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Abstract 

Many interesting conjectures have been made about the location of zeros of a given poly- 

nomial p and the location of zeros of related structures. The first relationship known to be 

irrv~5~ig;ited systmazicdy is 'oemcmi nonred zeros of p md the sui-died Fonrier critical 

points of p. Gauss dealt. with this problem in a vague way in 1833. His work was continued 

by P6lya. We will stzte and prove rigorously that such a relationship can be found, except 

for certain limiting cases. A more recent conjecture by Craven, Csordas and Smith about 

the zeros and the zeros of the Wronskian of p is cited and investigated. 

This thesis follows a new approach to these problems: A graphical package has been pro- 

g r a m e d  that. running on graphical workstations. lets one interactively design and modify 

pdya~mi& by their zeros: it dews m e  to compute related stmctixes. aad visualize 

them with vario~xs internal and external graphing tools. Its usage and applications are also 

described in this thesis. 



Quotation 

-%re you still taking as mach Might in she quest for 

truth as you were? T d y -  it is not the knou*ledge. 

h t  ;be acqaistion. not- the prexxzce. k t  the ad&- 

rion. which renders t5e nost delight. \%%en I clari- 
fied and eshausted a topic cnmpIeteIy- I leave it. in 

order to go back into rhe dask. Of such a strange 

kind is the insatiable man: Once he completed a 

building. it is not for him to Live in it. but to com- 

mence building another one. Thit I imagine must be 

the feeling of an emperor who, no sooner than one 

kingdom is conquered. already reaches out for the 

nexi . 

Carl Friedrid Gauss. in a letter fo F- Bolyai. 

Sept. 02. 1808 

Macht Dir das Sachforschen der Wahrheit noch 

ebenso vid Freude wie sonst? Wahr1ich. es ist nicht 

dzs \%-issen. smder", d s  Enverben. nicht das Da- 

Sein. sondern das Hinzukommen. was den gr013ten 

Genul gewiihrt. %Venn ich e i n ~  Sache ganz ins 

Klare gebracht und erschiipft habe. so wade  ich 

mich davon weg, um =ieder ins Dunkle zu gehen; 

so sonderbar ist der n imme~at te  Mensch: Hat er 

ein Gebaude vollendet, so ist es nicht, urn darin zu 

wohnen. sondern nm ein anderes anzufangen. So, 

stelle ich mir vor. muB einem ?Velteroberer zu Mute 

sein. der. nachdem ein Konigreich kaum bezwungen 

ist. schon wider nach andern seine Arme ausstreckt. 

Carl Friedrich Ganfl. an F. Bolyai. 2.9. 1808 
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Chapter 1 

Introduction 

This thesis is based on ta-o interesring. and incomplet.ely answered, questions related to the 

geometry of red or complex polynomials. A quick overview of the two conjectures is given 

here. at this point without dl the necessary definitions. A fuil discussion of them is reserved 

for Chapters 2 and 3. 

Let p be a polynomial with real coefficients. 

Conjecture 2.16 [Gatm. 1833)" There exists a definite one-to-one relationship between 

the pairs of conjugate non-red zeros of p and the Fourier crit.ical points of p. 

When one looks at articles in the Reid of rHe Geometry of Polynomials. especially at arti- 

cles fiom the mrn of the cent-~'p" m d  eider.  one finds only a few graphical illl~trations. 

Topics ,we dealt with ;uad awdts me presented in a purely analytic way, and one would 

nzfIvpIy assame that 5mp&~;ti i B ~ ~ t r a t i o  of r b w  problems only existed in the heads of 
&L.- :--- r urr rrrrjr-n.frlo~~~ people wqin worked on &em, Bnii, of corxse. there iq a hifferent rerrfon: Gntil 

recentfy. it recpireri a tr~~anct~[hcions p E ~ m  to draw exart graphs. Even apart frcxn drawing, 



computing points with sufficient. exactaess to produce a smo0t.h graph was a tedious and 

time-consuming job. G~IELS complained explicitly about the effort he took in drawing a. 

simple-looking diagram in his Doctor's thesis ( 191. see also Figure A . l  in the Appendix). In 

a fetter to his friend Schumacher [ll]. he wrote that he would most certainly not be able 

to spend the immense amounts of time necessary to draw graphs for all cases of Conjec- 

trrre 2.16. I t  appears that this was the major reason that prevented him from pursuing his 

conjecture further. 

Sowadays. tools for graphing and illustrating are readily available since graphical terminals 

tllrned the previously text-oriented comput.er world into one with colourful windows. icons 

and images. Similarl_v. high-level tools for symbolic computation have been developed and 

w e  ~o~~ i ix io i i d j ;  exp;iii&ng. dokg all the computations for plotting graphs in a few seconds. 

However. these took have not been exploited very much to find proofs for conjectures like 

these. One reason might be that they are still somewhat rudimentary. While output can 

be graphed in almost any imaginable way. the formulae and data to generate them still 

have to be typed in as text {or at least loaded from a text file). We found it desirable to 

possess a completely graphical user interface. that not only allows us to input and modify 

d a ~ a  on a graphical screen. but also responds graphica!ly at the same place. thus enabling 

wxr-computer interaction in its true meaning. 

-4 step in this direction taken in this thesis is the development of the attached package, 

xzero. -xzero lets one create and manipulate polynomials t ~ p  to a multiplicative factor. by 

defining their zeros in a -virtual" complex plane on the screen. Computations on these 

poiynomiais can then be done by calling the implemented operations. Depending on the 

rratrue of the results. they will be graphed in the same area. allowing direct comparison 

with the input data. Or they will be graphed in a separate window. or simply displayed as 

plain text. It is also possible to define one's own procedures to generate specific results. 

The spectnun of applications of ,xzero is restricted to polynomials. but otherwise quite 

general. As exampks. the two conjectures cited above have been examined. For the first 

cpwstim. ilimtrztions generat-eci with the aid of xzero wid be presented along with the proof. 

Some experimentat results towards Conjecture 3.11 obtained with z e r o  will be shown in 

Chapter 5. 

h CItnpter 4. we will describe the system requirements and general usage of xzero. This 

chapter may be referenced as a manual to the program. Technical details on configuring 
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xzero. writing one's own procedures and programming strategies used in writing xzero are 

left. to the appendix. and to the documentation within the xzero package. 



Chapter 2 

Gauss' original conjecture 

One of the interesting things a student learns in a calculus course is that the coefficients of 

the derivative of a polynomial p can easily be determined from the coeificients of p: They 

are just multiples of the next-higher coefficients. However, when looking at the zeros of 

p and its derivative, one doesn-t find such easy relationships (except that the number of 

complex zeros must decrease by one per derivative taken). One must wonder if there is a 

relationship at all. This question has, in some sense: been open for more than 160 years. 

We will rephrase this question in this chapter, and give a positive answer to the modified 

question. Throughout, we assume p to be a real polynomial. or equivalently: to have real 

coefficients. unless explicitly stated otherwise. We do not allow p to be the null polynomial. 

{We will write P for the set of all such polynomials.) The set lN of natural numbers is 

nnderstood to be the set of positive integers. thus excluding 0. 

2.1 The coefiicient sequence of a polynomial 

The way in which many mathematicians of the 19th century viewed polynomials appears 

quite complicated nowdays. Instead of the derivatives of a polynomial. they studied t.he 

wifzence d its ci;eEcienb, m d  pa~zic-dasly~ s i p  c 5 a q p  occ-wz-ing ia this sequence. W e  

will first examine this way of describing polynomials and explain how it  is related to the 

modern. more comprehensive notation of the derivatives of a polynomial. This description 

-entidy follows [24], p p  28ff- 



Definition 2.1 For x E B. construct 

and define the vector 

which contains the signs of d l  coefficients of p. 

- - 
using the notion of the derivative, this can be written in the following more familiar-looking 

form: 

Corollary 2.2 For m e q  k = 0,. . . . n. and every x E 1R, ,we have ck(z) = &p(k)(x) and 

a ( z )  is elementwise e q d  to the -vector (sgnp(k)(x))k=o,...,,, where p(of = p.  

ProoE This is an easy calculus exercise. 0 

The vector ojre). regarded as a vector-valued function in x. provides a "ternary" description 

of p. in that its components take only the values -1, 0. and 1. The .'points of interest" in 

the behaviour of a(x) are those points where some components of a(x) vanish, because they 

are the points of possible s i p  changes. The following theorem states this more precisely: 

Theorem 2.3 Let a and b be red ~umbers. and a < b .  If g(a) # a(b),  then there exists a 

point x E [a, b] cat which ~ ( x )  contains n zero component. 

Proofr If either a( a) or rrf b )  has a zero component, we have nothing to show. Otherwise, 

there exist.s an index k such that ~ g n ~ ( ~ ) ( a )  = - ~ p ~ ( ~ ) ( b )  # 0. From the intermediate 

vahe theorem fdovs the existence of a point z E ( a ,  b j where p!k!(re) is zero. 0 

For cnnve~ence. me demk as ZPTO p i n t s  dl points where p or one of its first n derivatives 

is zero. i.e. where some ~ ( z )  are 0. In this setting, the preceding theorem (in its negated 

form) reads that in the open intervals between the (finitely many) zero points, ~ ( s )  does 

not change. In order to  categorize these points further, we need some more terminology: 
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Definition 2.4 Let LC be a non-zero point. We say. a(x) (or p(x)j  has a uaricltion at ck(x) 

(or at pfkl(x)) if q(x) = -ak+,(x). By u , ( x )  we denote the t,otal number of variat.ionsl in 

4 x 1 .  

This definition has nothing to do with the definition of variance in Measure Theory. It is 

independent of the absolute value of p. In [?I. Gauss is speaking of sign changes. 

Now hops do afz )  and ?tp(zf chmge 2t the zero points? To answer this for all possible cases. 

we recall two results in real polynomial calculus: 

Proposition 2.5 Let a be a point where p (a )  = 0. 

(1) If p changes i ts  sign at a from negative to positive, then there exists a positive E SO that 

p' i s  positive i n  the open interval ( a  - E :  a + E ) .  except possibly at a ,where pJ is nonnegative. 

(2) If p does not change its sign at a. then p'(a) = 0 ,  and there exists a positive E so that p' 

i s  negative i n  ( a  - E ,  a )  and positke in ( a ,  a + E )  . 

Both (1) and (2) also hold i f  the words '*negative" and "positive" are exchanged. 

Proof: On recalling that the zeros of p and p' form a discrete set, and that p' is contin- 

uous, these statements are an immediate consequence of the mean and intermediate value 

theorems. 0 

We apply this proposition to analyze how o(x) and v p ( x )  are affected as x goes through a 

zero point a. As above. all cases are stated only for positive p(x). or for p ( x )  changing from 

negative to positive. but remain valid if --negative'e" and "positive" are exchanged. 

Case 1: If p(a) = 0, and p ( z )  (and hence o o ( x ) )  changes its sign in a: Then by ( I f ,  p l ( x )  is 

positive and does not change its sign. Thus, the variation of a(x) at a0 disappears. 

If no other component of a(z) vanishes at a, then vpjz) diminishes by 1 as x goes 

though a- 
- - -  

'If x is a zero point. say. such that at+'(~) = . . . = at+,(~) = 0, one clan define that a ( ~ )  has a variation 
at ak(xf %.hen ak(z) = -~~+,+~(r). This definition would be consistent to our results. and we will see that 
the corresponding d u e  of zg(x) is just the limit of zyp(<) as E \ x. We will study the behaviour of v, (x ) in 
neighbonrhoods of zero points. and speak of -changes in zl,,(x) as x goes through the zzro point xo". 
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Case 2: If p does not change its sign. (but possibly p(a,) = 0) and p' changes from negative 

to positive: Then again by (1).  p" is positive and does not change its sign. Hence. 

the variations of O ( L )  both at a o ( x )  and a1 ( x )  disappear. If no other component of 

0(2) vanishes at  a. then z p ( x )  diminishes by 2 as x goes through a. 

Case 3: If p does not change its sign. and p' changes from positive to negative: Note that 

by ( 2 )  this can only ocmr if p(a)  > 0. so p has a positive maximnm at a. By (1). 

p" must be negative without a sign change. a ( x )  abandons its variation at a ,  ( x ) .  

but gains one at ao(z). Hence. if no other component of a ( x )  vanishes at a. then 

I I ~ ( X )  remains unchanged a s  T goes throngh a. 

Case 4: Neither p nor p' change their sign. Then y cannot vanish at at according to (1). If 

a ( x )  has a variation at  ao(x ) .  it keeps it through a, so v p ( x )  remains unchanged as 

L goes through a: if no other component of a(x) vanishes at a. 

Case 5: To each derivative of p that does not change its sign, apply the appropriate choice 

out of Cases 2 through 4, to determine the variation of the a k ( z )  of higher indices 

k. The effects of all sign changes add up to the total decrease of v p ( x )  in a. 

Case 5 allows us to handle multiple zero points at a independently, except for zeros in two 

si~bseqncnt derivatives which must be regarded s im~~l taneous l~~ .  

- pim-l)  Corollary 2.6 If p (a)  = p f ( a )  = . . . - ( a )  = 0 and p(")(a)  # 0: then the 

deriwztives p(n'-"k)(z).k = I.-. . . LyJ, - don't change their sign at a ,  and the derivatives 
p(m--lk+I) 

(2). k = ll.. . . [TI ,  change their s i p  at a. The d e r i v a t i v e s p ( ~ ) , ~ ' ( x ) ,  . . . : p ( n ' ) ( x )  

have ctlternating sign for a f ied a: i n  some interual ( a  - E :  a ) ,  and constant sign for x i n  

(a .  n + €1. namely ~ g n p ( ~ ) ( a ) .  Thw. %(x) diminishes by nz, dzle to this m-fold zero of p.  

Proof: Apply (1) and (2) of Proposition 2.5 dternatingly to the derivatives of p. 0 

Theorem 2.7 

1 .  The function zlp(x) i s  monotonically decreasing. 

%e will use terms like --2.,(r) diminishes by 2 due to p(k'f!a)" to emphasize that we disregard possible 
further defects of r - , ( r )  due to zems of other derivatives at a. 
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2. For every suficiently large negative a and large posit-zue b. v ,(a)  = 7~ and v p ( b )  = 0 .  

5. The conzte-rse of Theorem 2.3 also holds. i.e. r r ( x )  a2wa.y~ changes as x goes through a 

zero point. 

Proof: 

1. In any of the Cases above. v p ( x )  is either constant or decreases when passing a zero 

point. In the intermediate intervals. a ( x )  is unchanged. as is 71p(x).  

2. This follows from the fact that. for sufficiently large lxll p and all its derivatives have 

t,he same sign as  the polynomial c,xR and its derivatives. For the latter? the statement 

holds for d l  a < 0 and b > 0: respectively7 since the components of a ( a )  alternate, 

and the components of a ( b )  are consistently equal to sgn c,. 

3. By giving the variations between the k- 1st and kth component of a ( x )  a weight k .  the 

so modified vF1(z) decreases at all zero points, even in the Case 4 above. Therefore, 

if a and b are separated by one or more zero points, then v p ) ( a )  # v p ) ( b )  and thus 

d a )  # d b ) .  

2.2 Fourier Critical Points 

As we have seen, describing the behaviour of v p ( x )  in terms of a ( x )  is rather complicated. 

Fourier took a different (and simpler) approach. He considered points with the following 

properties: 

Definition 2.8 For a point a E IR where p('-')(a) # 0, p( ' ) (a)  = p('+')(a) = . . . = 

p('+ m-')(a) = 0. p('+m)(a) # 0 for some I ,  m E lN, let I; be defined as: 

if n z  is even 

if rn is odd and p('-l)(a)p(z'm)(a) > 0 (2.1) 

if rn is odd and p('-l)(a)p('+m)(a) < 0. 2 

Then a is called a cri t iml zero of p of order I: (ordinary) multzplicity m7 and critical multi- 

plicity 1. 
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This is not Fourier-s original definition. but rather a refined version due to P6lya [24]. We 

will see that the distinction in the case of odd nz corresponds to Cases 2 and 3 of the 

disct~ssion in the previo~rs section. Note the following pecdiarities in this definition: 

Unlike in real calculus. multiple zeros of p are not considered as critical zeros. 

Also unlike in real calculus. multiple critical zeros of p are considered only as critical 

zeros of order 1 .  not as critical zeros of the next-higher derivatives. 

The case k = 0 is possible - namely, when p ( i ) ( a )  = O1 and pi ' - l ) (a )  and p(l"f(a)  are 

both non-zero and have different signs. 

e In particulzf. the zero ptilcts that satis& k = 0 and I = 1 are the simple negative 

minima and positive maxima of p. 

We speak of a Fourier critical zero (see <also Definition 2.9) whenever k is strictly 

positive. 

We will later see that real critical zeros fit much better into the theory when specifying 

them with t.heir critical multiplicity, rather than with their ordinary multiplicity. 

.A point a may occur as a critical zero ofp  of several different orders, possibly with different 

critical multiplicities. Hence, a term that covers all occurrences of critical zeros at  a is in 

order: 

Definition 2.9 A point a is called Fourier critical point of p if it is a critical zero of p of 

some order with positive critical multiplicity. 

The (total) critical multzplicity of a is defined as the sum of the critical multiplicities of all 

critical zeros at a.  

Again we must distinguish between the common definition of critical points. and Fourier 

i-riticral points. In particrrfarir, a point where all criticd zeros have multiplicity 1 and crit- 

ical xnukiplicity 0 is not considered a Fourier critical point. Furthermore, the ordinary 

multiplicity of a Fourier critical point is in general not equal to its critical multiplicity. 

To illustrate the distinction between criticd zeros and Fourier critical points, let us give an 

example of a polynomial with two critical zeros at 0. 



Example 2.10 The polynomial p t r  f = f z' + 11'' = z ' + 2z2 + 1 has 4 imaginary zeros. 

roilnting mnltipEcities. It can easily be seen that p. pJ1 and p!"! arc strictly positivt..whcrcas 

pf m d  p"' each have one root at 31 = 0. It. follows that 0 is a crioical zero of p' md yf". both 

with multiplicity 1 and critical multiplicity 1. Therefore. a = 0 is the only Foilricr critical 

point of p: its to td  critical milli-ip'ticity is 2. Note that this is also the number of pairs of 

nonreal zeros of p. This equality always holds. as we will now show. 

Theorem 2.11 If a is n ma1 zero of p with multiplicity rn and r2 Fourier critical point of 

critical multiplicity k. then - E )  - v p f a  + E )  = nz + 2k for a suficiently small E .  

Nott that nt and k are allowed to be 0 here. The case k = 0 means that no critical zero at 

a is of positive yriticai mdtipiicity- (This case will be included implicitly in the proof.) In 

the trivial case n k  = k = 0. vp ( z )  remains constant as a: goes t5rough a. 

Proof- We refer to the case distinction in the previous section. If critical zeros of different 

orders. and perhaps a real zero. coincide at a. then Case 5 allows us to regard these zeros 

independently and to add up the defects in vp(x) due to 4 zeros. For a red  zero of 

multiplicity m. the theorem follows from Corollary 2.6. 

Sow assume that a is an nz-fold critical zero of order I and critical multiplicity k as in (2.1).  

Without loss of generality. we assume that p ( l + m ) ( a )  is positive. Applying the first part 

of Corollary 2.6 to p(' l (a) .  we obtain that the derivatives p(1im-2) . - . . . p  ( ~ + m - ~ L ~ l )  are all 

positive in some interval around a (except a t  a itself ). Now Case 2 applies to each of these 

LF - f derivatives. and the defect of ~ ~ ( 2 )  due to them amounts to 2[3] - It. now remains to - 
check the derivatives pti-'j and pcl)  in all possible cases: 

If m is even (first line in (2.11). then. as said above, p(1j*-2 i? j )  = p(')  does not 

change its sign: nor does pf l - ' ) .  So Case 4 applies. in which +(x) does not decrease 

m y  further. Hence the t o td  defect of vpjz) at  a is m = 2k. 

o If m is odd, then p f l ! { ~ ]  changes fmm negative to positive. 

- If ~ n e r  pf'-'#aj > O (this corresponds to the second line in (2-1) j. then Case 2 

applies. in which vp(x) diminishes by 2, due to 1. Hence, the total defect of 

+(x) a t a i s 2 L ~ J + 2 = r n + l = 2 k -  
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- Otherwise. if pi i - ' j {a)  < 0 [third line in (2.1)). then Case 3 applies. in which 

t/pjxf does not decrease any further. Hence. the to td  defect of up(z! at  a is 

2tFJ = m -  1 = 21 .  - 

In either rase. vp(x) diminishes by twice the critical multiplicity of a.. as specified in Defini- 

tion 2.5. This completes the proof. El 

Since every non-zero polpornid has only finitely many zero points. we can extend t*his 

--local" theorem to an {almost) arbitrary interval which may cover several zeros and critical 

points of p. 

Theorem 2.12 If a and b are non-zero points of p ,  a < b,  then 

where 2, and z, are the  TOO^% and Fowier c~it icnl points of p .with m?dtiplicities p(xr j and 

critical multiplicities k(z,) . respectively. 

This is commonly referred to as Fourierg theorem. In [24, 131 (see A~pendix  A ) ,  the case 

that a or h are themselves zero points is also dealt with. We will not need these extensions. 

PrmE For every zero z E (a. b ) .  a neighbourhood (x-E, X + E )  can be found so that Theorem 

2.12 applies. giving vp(s - E) - gp(x + e )  = p(z ) + 2k (x ) . From Theorem 2.3 it is known that 

* .~~jx)  doesn't change in the intermediary intervals. and that vPp(x) monotonically decreases. 

Therefore. the defects in vp(z) due to each zero point can simply be added together. Note 

that critical points which are neither roots nor Fourier critical points don't contribute to 

these sums and are automatically disregarded. because E(x,) = p(z,,) = 0. 0 

From Equation (2.2) we obtain an inequality which will prove useful much later in this 

chapter: 

Theorem 2.13 With a and b as defined in Theorem 2.12, let m and m' be the nvrnber 

of real zeros of p end pr in  (a, mspecti.t&j, counting multiplicities. Let fadher c be the 

.mwmber of critical zeros of order 1 in  (a2  b ) .  coz~ntzng critical multiplzcities~ Then we have 

the inequality m + 2c - 1 5 mf < rn + 2c + 1. 



ProoE First. observe that the value of the &st sum term in f 2.2) is just m. Now apply 

(2.2) to the derivative ofp. It is clear that vp~(r) rounts the same sign changes as vP(r)  dots. 

rxrept for a possible sign change at p. and zhus may be lower than v p f x )  by at most 1. On 

the right-hand-side of f2.2) for p'. the &st sum is exactly m'. and the second sum is taken 

over dl critical zeros in ( a - b f .  except for those of order 1 with their critical multiplicities, 

which were accounted for as  c. Hence (2.2) for p' reads: 

Now we take the difference between (2.2) for p. 'and (2.3). We obtain 

( v p ( a )  - v d ( a ) )  - ( vp (b )  - vp1(b)) = m + 2c - m' (2.4) 

According to our previous observations. both left-hand terms can be either 0 or -1, so the 

value on the left-hand side of (2.4) lies between -1 and 1. This proves the theorem. 0 

Keeping in mind that, according to Part 2. of Theorem 2.7, there exist real values a and b 

such that v p ( a )  - up(b)  = n: we get the following 

Corollary 2.14 

where the summation is taken ouer all roots xz and Fourier critical points x,, of p ,  and 

p ( x , )  and k(z , , )  rare their respective nzlltiplicities and critical multiplicities. 

