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Abstract 

In this work we will study identities. Loosely speaking an identity is an equivalence relation 

on the edges of a finite complete graph. Identities arise naturally in a Ramsey theory setting 

when one analyzes the finite coloring patterns that must occur when the edges of a large 

complete graph are colored with a comparatively small set of colors. We restrict ourselves 

to color sets of size 5 No, and graphs whose vertex set is of size greater than that of the 

color set but less than or equal to N,. We show that it is consistent that for all n < w the 

identities realized by all w-colorings of the complete graph on N, is strictly contained in the 

set of identities realized by all w-colorings of the complete graph on N,+l vertices. 

We generalize the notion of identity by adjoining an ordering on the set of vertices of 

the graphs, and an ordering on the set of colors. The objects arising from the generalization 

are called CV-identities. We consider the CV-identities that arise when coloring complete 

well-ordered graphs with the color set w ordered in the usual way. With this color set we 

consider the CV-identities that arise when the vertex set is one of N1, N2, and N,, ordered 

as a set of ordinals. We also determine the CV-identities that arise when the color set is Q 

with the usual ordering and the graph being colored has vertex set N1. 
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Chapter 1 

Introduction and Definitions 

1.1 Notation and terminology 

There are two basic notions that will be studied in this work. They are identity and CV- 

identity. Identities arise naturally in a Ramsey theory setting when one analyzes the finite 

coloring patterns that must occur when the edges of a large complete graph are colored with 

a comparatively small set of colors. Identities have been studied by Shelah [15] and Gilchrist 

and Shelah [5, 61. Their definition will be given here and they will be analyzed in chapter 

2. CV-identities are a broad generalization of identity. We will delay their definition until 

later. They will be analyzed in chapter 3. 

An w-coloring is function f : [BI2 -+ w where B is a set of ordinals ordered in the usual 

way. The set B is the field of f and is denoted fld( f). 

Definition 1.1 Let f, g be w-colorings. We say that f realizes the coloring g if there is a 

one-one map k : fld(g) - fld( f )  such that for all {z, y), {u, v) E dom(g) 

We write f 2 g if f realizes g and g realizes f. It should be clear that 2 induces an 

equivalence relation on the class of w-colorings. We call the equivalence classes identities. 

The collection of all identities is denoted ID. 
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Definition 1.2 Let f,  g be w-colorings. We say that f V-realizes the coloring g if there is 

an order-preserving map k : fld(g) + fld( f )  such that for all (2, y), {u, v) E dom(g) 

We write f NV g if f V-realizes g and g V-realizes f .  Note that EV induces an equivalence 

relation on the class of w-colorings. We call the equivalence classes V-identities. The 

collection of all V-identities is denoted IDV. 

For both types of realization we will call the map k : fld(g) - fld(f) an embedding. 

In the above definition the V refers to vertices. In most situations that follow, B will be 

a cardinal less than or equal to N, ordered in the usual way as a set of ordinals. In the 

following we will speak of w-colorings realizing (rather than V-realizing) other w-colorings 

whenever the context makes the type of realization clear. If f ,  g, h, 1 are w-colorings, with 

f N g and h N I, then f realizes h if and only if g realizes I. Thus without risk of confusion 

we may speak of identities realizing colorings and of identities realizing other identities. The 

same is true of V-identities. If I and J are identities we call J a subidentity of I, written 

J c-) I if I realizes J. The notion of sub-V-identity is similarly defined. We say that an 

identity I is of size r if Ifld( f )I = r for some (all) f E I. In the following we will consider 

only identities of finite size. 

An identity can be regarded as a finite structure (A, E), where E is an equivalence 

relation on [AI2, see [15]. The correspondence is given by: A = fld( f ), and {x, y) NE {u, v) 

if and only if f ({x, y)) = f ({u, v)). 

A V-identity can be regarded as a finite structure (A, E, <A),  where E is an equivalence 

relation on [AI2 and <A is a linear ordering of A. The correspondence is given by: A = fld( f) ,  

{x, y) NE {u, v )  if and only if f ({x, y)) = f ({u, v)), and x < y if and only if x <A y. 

We remark that the notion of subidentity does not correspond to that of substructure. 

To simplify the language in what follows we find it convenient to abuse terminology by 

referring to w-colorings and structures (A, E) as identities rather than as representatives of 

identities. Similarly for V-identities. In each case the intended meaning should be clear. 

Definition 1.3 Let f : [BI2 - w be an w-coloring and I = (A, E ,  < A )  be a structure 

corresponding to a V-identity. Let k : A + B be an order-preserving map such that for 
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all (2, Y), {u, w) E MIa ,  

f ({k(x), k ( ~ ) ) )  # f ({k(u), k(w))) * iz, Y) $E { v ,  w). 

Then k is called an embedding of I into f. A similar definition is given when I is an identity. 

Definition 1.4 Let K be a collection of identities. We define 

S(K)  = {I : (3J  E K)( I  is a subidentity of J)). 

Similarly, for K a collection of V-identities, we define 

SV(K) = {I : (3J  E K)( I  is a sub-V-identity of J)). 

Definition 1.5 Let D be a set of ordinals, m < w and f : [BIZ - w be an w-coloring. 

i) Z(f, n) (Zv( f ,  n)) is the collection of (V-) identities of size n realized by f .  

We now define several collections of identities. To do this we establish some notation. 

Let a, r E cW2. We write r C a whenever r is an initial segment of a. A binary tree is 

a subset t of <"2 such that for all a E t and r E <'"2, T a implies r E t. Let T be the 

set of all finite binary trees. For t E T, a is a leaf of t if a E t and a is C-maximal in t. 

We write B(t) for the collection of leaves of t. For t E T we define an identity It = (At, Et) 

in the following manner: At is the collection of leaves of t ,  and for {a,P), {7,6) E [AtI2 we 

have {a, p)  NE, {7,6) if and only if a n p = 7 n 6. An identity J which can be represented 

as It for sode t E T is said to be realized by a binary tree. We denote by IDT the collection 

{It : t E T) and by IDT the collection S(IDT). I, is used to denote It when t = (,+')2. 

We call I, the identity realized by the complete binary tree of height m+l. It should be 

noted that IDT is equal to S({I,,, : m < w)). 

If J = (B, F )  is an identity and A C B we define the restriction of J to  A to be the 

identity I = (A, Fn([AI2 x [A]')). This will be written: I = JtA. Similarly for V-identities. 
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Definition 1.6 Let n < w,  I = (A, E) ,  J = (B, F) be identities, ii = (al, .  . . ,an) E An be 

a sequence of distinct elements from A, and 6 = ( b l , .  . . , b,) E Bn be a sequence of distinct 

elements from B. J is obtained from I by duplication of ii to & if 

ii) I = J t A  

iii) the mapping which is the identity on A \ ii and which maps ii to 8 is is an embedding 

of I into J as structures 

iv) F is the least equivalence relation on [BI2 consistent with i) - iii). 

When n = 1 we say that J is a one-point duplication of I. 

Definition 1.7 Let I = (A, E, < A )  and J = (B, F, <JJ) be V-identities. J is obtained from 

I by end-duplication if there exist final segments ii, 6 of (A, < A ) ,  (B, < B )  respectively such 

that the structure (B, F )  is obtained from the structure (A, E) by duplicating ii to 6. 

Let IDEv denote the minimal collection of V-identities which is closed under end- 

duplication, the taking of subidentities, and which contains the trivial V-identity of size 

one. Let IDE = {(A, E )  : (A, E, <) E IDEv)  

Let IDM denote the least class of identities which is closed under duplication, the taking 

of subidentities and which contains the identity of size one. We will show that IDM = IDT, 

see 52.5 theorem 2.37. This result is probably known but we have been unable to find it in 

the literature. 

We quote the following results of Shelah: 

Theorem 1.8 ([15]) Z(N1) 3 IDE. 

Theorem 1.9 ([14]) There exists f : [N1I2 -+ No such that Z(f) IDE. 

Corollary 1.10 Z(N1) = IDE. 

Theorem 1.11 ([la]) If n 1 N, then Z(K) 2 IDM. 
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1.2 New results on Identities 

We now summarize the original results to be presented in the thesis. We begin with results 

related to the study of identities. 

The most important result presented here says that every model M of ZFC has a generic 

extension in which cardinals are preserved and in which I, 4 Z(Nm). This is theorem 2.18 

below which appears in the joint paper [5] .  The main idea of the proof, in particular the 

idea of using historical forcing, is due to Shelah. Another result from [5] states that for all 

m, 0 < m < w, eh(Z(Nm)) C_ Z(Nm+l). Here eh is a certain operation on sets of identities, 

see definition 2.20. This appears here as theorem 2.21 and is due to the author. These two 

theorems imply that, for each m 2 1, the consistency of ZFC implies the consistency of 

ZFC plus Z(Nm) 5 Z(Nm+l). In Section 2.3 we sharpen this result showing that Con(ZFC) 

implies the consistency of ZFC plus (Vm 2 l)(Z(Nm) Z(N(m+l)). 
The most important open problem about identities is to characterize, for each m < w, 

the set of identities I such that ZFC I- I E Z(Nm). Below, the set of identities which are 

in Z(Nm) in every model of ZFC will be denoted IDAm. We approach this problem by 

Cnalyzing a certain collection Cm whose definition is based on the forcing construction used 

in [5].  For this we must refer to the partial ordering which determines the appropriate notion 

of forcing. Let m, 2 5 m < w, be fixed and 

be an indexed family of mappings such that f A  is a one to one function from A into A 

such that rng( f )  has order type IAl. From the pair (F, m) a set pFsm of finite w-colorings is 

defined (see $2.1) whose fields are finite subsets of N,. pFlm is ordered by inverse inclusion 

- this is the notion of forcing used in [5] which we discuss in more detail here. 

We let CFlm denote: 

{ I  E ID : 3p E pFpm (p realizes I ) )  , 

and Cm denote the union of the sets CFtm as F runs through all possible families. Intuitively, 

ID \Cm is the set of all identities which are omitted by every possible generic coloring of 

N,, where 'generic" is restricted to the particular sense exploited in [5].  Of course, ideally 
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one would like information about the intersection of the sets Ccm as F runs through all 

possible families. But we know of no way of working with the intersection rather than the 

union. We do not know if the union is in fact different than the intersection. 

Our principal findings about the sets Cm are: 

i) Cm is recursively enumerable. ($2.4, theorem 2.26) 

ii) Cm IDT. ($2.5, lemma 2.32) 

iii) Let t be a binary tree. Then It E Cm if and only if t does not embed the complete 

binary tree of height m + 1. ($2.7, corollary 2.45) 

iv) For each m there is no finite set of identities Jm such that I 4 Cm if and only if some 

member of Jm imbeds in I. ($2.5, theorem 2.36) 

v) The tree identities in C2 do not generate C2. More precisely S(C" IDT) # C2. ($2.7, 

theorem 2.52) 

vi) It is false that I E IDT =+ ( I  4 C2 e~ I2 embeds in I) .  ($2.6, corollary 2.41) 

Other new results not concerned with Cm are the following: 

i) For all k, m < w, Z(k, m, 4) # Z(N1, No, 4). This implies that the identities realized 

by coloring finite graphs with finitely many colors cannot capture the diversity of 

identities realized by colorings of infinite graphs with infinitely many colors. ($2.9, 

theorem 2.64) 

ii) For all k < w, if there exists an N1-complete, (Nk, Nk,  < w)-saturated ideal on N k ,  then 

Z(Nk) _> IDT. (52.8, theorem 2.57) 

1.3 New results on CV-identities 

In Chapter 3 we will investigate a new concept called CV-identity. Let f be an w-coloring. 

In passing from f to the identity f /  z, both the ordering of the vertex set, fld(f), and the 

ordering of the set of colors, rng(f), are forgotten. The V-identities are what we get when 
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only the color ordering is forgotten. The CV-identities are obtained when neither ordering 

is forgotten. 

An 0-coloring is a triple (f, F, <F), where f : [BI1 - F, B c On, and <F is a linear 

ordering of F. The 0-coloring (f, F, <F) mlizes the 0-coloring (g, G, <G)  if there exists an 

order-preserving map k : fld(g) - fld( f )  such that 

for all {x, y), {u, v) E dom(g). We say that the 0-colorings are equivalent , written f 2 g, 

if f realizes g and g realizes f. The equivalence classes of finite 0-colorings are called 

CV-identities. We denote by IDcv the collection of all CV-identities. For a cardinal n and 

an ordering (F, <=), Zcv(n, F, <F) denotes the set of all CV-identities realized by every 

0-coloring, (f, F, <F), with fld(f) = K.  When F has a natural ordering, such as in the 

cases when F = Q and F = w,  ZCV(n, F, <F) is abreviilted ZCV(n, F). In situations where 

(F, <F) is clear from the context we write Zcv(n) instead of ICY(., F). 

Since other authors have not considered CV-identities, the only results about them which 

can be considered as already known are those which follow from the existing literature on 

identities and V-identities. We now list the results that have been proved concerning CV- 

identities. 

i) We define a collection C of CV-identities and show that 

Con(ZFC) * Con(ZFC + ZCv(N1, W) = C). 

(53.1, theorem 3.2) 

ii) There exist a CV-identity J whose underlying identity is an element of Z(N2) yet 

J 4 Zcv(Nl,w). ($3.2 This is contained in a remark following lemma 3.25.) 

iii) We define a large class, E ,  of CV-identities and show that Zcv(N,,w) 2 E.  ($3.3, 

theorem 3.29) 

iv) Zcv(N1,Q) only contains two CV-identities. They are the ones having field size one 

and two. (53.4, theorem 3.41) 
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v) As an application CV-identities we exhibit a c.c.c notion of forcing which destroys all 

&-saturated ideals on N1. The existence of such partial orders is known, but this is a 

new example. ($3.2, theorem 3.28) 



Chapter 2 

Identities 

In this chapter we will examine Z ( K )  for IC a cardinal less than or equal to Nu.  The literature 

on identities up to 1992, discussed on page 5,  leaves open the question of how the sets 

Z(Nm) ( 2  5 m < w )  fit between IDE (= Z(N1)) and IDT (c Z(N,)). Some progress in this 

direction has been made in the papers [5] and [6] by the author and Shelah. In [5] it is 

shown that if ZFC is consistent then so is ZFC + Z(Nm+l) 2 Z(Nm) for each m < w. This 

result will be reproduced here. It will also be expanded and analyzed in greater depth. 

We now present some lemmas which describe some general information about the set 

IDAm, for m 1 2. The proof of the first is a slight modification of the proof of lemma 6 in 

[15]. For this reason we offer no proof. 

Lemma 2.1 Let IC be a cardinal, N 2  5 IC < N,, and I E ZV(n) .  If J is an end-duplication 

of I then J E ZV(IC) .  

Lemma 2.2 Let 2 5 m < w. Then IDAm C IDT. 

Proof: Let M be a model of ZFC in which 2No 2 N,. We show that there exists f  : 

[NmIa  - w such that I ( f )  E IDT. Let g : N m  - " 2  and h : <"2 - w be one to one 

maps. Define f  : [NmIa  - w by f ( { a ,  P ) )  = h ( g ( a )  n g(P)). Now let n < w and A E [NmIn .  

Define r to be max{lg(a) n g(b)l : {a ,  b )  E [AI2). Define t E T to be the finite binary tree 

for which B(t) = {g(a)  f ( r  + 2 )  : a E A).  It should be clear that f  f A is realized by the 

identity It. 0 
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Lemma 2.3 For all k > 1, Z(NL+~) = ID if and only if 2'0 5 N k .  

Proofi To prove the ' if ' direction, let f : [Nk+1]2 - w. By the Erdos Rado theorem there 

exists B C Nk+1 such that IBI 2 N1 and I f"BI = 1. Clearly f 1 [BIa realizes all identities in 

ID. To prove the other direction note that if 2'0 2 the function defined in the previous 

lemma does not realize any identity not in IDT. This clearly suffices since IDT 5 ID. 

We now present a theorem that will simplify the task of characterizing Z(D) for D a set 

of ordinals. 

Theorem 2.4 Let D be a set of ordinals and I E Z(D). Then there exists J E Zv(D) such 

that I is the reduct of J. Conversely the reduct of any J E Zv(D) is in Z(D). 

Proof: Let I be an identity which is not the reduct of any V-identity in Zv(D). Let 

J1,. . ., Jk be the V-identities that have I as their underlying identity. For each 1 < i < k 

there exist fi : [Dl2 - w such that Ji # Zv(fi). Define f : [Dl2 - w by f({a,/?)) = 

g((fi({a,P)) : i < k)), where g : wk - w is any one-one function. Then {Ji : 1 < i < 
k) n Zv (f) = 0. This implies that I # Z( f )  and so I # Z(D). The converse is obvious. 

