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Abstract 

The goal of color constancy is to take the color responses (for example camera rgb 

triplets) of surfaces viewyd under an unknown illuminant and map them to illuminant 

independent descriptors. In existing theories this mapping is either a general linear 

3 x 3 matrix or a simple diagonal matrix of scaling coefficients. The general theories 

have the advantage that the illuminant can be accurately discounted but have the 

disadvantage that nine parameters must be recovered. Conversely while the coeficient 

theories have only three unknowns, a diagonal matrix may only partially discount the 

illuminant. 

My staring point in this thesis is to generalize the coefficient approach; the goal is 

to retain its inherent simplicity while at the same time increasing its expressive power. 

Under the generalized coefficient scheme, I propose that a visual system transforms 

responses to a new sensor basis before applying the scaling coefficients. I present 

methods for choosing the best coefficient basis for a variety of statistical models of 

color responses. These models are rich enough that the generalized coefficient ap- 

proach suffices for almost all possible sensor sets. 

To achieve color constancy the correct coefficients must be recovered. Existing 

algorithms can do so only when strong constraints are satisfied. For example it is 

often assumed that there is a white reflectance in every scene. In the second part of 

my thesis, I develop a new coefficient algorithm, which I call color in perspective, based 

on very weak (and very reasonable) assumptions about the world. I assume only that 

the range of color responses induced by different reflectances varies with a change 

in illumination and that illumination itself can vary only within certain bounds. I 

tested the algorithm on real images taken with a color video camera-extremely good 



constancy is delivered. Indeed the degree of constancy compares favorably with the 

best which is theoretically possible. 

The methods developed in this thesis can be applied to a variety of other areas 

including color graphics, color reproduction and color appearance models. 
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Foreword: Thesis Organization 

Common practice dictates that a thesis should be organized linearly: a smooth pro- 

gression from introduction, to background, theoretical results, experiments and con- 

clusion. This thesis is not organized in this manner. As such, I feel compelled to 

comment on the layout of my thesis. 

Like many bodies of work my thesis encompasses not a single idea but many. While 

these are all related they are each individually interesting and important. However 

if I followed common practice I would strip away individual identity in creating the 

linear whole. Specifically each section would cover all ideas at the same time. The 

background section would be the union of background material for the many ideas, 

the theoretical results the union of derivations, and the experimental results the union 

of experiments. 

In this thesis I take a more lateral approach and present each idea by itself. Specif- 

ically (excepting the introduction and conclusion) each chapter tackles a single major 

idea. Only the background, theoretical derivations and experiments relevant to the 

idea at hand are presented. As such each idea is placed in the context in which it 

was investigated and each chapter is completely self contained. Moreover, because 

later chapters build on earlier ones the thesis is still linear though in a different (and 

I would suggest more appropriate) sense. 

Of course one can argue the merits for either organizational strategy. For example 

in the linear model definitions are presented singularly; here they are necessarily 

duplicated if they are germane to more than one idea. Thus the linear thesis is more 

compact. However I would contend that the small degree of repetition in lateral theses 

is worthwhile and constitutes reinforcement of ideas; in essence making things clearer. 



Moreover background material for the subject at hand can always be found locally; 

there is no need for a tiresome search through earlier chapters. 

I have to confess that the lateral oragnizational strategy was not my own idea. 

Rather I was fully prepared to adhere to the strictures of the linear approach until 

I read the thesis of Lucassen[Luc93]. In reading that thesis I was impressed at the 

clarity of exposition and this, I feel, was in part due to the separate presentation of 

ideas. 

vii 
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Chapter 1 

Introduction 

Color constancy is an important problem for any vision system requiring stable per- 

ception of the world. Common illuminants such as daylight and tungsten light, or 

even just clear sky versus cloudy sky, differ markedly in their spectral properties; and 

since the spectrum of the light impinging on an eye or camera is the product of the 

incident illumination and the percent spectral reflectance of the surface, the illumi- 

nation must be accounted for and discounted if there is to be stable perception of 

the surface color. Despite extensive research into color constancy in both the machine 

vision community and elsewhere [Forgo, FDH91, FD88, D'Z92, DL86, MW86, Lan771, 

there still does not exist a color constancy algorithm that performs sufficiently well 

that it either matches human color perception or provides a robot with adequate color 

recognition. 

A pictorial representation of the color constancy problem is shown in Figure 1.1; 

the input consists of an image of a scene viewed under unknown lighting conditions 

and the output the image of the same scene viewed relative to a known canonical illu- 

minant. I call the input illumination-dependent color responses color observations and 

the illumination-independent output color descriptors. The goal of color constancy is 

to map observations to descriptors. 

The color constancy problem can be split into two related parts: the image model 

and the recovery algorithm. The image model describes the interdependence between 

illumination, reflectance and the visual system's (camera or human observer) response. 



CHAPTER 1. INTRODUCTION 

Illumination 
dependent 

obrervati  on. 

Recovery Algorithm 

Illuminati on 
i ndopndm t 
dercriptorr  

Figure 1.1: The Color Constancy Problem: the human eye (or color camera) views a 
scene under an unknown illuminant. A recovery algorithm transforms the scene to a 
known illuminant, solving the color constancy problem. 
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The recovery algorithm attempts to extract reflectance information from an image. 

It is only with a good image model that it is possible to recover the mapping taking 

observations to descriptors. 

Surprisingly, most existing theories of color constancy have been developed with 

scant regard to the question of image model. The conventional approach has been 

to adopt some model (sometimes without comment) and focus only on the recovery 

problem. If an unrealistically simple model is employed then only an approximate 

solution, if any, to the color constancy problem will be possible. Conversely, an over- 

expressive image model necessitates extremely complex recovery. Moreover there may 

no longer be a unique solution to the color constancy problem. 

In this thesis the question of which image model? is placed at centre stage. 

Sketches of the three basic linear candidate image models-trivial, coeficient and 

general are shown in Figure 1.2. In the trivial model observations are mapped to 

descriptors by a simple global intensity scaling. A separate scaling factor is applied 

to each sensor channel in the coefficient model. The general model is more complex 

still, each descriptor value is a weighted sum of the three observation responses (in 

Figure 1.2 the three inputs to the descriptor nodes, R', G' and B' are added together). 

Given the three cone response functions of the human eye, only the general model is 

sufficient to map accurately color observations to descriptors. In contrast if a visual 

system's sensors are narrow-band (they are sensitive to a single wavelength) then the 

coefficient model is all that is required. Only under extremely specialized (and quite 

unrealistic) circumstances is the trivial model appropriate [BWC89]. 

It is well known [WB82, Lan83, Hur89, Hur861 that the suitability of the coefficient 

model is dependent on the sensor basis employed; i.e. some linear combinations of 

the R, G, and B color channels are more amenable to a coefficient model than others. 

However, to date the question of finding the best sensor basis has received little 

attention save the purely speculative approach of Hurlbert [Hur89] and the heuristic 

approach of West and Brill [BW82]. In this thesis I develop several methods for finding 

an appropriate basis for coefficient color constancy. I will show that the coefficient 

model of image formation is almost always sufficient so long as a suitable sensor basis 

is employed. This generalized coeficient model is sketched in Figure 1.3. 



CHAPTER 1 .  INTROD UCTION 

Trivial Image Model (1 parameter) 

(9 @ @  Color Obeerva t i  on 

@ Color Descriptor 

Coefficient Image Model (3 parameters) 

Color Obeerva tion 

R' Color Descriptor 

General Image Model (9  partmeters) 

Color Observation 

Color Descriptor 

Figure 1.2: Comparison of Image Models. A single scaling coefficient describes illu- 
mination change under the trivial model. Three scaling coefficients are required, one 
per color channel, for the coefficient model. Nine parameters needed for the general 
model; each color channel output is a weighted sum of the three input color channels. 
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Qenrralirrd Corfffcient Iinage Model (3 parametrrs) 

Color O b m r m t i  on 

( f i x r d  chrngr o f  &rim) 

Color Obmrrvrtion (Now Bani n) 

co lor  Domcriptor 

Figure 1.3: There are two steps in the generalized coefficient model: first there is an il- 
lumination independent change of sensor basis then illumination dependent coefficient 
scaling. 

In recovering reflectance information from an image, I distinguish between two 

classes of algorithm: constrained and unconstrained. An unconstrained algorithm 

sets out to recover reflectance information with no a priori knowledge about the world 

save the model of image formation. However, because the image model provides only 

a weak constraint, these algorithms may not be able to provide a unique answer to 

the color constancy problem. In contrast, constrained algorithms assume that some 

property holds in the world (e.g. that there is a white reflectance in every scene) and 

this generally leads to a single solution. The relationship between image model and 

recovery algorithm is sketched in Figure 1.4. 

Arguably unconstrained algorithms are superior in that they are applicable to any 

image, not only those where some world assumption is satisfied. Moreover, should 

additional world information be available then this should be used in conjunction 

with the output from an unconstrained algorithm. The most plausible, and powerful, 

unconstrained algorithm to date has been developed by Forsyth [Forgo]. By incorpo- 

rating the physical realizeability of surface reflectance into a coefficient image model, 

Forsyth demonstrated that the color constancy problem was highly constrained; es- 

pecially if there are many reflectances in a given scene. Unfortunately, his algorithm 

has two major failings: first, the coefficient image model does not in general apply 
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The Color Constancy Problem 

Unconstraine 
Recovery 

Constrained 
Recovery 

p.2 J (-J 
property 

Figure 1.4: There are two classes of recovery algorithm for Color Constancy. The 
Unconstrained Algorithms proceed only with knowledge of the image model. Con- 
strained algorithms use both the image model and some other known property of the 
world. 

and second the algorithm is quite complex (it is tricky to implement and has a fairly 

high computational complexity). 

In this thesis I extend Forsyth's approach in three important ways: first I allow 

a change in sensor basis to make the coefficient model appropriate; second I place 

a physical realizeability constraint on the illuminant further restricting the solution 

set; and lastly I demonstrate that this new algorithm can be implemented efficiently. 

Tests on real images show good color constancy is possible even when the number 

of distinct colored surfaces is small. Indeed such good constancy is possible that 

additional world assumptions may not be required. 

Recent research into color constancy [D1Z92, DI93] has modified the general prob- 

lem (Figure 1.1). Instead of a single view of the scene under one illuminant the input 

to the color constancy problem consists of a scene viewed under many illuminants. 

Ignoring the question of the plausibility of this circumstance (in general it seems quite 

implausible) I show that if there exists a sensor basis where a coefficient model suf- 

fices there can be no benefit in observing the world under many illuminants. The only 
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exception to this is if the illuminants which occur are quite restricted. In this case 

however, I show that the generalized coefficient model is always applicable. 

The rest of this chapter is devoted to building the foundation of the thesis. I begin 

by formalizing the notion of an image model and this leads to a formal statement of 

the color constancy problem. How well a particular recovery algorithm can solve the 

color constancy problem is intimately related to how well the image model accounts for 

color observations. This notion is formalized in a discussion of image performance: a 

recovery algorithm's performance is bounded by that of its underlying image model. I 

go on to give a brief review of existing solution methods indicating their strengths and 

weaknesses. The chapter concludes with the outline for the rest of this dissertation. 

1.1 Color Image Formation 

The interaction of light and reflectance can be extremely complex. Factors such as 

interreflection and specularities are often difficult to model and deal with. To simplify 

matters I will initially consider color image formation for the simplified Mondriaan 

world. This world consists of a planar surface composed of several, overlapping, matte 

(Lambertian) patches and a single everywhere uniform illumination. In the Mondriaan 

world the only factor confounding the retrieval of descriptors is the illumination. Later 

I relax the model and will allow shape, specularities and varying illuminant power. 

A Lambertian reflectance S(X) ( A  denotes wavelength) illuminated by a spectral 

power distribution E(X) reflects the color signal C(X): 

I assume that light reflected from a Mondriaan falls onto a planar array of sensors. 

At each location X in the sensor array there are 3 different classes of sensors1. The 

value registered by the Eth sensor, p f  (a scalar), is equal to the integral of its response 

function multiplied by the incoming color signal. This model accurately describes color 

'In principle there could be more than 3 sensors. However because human vision and the majority 
of color cameras are trichromatic I will, unless stated otherwise, assume trichromacy. 
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image formation for the human eye and color cameras [WS82]. For convenience, we 

arrange the index X such that each p f  corresponds to a unique surface reflectance: 

where Rk(X) is the response function of the kth sensor, CX(X) is the color signal at X 

and the integral is taken over the visible spectrum w. Using an underscore to denote 

vector quantities, and underst anding the one-to-one correspondence between scene 

point and color response (henceforth I drop the X), equation (1.2) can be rewritten 

as : 

While the Mondriaan world is certainly restrictive it is extremely useful in de- 

veloping theories of color constancy. First, comparison can be made with existing 

Mondriaan based algorithms (the majority are based on the Mondriaan world). Sec- 

ond, because the Mondriaan world is free of factors such as specularities and mutual 

illumination, their presence cannot be assumed in solving for color constancy and there 

is a greater need for a competent unconstrained recovery algorithm. Lastly human 

observers exhibit reasonable color constancy for the Mondriaan world, demonstrating 

that the color constancy problem is soluble in the absence of other constraints. 

As a basis for designing a recovery algorithm, equation (1.3) is not very encour- 

aging. Each observation is a vector of 3 numbers whereas each reflectance spectrum 

can, in principle, have infinite detail. An observation can only be accurately mapped 

to its descriptor if this infinite detail can be extracted from an image. Of course this 

cannot be done. Fortunately the model in (1.3) is overly general and can be replaced 

by much simpler discrete approximations. 

1.1.1 Discrete Approximations 

Color signals are not arbitrary functions of wavelength but are band-limited; by 

Nyquist's [KKOP66] famous sampling theorem, a continuous function of wavelength 

can be precisely characterized by its values at a discrete number of sample points. In 
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color science, it is common practice to sample spectral data every lOnm across the 

visible spectrum. For example the data sets of natural reflectances and Munsell chips 

measured by Krinov [Kri47] and Nickerson [Nic57] sample spectra every lOnm from 

400 to 650nm and from 380 to 770nm respectively. 

The precise range over which spectra are sampled varies from study to study 

and should depend on the sampling properties of the particular visual system under 

investigation. When considering human vision it is crucial to include data points 

in the range 400 to 650nm since most of the eye's sensitivity is concentrated there. 

This range is generally the most important for color cameras; cameras are generally 

designed to capture color information useful to human observers. 

In this sampling framework illuminants, reflectances and sensor response func- 

tions are effectively 26- or 31-dimensional vectors and the integral equation (1.3) is 

computed as a summation: 

where the factor AX accounts for the sample spacing. For the most part sample points 

from 400 to 650nm at lOnm intervals will be used in this thesis. Henceforth I will 

assume the term AX is incorporated into the sensor response vectors. For almost all 

real illuminants and reflectances equation (1.4) approximates the definite integral in 

equation (1.3) with a vanishingly small error [SSS92]. 

Because color measuring devices only provide estimates of spectral functions at 

discrete sample points it is important from an analysis point of view that the color 

image integral can be accurately described by a vector approximation. Under the dis- 

crete formulation the color constancy problem can be formulated using linear algebra. 

The tools of linear algebra, used extensively in this thesis, have proved themselves of 

enormous value in studying the color constancy problem. 

1.1.2 Finite basis models of illumination and reflectance 

The description of illuminant spectral power distribution functions and surface spec- 

tral reflectance functions can be further simplified using finite-dimensional models. A 
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surface reflectance S(X) can be approximated as: 

where S;(X) is a basis vector and a is a ds-component column vector of weights. 

Anything from 3 to 8 basis vectors are required to describe reflectance [Ma186, PHJ89a, 

VGI941. Similarly illuminants are well described by a low-dimension basis set: 

Ej(X) is a basis vector and g is a dE dimensional vector of weights. Judd [JMW64] 

measured 605 daylight illuminants and showed they are well modelled by a set of 3 

basis functions. 

Basis functions are generally chosen by performing a principal component analysis 

of each data set (reflectances and illuminants) in isolation [Coh64, Nic57, Ma1861. This 

type of analysis is weak in the sense that it does not take into account how illuminant, 

reflectance and sensor interact in forming a color vector (eqn. (1.3)). Recently Mari- 

mont and Wandell [MW92] developed a method for deriving reflectance and illuminant 

basis functions which best model color observations-eqn. (1.3) is the foundation for 

their method. They conclude that, given the human cones, a 3-dimensional basis set 

for surface reflectance and a 3-dimensional basis set for illumination is sufficient to 

model the color observations of the 462 Munsell chips [Nic57] under a wide range of 

black-body radiator illuminant s. 

A lighting matrix A(E(X))  maps reflectances, defined by the vector, onto a 

corresponding observation vector: 

where A(E(X)) is a 3 x ds matrix; A(E(X));.j = J R;(X)E(X)Sj(X)dX. If E(X) 

is defined in equation (1.6), then the lighting matrix depends only on the c weight 

vector and is denoted A(c). The roles of illumination and reflectance are symmetric; 

we can write a color observation as a surface matrix transforming an epsilon vector: 
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where R(S(X)) is a 3 x dE matrix; A(S(X));j  = J R;(X)Ej(X)S(X)dX. If S(X) is 

defined in equation (1.5) then the surface matrix depends only on the weight vector 

and is denoted A@). 

1.2 Solving for Color Constancy 

The aim of any theory of color constancy is to transform the color observation vector 

pe - to its corresponding illuminant-independent descriptor pc - (throughout this thesis 

the superscripts c and e denote dependence on a known fixed canonical light and 

unknown illuminant respectively). 

P" = 9(f) (1.9) 

The symbol Q in (1.9) represents a function or computational procedure. Of course 

the problem is quite unconstrained given a single observation vector. Let us instead 

suppose there are n matte surfaces in a given Mondriaan. Let us place the n obser- 

vations in a 3 x n matrix Pe and the corresponding n descriptors in the matrix PC. 

Rewriting (1.9): 

PC = qPe)  (1.10) 

Assuming linear models of reflectance and illumination (equations (1.5) and (1.6)), 

Forsyth has shown that the color constancy problem is soluble if and only if descriptors 

and observations are related by a 3 x 3 linear transform. Color constancy becomes 

the problem of determining the 9 parameters of the matrix Me*': 

Alternately assuming the trivial image model the color constancy involves finding the 

best scalar a"*": 

P C  a e , c p e  (1.12) 

Or finding the diagonal matrix DetC in the coefficient model which satisfies: 
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Of course, in practice there will always be error in the mappings (1.11), (1.12) 

and (1.13). Color constancy is the problem of finding the mapping which minimizes 

the error. 

1.2.1 Color Constancy and a Changing Illurninat ion 

To formalize the definition of the color constancy problem under varying illumination, 

consider that there are n matte surfaces viewed under m different unknown illumi- 

nants. Place the observations for each illuminant in a 3 x n matrix pi i = (1,2,- . . , m). 

The function q mapping the set of observation matrices to the descriptor matrix PC 
solves the color constancy problem under varying illumination. 

At first glance, it would appear that the multi-illuminant color constancy problem 

adds more information since the input set is larger. Indeed, the color constancy 

problem becomes soluble even where there is no linear transform which exactly maps 

between illuminants [D7Z92], and as such constancy is still possible when there is 

metamerism (i.e. when two surfaces viewed under one illuminant look the same but 

appear differently under some other illuminant). The human visual system does not 

solve for color constancy where there is metamerism (if it did metamerism would not 

occur). 

1.3 Image Model Performance 

What does it mean to say that one image model is better than another? To address 

this question, a measure of image performance is required. To quantify the efficacy 

of a particular image model I find the map which best takes an exemplar set of 

observations onto their corresponding descriptors. The Euclidean distance between 
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each mapped observation and descriptor, normalized to the descriptor's length, will 

then be used to measure performance. 

1.3.1 The Data Set 

To calculate image performance a data set of illuminant and reflectance spectra is 

required. Unless otherwise stated I will use the 426 Munsell chip reflectances, mea- 

sured by Nickerson [Nic57], D55 [JMW64] (cloudy skylight) for the canonical light, 

and 4 other daylights [JMW64] (D48, D65, D75 and D100) and the CIE standard A 

source [WS82] as test illuminants. These illuminants span the range of red, white and 

blue illuminants; the reddest is CIE A followed by the progressively bluer daylights 

D48, D65, D75 and D100. 

The Munsell set was chosen because it contains a large variety of reflectances: 

saturated blues, reds and greens and everything in between. Moreover the set has 

become somewhat of a standard in the color constancy literature and is often used as 

a benchmark set. My choice of illuminants is more arbitrary. Once again a motivation 

for using them comes from their wide application in the literature. More crucially, 

there is a paucity of published illuminant spectra. 

Finally I will use the Vos Walraven cone fundamentals [WS82] for response func- 

tions. The Vos Walraven curves are sketched in Figure 1.5. 

1.3.2 A Least-squares measure of image performance 

Given the spectral sensitivities of a visual system (color camera or human eye) and 

measured reflectances and illuminants, color observations can be simulated using equa- 

tion (1.4). If there are n reflectances and m illuminants then m, 3 x n observation 

matrices Pe are readily constructed. One of these, PC, is chosen to be the canonical 

illuminant (Forsyth [For901 chooses white light). For each of the remaining m - 1 

observation matrices the mapping which best takes observations to descriptors is cal- 

culated: 



CHAPTER 1. INTRODUCTION 

400 450 500 550 600 650 
Wavelength 

400 450 500 550 600 650 
Wavelength 

400 450 500 550 600 650 
Wavelength 

Figure 1.5: Vos Walraven fundamentals (solid line) are contrasted with XYZ color 
matching curves (dotted lines) and opponent type channels (dashed lines). 
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Qmodel is an image model dependent oracle color constancy procedure. For a par- 

ticular image model Qmode' transforms Pe such that the error in (1.15) is minimized 

with respect to some criterion. The term oracle draws attention to the fact that 

this transformation is calculated given the correspondence between observations and 

descriptors (the columns of PC and Pe) .  Of course this correspondence will not in gen- 

eral be known and as such (1.15) bounds the performance of all recovery algorithms 

for a given image model. 

To quantify the ~erformance of an image model I compare fitted observations 

Qmode'(Pe) with their corresponding descriptors. Specifically for each fitted observa- 

tion, I calculate the Euclidean distance from its descriptor normalized with respect 

to the descriptors length: 

where the subscript i indexes the columns of the descriptor and mapped observation 

matrices. Equation (1.16) measures the percent normalized fitted distance or NFD 

for short. 

The NFD measured for one mapped observation and one descriptor does not shed 

much light on the power of a particular image model. I will use cumulative histograms 

of NFD measurements as a means to compare many such pairs. 

1.3.3 An Example of Image Performance 

In Figure 1.6, I contrast the NFD cumulative histograms for the mapping performance 

of the trivial, coefficient and general linear image models. Notice that the general im- 

age model vastly outperforms the trivial model for all test illurninants. The coefficient 

model performs better than the trivial model but markedly poorer compared with the 

general model. 

The coefficient model which has 3 free parameters represents a compromise be- 

tween the trivial (doing nothing) and general (doing as much as possible) models. 

While performance is still far behind the general case, it is much improved over doing 

nothing. 
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CIE A 
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Figure 1.6: Cumulative NFD histogram obtained with each test illuminant (CIE A, 
D48, D65, D75, and D100) for general (solid lines), coefficient (dotted lines) and 
trivial image models(dashed lines). 
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Under the generalized coefficient scheme scaling coefficients are applied to a ba- 

sis other than the cones. For a different basis the cumulative histogram curve will 

shift; hopefully toward the general linear performance. In Figure 1.5 I compare the 

cones with two other bases: the XYZ color matching functions [WS82] and Buchs- 

baum's [Buc87] color opponent channels. XYZ color matching curves are the standard 

space for specifying color. Opponent channels efficiently encode color information for 

transmission. The NFD error for cones, XYZ curves, and opponent channels is shown 

in Figure 1.7. The NFD curves for XYZ or opponent observations are calculated 

in two stages. First the best scaling coefficients are applied to XYZ (or opponent) 

observations mapping them to corresponding XYZ (or opponent descriptors. Both de- 

scriptors and mapped observations are now transformed back to the cone basis where 

the NFD error is calculated. Moving back to the cone space ensures a fair comparison 

of error. 

Both the XYZ and opponent channels perform less well than the cone basis: the 

respective histogram curves are both below the cone histogram curve. However the 

performance difference for the XYZ basis is small. This is quite interesting since 

there is continuing controversy in the color community over whether to apply scaling 

coefficients to the cone or XYZ bases [MB93]. That the cone basis is currently favoured 

(e.g. [FB93]) is in part justified by the data in Figure 1.7. Neither the XYZ basis nor 

the cone basis comes close to the general image model performance. 

It is a central aim of this thesis to find bases which shift the coefficient curve 

toward the general curve; presupposing that such bases exist. 

Constrained Recovery Algorithms 

The one-to-one correspondence between observations and descriptors used in quan- 

tifying image model performance constitutes the strongest constraint in solving for 

color constancy. Trivially, when given this correspondence one could simply substi- 

tute the correct descriptor for each observation thereby achieving perfect constancy. 

Of course it is highly unlikely that such a one-to-one correspondence will be known 

in advance. 
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Figure 1.7: Cumulative NFD histogram obtained with each test illuminant (CIE A, 
D48, D65, D75, and D100) for the coefficient image model operating with respect to 
three sensor bases: the cones (solid lines), the XYZ matching curves (dotted lines) 
and opponent channels (dashed lines). 
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Instead, it is often assumed that the correspondence between observations and 

descriptors is known for a subset of the surfaces in an image. For example in the 

supervised color constancy scheme of Novak and Shafer [NS90], a Macbeth [MMD76] 

color checker card containing 24 known reflectances is placed in each scene. Thus 

there are 24 correspondence pairs and these are sufficient to estimate accurately the 

map back to the canonical illuminant. Even those observations not on the calibration 

card are accurately mapped to their descriptors. 

While there are applications where it would be reasonable to place a reference 

card in a scene, e.g. calibrated imaging or color correction [NSWSO, Vrh931, it is a 

requirement that we ourselves do not require and one that we would not like to impose 

on a general machine vision system. For this reason many authors have sought to 

decrease the number of reference patches which must appear in each scene. 

Brill [BriBO, Bri781 demonstrates that if surface reflectances are 3-dimensional then 

only 3 reference patches are necessary to define the general linear mapping back to the 

canonical illuminant. Even if this constraint were to hold the reference patches must 

still be located. Of course their location could be fixed-though in this circumstance 

one might as well use the Macbeth Color checker and recover the illuminant map with 

higher accuracy. 

Many authors have reduced the number of known reference patches to one. More- 

over the reference is defined in such a way that its location is easily derived from the 

image circumventing the location problem of Brill. For example Land [Lan77], in one 

of the early incarnations of his Retinex theory, of color constancy theory assumes that 

every scene contains a white patch. Moreover this white is the most reflective over 

all other whites. The white patch is easily located in an image by searching for the 

observation vector with the largest rgb response2. 

However because a white observation vector is defined by 3 numbers it follows 

that only 3 parameters of the mapping back to the canonical can only be recovered. 

Coefficient maps are precisely characterized by three parameters and are used in 

2Strictly this is true only when illumination is everywhere uniform. Land's Retinex will also work 
when illumination power varies. In this case the patch with the largest lightness is located (this is 
the patch that would have the largest response under constant illumination). 
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Retinex theory. 

