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Abstract

Many interesting conjectures have been made about the location of zeros of a given poly-
nomial p and the location of zeros of related structures. The first relationship known to be
investigated systematically is between nonreal zeros of p and the so-called Fourier critical
points of p. Gauss dealt with this problem in 2 vague way in 1833. His work was continued
by Pélya. We will state and prove rigorously that such a relationship can be found, except
for certain limiting cases. A more recent conjecture by Craven, Csordas and Smith about

the zeros and the zeros of the Wronskian of p is cited and investigated.

This thesis follows a new approach to these problems: A graphical package has been pro-
grammed that. running on graphical workstations, lets one interactively design and modify
polynomials by their zeros: it also allows one to compute related structures, and visualize
them with various internal and external graphing tools. Its usage and applications are also

described in this thesis.

iii



Quotation

Are vou still taking as much delight in the guest for
truth as you were? Truly. it is not the knowledge.
but the acquistion. not the presence. but the addi-
tion. which renders the meost delight. When 1 clari-
fied and exhausted a topic completely. I leave it. in
order to go back into the dark. Of such a strange
kind is the insatiable man: Once he completed a
building. it is not for him te live in it. but to com-
mence building another one. This I imagine must be
the feeling of an emperor who. no sooner than one
kingdom 1is conquered. already reaches out for the
next.

Carl Priedrich Gauss. tn a letter io F. Bolyei.
Sept. 02. 1808

iv

Macht Dir das Nachforschen der Wahrheit noch
ebenso viel Freude wie sonst” Wahrlich, es ist nicht
das Wissen. sondern das Erwerben, nicht das Da-
Sein. sondern das Hinzukommen. was den grofiten
Genuf gewahrt.

Klare gebracht und erschopft habe. so wende ich

Wenn ich eine Sache ganz ins

mich davon weg, um wieder ins Dunkle zu gehen;
so sonderbar ist der nimmersatte Mensch: Hat er
ein Gebaude vollendet, so ist es nicht, um darin zu
wohnen, sondern um ein anderes anzufangen. So,
stelle ich mir vor. muBl einem Welteroberer zu Mute
sein, der, nachdem ein Konigreich kaum bezwungen

ist, schon wieder nach andern seine Arme ausstreckt.

Carl Friedrich Gauf. en F. Bolya:, 2.9. 1808
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Chapter 1

Introduction

This thesis is based on two interesting. and incompletely answered. questions related to the
geometry of real or complex polynomials. A quick overview of the two conjectures is given
here. ar this point without all the necessary definitions. A full discussion of them is reserved

for Chapters 2 and 3.

Let p be a polynomial with real coefficients.

Conjecture 2.16 {Gauss. 1833}!: There exists a definite one-to-one relationship between

the pairs of conjugate non-real zeros of p and the Fourier critical points of p.

Conjecture 3.11 {Csordas. Craven. Smith. 1990)2: The number of real zeros of the Wron-

skian of p does not exceed the nnmber of nonreal zeros of p.

The first conjecture {in a modified version} will be proved in this thesis. and an approach

to the second conjecture will be outlined.

When one looks at articles in the field of the Geometry of Polynomials. especially at arti-
cles from the turn of the centiry and earlier. one finds only a few graphical illustrations.
Topics are dealt with and results are presented in a purely analytic way, and one would
naively assnme that graphical illustrations of these problems only existed in the heads of
the ingenions people who worked on them. Bnt of course. there is a different reason: Until

recently. it required a tremendous effort to draw exact graphs. Even apart from drawing,

FGauss did not conjecture this so much as question it. as will be shown in Chapter 2.
*This conjecture has been imcorrectly attribuied to Gauss. as we will remark in Chapter 3.
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computing points with sufficient exactness to produce a smooth graph was a tedious and
time-consuming job. Gauss complained explicitly about the effort he took in drawing a
simple-looking diagram in his Doctor’s thesis ([9]. see also Figure A.1 in the Appendix). In
a letter to his friend Schumacher [11]. he wrote that he would most certainly not be able
to spend the immense amounts of time necessary to draw graphs for all cases of Conjec-
ture 2.16. It appears that this was the major reason that prevented him from pursuing his

conjecture further.

Nowadays. tools for graphing and illustrating are readily available since graphical terminals
turned the previously text-oriented computer world into one with colourful windows. icons
and images. Similarly. high-level tools for symbolic computation have been developed and

are continuously expanding. doing all the computations for plotting graphs in a few seconds.

However. these tools have not been exploited very much to find proofs for conjectures like
these. One reason might be that they are still somewhat rudimentary. While output can
be graphed in almost any imaginable way, the formulae and data to generate them still
have to be typed in as text {(or at least loaded from a text file). We found it desirable to
possess a completely graphical user interface, that not only allows us to input and modify
data on a graphical screen. but also responds graphically at the same place. thus enabling

user-computer interaction in its true meaning.

A step in this direction taken in this thesis is the development of the attached package,
xzero. xzero lets one create and manipulate polynomials up to a multiplicative factor, by
defining their zeros in a “virtual™ complex plane on the screen. Computations on these
polynomials can then be done by calling the implemented operations. Depending on the
nature of the results. they will be graphed in the same area, allowing direct comparison
with the input data. Or they will be graphed in a separate window, or simply displayed as

plain text. It is also possible to define one’s own procedures to generate specific results.

The spectrum of applications of xzero is restricted to polynomials, but otherwise quite
zeneral. As examples, the two conjectures cited above have been examined. For the first
¢uestion. iilustrations generated with the aid of xzero wiil be presented along with the proof.
Some experimental results towards Conjecture 3.11 obtained with xzero will be shown in

Chapter 5.

In Chapter 4. we will describe the system requirements and general usage of xzero. This

chapter may be referenced as a manual to the program. Technical details on configuring
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xzero. writing one’s own procedures and programming strategies used in writing xzero are

left to the appendix. and to the documentation within the xzero package.



Chapter 2
Gauss’ original conjecture

One of the interesting things a student learns in a calculus course is that the coeflicients of
the derivative of a polynomial p can easily be determined from the coelficients of p: They
are just multiples of the next-higher coefficients. However, when looking at the zeros of
p and its derivative, one doesn’t find such easy relationships (except that the number of
complex zeros must decrease by one per derivative taken). One must wonder if there is a
relationship at all. This question has, in some sense, been open for more than 160 years.
We will rephrase this question in this chapter, and give a positive answer to the modified
question. Throughout, we assume p to be a real polynomial, or equivalently: to have real
coeflicients, unless explicitly stated otherwise. We do not allow p to be the null polynomial.
(We will write P for the set of all such polynomials.) The set IN of natural numbers is

understood to be the set of posifive integers, thus excluding 0.

2.1 The coefficient sequence of a polynomial

The way in which many mathematicians of the 19th century viewed polynomials appears
quite complicated nowadays. Instead of the derivatives of a polynomial, they studied the
sequence of its coefficients, and particularly, sign changes occurring in this sequence. We
will first examine this way of describing polynomials and explain how it is related to the
modern. more comprehensive notation of the derivatives of a polynomial. This description

essentially follows [24]. pp. 28ff.
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Definition 2.1 For z € IR. construct

n

plE+z) =3 ci(z)€r

k=0

and define the vector
o{z) = (op(T)...0n(T)) = (sgn k(T ))k=0....n
which contains the signs of all coefficients of p.

Using the notion of the derivative, this can be written in the following more familiar-looking

form:

Corollary 2.2 For every k =0, .... n. and every ¢ € IR, we have cp(z) = El[p(’“"(x), and

o(x) is elementwise equal to the vector (sgnp(’“’(x))kzo’___’n, where p0 = p.

Proof: This is an easy calculus exercise. 0O

The vector o(z), regarded as a vector-valued function in z. provides a “ternary” description
of p. in that its components take only the values —1, 0, and 1. The “points of interest” in
the behaviour of o(x) are those points where some components of o(z) vanish, because they

are the points of possible sign changes. The following theorem states this more precisely:

Theorem 2.3 Let a and b be real numbers. and a < b. If o(a) # o(b), then there ezists a

point z € [a.b] at which g(z) contains a zero component.

Proof: If either o(a) or 6(b) has a zero component, we have nothing to show. Otherwise,
there exists an index k such that sgnp*)(a) = —sgnp'¥)(b) # 0. From the intermediate

value theorem follows the existence of a point = € {(a,b) where p'*)(z) is zero. a

For convenience, we denote as zero points all points where p or one of its first n derivatives
is zero. i.e. where some o(z) are 0. In this seiting, the preceding theorem (in its negated
form) reads that in the open intervals between the (finitely many) zero points, o(z) does

not change. In order to categorize these points further. we need some more terminology:
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Definition 2.4 Let x be a non-zero point. We say. o(z) (or p{z)) has a variation at o (x)
(or at p(k’(m)) if op(z) = —oryi(z). By vp(x) we denote the total number of variations! in

a(zx).

This definition has nothing to do with the definition of variance in Measure Theory. It is

independent of the absolute value of p. In [7], Gauss is speaking of sign changes.

Now how do o(z) and »,{(z} change at the zero points? To answer this for all possible cases,

we recall two results in real polynomial calculus:

Proposition 2.5 Let a be a point where p(a) = 0.

(1) If p changes its sign at a from negative to positive, then there exists a positive € so that

p' is positive in the open interval (a — €,a + €), except possibly at a where p' is nonnegative.

(2) If p does not change its sign at a, then p'(a) = 0, and there ezists a positive € so that p’

is negative in (a — €, a) and positive in (a,a + €).

Both (1) and (2) also hold if the words “negative” and “positive” are exchanged.

Proof: On recalling that the zeros of p and p’ form a discrete set, and that p’ is contin-
uous, these statements are an immediate consequence of the mean and intermediate value

theorems. O

We apply this proposition to analyze how o(z) and vp(z) are affected as z goes through a
zero point ¢. As above, all cases are stated only for positive p(z), or for p(z) changing from

negative to positive, but remain valid if “negative™ and “positive” are exchanged.

Case 1: If p(a) =0, and p(z) (and hence 6¢(z)) changes its sign in a: Then by (1), p’(z) is
positive and does not change its sign. Thus, the variation of ¢(z) at g¢ disappears.

If no other component of o(x) vanishes at a, then v,{z) diminishes by 1 as x goes

through a.
1f r is a zero point, say, such that ox 1(x) = ... = or41(x) = 0, one can define that o(x) has a variation
at ai(x) when ox(x) = —oky141(r). This definition would be consistent to our results, and we will see that

the corresponding value of v,(z) is just the limit of vp(£) as £ N\, z. We will study the behaviour of v,(z) in
neighbourhoods of zero points. and speak of “changes in v,{z) as = goes through the zzro point xo”.



~]

CHAPTER 2. GAUSS’ ORIGINAL CONJECTURE

Case 2: If p does not change its sign. (but possibly p(a) = 0) and p’ changes from negative
to positive: Then again by (1). p” is positive and does not change its sign. Hence,
the variations of o{.c) both at og(z) and o1(z) disappear. If no other component of

o(z) vanishes at a. then v,(z) diminishes by 2 as = goes through a.

Case 3: If p does not change its sign, and p’ changes from positive to negative: Note that
by (2) this can only occur if p(a) > 0. so p has a positive maximum at a. By (1),
p” must be negative without a sign change. o(z) abandons its variation at o((z),
but gains one at og{x). Hence, if no other component of o(z) vanishes at a. then

vp(z) remains unchanged as r goes through a.

Case 4: Neither p nor p’ change their sign. Then p cannot vanish at a, according to (1). If
o(z) has a variation at og(z), it keeps it through a, so v,(z) remains unchanged as

z goes through a, if no other component of o(z) vanishes at a.

Case 5: To each derivative of p that does not change its sign, apply the appropriate choice
out of Cases 2 through 4, to determine the variation of the o;(z) of higher indices

k. The effects of all sign changes add up to the total decrease of v,(z) in a.

Case 5 allows us to handle multiple zero points at a independently, except for zeros in two

subsequent derivatives which must be regarded simultaneously?.

Corollary 2.6 If p(a) = p'la) = ... = p'™ D(a) = 0 and p'™(a) # 0, then the
derivatives p™=2%) (). k = 1..... |31, dont change their sign at a, and the derivatives

pm AUy k=1, 1. change their sign at a. The derivatives p(z),p'(z),....p'™ ) (z)

have alternating sign for a fized x in some interval (a — €,a), and constant sign for T n

(a.a+ ¢€). namely sgnp™(a). Thus. v,(z) diminishes by m, due to this m-fold zero of p.
Proof: Apply (1) and (2) of Proposition 2.5 alternatingly to the derivatives of p. (|
Theorem 2.7

1. The function vp(x) is monotonically decreasing.

*We will use terms like ~t,(r) diminishes by 2 due to p(k)(a)” to emphasize that we disregard possible
farther defects of vp(zx) due to zeros of other derivatives at a.
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2. For every sufficiently large negative a and large positive b, vy(a) = n and v,(b) = 0.

3. The converse of Theorem 2.3 also holds. i.e. o(z) always changes as © goes through a

zero point.

Proof:

1. In any of the Cases above, v,(z) is either constant or decreases when passing a zero

point. In the intermediate intervals, ¢(z) is unchanged. as is v,(x).

2. This foliows from the fact that. for sufficiently large |z|, p and all its derivatives have
the same sign as the polynomial c,z™ and its derivatives. For the latter, the statement
holds for all @ < 0 and b > 0, respectively, since the components of o(a) alternate,

and the components of o(b) are consistently equal to sgnc,.

3. By giving the variations between the k—1st and kth component of o(z) a weight &, the
so modified vf,,w)(:r:) decreases at all zero points, even in the Case 4 above. Therefore,

if @ and b are separated by one or more zero points, then v]([,w) (a) # v,(,w)('b) and thus

o(a) # a(b).

2.2 Fourier Critical Points

As we have seen, describing the behaviour of v,(z) in terms of o(z) is rather complicated.
Fourier took a different (and simpler) approach. He considered points with the following

properties:

Definition 2.8 For a point ¢ € IR where pU=1(a) # 0, pWa) = ptte) = ... =
p(l+m‘1)(a) =0, p'+™)(a) # 0 for some I,m € IN, let k be defined as:

% if m is even
k mEl if m is odd and pU~(a)pF ™ (a) > 0 (2.1)

l "‘._,"1 if m 1s odd and p“"”(a)p(H'm)(a) < 0.

Then a is called a eritical zero of p of order I, (ordinary) multiplicity m, and critical mult:-

plicity k.
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This is not Fourier’s original definition. but rather a refined version due to Pélya [24]. We
will see that the distinction in the case of odd m corresponds to Cases 2 and 3 of the

discussion in the previous section. Note the following peculiarities in this definition:

e Unlike in real calculus, multiple zeros of p are not considered as critical zeros.

e Also unlike in real calcnlus, multiple critical zeros of p are considered only as critical

zeros of order [. not as critical zeros of the next-higher derivatives.

e The case k = 0 is possible — namely, when p)a) =0, and p!=V(a) and p!*V(a) are

both non-zero and have different signs.

e In particular. the zero points that satisfy A = 0 and ! = 1 are the simple negative

minima and positive maxima of p.

e We speak of a Fourier critical zero (see also Definition 2.9) whenever % is strictly

positive.

We will later see that real critical zeros fit much better into the theory when specifying

them with their critical multiplicity, rather than with their ordinary multiplicity.

A point @ may occur as a critical zero of p of several different orders, possibly with different
critical multiplicities. Hence, a term that covers all occurrences of critical zeros at a is in

order:

Definition 2.9 A point a is called Fourier critical point of p if it is a critical zero of p of

some order with positive critical multiplicity.

The (total) critical multiplicity of a is defined as the sum of the critical multiplicities of all

critical zeros at a.

Again we must distinguish between the common definition of critical points, and Fourier
critical points. In particular, a point where all critical zeros have multiplicity 1 and crit-
ical multiplicity 0 is not considered a Fourier critical point. Furthermore, the ordinary

multiplicity of a Fourier critical point is in general not equal to its critical multiplicity.

To illustrate the distinction between critical zeros and Fourier critical points, let us give an

example of a polynomial with two critical zeros at 0.
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Example 2.10 The polynomial p(r) = (£ + 1> = 2! + 222 + 1 has 4 Imaginary zeros.
connting multiplicities. It can easily be seen that p. p” and p'*’ are strictly positive.whereas
p’ and p” cach have one root at = 0. It follows that 0 is a critical zero of p’ and p”’. both
with multiplicity 1 and critical multiplicity 1. Therefore, a = 0 is the only Fourier critical
point of p: its total critical multiplicity is 2. Note that this is also the number of pairs of

nonreal zeros of p. This equality always holds. as we will now show.

Theorem 2.11 If a is a real zero of p with multiplicity m and a Fourier critical point of

critical multiplicity k. then vy{a — €) — vy(a + €) = m + 2k for a sufficiently small €.

Note that m and k are allowed to be 0 here. The case k = 0 means that no critical zero at
a is of positive critical multiplicity. (This case will be included implicitly in the proof.) In

the trivial case m = k = 0, v,(r) remains constant as z goes through a.

Proof: We refer to the case distinction in the previous section. If critical zeros of different
orders, and perhaps a real zero. coincide at a. then Case 5 allows us to regard these zeros
independently and to add up the defects in vp(z) due to all zeros. For a real zero of
multiplicity m. the theorem follows from Corollary 2.6.

Now assume that a is an m-fold critical zero of order ! and critical multiplicity & as in (2.1).
Without loss of generality. we assume that p!!*™)(a) is positive. Applying the first part
of Corollary 2.6 to p'!(a). we obtain that the derivatives pt/{tm=2)_ . pl+m=2IFD are all
positive in some interval around a {(except at a itself). Now Case 2 applies to each of these
[ 5] derivatives, and the defect of v,(x) due to them amounts to 2|3 ]. It now remains to

check the derivatives pt~1’ and p!!’ in all possible cases:

e If m is even (first line in (2.1)}. then, as said above, p“*""'z[?“ = p“) does not

change its sign; nor does p!f~1)

any further. Hence the total defect of vy(x) at a is m = 2k.

. So Case 4 applies, in which v,(z) does not decrease

e If m is odd, then p!*)(z) changes from negative to positive.

— If further p!*~"){a) > 0 (this corresponds to the second line in (2.1)), then Case 2

applies, in which v,(x) diminishes by 2, due to p=1). Hence, the total defect of
vp(z) at a is 2[—';—_[ +2=m+1=2k.
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— Otherwise. if pt/~!}{a) < 0 (third line in (2.1)). then Case 3 applies, in which
vp(x) does not decrease any further. Hence. the total defect of vy(x) at a is

2% =m—1=2

In either case. v,(r) diminishes by twice the critical multiplicity of a. as specified in Defini-

tion 2.8. This completes the proof. a

Since every non-zero polynomial has only finitely many zero points. we can extend this
“local”™ theorem to an {almost) arbitrary interval which may cover several zeros and critical

points of p.

Theorem 2.12 If a and b are non-zero points of p. a < b, then

vpla) —wp(b) = Y ple)+2 Y k(z.,) (2:2)

a<r,<b a<rqr<b
where . and z.,. are the roots and Fourter critical points of p with multiplicities pu(z.) and

critical multiplicities k(zx.,.). respectively.

This is commonly referred to as Fourier's theorem. In [24, 13] (see Arpendix A), the case

that a or b are themselves zero points is also dealt with. We will not need these extensions.

Proof: For every zero z € (a.b). aneighbourhood (z—e¢, +¢) can be found so that Theorem
2.12 applies. giving v,(T —¢€) — v (x+€) = p(z)+2k(z). From Theorem 2.3 it is known that
u,(x) doesn’t change in the intermediary intervals, and that v,(z) monotonically decreases.
Therefore. the defects in vp(x) due to each zero point can simply be added together. Note
that critical points which are neither roots nor Fourier critical points don’t contribute to

these sums and are antomatically disregarded, because k(z.) = p(z..) = 0. 0

From Equation (2.2) we obtain an inequality which will prove useful much later in this

chapter:

Theorem 2.13 With a and b as defined in Theorem 2.12, let m and m' be the number
of real zeros of p and p’ in (a,0). respectively. counting multiplicities. Let further c be the
number of critical zeros of order 1 in (a.b). counting critical multiplicities. Then we have

the inequality m+2c—1<m' <m+2c+1.
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Proof: First. observe that the value of the first sum term in {2.2) is just m. Now apply
{2.2) to the derivative of p. It is clear that vy (x) counts the same sign changes as v,{x) does,
except for a possible sign change at p. and thus may be lower than v,(x) by at most 1. On
the right-hand-side of {2.2) for p’. the first sum is exactly m’. and the second sum is taken
over all critical zeros in {a.b). except for those of order 1 with their critical multiplicities,

which were accounted for as ¢. Hence (2.2) for p’ reads:

1;y4(a)—11p:(b)=m'+2( > k(zer) ——c) (2.3)

a<zror<b

Now we take the difference between (2.2) for p. and (2.3). We obtain

(vpla) — vy {a)) — (vp(b) — vy (b)) =m+2c—m' (2.4)

According to our previous observations. both left-hand terms can be either 0 or -1, so the

value on the left-hand side of (2.4) lies between -1 and 1. This proves the theorem. O

Keeping in mind that, according to Part 2. of Theorem 2.7, there exist real values a and b
such that v,(a) — vp(b) = n, we get the following

Corollary 2.14
n=7) wz)+2) kze) (2.5)

Ler

where the summation is taken ower all roots . and Fourier critical points T of p. and

1£(z.) and k(z..) are their respective multiplicities and critical multiplicities.

The first sum in (2.5) is just the number ¢ of real roots of p, counting multiplicities. If d
denotes the number of pairs of non-real roots of p. then n = ¢ + 2d, and (2.5) is equivalent

to the following

Theorem 2.15 The number of Fourier critical points of p, counting critical multiplicities,

equals the number of pairs of nonreal zeros of p, counting multiplicities.

Pélya has generalized this theorem for analytic functions of order less than % with finitely
many nonreal zeros, instead of polynomiais {24]. He also conjectured that this can be
extended to functions of order at most 1, which is now proved and extended to functions of

order less than 2 [3]. But these generalizations are not of relevance to our further discussion.
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2.3 Gauss’ Conjecture

Fourier eritical points were defined first in [6]. a work which remained incomplete. due to
Fourier's death. In his announcement of this work to the scholars in Gottingen. Gauss
mentioned an ambignity he had found. He said that from Fourier’s work it followed that
a polynomial “has as many pairs of imaginary roots as critical points™ [7]. However. he
pointed out that Fourier did not mean this as “each [critical point] belonged to a specific

1

pair of imaginary roots™ [T}{or at least that he did not prove it). This question leads to the

Conjecture 2.16 There erists n definite. natural. one-to-one relationship between the

Fourier critical points and the pairs of conjugate nonreal zeros of a polynomial.

