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Abstract 

The  shortest-path problem has been studied in various settings in Computational Ge- 

ometry literatures. This includes the shortest-path ~ r o b l e m  inside the simple polygon 

and the shortest-path problem avoiding a set of polygonal obstacles. Further vari- 

ations of these problems are possible for different types of polygons or polygonal 

obstacles. 

In this thesis we will study the rectilinear shortest path problem avoiding a set 

of isothetic rectangles and vertical line segment obstacles. We will present efficient 

preprocessing algorithms to answer the shortest path between two arbitrary query 

p i n t s .  We also demonstrate an approximation algorithm with less preprocessing and 

query time to  report an approximate shortest path between two arbitrary query points. 

Then we present an efficient parallel algorithm to  preprocess the set of rectangles to 

answer the shortest-path query between two arbitrary points using a single processor. 

We also present an efficient parallel algorithm t o  answer the single shot shortest- 

distance between a source and a destination point specified during the input. Lastly 

we present an efficient parallel algorithm to  preprocess a set of vertical line segments 

to  answer the approximate shortest-path query between two arbitrary points. 
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Chapter 1 

Introduction 

We study the rectilinear shortest-path problem in the presence of R, a set of n iso- 

thetic disjoint rectangles and B ,  a set of n vertical line segments. This problem has 

applications in motion planning problems. Besides that it also has applications in 

VLSI layout design where routing is done only along some fixed orientations, usually 

along horizontal and vertical directions. Our goal here is the following : 

0 The design of an eficient algorithnz to preprocess the set R to answer a shortest- 

distance/sl~ortest-path query between two arbitrary points eficiently. More specif- 

ically we want to spend subquadratic preprocessing time to answer the shortest- 

distance/slzortest-path query in sublinear time. 

0 The design of an eficient approxinzation algorithm to preprocess the set R/B to 

answer an approxim,ate shortest-distance/shortest-path query between two arbi- 

trary points eficiently. More specifically we want to spend subquadratic prepro- 

cessing time to answer the query in polylogarithmic time. 

The design of an eficient parallel algorithm to preprocessR to answer a shortest- 

distance/shortest-path query between two arbitrary query points using a single 

processor. 

0 The design of an eficient parallel algorithm to answer a sin,gle-shot shortest- 

distance/shortest-path problem between the source and the destination in the 
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presence o f R .  More formally our aim here is to design an N C  algorithm with 

subquadratic processor-time-product. 

0 The design of an NC algorithm with subquadratic processor-time-product to pre- 

process the set t3 to answer an approximate shortest-distance/shortest-path query 

between two arbitrary query points using a single processor. 

A naive approach to  these problems would be to  build up a grid graph by taking 

the union of horizontal and vertical trapezoidations and placing a vertex a t  every 

intersection between horizontal and vertical edges of these two trapezoidations. This 

graph maintains the shortest-path information between any pair of corner points. 

But this graph has 0 ( n 2 )  vertices as well as 0 ( n 2 )  edges in the worst case and the 

complexity of all our subsequent computations would be affected by the size of this 

graph. So our target is to build up a sparse graph that maintains all the geonztric 

shortest-path information. 

In this thesis our goal is to  design efficient algorithms. The  overall organization of 

the thesis is as follows. 

In Chapter 2 we first make a brief survey of the existing literature of the shortest- 

path algorithms. Then we survey some results on spanners related to  approximate 

shortest-path problems. Lastly we survey some results on the parallel shortest-path 

algorithms and some other variations of the shortest-path problem. 

In Chapter 3 we solve the shortest-path query between two arbitrary corner 

points of R. For this problem we can use the Sparse Visibility Graph of Clarkson 

et a1 [8]. Given R we can maintain the shortest-path information between any two 

corner points in this graph. But this graph has O(n1og n )  edges and O(n1og n )  

vertices. So this would also affect our subsequent shortest-path computations. 

Our idea is to  construct three directed acyclic planar graphs called carrier graphs. 

These three graphs contain sufficient information to  support the shortest-path queries. 

We efficiently preprocess all three carrier graphs to  answer the shortest-distance as 

well as shortest-path queries between two arbitrary points. The  technique used is 

completely graph-theoretic for searching the shortest path and utilizes the algorithm 

of planar separators due to Lipton and Tarjan [34] in each of those carrier graphs. 
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In Chapter 4 first we present an approximation algorithm for the shortest-path 

query problem. The goal here is to exhibit a tradeoff with the results obtained in 

Chapter 3. In this chapter we reduce both the preprocessing and the query time 

at the expense of the optimality of the reported path. With this approach we a,re 

able to report a path whose length is at most three times the optimal distance when 

the two query points are corner points of R. If the two query points are arbitrary, 

a modified approximation algorithm returns a path whose length is a t  most three 

times the optimal distance. The approach here uses the staircase separator of Atallah 

and Chen [2] and the Voronoi diagram computation on the sparse visibility graph of 

Clarkson et a1 [8]. Lastly we show how to improve the preprocessing time and space 

for the case of vertical line segment obstacles. 

In Chapter 5 we present a parallel preprocessing algorithm on the CREW PRAM 

model to answer the shortest-path query between two arbitrary points using a ~irigle 

processor. Also in that chapter we present an NC algorithm for the single-source 

shortest-path problem with subquadratic processor-time product. Lastly we present 

an efficient parallel preprocessing algorithm to answer an approximate shortest-path 

query between two arbitrary points in the presence of vertical line segment obstacles. 

Lastly, in Chapter 6 we summarize our contributions and pose some problems 

for future research. 

Definitions and Not at ions 

Definition 1.1 Given a set R of disjoint orthogonal rectangles and a point s ,  the 

upper shadow of s is defined as the point where a zrertically upward ray emanating 

from s Jirst intersects a rectangle in R. Lower, right and left shadows are defined in 

a similar fashion. 

Definition 1.2 Let C denote the set of all comer points o f R / B  
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Definition 1.3 Given a set R of disjoint orthogonal rectangles and a point s ,  the 

descending +x preferred orthogonal chain, denoted by C 1 ,  is the path from s to infinity 

constructed b y  starting at s and moving right until the r i g h ~  shadow of s is reached, 

and then moving downward along the rectangle boundary until we can resume the 

motion to the right. The remaining seven diferent ways for constructing chains are 

defined in a similar fashion, and are assign,ed increasing labels in the counterclockwise 

order around s .  An  illustration of the eight chains is shown in figure 1.1. 

The eight chain.s partition the plane into regions Ri, where i = 1..8, such that R; 

is bounded by the chains C;  and C;+l.  All in,dices are modulo eight. 

Definition 1.4 For any point p, p, and p, denote its x and y coordinates, respec- 

tively. 

Definition 1.5 Let L l ( p ,  q )  denote L1 or the rectilinear distance between p and q .  In 

other words L ( p ,  q )  = Ip, - qxl + I P ,  - yvl. 

Definition 1.6 Let Ln(p ,  q )  denote L2 or the Euclidean distance between p and q. In 

other words Lz(p ,q)  = J (p ,  - p,)' + (q,  - q,)2. 

Definition 1.7 A polygon P is rectilinear and rectilinearly convex if all its edges are 

either horizontal or vertical and the iniersection of a vertical or horizontal line with 

P is a single line segment. 

Definition 1.8 Let 2 den.ote a rectilinear and rectilinearly convex polygon around 

the set of obstacles R/D. 

Definition 1.9 sd(s ,  t )  will denote the shortest distance between s and t in presence 

of R. Similarly sp(s ,  t )  will denote the shortest path between s and t in presence of 

R. 

Definition 1.10 asd(s ,  t )  will denote the approximate shortest distance between s 

and t in presence of R. 
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Figure 1.1: The Eight Staircase Chains and Their Plane Partition 



Chapter 2 

Review 

Shortest-path problems received considerable attention in Computational Geometry 

literature. These problems are defined in the following way. We have to start from a 

source and move to  a destination through a path of the shortest length in a specified 

metric. We can broadly classify the shortest-path problems in the following two 

categories : 

The first category of problems concerns the shortest-path problem inside simple 

polygons with no holes. Here the source, the destination and the path are 

constrained to lie inside the simple polygon with no holes. The problem here 

is to determine the shortest path that satisfies the preceding constraint and 

connects the source and the destination. 

The second category of problems concerns the shortest path between the source 

and the destination inside a simple polygon with holes. The part of the plane 

devoid of those holes is usually referred to as free-space. In motion planning 

problems the shortest-path computation in the free-space is required. 

In this thesis we will concentrate more on the second ca.tegory of problems. The 

overall organization of this chapter is as follows. In section 2.1 we will survey 

sequential shortest-~ath algorithms. In section 2.2 parallel shortest-path algorithms 

will be reviewed. In section 2.3 we will briefly describe other areas in the field of 

shortest-path motlion planning. 
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2.1 Sequential Shortest-Path Algorithms 

The shortest-path problem inside a simple polygon was first studied by Lee and 

Preparata. [32]. A linear-time algorithm to compute the shortest-path tree inside 

a triangulated simple polygon from a vertex specified in the input was proposed by 

Guibas et a1 [25]. In a subsequent result Guibas and Hershberger [24] relaxed the 

restriction of the source being specified in the input. They proposed a solution that 

reports the shortest distance between two arbitrary query points in O(logn) time 

using O(n)  preprocessing where n is the number of vertices of the simple polygon. 

Similar types of works have been done for the shortest-path problem in the free- 

space. In the Euclidean metric the computation of the shortest path uses the visibility 

graph of the free-space. Given a set of polygonal obstacles, where the total number of 

polygonal vertices is n 7  the visibility graph of the free-space can be computed Ly an 

output-sensitive algorithm of Ghosh and Mount [19] in O ( n  log n + m) time, where nz 

is the number of edges in the visibility graph. After computing the visibility graph we 

can use Dijkstra7s algorithm [14] to compute the required shortest path. In a weighted 

graph G = (V, E), where all weights are positive, Dijkstra's algorithm with a heap 

can be implemented in O(I E)  log )V1) time and with a more complex data structure 

of Fredman and E r j a n  [18] in O ( ( E (  + (Vllog ( V ( )  time. So the shortest path in the 

free-space using this method can be computed in O(n1ogn + nz) time. But m, the 

number of edges in the visibility graph can be as large as 0 ( n 2 ) .  Hence this method 

doesn't give us a subquadratic time algorithm for the shortest-path computation. So 

for the shortest-path computation we cannot afford to compute the entire visibility 

graph because the shortest path will not use most of its edges. In fact whether a 

o(n2) time algorithm exists to compute the shortest path between any two points in 

the free-spce in Euclidean metric remained an open for a long time. Only 

recently Mitchell [40] came up with a subquadratic time algorithm for the shortest- 

path problem in Euclidean metric. The algorithm computes the L2 shortest distance 

between two points in the presence of polygonal obstacles in O(n3I2+') time. This 

algorithm was subsequently irnproved by Hershberger and Suri [27]. From a fixed 

source s, specified during the input, their algorithm computes the shortest-path map 
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in O(n log2 n )  time and O(n1og n )  space to answer the shortest-distance query in 

O(1og n )  time. 

But the Euclidean shortest-path problem in the presence of only vertical line seg- 

ments is more well behaved. Here in this setup the shortest path has the monotonicity 

property. In other words the shortest path between any two points in the presence of 

vertical line segments is always monotone in the horizontal direction. This property 

was exploited in the result of Lee and Preparata [32]. They proposed a solution to 

compute a shortest path between two points in optimal O(n log n )  time using plane 

sweep where n is the total number of vertical line segments. Their algorithm also 

builds the shortest-path-map from a source in O(n log n )  time to  answer the shortest- 

path query to t,he source in O(1og n + k) time where k is the number of segments in 

the reported path. 

This work was subsequently generalized by de Rezende, Lee and Wu [12] to the 

case of n isothetic disjoint rectangles but in rectilinear or L1 metric. They presented 

an optimal 0 ( n  log n) time preprocessing algorithm to answer the shortest-distance 

query from the query point to a source s which is specified as a input before the 

preprocessing step. The query time of their algorithm is O(log n )  for the shortest- 

distance query and O(1og n + k )  for the shortest-path cluery where k is the size of the 

reported path. 

