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Abstract 

In this thesis some symmetric properties of real functions are investigated and several 

problems are solved. The results of Buczolich-Laczkovich and Thomson about the 

range of symmetric derivatives are extended to a general case. A new type of an- 

tisymmetric sets is introduced and discussed, therefore some results of dense Harnel 

bases are obtained. It is shown that the typical functions of symmetrically continuous 

functions and symmetric functions have c-dense sets of points of discontinuity. Also 

an existence proof of a continuous nowhere symmetrically differentiable function and 

a continuous nowhere quasi-smooth function is given through the application of Baire 

category theorem. 
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Chapter 1 

Introduction 

Symmetric properties of real functions play an important role in many problems. This 

is particular true in the theory of trigonometric series. For example, the sequence of 

partial sums { s n ( x ) )  of the trigonometric Fourier series of a function f is transformed 

by a summability method into a sequence { a n ( x ) )  and the difference an(x)  - f ( x )  is 

essentially the convolution of f ( x  + t )  + f ( x  - t )  - 2 f ( x )  and (sinnt)/ t .  The famous 

Riemann first theorem and second theorem in the theory of trigonometric series all are 

related to the symmetric derivatives and the second symmetric derivatives in entirely 

natural ways. 

By the symmetric properties of real functions we mean properties arising from the 

expression 

1 1 
f ( x + t ) = - [ f ( ~ + t ) + f ( x - t ) l + ~ [ f ( ~ + t ) - f ( ~ - t ) l  2 

which defines the even parts and the odd parts of the function f at the point x. 

The continuity and differentiability properties of f can be in some cases analyzed by 

studying the corresponding expressions involving 

The investigation of these symmetric properties stretches back a century and a half. 

It has been among the interests of many famous mathematicians. Now it has become 

a vigorous area as symmetric real analysis. 



CHAPTER 1. INTROD UCTION 

In this thesis several problems are investigated and solved. These mainly come 

from my reading the excellent monograph Symmetric Properties of Real Functions 

written by Dr. Brian S. Thomson. This monograph includes almost all recent devel- 

opments in this area. The thesis is organized as follows. 

In Chapter 2 the range of symmetric derivatives is investigated. The results of 2. 

Buczolich and M. Laczkovich [3], B. S. Thomson [I, p. 2761 are extended to a general 

case. 

1n.Chapter 3 a new type of sets is introduced. Some properties of these sets are 

obtained and some results of dense Hamel bases are therefore obtained by showing 

that the dense Hamel bases are sets of such type. 

In Chapter 4 the typical properties of symmetrically continuous functions and 

symmetric functions are investigated. It is shown that the typical functions of sym- 

metrically continuous functions and symmetric functions have c-dense sets of points 

of discontinuity. This answers two problems posed in [I. p. 4221. 

In Chapter 5 an application of the Bake category theorem to the space of con- 

tinuous functions is given, and therefore the existence of a continuous nowhere sym- 

metrically differentiable function and a continuous nowhere quasi-smooth function is 

proved. 

In Chapter 6 we make a summary of this thesis and pose several interesting, open 

problems. 



Chapter 2 

The Range of Symmetric 

Derivatives 

In this chapter we discuss the range of a type of generalized derivatives, i.e. the 

symmetric derivatives. 

An arbitrary function f is said to have a symmetric derivative at a point x E R if 

exists or equals to oo. Also we say that the function f is symmetrically differentiable 

at the point x (allowing infinite values). We use SDf(x) to denote the symmetric 

derivative of the function f .  

A function f is said to be a Baire 1 function iff  is the pointwise limit of a sequence 

of continuous functions. 

It is easy to see that if the ordinary derivative f'(x) of f (x) exists then S D  f (x) 

exists. However if SDf(x) exists f'(x) need not exist. According to the Darboux 

property the range of the ordinary derivatives is well known. If a function f is contin- 

uous and has a derivative, even allowing infinite values, the range of f'(x) must be an 

interval or a single point. For the symmetric derivatives the range is not as simple as 

that of the ordinary derivatives. For example the function f(x)  = 1x1 is everywhere 
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symmetrically differentiable with 

The range of the symmetric derivative of f ( x )  is just a set of three values. Thus a 

symmetric derivative needs not to have the Darboux property. 

In 1983 Larson [14] showed that the range of the symmetric derivative of a bounded 

function f with a symmetric derivative everywhere is same as that of some continuous 

function g for which S D f ( x )  = SDg(x) .  In the same year the journal of Real Analysis 

Exchange [20] posed a query asked by Larson how to characterize the situation under 

which finite symmetric derivatives have the Darboux property. In 1987 Kostyrko [ll] 

gave a characterization to answer the query as follows. 

Theorem 1 Let h be a locally bounded symmetric derivative. Then h has the Darboux 

property if and only if there exists a function f satisfying that for any a,  b E R, there 

exists a point z E [a, b] such that f (b)  - f ( a )  = S D  f ( z ) ( b  - a )  and that S D  f = h.  

In 1991 Buczolich-Laczkovich [3] showed the following theorem. 

Theorem 2 There is no symmetrically diferentiable function whose symmetric deriva- 

tive assumes just two finite values. 

Later, using a completely different method Thomson [l, p. 2761 showed the above 

theorem and the following result. 

Theorem 3 Let a , p , y  E R with a < y < P and 7 # $(a + P ) .  Then there is 

no symmetrically digerentiable function whose symmetric derivative assumes just the 

three values a,  /3 and y. 

Here we follow Thomson's method in [l,p. 2761 to show a general case about the 

range of symmetric derivatives. 
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Theorem 4 Let a1,a2,. . . ,an E R with a1 < a 2  < . . . < an and a; # ;(ak + 
a*),  k # I ,  1 < k ,  1, i < n ,  and n > 2 be a natural number. Then there is no 

symmetrically digerentiable function whose symmetric derivative assumes just the n 

values a l ,  a2,. . . ,an. 

