in the body of a rule are connected if they share vari-

ab le(~) with each other or with a set of connected predicates. Two nonrecursive pred-

icates in the body of a rule are U-connected if they share variable(s) with each other

or with a set of U-connected predicates. A set of variables are U-connected if they are

in the same nonrecursive predicate or in the same set of U-connected (nonrecursive)

predicates.

Definition 3.2 The variable connection graph-matrix, V-matrix, for a linear recur-

sive rule of arity n (the arity of the head predicate) consists of a sequence of rows.

Each row consists of n columns with the i-th one corresponding to the i-th argument

position of the recursive predicate. Moreover, there are possibly U-connection edges

between some columns in a row.

The contents of an initial V-matrix reflect the variable connection information

in the corresponding arguments in the original recursive rule. Its expansions reflect

similar information in the expanded recursive rules. The compilation procedure in

LogicBase expands recursion by manipulating V-matrix.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

The initial V-matrix, which consists of the first two rows (row [O] and row [I]) of

the V-matrix, is constructed according to the following V-matrix initialization rules

shown as follows, while the remaining rows, if any, are constructed based on the

V-matrix expansion rules to be presented later.

A V-matrix is initialized in the following four steps:

1. Partition the variables in the rule according to the U-connections (and each

partition is called a U-connected set);

2. Copy the variables in the recursive predicate in the head and the body to the

corresponding columns in row [O] and row [l] respectively;

3. Replace the variable at each column of row [I], say x , by the set of distinguished

variables U-connected with x , if any; and

4. Set up a U-connection edge between each pair of columns in the corresponding

row if the pair of columns are in row [O] and contain U-connected distinguished

variables, or if they are in row [I] and contain U-connected nondistinguished

variables.

A V-matrix can be partitioned into one or more unit V-matrices based on the

connections among matrix columns.

Definition 3.3 TWO columns of a V-matrix are connected if the two columns in the

initial V-matrix share a variable or a set of U-connection edges with each other or

with a set of connected columns. A set of connected columns form a unit V-matrix.

A linear recursive rule whose V-matrix consists of only one unit is a single-unit rule;

otherwise, it is a multiple-unit rule.

New rows of a V-matrix can be generated from its initial V-matrix by a set of

V-matrix expansion rules, and the generated rows reflect the U-connectivities of the

corresponding expanded recursive rules.

CHAPTER 3. DESIGN A N D IMPLEMENTATION OF LOGICBASE

Definition 3.4 A variable y is a derivative of a distinguished variable x in a V-

matrix if y is derived by x, that is, y and x are at the same column in the V-matrix

but y 's row number is x's row number + 1.

In general, the V-matrix expansion rules can be summarized as follows, where the

row NewRow (= LastRow + 1) is generated from the row LastRow of the V-matrix:

1. Row generation: for each distinguished variable x in V-matrix [LastRow, i] , add

x's derivatives to V-matrix [NewRow, i].

2. U-connection Propagation: the U-connection edges are copied from Last Row to

NewRow and then from LastRow -1 to LastRow. If such copying makes a dis-

tinguished variable x U-connected to the set of variables in V-matrix [NewRow,

i], x is added to the set of variables in V-matrix [NewRow, i].

It is proved in [58] that each row of the V-matrix generated by following the

above V-matrix expansion rules correctly registers the set of distinguished variables

U-connected to each column of the recursive predicate in the body at each expansion.

Furthermore, after certain number of expansions (stable level), newly generated rows

start to repeat rows generated some number of expansion (period) before in the V-

matrix. Such stable level is no greater than the arity of the head predicate.

Equality of two rows in a V-matrix is defined in the following.

Definition 3.5 The DV-set of a column is the set of all the distinguished variables

U-connected to the variable(s) in the column. Two rows, row [i] and row [j], in a V -

matrix are identical (denoted as row[i] == rowb]) if each pair of their corresponding

columns has the same DV-set.

Based on such definition of identicality, for a single-unit recursive rule of arity n , it

can be proved that there exists integers S (stable level) and T (period) such that for

any k-th expansion with k > S , it is identical to (k - T)-th expansion in its V-matrix,

and S + T 5 n.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

Definition 3.6 If starting at row S, there exists a T such that the row of a single-

unit V-matrix repeats at every T more expansions, that is, row [S + k x T] == row

[S] for all k > 0, then S is called the stable level and the smallest T the period of the

V-matrix. If row [S] contains no distinguished variables, T is defined as 0.

The following algorithm is used in LogicBase for the expansion of a single-unit

V-matrix and the derivation of its stable level S and the period T.

Algorithm 3.1 The expansion of a single-unit V-matrix and the derivation of its

stable level S and the period T.

Input: An initial single-unit V-matrix.

Output: An expanded V-matrix, the stable level S and the period T.

Method: begin

LastRow := 0; CurrentRow := 1;

while not RowRepeating (CurrentRow, ExistingRow)

LastRow := CurrentRow; CurrentRow := CurrentRow + 1;

/* Generate the contents of the CurrentRow. */
for each column i /* Every column in CurrentRow is initially empty. */

for each distinguished variable x in V-matrix[LastRow, i]

Add x's derivatives to V-matrix[CurrentRow, i];

/* U-connection Propagation. */
Copy the U-connections from LastRow to CurrentRow;

Copy the U-connections from LastRow - 1 to LastRow;

for each column i

for each x in V-matrix[CurrentRow, i]

if x is U-connected to a distinguished variable y which is not already in

V-matrix[CurrentRow , i]

then Add y to V-matrix[CurrentRow, i] and remove, if any,

nondistinguished variables there;

S := ExistingRow;

C H A P T E R 3. DESIGN A N D IMPLEMENTATION OF LOGICBASE

if there is no distinguished variable in CurrentRow

then T := 0;

else T := CurrentRow - ExistingRow;

end.

Notice the RowRepeating is a Boolean function which returns true if the there is a

row in the V-matrix called ExistingRow identical to the CurrentRow. Such function

is used to identify the stable level S and the period T acd terminate the expansion

of the V-matrix.

The generation of chain-predicates for nonnull chains from the recursive rules in

the (S + T)-th expansion consists of the following three steps:

1. Take the set of nonrecursive predicates generated from the (S + 1)-st expansion

to the (S + T)-th expansion as the candidate set of the chain predicates.

2. Replace the predicates in the candidate set which are not U-connected to any

set of distinguished variables or which corresponds to a distinct DV-set but are

not U-connected together by their corresponding predicates in the previous ex-

pansions to make the predicates corresponds to a DV-set U-connected together.

Each chain is a set of predicates in the replaced set corresponding to a distinct

DV-set .

3. Rename and index the variables in the (S+T)-th expansion. Ignore the variables

not shared with any predicate outside of the chain. Let the set of variables in the

recursive predicate at the S-th and the (S + T)-th expansions be S-set and ST-

set, respectively. For the remaining variables in the chain predicate, rename and

index them when necessary to make each variable in the ST-set have the same

name as the corresponding variable in the S-set but with the index increased

by one. If a variable in the ST-set appears also in the S-set, the same variable

should be the same (name and index) in the new set of variables. Renaming and

indexing of a variable should be performed consistently for every occurrence of

the variable.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE 82

Algorithm 3.2 Generation of the compiled form for a single-unit linear recursion.

Input: A linear recursion R, its stable level S and period T .

Output: The compiled form of the recursion.

Method. Case 1: T = 0. The recursion is bounded and the compiled form is the

union of the expanded exit rules from 0-th to S-th expansions. That is,

Case 2: T # 0. The compiled form for the recursion can be generated as

follows:

If a recursion contains only null chain predicates, it is bounded and its

compiled form is the union of the k-th expanded exit rules for 0 5 k 5
S + T - 1. That is:

R(xl, x2,. . . , x,) = Eo(x1, ~ 2 , . . . ,x,) U E ~ (x I , x ~ , . . . , x ,) ~ , . . . ,
UES+T-I (X I , X2,. . - xn).

Otherwise, the recursion is a single- or multiple- chain recursion with the

following compiled form:

R = SS U (U(MM, CCi, TT)),

which consists of four portions: (i) prestable exit rule portion (SS), (ii)

miscellaneous portion (MM), (iii) chain-portion (CC), and (iv) stable exit

rule portion (TT).

The SS-portion represents the rule expansion before reaching its stable

stage, which is the union of Ek for k from 0 to S - 1 if S > 0 or empty

otherwise. That is:

C H A P T E R 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

The TT-portion consists of the bodies of the exit rules contributing to the

period of the recursion, which is formed by the union from Eo to ET-1.

That is:

The chain-portion CC consists of a set of nonnull chains in the exponential

form with the same exponent i. Each nonnull chain predicate is generated

following the chain-generating rules and is in the form of A(X;-~, xi), where

A is the chain predicate, and xi-l and xi are connection variable vectors.

The formula consists of a set of unions starting from i = 0 to infinity. The

variable indices outside of the chain predicates should be set accordingingly

based on i = 1.

Finally, the miscellaneous portion, MM, if any, is composed of the predi-

c a t e (~) left in the (S+T)-th expansion, i.e., those not used in the formation

of the chain predicate(s).

The V-matrix expansion and compilation of chains on single unit linear recursions

are generalized to multiple unit ones. Because each unit reaches its own stable level

independent of other units, the stability for the whole can be determined by examining

each unit separately. Thus the stable level for multiple level recursion is the maximum

of the stable level of each unit.

Algorithm 3.3 The expansions of a multiple-unit V-matrix.

Input. An initial V-matrix V which is partitioned into k unit V-matrices, Vl, . . . , Vk.

Output. A stable level S of the V-matrix and the period Ti (1 5 i 5 k) for each

unit V-matrix K .

Method. For each unit V-matrix x, derive its S; and Ti based on Algorithm 3.1.

Then S = maximum(S1,. . . , Sk), and each unit V, maintains its own period Ti.

0

CHAPTER 3. DESIGN A N D IMPLEMENTATION OF LOGICBASE

The compiled form for multiple unit recursion can be derived by merging inde-

pendent compiled form of each unit. In order to generate a combined compiled form,

all independent compiled forms should be aligned to a common S, and T should be

the least common multiplier of the nonzero T's of each unit. The following algorithm

describes how to generate compiled chain form for multiple unit recursions.

Algorithm 3.4 Generation of the compiled form for a multi-unit linear recursion.

Input: A multiple-unit linear recursion R, its stable level S and the period Ti (1 5
i < k) for each unit V,.

Output: The compiled form of the recursion.

Method. Generation of compiled form consists three steps:

1. For each unit V-matrix V,, generate its compiled form Ri according to

Algorithm 3.2;

2. Generate the aligned compiled form for each unit V, based on the common

stable level S and the common period T, where S = max(S1,. . . , Sk) and

T = lcm(Tl,. . . , Tk);

3. Merge the multiple aligned compiled forms into one combined compiled

form in which:

(a) the SS-portion consists of the union of Eo to Es-l if S > 0 or empty

otherwise;

(b) the TT-portion consists of the union of Ei's for i from 0 to T - 1;

(c) the chain-portion consists of all the nonnull chains, with each chain

predicate determined within its unit and then aligned up for merging.

All the chain predicates are in the exponential form with the same

exponent i, and each variable connected to the set of distinguished

variables is in the form of for a distinct x, and that connected to

the set of variables in the recursive predicate is in the form of xi; and

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

(d) the MM-portion consists of the predicates at the (S + T)-th expansion

which does not participate the chain predicates.

3.3.3 Plan generation

The second phase of query evaluation in LogicBase is the plan generation, in which a

compiled chain form of a recursion is passed from the compilation phase, and a plan

generator analyizes whether a given query can be answered on the compiled form and

determines how bindings should be propagated along each chain. Due to the presence

of functions and multiple level recursions, several issues need to be addressed for the

plan generator phase:

binding propagation, to consider how the binding from the query instantiation

can be propagated in the chain. Bindings can be passed in either chain-exit or

exit-chain direction. The plan generator determines the evaluation direction for

each chain to provide sufficient binding passing and evaluation efficiency.

safety of plan, to make sure that an evaluation will terminate for functional pro-

grams. Given a tentative evaluation plan for a functional program, if there exists

a constraint or base relation bounding an monotonic argument, the evaluation

under the plan is safe.

query optimization by constraint pushing, in some cases even though a program

does not contain a constraint, an external constraint in its query or exit rules

can be pushed into the program and can be served as a bound to a monotonic

argument, therefore the program can be safely evaluated. Another benefit of

such query optimization is reduced search space for some query evaluation.

nested recursive program, where queries and answers are exchanged between

rules at different deduction levels. During query evaluation in a higher level

rule, an IDB predicate appeared in the rule body is queried with instantiation

from the rule. Such query is processed in a program with lower deduction

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

level and the answer is used in query evaluation in the higher level rule. Such

query processing is accomplished by recursively calling the query processor in

LogicBase. Besides the exchange of query and answers, constraints need to be

exchanged as discussed in chapter 2.

Following is the algorithm for query plan generation in LogicBase, the actual plan

is stored in an internal data structure which is filled during plan generation phase and

accessed during plan execution phase.

Algorithm 3.5 Plan generation.

Input: query predicate q, binding b.

Output: true if evaluation plan for q is generated, false otherwise. Evaluation plan

is stored in a structure Plan.

Method: the algorithm is as following:

procedure plan-generator(q, b)

begin

Plan := 0
if q is an EDB predicate

then

register q in Plan

return true

else if q is a functional symbol

then

if q is evaluable under b

then

register q in Plan

return true

else

return false

else if q is a non-recursive IDB predicate defined by rule T

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

then

store in I the instantiated variables in the r's head under binding b

Uneval := set of all predicates in the r's body

return predicateset-evaluable(Uneva1, I)

else if q is a recursive IDB predicate defined by a recursive rule r and an exit rule

exit

then

if chain-exit-plan(r, exit, b)=true

/* strategy is chain-exit chain following */
then return true

else if exit-chainplan(r, exit, b)=true

/* strategy is exit-chain chain following * /
then return true

else if chainsplit-plan(r, exit, b)=true

then return true

else return false /* none of the strategies works */
end

It should be noticed that plan-generator is a recursive algorithm to deal with

nested program. The algorithm for function predicate-set-evaluable is shown in al-

gorithm 3.6. It accepts a set of predicates as input and determines their ordering t o

ensure proper binding propagation.

Algorithm 3.6 Determine the evaluation order for a set of predicates.

Input: a set of predicates Uneval, a set of instantiated variables I.

Output: if the set of predicates are evaluable, return t rue and the order, other return

false .

Method: the algorithm is as following:

procedure predicateset-evaluable(Uneva1, Instantiated)

begin

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

while Uneval # 0
if (there exists p, such that (p E Uneval) and

(b' is the binding of p under I) and

(plan-generator(p, b') = true))

then

Uneval := Uneval - p

register p in Plan

I := I U set of all variables in p

else /* no predicate in Uneval is evaluable */
return false

return true /* Plan contains predicates should be evaluated */
end

LogicBase has employed four evaluation strategies so far: chain following in the

chain-exit direction; chain following in the exit-chain direction; chain-split and count-

ing. The plan generation for chain-split and counting is merged as a single one. These

plan generation algorithms are given in algorithm 3.7, 3.8 and 3.9 respectively.

3.3.4 C hain-based evaluation

Chain-based evaluation accepts compiled chain form of a recursive program as input,

classifies the program according to the binding passing patterns and evaluates the

query using either chain-following, chain-split or counting method.

3.3.4.1 Chain following evaluation: chain-exit direction

In the chain following evaluation in chain-exit direction (chain-exit evaluation for

short), all chains in the program are evaluated from the query end of the chain to the

exit end. Assume that the chain predicates for a recursive program defining r are a

and b (either single chain or multiple chain), the chain expansion form is:

C H A P T E R 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

where (a(;)b(;)) is the i-th iteration of the chain and exit is (set of) the exit rule body

predicate(s). The chain-exit evaluation passes binding from the query to the first

chain iteration ~ (~) b (~) , which becomes evaluable from the query instantiation. Then

binding in is passed to ~ (~) b (~) , which becomes evaluable in turn. Therefore,

all iterations of the chain are evaluable and finally exit becomes evaluable, thus the

query is answered.

Plan generation for chain-exit evaluation needs to verify the successful binding

passing from query to the first chain iteration, from the i-th chain iteration to the

(i + 1)-st, and from the last chain iteration to the exit rule. Algorithm 3.7 gives the

algorithm of plan generation for chain-exit evaluation.

Algorithm 3.7 Plan generation for the chain-exit evaluation.

Input : compiled recursive rule r , exit rule exit, query binding b.

Output : true if query can be evaluated by chain-exit evaluation, false otherwise.

Method : the algorithm is as following:

procedure chain-exit-plan(r, exit, b)

begin

/* verify the evaluability of the first chain iteration */
I := set of instantiated variables in r's head under binding b;

for each chain in r

Uneval := all predicates in the chain;

if predicate-set-evaluable(Uneva1, I)=false

then

return false;

/* verify evaluability of the following chain iteration */
I' := all variables in the recursive predicate in r's body;

for each chain in r /* passing binding from one iteration to the next */
Uneval' := all predicates in the chain;

if predicateset-evaluable(Uneval', I1)=false

then

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

return false; /* unevaluable chain */
/* pass binding from r to exit */

I" := all variables in the exit's head predicate;

Uneval" := all predicates in the body of exit;

if predicate-set-evaluable(Uneval", I1')=false

then return false;

else return true;

end.

3.3.4.2 Chain-following: exit-chain evaluation

In the chain following evaluation in exit-chain direction (chain-exit evaluation for

short), all chains in the program are evaluated from the exit end to the query end.

For the chain expansion shown in Formula (3.33), the exit-chain evaluation passes

binding from the query to the exit rule by shared variables in the same argument

position between the head predicate of the exit rule and the recursive predicate in

the recursive rule body. The exit rule is then evaluated, which provides binding

passing from the exit rule to the last chain iteration. The binding is then passed from

one chain iteration backward to the previous chain iteration, and finally to the first

iteration. Thus all chain iterations are evaluated and the query is answered.

Plan generation for the exit-chain evaluation needs to verify successful binding

passing from query to exit rule, binding passing from one chain iteration to the pre-

ceding chain iteration. Algorithm 3.8 gives the algorithm for the plan generation of

the exit-chain evaluation.

Algorithm 3.8 Chain-exit evaluation plan generation.

Input: A compiled recursive program r , its exit rule exit and the query binding b.

Output: true if the query can be evaluated by the chain-exit evaluation, false oth-

erwise.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

Method: the algorithm is as following:

procedure chain-exitplan(r, exit, binding)

begin

/* passing binding from query to exit rule */
Instantiated, := set of the instantiated variables in head predicate of r under

b;
I, := those variable in Instantiated, s.t. they appear at the same argument

positions in r's head predicate and the recursive predicate in r's body;

bezit := binding of exit's head predicate under instantiation I,;

/ * evaluability of exit under bindingexit */
IeXit := set of the instantiated variables in exit's head predicate under bezit;

Unevalexit := all predicates in exit's body;

if predicate-set-evaluable(Unevalexit, IeXit)=false

then /* insufficient binding to evaluate exit rule */
return false;

/* pass binding from exit to r's chain */
I, := set of all variables in the recursive predicate in r's body;

for each chain in r

Uneval, := set of all predicates in the chain;

if predicate-set-evaluable(Uneval,, I,)=false

/* last chain iteration unevaluable */
then

return false;

/* pass binding from one chain iteration to the previous */
I, := set of variables in the r's head;

for each chain in r

Uneval, := set of predicates in the chain;

if predicate-set-evaluable(Uneval,, I,)=false

then /* insufficient binding to propagate evaluation in chain */
return false; /* unevaluable chain */

return true;

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

end.

3.3.4.3 Counting for multiple chains

For a multiple chain program, not all chains can be evaluated in the same direction,

some are evaluated in the chain-exit direction, whereas the rest in the exit-chain

direction. This is similar to the counting method approach, because synchronization is

needed between the various evaluations in two directions. Assume in Formula (3.33),

predicates a , b belong to two different chains. Query instantiation enables a-chain

to be evaluated in the chain-exit direction, but not the b-chain, because the query

instantiation is not sufficient for the evaluation of b-chain. However, after evaluation

of the exit rule, new bindings can be passed to the last iteration of b-chain, which

enables the evaluation of b-chain in the exit-chain direction. Synchronization between

these two chains by counting levels ensures proper termination of b-chain.

3.3.4.4 Chain-split evaluation

The chain-split evaluation is similar to the counting method, in that the chain-exit

and the exit-chain evaluation are employed to process a query. Instead of two chains in

different evaluation directions, a chain can be split into two parts which are evaluated

in different directions in the chain-split evaluation. A portion of the chain, immediately

evaluable portion (IMP), can be evaluated in the chain-exit direction, the rest of the

chain, bu$ered portion (BP), has to be evaluated in the exit-chain direction. BP needs

the bindings passed from the IMP and the exit rule to evaluate. Synchronization

between IMP and BP is needed via counting levels. The difference between the chain-

split evaluation and the counting evaluation for multiple chains is that there are shared

variables between IMP and BP in the chain-split evaluation, whose value have to be

stored in a buffer during the evaluation of IMP, whereas in the counting evaluation for

multiple chains, there is no shared variable between chains, thus no buffer is needed.

The plan generation algorithm shown in Algorithm 3.9 works for both counting

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

and chain-split evaluations, where IMP represents the immediately evaluable portion

in case of the chain-split evaluation, or chains evaluated in the chain-exit direction

in case of counting, and BP stands for the buffered portion in chain-split or chains

evaluated in the exit-chain direction in counting. Information about creating and

maintaining a buffer is recorded in the plan for the chain-split evaluation.

In Algorithm 3.9, analysis of the following binding passing is carried out: binding

passing from the query to the first iteration of IMP; from one iteration of IMP to

the next; from the last iteration of IMP to the exit rule; from the exit rule to the

last iteration of BP; from one iteration of BP to its preceding one; and from one

iteration of IMP to the same iteration of BP.

Algorithm 3.9 Plan generation for the chain-split and the counting evaluation.

Input: a compiled recursive rule r , its exit rule exit and a query binding b.

Output: true if the query can be evaluated either by the chain-split or the counting

method, false otherwise.

Method: the algorithm is as following:

procedure chainsplit-plan(r, exit, b)

begin

IT := set of instantiated variables in r7s head predicate under b;

IMP := 0; BP := 0;
for each chain in r

Uneval := set of predicates in the chain;

I' := IT;

while Uneval # 0
if there exists a predicate p E Uneval s.t. b, is binding of p under I'

and plan-generator(p, b,)=true

then /* p is evaluable */
insert p into IMP;

Uneval := Uneval - p;

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

I' := I 'U set of variables in p;

else /* there is no evaluable predicate in Uneval */
BP := BP U Uneval; /* BP is the set of buffered predicates */
Uneval := 0;

if IMP = 0 /* not suitable for chain-split */
then return false;

/* verify binding passing from IMP part of chain to exit rule */
IIMP := set of variables in all predicates of IMP;

bezit := binding of the recursive predicate in r's body under IIMP;

IeXit := set of instantiated variables in exit's head predicate under bezit;

Unevalexit := set of the predicates in exit's body;

if predicate-set-evaluable(Unevalezit~ Iexit) = false

then /* insufficient binding for exit */
return false; /* verify binding passing from exit to BP in r */

IBP := set of variables in the recursive predicate in r's body;

IBP := IBPU set of all variables in IMP;

UnevalBp := set of predicates in BP;

if predicate-set-evaluable(unevalBp) Isp)=false

then /* insufficient binding to evaluate buffered portion */
return false;

/* verifying binding passing from one iteration of BP to the previous one

*I
/* is the same as binding passing verification from exit to BP */

return true;

end.

3.4 Plan execution

An internal structure stores the evaluation plan. LogicBase adopts an unified ap-

proach towards plan execution. Every evaluation can be viewed as going through the

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

following evaluation stages, the plan executor takes appropriate actions according to

the instructions specified in the evaluation plan structure:

1. chain-exit stage: where the query instantiation is passed to the chain(s) and

each chain (whole or part) is evaluated in the chain-exit direction (if possible).

2. exit-rule stage: instantiation is passed to the exit rule from either a chain or the

query, and exit rule is evaluated.

3. exit-chain stage: instantiation is passed from the exit rule to the chain(s) and

each chain is evaluated in the exit-chain direction.

Each query evaluation strategy consists of a sequence of these stages. For the chain

following method in chain-exit direction, only stage 1 and 2 are involved; whereas stage

2 and 3 are needed for the chain following in exit-chain direction. Counting and chain-

split need all stages. A single plan executor is implemented to perform all actions. It

would have costed more implementation effort if a dedicated plan executor had been

implemented for each method in LogicBase.

3.5 Other implementation issues

Issues of termination control and constraint pushing are discussed in Chapter 2, cyclic

counting method for function-free program is discussed in Chapter 5, and processing of

multiple linear rules is presented in Chapter 4. We discuss some other implementation

related issues in this section.

3.5.1 User interface

A simple graphical user interface and a terminal-oriented user interface are provided.

LogicBase reads in definitions for EDB, IDB and query, from either interfaces and

performs syntax analysis using YACC and LEX to transfer them into an internal

C H A P T E R 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

data representation. The specification of the syntax for LogicBase can be found in

Appendix A.

