
Query Evaluation in Deductive and
Ob ject-Oriented Databases

Zhaohui Xie

B. Sc., Fudan University, Shanghai, China, 1984

M. Sc., Fudan University, Shanghai, China, 1987

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE O F

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

@ Zhaohui Xie 1995

SIMON FRASER UNIVERSITY

January 1995

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name:

Degree:

Title of thesis:

Zhaohui Xie

Doctor of Philosophy

Query Evaluation in Deductive and Object-Oriented Databases

(DOOD)

Examining Committee: Dr. Tom Shermer

Chair

Dr. Jiawei Han, Sn io r Supervisor

-

Dr. Fred Popowich, Supervisor

Dr. Veronica Dahl, Supervisor

Date Approved:

Dr. William S. Havens, Internal Examiner

Dr. Jia-Huai You, External Examiner

SIMON FRASER UNIVERSITY

PARTIAL COPYRIGHT LICENSE

I hereby grant to Simon Fraser University the right to lend my thesis, project
or extended essay (the title of which is shown below) to users of the Simon
Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or
other educational institution, on its own behalf or for one of its users. I further
agree that permission for multiple copying of this work for scholarly purposes
may be granted by me or the Dean of Graduate Studies. It is understood that
copying or publication of this work for financial gain shall not be allowed
without my written permission.

Title of Thesis/Project/Extended Essay

Query Evaluation in Deductive and Object Oriented Databases.

Author:
(signature)

Zhaohui Xie

(name)

February 9, 1995

(date)

Abstract

The development of deductive and object-oriented database (DOOD) systems by in-

tegration of the object-oriented paradigm with the deductive paradigm represents a

promising direction in the construction of the next generation of database systems.

This thesis addresses the issues of query evaluation in DOOD systems and presents

some promising approaches to the problems in DOOD query evaluation.

First, a DOOD data model and its query language are presented to demonstrate

the salient features supported by DOOD and to serve as research vehicles for the inves-

tigation of DOOD query evaluation. After a comparative survey on query evaluation

methods for relational databases, deductive databases and object-oriented databases,

the impact of DOOD models and languages on query evaluation is discussed. A list

of open and not well-solved problems is identified as a research guide towards DOOD

query evaluation, which in turn motivates the research efforts presented in this thesis.

An efficient navigation structure, called the join index hierarchy, is proposed to

handle the problem of "pointer-chasing" or "gotos' on disks" in exploring logical re-

lationships among complex objects. Effective optimization strategies are introduced

to employ the constraint conditions expressed in the form of complex selection and

join conditions for efficient set-oriented navigations and to exploit the common navi-

gations among a query and encapsulated methods for efficient query evaluation. The

query-independent compilation and chain-based evaluation, developed for deductive

recursive query evaluation, are extended to process a class of DOOD recursions.

Acknowledgments

First of all, I would like to thank my senior supervisor Dr. Jiawei Han for his guid-

ance, help and encouragement while I was conducting the thesis research. This thesis

comes from the numerous inspiring discussions with him. I also would like to thank

my supervisor Dr. Fred Popowich for his valuable and detailed comments on my pro-

posal and thesis. I am grateful to my supervisor Dr. Veronica Dahl for her constant

encouragement. She spent time reading my thesis carefully while she was far away in

Europe.

I thank Dr. William Havens and Dr. Jia-Huai You for being my examiners. Their

comments and suggestions help to improve the thesis greatly.

I appreciate the help and encouragement from our graduate program director Dr.

Lou Hafer and our graduate secretary Kersti Jaager.

Thanks go to my fellow students Mark Mezofeny and Graham Finlayson for going

to movies with me so many times! I would also like to thank my fellow students in the

database group, Ling Liu, Yongjian Fu, Osmar Zaiane, Kris Koperski, Gabor Melli

and Max Luk for the valuable discussions.

Finally, my most heartfelt thanks go to my parents, grandma, brother and cousin

for their love, support and encouragement. I am grateful to my dear Shimin for her

wonderful love which brightened many days of my academic struggle.

Contents

... Abstract 111

. Acknowledgments iv
. List of Tables ix

List of Figures . x
. 1 Introduction 1

. 1.1 Motivation 1

. 1.2 DOOD and Problems in DOOD Query Evaluation 3

. 1.3 Contributions 5

. 1.4 Thesis Organization 6

. . . . 2 Deductive and Object-Oriented Database Model and Language 8

. 2.1 Introduction 8

. 2.2 DOOD Data Model 9

. 2.3 DOOD Query Language 13

. 3 Query Evaluation in Database Systems 16
. 3.1 Introduction 16

. 3.2 Query Evaluation Techniques in Relational Databases 17

. 3.3 Deductive Query Evaluation Techniques 19

. 3.4 Query Evaluation in Object-Oriented Databases 21

3.4.1 Graph-Based Object-Oriented Query Optimization . 22

3.4.2 Algebraic Transformation-Based Query Optimizations

. in Object-Oriented Databases 23

. 3.5 Problems in DOOD Query Evaluation 25

. 3.5.1 Navigation through Complex Objects 26

3.5.2 Queries Including Complex Selections. Joins and Ag-

. gregations

. 3.5.3 Methods and Encapsulation

. 3.5.4 Recursive Query Evaluation

. 4 Join Index Hierarchies for Efficient Navigations

. 4.1 Introduction

. 4.2 Preliminaries

4.3 Construction and Maintenance of Join Index Hierarchies . . .
4.3.1 Construction of a Partial Join Index Hierarchy . . .
4.3.2 Update Maintenance of a Partial Join Index Hierarchy

4.3.3 Base and Complete Join Index Hierarchies
4.4 Performance Evaluation of Join Index Hierarchies

4.4.1 Storage and Navigation Costs
. 4.4.2 Update Cost

4.4.3 Explanation of Performance Results
. 4.5 Discussion

4.5.1 Join Index Hierarchy Which Supports Other Kinds of

Navigations .
4.5.2 "Fire Walls" in the Construction of Join Index Hier-

. archies

. 4.6 Summary

5 Optimizing Queries Including Complex Selections. Joins. Aggregations

. and Methods

. 5.1 Introduction

. 5.2 Motivating Examples

. 5.3 Path Expression Definition

. 5.4 Optimization of Complex Selections and Joins

. 5.4.1 Path Expression-Based Selections

. 5.4.2 Path Expression-Based Joins

. 5.5 Classification and Cost Estimation of Methods

. 5.5.1 Method Definition

. 5.5.2 Method Classification 86

. 5.5.3 Cost Estimation of Method Evaluation 89

. 5.6 Query Graph and Query Plan Generation 91

5.6.1 QueryGraph . 93

. 5.6.2 Query Plan Generation 99

. 5.7 Discussion 102

5.7.1 Optimization Strategies for Supporting Other Kinds

. of Navigations 102

. . . . 5.7.2 Method Materialization for Query Evaluation 104

. 5.7.3 Integrating with Indexing Techniques 105

5.7.4 Integrating with Techniques for Searching Optimal Query

. Evaluation Plan 106
. 5.8 Summary 107

. 6 Recursive Query Evaluation 109
. 6.1 Introduction 109

. 6.2 Normalization and Classification 112

. 6.3 Compilation and Evaluation of Linear Recursions 117

. 6.4 Discussion 128

6.4.1 Compilation and Evaluation of Nested Linear Recursions 128

. 6.4.2 Integrating with Indexing Techniques 131

. 6.4.3 Exploring Typing Information 132
. 6.5 Summary 133

. 7 Conclusion and Future Research 134
. 7.1 Summary 134

. 7.2 Future Research 135

. 7.2.1 Indexing over Class Hierarchy 135

7.2.2 Extensibility to Support Abstract Data Types and

. Search Strategies 136

. 7.3 Concluding Remarks 138

Appendices

. A Evaluation of Some Parameters in Chapter 4 140

vii

. B Sample Database 142

C Proof Sketch of Theorem 5.1 and Theorem 5.5 145

. D Unification Definition 148

. E Proof Sketch of Theorem 6.1 150

. Bibliography 152

...
Vl l l

List of Tables

. 4.1 Database Parameters 50

. 4.2 Database Parameter Values 51

List of Figures

4.1 Navigation.
4.2 A Schema Path of Length 5.
4.3 Three Kinds of Join Index Hierarchies Corresponding to the Schema

Path in Figure 4.2 .
4.4 Two Partial Join Index Hierarchy Structures for Supporting JI(0,4)

and JI(2,5).
4.5 Build a Partial Join Index Hierarchy and Propagate Update.
4.6 Storage Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs. . .
4.7 Navigation Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs.

4.8 Update Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs. . .
4.9 Costs of Navigation and Update mix for B-JIH, P-JIH, C-JIH and

Full-ASR.
4.10 Navigation Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Navigation

Selectivities.
4.11 Storage Explosion with Large Fan-outs.
4.12 Partial Join Index for Supporting JI(0,5).
4.13 Associative Search Costs of B-JIH, P-JIH, C-JIH, Full-ASR and Nested

Index vs. Fan-outs.
4.14 Update Costs of B-JIH, P-JIH, C-JIH, Full-ASR and Nested Index vs.

Fan-outs.

5.1 Query Graph of Example 5.10 .
5.2 Query Graph of Example 5.11 .

5.3 Query Plan Generation of Example 5.10 100

5.4 Query Plan Generation of Example 5.11 101

Chapter 1

Introduction

1.1 Motivation

Effective and efficient management of large volumes of complex data are required in

the advanced applications, such as computer-aided design and manufacturing, multi-

media applications with audio and video data, and scientific and medical applications.

New generation of database systems needs to support high level languages for defin-

ing, reasoning, retrieving and manipulating the complex data and to provide efficient

software architectures and techniques for achieving greater modeling power and higher

performance.

Research towards deductive database systems represents a promising direction in

declarative database programming and integration of logic programming paradigm

and relational database technology. Deductive database systems have made great

strides in recent years with encouraging progress in fundamental research and imple-

mentation [121,104, 1051. A large number of research prototypes have been developed

to date, e.g., Aditi [122], CORAL [103], DECLARE and SDS [72], EKS [127], Glue-

Nail! [33], LDL [27], LogicBase [50, 521, LOLA [36], MegaLog [17], and XSB [107].

These achievements clearly show that the deductive database technology has reached

a level of maturity so that the development of deductive database systems for real

applications is feasible.

C H A P T E R 1. INTRODUCTION 2

On the other hand, research towards object-oriented and extensible database sys-

tems represents a promising direction in extending relational database technology

and integrating object-oriented programming paradigm and database technology for

supporting a rich collection of sophisticated data modeling and manipulation con-

cepts [4, 6, 81, 112, 1151. A large number of research prototypes and commercial

systems have been available, e.g., DASDBS [108], EXODUS and Volcano [40, 19, 421,

Gemstone [18], GENESIS [9], Iris and OpenODB [35], 0 2 [5], ObjectivityIDB [98],

Objectstore [88], Ode [I], Ontos [99], Orion and Itasca [80], Postgres and Montage

[116], Probe [loo], Starburst [45, 541, UniSQL [82], VERSANT [125], Zeitgeist and

OpenOODB [128]. The intensive research and commercialization activities demon-

strate that object-oriented database systems are at the forefront of supporting new

applications.

Although deductive database systems and object-oriented database systems have

emerged as promising approaches for supporting advanced applications, both of them

suffer from some drawbacks [lo, 120, 751. Despite a highly declarative and powerful

logical framework, deductive databases only support a flat data model and do not

provide a very powerful modeling mechanism. Object-oriented databases do not have

a recognized logical foundation, which traditionally was considered as very impor-

tant for database programming languages, and do not provide a highly declarative

language interface for accessing and manipulating complex data. There is growing

consensus that integrating the object-oriented paradigm and rule-based deduction

may provide a powerful framework for the next generation of database systems, the

so-called deductive and object-oriented databases (DOOD) l .

DOOD models and languages address the issues of enhancing data modeling power

and high declarativeness of database languages for advanced applications. The high

complexity of DOOD models and languages requires efficient software architectures

and techniques so that DOOD systems can achieve competitive or higher performance

than those of traditional database applications. Efficient query evaluation has been

crucial to the success of relational database systems. Thus it is expected that the

lThe declarativeness of deductive database languages is so emphasized that deductive and object-
oriented databases are also called declarative and object-oriented databases [104].

CHAPTER 1. INTRODUCTION 3

success of DOOD will largely rely on the system performance, especially on the ef-

ficient query evaluation techniques over large volumes of complex data. This thesis

will concentrate on DOOD query evaluation.

1.2 DOOD and Problems in DOOD Query Evaluation

DOOD languages combine deductive database languages and object-oriented database

languages and support features such as declarativeness, deduction, recursion, complex

objects, object identities, class hierarchies, inheritances, encapsulated methods and

abstract data types. A query, expressed in a DOOD language, is only a specification

of what a user wants but not how a user's want can be executed. Thus the DOOD

query language is said to be declarative rather than procedural.

Query evaluation is a process to find and perform an efficient execution of a declar-

ative query for information from databases. The goal of a query optimization is to

translate a query into an (sub)optimal evaluation plan for accessing and manipulat-

ing the databases. A query execution engine is then responsible for executing the

optimal plans. Relational query evaluation techniques have been successful in the

optimization of declarative query languages [112]. Extensive investigations have been

conducted on those key techniques, such as algebraic query optimization, join met h-

ods, and search strategies for optimal query evaluation plans [62, 95, 391. Recent

research into deductive query evaluation has made significant progress in recursive

query optimization [104, 1051. Some of the techniques outperform non-recursive (re-

lational) query optimization in commercial database systems [104]. Query evaluation

in object-oriented database systems is still developing and is the focus of the recent

intensive research [6, 811. Some relational query evaluation techniques, such as alge-

braic query optimization and join methods, have been extended to query evaluation

in object-oriented database systems.