The first sum in (2.5) is just the number q of red roots of p. counting mdtiplicit.ies. If d 

denotes the number of pairs of non-real roots of p. then n = q + 2d, and (2.5) is equivalent 

to the following 

Theorem 2.15 The nvmber of Fwwier criticnl points of p. cmnting critical multiplicities, 

eqlbals the nlbmber of poirs of nopzreat terns of p ,  covnting multip&cities. 

P6lya has generalized this theorem for analytic functions of order less than $ with finitely 

many nonreai zeros. instead of poiynomiais [XI. He also conjectured that this can be 

extended to functions of order at  most 1. which is now proved and extended to functions of 

order less than 2 [33. But these generalizations are not of relevance to our further discussion. 



2.3 Gauss' Conjecture 

F6j11rirr critical points uvrc defined first in [6]. a work which remained incomplete, d11e to 

Foitrieis death. In his anno~incemcnt of this work to the scholars in Giit.tingcn. Gailss 

n~mticmcd an ambigrrity fie had for~nd. He said that. from Fr~ririer's work it f~llowcd that# 

a polynoniial .-has as many pairs of imaginary roots as critical points" [7 ] .  However. lie 

pointed oiit that Fourier did not; mean t.his as "each [critical point] belonged t.o a specific 

pair of iniaginary roots" [?][or at least. that he did not, prove it). This question leads to thc 

Conjecture 2.16 There exzsts n definite. rzatur(~1. one-to-one relationship between the 

Fourier c.r-.ltical points and the pairs of con+~gate T L O R T ~ { L ~  zeros of a pol!momial. 

This conject~lre is very vague. One may say, too vague to be taken serionsly. In their papers 

rcfctrencerl hcrc. neither Gauss nor Frmrier snggested an algorithm that wodd define such 

a bijective relationship. More than anything else, Gaiiss was doubtful if siich a relationship 

cxisted at all. and suggested the same aboiit Fourier [lo]. In general, the conjecture is indeed 

falsc. Any polynomiai that has critical zeros of critical milltipiicity greater them 1 provides 

:r co~~ntcrexample. because a multiple critical zero woiild have to be assigned to more than 

one pair of nonreat zeros. Also. Gaiiss failed to consider critical points of higher orders. One 

ran only gness that with this too simplified view, the problems he encoiintered in examples 

he wczs checking led him to the conclusion that siich a relationship in general does not exist. 

H c  mentioned his view in a letter [lo] to his friend Schumacher. Three years later, he spent 

some more time on finding a relaGmship. and wrote to Schumacher that he f o l d  it "quite 

prob;~hle to find a connection-' after d l  [Ill. Then again, just three days latcr. hr: changed 

his opinion ,and suggested that --there is no common? natural, non-arbitrary relationship ... 
; ~ t  all". He mentioned that in order to prove or disprove this, he wniild have to examine 

and visiialiae a large number of special claws. a task which he doiibted he codd accomplish 

[12j. (See dso the remarks in Chapter 1.) 

Apparcn~ly. Gmss gave np his investigations at  this point. He didn't leave a summary of 

his inwstigations behind. so one can only hypothesize what kind of relationship he songht. 

Othr  aiithors siiggested he me-a', some geometric relr~tionsfiip. aid came tip with partid 

1-e~strlts f3, 20. 241). hiwt of these resdts restrict the possible locations of the Fourier critical 

points. depending on the ioration and density of the zeros. Some of them will be presented 



Theorem 2.17 

The most. rnmmorr case in fact is 1. where WP can find a family of nmppings a11 h i t  firrit~ly 

mwy of which arc bijectiw. After intrridm~cing some tools ISwtbns 2.1. 2.5. 2 . G ) .  wr will 

ontIi~e the ideas of the proof by -wmr examples 1Section 2.7). Thr proof itsdf iSrction 2-81 

will be cnnst;nrctivrr. that is. wr will dc.srribtt rin dgorithm that. givm a po!ynoniial y and a 

vdne c E (0- 7i) .  fets one miqrcly det~rminc a mapping fp,. Also. we will br able to decide 

whethrr c m  be identi&d with a swjt'ttive- or e v a  bijcxtiw f m ~ ~ i o r t  fF, I Zip  ) -- FIp 1- 

Mote however that we dm't claim to haw an algorithm that determines a bijection. or c v m  

jwt a fitnction fp., : Z(pj  -. Efpl for ewry pdynomial y € P.  In fact. far ;dl V ~ I I I C S  
/I E (0. ?r). one c m  find a polynomial f arithrn~t multiple zeros or critical llcrrrs] for which c 

providcs ,at exception. This problem will be further dim& in Section 2.9. 



2.4 The Logarithmic Derivative 

FS?? - r m s  ticfinition exphi= fbe name -iog;irithmic derivative-. but Ls coo mmpIicatd to handle. 

Kcc-ping in mind that tho Acrivativrt of any analytic branch of log r: is just I/=. and applying 

rbc chain mi qxiotiecrt mit- of differentiation. we immediarely obtain the following two 

rdar innships: 

Corollary 2.18 da n n j  ,- whew p does not runzsh. we hare 



a x; is ii zero of (f )' of multiplicity 2. 

a (5)' has 2 n  - 2 fininite zeros. counting multiplicities. 

The zeros of (5)' will be further studied in Chapter 3. although they will be of some interest 

in this rhapter. 

If we factorize y by its com~lex zeros. we obtain the following standard but i~sefu! resi~lt : 

Corollary 2.19 Let pft? = n(z - or, f k l  . . . f z  - a,)kn be a polynomial with roots al,. . . >or, 

of rndtiplicity kl . . . . . k, . mspectzt~eiy. Then we haue 

where the logarithms on %he right-hand side are suitably chosen. Differentiating once and 

twice yields the above two relationships. independent of the choice of the br,mches of the 

fogarithms* 0 

A nice physical interpretation of (2.8) is the next theorem. apparently due to Gauss f8. 271: 

Theorem 2.20 Let a field offorre be gimn by n numbered particles 1..  . . . 12 of unit weight 

kmzied at the (mt neastadg distinctj al.. . , . a,. Let each particle j repel i m  object 

@a o g i w m  pi%: z w&R r fm e p d  to the iwerse d i s i ~ x c e  wctor 1 =-a, * nnd tke total 

fome F t t )  on the object k the sum of the f m e s  due to each paf-ticle. Then the points of 

epuilibriant (F ( z )  = 0 )  ore w a d y  the rems of f . 
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Proof This is just another way of writing (2.8). In order to handle a b-fold zero of p. one 

can either attach JZ part.icles of unit weight at the same point. or. eqnivalcntly. assign an 

integer weight to each zero. corresponding to its multiplicity. 0 

Gauss stated znd proved this theorem in 1816. so when he studied Fourier critical points in 

1533. he must have known that the logarithmic derivative was a potentially iiseful tool. So 

one may suggest that he tried to find a proof of Conjecture 2.16 that involves the logarithmic 

deriva~ive. 

For polynomials with real coefficients. we know that their zeros are either real, or come in 

conj~~gate-complex pairs. By a simple calculation, we show for each such pair a. E that: 

and hence. (2.8) can be rewritten as 

This lets one qualify the behaviour of $ on the real axis: 

Corollary 2.21 For p E P .  kt z 1 be the minim-am real part and z, be the rnazirnum real 

part of all zeros o f p .  Then is negative for x < X I  and positive for x > x,. 
P 

PmoE This is because ;tll terms in f 2.10) are negative/positive. respectively. 0 

Beforc we return to the study of the logarithmic derivative, we will introduce the next 

definition for arbitrary rational functions. 

2.5 Loci of points of prescribed argument 

In this section. let r be a non-constant rational function. and c be a value in the interval 

(--a. zj3. Let fi~rther Z ( r )  and P ( r )  be the set of zeros and poles of r .  respectively. We call 

a point z ?a-pomf (OF critical pint) If r f ( z )  = 0: but T ( Z )  = ?U # 0, The multiplicity of a 

117-point is defined like the ordinary multiplicity of a critical zero of a polynomial. 

'We define this as the range of the ~rincipal d a e  of Arg z for z f C ,  z # 0. 
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Definition 2.22 The set 

is called the locus of points of r of constant argument c. 

We will simply call the sets L, ( r )  loci. since we will not deal with any other type of locils. 

and the choice of r and c is clear from the context. Lucas [I61 and Walsh [27] contain a 

thorough description of these loci in t.he case t.hat r is a polynomial. The properties stated 

there can be easily generalized: 

Proposition 2.23 

1. TTWO different loci LC, frf an& Lc2 i ~ f  are disjoint, and the union of the bc i  for all 

arguments c E ( - x .  x]  is just (C \ ( Z ( T )  U P ( r ) ) .  

2. If zo is a point on  Lc(r ) .  and r1(zo) # 0, then in a neighbowhood of 20, Lc( r )  consists 

of an analytic arc through a. 

3. If zo is a w-point on L C ( r )  of multiplicity k ,  then in a neighbornhood of zo, L c ( r )  

consists of k + 1 analytic arcs intersecting in  t at angles of & . 

4. If zr, is a zeroLpole of r luith multiplicity k ,  then k arcs terminate in t o  with angles 

2 x / b  between adjacent arcs. Furthemore. the I arcs each of two loci LC, ( r  ) and LC? ( T )  

rtfc2-a terminate in .q with angles between an arc of LC, ( r f  and an adjacent arc of 

L, ( r ) .  (The negative sign is to be used in  case of a pole. the positive sign in  case of 

n zero.) 

5. No arc of L,{r) terminates i n  a point other than a zero, a pole, or the infinite point. 

It follows that every locus can be subdivided into a finite number of analytic Jordan arcs 

which connect poles, zeros. and possibly the infinite point. These arcs may intersect at 

ur-points of r .  We call divide these arcs of Lc(r)  into segments, such that every segment has 

two points of the above types as its endpoints. and does not contain any other w-points. We 

now assume that the degree of the denominatcir of r exceeds the degree of the numerator by 

some positive integer k. [Of come, the statements e m  be gesei&zd to a r b i t r q  rational 

functions. but that is not needed here.) The following specifies how many segments of L,(r ) 

are infinite. 
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6. If T ( Z )  has a k-fold zero at x~. then every locm has eractly k infinite segments. These 

segments asymptotical[y behwe as lines at angles of 2 r / k  t o  each other. The segments 

of two loci LC, ( r )  and LC? ( r )  asymptotically behave as lines with angles het,ween 

a segment of LC, ( r )  o7d an  adjacent segment of LC, ( r ) .  

7. Along o single segment of any locus, Ir(z) l  is strictly monotonic. 

This allows 11s to define a direction on the segments of a lociis. At a zero (including the point 

of infinity). pole. or ur-peint zo. we call a segment incoming (outgoing) if i r ( t ) l  decreases 

(increases) as z tends to zg along the segment. In other words, if one passes a segment in the 

dir~ction of decreasing jr(:)i. this segment is outgoing at its starting point, and incoming 

at its endpoint. 

8. All segments at a (finite or infinitej zero are incoming. All segments at a pole are 

~.utgoing. 

3. The 2k + 2 segments at a 717-point are alternately incoming and o.utgoing, i.e. t,wo 

segments at a n  odd multiple of the angle & have different directions. I n  particular, 

the number of incoming segments equals the number of ovtgoing segments. 

10. No segment ca.n both begin and end i n  either a zero or a pole, or in the same 11)-point. 

3nte that despite 10.. L,(r f  may contain closed arcs consisting of two or more segments. 

Examples will be given in Chapter 5. 

P r o d  Remember that L J r )  is t.he inverse image (with respect to r )  of a ray y of points 

,1r3 with Argw = c. We will prove the Parts 1. to 10. in a slightly different order. 

1. This follows immediately from the fact that at every point z except at  zeros and poles, 

r ( z ) has a well-defined x g ~ m e n t .  

2. As r has no poles in a neighbourhood of zo, it is analytic around zo. Since also r l (zo)  # 0, 

r is loeitUji ~om~ormd tiad bas a h c d y  defined (also analytic) inverse which is likewise 

conformal (see [l], p. 132f.). So we find that r-' maps a small piece of the ray y through 

r ( Z ~ J  1 into a single analytic arc of L,(r ) through zo. 
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4. To handle zeros and poles consistently. we use negative values to denote the mi~ltiplicity 

of poles. Since translations in z donet affect the angles between loci. we can assume that 

z(, = 0. 

Let us first assume 0 is a single zero of r (i.e. 6 = 1). Then r'(0) # 0. and. as in 2.. 

r has a locally defined. conformal inverse r-' with r-'(0) = 0. Lct as above y. yi and 

y-2 be the rays of points with arguments c. q. and c.2. respectively. Then r-'  maps a 

small dosed segment of y U (0) with the zero point as one of its endpoints into a single 

analytic arc of L,(rf. likewise with 0 as one endpoint. (Which gives the trivial angle of 

27r between two segments of L,(T).) Furthermore, the angle c.2 - cl between yl and y;2 is 

preserved under r-' . so LC, ( r  ) and LC? ( r  ) also have an angle c2 - cl at  0. 

Now let 0 be a 12-fold zero (or a (-12)-fold pole). Then r must be of the form 

where q is a rational function that does not have the factor z either in its numerator or 

denominator. This implies that q is analytic, and q(z) # 0: in a neighbourhood N(0). 

Then (2.11) can be rewritten as 

where any of the 12 possible roots can be chosen for w l f k .  In either case. the corresponding 

choice of the function q'/k(z) is analytic and nonzero in N(0). Thus. s ( a )  = zq'lk(z) is 

also analytic. it has a single zero at 0. and hence, s'(0) # 0. So we can apply the first part 

of the proof to s. which shows that T-I exists and can be written as the composition of 

the k-valued function u = w1ik and the locally conformal mapping z = s-' (v).  Clearly, 

u = w l f k  maps 7 into 1121 rays of argument Argu = 9. j = 0, .  . . . k - 1, and shrinks 

the angle between 71 and ~2 to y. The second mapping s-' preserves the angles 

between the segments. which proves this part of the theorem. 

5. Assume that an arc of L,(r)  terminates in a finite point zo which is neither a pole 

nor a zero of T. Then there exists a neighbourhood N(zo) in which T is analytic, and 

!r(z)! > E > 0. Then Arg(r(z)) is also analytic in N(zo). Pick a sequence of points (2, ) 

on L,(T) n N(%) that converges to a. Then Arg(r(zj)) must converge to Arg(r ( to)) .  

But Arg(r(z,)) = c for & j ,  so we must also have Arg(r(zo)) = c. and zo lies itself 

on L,(T). Now Parts 2. and 3. show that zo cannot be an endpoint of L,(T). which 

contradicts the assumption. 
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6 .  Consider i ( z f  = r (  A )  in an open neighbourhood aronnd 0. i is again a rational function 

<and has a k-fold zero at  0. By the first part of 4.. LC(+) consists of k analytic segments 

terminating in 0 at angles 2 x / k  of each other. The mapping z -+ l/z maps these segments 

conformally to infinite segments that behave asymptotically as straight lines. Angles are 

preserved. but change their orientation. This shows the first part of 6. Likewise, we 

obtain the second part. using the second part of 4. 

7. Slippose J r ( z )  i takes a local minimum (or maximum) on a segment X of L,(r). say. at zo. 

Then i ( z )  = r (z )  - r(z0) has a zero at zo at which two segments of L C ( + )  (or LC*,(?)) 

terminate. at an =angle of T .  By 4.. zo must be at least a double zero of +, which implies 

il(zo) = rl(zO) = 0. SO f~ must be a up-point of r .  This means, according to our definition 

of segments. that zo can only be an endpoint of A. It follows that X is strictly monotonic. 

8. This follows simply from the fact that J T ( z ) )  -+ m as z approaches a pole, and Ir(z)l + 0 

as z approaches a zero. 

3. and 9. Consider t-he function i ( z )  = r ( z )  - r(zo) which has a (k + 1)-fold zero at zo; 

In some neighbourhood around zo. we have Arg(r(z)) = c whenever Arg(+(z)) = c or 

Arq(i(z))  = c f 7;. The first condition implies Ir(z) 1 > Ir(q)I,  so Ir(z)i is increasing in 

outgoing direction (which means the segment is incoming). Likewise. the latter condition 

indicates that Ir(z)f is decreasing. so we have an outgoing segment. By Part 4.: we know 

that two segments of the same direction have angles of & of each other, and two adjacent 

segme~ts of opposite direction have angles of & of each other. This shows both Parts 

3. <and 9. 

10. This follows immediately from the monotonicity condition 7. 

These statements prove that we can. beginning at a pole of r. follow the arcs of L,(r) in 

descending direction. If we reach a ur-point of r .  Part 9. *stires that we can always find an 

outgoing segment on which to resume oiir journey. By Part 10. and by the monotonicity 

condition. we can never rebirn to a previous point, and also, there is only a finite number 

of segments available. Therefore. we must finally come to a zero point, or approach the 

infinite point. where the tow ends. If we never come across a w-point of r. then one single 

segment- of L,(r)  gets IIS directly from the pole to a zero of r. We will see that this is the 

-normal" case. 
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We siimrnarize more formally: 

Corollary 2.24 

1. Every pole of r i s  connected to at least one zero o f r  (possibly the infinite point) through 

one or more segments of L,(r ) , and vice versa. 

2. I f  L,(r)  contains n o  w-point of r .  then every segment of L , (r )  connects eznct1:y one 

pole t o  exactly one zero of r (possibly the infinite point). 

If in addition to 2.$ every zero. the infinite point, and every pole of T are single, then the 

segments define a bijective mapping between the poles on the one side: and the zeros and 

the infinite point on the other side. This makes Corollary 2.24 an essential part of the proof 

of Theorem 2.17. 

2.6 Some Basic Notations 

For the proof of Theorem 2.17, we need an extension of the terms critical zero and critical 

point to arbitrary complex points. We will later see that the generic definition suits our 

needs: 

Definition 2.25 A point z E C is called a critical zero of p of order 1 and multiplicity k .  if 

yi'-l)(z) # 0. p ( i ) ( z )  = p('c'f(z) = . * .  = p~'+k-l)(z) = 0, p(i+k)(zf # 0 for some k E IN. 

We call t a critical point of p if it is a critical zero of p of some order. Its total multiplicity 

is defined as the sum of the multiplicities of all critical zeros at 2. 

In the nonreal case, the terms critical zero and multiplicity are unambiguous. There is no 

need to define an equivalent to Fourier critical zeros for nonreal points. For real critical 

zeros however: we recall that we must carefully distinguish between ordinary and Fourier 

critical zeros. and between multiplicity m d  critical multiplicity. In general, these values are 

ciiEepat. as noted &r Definition 2.8. 

For simplicity, we will refer either to critical zeros of fixed order 1, or critical zeros of 

arbitrary order, as  critical zeros, whenever the meaning is clear from the context. 
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Definition 2.26 We define 

H+ : the open half-plane above t.he real axis. 

H- : the open htzlf-plane below the real axis. 

We already introdiiced the identifiers Z(p) and F(p). Some more identifiers of this type will 

be introdiiced now for later use in the proof. 

Definition 2.27 For a polynomial y E 7' of degree 72 E lN, and k = 1.. . . . n - 1? we define 

the following sets: 

Z ( p )  : the set of pairs of nonreal zeros of p. 

Z(pik))  : the set of pairs of nonreal zeros of p(k ) .  

Zk(p) : the set of nonreal critical zeros of order k of p. 

Fk(p) : the set of Fon;i~r critical zeros of order k. 

Ck(p)  : the union of Zk(p) and Fk(p). 

Z + ( y ) :  theunionofallZk(p). k = 1  ..... n-1 .  

Z,(p):  t he~ in iono fZ(p )mdZ+(p f .  

F :  theunionofallFk(p). k = l  .-... n-1. 

C(p)  : the rmion of Z+(p )  and F ( p ) .  

-4 few comments about thew sets and aboiit the fine but important distinctions between 

them are in order: 

The e1ement.s of these sets are either single real points. or pairs of conjugate-complex 

nonreal points. We will consistently refer to the elements as points. Whenever a 

statement concerns a pair of points. it is meant to apply to either point4. 

In some =pects. the nonreal zeros of p behave just like a special kind of critical zeros 

of order 0: in others. they don't. Therefore, we have to distinguish between the two 

notations: Z+ for dl nomeal critical zeros, and ,7, for all nomeal critlrd zeros and 

7XTOS. 

'Rowever. if several instances of point pairs are involved in a statement. we refer consistently to either 
the representatives in H+ or those in H-.  
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In general. Z;,(pi  and 2(jdk)) are not identical. Zn-(11) contains only those points in 

z (~ [ ' ) )  for which p(k- ' j (z )  # 0 :  whereas z ( $ ~ ) )  contains all critical zeros of order k l  

and perhaps multiple zeros of derivatives of lower order. 

If a11 zeros and critical zeros of p are single, then Z k ( p )  and ~ ( ~ ( ~ 1 )  are in fact cqual 

for all k 

2.7 Examples 

Prior to the (rather complicated) proof, we will motivate its steps by a few examples. These 

exanlples also have the virtue of clarifying the notation just introduced. Throughout this 

section, we let c = ~ / 2 .  uniess otherwise stated. 

-? 
Example 2.28 p ( z )  = ( 2 -  - lor + 2 6 ) ( z 2  + 10z + 2 6 ) ( z  - l ) ( z  + 2 )  

The zeros of p are 5 f i. -5 f i, 1 and -2: its critical zeros are approximately -4.5130, 

-3.8089. -0.4309, 3.2741, and 4.6454. It can be easily verified that the first and fifth of these 

are Fourier critical points. Hence we have 

Zfp) = (-5 f i ? 5  f i )  

F ( p )  = Fi ( p )  = (-4.5130.4.6454) 

We now consider the locus L, (5) for c = ~ / 2 ,  this is. the locus of all points at which 

3 ($(L)) = 0 . and '3 (f ( r ) )  > 0. The trace of the locus is outlined in Figure 2.1.  by 

the small '+"shaped points. The boxes and circles are the zeros and critical zeros of p, 

respectively". We make the following observations: 

The arcs originate at the zeros zrnd end at  the critical zeros, or at  x.. 

r Exactly one arc ends a t  xt; it originates at  one of the real zeros and converges to t,he 

lower half of the imaginary axis. It is contained entirely in H-. 
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Figure 2.1: The locus o f y ( z )  = (2' - 102 + 2 6 ) ( z 2  + 102 + 2 6 ) ( z  - l ) ( z  + 2 )  

Figure 2.2: The symmetric locvs of p ( z j  = ( z 2  - 102 + 26) ( z2  + 10z + 2 6 ) ( z  - l ) ( z  + 2 )  

The arcs which end at the two Fourier critical points originate in the two nonreal zeros 

in the upper half plane: the arcs themselves are contained in H+. 

The other arcs connect the three remaining nonreal or real zeros to the three non- 

Fmrier cnt.ical points. They are contained entirely in H - .  

We see that, the arcs in the upper half plane behave "nicely" for our purposes, in that they 

connect nonreal zeros to Fourier critical zeros; whereas the arcs in the lower half plane are 

-sopefiuous". In order to get a nicer. and symmetric, picture, we replace LC (f) in H- by 

L-, (5 ) .  Thus we obtain Figure 2.2. 