This work was further generalized by Clarkson, Kapoor and Vaidya [8] for arbitrary 

polygonal obstacles. They solved the rectilinear shortest-~ath problem from a given 

source in L1 metric. They build up a structure called the Sparse Visibility Graph 

whose total number of edges as well as total number of vertices is O(n log n )  where 

n is the total number of polygonal vertices. This is much smaller in size than the 

entire visibility graph and its construction will be given in more detail in section 

4.1. Subseque~ltly Dijkstra's algorithm on this graph is used to compute a shortest- 

path tree from the source. So the total time required to compute the shortest distance 

using their method is O(n log2 72). Independently Mitchell [36] also obtained the same 

bound for this problem. 
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2.2 Approximations in Shortest-Path Problems 

The problem of approximate shortest-paths has been studied in the context of span- 

ners. Usually a spanner G1 = (V, El) of a graph G = (V, E )  is a subgraph of G  such 

that for any two vertices v1, v2 E V the shortest distance between vl and v 2  in G' is 

at, most a constant times the shortest distance between them in G. In computational 

geometry literature, the spanner for a set of points was studied first. Chew [lo] in- 

troduced the notion of graphs that approximate the complete Euclidean graph. He 

showed that the shortest-distance between two points in L1 metric Delaunay trian- 

gulation is at most a 0  times the Lz distance between them. Subsequently Dobkin, 

Friedman and Supowit [13] proved that the shortest path in a Lz metric Delaunay 

triangulation is at most (1 + f i ) n / 2  times the L2 distance between those two points. 

This constant was subsequently i~nproved to  2.42 by Keil and Gutwin [30]. 

Clarkson [7] gave an approximation algorithm to compute a path whose length 

(1 + 6 )  times the optimal L2 distance. The algorithm requires O ( n / t  + n log n )  time 

after building up a data structure of size O(n/c)  in O((n /e )  log n )  time. 

Parallel Shortest-Pat h Algorithms 

Now we will take a brief look at parallel computational geometry with the focus on 

the shortest-path problem. In the design of parallel algorithms the following two 

principles are very crucial. 

0 The design of N C  algorithms, i.e., we sh,ould use a polynomial number of pro- 

cessors and polylogarifhnzic tisne. 

The ~n in in~ iaa t ion  of the processor-time product. 111 the ideal case this product 

should be equal to the sequential lower bound of the problem. 

In the design of a parallel algorithm for the single-source shortest-path problem 

the difficult part is to bring down the processor time product. The sequential single- 

source ~ h o r t e s t - ~ a t h  algorithms in graphs use dynamic programming and are hard 
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to parallelize efficiently. To design efficient parallel algorithms divide-and-conquer 

is the usual paradigm. The main problem that is encountered while pa ra l l e l i~ in~  

the ~ i n g l ~ - ~ o u r c e  shortest-path problem is the transitive closure bottleneck. In other 

words, the processor-time product in a NC algorithm for the single-source shortest- 

path algorithm tends towards the sequential complexity for the all-pairs shortest-path 

problem. 

An eficient parallel algorithm for the shortest-path problem inside a n-vertex 

simple polygon was first proposed by ElGindy and Goodrich [16]. Their algorithm 

call compute the Euclidean shortest path between a source and a destination inside 

a simple p lygon  using O(n) processors in O(log n)  time. Also it can compute the 

~ h o r t e s t - ~ a t h  tree from a vertex of a simple polygon in o(log2 n )  time using O(n) 

processors. Both algorithms assume the CREW PRAM model of computation. The 

approach is based on centroid decomposition of the tree that corresponds to the dual 

of the triangulation. Subsequently HwAberger [26] proposed a parallel algorithm to  

compute the shortest-path tree inside a simple polygon using O(n/  log n )  processors 

and O(log n )  time. 

Parallel algorithms for the shortest path in free space had been studied only very 

recently. Atallah and Chen [2] proposed an algorithm to report the rectilinear short- 

est distance between two arbitrary query points in the presence of n isothetic and 

disjoint rectangular obstacles. Their algorithm reports the shortest-distance query 

in 0(log2 n )  time with a single processor after preprocessing the input with 0 ( n 2 )  

processors in 0(log2 n )  time in the CREW PRAM model. The approach is based 

on recursive splitting of the set of rectangles using staircase separators and the use 

of efficient pra l le l  algorithms for monotone matrices. Recently Atallah and Chen [3] 

improved the processor complexity in the preprocessing algorithm to 0 ( n 2 /  log n) .  

2.4 Other Areas of Shortest-Path Problems 

There have been several other works on the shortest-path problem. Here we will 

briefly mention a few of them. 
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Shortest Path in Higher Dimensions : In the L2 metric, the shortest- 

path problem between two points avoiding a set of polyhedral obstacles had 

been proved to  be NP-hard by Canny and Reif [9]. The difficulty in computing 

the Euclidean shortest-path in higher dimension arises due to the fact that the 

break-pints  of the shortest path can be an interior point of an edge unlike two 

dimensions. Papadimitriou [42] proposed a fully polynomial time approximation 

scheme to  compute an approximate shortest-path between two points avoiding 

a set of polyhedral obstacles in three-dimensions. 

In contrast to the Lz metric the shortest-path problem is polynomially solvable 

in the rectilinear metric in three-dimensions. Clarkson et a1 [8] proposed an 

algorithm to compute a L1 shortest-path between two points avoiding a set of 

n non-intersecting three-dimensional rectilinear obstacles, in 0 ( n 2  log3 n )  time. 

Weighted Region Problems : In the usual shortest-path problem we have to 

compute a path avoiding a set of polygonal obstacles. This can be conceived in 

the following way. We assign costs per unit distance to travel within a region. 

So in the usual shortest-path problems we can assign unit cost to the free space 

and infinite costs to obstacles. But in practice an obstacle cost may not be so 

large. So we ca.n assign finite costs greater than one to those obstacles. Our 

goal is to move from the source to the destination along a path with the least 

cost. This was studied by Mitchell and Papadimitriou [39]. 

0 Minimum Link Paths : Another measure of path length is the number of 

links in the path. The link distance between two points in the plane is the 

number of links in an obsta.cle free polygonal path that joins the two points 

with the minimum number of links. Suri [47] solved the link distance problem 

inside a triangulated simple polygons in linear time. Mitchell et al., [38] solved 

the minimum link p t h  problem among obstacles in the ~ la .ne .  

Bicriteria Shortest Paths : A minimum-link path may be far from the op- 

timal with respect to the length. Similarly a shortest path may have lot more 

links than the minimum length path. Thus in m m y  situations it is desirable 
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to find a, path with the minimum length and has few links. This problem and 

other variations of the "bicriteria" path problem has been investigated in Arkin 

et  al., [I]. 

On-line Shortest-Path Algorithm : Many times in motion planning prob- 

lems a complete description of all the obstacles are not known in advance. The  

robot comes to  know about each obstacle when it comes within its line of sight. 

The  goal here is to  move from the source to  the destination along a nearly op- 

timal path. There is a negative result in this area which states that  if obstacles 

are not required to  have a bounded ratio between their lengths and widths then 

there is no heuristic tha.t ca.n produce a path that is a t  most a constant times 

the optimal. This result is due to Pa.padimitriou and Yannakakis [MI. 

For a more detailed survey on these problems please refer to Mitchell [37] or 

Papadimitriou [43]. 



Chapter 3 

Shortest-Path Query 

3.1 Preliminaries 

Given a, set R of n, barriers, the shortest-path query problem SPQ asks for a prepro- 

cessing of R such tha.t a description of the shortest path between two points (origin 

and destination) can be reported efficiently. Based on the type of barriers in R ,  the 

metric, the dimension, and the type of queries, a variety of SPQ problems may be 

defined. 

In case the barriers form the boundary of a simple polygon, [25] describe a data 

structure, that can be constructed in linear time once the polygon has been triangu- 

lated, that supports shortest Euclidean length queries between two arbitrary points 

in logarithmic time. The path itself can be retrieved in a'dditional time proportional 

to  its number of turns. The result is based on the idea of constructing a hierarchy of 

nested subpolygons over an underlying trianguhtion, whose dual is known to have a, 

tree form, such that any shortest pa,th crosses a sma'll number of subpolygons. 

111 case the environment consists of axes parallel or isothetic boxes as the barriers 

and a known origin for all subsequent shortest-pat h queries, algorithms for various 

settings have been pesented in [8], [12], [36]. For isothetic rectangular obstacles, de 

Rezende et a1 [l2] p-esented an O ( n  log n )  algorithm to compute the shortest-path map 

from a source point specified during the input. Their approach uses the monotonicity 

of the shortest p t h  in at least one of the two axes directions. 
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In this &apter we present efficient sequential algorithms for the SPQ problem 

where t,he barriers in R are disjoint planar rectangles whose sides are parallel to  the 

coordinate axes, and subsequent queries ask for the shortest L1 path between two 

arbitrary points that  avoids the harriers in R. The  segments forming such path are 

also restricted to be parallel to  the coordinate axes. The  heart of our contribution is 

utilizing the geometric property of monotonicity of the shortest path between every 

pair of co-planar points, in this setting, to construct three planar graphs, called car- 

rier graphs, which either contain the shortest path between every two corners of the 

rectangles in R or can be used to guide the search for such path. Each graph can 

then be searcl~ed using purely graph theoretic techniques. As will be demonstrated 

throllgh the chapter, the construction of these graphs can be performed efficiently. 

In the following section we describe the carrier graphs, which contains the shortest- 

path information, and study their properties. In section 3.2 we present an algorithm 

for constructing these graphs to answer queries for length of the shortest L1 path be- 

tween any two corner points of rectangles in R. In section 3.3 we show how to 

preprocess these carrier graphs to answer the shortest-distance or the shortest-path 

query. The  first algorithm described in section 3.3.1 performs 0 ( n 2 )  time prepro- 

cessing to  answer each subsequent query between two corner points in O(1) time. 

The  second algorithm described in section 3.3.1 performs 0(d5) preprocessing to  

answer each subsequent query between two corner points in O ( 6 )  time. The  re- 

trieval of the shortest path can be performed in time proportional to  the number of 

its segments. The  details of this step had been described in section 3.3.2. Section 

3.4 is devoted to the details of removing the restriction that query points are corner 

points of rectangles in R. 

3.2 Carrier Graphs 

In this section we introduce a class of planar directed-acyclic graphs, called carrier 

graphs, and demonstrate that they contain sufficient information to  support shortest- 

path queries when both origin and destination are part of the query. 

We now introduce three needed carrier graphs, denoted by G+,, G+, and G-,. 
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Each graph is constructed to be a directed acyclic graph which c o ~ t a i n s  paths that are 

monotonic with respect to  a specified direction. Those graphs exploit the knowledge 

tha t  each shortest path in this setting is monotone in a t  least one of the x or y 

directions [12]. Oldy G+, will be described, since the other two graphs are defined in 

a similar fashion. 

Let 7 be the set of line segments obtained by connecting each corner point on the 

right side of a rectangle in R to  its right shadow with respect to  R. We first define 

the undirected graph UG+, = (V, E )  as follows (please refer to  figure 3.1 & figure 3.2 

for illustrations) : 

V consists of the corner points of rectangles in R, and the right shadows o i  the 

corner points on t,he right side of the rectangles in R with respect to  R ,  and 

upper and lower shadows of the corner points on the left sides of the rectangles 

in R with respect to R U 7. 

0 TWO vertices a ,  b  E V are connected by an edge e = ( a ,  b )  E E if and only if 

- a and b are consecutive points on the side of a rectangle in R or on an 

element in 7, or 

- a is the upper or lower shadow of a corner point with respect to  RU 7 and 

b is the corresponding corner point in R .  

In addition, a weight w ( e )  equal to the distance between corresponding points 

is assigned to  each edge. 

We complete the definition of the carrier graph G+, by performing the following 

orientation and transformation : 

1. For each element in E that corresponds to a horizontal edge we assign a 

direction from the endpoint having lower X-coordinate to the endpoint having larger 

x-coordinate. 

2. For each element in (u,  v) E E that corresponds to  a vertical edge, we split 

each vertex incident on E into 2 vertices ( U  into a' and a"; 2) into v' and o").  The 

vertex with lower x-coordinate than and adjacent to  it if any is joined to  v', and 
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Figure 3.1: Construction of the Ca.rrier Graph G'+, : Step I - Right Shadows 
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Figure 3.2: Construction of the Carrier Graph G+, : Step I1 - Upper and Lower 

Shadows 
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Figure 3.3: Construction of the Carrier Graph G+, : Step I11 - Orientation 

the vertex with higher z-coordinate than v and adjacent to  it if any is joined to  v". 

v' is joined to v" with a directed edge of zero weight. The  vertex u is handled in a 

similar fashion. v1 is joined to u' with a directed edge of weight w, and ul' is joined to 

v" with a directed edge of weight w. w is the weight of the edge (u, v). An illustration 

of this transforination is given in figure 3.3. Also please refer to illustrations figure 3.4 

and figure 3.5 for an undirected carrier graph UG+, and the directed carrier graph 

G+, after the transformation. 