Although there are some similarities between a relational database language and

a DOOD language, the new DOOD features require new evaluation techniques to effi-

ciently process complex DOOD queries. The traditional query evaluation techniques

in relational databases and deductive databases are not powerful enough to handle

C H A P T E R 1. INTRODUCTION 4

all kinds of complex queries. The following is a list of some recognized open or not

well-solved problems in DOOD query evaluation:

Support for eficient navigation or "pointer-chasing". Navigation is an essential

logical operation in DOODs. A navigation is performed following object identi-

fiers along a sequence of logical connections among complex objects. These con-

nections represent logical relationships specified by class/subclass relationships,

attribute relationships, methods, and deduction rules. Navigation operations

may cause significant performance suffering because objects along a navigation

path may be scattered in different pages or blocks of disks, and many 110 oper-

ations on disks may be required to load those related objects into main memory.

Optimization of queries in the presence of complex selections, joins and aggre-

gations. Path expressions, the main syntactic notions in DOOD languages, are

frequently used to express navigations over complex object structures. Naviga-

tions are performed over database objects, but are confined to selective objects

in databases. The constraints are presented in the form of selection and join

conditions, possibly with aggregation functions. These selections and joins are

certainly more general and complicated than those in relational database sys-

tems. The optimization of queries including these complex selections and joins

is not well investigated. This issue is clearly related to the previous one.

User-defined methods and encapsulation. The optimization of queries including

encapsulated methods is still an open problem. Encapsulation is an effective

mechanism for software maintenance. However, it blocks various kinds of the

information, such as the semantics of a method, the cost of computing a method,

the output size of applying a method to a set of input objects, the implemen-

tation of a method, and the navigation operations in a method. These kinds of

the information are considered very important for efficient query processing.

Recursive queries. Recursive query evaluation was the focus of intensive research

in deductive databases. However, little has been done on DOOD recursive query

evaluation. It is not clear how the new features of DOOD impact the recursive

C H A P T E R 1. INTRODUCTION 5

query evaluation and how the recursive query evaluation techniques, developed

for deductive database systems, can be extended to handle DOOD recursive

query evaluation.

This list does attempt to serve as a guide for our research towards DOOD query

evaluation. However, it is, by no means, a complete list of all open or not-well

solved problems. There are other interesting problems in DOOD query evaluation.

For example, the full support of object identities may lead to several definitions of

"equivalent" between "semantically equivalent" object algebraic expressions. This

causes not only the various problems of view definition in object-oriented database

systems but also the equivalence conservation problem when performing algebraic

query optimization [101, 1101.

An object in a class can inherit attributes and methods from its superclasses. The

implement at ions of these at tributes and met hods, however, could be different from

those of its superclasses. It is impossible, at query compilation and/or optimization

time, for a query optimizer to determine which implementations would be invoked

at query run time. The polymorphism of attribute names and methods, therefore,

makes it difficult for the query optimizer to perform optimization before queries are

actually evaluated.

1.3 Contributions

This thesis focuses on DOOD query evaluation and presents new approaches to the

issues in the previous list. The following research results constitute the main contri-

butions of this thesis.

0 Support for eficient navigations [130, 1311. A novel indexing structure, called

the join index hierarchy, is proposed to handle the problem of "goto's on disk"

or navigations through complex objects. The method constructs a hierarchy

of join indices and transforms a sequence of pointer chasing operations into a

simple search in an appropriate join index file, and thus accelerates navigations.

The method extends the join index structure studied in relational and spatial

CHAPTER 1. INTRODUCTION 6

databases, supports both forward and backward navigations among objects and

classes, and localizes update propagations in the hierarchy. An experimental

study shows that partial join index hierarchy outperforms several other indexing

mechanisms in overall performance.

Query optimization in the presence of complex selections, joins, aggregations

and encapsulated methods [129, 1321. A systematic classification of complex

selections and joins is presented. It is illustrated that different types of selec-

tions and joins require different kinds of optimization strategies, and some se-

lections and joins with aggregation functions can be transformed into equivalent

but more efficient forms of selections and joins without aggregation functions.

Path expressions (navigation operations) in encapsulated methods are revealed.

Consequently, common navigation operations among encapsulated methods and

queries can be exploited for improving query evaluation efficiency. Query graphs

are employed to generate query evaluation plans.

Recursive query compilation and evaluation [50, 51,521. The influence of DOOD

features on recursive query evaluation is investigated. A normalization process

is proposed to serve not only as a pre-processing stage for compilation and

evaluation but also as a tool for classifying recursions. A class of recursions,

called DOOD linear recursion, is identified which can be efficiently processed by

the extension of the query-independent compilation and chain- based evaluation.

In addition, the evaluation of DOOD nested linear recursions and the integration

with other evaluation techniques are discussed as well.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes a DOOD model and

a query language. The model and language are based upon F-logic [75] and XSQL [73].

They serve as research vehicles for the investigation of DOOD query evaluation in the

later chapters. In Chapter 3, a comprehensive review of query evaluation techniques

in relational, deductive and object-oriented database systems is presented. Problems

CHAPTER 1. INTRODUCTION 7

beyond relational query evaluation techniques are discussed. These problems motivate

the research efforts reported in this thesis. In Chapter 4, a new index structure, called

the join index hierarchy, is proposed to handle the problem of navigations through

complex objects. Chapter 5 presents a systematic study of query optimization in

the presence of complex selections, joins, aggregations and encapsulated methods. In

Chapter 6, the influence of DOOD features on recursive query evaluation is investi-

gated. The query-independent compilation and chain-based evaluation are extended

to handle a class of DOOD recursive queries. Finally, Chapter 7 concludes the thesis

with discussion and future research.

Chapter 2

Deductive and Object-Oriented

Database Model and Language

2.1 Introduction

Considerable efforts have been made towards integrating a logic paradigm with object-

orientation and formalizing the concepts of object-orientation, e.g., [2, 3, 93, 26, 74,

76, 25, 75, 87, 751. Maier's 0-logic [93], influenced by kt-Kaci 's work on +-terms

[2, 31, represents an early attempt. The subsequent work on C-logic [26], F-logic

[74, 761 and PathLog [37] continues this effort. Although Hilog [25] is itself not a

database programming language, it provides an implementation platform for object-

oriented languages. SchemaLog [87] extends the approaches of Hilog and F-logic and

provides a logical foundation of schema integration and evolution in heterogeneous

database systems. Several database research prototypes, for example, CORAL++

[114], LDL++, and COMPLEX [43], incorporate some limited object-oriented features

into deductive database languages.

In this chapter, a DOOD data model based upon F-logic [75] and a DOOD query

language based upon XSQL [73] are introduced not only to demonstrate the salient

features of a DOOD model and language but also to serve as research vehicles for the

investigation of DOOD query evaluation in the later chapters.

CHAPTER 2. DOOD MODEL AND LANGUAGE 9

F-logic is a logic with higher-order syntax1. It supports all the major features of

object-orientation including those higher-order concepts such as objects, object iden-

tities, classes, methods, class hierarchies, inheritance, etc. Its semantics is restricted

enough so that the first-orderness is preserved. F-logic intends to stand in the same

relationship to the ob ject-oriented paradigm as the first-order predicate calculus to

the relational system, and to lay a logical foundation for object-oriented data model.

2.2 DOOD Data Model

Like predicate calculus, the language of F-logic consists of a set of formulas which are

built from object molecules connected by 7, V and A, and the quantifiers 3 and V,

and object molecules which are built from id-terms.

Definition 2.1 id-term. An id-term is defined inductively:

a variable is an id-term.

a constant is an id-term.

f (tl, ..., t,) is an id-term if f is an n-ary function and t l , ..., t, are id-terms.

Objects are referenced via their denotations or identifiers which are ground id-terms.

For example, alex and mother(a1ex) are ground id-terms which act as object identi-

fiers. An id-term can alos be used to represent a class name, attribute name and a

method name.

Definition 2.2 Object molecules. There are four kinds of object molecules:

Predicate object molecules: any predicates are predicate object molecules.

'By first-order syntax, we mean that variables cannot appear in the places where predicates and/or
function symbols do. In a logic with a higher-order syntax, variables are allowed to appear in the
places where predicates and/or function symbols do. In a logic with a first-order semantics, variables
can only range over domains of individuals or over the names of the predicates and functions. By
higher-order semantics, we mean that variables can range over domains of relations and functions
constructed from the domains of individuals [25].

CHAPTER 2. DOOD MODEL AND LANGUAGE 10

is-a object molecules: either P:Q or P::Q where P and Q are id-terms. The

first denotes a class-membership while the second represents a class/subclass

relationship.

data object molecules, denoted by

or

C : D[ll + C1; ...; 1, + Cn],

where C is an id-term representing an object identity and D is an id-term denot-

ing a class which C belongs to. A label 1; is of the form Attr or Method@X1, ..., Xm

where Attr is an id-term representing an attribute name, and Method and X;

are id-terms representing a method name and argument objects respectively. C;

is an id-term, a set of id-terms, a data object molecule or a set of data object

molecules representing the method result.

signature object molecules, denoted by

where C; is an id-term representing a class name. A label I; is of the form Attr

or Met hod@X1, ..., Xm where Attr is an id-term representing an attribute name,

and Method and Xi are id-terms representing a method name and argument

object types respectively. C; is an id-term or a set of id-terms representing the

method result type.

For example, STUDENT :: PERSON is an is-a object molecule. It denotes that

STUDENT is a subclass of PERSON. alex : STUDENT is also an is-a object

molecule which represents that alex is an instance of the class STUDENT.

C H A P T E R 2. DOOD MODEL A N D LANGUAGE

Example 2.1 Data object molecule for the student alex.

a l ex[Name + "A lex" ;

Age + 30;
HomeAddress + addr[Country

C i t y

S tree tName

Street Number

ZipCode

G P A -+ 3.8;

TalceCourse -+ {cmpt400)].

-+ canada[Name -+ "Canada" ;

Population -+ 24,000,000;

Area -+ 9,900,000];

+ vancouver[Name -+ "Vancouver";

Population -+ 1,500,000;

Area + 5001;

+ 'L Winch1 ' ;

-+ 6000;

+ V 5 B 2L31;

It defines several attributes of alex, i.e., N a m e , Age, HomeAddress, etc. The follow-

ing is also a data object molecule which defines the values of applying method

FromLargeCountryOrMetro

to alex to be T r u e ,

alex[FromLargeCountryOrMetro@ -+ T r u e] .

Example 2.2 Signature object molecule for class D E P T

D E P T [N a m e + Str ing; Chairperson + P R O F ; 0 f ferCourse + { C O U R S E)]

Signature object molecules are used to express the typing constraints. For example,

the Name of a department is of type String and the Chairperson of a department is

of type PROF.

Definition 2.3 Formulas. Formulas can be defined inductively:

CHAPTER 2. DOOD MODEL AND LANGUAGE

Object molecules are formulas;

c p V $I, cp A $J and 19 are formulas if y and $J are formulas;

VXy, 3Y$I are formulas if c p and 1C, are formulas, and X and Y are variables.

Definition 2.4 Rule. A rule has the form

where H2 and B; are object molecules.

Example 2.3 Rule.

X[StudentO f@ -+ {Y)] t-

Y : PROF, Y[TeachCourse 4 {C)], X : STUDENT[TakeCourse -+ {C}].

If a student is taking a course taught by a professor, then the student is a student of

the professor.

Definition 2.5 Query. A query has the same form as a rule without a head.

Example 2.4 Query.

?- S : STUDENT[

HomeAddress -+ addr[Country + country [Name + "Canada"]];

TakeCourse -+ {courses[Dept -+ cs[Name -+ "Computer Science"]]);

GPA -+ 4.01.

The query is to find all the students who come from Canada, are taking some computer

science courses and have a 4.0 GPA.

The above query could be presented in a simpler form by using a path expres-

sion. A path expression, a syntactic notion, is often used to refer complex objects.

Intuitively, a path expression is a traversal over the class composition hierarchy. For

example,

s.HomeAddress.Country.Name

H is a normalized object molecule. The definition of a normalized object molecule is in Chapter 6

CHAPTER 2. DOOD MODEL AND LANGUAGE 13

describes a path expression which starts from an object s in class STUDENT, con-

tinues to the home address and the country of s, and ends at the name of the country.

It simply denotes the name of the country of the student s. The value of a path ex-

pression can be either single-valued or set-valued which depends on whether there are

set-valued attributes in the path expression. For example, the value of the following

path expression

s.TakeCourse.Dept.Name

is a set of the names of the departments which offer the courses the student s is taking.

Here TakeCourse is a set-valued attribute. Instead of

S[HomeAddress -+ addr[Country -+ country [Name -+ "Canada"]]],

it could be written as the following path expression

S.HomeAddress.Country.Name = "Canada".

Therefore the above query could be rewritten as

? - S : STUDENT, S[S.HomeAddress.Country.Name = "Canada",

S.TakeCourse.Dept.Name = "Computer Science",

S.GPA = 4.0.

2.3 DOOD Query Language

XSQL [73] is a query language based on F-logic and incorporates all major object-

oriented features. It is capable of expressing sophisticated queries in a very compact

way via path expressions. In XSQL, selections and joins could be in a more general

form than those in relational databases. For example,

s.HomeAddress.Country.Name = "Canada"

selects all the students s who are from Canada. And

s.TakeCourse.Dept.Namev = "Computer Science"

CHAPTER 2. DOOD MODEL AND LANGUAGE 14

selects all the students s who are only taking computer science courses. Here V is a ,

quantifier over the set which is the value of the path expression s.TakeCourse. Dept. Name.