3.5.2 Data structure

Static data structures and dynamic structures are blended in LogicBase to provide

efficiency and flexibility for query evaluation. Static structures are adopted where

frequent access is needed, such as the table for schema information, structures for

const ant and variable arguments, and the internal representation for the query eval-

uation plans. Dynamic structures are employed to support complex structures such

as list and functional term, which can be nested each other to any level. The ba-

sic argument type can be one of the following types: integer, constant, variable, list

or functional term. A list has a head of argument type and a tail of list type. A

functional term has a number of elements, each of argument type.

Such implementation is flexible and efficient. Most work for query processing is

efficiently done on the static structures to reduce overhead for dynamic data structure

access and maintenance, whereas representation and manipulation of complex objects

is achieved.

3.5.3 Negation

Stratified negation is supported in LogicBase. In the compilation phase, negative

literals are treated in the same way as positive literals. During the plan generation

phase, evaluation of a negative predicate is scheduled only after all of its variables

are instantiated. In the plan execution phase, a negated subgoal is computed by first

obtaining its corresponding positive subgoal, then performing a relational difference

operat ion.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

3.5.4 Query and evaluation plan optimization

LogicBase utilizes various query optimization strategies. Search space reduction by

constraint derivation and pushing discussed in Chapter 2 is one kind of optimiza-

tion. Compilation of a recursive program into bounded form is another kind of query

optimization, where recursive program is compiled into an equivalent non-recursive

one.

Furthermore, like optimization in relational query processing, optimization can be

performed on query evaluation plan using statistical information available in EDB

relations. Since in LogicBase, query evaluation is not carried out until a thorough

evaluation plan is devised on the compiled program, a detailed analysis is possible to

facilitate query optimization similar to that in relational databases, such as pushing

a selection deeply into relational expression and optimization on join operations.

3.5.5 Variable naming

It is necessary to distinguish two sets of variables: (1) external variables, which are

defined in an IDB predicate and/or queried by the user; (2) internal variables, which

are internal representations of arguments during query processing and are created

during the compilation phase.

It is noted that one external variable in a logic rule is independent of another

external variable with the same name in a different logic rule, even if both rules may

define the same IDB predicate. For example, suppose the following program is defined

in LogicBase:

r (X, Y) : - a(X, Z), r(Z, Y).

r (X ,Y) : - b(X,Z),c(Z,Y).

the second argument of predicate a in rule (3.34) has nothing to do with the second

argument of predicate b in rule (3.35), although variable Z is used in both places.

CHAPTER 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

However, if they are replaced by the same internal variable, query evaluation may lead

to error because an extra equality relationship is mistakenly added to this program.

A variable naming mechanism in LogicBase is responsible to prevent such an un-

desirable situation. The internal variables in one logic rule are independent of the

internal variables in other logic rules, and are independent of the external variables

as well. The only exception is that the external variables in the query are actually

used during query processing to facilitate query answer extraction.

3.5.6 Handling of functions

Inclusion of functions in a deductive database results in more effort to ensure a safe

and finite evaluation. In LogicBase, a built-in function is transformed into a new

equivalent form which contains an extra argument as the returned value for the func-

tion. For example, a predicate p with a list argument "p([XIL])" is transformed

into "p(X-L), cons(X, L, X-L)" where "cons(X, L, X-L)" is the equivalent functional

predicate. For each built-in function, the binding patterns under which it can be

evaluated and the way it should be evaluated are supplied internally in LogicBase. A

table is used to store information about the evaluable bindings, which is consulted

during plan generation to determine whether the function is evaluable. During plan

execution, the function is actually evaluated by built-in routines.

3.5.7 Handling of functional terms

A functional term is a dynamic data type. It is considered to be a constant if every

argument is instantiated, e.g., LLperson(johnson, birth-date(l0, J a n , 1970))". It is

considered to be a variable if some of its arguments are variables, e.g., the following

person predicate:

person(johnson, birth-date(Day , Month, Year)) (3.36)

C H A P T E R 3. DESIGN AND IMPLEMENTATION OF LOGICBASE

The constant functional term is transformed into an internal dynamic structure. Sim-

ilar to the transformation of functions, a variable functional term is transformed into

a special predicate which contains all the arguments in the functional term and an

extra argument designating the value of the functional term. For example, the above

person predicate in (3.36) is transformed into the following:

person(johnson, X) , birth-datep(Day, Month, Year, X) ,

where birth-date-p is a special predicate for the functional term birth-date.

Such functional term birth-date-p(Day, Month, Year, X) is evaluable if: (1) X is

instantiated, then Day, Month and Year can be derived; or (2) Day, Month and

Year are all instantiated, then X becomes instantiated.

Chapter 4

Evaluation of Multiple Linear

Recursions

So far, query processing in single linear recursion using chain-based method has been

investigated. In this chapter, efficient query processing in multiple linear recursion is

discussed.

4.1 Introduction

The efficient evaluation of function-free linear recursions has been studied extensively

in deductive database research [lo , 9, 48, 59, 94],Ullm88. Most studies on linear

recursions assume that a linear recursion consists of one linear recursive rule and

one or more nonrecursive rules. We call such kind of recursions single linear (SL)

recursions in contrast with the recursions to be studied here, multiple linear (ML)

recursions.

A multiple linear (ML) recursion is a recursion which consists of multiple linear

recursive rules and one or more nonrecursive rules. ML recursions occur in many

applications. For example, sg (same generation cousin) can be defined by more than

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 101

one linear recursive rule as shown in the Figure 4.1. Moreover, ML recursions can be

generated by the compilation of some mutual recursions or multiple levels of recursions

[57]. Since SL recursions have been studied extensively, it is natural to extend the

domain of study to ML recursions.

sg(X, Y) : - parent(X, W), parent(Y, V), sg(W, V).
sg(X, Y) : - child(W, X), child(V, Y), sg(W, V).

sg(X, Y) : - cousin(X, W), sg(W, Y).

sg(X, Y) : - sibling(X, Y).

Figure 4.1: A recursion with multiple linear recursive rules.

There have been some interesting studies on the evaluation of ML recursions.

Henschen and Naqvi 1591 presented a formula derived by the expansions of an ML

recursion and proposed a technique similar to their evaluation of SL recursions. Beeri

and Ramakrishnan 1131 developed Generalized Counting and Generalized Magic Sets

methods which are applicable to the evaluation of ML recursions. Han and Henschen

[48] presented a side-relation unioned compilation technique for a special class of

ML recursions where each recursive rule is a one-sided recursive rule. Naughton [94]

performed a detailed study on such kind of ML recursions, which he called separable

recursions, and showed that an efficient algorithm similar to a transitive closure query

processing algorithm is applicable. Naughton, Ramakrishnan, Sagiv and Ullman [96]

further extended the technique to right-linear, left-linear and multi-linear rules.

This study provides a systematic study on different kinds of ML recursions and

their query evaluation techniques. We classify ML recursions into side-coherent and

non-side-coherent ML recursions, while the former is further classified into three types.

Efficient query evaluation techniques are developed for side-coherent ML recursions,

which integrate side-relation unioned processing [48] with the transitive closure algo-

rithms [lo , 481, the Magic Sets method [9], and the Counting method [9]. Moreover,

flexible methods can be applied to the evaluation of queries with complex instantia-

tions and inquiries on ML recursions.

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 102

4.2 A Classification of ML Recursion

We assume without loss of generality that all the rules in a recursion are rectified,

where the rules for a predicate r are rectified [I321 if all the heads of its rules are

identical and in the form of r(X1,. . . , Xn) for distinct variables XI,. . . , Xn. We also

assume that there is exactly one default nonrecursive (exit) rule in an ML recursion

in the form of

r (Xl , . . . , Xn) : - e(X1,. . . , Xn).

where n is the arity of r .

We first introduce the concepts of a k-sided recursive rule and side-coherency.

Definition 4.1 A k-sided recursive rule is a linear recursive rule in which there

are k + 1 variable vectors (where k > 0 and 1 2 0) in the head predicate, where each

of the k variable vectors is connected to the same argument position of the recursive

predicate in the body via a nonrecursive predicate (called a side-relation) and each of

the remaining 1 variables retains the same argument position of the recursive predicate

in the body. Notice that diflerent side-relations in a k-sided rule do not share variables.

It is called one-sided when k = 1 or multiple-sided when k > 1 . Each of such k

variable vectors is called a side-vector, and each of the remaining 1 variables in the

head predicate is called an exit variable.

For example, the following rule is a k-sided recursive rule,

where Xo is an exit variable and each Xi, for 1 5 i 5 k is a side-vector connected

to its corresponding argument position of the recursive predicate in the body via a

nonrecursive predicate pi.

Definition 4.2 An ML recursion is side-coherent if each of its recursive rules

is one- or multiple-sided and each side-vector of every recursive rule is either a

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 103

side-vector or an exit variable vector of every other recursive rule. Otherwise, it is

non-side-coherent . Furthermore, a side-coherent ML recursion is strongly side-

coherent if each side-vector of its every recursive rule is exactly one side-vector of

its every other recursive rule. In a side-coherent recursion, a side-vector of the re-

cursion is a side-vector of at least one recursive rule, and the exit-vector of the

recursion is the set of exit variables shared b y all of the recursive rules.

Figure 4.2: A non-side-coherent ML recursion.

Figure 4.3: A side-coherent ML recursion where all of the recursive rules are one-sided

(Type 1).

Example 4.1 The recursion which consists of one default nonrecursive rule and two

one-sided recursive rules shown in Figure 4.2 is non-side-coherent because the side-

vector of the first rule is < XI, X2 > while that of the second one is < XI, Yl >.

The recursion which consists of one default nonrecursive rule and four one-sided

recursive rules shown in Figure 4.3 is side-coherent. It has two side-vectors, X and

Z, and one exit-vector Y.

The recursion which consists of one default nonrecursive rule and two two-sided

recursive rules shown in Figure 4.4 is strongly side-coherent. It has two side-vectors,

X and Z, and one exit-vector Y. Notice that all of the recursive rules in a strongly

side-coherent recursion have the same number of sides.

C H A P T E R 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 104

Figure 4.4: A strongly side-coherent (Type 11) ML recursion.

To facilitate the development of efficient query processing methods, we further

classify side-coherent ML recursions into the following three types:

0 Type I: multiple one-sided. A side-coherent ML recursion is in Type I if all

of its recursive rules are one-sided, e.g., Figure 4.3.

0 Type 11: multiple balanced k-sided. A side-coherent ML recursion is in

Type I1 if it is strongly side-coherent and all of its recursive rules are multiple-

sided, e.g., Figure 4.4.

0 Type 111: multiple mixed k-sided. A side-coherent ML recursion is in Type

I11 if it does not belong to the above two types, e.g., Figure 4.5 and 4.6.

Figure 4.5: A Type I11 ML recursion where the recursive rules have different sides.

Figure 4.6: A Type I11 ML recursion where the recursive rules have the same number
of sides but are not strongly side-coherent.

Conceptually, non-side-coherent ML recursions cover a large set of ML recursions.

However, many of such ML recursions are transformable to side-coherent ML recur-

sions or SL recursions by compilation and/or variable vectorization [43].

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 105

Figure 4.7: An ML recursion which is compilable to a single linear recursion.

Figure 4.8: A complex ML recursion.

Example 4.2 The ML recursion shown in Fig 4.7 is transformable to a two-sided SL

recursion because (i) the first recursive rule becomes a two-sided recursive rule after

one more expansion on itself, (ii) the second recursive rule is a bounded recursive rule

which, together with a nonrecursive rule, forms a bounded recursion [97], and (iii)

further expansions of the second recursive rule on itself or on the first recursive rule

are absorbed by the existing rules and thus treated as part of the nonrecursive rule

set [43, 951.

The ML recursion shown in Fig 4.8, though quite complex, is a side-coherent

recursion because it becomes a typical Type I11 side-coherent ML recursion by taking

"pq(X, Y, XI, K) : - p(X, Y), q(X1, Y, K)." and treating < X, Y >, < XI, K >,
< Z, W >, and < Z1, Wl > as vectors V, &, T and Tl respectively, as shown

in Fig 4.9. Such a variable vectorization process reduces the arity of the recursive

predicate and simplifies the computation. A similar technique of reducing the arity

Figure 4.9: The recursion in the previous figure is a Type I11 ML recursion by variable
vectorization.

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 106

of a recursive predicate is studied recently in [96].

Some non-side-coherent ML recursions cannot be transformed to SL recursions or

side-coherent ML recursions. The recursion shown in Fig 4.2 is one such example.

However, it is difficult to find appropriate semantic interpretations and application

models for such kind of ML recursions. Therefore, our study of efficient evaluation of

ML recursions is confined to side-coherent ML recursions.

4.3 Evaluation of Single-Probe Queries in ML Re-

cursions

A single-probe query is a query in which one variable of the recursive predicate is

instantiated by one or a set of constants. A typical such query is

where the predicate r (X, Y, Z) is a ternary predicate in which Y is the exit-vector

and X and Z are two side-vectors, "a" indicates that X is instantiated by one or a

set of constants, "-" indicates that Y is irrelevant to the query, and "2" indicates

that the third argument of r is inquired. Notice that if "a" denotes a set of constants,

the semantics of the query is to find the set of all 2 's such that a tuple "(a , -, 2)"

exists. If we want to find the set of corresponding Z's for each Xo in a set of constants

satisfying a predicate s, the query should be written as, "? - s(Xo), r(Xo, -, Z)" , and

a binary algorithm should be used, when necessary, to trace the (source, sink) pairs

in the derivation [42].

In this section, we study the efficient evaluation of the single-probe query (4.1) on

different side-coherent ML recursions.

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 107

4.3.1 Side-Relation Unioned Processing of Type I ML Re-

cursions

We first examine the compilation of Fig 4.3, a typical Type I recursion. An expansion

of the recursion may either (i) add an pl or pa to the left side of r , or (ii) add a ql or

q 2 to the right side of r , or (iii) change r to e to generate an expanded formula, where

e, the body of the exit rule, is called the exit expression of the recursion. Therefore, a

possible expanded formula (with the variables inside the predicates omitted) should

be

(pl u ~ 2) ~ e (ql u q2)j

where i , j 2 0. If we define

the compiled formula (the EDB expressions generated by all the possible expansions

of the recursion) of Fig 4.3 should be

where the notation pi(Xi-l,Xi) is defined as (i) a tautology when i = 0, and (ii) a

sequence of compositions of i p's when i > 0, that is,

Moreover, if the variables inside the predicates are omitted, we have

R = p* e q*.

Obviously, the processing of query (4.1) on such recursions should be similar to the

processing of two transitive closure queries. It proceeds as follows. First, the single

probe a is used to derive a unary query-relevant transitive closure of p. Then it joins

C H A P T E R 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 108

with the exit expression e, and the derived set of elements is used as the probe to

derive a unary query-relevant transitive closure of q. The set of 2's so derived should

be the answer set to the query.

Here, the evaluation adopts a side-relation unioned processing technique [48],

where iterative processing is performed on the union of the side-relations at the same

side of multiple recursive rules. In comparison with the side-relation separate pro-

cessing (the processing performed on each side-relation), the side-relation unioned

processing has the following advantages:

1. It saves the interleaved accessing of multiple side-relations. A relation is usually

stored in a B-tree or a hash table. If there are k side-relations at one side, side-

relation separate processing requires the interleaved accessing of k file structures

while the side-relation unioned processing needs to access only one file structure

(the unioned relation) at each iteration.

2. It saves redundant processing of overlapped tuples. An overlapped tuple is a tu-

ple shared by more than one side-relation. In side-relation separate processing,

overlapped tuples will be stored in more than one side-relation and be accessed

more than once. In side-relation unioned processing, overlapped tuples are com-

bined into one, which will not only reduce the storage space but also save the

accessing cost.

3. Side-relation unioned technique may even benefit relation partitioned process-

ing. Relation partitioning techniques have been popularly used in distributed

database query processing [132]. At the first glance, it seems that the side-

relation unioned processing contradicts the philosophy of relation partitioning.

However, by first performing union on several side-relations at the same side

and then partitioning and distributing the unioned relation according to its ac-

cessing structure, for example, index range, only the drivers which match the

specified accessing structure will be transmitted to the corresponding site. Thus

both message transmission and accessing cost will be saved in comparison with

the side-relation separate processing.

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 109

The side-relation unioned processing technique is applicable to any Type I ML

recursion which consists of k side-vectors, for k 2 1. We consider a special case where

there exists a unary nonrecursive predicate associated with an exit variable in some

k-sided recursive rule. For example, if we change the first recursive rule in Fig 4.3

from

r(X, Y, 2) : -p1(X, W), r(W, YlZ)

to

.(X,YlZ) : -~1(X1 W), r(W,Y, Z), c1(Y)

the evaluation plan needs some slight modification as follows. For each element derived

via at least one tuple in p which is originally from pl only, the evaluation of the exit

expression should be on "e(W, Y, Z), cl(Y)" instead of on "e(W, Y, 2)". This can be

considered as the special case of removal of recursively redundant literals studied by

Naughton [95]. Similar modifications of the evaluation plans should be adopted in

Type I1 and Type I11 ML recursions as well.

The method discussed above applies equally well to those Type I11 recursions

whose compiled formulas are the same as Type I recursions. For example, if the side-

relation at each side of every k-sided recursive rule (k > 1) of a Type I11 recursion

is a subset of the union of the side-relations of its one-sided recursive rules, e.g.,

adding "r : -pl, r , ql." to the recursion of Fig 4.3, each such k-sided recursive rule is

redundant and can be eliminated from the recursion, and the processing should be

the same as a Type I recursion.

4.3.2 Evaluation of Type I1 ML Recursions

Similar to a multiple-sided single linear recursion [lo], a Type I1 ML recursion requires

the synchronization of its different sides in the processing. This can be seen from the

expansions of the recursion of Figure 4.4 as below:

where i j (l 5 j 5 n) is either 1 or 2 [59], and pi3 and qi3 are symmetric to e.

CHAPTER 4. EVALUATION O F M ULTIPLE LINEAR RECURSIONS 110

Such a recursion can be evaluated based on a technique proposed by Henschen and

Naqvi [59], which registers the accessed paths (predicate sequences) in the evaluation

of up-relations (p-part) and matches in reverse sequences in the evaluation of down-

relations (q-part). It can also be evaluated by the generalized counting method [13],

where the side-relation information is encoded in the counting sets.

However, there are two difficulties in these methods. First, the interleaved ac-

cessing of multiple relations at the same side is costly as shown in the last section.

Secondly, it is difficult to handle cyclic data on ML recursions. This is because syn-

chronization is not only on the length of the paths but also on the corresponding

side-relations along the paths, and the time complexity of such synchronized process-

ing is exponential to the length of the paths on ML recursions [40].

4.3.2.1 First Attempt: Side-Relation Unioned Path-Tracing Method

To solve the first problem, we propose an improvement of the above methods using

the side-relation unioned processing technique. At the first glance, it seems difficult

to apply side-relation unioned processing because the union of the two side-relations

of Figure 4.4 forms a rule : -p, r, q.", which is not equivalent to the original recur-

sion. However, if (i) each tuple in a unioned relation is associated with appropriate

information to indicate its origin, that is, from which side-relation(s), as shown in

Algorithm 4.1, and (ii) each derived value is associated with an origin-path (a se-

quence of origins) to register its accessing history, correct synchronization can still be

achieved without suffering interleaved accesses.

Algorithm 4.1 Side-information associated union (notion: U) of relations at the

same szde.

Input : A set of relations pl, . . . , pk.

Output : The side-information associated union relation p :=u . . . , pk)

C H A P T E R 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 11 1

Method: Perform union of the participating relations pl, . . ., and pk, with each tu-

ple of the unioned relation p associated with a k-bit origin, in which each bit

represents one side-relation participating the union. The corresponding bit is

LL1" if the tuple is from that side-relation, or otherwise.

For example, for p :=u (pl,p2), the origin of a tuple t in p is "01" if it is from the

relation p~ only, "10" if from pl only, and "1 1" if from both pl and p2.

Then we present an algorithm similar to the Counting method [9]:

Algorithm 4.2 Side-relation unioned path-tracing evaluation of Type I1 recursions.

Input : A Type I1 ML recursion (Figure 4.4) and a single-probe query (4.1).

Output : The set of answers to the query.

Method : First, perform side-information associated union of the relations at the

same side, that is, p :=u (pl, p2) and q :=u (ql, q 2) . Then:

1. Perform up-relation processing, which is similar to the up-relation process-

ing in Counting [9] except that each derived (unary) element is associated

with an origin-path which inherits its driver's origin-path and appends the

origin of the currently accessed tuple in relation p. The resulting closure

(up-closure) consists of the set of derived elements each associated with its

origin-pat h.

2. Perform flat-relation processing, that is, join the up-closure with the exit

expression e , which is similar to the flat processing in Counting except that

each derived element inherits the origin-path of its driver.

3. Perform down-relation processing, which is similar to the down-relation

processing in Counting except that it performs an origin-matching test in

accessing each tuple of q to test the match of the tail in the origin-path

of a driver and the origin of the currently accessible tuple. The test is

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 112

performed by first bitwise-anding the two origins and then oring all of the

resulting bits. The test is passed if the result is 1 and failed otherwise.

Each derived element inherits the origin-path of its driver but with the tail

of the origin-path removed. The derivation from an element discontinues

if the element carries an empty origin-path.

4. The answers to the query are the derived elements with empty origin-paths.

0

Theorem 4.1 Algorithm 4.2 terminates and derives all of the answers to the query

for Type 11 ML recursions on acyclic (unioned) relations.

Proof:

First, we show that every element so derived is in the answer set. Assume that an

element c, is derived by accessing the unioned side-relation n times in the up-relation

processing. Thus c, must carry an origin-path of length n, equivalent to the accessing

of a sequence of separate side-relations, p;, , p;, , . . . , pi,. In the flat-relation processing,

d, is derived by accessing a tuple (c,, d,) in e and the origin-path of c, is passed to d,.

In the down-relation processing, the origin-matching test is performed, which tests the

match of the origins between the tail of the origin-path and the current tuple in the

side-unioned relation q. Therefore, if there is a sequence of n accesses of the down-

relation from d,, it must be equivalent to the accessing of the side-separate down-

relations in the sequence of q;,, . . . , qiz, qi,. Such an accessing sequence is equivalent

to the compiled formula of the recursion and makes the origin-path empty. Therefore,

each element so derived is in the answer set.

Secondly, every answer to the query is derivable by the algorithm. Suppose an

element d is in the answer set. Then d must satisfy the compiled formula of the

recursion. That is, it should be derivable by starting with a , passing an equivalent

length of side-relation strings at each side, and matching the corresponding side-

relations. This follows the algorithm exactly. Thus, d should be derivable by executing

the algorithm.

C H A P T E R 4. EVALUATION OF MULTIPLE L I N E A R RECURSIONS 113

Thirdly, we show that the process terminates on acyclic unioned relations. In

the up-relation processing, since every derivation path must be finite in an acyclic

relation, the length of the origin-path of each derived element is finite. In the down-

relation processing, the length of the origin-path associated with each derived element

decreases at each iteration and its derivation cannot proceed when its origin-path

decreases down to 0. Thus the process terminates.

An obvious benefit of the method is that a driver accesses only one unioned relation

at each iteration instead of k relations where k is the number of recursive rules in the

recursion, which reduces the database accessing cost. Similar to the analysis of the

counting method on single linear recursions [84], the worst case complexity of the

algorithm on acyclic databases is O(ne), where n and e are the number of nodes and

the number of edges of the two unioned relations, respectively.

The algorithm can be refined by associating one element with a set of origin-

paths if the element is derived via several paths [48]. Thus one DB access using such

an element is equivalent to several accesses of an element associated with a single

origin-path. When an element is associated with a set of origin-paths, a new origin

should be appended to each path in the set in the up-relation processing, and the

origin-matching test should be performed on each origin-path in the down-relation

processing. A path which failed the test should be dropped from the origin-path set

of the derived element since the element cannot be derived via that path.

The side-relation unioned processing reduces the interleaved accessing of multiple

side-relations. However, it may lead to another inefficiency problem, the growth of

the associated origin-paths. For example, if the up-relation processing involves 1000

iterations, the length of each origin-path of the derived element may grow to 1000

as well. Moreover, similar to the Counting method, the algorithm cannot terminate

on cyclic databases. Notice that a database usually contains more cycles in an ML

recursion than in an SL recursion because cycles can also be formed by interleaved

traversing of multiple side-relations. Although such cycles can be detected by exam-

ining a unioned side-relation, it is difficult to perform path synchronization involving

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 114

cycles in ML recursions, as we discussed in the analysis of the proposal of Henschen

and Naqvi [59]. Therefore, the side-relation unioned path-tracing method should not

be considered as a general evaluation technique.

4.3.2.2 Side-Relation Unioned Magic Sets Method

Since the magic sets method handles both cyclic and acyclic data uniformly for SL

recursions, it is promising to apply the method to Type I1 ML recursions. According

to [lo , 91, three magic rules for the single-probe query (4.1) on the Figure 4.4 recursion

can be generated as shown in Figure 4.10 which forms a Type I ML recursion.

magic(a).

magic(Y) : - pl(X, Y), magic(X).

magic(Y) : - p2(X, Y), magic(X).