To explain the work to follow we now sketch the contents of [5] which will occupy sections 

1 and 2 of this chapter. First we fix a natural number m 2 2 and a model, M of ZFC. A 

collection of functions F = ( fA : A E &'(N,)) is chosen as a set of parameters for defining 

a partial order pFprn. We stipulate that fA : A - A is one-to-one and rng(f) has order 

type IAl. This partial order consists of a collection of pairs (u, c) where c is an w-coloring, 

fld(c) = u and u is a subset of N,. We choose a pFsrn-generic filter G and essentially define 

fm to be U{c : 3u((u,c) E G)). We show that M[G] + I, # Z(f,). This is one of the 

two key results of [5] and is presented in $2.1. The other is a construction which shows how 

certain identities in Z(Nm+l) may be generated from identities in Z(N,). This construction 

occupies $2.2. 

We extend the above results using an iterated forcing construction and show the existence 

of a model M such that M t= (Vm, 2 5 m < w)(Z(N,) 2 Z(Nm+l) 2 I(#,)). This result 

appears in the section $2.3. 
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Unfortunately, the results of [5], although a step in the right direction, do not resolve, 

for m 1 2, the central question as to  which identities are in Z(Nm) in every model of ZFC. 

(We recall that this set of identities is denoted IDAm.) On the other hand it is still open 

whether the method of [5] resolves this question. Towards identifying how far historical 

forcing can help us determine IDAm, in $2.4 - $2.7, we investigate the class of identities Cm 

defined as follows. First let CFlm denote 

{I E I D  : 3p E ~ ~ l ~ ( ~  realizes I ) )  

and 3" denote 

{F : F is a function, dom(F) = @(Nm), and 

(VX C Nm)(F(X) : X - X is one-teone and rng(F(X)) has order type 1x1)). 

Then Cm is defined to  be U{CF~" : F E F). Since the generic coloring fm considered 

in $2.1 realizes at  most colors in CFlm we have 

It is an open question whether Cm G IDAm. So it seem worthwhile investigating the set 

cm. 
We conjecture that Cm does not depend on the particular ground model of ZFC being 

considered. However, the most we have been able to  show in this direction is that Cm is 

recursively enumerable (see $2.4). It would be helpful to  have an explicit criterion for I to  

be in Cm in terms of the structure of I. However, at  present no such criterion is known. 

One might hope that ID \Cm could be characterized by a finite number of "constraints". 

In $2.5 we eliminate this possibility by showing that there is no finite 3" G ID such that 

(VI E ID)[I 4 Cm e ( 3 J  E Jm)(J  -* I)]. 

Now recall the collection, IDT, of identities generated by finite binary trees. We also 

prove in $2.5 that IDM = IDT. 

In 52.6 we demonstrate the existence of an identity in IDT \C2 which does not embed 

1 2 .  This shows that IDT \C2 is not characterized by the single constraint 12. 
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Now recall the definition of T and the identities It for t E T. It was conjectured that for 

m, 2 5 m < w there exists Tm E T such that Cm = S({It : t E T,)). In $2.7 we refute this 

conjecture for the case m = 2. (The question is open for m > 2 but seems likely to go the 

same way.) Three results are needed. 

Firstly, we show that, for 2 5 m < w, It E Cm if and only if t does not embed the complete 

binary tree of height m +  1. Secondly, we show that if t does not embed the complete binary 

tree of height 3 then It E eh(Z(N1)). Finally, we exhibit a particular identity J E C2 of size 

8 such that J 4 eh(Z(N1)). (The operator eh on sets of identities is defined in $2.2.) 

That J E C2, is proved by studying a certain operation I - 1 on Z(Nm). These results 

are in the section $2.7. This concludes our analysis and extension of the results in [5]. 

In $2.8 we continue the analysis of Z(K) and show that, if there exists an N1-complete 

(Nn,Nn, < w)-saturated ideal on N,, then Z(H,) _> IDT. Thus the preceding results will 

demonstrate the existence of a C.C.C. forcing notion that destroys all such ideals. 

Finally we consider finite colorings of finite complete graphs. We show that for n > 3, 

there do not exist k, m < w such that Z(k, m, n) = Z(Nl, w, n). 

2.1 The Forcing Construction 

For 2 5 m < w we are going to define a partial order for which the corresponding notion 

of forcing will allow us to omit an identity from Z(Nm). The resulting kind of forcing is 

called historical forcing (see [13]) and first appeared in Baumgartner and Shelah [2]. In this 

method conditions are allowed into the partial order if they can be constructed from the 

amalgamation of simpler conditions satisfying certain properties. 

2.1.1 The Partial Order 

Fix m, 2 5 m < w. The definition of the partial order depends on a parameter F = { f A  : 

A E p(Nm)), where for each A C N,, fA : A - A is a one-to-one function such that mg( f )  

has order type IAl. We let Fm denote the set of all such F. 

Definition 2.5 Let 2 5 m < w, F E Fm, and 1 5 t 5 m. For 5 = (al, .  . .,at), a sequence 

of distinct elements in Nm we define a subset A6 of N,. The definition is by recursion on t, the 
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length of the sequence &. If t = 1 then 6 = ( a l )  and A& is defined to be { z  E N m  : z < al l .  

Now suppose that 6 = (a l , .  . .,an+l). Let f l  denote (a l , .  . .,an). We assume that Ag 

has been defined. If an+l E Ag, we define A, to be { z  E Ag : fAb(2)  < fAb(an+l)). I f  

an+l # Ag we define As to  be the empty set. 

Definition 2.6 Let 2 < m < w,  F E Fm, b E N,, and a E [Nm]<". We say bRFlma if and 

only if there exists 6 = (al , .  . . ,am) E ma such that b E As. 

When m = 2 we will simplify the notation in the following manner. Let F E F2, b E N 2 ,  

and a E [ N 2 l C w .  As just specified, bRF12a if and only if there exist a l ,  a2 E a such that 

a2 < a l ,  b < a l ,  and fo l (b )  < fO1(a2). To simplify the notation we define, for y E N 2 ,  the 

linear order <,P by a <,P p if and only if fv(a) < fv (P) .  With this new notation we have 

that bRFp2a if and only if there exist a l ,  a2 E a such that b a2. 

Let R = {(u,c) : u E [ N m ] C w ,  c  : [uI2 - w) .  The elements of the partial order will be 

certain pairs in R. The next three definitions will enable us to select from R the desired 

subset. 

Definition 2.7 p = (u,  c) E R is the amalgam of p0 = (uO, cO) and p1 = (ul ,  cl) E R if there 

exist h < w and increasing sequences ig, . . . , iO, and i t , .  . . , ii in N m  such that for ad s, t  with 

( 0 5  s < t  5 h),and all i , j ,k, l< N,: 

i) uO = {ig, . . . , iO,) and u1 = {i;, . . . , i i )  

ii) cO({i:, i;))  = cl({ii, i i})  

iii) i: = i: v i; < it 

iv) u = uO U u1 

vi) { i ,  j )  4 [u0I2 u [u1I2 implies c({i, j ) )  4 rng(cO) U rng(cl) 

vii) c({i, j ) )  = c({k, 1)) implies ({ i ,  j )  = { k ,  1 )  V { i ,  j ) ,  { k ,  I) E [u0I2 U [u1I2) 

The amalgamation of p0 and p1 to p is allowed by F provided that p is the amalgam of p0 

and p1 and for ad t: 
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viii) i: # i: implies 7i: R F ~ m ~ O .  

Note that, if there is an amalgamation of p0 and p1 then there cannot be one of p1 and pO. 

So there is an essential lack of symmetry. It is also worth observing that in terms of the 

notion of duplication, the amalgam of p0 and p1 E R may be regarded as being obtained 

from p0 by simultaneous duplication of all the elements in u0 \ ul. 

Definition 2.8 q = (uq, cq) E R is a one-point eztension of p = (up, 8') E R if uq = up U {r) 

for some r > UP, CP C c*, and for all i, j, k, 1 E uq 

i) {i, j) 4 dom(8') implies cq({i, j)) 4 rng(cP) 

ii) cq({i, j}) = cq({k, 1)) implies ({i, j), {k, 1) E dom(p) V {i, j) = {k, 1)). 

Definition 2.0 Let P:" = {(u,c) E R : lul = 1) and let PC$ be the subset of R which 

contains P?", aU amalgams of pairs of elements from P?" allowed by F and all one-point 

extensions of elements of P?". Let pF*" = U{pzm : n < w). Given p = (uP,cP) and 

q = (UP, cQ) we define p 5 q to hold if up 2 uQ and cP _> cq. 

Closing of pFtm under one-point extensions is necessary to show that our forcing produces 

a function whose domain is of size N,. Elements of pFtm are called forcing conditions. 

Conditions p, q E pF*" are said to be compatible if there exists r E pFtm such that r < p and 

r 5 q. A condition p = (u, c) is said to malize an identity I = (A, E) just if the w-coloring 

c realizes I. In this case the embedding k : A - fld(c) which witnesses the realization of 

I in c is called an embedding of I into p. Similarly for V-identities. 

Lemma 2.10 Let 2 5 m < w, F E Fm, and a E [Nm]<". Then I{c : cRcma)l 5 No. 

Proof: As there are only finitely many d E ma it is sufficient to show that I {c : c R ~ > ~  41 - 5 
No, for each d E ma. Fix d = (al,. ..,am). Let B denote the set of non-empty initial 

segments of B and consider the sets {Ag : p E B). By induction on 171, we show that for 

all 7 E B, IA41 5 N t ,  where t = m - 171. 
When 171 = 1,4 = {z : x < al) and so lAsl < Nmql.  Now let 8 E B have length n + 1 

and define f j  to be 8 1 {1,2,. . .n). If an+l E AT then A8 = {x E A, : fAq(x) < f ~ ~ ( a , + ~ ) ) .  
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By the induction hypothesis lAal 5 Nm-lql and since fA,  has range of order type IAal, lArl 5 

Nm-ld-l = N m - I ~ I .  I f  an+l # Aa then Ag = 8. In either case the result follows. We conclude 

that lAal 5 N o .  0 

Lemma 2.11 F o r m ,  2 5 m <  w and F E 3", pFt" ia C.C.C. 

Proof: Let (pa : a < w l )  be a sequence of distinct conditions. By thinning we can suppose 

that there are n , l  < w and iy (a  < wl,O 5 j 5 n)  such that for all a,p < wl and all j , k ,  

with 0 5 j < k 5 n, 

i) upP = {i;,. . .,inQ) 

ii) ij' < ig 

iii) C?a({iy, i ;})  = cpq{i;, i { } )  

iv) pa E pFm. 

Applying a A-system argument, see [8] page 49, allows us to thin the sequence of conditions 

further so that 

VaV@(iH = i f )  v (VP < wl)(Va < P)(i: < i f )  ( 0  5 t 5 n). 

Let T = { t  5 n : ip # i f  some a,p < wl) .  For po and pa to have a common extension in 

PFtm we need only show that i ~ R ~ l " { i ; ,  . . . , ijl) fails for all t E T .  By the previous lemma 

I{i E N m  : iRFlm{i:, . . .,ijl))l = No.  For each t E T ,  ip is strictly increasing in a,  whence 

iPRr{i: ,  . . ., ifi) fails for all sufficiently large a < wl.  Since T is finite, po and pa have a 

common extension in pFtm for all sufficiently large a. 0 

Lemma 2.12 For each a < N m  

is dense i n  (pFlm, <). 
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Proof: Let a < N, and p E pFpm. Choose P > a and define q = (uq,cq) E pFsm to be the 

one-point extension of p such that uq = UP U {P). It is clear that q E D, and q extends p. 

0 

We now fix m with 2 5 m < w, a countable model M of ZFC, and F E ( F ) M .  We 

use the superscript M to indicate that a notion is being interpreted in the model M. Now 

we step outside the model M and we choose a subset of ( ~ ~ 1 " ) ~  which will be denoted by 

G. Note that G will not be a set in the sense of M although all its elements are in M. G 

will be obtained by the method of forcing, see Chapter VII of [8]. A set X in (&J(P~*"))~ 

is called dense if for all p E ( ~ ~ 1 " ) ~  there exists q E X with q 5 p. We recall that a subset 

of ( ~ ~ 1 " ) ~  is generic if it is closed upwards and directed downwards with respect to 5, 

and meets every dense subset-of ( ~ ~ 0 ~ ) ~ .  Because M is countable it is easy to show that 

generic sets exist. Fix a generic set G. The method of forcing allows us to construct a 

new model M[G] of ZFC of which M is a submodel and G is an element, see theorem 4.2 

of Chapter VII of (81. It is always the case that the ordinals in M[G] are the same as the 

ordinals in M. However, in general some cardinals of M will fail to be cardinals in M[G]. 

This is because there may be functions in the model M[G], not in M, which "collapse" 

some cardinals of M. In the present situation, since pCrn is C.C.C. the cardinals in M[G] are 

exactly the same as the cardinals in M, see theorem 5.10 of Chapter VII of [8]. From now 

on, except where explicitly stated, we will be talking about sets in the model M[G]. G is a 

set of finite w-colorings, pairwise compatible in the partial order pFlrn. (Note that pFlm is 

the same whether we interpret it in M or in M[G].) The set U{c : 3u((u, c) E G)), denoted 

g, is a function whose domain is [BI2 for some B E N,. Since G is generic it intersects each 

of the sets D,, a < N,. Thus, for each a < N, there exists p = (u,c) E G and /3 > a such 

that p E u. Thus fld(g) is cofinal in N, whence IBI = N,. Let h : N, --+ B be the unique 

order preserving bijection and define f, : [N,]' - w by f,({a,P)) = g({h(a), h(P))). To 

show that an identity is not realized by f, it is sufficient to show that it is not realized by 

any condition in pFtrn. The next theorem follows from the above discussion. 

Theorem 2.13 Let M b ZFC, 2 m < w, and I E ID. There exists a cardinal preserving 

generic extension M[G] of M such that M[G] b I E Z(N,) implies M + I E Cm. 
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2.1.2 Omitting I ,  

In this subsection we will not distinguish between the identity I, and the structure (("+')2, E) 

where E is the equivalence relation on [(,+I) 211 defined by {q, v) 2 {a, P) if q n v = a n p. 
We will show that f, does not realize I,  by showing that no condition in pFtm realizes I,. 

Definition 2.14 (B ,  . . . , q,, qrn+1) is a special sequence if 

ii) lqinqi+ll = i f o r  a l l i s  m. 

Lemma 2.15 Let p E R and h be an embedding of I, into p. There exists a special sequence 

(70,- . ., qm, vm+l)  such that h(qi)Rcm{h(m), . . . , h(qm-1)) for i E {m, m + I}. 

Proof: We define rl, E ('"+'I2 and Ak E P(N,), 0 5 k 5 m - 1, by recursion on k such that 

f o r a l l i < m - 1  

Let qo be the unique v E (,+')2 such that h(v) = max(rng(h)) and A. = {z E N, : z < 
h(qo)). Suppose that qk and Ak have been suitably defined for all k 5 j where j < m - 1. 

Let C denote {v E (,+'I2 : lv n qj 1 = j). F'rom iii) of the induction hypothesis, h"C 2 Aj . 
Let qj+l be the unique v E C such that fAj(h(6)) < fAj(h(v)) for all 6 E C \ {v). Define 

Aj+l to be {z E Aj : fAj(x) < f~,(h(qj+~))) .  Clearly Iqj+1 n = j. Consider y E (,+'I2 

such that Iy n T , + ~ )  = j + 1. Clearly ly n qj 1 = j and thus by the induction hypothesis 

h(y) E Aj- Also Y E C and Y # %+I so f ~ , ( h ( r ) )  < f~,(h(q,+l)) by the choice of q,+l. 

Thus h(y) E Aj+l. This completes the induction step and the definition of 70,. . . , q m - ~  aad 

Ao, ...,Am-1. Lettingqm,qm+l be the twoelementsof { U E  ("+')2: Ivf1q,-~1 = m - 1 )  

completes the construction. By induction, for all 0 5 i < m, { h ( ~ + ~ ) ,  . . ., h ( h + l ) )  2 Ai 

and Ai = A(h(,,o),...,h(r),)), where A(h(,,o),...h(,,i)) is given by definition 2.5. F'rom this it is clear 

that h(qi)Rcm{h(%), . . . , h(b- l ) )  for i E {m, rn + 1). 
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Lemma 2.16 Let (qo,. . . , v,+~) be a special sequence, p, q E R, p be a one-point extension 

of q, and h be an embedding of J = I ,  I{%, . . . , v,+~) in  p. Then h is an embedding of J 

in q. 

Proofi Let p = ( u ,  c ) ,  q = ( v ,  d )  and J = (B, F). Towards a contradiction suppose 

that u \ v = { h ( ~ i ) ) .  If i < m, then {qm, qi) " F  { ~ m + l ,  qi}, but c ( { h ( ~ m ) ,  h(qi)))  # 
~ ( { h ( q , + ~ ) ,  h(qi)) )  since p is a one-point extension of q. This contradicts h being an em- 

bedding. If i € { m ,  m + I ) ,  consideration of the pairs {%, qm), {qo, v,+~) leads to a similar 

contradiction. 