This conjecture is very vague. One may say, too vague to be taken seriously. In their papers
referenced here. neither Gauss nor Fourier suggested an algorithm that would define such
a bijective relationship. More than anything else, Gauss was doubtful if such a relationship
existed at all. and suggested the same about Fourier [10]. In general, the conjecture is indeed
false. Any polynomial that has critical zeros of critical multiplicity greater than 1 provides
a counterexample. because a multiple critical zero would have to be assigned to more than
one pair of nonreal zeros. Also. Gauss failed to consider critical points of higher orders. One
can only guess that with this too simplified view, the problems he encountered in examples
he was checking led him to the conclusion that such a relationship in general does not exist.
He mentioned his view in a letter [10] to his friend Schumacher. Three years later, he spent
some more time on finding a relationship. and wrote to Schumacher that he found it “quite
probable to find a connection™ after ail [11]. Then again, just three days later. he changed
his opinien and suggested that “there is no common, natural. non-arbitrary relationship ...
at all”. He mentioned that in order to prove or disprove this, he would have to examine
and visualize a large number of special cases. a task which he doubted he could accomplish

[12]. (See also the remarks in Chapter 1.)

Apparently. Ganss gave up his investigations at this point. He didn’t leave a suimnmary of
his investigations behind. so one can only hypothesize what kind of relationship he sought.
Other authors suggested he meant some geometric relationship. and came up with partial
results [3. 20. 24]). Most of these results restrict the possible locations of the Fourier critical

points. depending on the location and density of the zeros. Some of them will be presented
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in the last section of this chapter. But none of them are general. in that they do not resolve

rhe conjecture compietely.

Instead of this conjecture. we will now state a more precise but general theorem. Let Z(p)
be the set of pairs of conjugate non-real zeros. and Fip) the set of Fourier critical zeros of

p of any order. We distingnish between enitical zeros of different order at the smne value.

Theorem 2.17

1. There exists an algorithm which, qiven any value ¢ € (0. =y and any polynomialp € P,
determines a mapping fp. from a partition of Z(p) to subsets of Fipi. No cluss of
this partition 1s mapped to the empty set. and every point 1n Fip) is assumed at least

once.

2. Consider a fired polynomial p. If no nonreal zero or critical zero of p is multiple. then
the function f, . for all but a finite number of values ¢ € {0. ) maps one-element sets

to one-element sets, and can be wdentified unth a surjective function f, . : Z(p) — F(p).

3. If all Fourier critical zeros are of critical multiplicity 1. then f, . maps a partition of

Z(p) to classes of a parfition of Fip}.

If the conditions tn 2. and 3. hold. then all but a finite number of rvalues ¢ € {0.7)

Lo

define an f, . that maps one-element sets 1:1 to one-clement sets. and f, . can be

wdentified with a bijective function f, . : Z(p) — F(p).

The most common case in fact is 4. where we can find a family of mappings all but finitely
many of which are bijective. After introducing some tools {Sections 2.4. 2.5. 2.6}. we will
outlinie the ideas of the proof by some examples {Section 2.7). The proof itself {Section 2.8)
will be constructive, that is. we will deseribe an algorithm that. given a polynomial p and a
value ¢ € (0.7). lets one uniquely determine a mapping f, .. Also. we will be able to decide
whether f, . can be identified with a surjective. or even bijective function f, . : Zip) — F(p).
Note however that we don't claim to have an algorithm that determines a bijection. or even
just a function f,. : Z{p} — F(p) for every polynomial p € P. In fact. for all values
c € {0.7). one can find a polynomial {without multiple zeros or critical zeros) for which ¢

provides an exception. This problem will be further discussed in Section 2.9.



CHAPTER 2. GAUSS ORIGINAL CONJECTURE 15

2.4 The Logarithmic Derivative

The logarithmic dertrative of a polynomial is widely used in the literature. as a helpful tool
to examine properfics of polynomials in the complex plane. It will also play an essential

rote in our proof.

In rhkis section. p may be an arbitrary complex-valued polvnomial of degree at least 1. Unless
otherwise stated. we define n as the number of roots of p. not counting multiplicities. We
define the logartthmic derirative of p pointwise as {logp)'{z}. for any complex point = at
which p does not vanish: logp 1s chosen as an analytic branch of the logarithm in a simply
connected region contaiming z. but no zero of p. Likewise. we define the second logarithmic

dertratire of p as the second denivative of logp at z.

This definition expiains the name “logarithmic derivative . but is too complicated to handle.
Keeping in mind that the derivative of any analytic branch of log z is just 1/z. and applying
the chain amd quotient rules of differentiation. we immediately obtain the following two

relationships:

Corollary 2.18 At any = where p does not vanish. we have

L]

riz}

tlogplizy = m (2.6)
. {z) II':»_ "zj;d‘)
Hogpyizy = MWL LAY (2.7)

p(z)

Becanse of its much simpler form. we wiil henceforth denote the loganthmic derivative as
%- and the second logarithmic derivative as (%)! From {2.6) we infer that the zeros of p
are poles of 5;:: by its definition. % is analytic evervwhere else. The zeros of % are exactly
the zeros of p’. except for the multiple zeros of p. Recalling that a k-fold zero of p is also a
zero of p’ of multiplicity & — 1. we find that every pole of %’ is single. Hence. the degree of
the denominator of % is n. From degree considerations we obtain that % has a single zero

at . and that ?;—; has 7 — 1 zeros. connting multiplicities. Note that the zeros of % may

e

save arbitrary multiplicity. as the example p{z} =

For the second logarithmiec derivative we find the following analogous results:

o A
e The poles of ( %) are exactly the zeros of p: their multiplicity is always 2.
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N
e > is a zero of ( %) of multiplicity 2.

£y F
. (%) has 2n — 2 finite zeros. counting multiplicities.

8
The zeros of ( %) will be further studied in Chapter 3. although they will be of some interest

in this chapter.

If we factorize p by its complex zeros. we obtain the following standard but useful result:

Corollary 2.19 Let p(z) = af{z — ay Y1 {z—an)* be a polynomial with roots 1, ..., a,

of multiplicity ky. . . .. k.. respectively. Then we have

7 n k-
S =3 (2.8)

and

T n ks
(‘i) (1=-Y o—h (2.9)

Proof: Applying the logarithm. we get

(logp)(z) =loga+ Y _ kjlog(z — ;)
Jj=t

where the logarithms on the right-hand side are suitably chosen. Differentiating once and
twice yields the above two relationships. independent of the choice of the branches of the
fogarithms. O

A nice physical interpretation of (2.8) is the next theorem. apparently due to Gauss [8. 27]:

Theorem 2.20 Let a field of force be given by n numbered particles 1... .. n of unit weight

located at the {(not necessarily distinctj powmis o, .. .. ay,. Let each particle j repel an object

at a given point = with a force equal to the inverse distance veclor ,__la . and the total

¥
force F{z) on the object be the sum of the forces due to each particle. Then the points of
equibibrium (F(z) = 0) are ezactly the zeros of Bpi.
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Proof: This is just another way of writing (2.8). In order to handle a k-fold zero of p. onc
can either attach k particles of unit weight at the same point. or, equivalently. assign an

integer weight to each zero. corresponding to its multiplicity. a

Gauss stated and proved this theorem in 1816. so when he studied Fourier critical points in
1833. he must have known that the logarithmic derivative was a potentially useful tool. So
one may suggest that he tried to find a proof of Conjecture 2.16 that involves the logarithmic

derivative.

For polynomials with real coefficients. we know that their zeros are either real, or come in

conjugate-complex pairs. By a simple calculation, we show for each such pair a,@ that:

1 " 1 2z-a-a 2(z - R(a))
z—o z—a_(z—a)(z—a)—22—225}?(,a)+|a]2’

and hence. (2.8) can be rewritten as

p’ k; bi(z — 2.
Il_(z) = Z — +2 Z i ij) ] (2.10)
p a, real 2 Y oymr gy (2T 45

y1>0

This lets one qualify the behaviour of %l on the real axis:

Corollary 2.21 For p € P. let | be the minimum real part and z,, be the mazimum real

part of all zeros of p. Then %' is negatwe for < x| and positwe for z > x,,.

Proof: This is because all terms in (2.10) are negative/positive, respectively. 0

Before we return to the study of the logarithmic derivative, we will introduce the next

definition for arbitrary rational functions.

2.5 Loci of points of prescribed argument

In this section, let r be a non-constant rational function. and ¢ be a value in the interval
{—7. rr}:}. Let further Z(r) and P(r) be the set of zeros and poles of r, respectively. We call
a point z w-point (or critical point) if r'(z) = 0, but r(z) = w # 0. The multiplicity of a

w-point is defined like the ordinary multiplicity of a critical zero of a polynomial.

Ve define this as the range of the principal valze of Argz for z € €, z # 0.
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Definition 2.22 The set
L (r)={z: Argr(>) == ¢}
is called the locus of points of r of constant argument c.

We will simply call the sets L.(r) locz. since we will not deal with any other type of locus,
and the choice of r and c¢ is clear from the context. Lucas [16] and Walsh [27] contain a
thorough description of these loci in the case that r is a polynomial. The properties stated

there can be easily generalized:

Proposition 2.23

1. Two different loci L. {r) and L. {r) are disjoint, and the union of the loci for all

arguments ¢ € (—n. 7] is just €\ (Z(r) U P(r)).

2. If zo is a point on L (r). and r'(29) # 0. then in a neighbourhood of zp, L.(r) consists

of an analytic arc thrugh zy.

3. If zo is a w-point on L.(r) of multiplicity k, then in a neighbourhood of zy, L.(r)

consists of k + 1 analytic arcs intersecting in z at angles of Z5.

4. If zg9 1s a zero/pole of r with multiplicity k, then k arcs terminate in zp with angles
2w [k between adjacent arcs. Furthermore. the k arcs each of two loci L., () and L, (r)
terminate in zg with angles i(clk;c’) between an arc of L. (r) and an adjacent arc of
L., (r). (The negative sign is to be used in case of a pole. the positive sign in case of

a zero.)

3. No arc of L.(r) terminates in a point other than a zero, a pole, or the infinite point.

it follows that every locus can be subdivided into a finite number of analytic Jordan arcs
which connect poles, zeros, and possibly the infinite point. These arcs may intersect at
w-points of r. We call divide these arcs of L.(r) into segments, such that every segment has
two points of the above types as its endpoints, and does not contain any other w-points. We
now assume that the degree of the denominator of r exceeds the degree of the numerator by
some positive integer k. {Of course, the statements can be generalized to arbitrary rational
functions. but that is not needed here.) The following specifies how many segments of L.(r)
are infinite.
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6. If r(z) has a k-fold zero at >c. then every locus has ezactly k infinite segments. These
segments asymptotically behave as lines at angles of 2w /k to each other. The seqments
of twe loct L. (r) and L., (r) asymptotically behave as lines with angles A2 between

a segment of L. (1) and an adjacent segment of L., (r).

7. Along a single segment of any locus. |r(z)| is strictly monotonic.

This allows us to define a direction on the segments of a locus. At a zero (including the point
of infinity). pole. or w-peint zp, we call a segment incoming (outgoing) if |r(z)| decreases
(Increases) as z tends to zp along the segment. In other words, if one passes a segment in the
direction of decreasing |r(z)}. this segment is outgoing at its starting point, and incoming

at its endpoint.

8. All segments at a (finite or infinite) zero are incoming. All segments at a pole are

outgoing.

9. The 2k + 2 segments at a w-point are alternately incoming and outgoing, i.e. two
seqments at an odd multiple of the angle k_I—_I have different directions. In particular,

the number of incoming segments equals the number of outgoing segments.

10. No segment can both begin and end in either a zero or a pole, or in the same w-point.

Note that despite 10.. L.(r) may contain closed arcs consisting of two or more segments.

Examples will be given in Chapter 3.

Proof: Remember that L.(r) is the inverse image (with respect to ) of a ray v of points

w with Argw = ¢. We will prove the Parts 1. to 10. in a slightly different order.

1. This follows immediately from the fact that at every point z except at zeros and poles,

r(z) has a well-defined argument.

2. Asr has no poles in a neighbourhood of zg, it is analytic around zp. Since also r'(29) # 0,
7 is locally conformal and has a locally defined (also analytic) inverse which is likewise
conformal (see [1]. p. 132f.). So we find that r~! maps a small piece of the ray -y through
r(zg) into a single analytic arc of L (r) through 2.
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4. To handle zeros and poles consistently. we use negative values to denote the multiplicity
of poles. Since translations in z don’t affect the angles between loci, we can assume that
zg = 0.
Let us first assume 0 is a single zero of r (i.e. & = 1). Then 7/(0) # 0. and. as in 2..
r has a locally defined. conformal inverse +~' with #~!(0) = 0. Let as above 7. v; and
72 be the rays of points with arguments ¢, ¢, and c3, respectively. Then r~! maps a
small closed segment of ¥ U {0} with the zero point as one of its endpoints into a single
analytic arc of L.(r). likewise with 0 as one endpoint. (Which gives the trivial angle of
27 between two segments of L.(r).) Furthermore, the angle ¢y — ¢) between v, and ¥ is

preserved under !, so L¢ () and L, (r) also have an angle c2 — ¢; at 0.

Now let 0 be a k-fold zero (or a (—k)-fold pole). Then r must be of the form
w=r(z) = zFq(z) (2.11)

where ¢ is a rational function that does not have the factor z either in its numerator or
denominator. This implies that ¢ is analytic, and ¢(z) # 0, in a neighbourhood N(0).

Then (2.11) can be rewritten as

v=w'* = zq'/*(2). (2.12)

where any of the k possible roots can be chosen for w!/*. In either case, the corresponding
choice of the function ¢'/*(z) is analytic and nonzero in N(0). Thus, s(z) = zq'/*(z) is
also analytic, it has a single zero at 0, and hence, s'(0) # 0. So we can apply the first part
of the proof to s, which shows that 7~! exists and can be written as the composition of
the k-valued function v = w'/* and the locally conformal mapping z = s~ !(v). Clearly,
v =wl/* maps 7y into |k| rays of argument Argv = °+Z‘ ‘", 7=0,....k—1, and shrinks
the angle between v; and 72 to 23<t. The second mapping 5”1 preserves the angles

between the segments, which proves this part of the theorem.

5. Assume that an arc of L (r) terminates in a finite point 2zg which is neither a pole
nor a zero of r. Then there exists a neighbourhood N(2p) in which r is analytic, and
{r(z)] > € > 0. Then Arg(r(z)) is also analytic in N(zp). Pick a sequence of points (z;)
on L.(r) N N(zp) that converges to zg. Then Arg(r(z;)) must converge to Arg(r(zg)).
But Arg(r(z;)) = c for all 7, so we must also have Arg(r(zp)) = ¢, and zg lies itself
on L.(r). Now Parts 2. and 3. show that zp cannot be an endpoint of L.(r), which

contradicts the assumption.
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6. Consider r7(z) = r('_%) in an open neighbourhood around 0. 7 is again a rational function
and has a k-fold zero at 0. By the first part of 4., L.(F) consists of £ analytic segments
terminating in 0 at angles 27 /& of each other. The mapping z — 1/z maps these segments
conformally to infinite segments that behave asymptotically as straight lines. Angles are
preserved. but change their orientation. This shows the first part of 6. Likewise, we

obtain the second part. using the second part of 4.

=l

Suppose |r(z)| takes a local minimum (or maximum) on a segment A of L.(7), say, at z.
Then 7(z) = r{z) — r{zp) has a zero at zy at which two segments of L.(7) (or Leyr(7))
terminate. at an angle of #. By 4.. zg must be at least a double zero of 7, which implies
7'(z9) = r’'(z9) = 0. So zp must be a w-point of r. This means, according to our definition

of segments. that zp can only be an endpoint of A. It follows that A is strictly monotonic.

8. This follows simply from the fact that |r{z)] — 20 as z approaches a pole, and |r(z)] — 0

as z approaches a zero.

3. and 9. Consider the function 7(z) = r(z) — r(29) which has a (k 4+ 1)-fold zero at zp;
In some neighbourhood around zj, we have Arg(r(z)) = ¢ whenever Arg(f(z)) = c or
Arg(7(z)) = ¢ £ m. The first condition implies |r(z)| > |r(20)], so |r(z)] is increasing in
outgoing direction (which means the segment is incoming). Likewise, the latter condition
indicates that |r(z)] is decreasing, so we have an outgoing segment. By Part 4., we know
that two segments of the same direction have angles of f:'—l of each other, and two adjacent
segments of opposite direction have angles of 77 of each other. This shows both Parts

3. and 9.

10. This follows immediately from the monotonicity condition 7.

a

These statements prove that we can, beginning at a pole of r, follow the arcs of L.(r) in
descending direction. If we reach a w-point of v, Part 9. assures that we can always find an
outgoing segment on which to resume our journey. By Part 10. and by the monotonicity
condition. we can never return to a previous point, and also, there is only a finite number
of segments available. Therefore. we must finally come to a zero point, or approach the
infinite point. where the tour ends. If we never come across a w-point of r, then one single
segment of L.(r) gets us directly from the pole to a zero of r. We will see that this is the

“normal” case.
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We summarize more formally:

Corollary 2.24

1. Every pole of r is connected to at least one zero of v (possibly the infinite point) through

one or more segments of L.(r), and vice versa.

2. If L.(r) contains no w-point of v, then every segment of L.(r) connects ezxactly one

pole to ezxactly one zero of r (possibly the infinite point).

If in addition to 2., every zero. the infinite point, and every pole of r are single, then the
segments define a bijective mapping between the poles on the one side, and the zeros and
the infinite point on the other side. This makes Corollary 2.24 an essential part of the proof
of Theorem 2.17.

2.6 Some Basic Notations

For the proof of Theorem 2.17, we need an extension of the terms critical zero and critical
point to arbitrary complex points. We will later see that the generic definition suits our

needs:

Definition 2.25 A point z € € is called a critical zero of p of order | and multiplicity k, if
P2y £ 0, p(2) = pttV(z2) = ... = ptHk=1)(z) = 0, p!!**)(2) % 0 for some k € IN.

We call z a critical point of p if it is a critical zero of p of some order. Its total multiplicity

is defined as the sum of the multiplicities of all critical zeros at z.

In the nonreal case, the terms critical zero and multiplicity are unambiguous. There is no
need to define an equivalent to Fourier critical zeros for nonreal points. For real critical
zeros however, we recall that we must carefully distinguish between ordinary and Fourter
critical zeros, and between multiplicity and critical multiplicity. In general, these values are

different. as noted after Definition 2.8.

For simplicity. we will refer either to critical zeros of fixed order 1. or critical zeros of

arbitrary order, as critical zeros, whenever the meaning is clear from the context.
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Definition 2.26 We define

H_ : the open half-plane above the real axis.

H_ : the open half-plane below the real axis.

We already introduced the identifiers Z(p) and F(p). Some more identifiers of this type will

be introduced now for later use in the proof.

Definition 2.27 For a polynomial p € P of degree n € IN,and k =1....,n — 1, we define

the following sets:

Z(p): the set of pairs of nonreal zeros of p.

Z(p'*)) : the set of pairs of nonreal zeros of p'*),
Zi(p): the set of nonreal critical zeros of order k of p,
Fi.(p): the set of Fou.ier critical zeros of order k,
Cr(p): the union of Zi(p} and Fi(p).

Z{p): theunion of all Zr(p). k=1..... n-—1,
Z.{p): the union of Z(p) and Z,(p).

F(p): theunion of all Fi{p). k=1.....n—-1,
C{p): the union of Z(p) and F(p).

A few comments about these sets and about the fine but important distinctions between

them are in order:

e The elements of these sets are either single real points, or pairs of conjugate-complex
nonreal points. We will consistently refer to the elements as points. Whenever a

statement concerns a pair of points, it is meant to apply to either point?.

e In some aspects, the nonreal zeros of p behave just like a special kind of critical zeros
of order 0: in others. they don’t. Therefore, we have to distinguish between the two
notations: Z, for all nonreal critical zeros, and Z. for all nonreal critical zeros and

7Zeros.

*However. if several instances of point pairs are involved in a statement, we refer consistently to either
the representatives in H, or those in H_.
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@ In general. Zi(p) and Z(p'Y) are not identical. Zi(p) contains only those points in
Z(p(k)) for which p(k-”’(z) # 0: whereas Z(p(k’) contains all critical zeros of order k.

and perhaps multiple zeros of derivatives of lower order.

If all zeros and critical zeros of p are single, then Zi(p) and Z(p*)) are in fact equal
for all k.

2.7 Examples

Prior to the (rather complicated) proof, we will motivate its steps by a few examples. These
examples also have the virtue of clarifying the notation just introduced. Throughout this

section, we let ¢ = m/2, unless otherwise stated.
Example 2.28 p(z) = (22 — 10z + 26)(2> + 10z + 26)(z — 1){z + 2)

The zeros of p are 5 £1, —5 £, 1 and -2: its critical zeros are approximately -4.5130,
-3.8089. -0.4309, 3.2741, and 4.6454. It can be easily verified that the first and fifth of these

are Fourier critical points. Hence we have

Z{p) = {-5+14,5+3}
F(p) = Fi(p)={~4.5130,4.6454}

We now consider the locus L, (%l) for ¢ = /2, this is, the locus of all points at which
R (%'(z)) =0 .and & (1;-'(2)) > 0. The trace of the locus is outlined in Figure 2.1, by
the small “+’-shaped points. The boxes and circles are the zeros and critical zeros of p,

respectively®. We make the following observations:

e The arcs originate at the zeros and end at the critical zeros, or at >c.

e Exactly one arc ends at c; it originates at one of the real zeros and converges to the

lower half of the imaginary axis. It is contained entirely in H_.

3We will keep this convention in all upcoming plots.
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Figure 2.2: The symmetric locus of p(z) = (22 — 10z + 26)(2? + 10z + 26)(z — 1)(z + 2)

e The arcs which end at the two Fourier critical points originate in the two nonreal zeros

in the upper half plane: the arcs themselves are contained in H .

e The other arcs connect the three remaining nonreal or real zeros to the three non-

Fourier critical points. They are contained entirely in H_.

We see that the arcs in the upper half plane behave “nicely™ for our purposes, in that they
connect nonreal zeros to Fourier critical zeros; whereas the arcs in the lower half plane are

“superfluous”. In order to get a nicer, and symmetric, picture, we replace L. (%) in H_ by
L_, (%’) Thus we obtain Figure 2.2.