The comparisons between path expressions form joins. A join between STUDENT

and PROF could have the following comparison

as a join predicate. It describes a pair of a student and a professor such that all the

courses taken by the student are taught by the professor.

Example 2.5 Finds all pairs of students and universities such that all the faculty

members of the university are over 40, the total numbers of the courses offered by

the universities are over 500, all the courses taken by the students are taught by the

university presidents, and the students are from the city Prince George.

S E L E C T u.Name, s.Name

FROM u U N I V E R S I T Y , s S T U D E N T

W H E R E u.Depts.FacultyMembers.Agev > 40

A N D COUNT(u.Depts.0 f f ercourse) > 500

A N D s.TakeCoursev = u.President.TeachCourse3

A N D s. HomeAddress.City.Name = "Prince George"
0

Example 2.6 Finds all the names of students who are from a metropolis or a large

country with a population over 20,000,000, and who are only taking computer science

courses and taking courses over 400 level.

S E L E C T s.Name

FROM s S T U D E N T

W H E R E FromLargeCountryOrMetro(s)

A N D s.HomeAddress.Country.Population > 20,000,000

A N D s.TakeCourse.Dept.Namev = "Computer Science"

A N D s.TakeCourse.Numbert/ > 400

CHAPTER 2. DOOD MODEL AND LANGUAGE

XSQL can be used to query not only databases but also schema information such as

class hierarchy and class composition hierarchy information.

Example 2.7 Query schema. Finds all the subclasses of PERSON.

SELECT X

W H E R E X is-subclass-of PERSON

The query returns the names of all subclasses of PERSON.

Example 2.8 Query data and schema.

SELECT Y

FROM x PERSON

W H E R E x.Y.City.Name = "Vancouver"

The query returns the attribute name HomeAddress if there exists a person in

PERSON who is from Vancouver. Otherwise it returns N I L even though

HomeAddress is an attribute of PERSON. 0

The semantics of XSQL is rooted in F-logic as it has been shown in [73] that there

exists an effective procedure that for any given XSQL query returns an equivalent

first-order query in F-logic.

Chapter 3

Query Evaluation in Database

Systems

3.1 Introduction

Database models and languages have significant impacts on query evaluation tech-

niques. Before the introduction of relational database systems, there were two popu-

lar approaches used to construct database management systems. The first approach

(called hierarchical), exemplified by IBM's IMS [58], has a tree-based data model and

navigational query language. All data records are arranged into a collection of trees.

An application programmer could navigate from root records to some child records,

and access records one at a time by employing the navigational query language. The

second approach (called network) is based upon a graph-based data model which was

proposed by the Conference on Data Systems Languages (CODASYL) [30]. Similarly,

all data records are assembled into a collection of directed graphs. An application

programmer could access records from an entry point by navigations over the graphs

with a navigational query language. In both approaches, an application programmer

must write a complex program to navigate through a database in order to answer a

specific database query. It is the responsibility of a user to specify not only what she

or he wants but also how her or his wants could be obtained.

In contrast, the relational data model provides a fundamentally different approach.

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 17

Data records are represented by relations. A user accesses a database through a declar-

ative query language by specifying what she or he wants. It is the responsibility of a

database system to actually evaluate the user's query. A query processor in a database

system translates a user's query into an efficient evaluation plan, and executes the

plan for accessing or manipulating the database. A query optimizer is responsible

for translating a query into an (sub)optimal evaluation plan. The translation, called

query optimization, is a process of planning and searching for optimal query evaluation

plans and employing techniques from many disciplines, such as artificial intelligence,

dynamic programming and operational research. An evaluation plan is optimal in

the sense that it minimizes some measures, such as users' waiting time for results

produced by a database system, CPU, I/O and network communication time and ef-

fort, total resource usage, and possibly the combination of the above measures. After

an optimal query evaluation plan is obtained, a query execution engine executes the

plan, and accesses or manipulates the database as instructed in the user's y e r y l .

Query evaluation has been explored in the context of relational database systems

and deductive database systems and has received growing attention in the research

community for the new generation of database systems. DOOD challenges the tradi-

tional query evaluation techniques with its sophisticated modeling power and highly

declarative language. The new features, such as complex objects, object identities,

classes, methods, encapsulations, inheritances, etc., exert essential influence on query

evaluation. In this chapter, query evaluation techniques in relational databases, de-

ductive databases and object-oriented databases are surveyed. The emphasis is on

query evaluation in object-oriented databases and the important problems in DOOD

query evaluation.

3.2 Query Evaluation Techniques in Relational Databases

Many important studies on relational query evaluation are focused on algebraic query

optimization, join methods and strategies of choosing optimal evaluation orders of

'In a distributed heterogeneous database system, information may need to be collected from
several databases in different locations or of different types.

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS

joins [62, 391.

Algebraic query optimization is a process of transforming an algebraic expression

of a user's query into an equivalent and but more efficient form. The new expression

could be either logically equivalent to the original one based upon the relational

algebra [62, 119, 34, 861, or semantically equivalent to the original expression [83, 21,

22, 1341. The latter transformation is often called semantic query optimization which

employs semantic information, e.g., integrity constraints, in databases.

The join is the most important operator in relational databases. In a two-way

join, the join result is a subset of the Cartesian product of the two input relations.

The elements in the subset satisfy the join condition. Many join methods have been

developed and the most important among them are the nested-loops join[79], sorted-

merge join [85, 381, hash-based join [84, 951 and pointer-based join methods [I l l] .

Some of the join methods, such as the nested-loops join and pointer-based join, can be

applied to deductive and object-oriented databases [I l l] . The recent surveys [95, 391

cover some comprehensive reviews on join methods.

Most queries in relational databases can be considered as select-project-join queries.

Thus selecting an optimal query evaluation plan is to choose an optimal evaluation

order of joins. In large database systems, there could be a large number of joins in

a complex query. An exhaustive search for an optimal evaluation plan is unaccept-

able. The pioneer relational database system prototype, System R developed at IBM,

proposed the most influential principle of relational query optimization: perform pro-

jection and selection as early as possible [log]. The idea is to eliminate data (tuples)

irrelevant to answers in an early stage of evaluation so that query execution is accel-

erated. In addition, many query evaluation plans, which may be quite expensive, are

eliminated from consideration. Consequently, the time spent on searching optimal

evaluation plans is also reduced. Recently, randomized algorithms such as iterative

improvement, simulated annealing and two-phase optimization [61, 118, 59, 601 were

introduced to search optimal evaluation plans. An evaluation plan is represented as

a join processing tree, which, in turn, can be considered a state in a state space.

Randomized algorithms perform random walks in a state space via a series of moves

(manipulations of join processing trees). A cost is associated with each state. The

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 19

algorithms try to find a state with local (global) minimum cost according to prede-

termined criteria (termination conditions).

3.3 Deductive Query Evaluation Techniques

The magic-sets technique is the most influential evaluation method for recursive query

evaluation in deductive database systems. It was originally proposed by Bancilhon,

Maier, Sagiv and Ullman [7], and extended by Beeri and Ramakrishnan [12, 131 later.

The motivation of the magic-sets rule rewriting technique [l lg , 1041 is that a query

often only asks for a small set of the entire relation corresponding to an intensional

predicate. A top-down search would start from the query as a goal and employ the

rules from heads to bodies to create only goals relevant to the query. Some of them,

however, may lead to the "dead end". The disadvantage is that this kind of approach

may get into recursive loops, perform repeated computation of some subgoals, and is

very hard to determine whether all the answers to the query have been found.

On the other hand, a bottom-up search begins from the rule bodies to the heads.

It may consider some facts which are not relevant to the query and would not be con-

sidered in the top-down approach. However, this approach has advantages because it

avoids the problems of looping and repeated computation and facilitates more efficient

set-at-a-time processing than tuple-at-a-time processing in the top-down search.

The magic-sets focus on the top-down approach combined with the looping-freedom,

easy termination, and the efficient evaluation of bottom-up search. It can be used to

rewrite the rules and pass the bindings from the query so that the advantages of both

top-down and bottom-up approaches are integrated.

Example 3.1 Same generation. Two people are the same generation if they are

siblings or their parents are the same generation. Here "sg" stands for "same gener-

ation". It is an intensional predicate. Both "sibling" and "parent" are extensional

predicates. The first rule says that if X and Y are siblings then they are the same

generation. The second rule means that if the parent U of X and the parent V of Y

are the same generation then X and Y are the same generation. The query ?-sg(john,

C H A P T E R 3. QUERY EVALUATION IN DATABASE S Y S T E M S

Z) tries to find all the people who are the same generation as "john".

sg(X, Y) : - sibling(X, Y).

sg(X,Y) : - parent(X,U),sg(U,V),parent(Y,V).

?- sg(john, 2).

In all the relevant tuples (c, d), where c and d are the same generation, c must be

an ancestor of john. A "magic predicate" is used as a filter to retain only those

potentially relevant elements. john is the first relevant one, i.e.,

In a top-down evaluation, if the rule head is of the form sg(c, Y), where c is an ancestor

of john, then the body of the above recursive rule will be

parent (c, U), sg(U, V), parent (Y, V).

U must be bound to a parent of c, thus an ancestor of john. Therefore, if c is relevant,

SO are c's parents, i.e.,

magicsg(U) : - magicsg(X), ~ a r e n t (X , U).

The original rules and the query can thus be rewritten as

sg(X, Y) : - magicsg(X), sibling(X, Y).

sg(X, Y) : - magicsg(X), parent(X, U), sg(U, V), ~ a r e n t (Y, V).

magicsg(U) : - magicsg(X), parent (X, U).

magicsg(john).

magicsg simulates how the goals are generated in a top-down evaluation.

magicsg(john) and the generated facts of magicsg are used as a filter in the rules

defining sg to avoid irrelevant facts to the answers. Thus a bottom-up evaluation of

the rewritten rules reaches a selective search similar to that achieved by top-down

evaluation of the original rules. CI

The magic-sets were originally proposed to handle recursive queries, however, it

is applicable to non-recursive queries as well and found to be superior to techniques

used in commercial database systems [97].

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS

There are other approaches which have the same effects as the magic-sets. For

example, the query-subquery approach [126,127] combines top-down, bottom-up and

side-way information passing features. Queries and subqueries are passed top-down

from the head of a rule to its body. Answers generated from a rule are returned

bottom-up to their corresponding subqueries. In a rule, answers to the first several

subqueries are passed side-way to derive answers to the rest of the subqueries. An in-

teresting project XSB led by Warren [25, 1071 is founded on SLG resolution, a variant

of OLDT resolution, which is top-down evaluation with memoing. SLG resolution is a

partial deduction framework. Each query is transformed step by step into a set of an-

swer clauses. It allows arbitrary control strategies for selecting which transformations

to apply and has good termination characteristics.

Chain-based evaluation by Han [47, 46, 481 and prototyped by Han, Ling and

Xie [50, 521 represents an alternative approach to efficiently evaluate a very popular

class of recursive queries. The method is motivated by the observations that most of

studied recursions can be compiled into highly regular chain-forms. The compilation

can capture the bindings which could be hard to be captured by other methods. The

chain-based methods can explore the query constraints, regularity of recursions and

other features of a program to efficiently evaluate recursive queries.

3.4 Query Evaluation in Object-Oriented Databases

Although relational data models only support small subset of functionalities of object-

oriented data models, the commonalities promise the possibility of employing the

relational query optimization and evaluation techniques to object-oriented query pro-

cessing. Many query optimization techniques in object-oriented database systems are

based upon algebras. These algebras are similar to the relational algebra in supporting

bulk data types, e.g., sets, but are generalized to support operations on lists, arrays,

user-defined operations and inheritance. This indicates that the relational algebraic

query optimization techniques can be extended to object-oriented query processing.

The approaches can be classified into two classes: graph-based object-oriented

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 22

query optimization and algebraic transformation-based object-oriented query opti-

mization. In the first approach, queries are represented by query graphs. Trans-

formations of queries is performed by manipulating the corresponding query graphs.

Different ways of manipulating query graphs lead to different query evaluation plans.

The second approach is featured by direct manipulation of queries in algebraic ex-

pression forms. The algebraic expressions are translated into equivalent and but more

efficient forms for processing.

Any algebraic expressions can be represented in graph forms and vice versa. Thus

there is no fundamental difference between the two. In fact, the approach in Cluet

and Delobel [29] takes advantages of both. In Lanzelotte et al. [go], the regulations

of generating processing trees, i.e., query evaluation plans, are expressed in rewrite

rules, and the optimization is similar to the algebraic transformation-based approach.

3.4.1 Graph-Based Object-Oriented Query Optimization

Banerjee et al. [8] propose a very primitive query graph model which resembles the

relational one. In a query graph, classes in a query are denoted by nodes, whereas

attribute relationships, and classes/subclasses relationships are denoted by edges. The

query optimization is considered as selecting an optimal order in which the classes in

a query are traversed. Two basic ways of traversing the nodes in a query graph are

proposed: forward traversal and backward traversal. A query cost model, which is

quite similar to the relational one, is proposed to determine an optimal access plan

for a query. Whenever the ordering of nodes in a query graph, i.e., an access plan, has

been given, the evaluation of the query is performed in either forward or backward way

according to the plan. This approach only considers two traversals, i.e., forward and

backward in evaluating queries. Consequently, some better query evaluation plans

might be eliminated from consideration.