Lemma 2.17 1, # Cm. 

Proof: Let I ,  = (A, E).  Towards a contradiction let q = ( v , d )  E pKrn be a condition 

into which I ,  can be embedded. Let (%, . . . , qm+l) be a special sequence satisfying the 

conclusion of lemma 2.15. By restriction we have an embedding h of Im {qo, . . . , qm+l) 

in q. Choose p = (u ,c )  E pFvm such that p 5 q, {h(qO), . . . , h ( ~ , + ~ ) )  E u and lul is 

minimal. From lemma 2.16, p is not a one-point extension of r E pFlm. Therefore there 

are p0 = (uO,cO),pl = (u l , c l )  E pFlm such that p is the amalgam of p0 and pl. Since 

neither p0 nor p1 can replace p, there exist i, j < m + 1 and a,  b E u such that h(qi) = a E 

uO\ul,h(%) = b~ ul\uO. 

From the definition of amalgamation, {a,  b) is the only pair in [uI2 which is assigned 

the color c({a, b ) )  by p. The only pair in [{qo,. . . , qm+1)]2 which is in an E-equivalence 

class of size one is {qm, qm+l). Thus i ,  j are m,m + 1 in some order. Also, for each 

k < m, h(qk)  E u0 n ul .  Otherwise one of the pairs {a ,  h (qk) ) ,  {b, h (qk ) )  would also be 

assigned a unique color by c, contradiction. From lemma 2.15 we conclude bRFtmuO since 

{h(qo), . . . , h ( ~ , - ~ ) )  uO. This contradicts the definition of amalgamation and completes 

the proof of the lemma. 

From lemma 2.17 it is clear that in M[G] ,  1, # Z( f,). Hence we have the following 

theorem. 

Theorem 2.18 In M[G] ,  Im # Z(Nm). 
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2.2 Realization of I,,, 

We will show that Im E Z(Nm+l) for all rn, 2 5 rn < w. This will be done by showing that 

if a given collection of identities is contained in Z(N,), we can extend the collection in a 

nontrivial way to a new collection contained in Z(Nm+l). 

Definition 2.19 Let (Ji : 1 5 i < n) be a finite sequence of identities. We define the 

end-homogeneous amalgam of the sequence as follows. Choose a sequence of w-colorings 

ci : [Gila -+ w such that ci E Ji, Gi nGj  = 0 for 1 5 i < j 5 n, and rng(ci) nrng(cj) = 0 for 

all 1 5 i < j < n. Let G = U{Gi : 1 5 i < n). Now choose a new w-coloring c : [GIa - w 

such that for all {r, s), {t, v) E [GIa and all i ,  1 5 i 5 n, 

ii) c({r, s)) E rng(ci) if and only if {r, s) E dom(ci) 

iii) if {r, s), {t, v) are not in U{dom(cj) : 1 < j 5 n), then 

The end-homogeneous amalgam of (Ji : 1 5 i 5 n) is the identity realized by c. 

Definition 2.20 Let Z be a collection of identities. Define eh(Z) to be the collection of 

identities produced by forming all end-homogeneous amalgams of finite sequences of identi- 

ties in 1. 

Theorem 2.21 Let 1 5 rn < w. If Z Z(Nm) then eh(Z) C l(Nm+l). 

Proof: Let f : [Nm+l]a - w and (Ji : 1 5 i 5 n) be a sequence of identities in Z. We will 

produce by recursion a sequence ((A,, Bk) : 0 5 k 5 n) such that: 

i) f induces Ji on the set Ai for 1 < i 5 n 

ii) Bi 3 Bi+1 for 0 5 i < n 
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v) f ( {a l ,  b l ) )  = f({a2, b2)) whenever there exist i, j ( 1  < i < j < n) such that { a l ,  a2)  c 
Ai and {bl,  b2) C B j  . 

Define Bo to be N,+l and A. to be empty. By induction suppose that (A i ,  Bi)  have 

been defined for i < k < n. Let Ck be the first N ,  elements of Bk .  For each b E Bk \ Ck 

there exists a subset Dk of Ck and ~ $ 1 :  < w such that IDkI = N ,  and f ( { b , z } )  = cb,k for 

all x E Dk. Now choose a finite set As C Dk such that f induces on Ab. There are 

only N ,  finite subsets of Ck and a countable collection of possible values for cb,k. Thus we 

can choose Bk+1 C Bk \ Ck  of cardinality and ck < w such that Ab, = Ab, for all 

{bl, b2) C Bk+l and cb,) = ck for all b E Bk+l. We let Ak+l = Ab for b E Bk+l. It is easy to 

see that f induces the desired identity on the set U{Ai : 1 I i < n}. 0 

Theorem 2.22 For all m such that 1 < m < w, I ,  E Z(Nm+l). 

Proof: We first claim that for all m < w, is the end-homogeneous amalgam of (I,, I,,,). 

Let be denoted by ((m+2)2, E), and for i = 0 , l  denote by Si the collection { q  E (m+2)2 : 

~ ( 0 )  = i ) .  For 7 E (m+2)2 let i j  E (,+'I2 be defined by @ ( z )  = q( z  + 1). Now 7.1 ++ i j  ( q  E S i )  

is an isomorphism of Si onto I,. Note that in the end-homogeneous amalgam of 

(I,, I,) all edges between the two copies of I ,  receive the same color. The claim then 

follows because {q ,  v) 2~ { a ,  P)  whenever {q ,  a )  So and {v, P)  C S1. 

The proof of the theorem is by induction on m < w. By the claim Il is the end- 

homogeneous amalgam of ( Io ,  lo). Since I. is the trivial identity of size two and thus an 

element of Z(N1),  we apply theorem 2.21 and conclude Il E Z(N2). Assume the result holds 

for m I j. By the claim Ij+l is the end-homogeneous amalgam of ( I j ,  I j ) .  By the induction 

hypothesis I j  E Z(Nj+l), whence, by theorem 2.21, Ij+1 E Z(Nj+2). 0 

We note that this theorem provides a new proof of the fact that Z(N,) > IDT. This is 

a corollary of a more general result given in [16]. From theorem 2.18 and theorem 2.22 we 

obtain: 
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Theorem 2.23 For each m 2 1, Con(ZFC) implies that there is a model of ZFC in which 

I(Nm) S I(Nm+l)- 

2.3 Iterated Forcing 

Let M be a model of ZFC. We follow the notation of [8] and describe an iterated forcing of 

length w in the model M. We first define P, and .rr, by induction on n < w. Fix F E (Fa)M. 

Let Po be (0) and .rr0 be an Po-name for the partial order P ~ * ~ .  NOW assume that P, and n, 

have been defined for ad n 5 m, such that P, is a partial order and T, is a P,-name for a 

partial order. Pm+l is defined to be 

The ordering given to P, is defined as follows. For p = (p, : n I m) and p' = (p; : n I 

m) E P m + 1 , p 5 #  if andonly i f p  m 58  m a n d p  1 mlt-p, 5 p L .  

Let 4(F, m + 1) state that F E P+'. We now claim that 

The proof is as follows. Take any Pm-generic G. Then in the model M[G] choose F E 

(3m+')M[G] and define the partial order pFlm+'. Since pFlrn+' E M [GI it must have a Pm- 

name. Thus in all generic extensions of M the statement has been shown be true, whence 

it is forced by lrm. Thus the claim has been shown to be true. 

Applying the maximal principle, see Theorem 8.2 Chapter VII of [8] we conclude that 

there exist P,-names E and b such that lrm Il- flp, m + 2) A b = P ~ * " + ~ .  Set equal 

to such a name, 6. 

The partial order Pw is defined to be 

(Here supt(p) denotes the set of n < o such that p, # I,,.) For p = (p, : n < w )  and 

p ' = ( p ' , : n < w ) , p < # i f a n d o n l y i f f o r a l l n < w , p t n < #  In .  

Theorem 2.24 Let M be a model of ZFC, and let G be Pw-generic over M. Then 



CHAPTER 2. IDENTITIES 

Proot: 

Fix n, 2 5 n < w. We follow the notation of definition 5.10 of [8] and define in,, : Pn - 
P, for n < q 5 w by defining in,, to be the p' E P, such that p' n = p and p'(m) = 1,- for 

n 5 m < q. We define G, to be i;,L(G). Then by lemma 5.13 of [8], Gn is Pn-generic over 

M. In the model M [G,] we define Q, to be val(n,, G,) and Hn to be 

By lemma 5.13 of [8], Hn is Q, generic over M[Gn]. Now Q,, is the partial order that the 

model M[Gn] considers to be pFtn+', (for some F E F"+' as defined in M[Gn]). Using the 

methods of 92.1 there exists a function gn : [Nn+'I2 - w such that In+s 4 Z(gn). Again 

by lemma 5.13 M[Gn] G M [ q .  This implies that gn is in the model M[G]. As n was 

arbritrarily chosen it is clear that 

This coupled with the fact that ZFC t- (Vn, 1 5 n < w)(In E Z(Nn+l)), see 52.2, theorem 

2.22, gives the desired result. 

2.4 Cm is Recursively Enumerable 

In this section we show that, for 2 5 m < w, Cm is a recursively enumerable collection in 

the sense that there exists an algorithm which lists all the elements of Cm. 

Definition 2.26 Let p E R. We say that H C R is a history of p if H is a collection minimal 

with respect to the following conditions: 

ii) If q = (uq, cq) E H and (uQI # 1 then there exist qO, q1 E H such that q is the amalgam 

of q0 and q1 or there exists q0 E H such that q is a one-point extension of qO. 

Let F E F. If in addition we require that in ii), all of the amalgamations are allowable 

with respect to F, we say that H is allowable with ~ s p e c t  to F. 
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Given p E R and a history H of p there is a natural indexing of the elements of H by elements 

of (0, I)<". If p0 and p1 E H and they are amalgamated to form p we let p(01 denote p0 and 

p(q denote pl. I f  q = p, E H and q0 = (uO,cO) and q1 = (ul ,cl)  E H are amalgamated to 

form q we designate q0 as P,-(~)  and q1 as P , - ( ~ ) .  In the case that p, = q E H is a one-point 

extension of q' we let q' denote .p,-(~) ( P,-(~)  is left undefined). 

Suppose that p = (u ,  c )  E pFlm for some particular F E Fm. We show that there exists 

G E Fm and p* = (u*, c*) E pGfm such that p* realizes the same identities as p and u* C w. 

For 6 E smu let A: denote the set obtained from definition 2.5. Recall that for any a E u 

and B C_ u, aRF*"B holds if and only if a E A: for some 6 E " B .  Let v C N m  be a finite 

set such that u E v and 

Let z I-+ z* ( Z  E v )  be the unique order-preserving map of v onto an initial segment of 

w. For X C_ N ,  let X* denote {z* : z E X n v). For t3 E smu we define gee ,  where B& 

denotes (A:)', to be the unique map from B, into itself such that 

for all z ,  y E v n A&. By the choice of v it is clear that for all 6 ,  p E Smu, A: # A; implies 

B, # Ba. Thus we may choose G E Fm to be any element which assigns the mapping gee 

to the set B,. By induction on the length of 6 we have A?,). = (A:)'. This implies zRFlmB 

if and only if Z * F ~ * ~ B *  for all z E u and B C u. 

Let H = ( p ,  : u E Sn2) be the history of p. We define a condition p* and its history 

H* = (p: : u E sn2) by letting p: = (u:, c*), where c* : u: + w is defined by c0({z*, yo)) = 

c({z ,  y)) for all { z ,  y) E [uI2. It is clear that H* is a history of p*, allowable with respect to 

G. That is to say p* E pGlrn. 

Theorem 2.26 For each 2 5 m < w them is an algorithm which lists the elements of Cm.  

Proofi Let I be an identity in Cm. It is easy to see that there exists an algorithm that 

generates all pairs (H, Go) where H = ( p ,  : a E Sn2) is a history of an element of R 

whose universe is a subset of w and Go is a collection of one-to-one functions {gA : A C 
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max(u,) and g~ : A - A). We run the algorithm and and upon the output of each pair 

(H, Go) we determine whether or not H is dowed by those G E Fm which contain Go. If 

H is allowed we list all subidentities of pc. By our previous results if there exists F E 3 

and p E pFtm such that p realizes I there exists G E Fm and p* = (u*, c*) E pGsm such that 

p* realizes I and u* C w. Thus our procedure lists all identities in Cm. That it lists only 

elements of Cm is obvious. 

We conjecture that Cm is in fact recursive in the sense that there exists an algorithm 

which determines whether or not a given identity is an element of Cm. The argument above 

shows that, given m and the isomorphism type of an element of R, one can effectively check 

whether for some F E F m ,  there exists p E pCm of the given isomorphism type. The 

difficulty in computing the membership of Cm lies in our inability to compute from the size 

k of an identity I a number k' such that 

I E Cm + (3p = (u, c)) ( I  embeds in p and lul < kt). 

The details of this problem are quite sensitive to the particular way one sets up the pa- 

rameters F. For example, instead of the mapping f A  (see the beginning of 2.1) one could 

substitute a well-ordering <A of A of order-type IAl. One could also restrict A to run 

through only those sets which can arise in the definition of the sets A& (see definition 2.5). 

2.5 Finite Bases 

Being unable to characterize Cm we try to gather as much information as possible about 

this set of identities. Here we show that Cm E IDT and that for m, 2 5 m < w there does 

not exist a finite set of identities Jm such that I 4 Cm if and only if J has some identity 

in Jm as a subidentity. We require some general lemmas about duplication. The first two 

follow easily from the definitions, so we offer no proof. 

Definition 2.27 Let E and V be collections of identities. We say that & is an basis for 

V \ Cm if for all identities I E V, I E V \ Cm if and only if there exists J E E which embeds 

in I. 
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Lemma 2.28 Let I = ( A ,  E )  be a subidentity of J = ( A ,  F )  and a E A. Let I' and J' be 

obtained from I and J mspectively by duplicating a. Then I' is a subidentity of J'. 

Lemma 2.29 Let n < w and Ki = (Ai,  Ei) (1  5 i 5 4 )  be identities. Let al,. . . ,an+l E Al 

be distinct, K2 be obtained from K1 by duplicating (al, .  . .,an), K3 from Ka by duplicating 

an+l, and K4 from K1 by duplicating (al, .  . . , an+l). Then K4 is a subidentity of K3. 

Lemma 2.30 Let n < w and I = ( B ,  F )  be obtained from Jo = (Ao,  Eo), by duplicating 

7i = (a1,. . .,an) to 6 = (b l ,  . . . , b,). For 1 i < n let Ji+l be obtained from Ji by duplicating 

ai to bi. Then I is a subidentity of Jn. 

Proof: The proof is by induction on n. When n = 1 the result is trivial. Thus suppose that 

the result holds for n 5 j. Let I ,  Jo, J1, . . . , Jj+1, a = (al ,  . . . aj+1) and 6 = (b l ,  . . . b,+l) be 

as in the hypothesis of the lemma. Let K1 be obtained from Jo by duplicating (al , .  . . , aj )  

and K2 be obtained from K1 by duplicating aj+l. By induction K1 is a subidentity of Jj 

and thus by lemma 2.28, Ka is a subidentity of Jj+l. By lemma 2.29 I is a subidentity of 

Ka. Thus I L, Kn L, Jj+1. 

Lemma 2.31 IDT is closed under duplication in the sense that, i f  I E IDT, and J is 

obtained from I by duplicating ii to 6 ,  then J E IDT also. 

Proof: From the previous lemma we may suppose that J is obtained from I by duplicating 

a to b. Let I = ( A ,  E ) ,  J = ( B ,  F) ,  t E T ,  and h : A - B(t)  witness that I - It = 

(B ( t ) ,  E,). Define t' to be t U {h(a)^(O), h(a)^(l)} .  Then k : B ---+ B(tl)  by k(x )  = h(x) for 

x E A \ {a},  k(a) = h(a)^(O), k(b) = h(a)^( l ) ,  is an embedding of J into It#. 

Lemma 2.32 For all m > 1, Cm IDT. 

Proof: It is clearly sufficient to prove that, for all p E P ~ * ~ ,  if Ip is the identity represented 

by p E pFmm, then I, E IDT. Towards a contradiction suppose that p = (u ,  c )  E pFsm is such 

that I, @ IDT with lul least possible. Clearly lul # 1. There are now two cases: 
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Case 1. p is obtained by amalgamating po, pl E PFlm. Then I, is obtained from I,, by 

duplication. But I,, E IDT implies I, E IDT by lemma 2.31, which contradicts the choice 

of p. 

Case 2. pis a one-point extension of q E pFlm. By choice of p, I, E IDT. Let J be obtained 

from I, by one-point duplication. Then J E IDT by lemma 2.31. But I, L, J by inspection, 

so I, E IDT, contradiction. 0 

We now define some identities which will be used to show that there does not exist a 

finite basis for ID \ Cm. 