We now demonstrate that the defined carrier graphs are sufficient to  support 

shortest-path queries through the following properties. 

Lemma 3.1 [12] Given a set R of disjoint orthogonal rectangles and a point s ,  for 

each point in R1 (R3,  R5, R 7 )  defined with respect to s ,  there exists a shortest path to 

s that is monotone in the +x direction (+y, -x, - y  direction respectively). For each 

point in R ~ ,  R4, R6, and Rs there exists a shortest path to s that is monotone in both 

the x and y-directions. 
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Figure 3.4: An undirected carrier graph UG+, 
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Figure 3.5:  A directed carrier graph G'+, 
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Proof : de Rezende et a1 [12] proved that a vertex on the left of the chain C3 

and C8, emana.ting from s ,  cannot be reached by a +X monotone path starting from 

s .  The orient,a.tion of the edges in G+, enforces that every path emanating from s is 

monotone in +x direction. Therefore, all vertices on the left of two chains C3 and C8 

are not reachable from s in G+,. 

Lemma 3.3 For each vertex s E V that corresponds to corner point of a rectangle in 

R, the paths corresponding to two chains CI and C2 lie in  G+,. 

Proof : From the definition of the graph UG+,, it is easy to  see that  the segments 

formillg chains C1 and C2 are edges in the undirected graph. In the chain C1, a vertical 

segment ttlat corresponds to an edge e = (u ,  v) E UG+, is mapped into the sequence 

of two edges ( (v l ,u l ) ;  ( u l ,  212)) in G+,. Similarly in the chain Cz, a vertical segment 

which corresponds to  an edge e = ( u ,  V )  E UG+, is mapped into the sequence of two 

edges ( (u l ,  u2);  (u2,  v2)) in G+,. In both cases we can see that  a path corresponding 

to  the chain is maintained and its cost remains unaltered. 0 

Lemma 3.4 [12] For each vertex s E V ,  let I4 denote the set of vertices belonging 

to the left vertical sides of the subset of R in the region R+, = R8 U R1 U R2 .  For 

any point u E R+, there is a shortest path from s to u which reaches u via either 

of the two vertices u,,ub E x, where u, is the vertex having the lowest ordinate 

among all vertices in  which are visible from u having lower x-coordinate and higher 

y-coordinate compared to u.  Similarly ub is the vertex having the highest ordinate 

among vertices of which are visible from u having lower x-coordinate and lower 

y-coordi~znte compared to u .  Please refer to figure 3.6 for an illustration for the lemma. 

Lemma 3.5 For each vertex s E V ,  the shortest paths to all the vertices, that lie in 

the region Rl of s ,  lie in G+,. 
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Figure 3.6: An Illustration for Lemma 3.4 
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induction is that  the shortest path from s to  every vertex in the region Rl having 

rank less than m is maintained in G+,. We have to  show that this holds for vertices 

with mth  ranked vertex. 

The basis trivially holds for all vertices on chains and C2. Now let u be 

the vertex with rnth rank. It follows from the fact that  the two chains C1 and C2 

emanating from s are maintained in G+,, as shown in Lemma 3.3, that no horizontal 

edge starting from a vertex on the left of either C1 or C2 can cross the region R1 of s .  

Therefore, each vertex u E V in the region R1 is connected to  each of the two vertices 

u ,  and t~~ in R l ,  described in Lemma 3.4, with a path whose length equals to  the L1 

distance from u.  From our inductive hypothesis, the shortest-paths from s t o  both u ,  

and ub are maintained in G+,. Also u is joined to both 11, and ub by shortest paths. 

Thus the lemma follows. 0 

Lemma 3.6 If a vertex t E R;! U Rs correspondin,g to a vertex s E V is reachable 

from s in G+,, then the shortest path from s to t is also maintained in G+,. (Note 

that some vertices in R2 and Rs may be unreachable from s as  demonstrated by  v' in 

Figure 3.7.) 

Proof : By contradiction. Let us assume that t E R2, the case o f t  E R8 is handled 

similarly, is reachable from s but the shortest path from s to  t is not maintained i n  

G+,. Let u be the corner point of the shortest path from s to  t in G+, where the first 

reversal in the y-direction occurred, and let w be the preceding corner point on the 

path. Therefore the path from s to  UJ denoted by P ,  must be monotone in both x- 

and y- directions (refer to  figure 3.7 for illustrations). 

We now construct a path, denoted by PI, from u to  s d o n g  the reverse direction 

of the edges of G+, as follows : 
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Figure 3.7: Illustration for Lemma 3.6 
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The  chain PI is clearly monotone in both the X- and y- directions. Therefore, 

the path from s to  u obtained by concatenating the portion of C2 or P from s to  z 

and the part of PI from z to u ,  whose segments are edges in G+,, is monotone in both 

directions and is thus shorter than the path from s to u via w. This is a contradiction, 

and thus the lemma follows. 

Lemma 3.7 If s and t are two vertices in V ,  under the assumption that t lies in the 

first quadrant with respect to s (i.e., s, < t ,  and S ,  < t,), and t is not reachable in 

both G+, and G+, from s ,  then the graphs G+, and G+, contain suficient information 

to construct a path from s to t with the shortest length. 

Proof : In this case we can easily conclude, by Lemmas 3.2 & 3.5, tha t  t lies 

in region R2 of s. Therefore, any shortest path between s and t is monotone in both 

x and y directions and has a length of It, - s,l + It, - s,l. 

In addition, it follows from the facts that the chain C2 is maintained in G+, and 

t is not reachable from s in G+, that a path, denoted by P ,  emanating from t along 

the reverse direction of the edges in G+, as follows : 

Starting from t we move down a vertical edge in G+, until a horizontal edge is 

reached, we then move in its reverse direction until we can resume the motion 

along vertical edges. Repeat the above procedure until infinity is reached. 

This P does not intersect Cz. Therefore, it must intersect the chain C3, 

which is implicitly maintained in  G+,, if two graphs were to  be overlaid. Let z be the 

first such intersection point. The chain obtained by concatenating the portion of c3 
from s to  z and the part of P from 2 to t is monotone in both x- and y-  directions, 

and is thus a. path with the shortest length from s to t .  

We now state the main result of this section as follows 

Theorem 3.1 The carrier graphs G + x ~  G+Y and G-, contain suficient information 

to support sholtest-path queries when both origin and destination are corner points of 

the rectangles in R. 
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3.3 Shortest Path Queries Between Two Corner 

Points 

In this section we will present algorithms for preprocessing a set of barriers 'R such 

that subsequent shortest distance queries between two arbitrary corner points can 

be answered in sub-linear time. Our approach is to compute the carrier graphs and 

some additional information to  support such queries. We will then describe a simple 

method for constructing a path with minimum length in time proportional to the 

number of its segments. 

3.3.1 Sequential Preprocessing and Query Algorithms 

A straightforward idea is to compute and store the transitive closure of G+,, G+,, 

and G-,. Since each of the graphs is planar, directed and acyclic, use the following 

result to compute the all-pairs shortest-paths for each graph in 0 ( n 2 )  time. 

Lemma 3.8 [28] The single source shortest path problem on a directed acyclic gTnplr. 

G = (V ,  E )  can be solved in O(IV(  + ( E l )  time. 

A query of two arbitrary corner vertices u and v (without loss of 

generality we assume v  lies in the first quadrant of U )  can now be preprocessed in 

O(1)  time as follows : 

Otherwise sd(u ,v )  = Iv, - u.1 + Ivy - uyI 

where &(u, v )  denotes for the shortest distance between vertices u and v  in G. 

Therefore we have established the following result : 
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Proof : The  correctness of the above procedure follows directly from properties 

of the carrier graphs proved in Theorem 3.1 and correctness of the algorithm of 

Lemma 3.8. Each of the carrier graphs is constructed by applying the well known 

~ l a n e - s w e e ~  pradigrn  twice, a procedure that requires O(n log n )  time. However, this 

step is dominated by the time required to  compute and store the transitive closure for 

each graph. The  time complexity of the search procedure of O(1) is clearly correct, 

and thus the theorem follows. 

A more efficient preprocessing procedure makes use of the planar-separator theo- 

rem [34] which is as follows. 

Theorem 3.3 TIze n vertices of a planar graph G can be partitioned into three sets 

S ,  & alzn V2, ,such that no edge j0in.s a vertex from & with a vertex from V2, neither 

V1 no,- & corztai,zs more than % 2 / 3  vertices, and S contains no more than 2 J Z f i  

vertices. 

This preprocessing algorithm consists of building a shortest-path-search SPS tree 

for each of the carrier graphs. At each node, we store vertices of a O(+) separator 

S of the corresponding graph together with the shortest distance from each vertex i n  

S to  all vertices of the p a p h .  A detailed description of this procedure for G+, is as 

follows : 

Build SPS(G+,)-Tree 

S-1. i f  IVI 2 c , where c is a constant, then 

- (a)  compute a separator S of UG+, 

- (b) ~ o m p u t e  and store the shortest distance from all the vertices in G+, to 

each vertex in S. 

S-2. otherwise, compute the transitive closure of G+,. 



CHAPTER 3. SHORTEST-PATH QUERY 28 

This preprocessing allows us to search for the shortest distance between two ver- 

tices when SP-QUERY(s,t,root) is invoked, where root is the pointer to  the root node 

of SPS tree. 

SP-QUERY(s,t : vertex; n : pointer to a node in SPS tree) 

Case I. if the current node is a leaf in the SPS-tree, then we retrieve the distance 

between s and t from the transitive closure stored a t  this node. 

Case 11. if the current node is an internal node in the SPS-tree and s and t 

belong to different connected components along its descendents, then 

We can also use the same formula if either s or t or both belong to  S. 

Case 111. If the current node is an internal node in the SPS-tree and s and 

t belong to  the sa.me connected component among its descendents, then we 

search the SPS-tree for the shortest distance between s and t along a path 

whose vertices solely lie in the identified component, denoted by d'(s, t ) .  The 

shortest distance is now computed as 

dist(s,  t )  = min{~nin, ,~s{d(s ,  v;) + d(v;, t)}, d'(s, t)} 

Lemma 3.9 Tlze algorithm SP-QUERY correctly computes the shortest distance 

between vertices s and t .  
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The first case is when the vertex s belongs to VI and the vertex t belongs to  V2, as 

shown in figllre 3.8(a). Let us consider the two parts of the shortest path from s to  t ,  

i.e., the path from s to sk, denoted by Pi(s, s k )  and the the patti from sk to  t ,  denoted 

by P2( sk , t ) .  NOW P1(s ,sk)  must be the shortest path from s to  sk. Similarly the 

path P2( sk , t )  will be the shortest path from sr, to t. Both P i (s , sk)  and P2( sk , t )  are 

determined i n  S- 1 (b) , where we compute the shortest-pat h tree from each separator 

vertex. I-Ience i n  this case the shortest distance between s and t will be correctly 

identified in step step I1 of SP-QUERY. Similar argument holds if either of s or t 

belongs to  S. 

If both vertices s and t belong to  (or 14) then we have to  check for one more 

candidate p t h  P3(s, t )  which co~npletely lies in & (or Vz), as shown in figure 3.8(b), 

and step 111 of SP-QUERY i n  that case correctly identifies the shortest distance. 

0 

Lemlna 3.10 An orthogonal shortest-distanm query between two vertices in G+, can 

be processed in O ( f i )  time with O(12fi) preprocessing time and storage. 

Proof: Computing the planar-separator requires O(n )  time 1341, and identifying 

connected components can also be performed in O(n)  time. However, computing 

the sllortest distances from all vertices in the graph to  separator vertices requires 

constructing the shortest ~ a t h  tree from the O ( f i )  separator vertices. Using the 

algorithm of Lemma 3.8, since the graph is planar, directed and acyclic, leads to  a 

total ~ ( n f i )  running time. Therefore, the total time complexity of the algorithm 

Build can be expressed as 

The  solution of the recurrence is T ( n )  E O ( n 6 ) .  