Now the arcs are symmetric to the real axis: each nonreal zero is connected to some Fourier
critical zero. and exactly one pair of conjugate-complex zeros is connected to each Fourier

critical zero. Therefore. the arcs define a bijection from Z(p) to F(p), verifying Theorem 2.17
for this polynomial.
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Figure 2.3: The symmetric locus of p(z) = 2(2? — 4z + 5)}(22 + 42+ 5)

We see the virtue of taking L_, (%’) in H_ in order to get a symmetric image on the entire

complex plane. This is obvious and holds for arbitrary values of ¢, because %’(E) = %'(z) for

all z € €. Hence we introduce the following simplifying definition:

Definition 2.29 For a polynomial p € P. and a value ¢ € {—n, 7). we define the symmetric

locus of argument c as:

S.(p) = (Lc (P-) nH+) U (L-c (’i) n H.) .
P P
Example 2.30 plz) = 2(22 — 4z + 5)(z2® + 4z + 5)

Here we have
Z(p) = {~5+i5+d)
1 9 \/1 9 . \/1 9 Jl 9 .
= = S Sy AV S b 4 i5-=
Zip) {\/2‘/5+10i 2‘/5 0" 2‘/3+10 2‘/5 10‘}
& {—1.4206 + 0.4669, 1.4206 + 0.4669:)
3
F(p) = Bp)= {—-?;\/5., g\/ﬁ} & {-1.3412,1.3412)

In this example. all Fourier critical zeros are of order 2. So we cannot expect to connect

zeros to Fourier critical zeros just through arcs of S.(p). Figure 2.3 shows that the arcs of
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Figure 2.4: The symmetric locus of p'(z) = 521 — 1822 4+ 25

S.(p) rather connect the zeros 1:1 to the nonreal critical zeros. (In every such case, we will

say that two points are directly connected.) This defines a bijection from Z(p) to Z)(p).

To continue towards the Fourier critical zeros, we observe the equalities Fi (p’) = Fs(p) and
Z(p') = Zi(p), and apply the same procedure to p’. Namely, we determine S.(p), as in
Figure 2.4. We see that every nonreal critical zero is directly connected to a Fourier critical
point. and that the arcs define a bijection from Z)(p) to F(p). We now simply concatenate
these two mappings in order to get the desired bijection from Z(p) to F(p).

In more general cases. we will have Fourier critical zeros of higher, and perhaps several dif-
ferent orders: in that case. the notion of concatenation is more difficult to handle. Therefore,
we introduce a different notation: We call two zero points (e.g. a zero and a Fourier critical
zero) connected if they are linked by a sequence of directly connected “intermediary™ criti-
cal zeros. We will use the notation z — 2 for this. In this example we found, for instance.
5417 — 1.3412: these two points are connected via the point pair 1.4206 + 0.4669:. We
zet the desired bijection by mapping the elements of Z(p) to the respective Fourier critical

zerns to which they are connected.
Example 2.31 p(z)=z'+62+25

This example shows that the loci are not always as simple as in the previous two examples.
We have

Z(p) = {z1.m)={-1%£2i.1x2}
Z\{p) {e} = {£V3i}

i
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Figure 2.5: The symmetric locus of p(2) = z' + 622 + 25

Fitpy = {0}
Zotpy = {&1}
Fipy = {0}

The locus S (p) is graphed in Figure 2.5. Observe that all points iu Cy{p) = Z;(p) U Fi(p)
are connected to points in Z{p). However. we see that four arcs of S.(p) intersect cach
m z.,.Z5 = £1.1251. which are w-points of % The two arcs in imaginary direction are
ontgoing and connect to the critical zeros. while the horizontal arcs are incoming. originating
from the zeros. It is impossible to assign either of them in a non-arbitrary way to cither
of the critical zeros. One would rather say that both zeros are directly connected to both
critical zeros, and also to each other. (We will use the notation z; ~ z» for this.)
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We can resolve this confiict by grouping all those interconnected zeros into classes. Likewise.
we gronp all those critical zeros which are directly connected to the zeros of a certain class
into another class. which we assign to the former. This mapping from a partition of Z{p)
to a partition of Z{p} is again bijective.

In the general case. this situation can occur in any. possibly even in several derivatives of p.
Therefore. we need to ~backtrace™ connected zeros of. say p'¥). zx ~ 2 to their respective
ancestors’ z.z2 € Zipi. {We already introduced the more formal notation z ~— z; and

2+ % for this.} Then we will also call z and z connected We write this as z ~ 2.

In this example. ¢ = % /2 is the only value for which this problem exists. For any other value
of c in {0.x). the ares of S.{p} are separated and thus give rise to a well-defined bijection.
It can be shown. however. that on choosing ¢ < 7/2. one would obtain a different bijection

than for a value ¢ > w /2.

Example 2.32 piz) =32 +1023 4+ 152

This will be the most complicated example. and it will reveal several problems. Note that
pizy=15(22 +1)

is essentially the polynomial discussed in Example 2.10. and we showed that 0 is assumed
twice as a Fourier critical zero. As remarked. we distinguish between several critical zeros

at the same point.

1 —~ 5 /1 5. 1 5 1 5.
Zipy = {:;.z—g}:{V;v’ﬁ-%i\f—\/ﬁ_+%l,—\/§\/g—Ei\/i\/g+§1}

2

= {-0.5335 £ 1.396%1.0.5335 & 1.3969:}
Zyipy = Zip) ={&}
Zsipy = @
Zip"y = {x}
Fipy = {8}
Zip) = {i%v":?i}
Fyipy = {0}
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1

Figure 2.6: The symmetric locus of p(z) = 32° + 1023 4 152

The points +i are critical zeros of multiplicity 2. Corresponding to this, the graph of S.(p)
{see Figure 2.6) shows two pairs of arcs incoming at +7 from the two pairs of nonreal zeros.
Otherwise. these arcs are separated. so they define a mapping from Z(p) to Z;(p): but this

mapping 1s not injective.

Let us now take a look at the first derivative. +:, though it is a double zero of p’, is just
a single pole of %. So S.(p') consists of only one pair of arcs going from +: to 0. (These
arcs are just finite segments of the imaginary axis, so we did not plot S.(p).) This defines
a bijection from Z(p') to F>(p).

Now i is also a zero of p”, so it is connected through S.(p") to the critical zero in Z3, and
further through S.(p”) to 0. the second Fourier critical zero. This defines a bijection from
Z(p") to Fy(p).
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We saw that the mappings in every step are well-defined, and, except in the first step. they
are bijective. The problem arises from putting the steps together and finding a mapping
from Z(p) to F(p). The points *: are the images of two points in Z(p), and in turn, they
are mapped to two points in F(p). But there is no non-arbitrary way of composing these

two mappings to a bijection.

We resolve this problem in a similar way as in Example 2.31. We group all those zeros of
p into a class, which are connected to the same intermediary point (which in general is a
point in Z.). As before. we will write z; ~ 2y for this. Further, we map this class to the set
of all points in F(p) which are connected to this intermediary point. In this example, we
would thus map the class [z], 2z2] to {02,04}. (The indices on the 0’s are to underline that

we distinguish between these two Fourier critical zeros.)

In the general case, we will take greater care in defining the relation ~. It will be defined
in a way that makes it an equivalence relation, which matches the special cases outlined in

Examples 2.31 and 2.32, even if they occur in multiple instances in a single polynomial.

We conclude with the remark that Fourier critical zeros can themselves be multiple, in
which case several different zeros (or, more generally, classes of zeros) in Z(p) may be
mapped to them. However, there is no need to group all these zeros into a class, as we
did in the above case of a multiple nonreal zero. The situation resembles the first step
in this example: Multiply connected Fourier critical zeros do give rise to a well-defined,

non-arbitrary mapping, except that this mapping is not injective.
2.8 The proof of the conjecture
As in the examples, we dicuss the symmetric loci of a polynomial p € P.

Lemma 2.33 Let ¢ € (0,7). Then the segments of S.(p) have the following properties:

e The arcs of Sc(p) connect all nonreal zeros of p, all (nonreal or Fourier) critical zeros

of p of order 1, and w-ponts of% with Argw =c.
e Every zero of p has ezxactly one outgoing arc.

e FEvery nonreal critical zero has a number of incoming arcs equal to its multiplicity.
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o Every real critical zero has a number of incoming arcs in Hy and H_ each equal to

its critical multiplicity.

® No zero of p and no real critical zero of critical multipkcity 0 is connected.

Proof: We can restrict ourselves to the positive half-plane. The proof for the negative
half-plane is analogous, due to symmetry. In H,, we identify S.(p) with L. ( %) Hence,
we can apply all results of Section 2.5.

First, we recall that every zero of p is a single pole of %’, and a (real or nonreal) critical zero
of p is a zero of % with the same (ordinary) multiplicity. Therefore, most of the propositions
follow directly from the corresponding parts of Proposition 2.23. All we need to prove is
the statements about the nonreal and the real critical zeros, and that no arc leaves H, or
is infinite.

We observe that no arc can cross the real axis (and thus leave or enter H,) at any point
z € IR other than a zero or pole of %l, because Arg (%I('z)) is either 0 or . Secondly, since
0 is a single zero of %', L, ( 1;—’) has exactly one infinite arc. By Part 6. of Proposition 2.23.,
this arc has asymptotically an angle of —c to the infinite segment of Ly (%) However,
we infer from Corollary 2.21 that %(z) is positive for large positive z, so this segment is
just part of the positive real axis. The points on the infinite segment of L. (%) must then
satisfy Argz — —c as z — oco. Consequently, this segment must lie in H_, which leaves all

segments in H to be finite.

Now let 2z be a real zero of p. Then L. (%’) has exactly one outgoing arc, at an angle of —c
to the outgoing arc of Ly (%) From the Equation (2.10) for the logarithmic derivative on

the real axis, we see that I;m %(z) = —n0, and li\r‘n %(z) = 400, so the outgoing arc of
/> TNZ0

Ly (%') is a line segment on the real axis to the right of zy. This shows, as with the infinite
point, that Arg(z — z9) approaches —c as z — 29 on the outgoing segment of L. (%’), SO
this segment cannot lie in H,.

Finally, let zp be a real critical zero of p of order 1 and multiplicity m. From Part 4. of
Proposition 2.23, we infer that zy, being an m-fold zero of %, has m incoming segments of

L, ( %) , at angles 2w /m of each other.

o If m is even, then m/2 segments lie on either side of the real axis, so zg has m incoming

segments of L, (%') NHy.
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e If m is odd. we have to distinguish between two cases:

- If p(:g)p‘"“"‘”(zg) (which cannot be zero) is positive, then %' is Increasing on

the real axis around zp. and thus positive to the right of 2p. By Part 6. of

Proposition 2.23. the m incoming segments of L. (%') are directed at angles

2= A= Yrac Hm—1)r+ .. . .
£ 2Eke (#5 Jrve (m_D74e from the positive real direction. so the first

m°- m m : m

mEl of these segments lie in H .

If p(z0)p!™ TV (2g) is negative. then % is decreasing on the real axis around zp,

and thus positive to the left of z9. The incoming segments of L, (%’) have angles

e 2 m;—l T4 9 . . . .
< 2zde (Efdrbe 2Am-Urte from the negative real direction; so the

m’® m m m

first 24l of them lie in H_. This leaves m.z_l segments in H, .

In each of these three cases. the number of incoming segments at zp in H is equal to the

critical multiplicity of zg. as in Definition 2.8. This completes the proof.

Note that points of critical multiplicity 0 are included in the last case. O

The next lemma has similarities to Theorem 2.17. In fact, this will provide the first “itera-

tion” of the proof.

Lemma 2.34

1. There exists an algorithm which. given any value ¢ € (0. 7) and any polynomialp € P,

determines a mapping f,(,q;) from a partition of Z(p) to subsets of C1{p). No class of
this partition is mapped to the empty set. and every point in F(p) is assumed at least

once.

For a fized polynomial p. all but a finite number of values ¢ € {0, ) in fact define an
f},f’c) that maps one-element sets to one-element sets, and f,Sf’,:’ can be identified with a

surjective function fl(,(_z;) : Z(p) — Cilp).

If in addition all points in Cy(p) are of (critical) multiplicity 1, then f;(,?c) maps o
partition of Z(p) to a partition of Ci(p): furthermore. ail but a finite number of values
c € (0.7) define an f;,(:_-) that maps one-element sets 1:1 to one-element sets, and f,(,?c)

can be identified with a bijective function Z(p) — C;(p).
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Proof: As before. we restrict our attention to the closed upper half plane. in order to deal

with points instead of conjugate point pairs.

1. We define both the partition of Z(p) and the mapping f,‘,fi’ by means of S.(p}. The
classes of Z(p) are formed by the sets of zeros which are connected with each other
through arcs of S.(p): by Lemma 2.33, all these zeros are nonreal. For such a class C.
we define f,(,f)c) (C) as the set of all points in Ci(p) which are also connected to these
points through arcs of S.(p). It follows from Corollary 2.24 that f,(,f)c) is well-defined.
every point in C}{p) is assumed at least once, and f,(,?c) maps every class to at least

one critical zero. which by Lemma 2.33 lies in C(p).

o

By Corollary 2.24, two points in Z(p) can only be connected (thus forming a class of
more than one element) if the arc between these points contains a w-point of %' with
Argw = c. But Epi has only finitely many w-points. Therefore, all but finitely many
loci S.(p) are free of w-points of E'pi. In this case, Corollary 2.24 states that unique
points in Z(p) are mapped to unique critical points, which, again by Lemma 2.33, lie
in Ci(p). Since Cj(p) is covered completely., f,Sf?, regarded as a mapping from Z(p) to

Ci(p), is surjective.

3. Points in C)(p) of (critical) multiplicity 1 are connected through exactly one arc of
S.(p). Hence. they are contained exactly once in the image of some class C. So if
all points in C}(p) are single. then the images of all classes form themselves classes of
a partition of Ci(p). If in addition S.(p) contains no w-points of %', then Corollary
2.24 implies that every point in C{p) is connected to exactly one point in Z(p). which
shows that ff,?c) is injective. Together with the surjectivity in Part 2., we have shown

that f¥ is bijective.

a

As a corollary of this theorem. we can say about the set mapped to a class C of Z(p). that
it must have the same cardinality as C. For classes consisting of only one element. this is
trivial. For larger classes, the arcs of S.(p) connecting the zeros of this class must contain
w-points of %'. We can, starting at the zeros in C, follow the arcs of S.(p). Whenever some
k arcs join at a k-fold w-point of %'. there also exist k outgoing arcs on which the tour can

be resumed. So throughout the journey the number of arcs remains unchanged. until we
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finally get to the critical zeros of p. Note however that several of these arcs could terminate
at the same critical zero®. so we have to count them with the number of incoming arcs from

zeros of C.

We summarize this as follows:

Corollary 2.35 For any class C of Z(p). the sets f;(,f)c)(C) and C have the same cardinality.
if multiply connected critical zeros are counted with the number of arcs through which they

are connected to zeros in C.

It is easy to show that the loci S.(p) are continuous in c. i.e. slight variations of ¢ result

only in slight displacements of S.(p). Given this, we obtain:

Corollary 2.36 If S.(p) contains no w-point of%" then slight variations of ¢ do not affect
the mapping f;(,f)c) constructed from S.(p). More precisely: There erists an open interval

containing c. so that for all values ¢’ in this interval, fz()?cz = ,&2;)_

Proof: The segments of S.(p) can be separated from all zeros, poles and w-points of %I
other than the one zero and one pole they connect. If ¢ is slightly varied, they will still be
separated from the other zeros. Consequently, they must still connect the same zero to the

same pole. thus leaving f,(,'j:) unchanged. O

Using this corollary and a compactness argument on any closed subinterval of (0, 7), we
see that the cases where S.(p) contains a w-point of %' mark “limiting cases”. in that the

mapping f;(,_oc) from points of Z(p) to points of C;(p) changes only at these values:

Corollary 2.37 Let ci.c2 € (0.7). ¢1 < 2. If no w-point of%' satisfies Argw € [c1.c2).

{0] 0
then fP-C)1 = ;(,_c)z.

We will now prove Theorem 2.17. If p has only real zeros, then we have nothing to show".
Otherwise. let n be the smallest derivative such that p'?’ has only real zeros. (Such an
n always exists. and it is at most one less than the degree of p.) As before. we restrict

ourselves to the closed upper half plane, and do the same considerations in the lower half

'j:\lthough no example of this has been found so far.
*To be exact. fp . would be the empty mapping.
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plane with —c instead of c. thereby preserving symmetry. In defining the required partition
on Z(p). we have to take special care of multiple critical zeros. For this rcason. we replace

the intuitive meaning of “connectedness™ with the following definitions:

Definition 2.38 Let Z(p'*')|. and f;,kc) be the partitions and functions defined by applying
Lemma 2.34 to p'*? (which is. by means of S.(p¥?)). For two nonreal zeros or critical zeros

2p. Z9. we write zg ~ Zg if they belong to the same class in Z(p““))ic, forsome bk =0..... n—1.

Definition 2.39 Let 2y be a point in Zj(p) with multiplicity k. and z.; a point in Cj,(p).
where 1 < m < k. We call zy and z.. directly connected. if zg belongs to a class C in
Z(p'*™ 1|, such that z., € f,‘;f:-m_”(C) holds.

f},fj’m_”(C) in Lemma 2.34, zp and z. are directly connected if and

By the construction of
only if S.(p!!*™~1)) has an arc that connects zp (as a zero of p*™~1) and z, (as a critical
zero thereof). Note that the order of derivative, | + m — 1, is constant for all z.. of the
same order. and independent of the order of the point zy they are connected to. However,
the multiplicity of zy must be large enough to cover the difference between the order of z
and that of z... In the case m = 1 where zg is simple. zp can only be directly connected
to critical zeros of order I 4+ 1: whereas an m-fold zero is directly connected to at least one

critical zero ecach of order 1 through m (This follows from Lemma 2.33).

Definition 2.40 Let zy be a nonreal zero of p. and z.- a critical zero of order k. We call zp
and z. connected (and write zp — z.) if there exists a sequence zj,....z; = z. of critical
zeros of order ky.....k; = k. respectively. such that for every j = 1.....L. z;_1 and z; are

directly connected. (We define ky = 0). For technical reasons. we also define z5 — zq for

every zp € Z(p).

It is clear that 0 < kj < ... < k. and that zy, ..., zj—1 all have to be nonreal. If all zeros

29--...2_1 are of multiplicity 1. then we just have k; = j. and [ = k. The next lemma is a

kind of generalization of Corollary 2.24:
Lemma 2.41

1. Every point zy € Z(p) is connected to at lecst one point z., € F(p).
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2.

Every point 2., € C(p) ts connected to at least one point z9 € Z(p).

3. If all points in Z{p) and Z(p) are of multiplicity 1. and no locus S.(p'*) contains

. k+1 N . R
a w-pownt of &;’—‘—,,—}—P. then every point zp € Z(p) is connected to exactly one point

zer € F{p). and every point z,, € Z(p) is connected to exactly one point zy € Z(p).

Proof:

1.

o

As stated. one can find at least one critical zero z; of some order k; that is directly
connected to zg. If z; € F(p). we are done. Otherwise. z; is a nonreal zero of p*1),
and we can find another critical zero 22 of order k2 > k; that is directly connected to
z1. Continuing this. we obtain a sequence of critical zeros of strictly increasing order,
bounded by n. Hence. after finitely many steps we must reach a real critical zero of

p. which is thus connected to z.

We prove this by induction on k. For & = 1, the proof simply follows from Part 1.
of Lemma 2.34. Assume that the statement holds for every point in Ci(p),...,Cr(p).
and let z, € Ci;1(p). By Lemma 2.34, z., must be linked to a point z; € Z(ptt))
through an arc of .S',_.(pik)). If z; i1s a zero of p (of order at least k£ + 1), then 2. is
dircctly connected to z;. and we are done. Otherwise. we must have z, € Zi, (p).
where 1 < kj < k. and z; has multiplicity at least & — k; + 1. z; (as a critical zero
of order k). and z. are thus directly connected. By the induction hypothesis, there

exists a point zg with zp — z;. This implies zg — 2.

The proof follows by induction on .

Let z...z. € F(p) be two Fourier critical zeros satisfying zg — z.. and zg — 2... and
Z)s-ee. 2l = Zer and Zp..... Zm = Zo the corresponding sequences of critical zeros in
Definition 2.40. Without loss. we may assume ! < m. We already observed that in the
absence of multiple zeros. the zeros z; and z; must be of order j. Now suppose that
z;, = Z; (which is at Jeast true for j = 0). Then we infer from Part 2. of Lemma 2.34
that fi‘_ic) maps z; to a unigue point in Cj;1(p). Hence. zj4; and 2;,1 must also be
equal. and by induction on j we get z.. = z; = Z;. Since, as stipulated, 2., is in F(p)
and hence real. Lemma 2.33 prohibits z., to be directly connected to any critical zero

of order greater than l. So we must have | = m. and 2., and 2., must be equal. The
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second part of 3. follows from a similar induction proof. keeping in mind that Part 3.

of Lemma 2.34 guarantees uniqueness at every step.

Definition 2.42 We call two points 2. 29 € Z(p) connected (written as zg =~ Zg), if one of

the following conditions is satisfied:

1. There exist two points z... 2. € Z.(p) such that 29 — 2., 29 — 2., and 2z, ~ 2.

2. There exists a z, € Z(p) such that zp ~ z{ and z{ ~ 2.

It is important to note that in Condition 1., the points 2y, Zp. 2o and 2. need not be
different. As a special case. we have zy ~ z3. Condition 2 ensures the transitivity of ~, and
the symmetry is obvious. Hence, connectedness is an equivalence relation on Z(p). Note
that Z.(p) does not include real critical zeros, so two zeros are not necessarily connected if

they are just connected to a common {(multiple) Fourier critical zero of p.

Now we partition Z(p) into the equivalence classes defined by ~. For each class C € Z(p)|~,

we define

Jp.elC) = {zo € F(p) : There exists zg € C with 29 — 2.} (2.13)

With this definition. Part 1. of Theorem 2.17 reduces to saying that every zy € Z(p) is
connected to some z, € F{p) (which prohibits empty sets as images). and vice versa {which

shows that F(p) is completely covered). Both these statements were shown in Lemma 2.41.

If neither Z(p) nor Z,(p) have multiple zeros, then we have the equality Z(p) = Z(p'9).

Now recall that every logarithmic derivative has only finitely many w-points, and

E(E+1)
(k)
there are only finitely many derivatives p'¥!, k = 0.....n — 1. Hence for all but finitely
many values of ¢, S.(p'*?) contains no w-point of %l. Then it follows from Lemma 2.34,
Part 2., that all partitions Z(p'*')|. consist only of one-element classes. Hence, z ~ 2
implies z = Z for all z € Z.(p). Also, from the proof of Lemma 2.41, Part 3.. we infer that
for each zg € Z(p). we get a unique Fourier critical zero z., in some Fi(p) with zy — 2.

Furthermore, in every set Z;(p). 7 = 1.....1— 1, there is a unique point z; so that zg — z;.
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Conversely. for cach of these z;. zg is the only zero of p with zp — z;. Hence. no zcro of p
except zp itself satisfies Condition 1. in Definition 2.42, so Z(p)|~ consists of one-clement
classes only. These classes. as shown. are mapped to single elements of F(p). If thus f, . is
identified with a function mapping Z(p) to F(p). then Part 1. of the theorem shows that

fp.c 1s surjective. This completes the proof of Part 2.