Proof. As mentioned above in [14] Larson showed that the range of the symmetric 

derivative of a bounded function f with a symmetric derivative everywhere is same as 

that of some continuous function g for which S D  f ( x )  = SDg(x) .  Thus the theorem 

can be reduced to showing that there is no continuous function with this property. 

We know from Theorem 2 and Theorem 3 that the conclusions are true for the cases 

n = 2,3.  To use mathematical induction we assume that the conclusions are true for 

all 2 < n < p and show that the conclusion is also true for n = p + 1. 

If there is a continuous function whose derivative assumes just p + 1 values, then 

both f ( x )  - a l x  and ap+lx - f ( x )  are nondecreasing. Since the symmetric derivative 

function S D  f ( x )  is a Baire 1 function there are points of continuity of S D  f ( x )  in 

every interval. But at such one point of of continuity of S D f ( x )  there must be an 

interval in which S D  f ( x )  assumes only one value of al ,a2,  . . . , ap,  ap+l. SO in such 

interval the function f is linear with the slope of this value. Thus there is a maximal 

open set G so that in every component of G the function f is linear with slope, one 

of a1,a2,. . . ,(Yp,Qp+l. 
Let P denote the complement of the set G, then P has no isolated points. If not, 

suppose b E P ,  (a ,  b) and (b, c)  are contained in G ,  the function f is linear with slope 

a; on (a ,  b) and with slope aj on (b, c) ,  a;, aj are two numbers of a l ,  a2,. . . , ap, ap+l. 

If a;  = aj the function f is linear on ( a ,  c)  and so b $ P ,  a contradiction. If ai # aj 

then S D  f (b)  = $(ai + a j )  and this contradicts the hypothesis. 

In fact the set P is empty. If not then P is perfect. From the fact that S D f ( x )  

is Baire 1 there is a point of continuity of S D  f ( x )  relative to P.  Thus there must be 

a nonempty portion P n ( a ,  b) so that S D  f ( x )  assumes just one of the p + 1 values 

al, . . . ,ap, ap+l for all x E P n ( a ,  b). This value would not be al or ap+l. In fact if 

S D  f ( x )  = a; for all x E P n ( a ,  b) ,  a; is one value of al , a2, . . . , ap, ap+l. Consider 

some interval (c,d)  contiguous to P in (a ,  b). In the interval (c,  d) the function f 
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is linear with the slope, one value of al ,  a2, . . . , a,, ap+l and S D  f ( c )  = a;. Since 

f;(c) is one value of al, a2,. . . , a,, ap+l, it follows that fL(c)  exists too. Noting that 

a1 5 fL(c)  I ap+l, if a; c (a1 + ap+1)/2, we have 

This means the function f can not have slope on (c,  d), thus in such case in the 

entire interval ( a ,  b)  the symmetric derivative S D  f ( x )  assumes at most p values. If 

a; > (a1 + ap+l)/2, we have 

This means that the function f can not have slope a1 on (c,  d ) ,  and therefore in the 

entire interval ( a ,  b) the symmetric derivative SD f (x) also assumes at most p values 

in this case. In any case the symmetric derivative SD f ( x )  assumes at most p values 

on the interval ( a ,  b). This contradicts the assumption for the case n 5 p. Hence 

the set P is empty. If the symmetric derivative S D  f (3)  assumes just one value this 

also contradicts the assumption. If the symmetric derivative S D  f ( x )  assumes more 

than one values then SDf ( x )  must assume some value of the form (a; + aj) /2 from 

the construction of the set G. This contradicts the hypothesis. Therefore there is 

no continuous function whose symmetric derivative assumes just p + 1 values. By 

mat hematical induction the theorem follows. 



Chapter 3 

A ' ~ ~ ~ e  of Antisymmetric Sets 

A function f : R -+ R (where R is the real line) is said to be exactly locally symmetric 

if at each point x E R there is a 6, > 0 such that f (x + h )  = f (x - h )  holds for all 

0 < h < 6, [I, p. 481. 

A set is said to be exactly locally symmetric if its characteristic function is exactly 

locally symmetric [I,  p. 481. 

Davies [5] and Rusza [17] showed the following theorem independently. 

Theorem 5 Let f be a function such that at each point x E R there is a positive 

number 6, > 0 so that 

Then f is constant o f  a closed countable set. 

If f is the characteristic function of a set E in the above theorem, then either E 

or its complement has countable closure. 

S. Marcus in [15] suggested investigating the following exactly locally antisymmet- 

ric set. 

A set A C R is said to be exactly locally antisymmetric if for every x E R there is 

a6, > 0 such that for each h,O < h < 6,,x+h E Aif and only if x -  h 6 A .  

In [9] Kostyrko showed that there is no exactly locally antisymmetric set. Later 

K. Ciesielski and L. Larson in [4], P. Komjath and S. Shelah in [12] obtained more 

results about the exactly locally antisymmetric functions. 
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Motivated by the interesting structure of the exactly locally antisymmetric sets 

we introduce here a new type of sets whose structure is in some extent similar to that 

of the exactly locally antisymmetric sets and discuss some of their properties. 

Definition 6 A nonempty set E is said to be a right antisymmetric set if for each 

x E R and each positive h E R, x - h E E implies x + h 4 E .  

Theorem 7 A right antisymmetric set is an one element set. 

Proof. Let E be a right antisymmetric set and x E E.  If there is a point xl E 

E ,  $1 f x ,  then at the point ( x  + x1) /2 ,  for h = 1x - x11/2, 

This contradicts that E is a right antisymmetric set. Thus the set E is an one element 

set. 

Definition 8 A set E is said to be a right locally antisymmetric set if for every x E R 

there exists a number 6, > 0 such that x - h E E implies x + h 4 E if 0 < h < 6,. 

It is easy to see that the set (0 ,  -1/2,1/3, -1/4,1/5, - .  .) is a right locally anti- 

symmetric set. In the following theorem we will see that any Hamel basis which is 

dense in the real line R is also a right locally antisymmetric set. 