The  time required to  process each subsequent query, in the worst case, can be 

clearly expressed by the following recurrence 

5 Q(2/3n) + c * fi, where c is a positive constant. 
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(b) 

Figure 3.8: Illustration for Lemma 3.9 
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whose solution leads to  Q(n)  E O(Jn) .  Thus the lemma follows. 

After ~ e r f o r m i n g  the same preprocessing on the remaining two carrier graphs G+, 

and G-,, the shortest distance query between two corner points u and v (assume, 

without loss of generality that v lies in the first quadrant of u)  of X can be reported 

as follows : 

0 if d is t (u,  v) = m i n { d ~ + , ( u ,  v), ~ G + ~ ( u ,  v))  # 00 then sd(u,  v) = dist(u,  v) 

0 otherwise, sd(u,  v) = Iv, - uZ1 + Ivy - tiyl 

which leads us to the main result of this subsection. 

Theorem 3.4 An ortl~ogoizal shortest-distance query between two arbitrary corner 

points amidst the set of 72 rectangular barriers R can be processed in O(\/n)  time with 

O ( n J n )  preprocessing tiine and storage. 

3.3.2 Constructing a Shortest Path 

When an actual shortest pa.th needs to be constructed, two different situations occur. 

We ha.ndle each situation separately. 

0 Case 1 I Shortest path is maintained in a single carrier graph I 
In the preprocessing approach of Theorem 3.2 we maintain an additional ma- 

trix of size 0 ( n 2 ) ,  for each carrier graph. The  entry ( i ,  j )  in each matrix contains 

the 1oca.tion of the vertex which precedes the vertex vj  in the shortest pa,th from 

v; t o  v,. That  is, if such a path exists. 

In the preprocessing approach of Lemma 3.10 we maintain for each vertex v;, 

in each of the ca.rrier graphs, the location of the vertices which precede vi along 

the shortest paths from the separator vertices from which v; is reachable. 

The  above information can clearly be genera.ted and stored within the same time 

and storage bounds of Theorem 3.2 and Lemma 3.10. 
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Case 2 I Destination is not reachable from the origin in any of the carrier graphs 1 
In this situation we know, by Lemma 3.5, that  the destination point lies in R2 

or R8 of s. We describe the case of Rg. The case of R8 is handled similarly. 

To build the shortest path from s to  t we need to  compute the intersection 

point z of C3 emanating from s and a path P emanating from t along the 

reverse direction of the edges of G+, as follows : 

- Starting from t we move in the reverse direction of a vertical edge in G+, 

until a horizontal edge is reached, we then move in its reverse direction 

until we can resume the motion along vertical edges. 

The  existence of such an intersection was proved in Lemma 3.7. 

Let c a.nd p denote the la.st vertex of the currently constructed chains C3 and P 

respectively. We construct each of these two staircases one edge a t  a t ime in an 

alternating fashion according to  the following conditions : 

- (a) If c, < p, and c, < p,, then we continue the construction of both C3 

and P one edge a t  a time. 

- (b)  If c, < p, and c, > py, then we start tracing back along C3 while 

adding new edges to  P until their intersection point is reached. 

- (c) If c, > p, and c, < p,, then we start tracing back along P while adding 

new edges to C3 until their intersection point is reached. 

The  total time spent to determine the path is bounded by the number of segments 

in the path in each of the two cases. Therefore we can conclude that  

Theorem 3.5 An orthogonal shortest path between two corner points can be deter- 

mined sequentially in 

(i) O ( k )  Lime with 0 ( 1 2 ~ )  preprocessi~zg, or 

(ii) O ( J n  + I ; )  time with O(11fi) preprocessing, 

where k is the number of segments in the constructed shortest path. 
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3.4 Removal of Corner Point Restriction 

In this section we describe the additional preprocessing required t o  remove the re- 

striction that the origin and destination be corner points of the rectangular barriers. 

Informally our approach is based on observing that each of the origin and destination 

points call be associated with a pair of vertices in each of the carrier graphs (as shown 

in figure 3.9 & figure 3.10). The  shortest paths between the identified vertices in 

each graph are sufficient to  support the shortest path computation from the origin 

to  destination. There is a maximum of four such paths in each graph. Therefore, a t  

most eight SPQ problems need to  be solved. 

Assume, without loss of generality, that t lies in the first quadrant with respect 

to  s and they don't belong to  the same rectangle. We shoot a ray towards the right 

from s and let ulu2 be the edge of the rectangle which it hits first. In a similar way 

we shoot a ray towards the left from t and v1v2 be the edge of the rectangle which ~t 

hits first. In a similar way we obtain two more edges ~ 3 ~ 4  and V S V ~  by shooting two 

rays upwards and downwards from s and t respectively. 

All the above computation can be efficiently performed during query time once we 

preprocess the horizontal and the vertical trapezoidation by constructing the hierar- 

chical representation, introduced by Kirkpatrick [31]. For each subsequent query we 

perform point-location on the hierarchies to  locate the rectangles in the subdivision 

that  contain the point s and t .  The query can be carried out in O(1ogn) t ime after 

0(n) t ime preprocessing. 

The  shortest distance between s and t can now be computed as follows 

Step I. Compute the minimum among four following expressions : Ll ( s ,  u,) + 
sd(ui ,  vj) + Ll(vj,  t ) ,  where i, j E {1,2) .  Here scl(a, b) denotes the shortest 

distance between a and b in G+,. 

If the minimum value is defined then the shortest distance between s and t is 

found. Otherwise, we proceed to  the next step. 

Step 11. Compute the minimum among four following expressions : Ll(s ,  u;) + 
Sd(ui ,  V J )  + L1(vj, t )  where i ,  j E {R,4) .  Here sd(a ,  b) denotes the shortest 
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Figure 3.9: Corner Points in R Obtained by Horizontal Ray Shooting from s & 1 
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Figure 3.10: Corner Points in R Obtained by Vertical Ray Shooting from s & t 
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distance between a and b in G+,. 

If the minimum value is defined then the shortest distance between s and 

found. Otherwise, we proceed to the next step. 

Step 111. The shortest distance between s and t equals Is, - t,l + Is, - t ,  

Lemma 3.11 The above algorithm correctly determines the shortest distance between 

arbitrary origin and destination points. 

Proof : The assumption that t lies in the first quadrant of s leads to the fact that 

t lies in either Rl,  R2 or R3 of s.  If t lies in R1 of s then the shortest paths from ul  

to  vl, from to  v2, from u2 to vl, and from 112 to v2 are maintained in G+,. Also 

from the Lemma 3.4 [12] we know that the shortest-path between between s and 

t goes through at least one corner point in {ul ,  u2) and at least one corner point in 

{vl ,  v2}. Therefore the shortest distance will be computed at the termination of step 

I. If t lies in Rg of s then the shortest paths from ug to vg, from u3 to v4, from u4 

to v3, and from 714 to v4 are maintained in G+,. Therefore shortest distance will be 

computed a t  the termination of step 11. Otherwise, if t belongs to R2 of s and the 

shortest distance is determined by step I, step I1 or step 111. The correctness of 

this claim follows from Lemma 3.6. 

The above mentioned hierarchy can be constructed within the same time and 

storage bounds of the preprocessing algorithms, of the previous section, to support 

O(log 1 2 )  point location queries. Therefore, we can conclude that 

Theorem 3.6 The orthogonal shortest path between two arbitrary points can be de- 

termined by a single processor in 

(i) O(1og n + k)  time with 0 ( n 2 )  preprocessing, or 

(ii) O ( J n  + k )  time with O(nJlz) preprocessing, 

where k is the nu~izber of segments in the constructed shortest path. 
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Approximate Shortest-Pat h 

Algorithms 

In this chapter we consider the problem of approximate rectilinear shortest-path query 

between two arbitrary points in the presence of n isothetic and disjoint rectangular 

obstacles. We present an algorithm that reports a path whose length is a t  most three 

times the optimal path length between two arbitrary points. Our algorithm takes 

O(n  log3 n )  preprocessing time, O(n  log2 n )  space and O(log 72) query time for the 

dj,tance poblern. The  actual path can be reported in O(1ogn + k) where k is the 

number of segments in the reported path. Thus here we exhibit a tradeoff in terms of 

t ime complexity and optimality with the the result in the previous chapter where an 

exact solution of this query problem is given a t  the expense of 0 ( n f i )  preprocessing 

and O ( J n +  k )  query time or using 0 ( n 2 )  preprocessing and O(1og n + k) query time. 

Many times in motion planning problems instead of obtaining an optimal path, 

researchers have computed nearly optimal paths that can be obtained by spending 

much less time. This issue was addressed by Clarkson in [7]. In this chapter we 

present an algorithm to solve the query problem for the approximate shortest path 

between two arbitrary points avoiding the rectangles in R. The  algorithm reports a 

whose lcngth is a t  most three times the optimal path length between two ar- 

bitrary corner points and at most three times the optimal path length between two 
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arbitrary points. For this we spend O(n log3 n )  preprocessing to answer the approx- 

imate shortest-distance query in O(log n )  time. The actual path can be reported in 

O(log n + k )  time where k is the size or the total number of segments in the reported 

path. Our approach for solving this problem uses the staircase separator of Atallah 

and Chen [2] which can produce a balanced splitting of the set of rectangles in R, and 

Voronoi diagram computation on the sparse visibility graph, introduced in Clarkson 

et al., [8], to solve the rectilinear shortest-path problem in the presence of obstacles. 

Our overall organization of the chapter is as follows. In section 4.1 we review 

existing results on the rectilinear shortest-path problem, which we will be using later. 

In section 4.2.1 we present an algorithm to answer the approximate shortest-distance 

query between two arbitrary corner points of R in O(log n )  time which uses O(n log3 n )  

preprocessing and 0 ( i z 1 0 g 2  12) space. Subsequently in section 4.2.2 we relax the 

corner point restriction. Finally in section 4.3 we consider the case of vertical l i ~ e  

segment obstacles and in that section we present a preprocessing algorithm on the 

set of n vertical line segments in O(n log2 12) time and O(n log n )  space to answer the 

approximate shortest-distance query between two arbitrary query points in O(log n )  

time. 

A Brief Review of Some Existing Results 

For the sake of completeness in this section we will briefly introduce the following two 

structures from existing literature. 

Staircase Separator : The notion of the staircase separator was introduced 

in [2]. The staircase separator S of R is an orthogonal chain avoiding the 

set of obstacles in R. S has O(n) segments and is monotone along both x 

and y directions. S splits R to two subsets R' and R" in such a way that 

both IR'I < 7nlS and IR"I < 71?/8. Also S can be constructed in O(n1ogn) 

time. The existence of S greatly facilitates the design of divide-and-conquer 

type algorithms for problems on rectangles, since we can obtain a balanced 

decomposition. 
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Sparse Visibility Graphs : This graph was introduced in [8]. Given R we 

can maintain the shortest-path information between any two corner points hi, hj 

E Fl in this graph. This graph G = ( V ,  E) is defined as follows : 

- I. Each corner point of R is joined to  all four shadow points. Please 

refer to figure 4.1 for the illustration. In the illustration p, and p,  are 

two shadow points of vk. Let us denote the set of all shadow points by 

p. There is an edge between each point and its shadow points. Let us 

denote this set of edges by El. For each obstacle edge e; = (vi,vj) if 

projected shadows are pl,  pl+l, . . . , pm E 7' in order then following edges 

(v;, (pl, pl+1), . . . , (p,, vj) are included in E. Here we note that if there 

is no shadow point on an edge e; then we include that edge in the graph. 

Let us denote the set of all edges of this type by EZ. 

- 11. We take a vertical line which passes through a point which has the 

median value x, with respect to  x coordinates of corner points. We join 

an edge between each point vZ to the point vl = (x,, vty) if it is visible from 

u,. Let v;, . . . , v k  be those Steiner points in sorted order along y directions. 

Then we join every two adjacent points in that order by an edge if they are 

mutually visible. Please refer to  figure 4.2 for this construction. We apply 

this construction recursively for all points with the value of x coordinate 

less than x, and separately for all points with x coordinate values greater 

than T,. The same construction is repeated by horizontal splittings. Let 

E3 denote the set of edges added by this recursive construction both in 

vertical and horizontal directions. Also let Q denote the set of Steiner 

points introduced by this construction. Here I Q  I E O ( n  log n) .  

So in G = (V, E) we have 
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Each edge of the graph is associated with an weight that  is the L1 distance 

between its two endpoints. This graph can be computed in O(n log2 n )  time; 

the algorithm is described in [S]. Between any pair of corner points v;, vj the 

shortest path will be maintained in G, i.e., a subgraph of G. 