Now let .. be a single Fourier critical zero of somec order k. Assume that zyp — 2z, and
29 — z.r. for zg. 29 € Z(p). Then we find points zy, 2; € Z.(p) (possibly of different orders
or order 0) with zy = zi, 2y — Z;. and both z; and z.. as well as 2; and z.. are directly
connccted. By Lemma 2.34. Part 3.. z, is in the image f%*~1(C) of exactly one class C of
Z(p(k‘”)],;. In other words. if both z; and 2, are directly connected to z.., then z; ~ Z;.
Now according to Condition 1. in Definition 2.42, we have zp =~ 29. This proves Part 3. of

the theorem.

Part 4. of the theorem follows readily from Parts 2. and 3.: If by Part 2. f, . is identified

with a surjective function mapping Z(p) to F(p). then Part 3. shows that f, . is injective.(]

2.9 Problems and fixes

The proof of Theorem 2.17 looks very intricate and circumlocutionary, to say the least. It
obscures the underlying. simple idea that can be written down in just one sentence: “From
the nonreal zeros of p, follow the arc of constant argument of the logarithmic derivative of
p and its derivatives. until you finally reach the Fourier critical points.” The problems arise

from two possible exceptions:

1. Zeros or critical points of p may be multiple.

. . (k+1)
2. On S.(p**)) we may encounter w-points of BFE’_'

If we have neither of these exceptions for a given p and ¢, the proof of Theorem 2.17 indeed
reduces to a matter of following analytic arcs from single zeros to single zeros of the next-

higher derivative. as we have experienced in Example 2.30.

The second exception is so important that we will investigate it more closely in the next

chapter. although it can be easily avoided by choosing ¢ suitably. However, it is easy to find
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a polynomial for which a given ¢ € (0. 7} is exceptional in the sense of 2., so we cannot hope

to find a "universal” ¢ that aveids 2. for every polynomial in P.

The exception 1. is inherent to a polynomial. and no choice of ¢ can fix the problem. Strictly
speaking, we must say that. whenever 1. applies. our algorithm does not provide a “definite,
natural relationship™ as sought in Conjecture 2.16. But on the other hand. it seems very
unlikely that we can expect more. If nonreal zeros of p or Fourier critical zeros of p are
maltiple, it is impossible to find a bijection between them. And since being a real critical
zero of some order k is a property that depends on p!*=") rather than p. one would suggest
that multiple nonreal zeros of p'**!) (and of any other derivative of p) likewise prohibit a
non-arbitrary bijection. Multiple zeros indicate a “limiting case™ in which zeros “exchange

their roles” (see Corollary 2.37).

Yet there are ways to circurnvent these problems. They all have in common that they are

arbitrary in some way. Here is a possible solution:

e Assign unique indices to every nonreal zero or critical point z of p, in the form
(z k)= k1 + 1),... . (2. kg +my — 1), (2, k2),.... (2. ky + my — 1) where the k; are
the orders of the (critical) zeros. and the m; their respective multiplicities at z. {(We
have the inequality 0 < k) < kj+my < ks < ka+my < ... < kj+my < degp.) Hence.

the indices above list all derivatives of p that vanish at z.

e Index every multiple Fourier critical point z in the same way, except that the m; are
now the critical multiplicities of the critical zeros at z. (Here the indices do not list all

derivatives of p that vanish at z.) Define F(p) as the set of all these indexed points.

e Let Z(p) consist of all points (2. ky).....(z.k; + m; — 1), where z is a zero of p, i.c.
ki =0.

We are now going to construct arcs from unique points in Z(p) to unique points in F(p) as

follows:

e The unique outgoing arc from an indexed zero point {z, ) is the arc of S.(p!/?) outgoing
from z.

e If (2. k; + k) is a nonreal critical zero (i.e. k; > 1), then the ur jue incoming arc into
this point is the arc of S.(p'*~1)) incoming into z between the angles 27,!’11 and i";.j_lll

7 1

of the positive real direction.
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e If (z.k; + h} is a real critical zero {k; > 1), then the unique incoming arc into this

. . ik —YYy - . . i hr th+r
point is the arc of S.{p!*s~!} incoming into z between the angles 2= and ——— of
E J

the positive real direction.

. - . i 73y - - {J+11 TP .
e An incoming arc of S.(p'/’) into a w-point z of EP;;—’ of multiplicity, say. &. will be

contimied on the arc at the angle =5 of the incoming arc. {This is just the “next arc

to the right™. and it is an outgoing arc. as we have seen in Section 2.5.)

As a final answer to Gauss™ question. we conclude with a statement that summarizes what

we have fonnd in this chapter:

Except for certain ~limiting cases™. one can algorithmically construct a family
of bijective mappings from the pairs of nonreal zeros to the Fourier critical zeros

of any given polynomial.

In Chapter 6. we will spend a few words on the practical use of this result. To end this

chapter. let us now consider a few geometrical results that are found in the literature.

2.10 Geometric Relationships

Most of the geometric results presented in the sequel make use of one of the Formutac (2.8)
and {2.10). We list them here for easier reference:
n n L
Se=3

r j=1 ~ a.]

Py k; k;(z— 1))
—(z} = +2 —_——
Z z—aj Z (z—x;)"+y;

o, real o =T,y

*
¥, >0

The -classical” and most general result is Lucas’s Theorem [15]. commonly viewed as a

generalization of Rolle’s Theorem to complex-valued polynomials. Before stating it. we give

a preliminary lemma:

Lemma 2.43 Let p be a complex. nonconstant® polynomial. If all zeros of p lie in the
closed upper half plane H. . then so do all zeros of p'. If additionally not all zeros of p are

real. then all zeros of p’. except multiple real zeros of p. lie m H,.

*In all other theorems. this is understood as well.



CHAPTER 2. GAUSS ORIGINAL CONJECTURE 42

Proof: Let z € H_. Then for every term in {2.8). 3{z — a,y < 0. s0 3(-_—2—)—} > (0. The
same must then hold for the sum of all terms. so %(:) cannot be 0. Since p(z} # 0 {as no
zero of p lies in H_. we conclude that p’{z} # 0. Therefore. all zeros of p' must be in the

closed npper half plane.

In the second part. if z is real. and at least one zero a,, of p lies in ;. then we have
k ~; A - iy
‘3(75“9——) > 0. and at least "J(,—f{;—) > 0 for all other terms. Hence we also get %g:} #0.If
T—ay, sy
plz) # 0 as well. we conclude as above that p’(z) # 0. (Note that simple zeros of p{(z) can

never be zeros of {’:f% This shows the second part. 0

Another result needed for Lucas’s Theorem shows that the location of the zeros of p’ relative

to the zeros of p is invariant under shafting and scaling:

Proposition 2.44 Let p{z} = pl{c+ z) and p(z) = plaz) be the polynomials obtained from

p by shifting and scaling with compler. nonzero constarts ¢ and a. respectively. Then

1L p(z)=p(z+0).

2. p'lz) = apiaz).

Proof: Both parts follow from applying the chain rule of differentiation. )

We are now ready to state and prove Lucas’s theorem itself:

Theorem 2.45 {Lucas’s Theorem)} Let K = conv{aj..... a,} denote the conver hull of
all zeros of a complex polynomial p. Then the zeros of p' also lie in K. If not all zeros
oy ... a, lie on a straight line. then all zeros of p’. except possibly multiple zeros of p. he

i the imterior of K.

Proof: K as the convex hull of a finite set is a polygon with some {not necessarily all) of
the a; as vertices. Like every polygon. K can be written as the intersection of the closed
half-planes in € determined by its sides and containing K. By means of Propesition 2.44.
and by choosing suitable values @ and c. each of these half-planes can be translated to H,.
Then Lemma 2.43 shows that the zeros of p’ also lie in each of these half-planes. and thus
in K. This shows the first part of the theorem. The second part follows from the second
part of Lemma 2.43 by the same argument. 0
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Fignre 2.7: The Jeasen rircles of a real polynomial p. Displayed are also the zeros{bores)
and critical zeros (small circles}t of p. Note that the critical zero outside the Jensen circles

ts uot a4 Fourier crifical zero.

Itr general. this result is also best possible in the sense that. given any finite set § of points
in the interior of K. one can construct a pelynomial with all zeros in K that takes all points
i S as zeros of its derivative. Further restrictions on the locations of the zeros of p however

can lead to improved results.

We will now restrict ourselves to the class P of polynomials we are most interested in.

Definition 2.46 For a pair of conjugate-complex values a.@ = 1y £ yyt {which will fre-

arently be zeros of py. we define the Jensen circle of o to be the circle with centre g and
radlins 1. this is. the set

{z:lz = rel = m}. (2.14)
Sizmlarly we define the (open or closed) Jensen disk of o, replacing “=" by “<” and “<”

it 62 145,

We will commeonly use the term Jensen crrcles of p for the Jensen cireles of all pairs of

nonreal zeros of p. Figure 2.7 shows an example of the Jensen circles of a real polynomial.

Theorem 2.47 (Jensen's Theorem} Every zero of p' lies either oun the real axis or on one

of the Jensen disks of p.

This theorem was stated by Jensen [14] and proved later by Walsh {26] and Nagy {19]. The
LA i A

proof given here is based on the one in {17]. p.26:
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Proof: Take z = 1 + 1y. and consider ’3’(%'(3)). For each of the terms in the first sum of

{2.10). we get

k; —k;
If—-) = - (2.15)
z - (x —aj) - +y-

and for each term in the second sum. after re-arranging and factorizing the terms:

S Btz =2ky((z—2;)° + 4% - y?) (2.16)
(z—xj)'z-f-y} Hr— 2+ (y—y;)2 )z — ;)2 + (y + y;)?) o
If a critical zero z9 = g + Yot lies ontside the Jensen circles of p. which is.
) W2 2 2 .
(xro—z;)" +yy >y; forally, (2.17)

then all terms in (2.15) and {2.16) have the same sign. namely —sgnyg. Hence, we have

sgn 3‘(%'(20)) = —sgn J(zg), and «a fortior. %l(zo) can only vanish if zp is real. ]

A special corollary of this proof provides useful information about the loci we constructed

in the proof of Theorem 2.17:

Corollary 2.48 For any c € {0.7), the symmetric locus S.(p) lies completely inside the

Jensen circles of p.

Proof: In the proof of Theorem 2.47. we observed that for any z € H, outside the Jensen
circles of p. ‘3(%(:)) is negative. and thus Arg(%'(z)) € (—=.0). By a continuity argument,
we get Arg( %’(z)) € [~.0]° on the Jensen semicircles of p in H. This shows the statement
on the upper half plane. The rest of the proof follows by the already familiar symmetry

argument. 0

This shows that the mapping found in the proof of Lemma 2.34 is “in line™ with these
zeometrical results: Nonreal zeros of p can only be mapped to (nonreal or real) critical
zeros if they lie in the same connected set of Jensen disks of p. Moreover. if the Jensen disks

of k pairs of nonreal zeros of p (counting multiplicities) are disjoint {(and hence separated)

*Here —x s understood to be the principal valae of Arg = for negative real z. Normally. this value would
be .
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from all other Jensen disks of p. then by Corollary 2.35 they are connected through arcs of
S.(p) to k real or pairs of nonreal critical zeros of order 1, counting critical multiplicities.

Hence we immediately obtain the following two corollaries:
Corollary 2.49 FEvery Fourier critical zero of p lies on one of the closed Jensen disks of p.

Corollary 2.50 Let I = [r).x3] be an interval of the real azis such that neither x| nor
T 15 contained in any closed Jensen disk of p. and J the union of all closed Jensen disks
intersecting I. If J coniains k pairs of nonreal zeros of p. counting multiplicities, then J

also contains k critical zeros of p. counting critical multiplicities.

This corollary can be generalized to include all zeros and critical zeros of a polynomial in a

certain interval:

Theorem 2.51 [25] Let I = [z1. 3] be an interval of the real azis such that neither x| nor
T2 is a zero of p. or is contained in any closed Jensen disk of p. Let further J be the union
of I and all closed Jensen disks intersecting I. If k and k' are the number of zeros of p and

p' in .J. respectively. then the inequality k — 1 < k' < k41 holds.

Conventional proofs of this theorem (see e.g. [17], p. 27) are very complicated, and they
use higher-level tools such as the Argument principle. Using the previous results of this

chapter. our proof reduces to a matter of careful counting:

Proof: We define the following numbers:

m: the number of real zeros of p in I. counting multiplicities,

d: the number of pairs of nonreal zeros of p in J \ I, counting multiplicities,

c:  the number of real (Fourier) critical zeros in I, counting critical multiplicities,
m’: the number of real zeros of p’ in I, counting multiplicities,

d’': the number of pairs of nonreal critical zeros in .J \ I, counting multiplicities.

Then by definition we have k = m + 2d and ¥’ = m’ + 2d’. By Corollary 2.50, we also have
d = ¢+ d'. and in Theorem 2.13, we showed m +2c ~1 < m/ < m + 2¢ 4+ 1. On putting

these relations together. we obtain the above inequality. 0
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Theorem 2.47 has many more corollaries. and it is impossible to present all of them here.

We will pick the most interesting ones. For a further study of the topic, see [17. 27].

Next. we give an “iterative” version of Theorem 2.47 and Corollary 2.49. For a pair of
conjugate nonreal values a. @ = zog%yp?. we define the Jensen ellipse of erder k of @ to be the
ellipse with the segment from @ to a as minor axis. and the real interval [z — vkyg. £o+ vk
as major axis. We use the expressions Jensen ellipse of p and elliptical Jensen disk in the
same fashion as their equivalents in Definition 2.46. Note that the Jensen circles are just

the Jensecn ellipses of order k = 1.

Theorem 2.52 [14] For any k smaller than the degree of p, all nonreal zeros of p\*), and

all Fourter critical zeros of order k he in the closed elliptical Jensen disks of order k of p.

Proof: See c.g. [27].p. 84. The proof uses induction on k. It is based on the (easy-to-prove)
fact that the elliptical Jensen disk of order k& + 1 of some point « is just the union of the
(circular) Jensen disks of all points on the elliptical Jensen disk of order & of a. a

A converse to Theorem 2.47 is the following

Corollary 2.53 Let z9.Zp = Toxygi be a pair of conjugate nonreal critical zeros of p. Then
the equilateral hyperbola centered at Ty with vertices zg and Zy contains at least one pair of

nonreal zeros of p.

Proof: In the proof of Theorem 2.47. the necessary condition for zy being a critical zero is

that (2.17) is false for at least one pair a.@ = z + yi. Rewriting the negation of (2.17) as

v < y* — (zo — )2 (2.18)

we see that a and @ must be inside or on the hyperbola described above. a

Of course, this converse has a corollary for Fourier critical zeros, similar to Corollary 2.49.
In this case, yp = 0. so the hyperbola above degenerates to the equilateral angular region

centered at zp. Also, a similar extension of Theorem 2.52 is possible (See e.g. [20]).

The last result we present in this chapter applies to polynomials the zeros of which can be

grouped in two circles:




CHAPTER 2. GAUSS  ORIGINAL CONJECTURE 17

Theorem 2.54 [25/(Two-Circle Theorem)

Let p be a compler polynomial of degree my + mo that has my and ms zeros in the disks
Ci={z:{z—a| <r1} and C3 = {z : |z — as]| < ra}. respectively (aj.a5 € €.y .12 > 0).
Let C be the disk

{ ) ; Moy + My < Mer +myry
’ my + ms = omy +me '

Then the zeros of p’ lie in Cy. Ca. and C. If Cy. Cy., and C are pairwise disjoint. then they

contain my — 1. ma — 1 and 1 zeros of p'. respectively.

Proof: Sec e.g. [27]. pp. 13-17. ‘ O



Chapter 3

The Wronskian of a polynomaial

3.1 Definition

Let p be a (real or complex) polynomial. We define the Wronskian' of p (written as Wp) by

p(z) plz)

Pz o'(2) = p(z)p”(z) ~ (p'(2))? (3.1)

Wp(z) =

Comparing Equations (3.1) and (2.7). one observes that Wp is closely related to the second

logarithmic derivative:

Corollary 3.1 (1—)-) (z) = H{)p(z)
P p=(z)

T
In particular. (%) and Wp have the same zeros, except possibly for zeros of p. Further-
more. if p is a real polynomial. they also have the same sign along the real axis. From
Equation (2.9), we further get

= —p? . ___I‘J_,_ 2

' The term ~Wronskian™ is taken from a wider class of differential operators defined in a similar. but more
general way than (3.1).

48
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where. as before. a; are the zeros of p and k, their respective multiplicities (7 = 1.....m).

This will prove to be a helpful formula.

Wp is difficult to deal with. because it is a nonlincar operator. However. we have the

following nseful scaling and shifting properties (compare Lemma 2.44):

Lemma 3.2 Let p(z) = plc+ z) and p(z) = p(az) be the polynomials obtained from p by
shifting and scaling with compler, nonzero constants ¢ and a, respectively. Then
1 Wilz) = Wplz +¢)
2. Wplz) = (x")ﬂ"p(r}z).
Proof: DBoth parts follow from applying the chain rule of differentiation. O

The following arithmetic properties are also useful:

Lemma 3.3 [{] Let p. p1. p» be compler polynomials, « € €. and n € IN. Then
1. W(p1p2) = piWp2 + p3Wpi.
2. Wip") = np™ *Wp.
s W(iz—a)=-1.

Proof: The first statement can be easily obtained from (3.2), and the third follows imme-
diately from the definition of Wp. whereas Statement 2. follows from recursive application

of 1. O

3.2 General properties

As we have seen in the previous chapter. the zeros of Wp provide a lot of information about
the behaviour of the loci of ‘,’7 Therefore. we wish to have some results on their possible

focations. First. we cite some results for general complex polynomials:

Proposition 3.4 If zy is a zero of p with multiplicity k € IN . then zy is also a zero of Wp
with multiphicity 2k — 2.
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Proof: This can be seen from (3.2). If p®iz) is multiplied with each of the sum terms. then
the factor (z — zg) appears 2n — 2 times in the numerator of exactly one term. and 2n times

in the nmimerator of all other terms. O

We call zeros of Wp tririal if they arise from multiple zeros of p. Hence we can conclude:

i\
Corollary 3.5 A zero z of Wp 15 a zero of (%) if and only if it 15 non-trivial. In that
\F
case. z has the same multiplicity both in Wp and (%) .

When can zeros of p. p’ and Wp coincide? We have already discussed multiple zeros of p.
As a special case of Proposition 3.4. a single zero of p can never be a zero of Wp. Finally.
we get from Corollary 3.5 that a k-fold critical zero of order 1. being a k-fold zero of Epi
1s a (k — 1)-fold zero of Wp. These zeros we will not call trivial. because they will not be

exceptional in the theorems to come.

Although trivial zeros themselves are not interesting to investigate. the multiplicity of zeros
of p does have an influence on the location of the nontrivial zeros of Wp. However. if all

zeros of p are multiple. one may divide by their common denominator:
Proposition 3.6 For any n. Wp and W (p™) have the same set of nontrivial zeros.

Proof: This follows immediately from Part 2. of Lemma 3.3. D

This result also allows one to safely ~double™ all zeros, so one can handle a double real zero

as a hmiting case of a pair of nonreal zeros.

Now we will turn our attention to nontrivial zeros of Wp:

Proposition 3.7 [{] If all zeros of p lie on a straight line in €. then no nontrivial zero of
Wp lies on that ine. In particular. if p has only real zeros. then Wp has no real nontrivial

zeros at all

Proof: By meaans of Lemma 3.2. we can translate the line to the real axis. But if all zeros
of p are real. then every term in the sum in (3.2) is positive. and hence Wp(z) < 0. except

at {multiple) zeros of p. a

On the other hand. we can show that the zeros of Wp cannot be too far away from the zeros
of p either. For this, we cite a result by Marden ([17}. p. 30f.) for the special case needed

here:
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Lemma 3.8 If K is a convez region containing all zeros of p. then Wp(z) # 0 at any point

z where K subtends an angle less than n /2.

Proof:  Apply [17. Thm. 8.1} to (3.2). a

Applying this to the unit circle and to the interval [—1,1]. we get the following special

results:

Theorem 3.9 [{] If all zeros of p lie inside or on the unit circle. then all zeros of Wp lie

inside or on the circle of radius 2 around the origin.

Proof:  Let z be a point at which the unit circle subtends an angle of w/2. The tangents
to the nmit circle through z. and the normals from the tangent points to the origin form a
square of unit length. the diagonal of which is the vector from z to the origin. Hence we
get jz} = 2. and at every point at a distance greater than v2. the unit circle subtends an

angle less than /2. The theorem follows from Lemma 3.8. a

Theorem 3.10 [{] If all zeros of p ke in the real interval [-1.1] then all zeros of Wp lie

mside or on the unit cuorrle.

Proof: This follows in a similar way from Lemma 3.8 and a simple geometric argument:
The unit cirele is the locus of all points at which its diameter (the interval {1, 1]) subtends

an angle of /2. a

Note that these theorems generalize to arbitrary circles and line segments in €. by applying
Lemma 3.2. All three resnlts arc sharp, as is shown in [17] for Lemma 3.8, and in [4] for
Theorems 3.9 and 3.10. In order to get better results. one must impose further restrictions
on the locations of the zeros of p. {4] contains a few more results for polynomials with only
real zeros. We will not present them here. Instead. we will now come back to the wider

class of real polynomials.

3.3 The Wronskian of real polynomials

For the rest of this chapter. let p € P. For this class of polynomials, Craven. Csordas and

Smith conjectured the following:
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Conjecture 3.11 [3] Let p have eractly 2d nonreal zeros. Then Wp does not have more

than 2d real zeros.

They attribute this conjecture to Gauss. referring to him indirectly through the papers of
Pélya {24] and Nagy [20]. However. the references given in those papers refer to {7] and
the letters [10. 11. 12]. given and translated in Appendix A of this work. These letters do
not mention the Wronskian, nor even the logarithmic derivative, with any word. It is likely
that Gauss thonght of using the logarithmic derivative in order to prove his question: and
in the course of his investigations, he might have discovered zeros of the Wronskian as a
complication. perhaps even the one he could not overcome. But this is merely speculative,

and it would be entirely inappropriate to give him the credit for Conjecture 3.11.

We already proved the case d = 0, which is just Proposition 3.7. In [3], the conjecture is
shown for all p such that %(z) + 7 has only real zeros for some real constant y. We will
not prove the conjecture. In Chapter 5. we will suggest a similar approach as we used in

Chapter 2. Here we will only give geometrical results.

First we note that clearly Wp € P as well. In particular, Wp(z) takes only real values on
the real axis. We can even gain more information frou: degree considerations, from the

properties of % we found in the previous chapter. and from Rolle’s Theorem:

Proposition 3.12 (Behaviour of Wp on the real azis)

1. Wp is negative in some neighbourhood of each zero of p. and outside a certain interval
[Il - -Tn]-

2. Wp has an even number of real zeros, counting multiplicities.

3. In the closed interval between two adjacent real zeros of p'. there is either a zero of p.
or an odd number of zeros of Wp. Between two zeros of p, or between a zero of p and

a zero of p’. there is an even number (possibly 0) of zeros of Wp.