As shown in Figure 1.7 the coefficient model operating on the cones or opponent 

channels (Land suggests both [Lan83]) results in fairly poor color constancy relative to 

the general model. This has prompted other authors to search for a more realistic set 

of mappings which are parameterized by three variables. This search usually begins 

with finite-dimensional descriptions of illumination and reflectance. Specifically given 

the observation vector pwle - of a white surface w under an unknown illuminant e 

then, following from the definition of a surface matrix equation (1.8), a 3-parameter 

description of the illuminant spectrum Ee(X) can be recovered: 

where S,(X) is the reflectance spectrum of white and Ee(X) can be reconstructed 

using ge and equation (1.6). Assuming a 3-parameter description of reflectance it 

is straightforward to calculate the lighting matrices for the canonical and unknown 

illuminants: A(EC(X))  and A(ge) (ge defined in (1.17)); from which it follows that the 

mapping from unknown to canonical illuminants is defined as: 

Both Buchsbaum [Buc80] and Gershon et a1 [GJT88] try to solve for color in this 

manner though they assume a grey reference patch instead of a white. Moreover 

the grey refers not to a specific surface in the scene but to a property derived from 

the image as a whole. In Buchsbaum's theory it is assumed that the average color 

observation in any image will equal the color response for some grey reflectance. 

Obviously this heuristic is easy to confound; for example if the majority of an image 

contains only shades of red the mean vector will also correspond to a red reflectance. 

Versions of Land's Retinex based on a similar grey world assumption [LM71] are also 

criticized for this flaw [BW86]. Gershon et a1 [GJT88] proposes that each distinct 

color observation is counted only once when the average is calculated. Once again 

this heuristic can quickly run into problems; if the image contains mostly shades of 

red, the mean observation vector will still be red. 
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Similarly, Land tried to assuage criticism of his white patch retinex [Lan77] by 

providing a computational scheme for calculating the white observation even when a 

white surface does not appear in the scene. He showed that so long as each scene 

contains reflectances which are maximally reflective (to the same degree as the whitest 

white) for each individual sensor class (e.g. the red, green and blue cones) then the 

white observation can be derived. One simply records the maximum response in each 

sensor channel. 

In the context of human vision there is evidence that this maximum normalization 

is in fact carried out. McCann [McC94] reports on experiments where Mondriaans 

are displayed to human observers. Changing the composition of the Mondriaan, while 

keeping a test patch constant, does not alter the perceived color of the test unless 

the change in composition alters the maximal response in at least one of the cone 

channels. This apparent sensitivity to the maximum is indicative of imperfect human 

color constancy. 

Other authors have abandoned the reference patch condition and try to construct 

recovery algorithms which are more robust to scene composition. Non-reference cues 

are generally sought outside of the Mondriaan world. For example many authors as- 

sume that specularities are present in each scene [LBSSO, Lee90, Sha85, TW89, Dre931. 

Each color observation vector is modelled as the sum of a Lambertian reflection 

component, defined in equation (1.3), with a specular component-the color re- 

sponse of the illuminant itself. For example if the Lambertian component is Fle = 

Jw &(X)S;(X) Ee(X)dX and the specular reflection is 3" = J, B(X) Ee(X)dX then the 

color observation is defined as: 

$9' = ape + /I5" (1.19) 

where a and /I are scalars not less than 0. It follows that the observation vectors 

corresponding to a single surface lie on a plane (gfe and 3" are a basis set) and that 

the intersection of two surface planes is the specular component 5e. Given se, strong 

constraints can be placed on the position of gtC (i-e. the descriptor for p"e) - though 

a unique solution is not possible [Tom94]. Psychophysical experiments suggest that 

human observers do not use specular cues in solving for color constancy [Hur89]. 
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Other non-reference constraints which have been used include mutual illumina- 

tion [FDH91, FH881; the idea that in describing the unknown illuminant we should 

assume it is as white as possible [RS89]; and probabilistic assumptions about the dis- 

tributions of reflectance and illumination [TV91, DI94, BF941. There are no reports 

in the literature of these methods being implemented for color machine vision; nor are 

there any indication from the psychophysical community to suggest that these cues 

might be used in human color vision. 

1.5 Unconstrained Recovery Algorithms 

Unconstrained algorithms aim to solve the color constancy problem with no con- 

straints save those inherent in the image model. Since these are relatively weak, 

unconstrained recovery algorithms rarely return unique solutions but rather attempt 

to restrict descriptor assignments. 

In the trivial image model a change of illumination results in a simple scaling 

of observation vectors. Clearly the trivial model does not hold for human cones- 

see Figure 1.6. For machine vision systems however, it is in principle possible to 

design sensors for which the trivial image model is valid. Brainard, Wandell and 

Cowan [BWC89] set forth the necessary black-light spectral conditions given low di- 

mensional linear descriptions of reflectance and illumination. 

Supposing that the trivial model accurately reflects illumination change then a 

degree of color constancy can be attained simply by normalizing the length of response 

vectors. For example the vectors pc - and a p C  - normalized with respect to their length 

are identical since: 

Thus a 2 parameter descriptor is readily recovered (the normalized vector can be 

described by two angles e.g. azimuth and elevation). Unfortunately Maloney [Ma1901 

has shown that filters which satisfy the black-light conditions measure almost none of 

the signal present in real color signal spectra and as such would not provide suitable 
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input for a vision system. Moreover this deficiency cannot be mitigated by changing 

the sensor basis [Bri93]. 

A coefficient model operating on cone observations supports a reasonable degree 

of color constancy (see Figure 1.6). Moreover it is well known that this performance 

improves when narrow-band sensors are employed [WB86]; in the limit, sensors which 

are sensitive to a single wavelength of light are known to support perfect coefficient 

color constancy [Forgo]. 

Under the coefficient model a descriptor under the canonical illuminant can in 

principle move to any other 3-vector when the illumination changes: there is no a 

priori constraint on where observations should lie. However under an illumination 

change all observation vectors shift by the same 3 scaling coefficients; Forsyth [Forgo] 

shows that this common bond is a powerful constraint in solving for color constancy. 

In particular Forsyth's CRULE (coefficient rule) algorithm operates as follows. As 

a preprocessing step the gamut of all descriptors is estimated. The gamut is simply 

the set of responses induced from many different reflectances and is represented as a 

body in 3-space (3 since cameras and the eye are trichromatic). When a single surface 

is viewed under an unknown illumination the observation vector it induces must cor- 

respond to a descriptor in the canonical gamut. From this, it follows that only those 

scaling coefficients which map the observation somewhere inside the canonical gamut 

are possible solutions to the color constancy problem. A second surface observed un- 

der the same unknown illuminant leads to a second set of possible solutions. Since 

the same coefficient scalings must map both observations to the canonical illuminant 

the color constancy solution must lie in the intersection of the two constraint sets. A 

third surface further constrains the solution set and so on. In the best case if an image 

cont ains all reflect ances then CRULE uniquely solves the color constancy problem (all 

constraint sets have a single point in common). 

In practice if an image contains many reflectances the set of possible solutions 

is small and any of the coefficients mappings will result in good color constancy. 

Unfortunately many realistic images contain few surfaces and in this case the solution 

set may be large. Forsyth proposes that the coefficient scalings which maximize the 

volume of the mapped image colors should be chosen. Of course this is a heuristic 
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and may or may not lead to good color constancy. 

A more serious problem with CRULE is that it can only work for the Mondriaan 

world. Changes in illumination intensity across a scene, specularities and changing 

object shape all locally affect color observations and the assumption that the same 

set of scaling coefficients takes observations to descriptors no longer holds. 

The general linear image model has the advantage that it can be directly applied 

to most sensor sets, including the human cones. The disadvantage is that it has 9 

free parameters (3 columns and 3 rows) and these must all be retrieved. Recovery 

is especially hard for unconstrained algorithms whose only constraint is the image 

model. 

In principal the general linear solution set can be constrained in a similar manner 

to CRULE. For each observation the set of linear maps taking it into the canonical 

gamut is readily calculated. Intersecting these constraint sets (one per surface) returns 

those linear maps which take all observations back to the canonical illuminant. Indeed 

this procedure is at the heart of Forsyth's MWEXT general linear recovery algorithm. 

Unfortunately, because a linear transform has 9 parameters each set of illuminant 

maps occupies a region in 9-space. To calculate the intersection of many 9-dimensional 

bodies with each other is an expensive computational task. Indeed there is no evidence 

in the literature that MWEXT has in fact been implemented. 

To reduce computational cost simplifying geometric constraints can be applied to 

the shape of the canonical gamut. Specifically if the set of canonical descriptors lies 

on a 2-dimensional plane passing through the origin then this implies that for any 

unknown illuminant the set of corresponding observations would also lie on a plane 

(a plane transformed by a linear transform is still a plane). In this framework it is 

only necessary to characterize the set of mappings which map the image plane onto 

the canonical plane. This set of mappings can be speedily calculated. 

Unfortunately the set of valid maps is quite large-indeed in the absence of other 

constraints forcing the canonical gamut to a plane is not very useful. However under 

the conditions where illumination and reflectance belong to 3- and 2-dimensional 

linear models (the 3-2 case) Maloney [Ma1851 has shown that the canonical gamut is 

exactly a plane and the mapping between image plane and canonical gamut is unique. 
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Moreover because a plane through the origin is defined by only two observation vectors 

color constancy is possible at a color edge. That is, it is an unconstrained algorithm 

which delivers unique color constancy so long as there are at least two distinct surfaces 

in each scene. 

Two criticisms can be made about the Maloney-Wandell approach. First, and 

this is crucial, reflectance is not 2-dimensional nor even approximately so. Thus in 

practice the algorithm does not and cannot work. Secondly under the 3-2 conditions 

it cannot be claimed that the Maloney-Wandell algorithm adheres to the general linear 

model. Indeed because illumination is 3-dimensional the maps taking observations to 

descriptors must be parameterized by 3 numbers. 

However this observation is balanced by the fact that there are no reports in the 

literature of a truly general unconstrained linear recovery method of ever having being 

implemented. 

1.6 Outline of Main Results 

Chapters 2, 3, and 4 discuss different methods for finding good bases for coefficient 

color constancy. Chapter 2 itself sets forth 3 methods: sensor-based sharpening, data- 

based sharpening and perfect sharpening. The word sharpening alludes to our expecta- 

tion that the sensors in the preferred basis should appear visually more narrow-band. 

Sensor-based sharpening operates independently of any statistical assumption about 

reflectance or illumination. Rather, it sets out to find sensors which 'look' sharp. 

Data-based sharpening finds coefficient channels making direct use of observation 

and descriptor vectors. For any pair of illuminants data-based sharpening returns 

the optimal coefficient channels. Perfect sharpening is a method for choosing coeffi- 

cient channels based on linear models of illumination and reflectance. Specifically if 

illumination is 2-dimensional and reflectance 3-dimensional then there exists a sensor 

basis, for all sensor sets, for which the coefficient model exactly characterizes illumina- 

tion change. All three sharpening methods return similar bases. Each basis elevates 

coefficient color constancy performance to a similar level to that of the general model. 

In Chapter 3, I show that when illumination and reflectance are described by 3- 
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and 2-dimensional linear models (the complement of perfect sharpening assumptions) 

that there is once again a sensor basis where a coefficient model suffices to explain 

illumination change. To distinguish the 3-2 derivation from the sharpening trans- 

forms I call this method generalized diagonal matrix color constancy. Because many 

existing theories of color constancy operate under 3-2 restrictions they are all in effect 

generalized diagonal matrix theories of color constancy. I describe in detail how the 

Maloney-Wandell algorithm can be elegantly implemented in the generalized diagonal 

framework. 

Chapter 4 is dedicated to two tasks. First our original intuition that narrower 

is better is re-examined from a different perspective. Specifically I set out to find 

the sensor basis which samples color signal spectra in a manner most like a trichro- 

matic narrow-band sensor set (where all sets of three narrow-band sensors are initially 

considered). I derive two bases, corresponding to two different sets of color signal spec- 

tra. The maximum ignorance set contains all possible spectra and the calibration set 

various Munsell spectra illuminated by several test illuminants. In both cases the 

derived bases, which I call maximum ignorance and calibration sensors, improve the 

performance of coefficient color constancy. 

As a second task I set out to compare, theoretically and experimentally, each 

method for choosing the best coefficient basis. I show that the visually driven sensor- 

based sharpening is theoretically well founded given the maximum ignorance assump- 

tion. I present experimental results which demonstrate that while all derived bases 

significantly improve the performance of coefficient color constancy, some methods are 

better than others. As might be expected, the methods can be ranked according to 

the accuracy of their statistical assumptions. The data-based sharpened sensors are 

best with the maximum ignorance sensors showing the relatively poorest performance. 

In Chapter 5, I set forth a new unconstrained recovery algorithm called color in  

perspective based on Forsyth's CRULE. I begin with a detailed discussion of Forsyth's 

CRULE algorithm highlighting its strengths and weakness. I show that many of the 

latter are mitigated by reducing the 3-dimensional descriptor recovery problem to 

2-dimensions. Specifically I show that if one sets out to recover only the orientation 

of descriptors then the shackles of the Mondriaan world can be broken and color 
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constancy becomes possible even in the presence of shape and specularities and where 

the illumination power varies across a scene. 

The key observation underlying Forsyth's CRULE is that the range of color ob- 

servations varies with a change in illumination. To this I add another constraint: 

that the illumination itself can only vary within certain limits. Color in perspective 

coupled with this illumination constraint can deliver excellent color constancy. 

Chapter 6 examines the multi-illuminant color constancy problem. The input 

consists of the observations of many surfaces under many illuminants. I show that 

if the coefficient model reasonably accounts for illumination change (with respect to 

the appropriate basis) then the multi-illuminant color constancy problem is no easier 

than the single illuminant case. The only exception to this is if illuminations are well 

described by a 2-dimensional linear model. Under this condition a generalized coef- 

ficient scheme suffices for all sensor sets. Color constancy becomes possible because 

the diagonal matrix which maps between illuminants is unique. 

A short conclusion in chapter 7 completes the thesis. 
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Abstract 

We develop sensor transformations, collectively called spectral sharpening, which 

convert a given set of sensor sensitivity functions into a new set that will improve the 

performance of any color constancy algorithm based on an independent adjustment of 

the sensor response channels. Independent adjustment of multiplicative coeficients 

corresponds to the application of a diagonal matrix transform (DMT) to the sensor 

response vector and is a common feature of many theories of color constancy: Land's 

retinex and von Kries adaptation in particular. We set forth three techniques for spec- 

tral sharpening. Sensor-based sharpening focuses on producing new sensors as linear 

combinations of the given ones such that each new sensor has its spectral sensitivity 

concentrated as much as possible within a narrow band of wavelengths. Data-based 

sharpening, on the other hand, extracts new sensors by optimizing the ability of a 

DMT to account for a given illumination change b y  examining the sensor response 

vectors obtained from a set of surfaces under two digerent illuminants. Finally in 

Perfect sharpening we demonstrate that, if illumination and surface reflectance are 

described b y  2- and 3-parameter finite-dimensional models, there exists a unique op- 

timal sharpening transform. All three sharpening methods yield very similar results. 

When sharpened cone sensitivities are used as sensors, a DMT models illumination 

change extremely well. We present simulation results suggesting that in general non- 

diagonal transforms can do only marginally better. Our sharpening results correlate 

well with the psychophysical evidence of spectral sharpening in the human visual sys- 

tem. 
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2.1 Introduction 

The performance of any color constancy algorithm whether implemented biologically 

or mechanically will be strongly affected by the spectral sensitivities of the sensors pro- 

viding its input. While in humans the cone sensitivities obviously cannot be changed, 

we need not assume that they form the only possible input to the color constancy 

process. New sensor sensitivities can be constructed as linear combinations of the 

original sensitivities, and in this chapter we explore what the most advantageous such 

linear transformations might be. 

We call the sensor response vector for a surface viewed under an arbitrary test 

illuminant an observation. The response vector for a surface viewed under a fixed 

canonical light is called a descriptor. We will take as the goal of color constancy 

that of mapping observations to descriptors. Since a descriptor is independent of 

illumination it encapsulates surface reflectance properties [Bec72]. 

In discussing a color constancy algorithm there are two separate issues: the type of 

mechanism or vehicle supporting the transformation from observations to descriptors 

in general; and the method used to calculate the specific transformation applicable 

under a particular illumination. In this chapter, we address only the former and 

therefore are not proposing a complete new theory of color constancy. 

A diagonal matrix transformation (DMT) has been the transformation vehicle 

for many color constancy algorithms, in particular von Kries adaptation [WB82], all 

the retinexllightness algorithms [LM71, Hor74, Bla851, and more recently Forsyth7s 

gamut-mapping approach [Forgo]. All these algorithms respond to changing illumi- 

nation by adjusting the response of each sensor channel independently, although the 

strategies they use to decide on the actual adjustments they make differ. 

DMT support of color constancy is expressed mathematically in equation (2.1). 

Here pi*e - denotes an observation (a 3-vector of sensor responses), where e and i index 

illumination and surface reflectances respectively. The vector p'" - represents a de- 

scriptor and depends on the single canonical illuminant. The diagonal transform Ve?" 

best maps observations onto descriptors. Throughout, the superscript e will denote 

dependence on a variable illuminant and the superscript c dependence on the fixed 



CHAPTER 2. SPECTRAL SHARPENING 

canonical illuminant. Underscoring indicates vector quantities. 

Indeed West 

visual system 

In general, there may be significant error in this approximation. 

and Brill [WB82] and D'Zmura and Lennie [DL861 have shown that a 

equipped with sensors having the same spectral sensitivity as the human cones can 

achieve only approximate color constancy via a DMT. 

A DMT will work better with some sensor sensitivities than others as can be 

seen by considering how the illumination, surface reflectance and sensor sensitivities 

combine in forming an observation. An observation corresponds to: 

where E (A), S(X), &(A) denote illumination, surface reflectance and sensor sensitivi- 

ties, respectively, and the integral is taken over the visible spectrum w.  For a DMT to 

suffice in modelling illumination change [WB82] it must be the case for an arbitrary 

reference reflectance ST, all reflectances S and illuminants Ei ,  E j  that 

As others have observed, one way to ensure this condition holds is to use ex- 

tremely narrow-band sensors, which in the limit leads to sensors sensitive to a single 

wavelength (Dirac delta functions) [Forgo]. Our intuition when we began this work 

was that if we could find a linear combination of sensor sensitivities such that the 

new sensors would be sharper (more narrow-band), then the performance of DMT 

color constancy algorithms should improve1 and the error of equation (2.1) would be 

reduced. With the addition of sharpening equation (2.1) becomes 

'It should be noted, however, that equation (2.3) can be satisfied in other ways such as  by placing 
constraints on the space of illuminants or reflectances [WB82]. 
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where 7 denotes the sharpening transform of the original sensor sensitivities. It is 

important to note that applying a linear transformation to response vectors has the 

same effect as applying the transformation to the sensor sensitivity functions. 

The sharpening transform effectively generalizes diagonal matrix theories of color 

constancy. Other authors [WB82, Forgo, LM711 have also discussed this concept of 

an intermediate (or sharpening) transform. However, our work appears to be the first 

to consider the precise form of this transform. 

The sharpening transform is a mechanism through which the inherent simplicity 

of many color constancy algorithms can be maintained. For example, Land's retinex 

algorithm requires color ratios to be illumination independent (and hence implicitly as- 

sumes a diagonal matrix model of color constancy) which, as seen from equation (2.3), 

they generally will not be. It seems difficult to improve the accuracy of retinex ra- 

tioing directly without making the overall algorithm much more complicated [FD88]; 

however, by applying a simple, fixed sharpening transformation of the sensors as a 

preprocessing stage, the rest of the retinex process can remain untouched. Similar 

arguments apply to Forsyth7s CRULE [Forgo] and Brill's [Brit301 volumetric theory. 

We initially present two methods for calculating 7: sensor-based and data-based 

sharpening. Sensor-based sharpening is a general technique for determining the linear 

combination of a given sensor set which is maximally sensitive to sub-intervals of the 

visible spectrum. This method is founded on the intuition that narrow-band sensors 

will improve the performance of DMT theories of color constancy. We apply sensor- 

based sharpening over three different ranges in order to generate three new sharpened 

sensors that are maximally sensitive in the long, medium, and short wave bands. 

Figure 2.1 contrasts the cone fundamentals derived by Vos and Walraven [WS82] 

before and after sharpening. While the new sensitivity functions are "sharper," they 

are far from meeting the intuitive goal of being very narrow-band (i.e., with strictly 

zero response in all but a small spectral region); nonetheless, we perform simulations 

which show that they in fact work much better. Section 2.2 presents the details of 

sensor- based sharpening. 
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Figure 2.1: Vos Walraven fundamentals (solid line) are contrasted with the sharp- 
ened sensitivities derived via sensor-based (dotted line) and data-based (dashed line) 
sharpening. 



CHAPTER 2. SPECTRAL SHARPENING 34 

Sensor-based sharpening does not take into account the characteristics of the pos- 

sible illuminants and reflectances but considers only the sharpness of the resulting sen- 

sor. Our second sharpening technique, data-based sharpening, is a tool for validating 

the sensor-based sharpening method. Given observations of real surface reflectances 

viewed under a test illuminant and their corresponding descriptors, data-based sharp- 

ening finds the best, subject to a least-squares criterion, sharpening transform 7. 

Interestingly, data-based sharpening yields very stable results for all the test illu- 

minations we tried and in all cases the data-based derived sensors are very similar 

to the fixed sensor-based sharpened sensors. Data-based sharpening is presented in 

section 2.3. 

In section 2.4 we present simulations evaluating diagonal matrix color constancy 

for sharpened and un-sharpened sensor sets. Over a wide range of illuminations sensor- 

based sharpened sensors provide a significant increase in color constancy performance. 

Data-based sharpening is related to Brill's [Bri80] volumetric theory of color con- 

stancy. This relationship is explored in section 2.5. Through spectral sharpening 

the volumetric theory is shown to be informationally equivalent to Land's [Lan77] 

white-patch retinex. 

The data-based sharpening technique finds the optimal sharpening transform for 

a single test illuminant. In section 2.6 we investigate the problem of finding a good 

sharpening transform relative to multiple illuminants. If surface reflectances are 3- 

dimensional and illuminants 2-dimensional we show that there exists a sharpening 

transform with respect to which a diagonal matrix supports perfect color constancy. 

This analysis constitutes a third technique for deriving the sharpening transform. 

Section 2.7 relates this work specifically to theories of human color vision. Sharp- 

ened spectral sensitivities have been measured in humans [Fos81, SH71, KH90, HF83, 

PW901. We advance the hypothesis that sharpened sensor sensitivities arise as a nat- 

ural consequence of optimizing the visual system's color constancy abilities through 

an initial linear transformation of the cone outputs. 
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2.2 Sensor-Based Sharpening 

Sensor-based sharpening is a method of determining the sharpest sensor given an s- 

dimensional (s is usually 3) sensor basis B(X) and wavelength interval [XI ,  X2]. The 

sensor Rt(X)c, where c is a coefficient vector, is maximally sensitive in [A1, X2] if the 

percentage of its norm lying in this interval is maximal relative to all other sensors. 

We can solve for c by minimizing: 

where w is the visible spectrum, 4 denotes wavelengths outside the sharpening interval 

and p is a Lagrange multiplier. The Lagrange multiplier guarantees a non-trivial 

solution for eqn. (2.5)-the norm of the sharpened sensor is equal to 1. Moreover, 

this constraint ensures that the same sharpened sensor is recovered independent of 

the initial norms of the basis set R(X). 

By differentiating with respect to c and equating to the zero vector, we find the 

stationary values of equation (2.5) : 

Differentiating with respect to p yields the constraint equation Jw[R(X)tg]2dX = 1. 

The solution of eqn. (2.6) can thus be carried out assuming the constraint holds. 

Define the s x s matrix Y (a )  = J, 12(X)&(X)tdX so that equation (2.6) becomes: 

Y(4)c = - p q +  (2.7) 

Assuming a nontrivial solution c # 0, p # 0 and rearranging equation (2.7), we see 

that solving for (and consequently the sharpened sensor) is an eigenvector problem: 

[qw)l-lT($)c = -pc (2.8) 

There are s solutions of equation (2.8), each solution corresponding to a stationary 

value, so we choose the eigenvector which minimizes Jd[1Z(X)tc]2dX. It is important 

that c be a real-valued vector as it implies our sharpened sensor is a real-valued 
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function. That is real-valued follows from the fact that the matrices [Y(w)]-I and 

Y (4) are positive definite and that eigenvalues of the product of two positive definite 

matrices are real and non-negative [Wi165]. Solving for g for each of 3 wavelength 

intervals yields a matrix 7 for use in equation (2.4). The matrix 7 is not dependent 

on any illuminant and denotes the sensor-based sharpening transform. 

We sharpened two sets of sensor sensitivities: the cone absorptance functions 

measured by Bowmaker [BH80] (BOW) and the cone fundamentals derived by Vos 

and Walraven [WS82] (VW), which take into account the spectral absorptions of the 

eye's lens and macular pigment. The BOW functions were sharpened with respect 

to the wavelength intervals (in nanometers) [400,480], [510,550] and [580,650] and 

the VW in the intervals [400,480], [520,560] and [580, 65012. These intervals were 

chosen to ensure that the whole visible spectrum would be sampled and that the peak 

sensitivities of the resulting sensors would roughly correlate with those of the cones. 

The results for the VW sensors are presented in Figure 2.1-those for the BOW 

sensors are very similar-where it can be seen that the sharpened curves contain 

negative sensitivities. These need not cause concern in that they do not represent 

negative physical sensitivities, but simply negative coefficients in a computational 

mechanism. Clearly, the sharpening intervals are somewhat arbitrary. They were 

chosen simply because the resulting sharpened sensors appeared, to the human eye, 

significantly sharper. Nevertheless, those used are sensible and their suitability is 

verified by the fact that they provide sharpened sensors which are in close agreement 

with those derived by data-based sharpening as described in the next section. The 

actual values of the c's in eqn. (2.8) are given below in section 2.6.1. 

Figure 2.1 also contrasts the sharpened VW sensor set with the corresponding un- 

sharpened set-the degree of sharpening is quite significant. The peak sensitivities of 

the new sensors are shifted with respect to the initial sensitivities, which is due both 

to the choice of sharpening intervals and the shape of the VW sensitivities. The sharp- 

ened long-wave mechanism is pushed further to the long-wave end of the spectrum; 

in contrast the medium wave mechanism is shifted towards the shorter wavelengths; 

'All spectra used in this chapter are in the range 400nm to 650nm measured a t  lOnm intervals. 
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sensors I % Squared Norm I 
' [4007480] [5l0,550] 

BOW 98.9 51.4 
BOW shar~ened I 99.4 1 66.3 

VW sharpened I 97.8 1 74.7 

Table 2.1: Percentage of total squared norm in the sharpening intervals 

and the short wave mechanism remains essentially the same. Intriguingly, field sen- 

sitivities of the human eye measured under white light conditioning with long test 

flashes [SH71] are sharpened in an analogous manner. 

Table 2.1 contrasts the percentage squared norm lying in the sharpening intervals 

for the original versus the sharpened curves. For both the VW and BOW sensors the 

degree of sharpening is significant. Furthermore, from Figure 2.1 it is clear that the 

sharpening effect is not limited to the sharpened interval. 

Data-Based Sharpening 

It could be the case that the best sensors for DMT algorithms might vary substantially 

with the type of illumination change being modelled. If so, sensor-based sharpening, 

which does not take into account any of the statistical properties of collections of 

surfaces and illuminants, might perform well in some cases and poorly in others. 

To test whether or not radically different sharpening transformations are required 

in different circumstances, we explore a data-based approach to deriving sharpened 

sensitivities in which the sensors are optimized for DMT algorithms by examining 

the relationship between observations, obtained under different test illuminants, and 

their corresponding descriptors. 

Let PC be a 3 x n matrix of descriptors generated from a set n surfaces observed 

under a canonical illuminant EC. Similarly, let Pe be the matrix of observations of 

n surfaces imaged under another test illuminant Ee. To the extent that DMT-based 

algorithms suffice for color constancy, PC and Pe should be approximately equivalent 
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under a DMT: 

The diagonal transform is assumed to be an approximate mapping and will have 

a certain degree of error. The idea of spectral sharpening is that this approximation 

error can be reduced if P C  and P e  are first transformed by a matrix Teyc. 