Figure 4.10: Magic rules for the ML recursion.

According to the above discussion on Type I recursions, the magic set is the probe-

relevant transitive closure of p, where "p :=u (pl, p2)". Then p', the portion of p

relevant to the query, can be derived easily from, "p1(X, Y) : - p(X, Y), magic(X).".

A side-matched semi-naive evaluation can be performed on p', e and the side-unioned

relation q. We describe the method as follows.

Algorithm 4.3 Side-relation unioned magic sets evaluation of Type 11 ML recur-

sions.

Input and Output: the same as Algorithm 4.2.

Method: 1. Derive (i) the magic set based on the rule set of Figure 4.10, which

can be implemented using the query-relevant transitive closure techniques

on p, where p :=u (P ~ , ~ ~) , and (ii) p', the query-relevant portion of p,

based on "p'(X, Y) : -p(X, Y), magic(X).".

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 115

2. Perform side-matched-semi-naive-evaluation (p', el, q), where

is a projection of the query relevant portion of e on the relevant attributes.

It is performed similar to the semi-naive evaluation 11321 as follows:

A := el(X, 2);

closure := A;

repeat

joinsesult := side-matched-join(pl, A, q);

new-A := joinresult - closure;

closure := closure U new-A;

A := new-A;

until A = 0.

Notice that the side-matched join results in a binary relation which is the

join results of the A with relations p' and q projected onto the two non-

join attributes, where the join results are those joinable tuples which have

passed the origin-matching test.

Theorem 4.2 Algorithm 4.3 generates all of the answers to the query (4.1) and ter-

minates on all kinds of EDBs.

Proof: First, the magic rule set computed by the algorithm is the same one as that

obtained by the rule rewriting technique in the magic sets method (according to the

rules for the generation of magic rules [lo]). Thus the relation p' so obtained collects

the set of query-relevant facts in pl and pz (with side-information associated).

Secondly, the second step of the algorithm performs side-matched semi-naive eval-

uation on (i) p', the query-relevant portion of p, (ii) el, the query-relevant portion of e,

and (iii) q, the side-information associated union of ql and q2. Based on the correct-

ness and termination of the semi-naive evaluation 11321, the evaluation terminates on

all kinds of data, and any answer set derivable from the query must also be derivable

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS

by such an evaluation. Moreover, the side-matched join in the semi-naive evaluation

collects only those joinable tuples which are from relations p' and q respectively and

have passed the origin-matching test. Thus only those tuples which match both sides

of the corresponding recursive rules can be derived in the evaluation. Therefore, all

of the results generated by the algorithm belong to the answer set.

Similar to the analysis of the magic sets method on single linear recursions [84],

we can derive that the algorithm works on all kinds of data with the worst case

complexity of 0(edge2), where edge is the number of edges in the relations p', e' and

q respectively.

4.3.2.3 Refinements: Superset Counting and Superset Transitive Clo-

sures

The side-relation unioned magic sets method can be refined by restricting the portions

of the relations at the uninstantiated side to be enclosed in the side-matched semi-

naive evaluation, which results in two alternatives to the side-relation unioned magic

sets method: a superset counting method and a superset transitive closures method.

The superset counting method is performed as follows. First, it applies the counting

method (without enforcing side-information matching in its evaluation) to evaluate

the same query "? - r(a, -, 2)" on the recursion "r : - p, r, q.", where p and q are

the two unioned side-relations, that is, "p :=u (p1, p,)", and "q :=u (q,, q2)". The

evaluation derives q' (similarly p'), a smaller q-side relation which collects the tuples

in relation q accessed in the Counting evaluation. The q' so obtained is essentially

the query-relevant portion of q on the recursion formed by Fig 4.4 recursion plus two

more rules:

Clearly, q' is a subset of q , but a superset of the portions of ql and q2 truly relevant

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS

to the query (since side-matching is not considered in the Counting). Then the side-

matched semi-naive evaluation is performed on such a q'. The algorithm is presented

below.

Algorithm 4.4 Superset counting evaluation of Type II ML recursions.

Input and Output: the same as Algorithm 4.2.

Method :

1. Perform side-information associated union, that is, "p :=u (pl,p2)" and

LLq :=u (ql, 42)". Applying the counting method (or the cyclic counting

method ([48, 40, 811) if the unioned relation contains cycles), evaluate

query (4.1) on the SL recursion:

It derives p', q', and el, (Note: p' and e' are the same as Algorithm 4.3),

the sets of query-relevant facts of relation p, q, and e respectively.

2. Similar to Step 2 of Algorithm 4.3, side-matched-semi-naive-evaluation (p',

el, q') is performed, where el, p' and q' are the query-relevant portion of e,

p and q determined in Step 1.

Since counting on acyclic databases and cyclic counting on general databases ter-

minates for single linear recursions [9, 401, Step 1 terminates on all kinds of databases.

Furthermore, according to the proof in Theorem 4.2, side-matched semi-naive evalu-

ation in Step 2 derives all of the correct answers and terminates on all kinds of EDBs

[132]. Therefore, we can easily prove that Algorithm 4.4 generates all of the answers

to the query (4.1) and terminates on all kinds of EDBs.

We then examine the worst-case time complexity of Algorithm 4.4. The worst-

case time complexity in Step 1 is O(n * edge) where n and edge (edge is used here

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 118

to not confuse with relation e) are the number of nodes and the number of edges in

the database graph of the original database respectively 140, 841. The worst-case time

complexity of Step 2 is 0(edget2 + edge,,), where edge' is the sum of the number of

edges of the unioned relations, p' and q', that is, edge1 = edge,^ + edge,^, and edge,/ is

the number of edges of e'. Since the relation q' is derived based on query instantiations,

it is usually substantially smaller than q. Therefore, the method in general results in

substantial savings in comparison with the side-relation unioned magic sets method.

Another technique can also be used to restrict the size of the q-side relations.

Based on the expansion formula:

where i j (1 5 j 5 n) is either 1 or 2 1591, we can easily find another formula:

where "p :=u (pl,p2)", and "q :=u (ql, q2)", to compute the restricted supersets. This

leads to another version of the refinement of Algorithm 4.3, the superset transitive

closures method.

The superset transitive closures met hod applies two transitive closure operations

to derive the portions of each side relation relevant to the query "? - r(a, -, 2)". The

evaluation derives (i) p', the query relevant portion of p by computing the magic set,

and (ii) q', the superset of the query relevant portion of q, by first joining the magic

sets with e to obtain source drivers of q and then using them to compute the partial

transitive closure of q, the union of the two side-relations ql and qz , relevant to those

source drivers. The algorithm is presented as follows:

Algor i thm 4.5 A superset transitive closures method for the evaluation of Type 11

ML recursions.

I n p u t and Ou tpu t : the same as Algorithm 4.2.

M e t h o d :

C H A P T E R 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 119

1. Perform side-information associated union, that is, "p :=u (pl,p2)" and

"q :=u (ql, ~ 2) " . Then derive the transitive closure, magicp(X), on relation

p using the query constant a. Join magicp(X) and e(X, -, Z) to obtain

the set of Z7s (the source drivers for q) and use them to compute the

probe-relevant transitive closure of q, magicq(&). Finally, pl(X, XI) and

ql(Z1, 2) are obtained by

2. Similar to Step 2 of Algorithm 4.3, side-matched-semi-naive-evaluation (p',

el, q') is performed, where el, p' and q' are the query relevant portion of e,

p and q determined in Step 1.

Similarly, we can prove that Algorithm 4.5 generates all of the answers to the query

(4.1) and terminates on all kinds of EDBs. The difference between algorithms 4.4 and

4.5 is the way to reduce the portion of q for semi-naive evaluation. The former applies

Counting while the latter applies transitive closure operations. Transitive closure is

easier to implement than Counting. The worst-case time complexity of Counting

is O(ne), while that of the transitive closures method is O(e), where n and e are

the number of nodes and the number of edges in the database graph respectively.

However, Counting enforces more restrictions than the transitive closures method on

the relevant portion of q and thus makes the semi-naive evaluation more efficient.

4.4 Evaluation of Type I11 ML Recursions

Since a Type I11 recursion may not have balanced side-relations, it requires more

complex synchronization than a Type I1 recursion. We first examine the recursion

shown in Figure 4.5 which is essentially:

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 120

Its compiled formula is:
03

r = U(P; (P~P ;)~~ ql).
i = O

The superset counting method does not work properly for this recursion because

we have to either treat the p-side as pip;, a huge relation, or derive a query-relevant

transitive closure of p2 for each element derived in the accessing of pl at each iter-

ation. Similarly, it is difficult to apply the path-tracing method to this recursion.

However, the side-relation unioned magic sets method, if modified appropriately, is

still applicable to such kind of recursions.

A novel technique in our implementation is to view the Type I11 recursion as a Type

I1 one with a faked (pseudo-) side-relation q2. The faked side-relation q2 consists of

only one pseudo-tuple (X, X), which plays the role of passing all of the values through

this missing side. However, since the pseudo-tuple carries the corresponding origin

of q2, it will not mistakenly pass through any value of ql in the side-relation unioned

processing. A similar pseudo-tuple can be added to a corresponding p-side relation

to make it a Type I1 one if an p-side relation is missing in a Type I11 recursion. We

present the algorithm as follows:

Algorithm 4.6 A side-relation unioned magic sets method for the evaluation of a

Type 111 ML recursion.

Input : A Type I11 ML recursion (Figure 4.5) and a single-probe query (4.1).

Output : The set of answers to the query.

Method: 1. (The same as Step 1 of Algorithm 4.3.) Derive the magic set and p' by

evaluating the partial transitive closure of p relevant to the query constant

a , where "p :=u (pl, p2).", and "pl(X, Y) : - p(X, Y), magic(X).".

2. Perform side-matched-semi-naive-evaluation (p', el, q) , where p' and e' are

the same as Algorithm 4.3, q is the side-information associated union of

ql and the pseudo-tuple (X, X) which carries an origin with only the bit

CHAPTER 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 121

corresponding to the missing q 2 set to 1. Notice that the pseudo-tuple

matches any value of a driver and passes it to the second column as long

as the driver passes the origin-matching test.

Theorem 4.3 Algorithm 4.6 generates all of the answers to the query (4.1) and ter-

minates on all kinds of EDBs.

Proof: We only need to verify the modified portion of the algorithm since the remain-

ing is the same as Algorithm 4.3. In the side-matched semi-naive evaluation, by setting

a pseudo-tuple for the missing relation q2, the recursion becomes a Type I1 recursion.

Since the pseudo-tuple (X, X) does not carry the origin bit for ql, the side-matched

semi-naive evaluation of the rule "r : - pl , r, ql ." will not be influenced by the pseudo-

tuple. Moreover, since it carries the origin bit for q 2 and passes the value of a driver

from the first column to the second one as long as the driver passes the origin-matching

test, it derives exactly the results derivable from the rule "r : - p2,r.". Therefore,

based on the proof of Theorem4.2, the correctness and termination of the algorithm

can be verified.

In comparison with the magic sets method, the algorithm takes an advantage of

side-relation unioned processing both in the derivation of magic sets and in the semi-

naive evaluation. The worst-case time complexity of the algorithm should be the same

as Algorithm 4.3.

The algorithm can also be refined by superset transitive closure processing, which

is similar to that discussed in the evaluation of Type I1 recursions and thus omitted

in our discussion.

If we add to the recursion one more one-sided rule as below:

the recursion is still in Type 111, as shown below:

C H A P T E R 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 122

The recursion can be evaluated in a similar way as Algorithm 4.7. Notice that one

pseudo-tuple should be added to each unbalanced side to represent the corresponding

missing relation. That is, the pseudo-tuple (X, X) and (2, Z) should be added, with

the corresponding origin bit set to represent the missing relation p3 and q 2 respectively.

The evaluation algorithm can then be derived accordingly.

4.4.1 Generalized Side-Relation Unioned Magic Set Met hod

We generalize the above discussion to the recursions which consist of multiple side-

vectors. We assume that a recursion of Fig 4.11 consists of n recursive rules, each

having at most m + k side-vectors. The recursion is in Type I1 if no side-relation is

missing. It is in Type I if there is only one side-relation left (that is, all the other side-

relations are missing) in each rule. Otherwise, it is a Type I11 ML recursion. Since

a Type I recursion can be easily handled by a transitive closure query processing

method, we assume that it is either a Type I1 or a Type I11 recursion.

Figure 4.1 1: A general side-coherent ML recursion.

We examine a query of the form (4.2) which provides highly selective instantiations

C H A P T E R 4. EVAL UATION OF MULTIPLE LINEAR RECURSIONS 123

on m side-vectors and inquires the information for the remaining k side-vectors.

Since the side-relation unioned magic sets method has been proved to be applicable

to both Type I1 and Type I11 ML recursions on both acyclic and cyclic databases, we

present our algorithm based on this method.

Algorithm 4.7 A generalized side-relation unioned magic sets method for Type II

and Type 111 recursions.

Input : The recursion Fig 4.11 and the query (4.2).

Output : The set of answers to the query.

Method :

1. Perform side-information associated union of the side-relations at each side,

that is,

pi(Xi, Wi) =CJ (pli(Xi? Wi)) - . . ,pni(Xi, Wi))

where 1 5 i 5 m, and 1 5 j 5 k. Each tuple in every unioned relation

carries an n-bit vector (origin) where n equals to the number of recursive

rules in the recursion. Notice if pii is missing in the I-th rule, a pseudo-tuple

in the form of (XI;, Xl;) is added to the relation pl with only the 1-th bit set

in its origin. Similar treatment is performed for the missing side-relations

at the q-side.

2. Derive the magic set, magic, based on the following magic rule set,

C H A P T E R 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 124

The magic set is the side-relation matched (partial) transitive closure of

"pl (XI, Wl), . . . , p, (X,, W,)" relevant to the query probe (al, . . . , a,).

It is derived by starting with the query probe, iteratively evaluating the

side-relation unioned relations pl, . . . , p, with the side-matching test for

all the m sides. (The side-matching test for multiple sides is described in

detail in Step 3). The evaluation terminates when no new tuple can be

added to magic. Then magic is used to derive pl (1 < i < m), the query

relevant portion of p;, by:

p:(X;, W;) : -p;(X;, W;), magic(X1,. . . , X,).

3. Perform the side-matched semi-naive evaluation as follows. Assume that a

driver is of the form t(Wl, . . . , W,, &, . . . , Vk) (Y is dropped since it is irrel-

evant to the query), and a derived tuple is of the form t (XI, . . . , X, , Zl , . . . ,
Zk). Each driver examines m + k side-relations, p: (1 < i < m) and qj

(1 < j < k), with a total of m + k n-bit vectors as shown in Fig 4.12. The

side-matched-semi-naive evaluation accesses each tuple in the side-relation

p; in the form of p;(X;, W;) using W;, and extracts the origin (n-bit vec-

tor) from each accessed tuple. A similar operation is performed at the

qj side. The origin-matching test is performed on each obtained tuple by

bit-oring of the n-bit vector obtained by bitwise anding of all the m + k

origin-vectors. The test is passed if the following holds:

where "A" represents bitwise-and, and "V" represents bit-or. The newly

derived tuples are appended to the closure and are used as the drivers at

the next iteration. The evaluation terminates when no new tuple can be

C H A P T E R 4. EVALUATION OF MULTIPLE L I N E A R RECURSIONS 125

derived at an iteration. The final answers to the query are those obtained

by performing selection on the closure using the query constants.

m n-bit vectors k n-bit vectors

Figure 4.12: Side-matching test on m + k n-bit vectors.

Theorem 4.4 Algorithm 4.7 generates all the answers to the query (4.2) and termi-

nates on all kinds of EDBs.

Proof: First, the magic rule set is the same as those derived by rule rewriting in the

magic sets method [lo]. The side-relation matched transitive closure computation

terminates (based on the termination of the corresponding transitive closure algo-

rithm) and derives all of the query-relevant facts at the p; side for 1 5 i 5 m. The

correctness of the origin-matching test can be verified in the same way as that in the

side-matched semi-naive evaluation.

Secondly, the side-matched semi-naive evaluation is similar to that of Algorithm 4.7

We only need to verify the correctness of the origin-matching test. Since the corre-

sponding side of different recursive rules is represented by the same bit in each n-bit

vector, the n-bit vector obtained by bit-wise anding of all the m + k n-bit vectors of

the joinable tuples in the relations, pl and q j (for 1 5 i 5 m and 1 5 j 5 k), should

C H A P T E R 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS 126

have at least one bit set to 1 if the evaluation passes all the participating sides for at

least one recursive rule. Therefore, it is correct to perform the bit-or on the result of

the bit-wise and of the n-bit vectors of all the participating sides.

In comparison with the magic sets method, the algorithm reduces the cost of in-

terleaved accessing of separate side-relations by side-relation unioned processing. The

worst-case time complexity of the algorithm should be the same as that of Algo-

rithm 4.7, in which the calculation of the total number of edges should include all the

relations involved in the computation.

Notice that another way to compute the set of query-relevant facts by magic sets

is to derive one separate magic set at each side, that is, to derive m unary magic

sets, magic;, for 1 < i < m, which is the partial transitive closure of p; relevant to

the query probe a;. The computation of m unary magic sets does not take advantage

of side-matching test which eliminates the side-unmatched facts, thus it may result

in deriving a larger set of query-relevant facts, p i , . . . ,pL than the computation of

one m-ary magic set. However, it avoids the computation of the combinations of the

values from the m sides. In the worst-case, the size of the magic relation derived

by such possible combinations may reach n;"=, Ip;l, where [pi[is the number of the

distinct values in relation pi. However, the total size of m unary magic sets by

computing m side-separate transitive closures is Czl Ip; I in the worst-case. Obviously,

the choice between the two variations depends on the characteristics of data. For

example, if the derivation starting at the constants a;, where 1 5 i 5 m, terminates

at only a small number of iterations, it is unnecessary to compute the probe-relevant

transitive closures for other relations beyond this iteration in the computation of one

m-ary magic set. In this case, computing one m-ary magic set is more efficient than

computing m unary magic sets. However, the situation is reversed if cyclic data are

dominant in each of the m-sides. For example, if a1 is in a cycle of 1000, and a2 is in

a cycle of 1001, the binary magic set (suppose m = 2) will contain 1,001,000 binary

elements while the two unary magic sets have only 2001 unary elements.

Similar to the previous discussion, Algorithm 4.7 can be refined by the superset

C H A P T E R 4. EVALUATION OF MULTIPLE LINEAR RECURSIONS

transitive closure method. The refinement is performed as follows. First, one m-ary

magic set or m unary magic sets are derived based on the query constants. Then the

result is joined with the exit relation e to derive the instantiated driver set for each

unioned side-relation qj, where 1 5 j 5 k. After that, a partial transitive closure

operation can be performed on each q j to reduce the size of the qj relations to be

participated in the semi-naive evaluation.

4.5 Evaluation of Complex Queries in ML Recur-

sions

The previous section has discussed the evaluation of single-probe queries on ML re-

cursions. It is natural to examine whether the technique can be applied to complex

recursive queries. The evaluation of complex queries on SL recursions has been stud-

ied in [42], which shows that flexible strategies should be applied to the evaluation

of complex queries, and the selection of appropriate processing strategies should be

determined based on the kinds of recursions, query instantiations and inquiries, and

EDB statistics. Since the evaluation of side-coherent ML recursions follows the frame-

work of the evaluation of SL recursions as shown in the previous discussion, the tech-

niques obtained in the study of SL recursions can be transferred to side-coherent ML

recursions.

Here we examine the evaluation of complex queries on Type I1 ML recursions only.

Methods for other types of ML recursions can be derived accordingly.

First, query processing may proceed in different processing direction combinations,

which is mainly determined by the selectivities of query constants. We suggest three

major processing direction combinations: up-down, all-down, and all-up. The terms

up and down are from Bancilhon and Ramakrishnan [lo].

1. up-down: The up-down processing starts at some side-vectors (driving sides),

climbs up to the center (the exit-expression), and then steps down to the set

C H A P T E R 4. EVALUATION OF MULTIPLE L I N E A R RECURSIONS 128

of the remaining side-vectors (driven sides). It should be used when the query

provides highly selective information at driving sides, such as queries (4.1) and

(4.2) on the recursion of Fig 4.5.

2. all-down: The all-down processing starts at the center and steps down towards

all the side-vectors. It should be used when the exit-vector carries the highly

selective information.

3. all-up: The all-up processing starts at all of the side-vectors and proceeds to-

wards the center. It should be used when the query provides highly selective

information at all side-vectors.

The up-down processing has been studied in the last section. Here we present

some queries which need other processing direction combinations.

Example 4.3 We examine the evaluation of the query

on the same ML recursion of Fig 4.5.

Suppose f is an EDB predicate and f (a, Y) provides highly selective instantiation

for r . Since only the exit-vector provides highly selective information, the all-down

processing is appropriate. Similar to the previous discussion, side-relation unioned

processing can be adopted by first performing side-information associated union of the

side-relations at each side, which derives p and q, and then performing side-matched

semi-naive evaluation on p, e' and q, where "el(X, 2) = IIx,z(ay=,e(X, Y, Z))."

In comparison with the up-down processing, the all-down processing performs

semi-naive evaluation without derivation of magic sets. This is because the instanti-

ation at the exit vector makes both sides directly and synchronously evaluable.

Similarly, if f (a, X) and g(b, 2) provide highly selective instantiations,

C H A P T E R 4. EVALUATION OF MULTIPLE L I N E A R RECURSIONS 129

the query above should be evaluated by all-up processing which derives a binary magic

set by starting with both sides. Here the semi-naive evaluation is unnecessary since

the join of the query-relevant portion of the up-relation with e derives the required

answer set. 0

Clearly, both all-down processing and all-up processing can be viewed as special

cases of Algorithm 4.7, in which the former (that is, the all-down processing) omits

the computation of magic sets while the latter omits the semi-naive evaluation.

Although many queries require to derive query-relevant closures (using the query

closure strategy), some queries may require different evaluation strategies, such as

nonrecursive, total closure, and existence checking [42]. Moreover, although binary

algorithms may be necessary for some queries to register (source, sink) pairs in the

processing, unary algorithms, which do not trace (source, sink) pairs, may be sufficient

for other queries. The use of unary algorithms, when possible, may substantially

improve the processing efficiency according to the performance study by Bancihon

and Ramakrishnan [lo]. Among the algorithms developed in this paper, the magic

set-based algorithms are binary algorithms while the counting or transitive closure-

based algorithms are unary ones. Furthermore, quantitative analysis based on the

selectivities of query instantiations and the sizes and join selectivities of side-relations

play an important role in the determination of evaluation directions and algorithms.

The selection of appropriate processing strategies for complex queries on single linear

recursions has been studied in [42]. The principles derived from the study of SL

recursions are applicable to the evaluation of ML recursions as well.

4.6 Summary

We have developed some efficient query evaluation techniques for side-coherent multi-

ple linear recursions by an integration of side-relation unioned processing with transi-

tive closure algorithms, the Counting method, and the Magic Sets method. Therefore,

the processing of side-coherent multiple linear recursions is mapped to the framework

CHAPTER 4. EVALUATION O F MULTIPLE LINEAR RECURSIONS 130

of the processing of single linear recursions. Most of the evaluation techniques devel-

oped in the study of single linear recursion can be applied to multiple linear recursions.

Our study of efficient evaluation of side-coherent multiple linear recursions can be

extended to the evaluation of other kinds of multiple linear, nonlinear and mutual

recursions. Although such kind of recursions can be evaluated by Generalized Magic

Sets method [13], it is often beneficial to integrate side-relation unioned processing

with the Generalized Magic Sets or other evaluation techniques. A detailed study

of the compilation and optimization of recursions containing other kinds of multiple

recursive rules is an interesting topic for the future research.

Chapter 5

Compressed Counting Met hod

In this chapter, the evaluation of function-free recursion by counting method in cyclic

base relations is explored. Counting method is one of the query processing strategies

used in LogicBase system, however, if base relation contains cycles, termination is not

guaranteed by the counting method. Thus extension of the counting method (cyclic

counting) is made to handle cycles and to retain efficiency of counting method.

We propose a counting method called compressed counting which combines the

merits of several proposed cyclic counting algorithms and processes linear recursive

queries in both cyclic and acyclic databases as efficiently as the counting method does

in acyclic databases. The method precompiles database digraphs, compresses each

strongly connected component (SCC) into a single node, and reduces the database

digraph into a small DAG for guidance of query processing. Thus, query processing

involving cyclic paths at both sides is simplified to the propagation and transforma-

tion of the precomputed offset-period information. Moreover, further optimization

is performed on the computation involving both acyclic and cyclic paths. The de-

rived algorithm uniformly handles both cyclic and acyclic data and facilitates parallel

processing of queries in deductive databases.

CHAPTER 5. COMPRESSED COUNTING METHOD

5.1 Introduction

5.1.1 Background and motivation

Counting and Magic Sets are two well-known methods [9] for the efficient processing

of queries on (single) linear recursions in deductive databases. Both complexity anal-

ysis and performance studies on a set of interesting linear recursive query processing

algorithms [lo , 11, 841 have shown that Counting has the time complexity of O(ne)

on acyclic databases, where n is the number of nodes and e is the number of edges in

a database digraph, that is more efficient than Magic Sets which has the time com-

plexity of 0 (e2) . Unfortunately, Counting encounters termination problems when the

database digraph contains cycles.

r (X ,Y) : - up(x, U, , r(U, ')1 down(v, Y).
r (X,Y) : - f lat(X, Y).