4. If the infinite point is regarded as a zero of p'. then 3. generalizes to infinite real

intervals.

5. If p has no real zeros at all, then Wp has at least two real zeros.
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Proof: These statements all follow from previous results, using elementary methods of real
calculus. For example, to prove 3., we recall that %’(z) tends to 0 as z — >c. Since %' does
not have any poles. it is continuous and bounded on the whole real line. By Corollary 2.21,
we see that %’ takes both positive and negative values. Therefore. it must attain both its

maximum and minimum at some points. At those points, we have (%’)’(z) = 0. 0

We will now establish another criterion for Wp to be negative. For this, we construct a
formula similar to (2.10) for (%’)’. cither by differentiating (2.10), or by grouping conjugate

terms together in (3.2):

ki((z = z;)% 43

Wp(z)=~p%(2) | 3] —=5+2 A 3.3)
’ & o veal (27 )2 =7 i ((z = z5)* +y7)? (
yJ)

This leads us to the following theorem, apparently due to Nagy:

Theorem 3.13 [20] Wp is negative for all real points outside the union of all closed Jensen

disks of the nonreal zeros of p. except for trivial zeros of Wp.

Proof: Let aj = xj +1yj, y; > 0. be any nonreal zero of p. The Jensen disk of a; and
@; consists of all points z for which (z — = j)'2 < y? holds. If z is outside this disk, then
the sum term in (3.3) corresponding to «; is positive. Therefore, if a point z with p(z) # 0
lies outside all Jensen disks, then all sum terms are positive, and consequently Wp(z) is

negative. a

The following corollary is immediate:

Corollary 3.14 FEvery nontrivial real zero of Wp lies in the closed Jensen disk of a pair

of nonreal zeros of p.

Theorem 3.13 has many other corollaries. refinements and generalizations. Many of them are

analogues to the geometrical results stated in Section 2.10, e.g. the following generalization

to higher derivatives:

Theorem 3.15 [20] The intervals in which W (p'¥~1) is nonnegative (1 < k < degp) are
contained in the union of the closed elliptical Jensen disks of order k of p, except possibly

for multiple zeros of pt¥—!)
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(k—1)

Proof: By Theorem 2.51. we locate the nonreal zeros of p on the closed elliptical

Jensen disks of order k — 1. Then we apply Theorem 3.14 to p*=1) to locate the zcros of

(k=1)

W (p'*~1) on the (circular) Jensen disks of the nonreal zcros of p . Now we use the

same geometrical argument as in the proof of Theorem 2.51 to obtain the theorem. O

A converse of Theorem 3.13 describes the nonreal zeros of p in terms of the zeros of Wp:

Corollary 3.16 If zg is a real point with Wp(xg) > 0, then the equilateral angular region
{z=z+yi:|z—z0| <ly|} (3.4)

contains at least one pair of nonreal zeros of p.

Proof: Analogous to th - nroof of Corollary 2.53. Note that (3.4) is just the degenerate
hyperbola (2.18). for yo = J. a

Corollary 3.16 gives a fairly good (and in fact sharp) result, if p has no real zeros at all.
However, if p has real zeros, then the nonreal zeros in the angular region of zy cannot be
too far away from zq:
Theorem 3.17 [5]® Let ay,....anm be the real zeros of p, and o be a real zero of Wp.
Then p must have at least one pair of nonreal zeros in the intersection of the angular region
(3.4) and the closed disk centered at To with radius V2hR(zo), where h is the number of

. .. ~1/2
closed Jensen disks of p containing zo, and R(z) = ( ;-"zl (:—__l;-?) .

]

As a converse to this theorem, one can say that a real zero a “extinguishes™ real zeros of

Wp in the Jensen disk of a pair z,% of nonreal zeros, if « is too close to R(z), or z is too far

away from the real axis. The following theorem describes this quantitatively:

Theorem 3.18 Let z,Z = z + 4t be a pair of nonreal zeros of p. If p has a real zero « with
E;—al < ¢, where

c=1/3/2 (\“/ 16v2 + 13 — {/16v2 — 13) = (.4947092.

then the points of the closed Jensen disk of z which don't lie in any other Jensen disk of p

contain no real zeros of Wp.

*The remaining theorems of this chapter are all taken from {5] and cited without proof.
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In [5]. this theorem. though looking similar to Theorem 3.17. is stated and proved indepen-
dently. Furthermore. criteria have been derived for Wp to have no zeros in a given interval,

or no zeros at all. We will not cite them here.

The next two theorems give two different sufficient criteria for Wp to harve real zeros in

certain intervals:

Theorem 3.19 Let a.@™ = r £yt be a pair of simple nonreal zeros, and J{«a) the Jensen
disk of a. If J(a) has no point in common with any other Jensen disk of p. and no other

zero of p lies in the strip

r-yV2<R(z) <z +yV2

then J{c) contains exactly two zeros of Wp.

Theorem 3.20 (Two-Circle Theorem for Wp)

Let p have eractly 2n zeros. n each in the closed disks centered at . = x +y1 (y > 0). and
@. respectively. with radius r < y/2. Then Wp has exactly two real zeros, located in the

intervals [t —y — rv/2,2 —y +rV?2] and [z +y — rV2.7 +y + rV/2], respectively.

This theorem can be generalized to further cases where the zeros of p split into several small

groups sufficiently separated from each other and from the real axis.

The last result describes the possible locations of the nonreal zeros of Wp:

Theorem 3.21 For all (reel or pairs of nonreal) zeros ;. a; = xj L yji of p. let
S;={z=zx+yi: (:x',—-:l:_,')'2 +y'1‘? < yg}

be the region bounded by the equilateral hyperbola with vertices at a; and @;. (For y; =0,

S; degenerates to a double angular region.) Then every zero of Wp lies either on one of the

Jensen disks of p. or 1 one of the S;.

One can even show that the nontrivial zeros of Wp outside the Jensen circles don't lie too

close to the real axis:
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Theorem 3.22 With the definitions in Theorem 3.21. let d be the minimum distance be-
tween two distinct real parts x; and 14 of two zeros aj. ay. Then every nontrivial zero of
Wp lies either mn a Jensen disk of p. or outside the strip

v3/2, (3.5)

o .0

3(z) >

It is conjectured that if p has m pairs of nonreal zeros and no real zeros. then no less than

.5j. If one could show this. it weuld prove Conjecture 3.11. at

SNt

Zm — 2 zeros of Wp satisfy {:

least in the case that p has no real zeros.



Chapter 4

Using the xzero package

This chapter describes the facilities that come with the xzero package. from a user’s point of
view. We assume that xzero has already been installed. and is ready to use. We will neither
deal with the system requirements of xzero. nor with modifications of the computation
package or of application resources. For details about these topics. we refer to Appendix B.

and to the manunal pages and help files included in the package.

For a thorough knowledge of xzero. however. its computing strategy needs to be understood.
especially in the event of unexpected behaviour or errors. We will introduce the basics of it
later in this chapter. before we describe possible problems and errors in the package. Also,
the data file format used in xzero will be explained later on. so that one can utilize xzero

data files in one’s own applications.

4.1 The concept of xzero

The purpose of xzero is to design polvnomials interactively. and to use them in various
computations. Therefore. xzero consists of two major components: The graphical user

interface and the computation engine.

E
EEBUT. K Zd0% %, FuEE A3 - XA

The way polynomials are designed in xzero is through their zeros. From the Fundamental
Theorem of Algebra. one knows that a polynomial is determined. up to a multiplicative

factor. by its roots. Therefore. at least in theory. arbitrary polynomials can be generated!.

}There do exist problems with this approach. thongh. Polynomials created randomly by their coefficients

o7
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Zeros are displayed and modified in a window called the drawing area. The user can do
most of the polynomial editing just by using the mouse and a few keyboard keys. In
this. xzero resembles other graphical tools and packages. such as Geometer., Geometer's
Sketchpad. and zfig. Those who have some experience with these or similar packages will
find it straightforward to work with xzero. Some familiarity with basic features of graphical
windows systems. such as clicking. selecting. dragging, will be assumed throughout this

description.

Computations of xzero will be executed only upon request by the user, and only on the poly-
nomial that has been designed in the first step. No other parameters need to be specified?®.
This gives the input data for computations a unique format. namely the set of zeros that

specifies the polynomial.

The output format however is variable. depending on the type of computation. Possible

results of computations are:
e The equation of the polynomial. and of related structures.
e Numerical values. e.g. winding numbers.

e Graphs of the polynomial on various curves in the complex plane.

e A boolean value. stating if a given boolean expression involving the current polynomial

1s true or not.

e Another set of complex values. e.g. the zeros of the derivative or of the Wronskian.

While all these types of output are supported. the last one deserves special treatment. since
it is the same type in which the polynomial itself is defined. Therefore, a set of result values
can also be displayed just as. and together with the values that determine the polynomial.
Of course. one wants to distinguish between input and output. Therefore, xzero maintains
and displays them as two different sets. or better: lists, of complex points. The former will

henceforth be called root list. the latter result list.

tend to have a larger percentage of real zeros than polynomials created by their zeros.
*However. the user may specify additional fixed parameters in a text file that is read at the beginning of
each xzero session.
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The points in the root list can be freely edited and manipulated by the user, in order to
generate arbitrary polynomials. It is in the nature of the result list to be dependent only on
the input list. and the type of computation that generates them. Thercfore. result values
are not modifiable. Both roots and results can be saved as files. In order to kecep the
above-mentioned distinction between input and output, roots and results have to be saved
separately. (This is only at first glance a disadvantage: Zero lists that exist in separate
files can be loaded separately into other programs or back into xzero itself. Also. one often
wants to save only the root list without results, or one wants to keep several result lists

(from different computations} along with a root list.)

The other kinds of result types are incompatible to the xzero input type. They can be
displayed through devices outside the graphical area, which may be other graphical or text
windows. It is left up to these devices how the result data may be permanently stored. In
practical use, text output can be redirected to a file, and plotting windows usually have

options that let one save or print a graph.

xzero supports installing additional computation procedures that may be desirable beyond

those that are already realized.

4.1.1 Symmetry concept

The concept of symmetry is used in xzero to generate polynomials guaranteed to have real
coefficients. To achieve this. xzero has a symmetric mode. in which roots are forced to lie
symmetric to the real axis. Each creation. deletion, movement and even selection of a zero
will affect the conjugate zero in exactly the same way, but with inverse sign in imaginary
direction. thereby preserving symmetry. Details for each of these operations will be given

when the operation itself is described.

The symmetry concept also extends to the computations. Computations in symmetric mode
are performed as real operations which ensures that the result is a real polynomial, without

possible rounding errors leading to non-zero imaginary parts.

At startup. xzero is in symmetric mode. This mode can be switched on or off by clicking
the Symmetric button in the Options menu. When turning symmetry on, xzero will auto-

matically add the conjugate complex zero of each existing zero to the list. except for real
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zeros. xzero doesn't recognize already existing pairs of conjugate-complex zeros. Instead. it

simply doubles these pairs.

When turning symmetry off. the conjugate zeros will disappear again, as if they were never

created. It is important to remember that the conjugates are only “virtually™ existent.

Symmetric roots can also be created manually, without switching to the symmetric mode.
But in non-symmetric mode. neither the editing operations nor the computations are per-
formed in a way that preserves manually created symmetry. Besides, xzero has no way of

“recognizing” a manually created. symmetric list of zeros.

4.2 Starting xzero

xzero is invoked by typing
xzero &

on the UNIX command prompt. (The ampersand after the command is recommended in
order to launch the application in the background. This allows one to type other commands

in the shell window, while xzero is running.)

Alternatively, one can type
xzero <filename> &

to work on a file previously created by xzero. The result is the same as starting xzero
without a file name, and then loading the corresponding file from the menu (Version 1.1

only).

4.3 'The graphical interface of xzero

At startup. xzero opens the main application window that looks as in Figure 4.1. This
appearance, as well as mouse and keyboard specifications of xzero. can be widely customized.
How to do that will be described in Appendix B.4. Here we will only refer to the default

specifications.
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- Menu Bar

- Status Bar

- Drawing Area

- Action Button Area
- Unit Circle

- Selected zero

- Unselected zero
- History List

- Result zero

Figure 4.1: xzero in a typical application.

One can distinguish between the following 4 areas:
e The drawing area {white window), in which the zeros can be drawn, modified, or
deleted.

e Action buttons (next to the drawing area) which let the user execute various functions

(Version 1.1 only).

e The status bar (above the drawing area) in which point coordinates and status infor-

mation are displayed.

e The menu bar (above the status bar), containing menus for all possible operations, as

well as an online help menu.

All these areas. and how to use them. will now be described in detail.
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4.4 The elements of the drawing area

The white drawing area contains a part of the complex plane. defined by the coordinate
translation specifications. The following objects can (but do not always or at the same time)

appear in this window:

e unselected, modifiable zeros. represented by red, *x’-shaped images,
e selected zeros. represented by thicker *x’es,
e zeros that arise as results of a computation. as green ‘+’es. They cannot be modified,

e zeros taken from previous result. as thin green ‘+’es, the so-called result history (see

Section 4.6.5): cannot be modified.
e coordinate axes, the unit circle etc.. shown in black,
e a selector frame (see “Selecting points in a rectangular area™ in Section 4.4.1)

e the cursor, appearing in various shapes, depending on the current operation

The visible drawing area displays only a part of the complex plane. In fact, the area where
points can be set is virtually unlimited (although physical limits are given by the numerical
ranges and precisions of the hardware). To access any part of the virtual drawing area, the
visible drawing area can be scrolled both in real and imaginary direction (see Section 4.4.3).
In addition. there are several functions in the View menu (see Section 4.6.3) that zoom or
move the visible part of the drawing area (Version 1.1 only). It is also possible to modify

the default coordinate translation specifications.

4.4.1 Operating modes

xzero distinguishes between two different mouse input modes. The Add mode lets the user
add new zeros, whereas the Select mode is used for various selection and “drag and drop”
routines. At startup, xzero is in Select mode. The current mode can be recognized by the
cursor shape: In Select mode it is a pointer arrow; in Add mode it is a dot shape. The cursor

will also change its appearance in the course of some of the operations described below.
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There are two ways to toggle between the two mouse modes. Clicking the right mouse
button permanently changes the mouse mode. while pressing one of the Ctrl keys changes
it for the time this key is held down. Several subsequent operations can be done while Ctrl
is pressed. However. the mouse mode cannot be changed for an operation that has already

Leen initiated (e.g. a mouse move). since the change takes effect after the operation.

Operations in Add mode

A new point is added to the current list of zeros by clicking the left mouse button. The
value represented by this new point is the complex value corresponding to the current pointer
position. as defined by the coordinate translation parameters (see Section 4.4.2). This value
is shown n the status bar. As long as the mouse button is held down, the point can be
moved around with the pointer. allowing for precise placement according to the coordinates
shown in the status bar. (During this. the cursor will show as a downward arrow.) When
the left mouse button is released. the point is “dropped” to its final position. It will appear
as a selected point, replacing the previous selection. If, however, the Shift key is held down

when pressing the mouse button. the point will be added to the current selection.

The pointer can be clicked at the same position for several times. thereby creating multiple

zeros {see the remarks about multiple zeros below).

Select mode

Not only the drag-and-drop operations. but also many of the menu functions do not operate
on the whole list of points. but only on the current selection of zeros. Selected zeros are
visually distinguished from normal points by their thicker point shape. There is a large
variety of operations to select or unselect single or sets of zeros. All of them (except Select

A1l which is issued from the Edit menu) are performed by mouse operations in Select mode.
In symmetric mode, every selection of a non-real zero affects the conjugate zero in the same
way.

Selecting a single point

A zero can be selected by clicking the left mouse button on or close to its image. Close

means that the distance {in the maximum norm) between the arrow tip and the centre of
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the point image does not exceed 5 pixels. {Similarly. by far we mean that this condition is
not satisfied.} If there are several points within that distance from the pointer. the one with
minimum distance will be selected. Among several points at the same distance. priority is
given to already selected points. and then to the first zero in the order of the root list. The

complex coordinates of the selected point are displayed in the status bar.

This selection replaces the previous one. 1.e. whichever zeros were previously selected. are

automatially unselected.
Adding a point to a selection

If the Shift key is held down while clicking on or near an unselected point. this point will
be selected in addition to the previous selection. This allows for selecting several zeros
arbitrarily. (Other ways to select several points at once are explained below.) The same

mechanisms as above are used to determine the closest point.
Unselecting a point

If the Shift key is held down while clicking on or near a selected point. this point will be
removed from the selection and reappear as an ordinary point. without affecting the rest of

the selection.
Selecting all points

To select all points. choose Select all from the Edit menn. If the Shift button is pressed
while choosing Select all. the points are foggled rather than selected. (Every seiected

point is unselected and vice versa.)
Unselecting all points

If the left mouse button is elicked far away from all zeros. the complete selection is unselected.

Additionally, the complex coordinates of the pointer position are displayed in the status bar.
Ciicking on a resuit point

Resuit points can never be selected like roots. Therefore. clicking on or near a result point
causes the same operation as if there was no zero at all. However. xzero will display the
exact value of this result point (not only the approximate value according to th< pointer
position} in the status bar.
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Selecting all points in a rectangular area

Pressing the left mouse button far away from all zeros also initiates another operation: If
the pointer is moved with the mouse button held down. a rectangular frame opens up.
One corner of this rectangle is determined by the cursor position when the button was
pressed. whereas the diagonally opposite corner follows the cursor movements. {During the
movement. the coordinates of these two points are displayed in the status bar.) When the

left button is released. all points inside or on the frame are selected. The number of points

thus selected is shown in the status bar.

In symmetric mode. this operation actnally opens two frames on opposite sides of the real

oy

axis. When the pointer crosses the real axis while opening the frame. the two frames merge

into one.

Together with the Shift key. the frame can be used to unselect or toggle points. (Every
selected point inside the frame is unselected and vice versa.)

Selecting multiple zeros

xzero is capable of handling multiple zeros. However. zeros with the same value are simply
drawn on top of each other. so they cannot be distinguished. The selection mechanism

works in the following way for multiple zeros. say, with multiplicity %.

e Clicking on or near the position affects only one of the zeros.

e Selecting with a frame selects all k zeros.

When clicking on a multiple zero consisting of both selected and unselected zeros. priority is
given to the selected zeros. Thus xzero allows the selected zero to be moved or unselected.
rather than selecting a second zero at the same position. This is because it will hardly ever
b+ necessary to select between 2 and k — 1 zeros at the same position. Doing so requires

the following trick:

e Sclect one of the zeros (if not already done). and remove it with Cat from the Edit

4405441008

e Select another zero at the same position.
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e Hold the Shift key. and issue Paste from the Edit menu.

This restores the deleted zero. leaving both itself and the other selected point selected. By

repeating these steps. one can select more than two zeros.
Moving points around

If the pointer is moved after the left mouse button was pressed on or close to a point. the
entire selection of points will be dragged around in the window. The offset by which the
selection is moved, as well as the new pointer position, are shown in the status bar. The

points are finally placed at their new position by releasing the mouse button.

In symmetric mode. points are moved in an unusual way, in order to preserve symmetry: All
selected zeros follow the direction of the pointer with respect to the real axis. This is, when
the pointer is moved away from the real axis. so do all zeros. Those with positive imaginary
part move up, while those with negative imaginary part move down, and conversely, if the
mouse is moved towards the real axis. All points however will keep their direction relative
to the pointer. even if they cross the real axis. Real points split into a pair of conjugate-
complex points and move away to both sides of the real axis. Point pairs that come to lie
on the real axis after the movement will turn into single real zeros. This description sounds

rather complicated, but it will feel straightforward when using it.

Unlike in a normal mouse-click. a point movement does not unselect the current selection.

This operation is also indifferent to whether or not the Shift key is pressed.

Deleting a selection

Selecting Clear from the menu. or pressing the Backspace key deletes all selected zeros.
Special remarks on Select Mode operations

The Select mode operations are designed to compromise optimal handling with robustness
against abusive usage. Yet. the behaviour of xzero under some extreme conditions might

look weird. These are some of the known special cases:

e Points and frames can be dragged out of the visible drawing area. The operations will
be executed on a virtual window the size of the screen. For example. dragging a zero
out of the visible area and releasing it at some point outside the window will place it

at the position corresponding to that point, and it would appear that the zero just
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vanished. However, the point still exists, and a coordinate change (e.g. zooming out)
would make it visible again. One should avoid such movements, though. since a point
dragged out of the window would remain selected, and it could be modified or deleted

inadvertently in subsequent operations.

o If a selected point is clicked upon without the Shift key, the current selection remains

unaffected. just as it would do if the points were moved.

e If a selected point is clicked upon together with the Shift key, the point will be
deselected only if the pointer is not moved. If the pointer is moved, it is assumed that
the intention of this operation was a point movement, not a deselection. Hence the

point remains selected.

e The complex coordinates of a pixel are shown with any click of the left mouse button,
even if there is no point near the cursor position. This lets one determine the complex

coordinates of any position in the window.

e To determine the coordinates of a pixel without unselecting the current selection, one

needs to hold the Shift key while clicking.

e If a zero or a result point is found near the cursor position, the cursor “jumps” to
this zero. This is necessary in order to display the exact coordinates of the point in
the status bar. and to correctly move points relative to their origin. Since this cursor
jump is within the sensitivity range (at most 5 pixels in each direction by default), it

should not confuse the user.

4.4.2 Coordinate translations

We were previously speaking of the “complex value corresponding to the current pointer
position”. This should be restated more precisely: The set of pixels in the drawing area —
which are pairs of (possibly negative) integer values — must be mapped in some linear way
into the set of complex numbers. This is done simply by specifying two complex numbers:
centre and offset. centre is the image of the centre point of the drawing area (the point
with the coordinates (windowwndth div 2, windowheight div 2)). offset is the image
of the vector (1,-1), i.e. it specifies in its real (imaginary) part the difference of the real
{imaginary) parts of the values of two pixels adjacent in x (y) direction. Note that, as
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defined in the X protocol, the y coordinates increase from the top to the bottom of the
screen, which is contrary to the usual way of displaying complex values in the Gaussian
plane. The negative sign is used to compensate for this. The centre point of the drawing
area is used as reference point rather than the top-left point (0,0), because it kecps the
central part of the drawing invariant to resizing. Also, zooming into the central part of the
drawing (which is most often desired) can be accomplished more easily. Although simple

coordinate translations become slightly more complicated.

The values centre and offset are specified as resources and can be modified. When
zooming, offset is divided by the zoom factor. In the Goto operation, and upon using the
scrollbar (see below), the coordinates of centre are affected. Finally, resizing the drawing
area makes xzero redetermine the pixel coordinates of the centre points; the values of centre

and offset remain unaffected.

