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Abstract 

The question of how quantum mechanics approaches classical behaviour in the clas- 

sical limit has long attracted interest, with a common view being that of quantum 

packets becoming more and more localized until, by Ehrenfest's theorem, their cen- 

troids follow a classical trajectory. The recent activity in the field of classical chaos 

has led to heightened interest in new aspects of correspondence. Questions now being 

addressed include the following: how can non-chaotic quantum mechanics approach 

chaos in the classical limit, and what features distinguish quantal evolution in clas- 

sically chaotic systems from that in classically non-chaotic systems? In this thesis 

I attempt to answer these questions for a particular physical system, a classically 

chaotic driven quartic oscillator (DQO), using the numerical propagation of both 

quantum and classical states. 

Since classical chaos is most usefully visualized in phase space, an attempt is made 

to represent the quantal evolution of the DQO in a way that generalizes classical phase 

space representations. The quantal evolution is compared with both classical single 

trajectories and classical distributions, as the DQO approaches the classical regime. 

It is argued that the quantal evolution for classically chaotic systems is fundamentally 

different from that for classically non-chaotic systems, in that a localized quantum 

state will rapidly delocalize on the time scale of the inverse Lyapunov exponent, thus 

invalidating the single-trajectory Ehrenfest view of correspondence. This does not 

indicate a failure of the correspondence principle, as classical statistical mechanics is 

shown to accurately describe the delocalized quantum state. 

An intuitive approach is introduced to examine how sensitivity to perturbations, 



a defining characteristic of classical chaos, is manifested in quanta1 dynamics. In 

addition, a number of possible extensions of the definition of Lyapunov exponents to 

quantum mechanics are explored. In all cases, agreement with classical mechanics is 

found for short DQO evolution times, and the manner in which the classical results 

are approached in the classical limit is indicated. 



To the memory of my father. 
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Chapter 1 

Introduction 

The solar system is often considered a paradigm of predictable, regular motion, hav- 

ing maintained its structure over billions of years. It was in the orbital motion of 

three interacting celestial bodies, however, that the mathematician-astronomer Henri 

Poincar6 and his contemporaries in the late nineteenth century first realized that a 

form of very irregular motion was possible. This type of behaviour has come to be 

known as chaos, and it is characterized by extreme sensitivity to initial conditions: 

the separation between two initially close trajectories in phase space increases ex- 

ponentially with time. Most startling was the revelation that chaos was possible in 

Hamiltonian systems of only one or two degrees of freedom. 

Mathematicians continued the development of chaos theory into the twentieth 

century. Between the 1950s and the 1970s Kolmogorov, Arnold, and Moser (KAM) 

showed that when a regular Hamiltonian system is perturbed, intricate regions of 

chaos typically form in the phase space, intermixed with regular "island chains". 

Their results indicated that chaos is expected to be a typical feature of physical 

systems. Since the work of KAM, dramatic increases in computational power have 

enabled the numerical study of numerous models, opening up the field to practical 

investigation. Chaos theory is now import ant to  the understanding of fluid dynamics, 

non-linear optics, plasma physics, celestial mechanics, and many more fields outside 

of physics. 



The importance of these developments to classical mechanics prompts us to ex- 

amine what, if any, are the implications of classical chaos for quantum mechanics (or 

vice versa). Quantum mechanics, being a more general theory, should include the 

predictions of classical mechanics (including classical chaos) as some kind of limit- 

ing case. However, it appears that quantum mechanics does not allow chaos as it 

is defined classically, as we will see. What then is the evolution like for a quantum 

mechanical system whose classical counterpart is chaotic? And how does this be- 

haviour approach classical chaos as the systems we consider become more and more 

macroscopic? These are the general questions which define the new field of quantum 

chaos. Practical systems to which these questions are being addressed include the 

hydrogen atom in strong uniform magnetic or microwave fields and the helium atom, 

each of which can exhibit chaos when treated classically. 

1.1 Approaches to Quantum Chaos 

Approaches to  the problems of quantum chaos fall into a few broad categories. One 

approach is t o  study energy eigenstates and eigenvalues for systems which are chaotic 

when treated classically. Recent studies have revealed different energy-level statis- 

tics for classically chaotic and non-chaotic systems [I], and, in eigenstates of some 

classically chaotic systems, distinctive "scars", or regions of high probability density 

localized along classical unstable periodic orbits [2]. Another approach is to study 

classically chaotic quantum systems using semiclassical approximation techniques. 

These methods have been used successfully since the early part of this century on in- 

tegrable systems, although not until the 1970s has progress been made on classically 

chaotic systems. Results have highlighted again the importance of classical unstable 

periodic orbits in determining the quantum mechanical behaviour [2, 3, 41. 

A third approach, which I take in this thesis, is to study the time evolution of 

quantum states in phase space by numerically solving the time-dependent Schrodinger 

equation. This approach was chosen over the others for a number of reasons. First, it 



allows a direct comparison between quantum and classical dynamics in the arena of 

phase space, where the essential aspects of classical chaos are most readily visualized 

(techniques for representing quantum states in phase space will be described in detail, 

together with the associated problems). In addition, the dynamical (time-domain) 

approach enables a comparison with corresponding classical quantities more readily 

than an energy-domain approach. Finally, this approach can probe exactly (subject 

to numerical errors, of course) the full quantum regime, whereas the semiclassical 

techniques involve approximations valid in the short-wavelength limit. 

Pioneering work in studying the quantal evolution of classically chaotic systems 

(although not concerned with phase space representations) was done by Casati et al. 

[5]. The model they studied was the kicked rotor: a point mass free to rotate about a 

pivot, frictionlessly and in a vertical plane, and subject to a periodic impulsive verti- 

cal force. They chose this system because both classically and quantum mechanically 

it could be reduced to simple analytic mappings giving the state just after one kick in 

terms of the state just after the previous kick. When treated classically this system 

had been known to  exhibit chaos and unbounded diffusion in momentum for certain 

parameter values. Casati et al. found that for parameters that gave momentum diffu- 

sion classically, the quantal evolution showed similar diffusion but only for a limited 

time. This suppression of diffusion was subsequently explained as analagous to  the 

Anderson localization mechanism for electrons in random lattices [6]. Korsch and 

Berry [7] studied a related system also reducible to a mapping, a kicked anharmonic 

oscillator, but extended the analysis to  phase space represent at ions. The quantal 

suppression of momentum diffusion is thought to explain some recent observations: a 

suppression of ionization in highly excited hydrogen atoms in strong microwave fields 

at certain frequencies [8]. 

Mappings, although computationally efficient, can only be derived for a restrictive 

class of systems. The increase in available computational power, however, has enabled 

the study of more general systems by direct numerical integration of Schrijdinger's or 

Hamilton's equations. Christoffel and Brumer [9] studied the classical and quantal 



evolution for a particle confined to a two-dimensional stadium-shaped box, a system 

known to be classically chaotic. Takahashi [lo] examined a classically chaotic double- 

well potential system. The results of both these studies pointed out the usefulness 

of comparing quantal evolution with classical distribution dynamics (rather than 

single-trajectory dynamics) when the system is classically chaotic, a point that will 

be elaborated upon in this thesis. 

The work in this thesis was intended as an extension of the work of Christoffel 

and Brumer and Takahashi. It involves the numerical propagation of quantum states 

for a classically chaotic system: the one-dimensional driven quartic oscillator, whose 

quasienergy states and behaviour of autocorrelation fuctions have been studied by 

Ben-Tal et al. [ll, 121. Various dynamical aspects of the quantal evolution will be 

compared with the results of numerical calculations for the same system treated clas- 

sically. Both single trajectories and distributions will be considered classically. In 

addition, an attempt will be made to characterize quantitatively the quantal time evo- 

lution for the classically chaotic system in a way that generalizes the usual methods 

of characterizing classical chaos. Emphasis will be placed throughout on illuminat- 

ing the way that quantal dynamics approaches classical chaos as a system becomes 

macroscopic. 

1.2 Phase Space and the Classical Regime 

The study of quantum chaos emphasizes the importance of various conceptual issues 

in quantum mechanics. Indeed, as described above, central to classical chaos is the 

idea of exponentially separating trajectories in phase space. But quantum mechanics 

does not even allow the description of precise phase space trajectories. One might 

argue that the uncertainty inherent in quantum mechanics suggests instead that, in 

order to attempt a phase space representation of quantum mechanics, we consider ex- 

tended phase space densities, like the classical Liouville density. However, no "true" 

joint probability density for position and conjugate momentum has been constructed 



in quantum mechanics, although several phase space densities can be formed which 

have many of the required properties, as will be described. The important point is 

that we expect to be able to construct a quantum mechanical quantity which, al- 

though it does not have the usual classical interpretation, nevertheless does reduce to 

a usual classical quantity in the classical limit. Studying the behaviour of this quan- 

tum mechanical quantity should help us to understand how ordinary chaos emerges 

in the classical limit. 

A related issue is raised by the question: To what does our constructed quantum 

mechanical quantity correspond classically, a phase space trajectory or density? The 

issue is tied to that of the interpretation of the quantum mechanical state vector itself: 

Does a state vector correspond to an individual classical system or to  an ensemble of 

systems? I will assume neither interpretation and keep to the standard formalism of 

quantum mechanics, although the results obtained in this work will help clarify this 

issue. In addition I will not address the issue of measurement in quantum mechanics. 

Although it might appear that the probabilistic or "random" nature of a quantum 

mechanical measurement is relevant to the topic of quantum chaos, it is sufficient 

for the problems considered here, as we will see, to consider only the deterministic 

quanta1 evolution governed by Schrodinger's equation (and which everyone agrees 

upon). 

It is important when discussing the classical limit of quantum mechanics to define 

precisely what is meant by this limit. In the literature the expression fi += 0 is usually 

used to indicate the classical limit. Of course Ti is a physical constant, and what is 

actually meant is that the dimensionless ratio fils += 0, where S is a typical action for 

the system. This is the definition I will use throughout this thesis. The macroscopic 

world is characterized by very small, but non-zero values of fils, and the condition 

fils e 0 will define the classical regime. In addition, by the correspondence principle 

I will mean that as fils decreases, the predictions of quantum mechanics should agree 

better and better with those of classical mechanics, and in the classical regime the 

two theories should agree (to within experimental errors) where classical mechanics 



is known to be valid. 

1.3 Quanta1 Evolution in Classically Chaotic Sys- 

tems 

Another issue concerns the nature of the time evolution of a quantum mechanical 

state under a Hamiltonian which generates chaos when treated classically. As men- 

tioned above it is believed that the quanta1 evolution is not chaotic. It is sometimes 

argued [13] that this is a result of the linearity of the Schrodinger equation, since a 

condition for classical chaos is non-linear Hamilton's equations. To help clarify this 

point, consider a single chaotic classical system evolving under a Hamiltonian H (q, p) 

and tracing out a trajectory (q(t),p(t)) in phase space. Suppose that at  initial time 

to a perturbed trajectory is formed by adding a small perturbation (bq(to), bp(to)) t o  

the original trajectory. Then, as the perturbed trajectory evolves, the perturbation 

(Sq(t), bp(t)) will grow rapidly because of the sensitive dependence on initial condi- 

tions. Now consider a quantum mechanical system evolving under the corresponding 

quantized Hamiltonian with state vector IQ(t)). Again consider adding a perturba- 

tion IS!V(to)) of small norm at  time to. However now, because the Schrodinger equa- 

tion is linear, the perturbation ISQ(t)) will itself evolve according to the Schrodinger 

equation, so we can write 

where U(t, to) is the unitary time evolution operator. Thus 

so that the norm of the perturbation does not grow, regardless of the nature of the 

Hamiltonian. Alternatively, we have 



meaning that the overlap between the unperturbed and perturbed states remains 

constant. 

Although this appears to rule out the sensitive dependence which characterizes 

classical chaos, a parallel situation does in fact exist in classical mechanics. We can 

describe a classical system by a Liouville density in phase space, pL(q,p, t) ,  which 

evolves according to  Liouville's equation, 

which is linear in p~ (in the case of a single system rather than an ensemble, the den- 

sity reduces to a delta function which traces out the trajectory specified by Hamilton's 

equations). Again we can imagine our particular state, represented by the density 

p ~ ( q ,  p, t), perturbed at to to the state pL(q,p, to) + SpL(q, p, t o )  The fact that Li- 

ouville's equation represents conservative probability density flow means that the 

overlap between the unperturbed and perturbed states, J pL(pL + 6pL) dq dp, remains 

constant in time (a statement analagous to the quanta1 equation (1.3)), ruling out 

sensitive dependence for the quantity p ~ .  This is not inconsistent with the rapid 

growth of trajectory perturbations described above. In the Liouville picture, two ini- 

tially close trajectories are represented by two delta functions, which will always have 

zero overlap. The point here is just that we must keep in mind what our equations 

are linear or non-linear in, especially when considering issues of quantum-classical 

correspondence. 

Despite this lack of sensitivity to perturbations in p ~ ,  we still have sensitivity 

in classical Hamiltonian mechanics, and apparently no way of expressing quantum 

mechanics that exhibits such sensitivity. A reconciliation of these facts will be the 

subject of section 4.1. 

A better argument for the lack of chaos in quantum mechanics concerns the 

discrete nature of the energy spectrum for a bounded quantum system (classical 

chaos is ordinarily concerned with bounded systems to exclude systems which trivially 

exhibit sensitive dependence, such as an unstable quadratic potential). Consider a 



state IQ(t)) evolving under a tirne-independent Hamiltonian H. We can write the 

time evolution operator as 

and we also have a discrete set of energy eigenfunctions 14,) with eigenvalues En, 

and which satisfy the completeness relation 

where I is the identity operator. Thus we can write for the overlap between the state 

at time to and time t 

(y(to) 1 (t)) = (Q (to) 1 e-i(t-to)H/h IWJ) 

This last quantity is exactly periodic as a function of t when the eigenfrequencies 

En/ti are commensurate, as is the case for a harmonic oscillator or a particle in a 

box. In general, though, (1.9) will be quasiperiodic so we expect that the overlap 

will exhibit partial recurrences on the time scale 

where A E  is a typical energy level spacing in the state I*). As will be shown in section 

3.4.1, these "quantum recurrences" can actually have a classical origin. Nevertheless, 

this crude argument can be improved: it can be shown [14] that even under an 

arbitrary time-periodic Hamiltonian, a bounded quantum state will always recur (to 

any arbitrary accuracy) periodically. This is in stark contrast to  the aperiodic nature 

of classical chaos. Speaking loosely, it is almost as if we added some milk to a cup of 

tea, began stirring, and as we continued to stir noticed that the milk separated from 

the tea from time to time. 

A number of more specific issues regarding the quanta1 time evolution of classically 

chaotic systems have been raised in the literature recently. Each of these issues will 



be described briefly below and discussed later in light of the results presented in this 

thesis. 

Fox and Lan [15, 161 have shown that there is a close link between the classi- 

cal behaviour of initially close trajectories in phase space and the quantal evolution 

of the position and momentum widths of initially well localized wave packets. In 

particular, for a classically chaotic system, the position and momentum widths of 

a localized packet will grow exponentially with time. They claim that this contra- 

dicts the correspondence principle, in that this exponential spread for a macroscopic 

state will rapidly invalidate the single-trajectory classical picture. This issue will be 

examined in the third chapter of this thesis. 

Shepelyansky [17] and Casati et  al. [18] have performed numerical experiments to  

study the "practical irreversibility" in the kicked rotor and in a model of hydrogen 

in a microwave field. All systems governed by Schrijdinger's or Hamilton's equations 

are of course exactly reversible in the sense that reversing the momenta of a classical 

system or taking the complex conjugate of a quantum state will cause the system, 

ideally, to precisely retrace its history. By "practical irreversibility" in a system 

these researchers refer to the inaccurate retracing of a history that occurs when such 

a motion reversal experiment is conducted numerically by computer. They have 

found that for their classically chaotic systems, the quantal evolution was far more 

practically reversible (i.e. much more accurately retraced its history) than the same 

system treated classically. Based on these results, Ford and Ilg [19] have suggested 

that it might be possible for certain experiments to test the validity of quantum 

mechanics in the classical regime. Calculations of this sort will be discussed in the 

fourth chapter. 