Lanzelotte et al. [go] consider a more sophisticated graph-based model which cap-

tures not only logical relationships expressed in a query but also storage information

relevant to the query. A query graph consists of predicate nodes, name trees and

dataflow arcs which connect name trees to predicate nodes. The predicate nodes,

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 23

which connect name trees and represent explicit joins, contain conjunctive boolean

formula of classes and their attributes in the name trees. An input name tree consists

of nodes, which denote classes and their attribute classes. The nodes are connected by

edges representing the attribute relationships (implicit joins). An output name tree

specifies the projection result classes and their attributes in a query. A conceptual

schema captures logical relationships between classes in a database while a physical

schema captures storage information, such as clustering and path indices. For exam-

ple, if objects in some classes are clustered together, then there will be one node in

the physical schema which represent the cluster. A query is first translated onto the

physical schema. The result of the translation is a connection graph which makes

explicit the clustering and path indices information related to the query. A query

evaluation plan can be represented as a processing tree derived from the connection

graph. The selection of optimal query evaluation plans is formulated as a search prob-

lem in a processing tree-based space. Rewrite rules for manipulating processing trees

are presented for deterministic search to select optimal processing trees.

Cluet and Delobel [29] propose a typed algebra and take advantage of both alge-

braic rewrite rule and graph-based approaches. The rewrite rules in their approach are

encoded with some object storage information, such as path indices and object place-

ment policy. The typed algebra facilitates factorizations of not only local common

subexpressions but also global common subexpressions. The algebraic expressions of

queries can also be represented by directed acyclic graphs (DAGs) which can capture

both logical relationships of classes (types) in queries and physical storage informa-

tion.

3.4.2 Algebraic Transformation-Based Query Optimizations

in Object-Oriented Databases

Shaw and Zdonik [I101 propose an object algebra which synthesizes relational con-
. .

cepts with object-oriented databases. Algebra operations include select, project, join,

nest, unnest, dupeliminate and coalesce, which are the generalizations of relational

operations. The last two are specifically for eliminating duplicate copies of objects

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 24

or duplications in tuple attribute values. The algebra model fully supports object

identity in the sense that any query results are also considered as objects. Concepts

of equality and identity between algebraic expressions are introduced with algebraic

transformation rules which preserve the equality or identity between algebraic expres-

sions before and after transformations. The approach adopted in Osborn [l o l l is also a

typical example of an extension of relational algebraic query optimization. An object

algebra is proposed to support most features of a structural object model. Transforma-

tion rules include idempotence of unary operators, commutativity of unary operators,

commutativity of binary operators, associativity of binary operators, and distributiv-

ity of unary operators over combine, union, intersect and subtract. Transformation

rules, which preserve equality and/or identity of algebraic expressions, are presented

as well. These transformation rules form the basis for algebraic query optimizations.

Vandenberg and DeWitt [124] present a many-sorted algebra with algebraic opera-

tors on grouping, arrays, references and multisets, and a comprehensive collection

of transformation rules governing these operators. Optimization of queries including

methods and polymorphism of methods and attribute names are also discussed.

Beeri and Kornatzky [ll] propose an object-oriented query language by extend-

ing a functional programming language. The query language is structured around a

small number of bulk data processing abstractions with a set of transformation rules,

e.g., condition and composition of function applications, production and construction,

apply-to-all, pump, etc. In addition, user-defined methods coded in the same query

language are considered as subqueries when a query including the methods are opti-

mized. Two rules, i.e., pushing an apply-to-all into a method and pulling a filter out

of a method, are proposed for optimizing a query in the presence of methods.

Object-oriented query optimization in Straube and Ozsu [I171 proceeds in two

stages: logical and physical expression optimizations. In the first stage, a logical

query expression is translated into an equivalent but more efficient form according to

algebraic transformation rules. There are two types of algebraic rewrite rules: pure

algebraic rewrite rules and semantic rewrite rules. The former rules can be applied to

any expression if there is a pattern match of subexpressions. However, the latter are

applicable only when additional conditions on a database schema are met. Hence the

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 25

semantic rules are specific to an application. In the second stage, an optimal logical

query expression from the first stage is mapped into a sequence of data manipulations

at an object manager level. Different mappings may lead to different query evaluation

plans. Object storage and statistical information can be used to determine an optimal

plan for a query. Blakeley, McKenna and Graefe [16] describe the Open OODB query

optimizer generated from Volcano Optimizer Generator [42]. Query optimization is

performed in two stages as well. An input query to the optimizer is expressed in

an algebraic form similar to a relational one. The query is first simplified into an

equivalent but more efficient form according to the transformation rules, and logical

and physical properties. Then the correspondence between algebraic operators in a

query and execution algorithms is established with implementation rules. This process

generates an optimal evaluation plan.

Guo et al. [44] present a unique algebra called association algebra. The domain of

the algebra operations is a set of associated patterns which are collections of objects

connected via attribute relationships and non-associations. The algebra maintains

closure property, i.e., both input and output of an algebraic operation are associated

patterns. It is not necessary to introduce equality or identity as in [110, 1011 since

the algebraic operations directly manipulate associated patterns which preserve struc-

tural information of objects as well as object identities. Even though the algebra is

quite unique, the query optimization technique is quite similar to the other algebraic

transformation-based approaches.

3.5 Problems in DOOD Query Evaluation

This section identifies several important open or not well-solved problems in DOOD

query evaluation and reports research progress towards the problems. The problems

include navigation through complex objects, query optimization in the presence of

complex selections, joins and aggregations, user-defined methods and encapsulation,

and recursive query evaluation.

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS

3.5.1 Navigation through Complex Objects

DOOD supports complex data objects and enables explicit and natural representa-

tion of logical relationships among complex objects via class/subclass hierarchies,

attributes, methods, object identities, etc. Thus, navigation among different classes

and objects via class composition hierarchies and/or class hierarchies is an essential

operation. A navigation from one object in a class to objects in other classes is essen-

tially a "pointer chasing" (using object identity "OID" references) operation which

may cause significant performance degradation because the objects to be accessed

may be stored at widely scattered locations and many disk read operations may be

required to fetch them into main memory [39]. The attempts to solve this problem

can be classified into three classes of techniques: indexing methods which includes

nested indices [94, 15, 14, 28, 241 for associative search and navigation index struc-

tures [68, 57, 1301, replication and caching [I l l , 651, complex object assembly [66],

and read-ahead buffering [102, 311.

In Maier and Stein [94], a series of index components, indices on each level of

the nested attributes, are maintained for the purpose of update propagations. In

Bertino and Kim [15], three index structures are presented: the nested index, path

index and multiindex, which have been later extended to handle inheritance of classes

appearing in a path expression [14]. The nested index structure facilitates associative

search and update by storing together the key values of the tail attribute, the objects

of the head class, and the intermediate objects in a path expression into primary

records. An auxiliary index, which basically keeps the direct reference information

between objects, together with the information in primary records is used to propagate

updates. The nested index structure in general outperforms the other two index

structures [14]. Choenni et al. [28] propose an optimal index configuration by splitting

a long path expression into some shorter ones, and by indexing the shorter paths with

the index structures in [15, 141. Chawathe, Chen and Yu [24] take index interaction

into consideration when selecting a set of nested indices for nested object hierarchies.

The index interaction refers to the phenomenon that the inclusion of one index might

have impact on the benefit obtained by the other indices if the former is overlapped

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 2 7

with the latter ones. The problem of selecting an optimal index scheme is formulated

as an optimization problem against an objective function. The experiment shows the

index selection does improve the overall performance. These approaches only support

associative retrieval of objects through nested attributes but not navigations in both

directions along a reference chain.

Kemper and Moerkotte [68] present a data structure, called the access support

relation, which keeps the identifiers of the objects connected by the attribute relation-

ships in a path expression and can span over the reference chains of a path expression.

Several alternatives which include the full, canonical, left and right extensions and the

decomposition of access support relations for a given path expression are discussed.

The optimal one is determined according to the domain-specific information such as

the probabilities of different types of queries and updates. The storage size of each

component in an access support relation could be la.rge because all the identifier se-

quences of the joinable objects along an object path corresponding to the component

are stored, and any two objects in two classes could be connected by more than one

object path. Further, an update on one object may need to be propagated to sev-

eral components or to the entire access support relation, which could be costly. Hua

and Tripathy [57] propose a navigation structure, called the object skeleton, which

essentially is a network of object identifiers. Two object identifiers are connected if

the corresponding objects are associated by, for example, an attribute relationship.

The approach is more general in the sense that the navigations can be supported

between two classes not only in a path expression but also over a network of classes.

The navigations, however, are supported efficiently only if the starting points of the

navigations can be located by using some nested indices such as those in [15, 141.

Besides, an update is required to be propagated over the network of object identifiers

and the nested indices.

Shekita and Carey [I l l] describe a mechanism, called field replication, which repli-

cates the values of nested attributes. In-place field replication stores the replicated

data with the objects, whereas separate field replication stores the replicated data in

a separated place. The separated replication is used to solve the issue of updating

the shared replicated data. Inverted path structures, which are similar to the index

C H A P T E R 3. QUERY EVALUATION IN DATABASE S Y S T E M S 28

components in [94], are used to support update propagation. Kato and Masuda [65]

present a mechanism, called persistent caching, which is similar to the field replica-

tion [I l l] . In this approach, the referenced objects are cached into the referencing

objects. Update is delayed until the cached objects are required. A hash table stored

in the main memory is employed to maintain the cached values consistent with the

original objects. These approaches support only forward navigations along a reference

chain. Besides, extra mechanism and information are needed in order to maintain the

replicated or cached data consistent with the original data.

Keller, Graefe and Maier [66] propose an assembly operator which efficiently trans-

lates a set of complex objects from their disk representations to quickly traversable

memory representations. The complex objects could be one or more objects connected

by "inter-object" references. Templates are used to store structural and statistical in-

formation of objects. Component iterators use the templates to determine what parts

of a complex object to assemble, when assembly is complete or how to find unresolved

references within a newly retrieved object. The assembly operator uses the templates

and component iterators to selectively and intelligently assemble complex objects.

Palmer and Zdonik [lo21 propose saving past reference patterns for predicting fu-

ture object faults. If accesses similar to the stored patterns are detected, read-ahead

is activated to prefetch the likely required pages. Curewitz, Krishnan and Vitter [31]

discovered the similarity between data compression and prefetching. The intuition is

that a data compressor usually compresses data by assuming a dynamic probability

distribution on the data. A data compressor encodes highly expected data with fewer

bits but unexpected data with more bits. Therefore, if a data compressor success-

fully compresses data, its assumption of probability distribution on the data must be

realistic and can be employed effectively for predicting and prefetching data. Three

data compression algorithms are applied to prefetching. The experiment results show

that the prefetches based on the data compression methods achieve more significantly

reduced object fault rates than a pure LRU. If references fit well into the expected

pattern, the prefetching is effective. On the other hand, any prefetching methods

need to do some "guess work". The performance could be suffering if some changes

occur in the reference pattern.

C H A P T E R 3. QUERY EVALUATION IN DATABASE S Y S T E M S 29

3.5.2 Queries Including Complex Selections, Joins and Ag-

gregat ions

Navigation operations are frequently expressed in the form of path expressions, a

main syntactic notion in DOOD languages. Although navigations are performed over

a collection of objects which are connected by some logical relationships and are stored

in different pages or blocks on disks, the navigations are often constrained to some

selective objects. These constraints are represented by selection and join conditions,

sometimes with aggregation functions. It is, therefore, important to investigate how

these constraints, i.e., selections and joins, can be employed to efficiently process these

navigations.

Kemper and Moerkotte [69] propose a rule-based query optimizer which uses access

support relations to evaluate path expressions. Several rules are presented to handle

path expressions, e.g., prolonging path expressions, splitting path expressions, etc.

Cluet and Delobel [29] transform pointer chasing operations into join operations.

By introducing typing and intermediary variables in path expression-based algebraic

expressions, they make it possible to employ equivalences which can not be otherwise

employed. The formalism also allows factorization of common sub path expressions

in a query.

In Blakeley, McKenna and Graefe [16], a logical algebra operator, called materialize

or Mat, is proposed to optimize the evaluation of path expressions. It explicitly

indicates the use of the inter-object references in a path expression. A materialize

operator can be transformed into joins if theuscope" introduced by a materialize

operator is aUscannable" object. The joins can be implemented by join methods such

as the hybrid hash join and the assembly operator.

These approaches address the matter of efficiently evaluating path expressions by

using access support relations or translating them into joins. However, the issue of

whether and how the constraints on path expressions can be employed effectively

to evaluate the path expressions was not investigated in these studies. Chapter 5

proposes "Push constraint condition inside navigation" to deal with the issue.

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS

3.5.3 Met hods and Encapsulation

Query evaluation in the presence of encapsulated methods is a challenging issue. In

most of the previous studies, e.g., [8, 90, 29, 110, 101, 1171, encapsulated methods are

considered as black boxes. Consequently some optimal query evaluation plans may

be excluded from consideration.

Encapsulation is good for effective software maintenance. However, encapsulation

hides the implementations of methods and blocks the information required for query

optimization. Graefe and Maier [41] and Daniel et al. [32] propose the revelation

of encapsulated methods to query optimizers. Their papers indicate that methods

may eventually be transformed into algebraic expressions and substituted by the cor-

responding algebraic expressions. Thus queries can be optimized by a conventional

query optimizer, e.g., the EXODUS extensible query optimizer. However, the trans-

formations of arbitrary methods into algebraic expressions are not presented in their

papers.

Vandenberg and DeWitt 11241 take into account the optimization of queries in-

cluding methods. Methods are coded by the EXCESS query language and therefore,

can be substituted by the query language codes during the optimization process. In

both Beeri and Kornatzky [ll] and Jiao and Gray [64], the revelation of encapsu-

lated methods is discussed. However, both queries and methods are written in the

same functional languages. Definitions of methods can be fully revealed to query

optimizers. In these approaches, only methods coded in query languages are taken

into consideration during query optimization. Thus the application of methods is

restricted.

Methods are usually defined by users in an arbitrary language, and in many cases

they are coded in a procedural language such as C++. A query optimizer may

perform more effective optimization if it can "understand" the user-defined methods.