Here we would like to note that our carrier graph has fewer vertices and edges than 

the sparse visibility graph of [8]. The  shortest path between every pair of hi and h j  is 

always maintained in the sparse visibility graph, but that  is not so in case of carrier 

graphs. For this reason we ha,ve to also use the sparse visibility graph along with the 

carrier graphs in the case of rectangles. But for the case of vertical line segments we 

only need the carrier graphs. 

4.2 Query Between Two Arbitrary Points 

Let s and t denote the two query points. Without loss of generality we will assume 

that  t lies in the first quadrant of s, i.e., in other words s, < t ,  and s ,  < t,. For the 

first part of our discussion we will concentrate on the approximate shortest-path query 

between two arbitrary corner points of R. Subsequently we will relax this restriction. 

This is done by reducing the problem of query between two arbitrary points to  a query 

constrained between corner vertices of rectangles. The  exact procedure is described 

in more detail in the later part of the section. Let 2 be a bounding rectilinear and 

rectilinearly convex polygon around R whose size is O(l R ( ) .  

4.2.1 Query Between Two Arbitrary Corner Points 

NOW let R' and R" denote the two subsets of R after being split by the staircase 

separator S. Let v, and v, be two arbitrary corner points belonging to  R' and R" 

respectivelv. Let 2 denote the rectilinear and rectilinearly convex enclosing polygon 

of the set R with 0(n) vertices. The following property which holds for the shortest 

path between v, and v, have been used in [2]. 

Lemma 4.1 There exists a shortest path between v, and vJ whose intersection with 
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Figure 4.1: Sparse Visibilitv Granh Const,ruct,ion-1 
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Figure 4.2: Sparse Visibility Graph Construction-I1 
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the staircase S must contain at least one of the horizontal or vertical projection of the 

corner points of R' U R!' on S or the two intersection points of S with 2. 

Preprocessing Phase of the Algorithm 

The  preprocessing algorithm consists of building a search tree whose every node main- 

tains the approximate shortest-path information between corner points of R. We will 

name this tree the approximate shortest path search tree, or ASPST. Now we give 

a high-level description of the preprocessing pha,se of our algorithm. 

Algorithm Preprocess : 

Comments : The results of the computation of the first three steps are stored a t  

the current node of ASPST. Both subtrees, built up recursively in the last step, are 

ma.intained as children of the current node of ASPST. 

Step I. Compute the sta.ircase separator S, which gives a balanced decomposi- 

tion of R into two subsets R' and R" as described in [TZ]. 

Step 11. Project each corner point of R' and R", both horizontally and vertically 

onto S, i f  the line joining the projected point and the corresponding corner 

point doesn't intersect any other obstacle or the enclosing polygon. Let 7 = 

{ill t Z ,  . . . , t p )  denote the set of all such projected points along with the two 

intersection points of S with the enclosing polygon. This set can be computed 

by the trapezoidation algorithm using the plane sweep as described in [45]. 

Step 111. Compute the Geodesic Voronoi Diagram of 7 on C, the set of corner 

p i n t s  in R. More forrnally we partition C into subsets Vl , V2, . . . , V, such that  

u:='=, V,  = C and for each corner point vj E V, ,  t ;  is geodesically nearer to  it 

compared to  t j  # ti. The detailed algorithm to compute this efficiently will be 

given later in this section. 

Step IV. R.ecursively build up ASPST on both R' and R". 
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Now let us consider two arbitrary corner points of R, say v; and v j ,  which lie on 

two opposite sides of the staircase S .  Let tk and ti belonging to  7 be the geodesically 

nearest point of vi and vj respectively. NOW we consider the following path : 

Q = sp(v; ,  t k )  U ~ ~ ( t k ,  t l )  U sp(tl, v j )  

Here we note that sp(tk,  t i )  is taken along the staircase S.  Then the following 

property holds on the path Q. 

Theorem 4.1 The length of the path Q between v; and vj is at most three times the 

length of the shol-test path sp(vi, v j ) .  

Proof : Please refer to figure 4.3 & figure 4.4 for illustrations. From Lemma 

4.1 we know that there always exists a shortest path whose intersection with 7 is 

nonempty. Let sp(v , ,  v,) be tlie shortest path having this property. Let t ,  E 7 be one 

of the p i n t s  i n  sp(v, ,  1 1 , )  n 7. There are a few cases to be considered here. In one 

case t k  is above t l  and in another case tk is below tl. But since the same argument 

holds in both cases we will elaborate on the first case only. Again three possible cases 

can arise when the first condition holds. 

Case I. t i  is beteween t k  and t l .  

Case 11. t i  is above t k .  

Case 111. t i  is below t l .  

Since Case I11 and Case I1 are symmetrical we will argue for the first two cases 

only. 

Case I: Here let us consider the ratio between sd(vi ,  t i )  + sd ( t k ,  t i )  to  sd(vi ,  t i ) .  

TO design tlie worst case situation we have to  make sd ( t k ,  t i )  as large as possible. 

Now we claim that sd(tk,  t i )  5 2 x sd(vi,  t i ) .  This follows from subsequent 

arguments. 

From the triangle inequality of L1 metric we have :- 
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Figure 4.3: Case I - t ,  Is Between t k  and t r  
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The last inequality holds because t k  is the geodesic Voronoi neighbour 

of vi in the set 7 and therefore sd(v; ,  t k )  < sd(v, ,  t i ) .  

Thus we have sd ( t k ,  t i )  < 2 x sd(vi,  t i ) .  

Therefore the total distance traversed is equal to  :- 

Following exactly similar argument we obtain 

Case 11: Following the same argument of Case I we claim that  

* s d ( v j ,  tr) + sd(tl ,  t k )  5 3 x s d ( v j ,  t i )  

since sd ( t l ,  t k )  5 sd ( t l ,  t i ) .  

Aga.in t k  is the geodesic Voronoi neighbour of v,. Therefore 

Combining ( 3 )  and ( 4 )  we have 
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Figure 4.4: Case I1 - ti is above t k  
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Figllre 4.5: A Case in which the Constant of the Approximation For Rectangular 

Obstacles is Tight 
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0 

So from the above theorem we can see that Q is a near optimal path between v, 

and v,. To show that the ratio of approximation is tight, i.e., the ratio of the reported 

path to  the optimal path can be three in some cases, we consider the illustration in 

figure 4.5. Let p and q denote two corner points of rectangles in R and we assume 

the shortest path between them is monotone in both directions. Let S denote the 

staircase separator. Let a and c denote the vertical and horizontal projections of p 

on S .  Similarly let d and f denote the horizontal and vertical projections of q on 

S .  The  shortest distance between p and q is 11 + + 12. But a being nearer t o  p 

than c and f being nearer to  q than d the length of the reported path pabcde f q  is 

(11 - x )  + ll + ( I I  - x)  + 13 + (12 - y )  + 12 + (12 - y )  which is 311 + 312 + l3 - 22  - 2y. 

So in the case when lI and 12 is much larger than 13, x and y  the ratio of the reported 

pat11 to  the optimal path can go as close to three as possible. This example shows 

that the constant of our approximation using this technique is tight. 

Now we will describe how to compute the Step I11 of the algorithm Preprocess 

efficiently. For that purpose we will make use of the result in [35] which computes the 

Voronoi p r t i t i o n  of a subset of vertices in a graph. More formally given a weighted 

graph G = (V, E) and V' C V where IV'I = k, we want to  partition V into subsets 

1/1,14,. . . , Vk such that ~ t = ~  I( = V and v, E V' is nearer, to all vertices of I( in G, 

compared to  other v, E V', j # i. In all cases we will assume edge weights to  be 

non-negative. Here we briefly describe the method of [35] to compute this partition. 

Lemma 4.2 Given a weighted gmph G = (V, E) a i d  V' c V we can compute the 

above mentioned Voronoi partition of V in O(!El  log IVI) time. 

The technique used here is to add a new vertex s and to join it to  each vertex v; E 

V' with edges of weight 0. Now we run the single-source shortest-path algorithm from 

s in this transformed graph. Now in the shortest-path tree of s ,  all vertices hanging 

in the subtree rooted a t  vi E V' will be put into the set I(. From the construction 

it directly follows that any vertex in V,  is nearer to vi than any other v j  E V' where 

j # i. The desired complexity can be achieved using the heap implementation of [14] 

for the sillgle source shortest-path algorithm. 
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Lemma 4.3 The step I11 of the algorithm Preprocess can be computed in O(n  log2 n )  

time at the first level of recursion. 

Proof : The Voronoi diagram of 7 on 7-1 can be computed in the following way : 

0 Step I. Compute the sparse visibility graph GI for 7 U R' and G2 for 7 u R". 

0 Step 11. Apply the algorithm of [35] described in Lemma 4.2 to both GI and 

G2 respectively with all vertices of 7 as the set V'. 

The computa,tion of step I requires o(16 log2 n )  time [8]. Since IVI = O ( n  log n )  

and 1E.I = O(12 log n )  for the sparse visibility graph G step I1 can be carried out in 

O ( n  log2 12)  time from Lemma 4.2. 

Theorem 4.2 The algorithm Preprocess requires 0 ( 1 z  log3 n )  time and O ( n  log2 n )  

space. 

Proof : The time required to compute the staircase separator in step I is 

O ( n  log n )  [2]. To compute 7 using trapezoidation will take O ( n  log n )  time. There- 

fore using Lemma 4.3 we obtain the following recurrence relation for the overall time 

complexity T ( I L ) ,  for the algorithm Preprocess as : 

T ( n )  < T ( a n , )  + T ( ( l  - a ) n )  + c * n  log2 n ,  118 < a < 718 and c is a positive const. 

Therefore, T ( n )  E O ( n  log3 12). At each level of recursion to store the complete 

approximate shortest-path information the space required is O ( n  log n ) .  Therefore 

the total space required is O(n log2 l a ) .  

Algorithm to answer the query 

In this section we will describe how to answer the approximate shortest-distance query 

between two arbitrary corner points. Let vi and vj be the two query points. We use 

the following procedure to answer the approximate shortest-distance query between 

v; a.nd vj. 

Algorithm Query : 

~l lput  : , ~ i ,  vj; Output : asd ( t~ i ,  v j ) ;  
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Step I. Using bina.ry search over the staircase S stored in root of ASPST, 

determine i f  v; and v, lie on the opposite or the same side of S or on S .  

0 Step 11. If v; and vj lie on opposite sides of S or if a t  least one of v; or v j  lie 

on S compute the geodesic Voronoi neighbours of v; and vj from the ASPST 

built during the preprocessing step. Let tk and t l  respectively be the geodesic 

Voronoi neighbours of vi a.nd vj-  We report sd(v; ,  t k )  + sd ( t k ,  t l )  + sd ( t l ,  v j )  as 

the approximate shortest distance between v; and v j ,  i.e., asd(v; ,  v j )  and stop. 

Otherwise if v; and v,i lie 011 the same side of S then go to step 111. 

0 Step 111. Go to  the corresponding child node in the ASPST tree, depending 

on which side of S v; and vj are, and repeat from step I. 

Lemma 4.4 Algorithm Query reports a distance which is at most three times toe 

optimal path length between v; and vj in 0(log2 12) time. 

Proof : The    roof of the fact that the distance reported by the algorithm Query 

is a t  most three times the optimal path length directly follows from Theorem 4.1. 

To carry out a binary search in step I requires O(1ogn) time. Step I1 can be 

computed in O(1) time. Therefore the worst case running time Q ( n )  of the algorithm 

Query follows from the following recurrence :- 

&(I" )  5 Q(712/8) + c * log n,, where c is a positive constant. 

Therefore Q ( n )  E log2 n. 

Thus we have esta.blished the following theorem. 

Theorem 4.3 Between two arbitrary corner points an approxinzate orthogonal short- 

est distance through a path avoiding R whose length is at most three times the optimal 

length can be obtained in o(log2 1 2 )  query time using 0 ( n  log3 n )  preprocessing and 

O(12 log2 n )  space. 
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T~ improve the query time we have to speed up the search for the staircase sepa- 

rator in ASPST such that v; and vj lie on the opposite sides. Our approach here is 

a bottom up  search instea.d of a top-down search as described in algorithm Query. 