Ford et  al. [19, 201 also suggest that the field of "algorithmic complexity the- 

ory" has relevance to the issue of quantum-classical correspondence in classically 

chaotic systems. They show [19] that for the class of bounded undriven classically 

chaotic systems, the quantities calculated by the two theories differ in their numerical 

structure, quantal and classical quantities being "algorithmically compressible" and 



"incompressible", respectively. This means, essentially, that if we wish to calculate a 

final state (at time t = t f )  of a classically chaotic system to some particular accuracy, 

then the initial state (at t  = to) must be specified to a number of significant digits 

that grows linearly with t f  - to for the classical system but only logarithmically for 

the corresponding quantum system. Thus, loosly speaking, it appears to be much 

"easier" to perform a quantum calculation than the corresponding classical calcu- 

lation, a result Ford et al. claim holds even in the classical limit, and which, they 

state, contradicts the correspondence principle. This final issue will be resolved in 

the concluding chapter. 

Chapter 2 of this thesis will contain a description of the numerical techniques 

used for both the quantum and classical calculations. In addition, for the quantum 

calculations, the numerical calculations will be compared with the analytical solution 

for a driven harmonic oscillator to examine their accuracy, and several numerical 

integrators will be compared for their efficiency. 

Chapter 3 will contain a study of the time evolution of the driven quartic oscillator 

in phase space. First, the classical single-trajectory dynamics will be described, 

including the Poincare section and Lyapunov exponents. Next quantal phase space 

representations will be introduced, and their problems discussed. Then a detailed 

comparison of the quantal and classical phase space dynamics will be presented, 

for both classically chaotic and non-chaotic parameter values, and involving both 

classical distributions and single trajectories. 

The fourth chapter will begin with a description of a new approach to "practical 

irreversibility" which is more physically meaningful than the approaches of previous 

studies. Then four techniques for quantitatively characterizing the quant a1 time evo- 

lution for classically chaotic systems will be presented and compared. Each technique 

attempts to generalize the classical Lyapunov exponent. 

The final chapter will present the conclusions of this work. 



Chapter 2 

Calculation Met hods 

In the Introduction I explained that an important part of this thesis is the comparison 

of quantum and corresponding classical dynamics for a classically chaotic system. 

Both the quantum and classical systems studied here require a non-analytic approach 

to solution, and this chapter will contain a description of the numerical methods used. 

The quantum calculations were considerably more time consuming than the classical 

ones, so a detailed study of the accuracy and efficiency of the quantum techniques 

will be presented as well. 

2.1 Classical Calculations 

There were two basic types of classical calculations. These were the numerical calcula- 

tion of the phase space trajectory for a single particle, and the numerical propagation 

of a Liouville phase space distribution. The single trajectory calculations were very 

straightforward. 

specified at some 

were obtained by 

The particle's position ( q )  and momentum ( p )  coordinates were 

initial time, and then the approximate coordinates at a later time 

numerical integration of Hamilton's equations, 



where H(q, p, t )  is the classical Hamiltonian. A variable-order variable-time-step 

Adams method ordinary differential equation (ODE) integrator, routine D02CAF 

from the Numerical Algorithms Group (NAG) library of Fortran routines [21], was 

chosen to  integrate (2.1) and (2.2). Reference [22] contains a detailed account of 

Adams methods. 

For the distribution calculations, one possible approach would be to specify some 

initial Liouville density, p~ (q, p) , and then integrate forward in time the partial dif- 

ferential Liouville's equation, (1.4), by performing a phase space discretization of the 

density (a technique similar to that used for the quantum calculations, as described 

in the next section). However, this technique would be far more time consuming than 

even the quantum calculations for two reasons. First, Liouville's equation contains 

one more independent variable than Schrodinger's equation. In addition, for system 

parameters that produce chaos, we will see that the size of the finest structures in 

the Liouville density decreases very rapidly with time, which means that we would 

require an extremely fine phase space discretization of the Liouville equation for even 

moderate propagation times. 

Instead, in this work the initial Liouville density was approximated by choosing 

the initial q and p values for a large ensemble of particles randomly according to the 

required initial distribution, and then integrating each individual trajectory forward 

in time by the technique described above. At any particular time, the values of p~ on 

a phase space grid were then calculated by simply counting the number of trajectories 

lying within each cell of the grid, followed by appropriate normalization. The number 

of particles used in the ensembles depended on the purpose of the calculation, and 

will be stated in later sections. 

The random initial q and p coordinates were chosen in two ways. Most of the 

calculations involved initial Liouville densities which were Gaussian in both position 

and momentum. In this case, the coordinates were produced by a NAG normal 

distribution random number generator, routine G05DDF. The algorithm used in this 

routine is described in reference [23]. Some calculations involved non-Gaussian initial 



distributions. For these, software was obtained which used the following technique. 

To generate position coordinates, e.g., with a particular probability distribution P(q),  

the cumulative probability distribution 

was first calculated. As q increases from - m  to m ,  Pc,,(q) increases monotonically 

from 0 to 1. A real number R such that 1 > R 2 0 was produced by a random 

number generator with a uniform distribution, and the corresponding q value was 

obtained through inversion of Pcu,(q) = R. This process was repeated many times 

to build up the required initial ensembles in position and momentum. 

2.2 Quantum Calculations 

2.2.1 The Technique 

The goal of the quantum calculations was to find an approximate solution to  the 

coordinate representation time-dependent Schrodinger equation, 

a - i 
-Q(x, t) = -HQ(x, t ) ,  at h 

given an initial state function Q(x, 0). Here H is the Hamiltonian operator. The 

Hamiltonians studied in this work can be written 

where V(x, t)  is a time-dependent potential which keeps the particle of mass m 

bounded. The technique used was to approximate the spatial derivative in (2.4) 

by finite differences, yielding a large set of coupled ODES in time which was inte- 

grated using available ODE integration packages. Techniques for representing the 

calculated state function in phase space will be described in the next chapter. 

The finite difference approximat ion involves replacing the continuous spatially 

dependent Q(x, t )  by a state function Qj(t) defined only on a lattice of N discrete, 



uniformly spaced grid points labeled by the index j (similarly, V(x, t)  is replaced by 

V,(t)). In this approximation a spatial derivative can be written 

where Ax is the grid spacing, and indices j and j + 1 correspond to positions x and 

x + Ax, respectively. The second derivative becomes 

Thus the Schrodinger equation can be approximated by the set of N coupled ODES 

dQj (t) - - i h 
dt 2m (AX) ['@,+I (t) - 2Qj (t) + '@ j - l  (t)] 

Periodic boundary conditions were imposed, so that Qj+N = Qj. Many numerical 

ODE integrators are available to integrate (2.8). A comparison of the efficiency and 

accuracy of several routines will be presented in section 2.2.3. 

A number of requirements must be satisfied when applying this finite difference 

technique to a problem [24]. First, the grid spacing Ax must be small enough not 

to introduce significant error into the integration. This requirement can be phrased 

in terms of the shortest wavelength, Amin, that contributes significantly to the state 

Q(x, t). We clearly require that Ax < Xmi,/2. This can be restated using the largest 

momentum contributing to the state, p,, = 2rh/Xmin, as 

7rh 
Ax<-.  

Pmax 

We will see that a good estimate of p,, can be obtained from the classical dynamics. 

Another requirement is that the wave function at the boundaries (Ql(t) and 

QN(t)) have negligible values for the entire duration of the integration. This is 

relatively easy to accomplish, we will find, for the bounded systems considered here. 

In addition, when this requirement is satisfied, the form of the boundary conditions 

chosen becomes unimportant. 



A final requirement concerns the time integration carried out by the ODE inte- 

grator. This integration will involve some form of temporal finite difference scheme, 

and hence a time step. This time discretization can introduce relative phase shifts 

between components of the state function. The ODE integrators used employ vari- 

able time steps which cannot be directly adjusted, although it will still be possible 

to determine that the time discretization does not introduce significant error. 

2.2.2 The Driven Harmonic Oscillator 

After the software to  perform the finite difference integration of Schrodinger's equa- 

tion was ready, it was tested on the driven harmonic oscillator (DHO). The DHO is 

similar to the anharmonic driven quartic oscillator, which will be studied in detail 

in the following chapters, in that it represents a one-dimensional particle bound in a 

smooth potential and driven sinusoidally. However, the DHO does not exhibit chaos 

when treated classically, and quantum mechanically analytical solutions can be found 

for certain initial conditions. The comparison between these exact solutions and the 

numerical calculations will be the subject of this section. 

The Hamiltonian for the DHO in coordinate representation is 

where k is the spring constant and w' and a the driving frequency and amplitude, 

respectively. It is shown in Appendix A that if the initial state is a Gaussian centred 

with position standard deviation a, equal to the field-free harmonic oscillator ground 

state value [h/(4krn)1/2]1/2 and initial phase C, then the state will evolve without 

spreading as a Gaussian whose mean position q(t) and mean momentum p(t) follow 

precisely the coordinates of a classical particle with initial coordinates (q(0) , p(0)) = 

(qo, 0) evolving under the classical Hamiltonian corresponding to (2.10). This evo- 

lution is accompanied by a non-trivial time-dependent phase factor. Explicitly, it is 



shown in Appendix A that the initial state (2.11) evolves according to 

@ (x, t)  = [ (2~) ' /~o , ]  ' I 2  ei~(t),-~~(t)q(t)/(2~~(t)x/fie-(x-~(t))2/(4~Z) (2.12) 

where 

and where w = (k/m)'/' is the natural frequency of the harmonic oscillator and 

The numerical propagation of DHO states required choosing specific numerical 

values for the various parameters described above. These were chosen so that the 

dynamical time scales, regions of position and momentum space accessed, and size 

of quantum effects (determined by the relative size of ti and typical system actions) 

were similar to the corresponding properties for the driven quartic oscillator studied 

in later chapters. The values chosen were ti = 0.02, m = 1, ox = (0.03)'/', w = 113, 

W l  = 1, a = -8127, qo = -1, and 40 = 0. With these parameter values the 

centroid (mean position and mean momentum) of the Gaussian wave packet followed 

a classical trajectory which was confined to the interval -1 5 x 5 1. The boundaries 

for the integration were chosen to be at x = f 2.5, which meant that the value of the 

normalized wave function at  the boundaries was always less than 1.1 x The 

maximum momentum value that occurred "significantly" in the evolving state, i. e. 

with a momentum probability distribution value greater than 10-20, was p,, E 1.0, 

which, by equation (2.9), meant that at least N E 80 spatial grid points were needed 

to resolve the state. The time integration of (2.8) was performed by the NAG Runge- 

Kutta-Merson routine D02BAF, which will be described in the next section. 



Figure 2.1 shows a comparison between the exact DHO state Qexact given by 

equation (2.12) and the state Qcal, calculated using the numerical technique described 

above and with the given parameter values. Both states were calculated for the time 

t = 5.25T, where T = 2rlw' is the period of the driving force. At this time the 

Gaussian state is centred at x = 0 and figure 2.1 shows only the region -0.5 5 x < 0.5 

where the probability density has non-negligible values. The upper graph in figure 

2.1 displays the relative density error 1 QCalc 1 2 /  1 QeXact l 2  for various values of N and 

the lower graph gives the phase angle difference between QCalc and QeXact versus N. 

Both figures indicate a clear convergence of the numerically calculated state to  the 

exact state as N increases. 

To illustrate how the numerical errors grow with propagation time, figure 2.2 

shows 1Qca1c12/lQexact l 2  and the phase error for fixed N = 2000 and for the times 

t = 5.25T, 11.25T, 17.25T7 and 23.25T. These figures indicate a roughly linear 

growth of density and phase errors over the time interval studied. 

The accuracy of the time integration carried out by the NAG routine is determined 

by a "tolerance7' input parameter. The routine attempts to keep the absolute error 

in the calculated state proportional to the set tolerance value. The calculations 

presented in figures 2.1 and 2.2 used a tolerance value of although no significant 

difference in the density or phase errors or in the machine integration time was 

found for tolerances of and lo-'. This indicates that the time integration 

routine was producing a sufficiently accurate solution to the spatially discretized 

problem, equation (2.8), and therefore that the number of grid points N was primarily 

responsible for determining the accuracy of the calculations. 

2.2.3 A Comparison of ODE Integrators 

Four numerical ODE integration routines were obtained and compared for efficiency 

in performing the time integration of the spatially discretized Schrodinger equation 

(2.8). The routines were of the Runge-Kutta and Adams types. The Runge-Kutta 

routines propagate an initial state Qj(0) forward one time step At at a time using 



Figure 2.1: Relative density error 1QCalc 1 2 /  lQeXact l 2  (top) and phase error (bottom) for 
numerically calculated DHO state at t = 5.25T. In order of decreasing dash size, the 
curves are for N = 500, 1000, 2000, and 4000 grid points. NAG routine D02BAF was used 
to integrate the spatially discretized Schrodinger equation. 



Figure 2.2: Relative density error 1 \kCalc 1 2/  I \kaXt l 2  (top) and phase error (bottom) for 
numerically calculated DHO state using N = 2000 spatial grid points. In order of decreasing 
dash size, the curves are for t = 5.25T, 11.25T, 17.25T, and 23.25T (T is the period of 
the driving force). NAG routine D02BAF was used to integrate the spatially discretized 
Schrodinger equation. 



some finite order approximation to the Taylor expansion 

l j  (At) = l j  (0) + At 
(At)' d21j  (t) 1 

dt2 
+ .... 

dt 
(2.17) 

t=O 

The routines evaluate the first derivative dl j ( t ) /dt  directly using equation (2.8); 

higher-order derivatives are matched (to the required order) to Taylor expansions of 

the first derivative. 

The Adams methods are based upon the exact expression 

At d l j ( t )  
lj ( a t )  = l j ( 0 )  + J - dt. 

0 dt 

These methods approximate dl j ( t ) /dt  in the integrand by a polynomial fit using the 

calculated values of this derivative at several previous time steps. In both Adams 

and Runge-Kutta methods, the time step At is adjusted automatically at each step 

according to a preset tolerance value or values. 

The first ODE integrator tried was the Runge-Kutta-Merson NAG routine 

D02BAF. Use of this routine requires setting a single absolute tolerance parame- 

ter, and the routine adjusts At at each step to try keep the absolute error in the 

calculated state proportional to the tolerance. 

The NAG routine D02CAF, which uses a variable-order Adams method, was also 

considered. This routine also uses a single absolute tolerance parameter. A detailed 

description of the numerical methods used in both NAG routines is contained in 

reference [22]. 

The next ODE integrator investigated was the fifth and sixth order Runge-Kutta- 

Verner routine DVERK, from the International Mathematical and Statistical Library 

of routines [25]. This integrator also uses an absolute tolerance. 

The final integrator tried was a variable-order Adams routine by L. F. Shampine 

and M. K. Gordon [26] (henceforth referred to as the Shampine routine). This routine 

requires setting both an absolute and a relative tolerance. 

These four routines were compared for their efficiency in integrating equation 

(2.8) for the DHO Hamiltonian (2.10), using the same system parameters and initial 



state given in section 2.2.2. The initial state was propagated to t = 6T (six periods 

of the driving force), for N = 500 and 1000 spatial grid points, and for various 

tolerance values. The machine integration times are summarized in Table 2.1. For 

each routine, varying the tolerance(s) by a factor of 100 resulted in negligible changes 

in relative density and phase errors and machine integration times. In addition, there 

were negligible differences in errors among the various routines for fixed N.  Thus, 

as explained at the end of the previous section, each routine produced a sufficiently 

accurate solution to the spatially discretized problem, and it is reasonable to compare 

the machine integration times for the various routines (for fixed N). The NAG 

routine DOZBAF, being several times faster than its closest competitor, was chosen 

as integrator for the remainder of this work. Note that the integration times for all 

four routines rapidly increase with N at similar rates, so routines slow at small N 

will not outperform D02BAF at large N. 