Chaudhuri and Shim [23] consider the query optimization in the presence of user-

defined functions. The semantic information about these foreign functions is expressed

in a declarative rule language. Queries could be transformed into equivalent but more

efficient forms according to transformation rules. The traditional relational cost model

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS

is extended to accommodate the presence of foreign functions. The traditional join

reordering algorithm based on dynamic programming is modified to search for optimal

query evaluation plans.

In traditional database query optimization, it is often assumed that selections

are simple and inexpensive. It is, therefore, preferable to perform selections before

joins in order to reduce the sizes of join relations. However, this assumption is not

valid any more if selections include expensive user-defined methods. Hellerstein and

Stonebraker [56] consider the issue of optimizing queries with expensive predicates.

The problem is formulated as placing expensive predicates in an optimal join plan

such that the total cost including the cost of joins and selections is minimized. An

algorithm, called predicate migration, is implemented in POSTGRES. The experiment

shows that the performance gain could be significant. Hellerstein [55] continues this

work and presents a family of algorithms: PushDown, PullRank, modified Predicate

Migration and PullA11. The implementation in Montage and performance study show

that predicate migration provides good query evaluation plans over a wide range of

queries with expensive predicates.

Semantic and cost information of user-defined methods is useful for efficient query

evaluation, however, neither of them is easy to obtain in practice. In addition, the

incompatibility between declaratively defined query and procedurally coded users'

methods, and mismatch between set-oriented evaluation of queries and object-at-a-

time computation of methods are not well solved. Precomputing or materializing user-

defined methods represents an alternative approach. Instead of computing methods in

an object-at-a-time fashion at run time, access of the materialized results is performed

in a set-oriented way. Materialization is especially effective and beneficial when meth-

ods are expensive to compute. However, the crucial issue for materialization is update

maintenance. Kemper, Kilger and Moerkotte [67] describe several tuning strategies

for method materialization maintenance. The main goal is to minimize the overhead

of invalidation and rematerialization upon update operations. Objects involved in ma-

terialization are distinguished from non-involved objects. The information of which

attributes of those involved objects are accessed during materialization can further

be exploited to decreased the overhead. Some operational semantics about methods

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 32

can also be employed to reduced maintenance costs. For example, the transformation

scale is the only one that may invalidate the precomputed values of volume while

rotate and translate do not.

3.5.4 Recursive Query Evaluation

Although recursive query evaluation has been explored in the context of deductive

database systems, little has been investigated on how DOOD features impact the

recursive query evaluation and whether the recursive query evaluation methods de-

veloped in deductive database systems can be extended to handle DOOD recursive

queries.

There are research prototypes which integrate object-orientation with deductive

database languages. However, these systems typically extend deductive database

languages such as datalog with limited object-oriented features [43, 631 or a C++

type system [114]. Programs are first translated into Horn clause-like programs such

as datalog, and then evaluated with the existing deductive query evaluation methods.

COMPLEX [43] integrates datalog with limited object-oriented features such as

object identity, complex objects and inheritance. The COMPLEX program can be

translated into datalog program by incorporating rules which enforce object-oriented

features. The deductive query evaluation method, query and subquery [126, 1271, is

employed to evaluate recursive queries.

Similarly, ConceptBase [63] incorporates structural aspects of object-orientation

into a deductive database language. The object-oriented features such as object iden-

tity, class and inheritance are represented as integrity constraints. Therefore, the

object deductive database system can be viewed as a deductive database system with

integrity constraints. Semantic query optimization is employed to optimize queries.

Coral++ [I141 extends Coral [103], a deductive database system, with a C++ type

system. Class definitions are handled by a C++ compiler. The system accommodates

accessing named attributes and invoking methods by generating predicates which

perform appropriate attribute accesses and method invocations. Therefore, method

name binding and invocation are left to a C++ compiler. The transformed Coral++

CHAPTER 3. QUERY EVALUATION IN DATABASE SYSTEMS 33

programs can be evaluated by using the existing Coral system.

Although object-orientation is not explicitly supported, XSB [I071 provides a plat-

form for implementing object-orientation with Hilog [25] syntax. XSB implements

Hilog by transforming higher-order terms into first-order forms with apply/N, and

then compiling and optimizing the first-order forms.

Chapter 4

Join Index Hierarchies for

Efficient Navigations

4.1 Introduction

Navigation is an essential operation for exploring logical relationships among complex

objects via class/subclass hierarchies, attributes, methods, object identities, etc. For

example, in Figure 4.1, several classes are connected via the relationships induced by

attributes, methods and class/subclasses. To find out which departments offer the

courses taken by the assistant professor Jones' students, navigation is performed from

the object "jones" in the class AssistantProf to the objects in the class DEPT via

the subclass/class relationship of AssistantProf and PROF, the method Supervise of

PROF, the attribute TakeCourses of STUDENT, and the attribute Dept of COURSE.

The objects in the intermediate classes STUDENT and COURSE have to be accessed

in order to find out the objects in the class Dept which have the logical relationship,

expressed in the query, with the object "jones" in the class AssistantProf. Naviga-

tions may jeopardize the system performance because the objects along a navigation

path may reside at widely scattered locations and many disk read operations may be

required to fetch them into main memory.

Following the philosophy of indexing methods, a join index hierarchy method is

proposed in this thesis, which extends the join index technique developed in relational

CHAPTER 4. JOIN INDEX HIERARCHIES

Assistantprof
PROF -

Attributes I
Name ,
Dept
Salary

Methods I
Supervise

I 1

STUDENT 5,

DEPT

COURSE 1
Attributes Attributes I /

Name Name
GPA Numhei
Takecourses -

I n

GRAD

Attributes Attributes
ResearchArea I I Major I

PHDGrad MasterGrad I-> Inheritance Relationship - Attribute Relationship

- - - - - Method Relationship

Figure 4.1: Navigation.

CHAPTER 4. JOIN INDEX HIERARCHIES 36

databases [I231 and its variations in spatial databases [106, 921, constructs hierarchies

of join indices to accelerate navigations via a sequence of objects and classes. In a

broad sense, a join index here stores the pairs of identifiers of objects of two classes

that are connected via direct or indirect logical relationships. Those formed by direct

logical relationships are called base join indices; whereas those representing indirect

logical relationships are called derived join indices. Base and derived join indices

form a join index hierarchy. A join index hierarchy supports navigations through a

sequence of classes in either a forward or a backward navigation direction and supports

efficient update propagation starting with the base join indices by localizing update

propagations in the hierarchy.

The following considerations motivate the proposal of the join index hierarchy

structures.

First, by construction of join index hierarchies, the "pointer chasing" problem,

that is, accessing objects and their properties via a sequence of referencing point-

ers to widely scattered disk locations, is transformed into simple accessing of

appropriate join index files. This may significantly reduce the 110 accessing cost

in object-oriented query processing. The price for this 110 cost reduction is the

increase of space for storing join index files, which is practically implementable

since large inexpensive disk memories are available with reasonable cost based

on the current hardware technology.

Secondly, with join index hierarchies, appropriate join index files for specific

navigation operations can be selected by consulting the index hierarchy direc-

tory. Moreover, update propagation can be localized to a few base and derived

join index files in the hierarchy. Both forward and backward navigations can be

supported with minimum storage and update overheads.

Thirdly, using join index hierarchies, object-at-a-time navigation is transformed

into efficient, set-oriented and associative access of join indices. Moreover, it

supports navigations among objects connected not only via a sequence of at-

tribute relationships but also via a sequence of methods and deduction rules.

CHAPTER 4. JOIN INDEX HIERARCHIES 3 7

This is accomplished by precomputing methods and rules and storing the re-

lated information in join indices. By doing so, the ob ject-at-a- time evaluation

of computationally intensive methods or deduction-intensive rules can be trans-

formed into efficient and set-oriented accessing of precomputed relationships.

Moreover, retrieval from either direction becomes available even for methods

and deduction rules.

Fourthly, in some cases, the join of some classes on certain attributes may

generate a substantially large join index file because of its large join selectivity,

or some class may sustain regular and frequent updates. Joins involving such

kind of characteristics should be considered as "fire walls" in the construction of

join index hierarchies. The system should prohibit the construction of such join

indices or the merge of such join indices into the hierarchy in order to avoid the

potential explosion on the size of join index files or the heavy cost of updates.

Queries involving such joins can be processed by performing concrete joins or

using the base join index files, if available.

4.2 Preliminaries

A join index hierarchy structure is proposed here to support efficient navigation

through multiple object classes. For example, in Figure 4.1, one may like to find

which departments offer courses taken by Jones' students, or which courses the un-

dergraduate student "John" is taking, which departments offer the courses taken by

a PhD student "Mary", etc. These queries correspond to navigations through a set

of classes, such as AssistantProf, DEPT, UGRAD, COURSE, etc. via appropriate

relationships.

The variations of a join index hierarchy can be constructed based on the richness

of the derived join index structures. Three kinds of structures: based-only, complete,

and partial, are investigated in terms of their construction, navigation and update

propagation.

For the clarity of presentation, only the relationships between the existing at-

tributes among object classes are considered in the construction and maintenance of

CHAPTER 4. JOIN INDEX HIERARCHIES

Figure 4.2: A Schema Path of Length 5.

join index hierarchies. A join index hierarchy which handles the relationships induced

by attributes, methods, rules, and class/subclass hierarchies will be discussed later.

A database schema is a directed graph in which the nodes correspond to classes,

and edges to relationships between classes. Suppose Ak is an attribute of class C;,

and Ak ranges over class Cj. Then there exists a directed edge from C; to Cj in the

schema graph, labeled with Ak. Moreover, if for i = 0,1 , . . . , n - 1, there is a directed

edge from C; to C;+l, labeled with A;+1, in a database schema, then (Co, All Cl, Az,

. . . , A,, C,) is a schema path.

Regarding to a schema path (Co, All C1, A2, . . . , A,, C,) over a database

schema, a join index file (node) J I (i , j) (1 5 i < j 5 n) consists of a set of tu-

ples (OID(oi), OID(oj), rn), where oi and oj are objects of classes C; and Cj re-

spectively, and there exists an object path (o;, o;+l, . . . , oj-1, oj) such that for

k = 0,1, . . . , j - i - 1, o;+k+l is referenced by o;+k via the attribute Ai+k+1, and m is

the number of the above distinct object paths that connect the objects o; and oj.

Definition 4.1 Join index hierarchy. Join index nodes connecting different object

classes along a schema path form a join index hierarchy, denoted as J IH(Co , All C1, A1,

. . . , A,, C,), or simply J I H (0 , n). The longest join index path, J I (0 , n), is the root

of the hierarchy. Each node J I (i , j) where j - i > 1 may have two direct children

J I (i , j - k) and J I (i + 1, j) where 0 < k < j - i and 0 < 1 < j - i . The join index

nodes J I (i , i + I), for i = 0,1, . . . , n - 1, are at the bottom of the hierarchy, and are

therefore, called base join indices.

Figure 4.2 shows a schema path of length 5 on a class composition hierarchy and

Figure 4.3(a) (b) (c) illustrates the following three join index hierarchy structures.

1. A complete join index hierarchy (C-JIH), as shown in Figure 4.3(a), con-

sists of a complete set of all the possible base and derived join indices. It

C H A P T E R 4. JOIN INDEX HIERARCHIES 39

supports navigations between any two directly or indirectly connected object

classes along the schema path.

2. A base join index "hierarchy" (B-JIH) , as shown in Figure 4.3(b), consists

of only base join indices. It supports direct navigations only between any two

adjacent classes. It cannot be entitled as a "hierarchy" in a rigorous sense but

can be viewed as a degenerate hierarchy with all the higher level join index nodes

missing, where the missing nodes can be derived from the base join indices.

3. A partial join index hierarchy (P-J IH) , as shown in Figure 4.3(c), consists

of a proper subset of the set of base and derived join indices in a complete join

index hierarchy. It supports direct navigations between a pre-specified set of

object class pairs since it materializes only the corresponding join indices and

their related auxiliary (derived) join indices.

Figure 4.3(c) demonstrates a typical partial join index hierarchy which supports

direct navigations between Co and C4, and Cz and C5. Their corresponding J I nodes:

JI(O,4) and J I (2 ,5) , circled in the figure, are called target nodes. Notice that a

materialized intermediate level node J I (i , j) may be used not only for supporting

navigations between C; and Cj but also (and sometimes more importantly) for ac-

celerating update propagations from the base join indices to higher level join indices

such as JI(O,4).

For example, if there were no intermediate level join index nodes in the hierarchy

JIH(O,5), four join-like (defined later) operations are needed on average to propagate

an update from the base join indices to the target nodes JI(O,4) and JI (2 ,5) . With

the help of intermediate level join indices, it takes an average of 2.2 join-like operations

to propagate an update from the base join indices.

In a join index hierarchy J I H (0 , n), the base join index nodes J I (i , i + 1) (for

i = 0, . . . , n - 1) reside at level 1, and the root node J I (0 , n) at level n. Although a

complete join index hierarchy could be quite large, each individual join index node is

usually of reasonable size. In many cases, it is unnecessary to materialize all of the

join index nodes in the hierarchy since it is beneficial to support only the frequently

C H A P T E R 4. JOIN INDEX HIERARCHIES

/j(l(O,5(level 5

J1(0,4) JI(1,S) level 4

J1(0,3)

f \ f *\
J1(1,4) J1(2,5) level 3

J1(0,2)
/'\I' *\f \

J1(1,3) JR4) J1(3,5) level 2

J1(0,1)
7 2 f 2 f 2 7 ' 2

JI(1 2) J1(2,3) J1(3,4) J1(4,5) level 1

(a) A Complete Join lndex Hierarchy

4 \\ level 5
/

/
\

/
\

/ level 3
/"l s /., s

/ \ I

ff s
\ /

/

\

'./ \ .I \ level 2

4 \ \ ,"I\\ / / 4 \ \ / 4 \
/

\ /
\ \ . / \. / / . / \

J1(0,1)
level 1

J1(1,2) J1(2,3) J1(3,4) J1(4,5)

(b)A Base Join lndex Hierarchy

(c) A Partial Join lndex Hierarchy

Figure 4.3: Three Kinds of Join Index Hierarchies Corresponding to the Schema Path
in Figure 4.2

CHAPTER 4. JOIN INDEX HIERARCHIES 41

used navigations. Given a set of frequently accessed schema paths, a partial join index

hierarchy can be constructed to support the corresponding navigations.