Definition 2.33 Let P, = (A,, En) be the identity of size n where A, = {1,2,. . . , n) and 

the only equivalence class of E, that is not a singleton, is the collection {{i, i + 1) : 1 5 

i < n). Let Q, = (B,, F,) be the identity of size n where B, = {1,2,. . . ,n)  and the 

only equivalence class of F, that is not a singleton, is the collection {{i, i + 1) : 1 5 i < 

n l  lJ W , n l l .  

Lemma 2.34 Let n be odd, n 2 3 and m > 1. Then Q, # Cm. 

Proof: Fix m and n satisfying the hypothesis. We will show that Q, # IDT and then 

apply lemma 2.32. Let t be a binary tree, B(t)  = {ql,. . ., rl,) c <W2, and suppose that the 

identity It has Q, as a subidentity. Without loss of generality i I+ qi ((1 5 i 5 n) induces an 

embedding of Q, into I,. Then there exists T such that qi n qi+l = T for i = 1,2, . . . , n - 1 

and 71 n rl, = T .  This is impossible as n is odd. 0 

Lemma 2.35 For all n > 1 and m 2 2, P,.E Cm. 

Proof: Fix n and let J1 be P, restricted to the even elements of the set {1,2,. . ., n). 

Similarly let J2 be the restriction to the odd elements. It is clear that all the equivalence 

classes of edges in the structures representing both J1 and J2, all have size one. Thus each is 

an element of Z(N1). Now observe that P, is a subidentity of the end-homogeneous amalgam 

of J1 and J2. Thus we may apply 2.21, to see that P, E Z(N2) E Z(Nm) for all rn 2 2. If 
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there were a model M of ZFC in which Pn # Cm,  then from theorem 2.13 there would be a 

model M[G]  of ZFC such that Pn # Z(Nm), contradiction. 0 

Theorem 2.36 For each m,  2 5 m < w thew does not exist a finite basis, gm, for ID \ Cm . 

Proof: The result follows from lemmas 2.34 and 2.35. Fix m,  2 5 m < w. Towards a 

contradiction let Jm be a basis for ID \ Cm. For each odd n, 3 5 n < w, Qn 4 Cm and 

thus there exists Jn E Jm such that Jn L) 9,. As Qn is a cycle of length n any subidentity 

must be a monochromatic path of length n, a collection of disjoint monochromatic paths of 

length less than n, or Qn itself. The first two options are not possible as Pk E Cm for all 

k > 1. Thus Q, must be an element of Jm for all odd n, 3 5 n < w. 

The next theorem does not concern itself with bases but the proof involves some of the 

lemmas we have just proved. 

Theorem 2.37 IDT = IDM. 

Proof: " _> ". This containment follows from lemma 2.31. C ". Recall that I, is the 

identity realized by the binary tree of height m + 1. By induction on m < w we show that 

I, E I D M .  This suffices as IDT = S( { I ,  : m < o)). When m = 0 the result is trivial. 

Suppose the result holds for m 5 j. Consider Ij = (A,, E,). By definition A, = (j+')2 and by 

the induction hypothesis there exists J = ( B ,  F) E I D M  and an embedding f : (j+')2 - B. 

Let B = {bo, . . . , bk) for some k < w and {co, . . . , ck) distinct elements not in B. We define 

a sequence (KO,  . . . , K k )  of identities in I D M ,  (Ki  = (Ci, Gi)) .  Set KO equal to J and for 

0 5 i < k ,  let Ki+' be obtained from Ki by duplicating bi to ci. Now define g : (j+=)2 -, C L 

by g(q) = bi if q = vA(0) and f ( v )  = bi and g(q) = ci if q = v A ( l )  and f ( v )  = bi. It is clear 

that g is an embedding of I,+' into Kk. 0 

2.6 Bases Relative to IDT 

Since the last section shows that it is impossible to characterize ID \Cm by a finite basis the 

question naturally arises whether IDT \ Cm has a finite basis. The question remains open. 
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What we show here is that {Ia) is not a basis for IDT \ Ca. In fact we will show that there 

exists J E IDT \ Ca which does not embed 1 3 .  

We begin with a proposition that will be used to prove that J 4 Ca. Let K = (A, E, <A) 

denote the CV-identity for which A = {0,1,2), 0 < A  1 <A 2, and the only E-equivalence 

class which is not a singleton is {{0, I), {1,2)). 

Proposition 2.38 Let 2 5 m < w,  F E Fa, and p E pFJ.  Then p does not realize K. 

Proof: Towards a contradiction let p = (u,c) realizing K be chosen so that lul is minimal. 

Let H = ( p ,  : a E Sn2) be the history of p and f : A - u witness the realization. By 

the minimality of lul we can assume that neither p(~) nor pp) realize K and that there 

exist distinct z, y such that z E rng( f) n do) \ u(') and y E rng( f) n dl) \ do). Also note 

that there exists z E rng( f) il do) f l  dl), otherwise a l l  edges in [rng( f)]' would receive 

distinct colors which contradicts 1 being an embedding. By the definition of amalgamation 

c({z, y)) # {~({z, z)),c({y, z ) ) ) .  Therefore f(1) = z and so either z < z < y or y < z < z. 
Without loss of generality suppose z < z < y. Let y' be the element of do) corresponding 

to y. Then the mapping ((0, z), (1, y), (2, z)) witnesses that p(~) realizes K, contradiction. 

Definition 2.39 Let J = (A, E) be the identity characterized by setting A = {1,2,3, . . . ,8) 
and letting the E-equivalence classes that are not singletons be: 

The identity J can be visualized as a coloring of the edges of the complete graph on the 

vertex set {1,2, . . . ,8). The coloring has the following properties. The edges on {1,2,3,4) 

are colored so that there is a monochromatic cycle from 1 to 2 to 3 to 4 and then back to 

1. The remaining two edges get two colors appearing nowhere else. This is the equivalence 



CHAPTER 2. IDENTITIES 

Figure 2.1: The E-equivalence classes E2, E3, and a portion of El. 

class E2. The edges on {5,6,7,8) are colored in a similar fashion. More precisely there is 

a monochromatic cycle from 5 to 6 to 7 to 8 and back to 5. This color is distinct from all 

other colors, as are the two colors appearing on the two remaining edges. This is equivalence 

class E3. All other edges, except {1,6) and {8,3), are given a color distinct from all other 

colors. This is equivalence class E3. (In order to refer to this color we will name it blue.) 

The two remaining edges between the cycles, {1,6) and {8,3), are also given two distinct 

colors appearing nowhere else. In figure 2.1 we have indicated only the pairs in El which 

contain either 7 or 8; 5 is El related to all of 1,2,3,4, amd 6 to 2,3,4. 

The following symmetries should be noted. Each point lies on one of two monochromatic 

cycles of length 4. Each monochromatic cycle contains two points such that each connects 

to every other point in the other monochromatic cycle with an edge that gets colored blue. 

Each monochromatic cycle contains two points such that each connects to exactly three 

points in the other monochromatic cycle with an edge that gets colored blue. It is easy to 

see that J is an element of IDT: by coloring the edges {1,6) and {3,8) blue we obtain the 

identity 12. 

Theorem 2.40 J E IDT\ C2. 
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Proof: Towards a contradiction let F E Fa, and choose p = (u, c) E pFs2 and f : A - u 

witnessing that p realizes J. We simplify the notation and use <, instead of <:. Let 

H = (p, : a E 25") be a history of p. Choose x E A such that f(x) is maximum in f"A. 

Because of the symmetries of the identity, by relabeling the points we may assume that 

x is one of 7 or 8. We show that each of these possibilities implies the existence of an 

amalgamation in H that is not allowed by F. 

case 1. f (11, f (21, f (3), f (4) < f (7). 

Fix y E {1,2,3,4) such that f (y) is the <,(,)-greatest element of { f (1), f (2), f (3), f (4)). 

Observe that the points 1,2,3,4 all lie on the same monochromatic cycle and that for all 

y E {1,2,3,4), {y, 7) is in the equivalence class El. Using the symmetries of J again, we 

may assume that y = 4 or y = 3. Since the proof is similar in both cases we examine only the 

first. We conclude that f (l)RFJ{ f (4), f (7)) and f (3)RF1" f (4), f (7)). Let J1 = (A1, Fl) 

denote J {1,3,4,7). Observe that the only Fl-equivalence class which is a singleton is 

{1,3). Choose o E s"2 of maximal length so that { f (1), f (3), f (4), f (7)) C u". By the 

maximality of la1 and the properties of amalgamation, f(4), f(7) E uU^(O) n u(') and either 

f(1) or f(3) E uQ*(') \ uU^(O). This contradicts the definition of p, being dowed by F. This 

concludes the first case. 

Case 2. Otherwise. 

Clearly x = 8. First note that {y, 7) E E3 for all y E {1,2,3,4). Thus, by the previous 

proposition there do not exist i, j E {1,2,3,4) such that f(i)  < f(7) < f( j) .  Therefore 

f(7) < f (i) for all i E {1,2,3,4). This is impossible as p then realizes K on the set 

{ f (7), f (1), f (8)). This concludes the second case. 0 

Corollary 2.41 {Ia) is not a basis for IDT \ Ca. 

2.7 Identities Realized by Binary Trees 

In this section we will show that {I,,,) is a basis for IDT \Cm, see corollary 2.45. One should 

contrast this result with the corollary 2.41 of the previous section. We will also show that 

there does not exist a collection T2 C T such that C2 = S({It : t E Ta)), see theorem 2.52. 
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Recall the definition of T,  the collection of finite binary trees. For 7 E t E T we define 

t q to be the set {v E t : q G v V v G q) and for B G <"2 we define B to be the set 

{q E <"2 : 3v E B(v 2 q ) ) .  

Lemma 2.42 Let t be a binary tme not embedding the complete binary tree of height 2. 

Then It E Z(N1). 

Proof: We show that It is the underlying identity of an ordered identity which is produced 

by a sequence of one-point end-duplications. The result then follows from theorem 1.10. Let 

B denote the set of leaves of t. Since t does not embed the complete binary tree of height 

2, we can define by recursion, (y, . . . , v,) and (61,. . . , 6,-1) such that {y, . . . , v,) = B and 

for all 1 5 i < j 5 n, vi n vj = hi. We define a sequence of ordered identities (J1, . . . , Jn-l). 

J1 = (Al, El, is obtained by setting Al = {al,a2) and al  a2. For 1 5 j 5 n - 2 we 

define Jj+l to be the V-identity obtained from Jj by duplicating aj+l to a j + ~ .  It is clear 

that the mapping vi w ai, 1 5 i 5 n is an embedding of It into the identity underlying 

J,-l. 0 

Theorem 2.43 Let 1 5 m < o and t E T be a finite binary tme not embedding the complete 

binary tree of height m + 1. Then It E Z(N,). 

Proof: The proof is by induction on m. When m = 1 the conclusion follows from the 

previous lemma. Now suppose that the result is true for m < j. We claim that if a binary 

tree t does not embed the complete binary tree of height j + 1 there exists w < w and a 

sequence of binary trees (t, : v < w) such that It = eh((It, : v < w ) )  and for all v < w, t, 

does not embed the complete binary tree of height j. We then apply the induction hypot hesis 

and theorem 2.21 and conclude that It E Z(Nj). Let t be a binary tree that does not embed 

the complete binary tree of height j + 1. 

Let B denote the set of leaves of t. By recursion, for v = 1,2,. . . we define T, E 

<"2, B, E B, and I, E {O,1)  such that: 

i) B, does not embed the complete binary tree of height j 

ii) B, S B n t 1 rUa(1,) 
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iii) For 1 < r < s < w,  rr c r, and rrA(lr) r,. 

The recursion ends when we reach w such that B = U { B ,  : 1 < v < w) .  Let rl = n{r) : r) E 

B ) .  Since t does not embed the complete binary tree of height j + 1 there exists ll E {O,1) 

such that t 1 ( r l1 ( l1 ) )  does not embed the complete binary tree of height j. Choose such an 

ll and define B1 = B n t 1 ( rA( l l ) ) .  Now suppose that (r, : v < k ) ,  ( B ,  : v < k ) ,  (1, : v c k )  

have been defined with the above properties. Define r k  = n{r) : r) E B \ u{B, : v < k ) ) .  

I f  r k  4 B we again apply the hypothesis that t does not embed the complete binary tree of 

height j + 1 to show there exists lk E {O,1) such that the complete binary tree of height j 

does not embed in t 1 rkA(lk) .  Choose such an lk.  Let Bk = B n t rCA(lk).  I f  r k  E B ,  we 

define Bk to be {rk) .  This completes the construction. 

For 1 < v < w we let t ,  denote the binary tree B,. It is easy to prove by induction that 

for 1 < r < s 5 w,  a E B(tr ) and p E B(t ,  ), a n p = 7,. Thus It is the end-homogeneous 

amalgam of the sequence (It , ,  . . . , I t-) .  Each t ,  does not embed the complete binary tree 

of height j. Applying the induction hypothesis gives It. E Z(Nj-l). Thus by theorem 2.21, 

It E Z(Nj). 

Corollary 2.44 Let t be a finite binary tree. If t does not embed the complete binary tree 

of height 3, then It E eh(Z(N1)). 

Proof: Let t E T be a binary tree not embedding the complete binary tree of height 3. By 

the claim in the proof of the previous theorem there exists a sequence of trees (t, : v < w )  

such that for 1 5 v < w,  t ,  does not embed the complete binary tree of height 2, and 

It = eh((It. : 1 5 v < w)) .  By lemma 2.42, each It. E Z(N1). 0 

Corollary 2.45 Let It E I&. Then for m, 2 < m < w,  It E Cm i f  and only if t does not 

embed the complete binary tree of height m + 1. 

Proof: The "if" part is immediate from lemma 2.43 and the uonly if" part from theorem 

2.17. 0 
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We now define an identity J ,  and show that it is an element of C2. Our interest in J is 

that it is an example of an identity in C2 \ S(C2 n IDT). To obtain J we define a ternary 

function ( I ,  m, n)  I+ i (m,  n)  from ID x Z+ x Z+ to ID such that J is the value at ( I o ,  2,2). 

The mapping will have the property that for all j  2 2,  and m,n 2 1, I E Z ( N j )  implies 

i (m,  n)  E Z(Nj ) .  Since I. E Z(N2) we conclude that J E Z(N2).  

Definition 2.46 Let J = (A ,  E )  be the identity obtained by setting A = {1,2,3,.  . . ,8)  

and letting the E-equivalence classes that are not singletons be: 

See figures 2.2 and 2.3. 

We now define the operation (I, m, n)  o 1. Let k ,  m,n < w and I be an identity of 

size k. Let G = ( 1 ,  ,2, .  . ., k )  c w, g : [GI2 ---, w ,  be such that g E I. Let H be the set 

{1 ,2 , .  . . , k ( m  + n ) ) .  We define a new w-coloring h ,  from g ,  m, n, by letting h : [HI2 - w 

be any function such that for il < jl and i2 < j2 

if and only if either 

j l ,  j2 2 k m  + 1 A i l ,  i2 5 k m  A k divides Ijl - j21 A k divides lil - i21 

or there exists r ,  s < w and {pl,p2,ps,p4) {1,2, .  . . , k )  such that: 
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Figure 2.2: The E-equivalence classes El, E2, and E3. 

We call (h, H) the (m, n)-itemte of (g,  G) and the identity i, realized by h, the (m, n)-iterate 

of I. Note that f depends only on I, rn, n. The coloring h has the following intuition. For 

1 5 i 5 m + n a copy of the coloring g is defined on the set {ki + j : 1 5 j 5  k). Now 

fix a pair (kl, k2) E {1,2, ... k) x {1,2, ..., k). We choose the klth vertex from each of the 

first m copies and the k2th vertex from each of the last n copies. We then put a single new 

color on all the edges between the set of vertices so chosen in the first m copies to all the 

vertices chosen in the last n copies. We do the same thing for all such (kl , k2). All edges 

for which we have not specified a color are assigned a new and distinct color. See figure 2.4 

for a partial diagram of the (2,4)-iterate of Q6. 

Theorem 2.47 Let I be an identity and i 2 2. For all m,n < W, I E Z(Ni) implies the 

(m, n)-itemte of I is an element of Z(Ni). 