4.4.3 Scrolling the drawing area

Up to Version 1.1 of xzero, the scrollbars at the edges of the drawing area serve the customary
purpose of manceuvring on a virtual area that is larger than the visible area, but finite.
However, this is inappropriate to model a virtually unlimited area like the complex plane.
The user must be allowed to scroll infinitely in any direction. On the other hand, the
scroll bars should still indicate the current position relative to some finite area, namely the

smallest rectangle that encloses all zeros.

In Version 1.2, the drawing area and the scrollbars will be managed differently to meet these
needs. In particular.

® The drawing area will be redrawn after scrolling.

e The sliders can no longer be dragged to the end of the scrollbar.

e The sliders can always be dragged in both directions.

e Both size and position of the sliders will each depend on both tue position and size of

the displayed part relative to the rectangle containing all zeros.

e If the drawing area contains no zeros, the sliders will be positioned in a central position,

independent of shifting and scaling.
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e Otherwise. the sliders will behave closely to the normal! behaviour. to keep their use

simple.

Details on the so modified scrollbars will be given in the manual pages of the upcoming

Version 1.2.

4.5 The status bar

The status bar above the drawing area displays information about completed operations.

At startup. it contains the version number, and a copyright message.

e For most operations, xzero counts the number of zeros affected by the operation, and
displays it on the status bar. when the operation is completed. In symmetric mode,
not the number of zeros, but the number of “point pairs™ is referred to. A point pair

is defined as either a single real zero. or a pair of conjugate-complex, nonreal zeros.

¢ Also. the status bar displays coordinates in ongoing select and mowve operatious. See
the respective operations in Section 4.4.1 on the meaning of the coordinates. All
coordinates are shown as complex values in the format a [+] — |£] b I. (£ is shown

when referring to a pair of conjugate points in symmetric mode.)

¢ For some computations that produce one line of output, the status line serves as output
line. The result can be any kind of text. depending on the operation chosen. It may

contain values or just ordinary text.

4.6 Mennu functions

The following menu functions are described in the order in which they appear in the menu
bar. Note that there exist keyboard shortcuts. listed in the menus themselves. and action

buttons for many of these functions. to accelerate their use.
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4.6.1 File menu

Most of the functions in this menu are self-explaining. standard fle operations. For com-

pleteness. they are listed in full:

New Empties all lists. and the drawing area. except for the points in the history list. (In

order to remove them. one has to select Clear History from the Results menu.)

Open Loads a previously generated xzero file into the memnory. replacing the old root list,

and removing the old resuits.
Merge also loads an xzero file. but adds its contents to the zeros already in the list.
Save saves the current root list.

Quit ends the program.

Note that unlike some other applications. xzero has no Close item. since this function would

be identical to New.

There exist similar file functions to those above for the result and history lists. to be found

in the Results menu.

All functions that load or save files show a cenvenient file selection dialogne. kaown from
many other X applications. in which directories can be easily listed and files selected. just

by a few mouse clicks.

Whenever unsaved work or resuits are in danger to be destroyed. as in the New. Load and
Quit operation. the user will be rotified and given the opportunity to save the data. or abort
the file operation. All file operations can be cancelled before they are physically executed.

thus keeping the previous state of xzero intact.

The zeros of a loaded or merged list antomatically appear as selected points.

4.6.2 Edit menu

The upper half of the Edit menu contains the Cut/Paste/Clear-operations that are com-

monly found in window applications:

Undo Reverts the last modification done by the user. Only one operation can be

reverted. and some functions are not reversible. (Version 1.2 only.)
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Copy

Cut

Paste

Clear

Select all

Copies the selected zeros into the cut buffer. This clipboard-like buffer main-
tained by X allows exchange of data within and between applications. From
xzero. zeros can be exported to the same xzero session. other xzero sessions

ruaning on the same terminal. or other applications with a Paste function.
Same as subsequent execnution of Copy and Clear.

Adds the zeros contained in the cut buffer to the existing zeros. The data in
the cut buffer may originate from the same or from different xzero sessions. or
rom another application that can specify zeros in a compatible format.

Pasted zeros appear as selected points. replacing the previous selection. In-
stead. the zeros can also be added to the old selection. by pressing Shift when

issning Paste.
Deletes the selected zeros from the list.

Selects the complete root list. including zeros that are outside the visible area.

When issued together with Shift. the list will be toggled.

The lower half of the menu contains some xzero-specific zero-editing functions. They all

operate on the current selection of zeros:

Move/Set...

Make Real

Make Unit

Reflect

Version 1.1 only. An alternative to the ~drag and drop™ way of moving zeros
around. Zeros can be more precisely positioned using this method. because

the new values can be typed in with the precision supported by the hardware.

Sets the imaginary part of the zeros to 0. This operation is recommended to
ensure that zeros are real. Placing them manually close to the real axis might
not put them precisely onto the real axis. so that they would be considered

noe-real.

Divides the coordinates of the zeros by their respective absolute value. thus
normalizing them to points on the unit circle.

Replaces the selected zeros by their conjugates. In connection with Copy and
Paste. this provides a way to create symmetric roots. However. xzero does

not recognize and treat the polynomial as symmetric. If this is desired, one

should use symmetric mode. instead of reflecting nonreal zeros.
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4.6.3 View menu

tVersion 1.1 only}

Go To...

Zoom. ..

A window will appear. asking to specify a pair of coordinates. When done.
one can either click the Go To button to move to the specified coordinates
{making them the new centre point of the drawing area): or one can move
the centre point by these coordinates. by clicking the Offset button. Either
the r or the y coordinate can be left unspecified. in which case only the

specified coordinate will be changed.

A similar window will appear. asking for a pair of zoom factors, which
must be positive. If two factors are specified. then the z and y coordinates
are zoomed separately. If only one factor is specified. both coordinates are
zoomed by the same factor. A factor greater than 1 means that an area
around the centre is enlarged {zoom in), and a factor greater than 1 means

that the area is shrunk towards the centre {zoom out).

Reset Drawing Scrolls the drawing area so that the centre point of the current root list

becomes the centre of the drawing area. After a Go To into an area
without zeros. this is the easiest way to return to an area where zeros are

most likely to be found.

4.6.4 Execute menu

This menu contains the following predefined computations {p is the polynomial defined by

the root list):

Polynomial Plot Plots p. Ranges can be specified by the user {Version 1.1 only).

Derivative Zeros Computes the zeros of p’ and returns them as resuit.

P £

Uranskian Zeras rmzbos tho poaroc S etsierc dhace —o oo Ts
Wronskian Zeros ¢ mputes tne zer f ¥ d returns them as result.

Play

User Defined

Test functions that by default do nothing. However. the nser may insert

code that performs special computations.
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Some of these operations return a new result list that replaces the previous list. If this is
the case. and the computation is completed successfully, the opportunity will be given to
save the old list to a file. If the history function is active (see the Results menu). the old

result list will also be copied into the history list.

This menu can be easily extended by new procedures (see Appendix C). For more details

about computations in general. see Section 4.9.

4.6.5 Results menu

The first half of the results menu provides some functions operating on the result list, namely
Load. Save. Copy. Paste. Clear. They are equivalents to those for the root list, and need
no further explanation. Namely. these are Note that, since root and result files cannot be
distinguished from each other. saved (or copied) results can be loaded (or pasted) as roots,

and vice versa.

The second half of the menu concerns the result history list. The two radio buttons allow
the user to select either one of the history modes. or turn off the history function completely:

e Display Previous: Each time a new result is computed or loaded, the old results are

transferred into the history list. allowing for comparison to the current (new) results.

e Display History: The history list is made accumulative, i.e. each time new results
are computed or loaded. the previous results are appended to the history list. It
will appear that the zeros in the history list (if computed with the same command
on shightly modified versions of the root list) describe “tracks™ or trajectories on the

complex plane.

e Turning off the history option {by clicking on the currently active radio button) re-
moves the result history from the display. Yet it does not clear the list. If the history
option is turned on again. the old history list will reappear. This way. the accumu-
lation of the history list can be interrupted (e.g. for intermediary computations) and

resumed later on.

e Clear History: Clears the result history list physically. It works in all history modes.
It is recommended that the history list be cleared if it is no longer needed, for displaying

long lists is a time-consuming operation. especially on slow terminals.
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e Save History: Save the current history list.

4.6.6 Options menu

Restart Maple Resets the computation engine of xzero. For the use of this function, see

Section 4.9.1. Problems with the computation.

Symmetric Toggles between normal and symmetric mode. The symmetric mode is

described thoroughly in Section 4.1.1.

4.6.7 Help menu

This menu brings up a list of functions xzero provides, with short help texts on how to use

them.

4.7 The action buttons

{Version 1.1 only)

These icon buttons to the right of the drawing area provide an easier way to use some of
the fonctions in the menu bar. These functions have already been described with the menu

they belong to.

4.8 xzero file and data structures

We will now shed some light on the structure of files and lists in xzero, as far as they are of

concern to users.

4.8.1 File format

Zero lists are stored externally in a consistent way, regardless of their nature and of the
storage medium, which can be a file or a memory area called the cut buffer (see the Copy

function). For simplicity, we call any stored list of zeros a file.
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Zero files are stored in the following format:

e They are ASCII text files.
e Each zero occupies a separate line of the file.
e Its complex value is represented as two floating-point numbers, separated by white

space.

This relatively simple format makes it easy to edit zero lists manually with text editors, and
to load them into mathematical packages. Conversely, one can create or modify data files
intended for use with xzero. Note however that the following conventions are to be adhered

to, if a file is to be successfully loaded into xzero:

e Real values must be displayed as two numbers, with the imaginary part set to zero.
e The numbers can be in any numeric format: integer, fixed point or floating point.
o The line length is limited to 80 characters.

e No text is allowed in any line. However, text at the end of a line containing two valid

floating point numbers will be ignored without an error message.

e When two numbers in a line are successfully read, the rest of the line is ignored.
Therefore, comments at the end of a line are allowed, but no more than two numbers,

specifying one complex value, should be stored in one line.

e Empty lines are allowed and will be ignored.

Files that don’t match these specifications will cause error messages when loading them into

xzero. (see Section 4.10.1).

Due to the consistent file format, result lists can be re-loaded into xzero as root lists. This

lets one do multi-step or recursive computations, e.g. for obtaining higher derivatives.
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4.8.2 Internal list structure

Internally, roots and results are stored in two independent linked lists. Without stepping
into the details of linked lists, we remark that this way of storing defines a total ordering
on the list, equivalent to the order in which they were created. The order is preserved when
zeros are stored in a file, and when they are loaded back into a list. This may be relevant

to computations on zeros in which the order of the list plays an essential role.

4.9 Computation Strategy

So far it has not been necessary to understand how xzero accomplishes the computations.
However, after using xzero extensively, one will almost certainly encounter problems with

the computation. This will usually happen in the following situations:

e A computation has been initiated, that, with a large number of zeros in the root list,

takes too long, and should be interrupted.
e After incorrect parameter specifications, an error occurs within the computation.

e One wants to write one’s own computing routines, or modify existing routines.

xzero does not have its own computation engine. It relies on a powerful symbolic compu-
tation package called Maple. Maple is called by xzero at the beginning of the program as
an independent process, and run in batch mode. This is, Maple receives its input — the
commands that issue the computation procedures and contain the data — from xzero, and

executes these commands in the background, invisible to the users.

This approach was chosen for a good reason: Coding one’s own subroutines for determining
zeros of polynomials without the aid of a mathematical package is quite troublesome: a
good algorithm has to be selected, and care to be taken to avoid programming mistakes and

control numerical errors. On the other hand, there exist powerful symbolic computation

30f course one can. as with any running process. get information about Maple's status, using the top
command in a UNIX shell. This might sometimes be useful, e.g. to find out if Maple has unexpectedly quit.
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packages such as Maple and Mathematica® in which these algorithms are already imple-
mented. Therefore. it is a lot easier to write and modify computation routines with these

packages. The only disadvantages of having a symbolic package do the mathematics are:

e These packages are universal. and not optimized to a special task. so in general they

are comparatively slow.

e Maple provides only a primitive interface to other UNIX applications. This makes the
communication between Maple and xzero difficult, and sometimes unreliable, as we

will show in the next section.

During the computation. xzero is waiting for the results to be returned by Maple. A window
will appear, notifying the user of the ongoing computation. This window contains a cancel
button that lets the user abort the computation at any time. If this button is pressed, or
when all results have been received, xzero will return to normal operation. Note that. even

if Maple does not return any results, xzero will wait for Maple to finish all its computations.

4.9.1 Problems with the computation

Maple. as an independent UNIX process. gives xzero only two ways of controlling its be-
haviour. namely feeding it with input, and killing it. Interrupting a computation in partic-
ular would be useful, but it is only possible for the cost of killing Maple completely, and

restarting it before the next computation.

As a well-known fact in computing, it cannot be predicted if a certain operation will yield
its result after an acceptable amount of time. or even if it will terminate at all. Only the
user can decide what computing time will be acceptable for which type of computation,
given a certain number of zeros to be computed. If one decides that the computation gets
too lengthy, one can press the cancel button. This will terminate xzero’s waiting for results,

and then kill and restart Maple.

In open systems like UNIX. virtually every process running under a person’s account is

allowed to kill every other process under the same account, and can also be killed by the

*Forthcoming versions of xzero will have a modified interface that will allow one to use Mathematica
instead of Maple.
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person itself. This kind of bloodshed doesn’t normally happen. But there are known cases
when Maple dies accidentally. the most prominent being a recursive symbolic reference in
the code. xzero is capable of recognizing if Maple is no longer available. and restarts it if

necessary. And finally. one can restart Maple manually, if one considers it necessary?.

Another problem arises from the way in which Maple’s results are transmitted back into
the program. A correct transmission is accomplished through control messages that are
sent before and after the result list. If Maple terminates because of an error. xzero will
not receive the terminating control message. xzero cannot distinguish between this and
an ongoing compu“ation. However. the user will most likely have been warned in advance
by a Maple warning or error message. When in doubt. one should check with a UNIX
tool like top. if the Maple process is still computing (that is typically when it uses a large
percentage of CPU activity). If Maple is no longer computing, or doesn’t show up in the
process list at all. one should interrupt the computation, restart Maple. and re-issue the

same computation. if desired.

4.10 Errors, Warnings, and Bugs

4.10.1 Error messages

Two different types of error messages may be displayed when running xzero: system errors

OT USeT eTTOTS.

System errors

System errors occur if system limitations or configurations prohibit xzero to function nor-
mally. especially during startup. when xzero tries to allocate the resources it needs. xzero
will display an error message on stderr and then terminate. In general, this means that
xzero will not run on this system or terminal. or that settings have to be reconfigured. The
program documentation of xzero contains a list of error messages, along with ways to avoid

the respective error. Other types of system errors. not listed in the documentation. originate

%A useful application of this is garbage collection: In the course of its computations. Maple allocates
memory. Through excessive computations. the amount of memory allocated may exceed the available main
memory, and UNIX will start swapping to the disk, whick drastically slows down computations. Restarting
Maple frees the memory previously allocated and helps avoid this problem.
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from the X protocol and may indicate incompatibilities of xzero with the specific version
of X on the system used. Some help in case of such an error may be found in any good X

window user's maomnal. e.g. {21].
When xzero terminates due to a system error. one should type
destroy

on the next UNIX prompt. This frees up internal structures which at this point may still

be allocated.

User errors

These error messages are somewhat expected. They occur in case of bad user input. or
operations that cannot be issued in certain situations. The error messages will appear in a
separate message box on the screen. and they never cause xzero to terminate. Depending
on the severeness of the error. one is given some or all of the following options:

e cancel the current operation.

e re-issite the same operation.

e continue as if no error had occurred.

The possible choices for the respective error are indicated by the sensitive buttons in the

error message box {abort. retry. ignore. respectively).
Zero value not permissible.

The user tried to input a value that wonld later ir the program lead to a division by zero.
In particular, this message occurs when the user attempts to zoom by a factor of 0. or by a
very small value that evaluates to (.

List is empty.

An operation is attempted that is senseless if there are no zeros defined in the list. These

operations are: Saving a file. copy. and computing results.
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Bad line format.

A piece of data is read into xzero that doesn’t match the correct specification for complex
zeros. as described in Section 4.8.1. This piece of data can either be a file. a list of zeros
pasted from other applications. or a result list received from Maple. The erroncous line is

displayed on stderr. so that the user can find the source of the error.

If the Ignore option is chosen. the line as a whole will be skipped. and the reading process
resnmed. Otherwise. the operation will be cancelled. It is in the nature of some read
operations that repeating them will not be successful. Therefore, the Retry option is not

always available.
An error occurred in Maple.

During Maple’s command execution. an error occurred. recognized by the typical Maple
message Exrror (in ...). xzero doesn’t have control over the correctness of Maple’s com-
pntations . so these errors cannot be prevented. The user should know about possible
sources of error in the Maple code {e.g. possibility of division by zero). Maple’s error
message. which is printed out on stderr, may be of some help in finding the source of the

€LTOL.
Unexpected message type.

This error hardly ever happens. In the message transmission between Maple and xzcro.
different types of messages are used for data. control. and error messages. {The type of
message is simply an unsigned byte-long integer value.) This error indicates that messages
did not occur in the right order. It is possible. though unlikely, that the message queue is
used by a different UNIX application. Previous runs of xzero that terminate unexpectedly
fe.g. without closing the message queue) may also leave some messages in the queue. which
may confuse xzero. Retrying the computation will most likely be successful. since the

message quiteue is cleared after an error occurred.
Terminated by user.

The Maple computations have been interrupted by the user clicking the cancel button in the
waiting message. Upon Retry, the computations may be repeated. Ignore will not continue
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the computation. but any results that have already been obtained will be made available.
{In the builtin computations. all results are transmitted after all computations have been
done: the interrupt ocenrs most likely at a time when no results have been returned. Ignore

will not be any different from Abort, then.)

Error in <file> operation: <...>

During file operations. many system-defined file errors are possible. e.g. No such file or
directory. Permission denied. Disk space full. The above message specifies the file
operation that failed. and a string that describes the type of error. This string is the same
as grnerated in response to a UNIX command and defined in the standard C error library,

so it can be looked up in the UNIX manual page intro(2). if it is not self-explaining.

Cut buffer full.

An nnusually large number (>200) of zeros was attempted to be cut or copied. This is
actunally a warning message. Therefore. no Retry or Ignore option is given. The cut buffer
contains the zeros that were successfully written into it. and in the case of a cut operation.
these zeros are deleted. {To get them back. one can simply paste them.) To avoid this error.

a large list should be copied in several smaller parts.

4.10.2 Warnings

By defanlt. xzero warns a user in every instance when (s)he is about to lose essential parts

of their work. Namely. the following three warning messages may appear:

Zeros have been modified.

This message appears when the root list is about to be cleared or replaced in a ~ew or
Load operation {but not with Clear}. and has not been saved after it was last modified.

{Selections don’t count as modifications.) The user may either save the list now. discard

the changes. or cancel the ongoing operation. thus leaving all lists in their previous state.

Current results are unsaved.
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Similar to the above message. this appears when an unsaved result list is to be replaced by
a file. a new computation. or to be deleted through the New operation. The user is given

the same choices as above.
File <filename> exists.

This message is shown whenever a list of zeros is written into an existing file, unless:

e the list to be saved was previously given the same file name (e.g. when it was loaded
or last saved). Equality is tested by string comparison. so xzero doesn’t recognize if
two files with different names are physically identical, due to path specifications or

symbolic links. This may sometimes result in a groundless warning.

e the list is newly created. and is to be saved under the default filename (unnamed or

unnamed.res).

e the list is a result or history list, and it is saved under the same name as the root list,

plus default extension {i.e. filename .res or filename .hist).

The user has the choice to either overwrite the old file, or cancel the Save operation. In the
latter case. xzero will return to the file selection dialogue, allowing the user to save under a

different name or abort the whole Save operation.

As a general rule. xzero warns too often rather than not warning when it ought to. However,
some of these messages can become very bothersome, especially in “trial-and-error™ runs,
when results are generally net to be saved. Therefore, displaying each of the above warning
messages can be turned off separately for the rest of the xzero session. by holding the Ctrl
key while clicking Discard or (in the File exists warning) Cancel. Also. the application
resources confirmSaveEnable. confirmResultsEnable. and fileExistEnable can be set
to False, disabling ail warning messages for the entire xzero session. However. the warning
messages should be only disabled if they are definitely not needed. There is no way to

re-enable them from within a running xzero session.

Another type of warning are Maple warnings, originating from computations. (They may
also occur in the startup phase of xzero.) Maple warnings are simply written to stderr.

The user should check for such messages in case of unexpected results.
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The most prominent Maple warning is Empty plot, by which Maple notifies the user of
insufficient variable specifications in a plot. This may be due to a mistake in user-defined

functions. or to incorrect range specifications by the user.

4.10.3 Known bugs in xzero

During the testing stage. much care has been given to discovering and removing bugs and
instabilities of xzero. Yet it is only too likely that xzero will contribute to the painful expe-
rience users frequently ;et from using X applications. Major X applications are so complex
and flexible that they can never be completely debugged on all platforms. in all thinkable
configurations and for all imaginable situations. Usually, in some extreme situations {where
ertreme depends on the program and how it is written) they crash without warning, leaving
nothing but a coredump behind. Hence. a user should not experiment with extreme con-
figurations of xzero (just as with any other X application). Here is some advice on how to

avoid problems with xzero:

e Never zoom to extremely large or small intervals. This may cause numerical overflows
or large rounding errors.
e Don't make the drawing window too small. or too large.

Large windows should not cause any trouble, but they might affect the performance

of xzero on slow terminals. when the entire window needs to be redrawn frequently.
e Don't hit too many keys or motse buttons at the same time.

In doing this. several operations may be initiated simultaneously. causing inconsisten-

cies in updating the lists.

e Avoid extensive mouse movements when moving objects around.

Redrawing the moved objects takes a considerable amount of time. Especially on slow
terminals. it will appear as if the points are lagging behind the cursor. This will also

slow down other drawings on the terminal.

e Don’t configure resources unless you are sure about what you are doing.

One cannot destroy the program with badly configured resources. but some of the

xzero operations may be disabled. or some of the drawings may become invisible. In
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any case. a backup copy of the default resource file should be kept. It is not guaranteed
that xzero runs correctly with any resource setting other than the default — although

e.g. changes in colour or text specifications should prove harmless.



Chapter 5

Some experimental results

5.1 Another application

The xzero package has been used extensively to verify the results in Chapter 2. and to
examine its various special cases. We will now show its use in another application to give

some experimental evidence for Conjecture 3.11.

The central idea is the same as in Chapter 2. namely, examining the loci of % This time
however. we take the union of the two loci of arguments 0 and =#. joined by the zeros and
poles of %(z). We write this set as Lp (%') and refer to it as the real locus of %'. So
Lp ( %') is the inverse image with respect to %’ of the extended real axis, and its points can
be determined by the equation ¥ (%'( z)) = (. This equation can be rewritten as
3(p'(2)p(2) = —R(P(2))3(p(2)) + R(p(2))V(p'(2)) = 0

and further. on substituting z = x + yi. it can be written as a polynomial in z and y. cach
variable occurring with degree at most 2n—1. Hence. Ly (%) is an algebraic curve of degree

at most 4n — 2. (This fact is true for all “pairs™ of loci of the form L. E)y Loss B )
p p

From the results about loci of %i— in Chapter 2, we know (or derive easily) the following

properties of Lz (1;—’}:
e Lp (%) is symmetric to the real axis.