Definition 4.2 Target and auxiliary join index. In a join index hierarchy, a set of

join index nodes which must be supported (due to frequent references) are called

target join indices; whereas the others which are mainly used for update propagation

are called auxiliary join indices.

For example, J I (0 ,4) and J I (2 ,5) in Figure 4.3(c) are target join indices while

JI (O,2), and JI (2,4) in Figure 4.3(c) are auxiliary join indices. Auxiliary join indices

can of course be used, as a by-product, for support of the navigations between the

corresponding classes. The target, auxiliary and base join indices are materialized

join indices. The unmaterialized join indices are called virtual join indices.

Update propagation includes three types of updates.

1. Insert' an attribute relationship A;+l between an object o; in class C; and

an object o;+l in class C;+l. This corresponds to inserting a tuple (OID(o;),

OID(O;+~) , 1) to the base join index J I (i , i + 1).

2. Delete2 an attribute relationship A;+l between an object o; in class Ci and

an object o;+l in class Ci+1. This corresponds to deleting a tuple (OID(o;),

O I D (O ~ + ~) , 1) from J I (i , i + 1);

3. Modify an attribute relationship A;+' from that between an object o; E C;

and another object o ;+~ E C;+l to that between 0; E Ci and o:+~ E C;+'.

This corresponds to deleting an existing tuple (OID(o;), OID(O;+~) , 1) from

J I (i , i + 1) and inserting a new tuple (OID(o;), O I D (O ~ + ~) , 1) to J I (i , i + 1).

As a notational convention, A J I (i , j) denotes a set of tuples being inserted into

J I (i , j). A J I (i , j) consists of tuples (OID(oi) ,OID(oj) ,m) and m > 0, indicating

that there are m new object paths connecting o; and oj. Similarly, vJI(i, j) represents

a set of tuples being deleted from J I (i , j). It consists of tuples (OID(o;), OID(oj), -m)

and m > 0, indicating that there are m object paths connecting o; and oj being

lInserting an existed relationship between two objects is ignored.
'Deleting a non-existed relationship between two objects is ignored.

C H A P T E R 4. JOIN INDEX HIERARCHIES 42

deleted. S J I (i , j) denotes v J I (i , j) followed by A J I (i , j) . A join operator "W,",

which is similar to a join operation in relational databases, and another operator

"U,", used in the update algorithm, are introduced as follows.

Definition 4.3 W,. J I (i , k) W, J I (k , j) contains a tuple (OID(o;), OID(oj), ml x

m2) if there is a tuple (OID(o;), OID(ok), ml) in J I (i , k) and a tuple (OID(ok),

OID(oj), m2) in J I (k , j) . That is, if there are ml distinct object paths from o;

to ok and m2 distinct object paths from ok to oj, there are ml x m2 object paths

from o; to oj. Notice that identical tuples, such as (OID(o;), OID(oj) , mk) (for k =

0,1, . . . , p) are automatically merged into one with their path numbers accumulated,

i.e., (OID(o;), OID(oj), mk).

Definition 4.4 U,. J I (i , j) U, A J I (i , j) indicates an insertion into J I (i , j) . If there

exists a path in J I (i , j) for the corresponding objects, the number of paths connect-

ing o; and oj will increase. Similarly, J I (i , j) U, v J I (i , j) indicates a deletion from

J I (i , j) , and the number of paths connecting the corresponding objects o; and oj will

decrease.

4.3 Construction and Maintenance of Join Index Hierar-

chies

4.3.1 Construction of a Partial Join Index Hierarchy

A partial join index hierarchy can be constructed in three steps: (1) find a set of

necessary auxiliary join indices for a given set of target indices; (2) build the corre-

sponding base join indices; and (3) build the target and auxiliary join indices from

the lowest level up.

Example 4.1 In Figure 4.3(a), the join index J I (1 ,5) can be computed from J I (1 ,4)

and J I (4 ,5) , where J I (1 ,4) can be derived in turn from J I (1 ,3) and JI (3 ,4) , and

J I (1 ,3) from J I (1 ,2) and J I (2 ,3) .

The base join indices for J I (1 ,5) are the set:

CHAPTER 4. JOIN INDEX HIERARCHIES

The auxiliary join indices for supporting efficient update of J I (1 ,5) are:

Notice that there could be other choices in selecting auxiliary JIs, such as {JI(1 ,3) ,

J I (3 ,5)) , etc.

Example 4.2 To directly support the navigations between Co and C4, and C2 and

C5, the set of target join indices are {JI(0 ,4) , J I (2 ,5)) , and the set of base join

indices are

Three different kinds of partial join index hierarchies are presented in Figure

4.4(a)(b) and Figure 4.5.

The sets of auxiliary JIs which supports the two target JIs are {JI(O, 3), J I (1 ,3) ,

J I (2 ,4)) in Figure 4.4(a), {JI (1 ,4) , J I (2 ,4)} in Figure 4.4(b) and {JI(O, 2), J I (2 ,4))

in Figure 4.5.

Given a set of target join index nodes, the join index nodes which need to be

materialized are the union of the base and auxiliary sets derived from each target join

index node. Since there could be more than one choice in the derivation, the optimal

choice should be the one which minimizes (1) the total number of auxiliary join

indices (and then the total storage costs); and (2) the total number of W, operations

in updating the target join indices. This is performed by Algorithm 4.1.

Algorithm 4.1 Construction of a minimum auxiliary set of JIs

Input: A set of classes Co,. . . , C,, and a set of target J I nodes (i.e., frequently

referenced class pairs) in the schema path Co, A1, C1, Ag , . . . , A,, Cn.

Output: A minimum set of auxiliary JIs nodes.

Method: The method collects the set of auxiliary nodes which are used to generate

the set of target nodes, and then selects those containing the minimum numbers

of nodes, as shown below.

CHAPTER 4. JOIN INDEX HIERARCHIES

(a) A Partial Join lndex Hierarchy Supporting

J1(0,4) and J1(2,5)

avg # of operations for update=2.8

(b)A Partial Join lndex Hierarchy Supporting

J1(0,4) and J1(2,5)
avg # of operations for update=2.4

Figure 4.4: Two Partial Join Index Hierarchy Structures for Supporting JI(0,4) and
JI(2,5).

C H A P T E R 4. JOIN INDEX HIERARCHIES 45

1. Starting with the set of target nodes, find S: the set of sets of their imme-

diate auxiliary nodes. Notice that the set of immediate auxiliary nodes for a

(target or auxiliary) node J I (i , j) is { J I (i , k), J I (k , j)) for i < k < j with the

removal of J I (i , k) or J I (k , j) if it is a target node or a base node. If there

is an empty set resulted from this removal, return the empty set. Otherwise,

if there are more than one such k available, each k generates one set, and the

result is a set of sets. Thus, S is in the form of {{JI(i, k), . . . , J I (k , j)) , . . . ,
{JIG, 4 , . * - 7 J I (m , j))) .

For each JI in the set s in S , find its immediate auxiliary nodes. If an immediate

auxiliary node consists of 1 sets, a l , . . . , a[, make 1 copies of s, and add each of

a; (1 < i < I) to a copy, which forms I new sets. This process repeats until no

new immediate auxiliary nodes can be found. The result is a set of auxiliary

node sets which are used for generating the set of target nodes.

2. For each set s in the generated set of auxiliary nodes, count the number of

(auxiliary) nodes. Only those with the minimum number of nodes are retained.

3. From the retained sets obtained in Step 2 (i.e., the set in which each set contains

the minimum number of auxiliary nodes), calculate the number of M, operations

required for updating each set and select the one which requires the minimum

number of M, operations. This is computed by averaging the sum of the numbers

of all the M, operations needed for propagation of the updates on the base join

index nodes.

Example 4.3 We examine how the algorithm works on Example 4.2. At the begin-

The target join index J I (0 ,4) has three immediate auxiliary sets { J I (0 ,3)) ,

{JI (1 ,4)) and {JI(O, 2), J I (2 ,4)) ; whereas the target join index J I (2 ,5) has two im-

mediate auxiliary sets { J I (2 ,4)) and { JI (3 ,5)) . Among these nodes, only JI(O,3)

and J I (1 ,4) have nonempty auxiliary sets. The former has { JI(O,2)) and {JI(1,3)},

CHAPTER 4. JOIN INDEX HIERARCHIES

Figure 4.5: Build a Partial Join Index Hierarchy and Propagate Update.

and the latter has {JI(1 ,3)) , and {JI(2,4)) . Therefore, the set of possible auxiliary

node sets should be all of their combinations, that is,

Both {JI(1 ,4) , J I (2 ,4)) and { JI (0 ,2) , J I (2 ,4)) have the minimum number of

auxiliary join indices. The first one corresponds to the partial join index hierarchy

structure in Figure 4.4(b), whereas the second one to that in Figure 4.5. The average

numbers of W, operations for update propagation in Figure 4.4(b) and Figure 4.5 are

2.4 and 2.2 respectively. Obviously, the second partial join index hierarchy is the most

preferable one.

Algorithm 4.2 Construction of a partial join index hierarchy.

CHAPTER 4. JOIN INDEX HIERARCHIES 47

Input: A set of frequently referenced class pairs (i.e., target J I nodes) in a schema

path Co, All C1, A2, . . . , A,, C, and the corresponding classes.

Output: J IH(Co, All Cl, All . . . , A,, C,), a ~ a r t i a l join index hierarchy which sup-

ports navigations between these pairs of classes.

Method: The computation includes both finding the minimum set of auxiliary J I

nodes and computing all the necessary JIs.

1. Find the minimum set of auxiliary JIs based on the set of target JIs by using

Algorithm 4.1.

2. Build base JIs by computing J I (i , i + 1) for i = 0,1 , . . . , n - 1 and constructing

the corresponding B+-tree indices on i for each base JI.

3. Build auxiliary and target JIs. This is accomplished by computing the selected

auxiliary JIs and/or target JIs from the bottom level up using the M, operation,

and constructing the corresponding B+-tree indices on i for each derived JI.

4. Build "reverse" JIs for searching in the reverse direction. (A reverse J I of

J I (i , j) , J I (j , i) , supports the search from class j to class i via the schema

path in reverse to that of J I (i , j)) . JI(j, i) is derived from J I (i , j) by sorting

on j in a copy of J I (i , j) and constructing the B+-tree indices on j .

Notice that in step 3 there could be more than one pair (but at most j - i pairs) of

JIs of lower level nodes which can be used to compute J I (i , j) . A cost model should

be constructed to determine the minimum cost pair. Moreover, B+-trees can be used

to build JIs for efficient retrieval and for efficient computation of JIs at higher levels.

The join index hierarchy computes the logical relationships between the objects

not only in two adjacent classes but also in the "remote" classes linked via a specified

schema path. It maintains both forward and backward join indices and supports both

forward and backward navigations efficiently.

Furthermore, navigations on the virtual nodes (unmaterialized nodes) can still

be performed efficiently using the partial join index hierarchy. For example, any

virtual node in Figure 4.5 can be constructed by at most one join of two existing

CHAPTER 4. JOIN INDEX HIERARCHIES 48

materialized JI nodes. Actually, it is easy to verify for n < 6, taking the root of

J I H (0 , n) as the single target node, there always exists a set of minimum auxil-

iary nodes, with minimum update cost, and any virtual node in J I H (0 , n) can be

obtained by at most one join of two existing (baselauxiliary) JI nodes. For exam-

ple, { J I (0 ,3) , J I (3 ,6) , J I (1 ,3) , J I (3 ,5)) is such a minimum auxiliary node set for

JIH(O,6). This implies that any traversal from one object in any class to any other

object class along the schema path with length less than 7 will need to search at most

two (indexed) J I files using such a small partial join index hierarchy. Since one rarely

constructs a J IH(0 , n) for n 2 7 in practice, traversal along any subpath of a schema

path in both directions can be performed fairly efficiently using the partial join index

hierarchy.

4.3.2 Update Maintenance of a Partial Join Index Hierar-

chy

An update in one class or in the relationship of one class with another may cause

the update of a base join index, such as J I (k , k + 1) (and its update is denoted as

SJ I (k , k + 1)). Such an update will not affect other base join indices but may affect

some corresponding join indices at higher levels. It is easy to show that for an update

on J I (k , k + I) , only the materialized J I (i , j) with i < k and j > k will need to be

updated accordingly. For example, if J I (1 ,2) is updated in Figure 4.5, only those

join indices in the dotted quadrangle need to be updated.

Algorithm 4.3 Update propagation in a join index hierarchy.

Input: A join index hierarchy J I H (0 , n) and SJI(k , k + 1).

Output: An updated join index hierarchy.

Method: Perform a bottom-up incremental update propagation starting at the base

join index.

1. Update the base join index J I (k , k + 1) based on SJ I (k , k + 1).

CHAPTER 4. JOIN INDEX HIERARCHIES 49

2. Update the auxiliary JIs and/or target JIs from the bottom level up using the

Wc operation. This is implemented as follows.

for level 1 := 2 to n do

for i := 0 to n - 1 do

if J I (i , i + I) is an auxiliary or target J I and i 5 k and i + 1 > k
then incrementally update J I (i , i + I) to JI1(i , i + 1).