Proofi Let i 2 2 and f : [Nil2 - W. Let I = (A,E) with IAl = k. Since I E Z(Ni), 

for 1 < Ni we can choose {Prj : 1 I. j 5 k) such that for all 1 < Hi, f induces I on 

{Pl,j : 1 L  j I k), 1 L  jl, j 2  5 k and 11 < l2 imply Prlljl < Plaj, and jl < j2 implies 

Pl,jl <  PI,^,. For 11,12 < Ni let g,,,r, : {a,,, : 1 5  j 5 k) - {a,,, : 1 5  j 5 k) 

be the order preserving bijection. Without loss of generality we can assume that gll,l, 
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Figure 2.3: The E-equivalence classes E l ,  E4 and E5. 

is an f-isomorphism. Thus we assume that { j l ,  j 2 )  C (1 , .  . ., k )  and 11, 12 < Ni  imply 

f ({Pll,il ,  Pll,ja)) = f ( { S ~ ~ , I , ( P I ~  j l ) ,  g~~ ,~ , (Pr~ , j , ) ) ) .  For 1 2 Ni-1  we define a sequence of sets 
Bf and elements of w ,  q j , ,  ( 1  5 r ,  j  5 k )  such that: 

Using only cardinality considerations the construction should be clear. Again by considering 

cardinalities there exist C  C N i  \ Ni-1 of cardinality Ni  and c,j < w  ( 1  < r ,  j  5 k )  such that 

for all 1 E C ,  q,,,, = c,j. 

For each 1 E C  choose DI E [B:lm. Since Dl E and [N i - l ]m  has cardinality 

the pigeon-hole priciple tells us that there exists D  = {I l , .  . .,Im) and C' C  of cardinality 

N i  such that Dl = D for a l l  I E C'. Let lm+1,. . . ,Im+, c C' be distinct. The (m,  n)-iterate 

of I is then induced by f on the set : 1  < s 5 m + n, 1 < j < k ) .  
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Figure 2.4: One new equivalence class in the (2,4)-iterate of Q5. 

Corollary 2.48 J E C2. 

Proof: J is equal to the (2,2)-iterate of lo. Note that I. is the unique identity of size 2. 

We now prove a proposition and a lemma which will be used to show that J # eh(Z(N1)). 

Let L = (C, G, <c) denote the ordered identity for which, C = {0,1,2), 0 <c 1 <C 2, and 

the only G-equivalence class which is not a singleton is the set {{0,2), (1,211. 

Proposition 2.49 L 4 ID&. 

Proofi Towards a contradiction let K = (B, F, < B )  E IDEv realizing L be such that IBI 

is minimal. Let f : C - B witness the realization. Define K1 = (B1,Fl, to be the 

restriction of K to the range off .  By the minimality of IBI there exist M = (A, E, < A )  E 

IDEV, ii E <"A, a final segment of A and 6 E <"B such that K is obtained from M by 

duplicating ii to 6. By the minimality of B, mg( f )  n 6 # 0 and mg( f )  fl ii # 0. Since f is 

order-preserving this implies f (2) E &. Now Irng( f )  n (ii U 6)l # 3. Otherwise, the definition 

of end-duplication implies that Fl has three distinct equivalence classes, a contradiction to 

f being an embedding. Thus f (0) E B \ (ii U &), f (1) E a, and f (2) E 6. Now { f (1), f (2)) 
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lies in an Fl-equivalence class of size one by the definition of end-duplication. But since f 

is an embedding { f (1), f (2)) ZF, { f (0), f (2)), contradiction. 

Lemma 2.50 11 4 Z(N1). 

Proof: Let il denote an ordered identity whose underlying identity is Il. By theorem 1.10 

it suffices to show that no J E IDEv realizes il. Towards a contradiction let J E IDE". 

It is clear that il realizes L and thus J must also realize L. This contradicts the previous 

proposition. 0 

Theorem 2.51 J 4 eh(Z(N1)). 

Proof: Towards a contradiction choose K = (D, G) E eh(Z(N1)) and f : A - D witnessing 

the fact that J = (A, E )  is realized as a subidentity of K. Let K be the end-homogeneous 

amalgam of J1, J2,. . . , J, for some n < w,  where Ji = (Bi, 4) is an element of Z(N1). Since 

Il o J and Ji E Z(N1), by the previous lemma, rng( f )  is not contained in a single Bi. From 

the definition of end-homogeneous amalgamation an edge in [BiI2 cannot be G-equivalent 

to an edge not in [BiI2. Every a E A belongs to an element of El. Thus if any edge is 

mapped by f into [BiI2, then A is mapped into Bi, contradiction. In the end-homogeneous 

amalgamation of J1,. . . , J,, the color classes, i.e. the G-classes, are those from J1,. . . , J,, 

respectively, together with new classes, one for each i, 1 5 i < n. An edge belongs to the 

i-th new class just if it links Bi with Bj for some j, i < j 5 n. So in the present context 

there exists a particular i such that if {a, b) E El, then one of f (a), f (b) is in Bi and the 

other is in U{Bj  : i < j 5 n). Without loss of generality i = 1 and f is the identity. So each 

of {l,2), {3,4), {5,6), (7,s) meets B1 in a singleton. The identity J is invariant under the 

permutations (l2)(34), (56)(78), (13)(24) and (57)(68) so it suffices to consider the three 

cases: 

Case 1. {1,3,5,7) E B1. 

This is impossible as J {1,3,5,7) = Il and by the previous lemma Il 4 Z(N1). 

Case 2. {2,3,5,7) C B1. 
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The largest equivalence class in K 1 { f (1), f (3), f (5), f (7)) has three edges yet J 1 

{1,3,5,7) has an equivalence class with four edges. 

Case 3. {2,3,6,7) Bl. 

Here {f (31, f ( 5 ) )  $0 {f (3), f (7)) yet (335) Z E  (3, 7). 

0 

Theorem 2.52 There does not ezist T2 5 T such that Ca = S({It : t E Ta)). 

Proof: Towards a contradiction let T2 5 T be such that Ca = S({It : t E T2)). J E C2 SO 

there must exist t E Ta such that J L-) It. Now t cannot embed the complete binary tree 

of height 3 by corollary 2.45 and thus It E eh(Z(Nl)) by corollary 2.44. This provides a 

contradiction as J # eh(Z(N1)) by theorem 2.51. 

2.8 Saturated Ideals 

In this section we will show that the existence of a certain kind of ideal on N, implies that 

Z(N,) _> IDT. Throughout the section X denotes an uncountable cardinal and, for any 

J C @(A), J+ denotes p(X) \ J. For X ,Y  E p(A) we write X NjY if X A Y  E J. This is 

clearly an equivalence relation on g(X). We denote by [XI, the equivalence class of X and 

by p(X)/J the collection of all equivalence classes. For equivalence classes [XI and [Y] we 

say that [XI 5 [Y] if X \ Y E J and note that the relation is independent of the choice of 

representatives, X and Y. We define four kinds of ideal on A. 

Definition 2.53 Let K be a cardinal. A collection J C p(X) is a n-complete ideal on A if 

the following conditions are satisfied: 

i) X 5 Y c X and Y E J imply X E J 

ii) {X, : a < q) c J and q < K imply U{X, : a < q) E J 

iii) 0 E J 

iv) X # J 
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v) a E A implies {a) E 3 

d 3 be a K-complete ideal on Definition 2.54 Let K and p be cardinals ant A. We say that 

3 is p-satumted if for every collection {Xa : a < p) C 3+ there exist a , p  < p such that 

Xa n Xp E 3'. 

Definition 2.55 Let K, p, and v be cardinals. A K-complete ideal 3 on A is said to be 

(p,p, < v)-satumted if for every X E [ P I "  there exists Y E [XI' so that for every 6 < v 
and Z E [YI6 ( n Z  E I+). 

Definition 2.58 Let K and v be cardinals and 3 be a K-complete ideal on A. 3 is p-dense if 

there exists V E [I+]' such that for all [XI E P(A)/3 there exists D E V such that [Dl 5 [XI. 

Throughout this section we will assume that all ideals under discussion are N1-complete. 

It has recently been shown that it is consistent relative to the consistency of the existence 

of certain large cardinals that there exists an N1-dense ideal on N2, see [3]. This has two 

consequences of interest to us. The first is the consistency of the existence of an (N2, N2, < w)- 

saturated ideal on N2. This is the set theoretic hypothesis of the main theorem of this section. 

That the existence of an N1-dense ideal on N2 implies the existence of an (N2,N2, < 0)- 

saturated ideal on N2 follows from the same result for ideals on N1, mentioned by Laver in 

[lo]. The second consequence is a result of Woodin (private communication): the existence 

of an N1 dense ideal on N2 implies CH. From CH and the Erdos-Rado theorem it follows that 

Z(N2) = ID. Thus the existence of an N1-dense ideal on N2 trivially implies that Z(N2) = 

ID. The same proof cannot be given when one merely hypothesizes the existence of an 

(N2, N2, < w)-saturated ideal on N2 since the existence of such an ideal does not imply CH. 

One can add N2 Cohen reals to a model in which there exists an N1-dense ideal on N2 to 

produce a model in which CH does not hold and there is an (N2, Na, < w)-saturated ideal on 

N2. This is also a result of Woodin (private communication). 

We now establish some notation to be used below. For 3 an ideal on Na, and B a subset 

of N2 of cardinality N2, let f : N2 - B denote the unique order-preserving bijection from 

N2 onto B. By J+(B) we denote the collection {Y C B : fel(Y) E 3+). 

Theorem 2.57 Let k 2 2. If there exists an (N,, Nk,  < w)-satumted, Nl-complete ideal J 

on Nk then Z(Nk) > IDT. 
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Proof: For each n, 1 5 n < w we will show that In-1 E Z(Nk). Let f : [NkI2 - W. We fix 

n, 1 5 n < w. For each 7 E <"2, Y E 9'2, and C E "2 we define subsets I,,, J,,, M,, D, of 

N k ,  a sequence of sets (K," : a E M,), and elements c, < w and a( E Nk such that 

i) I,, n J,, = 8 

iv) for all a E M,, K," E J+(I,) 

V) for all a E M, and z E K,", f({z,a)) = c, 

vi) if C > ~ " ( 0 )  then a( E M, 

vii) D, = n{Ktp : p > qA(0),p E n2). 

viii) Y > 7 + (J,, U I,,) C_ (J, U I,). 

To start the construction we partition Nk into two disjoint subsets I,, J, each of cardinality 

Nk.  There are three procedures to follow. 

Procedure 1. If I, and J, have been defined we define I,-(o) and J,-(o) as follows. For 

a E J, choose K," E J+(I,) and c," < w so that f({a,z)) = c," for all z E K,". Choose c, < w 

and L, C_ J, of cardinality Nk such that c," = c, for all a E L,. By (Nk, Nk, < w) saturation 

let M, C_ L, be of cardinality Nk with the property 

Choose I, - (0) and J, - (0) to be subsets of cardinality Nk which partition M,. This completes 

the first procedure. 

Procedure 2. If I, has been defined and a6 has been chosen for each 6 2 qA(0), we 

define I,-(1) and J,-(l) as follows. Let H, denote {ab : qa(0) C 6, 6 E "2) and D, = n{K," : 

a E H,). From equation (2.1) and vi), D, E J+(I,). Choose Ivy1) and J,-(l) to be subsets 

of cardinality N k  which partition D,. This completes the second procedure. 

Procedure 3. If In(() = n and I( has been defined, choose a( E I(. 
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We construct the sets I,, J, (q E sn2) and the ordinals a, (q E "2) by repeatedly 

applying the three procedures above. It is easy to check that properties i) to viii) hold. 

Let q and v be distinct elements of "2. We claim that if q n Y = y then f ({a,, a,)) = q. 

Without loss of generality we may assume that q > ya(0) and Y > ya(l).  Recall the 

sets M, and K,". defined during the construction of J,-(o) and I,-(o). It is clear from the 

construction that a, E I, G J,-(o) U I,-(o) C M, and thus f({a,,z)) = c, for all z E K:.. 

Now recall the set D, defined during the construction of J,yl) and I,-(1). It is clear that 

a, E I, G I,-(1) U J7-(1) G D, G K:,. This implies that f ({a,, a,)) = q. Thus for all 

(4 ?I, { P ,  6) E [ "212 

This suffices to prove the theorem since f {a, : q E 2") realizes In-1. 

2.9 Finite Analogs 

The question addressed here is whether Z(Nl, w, t) can be generated by finite colorings of 

finite graphs. Clearly we cannot hope to find some m and n such that Z(m, n, t) = Z(N1, w, t) 

for all t simultaneously, since t must be less than or equal to m. Thus we can ask whether, 

for fixed t, there exist m, n < w such that Z(Nl, w, t) = Z(m, n, t). This question is not 

a simple application of Ramsey theory. It is true that for a fixed finite number of colors 

and desired finite monochromatic complete subgraph, we can find sufficiently large complete 

graphs such that no matter how they are colored they must have the desired monochromatic 

complete subgraph. But this is clearly too strong, since for all t there exist identities that are 

not in Z(Nl,w, t) and a monochromatic subgraph of size t realizes all identities of size t. To 

answer the question we determine the identities of size 2,3, and 4 in Z(Nl,w). We show for 

t = 2 , 3  that there exist m, n < w (depending on t) such that Z(Nl, w, t) = Z(m, n, t). Once 

four points are used the situation gets more complex and it turns out that the identities in 

Z(Nl, w, 4) cannot be written in the form Z(m, n, 4) for any m, n < w. We define a collection 

of identities Mi = (Ai, Ei). In the following we represent Ei by its associated partition of 

[Ail2- 
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For obvious reasons we call M6 a monochromatic triangle. The following two lemmas are 

immediate. They show that if there exists t  such that for all m ,  n  < w ,  Z(Nl, w ,  t )  # 
Z(m,  n,  t )  then t  2 4. 

Lemma 2.58 2 ( 2 , 1 , 2 )  = { M I )  = Z(Nl,w, 2 )  

Lemma 2.59 Z(3 ,2 ,3 )  = S ( ( M 2 ) )  = Z(Nl,w, 3 )  

We now prove a series of lemmas which show that there are no m, n  such that Z(N1, w ,  4 )  = 

q m ,  n, 4) .  

Lemma 2.60 Ms $Z(Nl ,w ,4) .  

ProoE Recall the V-identity K, which was defined at the beginning of $2.6. We first 

claim that K  $ IDE. The proof is similar to the proof of proposition 2.38 so we omit it. 

By corollary 1.10 Z(Nl, w )  = IDE. Thus it suffices to show that there does not exist a V- 

identity J', produced by a sequence of end-duplications such that Ms embeds in the identity 

J  underlying J * .  Towards a contradiction choose J' = ( A ,  E, <A) E IDEv with IAl least 

possible such that there exists an embedding f : As -4 A, of Ms into the identity (denoted 

by J  = ( A ,  E ) )  underlying J * .  Let L* = ( B ,  F, cB) ,  8 B ,  and ii c A be chosen so that 

J* is obtained from L* by duplicating 8 to ii. By the minimality of JAl,  rng(f) f l  ii and 

rng( f )  n 8 are both non-empty. We now note that each pair, { z ,  y )  of consecutive elements 

in the sequence ( f ( 1) ,  f ( 2 ) ,  f (3 ) ,  f ( 4 ) )  lie in the same E-equivalence class. This implies that 

{ x ,  y )  C B or { x ,  y)  C A  \ 8. Since B  \ 8 < 8 < ii, by inspection we see that J* must realize 

K ,  contradiction. 0 
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Lemma 2.81 For m I 2n + 1, M3 4 Z(m,n,4). 

Proof: Define f : [2n+ 112 - (1,. . . , n) by f ({a, b)) = i whenever b- a = i (mod 2n+ 1) 

or b - a = -i (mod 2n + 1). In effect we place 2n + 1 points symmetrically on the 

circumference of a circle and give the edges the same color if they have the same length. 

Each vertex belongs to exactly 2 edges of each color. The identity M3 has a vertex which 

belongs to three edges all in the same equivalence class. Thus M3 is not induced by this 

coloring. 0 

Definition 2.62 Let m, n < w,  i < m, k < n, f : [mI2 - n. Define T C [mI2 to be the 

k-star of f at i i f T  = {{i,j)E [mIa: f({i,j))= k). 

The following lemma can be found in [7] theorem 3.6. We give our own proof. 

Lemma 2.63 If m > 2n + 1 and m 2 4 then M5 E Z(m, n, 4). 

Proof: The idea is that relatively few colors are used so that from some vertices we get 

large k-stars for some k < n. If any of the k-stars overlap, M5 will be realized. 

Towards a contradiction let f : [mIa - n which does not realize M5. Fix k < n and 

consider the following matrix. 

We claim that if Czil aik > m then f realizes M5 in color k. The proof is by induction 

on m. Let m = 4 and assume that Czi' aik > m. There must exist j < 4 such that 

aj,k > 1. Thus vertex j is connected to a l l  3 remaining vertices with edges of color k. Now 

ai,k 5 4 for all i so there must exist i # j such that ai,k 2 1. Thus there are at least two 

edges leaving vertex i is color k. By inspection M5 is realized in color k. Now suppose the 

result holds for all t < m. We first eliminate all monochromatic triangles of color k. To this 

end, choose a C-maximal collection S of subsets of m satisfying the properties that s E S 

implies Is1 = 3 and f"[sI2 = {k). Define Z = m \ U S. Clearly I ZI < m if S + 0. Note that 
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for all s E S there do not exist 1 E s and m 4 s such that f({l, m)) = k, otherwise M5 is 

realized by f .  So a+ = 1 for each i E US. Thus CiEz ai,k > 121 and we may apply the 

induction hypothesis. Thus without loss of generality we may assume that S = 0. 
Let T be a star at j, and IT1 2 2. Since f does not realize a a monochromatic triangle 

in color k by an earlier reduction, and since f does not embed M5, every edge e of color k 

which meets U T belongs to T. So the points of U T can be deleted from fld( f )  leaving the 

inequality intact. We are left with stars of size 0 and 1 and thus EL;' aik = 0, contradiction. 