Vejc will in fact be optimal in the least-squares sense if it is defined by the Moore- 

Penrose inverse: 

where + denotes the Moore-Penrose inverse 3. Now [Teyc] must be chosen to ensure 

that [Ve>"] is diagonal. To see how to do this, carry out some matrix manipulation to 

yield: 

Since the eigenvector decomposition of the matrix on the right-hand side of equa- 

tion (2.12) Pc[Pe]+ = Ue*cVe~c[Ue~c]- l  is unique, its similarity to the left-hand side 

implies 7"'' is unique also, always exists and equals [Ueyc]-l, for diagonal [Ve?"] . 

It is interesting to compare equation (2.12) to that for the problem of finding the 

best general transform Geyc mapping observations obtained under a test illuminant to 

their corresponding descriptors. 

Such optimal fitting effectively bounds the possible performance within a linear 

model of color constancy. When the approximation of equation (2.13) is to be opti- 

mized in the least-squares sense, GetC is simply 

3The Moore-Penrose inverse of the matrix A is defined as A+ = At [AAt]-'. 
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Equation (2.12) can be interpreted, therefore, as simply the eigenvector decompo- 

sition of the optimal general transform 6"'". Of course it is obvious that the optimal 

transform could be diagonalized; what is important is that if one knew a sharpening 

transform [ l e l c ]  then the best least-squares solution relating 'Te9"Pc and l e y c  Pe is 

precisely the diagonal transformation Deyc, that is le~cpc[7e~cPe]+ = DeJ. In other 

words, when using the sharpened sensors the optimal transform is guaranteed to be 

diagonal, so finding the best diagonal transform after sharpening is equivalent to 

finding the optimal general transform. Therefore, sharpening allows us to replace the 

problem of determining the 9 parameters of Gelc by that of determining only the 3 

parameters of 'De*'. 

Data-based sharpening raises two main questions: Will the resulting sensors be 

similar to  those obtained by sensor-based sharpening and will the derived sensors vary 

substantially with the illuminant? To answer these questions requires the application 

of data-based sharpening to response vectors obtained under a single canonical and 

several test illuminants. For illuminants, we used 5 Judd daylight spectra [JMW64] 

and CIE standard illuminant A [WS82], and as reflectances the set of 462 Munsell 

spectra [Coh64]. We arbitrarily chose Judd's D55 (2.55 stands for 5500K) as the 

canonical illurninant; descriptors are the response vectors for surfaces viewed under 

D55. For each of the other illuminants, Ee(X), the data-based sharpening transform 

Teyc was derived in accordance with equation (2.12), so as in each case to best map 

via a DMT the observations under Ee(X) to those under D55. 

For the VW sensors, Figure 2.2 shows the range of the 5 sets of data-based sharp- 

ened sensors obtained for mapping between each of the 5 illuminants and D55. For 

these 5 illurninants, the results are remarkably stable and hence relatively independent 

of the particular illuminant, so the mean of these sharpened sensors characterizes the 

set of them quite well. Referring once again to Figure 2.1, we can see that these mean 

sensors are very similar to those derived via sensor-based sharpening. 

The stability of the results for the 5 cases and their similarity to the sensor-based 

result is reassuring; nonetheless, it would be nice to find the sharpening transformation 
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Figure 2.2: For each illuminant data-based sharpening generates different sharpened 
sensors. The range of sharpened curves over all the test illurninants (CIE A, D48, 
D65, D75 and D100) is shown for the VW cone mechanisms. 
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that optimizes over all the illuminants simultaneously. This issue is addressed in 

section 2.6, where we show that, given illuminant and reflectance spectra which are 

2- and 3-dimensional, there exists a unique optimal sharpening transform. 

2.4 Evaluating Sharpened Sensors 

Since the sensor-based and data-based sharpened sensors are very similar, we will 

restrict our further at tention to the evaluation of sensor-based sharpened sensors 

alone. As well, the results for VW and BOW sensors are very similar, so we will 

include figures only for the VW case. 

For each illuminant, we generated sensor responses for our 462 test surface re- 

flectance~ using both the sharpened and unsharpened VW sensors so that we could 

compare how much sharpening improves DMT performance. 

To measure spectral sharpening's effect on DMT mapping of observations between 

a given test illuminant and the canonical illuminant, we compare fitted observations 

(observations mapped to the canonical illuminant using a diagonal matrix) with corre- 

sponding (canonical) descriptors. The Euclidean distance between a fitted observation 

qe and its descriptor pC, normalized with respect to the descriptor's length, provides - - 
a good error metric given the definition of color constancy we are using. This percent 

normalized fitted distance (NFD) metric is defined as: 

NFD = 100 * II pc - ge II 
II pc II 

Let PC be a 3 x 462 matrix of descriptors corresponding to the 462 surfaces viewed 

under the canonical illuminant. Similarly, let Pe denote the 3 x 462 matrix of obser- 

vations for the 462 surfaces viewed under a test illuminant. Equation (2.9) can then 

be solved to obtain the best diagonal transformation in the least-squares sense and 

doing so will be called simple diagonal fitting. Since Devc is a diagonal matrix, each 

row of Pe is fitted independently. The components of Veyc are derived as follows: 
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where the single subscript i denotes the ith matrix row, the double subscript ii  denotes 

the matrix element at row i column i. 

Given a fixed set of sensor functions, equation (2.16) yields the best diagonal trans- 

formation that takes observations under the test illuminant onto their corresponding 

descriptors. Simple diagonal fitting, therefore, does not include sharpening, but rather 

for a fixed set of sensors finds the best diagonal matrix DevC for that set of sensors. 

For performance comparisons we will also be interested in the NFD resulting under 

transformed diagonal fitting. Transformed diagonal fitting proceeds in two stages: 

1. 7 P c  :, VeV'Pe ,  where 7 is the fixed sharpening transform and Deyc is calcu- 

lated via equation (2.16). 

Applying I-' transforms the fitted observations back to the original (unsharp- 

ened) sensor set so that an appropriate comparison can be made between the fitting 

errors-the performance of sharpened diagonal matrix constancy is measured relative 

to the original unsharpened sensors. 

Figure 2.3 shows NFD cumulative histograms for: 

1. diagonal fitting of VW observations (solid line). 

2. diagonal fitting of sharpened VW observations (dotted line). 

For each illuminant the sharpened sensors show better performance than the un- 

sharpened ones, as indicated by the fact that in the cumulative NFD histograms the 

sharpened sensor values are always above those for the unsharpened ones. In general 

the performance difference increases the more extreme the illuminant color-from D55 

to Dl00 the illuminants become progressively bluer and CIE A is redder. 

Figure 2.4 shows the cumulative NFD histograms for 

1. diagonal fitting of VW observations (solid line). 

2. transformed diagonal fitting of sharpened VW observations (dashed line). 
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Figure 2.3: The cumulative NFD histograms obtained with each test illuminant (CIE 
A, D48, D65, D75 and D100) for: diagonal fitting of VW observations (solid line) and 
diagonal fitting of sensor-based-sharpened VW observations (dotted line). The 6th 
cumulative NFD histogram shows the average fitting performance. 
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Figure 2.4: The cumulative NFD histograms obtained with each test illuminant (CIE 
A, D48, D65, D75 and D100) for: diagonal fitting of VW observations (solid line) 
and transformed diagonal fitting of sensor-based-sharpened VW observations (dotted 
line). The 6th cumulative NFD histogram shows the average fitting performance. 
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Once again it is clear that the sharpened sensors perform better; however, the per- 

formance difference is greater, which shows that the question of sensor performance 

is linked to the axes in which color space is described. 

Finally, Figure 2.5 contrasts the cumulative NFD histograms for 

1. optimal fitting of VW observations, the unrestricted least-squares fit of equa- 

tion (2.13) (solid line). 

2. transformed diagonal fitting of sharpened VW observations (dashed line). 

For these cases, with the exception of CIE A, a DMT achieves almost the same level 

of performance as the best non-diagonal transform. 

2.5 Data-Based Sharpening and VolumetricThe- 

Data-based sharpening is a useful tool for validating our choice of sensor-based sharp- 

ened sensors. However, more than this, data-based sharpening can also be viewed as 

a generalization of Brill's [Bri80] volumetric theory of color constancy. In that theory, 

Brill develops a method for generating illurninant invariant descriptors based on two 

key assumptions: 

1. Surface reflectances are well modeled by a 3-dimensional basis set and are thus 

defined by a surface weight vector a. E.g., S(X) = c:=, S;(X)a,. 

2. Each image contains 3 known reference reflectances. In the discussion that 

follows Qe will denote the 3 x 3 matrix of observations for the reference patches 

seen under Ee(X). 

Given the first assumption, observations for surfaces viewed under Ee(X) are gen- 

erated by applying a lighting matrix to surface weight vectors: 

4 ~ h i s  term was first used by Maloney [Ma1851 
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Figure 2.5: The cumulative NFD histograms obtained with each test illuminant (CIE 
A, D48, D65, D75 and D100) for: optimal fitting of VW observations (solid line) 
and transformed diagonal fitting of sensor-based-sharpened VW observations (dotted 
line). The 6th cumulative NFD histogram shows the average fitting performance. 
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pe - = A ( E e ( X ) ) g  (2.17) 

where the i j t h  entry of A(Ee(X)) is equal to J R,(X)Ee(X)Sj(X)dX. It follows imme- 

diately that Qe is a fixed linear transform of the lighting matrix: 

where the columns of A correspond to the surface weight vectors of the reference 

reflectances and are independent of the illuminant. Now, given any arbitrary response 

vector pe, an illuminant invariant descriptor is easily generated by premultiplying with 

[Q"] -I: 

The color constancy performance of Brill's volumetric theory is directly linked to 

the dimensionality of surface reflectances. Real reflectance spectra are generally not 

3-dimensional (Maloney [Ma1861 suggests that a basis set of between 3 and 6 functions 

is required) and this leads to inaccuracies in the calculated descriptors. 

Data-based sharpening, like volumetric theory, aims to generate illuminant invari- 

ant descriptors by applying a linear transform. If we impose the very strong constraint 

that all surfaces reflectances appear in each image, then data-based sharpening can 

be viewed as an algorithm for color constancy. As a color constancy algorithm, data- 

based sharpening has a distinct advantage over volumetric theory in that it is optimal 

with respect to the least-squares criterion and consequently is guaranteed to outper- 

form the volumetric method in this sense. Unfortunately this performance increase is 

gained at the expense of the extremely strong requirement that all surface reflectances 

must appear in each image. 

In practice, we can weaken this constraint and assume that there are k known 

reference patches per image, where k is small. Novak and Shafer [NS90] develop a 

similar theory called supervised color constancy based on the assumption that there 

are 24 known reference patches in each image; however, unlike data-based sharpening, 

their constancy transform is derived by examining the relationship between measured 
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responses and finite-dimensional models of reflectance and illumination. Certainly 

for the reference patches themselves, the data-based sharpening method will outper- 

form Novak's supervised color constancy since, for these patches, data-based sharp- 

ening finds the optimal least-squares transform. However, further study is required 

to compare overall color constancy performance. In the limiting case, where k = 3, 

data-based sharpening reduces to the volumetric theory. 

Volumetric theory requires 3 reference patches in order to recover the 9 parameters 

of [Qe]-I and thereby achieve color constancy. As shown by the performance tests 

of the preceding section, however, after a fixed sharpening transformation a DMT 

models illumination change almost as well as a non-diagonal matrix. Since only 3 

parameters instead of 9 need to be determined to specify the diagonal matrix when 

sharpened sensors are being used, only 1 reference patch is required instead of 3 to 

achieve color constancy. This follows because a single response vector seen under a 

test illuminant Ee(X) can be mapped to its canonical appearance by a single diagonal 

matrix: 

If we choose our reference patch to be a white reflectance then through sharpening 

volumetric theory reduces to Land's white-patch retinex [Lan77]. Similarly West 

and Brill [WB82] consider white-patch normalization to be consistent with von Kries 

adaptation. 

We performed a simulation, called transformed white-patch normalization, to eval- 

uate the quality of color constancy obtainable using a single reference patch. For each 

illumination (CIE A, D48, D55, D65, D75 and D100) we, 

1. generated a matrix Pe of observations of Munsell patches for VW sensors. 

2. transformed observations to the (sensor-based) sharpened sensors: 7Pe. 
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3. calculated VeYTPe,  where 27:;" = -& (the reciprocal of the ith sharpened 
Pi  

sensor's response to the white patch5 ). 

4. transformed white-patch normalized observations to VW sensors, 7 - 1 V e ~ c 7 P e .  

Again D55 was the canonical light. Thus constancy was evaluated by calculating 

the NFD between the white-patch-corrected observations seen under D55 (the de- 

scriptors) with the white-patch-corrected observations under each other illuminant. 

In Figure 2.6 we contrast the cumulative NFD histograms for white-patch normaliza- 

tion (dashed lines) with the optimal fitting performance (solid lines). White-patch 

normalization yields very good constancy results which are generally comparable to 

the optimal fitting performance. 

Sharpening Relative to Multiple Illurninant s 

Data-based sharpening was introduced primarily to validate the idea of sensor-based 

sharpening and to ensure that our particular choice of sharpening parameters led 

to reasonable results. Figure 2.2 shows that the optimal sensors, as determined via 

data-based sharpening for each of the illuminants, closely resemble one another and 

furthermore they resemble the unique set of sensor-based sharpened sensors as well. 

While the sensors are all similar, the question remains as to whether or not there 

might be an optimal sharpening transform for the entire illuminant set. 

2.6.1 Perfect DMT Color Constancy 

In [FDF93b] we derive conditions for perfect DMT color constancy using sharpened 

sensors. Because the sharpening transform applies to a whole space of illuminants, it 

in essence is a type of global data-based sharpening. 

The theoretical result is based on finite-dimensional approximations of surface 

reflectance and illumination, and what is shown is that if surface reflectances are 

5The Munsell reflectance which is closest to the uniform-white, in the least-squares sense, was 
chosen as the white reference patch. 
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Averaae 

Figure 2.6: The cumulative NFD histograms obtained with each test illuminant (CIE 
A, D48, D65, D75 and D100) for: an optimal fitting of VW observations (solid line) 
and a transformed white-patch normalization of VW observations (dotted line). The 
6t h cumulative NFD histogram shows average color constancy performance. 



CHAPTER 2. SPECTRAL SHARPENING 51 

well-modelled by 3 basis functions and illuminants by 2 basis functions then there 

exists a set of new sensors for which a DMT can yield perfect color constancy. These 

restrictions are quite strong; nonetheless, statistical studies have shown that a 3- 

dimensional basis set provides a fair approximation to real surface reflectance[Mal86] 

and a 2-dimensional basis set describes daylight illumination[JMW64] reasonably well. 

Moreover Marimont and Wandell [MW92] have developed a method for deriving basis 

functions which is dependent on how reflectance, illuminant and sensors interact to 

form sensor responses (i.e. eqn. (2.2) is at the heart of their method). A 3-dimensional 

model of reflectance and a 2-dimensional model of illumination are shown to provide 

very good models of actual response vectors. 

Given these dimensionality restrictions on reflectance and illumination, cone re- 

sponse vectors of surfaces viewed under a canonical illuminant, that is descriptors, 

can be written as: 

where the superscript c denotes the canonical illuminant. Since illumination is 2- 

dimensional there is necessarily a second illuminant E2(X) linearly independent with 

Ec(X) (together they form the span). Associated with this second illuminant is a 

second linearly independent lighting matrix A(E2 (A)). It follows immediately that 

A(E2(X))  is some linear transform M away from A(Ec(X)): 

Since every illuminant is a linear combination of Ec(X) and E2(X), lighting ma- 

trices in turn are linear combinations of A(EC(X)) and MA(EC(X)), as a result of 

equation (2.24). Consequently an observation vector obtained for any surface under 

an illuminant Ee(X) = aEC(X) + PE2(X) can be expressed as a linear transform of its 

descriptor vector: 
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where Z is the identity matrix. Calculating the eigenvector decomposition of M 

and expressing the identity matrix Z in terms of 7 

enables us to rewrite the relationship between an observation and descriptor, equa- 

tion (2.25), as a diagonal transform: 

7 p e  - = [aZ+ , m ] 7 p C  - 

Writing pc - in terms of pe - leads directly to 

The import of this last equation is that when the appropriate initial sharpening 

transformation 7 is applied, a diagonal transform supports perfect color constancy, 

subject of course to the restrictions imposed on illumination and reflectance. 

These restrictions compare favorably with those employed by D'Zmura[D1Z92], 

who showed that given 3-dimensional reflectances and 3-dimensional illuminants, per- 

fect color constancy can be obtained given two images of three color patches under 

two different illuminant s, using a non-diagonal transform. 

From the Munsell reflectance spectra and our six test illuminants we used prin- 

cipal component analysis to derive the basis vectors for reflectance and illumination. 

Using these vectors, lighting matrices were constructed and the sharpening transform 

then calculated via eqn. (2.26). The formulae for the perfect sharpened sensors are 

given in equations (2.30), (2.31) and (2.32) where they are contrasted with the corre- 

sponding formulae obtained with respect to sensor-based and data-based sharpening. 
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The symbols R, G and B denote the Vos Walraven (red, green and blue) cone mech- 

anisms, scaled to have unit norms, and the superscripts p, s and d denotes perfect, 

sensor-based and data-based sharpening. 

It is reassuring that the perfect sharpened sensors are almost identical to those 

derived via sensor-based and data-based sharpening. Therefore, even though neither 

the sensor-based sharpened sensors nor the data-based sharpened ones are optimized 

relative to a whole set of illuminants, sharpening in all cases generates sensors which 

are similar to those that work perfectly for a large, although restricted, class of illu- 

minants. This theoretical result provides strong support for the hypothesis, already 

confirmed in part by the consistency of the data-based sharpening results, that a 

single sharpening transformation will work well for a reasonable range of illuminants. 

2.7 Spectral Sharpening and the Human Visual 

System 

If the human visual system employs a DMT for color constancy, our results show 

that we should expect it to use sharpened sensors since doing so would optimize its 

performance. In this section we briefly examine some of the psychophysical evidence 

for sharpened sensitivities. 
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2.7.1 Psychop hysical Evidence 

Sharpened sensitivities have been detected both in field- and test-sensitivity experi- 

ments (for a review of these terms see Foster [Fos84]). Sperling and Harwerth [SH71] 

measured the test spectral sensitivities of human subjects conditioned to a large white 

background and found, consistent with our sharpened sensors, sharpened peaks at 

530nm and 610nm with no sharpening of the blue mechanism. 

These authors propose that a linear combination of the cone responses accounts 

for the sharpening. They found that the sharpened red sensor can be modelled as the 

red cone minus a fraction of the green, and the sharpened green as the green cone 

minus a fraction of the red. This corresponds well with our theoretical results in that 

our sharpening transformations, equations (2.30), (2.31) and (2.32), involve basically 

red minus green and green minus red, with only a slight contribution from the blue. 

More recently, Foster [Fos81] observed that field- and test-sensitivity spectra show 

sharpened peaks when derived in the presence of a small monochromatic auxiliary 

field coincident with the test field. Foster [Sne83] extended this work by performing 

a hybrid experiment with a white, spatially-coincident auxiliary field; and sharp- 

ened sensitivities again were found. In both cases, these experimentally determined, 

sharpened sensitivities agree with our theoretical results. Like Sperling, Foster [FS83] 

verified that the sharpened sensitivities were a linear combination of the cone sensi- 

tivities. 

Krastel [HKB83] has measured spectral field sensitivities under changing illumi- 

nation where, like Sperling, a white conditioning field is employed. The illumination 

color was changed by placing colored filters in front of the eye. The same test spec- 

tral sensitivity curve is measured under both a reddish and bluish illuminant. This 

suggests that the eye's sharpened mechanisms are unaffected by illumination. More re- 

cently Kalloniatis [KH90] has measured cone spectral sensitivities under white adapt- 

ing fields of different intensity and found the sharpened sensitivities to be independent 

of the intensity of the adapting field. 

Poirson and Wandell [PW90] have developed techniques for measuring the spec- 

tral sensitivity of the eye with respect to the task of color discrimination. For color 
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discrimination among briefly presented targets, the spectral sensitivity curve has rel- 

atively sharp peaks at 530nm and 610nm. 

Although the general correspondence between our sharpened sensors and the above 

psychophysical results does not imply that sharpening in humans exists for the pur- 

pose of color constancy, at least the evidence that a linear combination of the cone 

responses is employed somewhere in the visual system lends plausibility to the idea 

that sharpening might be used in human color constancy processing. Conversely, 

since we show that sharpening could improve the performance of some color con- 

stancy methods, our results suggest a reason as to why spectral sharpening might be 

found in humans. 

2.8 Conclusion 

Spectral sharpening generates sensors which improve the performance of color con- 

stancy theories (von Kries adaptation, Land's retinex, etc.) employing diagonal ma- 

trix transformations. Data-based sharpening finds sensors which are optimal with 

respect to a given set of surface reflectances and illuminants. Sensor-based sharpen- 

ing finds the most narrow-band sensors that can be created as a linear combination 

of a given set of sensors. Finally for restricted classes of illuminants and reflectance 

(they are constrained to be 2- and 3-dimensional) we have shown that there exists 

a sharpening transform with respect to which a diagonal matrix will support per- 

fect color constancy. The sharpening transform derived via this analysis is in close 

agreement with the sensor-based sharpening and data-based-sharpening transforms. 

In all three cases sharpened sensors substantially improve the accuracy with which 

a DMT can model changes in illumination. The sensor-based and data-based sharp- 

ening techniques are quite general and can be applied to visual systems with greater 

than 3 sensors. 

As with the cone sensitivities, sharpening a color camera's sensitivities can also 

have a significant effect. Using overlapping, broad-band filters such as Wratten #66, 

#52 and #38 [Eas81] could be advantageous since from an exposure standpoint they 
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filter out less light, but disadvantageous from a color constancy standpoint. Sharp- 

ening such filters as shown in Figure 2.7 can provide a good compromise between the 

competing requirements. 

Spectral sharpening is not, in itself, a theory of color constancy in that it makes 

no statement about how to choose the coefficients of the diagonal matrix. Instead, 

we propose sharpening as a mechanism for improving the theoretical performance 

of DMT algorithms of color constancy regardless of how any particular algorithm 

might calculate the diagonal matrix coefficients to use in adjusting for an illumination 

change. 

Since the performance of DMT algorithms increases quite significantly when sharp- 

ened sensitivities are employed, and furthermore since it then compares favorably with 

that of the best possible non-diagonal transform, our results suggest that if a linear 

transform is a central mechanism of human color constancy then after an appropriate, 

fixed sharpening transformation of the sensors, there is little to be gained through the 

use of anything more general than a DMT. 

Our results lend support to DMT-based theories of color constancy in general. 

In addition, since spectral sharpening aids color constancy, we have advanced the 

hypothesis that sharpening might provide a motivation for the psychophysical finding 

of sharpening in the human visual system. 
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Figure 2.7: Solid lines are Kodak Wratten filters #66, #52 and #38. Dotted lines 
show the results of sensor-based sharpening. Dashed lines show the mean of the data- 
based sharpened sensors obtained for the 5 test illurninants (CIE A, D48, D65, D75, 
DlOO). 
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Abstract 

This chapter's main result is to show that under the conditions imposed by the 

Maloney- Wandell color constancy algorithm, illuminants are 3-dimensional and re- 

jlectances 2-dimensional (the 3-2 world), color constancy can be expressed in terms 

of a simple independent adjustment of the sensor responses-in other words as a von 

Kries adaptation type of coeficient rule algorithm-so long as the sensor space is first 

transformed to a new basis. A consequence of this result is that any color constancy 

algorithm which makes 3-2 assumptions, these include the Maloney- Wandell subspace 

algorithm, Forsyth's MWEXT and Funt and Drew's Lightness algorithm, must e$ec- 

tively calculate a simple von Kries type scaling of sensor responses; that is a diagonal 

matrix. Our results are strong in the sense that no constraint is placed on the initial 

spectral sensitivities of the sensors. In addition to purely theoretical arguments, the 

chapter contains results from simulations of von Kries type color constancy in which 

the spectra of real illuminants and reflectances along with the human cone sensitivity 

functions are used. The simulations demonstrate that when the cone sensor space is 

transformed to its new basis in the appropriate manner, a diagonal matrix supports 

close to optimal color constancy. 
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3.1 Introduction 

We present a theoretical analysis connecting several color constancy theories-von 

Kries adaptation [WB82, FDF93bl ' , Land's retinex [LM71], the Maloney- Wandell 

algorithm [MW86], Funt and Drew's lightness algorithm [FD88], Forsyth7s MWEXT 

and CRULE [For9O]--in which we prove that, if illuminants and reflectances are well- 

approximated by finite-dimensional models of low dimension, then under an appro- 

priate change of basis for the sensor space, every one of these methods effectively 

calculates a simple independent adjustment of coefficients in this new space. 

We caution the reader that we will use the term von Kries adaptation in a some- 

what more general sense than is customary. Von Kries adaptation in the broad sense 

will be taken to apply to any sensor basis and not be restricted solely to the cone 

sensitivity functions. Specifically von Kries adaptation, with respect to any sensor, 

is a simple scaling; each scaling component is the reciprocal of the sensor response 

induced from a reference patch (usually white). For example if the sensor response 

for some surface reflectance is x and that of a reference patch y then the von Kries 

adapted response is xly.  

Generally color cameras, like the human eye, are trichromatic; hence in a color 

image each pixel is a 3-vector, one component per sensor channel. A color constancy 

algorithm maps each color vector pe - to a descriptor vector d which is independent 

of the illuminant. This mapping is usually considered linear-a matrix transform is 

applied to color vectors. Indeed, under Forsyth's formulation [For901 of the color con- 

stancy problem, the transform must be linear. In this chapter we provide a theoretical 

analysis along with simulation results demonstrating that if the transform is linear, 

then it need only be diagonal. In other words, a diagonal matrix transform suffices 

as a vehicle for color constancy. Our results are strong in the sense that they place 

no constraints on the initial spectral sensitivities of the visual system. 

'Adaptation made using linear combinations of the adapted cone functions is sometimes referred 
to  as second-site adaptation, for example see D'Zmura and Lennie [DL86]. This can be confusing, 
however, since second-site adaptation implies a second adaptation stage; whereas, we will use only 
a single adaptation stage with the difference being that the adaptation is applied to sensors derived 
as linear transformations of the cone sensitivity functions. 
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The various computational schemes for simulating color constancy apply different 

structural constraints to the form of the matrix transform. Many authors assume that 

the transform is a diagonal matrix, and in the model of Maloney and Wandell [MW86] 

the transform is a 2 x 3 projection. Only Forsyth7s MWEXT [Forgo] algorithm places 

no constraints on the form of the transform. In studying color constancy algorithms, 

therefore, we must ask two questions: 

1. Independent of the computational scheme for computing the matrix, how well 

in principle can a particular matrix form discount the effect of the illuminant? 

2. How successful is a given color constancy algorithm in solving for the correct 

(or best) transform? 

Our main focus in this chapter is on the first of these questions. 

A diagonal matrix has long been proposed as a viable mechanism for color con- 

stancy (e.g. [WS82, LM71, Forgo]). However, West and Brill [WB82] and D7Zmura 

and Lennie [DL861 cast doubt on the suitability of diagonal matrix theories by demon- 

strating that for a given set of sensor sensitivities a diagonal matrix supports color 

constancy only for a restricted set of reflectance and illuminant spectra. With respect 

to the human cone sensors the restricted set of reflectance and illuminant spectra are 

statistically very different from actual measured illuminants and reflectances. Con- 

sequently the majority of recent color constancy theories discard the computational 

simplicity of the diagonal matrix transform for more complex matrix forms which 

supposedly can model illuminant change better. 