Now the arcs are symmetric to the real axis: each nonreal zero is connected to some Fourier 

critical zero. and exactly one pair of conjugate-complex zeros is connected to each Fourier 

critical zero. Therefore. the arcs define a bijection from Z ( p )  to F(p).  verifying Theorem 2.17 

for this polynomial- 
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We see the virtue of taking L-, ( 5 )  in X- in order to get a symmetric image on the entire 

complex plane. This is obvious and holds for arbitrary values of c_ beciluse $(f) = $ ( r )  for 

all .z E C .  Hence we introduce the following simplifying definition: 

Definition 2.29 For a polynomial y E P .  and a value c E ( -r, r)? we define t.he qmmekric  

locus of argument c as: 

Example 2.30 p ( z )  = z(z2 - 4t + 5)(z2 + 4.z + 5)  

Here we have 

In this example. all Fourier critical zeros are of order 2. So we cannot. expect to connect 

zeros to Fourier critical zeros just through arcs of SJp) .  Figure 2.3 shows that the arcs of 
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Figure 2.4: The symmetric locus of p ' (z )  = 52"' - 18z2 + 25 

Sc(y)  rather connect the zeros 1:l to t.he nonreal critical zeros. (In every swh case, we will 

say that two points are directly connected.) This defines a bijection from Z ( p )  to Z l ( p ) .  

To continue towards the Fourier critical zeros, we observe the equalities Fl ( p ' )  = F 2 ( p )  and 

Z(p' )  = Zl ( p f .  and apply the same procedure to p'. Namely, we deterxnine S,(pl), as in 

Figure 2.4. We see that every nonreal critical zero is directly connected to a Fourier critical 

point. and that the arcs define a bijection from Zl  ( p )  to F ( p ) .  We now simply concatenate 

these two mappings in order to get the desired bijection from Zfp) to F ( p ) .  

In more general cases. we will have Fourier critical zeros of higher, and perhaps several dif- 

ferent orders: in that case. the notion of concatenation is more difficdt to handle. Therefore, 

we int.rod11ce a different natation: We call two zero points (e-g. a zero and a Foi~rier critical 

zero) connected if they are linked by a seq~~ence of directly connected -intcrmcdi;~~.y" criti- 

cal zeros. We will IN the notation z t. 5 for this. In this example we famd, for instance. 

5 f i - 1.3112: these t-wo points arc connected via the point p i r  1.4206 f 0.46692. We 

gct thr: desired bijection by mapping thc elements of Z { p )  to the rapcctivc Fourier critical 

zeros tto which khey are connected. 

1 Example 2.31 y l z )  = z f 62' i- 25 

This example shows thak the loci ,arc not always as simple as in the prcvioits two csxanlplcs. 

W e  ham 





Wp. ran resolve this colirdfict by greaping ;+il those interconnected zeros into classes. Likewise. 

c;ro~~p t h e  rriricd z~rnos which are d i r ~ t l y  connected to the zeros of a certain class 

into mothter class. which we assign to the former. This mapping from a partition of Z { p )  

TO a partition of ZH fp:t is again bijectiw. 

In tho general caw. PH~S situation c m  mcnr in any. possibly even in several derivatives of p. 

Therefore. we nsgd to -fnni.ktr;ire* connected zeros of. say p'."4- z k  -- 21; to their rcspcctive 

"~t~lcesmrs.- z .  t f Zap). 6Wir already introduced the more formal no tdon  z +. q. and 

5 - for this.) Thrra we win &XI call t and f connected We write this as z 2 5. 

fra this rxzunpfr, c = T j2 is the onfy vdue for which this problem exists. For any other value 

rtf r in to, K). the ares nf S,ip! irre separated and thns give rise to a well-defined bijection. 

It ran bt. shown, however. thac on choosing c < ;1/2. one would obtain a different bijection 

than for a d u e  e > xj2. 

Example 2.32 pi z )  = 3z5 9 10z3 + 15t 

This will be the mcst compticata example. and it wilt reveal several problems. Note that 

is mcentiaI1y the pcrlli~omid d k ~ d  in Example 2.10. and we showed that 0 is assumed 

twice as a Foilrier critical zero. -4s remarked. we distinguish between several critical zeros 

at the same paink- 



The points f i are critical zeros of multiplicity 2. Corresponding to this. the graph of S,(p) 

{see Fi,aure 2.6) shows two pairs of arcs incoming at  ia from the two pairs of nonreal zeros. 

Otherwise. these arcs are separated. so they define a mapping from Z ( p )  to Zl (p): but this 

mapping is not inject;ive. 

Let ns now take a look at the first derivative. f i, though it is a doiible zero of p'. is just 

a single pok of f. So Sc(pf) consists of only one pair of arcs going from fi to 0. (These 

arcs are just finite segments of the imaginary axis, so we did not plot S,(pi) .)  This defines 

a bijection from Zfp') to I$@)- 

Sow h is also a zero ofp%. so it  is c o n n e d  through S,(pHj to the criticai zero in Z3. and 

fiIrther through S,fP) to 0. the second Fourier critical zero. This defines a bijection from 

Zip") to F3p) -  
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We saw that the mappings in every step are well-defined. and, except in the first step, they 

are bijective. The problem arises from putting the steps together and finding a mapping 

from Z ( p )  to F l p ) .  The points f i are the images of two points in Z ( p ) ,  and in turn, they 

are mapped to two points in F ( p ) .  But there is no non-arbitrary way of composing these 

two mappings to a bijection. 

We resolve this problem in a similar way as in Example 2.31. We group all those zeros of 

p into a class, which are connected to the same intermediary point (which in general is a 

point in 2;). As before. we will write zl zz z.r for this. Further, we map this class to the set 

of all points in F f p )  which are connected to this intermediary point. In this example, we 

would thus map the class [q. z2] to {02, 04) (The indices on the 0's are to underline that 

we distinguish between these two Fourier critical zeros.) 

In the general case, we will take greater care in defining the relation z. It will be defined 

in a way that makes i t  an equivdence relation, which matches the special cases outlined in 

Examples 2.31 and 2.32. even if they occur in multiple instances in a single polynomial. 

We conclude with the remark that Fourier critical zeros can themselves be multiple, in 

which case several different zeros (or, more generally, classes of zeros) in Zfp) may be 

mapped t.o them. However, there is no need to group all these zeros into a class, as we 

did in the above case of a multiple nonreal zero. The situation resembles the first step 

in this example: Multiply connected Fourier critical zeros do give rise t.o a well-defined, 

non-arbitrary mapping, except that this mapping is not injective. 

2.8 The proof of the conjecture 

As in the examples: we dicuss the symmetric loci of a polynomial p E P 

Lemma 2.33 Let c E (0,~). Then the segments of S,(p) have the following properties: 

The arcs of S , (p )  connect all nonreal zeros of pj all (nonreal or Fourier) critical zeros 

of p of order 1 ,  and lo-points of 5 with Arg w = c. 

E-rreq zero of p has ezactly one outgoing arc. 

Every nonreal critical zero has a number of incoming arcs equal to  its multzplicity. 
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Every real critical zero has a number of incoming arcs in H+ and H- each equal to 

i t s  critical multiplicity. 

N o  zero of p and n o  real critical zero of critical multiplicity 0 is  connected. 

Proof: We can restrict ourselves to the positive half-plane. The proof for the negative 

half-plane is analogous, due to symmetry. In Ht; we identify S,(p) with LC ($)  Hence, 

we can apply all results of Section 2.5. 

First. we recall that every zero of p is a single pole of f, and a (real or noweal) critical zero 

of p is a zero of 5 with the same (ordinary) multiplicity. Therefore, most of the propositions 

follow directly from the corresponding parts of Proposition 2.23. All we need to prove is 

the statements about the nonreal and the real critical zeros, and that no arc leaves H+ or 

is infinite. 

We observe that no arc can cross the real axis (and thus leave or enter H+) at any point 

z E I2 other than a zero or pole of f ,  because Arg ($(s)) is either 0 or T .  Secondly, since 

a is a single zero of 5.  LC ($1 has exactly one infinite arc. By Part 6. of Proposition 2.23.. 

this arc has asymptotically an angle of -c to the infinite segment of Lo (f). However, 

we infer from Corollary 2.21 that f ( z )  is positive for large positive r ,  so this segment is 

jnst part of the positive real axis. The points on the infinite segment of LC (f) must then 

satisfy Arg z 4 -c as  r -+ X I .  Consequently, this segment must lie in H- , which leaves all 

segments in H+ to be finite. 

Now let 3 be a real zero of p. Then LC (5 )  has exactly one outgoing arc, at an angle of -r 

to the outgoing arc of Lo ( f ) .  From the Equation (2.10) for the logarithmic derivative on 

the real axis, we see that lim $ ( I )  = -so, and lim $ (r)  = +m, so the outgoing arc of 
z / z o  z\zo 

Lo (5)  is a line segment on the real axis to the right of q. This shows. as with the infinite 

point, that Arg(r - y)) approaches -e as a + q on the outgoing segment of LC ($), so 

this segment cannot lie in E+. 

Finally. let t o  be a real critical zero of p of order 1 and multiplicity m. From Part 4. of 

Proposition 2.23, we infer that q. being an m-fold zero of f, has m incoming segments of 

L ( )  at angles 27r/m of each other. 
\ P I $  

a If nz, is even, then 4 2  segments Iie on either side of the red axis, so q has m incoming 

segments of LC (f) n E+. 
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If nz is odd. we have to distinguish between two cases: 

- If p(zo)p 'm' l ) (zo)  (which cannot be zero) is positive. then is increasing on 
P 

the real axis around zo. and thus positive to the right of zo. By Part 6 .  of 

Proposition 2.23. the m incoming segments of LC ( 5 )  are directed at  angles 

c '2-+c '2(+),+c - -  '2( m- 1 IaCc 
nl ' 711 

- . . - -  m ..... m from the positive real direction. so the first 

of these segments lie in H+. - 

- If P ( ~ a ) p ' m ~ l  ' ( z o )  is negat-ive. then el is decre~iing on the real axis aromd t o .  
P 

and thus positive to the left of zo. The incoming segments of LC have angles 

c .2-fc '2(=+)x+c - 2(m-1)~+c 
(P') 

m .  m - - - - -  nl - - - * a  m from the negative real direction: so the 
first - of them lie in H-. This leaves 9 segments in H+. 

In each of these three cases. the number of incoming segments at zo in H+ is equal to the 

critical multiplicity of z0. as in Definition 2.5. This completes the proof. 

Sote that points of critical multiplicity 0 are included in the last case. 0 

The next lemma has similarities to Theorem 2.17. In fact. this will provide the first "itera- 

tion" of the proof. 

1 .  T h e w  rrzsts a n  algorithm which. given any riahe c E (0. x) and any polynomial p E P .  

determines a mapping f;: from a partition of Z ( p )  to  subsets of C l ( p ) .  No class of 

thin partition i s  mapped t o  the empty set. and every point in F ( p )  is  assumed at least 

once. 

2. For a $xed polynomial p. all but a finite number of values c E (0, T )  in fact define an 
10) fp,  that maps one-element sets t o  one-element sets. and fAy/ can be identified with a 

swjectise function fAQ2 : Z ( p )  -+ CI Ip). 

3. If in t~ddi t ion  all points in C l ( p )  are of (critical) multiplicity 1. then fi0: maps a 

partition of Z ( p )  t o  a partition of C1 ( y ) :  furthermore. ail but a finite number of  values 
(0) 

c E (0. x )  define a n  fi:' that maps one-element sets 1:1 t o  one-element sets. and fp,c 

can he identified with a bijective function Z ( p )  --t C i ( p ) .  
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Proof: As before. we restrict our attention to the closed upper half plane. in order to deal 

with points ~nstead of conjugate point pairs. 

1. We define both the partition of Z(p) and the mapping f:!) by means of S,(p). The 

classes of Z ( p )  are formed by t~he sets of zeros which are connectrd with each othcs 

throngh arcs of Sc(p): by Lemma 2.33. all these zeros are nonreal. For snch a class C.  

we define fAO>(~)  as the set of all points in C l ( p )  which are also connected to these 

points through arcs of S,(p). It follows from Corollary 2.24 that f;!,' is well-defined. 

every point in Cl ( p )  is assumed at least once. and fA;0! maps every class to at l e s t  

one crit.ica1 zero. which by Lemma 2.33 lies in Cl (p). 

2. By Corollary 2.24. two points in Z(p) can only be connected (thus forming a class of 

more than one element) if the arc between these points contains a w-point of 5 with 

Argm = c. But $ has only finitely many w-points. Therefore, all but finitely many 

lori S,(p) are free of m-points of f. In this case. Corollary 2.24 states that unique 

points in Z ( p )  are mapped to unique critical points, which, again by Lemma 2.33, lie 

in 4 (p). Since Cl ( p )  is covered completely. j::), regarded a s  a mapping from Z(p) to 

Cl (p), is surjective. 

3. Points in Cl (p) of (critical) multiplicity 1 are connected through exactly one arc of 

S,(p). Hence. they are contained exactly once in the image of some class C. So if 

a11 points in Ct ( p )  are single. then the images of all classes form themselves clmses of 

a partition of C l ( p ) .  If in addition Sc(p) contains no w-points of f. then Corollary 

2.24 implies that every point in Clfp) is connected to exactly one point in Z ( p ) .  which 

shows that f::' is injective. Together with the surjectivity in Part 2.. we haw shown 

that f;: is bijective. 

As a corollay of this theorem. we c,m say about the set mapped to a class C  of Z(p). that 

i t  ~ ~ 1 s t  have the same c~Oin&@ as C, For classes consisting of only one element.. this is 

trivial. For larger classes, the arcs of SJp)  connecting the zeros of this class must contain 

ur-points of 5.  We can. starting at  the zeros in C.  follow the arcs of Sc(p). Whenever some 

I; arcs join at a A-fold w-point of 5.  there also exist k outgoing arcs on which the tow- can 

be resumed. So throughout the journey the number of arcs remains ~mchanged. until wc 



CHAPTER 2. GA USS ' ORIGINAL COi'JJECTCTRE 35 

finally get to the critical zeros of p. Note however that several of these arts coldd terminate 

at the same critical zero6, so we have to count them with the nnmber of incoming arcs from 

zeros of C. 

We summarize this as follows: 

Corollary 2.35 For any class C o f Z ( p ) .  the sets fj?(C) and C haue the same cardinnlitp. 

if rnu1tipZ:y connected critical zeros are counted with the number of arcs through which they 

are connected to zeros tn C .  

It is easy to show that the loci Sc(p) are continuous in c. i.e. slight variations of c result 

only in slight displacements of S,(p).  Given this. we obtain: 

Corollary 2.36 if Sc(p) contains no w-point of 5 ,  then slight variations o f c  do not affect 

the mapping f;:) constructed /ram Sc(p). More precisely: There ezists an open interval 
10) (0) containing c .  so tirat for all i d t ~ e s  c' in this interval, fp,p.d = fKC. 

Proof. The segments of Sc(p) can be separated from all zeros, poles and w-points of 5 
other than the one zero and one pole they connect. If c is slightly varied, they will still be 

separated from the other zeros. Cmsequently, they must still comect the same zero to the 

same pole. thus leaving f::) unchanged. 0 

Using this corollary and a compactness argument on any closed subinterval of (0. R). we 

see that the rases where S J p )  contains a lo-point of 5 mark -.limiting cases-'. in that the 
(01 mapping fp-, from points of Z ( p )  to points of Cl (p) changes only at  these values: 

We will now prove Theorem 2.15. If p has only real zeros, then we have nothing to showi. 

Otherwise. let n be the smaiiest derivative such that has only red zeriis. (St;& an 

rz always exists. and it is at most one less than the degree of p.) As before. we restrict 

oi~rselves to the closed upper half plane. and do the same considerations in the lower half 

"Although no example of this has been fonnd so far. 
'TO be exact. f,-, =odd be the empty mapping. 
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plane with -c instead of c. thereby preserving symmetry. In defining the reqliired partitmion 

on Z ( p ) .  we have to take special care of mnltiple critical zeros. For this rcason. we replace 

the intilitivct meaning of "c~nnectedness" with the following definitions: 

i l ; )  Definition 2.38 Let z(p'"))l, and f;., be the partitioils and functions defined by applying 

Lemma 2.31 to (which is, by means of ~ ~ ( ~ ( ~ 1 ) ) .  For two nonreal zeros or critical zeros 

20. Zu- wct write z0 - i0 if they belong to the same class in 2 f p f k ) f  1,. for some k = 0. . . . . r t -  1. 

Definition 2.39 Let y, be a point in Z r ( p )  with multiplicity k. and z,, a point in C/+,,, ( y ) .  

where 1 _< tn 5 k. Wc call y, and z,, directly connected. if zo belongs to a class C in 
ztp'+m- I ) I ,  such that z, E fjqc t l+m-tf  (C) holds. 

[l+m-1) 
By the construction of fpr (C) in Lemma 2.34. t o  and z, are directly connected if and 

only if S&(lf m-')) has an arc that connects zo (as a zero ofp(lirn-')) and z0 (as a critical 

zero thereof). Note that the order of derivative. I + nz - 1, is constant for all z,, of the 

same order. and independent of the order of the point they are connected to. However. 

the mtdtiplicity of 3 must. be large enough to cover the Herence between the order of to 

and that of zCr. In the case n2 = 1 where y, is simple. q can only be directly connected 

to critical zeros of order 1 + 1: whereas an nz-fold zero is directly connected to at least one 

criticd zero each of order 1 through m (This follows from Lemma 2.33). 

Definition 2.40 Let q be a nonreal zero of p. and zm a critical zero of order k. We call 20 

and r,, connected (arid writr q) + z,) if there exists a sequence 21.. . . . 21 = to of critical 

zeros of order kl.. -. . E;r = k. respect-ively. such that for every j = 1.. . . .l. z,-1 and 2, x e  

directly connected. [We define = 0). For technical reasons. we aL.0 define zo - zo for 

every q E Z f p L  

It is clear that, 0 < ki < . . . < F;r. aud that 21,. . . , zr-1 all have to be nonred. If d l  zeros 

zo. - - - . rr-1 iue of multiplicity 1. then we just have kj = j .  ztnd I = k. The next lemma is a 

kind of generalization of Carollary 2-24: 
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2. Every point z,, E C ( y )  is comtected to at least one point E Z ( p ) .  

3. If nli points i n  Z ! p )  and Z+{pf  are of mtdtiplicity 1 .  n n d  7x0 I O C ~ U S  ~ , ( p (  k)) ~oilt~%'f),.F 
t k + l b  

n 711-point of k. then euery point i o  E Z ( p )  is connected to exactly one point 

zCr E F ( p ) .  and & w r y  point zCr E Z + ( p )  is connected to eznctlp orre point zo E Z ( p ) .  

1. As stated. one can find at least one critical zero zl of some order E l  t.hat is dircctJy 

connected to q~ If zl E FIp) .  we are done. Otherwise. q is a nonreal zero of p( l i l ) .  

and we can find another critical zero z? of order k-, > kl that is directly connected to 

21. Continuing this. we obtain a seqne~lce of critical zeros of strictly increasing ordcr. 

bo~inded by n. Hence. after finitely many steps wc must reach a real critical zero of 

y. which is thus connected to 20. 

2. L'Vt? prove this by induction on E. For k = 1. the proof simply follows from Part 1. 

of Lemma 2.31. Assume that the statement holds for every point in Cl ( y ) ,  . . . , C k ( p ) .  

and let t, E Ck+, ( p ) -  By Lemma 2.34. z,, must be linked to  a point zl E z ( ~ ( ~ ) )  
throngh an arc of S,(~!~I). If zl is a zero of p (of order at least I; + 1). then z,, is 

directly connected to 21. ,and we are done. Otherwise. we must have zl E Zk, ( p ) .  

where 1 < kt < k. and zl has multiplicity at  least k - k1 + 1. z1 (as a critical zero 

of order kt  ). and t,, are thus directly connected. By the induction hypothesis, there 

cxists a point q with t-- q. This implies ZQ zg zr,. 

The proof fdows  by induction on k, 

3- Let zO. icr E F ( p f  be two Fotlrier critical zeros satisfying zo - zc, and ro t-. i,,. and 

21- - - - . z! = r,, and it.. . . -2 ,  = &, the corresponding sequence of critical zeros in 

Definition 2.40. W i t h o ~ ~ t  loss. we may assume I 5 nz. We already observed that in the 

absence of multiple zeros. the zeros zl and lid, mwt  be of order j .  Now suppose that 

zj = 2J (which is iLi least. tnic for j = 0). Then we irier from P?st 2. of Lemma 2.34 
( 1 )  rhat fp., maps z1 to a unique point in ( p ) .  Hence. z,+t and ij+i must also be 

equal. and by induction on j we get 2, = z~ = st. Since: as stipulated. z, is in F ( p )  

,md henre red. Lemma 2.33 prohibits s,, to be directly connected to any critical zero 

of order greater than I .  So we must; have I = rn, and z, and 2, must be eqtid. The 
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second part of 3. follows from a similar induction proof. keeping in mind that Part 3. 

of Lemma 2.34 guarantees uniqueness at every step. 

Definition 2.42 We call two point-s 20. j0 E Z(p) connected (aritten as zo 21. io ). if one of 

the following conditions is satisfied: 

1. There exist two points z,,. t,, E Z , ( p )  such that zo ++ z,,: io ++ &,. and z,, - i,,. 
2. There exists a zh E Z(p) such that zo -. zh and 26 21 io. 

It is important to note that in Condition 1.. the points ro, iO. z,, and i,, need not be 

diRerent. As a special case. we have zo CY 20. Condition 2 ensures the transitivity of e, and 

the symmetry is obvious, Hence. connectedness is an equivalence relation on Z(p). Note 

that Z , ( p )  does not include real critical zeros. so two zeros are not necessarily connected if 

they are just connected to a common fmultiple) Fourier critical zero of p. 

Sow we partition Z ( p )  into the equivalence classes defined by 21. For each class C E Z ( p ) l , .  

UIC define 

f,.,(C) = (zm E F ( p )  : There exists z0 E C with 20 z,,} (2.13) 

With this definition. Part 1. of Theorem 2.17 reduces to saying t.hat every z0 E Z ( p )  is 

rclnnectd to  some z0 E F ( p )  f which prohibits empty sets as images). and vice versa (which 

shows that F(p) is cmnpletely covered). Both these statements were shown in Lemma 2.41. 

If neither Z(p) nor Z+(p)  have d t i p l e  zeros. then we have the equality Zk(p) = 2@(lC)). 
1k+1) 

Ynw recall that every logarithmic derivative % has only h i t e l y  many wpoints, and 

there are only finitely many derivatives p[kl. k = 0. . . . . n - 1. Hence for all but finitely 
(k+I)  -- 

many ~dues  of e. & ( p i H )  contains no ~ ~ - p o i n t  of %. 'I.hen i t  follows from Lemma 2.34. 

Part. 2., that d partitions Z ( ~ I ~ ) ) ~ ,  consist only of one-element classes. Hence. z - 2 

implies z = i for all z E Z,(p). Also. from the proof of Lemma 2.41. Part 3.. we infer that 

for each q~ E Z(p) .  we get a unique Fourier critical zero z,, in some Fl(p) with q I-+ z,,. 

Furthermare. in every set ZJ(p). j = 1.. . . .I - 1, there is a unique point zJ so that 3 w zJ. 
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Cmwrsely. for each of these z,. zg is the only zero of p with s o  - z j .  Hence. no zero of 1) 

except zo itself satisfies Condition 1. in Definition 2.42, so Z(p) l ,  consists of one-clcment 

classes only. These clmes. a5 shown. are mapped to single elements of F(p) .  If thiis f,,,, is 

identified with a function mapping Z(p) t,o F(p).  then Part. 1. of the theorem shows that 

fp,, is si~rjcrt.ive. This completes the proof of Part 2. 