A set 23 of real numbers is called a Hamel basis if B satisfies the following: 

lo any finite subset H = { x l ,  2 2 , .  . . , x,) of B is rationally independent, i.e. if rlxl + 
~ 2 x 2  + - . + rnxn = 0 where r l ,  7-2, . . . , r,  are rational numbers, then rl = r2 = . - . = 

r,  = 0; 

2' for any real number x $ B there exist a finite subset HI = { y l ,  yg, - - , y,) of B 
and m rational numbers such that x = rlyl + r2y2 + + r,y,. 

The existence of such a set was established by Hamel in 1905 through an applica- 

tion of the Axiom of Choice. 

Theorem 9 Any Hamel basis 23 which is dense in the real line R is a right locally 

antisymmetric set. 
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Proof. A Harnel basis 13 which is dense in the real line does exist. See [13, p. 2611. 

For x E t3 and every S > 0 and x - h E 13, if x + h E t3 then 

This contradicts the definition of Hamel basis. Thus x - h E t3 implies x + h $ 23. For 

x 4.0, theremust exist ah, > 0 such that x -  h E 23 impliesx+ h $23 if 0 < h < 6,. 

If not, since 23 is dense in the real line R there exist two positive numbers hi, h2 such 

that x - hl,x + hl,x - h2,x + h2 E 23. Then 

that is 

This contradicts the definition of Hamel basis. Thus B is a right locally antisymmetric 

set. 

A set is said to have the Baire property if it can be expressed as the symmetric 

difference of an open set and a first category set. 

Lemma 10 Let B be a nonempty set with the Baire property, then the set f ( ~  + B) 

contains an interval. Here i(B + B) = {$(x + y)  : x, y E B) . 

Proof. Since B is a nonempty set with the Baire property then 

where G is an open set and P is a first category set. Hence there exists an interval 

(a, b) c G, 
B _> (a, b) A P _> (a, b) \ P. 

For any point x E (a, b) there must exist a real number h, 0 < h < minix - a ,  b - a)  

such that x - h, x + h E (a, b) \ P. If not then the interval (x - min{x - a ,  b - 

x), x + minix - a, b - x)) would be of first category. This contradicts the fact that 

any interval can not be of first category. See Theorem 25. Thus 

1 1 
x = $2 - h + x + h) E ?[(a, 6) \ P + (a, b) \ PI. 
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So 
1 

x E ?(B + B )  and ( a ,  b)  C B. 

The lemma is proved. 0 

Theorem 11 If a set E is a right locally antisymmetric set. Then it has inner 

measure zero, and can contain no second category set with the Baire property. 

Proof. We use m,(A) to denote the inner measure of a set A, m(A) to denote the 

Lebesgue measure of a Lebesgue measurable set A. 

First we show that mi(E) = 0. Suppose m;(E) > 0, then there exists a closed set 

F C E with m(F)  > 0. Thus there exists at least one point so E F such that for 

every 6 > 0, 

~ [ ( x o  - 6, xo + 6 )  F] > 0. 

Hence for each positive integer n, 

Set 

where A + A = { x  + y : x E A, y E A}. Then {An} is a decreasing sequence of sets. 

From the measure-theoretic theory [19, p. 2501 each set A, contains a closed interval 

J,. By mathematical induction we can require that 

and then 
4 

An2 Jn, m(Jn) Lm(An) L 
n 

Since J, are all closed, obviously n:=, Jn = {xo}. Therefore there exists a sequence 

{h,} with h, 1 0 and 
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Hence we get a sequence {h,) with h, 1 0  such that so - h, E E and xo + h, E E.  

This contradicts that E is a right locally antisymmetric set. Thus m ; ( E )  = 0. 

We now show that the set E can contain no second category set with the Baire 

property. Suppose that E contains a second category set B with the Baire property. 

Then B is the symmetric difference of an open set and a first category set. So there 

exists at least one point so E B such that for every 6  > 0,  (xo  - 6,xo + 6 )  n B is 

a second category set which has the Baire property and contains a set of symmetric 

difference of an interval and a first category set. For every positive integer n, set 

Then by Lemma 10 each set B, contains a closed interval J,. The following is same 

as in the case of the inner measure and we can find a contradiction. Thus the set E 

can contain no second category set with the Baire property. 

Combining Theorem 9 and Theorem 11 yields the following corollary. 

Corollary 12 A Hamel basis which is dense in the real line has inner measure zero 

and can contain no second category set with the Baire property. 

Kuczma in [13, p. 225, p.227] obtained more general results about a Hamel basis 

that each Hamel basis has inner measure zero and can contain no second category set 

with the Baire property by using different methods. 

We can define a left locally antisymmetric set similarly and obtain the similar 

results for such sets. 



Chapter 4 

Some Typical Properties 

In this chapter we study the properties of symmetrically continuous functions and 

symmetric functions. 

A function f : R + R is said to be symmetrically continuous at x E R if 

lim[f(x + h) - f(x - h)] = 0. 
h-t 0 

A function f : R + R is said to be symmetric at x E R if 

A natural question is to ask for the continuity properties of such functions. From 

the following equality 

it is easy to see that if a function f is continuous at a point x E R then f is both 

symmetrically continuous and symmetric at the point x. If a function is symmetrically 

continuous or symmetric at one point, such point need not be a point of of continuity. 

For example, the function f(x) = x - ~  is symmetrically continuous everywhere but 

discontinuous at x = 0. This example also shows that symmetric continuity has 

properties quite distinct from ordinary continuity: while the function f (x) = x - ~  is 

symmetrically continuous at x = 0 it is not bounded near that point nor is it defined 
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at the point. Moreover for any countable set C we can construct an everywhere 

symmetrically continuous function that is discontinuous precisely on the set C: let 

XI, 2 2 ,  . - , xn, . . be an enumeration of C, define g(x) = 0 for x 4 C and g(xn) = 2-n. 

Similar statements can be said for symmetric functions. 

In 1964 Stein and Zygmund [I, p. 25-27] first showed the most important continuity 

properties of symmetrically continuous functions and symmetric functions as follows. 