Thus the claim is proved. 

We now claim that for all i, 

which may be see as follows: Since each i belongs to m - 1 2 2n + 1 edges, more than two of 

the edges have some color k and thus for this k we have aik 2 4. Fix such k. Now consider 

a color k' # k. If more than one of the edges through i has color kt, recoloring all but one 

of these edges with k leaves c;:; a+ unchanged or diminished. So c;:,' a+ is least when 

n - 1 of the edges through i have a unique color and the remaining m - n have a common 

color. This completes the proof of the second claim. 

We now complete the proof of the lemma. Since m > 2n + 1, m(m - n + 1) > mn. Thus 

m-1 n-1 x x a,,, > m(m - n + 1) > mn. 

This implies that C;i1 ai,, > m for some k. By the first claim M5 is realized by f ,  

contradiction. 0 

Theorem 2.64 For all m, n, Z(Nl, w, 4) # Z(m, n, 4) 

Proof: Towards a contradiction choose m, n < w such that Z(Nl, w,  4) = Z(m, n, 4). M3 E 

Z(Nl, w, 4) so by lemma 2.61, m > 2n + 1 and thus, by lemma 2.63, M5 E Z(m, n, 4). This 

contradicts lemma 2.60 which says that M5 4 Z(N1, w, 4). 
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CV-ident it ies 

One should now recall the definitions of CV-identity, and Zcv(D), for D a set of ordinals, 

given in $1.3. Let (f, F, <F) be an O-coloring. Denote by Zcv( f )  the collection of all finite 

CV-identities that are realized by f. 

In a manner analogous to that for identities and V-identities, a CV-identity can be 

represented by a structure I = (u, <, 5 )  where u is a set linearly ordered by < and 5 is a pre- 

order of [u]'. Given such a structure let B C w be the initial segment of w such that IBI = IuI 

and k : u - B be the order preserving bijection. Define f : [B]' - w to be the unique 

function whose range is an initial segment of w such that for all {a, b), {z, y) E [uI2, {a, b) 5 

{z, y) if and only if f ({k(a), k(b))) < f ({k(z), k(y))). The CV-identity corresponding to 

the structure is the zcv-class which contains the O-coloring (f,w, <). It is easy to see that 

every CV-identity can be represented in this manner. 

As a notational convenience, for {z, y), {a,b) E [u]' we will write {z, y) {a, b) 

whenever {z, y) 5 {a, b )  and {z, y) {a, b). We also write {z, y) 4 {a, b) whenever 

i.9 Y) i {a, b) and (2, Y) 7' {a, b). 

In this chapter we study the collection Zcv(rc) for various cardinals K. In section 3.1 we 

examine the case when K equals N1. We define a collection C, of CV-identities and show that 

ZFC I- C C Zcv(N1). We then construct a model M of ZFC via a forcing argument such 

that M C = Zcv(N1). We have been unable to show that this result is provable in ZFC, 

or that there exist models of ZFC in which C # Zcv(N1). A few more words concerning this 

problem will be given at the end of this introduction. 
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Section 3.2 concerns itself with CV-identities in Zcv(Na). We exhibit two CV-identities, 

R1 and R2, which have the same underlying identity. We show that R1 E Zcv(Nz) in all 

models of ZFC. In contrast to this result we produce two models of ZFC that show that 

R1 E Zcv(N2) is independent of ZFC. The first model is constructed by a C.C.C. forcing 

over a ground model which contains a Ow,-sequence. It satisfies R1 # Zcv(N2). Thus not 

all CV-identities, whose underlying identity is in Z(Nz), occur as elements of Zcv(Nz). The 

second model is one in which there exists an N2-saturated, N1-complete ideal on Nl. The 

ideal is used to show that R1 E Zcy(Na). We deduce that the C.C.C. forcing notion used 

to construct the first model destroys all N2-saturated, N1-complete ideals on N1. For some 

history and ramifications of this result see [18]. 

In section 3.3 we define a collection &, of CV-identities and show that in all models of 

ZFC, Zcv(Nw) 2 E.  
In the final section we study Zcv(Nl, Q), where Q is ordered in the usual way. The 

reader should note that up to this point the color set has had order type w. We define a 

collection of CV-identities, V, and prove that Zcv(N1,Q) = V in all models of ZFC. The 

method of proof is as follows. By a forcing construction we produce a model in which the 

desired equality holds. We then show for each CV-identity I, if there exists f : [N1I2 - Q 

in the generic extension such that I 4 ZCv(f) then there exists g : [N1I2 - Q in the ground 

model such that I # Zcv(g). The reasoning is as follows. The coloring f can be coded as an 

(wl, w)-model of a certain first order theory TI. The existence of such a model is equivalent 

to the consistency of another first order theory Tf. We then note that the consistency of Tf 

is absolute for models of ZFC. Finally, the consistency of Tf in the ground model allows us 

to construct the coloring g. 

We present a few remarks concerning the problem left open in section 3.1. The method 

of proof used in section 3.4 to show ZFC proves Zcv(N1, Q) = V cannot be used to show 

that ZFC proves Zcv(Nl, w )  = C. Suppose that we try to mimic the methods used in 

section 3.4. As shown in section 3.1 we can force the existence of a model of ZFC in which 

Zcv(Nl,w) = C. For each CV-identity I for which there exists f : [NlIa -+ w such that 

I # Z(f), with f in the generic extension, we can construct an (wl,w)-model, code it as a 

consistent first order theory, and show that this theory is consistent in the ground model. 
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This is the procedure used in section 3.4. Unfortunately, the consistency of the theory does 

not d o w  us to construct, at least directly, a function g : [N1I2 - w that omits I. The 

most we are able to do is construct a function g : [N1I2 - B that omits I, where B is a 

countable set that is linearly ordered. One hope was that it would be possible to show that 

there exists a countable subset C of B of order type w and an uncountable subset D of N1 

such that g({dl,d2)) E C for all {dl,da) E [Dl2. We conclude the section with a theorem 

that shows that this is not always possible. The theorem says that if CH holds then there 

exists a function f : [Nila -+ w + w such that for all B c N1, for all S c w + w 

We conclude this introduction by noting that the results for identities proved in lemma 

2.3 are also true for CV-identities. We offer no proof as it is similar to the one already given 

in lemma 2.3. 

Lemma 3.1 For all k 2 1, Z C V ( N ~ + ~ )  = IDcv if and only if 2'0 5 Nk. 

The classification of the collection of identities Z(N1) has been demonstrated in [15]. We 

produce a similar classification for CV-identities. In this section we will define a collection 

C of CV-identitiess and show that there is a model of ZFC in which Zcv(N1) = C. Towards 

this result we define fn : [{O, 1,. . . , n)]' - w for 1 5 n < w by fn({x, i)) = i for all 

0 5 i < x I n. Define C = U{Zcv( fi) : i < w ) .  

Theorem 3.2 Them exists a model of ZFC in which Zcv(N1) = C. 

P r o d  This theorem follows immediately from lemmas 3.3 and 3.4 to be proved in the next 

two subsections. 

3.1.1 Inducing CV-identitiess 

Lemma 3.3 Let f : [N1]' -+ w. Then ZCV( f )  > C. 
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P r o d  By recursion on n < w we define a decreasing sequence (Bn : n < w), of subsets 

of N1. To start choose Bo C N1 \ (0) of cardinality H1 such that Xz f({O,z)) is constant 

on Bo. Given Bn of cardinality N1 choose Bn+l C B, \ {min(Bn)) of cardinality N1 such 

that Az f ({min(Bn), z)) is constant on Bn+l. This completes the recursion. Clearly f 1 

[{min(Bn : n < w)I2 realizes every member of C. 

3.1.2 Omitting CV-identities 

Throughout this subsection we will let M be a model of ZFC. The main result of this section 

is the following lemma. 

Lemma 3.4 There ezists a canlinal presenn'ng forcing eztension N of M and functions 

f", f ', f' : [N1] - w in N such that for every I 4 C, one of f", f b ,  f' does not realize I. 

We first establish some definitions and notation. We define 2 linear orders of wl x wl 

called the lezicogmphic and the antilezicogmphic orders respectively by: 

Towards defining the partial orders that will be used in forcing we let 

R = {g : g is a mapping from [B]' into w, IBI < w, B C N1). 

For f E R define fld(f) = {z, y E N1 : {z, y) E dom(f)). We say that f ,g E R are 

isomorphic, denoted f = g, if Ifld( f)l = Ifld(g)l and f ({z, y)) = g({k(z), k(y))) for all 

{z, y) E dom(f), where k is the unique order preserving map from fld(f) onto fld(g). We 

say that the pair (f, g) is proper if f 2 g and fld( f )  \ fld(g) < fld(g) \ fld( f ). (Here and in the 

remainder of the thesis, for sets of ordinals A and B, we write A < B whenever a E A and 

b E B implies a < 6.) For F E { I ,  a) an F-amalgam of f and g, where (f, g) is proper, is an 



CHAPTER 3. CV-IDENTITIES 49 

extension h E R of f and g such that fld(h) = fld( f )  u fld(g), rng( f )  u rng(g) < rng(h \ f U g), 

and 

Wl, Yl)) < h({z2, ~ 2 ) )  @ (21, Yl) CF (22, Y2) 

Definition 3.5 For F E {I, a)  define the partial ordering PF as follows. Let 

Pf = {f : f is a mapping from [ B ] ~  into w, 1BI = 1). 

Define 
F P,+l = P: U {g E R : 3 f i ,  f2 E P: such that g is their F-amalgam ). 

Let pF = U { P ~  : n < o), with the ordering of inverse inclusion. 

Lemma 3.6 Let F E {I, a). Then PF is C.C.C. 

Proofi Let A = {fa : a < wl) C PF. For each a < wl let B, denote fld(f,).Without loss 

of generality there exist m, n < w such that IB,I = n < w and fa E P; for all a < wl. We 

may also assume that fa N fp for all a, p < wl. By a A-system argument we may assume 

that there exist B c wl and a collection {D, : a < wl) such that 

whenever a < p < wl. 

Choose distinct a, P, with a < P. Clearly the F-amalgam of fa and fa is in R: denote 

it by g. Since both fa and fp are elements of P:, g is an element of P:+,. Thus A is not 

an antichain. 0 

Let G' be P' generic over M and Ga be Pa-generic over MIG1]. Define N to be the model 

M[G'][Ga] and in N denote by ga and g' the functions UGa and U G' respectively. 

Lemma 3.7 The cardinalities of fld(ga) and fld(g') are both N1. 
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Proof: It is sufficient to show that {f E pF : fld(f) $ a) is dense in pF for a l l  a < wl. 

This is easy and we leave it to the reader. 0 

For F E {a,  I )  let hF be the unique order-preserving bijection from N1 onto fld(gF), and 

define f F  : [N1I2 -+ w by f =({a, P)) = fF({hF(a), hF(p)). Our next goal is to define 

f b  : [N1I2 ---t w, the third coloring we need for the conclusion of lemma 3.4. For a, r E '"2 

we write a <I  r if 

Let h : <"2 -+ w be the unique bijection satisfying a <I T + h(a) < h(r). Choose an 

injective map g : wl ---+ '"2. Now f b  : [N1I2 -+ w is defined by fb({q, v)) = h(g(q) n g(v)). 

We now outline the proof of lemma 3.4. Let I be a CV-identity which is not in C. It 

will be shown that one of f", f', f b  does not realize I. To this end we name some particular 

CV-identities: {Ki : 1 5 i 5 101, {Ji : 1 5 i 5 4). Then, towards a contradiction, we 

suppose that I is realized by each of f", f', fb .  We first show that none of Kt to Klo is 

realized in I. From this we deduce that I must realize one of J1 to J4. We finish by showing 

that f does not realize each of J1 to J4 . 
We name the ten CV-identities that are not elements of C having field size three. For 

each i, 1 5 i 5 10 let Ki = (ui <i, di) be such that ui = {0,1,2) and <i is the usual 

ordering. To complete the definition we define the order on the edge colors. 

ii) K2 : {1,2) 4 {0,2) 4 {0,1) 

iii) K3 : {0, 1) 4 {1,2} 4 {0,2} 

iv) K4 : {0,2) 4 {1,2) 4 {0,1) 

vii) K ,  : {1,2) 4 {0,1) {0,2) 
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viii) KB : {0 ,2)  - {1,2) hi {0,1) 

ix) Kg : {0 ,2)  - {1,2)  4 .{0,1) 

As a notational convenience we use 4 instead of + and - instead of w j  since the context 

makes the intention clear. It should be noted that a CV-identity K = ( u ,  <, 5 )  for which 

u = {0,1,2) and 0 < 1 < 2, is an element of C if and only if { z , y )  4 {1,2)  for all 

( 2 ,  Y )  E [ ~ l '  \ ( ( 1 ,  21). 

We now name four of the CV-identities that occur on four vertices. For each i ,  1 5 i  5 4 

let Ji = (ui ,  <i, 5) be such that ui = {0,1,2,3) and <i is the usual order. To complete the 

definition we define the order on the edge colors: 

i) Jl : {0,2} 4 {0, 1 )  4 { I ,  2 )  4 {0,3} 4 { I ,  3 )  4 {2,3} 

ii) J2 : {0, 1 )  4 {0,2} 4 { I ,  2 )  4 {0,3} 4 { I ,  3 )  4 {2,3} 

iii) J 3 : { 0 , 3 } 4  { 0 , 1 } 4  { 1 , 3 } 4  10,214 { 1 , 2 } 4  {2,3)  

iv) Jq : {0,1) 4 {0,3)  4 {1,3)  4 {0,2)  4 {1,2)  4 {2,3). 

We denote the collections {Ki  : 1 5 i  5 10) and {Ji : 1 5 i  5 4) by K: and .7 respectively. 

Lemma 3.8 In N, f' does not realize any member of K: \ { K 1 )  and f" does not realize any 

member of K: \ { K 2 ,  K3). 

Proof: We will show that f' does not realize K z  and that f" does not realize K1.  The 

remaining arguments are very similar and are left to the reader. 

Lemma 3.9 f' does not realize K2.  

Proof: It is enough to show that no p = (up,cp) E P' realizes K2. Suppose otherwise. 

Choose m minimal such that there exists p E Pf, for which there exists an order-preserving 

map g : {0,1,2) - UP showing that K2 is realized. Let po = (uO,  cO) and pl = ( u l ,  c l )  be 

such that p is their amalgam. Since m is minimal rng(g) n u0 \ u1 and rng(g) n u1 \ u0 are 

non-empty. 
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Suppose Irng(g) n uoAull = 2. Then c({g(l) ,9(2)))  < c({g(O), g(1))) because {1,2) 4 2  

{0,1). Now note that g(0) E u0 n u l ,  g(1) E u0 \ ul ,  and g(2) E u1 \ u0 so that by the 

definition of amalgamation we have c({g(l) ,  g(2))) > c({g(O), g( l ) ) ) ,  contradiction. 

Hence, Irng(g) f l  uOAull = 3. There are two casee. The first is {g(O),g(l)) G u0 \ u1 

and g(2) E u1 \ uO. The second occurs when g(0) E u0 \ u1 and {g( l ) ,g(2))  C u1 \ uO. In 

the first case c({g(l) ,  g(2))) < c({g(O),g(l))) since {1,2) 4 2  {0,1). This contradicts the 

definition of amalgamation as new edges get colors larger than all colors previously used. In 

the second case c({g(O),g(2))) < c({g(O),g(l))) because {0,2) 4 2  {0,1). This contradicts 

the fact that the lexicographic order is used when coloring new edges. 0 

Lemma 3.10 fO does not realize Kl .  

P r o d  It is enough to show that no p = (up,cP) E Pa realizes Kl.  Suppose otherwise. 

Choose m minimal such that there exists p E P: for which there exists an order-preserving 

map g : {0,1,2) -+ UP verifying that K1 is realized. Let po = (uO, cO) and pl = ( u l ,  c l)  be 

such that p is their amalgam. Since m is minimal mg(g) n u0 \ u1 and m g ( g )  n u1 \ u0 are 

non-empty. 

Suppose Irng(g) n uoAull = 2. Then c({g(l) ,g(2)))  < c({g(O), g(2))) because {1,2) 4 1  

{0,2). Now note that g(0) E u0 n u l ,  g(1) E u0 \ u l ,  and g(2) E u1 \ u0 so that by 

the definition of amalgamation we have c({g(l),g(2))) > c({g(O), g(2))),  contradiction. 