In contrast to this trend Finlayson et a1 [FDF93b7 FDF94bl have recently proved 

that diagonal matrix transforms can support perfect color constancy under small- 

dimensional model constraints-the illuminant space linearly spanned by a %dimensional 

basis and the reflectance space by a 3-dimensional basis. We term this set of con- 

straints a 2-3 model. That analysis employs a generalization, which we will use here, 

of the concept of a diagonal matrix transform in which a fixed sensor transformation 

7 is allowed prior to the application of a diagonal matrix: 

d = V p  - - (1: simple diagonal constancy) 
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7 d  = Z M p  - (2: generalized diagonal constancy) 

In the 2-3 case, given a known reference patch in each scene, the correct diagonal 

matrix transform can be computed to yield perfect color constancy. The elegant 

color constancy algorithm of Maloney et. a1 does not require a reference patch, but it 

operates under a different set of restrictions. For a trichromatic visual system these 

restrictions, which we will call the 3-2 restrictions, require a 3-dimensional illuminant 

space and a 2-dimensional reflectance space. 

The main result of this chapter is to show that, in a world in which illuminants and 

reflectances are governed by Maloney's 3-2 restrictions, color constar~cy can always 

be formulated as a generalized diagonal matrix transform independent of the spectral 

characteristics of the sensors. In a world in which these restrictions hold only approx- 

imately, a diagonal matrix transform theory of color constancy will still do a good 

job. 

The ramifications of this result for theories of color constancy are widespread. The 

most immediate implication is that the 3-2 version of Maloney's theory of color con- 

stancy is effectively a diagonal-mat rix- based theory of color constancy. Specifically, 

in the 3-2 world, the color vectors of all surfaces viewed under any illuminant will 

always be a diagonal matrix transform from the color vectors of the same surfaces 

viewed under a fixed canonical illuminant. Finite-dimensional restrictions are also at 

the foundation of Funt and Drew's [FD88] color constancy algorithm. Their compu- 

tational method simplifies, via our analysis, to diagonal matrix operations in the 3-2 

case and as such reduces to Blake's version of the Lightness algorithm [Bla85]. Finally, 

our work plays a unifying role in connecting the theories of Maloney and Forsyth. 

Forsyth's work on color constancy consists of two algorithms: MWEXT and the 

simpler CRULE. In MWEXT, color constancy proceeds by parameterizing all the 

possible matrices mapping the gamut of image colors into the gamut of descriptors. 

The more colorful the image, the smaller the set of possible mappings becomes. Un- 

fortunately this algorithm is extraordinarily complex and, as Forsyth suggests, may 

not be suitable for machine vision. Restricting color constancy transforms to diago- 

nal matrices results in Forsyth's simpler CRULE algorithm. This algorithm can be 
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efficiently implemented and is a suitable candidate for a machine vision implementa- 

tion of color constancy. Forsyth [For901 proposes his MWEXT algorithm to solve for 

color constancy under the 3-2 restrictions. Our results prove that his simpler CRULE 

algorithm is adequate for this task. 

Generalized diagonal matrix transforms also relate to the problems of color cor- 

rection and color balancing. White-point mapping, a very common scheme for color 

balancing, is based on a von Kries style adjustment of the three sensor channels aimed 

at making a white patch in a scene appear white in an image. Simply adjusting white 

to look white does not guarantee, however, that the other colors will be correctly re- 

produced. By using a generalized diagonal matrix transformation instead of a simple 

diagonal matrix transformation much better results should be obtained. 

In section 3.2 we provide the necessary definitions required to develop a mathemat- 

ical model for color image formation and color constancy. In section 3.3 we develop 

techniques for finding the sensor transform 7 which affords perfect diagonal matrix 

color constancy under 3-2 restrictions. It should be noted that this analysis does not 

place restrictions on the possible form of the initial set of sensors. In section 3.4 we 

formally connect our results with other computational theories of color constancy. 

Finally in section 3.5 we present simulation results which evaluate the performance 

of generalized diagonal matrix color constancy. 

The Model 

The light reflected from a surface depends not only on the spectral properties of 

illumination and surface reflectance, but also on other confounding factors such as 

specularities and mutual illumination. To simplify our analysis we will, in line with 

many other authors, develop our theory for the simplified Mondriaan world; a Mondri- 

aan is a planar surface composed of several, overlapping, matte (Lambertian) patches. 

We assume that the light striking the Mondriaan is of uniform intensity and is spec- 

trally unchanging. In this world the only factor confounding the retrieval of surface 

descriptors is illumination. 

Light reflected from a Mondriaan falls onto a planar array of sensors and at each 
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location X in the sensor array there are three different classes of sensors. The value 

registered by the kth sensor, p: (a scalar), is equal to the integral of its response 

function multiplied by the incoming color signal. For convenience, we arrange the 

index X such that each p f  corresponds to a unique surface reflectance: 

(3.3 Color observation) 

where X is wavelength, Rk(X) is the response function of the kth sensor, CX(X) is the 

color signal at  X and the integral is taken over the visible spectrum w. The color 

signal is the product of a single surface reflectance S(X) multiplied by the ambient 

illumination E (A):  C(X) = E (X)S(X). Henceforth we drop the index X. 

3.2.1 Finite-Dimensional Models 

Illuminant spectral power distribution functions and surface spectral reflectance func- 

tions are well described by finite-dimensional models. A surface reflectance vector 

S(X) can be approximated as: 

where S;(X) is a basis function and is a ds-component column vector of weights. 

Maloney [Ma1851 and Parkkinen et a1 [PHJ89b] presents evidence which suggests sur- 

face reflectances can be well modelled by a set of between 3 and 8 basis vectors. 

Similarly we can model illuminants with a low-dimension basis set: 

Ej(X) is a basis function and r is a dE dimensional vector of weights. Judd [JMW64] 

measured 605 daylight illuminants and showed they are well modelled by a set of 3 

basis functions. 

Basis functions are generally chosen by performing a principal component analysis 

of each data set (reflectances and illuminants) in isolation [Coh64, NNJ43, Ma1861. 

This type of analysis is weak in the sense that it does not take into account how 
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illuminant, reflectance and sensor interact in forming a color vector (eqn. (3.3)). Re- 

cently Marimont and Wandell [MW92] developed a method for deriving reflectance 

and illuminant basis functions which best model color observations -Eqn. (3.3) is the 

foundation for their method. They conclude that a 3-dimensional basis set for surface 

reflectance and a 3-dimensional basis set for illumination is sufficient to model the 

color observations of the 462 Munsell chips [NNJ43] under a wide range of black-body 

radiator illuminants. 

3.2.2 Lighting and Surface Matrices 

Given finite-dimensional approximations to surface reflectance, a color observation 

eqn. (3.3) can be rewritten as a matrix transform. A lighting matrix A(&) maps 

reflectances, defined by the a vector, onto a corresponding color vector: 

where A(& = J, R;(X)E(X)Sj(X)dX. The lighting matrix is dependent on the illu- 

minant weighting vector , with E(X) given by eqn. (3.5). The roles of illumination 

and reflectance are symmetric; we can write a color observation as a surface matrix 

transforming an epsilon vector: 

P - = R(a)r (3.7) 

where R(g);j = J, Ri(X)Ej(X)S(X)dX, with S(X) defined in eqn. (3.4). This symmetry 

is a key part of the analysis presented in section 3.3. 

3.2.3 The Color Constancy Problem 

The aim of any color constancy algorithm is to transform the color observation vector 

p - to its corresponding illuminant-independent descriptor d. 

where & is a linear transform. However, there is no consistent definition for a descrip- 

tor. For example Maloney [MW86] uses the surface weight vector a for the descriptor 
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(eqn. (3.9)); in contrast Forsyth defines a descriptor to be the observation of a surface 

seen under a canonical illuminant, defined by the weight vector c (eqn. (3.10)). 

(3.9 Maloney's descriptor) 

dF = A(C) [A(&)] -I A ( c ) ~  (3.10 Forsyth7s descriptor) 

Because each color constancy algorithm applies a linear transform to color vectors, 

different descriptor definitions differ only by a fixed linear transform, for example 

dF = ~ ( ~ ) d ~ .  Therefore, demonstrating the adequacy of a diagonal matrix for one - 
descriptor form demonstrates its adequacy for color constancy in general. If a diago- 

nal matrix is the vehicle for color constancy for any given descriptor then we say that 

color constancy is in general a diagonal matrix problem. For example we will show 

that under the Maloney-Wandell 3-2 conditions a diagonal matrix is the vehicle for 

color constancy given Forsyth descriptors. Thus, even although the Maloney-Wandell 

algorithm does not explicitly calculate a diagonal matrix, by the equivalence of de- 

scriptor forms, we say that it is effectively a diagonal matrix theory of color constancy. 

In the analysis of section 3.3 we use Forsyth7s descriptor form. 

3.2.4 Illurninant Invariance 

Color constancy seeks illuminant-invariant color descriptors. A closely related prob- 

lem is to find illuminant-invariant relationships between color vectors instead. One 

candidate relationship is the diagonal matrix mapping between the color vectors of 

the two surfaces: 

2)i,jpi,x = pi,x . 
- - (3.11) 

Here i and j index two different surface reflectances, x indexes an illuminant, and 
. . 

'DCj is a diagonal matrix. It is important to note that that V'J means the entire 

3 x 3 diagonal matrix relating pi*" - and pl*", - not the i j  component of a matrix 2). We 

refer to eqn. (3.11) as diagonal invariance. Diagonal invariance is sometimes referred 
. . 

to as ratio invariance, because the diagonal elements of D'J equal the ratios of the 

components of pJ1" - over pitx. - 
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Diagonal invariance will be said to hold if for all illuminants x, a fixed diagonal 
. . 

matrix P J m a p s  the color vector for surface i to the color vector for surface j. 

Diagonal invariance plays a key role in the lightness computations of Horn [Hor74] 

and Blake [Bla85], the image segmentation work of Hurlbert [Hur86] and in the object 

recognition work of Funt and Finlayson [FF95]. Brill [Bri78] develops a more general 

theory of illuminant invariance, where the relationship between surfaces can be a 

general linear transform. 

3.3 Diagonal Transforms and the 3-2 Case 

Finlayson et a1 [FDF93b] proved that assuming illumination is 2-dimensional and 

reflectance 3-dimensional (the 2-3 case), there exists a transformed sensor basis in 

which a diagonal matrix supports perfect color constancy. In this section we prove 

the equivalent result for the 3-2 case. 

Theorem 3.1 If illumination is 3-dimensional and surface reflectance 2-dimensional 

then there exists a sensor transform 7 for which a diagonal matrix supports perfect 

color constancy. 

We prove Theorem 3.1 in two stages. First we demonstrate a symmetry between 

diagonal invariance and diagonal matrix color constancy. Then we prove the existence 

of a sensor transform which supports diagonal invariance. 

Lemma 3.1 A diagonal matrix supports perfect color constancy if and only if there 

is diagonal invariance. 

Proof. When a diagonal matrix supports perfect color constancy 

is exactly modelled by a diagonal matrix. 

r, illumination change 

12 : Same surfaces) 

where i, j index surface reflectance and the diagonal matrix Velc maps the observation 

of surfaces under an arbitrary illuminant e to their observation with respect to the 

canonical illuminant c.  Clearly we can map p i l e  - to $7. - by applying a diagonal matrix. 
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Applying the color constancy transform VelC to both sides of equation (3.13) we see 

that: 
e,c i,e - Ve,c~i,j$,e 

v p  - - (3.14) 

Because transformation by diagonal matrices is commutative we can rewrite equa- 

tion (3.14) as 
e,c i,e - v i , j ~ e , c $ , e  vP_ - - (3.15) 

Substituting equations (3.12) into equation (3.15) we see that 

Equation (3.16) is a statement of diagonal invariance. The above argument is clearly 

symmetric-given diagonal invariance, diagonal matrix color constancy must follow. 

For the proof, we need only change the meaning of the superscripts in equations (3.12)- 

(3.16) so the first indexes the illuminant and the second reflectance (Vetc becomes a 
. . 

diagonal invariant and V'J a color constancy transform). 

Lemma 3.2 Given 3-2 restrictions, there exists a transformation of the sensor re- 

sponse functions for which, independent of the illuminant, color vectors are diagonally 

invariant. 

Proof. Under the 3-2 restrictions the color observation of a reflectance under an 

illuminant g can be written in terms of two surface matrices. To see this, first note 

that matrix O(a) in eqn. (3.7) can be decomposed into two parts. If the 2-vector a 
has components (al, a2)T, then defining two special R matrices associated with the 

two basis directions in a-space, 

we have 

R(a) = olR(1) + a20(2) . 

Therefore eqn. (3.7) becomes 
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Let us define a canonical surface reflectance, S,  and examine its relationship to the 

color observation of other surfaces. Without loss of generality we choose the first 

surface basis function as the canonical surface. The observation of the second surface 

basis function is an illuminant-independent, linear transform from the color observa- 

tion of the canonical surface: 

Now we can rewrite eqn. (3.17), the general observation of arbitrary surfaces, as a 

fixed transform from the observation of the canonical surface. 

where Z is the identity matrix. Therefore we have shown that the observation of the 

canonical surface can be mapped to the observation of any other surface reflectance by 

applying a linear combination of the identity matrix Z and the matrix M. We define 

a generalized diagonal transform as a basis transformation followed by a diagonal 

matrix transform. That there exists a generalized diagonal transform mapping the 

observation of the canonical surface follows from the eigenvector decomposition of M :  

We can also express the identity matrix Z in terms of the eigenvectors of M :  

Consequently we can rewrite eqn. (3.17) as a generalized diagonal matrix transform. 

Equation (3.23) states that diagonal invariance holds between the canonical surface 

and all other surfaces given the fixed sensor transformation 7. In fact eqn. (3.23) 

implies that diagonal invariance holds between any two surfaces. Let i and j index 

two arbitrary surfaces described by 2-vectors and &. From eqn. (3.23), under 
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any illuminant, we can write 7p '  and 7 p l  as fixed diagonal transforms of 'Tp" (the - - - 
observation of the canonical surface): 

7$ - = [oiZ + a:v]lpS - 

Clearly we can write 7p"s - a diagonal matrix premultiplying '7-p': - 

where 

This completes the proof of Lemma 3.2. In the 3-2 case there exists a sensor 

transformation 7 with respect to which there is diagonal invariance and this invari- 

ance implies that a diagonal matrix is sufficient to support perfect color constancy 

(Lemma 3.1). Therefore, this also completes the proof of Theorem 3.1. 

The crucial step in the above derivation is the eigenvector decomposition of the 

transform matrix M. To relate this analysis to traditional theories of diagonal matrix 

color constancy we would like the eigenvalues of M to be real-valued. However, 

whether or not they are depends on the form of the surface matrices (and hence the 

initial sensor spectral sensitivities). 

On first consideration complex eigenvalues appear problematic-e.g., transform- 

ing the sensors by a complex matrix of eigenvectors does not have a plausible physical 

interpretation. The problem lies in the fact that the new sensors would be partly 

imaginary; however, we show in the Appendix at the end of this chapter that com- 

plex eigenvalues fit seamlessly into our generalized theory of diagonal matrix color 

constancy. 
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Implications for Other Theories of Color Con- 

stancy 

Under the 3-2 conditions the lighting matrices A(g) are 3 x 2 injective maps-color 

vectors are linear combinations of the two column vectors of A(&)-and surfaces seen 

under a single illuminant span a plane in the 3-dimensional receptor space. Maloney 

and Wandell [MW86] exploit this plane constraint in their algorithm for color con- 

stancy. Maloney [Ma1851 proves that each illuminant corresponds to a unique plane 

of response vectors. Given uniqueness Maloney and Wandell [MW86] present an 

algorithm which can determine the illuminant weight vector and hence the pseudo- 

inverse [A@]-'. Consequently the surface weight vector (or Maloney descriptor) can 

be recovered via equation (3.9). 

We present an alternative diagonal color constancy algorithm for the 3-2 world. 

We solve for color constancy in terms of Forsyth descriptors, equation (3.10), and 

therefore explicitly solve for the diagonal matrix mapping the gamut of observed 

responses into the gamut of canonical responses. 

3.4.1 Diagonal Color Constancy 

In the 3-2 world the response vectors for surface reflectances under the canonical 

illuminant lie on the 'canonical plane' PC (the canonical gamut). The span of the 

canonical plane is defined by the column vectors, 2; and 25, of a 3 x 2 spanning 

matrix V c ,  and is calculated prior to the color constancy computation. 

Under each other illuminant, response vectors for surfaces lie on the observed plane 

Po (the image gamut). Our goal is to solve for the diagonal matrix mapping Po to 

PC. If this mapping is unique then there is a single solution to the color constancy 

problem. The diagonal mapping is unique if we assume the following: 

Assumption 3.1 There are 2 linearly independent surfaces in our image. 

Assumption 3.2 None of the components of the surface normals E", $ (of planes 

PC and Po) are equal to zero: nf # 0 and ng # 0 ( 2 ,  j = l ,2 ,3) .  

If Assumption 3.1 holds then we can solve for the spanning matrix Vo-the 
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columns of VO, gy and g: are simply observation vectors of any two distinct sur- 

faces. Assumption 3.2 states that the normal of the canonical or observed planes 

cannot lie on the x-y, x-z or y-z planes. If all planes are equally likely the probability 

that a plane normal has a zero component is vanishingly small. Maloney [Ma1851 

sets out "metameric black" and "unique light" conditions to characterize when the 

Maloney-Wandell [MW86] subspace algorithm can solve the color constancy problem. 

These conditions are captured by Assumption 3.2. 

Theorem 3.2 (Uniqueness Theorem) Given Assumptions 3.1 and 3.2 the diagonal 

transform mapping Po onto PC is unique. 

Lemma 3.3 The only diagonal matrices mapping the planes PC and Po onto them- 

selves are the identity matrix Z and scalar multiples of the identity matrix yZ. 

Proof of Lemma 3.3. Let V be a 3 x 2 matrix defining the span of a plane (either PC 

or Po), n denote its plane normal, and V is a diagonal matrix. Writing Lemma 3.3 

in mathematical notation, we would like to determine the conditions on V where: 

Without loss of generality let us write the columns 23 and I J ~  of the spanning matrix 

V in terms of the surface normal n: 

It is easy to verify that 2, and z2 are linearly independent and orthogonal to 14. If V 

has a zero component, Vi; = 0 for some i, then all vectors in the plane with spanning 

matrix DV must have a zero as their ith component. In this case a vector which has 

a non-zero ith component and is zero elsewhere is normal to all vectors in the span of 

VV. If V satisfies equation (3.28) then the matrices V and VV span the same plane 

and the normal of PC or Po has a zero component. By Assumption 3.2 this is not the 

case. Consequently all components of the diagonal matrix V are non-zero. Writing 

equation (3.28) in full: 
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Because none of the variables (Q;, n j  i, j = 1,2,3) are equal to zero, these equations 

are satisfied if and only if V = yZ. 

Proof of Theorem 3.2. Let us assume that there are two diagonal matrices, V1 and 

V2, which differ by more than a simple scaling, mapping Po onto PC: 

where A1 and A2 are 2 x 2 matrices (of full rank) transforming the span VC. Both 

the matrices V1 and V2 must have full rank, otherwise the normal to VC contains a 

zero component. Solving for VO in eqn. (3.32) and substituting into eqn. (3.33) we 

see that 

By Lemma 3.3, only the identity matrix maps the canonical plane onto itself. 

Hence V1 = yV2 (where y is a scalar), which contradicts our initial assumption; thus 

Theorem 3.2 follows. 

The truth of Theorem 3.2 depends on Assumption 3.2 holding. Let us assume, 

without loss of generality, that the first component of the surface normal is zero 

n = [ 0 n2 n3 I t  (Assumption 3.2 is violated). If the vector 2 lies on the plane - 

orthogonal to n then its dot-product with g equals zero: v2n2 + v3n3 = 0. The vector 

v transformed by a diagonal matrix with components Vll = a and V22 = V33 = k is - 

also orthogonal to n: kv2n2 + h 3 n s  = 0. In this case it follows that Lemma 3.3 and 

Theorem 3.2 are no longer true. 
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If the diagonal matrix mapping Po to PC is unique it is easily determined. The first 

spanning vector of VO, Z J ~ ,  can be mapped onto PC by applying a linear combination 

of two diagonal matrices 

Similarly Z J ~  can be mapped onto PC by applying linear combinations of the diagonal 

matrices V2' and D22. Because the diagonal matrix mapping Po to PC is unique, the 

set of diagonal matrices spanned by Dl1 and Dl2 must intersect those spanned by D21 

and V 2 2  in a unique diagonal matrix. 

We can use this property to develop a simple algorithm, called S-CRULE (simpli- 

fied CRULE), for color constancy. The algorithm requires two distinct colors in the 

image. It proceeds in 3 stages: 

1. Find the set Dl of diagonal matrices mapping the first image color to the set of 

all canonical colors. 

2. Find the set D2 of diagonal matrices mapping a second image color to the set 

of all canonical colors. 

3. The unique diagonal matrix mapping all image colors to their observation under 

the canonical illuminant is equal to Dl n D2. 

This algorithm is closely related to Forsyth's CRULE [Forgo]. One difference, 

however, is that through our analysis we can solve for the unique diagonal matrix by 

examining the color observations of two surfaces. In contrast CRULE would examine 

all observed response vectors. If we relax the 3-2 model restrictions both Maloney's 

algorithm and S-CRULE cannot solve the color constancy problem. 

However Forsyth's general CRULE can achieve color constancy even when the 3-2 

conditions are relaxed. For example if a vision system has very narrow-band sensors 

then a diagonal matrix is always, without any restriction on illuminant or reflectance 

spectra, a perfect vehicle for color constancy [Forgo]. Therefore, for trichromatic color 
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constancy Maloney's theory is a sub-theory of Forsyth's CRULE. Previously Forsyth 

had proposed that his more complex MWEXT algorithm would be required to solve 

for color constancy under 3-2 conditions. 

3.4.2 Other Theories 

The color constancy problem is made more difficult if the illuminant intensity varies 

across the image. Horn [Hor74] presented an algorithm for removing intensity gradi- 

ents from images of a Mondriaan world. Unfortunately his approach imposed strong 

constraints on the form of the Mondriaan boundary. Later Blake [Bla85] extended 

this algorithm to allow less restrictive boundary constraints. Key to their algorithms 

is diagonal invariance, and hence diagonal matrix color constancy. Therefore lightness 

recovery can be improved by the addition of a sensor transformation. 

Funt and Drew [FD88] presented a non-diagonal lightness algorithm for illumi- 

nants and reflectances that are well-approximated by finite-dimensional models. Their 

method is independent of the sensor spectral sensitivities; however, we showed in sec- 

tion 3.3 that diagonal invariance holds for arbitrary spectral sensitivity functions un- 

der an appropriate sensor transformation. Our analysis therefore circumvents the need 

for a non-diagonal lightness theory-Funt and Drew's algorithm reduces to Blake's 

algorithm under a sensor transformation in the case of 3-2 world conditions. 

Land's Retinex theory [Lan77] and its precursor, von Kries adaptation [WB82], 

assume that color constancy is achieved if each image contains a known reference 

patch. By assuming diagonal invariance between the observations of arbitrary sur- 

faces with the observation of the reference patch, implies that a diagonal matrix 

supports color constancy. Diagonal invariance holds for all sensor sets given 3-2 (and 

2-3 [FDF93b, FDF94bl) constraints. 

Video cameras cannot account for changing illumination. Consequently, images 

taken under different illuminants must be balanced before display to a human observer. 

This balancing usually takes the form of a simple scaling in each color channel- 

the color video image is transformed by a diagonal matrix. To ensure illumination 
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change is successfully corrected, video cameras are normally equipped with narrow- 

band sensors. The results in this chapter indicate that a diagonal matrix transform 

is a suitable balancing technique independent of the sensor sensitivities used-broad- 

band sensors are as suitable a choice as narrow-band sensors. 

3.5 Experimental Results 

Real illuminants are not 3-dimensional and real surfaces are not 2-dimensional- 

the 3-2 conditions only provide an approximation of actual color observations-and 

hence a diagonal matrix can achieve only approximate color constancy. Here we 

perform simulations, using measured surface reflectances and measured illuminants, 

comparing the performance of diagonal matrix and generalized diagonal matrix color 

constancy. We employ the analysis of section 3.3 to derive the generalized diagonal 

matrix transform but test its efficacy using a von Kries type algorithm. The von 

Kries algorithm has the advantage that it does not restrict response vectors to lie on 

a plane. 

The color observations of surfaces viewed under different illuminants are generated 

using eqn. (3.3). The human cone responses measured by Vos and Walraven [VW71] 

are used as our sensors, the 462 Munsell Spectra [NNJ43] for surfaces and the 5 

Judd Daylight phases [JMW64](D48, D55, D65, D75 and D100) and CIE A [WS82] 

for illuminants. All spectra are sampled at lOnm (nanometer) intervals from 400 to 

650nm. Consequently the integral of eqn. (3.3) is approximated as a summation. 

The sensor transformation 7 was calculated via the technique outlined in sec- 

tion 3.3. Singular value decompositions of the Munsell and illuminant spectra were 

performed to derive the required surface and illuminant basis functions. Figure 3.1 

displays the cone functions before and after the fixed sensor transformation 7. No- 

tice that the transformed sensors appear more narrow-band-this is consistent with 

the pragmatic observation that narrow-band sensors afford better diagonal matrix 

color constancy. A similar narrowing has been observed in various psychophysical ex- 

periments [FS83, HKB83, SH71, KH90, PW90, FDF94bl involving the human visual 

system. 
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Figure 3.1: Result of sensor transformation 7. Solid lines: Vos-Walraven cone fun- 
damentals; dashed lines: transformed sensors. 



CHAPTER 3. GENERALIZED DIAGONAL COLOR CONSTANCY 78 

In Figure 3.2, we contrast the transformed sensors derived assuming 3-2 conditions 

with those assuming 2-3 conditions [FDF93b]. Both these sensor sets are remarkably 

similar to each other. This similarity is not altogether surprising-both the illuminant 

and reflectance basis sets are statistically quite similar. 

There are many algorithms for diagonal matrix color constancy; each differs in its 

strategy for determining the diagonal matrix. Here we present simulation results for 

von Kries adaptation-or white patch normalization. The starting point for that algo- 

rithm is diagonal invariance. A color vector p. is assumed to be diagonally invariant 
-I 

to the observation of a white patch p . 
-w 

i w  w pa = v 7  p - - (3.36) 

Hence it is the diagonal matrix viyW which is independent of the illuminant, and 

consequently can be used as a descriptor. Usually Viyw is written in vector (or de- 

scriptor) form gW where dp = By the symmetry between diagonal matrix color 
P; . 

constancy and diagonal invariance we can rewrite eqn. (3.36) as a color constancy 

transform. 

where the function diag converts the vector pW - to a diagonal matrix (diagonal elements 

correspond to the rows of pW). - Arbitrarily we chose the white patch descriptor vectors 

calculated for D55 as the canonical descriptor vectors-these provide a reference for 

determining color constancy performance. Under each of the other 5 illuminants we 

calculate white patch descriptors. The Euclidean distance between these descriptors 

and their canonical counterparts, normalized with respect to the canonical descriptor's 

length, provides a measurement of constancy performance. The percent normalized 

fitted distance (NFD) metric is defined as: 

where gW7' denotes a canonical descriptor and 8 " ~ ~  a descriptor for some other illumi- 

nant e .  For each illuminant we calculated the following 3 cumulative NFD histograms: 
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Figure 3.2: Comparison of transformed sensors derived under 3-2 and 2-3 model 
assumptions. Solid lines: sensors derived assuming a 3-2 world; dashed lines: sensors 
derived assuming 2-3 world. 
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1. the NFD error of white patch normalized responses for the cone functions. 