To do this we consider all staircase separators collectively and pe rb rm planar point 

location preprocessing using the algorithm of [15]. With this preprocessing we can 

identify the two regions corresponding to the two leaf nodes of ASPST in which 

vi and v j  lies in O(1og n )  time. Subsequently we identify the lowest common ances- 

tor of those two leaf nodes in ASPST. Since the height of ASPST is O(logn)  this 

step will take O(log 1 1 )  time. Let tk and tl be the geodesic Voronoi neighbours of 

v; and vj on the staircaae separator stored in the lowest common ancestor. Then 

sd(v; ,  t k )  + sd ( t k ,  t l )  + sd(tl ,  t l j )  is reported as asd(v; ,  v j ) .  Thus we have established 

the following theorem. 

Theorem 4.4 Between two arbitrary comer points an approximate orthogonal short- 

est distance through a path avoiding I? whose length is at most three times the opti- 

m,al length can be obtained in O(1og n )  query time using O(n log3 n )  preprocessing and 

O ( n  log2 n )  space. 

4.2.2 Removal of the Corner Point Restriction 

In this sectioll we will relax the restriction of the two query points being two corner 

points in the set 7-1. Let those two query points be s and t respectively. 

Here we face a problem to answer the reachability query between two arbitrary 

corner poillts eficicntly with less preprocessing. By reachability we mean if there is 

a path between two corner points in the carrier graphs. This statement would be 

more clear once we will look into the details of the algorithm General-Query and its 

correctness proof in Lemma 4.6. We will use the carrier graphs G+,, G+y, G-y for 

this problem. The  goal here is to use these carrier graphs to answer the reachability 

query without computing the transitive closure on them. For this we will make use of 

some that hold on any planar .st-graph, G. Any planar st-graph is a planar 

directed acyclic graph with exactly one source s and one sink t and when embedded in 

the both s and t should lie on the boundary of the external face. The  following 
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Figure 4.6: Illustration of a st-gmph and its <r, and <R order 
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result will be particularly useful in our algorithm. 

Lemma 4.5 [29] ,  [46] Let G be a planar st-graph with n vertices. There exist two 

total orders on the vertices of G ,  denoted <L and < R ,  such that there is a directed 

path from u to v if and only if u <L v and u <R v. Furthermore, the orders <L and 

cR can be co,mputed in O ( n )  time. 

These two orderings are illustrated in figure 4.6. Both of them are topological 

ordering on the planar DAG G along with the ordering of vertices done from left 

to  right (or right to left) order of the planar embedding. In figure 4.6 we see that 

the labels a.ssociated with vertices vz and VG are (2 ,3 )  and ( 6 , 6 )  respectively. Thus 

according to  Lemma 4.5 there should be path from v:! to  v~ which is indeed the 

situation there. Also we see that the v3 and vs have labels (4,2),  ( 3 , 5 )  respectively. 

Thus according to  Lemma 4.5 they are not reachable from one another and this &so 

holds in our example. 

We can easily verify that all our G+x, G+, and G-,  are planar st-graphs. So we 

preprocess each of them according to Lemma 4.5 in O ( n )  time using the algorithm 

of [29] to  answer the reachability problem between two arbitrary query vertices i n  

O ( 1 )  time. Here we note that since we assume s x  < t ,  and s ,  < t,, we will use only 

G+, and G+,. 

Using the algorithm of [31] or [15] we preprocess the planar subdivisions formed 

by the horizontal and vertical trapezoidations of R for ray shooting queries along 

horizontal and vertical directions respectively. 

All these preprocessing can be done within the same space and time bound of the 

preprocessing step of Theorem 4.4. 

w e  use the following steps to determine the approximate shortest distance between 

s and t 

Algorithm General-Query : 

Comments : Please refer to figure 4.7 for the illustration. 
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horizontal ray towards left and let V I  and v2 be two vertices on the edge of the 

rectangle hit by the ray. If v j ,  j E { 1 , 2 }  is not reachable from u,,  i E { 1 , 2 }  in 

G+, then go to  step I1 else compute asd(s ,  t )  as 

In the above expression asd(u; ,  v j ) )  where i E { 1 , 2 }  and j E { 1 , 2 } ,  is computed 

using the algorithm described ir, the previous section. Stop. 

Step 11. Shoot a vertical ray up from s .  Let U S  and u4 be two vertices on the 

edge of the rectangle hit by the ray. Shoot another vertical ray downwards from 

t .  Let U S  and v4 denote the corresponding corner points. If v j ,  j E { 3 , 4 )  is not 

reachable from u, ,  i E { 3 , 4 )  in G+, then go to step I11 else compute asd ( s ,  t )  

as 

In the above expression asd(ui ,  v j ) ,  where i E { 3 , 4 )  and j E { 3 , 4 } ,  is computed 

using the algorithm described in the previous section. Stop. 

Step 111. Compute asd(s ,  t )  = It, - s,l + It, - s,l. 

Lemma 4.6 The algorithm General-Query correctly computes the approximate short- 

est distance between s and t ,  which is at most three times the optimal distance, and 

the time complexity of the algorithm is O(1ogn). 

Case I. The shortest path is monotone only in +z direction. 
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Figure 4.7: Illustrating the Ray-Shooting Procedure 
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Case 111. The shortest path is monotone in both +x and +y directions. 

In Case I from Lemma 3.4 [12] we know that the shortest path will start  from 

s and will either go through ul or u2 and will enter t through either vl or v2. Also 

in this situation v,, j E { 1 , 2 )  is always reachable from u,, i E { 1 , 2 )  in G+, from 

Lemma 3.5. Step I of the algorithm General-Query exhaustively computes all 

four types of p t h s .  Therefore the minimum of all four types of paths computed in 

Step I must be a t  most three times the shortest path between s and t in Case I. 

i\lso if Case 11 holds then u,, j E { I ,  2 )  will be unreachable from u, ,  i E { 1 , 2 )  in 

G+, and the algorithm will advance to Step 11. 

Similarly if Case I1 holds the shortest path will start from s and will pass through 

either of u3 or 114 and will enter t through either v3 or v4. Also in this case v,, j E { 3 , 4 )  

will be reachable from u,, i E { 3 , 4 )  in G+, . Therefore the minimum of all four shortest 

paths computed in Step I1 will be atmost three times the shortest path between s 

and t in this case. 

~f Case 111 holds the shortest path between s and t will be computed in Step I 

or Step 11 respectively in case v,, j E { I ,  2) is reachable from u, ,  i E { 1 , 2 )  in G+, or 

E {3 ,4 )  is reachable from u, ,  i E { 3 , 4 )  in G+, and the correctness in that  case l', 9 3 
follows from Lemma 3.6 and Lemma 3.2. Otherwise if the reachability condition 

is not satisfied in either of the two cases as illustrated in figure 4.7 between s and 

t', then we know Case I11 definitely holds and we get the exact shortest distance 

between s and t in Step 111. 

The  time required by the algorithm General-Query is O(log n )  for the point lo- 

cation query and O(1) for the reachability query between corner points, which follows 

from Lemma 4.5. Also O(1og 1 2 )  time for each approximate shortest distance compu- 

tation between corner points in Step I and Step I1 from Theorem 4.4. Therefore 

the overall time complexity of the algorithm General-Query is O(log n) .  
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maintained in the preprocessing phase in ASPST. Otherwise if both asd,(s,t)  = 

asd,(s, t )  = +m then we already know that the shortest path between between s and 

t is monotone in both + X  and +y directions. In that case the exact shortest path 

can be reported by growing two monotone staircases, one C3 type staircase from s 

and another Cs type staircase from t .  The existence of intersection between these two 

types of paths follows from [12] because the shortest path between s and t is monotone 

i n  both +z and +y directions. Also these two staircase paths are readily available in 

the sparse visibility graphs or carrier graphs computed in the preprocessing phase. 

~h~~ we have established the following theorem. 

Theorem 4.5 Between two arbitrary query points an approximate orthogonal shortest 

distan,ce through a path whose length is at most three times the optimal length can be 

obtained in O(log 11)  query time using O(n  log3 11) preprocessing and O ( n  log2 n )  space. 

The actual path can be reported in O(log n + k) time where k is the size of the output 

path. 

4.3 Vertical Line Segment Obstacles 

In this section we will show how to improve on the preprocessing time in the special 

case of n vertical line segment obstacles, f?. Now we will describe the modified pre- 

processing algorithm for 13. Again our goal here is to  precompute the approximate 

shortest-path search tree or ASPST. The algorithm is as follows. 

Algorithm Preprocess : 
Comments : To avoid repeated use of median finding algorithm we can sort all 

line segments in B by their X-coordinates. The  results of the computations of the 

first three steps are stored at the current node of ASPST. 



Step 11. Project each cornerpoint of the line segments in B horizontally on 

S ,  if the line joining the projected point and the corresponding corner point 

doesn't intersect any other obstacles in B. Let 7 = { t l ,  t 2 ,  . . . , t,) denote the 

set of all such projected points. This set can be computed by the trapezoidation 

algorithm using the plane sweep as described in [45]. 

Step 111. Compute the Voronoi partition of 7 in the set Ff. In other words we 

partition C into subsets Vi, V2, . . . , Vp such that U:='=, T/: = C and for each corner 

point tlj E K ,  t i  is geodesically nearer to it compared to any vj # v;. The details 

of this step will be described later. 

Step IV. Recursively build up ASPST on both B1 and El2. 

For the computation in step 111 in the above algorithm we will use the carrier 

graph instead of the sparse-visibility-graph. The details are as follows. 

Compute the carrier graph G-, for 7 U B1 and G+, for 7 u B,. 

Apply the algorithm of 1351 a,s described in Lemma 4.2 to both G-, and G+, 

with a.11 vertices in 7 as the set V'. 

The correctness of the above algorithm is ensured from the following lemma, 

Lemma 4.7  or each vertex ti E 7, the shortest paths to all the corner points of B, 

are maintained in G+,. 

Proof : The proof of this lemma is similar to the proof of Lemma 3.5. But the 

ollly difference is that G and C8 which are maintained in G+,, in this case will 

the role of C2 and C1 of the corresponding k m m a .  The  rest of the arguments are 

identical. 

Lemma 4.8 The step 111 of the algorith~n Preprocess can be computed in O(n  log n )  

tilne at the first level of recursion. 



Proof : The computation of the carrier graph can be carried in O(nlog n )  time 

as mentioned in Theorem 3.2. Subsequently for the shortest path computation in 

Lemma 4.2 on the carrier graph requires O(n)  time from Lemma 3.8. Thus the 

whole step can be carried out in O(n  log n )  time. 

Theorem 4.6 The overall t ime and the space complexities of the algorithm Prepro- 

cess are 0 ( n  log2 n )  and 0 ( 1 z  log n )  repectively. 

Proof : The sorting of the endpoints of B by x-coordinate takes O(n logn)  

tiIne. The  computation of 7 and step 111 can be carried out in O(n  log n )  t ime from 

Lelnllla 4.8. Thus the overall time complexity T ( n ) ,  for the algorithm Preprocess 

comes from the following recurrence. 

T ( n )  5 2 * T(12/2) + c * n log 72, where c is a positive constant. 

Therefore, T ( n )  E O(rz log2 12). At each level of recursion to store the approxi- 

mate shortest-path information the space required is O(n) .  Therefore the total space 

required is o(17, log 12). 

The  algorithm to  answer the query between two arbitrary corner points is as 

follows. 

Algorithm Query : 

Input : Two endpoints of B ,  namely vi, vj; Output : asd(ui, v,); 

Step I. Determine if the two points vi and v, lies on the same or on the opposite 

sides of the current median line S. 

Step 111. Go to the corresponding child node in ASPST, depending on which 

side of S v, and vj are and repeat from step I. 
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Lemma 4.9 Algorithm Query reports a distance which is at most three times the 

optimal path length between v; and v j  in O(log n )  time. 

Proof : The proof of the fact that the distance reported by the algorithm Query 

is a t  most three times the optimal path length follows from a similar argument of 

Theorern 4.1. 

Since each step in the algorithm Query requires 0 ( 1 )  time the total query time 

Q(12) ~ O ~ ~ O W S  from the following recurrence. 

Q ( ~ ~ )  5 Q ( n / 2 )  + C ,  where c is a positive constant. 

Therefore Q ( n )  E O(log 1 2 ) .  

Thus we ha,ve established the following theorem. 

Tlleorem 4.7 Between two arbitrary endpoiizts belonging to 'FI, an approximate or- 

thogonal shortest distance through a path, avoiding 8,  whose length is at most three 

limes the optimal length can be obtained in O(log n )  query time using O ( n  log2 n )  

preproces~ing and O(12 log n )  space. 