Table 2.1: Machine integration times for four ODE integrators. The initial DHO state was 
propagated to t = 6T, using N = 500 and 1000 spatial grid points. The tolerance settings 
used (absolute or relative) are also indicated. 

I DOZBAF I 1.0 x lo-' (abs.) / 94s I 13x11 

Routine 

I DOZCAF I 1.0 x lo-' (abs.) I 580s 1 86m 

1 DVERK 1 1.0 x lo-' (abs.) 1 435s 1 71m 

Tolerance(s) Machine integration time for 

N = 5 0 0  N=1000 

Shampine 1.0 x (abs.) 

1.0 x (rel.) 

1460s 194m 



Chapter 3 

The Driven Quartic Oscillator in 

Phase Space 

Most of the results presented in this thesis stem from a study of a particular phys- 

ical system, the one-dimensional driven quartic oscillator (DQO). This system can 

exhibit chaos when treated classically, and this chapter begins with a description of 

the classical single-trajectory phase space dynamics, including PoincarB sections and 

Lyapunov exponents. 

In the Introduction I mentioned the importance of representing quantum me- 

chanics in phase space in a way that generalizes classical phase space dynamics. The 

remainder of this chapter will attempt to shed light on how this should be done, and in 

particular whether our quantal phase space representation should reduce to  classical 

distributions or individual trajectories in the classical limit. Section 3.2 introduces 

quantum phase space distributions, which attempt to generalize classical distribu- 

tions, and presents a comparison of the numerically calculated quantal and classical 

distribution evolution for the DQO. Ehrenfest 's theorem, which relates quantal ex- 

pectation values to a classical trajectory, is the subject of section 3.3. The validity of 

this theorem will be investigated using numerical calculations on the DQO. Section 

3.4 will present arguments which attempt to tie together the results of the numerical 

calculations and which apply to a much broader class of systems than the DQO. 



Classical Single-trajectory Dynamics 

3.1.1 The System 

The DQO studied here has the classical Hamiltonian 

where q, p, and m are the particle's position, momentum, and mass, respectively, a 

and w are the driving amplitude and frequency, and b is a constant. This Hamil- 

tonian could model a number of physical systems. A simple mechanical example is 

a horizontal degree of freedom of a particle in a uniform gravitational field sliding 

frictionlessly on a ramp with an appropriate height profile. The driving could be 

provided by sinusoidally translating the entire ramp horizontally, or, for a charged 

particle, by applying an oscillating, spatially uniform, horizontal electric field. The 

DQO defined by equation (3.1) is related to the classically well-studied Duffing os- 

cillator [27], which consists of a driven, damped particle in a double-well potential, 

and is known to be chaotic for certain parameter ranges. 

The DQO (3.1) was chosen to study here for a number of reasons. First was 

its simplicity, which, for the quantum calculations, enabled a numerical exploration 

deeper into the classical regime and to longer propagation times than would have 

been possible with a higher-dimensional system or more complicated potential. Also, 

this DQO had been known to exhibit classical chaos for certain parameter values, 

with sharply defined boundaries between chaotic and regular regions in phase space 

[Ill. Finally, although Ben-Tal et al. have investigated the quasienergy states [ll] and 

behaviour of autocorrelation functions [12] for this system, the phase space quanta1 

dynamics of this DQO do not appear to have been studied. 

On first glance the Hamiltonian (3.1) may appear to have a formidable four- 

dimensional parameter space to  explore. A simple change of units, however, can 

remove three parameters. To see this, consider the rescaled variables 



which correspond to a change in the units of time, length, and mass, respectively. 

With this rescaling the Hamiltonian becomes 

H (q', p' , t') = pI2 + qr4 - a' cos (t') q', (3.3) 

where a' = ab-'I4. Thus varying all but one parameter is equivalent to changing 

units, and will not produce distinct DQO systems. In all numerical calculations to  

follow only the Hamiltonian in the form (3.1) was used, with the parameter values 

m = 1, b = 114, a = 112, and w = 1. This choice of parameters produced interesting 

phase space structure, as illustrated in the next section. Note that when considering 

the quanta1 analogue of (3.1) one additional independent parameter, a scaled ti, will 

arise. 

from a general mathematical perspective, a necessary condition for chaos in a set 

of first-order autonomous ODEs is that the set consist of at least three coupled ODEs, 

some of which contain nonlinearities [I]. To see that our DQO satisfies this condition, 

note that Hamilton's equations (2.1) and (2.2) become for the DQO Hamiltonian (3.1) 

The explicit time dependence on the rhs of (3.5) can be removed with the definition 

of a new variable J = wt, so that (3.5) becomes 

Equations (3.4), (3.6)' and (3.7) form the required set of ODEs. Qualitative and 

quantitative indications that chaos does in fact occur in the classical DQO will be 

the topic of the next two sections. 

A useful approximation to the full nonlinear DQO dynamics can be obtained 

by considering the time evolution of a small perturbation from a trajectory. To 

accomplish this, first consider a general one-dimensional system governed by the 



classical Hamiltonian H = p2/(2rn) + V(q, t) .  Note that Hamilton's equations of 

motion can be summarized in matrix form as 

where x is the column vector of coordinates . The evolution of a small per- 

turbation Sx(t) from a particular trajectory, which will be referred to as the fiducial 

trajectory, xf(t), is determined by the Taylor expansion 

where the notation dF/dx refers to the Jacobian matrix 

If the term LSx is much larger than the remaining terms in the expansion (3.9) 

(which will be the case when the perturbation's position component, Sq, is much 

smaller than the characteristic length scale of potential variations in the system or 

when dV/aq is a linear or constant function of q), then we can approximate the 

perturbation dynamics by the linear expression 

For the DQO we readily find 

and the linearization is valid for 6q << 1 

3.1.2 The Poincarh Section 

If we were to plot even a single numerically calculated chaotic trajectory for the 

DQO on the (q,p) plane the result would look something like a plate of spaghetti. 



Instead, a common technique to obtain information about the various regions (chaotic 

or not) of the classical phase space is to plot the Poincark surface of section. This 

technique can be understood in two equivalent ways for a one-dimensional time- 

periodic Hamiltonian such as (3.1). We can imagine numerically propagating a single 

trajectory and plotting its position on the (q, p) plane only once per period of the 

driving force T ,  e.g. at the times t = 0, T, 2T, . . . (this view leads to the name 

"stroboscopic plot"). Alternatively, note that because the Hamiltonian is periodic 

in time, we can "wrap around" the J coordinate of equation (3.7) and replace J by 

the angle-like J' = J mod 27r. We again propagate a trajectory but now plot its 

intersections with the "surface of section" J' = 0. Sampling the trajectory once per 

period of the driving force ensures that the phase space location of one plotted point 

depends only on the location (and not on the time) of the previous plotted point, i. e. 

it ensures that we can write 

x n + ~  = M(xn), (3.13) 

where xn is the phase space coordinate vector of the trajectory at  the nth flash of the 

"strobe" (or at the nth intersection with the surface of section) and M depends only 

on the Hamiltonian. Equation (3.13) defines a mathematical mapping from the phase 

space to itself, known as the Poincark map. The map shares a number of important 

properties with the corresponding continuous time system. The map is s ymplectic, 

which means that the area (known as the symplectic area) enclosed by a contour in 

phase space remains constant when each point on the contour is evolved according 

to  the map. In addition, a chaotic continuous system yields a chaotic Poincark map: 

two initially close phase space points will separate exponentially with n under the 

action of the map M. 

Figure 3.1 displays a Poincark section for the DQO Hamiltonian (3.1), using the 

parameter values listed in the previous section, and with thirteen trajectories plotted 

at several times t = T, 2T, 3T, . . .. The trajectories began at the initial coordinates 

q(0) = -2, -1.8, -1.6, -1.4, -1.2, -1, -0.8, -0.6, -0.4, 0, 1.1, 1.2, and 1.3 and 

p(0) = 0. Twelve of the trajectories lie on separate closed curves which resemble 



Figure 3.1: Poincard section for thirteen trajectories of the DQO, using the parameter 
values given in section 3.1.1. Twelve trajectories lie on the closed regular curves, the other 
fills the chaotic zone uniformly. The regular and chaotic trajectories are plotted for 1000 
and 10000 periods of the driving force, respectively. 

the tori of integrable one-dimensional classical systems. The other trajectory, which 

began at  (q(O), p(0)) = (0, 0), fills a large region quite uniformly, a qualitative indica- 

tion of chaos for trajectories within that part of phase space. Henceforth the speckled 

region in figure 3.1 will be referred to  as the chaotic region or zone, and all other parts 

of phase space as non-chaotic or regular. The "regular island" is that regular region 

embedded within the chaotic zone. The Poincar6 section indicates what appear to be 

quite sharply defined boundaries between chaotic and regular regions for this DQO. 

The well defined zones of the DQO will be an advantage when propagating classical 

ensembles and quantum wavepackets in that it will be possible to state that virtually 

all of the ensemble or packet is in either a chaotic or regular region. 

Note the existence of a stable fixed point of the Poincark map centred in the 

regular island at (q,p) = (1.4,O). This indicates a stable period T orbit for the 

continuous system. In addition, periodic orbits of various periods are expected to 

densely dot the chaotic zone. They are not visible in the Poincark section because 



they are all unstable and occupy a total phase space volume of zero. 

3.1.3 Lyapunov Exponents 

An important means for quantifying the sensitive dependence on initial conditions 

which characterizes chaos is the calculation of Lyapunov exponents. An intuitive 

way of defining the exponents is to consider one particular fiducial phase space tra- 

jectory, xf(t), and a perturbed trajectory, xp(t). If the separation between the two 

trajectories, d (t), grows exponentially with time, i. e. 

in the limit of infinitesimal initial separation d(0) and infinite final time, then the 

system has Lyapunov exponent A. The exponent can be written explicitly as 

X = lim lim - In - 
~ + O O  d(0)+O t [ddjii] . 

The requirement of infinitesimal d(0) is necessary to keep the perturbation within 

the linear regime and avoid the saturation in the growth of d(t) at the system size. In 

a bounded system, trajectories with a positive Lyapunov exponent are, by definition, 

called chaotic. Note that the phase space separation (in one dimension, d(t) = 

2 112 
[(qp (t) - ~ f ( t ) ) ~  + (pp (t) - pf (t)) ] ) is not physically meaningful since the position 

and momentum coordinates have different units. However, a particular choice of units 

will allow the calculation of numerical values for d(t), and the Lyapunov exponent 

calculated from (3.15) will behave like an ordinary physical quantity with units of 

inverse time [28]. 

In general for an N-dimensional phase space there will be N distinct Lyapunov 

exponents for each set of initial coordinates, each exponent corresponding to some 

particular direction for the initial perturbation vector xp(0) - xf(0). However, if the 

initial perturbation is chosen randomly, it is almost certain to contain a component 

along the direction corresponding to  the largest Lyapunov exponent. This component 

will eventually grow to dominate all others, so that the expression (3.15) will give 



the largest exponent. The one-dimensional DQO will have a pair of exponents f X 

because of the area-preserving nature of Hamiltonian systems, so it will be sufficient 

to refer to the Lyapunov exponent given by (3.15) (a third trivial exponent of value 

zero will arise if we consider the extended autonomous phase space ( q , p ,  J ) ) .  Note 

that the Lyapunov exponents are not to be confused with the eigenvalues of the 

linear perturbation evolution matrix C given in equation (3.12). The eigenvalues of 

C are f [-12bq2 (t)/m] which are pure imaginary regardless of the phase space 

region in which the trajectory lies, whereas the Lyapunov exponent can be positive, 

as we will see below. The eigenvalues determine the instantaneous evolution of a 

perturbation, while the Lyapunov exponents determine the long time evolution. A 

positive Lyapunov exponent does not require a positive real part to the eigenvalues 

~ 9 1 .  

In practice, attempting to calculate the Lyapunov exponent for chaotic trajec- 

tories directly from equation (3.15) would result in very poor convergence, because 

starting with even the smallest initial separation d(0) the machine precision allows, 

the perturbation will rapidly saturate at  the system size. A standard technique to 

avoid this problem in calculating the largest exponent is the renormalization method. 

Two initial points separated by a small perturbation are chosen and the trajectories 

propagated for some time T, such that at the final time the linearization of the per- 

turbation dynamics is still valid. Then the perturbation vector is renormalized to its 

initial length (without altering its direction), propagated again for time T, and the 

process repeated many times. The Lyapunov exponent is then given approximately 

where dj is the length of the perturbation vector just before the jth renormalization 

and 1 is the (very large) number of renormalization steps. The idea of this technique 

is to take advantage of the linear perturbation dynamics and effectively start with a 

perturbation with the extremely small length d (0) (d (0) Idj). 

Figure 3.2 displays Lyapunov exponents for the DQO calculated using the renor- 



Figure 3.2: Lyapunov exponents for the DQO plotted versus renormalization step number 
1 and using step size T = 10T. The upper and lower curves are for trajectories within the 
chaotic and regular regions, respectively. 

malization technique and plotted versus 1, with d(0) = 1.4 x low7 and T = 10T. The 

trajectories used for the upper curve began within the chaotic zone at (q(O), p(0)) = 

(-0.7, -1) and the Lyapunov exponent appears to converge to a value X 21 0.042. 

The lower curve is for trajectories beginning at  (q(O),p(O)) = ( 1 , l . l )  within the 

regular island and indicates a value near zero for the exponent. The upper curve 

was typical for trajectories within the chaotic region, whereas in the regular island 

the exponents were found to take positive values (always much less than the chaotic 

zone value of 0.042) which increased as the zone boundary was approached. This is 

probably indicative of a small fraction of chaotic "froth" embedded in the regular 

island, and which becomes denser closer to  the zone boundary. Nevertheless, it is still 

possible to make a sharp practical distinction between the behaviour in the chaotic 

and regular zones. 



3.2 Evolution of Phase Space Distributions 

3.2.1 The Distribution Functions 

Wigner distribution 

The phase space approach of the previous section emphasizes the usefulness of rep- 

resenting a quantum state function of a classically chaotic system in phase space. 

The most common technique for doing this is the calculation of the Wigner distri- 

bution function. To better understand the limitations of the Wigner method it will 

be helpful to present an attempt at a "derivation" of a quantum mechanical joint 

probability distribution function for position and conjugate momentum. 

First, to illustrate the idea, consider a calculation of the momentum probability 

distribution p(p) for a pure state I*) [30]. For simplicity I treat a one-dimensional 

system with classical position and momentum q and p represented by the operators 

Q and P. Generalization to  higher dimensions is straightforward. Consider the 

calculation of the expectation value in the state I*) of the operator e - i P ~ / A .  The 

distribution p(p) must satisfy 

Thus we can solve for p(p) by taking the inverse Fourier transform, giving 

as expected. 