Theorem 13 I f f  : R + R is Lebesgue measurable and is symmetrically continuous 

on a Lebesgue measurable set E ,  then f is continuous a.e. on E .  

Theorem 14 I f f  : R -+ R is Lebesgue measurable and is symmetric on a Lebesgue 

measurable set E ,  then f is continuous a.e. on E.  

From the Stein and Zygmund theorems the set of points of discontinuity of a sym- 

metrically continuous function and that of a symmetric function are first category. In 

1935 Hausdorff [8] posed in Fundamenta Mathematicae the problem of whether the set 

of points of discontinuity of a symmetrically continuous function can be uncountable. 

In 1971 Preiss [16] answered this problem through the use of uncountable N-sets. 

Also see [I, p. 521 

A set E is said to be an N-set if there is a trigonometric series 

with 

converges absolutely at every point of E. 

Lusin and Denjoy showed that N-sets must have measure zero and be of the 

first category. See [I, p. 521. Zygmund 119, Vol. I, p. 2501 gave an example of a 

trigonometric series 

which converges absolutely on an uncountable set. 
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Theorem 15 (Preiss) Let E be an N-set. Then there is a bounded, 2n-periodic 

function f that is everywhere symmetrically continuous and discontinuous at each 

point in E .  

In 1989 Tran in [18] constructed a bounded measurable symmetric function whose 

set of points of discontinuity is uncountable, and also showed that the absolute value 

function of this function is symmetrically continuous and its set of points of disconti- 

nuity is uncountable. 

In a Banach space of functions a property of functions is said to be typical if the 

set of all functions possessing this property is residual. The best known example is 

nondifferentiability: the set of functions in C[O, 11, the Banach space of continuous 

functions on [0, 11 with the supremum norm, that do not possess a derivative at any 

point is residual. Hence nowhere differentiability is a typical property of continuous 

functions. 

In 1964 Neugebauer first studied typical properties of symmetric functions and 

showed the following theorem. See [ I ,  p. 1511. 

Theorem 16 Let BS[a ,  b] be the set of all bounded measurable, symmetric functions 

equipped with the supremum metric. Then the typical function f E BS[a ,  b] has a 

dense set of points of discontinuity. 

By using his methods we can easily get a typical result for symmetrically contin- 

uous functions as follows. 

Theorem 17 Let BSC[a ,  b] be the set of all bounded measurable, symmetrically con- 

tinuous functions equipped with the supremum metric. Then the typical function 

f E BSC[a ,  b] has a dense set of points of discontinuity. 

By using the Preiss and Tran constructions we give an elementary proof to show 

that the typical functions of symmetrically continuous functions and symmetric func- 

tions have c-dense sets of points of discontinuity. This answers two open problems 

posed by Thomson in [ I ,  p. 4221: 
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In the space of bounded, symmetric functions with supremum norm does the 

typical function have a c-dense set of discontinuities? 

In the space of bounded, symmetrically continuous functions with supremum 

norm does the typical function have a c-dense set of discontinuities? 

Throughout this chapter, BSC[a ,  b] denotes the set of all bounded measurable, 

symmetrically continuous functions defined on the interval [a, b] and equipped with 

the supremum metric p, and BS[a ,  b] denotes the set of all bounded measurable, 

symmetric functions defined on [a, b] and equipped with the supremum metric p. D( f )  

denotes the set of points of discontinuity of function f .  A" denotes the complement 

of a set A. Let 

C1 = { f E BSC[a ,  b] : f has continuum points of discontinuity on [a, b]) 

C2 = { f E BS[a ,  b] : f has continuum points of discontinuity on [a, b])  

Lemma 18 (Tran [18]) There are functions gl E BSC[a ,  b] and 92 E BS[a ,  b] both 

of which have continuum points of discontinuity in every subinterval of [a, b] .  

Proof. Tran gave a construction of a function g E BS[a ,  b] for which D(g) is 

uncountable and constructed gz from g. In the same way we can constructed 92 from 

the absolute value function of the function g .  We can also use the Preiss construction, 

Theorem 15 to construct a function gl as in the lemma. In fact, let {(a,, bn)) be the 

set of all intervals with rational endpoints. For every n there are a uncountable N-set 

En E (a,, b,) and a function fn such that 0 5 f ,  5 1 ,  f,(x) > 0 for all x E En and 

fn  is discontinuous precisely on En. Since En is a uncountable set of type F,, En is 

of power c. Set 
00 1 

Since any N-set is of measure zero it is easy to see that gl is discontinuous precisely 

on the set {x E [a, b] : g1 ( 2 )  > 0 )  from Stein and Zygmund theorem, Theorem 13. 

Note 
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For every interval (c,  d)  there is an interval (a,, b,) C_ (c,  d )  such that the set D( f n )  n(a,, b,) 

is of power c. So the set 

is of power c. Therefore D(gl)  is a c-dense set. 

Lemma 19 For any interval [a, b] there are an interval [c, dl contained in [a, b] and 

a bounded measurable, symmetrically continuous function f on the real line such that 

the function f has a c-dense set of points of discontinuity on [c, 4 ,  f ( x )  is continuous 

at each point of [a, b] \ (c,  d )  and f ( x )  = 0 if x 4 ( a ,  b). 

Proof. For any interval [a, b], apply Lemma 18 to obtain a function fi E BSC[a ,  b] 

such that f l  has a c-dense set of points of discontinuity on [a, b]. By the Stein- 

Zygmund theorem, Theorem 13 we know that fl is continuous almost everywhere on 

[a, b]. Then we can choose points c and d such that a < c < d < b and f l  is continuous 

at the points c and d. Set 

f l ( ~ >  i f c < x < d  
linear segment connecting (a ,  0 )  and (c,  f l (c) )  if a 5 x 5 c 

linear segment connecting (d ,  f l (d ) )  and (b, 0 )  if d 5 x 5 b 

0 otherwise 

It is easy to see that the function f satisfies our requirements. 