2. the NFD error of generalized white patch normalized responses, generalized in 

the sense of dW1" = 7-'[diag(7pw~e)]-17pi~e. - - The reason we apply 7 - I  after 

applying the diagonal matrix is to ensure that all our comparisons are with 

respect to the same sensor basis. 

3. the optimal color constancy performance for a general linear transform. 

We define optimal color constancy performance to be a least-squares fit relating the 

observations of all surfaces under an illuminant e to their corresponding observations 

under the canonical illuminant c.  This optimal case serves as a control for evaluating 

the color constancy performance afforded by a diagonal matrix. 

Figure 3.3 displays these 3 cumulative histograms for the test illuminants CIE 

A, D48, D65, D75 and Dl00 (dashed lines for simple white patch normalization, 

dotted lines for generalized white patch normalization and solid lines for the optimal 

constancy performance). In all cases generalized diagonal matrix color constancy out- 

performs, by a large margin, simple diagonal matrix constancy. Generalized diagonal 

matrix constancy also compares favorably with optimal color constancy. Only for the 

extremes in test illuminants, CIE A and to a lesser extent D100, is there a significant 

performance difference. 

Vrhel and Trussell [VT93b] have considered the suitability of diagonal and non- 

diagonal matrices operating on cone responses as vehicles for color balancing. They 

concluded that while a non-diagonal matrix performed well a diagonal matrix (or 

a white point mapping) was inadequate for color balancing. Our results refute this 

conclusion. 

3.6 Conclusion 

A diagonal matrix is the simplest possible vehicle for color constancy. Indeed, it is its 

inherent simplicity which has motivated research into more complex matrix forms-if 

a diagonal matrix can give good color constancy a non-diagonal matrix, which has 
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CIE A 

Figure 3.3: Cumulative histograms showing improved performance of generalized di- 
agonal color constancy. Dashed lines: simple diagonal color constancy; dotted lines: 
generalized diagonal color constancy; solid lines: optimal (non-diagonal) color con- 
stancy. 
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9 instead of 3 parameters, must be able to support better color constancy, or so the 

reasoning goes. The analysis presented in this chapter concludes that this is in fact 

not the case. Under the Maloney-Wandell world constraints a diagonal matrix, in 

conjunction with an appropriate fixed transformation of the sensor basis, has been 

shown to suffice for the support of perfect color constancy. This result is strong in 

the sense that no constraints are placed on the spectral sensitivities of the sensors. 

Our simulation studies investigated whether the optimal sensors as expressed in 

the new sensor basis derived for the 3-2 world would continue to support good color 

constancy when the 3-2 restrictions were relaxed. For many real reflectances imaged 

under real illuminants, a diagonal matrix continued to give close to optimal color 

constancy. 

Our analysis establishes a relationship among several theories of color constancy. 

For a world where illumination is 3-dimensional and surface reflectance 2-dimensional, 

the Maloney-Wandell [MW86] algorithm, Forsyth's MWEXT [For901 and the lightness 

theory of Funt and Drew [FD88] are all effectively diagonal matrix theories of color 

constancy, since a diagonal matrix is always the vehicle for color constancy with 

respect to the Foryth descriptor. Moreover diagonal transforms are already at the 

heart of Forsyth's CRULE and von Kries adaptation. We contend these non-diagonal 

algorithms are more complex than necessary and can all be simplified by a fixed 

transformation of the sensor basis. 

Appendix: Complex Eigenvalues 

Complex eigenvalues may arise in the eigenvector decomposition of the transform 

matrix M, but as we will show, they do not present a serious problem. 

In traditional theories of diagonal matrix color constancy it is clear that each di- 

agonal constancy transform can be expressed as the sum of three basis transforms. 

Indeed it is this condition which makes diagonal matrix color constancy so appeal- 

ing. For example, suppose we observe the color vector p - and this corresponds to the 

descriptor d. This information is sufficient to solve for the constancy transform: 
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dk d = V p ,  Dkk = - - - (3.39) 
Pk 

This same uniqueness condition is clearly true in generalized diagonal matrix color 

constancy if the sensor transformation 7 is real-valued. In fact, the uniqueness 

condition also holds in the general case where the elements of 7 can have complex 

terms. 

Theorem 3.3 Under any sensor transformation 7 (where 7 can have complex el- 

ements) there are exactly 3 linearly independent diagonal matrices consistent with 

generalized diagonal matrix color constancy. Consequently the mapping between a 

color vector and its descriptor is unique. 

Proof. Our original statement of diagonal matrix color constancy, eqn. (3.2), can be 

written in the following mathematically equivalent form: 

d = 7-lVirp - - (3.40) 

Both and p - are real-valued vectors and hence 7 - l D 7  must be a real-valued 

matrix. Theorem 3.3 follows if we can demonstrate that there exist only 3 linearly 

independent, real-valued matrices with the same eigenvectors-the columns of 7 - l .  

A diagonal matrix V has 6 variable components, 3 reals and 3 imaginary num- 

bers. Consequently there are in general 6 linearly independent matrices sharing the 

same eigenvectors. The matrices 7-'17, 'T-lDT and 'T-lD-lT are all linearly in- 

dependent, real-valued matrices. Similarly 7 - l Z j 7 ,  7 - l V j 7  and 7-1V-1j7 are all 

linearly independent, purely imaginary matrices ( j  is the square root of -1). The sum 

of imaginary numbers is always imaginary and conversely the sum of real numbers is 

always real; hence these 6 matrices span the set of all matrices with eigenvectors I - ' .  

Including complex numbers in the field over which we form a span, this means that 

only 3 matrices form a basis for the span of all real valued matrices with eigenvectors 

I - ' .  This completes the proof for Theorem 3.3. 

Theorem 3.3 states that generalized diagonal matrix constancy holds equally well 

even when the sensor transformation is complex. For any sensor transformation the 



CHAPTER 3. GENERALIZED DIAGONAL COLOR CONSTANCY 84 

diagonal color constancy transform can be expressed as the sum of three diagonal 

basis matrices 27, 27-' and 1. The mapping Dij, in equation (3.13), taking - to p l t e  - 

is still unique and is independent of the illuminant. 
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CHAPTER 4. GENERALIZED COEFFICIENT COLOR CONSTANCY 

Abstract 

By hypothesis we state that there exists a set of three color channels, linear com- 

binations of the cones, which behave exactly like a set of narrow-band sensors. If 

this is true then it follows that relative to the coeficient channels a von K r i e  type 

scaling (or coeficient rule) is an adequate vehicle for color constancy. We develop 

a computational method for finding the three color channels most consistent with the 

hypothesis-we call these the coeficient color channels. Simulations demonstrate that 

a uon Kries type scaling is an excellent vehicle for color constancy relative to the new 

coeficient channels. 
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4.1 Introduction 

The mechanisms for achieving color constancy are the source of much research and 

debate [FDF93a7 DL86, MW86, Forgo, FDF94b7 WB82, Lan77, LM711. Here we 

concentrate on the coeficient approach to color constancy. Advocates of coefficient 

solutions believe that sufficient color constancy can be achieved by applying simple 

scaling coefficients to the sensor responses. At the outset we ally ourselves with this 

view and then proceed to consider the consequences. The coefficient approach in 

mathematical notation is as follows: 

here p; denotes the response of the ith cone class for some surface viewed under an 

unknown illuminant. Each p; is scaled by a coefficient c; to discount the effect of 

the illuminant. The vector of components di, which we call a descriptor, describes 

illuminant-independent properties of the surface. 

It has already been shown [DL86, WB82] that scaling coefficients applied to cone 

responses cannot account for illuminant change very accurately; thus equation (4.1) is 

a poor model for color constancy. In this chapter we ask if this failure can be mitigated 

by first transforming the cone responses to a new basis before applying the scaling 

coefficients. We call the coupling of a change of sensor basis with equation (4.1) the 

generalized coeficient model of color constancy: 

Computational methods are developed to find the best linear combination of the 

cones, the coeficient channels, for use in equation (4.2). We present experimental 

simulations which demonstrate that simple scalings applied to the coefficient channels 

provide excellent color constancy. 
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In section 4.2 we formalize the derivation of coefficient channels as a combinato- 

rial optimization problem. The experimental performance of the derived channels is 

examined in section 4.3. We relate our derived coefficient channels to other theoret- 

ical studies in section 4.4. Experimental performance of the competing methods is 

considered in 4.5. Some conclusions are given in section 4.6. 

4.2 Deriving Coefficient Channels 

Our goal is to find linear combinations of the cone responses, the coefficient channels, 

which are optimal in the sense that equation (4.2) is a good model of illuminant 

change. It is well known [Forgo] that without restricting the spectral characteristics 

of either reflectance or illuminant spectra that equation (4.2) is a perfect model if and 

only if the transformed cone basis consists of 3 narrow-band sensors. Of course there 

does not exist a linear combination of the cones which are narrow-band. Therefore to 

derive coefficient channels we simply set out to find the linear combination of cones 

which behaves most like a set of narrow-band sensors. 

4.2.1 Color response 

The response of the cone with spectral sensitivity function Rk(X) to a reflectance S(X) 

illuminated by a spectral power distribution E(X) is equal to: 

pk = E(X)S(X)RI(X) dh (k = 1,2, 3) (4.3 Color observation) 

where the integral is taken over the visible spectrum w.  We call the 3-vector of cone 

responses, denoted p, - a color observation. The product of reflectance multiplied by 

the illuminant, E(X)S(X), is called a color signal. The response of a narrow-band 

sensor set, okS(X - X k )  ( k  = 1,2,3), will be called a narrow observation: 

q k  = jw E(X)S(h)akS(X - hk) dX = uxE(Xk)S(Xt) ( k  = 1,2,3) 

(4.4 Narrow observation) 

The scalars crk mediate the sensitivity of the narrow-band sensors. 
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Let us assume that the visible spectrum can be represented adequately by samples 

taken 10nm apart over the range 400 to 650nm1. By adopting this convention the 

integrals in equations (4.3) and (4.4) can be replaced by summations. Representing 

the response functions of the eye and narrow-band sensor sets as 26 x 3 matrices R 
and N and a color signal by a 26-vector c we can rewrite equations (4.3) and (4.4) as: 

where is the the transpose operation. Let the columns of the 26 x n matrix C denote 

a set of n color signal spectra. The eye and narrow-band response to C are captured 

by the 3 x n observation matrices P and Q: 

4.2.2 Optimal coefficient channels 

Our goal is to find the linear transform of the cones, the coefficient channels, which 

behaves most like a narrow-band sensor set. However, we must take care in construct- 

ing our measure of similarity. For example suppose we derived the coefficient channels 

which minimized the difference (maximized the similarity) defined in equation (4.9). 

Here (and henceforth) the subscript i, j, k denotes wavelengths i, j and k; ei,j,k is 

the observation matrix for the narrow-band sensor set with delta functions placed at 

i, j and k. l l . l l F  in (4.9) denotes the Frobenius norm-the square root of the sum 

of squares difference between 7,j,kP and Qj , j , k ;  7,j,k is a 3 x 3 matrix mapping the 

'Sampling assumptions are routine and form the basis for the linear systems approach to color 
vision. 
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observations to the coefficient channels. Let Qa,b,c and Q,,,,, denote the observation 

matrices for two different sets of narrow-band sensors. Let us assume that: 

Trivially there exists a scalar y, 0 < y < 1 such that: 

A more serious problem with the measure defined in equation (4.9) lies in main- 

taining the full dimensionality of the data set under the transform ?;,j,k. Let us 

suppose that the rows in an observation matrix differ only by a scaling so that &;,jTk 

has a rank of only 1. In this case the matrix ?;,jlk minimizing equation (4.9) will also 

have rank 1 and the 3-dimensional cone responses are mapped onto a 1-dimensional 

subspace. 

Both the problem of trivial scaling and rank deficiency result from treating the 

row vectors of P and Qijtk as if they were fixed quantities. Rather they are simply 

the sensor responses for a particular pair of sensor bases. A more informed measure 

of similarity treats all possible vectors in the row spaces of P and Qi,jlk as equal. A 

useful tool in developing this notion of similarity is the projection operator T. The 

projection of a matrix X is defined as: 

For an arbitrary n x 1 vector g, the n x 1 vector .n(P)g is the vector in the row space 

of P which is closest in the least-squares sense to 2. The projection of a matrix is 

independent of basis: T(X) = T(MX) for arbitrary matrix M of full rank. This is 

a useful property given the definition of similarity. We say that the row spaces of 

matrices P and Qij,k are similar if r(P)g and ~ ( Q ; , j , ~ ) v  are expected to be similar. 

Let Z denote an n-row matrix where each n-vector occurs with equal probability. 

Under the equi-probability assumption, the autocorrelation matrix of 2 Z t  is equal to 

the n x n identity matrix a 1  [VT93a] (where a is a scalar). The difference d(P, Qi,j,k) 

between the row spaces of P and Qi,j,k is defined as: 
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d (P7  Q) = b ( p >  - r ( Q ) I z l l ~  (4.13) 

(the expected distance between r ( P ) g  and T ( Q ; , ~ , ~ ) ~ ) .  Our goal is to find the three 

narrow-band sensors which minimize this difference. In fact equation (4.13) can be 

rewritten independent of 2 ,  using the well known identity 

yielding 

d (P ,  &)2 = trace([r(P) - r ( Q ) ] Z Z t [ r ( P )  - r (&)l t )  (4.15) 

Since by assumption 2Zt  = 1, (4.15) can be rewritten as: 

d (P ,  Q)2 = t r a ce ( [~ (P )  - r ( Q ) ] [ r ( P )  - r(Q)lt) (4.16) 

Using the identity in equation(4.14) in the reverse direction: 

For a given color signal set C and a given set of narrow-band sensors it is easy 

to calculate P and Qi,j,k (equations (4.7) and (4.8)). Consequently the difference (or 

gap [Cha93] ) between the row spaces of P and Q defined in equation (4.17) can be 

computed. To find the optimal triplet of narrow-band sensors we must find the i, j 

and k which minimize 

d (P ,  Q;,j,k) ( i , j ,  k E 1 , .  . . ,26) i # j , i # k , j # k (4.18 the optimization) 

Both matrices P and Q;,j,k are n x n making equation (4.17) and the whole optimiza- 

tion appear computationally expensive. However we show, in the following section, 

that (4.17) can be evaluated by simple operations on a pair of 3 x 3 matrices. Thus 

even though there are 0 (n3)  (where n is the number of sample wavelengths) distinct 

narrow band-sensor sets the optimization can be solved. When there are 26 sample 

points there are = 2600 combinations. 



CHAPTER 4. GENERALIZED COEFFICIENT COLOR CONSTANCY 92 

While the minimization based on equation (4.13) does not suffer from the trivial 

scaling or rank deficiency problem, it does not define a cone basis which will meet our 

goal of behaving like a set of narrow-band sensors. Such a basis is easily determined, 

however. If N,,,,, is the optimal set of narrow-band sensors then the least-squares fit 

mapping the cone observations to narrow observations defines the desired basis: 

7,,y,z = N ~ , y , , ~ ~ t ~ [ ~ t ~ ~ t ~ ] - l  (4.20) 

where C t R [ R t C C t R ]  -' is the Moore-Penrose inverse of R t C .  The cones transformed 

by I,,,,, are the coeficient channels. 

4.2.3 Solving the optimization: the general case 

The difference function d ( P ,  Q )  is the square root of the sum of squared differences 

between the projection matrices of r ( P )  and .n(Q).  In examining the structure of 

this computation we can, without loss of generality, assume that both P and Q are 

orthonormal since this assumption does not alter the row-space of either matrix: 

QQt = Z (4.22) 

We will denote the sensor bases satisfying (4.21) and (4.22) as k and A. If X  is an 

orthonormal matrix its projection is written as: 

since X X t  = Z in (4.12). Given orthonormality and making the roles of the color 

signal set C  and sensor sets k and fi explicit, equation (4.17) can be rewritten as: 
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The following identities (and equation (4.14)) are useful in simplifying equation (4.24): 

By algebraic manipulation equation (4.24) can be rewritten as: 

The matrix CC"k'ktCC' depends only on the sensitivities of the eye and the auto- 

correlation of the calibration set and can be precomputed prior to the optimization. 

For a particular triplet of narrow-band sensors N ; . , j , k ,  delta functions at i, j and k, 

we must find a 3 x 3 transform Wi,j ,k,  such that the orthonormality condition of 

equation (4.22) is satisfied; that is, we must find / j ; . , j , t  = N, j , k W i , j , k  

W:,j,k[~,j,k]tCCtn/,,j,kwi,j,k = (4.28) 

Because the 3 x 3 matrix [n/; j ,k ] tCCtJf ( j ,k  is symmetric positive definite it can be 

rewritten as [GvL83]: 

where V;g,k is a 3 x 3 orthonormal matrix and Vi,j,k is a diagonal matrix with real diag- 

onal components which are strictly greater than zero. Setting W,,j,k = v i , j , k  Jm 
satisfies equation (4.28). The sensor set fii j k  has non-zero entries at rows i, j and 

k but is zero elsewhere. It follows that &,jc filters out columns i, j and k of ~ ' c c '  
and eYjtk filters out rows i, j and k of cct'k. The resulting correlation structure 

& , j , k ~ ~ t k ' k t ~ ~ ' ~ , j , k  is zero everywhere except rows i, j and k at columns i,  j and 

k. Under this filtering equation (4.27) simplifies: 
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where (M)i,j,k denotes the 3 x 3 matrix containing the i,  j and kth rows of M at 

columns i, j and k. 

The cost of computing (4.24) is small-the eigenvector decomposition of (4.29) 

and the two matrix multiplications in (4.30)-and is independent of the size of the 

calibration set (save the need to calculate its autocorrelation). The optimization in 

equation (4.18) is tractable. 

4.2.4 Solving the optimization: the maximum ignorance 

case 

The general optimization suffers from two problems. Firstly the optimal narrow- 

band sensor set and coefficient channels (equation (4.19)) are dependent on the set of 

color signal spectra used; different sets of color signal spectra will result in different 

coefficient channels. Secondly, while the optimization is certainly computable it is an 

expensive procedure; changing the calibration set incurs a high overhead. 

Let us assume that all color signal spectra, with positive and negative power, 

occur with equal probability-the maximum ignorance case. The autocorrelation of 

the maximum ignorance calibration set is equal to the identity matrix [VT93a]: 

Where a is a scalar. For each J I ( ~ , ~  we must find a basis transform Wijjk such that 

the orthonormality condition of equation (4.28) is satisfied: 

With a maximum ignorance calibration set Wj,j,k = 2 satisfies equation (4.32) (for all 

triplets i, j and k ([N,j,k]tN;,j,k always equals the identity matrix 2). Equation (4.30) 

simplifies to: 
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The optimization in equation (4.18) reduces to finding the 3 largest diagonal el- 

ements of the projection matrix of the cone sensors. As a consequence the general 

optimization, which was combinatorial in nature, reduces to finding the 3 largest di- 

agonal elements of the projection matrix of the cone sensors. These are easily found 

by sweeping through the diagonal three times. In Figure 4.1 we plot the square-root 

of the diagonal elements of the projection matrix against sample wavelength; this 

function is sometimes called the Rmag function. 

Though there are three clear peaks in the Rmag function, at 450nm, 540nm and 

610nm; the 3 maximum values actually lie at 440nm, 450nm and 460nm. Intuitively 

we know that by choosing 440nm, 450nm and 460nm as positions for our narrow-band 

sensors we run the risk of a dimension loss in our data-we might expect (for a set of 

real color signal spectra) that the transformed cone response matrix, equation (4.19), 

to be rank reduced. Thus, while the maximum ignorance structure is useful for 

analysis it does not really reflect the true covariance structure of real color signal 

spectra. 

We can circumvent this problem by defining a minimum spacing between narrow- 

band sensors. Setting this minimum at 20nm instead of lOnm and the three optimal 

peaks lie at  440nm, 540nm and 600nm. 

The minimum spacing can be theoretically justified. Let us first write the C(X) in 

terms of its Fourier series decomposition [KKOP66]: 

where x is in nanometers in the range 400-650nm (400nm is the bottom of the visible 

spectrum which for our purposes is 250nm wide). Each k defines how many times the 

sin or cos function repeats within the visible spectrum. The set of coefficients a; and 

bj are uniquely defined for each C(X). 

As k becomes large the sin and cos functions repeat many times over the visible 

spectrum. Because the cones are broad-band functions, very fast variation in a color 

signal is invisible. Buchsbaum [BG84] and Barlow [Bar821 both estimate that the 

eye cannot see variation greater than 6 cycles over the visible spectrum (the eye acts 
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Wavelenath 

Figure 4.1: The Rmag function. If R denotes the 26 x 3 matrix of cone sensitivities 
and w(R) its projection matrix then Rmag is the square root of the diagonal elements 
of this projection. Wavelengths where the values of Rmag are large are suitable places 
for placing narrow-band sensors-see text. 
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as a low-pass filter). It follows that, for the purposes of analysis, we can substitute 

a low-frequency counterpart of C(X), which we denote C'(X), since the eye cannot 

discriminate between them: 

Cf(X) = ao/2 + 

There are only 13 coefficients in equation (4.35) and these can be found if we sample 

C'(X) at 13 sample points (this observation is an incarnation of the Nyquist sampling 

theorem). 

Because the eye acts as a low-pass filter, our maximum ignorance assumption is 

more general than it need be-we need only assume that all color signal spectra with 

a band-limit of less than or equal to 6 cycles over the visible spectrum occur with 

equal likelihood. In this framework any subset of 13 sample points is as good as any 

other in the sense it will capture all the signal information. Our intuitive notion of 

minimum spacing simply rules out a few of these possible subsets. 

4.3 Performance of coefficient channels 

Maximum ignorance and calibration coefficient channels were derived from the Vos 

and Walraven cone fundamentals [VW71] and two color signal sets: the first contains 

all possible color signal spectra and the second the 426 Munsell spectra [NNJ43], 

multiplied by 6 exemplar illuminants (the 5 Judd [JMW64] daylight phases D48, 

D55, D65, D75 and D 100 and CIE standard illuminant A). The maximum ignorance 

and calibration coefficient channels are contrasted with the cones in Figure 4.2. The 

optimal narrow-band sensors for the maximum ignorance assumption are positioned 

at 440nm, 540nm and 600nm. The best wavelengths for the general optimization are 

positioned at: 450nm, 530nm and 610nm. 

We now test the derived coefficient channels to see if they support improved color 

constancy. Let us suppose that the goal of color constancy is to map color observations 

viewed under an unknown illuminant to their corresponding descriptors observed un- 

der a fixed canonical illuminant. We will consider 3 candidate mappings: the simple 
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Figure 4.2: The coefficient channels derived under maximum ignorance assumptions 
(dotted lines) and for a calibration set of real color signal spectra (dashed lines) are 
contrasted with the Vos and Walraven cone fundamentals (solid lines). 
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coefficient model (equation (4.1)), the generalized coefficient model (equation (4.2)) 

and the general linear model shown below: 

d = Gp - (4.36) 

where 6 is any 3 x 3 bijective map. The general linear model must perform better 

than either the simple or generalized coefficient models and serves as a control for our 

simulations. 

Under each of the 6 illuminants the cone observations of the 462 Munsell re- 

flectance~ [NNJ43] are calculated. Arbitrarily we choose D55 as the canonical illumi- 

nant. For each test illuminant we find the mappings minimizing the error norms: 

1 l p ~ 5 5  - v t e s t , D 5 5 p t e s t  1 l F  (4.37 simple coeficient) 

1 17PD" - v t e s t , D 5 5 r ; r p t e s t  I l F  (4.38 generalized coeficient)) 

( l p D 5 5  - G t e s t , D 5 5 p t e s t  I I F  (4.39 general linear) 

where P denotes a 3 x 462 matrix of cone responses and the superscript denotes 

the illuminant. The superscript test is one of D48, D65, D75, Dl00 and CIE A. 

The diagonal matrix Vte3t3D55 in (4.37) takes cone observations to descriptors with 

minimum least-square error; (4.37) effectively bounds bounds the performance of a 

von Kries type mapping operating on cone responses. The diagonal matrix Vte3t~D55 

in (4.38) takes coefficient channel observations to coefficient descriptors with minimum 

squared error. Because the coefficient channels and the cones are not the same it is not 

a fair comparison to compare the error in (4.38) with the error in (4.37). To account 

for this after solving for VtestJ'55 in (4.38) we map coefficient channel descriptors and 

mapped coefficient observations back to the cone basis: 

Finding the best diagonal transform with respect to one sensor basis and then 

transforming the result to another basis for comparison has previously been called 
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transformed diagonal fitting [FDF94b]. Finally the general linear M in equation (4.39) 

is the 3 x 3 matrix taking cone observations to descriptors with least error. Equa- 

tion (4.39) bounds the performance which is possible assuming a linear model of color 

constancy. To compare the performance of each of the three mappings (4.37), (4.39) 

and (4.40) we calculate the Euclidean distance between each fitted observation and its 

descriptor normalized with respect to the descriptors length. The percent normalized 

fitted distance metric is defined as: 

NFD = 100 * I IpD55 - Mptest I I 
I 1gDS5 I I 

where M is either the diagonal matrix defined in (4.37), the transformed diagonal 

matrix defined in (4.38) and (4.40) or the general linear transform defined in (4.39). 

Figure 4.3 contrasts NFD histograms obtained for the simple and generalized coef- 

ficient mappings (maximum ignorance case) with the cumulative histogram obtained 

for the general linear case. It is clear that a general linear transform, with 9 free 

parameters, greatly outperforms the simple, 3-parameter, coefficient model. The gen- 

eralized coefficient model fares much better providing performance of the same order 

as the general case. 

In Figure 4.4 we compare the generalized coefficient cumulative NFD histogram 

calculated for the calibration set with the simple coefficient and general linear cases. 

As before the 3-parameter generalized coefficient model provides close to general linear 

performance. While both the maximum ignorance and calibration coefficient chan- 

nels enhance coefficient color constancy it is not clear how they compare to each 

other. In Figure 4.5 the cumulative histograms for both sets of coefficient channels 

are compared. 

As we might expect the calibration coefficient channels generally perform better; 

though not by much. Indeed performance is so similar that the maximum ignorance 

optimization might be   refer able. The reasons for this are twofold: first the compu- 

tation is simple (linear in the number of sensors); and second, the answer is unique 

since they are derived assuming that all spectra are equally likely. 

The simulations suggest that a generalized coefficient model is almost as expressive 
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CIE A 

Figure 4.3: The cumulative NFD histograms obtained with each test illuminant (CIE 
A, D48, D65, D75 and D100) for simple coefficient color constancy (dotted lines), gen- 
eralized coefficient color constancy using maximum ignorance sensors (dashed lines) 
and for the general linear model (solid lines). 
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Figure 4.4: The cumulative NFD histograms obtained with each test illuminant (CIE 
A, D48, D65, D75 and D100) for simple coefficient color constancy (dotted lines), 
generalized coefficient color constancy using calibration sensors (dashed lines) and for 
the general linear model (solid lines). 
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Figure 4.5: The cumulative NFD histograms obtained with each test illuminant (CIE 
A, D48, D65, D75 and D100) for generalized coefficient color constancy using calibra- 
tion (dotted lines) and maximum ignorance (solid lines) sensors. 
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as the general linear model. It is parameterized by only three unknowns-the three 

scaling coefficients-and as consequence color constancy remains a 3-dimensional 

problem. In contrast color constancy, in the general linear case, is a 9-dimensional 

problem-since there are 9 free parameters to be determined. 

Relationship to other theoretical Studies 

The methods presented in section 4.2 are closely related to other theoretical work 

on the coefficient model. In particular sensor-based spectral sharpening [FDF94b] at 

a single wavelength, where the three globally sharpest sensors are sought, is equiva- 

lent to deriving coefficient channels under the maximum ignorance assumption. The 

derivation of coefficient channels in light of a set of real color signal spectra is closely 

related to the data-based sharpening method. The latter method finds the optimal 

coefficient channels for a particular set of reflectances viewed under a pair of illumi- 

nants. 