85
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e The real axis is part of Lg {"’;}

e Allarcsof Lpg f: %:g besides the real axis {henceforth called the nonreal ares) are finite.
e These arcs lie completely on the closed Jensen disks of the nonreal zeros of p.

e Every nonreal zero of p lies on exactly one are.

e Every noureal critical zero of order 1 lies on & arcs. where £ is its multiplicity.

e If z is a nonreal zero of Wp of mmitiplicity k. and %’(z) is real. then z lies on & + 1

arcs.,

e The nonreal arcs consist of components which are either closed {we will call these
closed arcs). and components which begin and end on the real axis (open arcs). If an
arc passes through a multiple critical zero. or to a zero of Wp, it has to be suitably

continued {by taking the adjacent arc to the left or to the right).

e The points on the real axis where open arcs originate are exactly the real zeros of Wp.

At a real zero of Wp with multiplicity k. exactly 2k nonreal arcs originate.

The last point is the most important one. because it lets one express the number of real zeros
of Wp in terms of the open arcs of Lg ( %) . Given this relaiion. Conjecture 3.11 is equivalent
to saying that the number of nonreal zeros of p is greater or equal to the number of open
arcs of Lg (%). One is led to suggest the following stronger versions of the conjecture, all

of which will prove to be false:
e The number of nonreal zeros on the open arcs is greater than or equal to the number
of open arcs of Lg (%)

e The total number of nonreal zeros is greater than or equal to the total number of arcs

n H,. and H_.

e The number of nonreal zeros. not connting multiplicities. is greater or equal to the

number of open arcs.

Instead of a complete case distinction. we will give a number of examples which illustrate

the typical cases that occurred in our experiments. We wiil also state which cases satisfy
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Figure 5.1: The real locus of%. for p(z)= (2% + 122 + 4z +4.25)(27 — 1z + 4.25)

the above three conjectures. and relate these cases to theorems presented in Chapter 3.

whenever possible.

Case 1: (sec Figure 5.1} All nooreal arcs are open. They connect pairs of adjacent real zeros

of Wp. and contain one nonreal zero each.

One can show that this happens exactly if all critical points of p are real. In

particnlar. this includes all cases in which Theorem 3.19 holds for all nonreal zeros

of p.

2: (see¢ Figure 5.2} All nonreal arcs are open. They connect pairs of adjacent real
5 y P

0
3
&
o

zeros. and they contain one nonreal zero and one nonreal critical zero cach.

This happens if p has no Fourier critical zero of order 1. and the real parts of the

nonreal zeros are sufficiently well-spaced.
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Figure 5.2: The real locus of%’_ for p(z) = z(22 + 4z + 5) (2> — 42 + 5)
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Case 3: (see Figure 5.3} There exists only one pair of arcs. which are open and contain all
nonreal zeros and critical zeros of p.

This includes some. but not all cases of Theorem 3.20. (In the general setting of

this theorem. Lg ( -‘;—) may also have closed arcs.)

Case 4: (see Figure 5.4} All arcs are closed: they contain at least one real and one nonreal
zero each.
This case applies if and only if Wp has no real zeros at all: in particular. this includes
all cases in which Theorem 3.18 holds for all nonreal zeros of p. It is obvious that
every closed arc contains at least one zero and one critical zero of p: otherwise. the
maximum principle. applied either to %’ or to ;;l,, would imply that %’ is constant

in the interior of the arc.

.............

3 2 1 ) T 2 3

-3 -2

Figure 5.4: The real locus of % for plz) = (22 — 1)(22 — A)(22 + 1)(22 + 0.75z + 3.25)(2° —
0.75z + 3.25)
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Case 5:

Case 6:

(sce Figure 5.5) There exists an open arc which contains a nonreal critical zero, but

no nonreal zero of p.

One can show that this arc must be contained in the interior of another arc of
Ly ( %l) This example shows five pairs of nonreal zeros. but six pairs of nonreal
arcs; only one pair of zeros lies on an open arc, while there are two such arcs. This

shows that the first two conjectures above are false.

A counterexample for the third conjecture can be obtained similarly, by grouping
all five pairs of nonreal zeros together at, say, .

There exists an open arc that contains no nonreal zeros or critical zeros of p at all.

No example has been found for this case. However, Figure 5.6 shows that this case
is possible for the locus Lg(r) of an arbitrary rational function. We conjecture that

a similar example can be found for a logarithmic derivative as well. but involving a
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large number of nonreal critical zeros. If such an example is found. it can most likely

be modified to give another counterexample to one or all of the three conjectures

above.

We note without further consideration that mixtures of the cases above are possible. Also,
there exist limiting cases between the above cases. These limiting cases always have one of

the following properties:

o Ly ( %) contains a nonreal zero of Wp.

o A real zero of Wp is multiple.

The Cases 5 and 6 {if it exists) of ~zero-free open arcs™ are undoubtedly the most intriguing
ones. for they are the only cases from which counterexamples to Conjecture 3.11 could arise.
They need to be further classified and studied. It would be helpful to find a lower bound for
the number. and mutual distance. of nonreal zeros necessary to procure zero-free arcs, for
it seems that far more nonreal zeros are placed on closed arcs. or as extra zeros on cxisting

open arcs. than arcs become zero-free.

5.2 Numerical errors

Rounding errors are a crucial and often underestimated factor in numerical packages. This

- . . - .
affects xzero as well. since xzero uses a numerical algorithm for finding the zeros of a given
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polynomial. And in fact. nmmernical errors in intolerable dimensions have been found in
some instances. while working with xzero. For instance. consider the polynomial with zeros
at N8 -06%7..._. 0.8 + 1. Compute the zeros of Wp using a precision of 15 digits

5.7

thronghout the computation. The result is shown (as circles) in Fignre 5.7 along with the

zeros of p tboxes).

Now shift the zeros nniformly by +1.5 in real direction. By Lemma 3.2. the zeros of Wp
should be shifted by the same amount. but otherwise unchanged. However. the actual result

computed by xzero differs considerably. as shown in Figure 5.8.

Upon further investigations. it was observed that polynomials with multiple zeros. or with
rlnsters of zeros at small distances from each other, relative to their absolute values. are the
most ill-conditioned and yield the largest numerical errors. The loss of digits of precision in
the zero finding algorithm turned out to be proportional to the degree of the polynomial to

be solved. at a rate of up to 1 digit per degree increment.

Theoretically. these numerical errors could be prevented by computing to a sufficiently high
number of digits. However. this slows down the computation drastically. Specifically in
ill-conditioned examples, the computation time seemed to increase at least with the square
of the number of digits of precision. In fact. in some instances the algorithm didn’t seem to
terminate at all. if the precision was chosen too large!. In an interactive application such as
xzero. large response times are generally unacceptable. Therefore, the numerical precision
should be just high enough to get reliable results in the range of the drawing resolution.
but low enough to give a fast response in well-conditioned cases. It would be desirable to
have an algorithm that “recognizes™ the necessary precision to compute with. in order to

get results within a given “output precision™

Another observation concerns the coefficients of a polynomial constructed from its roots. If
many roots have absolute values far smaller. or far larger than 1, then the coefficients are
of widely different decimal ranges. which results in loss of precision in subsequent steps of
the computation. This might in fact be one of the reasons for the numerical errors observed
in Figure 5.8. In this light it seems questionable if the presently used method of computing
the coefficients of the polynomial. namely. differentiating, and determining the zeros of the
derivative or Wronskian is a suitable approach. It seems worth considering algorithms which

make use of the Formulae 2.8 and 2.9. without bringing the numerator into standard form.

'Or it terminated with an error message saying that the polynomial to solve was too ill-conditioned.
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. . P 2 . 1 :
Together with good initial gnesses” which ensure that all zeros are found. such an algorithm
would have the advantage of faster convergence and greater robustness against numerical

instabilities.

The graphs presented in this chapter and in Chapter 2 have been computed to a precision
of 30 digits. None of these examples involved a polynomial of degree greater than 11. so the

resitllts shown are gnaranteed to be exact within the graphing precision.

*The results in Chapters 2 and 3 should prove very helpful here. because they provide geometrical con-
straints for the location of the zeros of p' and VWp in terms of the zeros of p.



Chapter 6

Conclusions and Outlook

The proof of Theorem 2.17 leaves many open questions for further mvestigations. We will

mention some of them briefiy:

e Can the theorem be generalized to a larger class of analytic finctions than polynomi-

als?

& For many pelynomials wirhout multiple zeros or critical points. Theorem 2.17 does
not give a single relationship between the d pairs of nonreal zeros and Fourier critical
zeros. but rather a family of finitely many bijections. This sounds trivial. given that the
possible number of bijections between finite sets — here d! — is always finite. However.
the number of different bijections arising from Theorem 2.17 is usnally much smaller
than this. {One obtains from Corollary 2.37 that it is at most one greater than the
mumber of different values of ¢ € {0. 7} so that S.(p) contains a zero of Wp or W(p'k))
for some positive integer k.j Is it possible to determine. just from the location of the
zeros and Fourier critical zeros of p. which bijections are possible and which ones are

not?

e If this in general cannot be determined. is it at lcast possible to determine the possible
bijections between Zip) and Ciip} which arise from Theorem 2.33. just from the

location of all zeros. critical zeros of order 1. and perhaps the zeros of Wp?

e Can more. or sharper. geometrical results in the flavour of those in Section 2.10 be

obtained from the proof of Theorem 2.17?
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The following conjecture condd be an answer to a particular rase of the last gquesrion. if it

eoild be proved:

Conjecture 6.1 (Iiaeff-Sendor-Congecture} Let p be a {complex] polynomial all roots of
which lie inside or on the unit circle. Then inside or on a circle of radius 1 around each of

the roots of p. there kies at least one zero of p'.

Of course this resnlt is sharp. The extreme case is attained in the polynomials c{z" — 1).
where n is a positive integer. and ¢ a complex copstant with icf = 1. There are many partial
results towards this eonjecture. and it is shown for circles armmd roots which lie on the unit

circle. {See [18] for a thorough treatment of this conjecture. )

We also observed that the zeros of Wp contain much information about the appearance of the
loct of 3;—. For this reason. they shonld be studied further. As outhined in Chapter 5. there
are some unresolved cases in a possible proof of Conjecture 3.11 which should be considered.
From the experiments done in this context. it seems possible that this conjecture can be

further generalized:

Let d be the number of paim of nonreal zeros of p. and ¢ be the number of points z = 1+ y1.

3,

ﬁ

where Wpiz} = 0 and sgn { J fiff ,)} = sgny {these are the zeros of Wp. which niust lie
inside the Jensen circles of p. IS there an upper bound. other than the trivial one. for the
value of 4 in terms of d7 Do we always have ¢ < 2d? Is there also a lower bound for ¢ in

rerms of d7

The next discussion of possible generalizations concerns the xzero package. This package
in its basic design is general enough to allow experiments with polynomials other than
studying the derivative. the logarithmic derivative, and the Wronskian. For instance. the
Hieff-Sendov-Conjecture conld be examined experimentally with xzero. Basically. one just

needs to write suitable Maple code that verifies the conjecture for a given polynomial.

Numerical problems and the need for better algorithms to resolve them have already been

discussed in Section 5.2.
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Appendix A
Gauss’ original letters

This chapter contains rransiarions of five texts. the original {German) versions of which can
be found in [7. 10, 11. 12, 13]. The first piece is an announcement and summary of [6)
by Gauss. published in the “Géttingische Gelehrte Anzetgen”. the University of Gottingen
newsletter. Texts 2. through 4. are lerrers out of the correspondence between Gauss and
his friend Schumacher. dealing. thongh superficially. with the probiem he mentioned in the
annonneement. Texts No. 5. is a comment by Alfred Loewy {131, revealing mistakes Ganss

made in his anpouncement. and givipg a more precise specification of the problem.

I. Announcement. Gottingische Gelehrte Anzeigen. 1833. February 25

Analyse des équations déterminées par Fourier. Premiére partie. Paris 1831,

Chez frrmin Didot fréres.

According to the author's sketehes. this work was proposed to consist of two volumes.
The first one was to contain. besides a general survey of the whole. rhe first two chap-
ters. whereas the second one was to contain the remaining five chapters. The author
passed away from the sciences when printing the work had jnst begnn. Meanwhile.
the whole first section. as we obtain 1t here through Mr. Navier. had been worked
ont almost completely. while the rest was still far away from completion. This is the
more regrettable. as it appears from the general survey that many interesting investi-

gations were meant to be included in it. Here. we must not specnlate what we could
T

.

4

have expected if the author had had a longer life. and shall restrict ourselves to an

announcement of what we have actunally obtained.
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The aim of the work is to turn the method of solving the definite algebraic equations!
into a most reliable and easy one: namely. determining the number of real and imagi-
nary roots with full accuracy. bounding each of them into fixed limits and describing
an algorithm for a step-by-step approximation to their values with arbitrary exact-
ress. The fundamental basis for all of this is a theorem due to the author himself. It
can be regarded as a successful generalization of Descartes”™ theorem {usually named
after Harriot): in principle. it consists of the following: Let X be an ordered?. entirc.
algebraic function in z {with only real coefficients): further. let a. a’ be two arbitrary
different real values such that a' — a is positive. By substitutingz = y+a. z = y+4d'.
X turn into the (likewise ordered) functions Y. Y”. in which che coefficients have g,
g’ sequences of signs>. respectively: the exceptional case in which one or more coef-
ficients vanish will be disregarded here for brevity. Given this. the equation X = 0
cannot have more than ¢’ — g real roots between z = a and = = a’; more exactly, if
the number of real roots between those two bounding values is A. then ¢’ — g — A must
be either zero or even and positive. Hence. if ¢’ — g (which cannot be negative) is
zero. there exists no real root at all; if ¢’ — g = 1. then the bounds include exactly one
real root in between: finally. if ¢’ — g = 2. then as of now it is not clear whether there
are two roots between the limits or none. Instead of two bounds a. a’. we can handle
a greater numher of bounds similarly: we can choose them in such a way that, first.
the smallest {bound} corresponds to a function Y having only changes of signs. and
the greatest to a function only having sequences of signs: therefore. if the numbers
corresponding to the sequences are called g. ¢'. ¢”. ¢"’ and so on. in this order, the
first of these numbers will be 0 and the last one be equal to the degree of the equation;
second. that every single difference ¢’ — g. ¢” — ¢'. ¢" — 4" etc. will be equal to either
1 or 2. In this mannper. all real roots will be enclosed in bounds. so that in every
interval there may be either one or two roots. How in the last case it can be me-
thodically determined {by further narrowing down the limits. if necessary) if the two
roots indeed exist. or if they are missing. cannot be worked out here more precisely,
for lack of space. We just note that every time the latter occurs. there must be an

intermediary value between the bounds where one coefficient is missing? in Y before

t Factorizing a pelynomial

*By the degree of their terms.

*Qeccnrrences of the same sign in two subsequent coefficients.
tZero.
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a

the last one. while the preceding and the following [coefficient] must have the same
sign. Fourier calls these points critical. Hence. each critical point leads to two missing
real roots. However. we can not agree with Fourier saying that every two missing real
roots become imaginary. because this could give rise to a misconception. It is indeed
true that the equation X = 0 altogethes has as many pairs of imaginary roots as gaps
or critical points. The values of all imaginary roots are themselves well-defined. just
as the real ones are: the other expression could be understood as it each gap belonged
to a spectfic pair of imaginary roots. a fact which is not only unconfirmed by Fourier.
but must stay in doubt. until further investigations have enlightened this interesting
point. Yet this should not mean that Fourier himself meant his statement this way.
We would rather assume the opposite and suppose he had been in doubt about the
existence or non-existence of such a definite relationship, and purposely avoided a
manifestation of this ambiguous expression. Moreover, Fourier did not deal with the
matter of imaginary roots and their computation in his work; so there is still a large

field to work on.

Once having such a nice theorem — and according to the notes Mr. Navier shared
with us, he has maintained it for a long time — it couldn’t have been hard for a skilful
researcher like Fourier to base the technique of the numerical solution of equations on
it: and this development has been given with completeness and in great detail. More
practised readers would probably prefer a narrower description that cuts down on
repeating itself; for the less practised ones. the numerous, well-selected, and detailed
examples will be welcome. Anyway, even in this part of the Theory of Values?, this
work assures the name of Fourier an honourable position, a position he long since

asserts in other parts.

Gauss to Schumacher. Gottingen, 1833, April 2
Correspondence between Gauss and Schumacher, II. Altona 1860. p. 328

Many thanks to you. my dear friend. for letting me know about the ruled paper. I find
it useful. especially for drawings of all kinds based on rectangular coordinates. as not
the greatest accuracy is required. This is never the case with my drawings anyways,

since I never use them to derive anything of them definitely by measuring; namely

5 Algebra.
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[they are nseful] for drawing geodetical points, even for small astronomical charts.
illustrating the pace of the barometer. variations of the magnetic [compass] needle
ete.. as well as for drawings referring to purely mathematical topics; for example those
concerning the imaginary roots of the [algebraic] equations; with topics of the latter
kind in particular I have dealt recently. Now as you'll have read my announcement
abont Fourier. you might be interested if I mention that. with regard to “but must
stay in doubt ...” T have expressed myself moderately on purpose; this is not because
I have been uncertain about the existence or non-existence of such a relationship: but
rather because the G.G.A.® were not the place to express myself in a more definite way.
I believe I can prove most clearly that such a relationship does not exist; this however
will not happen before I have taken the chance to work out my investigations on the
roots of the equations and publish them. You know, I write slowly: this is because I
am only pleased if there is as much in a small space as possible. Besides, writing in
short takes much more time than writing in length. If I explained my investigations
— which, once developed. ought to take only a small number of sheets © — as broadly

as Fourler's book is written, it would take me just a quarter of the time and several

huge volumes.

3. Gauss to Schumacher. Géttingen, 1836, June 20
Correspondence between Gauss and Schumacher, III. Altona 1861. p. 68/69

On the occasion of the lecture I am giving these days, I was given to coming back
to the theory of equations. I have gained an entirely new view of them. In light of
this view, I still find it quite probable to find a connection between Fourier’s critical
points and definite pairs of imaginary roots. Three years ago. I mentioned an opposite
opinion in my letter to you: I admit I had not developed all the details about that
topic. which is necessary to be sure about a negative theorem one is going to prove.
All the common appergus® working in 999 cases may finally lead to a cul de sac in the
1000th case. Please correct my former, perhaps too positive assertions. But at the
same time, note that I have not without reason made pauca sed matura® my motto for

everything I publish. Those common apper¢us sprang from one hour’s work. To make

*Gotringische Gelehrte Anzeigen. see introduction at the beginning of this chapter.
" A sheet consists of 16 pages.

51deas.

?Few but ripe.
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something mature from that. it often takes years of detailed work: one can anticipate
one could do that, if only one complied with doing it: still. it will be necessary to do
some similar second- or third-class work to come in order. Procreare incundum. at
parturire molestum.!® As to my present standpoint. it would first of all require many
wearisome details in order to follow all branches: I don’t believe. now that so much is

..... [the rest of the letter 1s missing]

4. Gauss to Schumacher. Gottingen, 1836, June 24
Correspondence between Gauss and Schumacher, III. Altona 1861, p. 72

During the last days. I have pursued my ideas on the equations. The result is rather
the opposite. and it tends to confirm my former view that there is no common, natural,
non-arbitrary relationship between the single critical points and the pairs of imaginary
roots at all. I myself have the impression that in my last letter I wronged the view
which I had expressed in a previous letter, now that. after a long interruption. this
view was not present to me in the same freshness in which I had had it in those days.
It still remains true that. with negative theorems such as this, converting a personal
conviction into an objective one (which others can share) would require a deterringly
detailed work. To visualize the whole variety of cases. one would have to display a
large number of equations by curves: each curve would have to be drawn by its points,
and determining a single point alone requires lengthy computations. You will not
see from Fig. 4 in my first publication of 1799!! how much effort was required for a
proper drawing of that curve: nonetheless. that is a very simple case. compared with

the many ones we have to regard here.

5. Annotations
by Alfred Loewy

Gauss’s notes in his letters to Schumacher as well as in his earlier letters to Drobisch,
referring to [6], require that we deal with Gauss’s announcement of this work, for some
statements in this announcement have to be corrected. The statement “It is indeed

true that the equation X = 0 altogether has as many pairs of imaginary roots as gaps

19 Bring forth the pleasant, but work on giving birth to the tedjous.
" The proof of the Fundamental Theorem. his Doctor’s thesis. See [9].
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Figure A.1: The Figure 4 of [9]. cited by Gauss in his letter [12] to Schumacher.

or critical points” is not true with regard to the definition given in Text 1., which for

instance is easily shown by the equation

(z—=b)"—c=0

where n is even and > 4, b is real, and ¢ positive. Despite its n — 2 distinct imaginary
roots, this equation wouldn’t have any critical points according to Gauss. We rather
define (compare with [2]) a critical point in the following way: Let f(x) = 0 be
an equation of degree n with real coefficients, f'(z), f”’(z), ... be the derivatives
of f(z) and o a real number: in the sequence f'(a),....f™(a) be e the number of
vanishing intermediary! functions, ¢ and d the number of changes and sequences of
signs interrupted by an odd number of missing terms, and 0 = e—c+d. If ¢ > 2, then
a is called a critical point of f(z) = 0. Using this definition, the following (more

precise) Fourier theorem holds:

Let a. @’ be two real numbers, a < a'; if Z, and Z, are the numbers of changes of

signs in the sequences

i say. fla) = f'(a) = ... = f7Y (@) = 0. then these first / vanishing terms are not to be regarded in
determining e.
In the above example. b is a critical point with values e = n — 1, ¢ =1, d =0, and therefore 6 = n — 2.
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fla). f'(a). f{a). . ... N a). (A.1)
fla'). f'iay. f'(a)). ... F(a). (A.2)

and if further 2A is the sum of all numbers ¢ (which are always even, according to
their definition). corresponding to all critical points of f(z) = 0 between a and a’.

then

Log—Zg =22 20 (A.3)

and the number defined on the left-hand side of {A.3) is the ezact number of roots
of f(z) = 0 between the bounds a and &, counting multiplicities. In the case that
the bounds a and a’ are critical points or roots of f(z) =0, a is to be excluded, and
a' to be included! in computing 2A and counting the roots. For a = —o0, a' = 20,
we get the following theorem that replaces the statements by Gauss: The number of
imaginary roots of f(z) = 0 equals the sum of all o corresponding to all critical points
of f(z) = 0 between —~c and ~c. From the inequality (A.3) it follows that, provided
there is a critical point between a and o’ with ¢ > 2, Z, — Z,» must be > 2. Therefore,
Gauss's statement “that every single difference g’ —g,g"” —g', ¢’ — ¢" etc. will be equal
to etther 1 or 27 if the bounds are chosen sufficiently narrow, is not correct. Fourier
knew that ¢’ — g cannot always be made < 2, which can be seen from his “rule of the
double sign™ [6, p. 103]

The fact that it is not possible to find a connection between Fourier’s critical points
and definite pairs of imaginary roots, follows from the example (z —b6)"+4c = 0 (n even,
b, c real, ¢ > 0), with b as the only critical point and n distinct imaginary roots. The
following question however remains open: Let f(z) = 0 have m critical points where
m < n/2 and o = 2 for each of them?; is there a “common, natural, non-arbitrary
relationship between™ the m single critical points and the pairs of imaginary roots of
f(x)=07

3The ~exceptional case™ , set aside by Gauss in Text 1., stipulates that no term in (A.1,A.2) be 0. It is
thus a slightly stronger restriction than requiring a and a' neither to be roots nor critical points.