Now, by a completely analogous calculation, let us attempt to find an expression 

for a joint probability distribution function p(q, p) for the state I*). Considering the 



expectation value of e-ipq'/h+ip'Q/" the distribution p(q, p) should satisfy 

Taking the inverse Fourier transform and proceeding as above, 

- - e'W'/"q - q1/21e) (elq + q1/2) dq'. 4 27r6 
(3.28) 

Here the operator identity (A.4) from Appendix A and the relation 

have been used. Expression (3.28) is the Wigner distribution my(q,p) which was 

introduced by E. Wigner in 1932 [31]. Notice that the expression can be inverted: 

knowing my(q,p) one can determine the state function to within an overall phase 

factor. The above calculation can be readily extended to systems described by a 

density matrix b with the result 

The difficulty in calling the Wigner distribution a true joint probability distribu- 

tion is apparent from the first step, equation (3.23). There I chose the correspondence 

rule 

-ipq'/h+~'q/h - e -i~q'/h+ip'Q/h e 

between the classical and operator quantities, which is known as Weyl's rule. How- 

ever, a very large number of other possible rules exist, for example 



each of which are "correct" in the sense that the operator expression unambiguously 

gives the classical expression with the replacements Q + q and P + p, but each of 

which result in different final expressions for p(q,p). Clearly the difficulty is due to 

the non-commutativity of Q and P, and did not arise in the above calculation of p(p). 

This problem of non-uniqueness, plus the fact that the Wigner distribution generally 

has negative-valued regions, prevents us from calling pw(q,p) the joint probability 

density for q and p. Nevertheless, recalling the comments in the Introduction, we of 

course cannot expect pw (q, p) to  behave classically. The behaviour of pw (q, p) in the 

classical regime will be examined in section 3.4. 

The Wigner distribution does still share a number of useful properties with the 

classical joint probability density, the Liouville density pL(q, p). To illustrate these 

we need the definition of the Wigner equivalent of an operator A(Q, P) , 

This definition can be shown to be equivalent to Weyl's correspondence rule con- 

necting the classical function Aw(q, p) with the quanta1 A(Q, P) [32]. The following 

properties follow readily from the above definitions [33]. First, pw(q,p) integrates 

out to the correct position or momentum distributions, 

In addition, the expectation of any operator 

integral 

(qIPl4,  (3.34) 

(PIPIP). (3.35) 

A(Q, P) is given by the phase space 

Finally, note that if the density matrix can be written as 

for some vectors and real weights wi, then the Wigner density can be written 



where 
1 

P;(~,P) = ;)?itL Jeipq1/fi(q - q1/21+i)(b1q + 4/12) dqf. (3.39) 

One further property will be useful in later sections. We can readily replace an 

overlap between two arbitrary states vectors I Q) and I q') with the overlap between 

the corresponding Wigner densities, m (q, p) and ,oh (q, p). That is, 

A few simple examples of Wigner distributions will close this introduction to the 

Wigner method. First, note that for a position eigenstate, 19) = Iq'), the expression 

(3.28) readily gives 

and similarly for a momentum eigenstate, I*) = Ip'), we have 

These are also the distributions we would expect for a classical system with precisely 

defined position (momentum) but completely indeterminate momentum (position). 

For a plane wave superposition, I*) = 2-'I2 (Ip') + I - p')), we find 

This distribution consists of an oscillitory density midway between the two "classical- 

like" delta function terms at p = p' and p = -pl. When m ( q ,  p) is integrated over 

momentum, the oscillatory part produces the required standing-wave interference 

pattern in the position probability distribution. 



Now consider a coherent state, I*) = Iq', p'), which is a Gaussian state with mean 

position q' and mean momentum p', ie. in coordinate representation 

where Aq is the position standard deviation. For this state expression (3.28) gives 

where Ap = hl(2Aq) is the momentum standard deviation. That is, as we might 

have expected, the Wigner distribution p ( q ~ , p ~ )  (q, p) for a coherent state I q', p') is just 

a product of Gaussians in position and momentum. As a final example consider a su- 

perposition of two spatially separated coherent states, IQ)  = 2-'I2 (la, 0) + il - a,  0)). 

A straightforward calculation [33] gives 

Again we find two "classical-like7' parts of the distribution, Gaussian in position and 

momentum, and centred at the points (q, p) = ( f a ,  0), with a region oscillatory in p 

midway between them. 

Husimi distribution 

Another popular phase space representation of quantum mechanics was introduced by 

Husimi in 1940 [34]. The Husimi distribution p ~ ( q ,  p) can be defined as the Wigner 

distribution smoothed by the minimum uncertainty Gaussian function p(,l,,t) (q, p) 

defined in equation (3.46). That is, 

where the relation (3.41) has been used. Expression (3.49) gives us a simple alterna- 

tive definition for the Husimi distribution and tells us that it is always non-negative. 



The Husimi distribution shares the problem of non-uniqueness with the Wigner 

distribution. In the expression (3.45) for the coherent state Iq, p), the position width 

Aq is free to take any positive value. In the limit Aq + 0, we have Iq, p) --+ Iq) and 

thus p ~ ( q , p )  + 1 (q1Q) 1 2 ,  and conversely as Aq + oo we have pa(q, p) + 1 (plQ)I2. 

Intermediate values of Aq thus represent a sort of "compromise" between the coor- 

dinate and momentum represent at ions. Note also that equations analogous to (3.34) 

and (3.35) are not satisfied by pH(q,p). Instead, the Husimi density integrates out 

to the Gaussian smoothed position and momentum distributions. The Husimi den- 

sity does share property (3.38) with m ( q , p ) ,  namely that the Husimi density of a 

mixture is the weighted sum of the Husimi densities of the elements of the mixture. 

The behaviour of pH(q,p) in the classical regime will be discussed in section 3.4. 

Considering the form of expression (3.49) for the Husimi density one might be 

tempted to interpret pH(q, p) as a probability density for finding the particle in the 

coherent state Iq, p), or for finding the particle within a "Gaussian-profiled region" 

about the phase space point (q,p). However, the coherent states are overcomplete, 

meaning that we cannot uniquely expand an arbitrary state in the Iq, p), and pre- 

venting us from taking this interpretation. Nevertheless, the simplicity of expression 

(3.49) for pH(q,p) does allow for some fairly intuitive interpretations of this den- 

sity. Royer [35], in the process of describing a technique for measuring m ( q ,  p), has 

presented an operational procedure for directly measuring pa (q, p) for a quantum 

state which naturally generalizes a classical procedure to measure the Liouville den- 

sity. In addition, note that we can write equation (3.49) explicitly in the coordinate 

represent at ion as 

Thus if we define a "reduced" wave function by 

we see that ps(q, p) is just the momentum probability density 

(3.51) 

of the reduced wave 



function, i. e. 

PH (q, P) = l ( P I % )  1 2 -  

In an experimental setup, the reduction of I@) (not to be confused with a "collapse 

of the wave function") might be accomplished by some sort of filtering procedure, 

and once this has been done the problem of interpreting pH(q, p) becomes equivalent 

to that of interpreting the conventional momentum probability density. 

For examples of the Husimi distribution, imagine Gaussian smoothed versions of 

the Wigner densities presented above. The smoothing is guaranteed to be sufficient 

to completely remove the negative portions in the oscillatory regions. 

Classical distributions 

In order to illustrate their usefulness, the quanta1 phase space distributions intro- 

duced above will be directly compared with classical distributions in the next section, 

for evolving DQO states. The various mathematical properties (3.34, 3.35, 3.36, 3.38) 

that the Wigner density shares with the classical Liouville density pL(q,p) suggest a 

comparison between these two distributions. 

On the other hand the Husimi distribution, being a Gaussian smoothed version of 

m ( q ,  p), suggests a comparison with a similarly Gaussian smoothed Liouville density, 

It is worth emphasizing that these are only "suggested comparisons", not claims 

that a quantum state "is", in some sense, a classical distribution. The results of this 

chapter should help clarify this point. 

3.2.2 Results for the DQO 

In this section the results of a number of calculations of the various phase space 

distributions defined in the previous section will be presented for the DQO. 



General remarks on the quantum calculations 

The coordinate representation state function was propagated from the initial state 

using the technique described in section 2.2. The Hamiltonian used was the quantized 

version of the classical DQO Hamiltonian (3.1)) namely 

At several propagation times the Wigner and Husimi distributions were calculated 

from the state function using equations (3.28) and (3.49), respectively. 

The initial quantum state for most calculations was chosen to be a coherent state, 

explicitly given by expression (3.45) in coordinate represent at ion or (3.46) in Wigner 

represent at ion. This initial st ate, being of minimum uncertainty, allowed the wave 

packet to  be maximally localized in either the chaotic or regular regions of the classical 

phase space of figure 3.1. The system parameters m, b, a, and w were always given 

the values presented for the classical calculations in section 3.1.1. The quantization 

of the DQO Hamiltonian introduced a new parameter, the size of ti relative to typical 

actions. To vary the "classicality" of the system various numerical values of ti were 

used (recalling that ti is a physical constant, this amounted to changing units of 

position and momentum). A formula due to Weyl [3] (to be discussed in section 

3.4.1) tells us that semiclassically we can "fit" one energy eigenstate into each phase 

space volume of 27rti, for a one-dimensional system. Thus the ratio of the volume 

of the accessible region (which is on the order of typical actions) to 27rh gives an 

intuitive characterization of the degree of classicality. 

A certain set of initial state and integration parameters was used frequently; these 

values will be referred to as the standard parameter values and are as follows. The 

initial state (at t = 0) was a Gaussian state with centroid ((q) , (p)) = (0.2,O) (for the 

chaotic standard values) or ( ( q ) ,  (p)) = (1,l) (for the non-chaotic standard values) 

and deviations Aq = Ap = 0.1. Thus, referring to the Poincark section (figure 3.1), 

the initial state was almost completely confined to the chaotic zone or regular island. 

The value ti = 0.02 was used, and with the chaotic zone and regular island together 



occupying a phase space volume of Vc = 10.1, we obtain the ratio Vc/(27rh) = 80.4, a 

quantitative indication of the degree of localization of the initial state. The standard 

calculations used N = 4000 spatial grid points. 

The standard parameter calculations had the most stringent accuracy require- 

ments, so this subsection will close with a discussion of the accuracy of these calcula- 

tions. For the calculation of the state function the spatial boundaries were placed at  

q = f 2.5, and the values of the norm of the wave function at  the boundaries did not 

exceed 1.0 x lop7 during the propagation. The classical phase space plots to follow 

indicate a value for the largest momentum contributing to the state of p,, 11 2, so 

that according to relation (2.9) at least N 21. 160 spatial grid points were needed 

for the calculation of the wave function. This criterion is of course crude, and the 

calculated results were found to vary significantly with N until N 21. 2000, prompting 

the choice of N = 4000 for the standard parameters. For the time integration an 

absolute tolerance value of was used. The behaviour of the calculated values 

upon varying the tolerance was similar to that of the DHO test calculations of sec- 

tion 2.2.2, so that the time integration was considered sufficiently accurate, and the 

number of spatial grid points primarily controlled the accuracy. The normalization 

of the state was monitored; (*I*) remained within 1 part in 10' of unity during the 

calculations. 

General remarks on the classical calculations 

For the classical calculations, the classical Liouville density pL(q, p) was propagated 

from the initial state using the technique of section 2.1. The smoothed Liouville den- 

sity PSL (q, p) was calculated from pL (q, p) at several propagation times using equation 

(3.53). The initial classical q and p distributions were chosen equal to the initial quan- 

tal q and p distributions, and no correlations between q and p were assumed. For an 

initial coherent state I q', p') this meant choosing 



Standard parameter values for the classical calculations will also be referred to; these 

constitute precisely the same initial state values as for the quantal standard values. 

Wigner and Liouville distributions 

Figure 3.3 presents grey scale plots of the Liouville density pL (q, p) and the Wigner 

density my (q, p) at the times t = T, 2T, 4T, 6T, 8T, 12T, 20T, and 40T, where T 

is the period of the driving force. The chaotic standard parameter values were used. 

For the classical plots, black corresponds to p~ = 0 and white to some maximum 

value of p ~ .  Because the Wigner density can become negative, a neutral grey was 

chosen for pw = 0, with black and white indicating extreme negative and positive 

values, respectively. The classical calculations used 200000 particles to simulate the 

Liouville density, sufficient to define even extremely fine structure. 

The classical evolution in figure 3.3 clearly displays the stretching and folding of 

pL(q,p) which is characteristic of chaotic dynamics. By t = 20T the distribution 

begins to visibly approach a steady state, filling quite uniformly the chaotic zone 

(compare with figure 3.1). The quantal evolution appears to closely resemble the 

classical, but supplemented by patterns of oscillating fringes, which tend to dominate 

at longer times. 

Husimi and smoothed Liouville distributions 

Figure 3.4 presents a comparison of Husimi and smoothed Liouville distributions for 

the DQO at the times t = T,  2T, 4T, 6T, 8T, 12T, 20T, and 40T. The calculations 

used the chaotic standard parameters. Here both the quantum and classical plots 

use the same grey scale, with black indicating a zero density value and white some 

maximum value. The Gaussian smoothing function used to generate these plots had 

standard deviations Aq = Ap = 0.1. Noting that both positions and momenta 

are confined to roughly the same range of numerical values, the smoothing function 

chosen would appear to produce a good "compromise" between displaying position 

and momentum information. It was sufficient to use only 50000 particles for the 



Figure 3.3: Liouville density (left column) and Wigner density (right column) for the DQO 
with the chaotic standard parameters (Gaussian initial states at ( ( q ) ,  (p)) = (0.2,O)). On 
this page the states at t = T (top) and t = 2T (bottom) are displayed. For the classical 
plots, black and white correspond to zero and a maximum density value, whereas for the 
quantum plots black, neutral grey, and white correspond to extreme negative, zero, and 
extreme positive values, respectively. 



Figure 3.3: (continued) p~ (left) and p~ (right) at  t = 4T, 6T, and 8T, top to bottom. 
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Figure 3.3: (continued) p~ (left) and pw (right) at  t = 12T, 20T, and 40T, top to bottom. 
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Figure 3.4: Smoothed Liouville density (left column) and Husimi density (right column) 
for the DQO with the chaotic standard parameters. On this page the states at t = T (top) 
and t = 2T (bottom) are displayed. Both classical and quantum plots share the same grey 
scale, black and white corresponding to zero and a maximum density value, respectively. 



Figure 3.4: (continued) p s ~  (left) and p~ (right) at  t = 4T, 6T, and 8T, top to bottom. 



Figure 3.4: (continued) p s ~  (left) and p~ (right) at  t = 12T, 20T,  and 40T,  top to bottom. 
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classical calculations here. 

The smoothed Liouville plots appear to be just that: smoothed versions of the 

classical plots in figure 3.3. However, the Husimi plots are remarkably different from 

the Wigner plots. The oscillating fringes have almost completely disappeared, leaving 

a density that very closely resembles the smoothed Liouville density. 

Figure 3.5 presents Husimi and smoothed Liouville distributions for the non- 

chaotic standard parameters at the times t = T, 2T, 6T, 18T, and 40T. Both 

quantum and classical plots use the same grey scale, and the smoothing function had 

Aq = Ap = 0.1. The classical calculations used 50000 particles. It appears that 

the state remains confined to the regular island and spreads only very slowly. The 

quanta1 and classical densities appear very similar until at least t = 40T, with an 

almost complete lack of interference in pH (q, p) . 

One might suspect that the close agreement between ps~(q ,p)  and p ~ ( q , p )  in 

figures 3.4 and 3.5 is due to the special nature of the initial Gaussian states. To test 

this, the above calculations were repeated for an initial quantum state which was a 

box in momentum space, 

and therefore in coordinate representation 

' I 2  sin [p,(x - xo)/h] 
x - 20 

The initial classical distribution was chosen to be the uncorrelated product 

The values xo = 0.2 and p, = 0.5 were used. The quantum calculations used 

N = 2000 grid points and the classical calculations 50000 particles. Figure 3.6 

presents the smoothed Liouville and Husimi distributions at the times t = T and 

t = 4T, using the box momentum initial state. Comparing with figure 3.4 for the 

Gaussian initial states, we see new structure in these plots, although the new structure 



Figure 3.5: Smoothed Liouville density (left column) and Husimi density (right column) 
for the DQO with the non-chaotic standard parameters. On this page the states at t = T 
(top) and t = 2T (bottom) are displayed. Both classical and quantum plots share the 
same grey scale, black and white corresponding to zero and a maximum density value, 
respectively. 