Now let z,, be a single Fourier critical zero of some order I;. Assume t,hat z0 I-+ z,,. and 

to I- z,,.. for so. i0 E Z(p) .  Then we find points 21 ,  il E Z,(p) (possibly of different orders 

or order 0)  with 20 t- q. io I-+ il. and both sl and z,  as well as st and z,, are directly 

conncctcd. By Lemma 2.34. Part 3.. r,, is in the image f ( k - " ( ~ )  of exactly one class C of 

Z(~P-~))I ,.. In ot-her words. if both 21 and 21 are directly connected to t,,. then 21 -. 21. 

Nciw according to Condition 1. in Definition 2.42. we have a zo iO. This proves Part 3. of 

the theorcrn. 

Part 4. of the theorem follows readily from Parts 2. and 3.: If by Part 2. f p ,  is identified 

with a surjective function mapping Z(p) to F(p).  then Part 3. shows that fp,, is injective.0 

2.9 Problems and fixes 

The proof of Theorem 2.17 looks very intricate <and circixmlocutionary, to say the least. It 

obsctires the iinderlying. simple idea that can be written down in just one sentence: "From 

the nonreal zeros of p: follow the arc of constant argument of the logarithmic derivative of 

1' and its derivatives, until you finally re<wh the Fol~rier critical points." The problems arise 

from two possible exceptions: 

1. Zeros or critical points of p may be multiple. 

( k + I )  
2 On s,(~(")  we may enconnter w-points of %- 

If wc haw neither of t.hc3e exceptions for a given p and c. the proof of Theorem 2.17 indeed 

rt-dwcs to a matter of following analytic .ucs from single zeros to single zeros of the next- 

highcr derivative. as we have experienced in Example 2.30. 

Thc second exception is so important that we will investigate it  more closely in the next. 

chapter. dtvhongh it. can be easily avoided by choosing c suitably. However, i t  is easy to find 
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a polynomial for which a given c E (0. n) is exceptional in the sense of 2.. so wc rannot. llnpc 

to find a "imivcrsal" c that aveids 2. for every polynomial in 7'. 

Thc exception 1. is inherent to a polynomial. and no choice of c can fix t.he problem. Strictly 

speaking. we must say that. whenever 1. applies. our algorithm docs not provide a '-definit.~. 

natnral relationship'. as solight in Conjecture 2.16. But on the other hand. it seems very 

~lnlikely that we ran expect more. If nonred zeros of p or Foirrier critical zeros of y arc 

ni,iltiple. it is impossible to find a bijection between t+hem. And since being a real critical 

zero of some order 6 is a property that depends on p ( k - ' )  rather than y .  one wo~dd s~~ggcst  

that multiple nonred zeros of p(k'' (and of any other derivative of p) likewise prohibit a 

non-arbitrary bijection. Multiple zeros indicate a "limiting case" in which zeros -'exchange 

their roles" (see CoroEary 2.31). 

Yet, there are ways to circumvent t.hese problems. They all have in common that they are 

arbitrary in some way. Here is a possible sollition: 

Assign unique indices to every nonreal zero or critical point z of p, in the form 

(2. k t ) . ( z ,  ki + 1 ) ,  . . . . (t,kl + nzi - I), (2, k p ) ,  . . . . ( z ,  kl i- nzf - 1) where the k, are 

the orders of the (critical) zeros. and the mj their respective multiplicities at z .  (We 

have the inequality 0 5 k1 < kl +mi < k2 < k 2 + m 2  < . . . < f i l  +ml 5 degp.) Hence. 

t.hc indices above list all derivatives of p that vanish at z. 

r Index every multiple Fourier critical point z in the same way, except that the 7 1 E j  arc 

now the critical multiplicities of the critical zeros at z. (Here the indices do not list a11 

derivatives of p that vanish at  z.) Define F ( p )  as the set of all these indexed points. 

r Let Z ( p )  consist of dl points (2. kl). . . . . (z, kl + nzl - l), where z is a zero of p ,  i.e. 

k, = 0. 

We axe now going to construct arcs from .unique points in Z ( p )  to unique points in F ( p )  as 

follows: 

r If (2, kj + h) is a nonred critical zero (i.e. kj >_ 1): then the ur p e  incoming arc into 
? ( h i - l ) x  

this point is the arc of ~ , - ( p ( ~ j - ' ) )  incoming into z between the angles 2~ and - 
ml ' n ~  

of the positive red direction. 
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If (z. F;f $. hj is a red critical zero jk, > 1). then the uuiquc incoming arc into this 

p i n t  is the art- of s,(~:~J-'!* 
i h - l ) r  incoming into z betwwn rhr angles "- and - 

fill 
of 

r h c  p s i  rirc r e d  dirrction. 

8 

An incoming arc of S&'J>l into a ti.-point i of of mn1tiplicit.y. ray. 1.. will he 

rontinlted on the arc at the angle of the incoming arc. (This is jl~st. the "next arc 

to rlic right'.. and it. is an ontgoing arc. as we have seen in Section 2.5.) 

-4s a final a n s ~ e r  ro Gauss' qnrstlon. wt- cnnchide with a statement. that si~mmarixcs what 

WP haw foi~nci in shis chapwr: 

Except for certain -limiting rases". one tan algorithmically construct a family 

of bijective mappings from the pairs of nonreal zeros t.o the Fourier critical zeros 

of any given poiynomial. 

In Chapter 6 .  we wili spend a few words on the practical use of this result. To end t*his 

chapter. let 11s now consider a few geometrical results that are found in the literature. 

2.10 Geometric Relationships 

>lost of the geometric rcsrilts presented in the sequel make use of one of the Fom11la.c (2.8) 

and 12-10). We fist them here for easier reference: 

Lemma 2-43 Let p be a ccrmplm. norzconstant' polynomial. If aN zeros of p lie in the 

closed upper half plane z- then so do all zeros ofu'. If additionally not all z ens  o f p  are 

wal then d l  zeros ofp'. except multiple m l  zeros of p.  lie in H+.  



fn the second park. if z is md. and at least. one zcro rrl, of y lips in H,. tlwn wr haw 

3 ( h )  > 0. and at kast 3(*) > O for all otllmr t m n c .  Henr~ we also get $( z 1 # 0. If 
Z - - O J 0  - -0, 

p t z j  f O wrIl. w conclude as above that p'{z)  f 0. {Sore that sirnplc ?i-I-ns of I I ~ Z  j can 

newr be zcros of <. ). This shows the second part. ." a 

Another rcsdt needd for Lalca5"s Thwrern shows that the location of thc zcros of p' rclativr 

ro the zeros of p is invariant under shifting and scaling: 

Proposition 2.44 Let f i izf  = yIc + z i  c~nd p ( t  f = p ( a t  ) Ee the plynomtnls obtained from 

p bfi shifling and scaling with cornpier. nonzero constn7 ts c and a .  wspectzrely. Then 

1.  j f ( z )  = pf f z  f c) .  

Prod Both parts follow from applying the chain nile of differentiation. 

1% are now ready to state and prove Lucas's theorem itself 

Theorem 2.45 [Luca:ask TF?esm?rt f Let K = convfni. .  -. . a,) d t t n o t ~  ?he mnwr hrill of 

all zems of a ramplez polynomial p. Then the zeros ofp' also lie in h'- If not uil  zeros 

n l . .  . . . a, lie on n stmight Cine, then all zeros of p', ezcept possibly muliiple zeros of p .  iie 

sn the interior of K .  





Prod Take z = 3- + i~y. and consider & f z 11. For each of che terms in the first s ~ m l  of 
P 

i2.101. we gct 

and for rach term in the second snrn. after rearranging and fartorizing thc tenns: 

If a critical zero ZQ = TO + g I i  lies outside the Sensen circles of p, which is. 

1 3 
x - +  > for all j _  (2.17) 

theis all tarns in (2.151 and (2.16) have the same sign. namely -sgn;yo. Hence. we have 

sgn 3( $ ( z ~ )  1 = - sgn 3( y 1 .  and n forfion. f (zo) can only vanish if zo is red. 0 

A special corollary of this proof provides usefill information about the loci we constructed 

in the pioof of Theorern 2.17: 

Corollary 2.48 For tiny c E ( 0 . ~ ) .  the symmetric locm SJy)  lies completely inside the 

Jensen circles of y. 

Proof- In the proof of Theorem 2.47. we observed that for any z f H+ outside the .Jensen 

r ircla of p. 3 1  $(;)) is negative. and thus .kg($(%)) E (-a. 0). By a continuity argument. 

we get ~ r g [ Z ( z ) )  E [-x. 01' on the densen semicircles of p in Hq. This shows the statemcint 
P 

on the upper half plane. The rest of the proof follows by the dready familiar synmetxy 

argument. 0 

This shows that the mapping found in the proof of Lenuna 2.34 is "in line" with these 

geomctfitd restdts: Nonred zeros of p rm only be mapped to fnonmal or real) critical 

zcms if they lie in the same connected set of .jensen disks of p. Moreover. if the .Jensen disks 

of k pairs of nonreal zeros of p fctlunting mtdtiplicities) are disjoint (and hence sep-hrated) 

%ere -P is understood ro be the principal %due of .kg z for negative real z .  Xorrually. this d u e  would 
he r .  
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from ,dl ot.her Jensen disks of p. then by Corollary 2.35 they are connected through arcs of 

S,(p) to k real or pairs of nonreal critical zeros of order 1. colinting critical mi~ltiplicitics. 

Hence we immediately obtain the following two corollaries: 

Corollary 2.49 E u e q  Fo.urier critical zero of p lies o n  one of the closed .Je~nsen disks of y .  

Corollary 2.50 Let I = [rrl. z2] be an interval of the real axis such that neither zl nor 

.x.r is con t~~ ined  i n  any closed Jensen disk of p .  and J the ,union of all closed densen cEisks 

intersecting 1. IJ J co.ntains k pairs of nonreal zeros of p. counting m~ultiplicities, then J 

IL~.TO co~ t tu in .~  k critical zeros of p.  cow~t ing critical multiplicities. 

This corollary can be generalized to include all zeros and critical zeros of a polynomial in a 

certain interval: 

Theorem 2.51 [25] Let f = [xl: x2] be an interval of the real axis such that neither xl nor 

z.2 i s  a zero of p .  or i s  contained in any closed Jensen disk of p.  Let further J be the union 

of I and all closed Jensen disks intersecting I .  If k and k' are the number of zeros of p and 

p' in J .  respectively. then the inequality k - 1 5 k' < k + 1 holds. 

Conventional proofs of this theorem (see e.g. [17], p. 27) are very complicated, and they 

rise higher-level tools such as the Argument principle. Using the previous results of this 

chapter. our proof reduces to a matter of careful counting: 

Proof ~ Y c  define the following numbers: 

na: the nnmber of real zeros of p in I. connting multiplicities. 

d : the number of pairs of nonreal zeros of p in .7 \ I, counting multiplicities. 

I:: the number of real (Fourier) crit.ical zeros in I, counting critical multiplicities. 

rn' : the number of real zeros of p' in I. counting multiplicities, 

(1': the number of pairs of nonreal critical zeros in .J \ I. counting multiplicities. 

Then by dehition we have k = m + 2d m d  k' = rn' + 2d'. By  Corollaji 2.50, we also have 

rl = c +  d'. and in Theorem 2.13. we showed rn + 2c - 1 5 nz' < 171 + 2c + 1. On pntting 

these relations together. we obtain the above inequality. 0 
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Theorem 2.47 has many more torollaries. and it is impossible to present all of them hcrc. 

We will pick the most interesting ones. For a further study of the topic. see [IT. 2'11. 

Next.. we give an --iterative*' version of Theorem 2.47 and Corollary 2.49. For a pair of 

conjogate nonreal values a. E = m j f  goi. we define the Jensen ellipse of o,rder k of rr to be the 

ellipse with the segment fromE to cr as minor axis. and the real interval [zO- hyo. &yo) 

.as major axis. We use the expressions Jensen ellipse of p and elliptical .Jmsen disk in the 

same fashion as their equivalents in Definition 2.46. Note that the .Tensen circlcs are just 

the .Jensen ellipses of order k = 1. 

Theorem 2.52 [I.$] For any 6 smaller than the degree of p ,  all nonreal zeros of p ( k ) .  and 

all Fourier critical zeros of order k lie i n  the closed elliptical .lensen disks of order k of p. 

Proof: See e.g. [27]p  84. The proof uses induction on k. It is based on the (easy-to-prove) 

fact that the elliptical Jensen disk of order k + 1 of some point cr is just the union of thc 

(circular) Jensen disks of all points on the elliptical Jensen disk of order I; of a. 0 

A converse to Theorem 2.47 is the following 

Corollary 2.53 Let zg? 5 = z O i y g i  be a pair of conjugate nonreal cri t icd zeros of p.  Then 

the equilateral hyperbola centered at zo w i h  vertices z0 and contains at least one puir of 

nonreal zeros of p. 

ProoE In the proof of Theorem 2.47. the necessary condition for y, being a critical zero is 

that ((2.17) is false for at least one pair a . E  = 3: f yi. Rewriting the negation of (2.17) as 

we see that a and 5 must be inside or on the hyperbola described above. (7 

Of course. this converse has a corollary for Fourier critical zeros: similar to Corollary 2.40. 

in  this case. yg = 0. so the hyperbola above degenerates to the equilateral angular region 

centered a t  xo. .&o. a similar extension of Theorem 2.52 is possible (See e.g. 1201). 

The last result we present in this chapter applies to polynomials the zeros of which can be 

grouped in two circles: 



Theorem 2.54 [2S]f Two-Circle T h e o r e m )  

T ~ L  t h e  zeros of y' lie in CI . C? . and C. If CI . C2. m d  C are pairwise dis jo int ,  thrn t i i r ? ~  

corrtrrin n21 - 1. 111-1 - 1 and 1 zeros ofp'. respectively. 

Proof See e.g. f271. pp. 13-17. 



Chapter 3 

The Wronskian of a polynomial 

3.1 Definition 

Let p be a (real or complex) polynomial. We define t.he ~ r o n s k i a n ~  of p (written as Wp) by 

Comparing Equations (3.1) and (2.7). one observes that Wp is closely related to the second 

logarithmic derivative: 

Corollary 3.1 

In particular. (5)' and Wp have the same zeros. except possibly for zeros of p. Further- 

more, if p is a red polynomial. t.hey have the same sign along the red axis. From 

Eqnation (2.9). we further get 

'The term -\tionskianan is taken from a wider ckrs of daerential operators defined in a similar. but more 
general way than (3.1). 
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where. ;rs before. rw; ,we the arms of y and k, their respective muitipiicities ( j  = 1. . . . . t n ) .  

This will prove to be a helpfill form~ila. 

ft'p is cliffic~rlt to ded with. brcause it is a nonlinear operator. Howc.vtr. wr havt the 

following ~isrfui scaling and shifting properties (comp,wc Lemma 2-44): 

PmoE Both parts foilow from applying the chain nde of differentiation. 

The following zritirmcttic propcrtits are ;tlso ~isefril: 

Lemma 3.3 [.$I Let p .  PI , p-2 be complez polynomials. n E C .  and n E IN. Then 

Proof The first statement can be easily obtained from (3.2). and the third follows immc- 

tfiatcly from the definition of Wp. whereas Statelrlex~t 2. follows from recmsivc application 

of I. 0 

3.2 General properties 

As WP have seen in the previoiw chapter, the zeros of Wp provide a lot of information about 

r h  hrlmvin~ir of the loci of f .  Therefore. we wish to have some results on their possible 
r 

focatitms. First. we cite some resrilb for general complex poipornids 

Proposition 3.4 If i s  n zrm o f p  udh multiplicity k E N. then .Q is &n a zero of Wp 

with rnulttplicity 2L - 2- 



- - -- When can zeros of p. p' and i%p coincide? jve have drcady t i i s r ~ t s s d  mnltip1r zrros of p. 

As il sp~ciai C~ZV: of Proposition 3.4. a single zero of y c,m ncver be a zero trf Wp. Fin;dly. 

we get from Corollary 3.5 that a k-fold rritiral zero of order 1. being n k-fold zero of 5 .  
is a ( A :  - If-fold zero of ~YD. Thew zrros we will not call trivial. beca~zut they will not be 

exceptional in the theorems to come. 

Xlthorlgh t r iv id  zerm themselves are not interesting to investigacit.c. the mdtipticity of zcros 

of p does have an infi~tencc. an the location of the nontrivial zeros of W p .  Howcvcr. if all 

ztrns of p rue multiple- om may divide by their common denominator: 

Proposition 3.6 F w  any n, Wp arid Ct"(pn) haw the same set of nontrittinl zeros. 

PrortE This follows immdately from Part 2. of Lemma 3.3. 0 

Kcnnr we will t ~ ~ r n  oiw attention to nonntrivial 7 ~ r a s  of Wp: 

PraczE By meas sf Ltrmmn 3.2. we can translate the line to the real axis. But if id1 zcros 

of p are real. then every term in the si~m in 13-21 is positive, a3ld hence W ~ ( Z )  < 0. cxccpt. 

ak (mdtipk) z e m  af p- Lf 

Ch Obc other had,  we can show that the zeros of Wp cannot be Exto far away from the zcros 

of p pithex For this, we cite a milt by M d e n  ([I?:. p, 30f.) for the sprrial raw nccbdcd 

here: 



Lemma 3.8 fj K is n rrtlnrrr reginn contninirtg nlf zeros of p .  t h ~ r t  f+>{z) # 0 at any point 

z I P ~ P T P  K s thbfnd .~  an angle kss thnn ~ / 2 .  

P r o d  Apply 117. Thm. 8-11 to (3.2f. 0 

Applying this to the nnit circle and to the interval [-I. 11. we grt the foliowing special 

rrts~~lts: 

Theorem 3.9 [4] If all zrms o f p  lie irwick or on the unit circle, then all zeros of lie 

mside or on the rirrle of radius fi around the origin. 

PmoE Let z be a point at which thr unit. circle subtends an angle of xJ2. The tangents 

to the rmit circle ihraiigh r, =d the norn& from the taagcnt p&nts to the origin form a 

sqawr of tinit Icngth. the diagonal of which is the vector from z to the origin. Hence we 

w t  izf = fi. and at every point at a distance greater than &. the imit circle snbtends <an r, 

angle Itxs th,m s/2- The theorem follows from Lemma 3.8. 0 

Sotc- that t h e  thcorerns generdize to a rb i t rw  circles and line s e p e n b  in C. by applying 

Lemma 3.2. All three resdts sharp. as is shown in [17] for Lemma 3.8. and in [4] for 

T h r c r n s  3.9 and 3.10. In order tcr get better results. one mitst impose further restrictions 

xm the locations of the zeros ofp. f4 roaraim a few more ritsdts for polynominls with only 

red zeros. We wifl not p r w n t  them here Imte;rd. we will now come back to the wider 

s -Ems of red palyaomials. 

3.3 The Wronskian of real polynomials 

For the rwt r,f this chapter.. b t  p E 9. For this class of polynomi&, Craven. Cmrdas and 

Smith rcrlajeetxud the f',l2owimg: 



CHAPTER 3. THE WROXSKIA3 OF A POLYXOMIAL 52 

Conjecture 3.11 /3] Let y hatre e~act ly  2d nonr~al zeros. T h e n  Wp does not ham m,om 

than 2d real zeros. 

They attribute this conjectnre to Gauss. referring to hirn indirectly throl~gh t.he papers of 

Phlya 12-11 and N a g  f2C)j. However. the references given in t.hose papers refer to IT] and 

the letters [lo. 11. 121. given and translated in Appendix A of this work. These 1ct.t.ers do 

not mention the Wronskian. nor even the logarithmic derivative. with any word. It is likely 

ghat Gauss tIfimghk of using the logarithmic derivative in order to prove his rl~est~ion; and 

in the course of his investigations. he might have discovered zeros of t,he Wronskian as a 

romplication. perhaps even the one he could not overcome. But this is merely speculative, 

and it would be entirely inappropriate to give him the credit for Conjecture 3.11. 

We already proved the case d = 0. which is just Proposition 3.7. In [3], the conject~lre is 

shown for all p sirrh that i ( z )  + 7 has only red zeros for some real constant y. We will 
P 

not prove the conjecture. In Chapter 5. we will suggest a similar approach as we med in 

Chapter 2. Here we will t d y  give geometrical resillts. 

First we note that clearly Wp E P as well. In particular. Wp(r)  takes only real vali~es on 

the real axis. We can even gain more information from degree considerations. from the 

properties of we found in the previous chapter. and from Rolle's Theorem: 
P 

Proposition 3.12 (Behatiio~~r of Wp on the real axis) 

1. Wp is negative in some neighbowhood of each zero of p.  and outside a certain interunl 

[TI - h]. 

2. W p  has an even number of real zeros, counting muItiplicities. 

3. In the closed interval between two adjttcent real zeros ofp', there is either (L zero of p .  

CIT an odd number of zeros of W3, Between two zeros o f p ,  or between a zero of 11 rc7td 

a zero ofp'. there is an even number (possiblg 0) of zeros of Wp.  

4- J f  the i~cfinite piat is regarded as o zero of p'. then 3. generdizes to infinite rwcl 

in  ten^&. 

5- V p  has no  real renos at all. then VVjl has at least two real zeros. 
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Proof: These statements all follow from previous results, using elementary  neth hods of red 

ralrulus. For example. to prove 5.. we recall that d ( z )  tends to 0 as r --+ r. Since f does 
P 

not have (my poles. i t  is continuow and bounded on t,he whole real line. By Corollary 2.21, 
I 

wt: see that f~ takes both positive and negat.ive vnh~es. Therefore. it must attain both its 
P 

1naxim11m and minimum at  some points. At those points. we have ( f  ) ' ( z )  = 0. 0 

We will now establish another criterion for Wp to be negative. For this, we construct a 

formula similar to (2.10) for ( f  )I. either by differentiating (2.10). or by grouping ronjirgate 

terms together In (3.2): 

This leads us to the following theorem, apparently due to Nagy: 

Theorem 3.13 [20] W p  is  negative for all r e d  points outside the anion of all closed Jensen 

d i s h  of the nonreal zeros of p .  except for trivial zeros of W p .  

Proof: Let a, = xj + i y j .  ~JI  > 0. be any nonreal zero of p. The Jensen disk of aj and 
- 
a, consists of all points z for which (z - xJ)' _< 8 holds. If z is outside this disk, then 

the sum term in (3.33 corresponding to crj is positive. Therefore, if a point z with p ( z )  # 0 

lies outside all Jensen disks. then all sum terms <are positive, and consequently W p ( z )  is 

negative. 0 

The following corollary is immediate: 

Corollary 3.14 Every nontrivial real zero of Wp lies in the closed Jensen disk: of a pair 

of nonreal zeros of p .  

Theorem 3.13 has many other corollmies. refinements and generalizations. Many of them are 

andognes to the geometrical restilts stated in Section 2.10, e.g. the following generalization 

to higher derivatives: 

Theorem 3.15 [20] The interuals in  which w (pfk- i ) )  i s  nonnegative (1 5 k < deg p) are 

contained in the union of the closed elliptical Jensen disks of order k of p ,  except possibly 

for m711tiple zeros of p'). 
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Proof By Theorem 2.51. we locate the nonreal zeros of jdL-'I on the closed elliptical 

.Jensen disks of order I; - 1. Then we apply Theorem 3.14 t.o y(k- ' l  t.o locate the zeros of 

w ( $ ~ - ' ) )  on the (circdar) Jensen disks of the nonreal zeros of p ( k - ' ) .  Now we llse the 

saIne geometrical argument in t'he proof of Theorem 2.51 to obtain t.he theorem. 0 

A converse of Theorem 3.13 describes the nonreal zeros of p in terms of the zeros of W p :  

Corollary 3.16 Ifzo is a real point with W p ( x o )  2 0. then the eq.uiIatera1 anqular r q i o n  

contains at least one pair of nonreal zeros of p. 