4.4.1 Sensor-based Sharpening 

Finlayson et a1 [FDF94b] present alternative methods for finding coefficient type 

channels. The starting point for their analysis is the intuition that the narrower 

your sensors the more appropriate the coefficient model of color constancy becomes. 

Sensor-based sharpening is an analytic tool for finding the linear combinations of the 

cones (or any sensor set) which is most sensitive to a given interval [XI ,  X2] in the 

visible spectrum. Techniques are set out for maximizing: 

where R[~"'Z] denotes the rows of R  from sampling wavelengths XI through X2. The 

vector c which maximizes I I R [ ~ ~ T ~ z I ~ I  I and satisfies the constraint that the resulting 

new sensor has unit length. 

No method is given, however, for choosing intervals for sharpened sensors. Some 
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intervals will lead to fairly narrow sensors while others will be less successful. Un- 

der the special case of sensor-based sharpening at a single wavelength the techniques 

presented in this chapter provide a met hod for choosing sharpening intervals. With- 

out loss of generality let us transform the cone response matrix R to an equivalent 

orthonormal set RI. We can write the projection matrix of R, n (R)  (using iden- 

tity (4.23)) as: 

denoting the i th row of RI as rj, then the i th diagonal element of n (R)  is equal to: 

Because RI is orthonormal the constraint term in the sensor-based sharpening for- 

mulation is satisfied if and only if c is a unit vector. Under a rotation 0 the diagonal 

elements of T(R) are unchanged and: 

Each column of RI or RIO denotes a distinct sensor. At wavelength i we are creating 

the sharpest sensor if all of the length llr;1I2 is captured in a single column of RI 0 

(that is in a single sensor). This is the case when the vector & appears as one of the 

columns of 0. The diagonal of T (R) therefore is a measure of the maximum percentage 

squared length that any linear combination of the cones can have at a particular 

wavelength subject to the constraint that the new sensor over all wavelengths has 

unit length. 

Choosing the three largest elements of the diagonal of w(R) is equivalent to choos- 

ing the three wavelengths where sensor-based sharpening will be most successful. 

That is, our maximum ignorance optimization (eqn. (4.33)) is equivalent to finding 

the 3 sharpest sensors. More than simply providing candidate regions of the visible 

spectrum where sharpening is beneficial, our optimization work gives a theoretical 

underpinning to the intuition of sharpening. If we know nothing about the statistics 
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of real color signal spectra then the sharpest sensors are a good choice for coefficient 

channels. 

4.4.2 Data-based sharpening 

Data-based sharpening is a method for finding the optimal coefficient channels given 

only the canonical and a single test illuminant. For each test illuminant Finlayson 

et a1 [FDF94b] show that there exists a set of coefficient channels formed by a ba- 

sis change such that the general linear matrix minimizing (4.39) is 
diagonal: M t e s t , D 5 5  - -'D tcst,D55 

The sharpening transform depends on the test illuminant; different illuminants 

result in different transforms. However Finlayson et a1 [FDF93b, FDF94bl showed 

that if illuminant and reflectance spectra are exactly characterized by 2 and 3 pa- 

rameter finite-dimensional models then the data-based sharpening transform is the 

same for all test illuminants. The same was shown true for the complementary case 

of 2-dimensional reflectances and 3-dimensional illuminants [FDF93a] (the restric- 

tions assumed by t he trichromatic Maloney- Wandell subspace algorithm for color 

constancy [MW86]). 

The general optimization presented here is a method for finding a single fixed data- 

based sharpening transform for many test illuminants without placing any restriction 

on the dimensionality of reflectance and illuminant spectra. The solution for the 

multi-test-illuminant case is however bought at a cost: the requirement that coefficient 

channels behave exactly like narrow-band sensors. While we can certainly argue that 

this requirement is reasonable, it is not assumed in the pairwise data-based sharpening 

method. 
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4.4.3 Perfect Sharpening 

Perfect sharpening is a method for choosing coefficient channels based on finite- 

dimensional descriptions of illumination and reflectance. Specifically, Finlayson et. a1 

have shown that if illumination and reflectance are precisely described by 2- and 3- 

dimensional linear models [FDF94b, FDF93bl respectively (or the reverse [FDF93a, 

FDF94al) then the generalized coefficient model supports perfect color constancy. 

Moreover this results holds for all sensors sets and is not contingent on any special 

property of the cone basis. 

The central argument in perfect sharpening is algebraic in nature and does not 

hinge directly or indirectly on the observation that narrow-band sensors support per- 

fect color constancy. Indeed any choice of sensor basis (e.g the cones) can be coefficient 

channels when appropriate illumination and reflectance models [WB82] are chosen. 

As such, perfect sharpening relates to the current study only insofar as it returns 

coefficient channels similar to those derived here. 

4.4.4 Experimental Comparison 

Generalized coefficient color constancy, generalized diagonal color constancy [FDF94a], 

spectral sharpening, data-based sharpening and perfect sharpening [FDF94b] are all 

methods for choosing a sensor basis with respect to which simple scaling coefficients 

take observations between illuminants. Which of these methods is best? The an- 

swer to this question clearly depends on the statistical properties of the reflectances, 

illuminants and sensors. 

In Figure 4.6 we compare the average mapping performance, calculated for the 

462 Munsell chips over the 5 test illuminants, for each method. We begin, as before, 

by plotting the NFD histogram curve obtained when scaling coefficients are applied 

to the cone basis. This curve is (labelled by a l), as expected, the closest over all 

other curves to the error axis. There are seven other curves plotted in Figure 4.6, 

alternately in solid and dotted lines; each is further from the error axis indicating 

improved performance. The first six of these (labelled with numbers 2 through 7) in 

order of decreasing error correspond to a transformed diagonal fitting using coefficient 
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channels derived: 

2. under the maximum ignorance assumption (solid line) [this chapter]. 

3. with respect to a calibration set of real spectra (dotted line) [this chapter]. 

4. via spectral sharpening (solid line) [FDF94b]. 

5. via perfect sharpening, for 2- and 3-dimensional models of reflectance and illu- 

mination [FDF94a]. 

6. via perfect sharpening, for 3- and 2-dimensional models of reflectance and illu- 

mination [FDF94b]. 

7. via data-based sharpening [FDF94b]. 

Finally the last solid curve (labelled 8) furthest from the error axis corresponds to the 

performance afforded by a general linear transform. 

Both of the coefficient transforms derived in this chapter take the simple coeffi- 

cient histogram curve and move it on average about half way toward the general linear 

transform curve. That these channels do no better than that is in large part due to 

their poor performance with respect to the red CIE A illuminant-see Figure 4.5. 

Spectral sharpening, which finds narrow sensors by looking at wider wavelength in- 

tervals, fares much better raising coefficient performance to roughly four fifths of 

what it could be. Factoring statistical knowledge into the mechanisms for choosing 

coefficient channels (without any a priori requirement that they should behave like 

narrow-band sensors) improves coefficient performance still further. As we move from 

2-3 to 3-2 finite-dimensional models of reflectance and illumination to the data-driven 

data-based sharpening the coefficient performance moves steadily closer to the general 

histogram curve. This is in large part to be expected since each method is based on 

more and more realistic statistical assumptions about color observations. Data-based 

sharpening gives performance close to the best that can be achieved by a linear model 

of color constancy. 
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8-1 
Average 

Figure 4.6: The average cumulative NFD histograms obtained for different sets of 
coefficient channels and the general image model. See text for description of labels. 



CHAPTER 4. GENERALIZED COEFFICIENT COLOR CONSTANCY 110 

The coefficient channels returned by all of the above methods are very similar 

to each other. In Figure 4.7 the maximum ignorance coefficient channels derived 

earlier are contrasted with the data-based and sensor-based sharpened curves. The 

most noticeable difference is that the databased-sharpened green sensor curve has a 

significantly shallower negative lobe in the red end of the spectrum. The corresponding 

lobe for the green sensor-based sharpened sensor is more pronounced though still 

shallower than the maximum ignorance curve. 

4.5 Conclusion 

We began with the hypothesis that there exists a linear combination of the cones-the 

coefficient channels-with respect to which a coefficient model is sufficient for color 

constancy. Methods were developed to solve for the cone combinations most consis- 

tent with this hypothesis. Simulation experiments indicated that derived coefficient 

channels support excellent color constancy. 

The techniques developed here are closely related to other theoretical studies. 

We provide a theoretical justification of the spectral sharpening method of choosing 

coefficient channels. In particular we show that if we know nothing about the statistics 

of the color signal spectra entering the eye then sensor-based spectral sharpening is 

the appropriate tool. If the statistics of color signal spectra are known our methods 

are closely related to data-based sharpening [FDF94b]. 

We compare the coefficient channels derived in this study with those derived pre- 

viously. While finding cone combinations which behave like narrow-band sensors 

certainly enhances coefficient color constancy it does not perform best overall. For 

the Munsell spectra viewed under daylight phases D48, D55, D65, D75, Dl00 and 

CIE A, the data-driven data-based sharpening method shows the best performance. 
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Figure 4.7: The maximum ignorance coefficient channels (solid lines) are contrasted 
with data-based sharpened curves (dotted lines) and sensor-based spectral sharpened 
curves (dashed lines). 
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Abstract 

Simple constraints on the sets of possible surface refiectances and illuminants are 

exploited in  a new color constancy algorithm that builds upon Forsyth's[For90] theory 

of color constancy. The goal defined for a color constancy algorithm is to  discount 

variations in the color and intensity of the incident illumination and thereby extract 

illumination-independent descriptors of surface colors from images. Forsyth's method 

invokes the constraint that the surface colors under a canonical illuminant all fall 

within an established maximal convex gamut of possible colors. This gamut constraint 

turns out to be very eflective; however, other strong assumptions about the scenes 

are required for the method to work. In particular the illumination must be uniform, 

the surfaces must be planar, and there can be no specularities. To overcome these 

restrictions, the algorithm is first modified to work with the colors under a perspective 

projection, in essence in  a chromaticity space. A crucial observation is that the con- 

vexity of the 3-dimensional gamut constraint is preserved by the perspective projection 

because gamut convexity is also required in  the 2-dimensional chromaticity space if 

the gamut constraint is to be exploited eficiently. The new algorithm working in per- 

spective is simpler than Forsyth's (its computational complexity is reduced) and more 

importantly the restrictions on the illuminant, surface shape and specularities can be 

relaxed. The algorithm is then extended to include a maximal gamut constraint on the 

set of illuminants that is analogous to the gamut constraint on surface colors. Using a 

perspective chromaticity space facilitates the expression of the illumination constraint 

in  the algorithm. Tests on real images show that the algorithm provides good color 

constancy. 
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5.1 Introduction 

Color constancy is an important problem for any vision system requiring stable per- 

ception of the world. Common illuminants such as daylight and tungsten light or 

even just clear sky versus cloudy sky differ markedly in their spectral properties, 

and since the spectrum of the light impinging on an eye or camera is the product 

of the incident illumination and the percent spectral reflectance of the surface, the 

illumination must be accounted for and discounted if there is to be stable percep- 

tion of the surface color. Despite extensive research into color constancy, for exam- 

ple [Forgo, FDH91, D1Z92, DL86, MW86, Lan771, there still does not exist a color 

constancy algorithm that performs sufficiently well that it either matches human color 

perception or that it provides a robot with adequate color recognition. 

One of the most interesting color constancy theories to date is Forsyth's [Forgo] 

and since the new algorithm described in this chapter follows from it, his algorithm 

will be summarized first. Forsyth's algorithm assumes that scenes are populated only 

by flat, matte surfaces and that the (otherwise unknown) incident illumination is 

spatially constant in color and intensity. Given a 3-band rgb image of the scene, the 

defined task is to recover the rgb descriptor of each different surface in the scene as it 

would be seen by the camera under a standard canonical illuminant. 

Consider the set of rgb response vectors obtained by imaging a maximal set of 

reflectances, in the sense that they are representative of all real surfaces, under the 

canonical illuminant; these rgb vectors will occupy a convex region of space. Forsyth 

calls this convex region the canonical gamut. The canonical gamut embodies a physi- 

cal realizability constraint since an rgb response outside the gamut cannot be induced 

by a real surface. The same set of surfaces viewed under a second unknown illumi- 

nant leads to a second convex gamut which differs in shape and position from the 

canonical gamut. However the difference is not arbitrary; illumination change, and 

by extension the change in shape and position of gamuts, is well characterized by a 

linear transform [MW92]. In principal we can solve for the linear transform taking 

this gamut back to the canonical gamut thereby solving the color constancy problem. 

Of course it is unlikely that any real scene will contain all possible surface reflectances 
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and as a consequence the mapping back to the canonical illuminant will not be unique. 

Forsyth's MWEXT algorithm [Forgo] characterizes the set of all possible maps: 

VP - E 7 M g  E r(C) (5.1 : MWEXT formulation) 

The 3 x 3 map M is a possible solution to the color constancy problem if and only if 

each rgb  response vector p - in the image gamut, I'(Z), is mapped inside the canonical 

gamut I'(C). 

Characterizing the solutions to equation (5.1) is problematic in two respects. First 

for general linear maps there are 9 unknowns to be determined; Forsyth [Forgo] demon- 

strated that this is computationally expensive. Second, not all linear maps correspond 

to plausible changes in illumination. To address these problems Forsyth [Forgo] pro- 

poses that illuminant maps should be restricted to 3-parameter diagonal matrices. 

Forsyth's restriction is valid as diagonal matrices provide a good model of illu- 

mination change for visual systems with relatively narrow-band spectral sensitivity 

functions. Such sensors are typical in color cameras. Even for sensors such as the 

human cones which are not narrow-band, a diagonal matrix remains a good vehicle for 

modelling illumination change so long as the sensitivity functions are first transformed 

to an appropriate sensor basis [FDF94b]. Forsyth's CRULE algorithm solves for all 

those diagonal matrices 27 which take the image gamut into the canonical gamut. 

With the diagonal restriction, color constancy is simpler (has a lower computa- 

tional cost) than the general linear case. However, it is still computationally expen- 

sive and only an approximate solution to equation (5.2) is actually calculated [Forgo]. 

Forsyth tested his CRULE algorithm on images of various planar patchworks of matte 

reflectances viewed under several different everywhere uniform illuminations. If an im- 

age contains a diverse set of colors then there are few diagonal matrices which can 

take the image gamut into the canonical gamut. For such diverse scenes CRULE was 

capable of delivering color constancy. 

Real-world scenes are not populated only by flat matte surfaces illuminated by 

spatially constant illumination. In practice, specularities, varying illumination and 
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changes in shape, all affect the rgb responses such that a single linear transform will 

not suffice for mapping the image gamut to the canonical gamut; simply, in real scenes 

Forsyth's CRULE cannot work. In principle a program might preprocess the image 

and account for rgb variations due to shape, specularities and a varying illumination. 

However, one suspects that such preprocessing is a more difficult problem than color 

constancy. 

Part of the failing of MWEXT and CRULE is that they set out to retrieve 3- 

dimensional color descriptors (eqns. (5.1) and (5.2)) when in fact this may not be the 

correct goal. What if we decide to settle for 2-dimensional color descriptors instead 

of 3-dimensional ones? Specifically suppose that the goal of color constancy is to 

retrieve only the orientation of rgb vectors under the canonical illuminant with color 

intensity not being retrieved. Such an approach has been taken by various other 

authors [MW86, D'Z921-they argue that it is difficult to distinguish between a very 

reflective surface viewed under a dim illuminant from a dull surface viewed under a 

bright light. This argument can be extended to specularities, varying illumination 

and changes in shape. While each of these confound against intensity recovery, it is 

in principle still possible to retrieve canonical color orientation. 

In abandoning intensity recovery the color constancy problem reduces to 2 dimen- 

sions; it makes sense therefore, to design a 2-dimensional solution method. To do this 

we first factor intensity out of the problem formulation by using a perspective projec- 

tion. A perspective projection of color space results in what is commonly known as a 

chromaticity space. A typical chromaticity space is defined by 

The vector (r', g', l)t has the same orientation as (r,  g, b)t but a different length or 

intensity. Because the third component 1 always equals 1, perspective vectors can be 

represented as 2-vectors (r', g')t. 

Equation (5.3) is one of an infinite number of candidate perspective projections. 

It is special (though not unique) in the sense that the 3-dimensional canonical-gamut 

constraint can be easily maintained in the 2-dimensional projection; that is, the map- 

pings from one illuminant to another in the 2-dimensional perspective space are linear 
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(we defer the proof of this to section 5.3). Relative to the perspective space defined in 

equation (5.3) our new color constancy algorithm is analogous to the 3-dimensional 

CRULE algorithm. The fundamental difference is that the algorithm now solves for 

the 2-dimensional linear maps transforming the 2-dimensional image gamut to the 

2-dimensional canonical gamut. The shift from 3 to 2 dimensions greatly simplifies 

the gamut mapping algorithm. Indeed the computation becomes so much simpler 

that while in the 3-D case it is only practical to search for approximate solution, in 

the 2-dimensional case exact solutions can be found. 

In either the 3-dimensional or 2-dimensional cases the algorithm computes a set 

of possible solutions to the color constancy problem, represented as set of mappings 

between the unknown scene illuminant and the canonical illuminant. If there are only 

a few colors in the image then the image gamut may provide very little constraint, 

and the set of possible mappings will be quite large. The solutions can be further 

constrained, however, if the gamut of possible illuminants is taken into account. Un- 

fortunately, constraint~ on the illuminant and reflectance gamuts cannot both be 

represented linearly at the same time. Representing the illumination constraint non- 

linearly increases the computational cost of our algorithm. However, the overall time 

complexity is unchanged, the cost increase is linear, and the algorithm runs in a timely 

manner. In the 2-dimensional case the illumination constraint significantly improves 

the algorithm's color constancy. 

In section 5.2, we review the fundamentals of Forsyth's gamut mapping approach 

to color constancy. Practical difficulties with Forsyth's CRULE algorithm are dis- 

cussed in section 5.3. Addressing these leads to the perspective color constancy 

presented in section 5.4. In section 5.5 a physical realizability constraint on the 

illuminant is factored into our algorithm. Color constancy results for real camera 

images are given in section 5.6. Good color constancy is possible. Moreover physical 

realizability on the illuminant is shown to be a powerful, and necessary, constraint. 

Finally we present conclusions in section 5.7 
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5.2 The Gamut Mapping Method 

The gamut mapping method of estimating the spectral properties of the illumination 

begins with the idea of a canonical gamut consisting of the set of sensor response 

vectors obtained from viewing all physically realizable surfaces under a canonical 

illuminant. To construct an approximation to the full canonical gamut, consider an 

image of a planar patchwork of n surfaces under the canonical illurninant. 

Where the superscript j, c denotes the j th surface viewed under the canonical illu- 

minant c.  Each - is a 3-vector, the rgb camera response to the ith reflectance. 

Because each rgb arises from a physically realizable surface, any convex combination 

pX7' - within the set C is also physically realizable [ForSO]: 

Equation (5.5) can be interpreted in the following way. Imagine that we take a small 

piece of surface that maps to a single pixel in the viewing camera and cover it with 

each of the n surfaces in proportion to the weights w,. In this case, (5.5) exactly 

characterizes the camera response for that pixel. The set of all convex combinations 

of C is denoted r ( C )  and will be used as the canonical gamut. 

Although r(C) is an infinite set, the computational cost of gamut mapping depends 

only on the number of points in C. This cost can be reduced by removing points 

from C which are redundant in constructing the set of convex combinations. The 

convex hull [PS85] of C, denoted C, is the minimal cardinality subset of C such that 

r(c) = q c ) .  

Let Z be the convex hull points for a set of rgb's obtained under an unknown 

illurninant e. Any mapping which takes the image gamut r (Z)  into the canonical 

gamut is a candidate solution to the color constancy problem. The uth point puye - 

(unless zero) in Z can be mapped to the vth point pU7' - of C by applying a 3 x 3 

1 
diagonal matrix of the following form: 

i 
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p u p e  = ?~_v,c ( 5 . 6 ~ )  

The diagonal elements are simply the coordinates of pV?' divided by those of pule: - - 

The entire set of mappings taking p"ye into C is denoted as C/p"je. - Since the diag- 

onal matrices have only 3 non-zero entries, the members of C/p"je - can be represented 

as 3-vectors instead of matrices. Using this representation it follows that: 

The points in C/p"ye - are exactly the points in C mapped by the diagonal matrix 27 

It follows that p"ye - can be mapped to any point in r ( C )  by an appropriate convex 

combination of C/p"je; - since pU9" - mapped by the elements of C/p"te - is simply C.  The 

set of convex combinations of C/p"te - is denoted I'(C/p"le). - 

The set of diagonal matrices, I ' (C/Z) ,  that simultaneously map all points of Z into 

I '(C) is the intersection of all the sets mapping the individual points of Z into I'(C): 

Figure 5.1 shows a 2-dimensional example of I ' (C /Z )  as the intersection of 3 triangles. 

Each triangle represents the convex hull of the set of 2-dimensional diagonal matrices 

mapping a vertex of Z into I ' (C).  

In 3 dimensions the I'(ClpJ9") - are convex polytopes and (5.8)  is the common vol- 

ume. The cost of intersecting two convex polytopes is determined by the number of 

hull points. Given 2 polytopes each with n hull points their intersection can be calcu- 

lated in O(n log n). The number of hull points in the intersection is finite but can be 

much greater than the number for either of the original polytopes (it can be shown 

that the common intersection of m polytopes each with n hull points can have as 

many as 3mn - 6 hull points), so calculating (5 .7)  can be computationally expensive. 
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l- (1) 

Image Gamut 

l- (C) 

Canonical Gamut 

Figure 5.1: The shaded area represents the set of diagonal mappings taking the image 
gamut into the canonical gamut. It is the intersection of the 3 sets of mappings taking 
each of the image gamut's hull points U, V and W, into the entire canonical gamut. 
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r(C/Z) is exactly the set of diagonal matrices which map the image gamut r (Z)  

into r(C). This follows from the fact that the convex combinations in (5.6) are pre- 

served under a diagonal transform: 

Hence if Z is mapped within r(C) by a diagonal matrix V, then the convex combina- 

tions of 2>2 are also in r(C), and these convex combinations are precisely the interior 

points of r (Z)  under the mapping D. 

The image gamut serves to constrain the set of possible solutions. Unless the 

image contains a diverse and representative set of colors, r(C/Z) will be large. To 

chose a good candidate from I'(C/Z) and thereby provide a unique estimate of the 

unknown illuminant, Forsyth employs the heuristic that the volume of r (Z)  mapped 

within r(C) be maximum. 

CRULE provides an adequate estimate of the illuminant when applied to images 

of many reflectances provided that Forsyth's assumptions (planar surfaces of matte 

reflectance under uniform illumination). 

5.3 Color in Perspective 

Unfortunately, very few scenes will meet the restrictions imposed by CRULE. Since 

few surfaces are flat, perhaps the planarity restriction is the most serious one. It 

cannot be circumvented simply by moving to smooth surfaces that are locally approx- 

imately planar because locality competes with the need for a comprehensive image 

gamut. Constant illumination is also unrealistic and might be handled by assuming 

only that it is locally constant. Most surfaces have a significant specular component 

and even if only a small part of the scene creates a specularity it will ruin the CRULE7s 

results for the whole image. 

For a patch of constant reflectance, varying the shape effects the intensity but not 

the hue of the reflected light. The length of the measured rgb will change but not its 

direction. As long as the illumination is spectrally constant-which will be assumed 
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to be the case- variations in illumination intensity will create a similar effect. 

Specularities also create an intensity problem for CRULE. In essence a specularity 

acts as a very white surface in that it reflects the incident light without significantly 

changing its spectral composition. However, a specularity is much more reflective 

than any physically realizable white surface [Bre89]. Therefore, in mapping the image 

gamut to the canonical gamut, the specularity will be mapped to the most reflective 

white in the canonical gamut forcing the other surfaces to be interpreted as very dark. 

Curved surfaces, specularities and spatially varying illumination intensity all mit- 

igate against retrieving the intensity of surface colors. What if we abandon intensity 

and concentrate instead on recovering only the correct orientation of the rgb vector? 

In this case color constancy reduces to a problem with only 2 degrees of freedom. 

In rephrasing the color constancy problem in 2 dimensions, there are many possible 

transformations that could be used to map the 3-dimensional rgb response vectors 

to 2-dimensional intensity-independent counterparts, but only some of them permit 

us to continue using the gamut-mapping method. One of them is the perspective 

transform given in equation (5.3). 

In the 3-dimensional case, the canonical gamut is a convex set and the illumination 

mapping is calculated as the intersection of convex sets representing 3 x 3 diagonal 

matrices. The non-linearity of the ~ e r s ~ e c t i v e  transform means that the 3-dimensional 

gamut constraint need not translate necessarily into a similar constraint involving 

convex sets of 2 x 2 diagonal matrices and this should be the case if we are to use the 

gamut mapping method. 

For the gamut constraint to carry over to 2 dimensions, it must be the case that 

for each diagonal matrix mapping between a pair of rgb7s there exists a corresponding 

2-dimensional diagonal matrix mapping between that pair's perspective coordinates. 

Suppose that the 3 x 3 diagonal matrix D maps $9' - to $7' - (i.e. $12 - = Dpi"). - Let the 

perspective transformation be defined by equation (5.3). It follows that the perspec- 

tive coordinates of ply1 and p1f2 are: - - 

- - (pj"/pr;', p+'/p;")t = qi ,2 = (pj.'/p;', p+'/p$') t - - (5.10) 

Let D' be the 2-dimensional diagonal matrix with diagonal elements Vll = Vl1/D33 
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and Zr2, = V22/V33. Clearly, - qjt2 = V ' q j J :  - a diagonal matrix maps between perspec- 

tive colors. Under the perspective transform in (5.3) illuminant maps remain diagonal 

matrices. 

The tractability of Forsyth's gamut mapping procedure is contingent on the fact 

that the gamuts are convex and that they can be described by a finite (usually quite 

small) number of hull points. These properties must also be preserved in perspec- 

tive if we are to use the gamut mapping procedure. The notions of convexity and 

convex combinations are stated algebraically in eqn. (5.4). An equivalent geometric 

interpretation of (5.4) is: 

if p1*c ,p2yc  - - E r(C) then Vcr E [O,1] c r p l y c  - $ (1 - cr )p29c  - E I'(C) (5.11) 

If pl fC - and p2*" - are vectors, or points, in the convex set r(C) then any point, or vector, 

on the straight line between - and p2gC - is also in r(C). Under a perspective transform, 

lines in 3 dimensions are mapped onto lines in 2 dimensions [FvDSO]. Let - q1yc and - q21C 

be the perspective projections of p1lC - and ~ 2 9 ~ .  - It follows that any point on the straight 

line between plyc - and p2vC - in 3 dimensions is mapped to a point on the straight line 

between - qlvc and - q2yC in 2 dimensions. Simply, convex combinations, and convexity in 

general, are preserved under a perspective transform. The canonical gamut r(C) in 

perspective can be represented as convex combinations of the perspective projections 

of the hull points C. 

The canonical and image gamuts of perspective colors are 2-dimensional con- 

vex polygons. As a result all the gamut-mapping can be carried out in terms of 

2-dimensional convex polygons and this simplifies computation. Not only does it 

take fewer operations to intersect two convex polygons than intersecting two convex 

polyhedra (assuming the number of hull points is the same in both cases) but the 

number of points on the intersected hull does not grow as quickly as it does in the 

3-dimensional case. Intersecting two convex polygons, each with n hull points costs 

O(n) and the number of hull points defining the common intersection of m, n-vertex 

polygons can be 

in 2 dimensions 

exactly. 

shown to be mn. Moreover the actual implementation of intersection 

is much simpler. As a result, in 2 dimensions we compute r(C/Z) 
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5.4 Illuminant Gamut Constraint 

In the above, an illurninant map, is represented as the diagonal matrix transforming 

sensor responses under one illurninant to those that would be obtained under the 

canonical illurninant. During gamut mapping all diagonal matrices are considered 

as candidates for the unknown illuminant map, but clearly not all diagonal matrices 

correspond to actual illuminant maps. To restrict the solutions to actual illuminant 

maps, we introduce the idea of a canonical illuminant gamut. 