Figure 3.5: (continued) p s ~  (left) and p~ (right) at t = 6T, 18T, and 40T, top to bottom. 
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Figure 3.6: Smoothed Liouville density (left column) and Husimi density (right column) 
for the DQO with the box momentum initial state. The states at t = T (top) and t = 4T 
(bottom) are displayed. Both classical and quantum plots share the same grey scale, black 
and white corresponding to zero and a maximum density value, respectively. 



is apparent in both psL(q, p) and pH(q, p), and the degree of agreement between 

psL(q, p) and pH(q, p) is comparable for the two initial states. 

To close this study of phase space distributions, a number of quantum calculations 

were made with various values of ti, to investigate the effect of varying the degree 

of classicality of the system. Figure 3.7 presents Husimi distributions at  t = 8T for 

calculations using ti = 0.16, 0.08, 0.04, and 0.02. All calculations used Gaussian 

initial states, with initial centroid ((q), (p)) = (0.2,O) in the chaotic zone. In order 

of decreasing Ti, the initial states and the smoothing functions both used Aq = Ap = 

0.2.2'12, 0.2, 0.1.21/2, and 0.1. The plots indicate a convergence towards the classical 

result of figure 3.3 as ti is decreased. 

3.3 Expect at ion Values and Ehrenfest 's Theorem 

Ehrenfest's theorem provides a route by which a quantum state can be represented 

in phase space (by taking the expectations ((q) , (p) )) , and this approach can, un- 

der certain circumstances, yield single trajectories evolving according to Hamilton's 

equations (2.1) and (2.2) in the classical limit. The theorem may be readily derived 

beginning with the expression for the time rate of change of the expectation value of 

any time-independent observable R in an arbitrary quantum state [36], 

Taking the quantum Hamiltonian in the one-dimensional form H (Q, P) = P2/ (2m) + 
V(Q) gives 

The last equation can be approximated by 



Figure 3.7: Husimi density for the DQO at t = 8T but at  various degrees of classicality. 
Left to right and top to bottom, the plots are for f i  = 0.16, 0.08, 0.04, and 0.02. 



if the position standard deviation Aq is much smaller than the length scale of po- 

tential variations ((3.62) is exact if aV/aQ is a linear (or constant) function of Q). 

Thus if it were always the case that Aq is negligibly small for quantum states in 

the classical limit, then, in this limit, the states' centroids would follow Hamilton's 

equations. 

The results of the previous section, which indicate a much more rapid spread of 

DQO states in the classically chaotic case than in the classically non-chaotic case, 

suggest that the regime of validity of Ehrenfest's theorem may be considerably more 

restricted in the classically chaotic case. To investigate this possibility, the means (q) 

and (p) and the deviations Aq and Ap were calculated for evolving DQO quantum 

states. For each initial state the "Ehrenfest trajectory" (qEhr ( t )  , pEhr (t)) Was also 

calculated by evolving the initial centroid position according to  Hamilton's equa- 

tions, using the numerical technique described in section 2.1. Thus the validity of 

Ehrenfest's theorem would be indicated by the true centroid following closely the 

Ehrenfest trajectory. In addition, the means and deviations of evolving Liouville dis- 

tributions were also calculated. Some of these results have been previously published 

by Ballentine, Yang, and Zibin [37]. 

Figure 3.8 presents a comparison of the quantal and classical centroids and devia- 

tions with the Ehrenfest trajectory, for initial states specified by the chaotic standard 

parameter values (quantal and classical) of section 3.2.2. The classical calculations 

used 200000 particles. Data points are plotted only in Poincark section, i. e. at the 

times t = 0, T, 2T, . . .. Continuous time plots exhibit large oscillations at the driv- 

ing frequency, which distract from the essential features. The graphs indicate that 

Ehrenfest's theorem is valid until roughly t = 5T. After this time the centroids relax 

towards steady state values and the widths approach saturated maximum values, in 

agreement with the rapid approach to a uniform coverage of the chaotic zone indi- 

cated in the phase space distributions of figures 3.3 and 3.4. Note that the means 

and widths calculated from the classical Liouville distribution agree well with those 

calculated from the quantum state even long after Ehrenfest's theorem becomes in- 
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Figure 3.8: Mean position (top) and standard deviation in position (bottom) for DQO 
quantum state (solid line) and classical distribution (finely dashed line), plotted versus 
time in periods of the driving force, and using the chaotic standard parameters. The 
Ehrenfest trajectory (coarsely dashed line) is also indicated on the top graph. 



Figure 3.8: (continued) Same as previous page, but for momentum. 



valid. 

Figure 3.9 presents the results for similar calculations, but using the non-chaotic 

standard parameters (recall that these parameters differ from the chaotic standard 

values only in the location of the initial state). Here the Ehrenfest trajectory closely 

follows the centroids for a much longer time than in the chaotic case. In addition the 

widths grow much more slowly and the means exhibit large oscillations longer than 

in the chaotic case. These features are all consistent with the very slow delocalization 

observed in the phase space distributions for the regular case (figure 3.5). Finally, 

noting the different scales between these plots and those of figure 3.8, it is appar- 

ent that the classical means and widths agree more closely with the corresponding 

quantum values in the non-chaotic case than in the chaotic case. 

To illustrate how these results depend on the degree of classicality of the quantum 

system, figure 3.10 presents a comparison of quanta1 and classical means and devi- 

ations for an initial gaussian state with centroid ((q), (p)) = (0.2,O) in the chaotic 

zone, and widths Aq = Ap = 0.2 . 2'12. The quantum calculations used F, = 0.16. 

Compared with the case of ti = 0.02 in figure 3.8, the quantum values here do not ap- 

proach as well defined steady states, instead exhibiting larger fluctuations. Note also 

from figure 3.10 that at longer times the quantum position width appears to average 

below the classical width, suggesting that the quantum state is weakly localized at 

large ti. 

Discussion of Results 

The results of the previous two sections may be summarized as follows. In the 

chaotic case, the initially well localized state rapidly spreads to fill the chaotic zone. 

For very short times Ehrenfest7s theorem is valid and the quantum and classical 

phase space distributions resemble each other closely. At longer times interference 

dominates the quantum distributions, although the Husimi density (and lower dis- 

tribution moments) resemble more and more closely the classical distribution (and 



Figure 3.9: Mean position (top) and standard deviation in position (bottom) for DQO 
quantum state (solid line) and classical distribution (finely dashed line), using the non- 
chaotic standard parameters. The Ehrenfest trajectory (coarsely dashed line) is also indi- 
cated on the top graph. 
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Figure 3.9: (continued) Same as previous page, but for momentum. 



Figure 3.10: Mean position (top) and standard deviation in position (bottom) for DQO 
quantum state (solid line) and classical distribution (dashed line), for a state launched in 
the chaotic zone using Ti = 0.16. 



lower moments) as fi is decreased. Also, at small h, quantum and classical means 

and widths agree reasonably well long after Ehrenfest's theorem becomes invalid. In 

the regular case, Ehrenfest's theorem is valid for much longer times, and quanta1 and 

classical distributions (and lower moments) agree better, compared with the chaotic 

case. 

This section will present arguments which attempt to explain these various results 

and provide a picture of the evolution in more general systems. 

3.4.1 Time Scales 

It is sometimes suggested [5] that for times less than roughly t,  = fi/AE, where A E  is 

a typical energy level spacing, a quantum state will evolve essentially classically, since 

after t ,  it will be possible to resolve the discrete nature of the spectrum, and, recalling 

the discussion in the Introduction, quantum recurrences should begin. However, this 

argument cannot hold in general. Clearly some states, e.g. a coherent state in a 

harmonic oscillator, behave classically much longer than t,. Also, one would not 

expect that a general, non-localized quantum state exhibiting interference would 

evolve classically for even short times. 

Indeed, it is straightforward to show that in general for one-dimensional bounded 

undriven semiclassical systems the time 27rtr is actually a classical time, namely the 

classical period of motion. First note that the classical action I(E) of an orbit of 

energy E is defined as 

where the integral is taken along the closed orbit. The phase space integral can be 

related to the number of energy eigenstates N(E)  below energy E in the semiclassical 

limit by Weyl's formula [I], 

which gives 



Thus the mean energy level spacing is 

where T = 27r/w(I) is the classical orbital period. Thus the recurrences of period 

27rhlAE are of essentially classical origin. Distinctly quantum recurrences are related 

to other aspects of the spectrum. 

One further time scale discussed in the literature is the Ehrenfest time tEhr. This 

is the time during which a quantum state satisfies the conditions for Ehrenfest's 

theorem, and hence the state's centroid evolves classically. Clearly tEhr shares with 

t, the problem of being initial-state dependent. However, for initial Gaussian (or 

near-Gaussian) states, it is possible to distinguish between the ti dependence of tEhr 

in the classically chaotic and non-chaotic cases. 

Consider first the chaotic case. We can choose the initial width of the state to be 

of order Aq(0) - (this is a numerical estimate only, as the units are not correct). 

Suppose Aq(0) << Lv, where Lv is the length scale of potential variations. Then, as 

we will see in the next section, Aq(t) will grow as ext for long enough t ,  where X is 

the largest Lyapunov exponent. Thus, taking Aq(t~h,) = Lv, we find 

or tEhr N - In h for the ti dependence. In the non-chaotic case, Aq(t) will grow only 

as some power of t, so we expect tEhr - ha, for a < 0. 

3.4.2 The Linear (or Ehrenfest) Regime 

A more fruitful approach to understand the observed short time agreement between 

quantal and classical evolution is to examine the quantal evolution of well local- 

ized states. Ehrenfest's theorem already tells us that for states with Aq << Lv the 



centroids evolve classically, but can we say more about the entire probability distri- 

but ions? 

To answer this question, consider the time evolution of the Wigner distribu- 

tion. It can be shown [31] that for a quantum state evolving under the Hamiltonian 

H ( Q ,  P) = P2/(2m) + V(Q) ,  this distribution satisfies 

where the sum is over positive odd A. Let us now estimate the size of the terms 

in the above series under the Ehrenfest conditions. It can be seen directly from 

the definition of the Wigner distribution (3.28) that the momentum dependence of 

pw (q, p) consists of a superposition of oscillations, the most rapidly varying significant 

component of which goes roughly as exp(ipAq/h). Thus we can place a rough upper 

limit on the size of the momentum derivatives appearing in (3.70), namely 

-< - 

This implies that the term labelled by A in the sum 

order of 
( A d X  a w l )  

Fi aqx m. 

Now if the conditions for the validity of Ehrenfest's 

(3.71) 

in (3.70) is no larger than the 

(3.72) 

theorem are satisfied (namely 

Aq << Lv or dV/aq is a linear or constant function of q), then we immediately see 

that we can ignore all but the first term in the sum and write 

which is identical in form to Liouville's equation, (1.4). 

This result means that if Ehrenfest's conditions are satisfied, we can propagate 

pw (4, p), and hence the entire state function (to within an overall phase factor), using 

completely classical techniques. This suggests referring to the quanta1 evolution in 

this case as practically classical. I emphasize that this is a purely mathematical 

result, and one cannot conclude that a practically classical quantum state "is" a 



classical distribution. Indeed, pw(q, p) can, in general, exhibit interference and have 

negative valued regions even when Aq << Lv (as long as the initial state exhibits such 

interference). Note in addition that the conditions for practically classical behaviour 

are distinct from those for the classical regime. A macroscopic quantum state with 

Aq > Lv will not behave practically classically, whereas a microscopic state with 

Aq << Lv will. 

The importance of practically classical behaviour to quantum chaos is readily 

apparent. Note that the conditions for the linear evolution of a classical trajectory 

perturbation discussed in section 3.1.1 are identical to those for practically classical 

behaviour (thus we can interchangeably refer to the linear, Ehrenfest, or practically 

classical regimes). Recall that by definition a classical trajectory perturbation in 

a chaotic system will grow exponentially with time on average if the perturbation 

remains linear. A linear-regime classical Liouville density will exponentially stretch 

and shrink along directions corresponding to positive and negative Lyapunov expo- 

nents, respectively. Thus a practically-classical Wigner density in a classically chaotic 

system will do the same, and so any quantum state initially localized in the linear 

regime will exponentially delocalize on the inverse Lyapunov exponent time scale. 

Once Aq has exceeded Lv the above approximations of course break down, and the 

state may or may not continue to spread. This result was derived in a very different 

way by Fox [15]. 

These arguments explain the close agreement at short times between the DQO 

calculations of the Wigner and Liouville distributions, and hence also between their 

smoothed counterparts p~ and psL and between their means and deviations. Close 

agreement lasts longer in the classically non-chaotic case because the state does 

not exhibit exponential stretching. The DQO calculations suggest that while pw 

and p~ differ markedly outside the Ehrenfest regime because of the development of 

interference in pw, the smoothed densities and low distribution moments can still 

agree quite well, with the degree of agreement improving with decreasing ti. The 

explanation of this aspect of the calculations will be the subject of the next section. 



3.4.3 The Classical Regime 

It is sometimes claimed [16] that the validity of Ehrenfest's theorem characterizes the 

classical regime. However, as pointed out above, we cannot expect Aq << Lv for all 

states in the classical regime (as defined in the Introduction). Indeed, we now know 

that localized quantum states of classically chaotic systems will grow to beyond the 

Ehrenfest regime at a rate determined by the Lyapunov exponent, which certainly 

does not generally vanish for macroscopic systems. What then can we say about the 

quanta1 evolution in the classical regime? 

First note that, as Yang [33] and Ballentine, Yang, and Zibin [37] have pointed 

out, for a general quantum state we cannot choose a classical distribution such that 

the q and p  distributions evolve the same classically and quantum mechanically for all 

time, a result that can be traced to the non-commutativity of Q and P in quantum 

mechanics. Yang suggested that in the classical regime this non-commutativity will 

be irrelevant and the quantum probability densities will evolve essentially classically. 

To see explicitly how this can come about, consider the time evolution of the 

two quantum phase space distributions studied here. First, for the Wigner density, 

recall its time evolution equation (3.70) presented above. It is sometimes argued 

that this equation always reduces to the Liouville equation in the classical limit, 

since each successive term in the sum in (3.70) appears to be of order ti2 smaller than 

the previous term. However, as shown above, unless the conditions for Ehrenfest's 

theorem are satisfied this will not be the case, because each derivative d / d p  in (3.70) 

brings down a factor of ti (recall (3.71)). The fact that equation (3.70) does not 

typically reduce to the Liouville equation in the classical limit has been noted by 

Heller [38] and Takahashi [lo]. 

For the Husimi distribution, it can be shown [39] that the time derivative of p~ 

under the Hamiltonian H (Q, P) = P2/ (2m) + V(Q)  can be written conveniently as 

the sum of potential independent and dependent parts, namely 



where 

and 

Here Asq = fi/(2Asp) is the position standard deviation of the Gaussian smoothing 

function used to define PH, and the triple sum in (3.76) is taken over odd positive A, 

all nonnegative integers p, and all nonnegative integers k such that p - 2k 2 0. It 

must be stressed that A,q and Asp characterize only the smoothing function, whereas 

Aq and Ap are the widths of the (unsmoothed) state itself. 

Now, to  determine the limiting behaviour of pH, we can take an approach similar 

to that taken for the Wigner density above. Note first that because p~ can be defined 

through (3.48) as a Gaussian smoothing of pw, with Asq and Asp being the scale of 

the smoothing in q and p, we can place rough upper limits on the size of the partial 

derivatives of pH, namely 

Thus the second term in the potential-independent part (3.75) is no larger than the 

order of Asp/pty, relative to the first term, where pt,, is a typical momentum value 

in the state. Similarly, the terms in the sum (3.76) labelled by X and p will be no 

larger than roughly 
(Asq) X+p aX+pv (q) 

ti aqx+p PH- 

Here the relation Asq = ti/(2Asp) has been used, and the k dependence has fallen 

out in this approximation. Therefore we finally see that if Asp << pty, and Asq << Lv 

(or aV/dq is a linear or constant function of q), then the smallest term in the sum 

(3.76) will be that for X = 1 and p = k = 0 and we can make the approximation 



so that p~ satisfies the familiar Liouville equation. 