?- r (a ,Y) .

Figure 5.1: A typical linear recursion and its query.

The problem can be easily shown using a typical linear recursion problem defined in

Figure 5.1 (essentially, the same-generation recursion [lo , 132]), where R is recursive

predicate, up, down and flat are base relations [lo], a is a query constant and Y is an

inquired variable. The first rule in Figure 5.1 is a linear recursive rule, the second one

is a nonrecursive (exit) rule, and the last one is a query on the recursive predicate R.

The recursion can be compiled into the form UE,(upk f flat downk), which indicates

that the answer set to the query should be those starting at a , traversing k times

of the up relation, passing the f la t relation, and then traversing k times of down

relation. This is the spirit of Counting. When up and down relations contain cyclic

data, Counting cannot terminate since these relations can be traversed infinite number

of times.

Much efforts have been paid on studying cyclic counting technique [3, 17, 39, 49,

CHAPTER 5. COMPRESSED COUNTING METHOD

41,59,115,147] and several interesting algorithms have been proposed, which includes

Sacca and Zaniolo's Magic Counting [115], Haddad and Naughton's Cyclic Counting

[41], Han and Henschen's Level-Cycle Merging [49], Aly and Ozsoyoglu's Synchro-

nized Counting [3], etc. Unfortunately, these proposals suffer from either efficiency or

complex implementation problems. For example, Cyclic Counting [41] is elegant at

handling cyclic paths in both up and down relations, but it cannot uniformly handle

the mixture of acyclic and cyclic data, and moreover, all the information relevant to

an SCC (strongly connected component) must be recomputed when different source

nodes entering the same SCC in the query processing. Level-Cycle Merging [49] rep-

resents the counting-level by a level-cycle set and processes a query by level-cycle

merging along paths. However, the derivation of pre-stable level set involves com-

plicated computation and relatively large storage overhead during pre-compilation.

Synchronized Counting [3] traverses cyclic database until the intermediate result be-

comes stable, that may take up to 0(n2) semi-join operations over data relations.

This motivates our further study on cyclic counting algorithms. The study leads

to the development of a compressed counting method that combines the merits of

several counting algorithms, especially, Cyclic Counting, Level-Cycle Merging and

Synchronized Counting, and processes queries in acyclic data, cyclic data and their

mixtures as efficiently as the counting method does in acyclic databases. The method

precompiles database digraphs, compresses each (maximal) strongly connected com-

ponent (SCC) into a single node, and reduces the database digraph into a small

directed acyclic graph (DAG) for guidance of processing. Query processing involv-

ing cyclic paths at both sides is simplified to the propagation and transformation of

the precomputed information about relative distance set designated by oflset-period

pair. Moreover, further optimization is performed on the computation involving both

acyclic and cyclic paths by a complementary counting technique. The derived algo-

rithm uniformly handles both cyclic and acyclic data and facilitates the development

of highly parallel processing algorithms.

C H A P T E R 5. COMPRESSED COUNTING METHOD

5.1.2 Overview of compressed counting

In compressed counting, the answer set R to the query constitutes two parts: Racy,

and R,,,. Racy, is a set of nodes in (the digraph of) down that can be reached from

the query constant(s) by a path of length 1 in up, then an edge in f lat , and a path

of length 1 in down, and at least one path in up or down is acyclic. R,,, corresponds

to a similar set of nodes but can be reached by cyclic paths in both up and down.

If the acyclic counting algorithm [9] is applied until the counting level equal to the

length of the longest acyclic path in up and down, R,,,, is obtained. Therefore, the

major challenge is to find an efficient approach to deriving R,,,. Based on the previous

studies [41, 491, an infinite set of path lengths can be mapped to a finite set of periodic

measurement for the derivation of R,,,. Regardless of the absolute cyclic path length,

two nodes linked by a cyclic path can be characterized by the period of the cyclic path

and the offset of the path length to that period. Thus, an offset-period (OP) pair is

used in the compilation and representation of cyclic data, where a cyclic path length

is measured by the period of the path and the offset of the length to the period.

To efficiently derive OP pairs for nodes in data digraphs, up and down digraphs

are precompiled into two compressed graphs, CG,, and CGd,,,, each of which is a

small DAG that consists of a set of nodes and edges. Each node represents a maximal

strongly connected components (SCC) , i.e., a cluster of interconnected cycles. Each

inter-SCC edge reflects how offset values change as one traverses from one SCC to

another. Using such a compressed graph, OP's are propagated among SCCs, and each

data node in an SCC gets its corresponding OP readily.

Figure 5.2 outlines the paradigm of the compressed counting method.

Example 5.1 Before a systematic presentation of the method, a tiny example is

presented in Figure 5.3 to illustrate the idea of the technique. Edges in up and down

(digraphs) are illustrated with solid lines whereas that in f lat with dash line. Each

data node is associated with an offset-period pair in the form of [offset set, period].

In up, nodes b,c,d and e form an SCC with a period of 4. The distance from a to

CHAPTER 5. COMPRESSED COUNTING METHOD

0 Precompilation Phase:
Precompilation of Gup and Gdown: (1) partition each digraph (Gup/Gdown) into a
set of SCCs, (2) derive internal OP's for the nodes in each SCC, and (3) construct
compressed graphs, CGup and CGdOwn.

0 Query Processing Phase:

1. up-Processing: compute distance-0P's for all data nodes reachable from query
constants in Gup. This includes the computation of counting levels for acyclic
node from query constants in Gup, initialization of OP's of SCCs reachable from
the constants in GuP, derivation of distance-0P's for all SCC nodes in CGup by
merging OP's in topological order, and computation of OP's for the reachable
nodes.

2. down-Processing and Rcyc Extraction: It contains 3 steps: (1) instantiate
nodes in Gdown via flat and pass the OP's computed in Gup; (2) compute
difference-0P's for all data nodes in Gdoum: (i) obtain counting levels for acyclic
nodes from instantiated nodes in Gdown, (ii) initialize difference-OP's of SCCs in
CGdow, reachable from instantiated nodes, and (iii) derive difference-0P7s for
all SCCs and the nodes along in Gdown by merging difference-0P's in topological
order in CGdown; and (3) extract Rcyc by detecting whether the difference-0P
of a node in Gdown contains 0.

3. Complementary Counting for Extraction of Racy,.

Figure 5.2: Overview of compressed counting method.

them can be measured as [1,4], [2,4], [3,4], [0,4] respectively, where the first number

in a pair is the offset and second is the period for a cyclic distance. In down, f and

g form a cycle with period of 2 and distance from f measured as [0,2] and [1,2]. The

difference-OP for a node in down is the subtraction of the inherited O P from its own

distance-OP. Since f has an O P of [3, 41 inherited from d in up relation, f 's difference-

O P is [I, 21. Similarly, g's difference-0P is [O, 21. Since only g's difference-0P contains

0, g is the only answer to the query.

C H A P T E R 5. COMPRESSED COUNTING METHOD

UP FLAT DOWN

Figure 5.3: A tiny example database.

5.2 Principles of Compressed Counting

The theoretical foundation for the derivation of R,,, is presented in this section, which

includes representation of and operations on offset-period pairs. The correctness and

completeness of the method is proven here, the actual compressed counting method

is presented in next section.

In this section, it is shown that a distance set can be replaced by its partial

periodic subset to derived R,,,; and this subset can be represented by OP; thus the

derivation of the distance set and difference set is accomplished by the derivation of

OP; and finally the query answer extraction becomes 0-containment test on difference

set, which is actually done on the corresponding OP set.

5.2.1 Distance set and difference set

The concepts of distance set and difference set are introduced to formalize query

answering.

Without loss of generality, EDB relations are assumed to be binary relations. A

binary relation A can be represented as a digraph (directed graph) G(V, E), where

a E V, b E V, and (a, b) E E if and only if there is a tuple (a , b) E A. G,, and Gdown

denote digraphs for up and down relations.

Distance set defined below is to represent the length of paths from one node to

another in a digraph. The length of each edge in the digraph is 1, and the length of

CHAPTER 5. COMPRESSED COUNTING METHOD

a path is represented by an integer

Definition 5.1 For nodes c,x E V in digraph G, distance set D(c,x) = {I : 3 a

path c t x of length I in G).

Distance set D(c, x) contains an infinite set of integers when there exists a cyclic

path between c and x. If there is no path from c to x, D(c, x) = 0. D(x, x) = (0)

when there is no cycle passing through x. The answer for the recursive query in

Figure 5.1 can be expressed by distance sets: {z : z E boWn and 32 E V,, and 3 y E

hown s.t. (x, y) E f la t and D(a, x) n D(Y, z) # 0). That is, there exist paths from a

to x in G,, and from y to z in Gdown of the same length and joined by an edge (x, Y)

in Gjlat.

The addition and subtraction operations on distance sets are defined as follows:

Definition 5.2 For integer set C1 and C2, addition C1 $ C2 = {cl + cg : c1 E C1 and

c2 E C2). For integeri, C1 $ i = { c + i : c E C1).

Definition 5.3 For integer set C1 and C2, subtraction C1 8 C2 = {cl - c2 : c1 E C1

and c2 E C2). For integer i, C1 8 i = {c - i : d E C1).

C1 $ C2 and Cl 8 C2 are 0 if either C1 or C2 is 0. Addition and subtraction on

integer sets are commutative.

The answer to the recursive query can be represented as the following set: { z : z E

Gown and 3x E V,, and 3y E Gown s.t. (5, y) E f la t and 0 E (D(y, z) 8 D(a, 2))) .

Modulus operation on integer set is defined as following:

Definition 5.4 For integer set C and integer i, C mod i = {c mod i : c E C).

Difference set is defined to denote the subtraction of two distance sets, particularly

in this paper, the subtraction of distance sets in Gdown and Cup.

CHAPTER 5. COMPRESSED COUNTING METHOD 138

Definition 5.5 For a E Vup and z E Vdown, difference set Di f f (a , Z) = { I : 32 E

V,, and 3y E Vdown s.t. (x , y) E f [at and 1 E (D (y , z) €3 D(a, x))) .

Lemma 5.1 states that distance set can be derived progressively through addition

operation.

Lemma 5.1 For x , z E V, D (x , z) = UyEV(D(x , y) $ D(y , z)) .

Proof: If d E D (x , z) , then there exists a node y' such that path x t z passing

through Y' (Y' could even be x or z) . So there is a path x t y' with length dl

and a path y' t z with length d2 such that d = dl + d2. Since dl E D (x , y') and

d2 E D(yl , z) , d E D (x , y') $ D(yl , z) . Hence d E UYEV(D(x , y) $ D(y , 2)) . SO we have

D (x , z) C UYEv(D(x7 Y) @ D (Y , 2)) .

If d E UyEv(D(x , y) $ D (y , z)) , there exists a y' E V such that d E D (x , y') $

D(y l , z) . There exist dl E D (x , y') and d2 E D(y ' , z) such that d = dl + d2. So

there is a path from x to y' of length dl and there is a path from y' to z of length

d2. So there is a path from x to z via y' of length dl + d2. Hence d E D (x , z) . So

U,,v(D(x, Y) 63 D (Y , 4) G D (x , 4

Lemma 5.2 states that although difference set is defined by difference of distance

sets, it can be derived through addition of difference set and distance set. Which

ensures that the distance set in Gup and difference set in Gdown are treated in the

same way.

Proof: We first prove (& Di) €3 D = u ; (~ i €3 D). If d € Di) €3 D, then there

exist dl E u!=, Di and d2 E D such that d = dl - d2. Hence dl E Dj(O < j 5 k) and

d E (D j €3 D) . So d E & (~ i 9 D). That is, (u . X , ~ Di) 9 D L u.L,l(Di 9 D) .

C H A P T E R 5. COMPRESSED COUNTING METHOD

On the other hand, if d E u;~=,(D; e D) , then there exists 0 < j < k , such that

d E D j 8 D. So there exist dl E D j and d2 E D such that d = dl - d2. Hence

dl E Ui=, kDi and dl - d2 E (U;=, kDi) 8 D. SO, U;=, k (D; 8 D) C (U;=l kD;) 8 D.

Thus, k (D; D) = (UiZ1 kDi) D.

Now we prove the lemma. From the definition of difference set, we have:

From Lemma 5.1

Answer set for recursive query in Figure 5.1 can be rewritten by difference set as

{ z : z E Vdown s.t. 0 E Di f f (a , 2)) . The principle of the compressed counting method

is to find those nodes in Gdown whose corresponding difference sets contain 0.

5.2.2 Offset-period representat ion

The distance set is infinite if there is a cycle in data digraph, which makes handling

of distance set difficult. In this section, a special representation of distance set is

presented to catch the regularity of distance set and map the infinite sets into finite

ones. Both distance set and difference set can be represented by the offset-period

(OP) representation to derive R,,,.

It is first proved in the following lemma that if two distance sets for cyclic paths

intersect, the intersection is an infinite set.

CHAPTER 5. COMPRESSED COUNTING METHOD

Lemma 5.3 If paths a --+ x and y + z are cyclic in up and down relations respectively

and D(a, x) n D(y, z) # 0, then D(a, x) n D(y, z) is an infinite set.

Proof: Since D(a, x) n D(y , z) # 0, we assume d E D(a, x) n D(y, z) and cl E D(x1, x')

where x' is a node on the path a -t x and c2 E D(yl, y') where y' is a node on the

path y -+ z (cl,c2 > 0). We h a v e d + c l x i E D(a ,x) a n d d + c 2 x i E D(y,z)

for i = 0,1, Hence, d + cl x c2 x i E D(a, x) and d + cl x c2 x i E D(y, z) for

i = 0,1 , So D(a ,x) n D(y,z) is infinite.

The concept of strongly connected component is employed to help analyze the

cyclic behavior in digraph. A strongly connected component (SCC) in a digraph is a

subgraph in which there is a path between any pair of nodes. In the following context,

we assume that SCC refers to maximal SCC. A directed cyclic graph is composed of

several SCCs connected by acyclic paths.

Definition 5.6 The period of an SCC is the greatest common divisor of the lengths

of all the cycles in the SCC.

An O(escc) method is presented in [49, 411 to calculate the period of an SCC, where

escc is the number of edges in the SCC.

Lemma 5.4 states that in an SCC, all paths between two nodes have the same

offset to the SCC period, which ensures the uniqueness of offset to the period of the

SCC, and path length pattern (captured by OP) between two nodes are independent

on the actual path.

Lemma 5.4 Suppose SCC S(V, E) has the period of p and x, y E V. Then D(x, y) mod

p has only one integer in the result set.

Proof: We prove that any two paths from x to y will have the same value after

D(x, y) modp. Suppose there are two paths from x to y with lengths lI and l2

respectively, and there is a path from y to x with length k. Then, there are two cycles

CHAPTER 5. COMPRESSED COUNTING METHOD

in SCC with the lengths of l1 + k and l2 + k. According to the definition of the SCC

period, ll + k = nl x p, l2 + k = n2 x p, where nl, n2 are positive integers. Hence we

have l1 - nl x p = 12 - n2 x p, and (Il - nl x p) mod p = (12 - n2 x p) mod p. Thus,

ll mod p = 12 mod p.

Lemma 5.7 states that self cycle in an SCC becomes periodic after certain levels.

Lemma 5.5 and Lemma 5.6 are two auxiliary lemmas helping prove Lemma 5.7.

Lemma 5.5 For k positive integers nl, n2,. . . , nk such that gcd(nl, 122, . . . , nk) = 1,

there exists an integer No such that for any integer N > No, N = Xlnl+ X2n2 + . . +
Xknk where XI, X 2 , . . . , Xk E &, where & denotes the set of integers greater than or

equal to 0.

Proof: Without loss of generality, it is assumed that nl > n2 > . . . > nk > 0, and

that n; = a;n;+l + y; where a;,y; E JI& for i = 1 ,2 , . . . , k - 1. Since the set of y;

(i = 1. . . k-1) and nk have the samegcd as the set of n;, gcd(yl, 7 2 , . . . , yk-1, nk) = 1.

This means that we have a set of smaller numbers with gcd equals 1. By sorting this

new set of numbers and performing the above procedure finite times, we will have a

y value of 1, which is the arithmetic combination of the original n; numbers. In other

words, 1 = Plnl + P2n2 . - + Pknk where Pi are integers for i = 1,2, . . . , k. Now

we set NO = InkPllnl + lnkP2ln2 + + InkPklnk. For any N > No, assume N - No

is mnk + y where m, y E Nb and y < nk. N can be represented as No + mnk + y.

Hence N = NO + mnk + y(P1nl-k P2n2 +. . - + Pknk) which is ~fgt((lni ; /?; l+ yb)n;) +
(1nkPkl-t yPk + m)nk. Since y < nk, so InkP;I + yP; > O and InkPkl +yPk + m > 0, so

N is rewritten as Xlnl + X2n2 + + Xknk, where Xi = InkPiI + yP; for 1 < i > k - 1,

and Xk = lnkPkl + yPk + m, which proves the lemma. 0

Proof: Assume gcd(a1,. . . , ak, a l+cl , . . . , ak+ck) = p, and gcd(a1,. . . , ak, cl, . . . , ck) =

q, where p, q 2 1. Hence it can be assumed that a; = I; x q, c; = mi x q. We have

CHAPTER 5. COMPRESSED CO UNTlNG METHOD

a; + c; = (1; + mi) x q. So q is a common divisor of a l , . . . , ak, a1 + e l , . . . , ak + ck.

Then p mod q = 0.

On the other hand, since p is the gcd of set of a; and a; + c;, it can be assumed

that a; = n; x p and a; + c; = o; x p, so c; = (0; - n ;) x p. Hence p is a common

divisor of a l , . . . , ak, e l , . . . , ck. SO q mod p = 0. So, we have p = q.

Lemma 5.7 For any node x in SCC, there exists an integer no such that for n 2
no, n x p E D (x , x) , p is the period of SCC.

Proof: Although the period of SCC is defined as gcd of all the cycles in SCC, there

exist a finite set of cycles {cyclel, . . . , cyclek) with lengths of c l , . . . , Q such that

p = gcd(c1, C Z , . . . , ck) . For any node x , there exist self cycles {scyclel, . . . , scyclek)

with the lengths of scl, . . . , sck, such that scycle; starts at x , reaches a node on cycle;,

and returns x . Hence c; + sc; is the length of a self cycle of x , that is, c; + sc; E D (x , x) .

Since period is the gcd of all cycles in SCC, gcd(cl, . . . , ck, scl , . . . , sck) = p. From

Lemma 5.6, we have gcd(cl + scl, . . . , ck + sck) = p. Assume c; + sc; = n; x p(i =

1 , . . . , k), we have gcd(nl, nz , . . . , n k) = 1. Based on Lemma 5.5, there exists no such

tha t fo rn >no,n=Xlnl+X2n2+...+Xknk. I no the rwords ,nxp=X1xn lxp+X2x

n2 xp+. - .+Ak xnk xp . Hence n x p = X 1 x (cl+scl)+X2 x (c~+scz)+ . - .+Xk x (c ~ + s c ~) .

This is equivalent to the ~ a t h length of cycle passing through corresponding self cycles

of length c; + sc; A; times respectively. So, for n 2 no, n x p E D (x , x) .

Since period p of an SCC is the gcd of all cycles, if d E D (x , x) in SCC, then

d = n x p. Hence we have integer set { n x p : n = no, no + 1, . . .) which is equivalent

to the subset of D (x , x) of {d : d E D (x , x) and d 2 no x p). Such integer set is

called asymptotically equivalent to D (x , x) . The distance set of cyclic path in an SCC

is measured by its asymptotically equivalent set.

Definition 5.7 Integer set C1 and C z are asymptotically equivalent if there exists

an integer no such that if c E C1 and c 2 no then c E C2; if c E C2 and c > no then

CHAPTER 5. COMPRESSED COUNTING METHOD

c E C1. C1 H C2 denotes asymptotical equivalence. no is called the stable level of C1

and Cz.

Asympototic equivalence of a distance set intends to represent the cyclic portion

of the distance set and difference set with a regular formula of np + c, n 2 no, where

[c,p] forms the OP representation for the distance set and difference set.

The above lemmas suggest a simple representation of D(x, y) in an SCC. Since

only synchronized cyclic paths in the up and down digraphs may contribute to the

answer set R,,,, and the distance set in the cyclic portion becomes periodic after

certain level, instead of comparing the whole distance sets in up and down relations,

the periodic partial sets are adequate for that purpose. Therefore, the distance set

D(x, y) in an SCC can be simply expressed as [c,p], where p is the period of the SCC,

and c is the distance from x to y moduled by p (called the internal offset of y in

terms of x in SCC). Notice that there is only one c value according to Lemma 5.4.

This offset-period pair represents an integer set which is asymptotically equivalent

to D(x, y) in an SCC. It captures the regularity of distances set when the distance

becomes greater than the stable level. OP[c,p] (indicating [offset, period]) is used to

denote the represent at ion.

In each SCC, one node r is assumed to be the reference node with 0 as its offset.

Thus, the internal OP (OP represent distance set within an SCC) of any other node

q in the SCC is represented by a unique OP tuple [c,p], where p is the period of SCC,

and c = D(r , q) mod p, the relative distance from the reference node. The distance

set between any two nodes x and y in the SCC can be inferred from OP of x to the

reference node and OP of reference node to y. Furthermore, the internal offset c of a

node in SCC is relative to the reference node such that if a new offset C' is assigned

to the reference node, every node in SCC with the offest c will have the same offset

"drifting" with new offset value of (c + c') mod p.

The offset-period representation of distance set in SCC can be extended to rep-

resenting distance set in general cyclic data relations, where the digraph G(V, E) is

composed of several SCCs. For X , y E V, there might be many paths from x to y, and

CHAPTER 5. COMPRESSED COUNTING METHOD

each path might traverse through different SCCs.

Theorem 5.1 states that the distance set of a cyclic path becomes periodic over

the greatest common divisor of all the SCC periods along the path.

Theorem 5.1 For cyclic path x -+ y i n G passing through SCCl, S C C 2 , . . . , S C C k

with periods of p 1 , p 2 , . . . ,pk , there exists a n integer do such that if d E D (x , y) and

d > do, t h e n d + p E D (x , y) where p = gcd(pl ,p2 , . . . , pk) .

Figure 5.4: A path passing through SCCs.

Figure 5.4 illustrates the case, in which the distance from x to y is periodic on p

when the distance is greater than do.

Proof: Suppose that a path x to y passes through SCCl, SCC2,. . . , SCCk via acyclic

paths. Its length can be represented as 1 + nl x pl + n2 x p2 + . . - + n k x pk where

n; E &, n; x p; represents the length of self cycles within SCC;, and 1 represents the

accumulated acyclic path length from x to y. From Lemma 5.7, for SCC; there exists

no;, such that self cycle in SCC; becomes periodic after level no;.

Assume that p; = a; x p for i = 1,. . . , k, we then have g c d (a l , a2,. . . , a k) = 1.

From Lemma 5.5, there exists a0 E & such that for any a 2 a o , a = PI x a1 + p2 x

a2 + . . . + P k x C Y ~ for Pi E &.

We may now set do = a. x p + Cf=,no; x p; + e , where e is the number of edges in

data digraph. If d 2 do and d E D (x , y) , it can be assumed that d = I + nl x pl +
n2 x pa + . . . + n k x pk. Because d > do, d may be represented as d = do + p', which

is 1 + Cf==,no; x p; + p', where p' > 0 and p' mod p = 0 . Hence d > do is equivalent to

I + Cf=lno; x p; + p' > a0 x p + CfZlno; x p; + e . Since 1 < e , we have p' > aop. Since

p' mod p = 0 , p' can be represented as Cf=,P; x a; x p, which is Cf=,P; x pi. Hence

d + p = 1 + Cf==,no; x p + p' = I + Cf==,(no; + Pi) x p;. Since each (no; + Pi) x p; is the

length of a self cycle in SCC;, 1 + Cr="=,noi + @;)pi is the length of path x -+ y. So

d + P E D (x , Y) . 0

CHAPTER 5. COMPRESSED COUNTING METHOD

Definition 5.8 The period of a cyclic path in a digraph is defined as the greatest

common divisor of the periods of the SCCs along the path.

To extend OP representation of distance set from a single SCC to a digraph of

multiple SCCs, we first assume that all the paths from one node to another traverse

the same set of SCCs in the same order. This gives us the same period for all paths, the

presence of multiple acyclic paths joining SCCs results in multiple offsets to the period,

and hence the OP representation should contain a set of offsets, such as OP[C, p]

where C is a set of offsets, called (external) offsets in contrast to internal offset within

an SCC. Now assume that different paths traverse different SCCs and/or in different

order. There are multiple OP's corresponding to each set of paths traversing the same

set of SCCs in the same order, namely [C1,pl], . . . , [Ck,pk]. Since the distance set is the

union of distance set along each path, the OP representation of the distance set should

be able to express unioned set of integers expressed by OP's along each path, which

is obtained by expanding each OP from [Ci, pi] to [C;',p] where p = lcm(pl,. . . , pk)

and C;' = { c , c + pi,. . . , c + (A - l)pi : c E Ci and p = Xp;); and then unioning all

these C;'. Thus, the OP representation for distance set is [& C;',p]. This is proved

in a later section.