Proof: Analogous to th . -roof of Corollary 2.53. Note that (3.4)  is just the degenerate 

hyperbola (2.18): for yo = d. Ci 

Corollary 3.16 gives a fairly good (and in fact sharp) result, if p has no real zeros at all. 

However, if p has real zeros, then the nonreal zeros in the angular region of xo cannot be 

too far away from xo: 

Theorem 3.17 [5J%t q.. . . . a, be the real zeros of p7 and xo be n real zero of Wp. 

Then  I, must  have at least one pair of nonreal zeros in the intersection of the angular region 

(3.4) and the closed disk centered at xo with radiw v % i ~ ( z ~ ) ,  where h is the nwnber of 
- 1 / 2  

closed Jenren disks of p containing 20, and R ( z )  = (zm 1x1 jr-a,)- ' 4  . 
As a converse to this theorem. one can say that a real zero a "extinguishes" real zeros of 

W p  in the Jensen disk of a pair z7Z of nonreal zeros. if a is too close to % ( z ) ,  or z is t.00 far 

away from the real axis. The following theorem describes this quantitatively: 

Theorem 3.18 Let z, Z = z f yi be a pafr of nonreel zeros of p. If p has a real zero rw ,with 

/2-41 < C. where 
Y 

then the points of the closed Jensen disk of z wha'ch don't lie in any other Jensen disk of p 

contain n o  real zeros of W p .  

"The remaining iheor- of this chapter are all taken from f5] and cited without proof. 
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In 151- this theorem. though looking similar to Theorem 3.11. is statrd and prayed indepen- 

dently* Furthermore- criteria have been derived for tt'p to have no zcros in a givcn int.ervn1. 

or no zeros at all. We will not cite them here. 

The next two theorems give two different sufficient criteria for 1% to have rral zeros in 

certain intervals: 

Theorem 3.19 Let a.6 = I f yi be n pair of simple nonreai z~ros .  and Jja) the Jeizsen 

disk of a. If J(a)  has no point in common with any other Jensen disk of p .  and no other 

-ern of y lies in the strip 

then J l c r )  contains ezactly tmo zeros of tVp. 

Theorem 3.20 (Two-Circle Theorem for Wp) 

Let p haue ezactly 2rr zeros. n each i n  the closed disks centend a.! n = x + yi (y > 0). and 

5. respectidy. d h  radius r < y/2. Then W p  has ezactly two real zeros, located in the 

i n t e ~ v d s  [ x - y - r & , x -  y + r d  a n d j z + y - r & . x + y + r ~ .  respectively. 

This theorem can be generalized to further cases where the zeros of p split into several small 

goups sufficiently separated from each other and from the real axis. 

The last result describes the possible locations of the nonmal zeros of Wp: 

Theorem 3.21 For all (red or pairs of nonreal) zeros a,.q = zj f yj i  of p .  let 

be the region bnunded by the equilateml hyperbola with aertices at aj and q. (For yj = 0, 

SJ degmercates to  a dcrtrble ~ n g u h r  region.) Then et!en/ zero of Wp lies either on one of the 

J ~ ~ I S P S  disks of=, nr im nrre nf the S,-- 

One can even show ehak the nontrivial zeros of Wrp outside the .Jensen circles don-t lie too 

close to the real axis: 





Chapter 4 

Using the xzero package 

This chapter dewrib- the fa-iliricis ihat come with the ,yzero package. from a ~iser's point of 

view. We asrune ahat -xzero has alrgad_v been iustailed. and is ready to me. We will neither 

dcrd with the system requirements of xzc'ro. nor with modifications of the computation 

package or of appEc&on res~wces, For details aboct thee topics, we refer to Appendix B. 

m d  to the manid pags and help fifes included in the parkage. 

For a thorough knowledge sf xzero. hew~vrr. its compiiting stratqg needs to be understood. 

t~spwidly in the went af zam~llexp~cted b~haviotir or errors. We will introduce the basics of it 

later in this chapter, befare we describe p~mible problems and errors in the package. Also. 

t h ~  data tile format used in C~~~~~ d l  iw rxplained later on. sa that one can utilize xzrro 

iiara files in me's own appiisations. 

4.1 The concept of xzero 

The way poIynoPniaf% are designed in stzero is through their zeros. From the F~indamental 

Theorem d -4ltgebpil one knows that a plynomid is determined. up to a multiplicative 

factor. hry its roots. T"heaefore. at least in themy- arbitrary pslpomi& can be generatcdl. 

' Thwe 60 cesist pbitgnrs 6 t h  this apprwxk :tnsng=tr. Po1.i'iloooiak created autdanil~ b~ their c&cients 
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Zeros are displayed and modified in a window called the drawing area. The user can do 

rnost of the polynomial editing just by using the mouse and a few keyboard keys. In 

this. xzrro resembles other graphical tools and packages. such as Geometer .  Geometer ' s  

Sketchpad. and +J. Those who have some experience with these or similar packages will 

find it straightforward to work wit.h xzero. Some familiarity with basic features of graphical 

windows systems. such as clicking. selecting. dragging. will be asstuned throughout this 

description. 

Cornputatpions of xzero will be executed only upon request by the user. and only on the poly- 

nomial that has been designed in the first step. No other parameters need to be specified2. 

This gives the input. data for computations a unique format. namely the set of zeros that 

specifies the poiynomid. 

The output format however is depending on the type of computation. Possible 

results of computations are: 

r The equation of the poI~ynomia1. and of related structures. 

r Mtunerical m k s .  e-g- winding numbers. 

r Graphs of the polynomial on various curves in the complex plane. 

r A boolean d u e .  stating if a given boolean expression involving the current polynomial 

is t.nie or not. 

Another set of complex values, e.g. the zeros of the derivative or of the Wronskian. 

'GtIrile all these types of output are supported. the last one deserves specid treatment. since 

it is the same type in which the polynomial itself is defined- Therefore. a set of result values 

rean dso be displayed just as. and together with the dues  that determine the polynomial. 

Of N W Z -  m e  w ~ a k  &a -kguish between input and output. Therefore. xzero maintains 

a d  &splays them as two Merent  sets. or better: lists, of complex points. The former will 

henceforth be c a B d  mi. list the lztter trstslt list. 

tesd to bre a larger parrceittage d real zeros than plynomi& created by their zeros. 
'Baarerrr. the riser  ma^ @ additional Gaed parameters in a text file that is read at the beginning of 

each -xizero   OIL 



CHAPTER 4. USING THE XZERO PACKAGE 5 9 

The points in the root list, can be freely edited and manipulated by the user. in order to 

generate arbitrary polynomials. It is in the liature of the result. list to be dependent only on 

the inp~it. list. and the type of computation that generates them. Therefore. resnlt. values 

arc not modifiable. Both roots and results can be saved as files. In order to keep the 

above-rnent,ioned distinction between input and output.. roots and results have to be saved 

separately. (This is only at first glance a disadvantage: Zero lists that, exist in separate 

files can be loaded separately into other programs or back into xzero itself. Also. one often 

wants to save only the root list without results. or one wants to keep several resdt lists 

(from different computations) along with a root list.) 

The other kinds of result types are incompatible to the xzero input type. They can be 

displayed through devices outside the graphical area. which may be other graphical or text 

windows. It is left np to these devices how the result data may be permanently stored. In 

practical use. text output can be redirected to a file. and plotting windows usiially have 

options that let one save or print a graph. 

xzrm supports installing additional computation procedures that may be desirable beyond 

those that are already realized. 

4-1.1 Symmetry concept 

The concept of symmetry is used in szero to generate polynomials guaranteed to have seal 

coefficients. To achieve this. xzero has a symmetric mode. in which roots are forced to lie 

symmetric to the r ed  axis. E d  creation. deletion. movement and even selection of a zero 

will <affect the conjugate zero in exactly the same way, but with inverse sign in imaginary 

rlirection. thereby preserving symmetry. Details for each of these operations will be given 

when the operation itself is described. 

The symmetry concept atu> extends to the computations. Computations in symmetric mode 

art- gwrfomcd as red operations which ensures that the result is a real polynomial. without 

possible ro~urding errors Lading ta non-zero imaginary parts. 

At   tar tap. xzem is in symmetric mode, This mode can be switched on or off by clicking 

the Symetric button in the Options menu. When turning symmetry on. xzero will auto- 

nrrntit,ztIy d d  the conji.r@e complex zero of each existing zero to the list. except for real 
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zeros. xzero doesn't recognize already existing pairs of conjugate-complex zeros. Instead. it 

simply doubles these pairs. 

When turning symmetry off. the conjugate zeros will disappear again. as if t'hey were never 

created. It is important to remember that the conjugates are only "virtually'. existsent. 

Symmetric roots can also be created manually. without switching to the symmetric mode. 

But in non-symmetric mode. neither the editing operations nor the computations are per- 

formed in a way that. preserves manually created symmetry. Besides. xzero has no way of 

"recognizing" a manually created. symmetric list of zeros. 

4.2 Starting xzero 

xzero is invoked by typing 

xzero & 

on the UNIX command prompt. (The ampersand after the command is recommended in 

order to launch the application in the background. This allows one to type other commands 

in the sheli window, while xzero is running.) 

Alternatively, one can type 

xzero <filename> & 

t.o work on a file previously created by xzero. The result is the same as  starting xzero 

without a file name, and then loading the corresponding file from the menu (Versior, 1.1 

only 1 - 

4.3 The graphical interface of xzero 

At st-nftup, mei-cf opens the main appEeatfon window that, looks as in Pigire 4.1. This 

appearance. as well as mouse and keyboard specifications of xzero? can be widely cnstomized. 

How to do that wi l l  be described in Appendix B.4. Here we will only refer to the default 

specifications. 
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Menu Bar 

Status Bar 

Drawing Area 

Action Button 

Unit Circle 

Selected zero 

Unselected zel 

History List 

Result zero 

Area 

'0 

Figure 4.1: xzero in a typic01 applicatzon. 

One can distinguish between the following 4 areas: 

r The drawing area {white window). in whidl the xcros can be drawn, modified, or 

deleted. 

Action buttons (next to the drawing area) which let the llser execute various functions 

(Version 1.1 only). 

r The status bar (above the drawing area) in which point coordinates and status infor- 

mation are displayed. 

r The menu bar (ahye the tatus bar!, contsinir?g x c n u s  for dl possible operations, as 

well as an online help menu. 

All these areas. and how to use them. will now be described in detail. 
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4.4 The elements of the drawing area 

The white drawing area contains a part of the complex plane. defined by the coordinate 

translation specifications. The following objects can (but do not always or at the same time) 

appear in this window: 

e ~mselected. modifiable zeros. represented by red, ' x '-shaped images. 

selected zeros. represented by thicker 'x'es, 

zeros that arise as results of a computation. as green '+'es. They cannot be modified: 

zeros taken from previous result. as thin green '+'es: the so-called result history (see 

Section 4.6.5): cannot be modified. 

0 coordinate axes. the unit circle etc.. shown in black, 

a selector frame (see "Selecting points in a rectangular area" in Section 4.4.1) 

a the cursor, appearing in various shapes, depending on the current operation 

The visible drawing area displays only a part of the complex plane. In fact. the area where 

points can be set is virtually unlimited (although physical limits are given by the numerical 

ranges and precisions of the hardware). To access any part of the virtual drawing area. the 

visible drawing area can be scrolled both in real and imaginary direction (see Section 4.4.3). 

In addition. there are several functions in the V i e w  menu (see Section 4.6.3) that zoom or 

move the visible part of the drawing area (Version 1.1 only). It is also possible to modify 

the default coordinate translation specifications. 

4.4.1 Operating modes 

z e r o  distinguishes between two different mouse input modes. The At id mode lets the user 

add new zeros, whereas %he Select =ode i used for various selection ZLJ?O "drag a ~ d  dmp" 

routines. At startup. xzero is in Select mode. The current mode can be recognized by the 

cursor shape: In Select mode it is a pointer arrow; in Add mode it is a dot shape. The cursor 

will also change its appearance in the course of some of the operations described below. 
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There are two ways to toggle between t.he two mouse modes. Clicking the right mouse 

button permanently changes the mouse mode. while pressing one of the Ctrl keys changes 

it for the time this key is held down. Several subsequent operations can be done while Ctrl 

is pressed. However. the mouse mode cannot be changed for an operation that has already 

been iriit,iated (e.g. a mouse move). since the change takes effect after the operation. 

Operations in Add mode 

A new point is added to the current list of zeros by clicking the left mouse button. Thc 

value represented by this new point is the complex value corresponding to the current pointer 

position. as defined by the coordinate translation parameters (see Section 4.4.2). This value 

is shown in the status bar. As long as the mouse button is held down, the point can be 

moved around with the pointer. allowing for precise placement according to the coordinates 

shown in the status bar. (During this. the cursor will show as a downward arrow.) When 

the left mouse button is released. the point is -'dropped" to its Gnal position. It will appear 

as a selected point. replacing the previous selection. If. however, the Shift  key is held down 

when pressing the mouse button. the point will be added to the current selection. 

The pointer can be clicked at the same position for several times. thereby creating multiple 

zeros (see the remarks about multiple zeros below). 

Select mode 

Not only the drag-and-drop operations. but also many of the menu functions do not operate 

tm the whole list of points. but only on the current selection of zeros. Selected zeros are 

visually distinguished from normal points by their thicker point shape. There is a large 

wuiety of operations to select or unselect single or sets of zeros. All of them (except Select 

A1 1 which is issued from the Edit menu) are performed by mouse operations in Select mode. 

In symmetric mode. every selection of a non-real zero affects the conjugate zero in the same 

way- 

Selecting a single point 

A zero can be selected by clicking the left mouse button on or close to its image. Close 

means that the distance (in the maximum norn) between the arrow tip and the centre of 
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tht. point image does aot e x c d  5 pixels. SSimilarly. by far we mean that this condition is 

not satisfied. 1 If there are several points within that distance from the pointer. the nnc with 

minimr~m distance will be wl~cted. Among several points at the same distance. priority is 

~ i v m  ro already selected points. and then to the first zero in the order of the root list. The n 

complex coordinates of the .wtrscted point are displayed in the statils bar. 

This .wlcction repfares the previoils one. i.e. whichever zeros were previously selected. are 

x~tornat idly r?nseleaed. 

Adding a point to a selection 

If tho Sh i f t  key iq held down while clicking on or near an anselected point. this point will 

be selected in addition to the previous selection. This allows for selecting several zeros 

arbitrarily. f Other ways to w1m~ several points at once are explained below.) The same 

mechanisms as a b m  are used to determine the closest point. 

Unselecting a point 

If the Sh i f t  key is held down while clicking on or near a selected point. this point will be 

removed from the selection and reappear as ;in ordinary point. without decting the rest of 

the selectinn. 

Selecting d l  points 

To d e r t  dl points. choose Select all  &om the Edit menu. If the Shift  button is pressed 

while cfimsing Select  all- the points are tm~gled rather t h a  selected. {Every seierted 

poht  is tmcelected and vice v e w - )  

Unsefecting all paints 

Iftheleft mouse button is eliekd f;u away frcem dl zeros. the complete selection is unwlected. 

Xdditionalfy. the complex coardina~es of the pointer position ace displayed in the status bar. 

Rtmrit, pints can newer -be ~eie~tecl  -Eke rocits.. 'l'herefore. cEc-hng on or near a resxdiit point 

causes the same operation as if there was no zero at all. However. xzero will display the 

exact d1e of this result pint (not. only the approximate value according to th-, pointer 

psition) in the &atus bar- 



Selecting all points in a rectangular area 

Prcssing the lefk mouse baxtton far away from all zeros also initiates another operation: If 

tIie pointer is ritoved with the mouse button held down. a rcctangnlar frame opens np. 

One comer of this rcrtang1e is determined by the cursor position when the bntton was 

pmswcf. whereas the diagonally opposite corner follows the cursor movements. [Di~ring the 

mnovemenb. the mordinatcs of these two points are displayed in the statns bar.) When the 

I& &;;;:.ton is release& --'- pv~uts inside or on the frame are selected. The number of points 

thus selected is shown in the st.at~ls bar. 

In sjaimetric made. this operation actiially opens two frames on opposite sides of the red 

:;rris- When the piatez crw,ces rhe red zxis while opening the frame. the two frames merge 

into one. 

Together with the Shift key. the f r m e  can be used to ~ w l e c t .  or toggle points. (Every 

st.lerted point inside the fiame Is unsellected and vice versa.) 

Selecting multiple zeros 

xzmn is capable of handing milltipie zeros. However. zeros with the same value are simply 

drawn on top of each other. so they cannot be distinguished. The selection mechanism 

works in the following way far multiple zeros. say. with multiplicity k. 

e Clicking cm or near the positkg affects only one of the zeros. 

* .Selecting with a frame selects dl k zeros. 

When clicking on a multiple zero consisting of both selected and unselected zeros. priority is 

given to the sdecttsb zeros. Thus xzero allows the selected zero to be moved or ~mselected. 

rather than selecting a second zero at the same position. This is because it will hardy ever 

b~ necessary to ~ ~ 1 s t  betatmn 2 and t - I zeros at the same position. Doing so requires 

 he faE1oarPing trick: 

%lm one of the zeros [if no$ already done), and remove it with Cut from the Ed i t  

menll* 
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Hold the Shif t  key. and issue Paste from the Edit menu- 

This restores the deleted zero. leaving both itself and the other selected point. selectcd. By 

repeating these steps. one can select more than two zeros. 

Moving points around 

If the pointer is moved after the left mouse button was pressed on or close to a point, thc 

entire selection of points will be dragged around in the window. The offset by which the 

selection is moved. as well as the new pointer position. are shown in the status bar. The 

points are finally placed at their new position by releasing the mouse button. 

In symmetric mode. points are moved in an unusual way, in order to preserve symmetry: All 

selected zeros foiiow the direction of the pointer with respect to the real axis. This is, when 

the pointer is moved away from the real axis. so do all zeros. Those with positive imaginary 

part move up. while those with negative imaginary part move down, and conversely. if the 

mouse is moved towards the real axis. All points however will keep their direction relative 

to the pointer. even if they cross the real axis. Real points split into a pair of conjugate- 

complex points and move away to both sides of the real axis. Point pairs that come to lie 

on the real axis after the movement will turn into single real zeros. This description sounds 

rather complicated. but it will feel straightforward when using it- 

Unlike in a normal mouseclick. a point movement does not unselect the current selection. 

This operation is also indifferent to whether or not the Shift key is pressed. 

Deleting a selection 

SeIecting Clear from the menu- or pressing the Backspace key deletes all selected zeros. 

Special remarks en Select Mode operations 

The Select mode operations are designed to compromise optimal handiing with robustness 

against abusive usage. Yet, the behaviour of z e r o  under some extreme conditions might 

look weird. These are some of the known special cases: 

r Points and h e  cnn be dragged out of the visible drawing area. The operations will 

be executed on a virtual window the size of the screen. For exnmple. dragging a zero 

out of the visible area and releasing i t  a& some point outside the window will place it 

at; the position corresponding to that point, and i t  would appear that the zero just 
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vanished. However. the point still exists. and a coordinate change (e.g. zooming o l~ t )  

would make i t  visible again. One should avoid such movements. though. since a point 

dragged out. of the window would remain selected. and it codd be modified or deleted 

inadvertently in subsequent operations. 

If a selected point is clicked upon without the S h i f t  key, the current selection remains 

~maffwted. just as it would do if the points were moved. 

If a selected point is clicked upon together with the Shift key. the point will bc 

deselected only if the pointer is not moved. If the pointer is moved. it is assumed that 

t.he intention of this ogeration was a point movement, not a deselection. Hence the 

point remains selected. 

The complex coordinat.es of a pixel are shown with ,my click of the left mouse button, 

even if there is no point near the cursol. position. This lets one determine the complex 

coordinates of any position in the window. 

'To determine the coordinates of a pixel without unselecting the current selection, one 

needs to hold the Shift key while clicking. 

If a zero or a result point is found near the cursor position. the cursor "jumps" to 

 his zero. This is necessary in order to display the exact coordinates of the point in 

the status bar. and to correctly move points relative to their origin. Since this cursor 

jump is within the sensitivity rarrge (at most 5 pixels in each direction by default). it 

should not confuse the user. 

4.4.2 Coordinate transfations 

Uie were previously speaking of the --complex value corresponding to the current pointer 

pcrsition". This should be restated more precisely: The set of pixels in the drawing area - 

which are pairs of (possibly negative) integer values - must be mapped in some linear way 

into the set of complex m d e z s .  This is done simply by specifyicg two complex numbers: 

centre <uld off set -  centre is the image of the centre point of the drawing area f the point 

with the coordinates (windowwidth div 2, windowheight div 2 )  ). off  set is the image 

of the vector (1, -1). i-e. it specifies in its r ed  (imaginary) part the difference of the real 

(imaginxy) parts of the dues  of two pixels adjacent in x (y) direction. Note that. as 
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defined in the X protocol. the y coorclinates increase from the top to the bottom of t,he 

screen, which is contrary to the ilsual way of displaying complex values in the Gaussian 

plane. The negati-.re sign is wed to compensate for this. The centre point of the drawing 

area is used as reference point rather than the top-left point ( 0 , 0 ) ,  because it keeps the 

central part of the drawing invaria~t to resizing. Also. zooming into the central part of the 

drawing (which is most often desired) can be accomplished more easily. Although simple 

coordinate translations become slightly more complicated. 

The values centre and offset are specified as resources and can be modified. When 

zooming, off set is divided by the zoom factor. In the Goto operation, and upon using the 

scrollbar (see below), the coordinates of centre are affected. Finally, resizing the drawing 

area makes xzero redetermine the pixel coordinates of the centre points; the values of centre 

and off set remain unaffected. 

4.4.3 Scrolling the drawing area 

Up to Version 1.1 of xzero, the scrollbars at the edges of the drawing area serve the cmstomary 

purpose of manceuvring on a virtual area that is larger than the visible area. but finite. 

However, this is inappropriate to model a virtually unlimited area like the complex plane. 

The user must be allowed to scroll inhnitely in any direction. On the other hand, the 

scroll bars should still indicate the current position relative to some finite area, namely the 

smallest rect-angle that encloses all zeros. 

In ITersion 1.2. the drawing area and the scrollbars will be managed differently to meet these 

needs. In particular. 

r The drawing area will be redrawn after scrolling. 

The sliders can no longer be dragged to the end of the scrollbar. 

The sliders can dways be dragged in both directions. 

r Both size and position of the sliders will each depend on both tire position and size of 

the displayed part relative to the rectangle containing all zeros. 

If the drawing area contains no zeros. the sliders will be positioned in a central position, 

independent of s w i g  and scaling. 



0t.herwise. the sliders will behave closely t.o the norm;;! bchavioiir. t.o kccp t.heir i~sc  

simple. 

Drt.ails on t.hc so modified scrollbars will be given in the m;umai pages of the tlproming 

Version 1.2. 

4.5 The status bar 

Thc stat%i~s bar abow the drawing area displays information about completed operations. 