Many of the comments of section 3.4.2 on practically classical behaviour apply 

here. Equation (3.80) is a mathematical result; it states that under certain conditions 

a suitably coarse grained Wigner density evolves essentially like the classical Liouville 

distribution. Recalling that Asq and Asp characterize not the state but our degree of 

smoothing of the state, the interference patterns may still exist (in m) when (3.80) 

is satisfied. It is only when we do not "look more closely" than the scales Asq and 

Asp (i.e. when we examine the Husimi density) that interference is not noticeable 

and the evolution is essentially classical. Although Asq and Asp can be extremely 

small relative to macroscopic scales, the scales of typical interference patterns can be 

far smaller still. 

Note in addition that, because of the property given in section 3.2.1 that the 

Husimi density of a mixed state is the weighted sum of the Husimi densities of the 

elements of the mixture, the result (3.80) applies equally well to  mixed states as to 

pure states. A similar comment holds for the practically classical evolution of the 

Wigner density in section 3.4.2. 

Whereas the Ehrenfest condition Aq << Lv does not, as discussed above, char- 

acterize the classical regime of quantum mechanics, the conditions Asp << pt,, and 

Asq << Lv in fact do. To see this, note that the product of these last two inequalities 

can be written h << Lvpty,. Since the product LVpty, will be a typical system action 

S, we can instead write h << S, which defines the classical regime. 

It is important to stress that the behaviour of a quantum state in the classical 

regime is given by Liouville's equation rather than Hamilton's equations. For a 

classically regular system and in the classical regime, we can construct a Gaussian 

initial quantum state (essentially a 6-function in phase space) which remains well 

localized for extremely long times (since tEhr grows algebraically with reciprocal h) ,  

and therefore essentially follows Hamilton's equations. However, we now see that for 

a classically chaotic system we cannot do this. Any initial width will grow on the 

inverse Lyapunov time scale until p~ fills the accessible region of phase space. The 



undergraduate example of a quantum wave packet for a free bullet remaining well 

localized over the age of the universe can no longer reassure us. 

Fox's results on the growth of states in the linear regime (which were mentioned 

in the Introduction) have prompted him to claim that quantum-classical correspon- 

dence breaks down for classically chaotic systems, and to state that "to properly 

describe classical mechanical chaos, one must do quantum mechanics" [15]. How- 

ever, equation (3.80) tells us that we are in fact able to calculate state evolution 

in the classical regime using classical (albeit statistical) mechanics. Predictions of 

classical and quantum mechanics will never differ significantly because the classical 

description will always include some initial state uncertainties, which will be much 

larger than the minimum quantum state uncertainties, and which, evolving under the 

Liouville equation, will rapidly fill the accessible chaotic region. For classically chaotic 

systems we are not able to  escape the probabilistic nature of quantum mechanics, 

although in the classical regime the probabilities behave essentially classically. 



Chapter 4 

The Characterization of Quantum 

Chaos 

This chapter applies the ideas presented so far towards generalizing some common 

characteristics of classical chaos to quantum mechanics. Section 4.1 describes an 

approach to reconcile the stability of quanta1 evolution with the instability and prac- 

tical irreversibility of classical chaos. Section 4.2 presents a number of techniques for 

generalizing the classical Lyapunov exponent to  quantum systems. 

4.1 Sensitivity to Perturbations and Irreversibil- 

ity 

4.1.1 Classical Background 

When discussing the relationship between classical chaos and irreversibility, it is 

important to  distinguish between two separate aspects of irreversible behaviour re- 

quiring explanation. The first is the fact that phenomena in the macroscopic world 

are asymmetric with respect to time, whereas the relevant fundamental physical laws 

are invariant under time reversal. Time-symmetric laws themselves cannot resolve 

this discrepancy, and explanations have involved cosmological arguments [40]. I will 



not pursue this aspect further. 

The second problem is that given the asymmetry described above, how can we 

explain, in terms of the fundamental laws, the irreversible behaviour which is observed 

(and described, for example, by the second law of thermodynamics and Boltzmann7s 

equation). A simple illustrative example of this type of problem is the following. 

Given that we are able to prepare initial states rather than "final" states, why do we 

observe ice cubes melting in glasses of water but never the reverse process? 

Classical chaos can be relevant to questions of this latter sort. Consider the effect 

of sensitive dependence on initial conditions in the following thought experiment. 

Imagine a chaotic classical system in some initial state at time t = 0. Allow the 

system to evolve until some time t = t,,. Now perform a motion reversal, changing 

the signs of all momenta, and let the system evolve until t = 2tmr. If the motion 

reversal was exact and the Hamiltonian unchanged on the two legs of the evolution, 

then the system would of course return precisely to its initial state (with momenta 

reversed). Any small perturbation to the system's trajectory, however, would become 

exponentially magnified with time, making it practically impossible to perform such 

an experiment for evolution times exceeding the order of the inverse Lyapunov expo- 

nent time scale. If we could readily prepare the initial state, the forward evolution 

would be observable while the reverse evolution could be exceedingly unlikely. 

4.1.2 Quantum Approaches 

As shown in the Introduction, quantum states are always stable to perturbations in 

the state vector. Workers have taken a number of approaches to try to reconcile this 

fact with the observed presence of chaos in the classical regime, and thereby maintain 

the sort of explanation of irreversibility outlined above. Peres [41] has studied the 

effect of perturbations of the quantum Hamiltonian rather than of the state vector. 

He examined, for a particular coupled rotator model, the overlap 



between the states evolving under the unperturbed and perturbed Hamiltonians H 

and H'. Here (Q) is the initial state. He found that S(t)  approaches smaller values 

when the system is classically chaotic than when it is classically non-chaotic. Benet 

et al. [42] have examined the influence of perturbations of the Hamiltonian on the 

energy eigenfunctions for classically chaotic and non-chaotic cases. Schack et al. 

[43] have studied the Hilbert space evolution of state vectors under a stochastically 

perturbed Hamiltonian for a kicked top model, under classically chaotic and non- 

chaotic conditions. 

Blumel [44] presents a quantum system which, he suggests, exhibits exponential 

sensitivity and chaos. The system consists of a neutral spin-1 /2 particle travelling 

through a collinear sequence of identical homogeneous magnetic field sections. Each 

field section precesses the spin by a fixed angle ,8 about the same axis. Although 

the author conceptually partitions the field sections into a Fibonacci sequence, the 

same conclusions follow for a simple geometric sequence partition. We consider the 

state of the particle, I*,), after passing through 2" field sections, for n = 0,1 ,2 , .  . .. 

Consider the states I Q,) and I QL) which result from separate runs in which all field 

sections advance the spins by p and 0' = P+SP, respectively, where SP << P. Clearly 

the difference in the spin's magnetic moment direction between the unprimed and 

primed runs will grow exponentially with n. Blumel claims that this indicates chaos 

in the spin. However, in order for the perturbation to grow exponentially with time, 

the field sections would have to be spaced more and more closely down the sequence. 

More importantly, the state of the spin is not sensitive to its initial state, only to the 

value ,B if all sections are identical. 

A number of authors have performed numerical calculations that indicate a sharp 

distinction in the "computational reversibility" behaviour of classical and quantum 

systems. In these studies, quantum and corresponding classical states were propa- 

gated from t = 0 to some time t = t,,, a motion reversal performed, and the states 

propagated to t = 2t,, to try to recover the initial states. For classically chaotic 

systems, the classical states returned poorly or not at all to the initial state, whereas 



the quantum states retured extremely accurately. Shepelyansky [17] performed these 

calculations on a kicked rotator model, and Casati et al. [18] used a model of a hy- 

drogen atom in a microwave field. Haeri [45] also studied the kicked rotator in this 

context. 

To illustrate this type of result, computational reversibility calculations were per- 

formed for the DQO. Initial Gaussian Liouville distributions and quantum states were 

chosen according to the chaotic standard parameters of section 3.2.2. The classical 

and quantum calculations used 20000 particles and 2000 grid points, respectively. 

The states were first propagated until t = 60T, where T is the period of the driv- 

ing force. At this time, the momentum of each classical particle was reversed and 

the quantum state was complex conjugated. Then the states were propagated to 

t = 120T. Figure 4.1 shows the position standard deviation Aq for the classical 

and quantum cases, plotted at integral multiples of the driving period. The classical 

evolution between t = 60T and t E 90T mirrors the evolution before motion reversal, 

but the state does not return to its initial state. The quantum evolution, however, 

displays near perfect symmetry about t = t,, = 60T, and in fact the values of Aq at 

the times t and 120T - t differ by no more than in absolute units. 

It must be stressed that these results reflect computational rather than physical 

irreversibility. Departures from perfect reversibility are due to numerical approxi- 

mations and round-off errors, and different numerical techniques were used for the 

classical and quantum calculations. Assigning an integrator tolerance value of 

for the quantum calculations is not physically equivalent to  assigning the same tol- 

erance value for the classical calculations, nor is it apparently physically equivalent 

to anything. indeed we expect quantum dynamical calculations to be numerically 

"easy" deep in the quantum regime where only a few eigenstates are excited. A 

more physically meaningful approach to this problem will be the subject of the next 

section. 



Figure 4.1: Standard deviation in position for DQO classical distribution (top) and quan- 
tum state (bottom), plotted versus time in periods of the driving force, and using the 
chaotic standard parameters. In both cases a motion reversal was performed at t = 60T. 



4.1.3 Displaced Motion Reversal 

Recalling the result of section 3.4.3 that the Husimi density evolves essentially accord- 

ing to the Liouville equation in the classical regime, quanta1 evolution in this regime 

must exhibit essentially the same sensitive dependence (as well as the statistical prop- 

erties such as mixing and ergodicity) that the Liouville density can exhibit. However, 

it is useful to  see how this behaviour arises as the classical regime is approached. To 

accomplish this, consider the following type of motion reversal calculation. An initial 

state is propagated from t = 0 to t = t,, ensuring that numerical errors are negligi- 

ble. Then a motion reversal is performed, followed immediately by a displacement 

of the entire state in position space by an amount 6q. Finally the state is evolved to 

t = 2tm,, again ensuring negligible numerical errors. This type of calculation, which 

will be referred to as a displaced motion reversal calculation, can be applied to either a 

classical distribution or a quantum state, and in both cases the applied perturbations 

6q are physically equivalent. Any inability to recover the initial classical or quantum 

state is due solely to the displacement 6q. The idea behind this approach is just 

that, although one may look for sensitivity to perturbations in quantum mechanics 

by other means, the correspondence principle tells us that studying perturbations of 

this type should reveal how classical sensitivity to perturbations arises as the classical 

regime is approached. 

Qualitative results 

Figure 4.2 presents smoothed Liouville densities p s ~  and Husimi densities p~ for 

a series of displaced motion reversal calculations for the DQO. The initial Liouville 

distribution and quantum state were chosen according to the chaotic standard param- 

eter values, both being Gaussian states with centroid ((q), (p)) = (0.2,O). The total 

propagation time was 2tm,, with t,, = T, the period of the driving force. The plots 

show the final states at t = 2tm, using perturbations of 6q = 0.04, 0.08, 0.16, 0.32, 

and 0.64 after the motion reversals. As expected, a sufficiently small perturbation 



Figure 4.2: Final smoothed Liouville density (left column) and Husimi density (right 
column) for displaced motion reversal calculations for the DQO with the chaotic standard 
parameters. The states are shown at the final time t = 2tm,, with t,, = IT, and on this 
page the displacements Sq = 0.04 (top) and Sq = 0.08 (bottom) were used. Both classical 
and quantum plots share the same grey scale, black and white corresponding to zero and 
a maximum density value, respectively. 



Figure 4.2: (cont.) p s ~  (left) and p~ (right) for 6q = 0.16, 0.32, and 0.64, top to bottom. 
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has negligble effect on the evolution: for 6q = 0.04 both classical and quantum states 

return well to their initial Gaussian form. As Sq increases, the states return less and 

less accurately to  the initial state. However, for this value of t,,, both PSL and p~ 

exhibit the same dependence on the perturbation 6q. 

Clearly this result cannot hold for arbitrary states. A classical distribution can 

be sensitive to arbitrarily small displacements Sq, whereas a (bounded) quantum 

state cannot be sensitive to spatial displacements much smaller than the shortest 

de Broglie wavelength significantly present in the state. To illustrate this, figures 4.3 

and 4.4 display the results of displaced motion reversal calculations at the final times 

t = 2tm,, with t,, = 7T and 13T, respectively. The chaotic standard parameters 

were used, and the applied values of Sq are indicated in the figure captions. As tmr 

increases, the size of the finest features in the (unsmoothed) classical state at the 

time of motion reversal decreases (recall figure 3.3), and the final classical states 

presented in figures 4.3 and 4.4 exhibit sensitivity to smaller and smaller Sq. The 

final quantum states show essentially the same dependence on the perturbations as 

the classical states for Sq 2 0.04, but return quite accurately to their initial states 

for Sq 5 0.005. These results will be made more quantitative below, and will be 

compared with predictions. 

Quantitative results 

In the classical case, a quantitative indication of the degree to  which a state returns 

to its initial form after a displaced motion reversal is the overlap 

Here pL(q,p, 0) is the initial Liouville density, and pL(q,p, 2tmr) is the density at 

t = 2tm,, after a motion reversal and displacement 6q at t = t,,, and a final motion 

reversal at t = 2tm,. The factor 27rh ensures (for the particular initial states studied 

here) that Scl = 1 when the two densities are equal. As mentioned in the Introduction, 

the overlap between any two Liouville densities is constant in time. Thus we can 



Figure 4.3: Final smoothed Liouville density (left column) and Husimi density (right 
column) for displaced motion reversal calculations for the DQO with the chaotic standard 
parameters. These calculations used t,, = 7T, and on this page the displacements 6q = 

0.005 (top) and Sq = 0.01 (bottom) were used. 



Figure 4.3: (cont.) p s ~  (left) and p~ (right) for 6q = 0.02, 0.04, and 0.08, top to  bottom. 
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Figure 4.4: Final smoothed Liouville density (left column) and Husimi density (right 
column) for displaced motion reversal calculations for the DQO with the chaotic standard 
parameters. These calculations used t,, = 13T, and on this page the displacements 6q = 
0.0025 (top) and 6q = 0.005 (bottom) were used. 



Figure 4.4: (cont.) p s ~  (left) and p~ (right) for 6q = 0.01, 0.02, and 0.04, top to bottom. 
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instead write 

This form for Scl is much easier to  calculate than expression (4.2), since here the state 

need only be evolved once to  t = tmr, whereas for (4.2) the state must be evolved to  

t = 2tmr for each value of the perturbation Sq. 

In the quantum case, the mathematical properties of the Wigner density presented 

in section 3.2.1, which parallel those of the Liouville density, suggest comparing the 

classical Scl with the quantum overlap 

Here my(q,p, 0) is the initial Wigner density, and p&(q,p, 2tmr) is the density at  

t = 2tmr, after a motion reversal and displacement Sq at t = tmr, and a final motion 

reversal a t  t = 2tmr. Using relation (3.41) of section 3.2.1, we can rewrite Sqm in 

terms of an overlap between state functions, namely in coordinate representation 

Here Q(x, 0) is the initial state function, and Qt(x, 2tmr) is the state at  t = 2tmr, 

after a motion reversal and displacement Sq at t = tmr, and a final motion reversal 

at t = 2tmr. The constancy of quantum overlaps has been used to  again obtain an 

easier expression to  calculate. 