Now consider the presence of a reference node in an SCC. Since the distance set

is represented in the OP form, it is necessary to know the OP set for each node of

an SCC in order to answer a recursive query. However, we will show later that it is

adequate to derive the OP set only for a reference node in each SCC. The OP set of

every other node in the SCC can be inferred from their internal offset and the OP of

the reference node.

The offset-period representation of distance sets and the corresponding operations

lay the foundation for the discussion of recursive query processing in cyclic databases

using counting method.

It should be noted that there could be multiple OP representations with different

C sets and/or p for the same distance set, and each of them can be used to determine

the answer to the query. However, it is desirable to use the normal form of OP.

CHAPTER 5. COMPRESSED COUNTING METHOD

Two OP's are equivalent if they denote the same integer set, although their rep-

resentation may not be the same.

Definition 5.9 OPIC,p] is in normal form if for c E C, 0 5 c < p, and for any

OPIC1, p'] which is equivalent to OP[C, PI, p' 2 p.

Normalization operation denoted as Norm(OP[C,p]) transforms an OP repre-

sentation of the distance set into a normal form OP representation by simplifying

OP[C,p] into an equivalent OP set of OP'[C1,p'] with the smallest p'. For example,

OP[(l , 2,3,7,8,9), 121 can be replaced by OP[(l , 2,3), 61.

Offset-Period representation of the distance set maps an infinite set into a pair:

period and a small set of offsets. As shown in the following sections, the operations

defined on an OP map the derivation and comparison of distance sets to the operations

on OP sets. Although OP cannot represent a complete difference set, it will be shown

that OP representation is perfect for difference set to facilitate efficient test of 0

containment. Therefore, it is adequate to derive R,,, using OP representation.

5.2.3 Derivation of O P sets

In this section, it is shown that operations on distance set and difference set can be

replaced by operations on OP.

Addition of OPICl,pl] and OP[C2,p2], denoted as OPICl,pl] $ 0P[C2,pn], is an

integer set: {(el + kl x pl) + (~ 2 + k2 x pa) : cl E Cl and c2 E C2 and kl, k2 E &).

Since (el + k1 x pl) + (c2 + k2 X p2)i equals to cl + c2 + k x gcd(pl,p2) which is

(ci + ~ 2) mod &(pi, p2) + k' x &(pi, p2), OP[Cl, pi] $OP[C2, p2] can be represented

as OP[(Cl $ C2) mod p, p] where P = gcd(p1, p2).

CHAPTER 5. COMPRESSED COUNTING METHOD

Theorems 5.2 and 5.3 state that the addition and union of distance sets can be

obtained through the addition of OP sets.

Theorem 5.2 Let OPICl,pl] and 0P[C2,p2] be the O P representation for distance

sets Dl and D2 respectively. OPICl,pl] $ 0P[C2,p2] is the OP representation for

Dl $ D2.

Proof: This is to prove that OPICl, pl] $ 0P[C2, p2] is asymptotically equivalent to

Dl $ D2, given that OPIC1, pl] and 0P [C2 , p2] are asymptotically equivalent to Dl

and D2 respectively.

Assume that nol, no2 are the stable levels for Dl, D2 respectively. Let N =

max(nO1, no2), and No = 4 x N.

If d E D1$D2 and d 2 No, then d = d l + d 2 for dl E D1,d2 E D2. I fd l 2 N a n d

d2 2 N , then dl E OP[Ci,pl] and d2 E OP[C2,p2]. So, d E OP[Cl,pl] $OP[C2,p2].
Suppose that dl < N (d2 < N case is proved in the same way). It can be assumed that

on the path corresponding to Dl, there is a self cycle with length 1, which is a multiple

of pl from the definition of SCC period, and without loss of generality 1 is assumed to

be less than N . Then there exists an integer X > 0 such that N 5 dl + X x 1 < N + 1.

Further, d can be rewritten as dl + X x 1 + d2 - X x I . It is clear that dl + X x 1 is

a path length, so dl + X x 1 E Dl, and can be rewritten as cl + kl x pl for cl E C1.

Since dl + d2 2 4N and X x 1 < 2N, d2 - X x 1 > N. Thus d2 can be written as

c2 + k2 x p2 for c2 E C2 since d2 E 0P [C2 , p2]; and 1 as a x pl since 1 is the length of

self cycle. So d = cl + kl x pl + c2 + kg x pa - a x pl = cl + c2 + k x gcd(pl,p2), that

is, d E OPl $OP2.

If d E OPl BOP2 and d 2 No, d = cl + c2 + k x gcd(pl,p2). Thus d can be written

as sum of cl + kl x gcd(p1, p2) > N and c2 + k;! x gcd(pl, p2) > N for k1 + k2 = k.

since cl + kl x gcd(p1, pz) E Dl and c2 + k2 x gcd(p1, p2) E D2, d E Dl $ D2. It has

been proved that 0 P [Cl , pl] $ O P [C2, pz] * Dl $ D2.

The union of OPICl, pl] and OP[C2, p2], denoted as OPICl, pl] U 0P[C2, p2] is

defined below. The result of the union should be {cl + k x pl, c2 + k x p2 : c1 E

C H A P T E R 5. COMPRESSED COUNTING METHOD

C1 and c2 E C2 and k E N o) . If pl and p2 are the same, an OP set can be constructed

with C1 U C2 as its offset set and pl as its period. Otherwise, each OP can be

transformed into an OP with its period equivalent to the least common multiplier of

Pl and P2.

Definition 5.11 Expansion operation, denoted as Exp(OP[C, p] , Xp) = OPIC1, Xpl,

transforms OP[C,p] into an equivalent OP with a larger period, where OP[C,p] is

normalized and X is a positive integer, C1 = {c+ kp : c E C and k = O , l , . . . , (A - 1)) .

Definition 5.12 Union operation OPICl,pl] U 0P[C2,p2] is [(Ci U C;), p] , where

P = Icm(p1, p2) and [C:, PI = E ~ P ([C ~ , P ~] , P) , [C;, ~ 2 1 = Exp([C2, ~ 2 1 1 P) .

The following theorem states the union of distance sets can be obtained by union

of OP.

Theorem 5.3 Suppose OPICl,pl] and 0P[C2 ,p2] are the OP representation for dis-

tance sets Dl and D2 respectively, then OPICllpl] U 0P[C2 ,p2] is the OP represen-

tation for Dl U D2.

Proof: It is to prove that OPICl, pl] uOP[C2, p2] and Dl u D2 are asymptotically equiv-

alent given that OPICl, pl] and OP[C2, p2] are asymptotically equivalent to Dl, D2

respectively.

Assume no1 , no:! are the stable levels for Dl and D2. Let N = max(nol, no2).

If d E Dl U D2 and d > N , then d E Dl or d E D2. Since d > max (nol, no2),

d E OP[Cl,pl] or d E OP[C2,p2]. Hence d E OP[Cl,pl] U OP[C2,p2].

If d E OPIC1,pl] u OP[C2,p2] and d > N, then d E OP[Cl,pl] or d E OP[CZlp2].

Since d > - max(nol, no2), d E Dl or d E D2. Hence d E Dl U D2. Thus the theorem is

proved.

CHAPTER 5. COMPRESSED COUNTING METHOD

The above theorems map the derivation of distance sets to that of OP sets. Since

addition and union on distance sets are commutative, the addition and union opera-

tions on OP's are commutative.

We now prove that OP (either distance or difference OP) of a node in an SCC can

be inferred from its internal offset and the reference node OP, so that an SCC can be

collapsed into a single node in simplied data digraph.

Lemma 5.8 If node u, y, x E S C C and there is a cyclic path from node a to the SCC,

D(a, u) $ D(u, x) is asymptotically equivalent to D(a, y) $ D(y, x).

Proof: D(a, u) $ D(u, x) and D(a, y) $ D(y, x) represent the lengths of the paths

a + u + x and a + y + x. Since u, y are in the same SCC, D(a ,u) $ D(u,x)

and D(a, y) $ D(Y, x) have the same period po. Assume N = max(stab1e levels of

D(a, u)$ D(u, x), D(a, y) $ D(y, x), D(a, u)). Since D(u, x) is within SCC, D(u, x) W

O P [C , , ~] where p is the period of the SCC. Since period of D(a, u) is the gcd of

SCC periods, p mod po = 0 and po 5 p. So, D(a, u) may have OP representation of

OPICu,p] with period of p instead of po. So, D(a, u)$D(u, x) w OPICu,p]$OP[c,,p],

which is D(a, u) $ D(u, x) W OPICu $ c,,p].

If d E D(a,u)$D(u,x) and d > N+p , then d E OPICu$c,,p], d = cu+c,+kxp.

So d-c, = c u + k x p E OPICu,p]. Sinced > N + p a n d d-c, > N, d-c, E D(a ,u) .

Since u, y are nodes in SCC, it is assumed D(u, y) w OP[c,,p]. A path from u to y

hasthelengthofc,+k'xp. Henced-c,+cY+k1xpisthelengthofapatha+ u -+ y ,

and d - c, + c, + k' x p E D(a, u) $ D(u, y) G D(a, y). Assume D(y, x) w OP[c,,,p].

Since path u -+ y + x + u is a self cycle within SCC, and D(x, u) w OP[(p - c,), p],

c, + c,, + (p - c,) mod p = 0. So D(y, x) w OP[(c, - c,), p]. So there is a path y + x

with length of c, -c, + kt' x p . So d-c,+c, + k' x p + c , -c, + kl' x p is the length

of path a + y + x, in other word, d + (k' + k") x p E D(a, y) $ D(y, x) . Assume

that D(a , y) $ D(y, x) H OP[C,,p]. So, d + (k' + k") x p = c' + k"' x p for c' E C,.

d = c'+(kl"-- kt'- k') x p E OP[C,,p]. Since d > N , we have d E D(a ,y)$ D(y,x).

It can be proved in the same way that if d E D(a, y) $ D(y,x) and d > N + p,

C H A P T E R 5. COMPRESSED COUNTING METHOD

d E D(a, u) $ D(u, x).

If the equivalence relationship is relaxed to asymptotical equivalence, the following

theorem states that D(a, x) can be obtained from D(a, u) $ D(u, x), where u is any

node in SCC. Thus a node in SCC can be designated as a reference node, the distance

set from a to the rest of nodes in SCC can be derived from the reference node.

Theorem 5.4 For nodes u, x E SCC, D(a, x) is asymptotically equivalent to D(a, u)$

D(% 4,

Proof: Since every path from a to x will involve at least a node in SCC, and based on

lemma 5.1, D(a, x) = UyEscc(D(a, y) $ D(y, x)). Since for any y E SCC, D(a, y) $

D(Y, 2) % D(a, 4 D(u, 4 (lemma 5 4 , UyEscc(D(a, Y) D(Y, 4) = D(a, u)
D(u, x). So D(a, x) % D(a, u) $ D(u, x).

Corollary 5.1 If there is a cyclic path from a to an SCC, the distance OP for any

node x in SCC is the addition of OP for the reference node and the internal o$set of

x.

5.2.4 Derivation of distance set and difference set

Since SCCs are the source of cycles in digraph, a cyclic path can be studied by de-

composing a digraph into DAG of SCCs, deriving period for each SCC and extracting

interconnections among SCCs. A digraph may consist of a set of SCCs connected

by directed edges. Connection among SCCs can be either serial or parallel as shown

in Figure 5.5 and Figure 5.6. Serial connection occurs when an SCC has only one

precedent SCC, while parallel connection occurs when an SCC has multiple precedent

SCCs. In the context of OP derivation, two SCCs joining at a node followed by an

SCC is equivalent to two SCCs joined at the third SCC.

The following theorems state how to derive distance set.

CHAPTER 5. COMPRESSED COUNTING METHOD

Figure 5.5: Serial merge.

Theorem 5.5 For SCC S1, Sz connected in serial with u , v as their reference nodes

as in Figure 5.5, D(a, v) is asymptotically equivalent to D(a, u) $ D(u, v) .

Proof: First it is assumed that there is only one acyclic path connecting S1 and S2 ,

node x E S1 is the its start node. Then all the paths from a to v pass x. So D(a, v) =

D(a, x) $ D(x , v) and D(u, v) = D(u, x) $ D (x , v) . From above theorem, D(a, x) *
D(a ,u)$D(u , x) . Hence D(a ,v) * (D(a ,u)$D(u , x))$D(x , v) =D(a ,u)$(D(u ,x)$

D (x , v)) = D(a, u) $ D(u, v) .

Now consider there are multiple path connecting S1 and S2. Let X I , . . . xr, be their

starting nodes. D(a, v) = uf=,(D(a, xi) $ D(xi , v)) , and D(u, v) = uk 2=1 (D (u , x i) $

D(G, v)) . Since D(a, xi) * D(a, u) $ D(u, x i) , then D(a, v) * & (~ (a , u) $

D(u1 xi) fB D(xi7 v)) = D(a1 u) @ (U;=,(D(U, xi) $ D(xi , v))) . SO, D(a, V) H D(a, U) $

D(u ,v) . 0

Figure 5.6: Parallel merge.

Theorem 5.6 If SCC1, SCC2, SCC3 are connected in parallel as shown in Figure 5.6

with u , v , w as their reference nodes, D(a, w) is asymptotically equivalent to (D(a , u) $

D(u1 w)) U (D(a1 v) @ D(v1.w)).

Proof: Paths from a to w consist of two parts: paths via SCCl and paths via SCC2.

Since these two parts do not mix up, D(a, w) is the union of the path lengths of the

CHAPTER 5. COMPRESSED COUNTING METHOD

two. From the above theorem, the length of the path via SCCl is asymptotically

equivalent to D(a, u) $ D(u, w), and that via SCC2 is asymptotically equivalent to

D(a, v) CB D(v, w). Hence D(a, w) w (D(a, u) $ D(u, w)) U (D(a, v) $ D(v, w)).

Based on the above theorems, when SCCs are connected in serial, the distance OP

for Sz is the addition of distance OP for S1 and S1 + S2. It is called the serial merge

of OP's (of SCCs). When SCCs are connected in parallel, the distance OP for SCC3

is the union of two additions: SCCl and SCCl + SCC3, SCC2 and SCC2 + SCC3.

It is called the parallel merge of OP's (of SCCs).

We now discuss how to derive difference set in Gdown. Suppose in G,, D(a, x) is

known, and in Gdown D(Y, z) is known and (x, Y) E f la t . Then z is an answer to the

query if Di f f (a, x) = D(y, z) 8 D(a, x) contains 0. Although Di f f (a, z) is an infinite

set, it is possible to use offset-period pair to represent it. All the following derivation

of difference set follows the principle Di f f (a, z) = Uw+-Gd,,, (Di f f (a, w) $ D(w, z)) .

Based on the above analysis, subtraction of OP's can be defined accordingly.

The following theorem transforms the problem of distance set comparison into

that of 0 containment test of difference set. It guarantees the correctness of OP

representation for the difference set in terms of 0 containment test. It also guarantees

the correctness of derivation method of difference set.

Theorem 5.7 If D(a, x) OPICl,pl] and D(y, z) w OP[C2,p2], then 0 E D(y, z) 8

D(a, x) is equivalent to 0 E 0P[C2 , pa] 8 OP[Cl, pl].

Proof: Assume N = max(the stable levels of D(a, x) , D(y , z)) .

If 0 E D(y, z) 8 D(a, x), then from lemma 5.3 and its proof, there exists d 2 N

and d E D(y,z) ,d E D(a,x). So d E OP[Cl,pl] and d E 0P[C2,p2] , and d can

be written as cl + kl x pl and cz + k2 x p2 for cl E Cl, c2 E C2 and kl, kz E &.

CHAPTER 5. COMPRESSED COUNTING METHOD

SO, c2 - cl = kl x pi - k2 x pa, and (c2 - c1) mod gcd(pl,p2) = 0. Hence, 0 E

(C2 0 C1) mod gcd(p1,p2), and 0 E OP[C2,p2] 0 OPIC1,pl].

If 0 E 0P[C2,p2] e OP[C1,pl], there exist cl E Cl,c2 E C2 such that (c2 -

cl) mod gcd(pl, p2) = 0. c2 - cl = k x gcd(pl, p2) for integer k. Assume pl = pi x

gcd(pl, p2), p2 = p; x gcd(pl, p2), then gcd(~; , P',) = 1. From lemma 5.5, there exists

No such when N 2 No N = X1 x p i + A 2 xp; , and N + 1 = X3 ~ p ; + A 4 xp; .

1 = (A3 - X I) x pi + (A4 - X 2) x p;. It can be denoted as 1 = ,L? x p', - a x pi

for a, ,B E without loss of generality. Multiplying gcd(pllp2) at both sides of the

equation, gcd(p1 ,p2) = ,B x p2 - a x pl. Hence c2 - cl = k x ,B x p2 - k x a x pl.

So, c2 + k2 x p2 = c1 + k1 x PI. Algebraic manipulation like multiplying ,B x p;

with 1 = (p x p; - a x pi) gives (P2 x p2)p2 - (a x P x p;)pi = 1, that means a

new set of coefficients is found which are larger. So, there exist kl, k2 E a, such that

c l + h xpl = c2+k2 xp2 > N . Hence,cl+kl xpl E D(a ,x) andc2+kl xp2 E D(y,z) .

Therefore, 0 E D(y, z) 0 D(a, x).

As a summary for this section: it has been discussed how to derive R,,,. First,

distance sets are replaced by its partial periodic subset. Second, periodic partial dis-

tance set is captured by the offset-period representation. Third, derivation of distance

sets is transformed into that of OP sets. Fourth, for the purpose of 0 containment

test, difference set is managed in the same way as distance set.

The derivation of R,,, is as follows. In up relation, OP's for the distance set

(called distance OP) are derived. The f la t relation passes those distance OP to the

down relation, where OP's for the difference set (called difference OP) are initialized.

Difference OP's in down are derived in the same way as the distance OP are in up.

A query answer is obtained if the difference set contains 0.

5.3 Compressed Counting Method

The compressed counting method computes both R,,, and R,,,,. The former is stud-

ied in this section; whereas the latter in the next one. In this section, we discuss (1)

CHAPTER 5. COMPRESSED COUNTING METHOD

precompilation of up and down digraphs, and (2) query processing for the derivation

of R,,,, which consists of (i) the derivation of distance-OP in up, (ii) the derivation

of difference-OP in down and (iii) answer extraction.

5.3.1 Precompilation of Data Relations

Since a database digraph is composed of a set of SCCs and their connections, pre-

compilation of a database digraph before query processing will avoid rederivation of

the SCC information when multiple queries are posed to the same data relation or

the same SCC is used many times during query processing.

Precompilation of a digraph (up or down relation) consists of three steps: (1) par-

tition the digraph into a set of SCCs, (2) derive the internal OP's for the nodes in each

SCC, and (3) construct a compressed graph by extraction of inter-SCC connections.

Studies in [49, 41, 1291 contribute to a simple algorithm that derives SCCs and

their periods in a digraph G in O(e) time, where e is the number of edges in G. At

the same time, the nodes in an SCC of period p can be partitioned into p equivalence

classes. Let one class be the reference class (labeled 0) in which every node is a

reference node with internal offset 0. Other classes are labeled from 1 to (p - 1)

according to their distance (shortest traversal length) from the reference class. Every

node in class j has internal offset j. A node in class j of SCCk with period p is

registered as (k , [j ,p]), where k is the SCC-id, j the internal offset, p the period, and

[j,p] is the internal OP of the node.

The compressed graph (CG, or CG,,/CGd,,, for the up/down relation) is a di-

rected acyclic graph (DAG) in which a node represents an SCC, and an edge be-

tween two nodes (called an inter-SCC edge) represents t he inter-SCC connection(s)

between two connected SCCs. An inter-SCC edge from SCCl to SCC2, denoted as

SCCl + SCC2, is labeled by the offset of the distance OP for SCCl + SCC2, which

is an integer or a set of integers, obtained by a set of path lengths 11, 12,. . . , lk moduled

by gcd(pl, p2), where pl and p2 are ~e r i ods of SCCl and SCC2, and I; (for 1 < i 5 k)

CHAPTER 5. COMPRESSED COUNTING METHOD

is the length of the i-th inter-SCC connection path, calculated by the length between

two SCC reference nodes in the digraph.

Example 5.2 Figure 5.7 shows how the precompilation is done on a small digraph.

The graph is partitioned into four SCCs. The period of each SCC and the internal

OP of the nodes in each SCC are computed. Finally, the graph is compressed into a

compressed graph C G with four nodes and four labeled inter-SCC edges.

Data Digraph

SCC 3

sccz

Compressed Digraph

Internal Offset of Data Nodes in SCCs

SCC period

data node

internaloffset

Figure 5.7: Precompilation of data relation.

A digraph of a data relation usually contains only a small number of SCCs. Thus,

a compressed graph (CG) is a small DAG. The mapping of a large data digraph into a

tiny CG which contains rich information about SCCs and their interconnections will

save the recomputation of periods and internal offsets of the nodes in each SCC and

guide efficient query evaluation. This will be discussed in the query processing phase.

SCC =6

b c d e f g q r

0 1 2 3 4 5 1 2

SCC =3

h i j

0 1 2

SCC =4

k l m n

0 1 2 3

SCC =2

o p

1 0

CHAPTER 5. COMPRESSED COUNTING METHOD

5.3.2 u p processing

When a query is posed to the system, the up relation processing starts, which derives

the distance-OP for every data node reachable from the query constant(s).

If query constant a is not in any SCC, the distance-OP of a is initialized to [0,0].

A breadth-first search (join operation) starting from a is performed in G,, to find out

all the SCCs reachable from query constant a via acyclic path(s) only. The offset 1

keeps increasing along the acyclic path with the OP of the derived node assigned to

be [l, 0] until it reaches an SCC. When the derivation reaches an SCC S at the node

n with internal OP = [c,p], the distance-OP of S (which is the distance OP of S's

reference node) is initialized to Norm([l - c,p]), where I is the current offset. If there

are multiple paths from a to the same SCC, the distance-OP for the SCC is the union

of the distance-OP derived from each path. If query constant a is in an SCC, the

SCC is initialized in the same way as above except the offset 1 is 0 and the node n is

node a itself.

As proved in the previous section, OP representing distance set for an SCC in

CG,, is derived by adding and unioning distance OP's of its preceding SCCs. So once

an SCC is instantiated, all the SCCs in CG,, reachable from it can be instantiated

immediately using the compressed graph CG,, following the topological order.

In a digraph, the distance-0P of every node in each reachable SCC is inferred

from distance-OP of the SCC (which is the distance-OP for the reference node of the

SCC) and the internal offset of the node. For node n E SCC S; with OPICilpi] and

internal offset of m, the distance-OP for n is NORM(OP[C;, pi] $ m).

Example 5.3 Suppose up relation is shown in Figure 5.7. Since length(a -+ b) = 1,

and the internal OP of the reference node b is [O, 61 (0 is the internal offset, 6 is the

period of SCC1), the distance-0P for SCCl is initialized to [l, 61. OP propagation

in the compressed graph proceeds as follows. Since label(SCC1 t SCC2) = 0, and

SCCl is the only predecessor of SCC2, OP of SCC2 can be derived by adding OP of

SCCl with SCCl -+ SCC,, that is, NORM([l , 61 $ [O,gcd(6,3)]) = [I, 31. Similarly,

CHAPTER 5. COMPRESSED COUNTING METHOD

the OP for SCC3 is [I, 21. Since SCC4 is connected with other SCCs in parallel,

the OP for SCC4 is obtained by adding OP's for SCC3, SCC3 -+ SCC4, adding

OP's for SCC2, SCC2 -+ SCC4 and unioning the two addition results, which is

NORM(([l , 21 $ [O,gcd(4,2)]) U ([I , 31 $ [O,gcd(3,2)])), or [0, 11. Once the OP for

each SCC is known, OP's for data nodes are inferred easily. The result is shown in

Figure 5.8.

SCC 4

i

h I > , PdO
f0,31 fa, 11 lo, 11

D,31

Figure 5.8: OP for data nodes.

Notice that distance-0P's should be derived for non-SCC nodes along an inter-

SCC path. The nodes following an SCC carries the same merged period of the SCC,

and the offset set carried is incremented by one for each traversal along the path. A

parallel merge is performed when the paths following two or more SCCs merge at a

non-SCC node. Such distance-OP propagation proceeds until it reaches a node on

another SCC.

An implementation issue concerning OP representation should be mentioned here.

It has been assumed that all OP is represented in [C,p] pair so far, which can be

referred to as explicit OP representation. However, it is not necessary to represent

OP explicitly in OP derivation. An implicit OP representation is available which

represents the same information with much less computation and storage overhead.

For SCC node, the pair of SCC-id and internal offset is the implicit OP representation,

since the explicit OP representation can be inferred from it. Let's assume that for

non-SCC node, the SCC that derives it is its driver SCC. Then for non-SCC node

the pair of its driver SCC-id and the distance from the driver SCC reference node is

CHAPTER 5. COMPRESSED COUNTING METHOD

the implicit OP representation. The explicit OP representation is only required when

necessary, i.e., when passing of distance OP to down relation, OP initialization and

the answer extraction. An SCC OP buffer associating SCC-id with SCC OP is needed

to transform the implicit OP representation into the explicit one.