Lemma 20 For any interval [a, b] there are an interval [c,d] contained in [a,  b] and a 

bounded measurable symmetric function f such that f has a c-dense set of points of 

discontinuity on [c,d], f ( x )  is continuous at each point of [a, b] \ (c ,  d )  and f ( x )  = 0 

if x 6 (a,b) .  

Proof. Using a similar method to that in Lemma 19 and Theorem 14, we can obtain 

the result easily. 
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Theorem 21 The sets C1, C2 are open dense sets in BSC[a, b] and BS[a, b] respec- 

tively. 

Proof. We first show that C1 is an open dense set in BSC[a, b]. Let ifn} CE 
be a Cauchy sequence. Then there is a function f E BSC[a, b] such that fn ---, f 

uniformly. Let en denote the set of points at which fn is discontinuous, then the power 

of en is less than c. Thus the power of U;=, en is less than c. Since fn converges to f 

uniformly on [a, b] we know that f is continuous at each point x E [a, b] \ U;=, en, SO 

f E C;. Hence C," is closed and C1 is open. 

Now we show that Cl is dense in BSC[a, b]. For every ball B( f ,  r) G BSC[a, b], 

if f E C1 there is nothing to prove. We assume f E CE, since each uncountable Borel 

set has power c and the set of points of discontinuity of the function f is of type F,, 

then f has at most countable points of discontinuity. From the Lemma 19 there is 

a function g E BSC[a, b] such that g has a c-dense set of points of discontinuity on 

[a, b]. Let M be a constant M such that Ig(x)l 5 M for all x E [a, b] and set 

Then h E BSC[a, b], h has uncountable many points of discontinuity on [a, b] and 

where p is the supremum metric on BSC[a, b]. Thus h f Cl and hence Cl is dense. 

We now show that C2 is an open dense set in BS[a, b]. Let { fn} G C," be a Cauchy 

sequence. Then there is a function f E BS[a, b] such that fn + f uniformly. Let 

en denote the set of points at which fn is discontinuous, then the power of en is less 

than c. Thus the power of U$=, en is less than c. Since fn converges to f uniformly 

on [a, b] we know that f is continuous at each point x E [a, b] \ U;=, en, so f E Cz. 

Hence C," is closed and C2 is open. 

Now we show that C2 is dense in BS[a, b]. For every ball B (  f ,  E )  G BS[a, b], if 

f E C2 there is nothing to prove. We assume f E C,", since each uncountable Borel 

set has power c and the set of points of discontinuity of the function f is of type F,, 

then f has at most countable points of discontinuity. From the Lemma 20 there is a 
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function g E BS[a ,  b] such that g has a c-dense set of points of discontinuity on [a, b]. 

Let M be a constant M such that Ig(x)l 5 M for all x E [a, b] and set 

Then h E BS[a ,  b], h has uncountable many points of discontinuity on [a, b] and 

where p is the supremum metric on BS[a ,  b]. Thus h E C2 and hence C2 is dense. 

From Theorem 16, Theorem 17 and Theorem 21 we have the following corollary. 

Corollary 22 The typical functions in BSC[a ,  b] and BS[a ,  b] have dense sets of 

points of discontinuity with power c. 

We now show some stronger results than those of Corollary 22. 

Theorem 23 The typical function f E BSC[a ,  b] has a c-dense set of points of dis- 

continuity. 

Proof. Let 

there exists an interval (c, d )  C (a ,  b) with 

f E BSC[a ,  b] : d - c 2 l / n  such that f has a set of points of 

discontinuity on (c ,  d)  with power less than c 1 
We will prove first that A, is closed. If { f k )  is a Cauchy sequence from A, there 

is a function f E BSC[a ,  b] such that f k  converges to f uniformly. Since f k  E A, 

there is an interval (ck,  dk )  C_ [a, b] with dk - ck 2 1 /n  such that fk  has a set of 

points of discontinuity on (ck,  dk )  with power less than c. An elementary compactness 

argument shows that there is a subsequence {(cki ,  dk i ) )  of {(ck, dk ) )  such that the 

sequences {ck i )  and {dk i )  are both monotonic. For convenience we also use {(ck, dk)) 

to denote the above subsequence {(cki ,  dk i ) ) .  Then there are c, d E [a, b] such that 

ck + c, dk d and d - c 2 l / n .  It is easy to check that 

00 
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Let us denote ek 2 (ck, dk )  as the set of points at which f k  is discontinuous. Then the 

power of ek is less than c and thus the power of UL1 ek is less than c. It is obvious 

that f is continuous at each point of the set 

So f E A, and therefore A, is closed. 

We now show that A: is dense. Let B ( f ,  r )  be an arbitrary ball contained in 

BSC[a ,  b] .  If f E A: then there is nothing to prove. We can assume f E A,. Suppose 

I l ,  . . . , Ik contained in [a, b] are disjoint maximal intervals with length at least l / n  

such that f has a set of points of discontinuity on each I; with power less than c. 

Then these intervals have no common endpoints. For each Ii = (c, d) ,  apply Lemma 

19 to obtain a function g; E BSC[a ,  b] such that g; has a c-dense set of points of 

discontinuity on an subinterval J; of I;, g; is continuous at each point of I; \ J; and 

g;(x) = 0 if x 6 I;. Set 
k 

9 = xgi. 
i=l 

Then g E BSC[a ,  b] and g = 0 if x $ u!=, I;. Let M be a constant such that 

Ig(x)l 5 M and set 
€ 

h = f + - g .  
2M 

Then h E BSC[a ,  b] and h ( x )  = f ( x )  if x $ [a, b] \ uL1 I;. 
We now show that the set D(h)  n I is of power c for any interval I with length 

at least l / n .  For any interval I with length at least l / n  if the set D(g) n ( I  n I;) is 

of power c for some I; E { I l , .  . . , I k ) ,  then the set D(h)  n ( I  n I;)  is of power c since 

the set D ( f )  n ( I  n I;) is of power less than c. Thus the set D(h)  n I is of power c. 