Hence Irng(g) n uOAull = 3. There are two cases. The first is {g(O),g(l)) C u0 \ u' and 

g(2) E u1 \ uO. The second occurs when g(0) E u0 \ u1 and { g ( l ) ,  g(2)) G u1 \ uO. In the 

first case c({g(l) ,g(2)))  < c({g(O),g(l))) as {1,2) 41 {0,1). This contradicts the definition 

of amalgamation since new edges get colors larger than all colors previously used. In the 

second case c({g(O),g(l))) < c({g(O),g(2))) because {O,1) 41 {0,2). This contradicts the 

fact that the anti-lexicographic order is used when coloring new edges. 

This completes the proof of lemma 3.8. 

Lemma 3.11 Let K = (u ,  <, 5 )  be a CV-identity i n  which no member of K is realized such 

that K 4 C and lul 2 4. Then some member of ,7 is realized in  K .  
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Proof: We first note that since K 4 C there must exist {a ,b ,c ,d)  c u such that a < 
b, c ,  d ,  b  < d ,  and { a ,  c )  k {b,  d ) .  The ordering of the set { a ,  b, c ,  d )  determines the cases 

we must examine. 

Case 1. a <  c  < b <  d. K 1 {c ,b ,d )  4 K = +  {c ,b )+  {b ,d ) .Thus  { a , c )  {b ,d )  >. {c,b) .  
This implies that K { a ,  b, c )  E K ,  contradiction. Thus the first case is vacuous. 

Case 2. a < b < d < c. Since K {b,  d ,  c )  4 K ,  {b,  c )  4 { d ,  c ) .  Similarly, restricting K to 

the set { a ,  b, d )  we get {a ,  d ) ,  { a ,  b )  4 {b,  d ) .  bstricting to { a ,  b, c )  gives {a ,  c )  4 {b, c ) .  

One of the following orders on edge colors must occur: 

iii) { a ,  b )  { a ,  d )  4 {b ,  d )  5 {a ,  c )  4 {b, c )  4 { d ,  c ) .  

Each of these has J1 or Jz  as subidentity. 

Case3. a < b < c < d .  

Since K 1 { a ,  b, c )  4 K ,  { a ,  c )  4 {b,  c ) .  Similarly, restricting K to the set { a ,  b, d )  we 

get { a ,  d ) ,  { a ,  b )  4 {b ,  d ) .  Restricting K to {b, c ,  d )  gives {b,  c )  4 {c ,  d ) .  Thus one of the 

following orders must occur: 

ii) { a ,  b )  4 { a ,  d )  4 {b,  d )  5 { a ,  c )  4 {b,  c )  4 { d ,  c ) .  

iii) { a ,  b )  - { a ,  d )  4 {b,  d )  5 { a ,  c )  4 {b,  c )  4 { d ,  c ) .  

Each of these has J3 or J4 as a subidentity. 0 

We establish some notation and definitions. Let I = (uI ,  < I ,  51) and J = (u  J ,  < J ,  5 J )  

be CV-identities. We say that I is a reordering of J  if u~ = U J  and AI=sJ. Let t be the 

collection of CV-identities, { L 1 ,  Lz) ,  where, for i = 1,2, Li = (ui, <i, i i ) ,  ui = {a, P,  7,6) 
and a <i /3 <i 7 <i 6. We complete the definition by defining the order on the edge colors. 

To simplify notation we use 4 instead of 4i as the context makes the usage clear. The 

colors are ordered according to: 
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Lemma 3.12 Let K be an CV-identity of size four. If K is an element of Zcv( f b )  then K 

is realized in  a reordering of L1 or a reordering of La. 

Proof: Let {ai : 1 5 i 5 4 )  C N 1  and K be the identity realized by f b  [{ai : 1 < i < 4)la. 

We will show that K is a reordering of L1 or of La. Recall the function g used in the definition 

of f b .  Define G to be the set {g(ai) n g(aj ) : 1 5 i,  j 5 4). Now there exists a E-preserving 

map from G onto the binary tree whose set of leaves is {(0,0,  O ) ,  (1,0,  O ) ,  (1,1, O ) ,  (1 ,1 ,1))  

or the complete binary tree s22. It should be observed that the color assigned to {ai, a j )  

by fb is primarily determined by the length of g(ai) n g(aj).  Thus in the first case K is a 

reordering of L1. In the second case K is a reordering of La. 

Lemma 3.13 No member of .7 is realized by a reordering of a member of L. 

Proof: The following two propositions clearly suffice. 

Proposition 3.14 No J in .7 is mlized by a reordering of L1. 

Proof: Towards a contradiction suppose that there exists i,  1 5 i 5 4 and a linear ordering 

<* of {a, p, 7 , 6 )  such that K = ( { a ,  p,  7 ,  S ) ,  <*, A1) is a reordering of L1 which realizes Ji. 

Since, in Ji, {2,3)  is the unique edge which is assigned the greatest color, 7 and 6 are the 

two largest elements with respect to <*. Within these constraints we have four orderings 

that <* can impose on the set { a ,  p, 7 ,6) .  Since the permutation (7, 6 )  is an automorphism 

of ( { a ,  p, 7 ,  61, d l )  it is sufficient to consider the orderings 

Case 1. In this case, {p,?)  + {a ,6 )  in L1, yet {1,2) 4 {0,3) in J1 and J2. Also { a , ~ )  4 

{P ,  6 )  in L1, yet {0 ,2)  + {1,3) in J3 and J4. 
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Case 2. In this case, {a, y) 4 {p, y) in L1 but {1,2) + {0,2) in Ji. 

Thus no reordering of L1 realizes any of the CV-identities in 3. 

Proposition 3.15 No J in .7 is realized by a reordering of La. 

Proofi Towards a contradiction suppose that there exists i, 1 5 i 5 4 and a linear ordering 

<* of {a, p, y,6) such that K = ({a, p, y, 61, <*, Aa)  is a reordering of La which realizes Ji. 

Since, in Ji, {2,3) is the unique edge which is assigned the greatest color, y and 6 are the 

largest elements with respect to <*. Thus a, p are the smallest. In K the edge between 

the second and third elements in the <* ordering is one of {a, y ), {a, 61, {/I, 71, or {P, 6). 

Since the color assigned to all these edges is less than the color assigned to {a,/?), the color 

assigned to the edge between the second and third elements in the <*-order is less than 

the valued assigned to the edge between the first and second elements in the <*-ordering. 

By inspection, in Ji, the color of the edge between the second and third elements is greater 

than that of the edge between the first and second, contradiction. 0 

This completes the proof of lemma 3.13. 

Lemma 3.16 No member of .7 is realized by fb. 

Proot: Towards a contradiction let J E .7 be realized by fb. Now J has size four and thus 

by lemma 3.12 it is realized in a reordering of L1 or of La. This contradicts lemma 3.13. 0 

We now prove lemma 3.4. It is easy to see that all CV-identities that are not elements 

of C and have field size three are elements of K .  By lemma 3.8, in N = MIGO][G'], each 

member of K is not realized by some coloring of [Nila. Thus the inclusion Zcv(N1) C C is 

valid for CV-identities of field size three. Let I # C have field size greater than three. By 

lemma 3.11 one of the CV-identities in .7 is realized in I. But lemma 3.16 shows that each 

CV-identity in .7 is not realized by fb. So f b  does not realize I. This completes the proof 

of lemma 3.4. 
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Two particular CV-identities, called R1 and R2, play a role in this section. We will consider 

two models of ZFC. In one R1 E Zcv(N2) (theorem 3.22) and in the other R1 4 Zcv(N2) 

(theorem 3.24). We demonstrate that in all models of ZFC, R2 E Zcv(N2) (lemma 3.25) and 

R1 E ZCV(N3) (lemma 3.26). This provides a proof of the consistency of Zcv(N2) # Zcv(N3) 

(theorem 3.27). The CV-identities R1 and R2 have the same underlying identity, called 

11, and ZFC k Il E Z(N2). This answers in the negative, the question as to whether 

all reorderings of a CV-identities in Zcv(N2), whose underlying identity is in Z(N2), are 

themselves elements of Zcv(N2). The forcing notion used in this section provides a new 

way of finding C.C.C. forcing extensions of models of ZFC in which there is no N2-saturated, 

N1-complete ideal on N1. A previous construction of such forcing extensions is found in [18]. 

We define Ri = (ui, <i, ii) by setting ui = {0,1,2,3) and <i to be the usual ordering. 

The order of the edge colors is given by: 

i) R1 : {0,2) N {O,3) N {1,2) N {1,3) 4 {2,3) 4 {0,1) 

ii) R2 : {0,2) N {0,3) N {1,2) - {1,3) 4 {0,1) 4 {2,3) . 

We need the function p : [w2I2 + w1 defined in [17] by Todorcevic. Fix a model M of 

ZFC in which there exists a O,, sequence (C, : a < w2 A a a limit ordinal ). Extend the 

definition of C, for y < w2 by setting Ca+l = {a). Define p : [w2I2 -+ wl by 

p({a, PI)  = sup{p(a, m w g  \ a)),ot(Cg a) ,  ~ ( $ 9  a )  : II, E Cg n 4. 

Following the notation of [17] .and [18] we write p(a, P) for p({a, P)). 

The following are properties of p, see [17]. 

i) p(-, a )  : a -+ wl is countable to one, 

ii) If a < /3 < y < w2 then 
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We quote the following lemma from [18]. 

Lemma 3.17 Let an uncountable family F of finite subsets of w2 and an ordinal p < ol be 

given. Then them am distinct x ,  y E F such that for every a E x \ y, P E y \ x ,  7 E x n y 

For b E N 2 ,  ii E [N2]<" we define bRZi to hold if there exists a l ,  a2 E ii with a1 < a2 such 

that d b ,  a2) 5 4 %  a2). 

We note that for a fixed ii E [N2]<" there are only count ably many c such that cRii. We 

let R denote { ( u ,  c )  : u E [ N 2 I C w ,  c : [uI2 - o ) .  We say that p = ( u ,  c )  E R is the amalgam 

of p0 = (uO,  cO) and p1 = ( u l ,  c l )  E R if there exist h < w and increasing sequences i:, . . . , iO, 

and;: ,..., i ~ i n N 2 s u c h t h a t f o r a l l s , t , O ~ s < t ~ h a n d a l l i , j , k , 1 < w 2  

i )  u0 = {i:, . . . , i i )  and u1 = {i:, . . ., i:) 

ii) cO({i;, i ; ) )  = cl({i:, i ; ) )  

iv) u = uO u u1 

vi) ( { i ,  j )  4 [u0I2 U [dl2) + ~ ( { i ,  j ) )  > rng(cO) U rng(cl) 

vii) c({ i ,  j ) )  = c({k ,  1 ) )  =+ ( { i ,  j )  = { k ,  I) V { i ,  j ) ,  { k , l )  E [u0I2 U [dl2) 

viii) i E uO, j E u l ,  k E u0 n u1 and k < i < j imply p(i, j )  2 max{p(k, i ) ,p(k ,  j ) )  

Now recall the notions of one-point extension and history as given in the previous chapter. 

Also recall the natural indexing of elements of a history 

Definition 3.18 We define a sequence of subsets of R. Let Po = { (u ,c )  E R : lul = 1) .  

Given P,, let Pn+l be the subset of R which contains P,, all amalgams of pairs of elements of 

P,, and all one-point extensions of elements of P,. Let P = U{P, : n < w). For p = ( U P ,  c P )  

and q = (u9, c9) let p 5 q mean that UP 2 u9 and CP > cq. 
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Lemma 3.19 P is c.c.c 

Proof: Let (pa  : a < wl) be a sequence of conditions. By thinning we can suppose 

that there are n, 1 < w and i: ( a  < wl, 0 5 j 5 n) such that for all a ,p  < wl and all 

j, k, (0 I j < k 5 n) 

i) upa = {ig, . , . , i:} 

ii) i; < ig 

iii) @a({i?, ig}) = ##({i;, if}) 

iv) pa E PI. 

Applying the A-system argument. allows us to thin the sequence of conditions further so 

that 

VaVP(iP = i f)  v (VP < ol)(Va < P)(iP < i f )  (0 5 t I n). 

Since p(-,a) is countable to one we can inductively define a sequence (aa : P < wl) 

such that ,8 < 7 < wl A b E uPav \ upa# implies 

By Velickovic's lemma 3.17 we may choose 7,6 E {ab : P < wl) such that for all i, j E 

up7 U up6, 

i E UP?, j E up6, and k E UPV n UP* implies p(i, j )  2 min{p(k, i), p(k, j)). 

Using the quoted properties of p we conclude that, if i E up., j E up6, k E up7 fl up', and k < 
i < j, then 

p(i,j)  2 max{p(k, 9, p(k,j)}. 

So the conditions p, and p6 have a common extension in P. 

Lemma 3.20 Let p E P. Then p does not realize R1. 
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P r o d  Towards a contradiction suppose the lemma fails. Let m be minimal such that 

there exists p E P, realizing Rl. Let H = (pa : a E 25") be a history of p. Let g : 

{0,1,2,3) - UP be the order preserving map witnessing the realization. Since m is minimal 

rng(g) n do) \ u(') and rng(g) n d l )  \ do) are nonempty. Note that in R1 each edge of 

the cycle (02130) has the same color. Thus for any two consecutive elements s, y, of the 

sequence (g(O), g(2), g(l), g(3), g(O)), either z, y E do) or s, y E dl). On the other hand, 

from the minimality of m, rng(g) intersects both do) \ u(') and dl) \ do). It follows that 

either g(O), g(1) E do) n dl) or g(2), g(3) E do) n d l ) .  The former contradicts {0,1) 

being the unique edge of R1 with the maximum color. Thus g(2), g(3) E do) n u(') and 

g(0) E do) \ dl), g(1) E dl) \ do), or vice-versa. Without loss of generality the first 

possibility occurs. 

We conclude from the above that {g(2),9(3)) C do) n dl). Towards a final con- 

tradiction note that p(g(l),g(3)) > p(g(2),g(3)) since -g(l)R{g(2), g(3)). Let R' de- 

note the CV-identitiy R1 {1,2,3). Choose a E 25" such that la1 is maximal sub- 

ject to {g(l), g(2), g(3)) ua. This implies lua^(0) \ ua*(') n {g(l), g(2), g(3))I 2 1 and 

1u"(') \ u"-(~) t l  {g(l),g(2),g(3))1 2 1. Now note that the color of the edge {g(2),g(3)) 

is maximal in the collection of colors occuring on the edge set [{g(l),g(2),g(3)la. Thus 

g(2) E ua^(0) \ ua-(l) and g(3) E ua*(l) \ ua-(O), or vice-versa. If g(1) 4 ua-(0) n ua-('1 some 

new edge receives a color previously used, a contradiction to the definition of amalgama- 

tion. Using property viii) of the definition of amalgamation we conclude that p(g(l), g(3)) I 

p(g(2),g(3)), a contradiction to a previous note. 

Let M be a model of ZFC and G be P-generic over M. Define g = U{c : 3u((u, c) E G)). 

Lemma 3.21 In M[G] ,  IjZd(g)l = Na. 

Proof: The set {(u, c) E P : u (f a) is dense in P for all a < oa since P is closed under 

one-point extensions. So fld(g) is cofinal in (N2)M. But, since P is C.C.C. (N2)M = (N2)M[G]. 

Hence the conclusion. 
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Theorem 3.22 Let M be a model of ZFC and G be P-generic. In M[G] there is a function 

f : [N2I2 - w such that R1 # Zcv( f) .  

Proof: In M[G], Ifld(g)l = N2 so there exists a unique order-preserving bijection h : N2 - 
fld(g). Define f : [N2I2 - w by f({a,P)) = g({h(a), h(P))). It is clear from lemma 3.20 

that R1 4 Zcv(f). 

We are now going to  show that there exists a model of ZFC in which R1 E Zcv(N2) and 

Zcv(N2) # IDcv. The model will be one in which there exists an N2-saturated, N1-complete 

ideal on Nl. It has been shown that the existence of such ideals is consistent relative to 

the consistency of the existence of certain large cardinals, see [9]. It is shown in [I] and in 

[lo] that when one adds Cohen reals to  a model of ZFC the existence of an N2-saturated, 

N1-complete ideal on N1 is preserved. Since CH fails in this model we may apply lemma 3.1 

to conclude Zcv(N2) # IDcv. 

Lemma 3.23 Let n > w be a prdinal such that n - (n,w)l, f : [nI2 - w, and n < w. 

Then either ZCv(f) = IDCV or there ezists D C n such that ID1 = n and f({a,P)) > n for 

all {a,P) E [Dl2. 

Proof: Define g : [nI2 - {0,1) by g({a,P)) = 0 if and only if f({a,P)) > n. Now 

use the fact n - ( n , ~ ) ~ .  If there is a homogeneous set of size n in color 0 we are done. 