3*The case 0 = 2 arises not only from Gauss’s announcement which allows only d = 1, but it occurs in
general for an arbitrary integer e, when c=e—1,d =1 or c = e — 2, d = 0. This follows from o = 2 and
from the relation e > ¢ + d which is always valid. due to the definition of ¢, d, e.
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How to get xzero

B.1 Obtaining the package

The xzero package is available through the Internet. It is stored on the ftp server of the
Centre for Experimental and Constructive Mathematics. To download the package, one

needs to follow these steps:

1. On the UNIX prompt. type
ftp ftp.cecm.sfu.ca
The ftp server will connect. asking for a user name:

Name (ftp.cecm.sfu.ca:happe):

2. Type anonymous.

3. Enter your full e-mail address as password.
4. Change the directory:

cd pub/Math/Software

. You may also want to change your local directory. The xzero directory will be created

(W]

as a subdirectory of the current local directory.

104
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6. Type
get xzero.tar.z
7. End the ftp session with
bye
~ 8. Uncompress and unarchive the files in xzero with the two commands

unzip xzero.tar.z tar xvf xzero.tar
Users who possess a World Wide Web browser such as Mosaic may prefer to use it to
download xzero. The correct URL for xzero is
ftp://ftp.cecm.sfu.ca/pub/Math/Software/xzero.tar.z

Most Web browsers will automatically uncompress xzero.tar.z, so it just needs to be

nnarchived.

B.2 The files in the package

The xzero package consists of the following files:

README Information about the version of xzero, known bugs, and instructions how

to compile xzero.

Source code All files ending with .c (source files) or .h (header files). The code is

modularized into several source files which carry names indicating their

functionality.
Xxzero The executable xzero program.
makefile The compilation rules for xzero and related tools.
beamer A program called by xzero. It runs in the background, handling the trans-

mission of data from Maple to xzero.
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destroy

go.txt

polynom.txt

polynom.m

functions.reg

XZero

Bitmaps
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A tool that clears up message structures. Normally, it need not be used,
since xzero clears them up itself. But it is recommended that it be used
{by typing destroy on the UNIX prompt) after an abnormal termination

of xzero.

A collection of Maple routines, which build the computing functionality of
xzero. These files, and how they can be modified to install new functions,
are described in Appendix C.

The compiled routines of both go.txt and polynom.txt, for use in the
background Maple session issued by xzero.

A reduced version of go.m. to be used as a package for interactive Maple
sessions.

A text file in which all Maple functions that are to be issued from xzero
need to be registered. See Appendix C.

A file containing important application resources for xzero. For more in-
formation, see Section B.4.

All files ending with .bmp. These files contain images of various shapes in
which points are displayed in the xzero drawing area. The user can select
their own preferred set of point shapes, since they are specified as resources

(see Section B.4).

B.3 Installing xzero

The xzero package is written on Silicon Gi1aphics Workstations under UNIX, using the X

Window System. Its graphical appearance is realized using the X library (X11R4) and the

Motif toolkit (Version 1.1). These are also the requirements on a system on which xzero is

to be compiled successfully. In order to run successfully, a few more requirements have to

be satisfied. Maple (V5R2 or higher) must be installed and accessible, and xzero must be

run on a server with a colour display. With future versions, some of these restrictions may

become obsolete. and the installation procedure may also change. Any information in the

file README that differs from the steps given below overrides them.
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1. Change the working directory to xzero.
2. Type the command
make

You will see the source files of xzero being compiled. If make stops with an error
message. this probably means that some of the above system requirements are not
satisfied. Note that the executable code may take more than 2 Megabytes of disk

space. This may lead to problems on systems with small disk capacity or disk quotas.

3. Copy the file XZero (mind the capitals!) from the current directory into the system di-
rectory /usr/1ib/app-defaults. If you don’t have write permission to this directory,

you can ask your system administrator to do this. Or do the following steps:

e Go to your home directory, and create a subdirectory, say, .app.defa. {You can
give it any name, and in fact any location. However, a subdirectory of your home

directory is the most convenient location.)
e Copy the file XZero into this directory.

e In your home directory. edit the file .1login and add the line
setenv XAPPLRESDIR $HOME/.app_defa

e Before running xzero. logout of the system, to make the changes take effect. (On

most systems, it actually suffices to open another shell window.)

You can use your new directory not only for xzero, but for any X application you
wish to configure with your own resource files. More information about application

resource files and their installation can be found in {21].

In order to run xzero properly, you have to leave it in a directory together with its essential

tools, namely the .m files, the .bmp files, and beamer. This may change with future versions.

B.4 xzero resources

Like every other X application. xzero uses resources that make it configurable, up to a

certain level, by the user. A workable standard configuration is contained in the resource
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file XZero that comes with the package. This configuration can be modified or extended
by further specifications. to the user’s own taste. One should remember. however. that
some resources affect the functionality of xzero. Therefore. it is advisable to keep a copy
of the original file XZero before modifying it. No responsibility can be taken for abnormal

behaviour of xzero. when resources are modified.

B.4.1 Application resources

These resources were specifically introduced for xzero, and they control some features a
nser may want to modify. They are listed completely in the documentation to xzero. For

brevity. we only list the types of configurable resources, not the names themselves:

point shapes and colours for all list types.

e cursor shapes for all mouse modes.

e coordinate translations,

e Boolean variables to disable certain warning messages.,

e some system parameters that might improve xzero's reliability on slow or non-standard

machines.

e digits of numerical precision.

e Initialization commands for Maple.

e default filenames and extensions.

e message strings.
For each of the resources one wants to modify. one has to add a line to the file XZero like
this:
XZero*resourcename: ralue

If a resource is already specified. then the old line has to be replaced rather than adding a

new line at the end. Otherwise. the new specification will not take effect.
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B.4.2 Widget resources

These resources obey the standards of the X and Motif toolkits. They will not be described
here. For reference about specific rescurces. their meaning and usage. one should consult
i21] or better [23]. Some of the features that can be modified are:

o foreground. background and border colours of all windows. except the drawing area

e window sizes and locations

e text and label fonts and sizes

o bitmaps shown on the action buttons

e most of the menu and help texts {which makes it possible to “translate™ xzero into

other languages)
o keyboard shortcuts for menu and action buttons of xzero
e mapping of mouse keys to mouse functions
o default settings of the toggle and radio menu buttons.
Specifying these resources in the file XZero is more complicated. The user may specify
some resources only for specific windows. for specific types of windows, or for all types of

windows. The file XZero contains many examples which may be of help. Beyond that, more

information regarding the syntax of resource specifications can be found in {22].
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Writing your own Maple code

The computational part of xzero is most flexible. Not only is it accessible to be read and
modified: also, an interface is provided to incorporate newly created computation procedures
into xzero. We will both describe the existing Maple code, and give guidelines for using the

xzero interface correctly.

C.1 Existing procedures

The builtin functions are constructed in a modular fashion. The code cons.sts of several
procedures which may also be used by newly added functions. Hardly any new routine will
need to be written from scratch: most often. one can use some of the builtin procedures. It is
therefore advisable to know them. Also. the Maple code can be used in interactive sessions,
independent from xzero. In fact. some procedures, mainly for drawing, are designed solely
for interactive Maple sessions. and not called from any computation by xzero. All these
procedures are contained in the file polynom.m. They are automatically read into the Maple

session called by xzero. In an nteractive Maple session, one should make them available

with
read(‘polynom.m‘);

Complex numbers naturally play an essential role throughout the package. However, it

became apparent that computations with complex numbers in Maple are not only slow; but

110
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also. Maple {in Release 3} is unable to handle the real and imaginary part of a complex
mimber as real numbers. at least in symbolical computations!. Therefore. most of the code
also accepts complex mimbers in list form. as pairs {lists} of 2 real numbers. In the code
description. by using the term zero we imply that the value may be represented in either
form. To enhance both perfermance and robustness against rounding errors. xzero specifies

all its zeros in list form.
-symmetric

Global variable that affects some of the procedures. equivalent to the symmetric mode in
xzere. In essence. for each of the terms a procedure creates on each nonreal zero. it creates
the same term on the conjugate of this zero. For example. make poly from roots creates
the factor (x-a-b*I) from a given zero a+b*I when _symmetric is not set to true. Whereas.

when _symmetric=true. it creates (x-a-b*I}(x-a+b*I) and simplifies it to a real value.
make roots from £file (filename)

Reads zeros from a file specified by filename. The filename must be enclosed in backquotes. if
1t contains any special characters. The file format is the same as that used in xzero. i.e. roots
or results files created by xzero can be read with this procedure. make roots_from file

returns a list of all zeros read.
make_poly from file (filename)

Reads coefficients from a file and creates a polynomial with these coefficients. beginning
with the lowest order coefficient. File name and format specifications are the same as in

make roots from file. make poly from file returns the polynomial created.
make _poly from roots (list)

Takes a list of zeros and constnicts a polynomial from them. assuming the highest-order
coefficient to be 1. When _symmetric is set to true, it implicitly takes the conjugate of each
given zero as well. and ensures. by doing real computations. that the resulting polynomial

1s real.

'One can. of course, explicitly define the real and imaginary parts of a complex number to be real. using
the assume function. But first. this is not done antomatically. and second. the property handling with the
assume fanction is rather slow.
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xfactor (ral)
Takes a zero and creates one of the factors for make poly from roots.
Take wrons from roots{list)

Creates the second logarithmic derivative of p directly from the zeros given in list. and
takes the numerator as Wronskian. When _symmetric is set to true, it implicitly takes the

conpgate of each given zero as well. and alse ensures that the resulting polynomial is real.

This procedure is obsolete since this way of computing the Wronskian has been found to be
slower than the two-step process of constructing the polynomial and its derivatives. Also,
the trivial zeros of Wp cancel out when taking the numerator of the second logarithmic

derivative. This procedure has mainly been left in the package for reference.

make_contrib list {(list)

Applies the procedure wterm to each of the values in lList: for make wrons from roots and

plot_components.
wterm (ral)

Compntes a single term of the second logarithmic derivative. corresponding to the zero given

in ral: for zake wrons from roots.

make wrons_from poly (p)

Creates the Wronskian of the ireal or eomplexj polvnomial p in standard form.
lccords (ral)

Furns a complex value ral into list format.

ccoords (ral}

Turns a complex value given as a list into complex (numeric) format.
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cexpand (wval)

Creates a sequence of two complex values. ral and val. The format of the result values

depends on the format of the parameter val.
make zdlist from poly (p)

Creates a list of two lists of zeros. the first being the list of roots of p: the second being the

list of roots of p'.
make _zdlist from roots (list)
Creates the same list as in make 2dlist_from poly. but p is specified by a list of roots.

make_zwlist from poly {(p)

make zwlist from _roots (list)

Similar to make zdlist from poly and make zdlist from roots. except that the second
list is the hist of roots of Wp here.

pcomponents (p, ral)

Determines the real and imaginary part of p(val). Unlike the Re and Im functions in Maple,
pcomponents accepts and correctly handles symbolic values of val. val can be specified as

either a complex value or a list. pcomponents always returns p(val) in list format.
rcomponents (r, ral)

Similar to pcomponents: but rcomponents takes a rational function r in the form p/q. where
p and g may be real or complex polynomials. rcomponents converts r(val) into the standard

form 3%2 where c¢y. ¢2 and c3 are real. and returns [c;,c2,c3].
fchecksolve (erpr,ver,range)

Similar to Maple's fsolve command: but before solving ezpr. it is verified if expr contains

an indeterminate. If not. NULL is returned. otherwise the sequence of solutions.
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my.implicit_plot (ezpr,zrange,yrange[, <options>])

An improved routine for implicit plots. ezpr must be an expression in two variables,
and zrange and yrange must be range specifications of these two variables, in the form
r=min..mazr. Any of the usual plot options can be specified. but the style and grid
options will have no effect. Instead. one can specify gridnum=n to adjust the graphing

resolution.

The result of my_implicit_plot is a plot containing a set of points.

less

Defines an ordering on the set of complex numbers. This ordering is currently not used.
g p g Yy

Plotting routines

Some of the plotting routines, e.g. the animation routines, are for interactive use only.

Others can also be called by xzero. All plotting routines return a PLOT structure.

cplot (list,colour)
Convenience procedure to plot a list of zeros in a certain colour.

accumulate zlist (args)

Plots a sequence of pairs of zero lists. specified in args. These lists are usually the results of
make zdlist from poly or make zwlist_from poly or ..._from roots. The zeros of the
polynomials (first list) are displayed as red. and the zeros of the derivatives/Wronskians
{second list} as green circles. This procedure can be used to display just a single list, or to

display several related lists together. in order to show trajectories of zeros.

animate zlist (args)

Similar to accumulate_zlist. This plot however is an animation of the zero lists, where

every list given in the argument sequence is displayed in its own frame.
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plot_one (listhist)

Takes one of the arguments given to one of the procedures accumulate zlist and
animate_zlist. and builds it into a plot, which will be a component of the accumulated

plot created in these procedures. listlist is a pair of zero lists.
plot_one from roots (list,zrange, yrange)

Plots p and Wp. where p is given by its roots in lst. rrange and yrange must be valid range

specifications for Maple's plot command.
animate_polys_from roots (listlist,zrange,yrange)

Creates an animated sequence of polynomials, each frame of this sequence being a graph
as in plot_one from roots. The polynomials are described by the root lists contained in

histlist.
plot_components (list,zrange, yrange)

Plots the second logarithmic derivative of p (black), and all sum terms that constitute it
in Formula 3.3 (red). list is the list of zeros that specifies p. zrange and yrange must be
valid range specifications for Maple's plot command. This procedure works only when

-symmetric is true.
plot_loci from poly (p,c,zrange,yrange, mode)

Plots the loci of p of constant argument ¢. The plotting ranges must be specified as

min. . mar. mode can be

e single for the locus Lc(%).
e symmetric for the locus S.(p).

e double for the union of L(Z) and Lci,(%'). In particular, c = 0 yields La(Z).
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C.2 The interface to xzero

This section 1s mandatory for programmers who wish to write their own routines for use in
xzero. A genuine knowledge in the (not too complex) input/output protocol between xzero

and Maple is necessary, in order to write code that works under xzero.

C.2.1 Input from xzero

The input Maple receives from xzero is a sequence of Maple commands. The most important
command herein is go. which calls a Maple procedure defined in go.txt. The syntax of go

is
go ( <proc>,[ <zero>,...]1[, <options>][,symmetric= <siring>]);

The first parameter of go is the procedure name to be executed, as defined in the file
functions.reg. Following the procedure name are the zeros of the polynomial to com-
pute with. They are specified by xzero in list form. The remaining parameters are op-
tional and. except for symmetric= <string>. must be recognized by the procedure to be
called. xzero places the options specified for proc in functions.reg here. The option
symmetric= <string> is evaluated by go itself. string should be either true or false
{other values are considered as false). go sets the value of the global Maple variable
_symmetric accordingly. Other Maple procedures that distinguish between a symmetric

and an unsymmetric case can then query the variable symmetric.

Other than this, ordinary commands can be issued through Maple Command in the Option
menu of xzero (Version 1.1 only). These commands are executed directly by Maple. The
user should refrain from commands that change Maple’s status or set global variables in a
way that confuses definitions in go.m. In particular, one should never issue Quit to Maple,
since this only quits Maple. but doesn't reset the interface. To quit Maple (and start a new

session). one should use restart Maple from the Options menu.

In the startup phase of xzero. a few other Maple commands are issued by xzero. Only
two of them are of relevance to the user. (The others accomplish a correct setup of the

communication interface and will not be described.) The first one,

read (‘go.m‘):
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reads the predefined computation routines into the Maple session. go.m is the compiled
version of go.txt. polynom.txt. and some other files with Maple code (sce next Section).

The other command.
plotsetup(xi1):

changes Maple’s plot interface. so that it displays plots in separate windows. These two
commands are specified as xzero resources. so they can be modified or supplemented by

other startup commands.

C.2.2 Output from Maple

The various computation routines yield different types of output. Some plot graphs, some
generate a list of zeros. some only produce text output, while others might not produce any
output at all. Maple itself only distinguishes between two types of output: Plots, which
are displayed on the screen. and text output. The latter includes all error and warning
messages that might occur. We will not explain the actual mechanism that sends and filters
Maple’s output to xzero®. We will rather describe the concept in which Maple’s output is

interpreted. and how to use it properly.

Prior to the results of a computation, the computation routine should print a control string.
A control string consists of a ’#’ and a digit that specifies how xzero is to interpret the

subsequent output lines:

#0 Output. if any. is printed to stderr. This is the most flexible way of handling all kinds
of Maple output, but it requires that stderr be either printed to a shell window, or

logged to a file. to be accessible to the user.

#1 Output is written into the status line of the xzero main window. This requires that only
one output line be printed. Although each line transmitted will be printed to the status
line as soon as it is received. only the last output line will be visible, unless the Maple

computation is very slow. (This option is only available in Version 1.1.)

#2 Output is treated as a list of zeros. in the usual file specification. The output lines

are expected to match this specification, otherwise an error message will appear, and

*This is the job of the beamer program and the message queue. which are cited in some error messages.
See the documentation of xzero for details.
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the erroneous line will be printed to stderr for debugging purposes. The zeros will be

printed as result points in the xzero drawing area.

It is possible to send different parts of output in different types. if cach part is preceded by
the corresponding control string. However. some of the output types cannot be mixed. For
instance, a zero list causes a status message to be written at the end of the transmission.

Therefore, any status line written under the #1 option will be replaced by this message.

Note the following peculiarities for special kinds of output:

e Maple plots. as mentioned above. are independent from text output. Therefore, they

always show np on the display, regardless of the output type.
e Maple warnings are always printed to stderr.

e Maple errors interrupt the transmission, and the user will be asked to retry or abort

the computation. For user information, the Maple error message is printed to stderr.

e Empty lines are not handled consistently. One should avoid them, if possible.

C.3 Placing and compiling one’s own code

Now that all requirements on additional Maple code have been described, we will explain
where to place and how to compile it. Only the compiled code is used during the xzcro
session, in the form of the file go.m. The source code, namely the files polynom.txt and
go.txt, is provided only for modifications and extensions by the user. Consequently, in

order for modifications to take effect, these files have to be re-compiled to go.m.

To relieve the programmer from the drudgery of manually rebuilding go .m, the compilation
has been automated with a tool that has its established position in compiling C programs:

make. This makes the translation of the {error free) Maple source as easy as typing

make go.m

We assume that the concept of makefiles is known. The make rules for go.m are contained

in the file makefile which also contains the rules for compiling the xzero package.
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First. polynom.txt is compiled into the file polynom.m. These lines of makefile accomplish

the translation:

POLYSRC = polynom.txt
polynom.m: $(POLYSRC)
cat $(POLYSRC) |maple -q -f

This rule takes the list of files defined as POLYSRC (more files can be added to the list). and
pipes them to Maple. The files in POLYSRC must therefore consist of valid Maple definitions.
They may also contain output commands which will be written to stdout. If any of the

files produces a Maple error. the computation will stop.

The last line of polynom.txt reads:
save ‘polynom.m‘;

which causes the operation status of Maple (i.e. the set of all definitions given so far) to be
written to polynom.m. Since all definitions from all files are to be compiled, polynom.txt
must always be the last file in POLYSRC.

go.m is created in a similar way as polynom.m is. The corresponding make rule reads:

GOSRC = pborwein.txt go.txt
go.m: $(GOSRC) polynom.m
cat $(GOSRC) |maple -q -f

Note that polynom.m is specified as a dependency of go.m. This ensures that upon a change
in polynom.txt, both polynom.m and go.m will be rewritten. The definitions in polynom.m
are read into Maple in the first line of go.txt:

read ‘polynom.m‘;

Exactly as in polynom.txt, the last line of go.txt contains a command that writes the
Maple definitions into go.m. Therefore, go.txt must be the last file in the list specified
under the variable GOSRC.

There are two ways to place one’s own procedures in the Maple code:
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First. all additions can be written into the files polynom.txt and go.txt. Thus, all defini-

tions are kept in a single file. easy to modify or to refer to.

Alternatively. code additions may be separated from the builtin procedures, by keeping them
in different files. These files need to be added to the lists in POLYSRC or GOSRC. This approach
is preferable if many users are writing extensions, since it supports modularization. Every
user could have their own makefiles, in which one or several common files (among them
polynom.m and go.m) and individual, private extensions could be specified in the user’s

private makefile. Note that this does not require multiple copies of xzero on the system.

It is entirely up to the Maple programmer where to put their own extensions. A distinction
between source code for polynom.m and code for go.m is not at all enforced. It is recom-
mended, however. that extensions to the interface (e.g. procedures that accept input or
create output suitable for xzero) be added to go.txt or to another file specified in GOSRC,
whereas procedures that can be independently used in an interactive Maple session be put
into polynom.txt or another file in POLYSRC. Then only the file polynom.m needs to be read

into an interactive session.

C.4 How to register your functions in xzero

In the Execute menu, xzero provides room for a user-defined Maple procedure called user.
This is intended for temporary experiments with new code. In order to make one’s own
Maple functions permanently available in xzero, one should assign an individual name to

them. and then register them as a new menu entry.

For every new registered function, a push button is created in the Execute menu. On
pressing this button, Maple will be called with the corresponding procedure name as pa-
rameter. All information xzero needs for this comes from the file functions.reg. This is
a text file whose specifications are easy to read and modify. Every function — except user

— is registered through this file. Each function consists of three lines with the following

meanings:

e The first line contains the string that is to appear on the push button.

e The second line is the name of the Maple procedure.
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e The third line contains additional parameters given to the Maple procedurc when it

is called.

The third line can be left empty, if the function needs no options. This is the case with all
predefined functions. Lines beginning with a “*’ are ignored. Thus one can insert comments

into functions.reg and more clearly separate function definitions from one another.

The file functions.regis read at the beginning of each xzero session. Therefore, changes in
functions.reg take place the next time xzero is started. It is not necessary to re-compile

the code of xzero when registering new Maple functions.
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