Consider the set of r g b  response vectors obtained by viewing a single standard 

surface s reflectance under a large set of n representative illuminants: 

E = {psJ s,2 
- , P _  - , f '  "1 (5.12) 

Let E denote the convex hull of E. The camera response vectors of the standard 

surface viewed under all possible convex combinations of the illuminants is denoted 

I '  If pS*" - denotes the response obtained from the standard surface under the 

canonical illuminant then, using the nomenclature of section 5.2, r(E/pS'") - is the set 

of all diagonal maps taking the canonical illuminant to all other illurninants. 

Suppose that 23 is a diagonal matrix taking the image into the canonical gamut, 

V E I'(C/Z). Such a mapping is permissible only if D-' E r(E/pS!"); - that is V-' 

takes the canonical descriptor of the standard surface to an observation in I .  Let 

I'-l(E/pslc) - denote the set of diagonal mappings taking observations from the back to 

the canonical illuminant. Clearly, if D E I'(E/pslc) - then 23-I E I'-' (E/ps~c). - The set 

I'-'(E/pS*") - effectively places a gamut constraint on the illuminant. 

For surfaces belonging to the canonical gamut (of surfaces) and illuminants belong- 

ing to the illumination gamut, the set of diagonal matrices representing the unknown 

illuminant is: 

~ ( C I Z )  n r-I ( ~ i ~ ~ ~ ~ )  (5.13) 

In contrast to I'(E/pslc), - I'-'(E/pSyC) - is not convex (see Figure 5.2). As a result 

the intersection required in (5.13) is more costly to compute with time cornplex- 

ity 0 (n2 ) .  Fortunately though, the illuminant-gamut constraint requires intersection 
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Mappings from canonical to other illurninants 

1st diagonal component 

Mappings from other illurninants to canonical 

1st diagonal component 

Figure 5.2: The set of mappings taking the canonical to other illurninants, top graph, 
is convex. The mappings taking other illurninants to the canonical, bottom graph, is 
non- convex. 
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only once. In contrast many, albeit simpler, intersections are calculated when enforc- 

ing the canonical surface gamut constraint at a net cost of 0 (n2 ) .  Therefore overall 

algorithm complexity remains at 0(n2)  = 0 ( n 2 )  + 0(n2)  when the illumination con- 

straint is included. Using an illuminant gamut constraint in 3 dimensions appears to 

be a much more complex task. 

Results 

Before any color constancy experiments can be run the gamuts r(C) and ~ - l ( & / p s l c )  - 

must be created. To do this the chromaticities of real surfaces viewed under a real 

illuminant could be used as a basis for calculating r(C). Similarly I'-'(&/pSJ) - could 

also be estimated given the camera chromaticities of some real surface under various 

test illuminants. In practice however, confounding factors such as camera noise will 

cause the measured camera responses to depart from the ideal. This led us to build 

the gamuts using a perfectly Lambertian mathematical model. Given a measured 

reflectance S(X), a measured illuminant E ( A )  and the 3-vector of camera sensitivities 

R(X) the induced camera response is calculated as: - 

The response functions of the SONY DXC-930 camera used in the experiments 

were derived via the methods of Sharma and Trussel [ST93]. For reflectances the 

24 Macbeth color checker patches [BP88] were used, and for illuminants the 6 Judd 

daylight phases D48, D55, D65, D75, D100, D200 [JMW64], CIE standard illumi- 

nants [WS82] A, B, and C, a 2000K planckian black body radiator, and a uniform 

white. The uniform white was chosen to be the canonical illuminant; the 24 canon- 

ical chromaticities of the Macbeth color checker were calculated according to equa- 

tions (5.14) and (5.3). The corresponding gamut is shown in Figure 5.3. 

Although the Macbeth checker reflectances are often used to represent all re- 

flectance~, there will in practice be chromaticities which will lie outside this gamut. 

To account for this the gamut was increased by 5%. The new gamut, also shown in 
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The Canonical Gamut 

Figure 5.3: The dotted line is the gamut of chromaticities of the 24 Macbeth patches. 
The solid line delimits the same gamut expanded by 5%. 
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Figure 5.3, is sufficiently large that it contains the chromaticities of the 341 natural re- 

flectance~ measured by Krinov [Kri47] and 452 of the 462 Munsell reflectances [Nic57]. 

In creating r (&)  a perfect white reflecting surface is used as the standard re- 

flectance. Again using (5.14) and (5.3) the chromaticities of the standard white under 

each of the 11 illuminants were calculated; this gives a the set E from which I'(l/p8yc) - 

and I'-'(&/pSfc) - are readily calculated (see Figure 5.2). 

Three real images of the Macbeth color checker were taken relative to three dif- 

ferent illuminating conditions: a tungsten light, cloudy sky outdoor illumination and 

blue sky outdoor illumination. The Macbeth color checker is shown by the window 

of our lab in Figure 5.4. Four checker patches were randomly selected to use in our 

constancy experiments; this set is denoted small. A further 4 checker patches were 

randomly selected from the Macbeth checker (duplicates were allowed) and added to 

small making a larger set which is denoted medium. Finally another 4 checker patches 

were added to medium making the set large. The a priori expectation is that color 

constancy should become easier (more constrained) the larger the set of reflectances. 

Denote the gamut of chromaticities of these three sets under an unknown illumi- 

nant as p m a M , e ,  Tmedium,e and Xargeve. The input to the color constancy algorithm will 

be one of these three sets; the goal is to recover the chromaticities under the known 

canonical illuminant (Z"ma"9c, Zmedium*c and Prgefc). 

For the chromaticities measured under the tungsten illuminants I '(C/~ma""un~"'en 1 1 

r(C/Zmedium,tungsten ) and r ( ~ / p r g e , t u n g s t e n  ) were calculated. These are shown at the top of 

Figure 5.5. The outermost convex polygon (lightly shaded) delimits all those possible 

maps which will take Z"ma",'un@en into r(C). The next largest polygon (embedded 

in the first and shaded more darkly) takes Zmedium~'un~"en into I'(C). The third (most 

darkly shaded) and smallest polygon contains those maps that take Prge2'ung"en into 

C. The decreasing size of the sets of candidate mappings is expected-the more 

reflectances in each scene the more constrained the color constancy problem becomes. 

The illuminants which are in the illuminant gamut (those in I'-1(&/p8'c)) - must lie 

inside the region bounded by the dotted curves. It is clear that I'-'(&/pS*") - strongly 

constrains the possible mappings to the canonical, especially for the small and medium 

sets. 
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Figure 5.4: The Macbeth Color Checker illuminated by cloudy sky daylight. 
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Possible map ings taking Tungsten observations 
d 

to ! he Canoncal lllummant 

0.20 0.30 0.35 0.40 o#diagonal component 

Possible ma pings taking Cloudy Sky observations k!~ the Canon~cal lllummant 

0.8 1 .O 1.2 1.4 
1 st diagonal component 

Possible map in staking Blue S,ky observations 
to I' he % anon~cal lllum~nant 

2.0 
1'81 st diagonal component 

2.2 

Figure 5.5:  Plausible color constancy solutions for various sets of reflectances viewed 
under various illurninants-see text for explanation. 
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Finally the diagonal map which best takes all 24 measured chromaticities to their 

canonical counterparts in the least-squares sense is marked by a X. If Qc and Qe are 

the chromaticities of the 24 Macbeth checker patches under canonical and unknown 

illuminants, the best diagonal map VevC minimizes 

where 1 1 . 1  I F  denotes the Frobenius norm; i.e., the square root of the sum of squared 

differences between QC and De~C&e. 

The middle portion of Figure 5.5 shows the sets of illuminant maps calculated for 

each of the three reflectance sets for the cloudy white illurninant. Finally the sets 

of illuminant maps calculated for the blue sky illuminant are shown in the bottom 

graph in Figure 5.5 .  Note that the extent of the axes differ markedly for all three 

illuminant s. 

To evaluate the color constancy delivered by the algorithm it one must first esti- 

mate the cost of doing no color constancy processing. That is, quantify the extent to 

which colors change with a change in illumination. In computing this-because the 

chromaticity space is not metric relative to the original 3-dimensional color space-3- 

vectors calculated from the chromaticities are used. If (r', g') is the chromaticity then 

(r', g', 1) is the 3-vector in the direction of the original 3-vector camera response, but 

with a different intensity (eqn. (3)). 

Consider an rgb vector of some surface under some unknown illuminant. Under the 

canonical illuminant, its chromaticity must fall within the canonical gamut. However, 

without doing any color constancy processing one would be forced to guess where it 

falls in that gamut. Let p J q C  - denote the correct response vector of surface j under the 

canonical illuminant and pgue"lc - a random guess. The worst case performance of doing 

nothing is defined as 

nothing(j) = max O(plyC, pgues',' 
guess - - ) , guess~c E r(c) 

where O() is a function returning the angle between two vectors and - qgUe"& is the 

chromaticity corresponding to the 3-vector JF"'"9c. - One might argue that the worst 
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case performance defined in equation (5.16) is too pessimistic; after all there is no 

constraint on the illuminant in (5.16). This consideration leads to a second measure 

of doing nothing. The maximum angle between the canonical camera response vector 

and the corresponding vectors of the same surface under any of our 3 test illuminants 

(tungsten, cloudy sky and blue sky) is calculated: 

In evaluating the color constancy performance of the algorithm one must first 

take the set of plausible mappings and choose amongst them in order to have a single 

answer. To do this Forsyth's heuristic is used; the map which maximizes the area 

of the image gamut after it is mapped to the canonical illuminant is chosen. In 

terms of Figure 5.4 this roughly translates into choosing the points furthest from 

the origin for each set of mappings. The maximum area heuristic effectively forces 

the image to be as colorful as possible. For each illuminant and each reflectance set 

two mappings are calculated. The first is chosen using only the gaumt constraint on 

surfaces, i.e., the map in I'(C/Z) under which the image gamut has maximum area. 

The second, incorporating the illuminant constraint, is the maximum area mapping 

in I'(C/Z) n I'-l(E/ps~c). - Given a chromaticity under an unknown illuminant it is 

straightforward to calculate its chromaticity with respect to either of these maps and 

from this the corresponding 3-vectors relative to the canonical illuminant. The angle 

between these and the correct canonical response vector is a measure of the algorithm's 

color constancy performance. 

In the top of Figure 5.6 the performance of the color constancy algorithm for the 

Macbeth color checker viewed under tungsten light is graphed. 

The graph is in three sections, one for each data set (small, medium and large) 

and within each section there are five error bars. The leftmost bar (lightest shad- 

ing), gives the range of worst-case errors as defined by equation (5.16) and the next 

bar (slightly darker) as defined by (5.17). The third bar (darker again) shows the 

recovery performance of the algorithm using only the surface gamut constraint. The 

fourth bar (still darker) shows the performance when the illuminant constraint is also 
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Error in recovered descriptors (Tungsten Illumination) 
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Figure 5.6: The color constancy error for various color constancy solution methods 
is displayed. The top graph records the performance returned when the input con- 
sists of three sets of reflectances are viewed under Tungsten illuminant. The middle 
and bottom graphs record performance when the same reflectances are viewed under 
Cloudy sky and Blue sky illuminants. A detail discussion of the experiment is given 
in the text. 

Error in recovered descriptors (Blue Sky Illumination) 
$0 
ta 
Wo %* - 
p 
<o 

- - - 

small medium large 
Size of data set 



CHAPTER 5. COLOR IN PERSPECTIVE 134 

used. Finally the fifth bar (darkest overall) shows the error performance when the 

best least-squares fit diagonal matrix is used (the X's in Figure 5.5). This last bar 

does not correspond to any algorithm but rather to the case when there is a known 

correspondence between canonical chromaticities and those of the unknown illuminant 

and thus serves as a control on how much color constancy can actually be attained. 

The straight lines on each of the bars shows the median angular error in the recovery. 

Color constancy performance under a cloudy sky light is shown in the middle 

graph. Finally the bottom graph shows algorithm performance for the blue sky illu- 

mination. 

It is clear that the algorithm returns results far better than doing nothing for 

all illuminants and all reflectance sets. Moreover it is apparent that a constraint 

on the illuminant is very powerful, especially for the small and medium reflectance 

sets-much better constancy is afforded than using only the surface gamut constraint. 

Moreover, in almost all cases, exploiting illuminant and surface constraints results in 

constancy of a similar order as that available in the control best case. 

In real scenes the color of the illuminant changes from place to place. For example 

at the window of an office daylight is dominant. As one moves further to the interior 

of the room the component due to artificial illumination becomes stronger. It is 

imperative therefore, in the context of the current theory, that color constancy be 

delivered given only local rgb measurements. The more local these measurements, 

the fewer the chromaticities contributing to the image gamut. That such good color 

constancy is possible with a reflectance set of just 4 patches is extremely encouraging 

in this regard. 

Conclusions 

Color constancy has proven to be a very hard problem to solve. Existing methods are 

all limited in that they can only work for scenes satisfying very unrealistic assump- 

tions. For example some approaches require a white reflectance in every scene while 

others assume that all surfaces are planar. Most assume there are no specularities. 

In this chapter an algorithm was developed which can deliver color constancy under 
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more realistic assumptions. 

There are two observations. First, the range of camera responses induced by 

different reflectances varies with a change in illumination and second, that illumination 

can only vary within certain bounds. These observations are all that is assumed in 

the algorithm. Consequently color constancy becomes possible in images of real world 

scenes, including those with shape, specularities and illumination power variation. 

The algorithm was tested on real images of Macbeth color checker patches. Ex- 

tremely good constancy is possible even when there are few patches in a given scene. 

Indeed the degree of constancy is comparable to the best which is theoretically pos- 

sible. 
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Abstract 

The color constancy problem has proven to be very hard to solve. This is even true 

in the simple Mondriaan world where a planar patchwork of matte surfaces is viewed 

under a single illuminant. In this chapter we consider the color constancy problem 

given two images of a Mondriaan viewed under diflerent illuminants. 

We show that if surface reflectances are well-modelled b y  3 basis functions and illu- 

minants by up to 5 basis functions then we can, theoretically, solve for color constancy 

given 3 surfaces viewed under 2 illuminants. The number of recoverable dimensions 

in the illuminant depends on the spectral characteristics of the sensors. Specifically if 

for a given sensor set a von Kries type, diagonal model of color constancy is suficient 

then we show that at most 2 illuminant parameters can be retrieved. 

Recent work has demonstrated that for the human visual system a diagonal matrix 

is a good model of color constancy given an appropriate choice of sensor basis. We 

might predict therefore, that we can recover at most 2 illuminant parameters. We 

present simulations which indicate that this is in fact the case. 
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6.1 Introduction 

Under different illuminants the same surface reflects different spectra of light; however, 

despite this we see the same color. This is the phenomenon of color constancy. Despite 

extensive research there does not yet exist a computational theory sufficient to explain 

the color constancy performance of a human observer. 

A common starting point for color constancy research is the following question: 

"Given an image of several surfaces viewed under a single illuminant how can we 

derive illuminant independent surface descriptors?" 

This basic problem is tremendously hard to solve. Edwin Land's famous retinex 

theory [LM71, Lan86, Lan771 (and Hurlbert's [Hur89] subsequent extension) are easily 

shown to be inadequate for the task [BW86]. Forsyth's recent theory [Forgo] though 

more powerful requires many chromatically distinct surfaces in each scene. 

Consequently the basic color constancy question is relaxed and computational the- 

ories often incorporate other factors into the problem formulation. Statistical analy- 

ses of reflectance and illuminant spectra are at  the heart of many approaches [Ma185, 

MW86, Buc80, GJT88, FD881. Funt and Ho [FH88] demonstrated that the chromatic 

aberration inherent in every lens can provide useful color information, Shafer [Shag51 

provides a method of determining the illurninant color given specularities and Funt et 

a1 [FDH91] have shown that mutual reflection occurring at a concave edge ameliorates 

the color constancy problem. 

Tsukada et a1 [TO901 and D'Zmura [D'Z92] have considered the color constancy 

problem where the illumination changes. Specifically they asked: "Given an image of 

several surfaces viewed under two illuminants how can we derive illurninant indepen- 

dent surface descriptors?" 

This question is particularly relevant since Craven and Foster [CF92] have re- 

cently demonstrated that an illumination change is easily discernible and moreover 

can be distinguished from reflectance (i.e. false illuminant) changes. D'Zmura [D7Z92] 

has shown that if illuminants and surface reflectances are well described by finite- 

dimensional models each of 3 dimensions (the 3-3 world) then the color constancy 
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problem can be solved given 3 surfaces seen under two illuminants. D'Zmura and Iver- 

son [DI93] generalized this result and have presented an algorithm which can solve for 

color constancy given many different assumptions-for example different numbers of 

reflectances or different model dimensions. However the results of the present chapter 

are not part of D'Zmura and Iverson's general theory. 

In this chapter we begin by providing an alternate analysis for the 3-3 problem. 

Unlike D'Zmura's method our approach generalizes to more than 3 patches. Further, 

in the case where reflectances and illuminants are not precisely 3-dimensional our 

approach provides a least-squares criterion in solving for color constancy (D'Zmura's 

analysis is for exact models only). We extend our basic method and demonstrate 

that it is theoretically possible to solve for 5 parameters in the illuminant and 3 for 

reflectances given 3 patches seen under two illuminants. Under this generalized model 

every bijective linear map corresponds to a valid illumination change. 

We show that there are classes of sensors for which the 2 illuminant, 3-3 color 

constancy problem cannot be solved. Specifically if for a given sensor set a diagonal 

matrix is a good model of illuminant change then the color constancy problem cannot 

be solved. 

The world is not precisely 3-3 nor even 5-3 (in illuminant and reflectance dimen- 

sion); therefore we must ask where our computational model will succeed in solving 

the color constancy problem. Using the human eye sensitivities we test our algo- 

rithm's color constancy performance through simulation experiments. We come to 

the following surprising conclusion: illumination change is useful in solving for color 

constancy if we assume the world is 2-3; that is we assume the illumination is 2- 

dimensional. Moreover the greater the change in illuminant color the greater the 

likelihood of correctly solving for color constancy. 

Assuming a 2-dimensional illumination has widespread implications. Firstly lead- 

ing from the work of Maloney-Wandell [MW86] it is straightforward to show that the 

color constancy problem can be solved given a single patch under 2 illuminants1. Sec- 

ondly color constancy is still ~ossible even where a diagonal matrix is a good model 

of illumination change. This is reassuring since Finlayson et a1 [FDF93b] have shown 

 his case is examined in isolation elsewhere [FF94]. 
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that under the 2-3 assumptions there exists a sensor basis for all trichromatic visual 

systems for which a diagonal matrix precisely models all illuminant change. The anal- 

ysis presented in this chapter therefore, serves to strengthen diagonal matrix theories 

of color constancy. 

In section 6.2 we formulate the color constancy problem under changing illumina- 

tion. Our solution method for both the 3-3 and 5-3 method is detailed in section 6.3. 

In section 6.4 given the human eye cone sensitivities we consider when the color con- 

stancy problem can in practice be solved. Section 6.5 presents simulations which 

demonstrate that color constancy can be solved by assuming a 2-3 model and given 

large color shifts in the illuminant. 

The Color Constancy Problem 

In keeping with D'Zmura we develop our solution method for the Mondriaan world: a 

Mondriaan is a planar, matte surface with several different, uniformly colored patches. 

Light striking the Mondriaan is assumed to be of uniform intensity and is spectrally 

unchanging. Each Mondriaan is assumed to contain at least 3 distinct surfaces. 

If E(X) is the illuminant incident to surface reflectance S(X), where X indexes 

wavelength, then the reflected color signal is equal to: 

C(X) = E(X)S(X) (6.1 : matte reflectance) 

The value registered by the kth cone to the color signal C(X) is defined by the 

integral integral equation (where w denotes the visible spectrum): 

The illuminant, reflectance or sensitivity functions are known only for a set of sampled 

wavelengths (in this chapter all spectra are in the range 400nm to 650nm measured 

at 10nm intervals). Therefore the integral, of equation (6.2), is approximated as a 

summation. 
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6.2.1 Modelling Reflectance and Illurninant Spectra 

Both illuminant spectral power distribution functions and surface spectral reflectance 

functions are well described by finite-dimensional models of low dimension. A surface 

reflectance vector S(X) can be approximated as: 

where S;(X) is a basis function and a is a ds-component column vector of weights. 

Similarly each illuminant can be written as: 

where Ej(X) is a basis function and g is a dE dimensional vector of weights. 

Maloney [Ma1861 presented a statistical analysis of reflectance spectra and con- 

cluded that between 3 and 6 basis vectors are required to model surface reflectance. 

We will assume a 3-dimensional reflectance model. A similar analysis for daylight illu- 

mination was carried out by Judd [JMW64]; daylight illuminants are well represented 

by 3 basis vectors. 

Given finite-dimensional approximations to surface reflectance, the color response 

eqn. (6.2) can be rewritten as a matrix equation. A Lighting Matrix A(g) maps 

reflectances, defined by the a vector, onto a corresponding color response vector: 

where A(& = J, Ri(X)E(X)Sj(X)dX. The lighting matrix is dependent on the il- 

luminant weighting vector , with E(X) given by eqn. (6.4). The lighting matrix 

corresponding to the i th illuminant basis function is denoted as A'. 

6.2.2 Color constancy under 2 illuminants 

Let us denote the 2 illuminants by the weight vectors g1 and g2. Reflectances are 

denoted as El, a2, . - . , a where k 2 3. Arranging the k sigma vectors as the columns 

of the matrix f11,2,...,k we can write the color responses under the two illuminants as: 
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where the ith column of Pj is the response of the ith surface under the j th illuminant 

( j  = 1 or j = 2). Given P1 and P2 we want to solve for gl, g2 and 0 1 , 2  ,..., k. 

6.3 The Color Constancy Solution 

We propose solving for color constancy in 2 steps. First we calculate the linear trans- 

form mapping the color responses between illuminants. This transform is independent 

of C11,2,...,k and, as we shall show, provides an elegant means of determining sf and s2. 
By calculating [A($)]-', we can easily recover f11,2,...,k. 

In the 3-3 world lighting matrices have 3 rows and 3 columns. An implication 

of this is that color responses under one illuminant can be mapped to corresponding 

responses under a second illuminant by the application of a 3 x 3 linear transform; 

we call this an illuminant map: 

Mly2~(g1) = A ( ~ )  , = A(g2)[A(1)]-I (6.7 : illurninant map) 

Theorem 6.1 The color constancy problem can only be solved if for each pair of 

illuminants sld and s 2 2  (sl, s 2  are scalars) the corresponding illuminant map M112 

is unique, up to a scaling, over all other illuminant pairs. 

Proof of Theorem 6.1: Assume we have 4 illuminants ", rb, & and Ld such that 

~ a , b  = Mc$d where Lb and Ed are linearly independent. If A@) = sA(f) then 

Theorem 6.1 follows since b and d are, by assumption, linearly independent and con- 

sequently Malb # Mc~d. Otherwise let f11,2,3 denote a matrix of 3 reflectances. Let us 

define 0; such that: 
t I 

'Pa = ~ ( ~ ~ ) 0 1 , 2 , 3  1 pd = A ( ~ ) R ; , ~ , ~  (6.8) 

Thus the reflectances fi1,2,3 viewed under illuminant sb cannot be distinguished from 

the reflectances R;,2,3 viewed under illuminant rd. That is, the color constancy problem 
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cannot be solved if MI*' is not unique over all other illuminant pairs. If M1f2 is not 

unique we cannot hope to separately recover both the g vectors (or at least the MI,' 
matrix) as well as the vectors. 

Let us assume that all pairs of illuminants, in our 3-dimensional span, have a 

corresponding unique illuminant map. Given the mapping M1y2 then: 

Let A denote a 9 x 3 matrix where the ith column contains the basic lighting matrix 

Ahtretched out columnwise. Similarly let l? denote the 9 x 3 matrix where the ith 

column contains M1!'~' .  Rewriting equation (6.9): 

The columns of the matrix A are a basis for a 3-dimensional subspace of 9-space. 

Similarly the columns of I3 are a basis for a 3-dimensional subspace of 9-space. The 

solution of equation (6.10) is the intersection of these two spaces. The intersection 

is easily found by the method of principal angles [GvL83]. This method finds the 

vectors and r2 which maximizes: 

That is, and ' are chosen such that the angle 8 between Q' and PC2 is minimized. 

Thus even when there does not exist an exact solution to equation (6.10), the method 

of principal angles provides a least-squares criterion for returning the best answer. 

6.3.1 Robust Color Constancy 

While reflectances may in general be well described by a 3-parameter reflectance model 

a particular set of three reflectances may be poorly modelled. Consequently M1t2 
will be incorrectly estimated. In this case the color constancy algorithm may return 
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incorrect estimates for the reflectance and illuminant parameters. However if the 

parameters of the illuminant map are derived from the observations of many (greater 

than three) distinct reflectances then we would expect improved color constancy. 

Let P1 denote a 3 x n matrix of n reflectances observed under an arbitrary illumi- 

nant. Similarly P2 is the 3 x n matrix of observations of the same reflectances viewed 

under a second illuminant. The best illuminant map, in the least-squares sense, taking 

P1 onto P2 is defined by the Moore-Penrose inverse: 

In section 6.5 we present simulations where the illuminant map is derived first from 

3 and then from 6 reflectances. The greater the number of reflectances the better the 

color constancy performance. 

6.3.2 Solving for more Illuminant Parameters 

The columns of A and B of equation (6.9) are bases for 3-dimensional subspaces of 9- 

space. It is possible, therefore, that A and B have a null-intersection-the combined 

9 x 6 matrix [A B ]  has full rank; all columns are linearly independent. A null 

intersection is indicative of the fact that the world is not 3-3. We might ask therefore, 

if it is possible to extend our model assumptions such that any illuminant map falls 

within our model. 

The columns of A correspond to the three basis lighting matrices; the columns 

of L? correspond to this basis transformed by an illuminant mapping. Clearly if we 

increase the dimension of the illuminant model from 3 to 5 then A and B become 

9 x 5 matrices and are bases for 5-dimensional subspaces. In the 5-dimensional case 

the combined matrix [A L?] has 9 rows and 10 columns. If the first 9 columns of 

[P Q ]  are linearly independent then they form a basis for 9-space. Consequently 

the 10th column is guaranteed to be linearly dependent on the first 9. Thus in the 

5-3 case intersection is assured; indeed all bijective linear maps correspond to a valid 

illuminant mapping. 



CHAPTER 6. COLOR CONSTANCY AND A CHANGING ILLUMINATION 145 

It is interesting to note that the 5-3 world does not belong to the general color con- 

stancy formulation of D7Zmura and Iverson [DI93]. Our work, therefore, supplements 

this general theory. 

6.4 When color constancy can be solved 

So far we have assumed that the illuminant map is unique, and consequently from 

Theorem 6.1, there exists a solution to the color constancy problem. If the world is 

3-3 and the illuminant mapping is not unique then we show here that there exists a 

sensor basis such that all illuminant mappings are diagonal matrices. 

Theorem 6.2 If the illuminant mapping is non-unique then there exists a sensor 

transformation 7, such that for all illuminants 1 and 2, 'TM1y27-' is a diagonal 

matrix. 