Thus we may assume that there is D c n of order type w such that f({a,P)) < n for all 

{a,p) E [Dl2. Now apply w -4 (w);+, to find E C D and k 2 n such that D has order 

type w and f({a, P)) = k for ad {a, P) E [El2. Clearly f 1 [El2 realizes a l l  CV-identities. 

0 

Theorem 3.24 If there ezists an N1-complete, N2-satumted ideal 3 on N1 then, R1 E 

Zcv(N2). 

Proof: Let f : [N2I2 - W. For a 2 N1 choose C, C N1 and d, < w so that C, E 3+ and 

f({z, a ) )  = d, for all x E C,. Choose D C N2 \ N1 and cl < w so that ID( = N2 and d, = cl 

for all a E D. Applying the previous lemma we may assume that there exists Dl C D such 
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that ID1) = N2 and f({a,P)) > cl for all {a,P) € [D1I2. By N2-saturation there exists 

{a, P) E [D1I2 such that C, n Cg E J+. Let c2 = f ({a, P)) and C = C, n Cg. Note that 

cl < c2 and ICI = N1. We again apply the previous lemma to find distinct a, b E C and 

c3 < w such that f({a, b)) = c3 and c2 < c3. 

It is then easy to verify that f({a,b)) = c3, f({a,P)) = c2, and f({x, y) = cl for 

x E {a,P) and y E {a, b). This together with the fact that a < b < a < P implies that f 

realizes R1 on {a, b, a,p). 

Lemma 3.26 R2 E Zcv(N2). 

Proof: Let f : [N2I2 - W. For a E N 2 \ N 1  chooseC, N1 and d, < w such that IC,I = N1 

and f ({x, a ) )  = d, for all x E C,. Let D C N2 \ N1 and cl < w be chosen so that I Dl = N2 

and d, = cl for all a E D. By lemma 3.23 we can choose, for a E D, da,l,da,2 E C, and 

e, < w such that f({d,~,d,,~)) = e, > cl By the pigeon-hole principle there must exist 

E D, c2 < w, and a , b ~  N1 such that IEI = N2 and for all a E E,daBl = a ,  d , ~  =band ,  

c2 = e,. We may assume that a < b. Again by lemma 3.23 we may choose two elements 

c < d E E such that f({c, d)) = c3 > c2. As cl < c2 < c3 and a < b < c < d it is clear that 

f realizes R2. 

We now remark that it is not true that if I and J are CV-identities such that I is a 

reordering of J and I E Zcv(N2) then J E Zcv(N2). The identities R1 and R2 provide an 

immediate counterexample. We also note that the identity underlying both R1 and R2 is I1 

which is an element of Z(N2), see theorem 2.22. 

Lemma 3.26 R1 E Zcv(N3). 

Proof: Let f : [N3I2 - W. For a E N2 choose C, C [N2,N2 + N1), d, < w such that 

(C,I = N1 and f ({x, a))  = d, for all x E C,. Let D C N2, cl < w be chosen so that 

ID1 = N2 and d, = cl for all a E D. We now follow the construction process in the previous 

theorem, producing three colors, cl, c2, and c3 and four elements a, b, c, d E N2 such that 

cl < c2 < c3 < w and C <  d < a <  b. It is clear that f realizes R1. 0 
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Theorem 3.27 Them is a model of ZFC in which Zcv(N2) # Zcv(NS). 

Proof: This is immediate from theorem 3.22 and lemma 3.26 0 

Theorem 3.28 Let M be a model of ZFC such that M b Ow,. Let P E M be the partial 

order defined in this section. Then for all P-generic G ,  

M[q +JJ(J is an No-satumted , N1-complete ideal on HI). 

Proof: Theorem 3.22 shows that M[G] b R1 # Zcv(N2) which contradicts theorem 3.24 if 

there exists an N2-saturated ideal on N1. 0 

We start with some definitions. Let n < w. Denote by <I  the ordering of "2 where a <I P 
if and only if a > ( a  n P)^(O). Denote by k,, the unique one-to-one function from 2" (the 

ordinal) to "2 such that for all 0 5 i ,  j < 2", i < j if and only if kn(i) <I  kn(j). For 

f E (<m2)2 let gf : '"2 - w be the unique function such that 

i) rng(gf) is an initial segment of w 

We define E = u(Zcv(hf) : f E (<m2)2 A n < w ) .  

Theorem 3.29 Zcv(Nw) > E.  

Proof: We will show that for each n ,  1 5 n < w,  

Zcv(kn)  > U{Zcv(hf) : f E (<m2)2 A 1 5 m 5 n ) .  
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The initial stage of n = 1 needs no proof. Thus assume the result for n 5 k and let f E 

(<'+12)2. Let g : [N2k+2]2  - w. For i = 0 , l  define fi : <k2 - {0 ,1)  by f i (q)  = f(( i)^r]).  

We have two cases to consider f ( 0 )  = 0 and f (0 )  = 1. We analyze the first case and leave 

the second since it is similar. 

For a E N2,+1 choose Co C [N2k+l,N2k+1 + N 2 k )  and 6, < w such that g ( { a , x ) )  = 6, 

for all z E C,. By the pigeon-hole principle there exists D C N2k+1 and b < w such that 

6, = b for all a E D. Now let a E D. By lemma 3.23 we may assume without loss of 

generality that there exists E,  C Co such that IE,I = ICaI and rng(f [EOl2) C w \ b + 1. 

For a E D,  by the induction hypothesis there exists a set Go C E, such that g 1 [Gal2 

realizes Zcv(ht,). For each a E D choose such a set. Again by the pigeon-hole principle 

there is Dl E D of cardinality and a set G such that G ,  = G for all a E Dl. 

Let c = max(rng(g 1 [GIa)). By lemma 3.23 we may assume without loss of generality 

that there exists D2 Dl of cardinality such that g 1 [D2I2 C w \ 1 + c. By the 

induction hypothesis there exists H C D2 such that g 1 [HI2 realizes Zcv(hlo). It is clear 

that g 1 [H U GI2 realizes Zcv(h j ) .  0 

3.4 CV-identities with color set ordered like the rationals 

In the section we will classify Zcv(Nl,Q). Towards this end we let V be the set consisting 

of the two CV-identities which have field sizes one and two. We show Zcv(N1, Q)  = V. We 

outline the proof. Let 'R be the collection of all CV-identities that have field size three. Let 

M be a model of ZFC. We first construct C.C.C. partial orders P (F*i),  for F E {a,  I )  and 

i E (0, 1). In N = M [Ga~O][G"J] [G1~O][G'*'] we define f Fl' : [ N 1 I 2  - Q using GF?'. We then 

show that each K E 72 is omitted by one of the fFti. The final step is to show that a copy of 

each f F l i  can be constructed in the ground model M. This is accomplished by considering 

2-cardinal models. 

We establish some definitions and notation. From $3.1 recall the lexicographic and 

antilexicogmphic orders of wl x wl,  denoted <' and <" respectively. From the same section 
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recall the definitions of isomorphic and proper. Let 

R = {g : g is a mapping from [BIZ into Q, (BI < w, B C N1). 

For F E (1, a) and i = 0, an (F, i)-amalgam of f and g, where (f, g) is proper is an extension 

h E R of f and g such that fld(h) = fld( f )  U fld(g), rng( f )  U rng(g) < rng(h \ f U g), and 

for all x 1 , q  E fld(f) \fld(g) and yl,yz E fld(g)\fld(f). For F E {l,a) and i = 1, an 

(F, ;)-amalgam of f and g, where (f, g) is a proper pair, is defined exactly as above except 

r w ( f  u rw(g) > W ( h  \ f U g) 

Definition 3.30 For F E {I, a) and i E {O,1) define the partial ordering P (Fd as follows. 

Let p,('li) = {f : f is mapping from [BIZ into Q, IBI = 1). For n 2 1 let ~,(f:) denote the 

union of pdFli) and 

{g E R : there exist fl, fa E pici) such that g is their (F, +amalgam ). 

Let P (Fli) = U{P,(~~') : n < W) with the ordering of inverse inclusion. 

Let M be a model of ZFC. Let Gal0 be Palo-generic over M. Define Na*O to be MIGanO]. 

Let Gal1 be Pal1-generic over Nap0 and define NaJ to be Na~OIGaJ]. Let GIs0 be P1lo-generic 

over NaJ and define N110 to be NaJIG1lO]. Finally let GIJ be PI*'-generic over N1t0 and 

define N to be N1tOIG'J]. In other words N = M[Ga*O][GaJ][G1*O][G'J] where GFli is pFti 

generic over the appropriate model. In N define gci = U GF*' for F E {a, 11, i E (0, 1). The 

following two lemmas are proved in a manner similar to lemmas 3.6 and 3.7. 

Lemma 3.31 Let F E (1,a) and i E (0, 1). Then P ('8') is C.C.C. 

Lemma 3.32 The cardinality of jld(gFti) is N1 for each i E {O,1)  and F E (1, a). 

For F E {I, a)  and i E {O,1)  let hFli : N1 -+ fld(gFli) denote the uniqe order-preserving 

bijection and define fF*' : [N1la -+ Q by f F*i({a, P)) = gFpi({hci(a), hFli(P))). Recall the 

collection, K, of CV-identities given in section 3.1. We now define three additional CV- 

identities which have field size three. Together with the collection K, they constitute the 

complete set of all CV-identities with field size three. For i = 11,12,13 let Ki = (ui, Si, <i) 

be such that ui = {0,1,2), <i is the usual ordinal ordering and + is as follows: 



r 

CHAPTER 3. CV-IDENTITIES 

ii) K12 : {0,2) 4 {0,1) N {1,2) 
L 

iii) K13 : {O,1) N {O,2) 4 {1,2). 

The following lemmas are all proved in a manner similar to the proofs of lemmas 3.9. They 

will be omitted. 

Lemma 3.33 In N ,  f ' p 0  omits EC \ {K1) .  

Lemma 3.34 In N ,  f O 1 • ‹  omits EC \ {K2,  K3). 

Lemma 3.35 In N ,  f ' l 1  omits {K12, K13). 

Lemma 3.38 In N, f " t 0  omits { K l l ,  K13). 

Lemma 3.37 Let M be a model of ZFC. There ezists a cardinal preserving foming ezten- 

sion N of M and functions fPli : [ N 1 I 2  - Q for F E {a, I), i E {O,1) in N such that for 

every CV-identity I 4 '0, one of the 0-colorings fFli omits I .  

Proof: Every CV-identity that is not an element of D has field size 3 or realizes a CV- 

identity of field size 3. The four lemmas listed show that every CV-identity of field size 

three is omitted by one of the four colorings f F l i .  

We continue with some lemmas needed to prove the main result. The following theorem 

is essentially proved in [ll] on pages 126-133. 

Lemma 3.38 Let L be a countable language containing a designated unary predicate. Let 

T be an L-theory. There is an eztension T' of T such that there is an (wl, w)-model of T i f  

and only if T' is consistent. 

Definition 3.39 Let L = {p, <, f ,g) be a language, where p is a unary predicate, < a 

binary predicate and f , g  are binary function symbols. Let To be the L-theory which has 

axioms saying that < is a linear ordering of the universe as well as 
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Let n < w, I be a CV-identity of size n, K a model of To, and A c K be of cardinality 

n. Let h : n - A be the order-preserving bijection. Denote by gA : [nIa - w, the unique 

function such that rng(gA) is an initial segment of w and for all {r,  s) ,  { t ,  v )  E [nIa, 

Let $1(zl,. . .zn) be the formula in the language L such that for all K such that K + To, 

for all A = {al, .  . .,an) E [K]", K + . .,an) if and only if g~ does not realize I .  

Define TI to be the theory To U {Vz l ,  . . . , Vz, $, ) and Ti to be the extension of TI as given 

in lemma 3.38. 

Lemma 3.40 Let M be a model of ZFCand I be a CV-identity of size n. In M there exists 

an (wl,w)-model K of TI if an only if them ezists a function f : [Nila - Q that does not 

realize the CV-identity I .  

ProoE The proof of the ' if ' part is clear. We now prove the ' only if ' part. Since we 

have a twecardinal model of To, the first axiom shows that the collection of colors, f , is 

a countable set. Thus there exists an order preserving bijection h : f - Q. The second 

axiom shows that there is a subset R of K of order-type N1.  Let k : N 1  - R be the unique 

order-preserving bijection. 

Define f : [Nila - Q by f({a,P)) = h(fK(k(a),k(/3))) .  Since K TO, for all A E 

[Kln, gA does not realize I .  This suffices to show that f does not realize I since for all 

B E [ N 1 l n ,  f B realizes I if and only if gA realizes I ,  where A = {k(a)  : a E B). 0 

Theorem 3.41 Zcv(N1, Q) = V. 

Proofi Let M be a model of ZFC and I be an CV-identity not in V. By lemma 3.37 there 

exists an extension N of M and a function f : [ H l l a  - Q in N such that f does not realize 

I .  By lemma 3.40 there is an (wl, w)-model of TI in N. It follows from lemmas 3.38 that Tf 
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is consistent in N. If Ti were inconsistent in M, a formal proof of a contradiction from the 

axioms of Tf would exist in M and thus also in N, showing inconsistency in N, contradiction. 

Thus Tf is consistent in M. By lemma 3.38, this consistency shows the existence, in M, 

of an (wl,w)-model of TI. Applying lemma 3.40 we obtain a function f : [N1I2 - Q that 

omits I. Thus the theorem is proved. 

An attempt at proving that ZFC k Zcv(Nl,w) = C in a manner analogous to that in 

theorem 3.41 would take the following form. First, using theorem 3.2 we find a model N 

such that N Zcv(Nl, w) = C. Let I # C be a CV-identity. By lemma 3.40 there exists an 

(wl,w)-model of TI, and so by 3.38, Tf in consistent in N. Any proof of the inconsistency 

of Tf in M would give a proof of the inconsistency in N. Thus Tf is consistent in M, the 

ground model. Again, 3.38 shows that TI has an (wl, w)-model in M. The proof now fails. 

This (wl,w)-model only shows that there exists in M, a function f : [NlIa  - B such that 

I # Z( f),  where B is a countable linearly ordered set. One might hope to find a set C C B 

of order type w and an uncountable D C N1 such that f ({dl, d2)) E C for all {dl, dz) E [Dla, 

and thus rescue the theorem. The following combinatorial argument show that this will not 

always be possible. 

Lemma 3.42 (CH) Thew ezists a function f : [Nila - w + w such that for all B C N1, 

for all S w +w, 

Proof: List the subsets of w +w of order type w as (So : a < wl). List the countable subsets 

of wl as (C, : a < wl). We define f in wl stages. At stage a < wl we define f({a,7)) for 

7 < a. 

We define the construction at stage a. List the set {Sg : P < a) in order type w as 

(T, : n < w) and the set {Cg : p < a Cg c a) as ( D ,  : n < w). We now define the values 

f({a,7)) where 7 < a. This is done in w stages. List the pairs {{m,n) : m,n < w) in 

order type w by defining a bijection h : w ---+ w x w. At stage k < w let h(k) = (m, n) and 

choose a k  E w + w \ T,, and yk E Dm \ u{yj : j < m). As Dm is countable this is possible. 

Define f({a, rk))  = a k .  For y # {yk : k < w) define f({a, 7) = 0. The construction is now 
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complete. 

We now show that f indeed does what we have claimed. Towards a contradiction choose 

B G N1 of cardinality N1 and SB c w + w of order type w and suppose f({b,r)) E Sp for 

all b , 7  E B. Let B n p = C, for some 6 < wl.  Choose b E B such that b > max(6, P). By 

hypothesis f({b, c)) E Sg for aU c E Ca but as C6 b,6 < b and P < b we have, by the 

construction, that there exists 7 E Cs such that f({b,y)) E w + w \ Sg. 

More precisely, Ca occurs as Dm for some m < w in our listing of {C, : 7 < b A C, E b). 

Also Sp occurs as Tn for some n < w in the listing of {S, : q < 6). Consider k = h(m, n) < w. 

By construction we have chosen 7, E Dm = Cs and a, E w + w \ Tn = w + w \ Sp and then 

defined f ({b, 7,)) = a,. 0 



Chapter 4 

Open Questions 

The following are some open questions. 

i) Are the methods used in this thesis sufficient to characterize IDAm? In other words, 

is it true that IDAm = Cm for m 2 2? 

iii) Recall the definition of fm : [NmI2 -+ w given in 52.1. This function depended upon 

the choice of F E F'" used to define pCm and the choice of the pFvm-generic G. Is the 

set of identities realized by fm independent of the choice of F and G? 

iv) Does there exist an algorithm which determines membership in Cm? 

v) Does ZFC I- Zcv(Nl,w) = C? 

vi) Does ZFC I- ZcV(Nw, w) = f? 

vii) Is Zcv(NW,w) closed under end-duplication? 

viii) Does ZCV (N,, w) = U{Zcll (N,, w) : n < w)? 

ix) Does there exist K > Nw such that Zcv(Nw, w) 5 Zcv(rc, w)? 
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