Figure 4.5 presents plots of SC1(Sq, tmr) and Sqm(6q, tmr) for motion reversal times 

tmr = IT, 7T, and 13T. A quantum curve for tmr = 40T is also included. The chaotic 

standard parameters were used, and the overlaps were calculated using equations 

(4.3) and (4.6). As expected, the curves approach overlap values of unity and near 

zero for small and large Sq, respectively. The classical and quantum curves agree 

very well when the state is evolved for the shortest time, with t,, = IT. This is 

consistent with figure 4.2, where the classical and quantum plots exhibit the same 



Figure 4.5: Classical overlap ScI(Sq, t,,) (top) and quantum overlap Sqm(6q, t,,) (bottom) 
plotted against loglo(Sq). The chaotic standard parameters of the DQO were used. In order 
of decreasing dash size, the plots are for t,, = IT, 7T, and 13T. The quantum result for 
t,, = 40T (solid line) is also shown. 



dependence on 6q. As t,, increases, Scl becomes sensitive to smaller and smaller 6q, 

which indicates that the classical state returns less and less accurately to the initial 

state after the displaced motion reversal. However, the behaviour of the quantum 

overlap, S,,, saturates by t E 13T, so that the quantum state returns accurately to 

the initial state for 6q 5 0.005 no matter how large the motion reversal time t,,. 

The information contained in the Scl(6q, t,,) and Sqm(6q, t,,) curves can be useful- 

ly reduced in the following way. Define a quantity 6q50(tmr) S U C ~  that Scl(6~50, tmr) = 

112 in the classical case or S,,(6~5~, tmr) = 112 in the quantum case. The value 

64 = 6q50(tmr) is the size of the displacement needed for a state to  return after a 

displaced motion reversal and make an overlap of 112 with the initial state. Thus 

6q50(tmr) gives a (somewhat arbitrary) indication of the smallest displacement that 

the state will be sensitive to. Because the curves of figure 4.5 were found to be typical, 

this definition of 6q50 is reasonable and will not lead to multiple-valued ambiguities. 

Figure 4.6 presents 6q50(tmr) in the chaotic case. The bottom two curves show the 

classical and quantum values using the chaotic standard parameters (initial states 

with Aq = Ap = 0.1, and ti = 0.02 in the quantum case). To illustrate the effect of 

varying the value of ti, the top three curves show quantum results for initial Gaussian 

states centred at ((q) , (p)) = (0.2,O) in the chaotic zone and using the values ti = 0.04, 

0.08, and 0.16 and initial widths Aq = Ap = 0.1 . 2'12, 0.2, 0.2 - 2lI2, respectively. 

In the classical case, b ~ ~ ~ ( t , , )  decreases (with fluctuations) until 6450 N 0.003, the 

smallest value that could be determined in reasonable computing time. For the 

quantum curve with ti = 0.02, 6q50(tmr) approximates the classical curve for small 

t,,, but saturates at a value 6450 0.0130 for large t,,. As ti increases, the quantum 

curves saturate a t  larger and larger values of 6450, respectively 6q50 E 0.0280, 0.0569, 

and 0.104 for ti = 0.04, 0.08, and 0.16. (These saturated values were calculated by 

taking the average of 6q50(tmr) for tmr 2 15T.) 

Figure 4.7 shows the classical and quantum values of 6q50(tmr) for the non-chaotic 

standard values (recall that these values differ from the chaotic parameters only in 

the location of the initial state). Here the classical 6q50(tmr) decreases on average 
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Figure 4.6: Plots of loglo 6q50(tmr) versus t,, for the classical (solid line) and quantum 
(dashed lines) cases. The classical calculations used the standard chaotic parameters. In 
order of decreasing dash size, the quantum curves used h = 0.16, 0.08, 0.04, and 0.02, and 
all states were launched at the same location in the chaotic zone. 

Figure 4.7: Same as figure 4.6, but showing the classical (solid line) and quantum (dashed 
line) results using the non-chaotic standard parameters. 



much more slowly than in the chaotic case, and the quantum values agree quite well 

with the classical ones for all tmr considered. 

The results presented in figure 4.6 indicate that whereas the classical state is 

sensitive to smaller and smaller displacements as tmr increases, the quantum states' 

sensitivities saturate at  values of 6q5, which increase as ti increases. This was antic- 

ipated above on the basis of a simple de Broglie wavelength argument. For a more 

careful argument, note that we can write the quantum overlap of equation (4.6) as 

In words, S,,(Sq, tmr) is just the squared modulus of the Fourier transform of the 

momentum probability density. Thus there must exist an uncertainty-type rela- 

tion between the width of S,,, which will be of order bq50(tmr), and the width of 

I * ( p ,  tmr) 1 4 ,  which will be of order Ap(tmr), the momentum standard deviation of the 

state at t = tmr (which was calculated in section 3.3). We can therefore estimate 

(4.9) 

Note that this relation applies at each moment as the state evolves. In particular, 

from figure 3.8 we can estimate Ap 21 1.25 for t 2 15T. This is the saturation 

period for 6~50, and is also the period when the state fills the chaotic zone more or 

less uniformly. This value of Ap is essentially independent of ti for the values of ti 

examined. For Fi = 0.02, 0.04, 0.08, and 0.16, equation (4.9) thus gives dq50 21 0.008, 

0.016, 0.032, and 0.064, respectively, in reasonable agreement with the saturated 

values found above, considering the order of magnitude nature of estimate (4.9). 

Most significantly, the mean spacing between the saturated values of log,, 645, is 

approximately 0.302, compared with the value of loglo(2) E 0.301 expected from 

equation (4.9) for values of ti differing by factors of two. In other words, the saturated 

SqSo values are found to be very nearly proportional to ti, as expected. 



Summary 

Although quantum evolution is not sensitive to perturbations of the form I*) + 
I*) + IS*), this of course does not contradict sensitivity in classical chaos because 

perturbations in the state function are not physically equivalent to perturbations in 

a position or momentum coordinate. Indeed, for a state in the classical regime, a 

displacement Sq can be "small", in the sense that Sq is much less than system scales, 

while the corresponding overlap Sqm(Sq) (or Sc1(6q)) is near zero, so that the state 

does not return well to its initial state after a displaced motion reversal. This is 

how the quantum stability to perturbations in the state vector is circumvented in a 

displaced motion reversal. 

Figures 4.2 to  4.6 demonstrate that both classical and quantum states exhibit 

essentially the same dependence on displacements Sq, for displacements larger than 

the saturation value given by equation (4.9). As illustrated in figure 4.6, this value 

becomes smaller in proportion to ti as the classical regime is approached, holding 

Ap(tm,) constant. Thus, for classically chaotic systems, typical quantum states in 

the classical regime are expected to display essentially the same sensitivity to per- 

turbations and effective irreversibility as the Liouville density does. 

4.2 Measures of Chaos 

The results presented so far indicate a distinct difference in the quantal behaviour 

of classically chaotic and non-chaotic systems. It would be useful to quantitatively 

characterize this quantal behaviour in a way that generalizes the classical Lyapunov 

exponent. One apparent method to try to do this is simply to replace the classical 

trajectory (q, p) in the definition of the Lyapunov exponent with the quantal ex- 

pectations ((q), (p)). This approach has been taken by Haake et al. [46]. Clearly, 

given a classical Hamiltonian with largest Lyapunov exponent X and given any fi- 

nal time t f ,  it is always possible to choose a scaled ti such that an initial Gaussian 

wavepacket, evolving under the corresponding quantized Hamiltonian, will remain 



localized within the Ehrenfest regime (to any required accuracy) until tf. Thus a 

classical trajectory can be approximated by quantal expectations to any required 

accuracy until any particular final time tf ,  and so it must be possible in principle 

to obtain X as accurately as one wishes using only quantum mechanics. However, 

the results of the previous chapter indicate that for realistic initial conditions and 

values of the Lyapunov exponent, a quantum state remains in the Ehrenfest regime 

for only very short times (this is due to the logarithmic dependence on ti that tEhr 

exhibits; recall equation (3.69)). Thus instead, this section will present a number of 

alternative approaches, each of which relates properties of classical distributions to 

those of quantum states. 

4.2.1 Contour Lengths 

Consider a classical Liouville density pL (q, p, t)  evolvi.ng in, for simplicity, a two-dim- 

ensional phase space. Consider the contour C(t) defined by the relation p ~ ( q ,  p, t)  = 

C ,  for some constant C. For a bounded system, C(t) will consist of one or more 

closed curves in the phase space. Because the distance between each pair (aside from 

a set of measure zero) of infinitesimally separated points on C(t) will grow as ext for 

long enough time t ,  the length Lc(t) of the contour must itself grow like ext for long 

and there is no need to  restrict the entire contour to lie within the regime of validity 

of the linearized dynamics. Given the result of section 3.4.3 that the Husimi density 

evolves essentially according to the Liouville equation in the classical regime, it would 

appear reasonable to adopt equation (4.10) as a definition of a quantal Lyapunov 

exponent, with the contour now defined by pH(q, p, t) = C. For fixed scaled FL, such a 

quantal contour cannot grow in length indefinitely due to the smoothing inherent in 

p ~ .  Thus, rather than take the limit of infinite time as in (4.10), it will be necessary 

to restrict such a calculation to finite times and define the finite-time Lyapunov 



exponent for the contour by 

A finite-time exponent will in general depend on the initial position and shape of the 

contour. Essentially this approach was adopted by Toda and Ikeda [47]. 

Classical results 

To examine the feasibility of a quanta1 calculation of this sort, a classical contour 

length calculation was first carried out for the DQO. In the classical case, because 

of the incompressible nature of the Liouville flow, it is sufficient to propagate a large 

number of trajectories originating on the required initial contour, rather than to 

evolve an entire distribution. The length of the contour at some time can be approx- 

imated by summing the distances between consecutive trajectories at  the required 

time. 

Figure 4.8 presents two logarithmic plots of contour length versus time for the 

classical DQO, with one contour confined within the chaotic and the other within the 

regular zone. In both cases the trajectories began as uniform distributions of 100000 

points lying on circles of radius 0.15 (of course a circle in phase space can only be 

spoken of once units have been fixed). The circles' centres were at ( q , p )  = (0.2,O) 

and (1,l) for the chaotic and non-chaotic case, respectively. 

The logarithm of the contour length in the chaotic case exhibits a quite well 

defined linear increase with time for t 5 20T. At later times the curve levels off as 

the number of trajectories becomes insufficient to define the ever increasing intricacy 

of the contour. A least-squares fit to the curve in the linear region t 5 20T gives 

a finite-time Lyapunov exponent of X(20T) 21 0.064, clearly different from the long- 

time value of X 21 0.042 found in section 3.1.3 using the renormalization method. The 

initial growth rate for this chaotic contour was typical of several contours launched 

in the chaotic zone. 

To understand the source of the discrepancy between the exponents calculated by 



Figure 4.8: Classical contour length Lc(t) on a logarithmic scale for contours confined to  
the chaotic (top curve) and non-chaotic (bottom curve) regions of the DQO. 

the contour and renormalization methods, 10000 Lyapunov exponents were calculated 

using the renormalization method software, but with only a single time step ( I  = 1) 

of length T = 20T for each. The initial coordinates were uniformly distributed 

on the same circle as was used for the chaotic contour calculations. The initial 

displacements were all d(0) = 1 x and were oriented along the circle. Figure 4.9 

plots the normalized probability density P(X) for finding the particular (finite-time) 

Lyapunov exponent X within this set of 10000 calculations. Clearly the distribution 

of finite-time exponents is dominated by values larger than the long-time value of 

X = 0.042. Indeed for this distribution the "exponential average" of the finite-time 

Lyapunov exponents, which is relevant to  a contour length calculation, takes the 

value 

very close to the contour length value. Here the X i  are the N = 10000 finite-time 

exponents and the value t = 20T was used. 



Figure 4.9: Normalized probability density P(X) versus finite-time Lyapunov exponent X 
for the set of 10000 chaotic initial conditions described in the text. These calculations used 
l = 1 time step of length T = 20T. The long-time value is X .v 0.042. 

Quantum results 

A straightforward algorithm was developed to determine and approximate the lengths 

of contours in the Husimi density. Figure 4.10 presents logarithmic plots of con- 

tour length versus time for initial Gaussian states in the quantum DQO using the 

chaotic and non-chaotic standard parameter values. The chaotic case classical con- 

tour length is also plotted for reference. Both quantum curves are for the contour 

value pH(q, p, t )  = 0.025. Whereas in the classical case the arguments leading to  

equation (4.10) are independent of which contour is chosen, the behaviour of Husimi 

contours will in general depend on the contour value (the maximum value of p ~ ,  

e.g., need not be constant). Nevertheless, the results of figure 4.10 were found to be 

typical for contour values small relative to the maximum of p~ (which was of order 

unity here). While the Husimi contour in the classically chaotic case does grow ini- 

tially much more rapidly than in the classically non-chaotic case, the contour length 

quickly levels off and a well defined exponential growth period does not exist. 



Figure 4.10: Husimi contour length Lc(t) on a logarithmic scale for the chaotic (solid 
curve) and non-chaotic (finely dashed curve) standard parameters of the DQO and contour 
value PH = 0.025. The chaotic classical contour length is also shown (coarsely dashed 
curve). 

4.2.2 Distribution Widths 

Consider again a classical Liouville density contour C ( t ) .  In the chaotic case, this 

contour will rapidly stretch into a long thin thread whose length will grow as ext for 

large enough t. If the entire contour is confined to within the region of validity of 

the linearized dynamics, then for any Liouville distribution confined within C ( t )  no 

folding can occur and the standard deviations A q ( t )  and A p ( t )  must also grow as 

ext for long times. Thus by observing the rate of growth of the distribution widths, 

one could estimate A. The growth of quantum mechanical distribution widths could 

similarly be used to calculate a quantal Lyapunov exponent. This approach has been 

used by Frahm and Mikeska [48] in the study of a spin system. 

Calculations of this sort have already been carried out for the DQO in section 

3.3. Figures 3.8 and 3.9 illustrate the growth of the classical and quantal Aq and Ap 

for the chaotic and non-chaotic standard parameters. Although the initial growth 



rates in the chaotic case far exceed those in the non-chaotic case, there certainly are 

no exponential growth stages visible. This is due to the rapid growth which quickly 

invalidates the linearized (or Ehrenfest) dynamics, and the consequent folding visible 

in the phase space distributions. This method would appear to be severely restricted 

by the simultaneous requirements of linearity and large times needed to obtain an 

approximation to  A, as was the method of expectation values discussed above. 

4.2.3 Size of Finest Details 

Picture again the classical contour C(t) in the chaotic case evolving into essentially 

a long thin thread whose length grows exponentially with time. Because phase space 

volumes are conserved classically, we expect that a characteristic measure of the 

width of the thread will decrease as e-xt for large enough t .  Thus we also expect 

that for an evolving Liouville density, some characteristic measure of the size of the 

finest details present in the state will decrease as e-xt. The quantity 6qso(t), defined 

in section 4.1.3 as the displacement needed to make the overlap between the states 

pL(q,p, t) and pL(q + dq50,p, t) equal to 112, provides such a characteristic measure. 

As described in section 4.1.3, a quantal analog can readily be constructed. 

Figures 4.6 and 4.7 of section 4.1.3 present the evolution of the classical and quan- 

tal 6qs0(t). Again there is a distinct difference in behaviour between the chaotic and 

non-chaotic cases. However, the chaotic case classical curve of figure 4.6 could not 

be calculated to long enough times to  accurately define a slope in the logarithmic 

plot, from which a Lyapunov exponent might be estimated. The quantum curves, as 

discussed previously, saturate at values of 6qS0 proportional to  f i  (and given approxi- 

mately by equation (4.9)). Thus, for this method to provide a useful characterization 

of the quantal dynamics, it is expected that the saturation level given by equation 

(4.9) would need to be at least a couple of orders of magnitude smaller than the 

initial value 6qS0 (t = 0). 