5.3.3 down processing and answer extract ion

The nodes reachable from the query constant a in the up digraph are joined with

the f la t relation, which results in a set of instantiated nodes for down processing.

The distance-0P of participating node(s) in G,, is passed as an inherited OP to the

corresponding instantiated node(s) of Gdown.

Derivation of the difference-OP in Gdown is very similar to the distance-OP deriva-

tion in G,,, with some difference in the OP initialization.

The initialization for difference-OP in Gdown starts from the instantiated nodes.

Suppose an instantiated node has an inherited OP of [C,pl]. If it is on an SCC and

has an internal offset of c and the period of p2, the initial difference-OP for the SCC

is NORM([p2 - c, pz] 8 [C, pl]). If it is not on any SCC but has a path of length 1 to

node n on SCC S with period p2, and the internal offset for n is c, then the difference

OP for S is initialized to NORM([l + p2 - c, p2] 8 [C, pl]). If an SCC has more than

one path from one or more instantiated nodes, its initial difference-OP is the union

of the individually initialized difference-OP's.

Once the initialization of difference-OP has finished, the derivation of difference-

OP for the remaining SCCs and the nodes in the SCCs in down relation resembles

the OP derivation in up relation.

Finally, for answer extraction, it is easy to assert that R,,, is the set of data nodes

in Gdown whose difference-OP contains 0, that is, the offset set of the difference-OP

contains 0.

CHAPTER 5. COMPRESSED COUNTING METHOD

5.3.4 An example

Example 5.4 Figure 5.9 is an example showing how compressed counting method

derives R,,,, where the up relation is shown in Figure 5.8, f k t relation is shown here

with dash lines and data nodes in down digraph are denoted with upper case letters.

Since distance-OP's for node 1 and m are [O, 21 and [l, 21, difference-OP for SCCs is

initialized to [O, 41 8 [O, 21 U [3,4] 8 [I, 21, which is [O, 21. Since the inherited distance-

OP for node J and M are [2, 31 and [I, 61 respectively, the difference OP for SCC7 is

initialized to ([2, 31 $ 2 8 [2, 31) U ([2, 31 $ 4 8 [I, 6]), which is [2, 31. Consider the

topological order in compressed graph, OP for SCCs is [O, 21 and OP for SCC7 is [0,

21 U [I, 31, which is [{0,1,2,4), 61 in its normal form. The OP for each data node is

shown in the table. The answer nodes for cyclic portion are A, C, E, G, I since their

difference-OP contain 0.

.-- ._--._..---...--____ -. . -
M

D i e for UP relation -7
D C F G

Data Digraph

Internal OPs and Difference OPs of Data Nodes in DOWN Relation

SCCS 0 SCC, SCC
0 - P o '

Compressed Digraph for DOWN Relation

SCC period

datanode

Figure 5.9: Example of compressed counting method.

SCG =4 SCC 6 =2 SCC 7 =3

A 6 c D E F G H I

CHAPTER 5. COMPRESSED COUNTING METHOD

5.4 Complementary counting: optimizations

5.4.1 Dealing with acyclic paths

In principle, the derivation of Racy, where the derivation path in either G,, or Gdown

is acyclic, can be performed by simply applying the acyclic Counting method [9] to

count the acyclic path length starting from a in G,, and from instantiated nodes in

Gdown. The counting method terminates when the counting level reaches the longest

acyclic path length.

However, a complete separation of the derivations of R,,, and Racy, may not lead to

good performance because it is easy to observe that much of counting in both G,, and

Gdown are performed separately but redundantly in the two derivations. Therefore,

it is desirable to devise an integrated approach in the processing of both cyclic and

acyclic data. As an integral part of compressed counting, we propose a complementary

counting technique for the derivation of Racy,.

Assume path a + x in G,,, edge (x, y) E f lat , and path y z in Gdown. Let

lbc denote the length of path b t c in G,, (or Gdown). There are three cases to be

considered: (1) a + x is acyclic, (2) both a + x and y + z are cyclic, and (3) a + x

is cyclic but y -+ z is acyclic.

The second case is the derivation of R,,,, where z is an answer if 0 E difference-OP

of z , which has been studied in the last section.

In the first case, the counting level of node x is registered in up and passed to y in

down. The counting level decreases as the paths from y are traversed in down until

the level reaches 0 or the paths terminate, no matter whether the paths are cyclic or

acyclic. Node z is an answer if it has counting level of 0.

A node x in G,, with an acyclic path from a has the counting level for x, la,,

derived during distance-OP initialization, so do nodes with acyclic path from an

instantiated node y in Gdown during difference-OP initialization. The acyclic length

CHAPTER 5. COMPRESSED COUNTING METHOD

(counting level) is represented by the same offset-period notation, where an acyclic

node has 0 as the period and the actual length as the offset. This kind of OP can be

referred to as acyclic OP in contrast to cyclic OP as discussed before.

This implies that the computation of R,,, can be minorly modified to incorpo-

rate the computation in the first case. The modification is presented as follows. In

difference-OP initialization in Gdown, if an instantiated node y has an acyclic inher-

ited OP of [c, 01, the OP of node y becomes 0 8 [c , 01, i.e., [-c, 01. The path(s) (both

cyclic and acyclic) starting from y is traversed in Gdow, and the counting level (offest)

is increased by one and passed to the next node along the path at each step. This

process proceeds until either the path terminates or the counting level reaches 0, and

at this point the corresponding data node is registered in the answer set.

In the third case, since the compressed counting derives only distance-OP for x

instead of the lengths from a to x, a traversal from a to x is necessary to obtain all the

counting levels of x up to level of I,, to facilitate the length matching of I,, and l,,.

Such a process can be optimized by a complementary counting technique presented

below.

5.4.2 Complementary counting optimization

To facilitate the improved processing of acyclic data, two extra pieces of information

need to be stored in the up processing during the R,,, computation. The first is

flipping nodes, where a flipping node is a node in an SCC reached via acyclic path(s)

from a query constant, i.e., a node whose internal period is nonzero but is derived by

a zero-period driver in the processing, e.g. node x in Figure 5.10. Suppose xl is a

flipping node reached from a query constant a at counting level 11. Then the flipping

node (a, xl, 11) is stored in aflipping node huger during the R,,, computation. Flipping

nodes are the starting points when a retraversal of up relation becomes necessary. The

second is driver SCC(s) which should be registered for every data node not in any

SCC but derived by some SCC in the computation. If a non-SCC node x is derived by

an SCC S via an acyclic path, S is a driver-SCC of node x. Driver-SCC information

C H A P T E R 5. COMPRESSED COUNTING METHOD

is used to prune the irrelevant SCCs in the retraversal of the up relation.

Figure 5.10: A flipping node is shown.

For the same purpose, candidate nodes need to be stored in the down processing

during Rcyc computation, where a candidate node is a node reached via acyclic path(s)

only from an instantiated node in down, and 0 E ((1 8 C) mod p), where [CYp] is the

inherited-OP and 1 is the acyclic path length from an instantiated node to the current

node. Suppose zl is a candidate node reached from an instantiated node yl (driven

from the query constant a) at counting level ml. The candidate node (a, y l , zl, ml) is

stored in the candidate node buffer. Candidate nodes are those in the down relation

that might be the answer to the query. Notice that 0 E ((1 0 C) mod p) is a necessary

condition for the node to be an answer.

After the computation of Rcyc, and the extraction of the answers for those travers-

ing via acyclic paths only in the up processing (Case l), a complementary counting

process starts to derive those answers derivable by traversing cyclic path(s) in up and

acyclic path(s) in down.

Complementary counting strives for efficiency in four aspects: (1) traversal in up

restarts at the flipping nodes rather than at the query constants; (2) search only the

subgraphs of the compressed graph CG,, which may contribute to the derivation of

answers; (3) the search terminates immediately when the counting level reaches the

corresponding maximum acyclic counting level in down (since further processing will

be fruitless to match levels in down); and (4) answers are extracted directly from the

candidate node buffer rather than retraversal of the down graph (that is, there is no

acyclic path in down to be retraversed in complementary counting).

We analyze how to realize these four aspects. Aspect 1 is realized easily by starting

the complementary counting at the flipping nodes. The stored flipping node informa-

tion (a, x, l) indicates that there is an acyclic path a -+ x which reaches the node x

CHAPTER 5. COMPRESSED COUNTING METHOD

at the counting level I.

The key to Aspect 2 is to know via which set of SCCs, a flipping node (a, X I , -)

may derive an instantiated node yl in down for a candidate node (a, y l , -, -). Since the

SCC-id's of x1 and xi (where (xi, yl) E f la t) are known in up processing, the relevant

SCCs can be obtained by analysis of the compressed graph CG,,. Only those SCCs

in CG,, which are along the path from xl to x', are traversed.

Realization of Aspect 3 requires to find the corresponding maximum acyclic count-

ing level in down. A simple solution is to take the maximum counting level m

for query constant a found among the candidate nodes driven by a , that is, m =

maximum(ml, . . . , mi) for all the candidate nodes in the form of (a, -, -, mi). An

improved solution is to associate with the subgraph (found in Aspect 2) only those

corresponding maximum counting level which are derivable from the subgraph. Such

maximum counting level can be easily found from the candidate nodes in the form of

(a, y, -,mi), where y is in the set of instantiated nodes derivable by the subgraph.

Aspect 4, the direct extract of answer from the candidate node buffer, can be easily

implemented since a node z with a cyclic path in up and an acyclic one in down is in

the answer set if and only if there exists (i) a node x derived from a with counting

level = 1 in up, (ii) (x, y) E f lat , and (iii) (a, y, z, 1) in the candidate node buffer.

Thus, we have the following algorithm for complementary counting: (1) for each

query constant a and its instantiated node y, find the maximum (down) counting level

maxlevel(a, y) from among all the candidate nodes in the form of (a, y, z , m); (2) the

maximum (up) counting level maxlevel(a, x') = maxlevel(a, y) if (x', y) E f lat ; (3)

starting at St, the SCC associated with x', or the driver SCC of x' if x' is not on any

SCC, propagate backward to each SCC in CG,, three pieces of information: (i) query

constant a , (ii) maxlevel(a, x'), and (iii) a set of SCC-id's along the path; (4) starting

at each SCC containing the flipping nodes of a , traverse G,, forward and increment

the counting level until it reaches maxlevel(a, x'), and notice that a new SCC will

be explored only if a is associated with the SCC and the SCC-id is in the associated

SCC-id set, and (5) perform join of (a, xt, I) with (XI , Y) E f lat , and with (a, y, z, I)

CHAPTER 5. COMPRESSED COUNTING METHOD

in the candidate node buffer, the result set of z's is the set of answers derived by

complementary counting.

Discussion

5.5.1 Complexity Analysis

The compressed counting method has the worst case time complexity of O(ne) where

n and e are the number of nodes and the number of edges respectively in the database

digraph. This is analyzed for both precompilation and query processing.

Precompilation consists of the following four steps : (1) partition a digraph into

a set of SCCs, (2) compute the period of each SCC, (3) partition nodes in each

SCC into equivalence classes, and (4) map the digraph into a compressed graph CG.

According to the studies in [49,41], steps 1 to 3 takes O(e) time. The worst case time

complexity for graph compression (step 4) is O(ne) because it takes at most n joins

to derive all the inter-SCC connections. Such a complexity makes precompilation

feasible for a relatively large database, even considering data updates. Moreover,

partial recompilation can be explored if the updated data influences only one or a

small number of SCCs.

The cost for storage of precompiled results is minimal. Each node in an SCC

needs to store only two integers: an SCC-id and an internal offset. Since the number

of SCCs is much less than the number of data nodes in a digraph, the cost for storage

of the compressed graph is negligible in most databases.

Theorem 5.8 The time complexity for query processing in compressed counting method

is O(ne), where n, e are the number of nodes and edges in digraph G,, and Gdoum.

Proof: For query processing, initialization of OP and traversal of inter-SCC paths

can be done with each edge in acyclic paths being traversed once, it takes at most

CHAPTER 5. COMPRESSED CO UNTlNG METHOD

O(ne) time. The computation of Racy, is bounded by the worst case time of acyclic

counting, which takes at most O(lacYce) time where I,,,, is the length of the longest

acyclic path in up and down, so it is bounded by O(ne).

The following paragraph is a proof of time complexity for OP derivation. The OP

derivation in query processing consists of two parts: OP derivation for SCC nodes

and OP derivation for non-SCC nodes.

OP derivation for SCC nodes accesses each data node in SCC only once, hence the

I/O time is O(n). OP merging is by arithmetic computation which takes only CPU

time. If SCC1, SCC2 with periods of pl,p2 are connected in serial, the result OP has

the period of gcd(p1, p2) 5 min(nl, n2), where n; is the number of nodes in SCC;.

Since it takes O(plpz) for serial merge of SCCl and SCC2, it is bounded by O(nl n2).

If SCCl, SCC2 and SCC3 with periods of pl, p2, p3 are connected in parallel as shown

in Figure 5.6, then the result OP has period of lcm(gcd(pl , p3), gcd(p2, p3)), which

is equivalent to gcd(lcm(pl, p2), p3), hence the result period is less than n3. It takes

O(plp3 + p2p3 + p3) time for parallel merge, or it is bounded by O(nln3 + n2n3 + n3).

It can be stated that the period of an SCC OP (either distance-0P or difference-OP)

is less than n s c c In other words, cost of an SCC by OP merging is bounded by

the n(nl + . . . + nk) where n is the number of nodes in the SCC, and n l , . . . , nk are

the number of nodes in the preceding SCCs. Hence, the cost for OP derivation in

compressed graph is Cscc,+scc,EcG(n;nj). Inferring OP for a node on SCC; takes

O(n;), so the cost for inferring OP for all SCC nodes takes C;n?. The total cost of OP

derivation for SCC nodes is Gin? + CSCC,ISCCJECG(ninj), which is less than (Cini)2.

n; is the number data nodes in SCC;, so Cini < n, the cost of OP derivation for SCC

nodes is 0 (n2) .

Using the implicit representation of OP, the derivation of OP for non-SCC nodes

resembles the counting level derivation in acyclic counting and takes O(ne). The

transformation from an implicit representation into the corresponding explicit one

requires one or more [C;, pi] $ 1 operation, which takes O(ni) each. Hence one trans-

formation takes O(n), and the transformation for all non-SCC nodes takes 0 (n2) . So,

CHAPTER 5. COMPRESSED COUNTING METHOD

the cost of OP derivation for non-SCC nodes is O(ne).

Test for 0 containment in difference OP takes O(1) for each node in down assuming

offset set in difference OP is sorted or O(nscc) if it is not sorted. So answer extraction

takes at most 0 (n2) .

Hence, the worst case time complexity for query processing is bounded by O(ne).

0

5.5.2 Extension to multiple source

So far, we have assumed that there is only one node in up instantiated from the query.

Nevertheless, if there are multiple nodes in G,, instantiated, it is straightforward to

extend the single source approach.

The precompilation phase remains the same for multiple source nodes. In the

query processing phase, each OP carries a source origin designating which source

node it is derived from. For any operations on OP such as addition, subtraction and

merge, only two OP's with the same origin are allowed to be operated on. The query

answer is extracted from Gdown whose difference OP contains 0, hence the origin of

its OP establishs which query instantiation derives such answer node.

If there are k nodes instantiated in G,,, the worst case time complexity for com-

pressed counting is O(kne).

5.5.3 Strength of compressed counting

Compressed counting has absorbed the major ideas from the previous studies on cyclic

counting. Separation of the computation of R,,, and R,,,, is from Magic Counting

[I151 and Cyclic Counting [41]. SCC extraction and equivalence class derivation is

CHAPTER 5. COMPRESSED COUNTING METHOD

from [3, 49, 411. Precompilation of database digraph is from [49]. However, com-

pressed counting integrates the strength of these studies, develops a graph compres-

sion technique and an integrated cyclic and acyclic data processing technique and

provides a simple and efficient solution to the problem.

In comparison with the previous studies on cyclic counting, the compressed count-

ing has the following advantages.

First, precompilation of up and down relations saves the recomputation of periods

and offsets for nodes and SCCs not only among different queries but also within the

same query but with multiple SCC entry points. Most of the computation for OP

merging and transformation are performed at the SCC level. Only offset adjustment

are performed on individual nodes in an SCC, which requires minimum computation.

Secondly, the use of compressed graphs facilitates computation, propagation and

merge of offset-period information in group mode. It also facilitates the analysis of

data flow in the computation of both R,,, and Racy,.

Thirdly, the algorithm is highly parallel in nature. When one SCC is reached in

the up or down processing, merge and propagation of OP's are performed in the small

compressed graph. Then the computation of all the data nodes in relevant SCCs can

be performed in parallel.

Fourthly, both acyclic and cyclic data are computed in one uniform algorithm,

which reduces redundant processing in the derivation of R,,, and Racy,.

Some optimization techniques explored in other studies, such as the golden-cycle

optimization [49], can be adopted naturally in the compressed counting as well.

Finally, it is worth mentioning that the counting technique is not confined to the

evaluation of queries in "well-formed" (single) linear recursions as shown in Figure 5.1.

It can be applied to the evaluation of more general classes of recursions, such as

compiled general linear recursions [49] and certain classes of multiple linear recursions

[51, 521.

CHAPTER 5. COMPRESSED COUNTING METHOD

5.6 Summary

The compressed counting method has been studied for the extension of acyclic count-

ing method to general databases. The method integrates the merits of several pro-

posed cyclic counting algorithms and provides a uniform handling of both acyclic and

cyclic data in the processing of linear recursive queries. The method precompiles

and compresses database digraphs into a small compressed graph which guides the

efficient query evaluation and optimization. The method processes linear recursive

queries in both cyclic and acyclic databases as efficiently as the counting method does

in acyclic databases. Also, it facilitates parallel processing and the exploration of

many optimization techniques.

Chapter 6

Discussions and Conclusions

The author's contribution to the problem of efficient recursive query processing in

deductive databases has been discussed in the previous chapters, including the de-

sign and implementation aspects on LogicBase; how constraints and monotonicity are

employed to ensure the safety of query evaluation and increase its efficiency; exten-

sions to the chain-based evaluation to deal with multiple linear recursions and cyclic

databases in the counting method. The application scope, strength and limitation and

performance evaluation in comparison with other popular approaches are discussed

in this chapter.

The analysis of the evaluation of different query instantiations for the nqueens re-

cursion (in section 3.2.4) discloses an interesting fact: a logic program can be executed

declaratively, independently of query modes and rulelpredicate ordering. Moreover,

it derives the complete set of answers and terminates properly. Obviously, this is

quite different from the implementations of Prolog [I261 which perform no systematic

rule compilation and query analysis, and therefore, cannot judge termination, enforce

sophisticated constraints, determine appropriate rulelpredicate ordering, or derive ef-

ficient query evaluation plans. Recent studies on constraint logic programming, such

as [140, 831, enforce more constraints than Prolog but still mainly confine the program

evaluation ordering to those given by programmers.

C H A P T E R 6. DISCUSSIONS AND CONCLUSIONS

The question is how far we can push this methodology towards declarative pro-

gramming in general logic programs.

6.1 Applicable domains of the methodology

The chain-based query evaluation method is based on the compilation of each recur-

sion in a program into a highly regular chain form on which the systematic query

analysis can be performed to determine an efficient query evaluation plan and the

termination of query evaluation. Based on the studies in [47, 581, linear and nested

linear recursions can be compiled into highly regular chain forms.

Many complex recursions, though they cannot be compiled into highly regular

chains, may still have interesting regularities among the variable connections in the

recursive rules. For example, the recursion tower-o f -hanoi shown in Example 6.1

with the head predicate "hanoi(N, A, B, C, Moves)" is a typical nonlinear recursion

which cannot be compiled into highly regular chain forms. However, because of the

regularity of its binding passing across two recursive subgoals in the recursive rule,

the expansions of the recursive rule still demonstrate certain chain-like regularity and

the portion in front of or behind each recursive subgoal in subsequent expansions

can be treated as a pseudo-chain in the query analysis. Thus, the chain-based query

evaluation method can still be applied to such recursions, and queries such as "? -

hanoi(3, a , b, c, Moves)" or "? - hanoi(N, a , b, c, [a to b, a to c, b to c, a to b, c to a ,

c to b, a to b])" can still be analyzed systematically and evaluated efficiently [50].

Example 6.1 The recursion hanoi, defined by Rules (6.1) and (6.2), is a functional

nonlinear recursion. It defines the Towers of Hanoi puzzle [126], that is, moving N

discs from peg A to peg B using peg C as an intermediary.

hanoi(1, A, B, C, [A to B]). (6.1)

hanoi(succ(N), A, B, C, Moves) : -

hanoi(N, A, C, B, Msl) , hanoi(N, C, B, A, Ms2),

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

append(Msl, [A to BIMs2], Moves).

However, this does not imply that chain-based evaluation can be applied effectively

to all kinds of recursions. This is because some recursions may not have regular

variable passing patterns and cannot be compiled into chain or even pseudo-chain

forms. For example, the nonlinear recursion r , defined by Rules (6.3) and (6.4),

belongs to this class.

Therefore, a major limitation of the chain-based evaluation method is its limited

applicability to complex classes of irregular recursions.

Nevertheless, according to our survey and experience, most practically interesting

recursions are in relatively simple forms or are compilable to highly regular forms

to which the query analysis and evaluation techniques studied here are applicable.

Theoretically, the recursions solvable by our method cover only a subset of all the

possible recursions. However, it is difficult to find semantically meaningful recursions

to which the method cannot be applied. One possible explanation of this fact could

be based on the simplicity and regularity of human reasoning processes which guides

the writing of recursive programs. It seems that a recursive program with no obvious

expansion regularities is difficult for human to comprehend. There should exist certain

regularities (such as connections between the corresponding argument positions in the

head predicate and the same recursive predicate in the body) in a meaningful recursive

program, and such regularity should be characterizable by their semantic linkages (i-e.,

either by shared variables or by connected predicates). That is the intuition behind our

claim that the techniques discussed here are applicable to a large class of interesting

recursions. This is also the basis of our design of LogicBase, which takes chain-based

evaluation as a major evaluation technique and leaves a more general technique, such

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

as the generalized magic sets method, as an assistant one to be applied only when

chain-based evaluation cannot derive efficient query evaluation plans.

6.2 A comparison with other logic program im-

plementat ion techniques

6.2.1 Comparison

To the best of our knowledge, current implementations of logic programming lan-

guages cannot evaluate logic programs independently of the order of rules or predicates

or query mode to find the complete set of answers and terminate properly.

Recent studies on deductive databases have developed bottom-up query evaluation

methods, such as the magic sets method and its variations, for efficient evaluation of

recursions [28, 105, 135, 1331. These methods apply set-oriented processing, confine

their search to the portion of the database relevant to a query, and evaluate order-

independent and query mode-independent function-free logic programs completely

and correctly. Several deductive database system prototypes, such as LDL [28], ADITI

[135], NAIL! [133], CORAL [105], are constructed based on this approach. However,

without normalizing recursions and performing a detailed analysis of the behavior

of compiled recursions, it is difficult to fully explore query constraints and behavior

properties of a particular recursion or a particular query in the evaluation, which

may encounter difficulties when evaluating sophisticated function-bearing logic pro-

grams. For example, the magic sets method cannot evaluate the nqueens recursion in

predicate order-independent and query-mode independent fashion [105]. Similar com-

ments can be applied to the EKS-V1 system [142] which adopts the query-subquery

evaluation approach.

Prolog represents an effort toward declarative computing from the logic program-

ming community. However, it does not have the ability to deal with a large amount

CHAPTER 6. DISCUSSIONS AND CONCL USIONS

of data, or the declarativeness found in LogicBase.

The limitation of the chain-based query evaluation technique is in that the com-

pilation method is confined to the recursions that can be compiled into highly regular

forms [58]. In contrast, the magic sets method is applicable to general function-free

recursions. However, the chain-based method facilitates quantitative analysis of com-

piled recursions and, therefore, can reduce search space more accurately than the

magic sets method. Thus, it represents an interesting direction towards sophisticated

query analysis and evaluation of complex, declarative logic programs.

6.2.2 Comparison of evaluation costs

6.2.2.1 Cost model

We briefly compare the cost to evaluate queries using the top-down (Prolog), the magic

sets and the chain-based evaluation approaches. Prolog adopts depth-first state space

search with backtracking strategy, thus it processes one tuple at a time. To derive

the complete set of answers, Prolog has to traverse essentially the whole state space.

A top-down set-oriented processing is taken as the method to be compared instead

of Prolog itself, which should traverse the same number of states for all solutions but

with less overhead of accessing EDB or relations for intermediate results. From our

observation, the cost for compilation of a recursive program is negligible comparing

that of query processing. Therefore, only the query processing cost is considered.