If the set D(g) n ( I  n I;) is of power less than c for every I; ( i  = 1,2, . . . , k ) ,  then 

the function g is continuous at each point of the set I I,. Hence in such case 

if the set D ( f )  n ( I  \ ~ f = ~  I,) is of power c then the set D(h)  n I is of power c since 

g(x )  = 0 if x $! u%, I;. If the set D ( f )  n ( I  \ u?=, I;) is of power less than c then the 

set D ( f )  n I is of power less than c since the set D ( f )  n I; is of power less than c for 

every i = 1, .  . . , k. Therefore I is contained in some Ii of { I ; ,  i  = 1 , .  . . , k)  from the 
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maximality of { I ; ,  i  = 1, . . . , k). This contradicts the assumption that the function g 

is continuous at each point of the set I n  u!=, I; . In any case the set D(h)  n I is of 

power c and so h 4 A,, i.e. h E A;. Note that 

This means that h E B ( f ,  E )  and A; is dense. Therefore A, is nowhere dense. 

Since the set of all functions which have c-dense sets of points of discontinuity is 

the set 
00 

BSC[a ,  b] \ U An, 
n=l 

the result follows. CI 

Theorem 24 The typical function f E BS[a ,  b] has a c-dense set of points of discon- 

tinuity. 

Proof. Let 

there exists an interval (c,  d )  2 (a ,  b)  with 

f E BS[a ,  b] : d - c >_ l / n  such that f has a set of points of 

discontinuity on (c,  d)  with power less than c 

We will prove first that A, is closed. If { f k )  is a Cauchy sequence from A, there 

is a function f E BS[a ,  b] such that fk  converges to f  uniformly. Since fk  E An 

there is an interval (ck ,dk)  2 [a, b] with dk - ck 2 1 /n  such that fk has a set of 

points of discontinuity on (ck ,  dk )  with power less than c. An elementary compactness 

argument shows that there is a subsequence {(cki ,  dk i ) )  of {(ck ,  d k ) }  such that the 

sequences {ck i )  and i d k i )  are both monotonic. For convenience we also use { (ck ,  dk ) }  

to denote the above subsequence {(cki ,  dk i )} .  Then there are c, d E [a, b] such that 

ck + C ,  dk + d and d - c 2 l ln .  It is easy to check that 
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Let us denote ek E (ck ,  d k )  as the set of points at which fk  is discontinuous. Then the 

power of ek is less than c and thus the power of Ugl ek is less than c. It is obvious 

that f is continuous at each point of the set 

So f E A, and therefore A, is closed. 

We now show that A; is dense. Let B ( f ,  e )  be an arbitrary ball contained in 

BS[a,  b]. If f E A; then there is nothing to prove. We can assume f E A,. Suppose 

11, . . . , Ik contained in [a, b] are disjoint maximal intervals with length at least l l n  

such that f has a set of points of discontinuity on each I; with power less than c. Then 

these intervals have no common endpoints. For each I; = (c,  d ) ,  apply Lemma 20 to 

obtain a function g; E BS[a,  b] such that g; has a c-dense set of points of discontinuity 

on an subinterval J; of I;, g; is continuous at each point of I; \ J; and g;(x) = 0 if 

x 4 I;. Set 

Then g E BS[a,  b] and g = 0 if x 4 u!', I;. Let M be a constant such that Ig(x) 1 5 M 

and set 

Then h E BS[a,  b] and h(x )  = f ( x )  if x 4 [a, b] \ ub1 I;. 
We now show that the set D(h) n I  is of power c for any interval I  with length 

at least l l n .  For any interval I  with length at least l l n  if the set D(g) n ( I  r )  I;) is 

of power c for some I; E { I l , .  . . , I k ) ,  then the set D(h) n ( I  n I;) is of power c since 

the set D ( f )  n ( I  n I;) is of power less than c. Thus the set D(h) n I  is of power c. 

If the set D(g) n ( I  n I;) is of power less than c for every I; (i = 1,2, . . . , k ) ,  then 

the function g is continuous at each point of the set I  nu!=, I;. Hence in such case 

if the set D( f )  n ( I  \ uLl I;) is of power c then the set D(h) n I  is of power c since 

g(x)  = 0 if x @ u;=, I;. If the set D ( f )  n ( I  \ ufZ1 I;) is of power less than c then the 

set D ( f )  n I  is of power less than c since the set D ( f )  n I; is of power less than c for 

every i = 1, .  . . , k. Therefore I  is contained in some I; of {I; ,  i = 1,. . . , k )  from the 
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maximality of { I ; ,  i = 1 ,  . . . , k). This contradicts the assumption that the function g 

is continuous at each point of the set I I; . In any case the set D(h)  n I is of 

power c and so h 6 A,, i.e. h E A:. Note that 

€ 
~ ( h ,  f )  = d f  + [&I g ,  f )  = d z g ,  0) < f .  

This means that h E B( f ,  E )  and A: is dense. Therefore A, is nowhere dense. 

Since the set of all functions which have c-dense sets of points of discontinuity is 

the complement of the first category set U:=l A,, the result follows. 



Chapter 5 

An Application of The Baire 

Category Theorem 

In 1899 R. Baire first formulated his famous category theorem on the real line. It can 

be extended to complete metric spaces as follows. See [2, p. 3771. 

Theorem 25 (Baire Category Theorem) Let (X,p) be a complete metric space, 

and S be a countable union of nowhere dense sets in X .  Then the complement of S 

is dense in X .  

The principal use for the notion of category is in the formulation of existence 

proofs. The Baire category theorem has been a basic tool for us to see mathematical 

objects which otherwise may be difficult to see. By using Bake Category Theorem 

S. Banach and S. Mazurkiewicz first gave an existence proof of continuous functions 

that have no points of differentiability. 

Let us use the following expressions, 

D1f(x, h) = [f(x + h) - f ( x  - h)l/h, 

D2 f (x, h) = [f (x + h) + f (X - h) - 2f ( ~ ) l / h .  