4.2.4 Coarse-grained Entropy 

The entropy of a classical Liouville distribution pL(q, p, t) is defined by 

where k is Boltzmann's constant and A is an arbitrary constant which makes the 

argument of the logarithm dimensionless and sets the zero of entropy. This Liouville 

entropy is constant in time (for an isolated system), and so is not useful in character- 

izing dynamics. However, a coarse-grained entropy will exhibit non-trivial behaviour. 

Consider, for example, a rectangular grid partition of phase space into cells labeled 

by the index i. Let 

and define the coarse-grained entropy by 

Then, if an initial Liouville density is confined to one cell, we have Sc(0) = 0. If the 

system is chaotic, we expect that at sufficiently long times the density will form a thin 

thread of exponentially growing length, as described above. During the time interval 

that the thread width is narrower than the cell width and yet the thread passes 

through any cell no more than once, we can estimate the coarse-grained entropy by 

Sc(t) = k ln N (t), where N (t) is the number of cells the thread passes through. Since 

N(t) is expected to increase as ext for large enough t ,  we expect Sc(t)/k to increase 

linearly in time with slope A. Eventually, when all cells that cover the accessible 

chaotic zone are occupied, the coarse-grained entropy will saturate. For a fine enough 

grid, these arguments are not expected to depend significantly on the shape of the 

cells, nor on whether, instead of a partition into cells, a smoothed Liouville density 

psL(q, p, t)  is used to define the coarse-grained entropy through 



Note that this notion of a coarse-grained entropy is not to be confused with the 

Kolmogorov-Sinai (KS) entropy (also known as the metric entropy). The calculation 

of the KS entropy involves propagating a phase space partition itself, and deter- 

mining the rate at which subsequent intersections of the evolving partition with the 

initial partition proliferate with time [I]. It can be shown that the KS entropy for 

Hamiltonian systems is just the sum of the positive Lyapunov exponents [I], and this 

is how the KS entropy is normally determined. 

In quantum mechanics the von Neumann entropy is defined as 

for a system described by density matrix 6. In the case of a pure state, as the DQO 

calculations have involved, we have SVN = 0 for all time, a situation that parallels 

the constancy of the classical Liouville entropy. Recalling the close similarity in 

behaviour between the smoothed Liouville and Husimi densities found in chapter 3, 

it would appear reasonable to  define a quantal coarse-grained or Husimi entropy in 

analogy with expression (4.16) by 

and to define a quantal Lyapunov exponent by the growth rate of SH/k. Takahashi 

[lo] studied the behaviour of the Husimi entropy SH for a double-well potential 

system, but did not attempt to  relate the growth rate of SH to a quantal Lyapunov 

exponent. 

Figure 4.11 presents plots of the Husimi entropy SH(t) calculated using equation 

(4.18) and using both the chaotic and non-chaotic standard parameters for the DQO 

(base 10 rather than natural logarithms were used here to allow comparison with 

the previous figures). The arbitrary constant was given the value A = 27rtie so 

that SH(0) = 0 for the initial Gaussian states. The chaotic case classical contour 

length of section 4.2.1 is included in figure 4.11 for comparison. The results are now 

familiar: whereas SH(t) grows initially much more rapidly in the chaotic than in the 

non-chaotic case, no well-defined region of linear increase in SH(t) exists. 



Figure 4.11: Husimi entropy SH(t)/k for the chaotic (solid curve) and non-chaotic (finely 
dashed curve) standard parameters of the DQO. The chaotic classical contour length is also 
shown (coarsely dashed curve). 

4.2.5 Summary 

None of the methods to characterize quantal dynamics examined here provided suf- 

ficiently well defined quantal analogs of the Lyapunov exponent. This is due to the 

value of Ti = 0.02 used in the standard parameter calculations not being "classi- 

cal enough", so that the initial Gaussian state reaches an effective steady state too 

quickly. This point is exemplified by figure 4.6, which illustrates the approach of the 

behaviour of the quantal SqS0(t) to that of the classical version as Ti is decreased. 

Were it possible to perform calculations a t  much smaller h, it is expected that the 

chaotic case quantal curves of figures 4.10 and 4.11 would approach the classical 

contour length curve, and hence provide similar finite-time dynamical information. 

Each technique considered here did distinguish sharply between quantal evolution 

in the classically chaotic and non-chaotic cases, and this is probably the most useful 

aspect of these methods for systems as "non-classical" as the DQO. The methods of 

sections 4.2.2 and 4.2.3, namely studying the growth or decay rates of Aq(t) and Ap(t) 



and &&(t), are in fact closely related through relation (4.9), and are thus expected 

to share the disadvantage, discussed at the end of section 4.2.2, of being sensitive 

to the nonlinear regime. The contour length and entropy methods of sections 4.2.1 

and 4.2.4 are not expected to be as sensitive to  the non-linear regime. Despite the 

apparent arbitrariness in choosing a Husimi contour value, the quantum curves of 

figures 4.10 and 4.11 exhibit remarkable similarity, an indication of the consistency 

of the arguments of sections 4.2.1 and 4.2.4. 



Chapter 5 

Conclusions 

An attempt has been made throughout this thesis to employ the correspondence 

principle in the following way. While many classical quantities and properties ap- 

pear strictly to have no quantal analog, we do expect to be able to construct some  

quantities or consider some properties in quantum mechanics which nevertheless do 

approach the required classical behaviour in the classical regime. Studying these 

quantum mechanical quantities and properties should help reveal how classicality 

emerges and can also provide useful ways of characterizing purely quantal dynamics. 

The DQO model has demonstrated the usefulness of this approach in the construc- 

tion of quantal phase space distributions, in the study of displaced motion reversals, 

and in the examination of (finite-time) quantal measures of chaos. 

In chapter 3 the evolution of phase space densities and distribution means and 

widths was studied, for initially well-localized quantal and classical states in both 

chaotic and regular zones of the DQO. For short times in the chaotic case, and for all 

examined times in the non-chaotic case, Ehrenfest's theorem was found to be valid 

and very good agreement was observed between classical and quantal distributions 

(and hence their lower moments). This result was explained by the mathematical 

notion of practically classical behaviour: the Wigner density evolves essentially ac- 

cording to the Liouville equation when the state is localized within the linear (or 

Ehrenfest) regime. In the chaotic case the states remain so localized for a much 



briefer time than in the regular case. 

In the chaotic case after Ehrenfest's theorem becomes invalid, classical and quan- 

tal smoothed phase space densities and lower distribution moments agree reasonably 

well, with the degree of agreement improving as the scaled ti decreases. This aspect of 

the results was explained by showing that the Husimi density evolves essentially ac- 

cording to the Liouville equation in the classical regime, where typical system actions 

are much greater than Ti. 

The practical importance of these two limiting cases of quantal evolution must be 

stressed. The conditions of validity for these two cases, carefully stated in sections 

3.4.2 and 3.4.3, tell us when we can substitute quantal calculations with less time- 

consuming classical ones. 

In chapter 4 the DQO also proved useful in examining quantal analogs for various 

means of characterizing classical chaos. It was shown, using the idea of a displaced 

mot ion reversal, how quant um states in the classical regime can exhibit essentially the 

same sensitivity to perturbations and effective irreversibility that classical systems 

can, despite the well-known quantal stability to perturbations in the state vector. In 

addition, a number of techniques for quantitatively characterizing quantal dynamics 

in a way that generalizes the classical Lyapunov exponent were presented. Although 

such quantal exponents could not be sufficiently well defined for the DQO, it was 

possible to distinguish sharply between the quantal dynamics in the classically chaotic 

and non-chaotic cases. The method of examining the growth of the Husimi entropy 

was perhaps most free of arbitrariness and sensitivity to the nonlinear regime. 

One issue raised in the Introduction has yet to be addressed: that of the algorith- 

mic incompressibility of classical trajectories versus the compressibility of quantum 

mechanics which Ford et al. [20, 191 have described. Recall from the Introduction 

that an apparent paradox arises when one notes that, as Ford et al. have shown, 

the number of initial state significant digits required to to calculate a final state 

to some particular accuracy grows linearly with propagation time classically, but 



only logarithmically quant um mechanically, for classically chaotic systems. Hence 

it might appear that one could exploit the correspondence principle and circumvent 

the difficulty of performing accurate classical calculations in chaotic systems by doing 

numerically easier quantum mechanical calculations sufficiently deep into the classi- 

cal regime. Recalling the discussion of motion reversal in section 4.1, the resolution 

should now be readily apparent: calculating a wave function (or any quantity derived 

from it) to some number of significant digits is by no means physically equivalent to 

calculating a classical trajectory to the same number of digits. 

It is worth illustrating how a quantum mechanical calculation will indeed be just 

as "difficult" as a classical one if we demand from both theories the same physical 

information. Consider first the classical case, and for convenience, choose units so 

that accessible position and momentum coordinates are of order unity. Specifying a 

trajectory (at some time) to  n significant digits is then equivalent to describing the 

system by a Liouville density whose width is of order NOW, as explained in 

section 4.2.2, the width of this density grows exponentially with time for a chaotic 

system, for long enough times and if the Liouville density lies within the linear regime. 

Therefore, the width of such a density at the initial time t = 0 must be decreased 

exponentially with propagation time t f  if the final width (at t = t f )  is to have some 

particular fixed value. Because of the above connection between distribution widths 

and trajectory accuracy, Ford's statement of incompressibility in classical mechanics 

follows immediately; namely, that the number of digits needed to specify an initial 

trajectory must grow linearly with t f ,  for fixed final accuracy. 

In the quantal case, rather than ask how fast accuracy diminishes in a wave 

function calculation, let us ask the same question as was asked classically. That is, 

how small must the width of an initial wave packet be (in other words, how well 

must the initial position and momentum of the particle be known) in order that the 

final packet have some particular width? Because the packets are restricted to the 

linear regime, the quantal evolution will be practically classical (as defined in section 

3.4.2). Thus the classical argument of the previous paragraph applies here, implying 



that the quantal evolution is as incompressible as the classical evolution. We must 

only keep in mind that tf must not be so large, or the final width so small, that 

the initial widths cannot obey the uncertainty principle. These concerns of course 

become irrelevant as ti + 0. 

Note in addition that we can estimate the largest value of tf consistent with the 

uncertainty principle by an argument parallel to that leading to expression (3.69) for 

the Ehrenfest time. We must only replace tEhr with t f ,  and Lv with the width of the 

final state here. This gives us the upper limit tf N -(lnti)/X. We can, in a purely 

formal sense, imagine reducing our scaled ti to make tf as large as we like. To do 

this, we would thus require ti N exp(-Atf). This point is akin to that made at the 

beginning of section 4.2, namely that the formal, mathematical structure of quantum 

mechanics is capable of providing the classical Lyapunov exponent to any required 

accuracy. 

It is worth making a few last general remarks on the results discussed in this 

thesis. For classically chaotic systems, Ehrenfest's theorem was shown to be valid 

for only very short times (on the order of the inverse Lyapunov exponent), which 

severely restricts the usefulness (in the context of the first paragraph of this chapter) 

of attempting to  construct a quantal analog of a classical trajectory. Nevertheless, 

we can still use classical distribution mechanics to accurately describe quantal evo- 

lution in the classical regime. That a quantum state evolves essentially as a classical 

Liouville distribution in the classical (or indeed linear) regime is a purely mathemat- 

ical result and is independent of what physical interpretation one might attach to 

the state vector. Such a mathematical result can perhaps suggest, but cannot imply, 

a particular physical interpretation. We can only say with certainty that, even for 

pure states, sufficiently coarse-grained quant a1 probabilities behave essentially like 

classical distributions in the classical regime. That a classically chaotic quantum 

state can rapidly fill a macroscopic chaotic zone does, however, urge us to consider 

the physical meaning of such a state. 



As a final note, recall from the Introduction the importance to classical mechanics 

of the revelation that chaos can be present in few-degree-of-freedom systems. This 

chaos is characterized by a rapid loss of "predictability" for trajectories, or equiva- 

lently by a rapid spreading of distributions. The main quanta1 consequence of this 

classical result would appear to be that the single-trajectory Ehrenfest view cannot 

be relied upon, and distributions become an essential component of the description 

of the classical world. 



Appendix A 

The Driven Harmonic Oscillator 

Our goal is to determine the quanta1 time evolution of an initial Gaussian state in a 

driven harmonic oscillator. The Hamiltonian for this system is 

where m is the mass, k the spring constant, and Q and P the position and momen- 

tum operators. The system is driven at  frequency w1 and amplitude a. A solution 

will be sought using an operator algebra approach. Throughout this Appendix, op- 

erators and classical quantities will be indicated by upper- and lower-case symbols, 

respectively. 

We will consider a Gaussian initial state with position standard deviation a, equal 

to the field-free harmonic oscillator ground state value of [h/(4km)1/2] 'I2. Thus we 

will look for a solution in the form of a Gaussian displaced in position and mo- 

mentum from the harmonic oscillator ground state, denoted (O) ,  or in coordinate 

represent at  ion 

(40)  = [w 
The displacement of the ground state is accomplished with the displacement operator, 

D(q(t), ~ ( t ) ) ,  defined by 



where the classical variables q(t) and p(t) are the time-dependent displacements in 

position and momentum, respectively. To see this, note that the identity 

which holds when the operators A and B satisfy [A, [A, B]] = [B, [A, B]] = 0, allows 

us to write 

D(q(t), P(t)) = 
,ip(t)Q/fLe-iq(t)PlfLe-ip(t)q(t)/2fL (A.5) 

From this last expression we can see that D(q,p) does indeed perform the required 

displacements, aside from the coordinate- and momentum-independent phase factor 

e-ip(t)q(t)/2fL, SO that D(q, p) 10) represents a Gaussian state with mean position q and 

mean momentum p. 

Thus we will look for a solution to the Schrodinger equation 

in the form 

I *(W = eid' t '~(n(t) ,  ~( t )) lO),  (A.7) 

where +(t) is a coordinate- and momentum-independent phase. The solution will be 

subject to the initial condition 

First, we can evaluate the lhs of the Schrodinger equation (A.6) using (A.7) and 

expression (A.5) for D, giving 

Note that here I take the state 10) to be time-independent, and absorb the usual 

ground state time dependence into the phase factor ei4@). 

To put the rhs of (A.6) into a form like (A.9), we need the commutation relations 



which are straightforward to  derive from (A.3). Several applications of these com- 

mutation relations give 

- i -i 1 1 
( t ) )  = - [- p2 + -kQ2 + a ~os(w't)Q] e i 4 ( t ) ~ ~ ~ )  
ti ti 2m 2 

- -2 . 
- 

1 1 
-ez4(t) { [2 hw + a cos ( ~ ' t ) ~  D + [kq + a cos(wlt)] Q D  
ti I 

Here the relation 

where w = (k/rn)ll2, has also been used. 

Now, comparing (A.9) and (A. l3), the Schrodinger equation can be satisfied if 

we set 

Equations (A. 15) and (A. 16) are just Hamilton's equations for a classical particle with 

position q(t) and momentum p(t) subject to the classical Hamiltonian corresponding 

to (A.l). Thus the quantum state will propagate as a Gaussian with mean position 

and momentum following the well-known classical trajectory for the driven harmonic 

oscillator, 
a 

q (t) = b cos (wt + go) + cos (w't) , (A.18) 
m(wI2 - w2) 

where the constants b and go are determined by the initial values qo and po. To 

simplify expressions to follow, I'll only consider initial conditions with po = 0. This 

gives 



The last step is determination of the phase factor by straightforward integration 

of (A.17) using (A.18) for q(t). The result is 

Combining equations (A.2), (A.5), and (A.7), the solution in coordinate representa- 

tion can finally be written 

where $(t), q(t), and p(t) are given by equations (A.21), (A. l8) ,  and (A. 15). 
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