The same cost model as in Chapter 2 is used to do performance comparison for

various query evaluation strategies independent of system implementation. Cost for

each evaluation is based on three aspects: cost for evaluating arithmetic and "cons"

functions (type a) ; cost for accessing EDB relations (type b); and cost for processing

IDB rules (type c) . Of these three types of costs, accessing an EDB relation is the

most expensive, and cost for evaluating a function is the least expensive. For exam-

ple, calculating "X + Y" only needs a few machine instructions for each X, Y tuple

whereas a selection in a relation needs thousands of machine instructions, which can

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

be translated into a few dozens of machine instructions for each query instance. To

provide a reasonable and measurable basis for performance comparison, it is assumed

that on average each arithmetic function incurs one unit of cost; each LLcons" function

incurs 3 units of cost; accessing EDB relations incurs 10 units of cost for each tuple

and processing IDB rules incurs 5 units of cost for each tuple.

The magic sets and the top-down evaluation method are implemented under the

same environment as where LogicBase is implemented. For query evaluation using

the magic sets method, the complete set of rewritten rules (including rules generating

the magic predicates) is fed into the LogicBase system and the semi-naive evaluation

is applied to the magic rules to derive the magic predicates, and then to rewritten

rules to obtain answers to the original query. For example, Figure 6.1 shows the set

of rewritten rules for the ancestor program, which is first defined in Figure 1.1 in

Chapter 1 using Prolog syntax. In Figure 6.1, m-ancestor is the magic predicate, and

edbparent is an EDB predicate.

m-ancestor(john).

m-ancestor(2) : - m-ancestor(X), edb-parent(X,Z).

ancestor(X, Y) : - m-ancestor(X), edb-parent(X, Y).
ancestor(X, Y) : - ancestor(2, Y), m-ancestor(X), edbparent(X, 2).

? - ancestor(john, Y).

Figure 6.1: Rewritten rules and magic rules for ancestorbf.

The top-down method can be viewed as a set-at-a-time Prolog evaluation method.

It follows the same unification process as in Prolog, but adopts set-at-a-time data

accessing strategy. Therefore, no backtracking is needed. It treats each predicate

in a rule body as a new subgoal, when a query is made against an IDB rule, query

instantiation is passed to the rule body by unification between the query and the rule

head. Each predicate in the rule body becomes a subgoal (or a new query) and is

evaluated by the same top-down approach. The original query is processed if all its

subgoals are evaluated. Figure 6.2 shows the program for query ancestorbf using the

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

top-down method, in which the ordering of rules and predicates has to be carefully

specified to ensure safe query processing.

ancestor(X, Y) : - edb-parent(X, Y).

ancestor(X, Y) : - edb-parent(X, Z) , ancestor(Z, Y).

? - ancestor(john, Y).

Figure 6.2: ancestorbf program for the top-down evaluation.

Programs used in cost comparison for the top-down and the magic sets methods

can be found in Appendix B.

For simplicity, chain, magic and top-down are used to refer to the chain-based

evaluation method, the top-down set-oriented evaluation method and the magic sets

evaluation met hod, respectively.

6.2.2.2 Cost comparison

Figure 6.3 shows the cost for query nqueensbf, where a placement of N queens on an

N x N chess board is searched so that none of the queens attacks each other.

Figure 6.3 illustrates that top-down and chain methods have very close costs,

whereas query processing using magic costs significantly more for the same type of

query. For example, evaluating query "? - nqueens(4, Qs)" costs 3385, 3490 and 7668

units for top-down, chain and magic, respectively. Magic costs more than top-down

and chain because in this program the magic predicate cannot reduce the size of

an EDB relation. The program for the magic method is shown in Figure B.3 and

Figure B.4 in Appendix B.

Figure 6.3 also indicates finding all valid chess board placements for N queens has

a very high complexity. The size of search space is O(n!).

Figure 6.4 shows the cost for query queensfb, such as query "? - nqueens(N, [3, 1,

4,2])", where given a particular N x N chess board it is verified whether the queens on

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

cost

chain

- - - - - - magic sets

Figure 6.3: Cost for nqueensbf.

the board attack each other, and if they do not, N is returned. Top-down and magic

are unable to evaluate such kind of query no matter how the predicates or the rules

in the program are reordered. Therefore, only the cost using chain is shown, with and

without constraint pushing as discussed in Chapter 2. It is shown that the complexity

for queensfb is substantially reduced, from O(n!) to 0 (n2) , when constraint derivation

and pushing is employed. Notice that the chain method uses the same program in

processing nqueensbf and nqueensfb queries, thus a greater level of declarativeness is

achieved.

Figure 6.5 shows the costs for sorting a list using the permutation sort method.

Corresponding programs are shown in Appendix B. Top-down and chain have the

same costs, whereas magic costs more. However, when equipped with constraint

pushing, chain has a much lower cost than that of top-down. Constraint pushing in

the chain method reduces complexity from O(n!) to 0 (n 2) in this case.

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

cost
chain

- - - chain with constraint pushing

Figure 6.4: Cost for nqueens fb

For the insertion sort program shown in Figure 6.6 and Figure B.6 in Appendix B,

chain has a slightly higher cost than top-down, whereas magic costs significantly more

than both, as shown in Figure 6.7.

Figure 6.9 illustrates the costs for reversing a list. The programs are defined in

Figure 6.8 and Figure B.7. The cost curves have similar shape as those in Figure 6.7.

In Figure 6.10, processing of query ancestorbf is considered, whose programs are

shown in Figure 6.2 and Figure 6.1 for its version of the magic sets method. This

program contains no function, and the cost for accessing EDB relations dominates

the overall cost. To offset the effect that different data entry points have on the cost,

the average cost for queries of type ancestorbf with entry point from each data node

is shown. To maintain consistency among EDB relations of different size, all EDB

relations have the same shape (tree or inverted-tree) and the same branch factor.

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

cost +

Figure 6.5: Cost for permutat ionsortbf

5000

1000

0

The costs for query ancestorfb is shown in Figure 6.11. Magic and chain have

significant lower cost than the top-down method.

Figure 6.12 shows the cost for evaluating queries of sgbf for the same generation

program.

I

I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

6.3 Further development of LogicBase

chain

- - - chain with constraint pushing

- - - - - - - magic sets

-.----..-.... top-down

The current LogicBase implementation is a prototype system. The following major

features are being incorporated in the development, with the incorporation of the

recent research results in deductive databases [go, 111, 1251.

/

/
/

/
/

0
0

0
/

/
/

>
1 2 3 4 5 6 7 8 9 1 0 1 1 size

CHAPTER 6. DISCUSSIONS A N D CONCLUSIONS

insertionsort([], [I) .
insertionsort([XIXs], Ys) : -

insert ionsort(Xs, Zs), insert(X, Zs, Ys).

insert (X, [I , [XI).
insert(X, [Y IYs], [X, Y IYs]) : - X 5 Y.

insert(X, [YIYs], [YIZs]) : -

X > Y, insert(X, Ys, 2s).

? - insert ionsort([4,3,2,1], X).

Figure 6.6: Insertion sort program.

Aggregation and modularly stratified negation:

Stratified aggregation can be easily incorporated into LogicBase. Once the syn-

tax for aggregation is parsed, the compilation phase may treat aggregate predi-

cate as an ordinary predicate. During the plan generation phase, the evaluation

of an aggregate predicate should be scheduled only after the predicate being

aggregated has been available.

To support modularly stratified negation, some kind of delaying mechanism is

needed during the evaluation of the negated predicate so that all the data within

each strongly connected component can be evaluated together. More study is

needed to gain an insight about how negation can be accommodated in the

chain- based compilation.

Secondary storage management:

Current LogicBase prototype implementation is a main memory based system,

appropriate interface is needed to hook up with a storage manager or a relational

database system to provide full-fledged database management system features.

Such extension will surely expand the application domain of LogicBase.

Towards a deductive and object-oriented database system:

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

Figure 6.7: Cost for inser t ionsor tb f .

cost

Merging of deductive and object-oriented data models in LogicBase presents an

important direction and exciting challenge. A possible solution to incorporate

object-oriented features into LogicBase is to adopt part of F-logic [74] as the

logic representation and to extend the chain-based compilation and evaluation

methods to support F-logic. Initial study indicates that in principle the intro-

duction of F-logic will not interfere with the compilation of recursive [148], but

the chain-based evaluation needs appropriate modification.

10000

SOCK

1000

6.4 Conclusions

A
I

I
I

chain I
I

I
- - - - - - . magic sets I

I
I

I .------...... top-down I
1

I
I

I
I

I
I

I
I

I
I

I
I

I
/

I
I

I
I

/
/

/. , ...- -.
0 . - . -

0 _ _ _ - - - _ _ - -
0 . __..-- _ _ - -

D
0 1 2 3 4 5 6 7 8 9 1 0 size

The LogicBase system has been implemented with a focus on the compilation and

query evaluation of application-oriented recursions. The performance simulation among

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

reverse([l, [I).
reverse([X IXs], 2s) : -

reverse(Xs, Ys), append(Ys, [XI, 2 s) .

append([], L, L).
append([XI Ll] , L2, [X(L3]) : - append(L1, L2, L3).

? - reverse([l, 2,3] , Y).

Figure 6.8: Program to reverse a list.

different deductive query evaluation strategies demonstrates the potential of Log-

icBase as a declarative and efficient deductive database system. The system identifies

different classes of recursions, and compiles recursions into regular chain forms when

appropriate. Queries posed to the compiled recursions are analyzed systematically

and efficient query evaluation plans are generated. Queries are executed mainly by

chain-based evaluation, together with several other query evaluation methods, such as

the generalized magic-sets method [13], etc. The system has been tested and demon-

strated on some interesting deductive database and logic programming programs, with

satisfactory results and good performance.

Based on our experimentation, it is felt that the LogicBase system prototype may

represent an interesting alternative direction to efficient query evaluation in deductive

databases and logic programming systems and may be worth further examination and

development in the deductive database research.

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

cost

I - - - - - - magic sets

---....----- top-down

size

Figure 6.9: Cost for reversebf .

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

cost

300

200

100

0

----....--.---..- top-down

chain

10 12 14 16 18 20 > size

Figure 6.10: Average cost for ancestorbf with tree-shaped edb-parent.

CHAPTER 6. DISCUSSIONS AND CONCL USIONS

cost

0
10 12 14 16 18 20 size

1600

1400

1200

1000

800

Figure 6.11 : Average cost for ances tor f with tree-shaped edb-parent.

chain

- - - - - - - - magic sets

----.--........ top-down

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS

cost

Figure 6.12: Cost for the same generation query sgbf .

500C

loot

0

A

chain

- - - - - - - magic sets

---..-....-.. top-down

- - _ - - - _ - - - _ - - - _ _ - - - - _ - - - - - - :;-- - - - . -

> 5 6 7 8 9 10 11 12 13 14 1s 16 size

Appendix A

Syntax of LogicBase Input

Syntax for LogicBase input (specified in BNF):

program ::= definitions actions.

definitions ::= [edb] idb

actions ::= compilation-only I { query)

edb ::= 'define-edb' '{' edb-tables ')'

edb-ables ::= { an-edb-table)

an-edb-table ::= 'table' ':' constant ':' int ';' 'heading' '-' . attr-pair ';' 'tuples' '.' . tu-

ple-set '.'
attr-pairs ::= one-attr-pair I attr-pairs ',' oneattr-pair

one-attr-pair ::= constant ':' int

tuple-set ::= a-tuple (tuple-set ';' a-tuple

a-tuple ::= arg I a-tuple ',' arg

idb ::= 'defineidb' constant '{' rules ')'

rules ::= { arule)

aru le ::= a-pred '.' I a-pred '< -' preds '.'
preds ::= sa-pred 1 preds ',' s-a-pred

sa-pred ::= a-pred I 'not' ',' s-a-pred

a-pred ::= constant '(' arglist ')' I arg 'is' arg math-op arg I arg relation-op arg

APPENDIX A . S Y N T A X OF LOGICBASE INPUT

arglist ::= arg I arglist ',' arg

arg ::= item-arg (list-arg (afunct

afunction ::= constant '(' arglist ')'

item-arg ::= string (var (int (constant

list-arg ::= '[' '1' ('[' head 'I' I '[' head ' I ' tail 'I'
head ::= arg I arg ',' head

tail ::= var I list -arg

math-op ::= '+' I '-'
relation-op ::= '>' 1 '<' I '=' I '>=' ('<='
list-op ::= 'cons'

op ::= math-op I relation-op I list-op

compilation-only ::= 'compile' constant

query ::= '?-' a-query '.'
a-query ::= preds

low-caseletter ::= 'a' 1 'b' 1 J'z'

upper-caseletter ::= 'A' I 'B' I I '2'

digit ::= '0' 1 '1' 1 '2' 1 ,... 1 '9'

letter ::= lower-caseletter 1 upper-caseletter 1 digit

int ::= { digit)

constant ::= lower-caseletter [letter]
var ::= upper-caseletter [letter]

Appendix B

Programs For Cost Comparison

Programs used in cost comparison in chapter 6 are listed here.

Figure B . l shows the N-queen program using the chain-based evaluation approach for

both query nqueensbf and query nqueensfb.

Figure B.2 shows the N-queen program using top-down approach for query nqueensbf .

Figure B.3 and Figure B.4 together show the rewritten rule set for query nqueensbf of

N-queen program using the magic sets method.

Figure B.5 gives the magic sets program for permutation sort.

Figure B.6 is the insertion sort program using the magic sets method.

Figure B.7 is the program for reverse a list using the magic sets method.

Figure B.8 shows the rewritten ancestor programs for the queries ancestorfb using the

magic sets method.

Figure B.9 contains the rewritten same generation program for the query sgbf for the

magic sets method. The data in EDB relations satisfy following rules:

1. r (a ; , ~ ; + ~) for 1 5 i < n .

2. r (a l , a i) for 3 5 i 5 n .

APPENDIX B. PROGRAMS FOR COST COMPARISON

nqueens(N, Q s) : - range(l , N , N s) , queens (Ns , [I , Q s) .

range (M, N , [M J N s]) : - M < N , M 1 i s M + 1, range(M1, N , N s) .

range (N , N , [N l) .

sueens([l , Q s , Q s) .
queens(Unplaced, S a f e , Q s) : -

select(&, Unplaced, Unplacedl) , not attack(&, S a f e) ,

queens(Unplaced1, [QISa f el, Q s) .

a t t ack (X , X s) : -a t t ack l (X , 1, X s) .

a t t a c k l (X , N , [Y I Y s]) : - X i s Y + N .

a t t a c k l (X , N , [Y I Y s]) : - X i s Y - N.

a t t a c k l (X , N , [Y I Y s]) : - N l i s N + I , a t t a c k l (X , N l , Y s) .

se lec t (X , [X I X s] , X s) .

se lec t (X , [Y I Y s] , [Y I Z s]) : -select(X, Y s , 2 s) .

? - nqueens(4, Q s) .

? - nqueens(N, [3,1 ,4 ,2]) .

Figure B. l : N-queens program using the chain-based evaluation method.

APPENDIX B. PROGRAMS FOR COST COMPARISON

nqueens(N, Qs) : -range(l, N , N s) , queens(Ns, [I , Qs).

range(M, N , M N s) : -

M < N , MI is M + 1, range(M1, N , N s) , cons(M, N s , M N s) .

range(M, N , M N s) : -M = N , cons(N, [I , M N s) .

queens(Unplaced, S a f e , Qs) : -Unplaced = [I , S a f e = Qs.

queens(Unplaced, S a f e , Q s) : -select(&, Unplaced, Unplacedl),

not attack(&, S a f e) , cons(&, Sa f e , QSa f e) ,

queens(Unplaced1, QSa f e, Qs) .

at tack(X, X s) : -attackl(X, 1, X s) .

a t tackl(X, N , Y Y s) : -cons(Y, Y s , Y Y s) , X is Y + N.

at tackl(X, N , Y Y s) : -cons(Y, Y s , Y Y s) , X is Y - N.

attackl(X, N , Y Y s) : -cons(Y, Y s , Y Y s) ,

N1 is N + 1, attackl(X, N1, Y s) .

select (X , X X s , X s) : -cons(X, X s , X X s) .

select(X, Y Y s , Y Z s) : -cons(Y, Y s , Y Y s) ,

select(X, Y s , Z s) , cons(Y, Z s , Y Z s) .

? - nqueens(4, Qs) .

Figure B.2: N-queens program using the top-down approach for query nqueensbf.

APPENDIX B. PROGRAMS FOR COST COMPARISON

nqueens(N, Qs) : -range(l, N , N s) , queens(Ns, [I , Qs) .

m-range(M, N) : -range(M, N , M N s) .

m-range(M1, N) : -mrange(M, N) , M < N , M1 is M + 1.

range(M, N , M N s) : -m-range(M, N) , M = N , cons(N, [I , M N s) .

range(M, N , M N s) : -range(Ml, N , N s) , m-range(M, N) ,

M < N , M1 is M + 1 , cons(M, N s , M N s) .

m-queens(Unplaced, S a f e) : -queens(Unplaced, Sa f el Qs) .

m-queens(Unplaced1, QSa f e) : -m-queens(Unplaced, S a f e) ,

selectfbf (Q , Unplaced, Unplacedl), not attack(&, S a f e) ,

cons(&, Sa f el QSa f e) .

queens(Unplaced, Sa f el Qs) : -m-queens(Unplaced, S a f e) ,

Unplaced = [I , S a f e = Qs.

queens(Unplaced, S a f e , Qs) : -queens(Unplacedl, QSa f e , Qs) ,

cons(&, Sa f e , QSa f e) , m_queens(Unplaced, S a f e) ,

notattack(Q, S a f e) , selectbbb(&, Unplaced, Unplacedl).

Figure B.3: N-queen program nqueensbf using the magic sets method, part I .

APPENDIX B. PROGRAMS FOR COST COMPARISON

attack(X, X s) : -attackl(X, 1 , X s) .

m-attackl(X, N , Y Y s) : -attackl(X, N , Y Y s) .

m-attackl(X, N1, Y s) : -m-attackl(X, N , Y Y s) , N1 is N + 1, cons(Y, Y s , Y Y s) .

a t tackl(X, N , Y Y s) : -m-attackl(X, N , Y Y s) , cons(Y, Y s , Y Y s) , X is Y + N.

at tackl(X, N , Y Y s) : -m-attackl(X, N , Y Y s) , cons(Y, Y s , Y Y s) , X is Y - N.

at tackl(X, N , Y Y s) : -attackl(X, N1, Y s) , m-attackl(X, N , Y Y s) ,

N1 is N + 1, cons(Y, Y s , Y Y s) .

m-selectbbb(x, Y Y s , Y Z s) : -selectbbb(x, Y Y s , Y Z s) .

mse lec tbbb(x , Y s , Z s) : -m-selectbbb(x, Y Y s , Y Z s) ,

cons(Y, Y s , Y Y s) , cons(Y, Z S , Y Z s) .

selectbbb(x, Y Y s , Y Z s) : -mselectbbb(x , Y Y s , Y Z s) , cons(X, Y Z s , Y Y s) .

selectbbb(x, Y Y s , Y Z s) : -selectbbb(x, Y s , Z s) ,

m-selectbbb(x, Y Y s , Y Z s) , cons(Y, Y s , Y Y s) , cons(Y, Z s , Y Z s) .

mse l ec t f b f (X X S) : -se lect fb f (x , X X s , X s) .

mse lec t fb f (X S) : -m- se l ec t f b f (xx s) , cons(X, X s , X X s) .

se lec t fb f (x , X X s , X s) : -mse1ectfbf (X X S) , cons(X, X s , X X s) .

s e l ec t f b f (x , Y Y s , Y Z s) : -selectfbf (x, Y s , Z s) ,

m s e l e c t f b f (~ ~ s) , cons(Y, Y s , Y Y s) , cons(Y, Z s , Y Z s) .

? - nqueens(1, Qs) .

Figure B.4: N-queen program nqueensbf using the magic sets method, part 11.

APPENDIX B. PROGRAMS FOR COST COMPARISON

permutationsort (X s , Y s) : -permutation(Ys, X s) , ordered(Ys).

mpermutat ion(ZZs) : -permutation(Xs, 2 2 s) .

m-permutation(Zs) : -m-permutation(ZZs), cons(Z, Z s , 2 2 s) .

permutation(Xs, Z Z s) : -mpermutat ion(ZZs) , X s = [I , Z Z s = [I .
permutation(Xs, Z Z s) : -permutation(Ys, Z s) , m-permutation(ZZs),

cons(Z, Z s , Z Z s) , select(Z, X s , Y s) .

mse l ec t (X , Y Z s) : -select(X, Y Y s , Y Z s) .

mse lec t (X , Z s) : -mse lec t (X , Y Z s) , cons(Y, Z s , Y Z s) .

select(X, X X s , X s) : -mselect (X, X s) , cons(X, X s , X X s) .

select(X, Y Y s , Y Z s) : -select(X, Y s , Z s) ,

mse lec t (X , Y Z s) , cons(Y, Z s , Y Z s) , cons(Y, Y s , Y Y s) .

m-ordered(Y) : -ordered(Y).

m-ordered(YYs) : -m-ordered(XY Y s) , cons(X, Y Y s , X Y Y s) .

ordered(Y) : -m-ordered(Y), cons(X, [I , Y) .
ordered(XYYs) : -ordered(YYs), m-ordered(XYYs),

cons(X, Y Y s , X Y Y s) , cons(Y, Y s , Y Y s) , X <= Y.
? - permutationsort([5,4,3,2,1], Y s) .

Figure B.5: Magic sets program for permutation-sortbf.

APPENDIX B. PROGRAMS FOR COST COMPARISON

m-inser t ion-sor tb f (xxs) : - inser t ionsor t (XXs, Y s) .

minsertion-sortbf (X S) : -minser t ionsor tb f (X X S) , cons(X, X s , X X s) .

insert ionsortbf ([I , [I) .
insert ionsortbf (X X S , Y s) : -insertionsortbf (X S , Z s) ,

minsertion-sortbf (X X S) , cons(X, X s , X X s) , insertbbf (x, Z s , Y s) .

m inser tbb f (x, Y Y s) : - i n s e r t b b f (x , Y Y s , Y Z s) .

m- inser tbb f (x , Y s) : -minser tbb f (x, Y Y s) , cons(Y, Y s , Y Y s) .

insertbbf (x , Y Y s , Y Z s) : - m i n s e r t b b f (x , Y Y s) ,

cons(Y, Y s , Y Y s) , X <= Y, cons(X, Y Y s , Y Z s) .

insertbbf (x, Y Y s , Y Z s) : -m-insertb" (x, Y s) ,

Y Y s = [I, cons(X, [I , Y Z s) .
insertbbf (x, Y Y s , Y Z s) : -insertbbf (x, Y s , Z s) ,

m inser tbb f (x , Y Y s) , cons(Y, Y s , Y Y s) , X > Y, cons(Y, Z s , Y Z s) .

? - insertionsortbf ([5 , 4 , 3 , 2 , l] , X) .

Figure B.6: Insertion sort program for the magic sets method.

m r e v e r s e (X X s) : -reverse(XXs, Z s) .

m r e v e r s e (X s) : - m r e v e r s e (X X s) , cons(X, X s , X X s) .

reverse([l, [I) .
r everse(XXs, Z s) : -reverse(Xs, Y s) ,

m-reverse(XXs), cons(X, X s , X X s) ,

cons (x , [I, X I) , appendbbf (Y S , X I , 2 s) .
m-appendbbf (x L ~ , L2) : -appendbbf (x L ~ , L2, XL3) .

m-appendbbf (~ 1 , L2) : -rnappendbbf (x L ~ , L2), cons(X, L1, X L 1) .

a P p e n d b b f (X ~ 1 , L2, X L 3) : -m-appendbbf (X L I , L2), X L 1 = [I, L2 = XL3.

a p P e n d b b f (X ~ 1 , L2, X L 3) : -appendbbf (~ 1 , L2, L3),

m n p p e n d b b f (~ ~ l , L2), cons(X, L1, X L l) , cons(X, L3, X L 3) .

? - reverse([l, 2,3,4,5,6,7,8,9,10], Y) .

Figure B.7: Rewritten program for the magic sets method for query reversebf.

APPENDIX B. PROGRAMS FOR COST COMPARISON

mances tor fb (jack) .

ances tor fb (x , Y) : - m a n c e s t o r f b (~) , edbparen t (X , Y) .
ances tor fb (x , Y) : a n c e s t o r f b (2 , Y) ,

m a n c e s t o r f b (y) , edb-parent(X, 2) .

? - a n c e s t o r f b (x , jack).

Figure B.8: Rewritten rules for query ancestorfb using the magic sets method.

Figure B.9: Rewritten rules for sgbf for the magic sets method

4. s(b; , b ; - l) for 2 5 i 5 n.

Bibliography

[I] S. Abiteboul and S. Grumbach. A rule-based language with functions and sets. ACM

Transations on Database Systems, 16:l-30, 1991.

[2] F. Afrati, C. Papadimitriou, G. Papageorgiou, A.R. Roussou, Y. Sagiv, and J.D.

Ullman. On the convergence of query evaluation. J. Computer and System Sciences,

38:314-359, 1989.

[3] H. Aly and Z. M. Ozsoyoglu. Synchronized counting method. In Proc. 5th Int. Conf.

Data Engineering, pages 366-373, Los Angeles, CA, February 1989.

[4] K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. In

J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages

89-148. Morgan Kaufmann, 1987.