Note: This is performed as follows.

SJ I (i , i + 1) := J I (i , i + p) Wc SJ I (i + p, i + I), or

SJ I (i , i + 1) := SJI (i , i + q) Wc J I (i + q, i + I),
~ h e r e l < p < k - i a n d I c - i < ~ 5 1 - 1 ;

JI1(i , i + 1) := J I (i , i + 1) Uc SJI (i , i + 1); 0

Notice that incremental updates are performed on both forward and backward

join indices. Also, there could be more than one way to compute SJ I (i , i + I) in Step

2, and the choice can be determined by a cost analysis.

4.3.3 Base and Complete Join Index Hierarchies

A base join index hierarchy (BJIH) can be constructed and updated in a way simpler

than Algorithms 4.2 and 4.3 (only Step 1 of the algorithms need to be performed) since

BJIH is a degenerate hierarchy and no upward propagation need to be considered.

However, navigation between Ci and C;+[in a base join index hierarchy requires

the retrieval of a sequence of 1 base join indices:

This is the major overhead of the base join index hierarchy in comparison with the

partial join index hierarchy which requires the retrieval of only one or a very small

number of join indices.

Since all the join indices are materialized in a complete join index hierarchy (CJIH),

Step 1 of Algorithm 4.2 does not need to be performed in the construction of CJIH:

All of the join indices at each level are considered as target join indices. The retrieval

CHAPTER 4. JOIN INDEX HIERARCHIES

Table 4.1: Database Parameters

1 Parameters 1 Meaning, Derivation and Default Values 1
L

IciI

llCill
fi

Ti

sz(0ID)

sz(m)
sz(ji)
sz(p)

B
(Y

BTf
fwd(i, j , k)

could be faster using a complete JIH in comparison with that using a corresponding

partial JIH if the retrieval requires to access a (virtual) node which is not directly

materialized in the partial JIH. However, a complete JIH obviously takes more storage

space and more update propagation cost than a partial JIH although the update

algorithm is similar to Algorithm 4.3.

-.
number of objects in class C;
number of pages or blocks of class C;
average number of references from an object in C; to objects in Ci+l
(fan-out)
average number of objects in class C; referencing the same object in C;+l

ct * . f i)
(= k
number of bytes for storing an object identifier (= 8)
number of bytes for the counter in a tuple of a join index (= 4)
number of bytes of a tuple in a join index (= 2 * sz(0ID) + sz(m))
number of bytes of a page pointer (= 4)
number of bytes in a block or page of a disk (= 4096)
average page occupancy factor(= 70%)
fan out of a Bf -tree (I= sz(,~~~o,,,l)
average number of distinct objects in Cj referenced by a set of k objects
in C;

bwd(i, j, k)

I J I (i , j)l
1 1 J I (i , j)ll

4.4 Performance Evaluation of Join Index Hierarchies

average number of distinct objects in C; referencing a set of k objects in

cj
number of tuples in J I (i , j)
number of blocks or pages of J I (i , j)

An analytical model is constructed to study the performance of different join index

hierarchies, the access support relation [68], a competitive index structure for naviga-

tion through a sequence of object classes, and the nested index [15, 141 for associative

search. The study is focused on several crucial performance measurements, including

CHAPTER 4. JOIN INDEX HIERARCHIES

Table 4.2: Database Parameter Values

the storage size of a join index hierarchy, the cost of navigation (query processing),

and the cost of update propagation over a join index hierarchy. Table 4.1 lists some

database parameters used in the cost analysis. The details of the estimation of some

of these parameters are in Appendix A.

4.4.1 Storage and Navigation Costs

The number of pages for a join index J I (i , j) is

C4
2000
1.0s

C3
3000
1.0s

Following Valduriez [123], the number of disk accesses for a forward navigation from

a set of n; objects in Ci to objects in Cj using a target join index is

C5
1000
3.0s

s

Parameters

ICd
fi

where y is a function from Yao [133],

C1
2000
2.0s

s = 0.170.5,1,1.572.0,2.5,3

Co
1000
1.0s

It represents the number of page accesses for retrieving k objects out of n objects

distributed over m pages. Here it is assumed that a typical B+-tree is of two levels 3.

One page access is needed to retrieve the root node. To find the page pointers for n;

object identifiers, y(ni, [%I, lCi I) leaf pages of the B+-tree are accessed. There are

3The results for a B+-tree of more than two levels can be calculated similarly as in Valduriez
[123].

Cz
1000
1.0s

CHAPTER 4. JOIN INDEX HIERARCHIES 52

y(n; , 1 1 J I (i , j) l l , IC;I) pages that need to be accessed to find the tuples corresponding

to n; object identifiers. Thus the number of disk accesses for a forward navigation

from a set of ni objects in C; to objects in C j using a base join index hierarchy

The first sum is the number of page accesses when the join index J I (i , i + 1) is scanned

and related tuples retrieved. The second sum covers the case when f w d (i , k , n;) object

identifiers from the previous join index J I (k - 1, k) are used to search the join index

J I (k , k + 1) .

4.4.2 Update Cost

Assume that there is an update on an object in C k which causes the update on

J I (k , k + I) , either deletion or insertion SJI (k , k + 1) . The cost of updating a partial

join index hierarchy consists of three parts. The first part is the cost of updating

J I (k , k + l) itself in Step 1 of Algorithm4.3. The cost of updating forward J I (k , k + l)

where IS J I (i , j) l i stands for the number of identifiers of distinct objects of C ; in the

tuples of S J I (~ , j) and lSJI(i , j) 1 stands for the number of identifiers of distinct

objects of C j in the tuples of SJI (i , j) . Here ISJI(k, k + l) l k and ISJI(k, k + l) lk t l

are initialized, e.g., to 1 at the beginning. One page access is needed to retrieve the

root node of the Bt-tree of J I (k , k + 1) . The second sum covers the cost of retrieving

the leaf pages of the B+ tree for finding the page pointers. The third sum handles

the cost of inserting or deleting the related tuples which includes reading and writing

back the related pages. The cost of updating backward J I (k , k + 1) is similar. The

C H A P T E R 4. JOIN INDEX HIERARCHIES 53

second part is the cost U J I (i , i + I) for updating materialized join index J I (i , i + 1)

at level 1. According to step 2 of Algorithm 4.3, ISJI(i,i + 1)1; and ISJI(i , i + l)l;+[

can be calculated iteratively from ISJI(k, k + 1) l k and ISJI(k, k + 1) lk+l. If the first

expression in the step 2 of Algorithm 4.3 is chosen, then

If the second expression in the step 2 of Algorithm 4.3 is chosen, then

where 1 5 p < k - i and k - i 5 q 5 1 - 1. Also, if the first expression in the step 2

of Algorithm 4.3 is chosen, UJI (i , i + 1) is calculated as

+y(ISJI(i+p,i + l)Ii+p, IIJI(i,i+ p)II, Ici+pI).

If the second expression in step 2 of Algorithm 4.3 is chosen, UJ I (i , i + 1) is calculated

As it is noticed that there could be more than one choice of updating J I (i , i + I) in

step 2 of Algorithm 4.3, p or q is chosen such that the cost of updating J I (i , i + l),

i.e., UJI (i , i + 1) is the minimum. The third part is the cost of inserting or deleting

S J I (i , i + 1) into or from J I (i , i + I). The cost of updating the forward J I (i , i + 1) is

+2 * y([SJI(i, i + l)li, IlJI(i, i + 1)117 ICiI).

The cost of updating the backward J I (i , i + 1) is similar. The way of calculating

the update cost for a complete join index hierarchy structure is similar to that of a

partial join index hierarchy structure. The update cost for a base join index hierarchy

structure includes either deleting or inserting SJ I (k , k + 1) from or to J I (k , k + 1).

C H A P T E R 4. JOIN INDEX HIERARCHIES

Storage Cost
I I I I I I

'CJIH" *
1 W 4)

"Full-ASR" +

1 W 3)

0.1 0.5 1 1.5 2 2.5 3
s scale on fan-outs

Figure 4.6: Storage Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs.

4.4.3 Explanation of Performance Results

The performance is conducted in the two group experiments for the index structures

supporting navigations and associative searches. In the first one, four data structures,

which support navigations, are compared in our performance study: (1) C-JIH as

shown in Figure 4.3(a); (2) B-JIH as shown in Figure 4.3(b); (3) P-JIH as shown in

Figure 4.3(c); and (4) Full- ASR (full access support relation), which stores the full

sequences of object identifiers of the path (of length 5) in one full access support

relation. Notice that cases (2) and (4) correspond to two extreme cases of the access

support relation method proposed in [68], in which the former (case 2) decomposes

each class pair into one component (i.e., binary decomposition of a full ASR, thus, a

B-JIH is labeled B-JIH/B-ASR in the performance curves.), whereas the latter (case

4) merges the access path (sequence) into one relation.

The fan-out factors (join selectivities) is taken as the x-axis variable in Figures

4.6, 4.7, 4.8, 4.11, 4.13 and 4.14 because the performance is sensitive to the increase

of the fan-out factors (join selectivities), which matches our expectation and experi-

mentation. The set of class sizes, fan-out values, and scale changes in the analysis are

in Table 4.2. The scale change factor s is introduced so that the performance under

varying fan-outs can be presented in one graph. Other database parameters are set

CHAPTER 4. JOIN INDEX HIERARCHIES

Navigation Cost

lW5) -
1W4) -

'B-JIH-?-ASR' +
P-JIH' +

'C-JIH' +
$ 1093) - 'Full-ASR' -+-

Y a

I 1 I I I

0.1 0.5 1 1.5 2 2.5 3
s scale on fan-outs

Figure 4.7: Navigation Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs.

to the default values as shown in Table 4.1.

Figure 4.6 shows that the storage costs increase as the fan-outs do. Full-ASR

stores all the sequences of object identifiers in complete or incomplete paths. P-JIH

materializes some higher level join indices of the join index hierarchies; whereas C-JIH

materializes all of the higher level join indices. These are reflected in the storage cost

graph. Obviously, the storage sizes of Full-ASR, P-JIH and C-JIH increase faster than

that of B-JIH/B-ASR.

Figure 4.7 presents how the navigation costs increase as the fan-outs grow. It is

assumed that the forward and backward counts 50% and 50% in the total cost of the

navigation respectively. The navigations between Co and C5, Co and C4, and Cz and

C5 weigh 20%, 40% and 40% in the total cost respectively. Notice that the navigation

between Co and C5 is not supported directly in the chosen P-JIH. The selectivity

of navigation starting point is fixed as follows. If the navigation starts at C;, the

selectivity is chosen to be sel t 3 where sel is the selectivity of the navigation

starting at Co. Here sel is set at 0.01, therefore, every navigation starts with 10

objects. P-JIH and C-JIH perform much better than B-JIH/B-ASR and Full-ASR.

Full-ASR has the poorest performance because the whole ASR has to be retrieved

(the relation is usually sorted on both head and tail classes to facilitate retrieval from

CHAPTER 4. JOIN INDEX HIERARCHIES

Update Cost

loye)-

1 1 I I
I I I I

0.1 0.5 1 1.5 2 2.5 3
s scale on fan-outs

Figure 4.8: Update Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs.

the starting and the end points) when the navigations other than the one between

head and tail classes are required.

Figure 4.8 illustrates the update costs. It is assumed that the update probability

of all the base join indices are equal. Obviously, B-JIH/B-ASR has the lowest update

overhead since each time only base join indices need to be updated. The update cost

of Full-ASR is higher than those of other index structures and grows faster.

Figure 4.9 describes the cost of navigation and update operation mix. The total

cost is defined as

(1 - p) * NavigationCost + p * UpdateCost,

where p is the update probability, and p = 0.2 means that there are 20% probability

of updates and 80% probability of navigations among all the operations. The scale

s on fan-out is set to be 1.0. With less frequent update (update probability less

than 0.4), the overall performance of P-JIH and C-JIH is much better than that of

B-JIH/B-ASR. All the three structures perform better than Full-ASR.

Figure 4.10 presents the navigation costs vs. navigation selectivities. The scale

s on fan-outs is set to be 1.0. The selectivity at Co is set from 0.001 to 0.5. The

navigation cost grows as the navigation selectivity increases.

Figure 4.11 presents the storage requirements vs. large fan-outs. The reason that

CHAPTER 4. JOIN INDEX HIERARCHIES

Cost of Navigation and Update Mix

lW4) 1
'C-JIH' +

'Full-ASR" t

0.4 0.6
Update Probability

Figure 4.9: Costs of Navigation and Update mix for
ASR.

0.8 1

B-JIH, P-JIH, C-JIH and Full-

Navigation Cost

'C-JIH' +
'Full-ASR' +

1 W3)

0.001 0.005

Figure 4.10: Navigation Costs of B-J
Selectivities.

0.01 0.05
Navigation Selectivity

IH, P-JIH, C-J

0.1 0.5

IH and Full-ASR vs. Navigation

CHAPTER 4. JOIN INDEX HIERARCHIES

Storage Cost
1W11) 1 I 1 I I

s scale on fan-outs

Figure 4.11: Storage Explosion with Large Fan-outs.

Figure 4.12: Partial Join Index for Supporting JI(O,5).

only large fan-outs are analyzed but not large cardinalities of classes is because our

other performance results shows that the costs of storage, navigation and updates do

not grow very fast as the cardinalities of classes increase. As one can predict, the

storage cost (and hence the navigation and update costs) grows rapidly when the

fan-out ratio grows. Full-ASR has the highest storage cost since multiple access paths

from Ci-l to C; will have to be multiplexed when pairing with the objects in C;+1,

etc. This also suggests that the fan-outs should be considered as an important factor

for setting "fire walls" to avoid cost explosion.