In 1969 Filipczak in [7] constructed a continuous function f defined on [0,1] which 

satisfies for each x E (O,l), 

limsup D' f (x, h) = +oo. 
h+O 
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In 1972 Kostyrko in [lo] used this example to show that the typical function f E 

C[O, 11, the set of all real continuous functions with the supremum metric, satisfies for 

each x E (O,l), 

In 1987 Evans [6, Theorem 11 constructed a function f E C[O, 11 which satisfies that 

for each x E (0, I) ,  

ap lim sup Dl  f (x, h) = +oo, apliminf Dl f (x ,  h) = -oo, 
h+O+ h+O+ 

aplim sup I D2 f (x, h)l = +oo. 
hdO+ 

He used this example to show that such functions are typical in C[O, 11. 

In this chapter we directly show that the typical function f E C[O, 11 satisfies for 

each x E ( O , l ) ,  

(1) limsupID1f(x,h)l=+oo, (2) l i m ~ u ~ ~ ~ ~ f ( x , h ) ~ = + o o  
h+O h d O  

without using the constructions of Filipczak and Evans. An application of the Baire 

category theorem to the space C[O, 11 yields the existence of a function f E C[O, 11 
satisfying (1) and (2) for each x E (0, l) .  

Lemma 26 Let f E C[O, 11, n be a positive integer, m and 6 be two given positive 

constants. Then there exists a finite piecewise linear function g E C[O, 11 such that 

for each x E [0, 11, I f  (x) - g(x)l < E and for each x E [ l ln ,  1 - l ln] ,  IDlg(x, h)l > m 

for some h with 0 < Ihl < l l n .  

Proof. Since the function f is continuous on [0,1], it is uniformly continuous on [0,1]. 

For 6 > 0, there exists a S1 > 0 such that 

whenever xl,  2 2  E [ O , l ] ,  1x1 - x21 < S1. Take 
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and partition [0,1] as 

O = x o <  X l  < ... < x k =  1. 

Here xi - x;-1 = 6 if i is an odd number, x; - xi-1 = 36 if i is an even number except 

i # k. If k is an even number, xk - 2k-1 = 6 or 26 or 36 depending on how many 

subintervals we get if we partition [0,1] into subintervals with length 6. 

Let g be a finite piecewise linear function which connects the following points 

ao, al,  . . . , ak-1, ak. Here 

If k is an odd number, 

ak = ( ~ k ,  f ( ~ k )  - €12). 

If k is an even number, ak is the intersection point of the line x = 1 with the half line 

starting from ak-1 and parallel to the segment ak-3ak-2. See the figure (i). In the 

figure r = c. 

We now verify that the function g satisfies our requirements. Obviously g is a 

finite piecewise linear, continuous function and for each x E [0, 11, 

For any i, noting that 6 5 we have 

and 

1 f (xi) + (-1)%/2 - (f (xi-1) + (-1)'-lc/2)1 

and therefore 
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where slopab denotes the slope of the segment connecting the points a and b. Hence 

for 0 < i < k ,  if x = x; or x;+l choose h = 6 then IDlg(x, h)l > m. If x E ( x ; ,  xi+l), 

we can choose h = minix - x;, x;+l - x )  then 

- 
11€ -- 
246 > m. 

If x E xi+2) choose h = m i n { ~ - x ~ + ~ ,  x ; + ~ - x )  the same method for x E (x i ,  x;+l) 

yields that I D lg (x ,  h )  1 > m. Thus the function g satisfies our requirements and the 

lemma follows. 0 

Lemma 27 Let f E C[O, 11, n be a positive integer, m and E be two given positive 

constants. Then there exists a finite piecewise function g E C[O, 11 such that for each 

x E [ O , l ] ,  If ( x )  - g(x)l < 6 and for each x E [ l l n ,  1 - l l n ] ,  1D2g(x, h)l > m for some 

h with 0 < lhl < l l n .  

Proof. Again the function f is uniformly continuous on [0,1]. For E > 0 there exists 

6, > 0 such that 

I f  ( ~ 1 )  - f ( 2 2 1 1  < €116 

whenever ~ 1 ~ x 2  E [ O , l ] ,  Ixl - 221 < 61. Take 

and partition [OJ] as 

0 < X o  < $1 < < X k  = 1. 

Here xi - xi-1 = 6 if i is not a number of the form 41 + 2,l is a nonnegative integer. 

If i is a number of the form 41 + 2, x; - = 36 except k = 41 + 2. If k is a number 

of form 41 + 2, xk - x k - ~  = 6 or 26 or 36 depending on how many subintervals we get 

if we partition [0,1] into subintervals with length 6. 

Let g be a finite piecewise linear function which connects the following points 

ao, al ,  a2, . . . , ak. Here 
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The point a2 is the intersection point of the line x = 2 2  with the half line starting 

from the point a1 and parallel to the x-axis, 

a3 = (53, f (53) + (3/8)~),  

a4 is the intersection point of the line x = xq with the half line starting from the point 

a3 and parallel to the x-axis, 

a5 = (55 ,  f (55)  - (3/8)~) .  

Similarly as for a2 we can define a ~ ,  and continue in this way to get ao, al ,  a2,. . . , ak. 

See the figure (ii). In the figure r = E. 
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We now verify that the function g satisfies our requirements. Obviously g is a 

finite piecewise linear, continuous function and for each x  E [0, 11, 

For the left we need to verify that for each x  E [xi-2, as indicated in the figure 

(ii), I D2g(x ,  h)l > m for some h with 0 < I hl < l / n .  We can assume 3 < i < k-3 since 

x  E [ l l n ,  1  - l / n ]  and 6 5 &. For x  E [ x ; - ~ ,  xi] ,  choose h = min{x - xi-2, x;+1 - x )  

and note 6 5 $--, 

( 3 4  - ( 1 / 6 )  - 11e 
2 -- 

(5/2)6 406 ' 
Partition [xi, x ; + ~ ]  into three equal subintervals [x;, x l ] ,  [x l ,  x2] ,  [x2,  For x  E 

[xi,  x l ] ,  choose h = x;+l - x then 

For x  E [x l ,  x2] ,  choose h = X,+3 - x  then 

For x  E [x2,  choose h = x  - x; then 

For x  E [x;+l, x ; + ~ ] ,  choose h = min{x - x;, X;+3 - x )  then 
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( 3 4  - ( 1 1 6 )  11e 
2 --  - 

26 326 ' 
For x E [ x ; - ~ ,  x ; - ~ ]  using the same method for x E [x;,  xi+l] we can show that the 

function g satisfies our requirements. Hence the lemma follows. 