At str~rt.up. it cont.ains the version number, and a copyright message. 

r For nlost. operations, xzero counts t.he nmlber of zeros affected by the operation, <md 

displays it. on the status bar. when the operation is completed. In symmetric mode, 

not the ntunber of zeros. but the number of "point pairs" is referred to. A point pair 

is defined as either a single r ed  zero. or a pair of conjugate-complex. nonred zeros. 

e Ako. fhr statits bar displays coordinates in ongoing select and moue operatious. See 

the rtispcctive operations in Section 4.4.1 on the meaning of the coordinates. All 

coordinates are shown as complex vdi~es in the format a [+I - If] b I. (f is shown 

when referring to a pair of conj11gat.e points in symmetric mode.) 

0 For sorrle computations that produce one line of output.. the status line serves as oolltp~~t. 

line. The result c'm be ary kind of text,. depending on the operation chosen. It  rnay 

contain vdues or just, ordimwy text. 

4.6 Menu funcf iom 

The following menu functions arr drscribrd in the order in which they appear in the menu 

bar. Xntc that there csist. keyboard shortc~tts. listed in the menus themselves. and ,wtion 

bnt.tons for many of these firnctioc,~. to acce1erat.e their use. 



4.6.1 Fife menu 

New Enlptics a11 lists and thc drawing area. except for the points in tilr history list. (In 

order to remow them. one has to selrtf C l e a r  History from tht Results I H ~ I H I . )  

Open Loads a previoosly 4mcrati.n xzcri, file into the. riw1nox-y. re~l,wing the old rocit fist. 

a116 re~noving the old rcsnlts. 

Nerge dso Io<uis an -aPm filr. but 'dds i t s  contcnts to thc zcms alrr,dy in thc- list. 

Save saves t.hc mrreztt rc~ot fist. 

Quit cnds t.he program. 

Note that t~nlike some other appiicat.ions. xzem has no Close item. s i ~ e  this hinction woiild 

hc identical to New. 

There exist similar file f i lnctk?~~ to those above for the result and history lists. tm he fn i~r~d  

in the Results menu. 

All htnctions that load or save files show a rcnvcnicnt file selrcction didogilt. kitowa from 

rnwy other X applications. in which directories can be cattily listed and filrs st4ecrcd. jiist 

by a few rnoilse clicks. 

Whenever unsaved work or r ~ i i i t s  are In dmger to be destroyed, w in thr New. Load 2nd 

Qait operation. the irser will be ncltified m d  given the opportunity to save the data. or abort. 

the file operation. XU file operations cam be cancelled before they are physically ~ x c c ~ i t d .  

thus keeping the previor~s state of xzem intact. 

T6c zeros of a loaded or merged list antomatically appear acl selmtcrl points. 

4-6.2 Edit menu 

The tipper half of the Edit menu contains the ht/Paste/Cleas-operatiom that ;tro ccjIn- 

nmdy fo~md in window applicakions: 

Unda Reverts the Iast modification done by the user. Ody one operation ran bc 

reverted. and some functions are not reversible. (Version 1.2 only- j 
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COPY Copies the selected zeros into the citt hufler. This clipboard-like b d k r  main- 

tained by X dows exchange of data within and between applications. From 

s m .  zeros can be e-xponed to the same .uzero session. other xzcro sessions 

nlwinq on the same terminal. or other applications with a. Paste fimction. 

Cut Smne s a ~ b y r e n t  execution of Copy and Clear. 

Paste Asids kbe zeros cnmtailaed in the cut, buffer to the existing zeros. The data in 

the cur b1114er may originate from the same or from dierent xzero ,sessions. or 

from mother a~~f ica t ion  that; can specify zeros in a conpaible fom;it. 

Pasted zerm appear a selected points. replacing the previous selection. In- 

stead. the zeros can also be added to the old selec~ion, by pressing Shift when 

ismikg Paste. 

C l e a r  D ~ - f ~ t e s  the ,seIbfcted zeros from the list. 

Select all Selerts the complete root &st, including zeros that are outside the visible area. 

J%en i s ~ x e d  cogether with Shift. the list will be toggled. 

The lower half of the men11 eimtains same xzero-specific zcrcl-editing functions. They all 

crperatc on the ctirrenl! sekXion of zeros: 

Hovelset;. 

Hake Real 

H a k e  Unit 

Reflect 
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4.63 View menu 

Go To.. . A window -.ill appear. asking to specify a pair of coordinates. When done. 

one can either click the Go To bi~tton to move to the specified coordinates 

{makicg them the new centre point of the drawing area): or one can move 

the centre p i n t  hg these coordinates. by clicking the Qff set button. Either 

the z ar *b -lr- Y ** cwrdiaate ra= be left umpwifiue, in which case o d j  the 

specified croordinztc will be changed. 

Zoom. . . A similar window will appear. asking for a pair of zoom factors. which 

must be pwitiw. If two factors are specified. then the x and y coordinates 

are zoomed separately. If only one factor is specified. both coordinates are 

zoomed by the same factor. A factor greater than 1 means that <an area 

around the centre is enlarged f mum in). and a factor greater than 1 means 

that the area is s h m k  towards the centre {zoom ovt) .  

R e s e Z  Drawing Scrolls the drawing area so that the centre point of the current root list 

becomes the centre of the drawing area. After a Go To into an area 

without zeros-. this is the easiest way to return to an m a  where zcros are 

mast. likely ra be found. 

4-6.4 Execute menu 

This menu contains the following predefined computations ( p  is the polynomial defined by 

the root k t ) :  

Polynap~ia3. PI ot Plots p. Raages ran be specified by the user (Version 1.1 only j . 

Derivative Zeros Computes the zerm of$ and returns them as result. 

- 7 
vL,- -A e-&;a ---- Zeres PA- .-&- &L- -- -- -c SET- -- ~ ~ u p -  uzc m ~ -  w B F p  a d  E~ZZZ~IE them zs T G ~ L  

Play 

U s e r  Defined Test h&om that +- default do nothing. However. the user may insert 

code th& performs special computations. 
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Some of these operations return a new result list that replaces the previous list. If this is 

the rase. and the romputarion is completed successfully. the opportunity will be given to 

swe the old list to ?r file. If the history function is active (see the Results menu). the old 

msrilt list will be copied ioto the history list. 

This menu can be easily extended by new procedures (see Appendix C). For more details 

a b o n ~  computations in generd. see Section -1.9. 

The first half of the results menu provides some functions operating on the result list, namely 

Load. Save. Copy. Paste.. Clear. They are equivalents to those for the root list, and need 

no fixrther expIanation. Kameiy. these are Note that. since root and result files cannot be 

distingrished from each other. saved (or copied) results can be loaded (or pasted) as roots, 

and vice versa. 

The second half of the menu concerns the result history list. The two radio buttons allow 

the llser to select either one of the history modes. or turn off the history function completely: 

r Display Previons: Each time a new result is computed or loaded. the old results are 

transferred into the history list, allowing for comparison to the current (new) results. 

r Display History: The hiistory list is made accumulative. i.e. each time new resi~lts 

are computed or loaded. the previous results are appended to the history List. It 

wiH appear that the zeros in the history list {if computed with the same command 

on slightly modified versions of the root list) describe -tracksu or trajectories on the 

ctxqdex plane. 

* Turning off the history option t by clicking on the currently active radio button) re- 

moves the result, history from the display. Yet it does not clear the list. If the history 

pption is turned on again. the old history list will reappear. This way. the accumu- 

lation of the history Iist can be interrupted [e.g. for intermediary computations) and 

retsrnnied k & e ~  On- 

r C l e a r  History: Ckafs %he result history list physically. It works in all history modes. 

It is rec-ommended that the history list; be cleared if it is no longer needed, for displaying 

long kits is a t i rneconsdg  operation. especially on slow terminals. 
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Save History: Save the current history list. 

4.6.6 Options menu 

Restart Maple Resets the computation engine of xzero. For the use of this function. see 

Section 4.9.1. Prohlems with the computation. 

Symmetric Toggles between normal and symmetric mode. The symmetric mode is 

described thoro~@ly in Section 4.1.1. 

4.6.7 Help menu 

This menu brings up a fist of functions xzero provides, with short help texts on how to use 

them. 

4.7 The action buttons 

(Version 1.1 only) 

These icon buttons to the right of the drawing area provide an easier way to use some of 

the hnctions in the menu bar. These functions have already been described with the menu 

they belong to. 

4.8 xzero file and data structures 

We will now shed some fight on the structure of files and lists in xzero, as far as they are of 

concern to users. 

4.8.1 File format 

Zero lists are stored externally in a consistent way, regardless of their nature and of the 

storage medium, which can be a He or a memory area called the cut  bufler (see the Copy 

fimctionf. For simplicityz we call any stored kt of zeros a file. 
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Zero files are stored in the following format: 

0 They are ASCII text files. 

Each zero occupies a separate line of the Be. 

Its complex value is represented as two floating-point numbers, separated by white 

space. 

This relatively simple format makes it easy to edit zero lists manually with text editors, and 

to load them into mathematical packages. Conversely, one can create or modify data files 

intended for use with xzero. Note however that the following conventions are to be adhered 

to, if a file is to be successfully loaded into xzero: 

0 Real values must be displayed as two numbers, with the imaginary part set to zero. 

The numbers can be in any numeric fomat: integer, fixed point or floating point. 

o The line length is limited to 80 characters. 

No text is allowed in any line. However, text at the end of a line containing two valid 

floating point numbers will be ignored without an error message. 

0 When two numbers in a line are successfully read, the rest of the line is ignored. 

Therefore, comments at the end of a line are allowed, but no more than two numbers, 

specifying one complex value, should be stored in one line. 

0 Empty lines are allowed and will be ignored. 

Files that don't match these specifications will cause error messages when loading them into 

xzero. (see Section 4.10.1). 

Due to the consistent file format, result lists can be re-loaded into xzero as root lists. This 

lets one do multi-step or recursive computations, e.g. for obtaining higher derivatives. 
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4.8.2 Internal b t  structure 

Internally. roots and results are stored in two independent linked lists. Without stepping 

into the details of linked lists. we remark that this way of storing defines a total ordering 

on the list. equivalent to the order in which they were created. The order is preserved when 

zeros are stored in a file. and when they are loaded back into a list. This may be relevant 

to computations on zeros in which the order of the list plays an essential role. 

4.9 Computation Strategy 

So far it has not been necessary to understand how xzero accomplishes the computations. 

However, after using xzero extensively, one will almost certainly encounter problems with 

the computation. This will usually happen in the following situations: 

A computation has been initiated, that. with a large number of zeros in the root* list, 

takes too long, and should be interrupted. 

After incorrect parameter specifications, an error occurs within the computation. 

0 One wants to write one's own computing routines, or modify existing routines 

xzero does not have its own computation engine. It relies on a powerful symbolic compu- 

tation package called Maple. Maple is called by xzero at  the beginning of the program as 

an independent process, and run in batch mode. This is, Maple receives its input - the 

commands that issue the computation procedures and contain the data - from xzero, and 

executes these commands in the background. invisible to the user3. 

This approach was chosen for a good reason: Coding one's own subroutines for determining 

zeros of polyoomids without the aid of z mathematical package is quite troublesome: a 

good algorithm has to be selected, and care to be taken to avoid programming mistakes and 

control numerical errors. On the other hand: there exist powerful symbolic computation 

30f  course one can. as witb any running process. get information about Maple's status, using the top 
command in a UNOi shell. This might sometimes be useful. e.g. to find out if Maple has unexpectedly quit. 
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packages such as Maple and Mathematics-' in which these algorithms are already imple- 

mented. Therefore. it is a lot easier to write and modify computation routines with t.hese 

packages. The only disadvantages of having a symbolic package do the mathematics arc: 

r These packages are universal, and not optimized to a special task. so in general they 

are comparatively slow. 

Maple provides only a primitive interface to other UNIX applications. This makes the 

communication between Maple and xzero difficult, and sometimes unreliable, as we 

will show in the next section. 

During the computation. xzem is waiting for the results to be returned by Maple. A window 

will appear. notifying the user of the ongoing computation. This window contains a cancel 

button that :eta the user abort the computation at any time. If this button is pressed, or 

when all results have been received, xzero will return to normal operation. Note that, even 

if LMaple does not return any results: xzero will wait for Maple to finish all its computations. 

4.9.1 Problems with the computation 

,Maple. as an independent UNIX process. gives xzero only two ways of controlling its be- 

haviour. namely feeding it with input. and killing it. Interrupting a computation in partic- 

ular would be useful. but it is only possible for the cost of killing Mapfe completely, and 

restarting it before the next computation. 

As a well-known fact in computing. it cannot be predicted if a certain operation will yield 

its rcsidt after an acceptable amount of time. or even if it will terminate at  all. Only the 

riser can decide what computing time will be acceptable for which type of computation, 

given a certain number of zeros to be computed. If one decides that the computation gets 

too lengthy. one can press the cancel button. This will terminate xzero's waiting for results, 

and then kill and restart Maple. 

In open systems like UNCC. virtually every process running under a person's account is 

allowed ta kill every other process under the same acco~mt, and can also be killed by the 

'Forthcoming versions of xizero will have a modified interface that adl allow one to use Mafiematica 
instead of Maple. 
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person itself. This kind of bloodshed doesn-t normally happen. Blit there arc known CAWS 

when Maple dies accident-dy- the most prominent being a recursive symbolic reference in 

the rode. xmro is capable of recognizing if Maple is no longer available. axid  restart.^ it if 

necessary. And hdy- ;.one can restart Maple manuaily. if one considers it nectsary5. 

Another problem arises from the way in which Maple-s results are transmitted back into 

the Frogram. A comeci transmission is accomplished through control messages t.hat are 

sent before and after the result list. If  maple terminates because of an error. mero will 
. - 

not receke the te-nat~g control mesage. mere cannot distinguish between this and 

an ongoing comptcation. However. thc user will most likely have been warned in advance 

by a :Maple warning or error message. When in doubt. one should check with a UNIX 
tool like top. if the Maple process is stili computing (t.hat, is typically when it uses a largc 

percentage of CPU activit;Jpf. I f  rVaple is no longer computing. or doesn-t show up in the 

process list at all. one should intempt: the computation. restart Maple. and re-issiie the 

same computation. if desired. 

4.10 Errors, Warnings, and Bugs 

4.10.1 Error zessages 

Two different types of error mesages may be displayed when running xzcro: system errors 

or user ermrs. 

System errors 

System errors occur if system limitations or configurations prohibit xzero to function nor- 

mally. especially during startup. when xzem tries to allocate the resowces i t  needs. xzero 

will display an error message on stderr and then terminate. In general, this means that 

xzero will not run on this system or termbat. or that settings have to  be reronfigurd. The 

the respective error. Other types of system errors. not listed in the doeurnentation, originate 

'-4 nssfnl application of this is garbage collection: In the course of its computations. MapIe allocates 
rrme~oxy~ Tlumgh exeesiise tomjmtations. the amoont of memory allocated may exceed the araiiable main 
nremoxy. and G h i  stiug s v i n g  to the disk, which d r a s t i d j  d m  domi cornpntations. Restarting 
Uaple Gees the ~ ~ P L L O ~  prerkmdy aIlacatd a d  helps avod this p d k  



from the X protocni ztnd may indicate incompatibilities of xzcro with the specific version 

nf X on the system ~rsed. Some help in case of such an error may be fomd in any good X 

wiudow tmis manud. e.g. i211. 

When -yzcro terminates due to a system error. one should type 

destroy 

on rhe next U X X  prompt. This frees up internal structures which at this point may still 

be dlocated. 

User errors 

These error messages are .somewhat expected. They occur in case of bad user input. or 

~)~~eratioris that camat be issired in certain situations. The error messages will appear in a 

.separate rnessagc box cm the screen. and they never cause xzero to terminate, Depending 

m the severeness of the error. crne is given some or all of the following options: 

r cancel the c~zrrent operation. 

e re-issite the same operation. 

The p-ibte choices for the respective error are indicated by the sensitive ht,tcms in the 

error message box (abort retry. ignore. respectively). 

Zero vdne  not pemiss%ble. 

cFIze laser tried to input a d u e  that would later i~ the program lead to a division by zero. 

In particrrfar. this mesage ncnm when the user attempts to zoom by a fartor of 0. or by a 

%-pry small vdne that evaluates to 0. 

L i s t  is empty. 



Bad line format. 

A piece of data is read into -uzero that doesn't, match the correct sp~cifiration for complcx 

zeros. rr., described in Section 4.8.1. This piece of data can either be a file. a list of zeros 

pasted &on1 other appiications. or a residt list received from &fapfe- The erroneous line is 

cfispIayed on stderr. so that the user can find the source of the error. 

If the Ignore option is chosen. the line as a whole will be skipped. and the re<ading prorcss 

rmrmed. Otherwise. the operation will be cancelled. It is in the nature of sonic read 

operations that repeating them will not be successful. Therefore. the Retry option is not 

dways available. 

During Maple's command execution. an error occurred. recognized by the typical Maple 

message Error (in . - . I .  xzero doesn't have control over the correctness of ,Uaple7s com- 

putations . so these errors cannot be prevented. The user should know about possible 

stirrrces of error in the Maple code [e.g. possibility of division by zero). Maple's error 

message. which is printed out on stderr. may be of some help in finding the source of the 

error. 

Unexpected message type. 

This emor hardly ever happeas, In the message transmission between Maple and zero.  

different w e s  of mesages are I L S  for data. control. and error messages. (The type of 

rarmsage is simply an unsigned bytelong imeger value.) This error indicates that messages 

did not occur in the right order. It is possible. though unlikely, that the message queue is 

emsed by a different CNIX application. Previous runs of xzero that terminate unexpectedly 

ieg. withoitt closing the message qire~re! may aiso leave some messages in the queue. which 

may confuse xzer~. Retrying the computation will most likely be st~ccesdul. since the 

message queue is cleared after m error occurred. 

Tbe ,'Maple comput&iom have been intempted by the user clicking the cancel button in the 

waitmg mes,';Lge, Upon Betry. the computations may be repeated. Ignore will not continue 



the computation. but any results that have already been obtained will be made available. 

(In the builtin computations. all results are transmitted after all computations have been 

dam: the intcrrnpt occnrs most likely ac a t~ime when no results have been rct~lrned. Ignore 

will not be ,my different: from Abort. then.) 

Error in <file> operation: <. . .> 

During file operations. many s~stem-defined file errors are possible. e-g. No such file or 

directory. Permission denied. Disk space full. The above message specifies the file 

operz6ion that failed. and a string that describes the type of error. This string is the same 

as ~2nerated in response to a UNIX command and defined in the standard C error library. 

sa i t  can be looked I Z ~  is the EEL2 m a d  page intrs (21, if it is cot, self-explaining. 

Cut buffer full. 

An ~~nus~rally large number [>ZOO) of zeros was attempted to be cut or copied. This is 

act.tdly a warning message. Therefore. no Retry or Ignore option is given. The cut buffer 

contains the zeros that were successfully written into it. and in the case of a cut operation. 

these zeros are deleted. {TO get them back. one can simply paste them.) To m i d  this error. 
a large ~~t S + . ~ ~  . z uruu L UG _ ---:--I rup- : IE W ~ T E ~  ~TiIaiier pats.  

By defai~lt. xzero warns a user in every instante when (s)he is about to lose essential parts 

of their work. ?;;unely. the foUowing three warning messages may appear: 

Zeros have been modified. 

This message appears when the rocit list is about to be cleared or replaced in a ,dew or 

satfed &er it was last modified. Zezd t?pmtim Q3~t =iat with m b  bas  not '- - 

(Selections don-t miant as modifirai;ions.) The tlser may either save the list now. discard 

the chmges- or cancel the ongoing operation. thus leaving all lists in their previous state. 

Current results are unsaved. 
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Similar to the above message. this appears when an unsaved resnlt list is to be replaced by 

a file. a new computation. or to be deleted through the New operation. The user is given 

the same choices as above. 

File  <filename> exists .  

This message is shown whenever a list of zeros is written into an existing file. unless: 

the list to be saved was previously given the same file name (e-g. when it was loaded 

or last saved). Equality is tested by string comparison, so rczero doesn't recognize if 

two hles with different names are physically identical, due to path specifications or 

symbolic !ides. This may sometimes result in a groundless warning. 

0 the list is newly created. and is to be saved under the default filename {unnamed or 

unnamed. res  1.  

the list is a result or history list. and it is saved under the same name as the root list, 

plus default extension (i.e. filename . res or filename. his t ) .  

The user has the choice to either overwrite the old file. or cancel the Save operation. In the 

latter case. xzero will return to the Me selection dialogue. allowing the user to save under a 

different name or abort the whole Save operation. 

As a general rule. -yzero warns too often rather than not warning when it ought to. However. 

some of these messages can become very bothersome. especially in *'trial-and-error" runs, 

when results are generdy not to be saved. Therefore. displaying each of the above warning 

messages can be turned off separately for the rest of the xzero session. by holding the Ctrl 

key while cbcking Discard or (in the File  exists warning) Cancel. Also. the application 

resources conf irmSaveEnabf e. conf irroResultsEnabfe. and iileEkistEnab1 e can be set 

to False, disabling d Fh-arning messages for the entire ,uzero =ion. However. the warning 

messages should be ody  disabled if they are definitely not needed. There is no way to 

re-enable them from within a running ,uzero session. 

.hother type of warning are 191apIe warnings. originating from computations. (They may 

also occur in the startap phase of xzero.) i91aple warnings are simply written to  stderr. 

The ~EXX should check far such mesageis In case of unexpected redts .  
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The most prominent AfapIe warning is b p t y  p l o t ,  by which Maple not.ifies the user of 

insdlicient variable specifications in a plot. This may be due to a mistake in ilser-defined 

fimctions. or to incorrect range specifications by the user. 

4.10.3 Known bugs in xzero 

Di~ring trhe ttsting stage. much care has been given to discovering and removing bugs and 

instabilities of :zero. Yet it is only- too likely that xzero will contribute to the painful expe- 

rience users frequently ;-et from using X applications. Major ,Y applications are so complex 

and flexible that they can never be completely debugged on all platforms. in all thinkable 

configurations and for all imaginable situations. Usually, in some extreme situations (where 

extreme depends on the program and how it  is written) they crash without warning, leaving 

nothing but a roredump behind. Hence. a user should not experiment with extreme ron- 

figurations of xzero (just as with any other X application). Here is some advice on how to 

avoid problems with xzero: 

Never zoom to extremely large or small intervals. This may cause numerical overflows 

or large rounding errors. 

Don't make the dfcwiq  windmz too smA. or too li?sgc. 

Large windows should not cause any trouble, but they might affect the performance 

of xzero on slow terminals. when the entire window needs to be redrawn frequently. 

Don't hit too many keys or mouse buttons at; the same time- 

In doing this. several operations may be initiated simultaneously, causing inconsisten- 

cies in updating the lists. 

r Avoid extensive morm movements when moving objects around. 

Redrawing the moved objects takes a considerable amount of time. Especially on slow 

terminals. it wil l  appear as if the points are lagging behind the cursor. This will also 

slow down 0 t h ~  drawings on the t~I-Illinal. 

e Don'r. co&gme resomces d e s s  you are sure about what you are doing. 

One cannot destroy the program with badly configured resources- but some of the 

-xmxo operations may be disabled. or some of the drawings may become invisible- h 



any case. a b,whp cop? of the defadi resource file should he kept. It is not guaranteed 

that xzero runs correctly with any resource setting other than the defanlt - although 

c-g. changes in colour or text. specifications should prove harmless. 



Chapter 5 

Some experimental results 

5.1 Another application 

The rrzero package has been used extensively to verify the results in Chapter 2. and to 

examine its various special cases. We will now show its use in another application to give 

some experimental evidence for Conjecture 3.11. 