T~ illustrate the fact that the ratio of the approximation can be three we refer to 

figure 4.8. The three vertical line segments b ~ ,  bz and ba are denoted by ab, cd and f 

respectively. Here b2 is the median line segment. Let p and r be two corner points of b4 

and b5 respectively. The shortest distance between p and r is 16 + 1, + la+ l4 + l5 + l2 + 17. 

But j being nearer to p than z and being nearer r than h the reported path will be 

pkbjihdgelr and its length is ~ ~ + ( ~ 1 - ~ ) + ~ 3 + ( ~ 1 - ~ ) + ~ 1 + ~ ~ + ~ 2 + ( l 2 - ~ ) + l ~ + ( l ~ - ~ ) + l ~  

which is equal to  311 + 312 4- In + 14 -k 15 + 1s f 17 - 2.2: - 2y. Thus if and 12 are much 

larger compared to  b, 14,  1 5 ,  16, 17, x and Y then the ratio of the reported distance 

to  the optimal distance will approach to three. Thus this example shows that the 

constant of our approximation in this case is also tight. 

N~~ we will relax the endpoint restriction and present an algorithm to  answer the 

approximate shortest-distance query between two arbitrary points. The algorithm 

here is than the algorithm used ill the case of rectangles. Let s and t be two 

arbitrary points. Again without loss of generality we assome s, 5 t ,  and s, < t,. 
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Also we will assume a bounding rectangle R around the line segments of B. Here 

follows the details of the algorithm. 

Algorithm General-Query : 

Step I. Shoot a horizontal ray towards right from s  and another horizontal ray 

towards left from t .  Let bi and b,, respectively be the two line segments hit by 

the two rays from s  and t .  Here we note that b; or bj may belong to B or may 

be a side of the enclosing rectangle R. Let ul and uz be the two endpoints of bi 

and vl and vz be the two endpoints of b,. 

0 Step 11. If biz 5 bj, then compute asd ( s ,  t )  as 

In the above expression asd(u; ,  v j )  , where i E {1,2) and j E { 1 , 2 ) ,  is computed 

using the algorithm Query. Stop. 

Step 111. If biz > bjz then compute asd ( s ,  t )  = s d ( s ,  t )  = Is, - t,( + I s ,  - t ,  1 .  

The proof of the correctness of the algorithm follows from a similar argument pre- 

sented in Lemma 4.6, noting the fact that case I1 in the proof of the lemma will not 

arise here. Each ray shooting can be carried out in O(1og n)  time by preprocessing the 

planar subdivision formed by the horizontal trapezoidation using the algorithm of [31] 

or [Is] for the point location query. Also the approximate shortest-path between s  

and t can be reported in O(1og n + I ; )  time. This follows from the fact that if asd ( s ,  t )  

is determined from step 11. of General-Query then the path can be retrieved from 

the information mainta.ined in ASPST during the preprocessing phase. Otherwise 

if ascl(s, t )  is determined in step 111 of General-Query then the path can be com- 

puted using a similar procedure as described for the case of rectangles in the previous 

chapter. Thus we have established the following theorem. 
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Theorem 4.8 Between two arbitrary query points an approximate orthogonal shortest 

distance through a path, avoiding a, whose length is at most three times the optimal 

length can be obtained in O(log n) query time using O ( n  log2 n)  time and O(n log n )  

space. The actual path can be reported in O(1og n + k )  time where k  is the size of the 

reported path. 



Chapter 5 

Parallel Shortest Path Algorithms 

In this chapter we will present parallel algorithms for the shortest-path problem. For 

the shortest-path computation inside simple polygons on the CREW PRAM model 

of computation Goodrich et al., [22] introduced a data structure, called stratified de- 

composition tree, which can be constructed in O(1og n )  time using O(n) processors, 

that allows a single processor to  construct an implicit representation of the shortest 

L2 path between two points in O(1og n )  time. The result is based on the idea of con- 

~truct,ing a hierarchy of nested subpolygons over an underlying triangulation, whose 

dual is known to have a. tree form, such that any shortest path crosses a small number 

of subpolygons. 

In case the environment consists of axes parallel boxes as the barriers Atallah 

and Chen [2], [3] removed the known origin restriction and described a preprocessing 

method, which can be performed in 0(log2 n )  time using 0 ( n 2 /  log n)  processors in the 

CREW PRAM model, that allows one processor to report the length of the shortest 

path between arbitrary two barrier vertices in constant time or O(n/  log n )  processors 

to retrieve the shortest path in O(1og 7 1 )  time. 

In this chapter we present efficient parallel algorithms for the SPQ problem where 

the barriers in R are disjoint planar rectangles whose sides are parallel to the coordi- 

nate axes, and subsequent queries ask for the shortest L1 path between two arbitrary 

which avoids the barriers in R. We utilize the geometric property of mono- 

tonicity of the shortest path between every pa.ir of co-planar points, in this setting, 



CHAPTER 5. PARALLEL SHORTEST PATH ALGORITHMS 66 

to  collstruct in parallel three carrier graphs, as described in Chapter 3 which either 

contain the shortest path between every two corners of the rectangles in R or can be 

used to  guide the search for such path. This differs from the approach of Atallah et a1 

[2], [3] which is based on the use of staircase separators to  recursivdy partition the set 

of rectangles. As will be demonstrated in the rest of the chapter, the construction of 

these graphs and subsequent search of the shortest path in each of those graphs can 

be performed efficiently in CREW PRAM model of computation. We present parallel 

preprocessing algorithms which allow for reporting the shortest distance between two 

arbitrary query points in O(1og I L )  time with a single processor. The  path itself can 

also be constructed in time proportional to  its number of segments. Our method is 

again based on constructing three planar graphs, called carrier graphs, that contain 

the shortest path information in a succinct form. Each graph can then be searched 

using graph theoretic techniques. Using the same technique we also present a parallel 

algorithm for computing the orthogonal shortest distance between two points among 

rectangular obstacles which runs in poly-logarithmic time using sub-quadratic number 

of processors on the CREW PRAM model of computation. 

111 the following section we first present parallel algorithms for constructing these 

graphs to  answer queries for length of the shortest L1 path between any two corner 

points of rectangles in R. Then we describe a preprocessing in 0(log3 n )  time, using 

0 (n2 / Iog2  n )  processors in the CREW PRAM, that allows one processor to  answer 

each subsequent query in O(1ogn) time. The  retrieval of the shortest path can be 

performed in time proportional to the number of its segments. The  details of removing 

the restriction that query points are corner points of rectangles in R are exactly similar 

to that  described in Chapter 2. 

As a byproduct we show, in section 5.2, that  the described graphs can be used to  

solve the single-shot shortest distance problem in 0(log3 12) time using 0(n1.5/ log2 n )  

processors in the CREW PRAM model of computation. 

Lastly in section 5.3 we consider the the parallel preprocessing algorithm for the 

vertical line segment obstacles. Here the preprocessing algorithm unlike the case of 

rectangles can be parallelized with subquadratic processor-time product. The proces- 

sor and the time complexities of the parallel preprocessing algorithm are 0 ( 1 2 1 5 /  log2 ,1 )  
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and 0(log4 n )  respectively. This preprocessing enables us to  answer the approximate 

shortest-distance query between two arbitrary points in O(1og n )  t ime and the ap- 

proximate shortest-path query between those query points in O(1og n + k )  time. 

5.1 Parallel Preprocessing and Sequential Query 

algorithms 

Our a,pproa.ch of preprocessing the set of barriers R, for the CREW PRAM model of 

computation, such that subsequent shortest-distance queries can be handled efficient,ly 

by a, single processor follows the method of Theorem 3.2. That  is, we rely on the 

tra,~lsitive closure of the p1ana.r undirected graphs UG+,, UG+,, UG-, as our main 

preprocessing operation. But first some necessary parallel operations. 

Lemma 5.1 [2]  Given a set R of disjoint orthogonal rectangles and n point s .  Each 

of t/ie eight chains C,, where i = l..8, can be constructed in O(log n )  time using O(n)  

processors orz the CREW PRAM model of computation. 

Lemma 5.2 [5] Any synchronous parallel algorithm taking time T that consists of W 

operations can be simulated by P processors in time O ( ( W / P )  + 7'). 

We now list the preprocessing steps of UG'+,, the underlying planar undirected 

graph of G+,, which proceeds as follows : 

Step I. Construct the undirected graph UG+,. This task can be performed by 

two applications of the shadow computation from [4]. 

Step II. Triangulate the graph UG+, using O(n )  processors and O(1og n )  time. 

This will transform the graph to be biconnectecl along with the fact that each 

face of the graph will be bounded by a constant number of vertices [33]. w e  

assign high weights to  the additional edges of the tria.ngulation so that it never 

enters the shortest path. 
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We then compute a planar separator using the algorithm of Gazit and Miller [21]. 

This algorithm is a deterministic version of the previous randomized algorithm 

[20] which uses a deterministic algorithm for the computation of the maximal 

independent set [23]. The algorithm [21] runs with O(n  + fl+') processors and 

0(log3 n )  time where f is the number of faces in the planar graph and 6 is any 

positive constant. 

Step 111. Compute the transitive closure of the graph described in [41] using 

0 ( n 2 /  log2 n )  processors and 0(log3 12) time. 

Step IV. For each of the corner points of R we compute and store the eight 

chains C;, i = 1 , 2 , .  . . , S.  By Lemma 5.1, each of these chains can be con- 

structed with O ( n )  processors in O(1og n )  time. However, t,he result of Lemma 

5.2 allows for computing all the chains in 0( log3n)  time using 0 ( n 2 / l o g 2  12) 

processors. 

Therefore preprocessing can be performed in 0(log3 n )  time using 0 ( n 2 /  log2 n )  

processors. 

Given two corner points s ,  t E R, we compute the shortest distance as follows : 

(i)  Check whether t lies in the region Rz of s by performing binary search ober 

the chains Cz and C3 of S .  

( j i )  If t does not lie in the region R2 of v;, then we retrieve sd(o ,d)  from the 

precomputed transitive closure. Otherwise, sd(o, d )  = lo, - d.1 + loy - dyl. 

Therefore the shortest distance query between two corner vertices can be processed 

in O(log n )  t ime with a single processor. The  correctness of the algorithm follows from 

the fact, proved in Lemma 3.5, that the shortest paths to  all corner points in the 

region Rl  of s is maintained in G+,, and thus the underlying undirected graph UG+,. 

We have therefore established the following theorem : 

Theorem 5.1 An orthogonal shortest distance query between two arbitrary corner 

points amidst the set of rectangles R can be obtained in O(log n )  time using a single 

processor after performing a preprocessing with 0 ( n 2 /  log2 n )  processors in 0(log3 n )  

ti772C on the CREW PRAM model of ~ ~ m p u t a t i o n .  
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Note that  computing the transitive closure of the carrier graphs would have elim- 

inated the need for the preprocessing in step IV, and reduced the query time to  

O(1). However the best known pa,rallel algorithm for performing such an operation is 

0(log4 n )  time using 0 ( n 2 /  log2 n )  processors in the CRCW PRAM model [33]. 

5.1.1 Removal of Corner Point Restriction 

In this section we describe the additional preprocessing required to  remove the re- 

striction that  the origin and destination be corner points of the rectangular barriers. 

Again our approach is based on observing that each of the origin and destination 

points can be associated with a pair of vertices in each of the carrier graphs (as shown 

i n  figllre 3.7 & figure 3.9). The shortest paths between the identified vertices in each 

graph are sufficient to  support the shortest path computation from the origin to des- 

tination. There is a maximum of four. such paths in each graph. Therefore, at  most 

eight SPQ problems need to  be solved. 

Assume, without loss of generality, that t lies in the first quadrant with respect 

to  s .  We shoot a ray towards right from s and let U I U ~  be the edge of the rectangle 

wllich it hits first. In a similar way we shoot a ray towards left from t and vlvz be the 

edge of the rectangle which it hits first. In a similar way we obtain two more edges 

U3u4 and v3v4 by shooting two rays upwards and downwards from s and t respectively. 

All the above computation can be efficiently performed during query time once 

we preprocess the horizontal and the vertical trapezoidation by constructing the hier- 

archical representation, introduced by Dadoun and Kirkpatrick [31]. For each subse- 

quent query we ~ e r f o r m  point-location on the hierarchies to locate the rectangles i n  

the subdivision that c o n t a i ~ ~  the point s and t. 