Theorem 28 The typical function f E C[O, 11 satisfies (1) for all x E ( 0 , l ) .  

Proof. Let 

there exist some point x E ( @ , I )  and constant C 

such that l imsuph+,~D1f(x ,h)~ 5 C 

there exists some x E [ l / n ,  1 - l / n ]  such that 

ID1f(x,  h)l 5 m whenever 0 < lhl < l l n  

Then 
03 

A =  U A,,. 
n,m=l 

For any pair ( n ,  m)  and any Cauchy sequence { f k }  from the set A,, there exists a 

function f E C[O, 11 such that f k  converges to f uniformly. For each f k  there exists 

a point xk E [ l / n , l  - l l n ]  such that for all 0 < Ihl < l l n ,  ID1f(xk,h)l 5 m. An 

elementary compactness argument shows that there exists a subsequence {xki } of {xk}  

such that xki converges to some point x E [ l l n ,  1 - l l n ] .  Thus it is easy to see that 

for all 0 < I h 1 < l l n ,  I Dl f ( x ,  h )  1 5 m.  Hence f E A,, and A,, is closed. We now 

show that the complement of A,, is dense in C[O, 11. For any function f E Anm and 

e > 0, by Lemma 26 we can find a function g such that for all x E [0, 11, 

and g 4 Anm. Thus the complement of A,, is dense in C[0,1] and the theorem 

follows. 0 

Theorem 29 The typical function f E C[O, 11 satisfies (2) for all x E ( 0 , l ) .  
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Proof. Let 

there exist some point x E ( 0 , l )  and constant C 

such that lim sup,+, I D2 f ( x ,  h )  1 5 C 

there exists some x E [ l / n ,  1 - l / n ]  such that 

ID2f(x,h)l  5 m whenever 0 < lhl < l l n ,  1 
Then 

For any pair ( n ,  m )  and any Cauchy sequence { f k }  from the set A,, there exists a 

function f E C[O, 11 such that f k  converges to f uniformly. For each f k  there exists 

a point xk E [ l l n ,  1 - l l n ]  such that for all 0 < lhl < l l n ,  ID2f(xk, h)l 5 m. An 

elementary compactness argument shows that there exists a subsequence {sk i )  of {xk}  

such that xki converges to some point x E [ l l n ,  1 - l l n ] .  Thus it is easy to see that 

for all 0 < I hl < l l n ,  1 D2 f ( x ,  h )  1 5 m. Hence f E A,, and A,, is closed. We now 

show that the complement of A,, is dense in C[O, 11. For any function f E Anm and 

E > 0, by Lemma 27 we can find a function g such that for all x E [0, 11, 

and g 4 An,. Thus the complement of A,, is dense in C[O, 11 and the theorem 

follows. 0 

Corollary 30 The typical function f E C[O, 11 satisfies (1) and (2) for all x E ( 0 , l ) .  

Proof. Since the intersection set of two residual sets in C[O, 11 is also residual in 

C[O, 11, the corollary follows. 

Corollary 31 There exists a function f E C[O, 11 satisfying (1) and (2) for all x E 

(071)- 

Proof. By applying Corollary 30 and the Baire category theorem, Theorem 25, the 

existence of functions in C[O, 11 satisfying (1 )  and (2 )  for all x E ( 0 , l )  follows. 



Chapter 6 

Conclusion 

In Chapter 2 the results of Buczolich-Laczkovich [3] and Thomson [I, p. 2761 were 

extended to a general case. Up to now the natural structure of the range of the 

symmetric derivatives is unknown. As in our mind the symmetric derivatives should 

have some similar but weaker property than the Darboux property of the ordinary 

derivatives. To this we pose a open problem as follows. 

Open Problem 32 Let A be a infinite set contained in R for which no element can 

be the average of any other two elements. Does there exist a function whose symmetric 

derivative assumes values exactly the set A? 

In Chapter 3 we discussed the properties of the right locally antisymmetric sets. 

We know from [13, p. 82, p. 2611 that every Hamel basis has power of continuum and 

that there exists a Harnel basis which is of first category and measure zero. Thus 

under the Axiom of Choice there exists a right locally antisymmetric set which has 

power of continuum. We want to know the following. 

Open Problem 33 Does there exist an uncountable, right locally antisymmetric set 

without the Axiom of Choice? 

In Chapter 4 we showed that the typical functions of symmetrically continuous 

functions and symmetric functions have c-dense sets of points of discontinuity. It is an 
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interesting, prospective topic for us to look for the typical properties of some classes 

of real functions and discuss the properties of typical functions. In Chapter 5 we 

gave an existence proof of nowhere symmetrically continuous functions and nowhere 

quasi-smooth functions. It is unknown that the methods used can be applied to the 

study of other questions. This is the thing we want to try in the near future. Here 

we give two interesting problems. 

Open Problem 34 Is the typical function f E BS[a ,  b] nowhere quasi-smooth in 

(a ,  b)? or smooth in (a ,  b)? Here BS[a ,  b] denotes the set of all bounded measurable, 

symmetric functions defined on the interval [a, b] and equipped with the supremum 

metric. 

Open Problem 35 Does the typical function f E BSC[a ,  b] have a symmetric deriva- 

tive at no points in [a, b] ? Here BSC[a ,  b] denotes the set of all bounded measurable, 

symmetrically continuous functions defined on [a, b] and equipped with the supremum 

metric. 
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