The central idea is the same as in Chapter 2. namely. examining the loci of 5. This Lime 

howewr. we take the m i o n  of 6 h ~  ta;o loci of arguments 0 and 7;. joined by the zeros and 

poles of $ ( z ) .  We write this set as LR (f) and refer to it as the real locm of 5 .  So 

LR ($) is the inverse image with respect to of the extended real axis. and its points can 
P 

be determined by the equation '3 ( $ ( r ) )  = 0. This equation can be rewritten as 

and further. on substituting z = T + yi. it can be written as a polynomial in x and y. each 

variable ocrrrPring with degree at most 2n- 1. Hence. LR is an algebraic curve of degree (9 
at most 4n - 2. (This fact is true for all .-p- of loci of the form LC (5) U LC+, ($) .) 
From the results about loci of f in Chapter 2. we know (or derive easily) the following 

L (f) is symmetric to the real axis. 



0 Thrw ;w-s Iic rarnpl~tdy on thp clrrsed 3rnsen disks of the nonrrral z rms  of p. 

r Every nonrcpal criaicai zcro of ordcr 1 lies on k arcs. where k is it.s mndt,iplicity. 

0 If I is a nnnrrd zero of kVy of mdtipiicity k. and $f z )  is red. then 2 lips on k + 1 

arcs. 

r, Thc xionred arcs consist of rortiponents which art either closed (we will call these 

r1osr.d arrs)- and romponrnts which begin and cnd on the real axis (open arcs). If an 

arc ~;LSSCS through a m~iltiple critical zero. or to a zero of LVp, it has to be suitably 

conhued i t q  taking thc adjarrat arc to the left. or to the right). 

The points on the real axis whcre opcn arcs .)riginate are exactly t.hc real zeros of Wl). 

At a real zero of Hip with miiltiplicity k. cxactly 2k n o m a l  arcs originate. 

The 1;st point is the most important om. beraiisc it, lets one cxprcss the number of real ztros 

of ICj) in terms of the open arcs of LR (5 ) .  Given this rela~.ion. Conjcctnre 3.11 is erpivalcnt 

to saying that the nmnoer of nonred zeros of p is greater or ecpd to the number of open 

arcs of LR (5). One is led ro snggrst the Following stronger versions of the ronjertnrc. all 

uf which will prow to he f'21.s-r: 

0 The mmlber of nonred zeros on the open arcs is greater than or c c l d  to t,hc number 

of open arcs of , f L R  (f). 
r, The t.otd number of nomcal zeros is greater than or equal t-o the total number of arcs 

in H- and K .  

0 Tlic ni~nlber of nonreal zeros. not coiinting milltiplicit.ies. is greater or ccpial to the 

nnmber of open arcs. 

Instc,d of a rompicre case distinction. we will give a number of examples which illustrate 

the typical caws that ooccmred in onr experiments. We wiil also state which cases satisfy 



the abow thrrc ronjc.rtrmr~s. am1 relate. these c se s  to theorems presented in Chapter 3. 

whenever possible. 

Case 1: (sect Figire 5.1) X I  nonreal arcs are open. They connect pairs of d jcxen t  real zeros 

of TV& and contain one nonreal zero each. 

One can show thag this happens exactly if all critical. points of p are real. In 

partic~lfzr. this inclucks all rases in which Theorem 3.19 holds for all nonreal zeros 

of y.  

Czse 2: (set* Figare 5.3) AU 20n:ed aics are open. They i-omcct pairs of adjacent real 

zeros. and they contain one nonreal zero and one nonred critical zero wch. 

This happens if p has no Fonrier critical zero of order 1. and the real parts of the 

noured zeros ,are s:&ciently well-spaced. 



This inrbdes winme. b~rt not all caws of Theorem 3.20. (In the general setting of 

this theorem. L R  (5) may also have closed arcs.) 

Case 4: [see Figure 5.4i -'UI arcs arc cluserl: they contain at least, one r ed  and one nonreal 

zero each. 

This caw applies if and only if tt'p has no real zeros at alk in particular, this includes 

rases in which Theorem 3.18 holds for all nonreal zeros of p. It is obvious that 

every closed arc contains at least one zero and one critical zero of p: otherwise. the 

maximum principle. applid either to or to 2 w d d  imply that $ is constant 
P P' - 

In the interior of the arc. 



Case 5: jsce Figure 5.5) There exists an open arc which contains a nonreal critical zero. but 

no nonred zero of p 

One can show that this arc must be contained in the interior of another arc of 

LR (5). This example shows five pairs of nonred zeros. but six pairs of nonred 

arcs: only one pair of zeros lies oa an open arc. while there are two such arcs. This 

shows that the fust two conjectures above are false. 

A counterexample for t.he third conjecture can be obtained siIllil=ly. by grouping 

all five pairs of nonreal zeros together at, say. f i. 

Case 6: There exists an open arc that contains no nonred zeros or critical zeros of p at all. 

No example has been found for this case. However. Figure 5.6 shows that this case 

is possible for khe locus LR[r )  of an arbitrary rational function. We conjecture that 

a similar example can be found for a logarithmic derivative as well, but involving a 



large numbsr stf nonred critical zeros. If such an example is fonnd. it can most likely 

!w modified ts gi-ie ;.;?ether couoterexampk to me or & of the three conjectures 

above. 

iVf: note without fwther consideration that mixtures of the cases above are possible. Also, 

there exist limiting cases between the above rases. These limiting cases always have one of 

the following properties: 

L R  ($) contains a nonreai zero of Wp. 

A red zero of I@ is multiple. 

-- 
1 he Caws 5 and G (if it exists) of -zero-free cpen arcs" are undoubtedly the most intriguing 

tmcs. for they are the only cases from which counterexamples to Conjecture 3.11 could arise. 

They need to be frrrther classified a d  studied. It would be helpful to find a lower bound for 

rhct number. and mz~tual distance. of nonreal zeros necessary to procure zero-free arcs, for 

ir seems that far more nonred zeros ;ire placed on closed arcs. or as extra zeros on existing 

rjpn arcs. than arcs becorm zero-free. 

5.2 Numerical errors 

Roimding crrors are a crucial and often underestimated factor in numerical packages. This 

,affects xzcro as well. si&e -yzero uses a numerical algorithm for finding the zeros of a given 



prrlynamid. -2nd io f z r .  nzmrerical rnors in intol~rablc dimensions haw hren fmnd in 

somr instances. while working with xzrro. For instance. consider the polynomial with zcros 

at -0.8 f r .  -0.6 9 i.. . . -0.8 f i. Compute the zeros of Wj) iwing a precision of 15 digits 

thro~~ghorrt the tomp~itatim. The r rsdt  is shown (as circles] in Figwe 5.7 alorq with the 

zeros id y i boxes). 

Sow shift the zeros. ~ ~ n i f o d y  by 3-1.5 in real direction. By L ~ m a  3.2. the acros of GVp 

shodd be shifted by the s m w  amotutt. bnt. otherwise unchanged. However. t,hc arttml rcsi~lt 

cnrnprited by xzcrrr didfers considerably. as shown in Fippre 5.8. 

Upon fnrther investigations. it =as observed that polynomials with multiple zeros. or with 

rInsters of zeros at  small distances from each other, relative to their absolute values. are the 

most ill-conditioned and yield the largest numerical errors. The loss of digits of precision in 

the zero finding algorithm turned out to be proportional to the degree of the polynomial to 

be solved. at a rate of up  to 1 digit per degsee increment. 

Theoretically, these niunericd errors could be prevented by computing to a sufficiently high 

nlrmber of digits. Bowever. this slows down t,he computation drastically. Specificaily in 

ill-conditioned examples. the computation time seemed to increase a t  least with thc sqnare 

of the number of digits of precision. In fact.. in some instances the algorithm didn't seem to 

terminate at all. if the precision was chosen too large1. In an interactive application such as 

xmrcs. large response times are generally rinacceptable. Therefore. the numerical precision 

should be jiist high enough to get reliable results in the range of the drawing resoltition. 

but low enoiigh to  give a fast response in well-conditioned cases. It would be desirable t.o 

have an algorithm that -recognizes" the necessasy precision to compute with. in order to 

get. rrsults within a given -output precision- 

Another observation concerns the coefficients of a polynomial constructed from its roots. If 

many roots have absolute vahies far smaller. or far larger than 1, then the coefficients are 

of widely different decimal rmges. which results in loss of precision in snbsequent steps of 

the computation- This might in fact be one of the reasons for the numerical errors observed 

in Figwe 5.8. In this light i t  seems questionable if the presently used method of compnting 

thc riAEcients of the polpomiai. namely. differentiating, and determining the zeros of t.he 

derivaivt? or 'iI%'r'o"uskm is a s-xiitable approach. It seems worth comider'ang algorithms which 

make u.e of the Formulae 2.8 and 2.9. without bringing the numerator into stuzdard form. 

'Or it ternhated with an crror message saying that the polynomial to solve was too ill-conditioned. 
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Figure 5.7: The zeros o f p  and W p .  where p ( t )  is n polynomial with zeros at 0.2k f i.k = 
--r..... 4 

Figure 5.8: The zeros of q and W q .  where q (z )  = p ( z  - 1.5) 



Thc graphs presented in this r h a p t ~ r  and in Chapter I! haw tccn cornpl~ted to a precision 

of 30 digits. N o w  of fhesr r-xamplc~ inroiwd a polynamid of & p r r  g r ~ a t r r  tfmn 11. so thr  

resdts  shown arr g~arantrcd to be exact within the gr;lphing 

%e results in Chapters 2 and 3 should prove x-ery helpful here. because they provide geometrical con- 
straints for the location of the zeros of $ and lip in terms of the zeros of p. 



Chapter 6 

Conclusions and Outlook 

a Can the thmrem t ~ e  ~efi~ralized to a larger class of anaiytic fi:nctions than polynrtmi- 

als ? 

For many pol>-nornids withotlt madripk zerris or criticd points. Theorem 2.17 doi~s 

nut give a single relatiomhip between the d pairs of nonreal zcros and Fourier critical 

zcros. bnt rather a faroily of finite11 many bijtctions. This srmnds trivial. $vrn that the 

po.ssible nnmbcr of bijrrtions betrzswn finite srts - here d: - is always finite*. Howwcr. 

the mmber of different; bijectioas wising from Theorem 2.17 is ~ ~ s m l l y  murh smallcr 

than this. {One obtains from Corollary 2.37 that it is a t  most one greater than the 

x r m b ~ r  of different values nfc  E !&xi so that S,(y) contains a zero of or i*~(~""' 

for some positit-e integer A-. i Is it posibIe to determine. jtrst fmn~ the location of the 

zeros and Fotrrier critical 2 ~ r m  of p- which bijections are possible and which ones are 

e If this in generat c m n t  be determind is it at least possible to determine the possible 

bijections b~twcen Zip1 and Cl iy) rc-hich arise from Theorem 2.33. jtist h r n  the , 

Iocatictn af alI zeros. critic$ zrros of nrrir-r 1. and perhaps the zeros of Wjp? 

a Can more. or geometrical rmdts  in the flavour of t h e  in Section 2.10 be 

&rained from the p r d  of Theorem 2 - 1 2  



rlf f c m w  this r~si i f t  is sharp. The cncrPme case is attained in the po&nomids r!zn - 1). 

whwe n is a positiw i~trger. anti r a romples constant with ICE = 1. Thew are many partial 

r~srdrs rowards this c-nnjectuw. and it is &town for circles aroilnd roots which fie on the unit 

cirrfe. f S~r3 [I81 for a thoro?igfm rmatmmt nf rhis ronjectnre. 1 

We also r~bservrd that the zeros of W p  comain nm~ich information about the appearanre irf thc 

loci d g. For this reaswn. rhey sboufd be stlidieci further. -4s antlined in Chaptcr 5 .  thcrc 
P 

,arc some rmrcsolwd caws in a posibte pmof of Conjecture 3.11 which should br ronairfcrrd. 

Fmm the experiments done in this cont~xt. it seems possible that this mnjertnrc can t-w 

fi mher genrralized: 

Snmeriral prob1em and the need for better algorithms to resolve t h ~ m  haw already hren 

disnxssed in Section 5.2. 



.-i r'r&rabIr- crrrcmicm of I'IZP~O wwtid be to maintain spvcrai prripominl,s at rt:trc. This 
7 *  . % st-tjrpc,- - ..*I. ., a few te&. nni-ra T ~ F -  &:Id of ratinnai f~lrrcriorrs m d  pfil~nomid ;u-irimlctir to 

.* . 
.,-zt>r:.i. x4:h r.n~~;it  lf=ssH;; m a y  ~ h w  q p m a r ~ ~ n s .  - - 
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Gauss' original letters 



The aim of the work is to turn the zethod of solving the definite algebraic eqtmtionsl 

into a most reliable and easy one: namely. determining the number of real and imagi- 

nary roots with fuI1 accwacy. bounding each of them into fixed limits and describing 

an algorithm for a step-by-step approximation to their d u e s  with arbitrary exact- 

cess. The fimri-ecta! basis for all of this is a theorem due to the author himself. It 

can b t  regurieci as a successful generalization of Descartes' theorem (~isually named 

after Hxriot 1: in principle. it consists of the following: Let S be an ordered2. entire. 

algt-braic function in 2 {with only real coefficients!; further. let a. a' be two arbitrary 

&%rent real ~.af;;es sach :,hat a' - n is positive. By substituting x = y + a, x = y + a'. 

X twn into the llikwise ordered) functions Y. Y'. in which   he coefficients have g, 

q' serylences of si*gm3. respectively: the exceptional case in which one or more coef- 

ficients vanish will be disregarded here for brevity. Given this. the equation X = 0 

cannot have more than gf - g red  roots between x = a and x = a': more exactly. if 

the number of reat roots between those two bounding values is A. then g' - g - A must 

be either zero or even and positive. Hence. if g' - g (which cannot be negative) is 

zero. there exists no real raot at all: if g' - g = 1. then the bounds include exactly one 

r ~ a l  root in between: findiy. if g' - g = 2. then as  of now it  is not clear whether there 

are two roots between she limits ctr none. Instead of two bounds a. a'. we can handle 

a greater m d w r  of born& slmifitrIy: we can choose them in such a way that. first. 

the m e  b o n  to a f~mction Y having only changes of signs. and 

the greatest to a function only having sequences of signs: therefore. if the numbers 

corresponding to  the seqtiences are called g. g'. gN. 9''' and so on, in this order. the 

first of these numbem will b~ O itnd ihe last one be equal to the degree of the cqnation: 

second. that every single difference g' - g. g" - 9'. gN' - g" etc. will be equal to either 

1 or 2. In this manner, att r ed  roots will be encfosed in bounds. so that in every 

interval there may be either one or two roots. How in the last case it can be rne- 

rfrodicallp determined fby firrthtr narrowing down the limits. if necessary) if t.he two 

roots indeed exist. or if they are missing. cannot be worked out here more precisely. 

for lack of space. 15% just note that every time the latter occurs. there must be an 

iatemclrtiq- d ~ e  between the bsm& where m e  coeEcRfi$ is &iag' izi Y before 



the last one. while the preceding and the following [coefficient] must have the same 

sign. Fourier calls these points critical. Hence. each critical point leads t.o two missing 

real roots. However. we can not agree with Fourier saying that every two missing real 

roots become imaginary. because this could give rise to a misconception. It is indeed 

true that the equation X = 0 altogethe; has as many pairs of imaginary roots <as gaps 

or critical points. The values of all imaginary roots are themselves well-defined. just, 

as the real ones are: the other expression could be understood ;~s it each gap belonged 

to a specific pair of imaginary roots. a fact which is not only unconfirmed by Fourier. 

but must stay in doubt, until further investigations have enlightened this interesting 

point. Yet this should not mean that Fourier himself meant his statement this way. 

We wonld rather assume the opposite and suppose he had been in doubt about the 

existence or non-existence of such a definite relationship, and purposely avoided a 

manifestation of this ambiguous expression. Moreover, Fourier did not deal with the 

matter of imaginary roots and their computation in his work: so there is still a large- 

field to work on. 

Once having such a nice theorem - and according to the notes Mr. Navier shared 

with us. he has maintained it for a long time - it couldn't have been hard for a skilful 

researcher like Fourier to base the technique of the numerical solution of equations on 

it: and this development has been given with completeness and in great detail. More 

practised readers would probably prefer a narrower description that cuts down on 

repeating itself; for the less practised ones. the numerous, well-selected, and detailed 

examples will be welcome. Anyway. even in this part of the Theory of values5, this 

work assures the name of Fourier an honourable position. a position he long since 

asserts in other parts. 

2. Gauss to Schumacher. Gottingen, 1833, April 2 

Correspondence betmeen G m s  and Schumacher. II. Altona 1860. p. 328 

Many thanks to you, my dear friend. for letting me know about the ruled paper. I find 

i t  useful. especidy for drawings of aii kinds based on rectangular coordinates. as not p 

&he great& accuracy is required. This is never the case with my drawings anyways. 

since I never use them to derive mything of them definitely by measuring; namely 
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[they are 11sef111j for drawing geodetical points. even for small astronomical charts. 

illnstrating the pace of the barometer. variations of the magnetic [compass] needle 

i-tr.. ns wrlI as for drawings referring to purely mathematical topics: for example those 

concerning the imaginary roots of the [algebraic] equations: with topics of the latter 

kind in particrilar I have dealt recently. Now as you'll have read my announcement 

aboi~t Foilrier. yon might be interested if I mention that. with regard to "but must 

stay in doubt ...'- I have expressed myself moderately on purpose; this is not because 

I have been imcertain about the existence or ncn-existence of such a relationship: but 

rather because the G.G.A.' were not the place to express myself in a more definite way. 

I bclieve I can prove most clearly that such a relationship does not exist: this however 

will not happen before I have taken the chance to work out my investigations on the 

roots of the equations and publish them. You know. I write slowly: this is because I 

am only pleased if there is as much in a small space as possible. Besides, writing in 

short takes much more time than writing in length. If I explained my investigations 
- 

- which. once developed. ought to take only a small number of sheets ' - as broadly 

as Fourier's book is written. it woiild take me just a quarter of the time and several 

huge volumes. 

3. Gauss to Schumacher. Gijttingen, 1836, June 20 

Correspondence between Ga.uss and Schumacher, III. Altona 1861. p. 68/69 

On the occasion of the lecture I am giving these days, I was given to coming back 

to the theory of equations. I have gained an entirely new view of them. In light of 

this view. I still find it  quite probable to find a connection between Fourier's critical 

points and definite pairs of imaginary roots. Three years ago, I mentioned an opposite 

opinion in my letter to you; I admit I had not developed all the details about that 

topic. which is necessary to be sure about a negative theorem one is going to prove. 

All the common amerGus8 working in 999 cases may finally lead to a CUI  de sac in the 

1000th case. Please correct my former. perhaps too positive assertions. But at the 

same time. note that I have not without reason made p a z ~ a  sed matvrag my motto for 

ewiything I publish. Those common apperps sprang from one hour's work. To make 

"Gottingische Gelehrte Anzeigen. see introduction at the beginning of this chapter. 
'-4 sheet consists of 16 pages. 
' Ideas. 
'Few but ripe. 
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something mature from that. it often takes years of detailed work: one can anticipat,~ 

one could do that, if only one complied with doing it: still. it will be necessary to do 

some similar second- or third-class work to come in order. Procreore i.ncurrdurn, at 

partwire rn01est.urn.'~ As to my present standpoint. it would first. of all recpire many 

wearisome detaiis in order to follow all branches; I don't believe. now that so milch is 

..... [the rest of the letter is missing] 

2. Gauss to Schumacher. Gottingen, 1836, June 24 

Correspondence bet=een Gauss and Schumacher, III. Altono 1861, p. 72 

During the last days. I have pursued my ideas on the equations. The result is rather 

the opposite. and i t  tends to confirm my former view that there is no common, natural. 

non-arbitrary relationship between the single critical points and the pairs of imaginary 

roots at  all. I myself have the impression that in my last letter I wronged the view 

which I had expressed in a previous letter. now that. after a long i~terruption. this 

view was not present to me in the same freshness in which I had had it in those days. 

It still remains true that. with negative theorems such as this. converting a personal 

conviction into an objective one (which others can share) would require a deterringly 

detailed work. To vimafize the whole variety of cases. one would have to display a 

large number of equations by curves: each curve would hiwe to be drawn by its points. 

and determining a single point alone requires lengthy computations. You will not 

see from Fig. 4 in my first publication of 179911. how much effort was required for a 

proper drawing of that curve: nonetheless. that is a very simple case. compared with 

the many ones we have to regard here. 

5. Annotations 

by Alfred Loevly 

Gauss's notes in his letters to Schumacher as well as in his earlier letters to Drobisch. 

referring to [6],  require that we deal with Gauss's announcement of this work, for some 

statements in this announcement have to be corrected. The statement "It is indeed 

'"Ering forth the pleasant. but work on gking birth to the tedious. 
".The proof of the Fundamental Theorem. his Doctor's thesis. See [9]. 
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Figure AS:  The Figure 4 of 191. cited by Gauss in his letter [I,%'] to Schvmacher. 

or critical points'. is not true with regard to the definition given in Text I., which for 

instance is easily shown by the equation 

where n is even and 2 4, b is real, and c positive. Despite its n - 2 distinct imaginary 

roots, this equation woddn%. have any critical points according to Gauss. We rather 

define (compare with [2]) a critical point in the following way: Let f (x)  = 0 be 

an equation of degree n with real coefficients, f l ( x ) ,  fU(z), ... be the derivatives 

of f !z) and (Y a real number: in the sequence ~'(cY), . . . . f (n ) (a )  be e the number of 

vanishing intermediaryi functions. c and d the number of changes and sequences of 

signs interrupted by an odd number of missing terms: and a = e - c+ d .  If a > 2, then 

CY is called a critical point of f (z) = 0it. Using this definition, the following (more 

precise) Fourier theorem holds: 

Let a. a' be two real numbers. a < a'; if Z, and 2,. are the numbers of changes of 

signs in the sequences 

'If. say. f ( a )  = fr(a) = . - - = f'-'(a) = 0. then these first 1 $anishing terms are not to be regarded in 
determining e. 

" ~ n  the above example. b is a critical point with values e = n - 1, c = 1, d = 0, and therefore a = n - 2. 
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f  ( a ) .  f l ( a ) .  f l ' (a) .  . . . . f ( n ) ( a ) .  

f  (a ') .  f1(a ' ) .  f " (a l ) .  . . . . f ( n ) ( a ' ) .  

and if further 2X is the sum of all numbers a (which are always even. according to 

their definition). corresponding to all critical points of f  (x) = 0 between o and a'. 

then 

and the number defined on the left-hand side of (A.3) is the exact number of roots 

of f  (x) = 0 between the bounds is and a', counting multiplicities. In the case that 

the bounds a  and a' are critical points or roots of f (x)  = O7 a  is to be excluded, and 

a' to be included2 in computing 2X and counting the roots. For a = -m! a' = m! 

we get the following theorem that replaces the statements by Gauss: The number of 

imaginary roots of f (x) = 0 equals the sum of all a corresponding to all critical points 

of f ( x )  = 0 between -x, and x.. From the inequality (A.3) it follows that. provided 

there is a critical point between a  and a' with a > 2,  Z, - Z,I must be > 2. Therefore, 

Gauss's statement "that every single difference g' - g,  g" -gt: gl"- g" etc. will be equal 

to either 1 or 2" if the bounds are chosen sufficiently naxrow, is not correct. Fourier 

knew that g1 - g  cannot always be made 5 2. which can be seen from his '*rule of the 

double sign" [6, p. 1031 

The fact that it is not possible to  find a connection between Fourier's critical points 

and definite pairs of imaginary roots: follows from the example (x  - b ) n  +c = 0 (n even, 

b, c real: c > 0). with b as the only critical point and n distinct imaginary roots. The 

following question however remains open: Let f ( x )  = 0 have m critical points where 

m 5 n/2 and a = 2  for each of them:$: is there a "common, natural, non-arbitrary 

relationship between'' the m single critical points and the pairs of imaginary roots of 

f(x) = O ?  