The  shortest distance betwecn s and t can now be computed as follows . Step I. Compute the minimum among four following expressions : L,(s, u;) + 
sd(ui,  vj) + Ll(vj,  t ) ,  where i&j E {1,2) .  Here sd(a,  b) denotes the shortest 

distance between a and b in G+,. 

1f the minimum value is defined then the shortest distance between s and t is 

found. Otherwise, we proceed to  the next step. 
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Step 11. Compute the minimum among four following expressions : Ll(s,  u,) + 
sd(u i ,  vj) + LI(u3,t)  where i&j € {3 ,4 ) .  Here sd(a ,  b) denotes the shortest 

distance between a and b in G+,. 

If the minimum value is defined then the shortest distance between s and t is 

found. Otherwise, we proceed to the next step. 

Step 111. The shortest distance between s and t equals Is, - t,l + Is, - t,l 

The above mentioned hierarchy can be constructed [ll], with O(n) processors 

and O(1og n )  time to support an O(10gn) point location queries. Therefore, we can 

conclude that 

Theorem 5.2 The orthogonal shortest path between two arbitrary points can be de- 
3 termined b y  a single processor in O(log n + k) time with O(1og n )  time preproce~rin~ 

which uses 0 ( n 2 /  log2 n )  processors in the CREW PRAM model. where k is the num- 

ber of segments in the constructed shortest path. 

5.2 An Efficient Parallel Single-Source Shortest- 

Distance Algorithm 

In this section we describe a CREW PRAM algorithm for computing the shortest 

distance among a set of barriers R. The algorithm makes use of the knowledge of the 

origin and destination points, s and t respectively, to achieve a better performance. 

The first pa.rt of this section is devoted to defining a planar graph which contains 

an orthogonal path of shortest length hetween two points among rectangular obstacles 

a.nd to describing an algorithm for its construction. In the second part we describe the 

algorithms used for searching the constructed graph to compute the shortest distance 

and to report the actual shortest path. 
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5.2.1 Constructing the Graph 

Given a set R of disjoint orthogonal rectangles and two points s and t .  We assume, 

without loss of generality, tha.t t lies in the first quadrant with respect to  s l .  Therefore 

t lies either in R+, = Rg U RI U R2, where a monotone path in the +x direction is 

known to  exist, or in R+y = Rz U Rg U Rq, where a monotone path in the +y direction 

is known to  exist. Since both situations are handled similarly, only the former will be 

discussed. 

Let Q be the subset of R in the region R+,. Construct the horizontal shadow 

decomposition of R+, by connected each of the corner points in Q U C8 U C3 and s 

t o  their right shadows. Partition the region further by connecting each of the corner 

points on the left vertical side of a rectangle in Q and t to their upper and/or lower 

shadows in the previously constructed partition. (Refer to  figure 5.1 and figure 5.2). 

We now construct a graph G = ( V ,  E )  such that:  

V consists of the corner points in & U C8 U Cg, the points s and t ,  and the 

computed right, upper and lower shadows 

two elements a ,  b E V are connected by an edge in E if 

1. a is a shadow point a,nd b is the corresponding corner point in Q U Cg U C3, 

or s or t 

2. they form a segment in Cs U 6'3 or On the bounda.ry of a rectangle in & 

In addition, a weight is associated with each edge which equals the length of the 

corresponding segment. 

Lemma 5.3 The weighted graph G is a planar graph with O ( n )  vertices which con- 

tains the shortest orthogonal path from s to t that avoids the set R of rectangular 

obstacles. 

Proof: That  C is an planar graph with O ( n )  vertices follows trivially from the 

Only thing that remains to be shown is that the shortest path built up 

during the plane sweep algorithm of [12] from s to  t lies in our graph G .  

'That is, xt > 2 3 ,  Yt 2 Y s ,  and # s 
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Figure 5.1: Construction of the Graph G : Step I - Right Shadows in R+, 
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Figure 5.2: Construction of the Graph G' : Ste11 111 - Upper and Lower Shadows i n  

R+z 
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We give a proof by induction. We denote the rank of a vertex pair in the region 

R+, forming; a left vertical side of a rectangle as the position in the sorted list of 

vertex pairs in the region R+, where the sorting is done on 2-coordinates excluding 

the two chains C3 and C8. For all vertices on chains C3 and C8 we assume that  they 

have rank zero. Our assumption in the induction is for every vertex pair in I/i having 

rank less than or equal to  (m - 1) the shortest path from s to  that pair is maintained 

i n  G. We have to show that the assumption holds for the vertex pair with m th rank 

also. 

The  basis holds trivially for all vertices on chains C3 and C8. Let vi,vj E 'I/j be 

the vertex pair having m th rank. Without loss of generality we consider only v;, 

because the argument holds for U j  also. NOW there is always a shortest path from s 

which enters v; through either of the two vertices u ,  or ub as described in Lemma 

3.4. Since both ti, and ub have rank less than nz both the shortest paths i.e. from 

s to  u ,  and from s to ub are maintained in G from the inductive assumption. Also 

it is quite a.pparent from the construction of G that v; is joined to  both u, and ub 

by shortest paths whose lengths are LI distance between them. So the shortest path 

from s to  v; is also maintained in our graph. This completes the proof our theorem. 

Lemma 5.4 The weighted graph G can be constructed in  O(log n )  t ime using O(n)  

p c e s s o r s  in the CREW PRAM rn.odel of cornputation. 
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5.2.2 Searching the Graph 

The remaining part of the algorithm is the computation of the shortest path in parallel 

in the g a p h  G. This operation can be carried out by an application of the algorithm 

of Pan and Reif [41]. We give a brief outline for this operation. 

Step I. We triangulate the graph G using O(n)  processors and O(logn)  time. 

This will transform the graph to be biconnected along with the fact that each face 

of the graph will be bounded by a constant number of vertices [33]. We assign high 

weights to the additional edges of the triangulation so that it never enters the shortest 

path. 

Step 11. We precompute the planar separator as required in [41] using an 

rithm of [21]. This algorithm is a deterministic version of the previous randomized 

algorithm [20] which uses a deterministic algorithm for the computation of the max- 

imal illdependent set [%3]. The algorithm [21] runs with O ( n  + flit) processors snd 

0(log3 n )  time where f is the number of faces in the planar graph and 6 is any positive 

constant. 

Step 111. Lastly we compute the shortest path between s and t using [41] i n  

0(log3 n )  time with 0(n1.5/  logZ n )  processors. 

So the time and processor complexity of the overall algorithm is dominated by the 

shortest path computation in [41] using 0(n1 '5 /  logZ n )  processors and 0(log3 n )  time. 

Hence we have the following theorem :- 

Theorem 5.3  The rectilinear shortest distance between any two points in presence of 

rectangular obstacles can be computed in parallel with O(nl.'/ log2 n )  processors and 

0(iog3 n )  time in CREW PRAM model of computation. 

5.3 parallel Preprocessing Algorithm for Vertical 

Line Segments 

illis section we will concentrate on vertical line segment obstacles. Here we present 

a parallel preprocessing algorithm to answer using a single processor the approximate 
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shortest-distance query between two arbitrary points. The  work done in the pre- 

processing phase, i.e., the processor-time product of the preprocessing algorithm is 

much less than the processor- time product of the algorithm presented for rectangles 

to report the exact path. Here are the details of the algorithm. 

Algorithm Parallel-Preprocess : 

Comments : We presort the line segments by their x-coordinates using the 

algorithm of 161 with O(n )  processors in O(log n )  time. 

Step I. Determine the line segment 1, with the median x-coordinate. Subse- 

quently we compute 7 the set of all horizontal projections of the end points 

of on the vertical line passing through li. This can done using the parallel 

trapezoida,tion algorithm of [4] using O(7z) processors and O(1og n )  time. Let 

L I ,  L respectively denote the set of line segments to the left and to the right 

of I ; .  

Step 11. Compute the undirected carrier graphs UG-, and UG+, for 7 u L~ 

and 7 u La. This can be done by the algorithm of [4] for shadow computation. 

We need to  a,pply the algorithm twice for e x h  UG-, and UG+,. 

Step 111. Triangulate the graph UG+, using O(n)  processors and O(log n )  time. 

This will transform the graph to be biconnected along with the fact that each 

face of the graph will be bounded by a constmt number of vertices [33]. We 

high weights to the additional edges of the triangulation so that it never 

enters the shortest path. 
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Step IV. Compute the geodesic Voronoi neighbours of 'FI in 7. For this we 

use Lemma 4.2. The shortest-path computation in thta lemma can be car- 

ried out using the parallel single-source shortest-path algorithm of [41] with 

0(n1.5/ log2 n )  processors and 0(log3 n )  time. 

Step V. Recursively apply the above four steps for L1 and L2 in parallel. 

Thus the overa.11 time complexity T(n)  of the above preprocessing algorithm can 

be obtained from the following recurrence :- 

T ( n )  5 T(n/?)  + c r log3 72, where c is a positive constant. 

Therefore T ( n )  E 0(log4 72). The processor complexity of the algorithm remains 

o(~' . ' /  log2 n ) ,  since we will always have suflicient number of processors allocated at 

each subproblem. 

T~ report the approximate shortest-]lath between two arbitrary query points we 

use the same algorithm as described in section 4.4. But to support the ray shooting 

query we preprocess the planar subdivision formed by horizontal trapezoidation using 

the algorithm of [ll] with O(n) processors and O(log 72) time to support the point 

location query in O(1og n )  time. Thus we have established the following theorem. 

Theorem 5.4 Between two arbitrary qtlery points an approximate orthogonal shortest 

distance through a path at most three times the optimal length can be obtained in 

0(log n) query time using a preprocessing algorithm which requires 0(n1.5/ log2 n)  

pmcessors and 0(log4 n )  time. The actual path can be reported in O(1og n + I ; )  time 

where I; is the size of the output path. 



Chapter 6 

Conclusion and Open Problems 

We have considered the shortest-path problem where the barriers are disjoint planar 

whose sides are parallel to the coordinate axes, and subsequent queries ask 

for a shortest L1 path between two arbitrary points which avoids the barriers. Our 

solut,ions are based on the use of carrier graphs which are planar graphs that con- 

tain shortest path information between every two corners of the rectangular barriers. 

Three such graphs either contain the shortest pa'th between every two corners of the 

recta,ngular barriers or can be used to guide the search for such path. In addition, 

ea,cl1 carrier graph generates a decomposition of the plane which allows for shortest 

path queries between arbitrary two points to  be answered efficiently. 

More precisely, we used the planarity of the carrier graphs to achieve sequential 

preprocessing in sub-quadratic time and space, O(nl.'), which can support sublinear 

sllortest path queries, O ( f i )  time, when both origin and destination are both part 

of the query. In addition such preprocessing can be performed with 0(n2/ log2 n )  

processors in 0(10g3 n,) time in the CREW PRAM model. These parameters improve 

by O(log n )  factor the known processor complexity of the preprocessing, previously 

achieved in [2], [3]. But the total work, i.e., the processor-time product of the prepro- 

cessing phase of our algorithm equals the processor-time product of the algorithm of 

proximate shortest-path query between two arbitrary points. The  approach here is 
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ba,sed on the use of staircase separator and the geodesic Voronoi diagram computation. 

Our approximation algorithm in Chapter 4 for the case of rectangles uses O(n  log3 n )  
2 preprocessing, O(n  log 72) space to  answer the approximate shortest-distance query 

between two arbitrary points in O(log n )  time. For the case of vertical line segments 

our approach uses o(12 log2 12) preprocessing time, O(n  log n )  space and O(1og n )  query 

time. Moreover the preprocessing algorithm for the case of vertical line segments can 

be parallelized using 0(n' .5/  logZ n )  processors and 0(log4 n )  time. 

1t is possible to extend the work done in this thesis in different ways. Here are a 

few possible directions. 

All our parallel algorithms to answer the optimal shortest-path query use the 

shortest-path algorithms in planar graphs. So the complexities in terms 

of processor and/or time can be improved i f  it is possible to design more efficient 

a,lgorithms for the single-source and all-pairs shortest-path problems in 

planar graphs. 

One natural open problem concerns the design of an algorithm with lower pre- 

processing and storage to a,lmver the exact shortest-distance query between two 

arbitrary points. 
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. Other open problems concern the design of an efficient preprocessing algorithm 

to  answer the rectilinear or Euclidean shortest-path query, between two arbitrary 

query p i n t s ,  in the presence of ot,her types of polygonal obstacles. 
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