[5] K.R. Apt and M.H. Van Emden. Contributions t o the theory of logic programming.

J. ACM, 29:841-862, 1982.

[6] I. Balbin, G.S. Port, K. Ramamohanaraon, and K. Meenakshi. Efficient bottom-up

compuation of queries on stratified databases. J. Logic Programming, 11:295-344,

1991.

[7] I. Balbin and K. Ramamohanarao. A generalization of the differential approach to

recursive query evaluation. J. Logic Programming, 4:259-262, 1987.

[8] F. Bancilhon. Naive evaluation of recursively defined relations. In M. Brodie and

J. Mylopoulos, editors, On Knowledge Base Management Systems, pages 165-178.

Springer-Verlag, 1986.

BIBLIOGRAPHY

[9] F. Bancilhon, D. Maier, Y. Sagiv, and J . D. Ullman. Magic sets and other strange

ways to implement logic programs. In Proc. 5th ACM Symp. Principles of Database

Systems, pages 1-15, Cambridge, MA, March 1986.

[lo] F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recursive query

processing strategies. In Proc. 1986 ACM-SIGMOD Int. Conf. Management of Data,

pages 16-52, Washington, DC, May 1986.

[ll] F. Bancilhon and R. Ramakrishnan. Performance evaluation of data intensive logic

programs. In J. Minker, editor, Foundations of Deductive Databases and Logic Pro-

gramming, pages 439-51 7. Morgan Kaufmann, 1988.

[12] C. Beeri, S. Naqvi, R. Ramakrishnan, 0. Shmueli, and S. Tsur. Sets and negation in

a logic database language. In Proc. of the ACM Symposium on Principles of Database

systems, pages 21-37, San Diego, CA, March 1987.

1131 C. Beeri and R. Ramakrishnan. On the power of magic. In Proc. 6th ACM Symp.

Principles of Database Systems, pages 269-283, San Diego, CA, March 1987.

1141 C. Beeri, R. Ramakrishnan, D. Srivastava, and S. Sudarshan. The valid model seman-

tics for logic programs. In Proc. of the 11th ACM Symp. on Principles of Database

Systems, 1992.

1151 J . Bocca. Educe: a marriage of convenience: Prolog and a relational database. In

Symp. on Logic Programming, pages 36-45, IEEE, New York, 1986.

[16] B. Breitag, H. Schutz, and G. Specht. Lola - a logic language for deductive databases

and its implementation. In Proc. of 2nd Int71 Symp. on Database Systems for Advanced

Applications, 199 1.

1171 D. A. Briggs. A correction of the termination conditions of the Henschen-Naqvi

technique. J. ACM, 37:712-719, 1990.

[18] A. Brodsky and Y. Sagiv. On termination of datalog programs. In Proc. 1st Int. Conf.

Deductive and Object-Oriented Databases (D00D789), pages 95-112, Kyoto, Japan,

December 1989.

BIBLIOGRAPHY

[19] A. Brodsky and Y. Sagiv. Inference of inequality constraints in logic programs. In

Proc. 10th ACM Symp. Principles of Database Systems, pages 227-240, Denver, CO,

May 1991.

[20] F. Bry, Decker, and R. Manthey. A uniform approach t o constraint satisfaction and

constraint satisfiability in deductive databases. In Proc. of the Int71 Conf. on Extending

Database Technology, 1988.

[21] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating object-

oriendted data modeling with a rule-baesd programming paradigm. In Proc. of the

ACM SIGMOD Conf. on Management of Data, 1990.

[22] M. Carey, D. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh, E. Shekita, and

S. Vandenberg. The EXODUS extensible dbms project: An overview. In Readings in

Object-Oriented Databases, pages 474-499, Morgan-Kaufman, 1990.

[23] S. Ceri, G. Gottlob, and G. Wiederhold. Interfacing relational databases and Prolog ef-

ficiently. In L. Kerschberg, editor, Expert Database Systems, pages 207-223. Benjamin-

Cummings, Menlo Park, CA, 1987.

[24] A.K. Chandra and D. Harel. Structure and complexity of relational queries. J. Com-

puter and System Sciences, 25:99-128, 1982.

[25] A.K. Chandra and D. Harel. Horn clause queries and generalizations. J. Logic Pro-

gramming, 2:l-15, April 1985.

[26] W. Chen, M. Kifer, and D. S. Warren. Hilog: A foundation for higher-order logic

programming. J. Logic Programming, 15:187-230, 1993.

[27] W. Chen and D. S. Warren. Query evaluation under the well-founded semantics. In

Proc. 12th ACM Symp. Principles of Database Systems, pages 168-179, Washington,

D.C., 1993.

[28] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo. The

LDL system prototype. IEEE Trans. Knowledge and Data Engineering, 2:76-90,1990.

[29] R.L. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In Proc.

ACM SIGMOD Int'l Conf. on Management of Data, pages 150-160, Minneapolis,

MN, May, 1994.

BIBLIOGRAPHY

[30] M. Consens, I. Cruz, and A. Mendelzon. Visualizing queries and querying visualiza-

tion. In ACM SIGMOD Record, pages 39-46, May 1992.

[31] M.P. Consens and A.O. Mendelzon. Low complexity aggregation in graphlog and

datalog. In Proc. of the Int'l Conf. on Database Theory, Paris, 1990.

[32] I.F. Cruz and T.S. Norvell. Aggregative closure: An extension of transitive closure. In

Proc. IEEE 5th Int'l Conf. Data Engineering, pages 384-389, Los Angeles, CA, 1989.

[33] S. W. Dietrich. Extension tables: Memo relations in logic programming. In Proc.

1987 Symp. Logic Programming, pages 264-272, San Francisco, CA, 1987.

[34] M.H. Van Emden and R.A. Kowalski. The semantics of predicate logic as a program-

ming language. J. ACM, 23:733-742, 1976.

[35] S. Ganguly, S. Greco, and C. Zaniolo. Minimum and maximum predicates in logic

programming. In Proc. of the 10th ACM Symposium on Principles of Databases

Systems, pages 154-163, Denver, CO, 1991.

[36] S. Ganguly, S. Greco, and C. Zaniolo. Greedy by choice. In Proc. of the 11th ACM

Symposium on Principles of Database Systems, San Diego, CA, 1992.

[37] M. Gelfond and V.Lifschitz. The stable model semantics for logic programming. In

Proc. of the Fifth Int'l Conf./Symposium on Logic Programming, pages 1070-1080,

Seattle, WA, Sept. 1988.

[38] G. Graefe. Query evaluation techniques for large databases. ACM Comput. Surv.,

25:73-170, 1993.

[39] S. Greco and C. Zaniolo. Optimization of linear programs using counting methods. In

Pro. 3rd Int'l Conf. on Extending Database Technology, pages 72-87, Vienna, Austria,

March 1992.

[40] R. W. Haddad and J. F. Naughton. Counting methods for cyclic relations. In Proc.

7th ACM Symp. Principles of Database Systems, pages 333-340, Austin, TX, March

1988.

[41] R. W. Haddad and J. F. Naughton. A counting algorithm for a cyclic binary query.

J. Computer and System Sciences, 43:145-169, 1991.

BIBLIOGRAPHY

[42] J . Han. Selection of processing strategies for different recursive queries. In Proc. 3rd

Int. Conf. Data and Knowledge Bases, pages 59-68, Jerusalem, Israel, June 1988.

[43] J. Han. Compiling general linear recursions by variable connection graph analysis.

Computational Intelligence, 5: 12-31, 1989.

[44] J . Han. Multi-way counting method. Information Systems, 14:219-229, 1989.

1451 J. Han. Constraint-based reasoning in deductive databases. In Proc. 7th Int. Conf.

Data Engineering, pages 257-265, Kobe, Japan, April 1991.

[46] J . Han. On the power of query-independent compilation. Int71 J. Software Engineering

and Knowledge Engineering, 2:277-292, 1992.

[47] J . Han. Constraint-based query evaluation in deductive databases. IEEE Trans.

Knowledge and Data Engineering, 6:96-107, 1994.

[48] J . Han and L. J . Henschen. Handling redundancy in the processing of recursive

database queries. In Proc. 1987 ACM-SIGMOD Int. Conf. Management of Data,

pages 73-81, San Francisco, CA, May 1987.

[49] J. Han and L. J . Henschen. The level-cycle merging method. In W. Kim, J.-M. Nicolas,

and S. Nishio, editors, Deductive and Object-Oriented Databases, pages 65-82. Elsevier

Science, 1990.

[50] J . Han and L. V. S. Lakshmanan. Evaluation of regular nonlinear recursions by

deductive database techniques. In J. Information Systmes, t o appear, 1995.

[51] J. Han and L. Liu. Processing multiple linear recursions. In Proc. 1989 North Amer-

ican Conf. Logic Programming, pages 816-830, Cleveland, OH, October 1989.

[52] J . Han and L. Liu. Efficient evaluation of multiple linear recursions. IEEE Trans.

Software Engineering, 17:1241-1252, 1991.

[53] J . Han, L. Liu, and T. Lu. Evaluation of declarative n-queens recursion: A deductive

database approach. In (submitted to) J. Intelligent Information System, 1994.

[54] J. Han, L. Liu, and 2. Xie. LogicBase: A system prototype for deductive query

evaluation. In Proc. ILPS793 Workshop on Programming with Logic Databases, pages

146-160, Vancouver, Canada, October 1993.

BIBLIOGRAPHY

[55] J . Han, L. Liu, and Z. Xie. Logicbase: A deductive database system prototype. In

Proc. of Conf. of Information and Knowledge Management, pages 226-233, Gaithers-

burg, Maryland, Nov. 1994.

[56] J . Han and T. Lu. N-queens problem revisited: A deductive database approach. In

Proc. 1992 IJCSLP Workshop on Deductive Databases, pages 48-55, Washinton D.C.,

Nov. 1992.

[57] J . Han and W. Lu. Asynchronous chain recursions. IEEE Trans. Knowledge and Data

Engineering, 1:185-195,1989.

[58] J . Han and K. Zeng. Automatic generation of compiled forms for linear recursions.

Information Systems, 17:299-322, 1992.

[59] L. J . Henschen and S. Naqvi. On compiling queries in recursive first-order databases.

J. ACM, 31:47-85, 1984.

[60] Y.E. Ioanidis, J . Chen, M.A. Friedman, and M.M. Tsangaris. Bermuda - an archi-

tectural perspective on interfacing Prolog to a database machine. In L. Kerschberg,

editor, Proc. 2nd Int'l Conf. on Expert Database Systems, pages 229-255. Benjamin-

Cummings, Menlo Park, CA, 1989.

[61] Y. E. Ioannidis and R. Ramakrishnan. Efficient transitive closure algorithms. In Proc.

14th Int. Conf. Very Large Data Bases, pages 382-394, Long Beach, CA, August 1988.

[62] J. Jaffar and J-L. Lassez. Constraint logic programming. In Proc. 14th ACM Symp.

Principles of Programming Languages, pages 11 1-1 19, Munich, Germany, 1987.

[63] M. Jarke and J . Koch. Query optimization in database systems. ACM Comput. Surv.,

16:lll-152, 1984.

[64] M. Jeusfeld and M. Staudt. Query optimization in deductive object bases. In

G. Vossen, J.C. Greytag, and D. Maier, editors, Query Processing for Advanced

Database Applications. Morgan-Kaufmann, 1993.

[65] B. Jiang. A suitable algorithm for computing partial transitive closures. In Proc. 6th

Int. Conf. Data Engineering, pages 264-271, Los Angeles, CA, February 1990.

BIBLIOGRAPHY

[66] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint query language. In Proc.

9th ACM Symp. on Principle of Database Systems, pages 299-313, Nashville, TN,

1990.

[67] C. Kellogg, A. O'Hare, and L. Travis. Optimizing the rule-data interface in a knowl-

edge management system. In Proc. 12th Int. Conf. Very Large Data Bases, Kyoto,

Japan, August 1986.

[68] D. Kemp, D. Srivastava, and P. Stuckey. Magic sets and bottom-up evaluation of well-

founded models. In Proc. of the Int'l Logic Programming Symposium, pages 337-351,

San Diego, CA, October, 1991.

[69] D. Kemp and P. Stuckey. Semantics of logic programs with aggregates. In Proc. of

the international Logic Programming symp., pages 387-401, San Diego, CA, October,

1991.

[70] D. Kemp and P. Stuckey. Analysis based constraint query optimization. In Proc. of

Int'l Conf. of Logic Programming, Montreal, Canada, 1993.

[71] D. B. Kemp, K. Ramamohanarao, I. Balbin, and K. Meenakshi. Propagating con-

straints in recursive deductive databases. In Proc. 1989 North American Conf. Logic

Programming, pages 981-998, Cleveland, OH, October 1989.

[72] J.M. Kerisit and J.M. Pugin. Efficient query answering on stratified database. In

Proc. of the Int'l Conf. on Fifth Generation Computer Systems, pages 719-725, Tokyo,

Japan, November 1988.

[73] M. Kifer and G. Lausen. F-Logic: A higher order language for reasoning about objects,

inheritance, and scheme. In Proc. 1989 ACM-SIGMOD Int. Conf. Management of

Data, pages 134-146, Portland, Oregon, June 1989.

[74] M. Kifer, G. Lausen, and J. Wu. Logical foundations for object-oriented and frame-

based languages. In J. ACM, to appear, 1994.

[75] M. Kifer and E.L. Lozinski. SYGRAF-implementing logic programs in a database

style. IEEE Trans. on Software Eng., 14:922-935, July 1988.

BIBLIOGRAPHY

[76] W. Kim, D. S. Reiner, and D. S. Batory. Query Processing in Database Systems.

Springer-Verlag, 1985.

[77] R.A. Kowalski and D. Kuehner. Linear resolution with selection function. In Artificial

Intelligence, 227-260, 1971.

[78] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries.

In Proc. 12th Int. Conf. Very Large Data Bases, pages 128-137, Kyoto, Japan, Aug.

1986.

[79] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. On the logic foundations of

schema integration and evolution in heterogeneous database systems. In S. Ceri and

et. al., editors, Deductive and Object-Oriented Databases (0000 '93) [Lecture Notes

in Computer Science 7601, pages 81-100. Springer Verlag, 1993.

[80] A. Lefebvre. Towards an efficient evaluation of recursive aggregates in deductive

databases. In Proc. Int. Conf. Fifth Generation Computer Systems, pages 9155925,

Tokyo, Japan, June 1992.

[81] L. Liu and J . Han. Compressed counting method. In Proc. Int'l Conf./Symp. on Logic

Programming Workshop on Deductive Database, pages 76-85, Washington D.C., Nov.

1992.

[82] A. K. Mackworth. Constraint satisfaction. In S. Shapiro, editor, Encyclopedia of

Artificial Intelligence, pages 285-293. John Wiley and Sons, Inc., New York, 1992.

[83] M. J . Maher and P. J . Stuckey. Expanding query power in constraint logic program-

ming languages. In Proc. 1989 North American Conf. Logic Programming, pages

20-36, Cleveland, OH, Oct. 1989.

[84] A. Marchetti-Spaccamela, A. Pelaggi, and D. Sacca. Worst-case complexity analysis

of methods for logic query implementation. In Proc. 6th ACM Symp. Principles of

Database Systems, pages 294-301, San Diego, CA, March 1987.

[85] D. McKay and S. Shapiro. Using active connection graphs for reasoning with recursive

rules. In Proc. 7th Int. Joint Conf. Artificial Intelligence, pages 368-374, Vancouver,

Canada, 1981.

BIBLIOGRAPHY

[86] D.S. Moffat and P.M.D. Gray. Interfacing Prolog t o a persistent data store. In Proc.

Third Int71 Conf. on Logic Programming, pages 577-584, MIT Press, Cambridge, MA,

1986.

[87] S. Morishita, M. Derr, and G. Phipps. Design and implementation of the Glue-Nail

database system. In Proc. 1993 ACM-SIGMOD Conf. Management of Data, pages

147-156, Washington, DC, May 1993.

[88] K. Morris, J.F. Naughton, Y. Saraiya, J.D. Ullman, and A. van Gelder. YAWN! (yet

another window on NAIL!). In C. Zaniolo, editor, Data Engineering 10(4), pages

28-43. 1987.

[89] I.S. Mumick, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic condi-

tions. In Proc. of 9th ACM Symp. on Principle of Database Systems, pages 314-330,

Nashville, TN, 1990.

[go] I.S. Mumick, H. Pirahesh, and R. Ramakrishnan. The magic of duplicates and ag-

gregates. In Proc. 16th Int. Conf. Very Large Data Bases, pages 264-277, Brisbane,

Australia, August 1990.

[91] B. Napheys and D. Herkimer. A look a t loosely-coupled Prolog/database systems. In

Proc. 2nd Int'l Conf. on Expert Database Systems, pages 107-115, 1988.

[92] S. Naqvi. Negative queries in horn databases. In Proc. 1st Int. Conf. Expert Database

Systems, pages 227-236, Charleston, SC, April 1986.

[93] S. Naqvi and S. Tsur. A Logic Language for Data and Knowledge bases. Computer

Science Press, Orckville, MD, 1988.

[94] J . F. Naughton. Compiling separable recursions. In Proc. 1988 ACM-SIGMOD Int.

Conf. Management of Data, pages 312-319, Chicago, IL, June 1988.

[95] J . F. Naughton. Minimizing function-free recursive inference rules. J. ACM, 36:69-91,

1989.

[96] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J . D. Ullman. Efficient evalua-

tion of right-, left-, and multi-linear rules. In Proc. 1989 ACM-SIGMOD Int71 Conf.

Management of Data, pages 235-242, Portland, Oregon, June 1989.

BIBLIOGRAPHY

[97] J . F. Naughton and Y. Sagiv. A decidable class of bounded recursions. In Proc. 6th

ACM Symp. Principles of Database Systems, pages 214-226, San Diego, CA, March

1987.

[98] F.C.N. Pereira and D.H.D. Warren. Parsing as deduction. In Proc. Twenty-first Annl.

Meeting of the Assn. for Computational Linguistics, pages 137-144, 1983.

[99] G. Phipps, M.A. Derr, and K. Ross. Glue-NAIL!: A deductive database system. In

Proc. 1991 ACM-SIGMOD Int. Conf. Management of Data, pages 308-317, Denver,

CO, June 1991.

[loo] L. Pliimer. Termination proofs for logic programs based on predicate inequalities. In

Proc. 7th Int. Conf. on Logic Programming, pages 634-648, Jerusalem, 1990.

[lo l l H. Przymusinska and T.C. Przymusinski. Weakly perfect model semantics for logic

programs. In Proc. of the Fifth Int'l Conf./Symposium on Logic Programming, pages

1106-1120, Seattle, WA, Sept. 1988.

[I021 T.C. Przymusinski. On the declarative semantics of stratified deductive databases. In

J . Minker, editor, Foundations of Deductive Databases and Logic Programming, pages

89-148. Morgan Kaufmann, 1988.

[I031 R. Ramakrishnan. Magic templates: A spellbinding approach to logic programs. J.

Logic Programming, 11:189-216,1991.

[I041 R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Controlling the search in bottom-

up evaluation. In Proc. of the Joint Int'l Conf. and Symposium on Logic Programming,

pages 273-287, MIT Press, Cambridge, MA, 1992.

[I051 R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Coral - control, relations and

logic. In Proc. 18th Int. Conf. Very Large Data Bases, pages 547-559., Vancouver,

Canada, August 1992.

[I061 R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. Implementation of

the CORAL deductive database system. In Proc. of the ACM SIGMOD Conf. on

Management of Data, pages 147-156, Washington, DC, May 1993.

BIBLIOGRAPHY

[lo71 R. Ramakrishnan and J . D. Ullman. A survey of research on deductive database

systems. In J. Logic Programming, to appear, 1994.

[lo81 J . Robinson. A machine oriented logic based on the resolution principle. J. ACM,

12:23-41, 1965.

[log] J . Rohmer, R. Lescoeur, and J . M. Kerisit. The Alexander method: A technique for the

processing of recursive queries in deductive databases. New Generation Computing,

4:273-285, 1986.

[I101 K. Ross. Modular stratification and magic sets for datalog programs with negation.

In Proc. of the ACM Symposium on Principles of Database Systems, pages 161-171,

Nashville, TN, 1990.

[Il l] K. Ross and Y. Sagiv. Monotonic aggregation in deductive databases. In Proc. 11th

ACM Symp. Principles of Database Systems, pages 114-126, San Diego, CA, June

1992.

[112] D. Sacca and C. Zaniolo. The generalized counting method for recursive queries. In

Proc. 1st Int. Conf. Database Theory, pages 31-53, Rome, Italy, 1986.

[I131 D. Sacca and C. Zaniolo. On the implementation of a simple class of logic queries

for databases. In Proc. Fifth ACM Symp. on Principles of Database Systems, pages

16-23, Cambridge, MA, 1986.

[I141 D. Sacca and C. Zaniolo. Implementation of recursive queries for a data language

based on pure Horn logic. In Proc. Fourth Int'l Conf. on Logic Programming, pages

104-135, MIT Press, Cambridge, 1987.

[I151 D. Sacca and C. Zaniolo. Magic counting methods. In Proc. 1987 ACM-SIGMOD

Int. Conf. Management of Data, pages 49-59, San Francisco, CA, May 1987.

[I161 D. Sacca and C. Zaniolo. Differential fixpoint methods and stratification of logic

programs. In Proc. 3rd Int'l Conf. Data and Knowledge Bases, pages 49-58, Jerusalem,

Israel, June 1988.

[I171 D. Sacca and C. Zaniolo. Stable models and non-determinism in logic programs with

negation. In Proc. of the 9th ACM Symposium on Principles of Database Systems,

Nashville, TN, 1990.

BIBLIOGRAPHY

[118] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database

engine. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 442-453,

Minneapolis, MN, 1994.

[I191 P. Selinger, D. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection

in a relational database management system. In Proc. 1979 ACM-SIGMOD Int. Conf.

Management of Data, pages 23-34, Boston, MA, May 1979.

[I201 S. Shaw, L. Foggiato-Bish, I. Garcia, G. Tillman, D. Tryon, W. Wood, and C. Zan-

iolo. Improving data quality via LDL++. In Proc. of the ILPS'93 Workshop on

Programming with Logic Databases, pages 60-73, Vancouver, 1993.

[I211 0. Shmueli. Decidability and expressiveness aspects of logic queries. In Proc. 6th

ACM Symp. on Principles of Database Systems, pages 237-249, San Diego, 1987.

[122] A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database systems: Achievements

and opportunities. Comm. ACM, 34:94-109, 1991.

[I231 K. Sohn and A. van Gelder. Termination detection in logic programs using argument

sizes. In Proc. 10th ACM Symp. Principles of Database Systems, pages 216-226,

Denver, CO, May 1991.

[124] D. Srivastava and R. Ramakrishnan. Pushing constraint selections. J. Logic Program-

ming, 16:361-414, 1993.

[I251 D. Srivastava, R. Ramakrishnan, P. Seshadri, and S. Sudarshan. Coral++: Adding

object-orientation t o a logic database language. In Proc. 19th Int. Conf. Very Large

Data Bases, pages 158-170, Dublin, Ireland, August 1993.

[126] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.

[I271 M. Stonebraker. Implementation of integrity constraints and views by query modifi-

cation. In Proc. 1975 ACM-SIGMOD Int. Conf. Management of Data, pages 65-78,

1975.

[I281 P. Stuckey and S. Sudarshan. Compiling query constraints. In Proc. Symp. on Prin-

ciples of Database Systems, pages 56-67, Minneapolis, MN, May, 1994.

BIBLIOGRAPHY

[I291 R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Computing,

1:146-160, 1972.

[I301 S. Tsur and C. Zaniolo. LDL: A logic-based data-language. In Proc. 12th Int. Conf.

Very Large Data Bases, pages 33-41, Kyoto, Japan, Aug. 1986.

[I311 J . D. Ullman. Implementation of logical query languages for databases. ACM Trans.

Database Syst., 10:289-321,1985.

[I321 J. D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. 1. Computer

Science Press, 1988.

[133] J . D. Ullman. Principles of Database and Knowledge-Base Systems, Vol. 2. Computer

Science Press, 1989.

[I341 J . D. Ullman and A. van Gelder. Efficient tests for top-down termination of logical

rules. J. ACM, 35:345-373, 1988.

[135] J. Vaghani, K. Ramamohanarao, D. Kemp, 2. Somogyi, and P. Stuckey. An introduc-

tion t o the ADITI deductive database system. Australian Computer Journal, 23:37-52,

1991.

[I361 A. van Gelder. A message-passing framework for logical query evaluation. In Proc.

ACM SIGMOD Int71 Conf. on Management of Data, pages 155-165, Washington, DC,

1986.

[I371 A. van Gelder. Negation as failure using tight derivations for general logic programs.

In Proc. of the Symposium on Logic Programming, pages 127-139, Salt Lake City,

Utah, 1986.

[138] A. van Gelder. The well-founded semantics of aggregation. In Proc. of the ACM

Symposium on Principles of Database Systems, pages 127-138, San Diego, CA, 1992.

[139] A. van Gelder, K. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics

for general logic programs. J. ACM, 38:620-650, 1991.

[I401 P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