%The -exceptional case- set aside by Gauss in Text 1.. stipulates that no term in (A.l.A.2) be 0. I t  is 
thus a siightiy stronger restriction than requiring a and a' neither to be roots nor critical points. 

::The case a = 2 arises not only from Gauss's announcement which allows only d = 1, but it occurs in 
general for an arbitrary integer e. when c = e - 1, d = 1 or c = e - 2, d = 0. This follows from a = 2 and 
&om the relation e 2 c + d which is always valid. due to the definition of c, d.  e. 
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How to get xzero 

B.1 Obtaining the package 

The xzero package is available through the Internet. It is stored on the ftp server of the 

Centre for Experimental and Constructive Mathematics. To download the package, one 

needs to follow these steps: 

1. On the UNIX prompt. type 

ftp ftp.cecm.sfu.ca 

The ftp server will connect.. asking for a user name: 

Name (ftp.cecm.sfu.ca:happe): 

2. Type anonymous. 

3. Enter your full e-mail address as password. 

4. Change the directory: 

5. You may also want to change your b c d  directory. The xzero directory will be created 

as a subdirectory of the current local directory. 
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6. Type 

get xzero.tar.2 

7. End the f t p  session with 

8. gncompress and unarchive the •’iles in xzero with the two commands 

unzip xzero.tar+z tar xvf xzero.tar 

Users who possess a ?%'orid Wide Web browser such as  Mosaic may prefer to use it to 

download xzero. The correct URL for xzero is 

Most Web browsers will automatically uncompress xzero. tar . z ,  so it just needs to be 

imarchived. 

B.2 The files in the package 

The xzero package consists of the following files: 

README Information about the version of xzero, known bugs. and instructions how 

to compile xzero. 

Source code All files ending with . c (source files) or .h (header files). The code is 

modularized into several source files which carry names indicating their 

functionality. 

xzer~ The execntable zero  program. 

makef i l e  The compilation rules for xzero and related tools. 

bearner A program called by xzero. I t  runs in the background, handling the trans- 

mission of data from Maple to xzero. 
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destroy 

go. t x t  

polynom.txt 

A tool that clears up message structures. Normally: it need not. be used, 

since -xzero clears them up itself. But i t  is recommended that it be used 

{by typing destroy on the UNIX prompt) after an abnormal termination 

of xzero. 

A collection of Maple routines: which build the computing functionality of 

xzero. These files. m d  how they can be modified to install new functions. 

are described in Appendix C. 

The compiled routines of both go. t x t  and polynom. t x t .  for use in the 

backgroiind Maple session issued by xzero. 

A reduced version of go .m. to be used as a package for interactive Maple 

sessions. 

functions . reg A text file in which all Mapie functions that are to be issued from xzero 

need to be registered. See Appendix C. 

XZero A file containing important application resources for xzero. For more in- 

formation, see Section B.4. 

Bitmups All fles ending with ,bmp These fiies contain images of various shapes in 

which points are displayed in the xzero drawing area. The user can select 

their own preferred set of point shapes, since they are specified as resources 

(see Section B.4). 

B.3 Installing xzero 

The z e r o  package is written on Silic~n G~hphics Workstations under UNIX. using the X 

Window System. Its graphical appearance is realized using the X library (Xl lR4)  and the 

Motif toolkit (Version 1.1). These are also the requirements on a system on which xzero is 

to be compiled successfully. In order to run successfully~ a few more requirements have to 

be satisfied. Maple (V5R2 or higher) must be installed rtnd accessible, and xzero must be 

nm on a server with a colour display. With future versions, some of these restrictions may 

become obsolete. and the installation procedure may also change. Any information in the 

file README that differs from the steps given below overrides them. 
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I. Change the working directory to xzero. 

2. Type the command 

make 

yo~n will see the sourre files of xzero being compiled. If make stops with an error 

message. this probably means that some of the above system requirements are not 

satisfied. Note that the executable code may take more than 2 Megabytes of disk 

space. This may lead to problems on systems with small disk capacity or disk quotas. 

3. Copy the file XZero (mind the capitals!) from the current directory into the system di- 

rectory /usr/lib/app-def aults. If you don't have write permission to this directory, 

you can ask your system administrator to do this. Or do the following steps: 

Go to your home directory, and create a subdirectory, say, . app-def a. (You can 

give it any name. and in fact any location. However, a subdirectory of your home 

directory is the most convenient location.) 

Copy the file XZero into this directory. 

In your home directory. edit the file . login and add the Line 

setenv XAPPLRESDIR $HOME/.appdefa 

Before running xzero. logout of the system, to make the changes take effect. (On 

most, systems, i t  actually suffices to open another shell window.) 

You can use your new directory not only for xzero, but for any X application you 

wish to configure with your own resource files. More information about application 

resource files and their installation can be found in [21]. 

In order to run xzero properly: you have to leave it in a directory together with its essential 

tools, namely the .m files, the .bmp files: and beamer. This may change with future versions. 

B.4 xzero resources 

Like every other X application. xzero uses resources that make it configurable, up to a 

certain level, by the user. A workable standard configuration is contained in the resource 
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file XZere that comes ~ 6 t h  the pack8ge. This configuration can be modified or extended 

by fi~rther specifications. to the user*s own taste. One should remember. however. that 

some resimrces d e c t  the functionality of xzcr-o. Therefore. it is advisable to keep it copy 

of the original file XZero before modift-ing it. No responsibility ran be taken for abnormal 

behaviour of xzero. when resources are modified. 

3.4.1 Application resources 

These resources were specifically introduced for xzero. ruld they control some features a 

riser may want to modify. They <are listed completely in the doct~mentat~ion to xzero. For 

hevity. we only list. the types of configmable resources. not the names themselves: 

s point shapes m d  colours for ail list types. 

cursor shapes for all mouse modes. 

roordinate translations. 

Boolean variables to disable certain warning messages, 

some system parameters that might improve xzero's reliability on slow or non-standard 

machines. 

e digits of numerical precision. 

Initialization commands for Maple. 

0 default filenames and extensions. 

message strings. 

For each of the resotirces one wants to modify. one h a  to add a line to  the file XZero like 

this: 

If a resolme is already specified. then the old line has to be r-placed rather than adding a 

new line at the end. Otherwise. the new specification mill not take effect. 
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B -4.2 Widget resources 

These resources obey rhe standards of the X and kfotif todkits. They will not bc described 

here. For reference about specific resources. their meaning and nsage. one should consult 

i211 or better [23]. Some af the features that can be modified are: 

0 foreground. background ,and border colows of all windows. except the drawing area 

e window sizes and locations 

text. and label fonts and sizes 

0 bitmaps shown on the action buttons 

0 most of the menu and help texts (which makes it possible to "translate" xzero into 

other languages) 

0 keyboard shortcuts for menu and action buttons of xzero 

e napping of mouse keys to mouse functions 

default set.tings of the toggle and radio menu buttons. 

Specifying these resources in the file XZero is more complicated. The user may specify 

some resources only for specific windows. for specific types of windows. or for all types of 

windows. The file XZero contains many examples which may be of help. Beyond that, more 

information regarding the syntax of resource specifications can be found in [22]. 
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Writing your own Maple code 

The computational part of xzero is most Aexible. Not only is it accessible to be read and 

modified: also. an interface is provided to incorporate newly created computation procedures 

into mere. We will both describe the existing Maple code. and give guidelines for using the 

X Z P I ~  interface correctly. 

C . l  Existing procedures 

The builtin functions are constructed in a modular fashion. The code conssts of several 

procedwes which may also be used by newly added functions. Hardly any new routine will 

need to be written from scratch: most often. one can use some of the builtin procedures. It is 

therefore advisable to h o w  them. Also. the Maple code can be used in interactive sessions. 

independent from xzero. In fact- some procedures, mainly for drawing, are designed solely 

for interactive Maple sessions. and not called from any computation by xzero. All these 

procedures are contained in the file polynom-m. They are automatically read into the Maple 

session called by =em. In an interacte-ue Maple session, one should make them available 

with 

Complex numbers nakwally play an essential role throughout the package. However, it 

became apparent that computations with complex numbers in Maple are not only slow: but 



Global variabl~ that aEr-cr~ some of :he procd~ircs. ccp~ivdrnr to t h ~  s~mnietric modc in 

xzc-rc. In essence. for each nf rhe terms a procedwe crrates on each nonreai zero. i t  crratrs 

thc samc tcrm on the roujugare of this zero. For examplc. ~ a k e _ p o l y f  r o a ~ o o t s  creates 

the factor (x-a-b*I) from a given zero a+b*I when slpznetric is not set to t rue .  iVhcreas. 

when -synmetric=t;rue, Sr meat- (x-a-b*f? fx-a+b*f) and simplifies it. to a r ~ a l  

Reads zeros from a me spefi&-;erf by f iharne.  The filename must b e  ~ncloscd in backquotes. if 

i t  contains any special chafwters. The dife format is the same as that. ased in .=em. i.r. roots 

or resuffs files created by xzem can be read with this procedure. ~ a l r e x o o t s f  r o m f  i l e  

retr~rns a list of all zeros read. 

Reads coefficients from a file and rreares a polynomial with these coeEcients. b~ginning 

with the lowst  order coefficient. File name and format specificat.ions arr the same as in 

m a k e z o o t s f  r o d i l e -  mdire-polyf r o e i l e  returns the polynomid created. 

T&es a fist of zeros and canstrr~cts a pol~,?lo~iaI from them. asstuning the highest-order 

coefficient to be I. \%'hen symmetric is see to t rue .  it. implicitly takes the eonjnqate nf each 

given zero as well. and ensures. by doing red  computations. that" the resdting polynomial 

is red. 

'One can. of cousse. e-splicitlr define the red and imaginary parts of a complex number tu be real. using 
the assurae fnncticm- But k t .  this is not done anromatidly. and second. the properr?- handling nirh the 
assme frcnction is rather slasr. 



This procedure 3s ohPere since this wq- of computing the Wmnskian has been found to be 

s l m - ~ r  than the t~-o-step pmcw of wmtrwting the polynomial and its derivatives. Also. 

tire trivia! zeros of If$ rzmcd out, when t~king khe nxmwzm of tlbe xcond logarithmic 

dc-rivatiw. This prrrccrfrm has mainly been lcft in thc package for reference. 



Crrlatcs a srrpen~e of two complex values. vnl and a. The format of thc result. values 

depends on the format of the parameter cal. 

Creates a iist of t-ivo iists of zeros. the first being the list of roots of p: the second being the 

List of roots of p'. 

makezdlistf ronixoots ( l is t )  

Creates the same fist, PS i ~ ,  ziakeixllistf r o ~ p o l y .  but p is specified by a list of roots. 

xakezwl is t f  ro;opoly Cp) 

~ a k e z u l i s t f  romzoots ( l is t )  

Sinlilar to makezdlistf  ronqoly and m a h z d l i s t f  ror-roots, except that the second 

list is the list. of roots of Ft'p here. 

pcomponents ( p  r d )  

Deternines the real and imaginary part of p(va2). Unlike the Re  and Im functions in Maple. 

pcoqonents accepts and correctly handles symbolic values of val. cal can be specified as 

either a complex value or a list. pcomponents always returns p(va1) in list format. 

Similar to pcomponents: but rtomponents takes a rational function 9- in the form y/q.  where 

p md q may be real or complex polynomials. rcomponents converts ~ ( v a l )  into the standard 

form 'L~3c22L. where cl. c2 and q arc! red. and returns Ccl ,q,cd. 

f checksolve < e z p .  ear, mnge) 

Sdar to Maple's f solve command; but before solving ezpr, it is verified if eqw contains 

an indeterminate. If no%, HVLI. is returned. otherwise the sequence of solutions. 
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my-iaplicitqlot (ezpr  , arange , yrange [, <options>] ) 

An improved routine for implicit plots. eTpr must be an expression in two variables. 

and zmf t ye  and yrange must be range specifications of these two variables. in the form 

~ = m i n . .  maz. Any of the usual plot options can be specified, but the style and grid 

options will have no effect. Instead. one can specify gridnum=n to adjust the graphing 

rcsoli~tio~. 

The resrrlt of my-implicit-plot is a plot containing a set of points. 

less 

Defiaes m ordering on tfre set; of complex numbers. This ordering is currently not used. 

Plotting routines 

Some of the plotting roi~tines, e.g. the animation routines, are for interactive use only. 

0 thers can also be called by xzero. All plotting routines return a PLOT structure. 

Convenience procedure to plot a list of zeros in a certain colour. 

accmulatezlist ( args) 

Plots a sequence of pairs of zero lists. specified in args. These lists are usu,dy the results of 

mtkezdlistf rom-poly or makezulistf r o q o l y  or . . .f rormoots- The zeros of the 

polynomids (first list) are displayed as red. and the zeros of the derivatives/Wronskians 

t'serond list) as seen  circles. This procedure can be used to display just a single list. or to 

display several related lists together. in order to show trajectories of zeros. 

Similar to accumulatezlist. This plot however is an animation of the zero lists. where 

every Iist given in the argument sequence is displayed in its own frame. 
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Takes one of the arguments given to one of the procedures accumulatezlist and 

a n i m a t e z l i s t .  and builds it. into a plot. which will be a component of the accumdated 

plot created in these procedures. li-stlist is a pair of zero lists. 

p lo t -one3 r o r m o o t s  ( l i s t ,  m a n g e ,  ymnge)  

Plots p and ilp. where p is given by its roots in list. m n g e  and ymnge mvlst be valid range 

specifications for Mapie's p l o t  command. 

animate-polysf romxoots  (listlist, xrange , grange) 

Creates an animated sequence of polynomials, each frame of this sequence being a graph 

as in p lo t -one2 rormoots .  The polynomials are described by the root lists contained in 

listIist. 

p l o t  -components (list, m a n g e ,  grange ) 

Plots the second logarithmic derivative of p (black), and all sum terms that constit~ite it 

in Formula 3.3 {red). list is the list of zeros that specifies p. m n g e  and yrange must be 

valid range specifications for -MapIe's p l o t  command. This procedure works only when 

symmetr ic  is t rue .  

Plots the loci of p of constant argument c. The plotting ranges must be specified as 

min. . m a .  mode can be 

e s i n g l e  for the locus ~ , ( f  ). 

doable for the union of LC[$)  and Ld,[f 1. In particular, c = 0 yields ~ ~ ( 5 ) .  
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(2.2 The interface to xzero 

This section is mandatory for programmers who wish t.o write their own roiltincs for iise in 

xzero. A genuine knowledge in the (not too complex) input/output protocol between xzero 

and Maple is necessary. in order to write code that works under xzero. 

C.2.1 Input from xzero 

T'ne input Maple receives from xzero is a sequence of Maple commands. The most important 

tonlmand herein is go. which calls a iMaple procedure defined in go. t x t .  The syntax of go 

is 

The first parameter of go is the procedure name to be executed, as defined in the file 

functions.reg. Following the procedure name are the zeros of the polynomial to com- 

pute with. They are specified by xzero in list form. The remaining parameters are op- 

tional and. except for syrcmetric= <string>. must be recognized by the procedure t,o be 

called. xzero places the options specified for proc in functions .reg here. The option 

symmetric= <string> is evaluated by go itself. string should be either t r u e  or f a l s e  

(other vali~es are considered as f a l s e ) .  go sets the value of the global Maplc variable 

symmetric ;tccordingiy+ Other Maple procedures that distinguish between a symmetric 

and an t~nsymmetric case can then query the variable symmetric. 

Other than this. ordinary commands can be issued through Maple Command in the Option 

mcnir of xzero (Version 1.1 only). These commands are executed directly by Maple. The 

user sho-dd refrain from commands that change Maple's status or set global variables in a 

way that confuses definitions in go .m. In particular. one should never issue Qu i t  to Maple, 

since this only quits Maple. but doesn't reset the interface. To quit Maple (and start a new 

session I .  one shodd use r e s t  art Haple from the Opt ions menu. 

In the startup phase of x-zero. a few other ,Waple commands are issued by xzero. Only 

two of them are of relevance to the user. (The others accomplish a correct setnp of the 

comunication interface and will not be described.) The first one, 

read ('go.mC): 
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reads the predefined computation routines into the Maple session. go .m is the compiled 

version of go .txt. polynom.txt. and some other files with Maple code (see next Section). 

The other command. 

chcmges Maple's plot interface. so that it displays plots in separate windows. These two 

command. are specified as xzero resources. so they can be modified or snpplementcd by 

other startup commands. 

C.2.2 Output from Maple 

Thc various computation roiltines yield different types of output. Some plot graphs, some 

generate a list of zeros. some only produce text output, while others might not produce any 

output at  all. ,Maple itself only distinguishes between two types of output: Plots, which 

are displayed on the screen. and text output. The latter includes all error and warning 

messages that might occur. We will not explain the actual mechanism that sends and filters 

Maple's output to  xzero2. We will rather describe the concept in which Maple's output is 

interpreted. and how to use i t  properly. 

Prior to the results of a computationt the computation routine should print a control string. 

A control string consists of a '#' and a digit that specifies how xzero is to interpret the 

subsecpent output lines: 

#O Outpi~t. if any. is printed to stderr. This is the most flexible way of handling all kinds 

of iiapk oatput, but it requires that stderr be either printed to a shell window. or 

logged to a file, to be accessible to the user. 

81 Output is written into the status line of the xzero main window. This requires that only 

one output line be printed. Although each line transmitted will be printed to the status 

line as soon as  it is received, only the last output line will be visible, unless the Maple 

computation is very slow. (This option is only available in Version 1.1.) 

82 Output is treated as a list of zeros. in the usual file specification. The outpnt lines 

are expected to match this specification, otherwise an error message will appear. and 

'This is the job of the bearner program and the message queue. which are cited in some error messages. 
See the documentation of a e r o  for details. 
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the erroneous line will be printed to s t de r r  for debugging purposes. The zeros wili be 

printed as result points in the xzero drawing area. 

It is possible to send different parts of output in different types. if each part is preceded by 

the corresponding control string. However. some of the output types cannot be mixed. For 

instame. a zero list causes a status message to be written at the end of the transmission. 

Therefore. any statas line written under the #1 option will be replaced by this message. 

Xotc the following peculiarities fbr special kinds of output: 

0 Maple plots. as mentioned above. are independent from text output. Therefore, they 

always show up on the display, regardless of the output type. 

Maple warnings are always printed to stderr .  

o Maple errors interrupt the transmission. and the user will be asked to retry or abort 

the computation. For user information. the Maple error message is printed to s tder r .  

o Empty lines are not handled consistently. One should avoid them, if possible. 

C.3 Placing and compiling one's own code 

Xow that all requirements on additional Maple code have been described, we will explain 

where to place and how to compile it. Only the compiled code is used during the xzcro 

session. in the form of the file go .m. The source code, namely the files polynom. t x t  and 

go- tx t ,  is provided only for modifications and extensions by the user. Consequently, in 

order for modifications to take effect, these files have to be re-compiled to go .m. 

To relieve the programmer from the drudgery of manually rebuilding go. m, the compilation 

has been automated with a t.001 that has its established position in compiling C programs: 

make. This makes the translation of the (error free) Maple source as easy as typing 

make go. m 

We assume that the concept of makefiles is known. The make rules for go .m are contained 

in the file makef ile which also contains the rules for compiling the xzero package. 
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First. polynom. txt is compiled into the file po1ynom.m. These lines of makef ile acco~nplish 

the translation: 

POLYSRC = polynom-txt 

polynom .m: $ (POLYSRC) 

cat $(POLYSRC) lmaple -q -f 

This rule takes the list of files defined as POLYSRC (more files can be added to the lisc). and 

pipes them to Maple. The files in POLYSRC must therefore consist of valid Maple dcfinitions. 

They may also contain output commands which will be written to stdout. If any of the 

files produces a Maple error. the computation will stop. 

The last line of polynom, txt reads: 

save 'polynom.mC; 

which causes the operation status of Maple (i.e. the set of all definitions given so far) to be 

written to polynom-rc. Since all definitions from all files are to be compiled, polynom. txt 

must always be the last file in POLYSRC. 

go .m is created in a similar way as  po1ynom.m is. The corresponding make rule reads: 

GOSRC = pborwein.txt go-txt 

go-m: $(GOSRC) po1ynom.m 

cat $(GOSRC) lmaple -q -f 

Note that po1ynom.m is specified as a dependency of go .m. This ensures that upon a change 

in pofynom.txt, both po1ynom.m and go .m will be rewritten. The definitions in po1ynom.m 

are read into Maple in the first line of go. txt: 

read 'po1ynom.m'; 

Exactly as  in polynom.txt, the last line of go.txt contains a command that writes the 

iMapIe definitions into go.= Therefore. g o a t s  must be the last f;Je in t.he I& specified 

under the variable GOSRC. 

There are two ways to place one's own procedures in the Maple code: 
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First, all additions can be written into the files polynom. t x t  and go. t x t .  Thus? all defini- 

tions are kept in a single file, easy to modify or to refer to. 

Alternatively. code additions may be separated fiom the builtin procedures, by keeping them 

in different files. These files need to be added to the lists in POLYSRC or GOSRC. This approach 

is preferable if many users are writing extensions, since it supports modularization. Every 

user could have their own makefiles, in which one or several common files (among them 

po1ynom.m and go.=) and individual, private extensions could be specified in the user's 

private makef i l e .  Note that this does not require multiple copies of xzero on the system. 

It is entirely up to the Maple programmer where to put their own extensions. A distinction 

between source code for polynom-m and code for go .m is not at all enforced. I t  is recom- 

mended. however. that extensions to the interface (e.g. procedures that accept input or 

create output suitable for xzero) be added to go. t x t  or to mother file specified in GOSRC, 

whereas procedures that can be independently used in an interactive Maple session be put 

into polynom. t x t  or another file in POLYSRC. Then only the file polynom .m needs to be read 

into an interactive session. 

C.4 How to register your functions in xzero 

In the Execute menu. xzero provides room for a user-defined Maple procedure called user. 

This is intended for temporary experiments with new code. In order to make one's own 

Maple functions permanently available in xzero, one should assign an individual name to 

them. and then register them as a new menu entry. 

For every new registered function: a pus& button is created in the Execute menu. On 

pressing this button, Maple will be called with the corresponding procedure name as pa- 

rameter. All information zero needs for tbis comes from the file functions . reg. This is 

a text file whose specifications are easy to read and modify. Every function - except user 

- is registered through this fife. Each h c t i o n  consists of three lines with the following 

meming: 

8 The first line contains the string that is to appear on the push button. 

The second line is the name of the Maple procedure. 
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The third line contains additiooal parameters given to the Maple procedure when it 

is called. 

The third line can be left empty, if the function needs no options. This is the case with all 

predefined functions. Lines beginning with a '*' are ignored. Thus one can insert cornments 

into functions .reg and more clearly separate function definitions from one another. 

The B e  functions. reg is r e d  at the beginning of each xzero session. Therefore. changes in 

functions. reg take place the next time xzero is started. It is not necessary to rc-compile 

the code of xzero when registering new Maple functions. 
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