Proof of Theorem 6.2: Assume we have 4 illuminants ga, b ,  gC and gd such that Mayb = 

Meld (Ma,b # 1) and A(ga) # slA(gc) and A(gb) # s2A(gd) (where s l  and s 2  are 

scalars). Because we are assuming a 3-3 world, there are only 3 linearly independent 

lighting matrices and therefore we can choose scalars a, P and y such that: 

Denoting the identity matrix as Z, we can write the mapping of illuminant a to 

illuminant c as: 

Rewriting both Ma!b and Mcld, by assumption they are equal, as 7 - 1 V 7  and Z as 

'T-lZ7 equation (6.14) becomes: 
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The lighting matrices A(ga), A(gb) and A(&) are linearly independent and span 

the space of lighting matrices; any lighting matrix can be written as a linear combi- 

nation of these three. Since Mafb  and Ma'"  have the same eigenvectors all illuminant 

mappings from a must have the same eigenvectors: 

where s l ,  sz and 33 are scalars defining an arbitrary illuminant and Va!b and Vatc are 

the diagonal matrices of eigenvalues for Majb and Mayc respectively. It is a simple 

step to show that all illuminant mappings share the same eigenvectors. Consider 

the illuminant mapping M s 1 a + s 2 b + S 3 c 7 t ~ a + t 2 b + t 3 c ,  where s; and t j  are arbitrary scalars. 

Employing equation (6.17) we can write this as: 

M S I  a+szb+s3 c,tl a+tzb+t3c - - T - l [ t l Z  + t2valb + t 3 ~ a ' C ] 7 7 - 1 [ ~ 1 ~  + ~ 2 2 ) ~ ' ~  + 
(6.18) 

which is equal to 

This completes the proof of Theorem 6.2. 

Corollary 6.1 If the illuminant mapping is non-unique, then from each lighting 

matrix A(g) the set of all matrices of the form 7-lV7 exactly characterize the set of 

valid illuminant maps. The spaces spanned by P and Q intersect in all 3 dimensions. 

Theorem 6.2 provides a useful test (see Figure 6.1) for determining whether a 

change in illumination adds extra information to the color constancy process. If the 

eigenvectors of the mapping taking the first lighting matrix to the second is diflerent 

from the eigenvectors of the mapping taking the first to the third then a change of 

lighting adds information to the color constancy process. 
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Figure 6.1: Color Constancy Check for 3-3 world: If check fails then color constancy 
is as hard under 2 illuminants as under a single illuminant. 

The question of when a change in illumination is useful in solving for color con- 

stancy raises a paradox. Entrenched in color constancy research is the notion that if 

illumination change is well modelled by a diagonal matrix then it is easier to solve 

for color constancy and this is in direct conflict with what we have shown. 

In the next section we present simulations which go some way to resolving this 

paradox. We examine our algorithm's performance given reflectances viewed under 

pairs of illuminants. The best color constancy is attained assuming 2-3 conditions, as 

opposed to 3-3 or 3-5. Under 2-3 conditions illumination change is always perfectly 

modelled by a diagonal matrix (with respect to an appropriate basis) [FDF93b], and 

more importantly by losing one degree of freedom in the illuminant model, every 

diagonal matrix corresponds uniquely to a pair of illuminants; that is, color constancy 

is soluble. 

Sirnulat ions 

For our illuminants we chose a set of 7 Planckian black body radiators with corre- 

lated color temperatures 2000K, 2856K (CIE standard illuminant A [WS82]), 4000K, 
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6000K, 8000K, lOOOOK and 20000K. Reflectances are drawn from the set of 462 Mun- 

sell [Nic57] spectra. Illuminant bases of dimension 2, 3 and 5 are derived from an 

ensemble set of 14 illuminants containing the Planckian radiators, 5 daylight phases 

and CIE B and CIE C. A 3-dimensional reflectance basis is derived from the complete 

Munsell set. 

We proceed in the following manner. First, 3 reflectances are randomly drawn from 

the set of 462 Munsell Spectra. For each pair of black-body radiators, B;(A), Bj(A), 

we simulate the color response of the eye (equation (6.2)) using the cone fundamentals 

measured by Vos and Walraven [VW71]. We run our color constancy algorithm three 

separate times; using the 2-, 3- and 5-dimensional illuminant models. We record the 

recovery error as the angle between Bj (A) and that returned by our algorithm (g2 of 

equation (6.10)): 

d~ 

err = angle(Bj (A), Ek(A)c:) 
k=l 

As the recovered spectra better approximates the actual spectra so the error decreases 

towards zero. This experiment was repeated 5-times and the average angular error 

calculated for each illuminant pair. 

The 2000K black-body radiator is a red biased spectrum, the 2856K radiator is 

still red but has a greater blue component. This trend continues with each of the 

4000K, 6000K, 8000K, lOOOOK and 20000K radiators becoming progressively bluer. 

If the first illuminant is the 2000K spectra and the second 2856K then these spectra 

differ by 1 red-blue position. If the second illuminant is 4000K then this distance is 2. 

Subject to this red to blue ordering in our illuminant set we further average the error 

values. We calculate the average angular error given a red-blue difference of 1, 2, 3, 4, 

5 and 6. We graph the color constancy performance, given these red-blue distances, 

for 2-, 3- and 5-dimensional illumination models in Figure 6.2. 

For our illuminant set the average angular error between illuminants for red-blue 

distances of 1 and 2 is 11.7 and 23.4 degrees. Therefore if the error in recovering 

illumination is on the order of 10 degrees then the recovered spectra might be too red 

or too blue by a red-blue distance of 1. Similarly when angular error is on the order 
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Figure 6.2: Randomly selected sets of 3 reflectances are imaged under 2 illurninants. 
The average angular error in the recovery of the second illurninant was calculated for 
illuminant models of 2-, 3- and 5-dimensions and red-blue distances of 1 through 6. 

of 20 degrees the recovered spectra may be two units of red-blue distance from the 

correct answer. If recovery error is larger than this then the recovery procedure is not 

very effective since the same performance can be delivered by simple guess work. For 

example suppose we always guessed that the spectra is the 6000K black-body radiator 

then because its red-blue distance to all other spectra is less than or equal to three 

the recovery error of guessing will also be less than or equal to three. 

In all cases the 2-dimensional assumption returns better color constancy. More- 

over as the color constancy performance generally improves as the red-blue distance 

increases-a distance greater than 2 and the average angular error is less than or 
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Figure 6.3: Randomly selected sets of 6 reflectances are imaged under 2 illuminants. 
The average angular error in the recovery of the second illuminant was calculated for 
illuminant models of 2-, 3- and 5-dimensions and red-blue distances of 1 through 6. 

equal to 14 degrees. Under the 3-dimensional assumption the angular error is much 

higher, on the order of 18 degrees throughout. However there is a discernible perfor- 

mance improvement given red-blue distances of greater than 4. The 5-dimensional 

assumption returns extremely poor color constancy with angular error always larger 

than 50 degrees. 

We repeated this experiment for random selections of 6 patches. The results are 

graphed in Figure 6.3. Both the 2- and 3-dimensional assumptions show marked 

improvement; with the 2-dimensional assumption still supporting substantially better 

color constancy. As before the 5-dimensional assumption pays very poor dividends 
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with the minimum angular error of 48 degrees. The error distribution is graphed in 

Figure 6.3. 

That the 2-dimensional illuminant assumptions returns the best color constancy, 

at first glance, appears surprising. However previous simulations [MW92] have demon- 

strated that 2-3 assumptions provide a reasonable model for approximating cone re- 

sponses. Moving to higher dimensional illumination models improves, slightly, on 

this approximation but at the cost of introducing very many more valid illurninant 

mappings. As the number of mappings increases so does the likelihood of a false 

match. 

6.6 Conclusion 

We have developed a computational framework for solving for color constancy under 

a change of illuminant. The framework is general in the sense that the computation 

remains the same under different illuminant model assumptions. 

We derived a test to determine whether a change in illumination adds new infor- 

mation to the color constancy problem given a 3-dimensional illurninant. If a diagonal 

matrix, with respect to a sensor basis, is a good model of illurninant change then a 

change of illumination does not add new information. This is paradoxical in that it 

contradicts the established view that diagonal matrix color constancy is easier than 

non-diagonal met hods. 

Simulation experiments go some way to resolving this paradox. We show that a 

2-dimensional illuminant assumption supports better color constancy than 3- or 5- 

dimensional assumptions. A 2-dimensional assumption is completely consistent with 

diagonal theories of color constancy. 



Chapter 7 

Contributions and future research 

direct ions 

In this chapter I summarize the central contributions presented in my thesis. I also 

place this study in the wider context and suggest possible applications in other fields. 

7.1 Contributions 

1. I generalize the coefficient image model by allowing a sensor transformation 

prior to the application of scaling coefficients. 

Traditional coefficient theories of color constancy are based on the idea that an 

illumination change induces simple scalings of the color responses. Specifically if 

(r, g, b) is a color response for a surface viewed under one illuminant and (r', g', b') 

is the color response for the same surface viewed under a second illuminant 

then the two are related by simple coefficient scalings: r' = a r ,  g' = ,Bg and 

b' = yb (where a, ,B, and y are scalars). In the coefficient model the same scaling 

coefficients map the color responses for all surfaces between illuminants. 

Under the generalized coefficient scheme color responses are transformed to a 

new sensor basis prior to applying scaling coefficients. Each coeficient channel 

in the new basis is a linear combination of the original color response functions. 
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I demonstrated, in simulation experiments, that the coefficient model performs 

' reasonably poorly for the human cones, the XY Z color matching curves, or the 

color-opponent type channels. In contrast when illumination change is modelled 

by a 3 x 3 matrix transform (i.e. the general image model) performance is 

excellent. A central goal of this thesis is to find coefficient channels which will 

enhance coefficient model performance; hopefully, to a level comparable to the 

general image model. 

2. Several sets of coefficient channels are derived by different means. These are 

listed below where a short overview of their derivation is given. 

Sensor-based spectrally sharpened sensors. It is well known that the coefficient 

image model exactly characterizes color response for sensors which are sensitive 

to a single wavelength of light. Sensor-based spectral sharpening is a technique 

for determining the linear combination of sensors that is maximally sensitive 

(or narrow-band) for any interval over the visible spectrum. Coefficient image 

performance with sensor-based spectrally sharpened sensors is similar to general 

image model performance. 

Data-based Spectrally Sharpened sensors. Using the statistics of simulated color 

responses, data-based sharpening finds the optimal (with respect to a least- 

squares criterion) coefficient channels for any pair of illuminants. Given many 

illuminant pairs, the aggregate sensors are returned. Data-based sharpening 

markedly improves coefficient image model performance. 

Perfectly Sharpened sensors. Sensor-based sharpening and data-based sharpen- 

ing operate for a given set of sensors. Perfect sharpening on the other hand 

is an algebraic argument defining the conditions that reflectance and illumina- 

tion spectra must satisfy such that every set of trichromatic sensors has a basis 

where the coefficient model exactly describes color response. If illumination and 

reflectance are well described by 2- and 3-dimensional linear models then this 

is a sufficient condition for perfect sharpening. That daylight illumination and 

natural reflectances are reasonably described by such models indicates that the 

coefficient model will be approximately adequate regardless of the sensor set. 
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Generalized diagonal sensors. I show that when the perfect sharpening con- 

ditions are reversed-illumination and reflectance are described by 3- and 2- 

dimensional linear models- there still exists a sensor basis (though not the 

same one) where the coefficient model exactly characterizes color response. 

Because these 3-2 conditions are at the foundation of many recovery algorithms 

it follows that they are all coefficient theories of color constancy. Operating in 

coefficient mode their exposition and implementation is simplified. I describe, 

in detail, how the Maloney-Wandell algorithm can be implemented from a co- 

efficient perspective. 

Maximum ignorance sensors. Sensor-based spectral sharpening is a method for 

finding linear combinations of the cones which appear narrow-band. Maximum 

ignorance sensors also aim at narrow-bandedness but from a different perspec- 

tive. The aim here is to find the linear combination of the cones (or other 

sensors) which sample color signal spectra like a narrow-band set. If this goal 

can be achieved, coefficient color constancy must follow since the coefficient 

image model is perfect for narrow-band sensors. 

The maximum ignorance sensors are the linear combination of the cones that 

operate most like a narrow-band set when all possible color signal spectra appear 

with equal likelihood. Maximum ignorance sensors markedly improve coefficient 

image model performance. The maximum ignorance assumption, while unreal- 

istic (all color signals are not equally likely) has the advantage of simplifying 

computation since maximum ignorance sensors can be found in linear time. 

Calibration sensors. Calibration sensors are derived in much the same way as 

maximum ignorance sensors. The only difference is that a calibration set of real 

color signal spectra is used. For a set of 426 Munsell reflectances [Nic57] illumi- 

nated by D48, D55, D65, D75, Dl00 daylights [JMW64] and CIE A [WS82] the 

derived calibration channels support good coefficient performance. Moreover, 

performance is significantly better than for the maximum ignorance sensors. 

However, increased performance is bought at the price of a computationally 

more expensive derivation. The computation is cubic for a trichromatic sensor 
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set. 

3. Perspective colors are proposed as a suitable representation for investigating the 

color constancy problem. If (r, g, b) is a color response triple then (rlb, glb) is its 

corresponding perspective color (I use the term "perspective" since dividing by 

the third coordinate is analogous to the perspective projection used in computer 

graphics). 

In perspective, intensity information is factored out of the problem formulation. 

It follows that image processes which confound correct intensity recovery are of 

no consequence; these processes include specularities, shape and varying illumi- 

nant power. Thus, in theory, color constancy becomes possible in realistic world 

scenes. 

4. I demonstrate that Forsyth's [For901 coefficient-based gamut-mapping recov- 

ery algorithm, CRULE, is an elegant vehicle for solving the perspective color 

constancy problem-if the coefficient model accurately models response vectors 

it will accurately model perspective colors as well. Furthermore, I show that 

problems inherent to CRULE are in large part mitigated. By discarding inten- 

sity recovery, color constancy becomes possible in real world scenes (Forsyth's 

CRULE runs in to difficulties in all but the simplest of worlds). Moreover in per- 

spective, CRULE can be implemented with reduced computational complexity. 

Indeed while Forsyth's implementation of CRULE returns only an approximate 

answer, my 2-dimensional perspective calculation is exact and operates in a 

timely manner. 

5. An illumination gamut restriction is added to the CRULE formulation. I demon- 

strate that this is an extremely powerful constraint in solving for color constancy. 

Moreover while the addition of the illumination gamut is straightforward in 

perspective, this is not true for the 3-dimensional CRULE. I call the recov- 

ery procedure which combines perspective CRULE with the illumination gamut 

constraint color in perspective. 
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6. Color in perspective, when tested on real images, successfully and 

accurately recovered color descriptors. Moreover there was good re- 

covery even when there was little color complexity in an image. Most 

other recovery algorithms have not been tested on real images. Indeed many 

algorithms would appear not to have been tested at  all. A key component of 

the recovery success is the new illumination gamut constraint. 

7. I examine the m~l t i - i l lumina~t  color constancy problem. Specifically I character- 

ize the conditions under which viewing a scene under more than one illuminant 

can add information useful in descriptor recovery. I show that if there exists 

a sensor basis with respect to which the coefficient model accurately describes 

color response then no information is added. The only exception to this is when 

illumination is well described by a 2-dimensional linear model. In this case the 

generalized coefficient model holds for all sensor sets. 

8. Given that there exist linear combinations of the cones with respect to which 

a coefficient image model performs well, I predict that at  most 2 parameters of 

the illuminant can be successfully recovered. Experiments corroborate this pre- 

diction. With a 2-dimensional linear model assumption, some color constancy is 

possible. Assuming 3- (or higher) dimensional models results in poor recovery. 

9. Theoretical and experimental comparisons of the various coefficient channels are 

given. Sensor-based sharpening is &own to be a theoretically sound method and 

is closely related to the derivation of maximum ignorance sensors. 

Experimentally, while all sets of coefficient channels enhance coefficient per- 

formance, they do so to different degrees. Performance is contingent on the 

accuracy of the underlying statistical models-the more accurate the statistics 

the better the performance. &&-based sharpening derived using simulated 

color response vectors performs best overall. 

10. I have split the color constancy problem into two related parts: the image 

model and the recovery algorithm. The image model describes the interde- 

pendence of light, surface and sensor response. Taking illumination-dependent 
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sensor responses as input, the recovery algorithm attempts to extract illuminant- 

independent descriptors. The precise nature of recovery computation is defined 

by the image model. 

An image model with few parameters may poorly account for sensor responses. 

A poor image model effectively limits the efficacy of any recovery procedure 

since descriptors can only be recovered up to the accuracy of the model. In 

contrast, while an image model with many parameters may accurately describe 

color response, it also necessitates a complex recovery procedure-there are 

many more parameters to recover. 

11. To evaluate image model performance I developed the normalized fitted distance 

(or NFD) measure. This measure is applied in two stages. First, illuminant- 

dependent color observations are mapped (in a manner defined by the image 

model) to their corresponding illumination-independent descriptors with mini- 

mum least-squares error. At the second stage individual descriptors are com- 

pared with fitted observations. The NFD measure is defined as the Euclidean 

distance between fitted observation and descriptor normalized to the descriptor 

length. 

Applications 

1. Color Graphics. Color graphics is the inverse of color vision. The latter tries to 

derive scene properties from an image of the world whereas the former attempts 

to create an image from known scene properties. Of course both disciplines 

require a good image model. A poor image model bounds the accuracy of color 

recovery in color vision and limits the realism of color rendering in color graphics. 

In creating images it is, in principle, possible to use very accurate image models. 

Indeed full spectral data can be used. However, because image rendering is an 

exceptionally expensive computational [FvDSO] task the simple coefficient image 

model is generally employed within the graphics community [BorS 11 . However, 

the cone sensors are not used, rather, the coefficient channels are either the 
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XYZ color matching curves [WS82] or matching curves derived for monitor pri- 

maries [Borgl]. Neither of these color spaces are good choices for the coefficient 

image model. This has led Peercy [Pee931 to develop a many-parameter (many 

more parameters than the coefficient model) rendering scheme based on linear 

models of illuminat ion and reflectance. 

I propose that the coefficient channels derived in this thesis will support more 

realistic rendering for color graphics. Indeed I believe that, at least for simple 

scenes, they will be sufficiently accurate to circumvent Peercy's more complex 

method. 

2. Color balancing. If the colors on a monitor or television "look" wrong then we 

actively change them. Color manipulation is either direct in that the gains of 

the beams for the three phosphors are independently adjusted, or indirect via 

changes in contrast and brightness. Both classes of manipulation operate across 

the image as a whole and in this sense simulate a changing illuminant color. 

If the colors in an image appear too red, as would be the case for an image 

taken under red light, then we would make them more blue thereby balancing 

the colors. 

Theoretical and experimental results presented in this thesis demonstrate that 

color balancing operating directly either on the cones, or on XYZ color matching 

functions, or on opponent channels, cannot correspond to physically plausible 

changes in illumination. If our goal is to correct for the illuminant, traditional 

balancing can have limited performance. In contrast color balancing relative to 

the coefficient channels corresponds precisely to physically plausible illumination 

changes. I propose the coefficient channels as the basis for color manipulation 

on display devices. 

3. Color reproduction: white point matching. Color reproduction is the problem 

of taking colors displayed on one medium and correctly redisplaying them on 

another. For example a graphics artist may create a picture on a color monitor 

and then print a hard-copy on a color printer. Color reproduction is the art of 
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getting the printer to output colors which look the same. 

The basic problem has proven very hard and is the source of much research 

(for example see [MB93]). As a stepping stone to accurate reproduction, the 

monitor-printer system (or other combination of devices) is often calibrated to 

reproduce white correctly. This can be achieved if the coordinates of white on 

each device are the same and each device outputs the same colors for the white 

coordinate. To fix the coordinate systems, device coordinates relative to white 

are used. One simply divides each color coordinate by the coordinate of white: 

e.g. if (r,g, b) is a device coordinate then relative to white the coordinate be- 

comes ($, :, &) where (rw,gw, 6,) is the device coordinate of white. Crucially, 

different media have different white-points. 

If device coordinates are defined relative to the cone basis or XYZ basis (the 

latter has become the standard) then correctly taking white across media will not 

guarantee the correct mapping of other colors. If, however, device coordinates 

are defined relative to coefficient channels, correctly accounting for white should 

also correctly account for most other colors. 

4. Color science: perceptually uniform space. The eye adapts to the intensity of 

incoming light. Moreover, if a stimulus entering the eye is reddish the eye will 

become more red adapted. That is, adaptation depends on the color of the 

stimulus light. 

Therefore in quantifying the appearance of colored stimuli it is standard practice 

to include the color of the adapting light. The CIE Lab formulae attempt to 

predict how similar two test stimuli appear relative to some adaptation state. 

If a stimuli has an XYZ coordinate (x, y, z )  and the adapting illuminant is 

(xn,yn,zn) then the adapted tristimulus, the input to the CIE Lab formulae 

is (2, :, 5). The input is effectively a white-point-relative coordinate system 

(see white-point matching above). 

By dividing by the coordinates of the adapting light coordinates it is hoped 

that the dependence of the test stimulus on the adapting light will be removed. 
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Of course as I have demonstrated, scaling the XYZ sensor basis can only ap- 

proximately factor out illuminant color. If instead color coordinates are defined 

relative to the coefficient channels then, in principle, the effect of the illumi- 

nant can be removed with greater accuracy. I speculate that color appearance 

formulae defined in terms of adapted coefficient channel responses might better 

predict the psychophysical data. 

5. Color Machine Vision. Because the color constancy problem is hard to solve, 

various authors have sought to extract illuminant independent color invariants 

from an image, instead of color descriptors. For example, under the coeffi- 

cient image model, the ratio of color observations, effectively factors out the 

illumination dependent information producing a useful invariant. For example 

if (a r l ,  pgl, ybl) and (ar2,  pg2, yb2) are two color observations where (a, p, y) 

are the scaling coefficients to the corresponding descriptors then (2,  E, &) is 

illumination independent. 

The more accurate the coefficient model the more accurate the ratio invariants. 

One would predict therefore that invariants calculated for coefficient channels 

would be more stable and hence more useful. Indeed it has been shown that 

color constant color indexing [FF95], a ratio-based object recognition technique, 

delivers only partial recognition with cone sensors but almost perfect recognition 

with coefficient channels. 

Conclusion 

By factoring a change of sensor basis into the coefficient image. model I have shown 

that simple coefficient scalings suffice in solving for color constancy. I have developed a 

new coefficient color constancy algorithm called color in perspective which successfully 

solves the color constancy problem for real color images. In principal color constancy 

remains possible in the presence of specularities, varying illuminant power and shape. 

Finally I have shown that a changing illumination adds no new information to the 

color constancy problem. The only exception to this is when illuminants are quite 
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restricted; in this case the coefficient image model always suffices. 



Appendix A 

Image Performance in practice 

In this thesis image model performance is quantified in two stages. First observations 

are mapped to descriptors with minimum error, where the form of the mapping is 

defined by the image model and error is defined as the sum of squared differences. 

At the second stage the Euclidean distance between each descriptor and fitted obser- 

vation, normalized to the descriptor length, is calculated. The cumulative histogram 

of normalized fitted distances (or NFDs) is an effective vehicle for comparing image 

model performance. 

While it is clear from NFD cumulative histograms that some models are better 

than others, it is not clear how this translates into visual performance. Is it significant 

that while the general linear model has NFD errors (Figure 1.6) always less than 4% 

the coefficient model (operating directly on the cones) can have greater than 10% 

error? This question is hard to answer for machine vision and would depend largely 

on the task at hand. 

Suppose that some descriptor is the 3-tuple (200,200,200) (i.e. a white) and a fitted 

observation (220,220,220) then the NFD error is 10%. Assuming that a camera records 

discretely in the range 0 to 256, an error of 20 accounts for about 8% of the signal 

range. Such a high error rate would adversely affect any application demanding stable 

color descriptions, e.g. recognizing objects based on their color distributions [SB90]. 

A 4% error corresponds to a fitted observation of (208,208,208) but a pixel dif- 

ference of 8 accounts for only about 3% of the signal range. Thus performance is 
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much better and this may be crucial. Indeed color constant color indexing, a recog- 

nition scheme based on the coefficient model of color constancy, delivers only partial 

recognition when the cones are used. Switching to the generalized coefficient model, 

thereby attaining general image model performance, results in almost perfect recog- 

nition [FF95]. 

In the context of human vision there are numerical formulae which can fairly 

accurately predict the perceptual difference between stimuli. In particular for a pair 

of XYZ color observations (the XYZ sensor basis is graphed in Figure 1.5) the CIE 

Lab formulae [WS82] provide a good estimate of how similar they would appear to a 

human observer. A Lab distance of one corresponds to a just noticeable perceptual 

difference. A distance of two is twice as noticeable. In practice a CIE Lab error of 

less than 2 is not noticeable [SFB92] for complex scenes. 

To test the adequacy of an image model relative to the Lab perceptual measure I 

carried out the following experiment. I calculated the XYZ observations for the 462 

Munsell spectra [Nic57] under 6 illuminants: 5 daylight phases (D48, D55, D65, D75 

and D100) [JMW64] and CIE A [WS82]. Choosing D55 as the canonical illurninant, 

I then calculated the mappings taking observations to descriptors for three image 

models: the general linear model, the coefficient model operating on the cones, and 

the coefficient model operating on data-based sharpened sensors derived in chapter 2 

(see Figure 2.1). Fitting the data for the coefficient models is carried out in two stages. 

First the XYZ observations are mapped to the coefficient basis (cones or data-based 

sharpened sensors) then the best scaling coefficients are determined and applied. The 

mapped observations are then transformed back to the XYZ basis. The reader is 

referred to chapter 2 for a more detailed discussion of this fitting procedure. 

Rather than calculate NFD error between fitted observations and descriptors, I 

apply the CIE Lab formulae'. In this way I get a measure of the perceptual difference 

between fitted observations and descriptors. The cumulative histograms of CIE Lab 

error for each of the three image models are shown in Figure A.1. 

'The CIE Lab formulae require the specification of illurninant. For both descriptors and fitted 
observations I use D55. 
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CIE A 

CIE Lab error CIE Lab error CIE Lab error 

Average 

0 2 4 6 8 1 0  0 2 4 6 8 1 0  0 2 4 6 8 1 0  
CIE Lab error CIE Lab error CIE Lab error 

Figure A.l: Cumulative CIE Lab error histograms obtained for 5 test illurninants (CIE 
A, D48, D55, D65, D75 and D100) for general linear model (solid line), coefficient 
color constancy operating on the cones (dotted lines) and coefficient color constancy 
operating on data-based sharpened sensors (dashed lines). 
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On average both the general linear model and coefficient model operating on data- 

based sharpened cones map most observations with less than 2 CIE Lab error-an 

error small enough to go unnoticed by a human observer. In contrast coefficient color 

constancy operating directly on the cones incurs a much higher error. Most of the 

observations have larger than 2 CIE Lab error (thus they are visually noticeable) and 

some are as high as 10 (very noticeable). 

In comparing Figure A . l  with cumulative histograms of NFD error (seen through- 

out the thesis) we see that they are qualitatively very similar. The NFD histogram 

curves ranging from 0 to 10% error are almost identical to the CIE Lab histogram 

curves ranging from 0 to 10 just noticeable differences. That there should be such a 

correspondence was quite unexpected. 

People respond to color stimuli in a non-linear manner and CIE Lab equations 

were designed to account for this. For example a pair of green observations which 

are a little apart may look identical to a human observer. In contrast a pair of red 

observations similarly apart may appear quite different. The NFD error would not 

discriminate between the two circumstances. However, in looking at error over the 

entire set it appears that the linear NFD metric and non-linear CIE Lab metric are 

quantitatively quite similar. A NFD error of 1% on average correlates with a CIE 

Lab error of one just noticeable difference. 
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