In the second group experiment, five index structures, which support associative

CHAPTER 4. JOIN INDEX HIERARCHIES

Associative Search Cost
1W4) 1 I I I I 1 I

'8-JIH-B-ASR' +
'P-JIH" +--
'C-JIH' +

1 w31
'FuII;ASR' +-

Nest' -A-

I I I I I I
0.1 0.5 1 1.5 2 2.5 3

s scale on fan-outs

Figure 4.13: Associative Search Costs of B-JIH, P-JIH, C-JIH, Full-ASR and Nested
Index vs. Fan-outs.

searches, are compared: (1) C-JIH as shown in Figure 4.3(a); (2) B-JIH as shown in

Figure 4.3(b); (3) P-JIH as shown in Figure 4.12; (4) Full-ASR; and (5) Nest which

denotes the nested index in [15, 141. Notice that the target node is J I (0 ,5) in the

partial join index hierarchy in Figure 4.12.

Figure 4.13 presents how the associative search costs increase as the fan-outs grow

(only the backward navigation between Co and C5 is considered.). Since P-JIH and

C-JIH support J I (0 ,5) directly, their associative search costs are the same. This is

indicated by the overlap of their performance curves. P-JIH and C-JIH perform better

than Nest since the root node JI(0,5) of P-JIH and C-JIH is smaller than the nested

index.

Figure 4.14 illustrates the update costs. When the fan-outs are small, the update

costs of P-JIH and C-JIH are higher than that of the nested index. This reflects

the fact that P-JIH and C-JIH maintain two copies for both forward and backward

navigations while the nested index structure only keeps one (backward) copy and

can only be employed for associative search (backward navigation). It is significant,

however, that the update cost of the nested index grows faster than those of P-JIH

and C-JIH, and exceeds them when the fan-outs become large (fan-outs scale s > 1.5).

In a nested index, the reference information in a path has to be retrieved iteratively

CHAPTER 4. JOIN INDEX HIERARCHIES

Update Cost

IW) w

I I I I I I 1 I
0.1 0.5 1 1.5 2 2.5 3

s scale on fan-outs

Figure 4.14: Update Costs of B-JIH, P-JIH, C-JIH, Full-ASR and Nested Index vs.
Fan-out s.

from the auxiliary index so that all the appropriate records in the primary index can

be updated accordingly.

In summary, the performance study shows that both P-JIH and C-JIH outper-

form B-JIH/B-ASR, Full-ASR and Nest in navigation, associative search and overall

performance. P-JIH has better storage and better update costs than C-JIH. Clearly,

join index hierarchy, especially the partial one, provides an interesting data structure

to support efficient navigations in ob ject-oriented databases.

4.5 Discussion

4.5.1 Join Index Hierarchy Which Supports Other Kinds of

Navigations

The join index hierarchies discussed in the previous sections are designed for support

of class composition hierarchies, i.e., navigations through a sequence of object classes

via their attribute relationships. Similar join index hierarchies can be applied to

support of navigations through class/subclass hierarchies, or through a sequence of

classes via the relationships specified by methods and/or deduction rules.

C H A P T E R 4. JOIN INDEX HIERARCHIES 6 1

In a schema path involving class/subclass hierarchies, if a set of subclasses as-

sociated with the same higher-level class have similar kinds of attributes, it could

be beneficial to construct one (combined) base join index node instead of a large

number of small join index files. This is in the same spirit of Kim, Kim and Dale

[78] and Bertino 1141. For example, in Figure 4.1, the class STUDENT contains

two subclasses: UGRAD and GRAD; whereas the latter in turn contains two sub-

classes: PhDGrad and MasterGrad. It is more beneficial to construct one (combined)

base join index JI(STUDENT, COURSE) instead of three join indices: JI(PhDGrad,

COURSE), JI(MasterGrad, COURSE) and JI(UGRAD, COURSE). However, if a set

of subclasses, associated with the same higher level class, contain a relatively large

number of objects with different kinds of class components, it could be more efficient

to construct several join index files. For example, in a university database, STU-

DENT, PROFESSOR, and SECRETARY may belong to the same higher level class

PERSON. Since each subclass could be large and different subclasses usually have

quite different kinds of attributes and methods, it could be more efficient to construct

different join index nodes for these subclasses.

In a schema path, same class names are allowed to appear more than once. There-

fore, the corresponding join index hierarchy will support navigations with loops. This

indicates that join index hierarchies can also be used to process transitive closures,

a special case of linear recursions. Chapter 6 will discuss DOOD linear recursion

processing.

Furthermore, there may exist more than one semantic linkage between two object

classes. For example, a professor may teach a student (in a course), supervise a student

(on research work), or hire a student (for some programming job). Thus, there may

exist three kinds of semantic linkages between PROFESSOR and STUDENT in this

database. A join index node is for a particular kind of semantic association which

cannot be mixed up with other kinds of semantic linkages since they carry different

semantics. The schema paths should be stored in the schema (data dictionary) with

the identification (such as by labeling) of each semantic linkage for each join index

node.

Some relationships between different classes of objects may not be specified by

CHAPTER 4. JOIN INDEX HIERARCHIES 62

existing attributes but by deduction rules or computational methods. For example,

the voting eligibility of a stockholder could be defined by deduction rules based on

hislher current shares of stocks, the stock holding history, etc. Thus, the linkage

between the two classes, STOCKHOLDER and VOTER, are defined by rules and

instantiated by rule evaluation. Similarly, the relationships between the objects in

two classes, PARK and LAKE, could be specified by a spatial computational routine,

which computes, based on a geographic map, whether one is inside the other, or

whether two intersect, or their shortest (or highway) distances, otherwise.

The method- or deduction rule- specified object linkage can be constructed using

the structure of join index hierarchy as well, by evaluation of the methodlrule at the

join index construction time rather than at the query processing time.

One advantage of the construction of join indices for rule- or method- defined ob-

ject linkages could be the transformation of the expensive rulelmethod computation

from query evaluation time to join index construction time. Since a method or a rule

may involve recursion or iterative computation of a relatively large number of complex

(such as spatial) objects, it could be quite expensive to perform such computation

at the query processing time. The evaluation of such linkages at the join index con-

struction time and the storage of the join indices together with other frequently used

information (such as distance, etc. [92]) in join indices will trade storage space for

query evaluation efficiency. It will be especially beneficial if such computation must

be performed repeatedly or iteratively.

Furthermore, by storage of important information in join indices, some queries,

especially those involving traversing in the direction in reverse to those specified in

the methods or rules, can be answered efficiently. For example, to find all the lake and

park pairs whose intersected regions greater than 1 square kilometer, one can retrieve

the join indices and return the results directly (if the information-associated join

indices [92] are constructed and the area of intersection is the associated information).

However, it is impossible to compute a region from an area based on the same method

which defines only the computation of an area from a geographic object but not in

reverse.

CHAPTER 4. JOIN INDEX HIERARCHIES 63

4.5.2 "Fire Walls" in the Construction of Join Index Hier-

archies

There may exist long object referencing sequences in queries, and any object class

may serve as the starting point in a sequence of object referencing. Nevertheless, this

does not suggest the construction of join index hierarchies on a very long sequence

of a schema path because of the size of such a hierarchy and the cost of updates.

Therefore, it is often necessary to partition a long schema path into a few short ones,

or prohibitive to build some join indices or merge them into join index hierarchies.

A class linkage (by either attribute relationship, methods, or rules) which is not

suitable for constructing join indices or for being merged into a join index hierarchy

is called the "fire wall" of the hierarchy. It is important to identify fire walls and

partition a long schema path into a set of smaller ones for the construction of easily

accessible or updatable join index hierarchies.

"Fire walls" are suggested to set in the following places in the design of a join

index hierarchy.

1. Rarely referenced class linkages: Some class linkages, though referable, are rarely

used in applications, based on the examination of a relatively long history of

referencing patterns. It is relatively safe to set up a fire wall at a rarely referenced

point since it is fair to let rarely used referencing pay a little higher cost in

accessing.

2. Large join selectivities: A large join selectivity implies a potentially large (or

huge) join index relation. The further construction of upper level join indices

would usually result in large join index relations as well. The break of the chain

at this point may contribute to a relatively small join index relation and/or

hierarchy.

3. Frequently updated or multiple-source class linkages: Some join indices may sus-

tain frequent updates or be derived from multiple objects, classes or class rela-

tionships (such as, those computed using multiple objects or classes by meth-

ods). Such kind of class linkages may need frequent or sophisticated updates,

CHAPTER 4. JOIN INDEX HIERARCHIES 64

and update propagation to upper level join indices will likely be costly and thus

it could be beneficial to set up "fire walls" there.

4.6 Summary

A join index hierarchy approach has been proposed and investigated here for efficient

navigation through a sequence of object classes. The join index hierarchy organizes a

set of (direct and indirect) join index nodes into a hierarchy. Three kinds of join index

hierarchies are proposed and studied. Our analysis and performance study show that

partial join index hierarchy has reasonably small space and update overheads, and

speeds up query processing considerably in both forward and backward navigations.

Join index hierarchy is an interesting indexing structure which could be a promis-

ing candidate at solving "pointer chasing" problems in DOOD query processing. It

would be interesting to compare and/or integrate the join index hierarchy method

with other object optimization techniques, such as read-ahead buffering [I021 and

complex object assembly 1661.

Chapter 5

Optimizing Queries Including

Complex Select ions, Joins,

Aggregations and Met hods

5.1 Introduction

Navigation is essentially "pointer chasing" operation which follows object identifiers

from one object to another and accesses objects in one-object-at-a-time fashion. Al-

though a navigation operation is performed over objects along a navigation path,

the navigation is confined to selective objects. Constraints on the navigation can

be "pushed" inside the navigation so that only relevant objects are accessed. Fol-

lowing the methodology of set-oriented query evaluation in relational and deductive

database systems, a navigation operation is transformed into a sequence of join op-

erations among a collection of object classes along the navigation path. Thus, the

navigation can be performed in an efficient and set-oriented manner.

Navigation is the most widely used but costly operation for exploring logical rela-

tionships among complex objects in both queries and methods. Thus, the revelation

of common navigation operations between a query and a method is essential for op-

timizing queries with encapsulated methods, reducing redundant computations, and

achieving efficient query evaluation.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 66

The following observations motivate the optimization strategies proposed in this

chapter .

Navigation constraints. Navigation operations are often expressed in the form of

path expressions with constraint conditions such as selections and joins. "Push

selection inside join" in relational database systems, and its variation "push

selection inside recursion" in deductive database systems, are the effective prin-

ciples to eliminate irrelevant data before the expensive computations, such as

joins and recursions, are performed. "Push constraint condition inside navi-

gation" is similar to these principles in that it effectively excludes irrelevant

objects from consideration. Unlike selection and join conditions in relational

and deductive database systems, however, constraints on navigations are more

complicated. Different types of constraint conditions require different kinds of

optimization strategies to process navigations.

Set-oriented evaluation. Object-at-a-time "pointer chasing" is transformed into

set-oriented evaluation of a sequence of joins. Therefore, some join methods

developed for relational database systems can be applied or extended to pro-

cess navigation operations, e.g., nested loop, pointer-based join algorithms [I l l]

and join index [123]. The transformation also facilitates both forward and

backward navigations among objects via a sequence of attribute relationships,

class/subclass hierarchies, and relationships specified by methods and deduction

rules.

Common navigations. Navigation is also the most widely used operation for

exploring complex objects in a method. It frequently happens that some nav-

igations or part of navigations are shared between a query and a method. To

avoid repeated computations over the shared navigations, the navigation infor-

mation in a method should be revealed. Consequently, the common navigations

can be exploited to accelerate query evaluation. This revelation approach offers

the advantages over black box approach and the approach of restricting meth-

ods to be coded only in query languages. The former may exclude some better

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 67

query evaluation plans into consideration while the latter limits the application

of user-defined methods. In addition, the revelation approach does not need

to acquire the semantic information of methods, which is difficult to obtain in

practice.

5.2 Motivating Examples

Navigation constraints are often expressed in the form of selection and join conditions.

The following motivating examples demonstrate that different types of the selection

and join conditions require different kinds of optimization strategies1.

Example 5.1 To find out all the students who are taking some courses offered by

the department of computer science, a navigation is performed from the objects in

the class STUDENT to the objects in the class DEPT via the attribute TakeCourses,

the class COURSE, the attribute Dept and the class DEPT. Thus the navigation can

be expressed as the following path expression

where s is a variable denoting an object in the class STUDENT. Since the query

is interested only in the students who are taking some computer science courses,

this navigation needs not to be performed on all objects in the above classes but

is confined to some selective objects. Obviously, computer science departments are

the only relevant objects in the class DEPT. The constraint can be expressed as a

selection:

s.TakeCourses.Dept .Name3 = "Computer Science".

A set-oriented way of evaluating the path expression (performing navigation)

 he sample database schema is in Appendix B.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

is to calculate the implicit joins2

STUDENT W COURSE W DEPT.

An object s E STUDENT satisfying the above selection is an instance of the following

expression

~ (~ ~ ~ ~ ~ ~ ~) (~ (s . ~ a k e ~ o u r s e s . ~ e p t . ~ a r n e ~ = ~ ~ ~ o r n p u t e r Science") (STUDENT

W COURSE D E P T)) .

An object s is an instance of the above expression if and only if there is an object

sequence s,c,d such that s E STUDENT, c E s.TakeCourses, d = c.Dept and

d. Name = "Computer Science". Therefore the above algebraic expression is equiv-

alent to

The selection

s.TakeCourses.Dept.Name=~ = "Computer Science"

has been simplified to

d.Name = "Computer Science"

and moved inside the implicit joins and onto the class DEPT. By performing the
y.

select ion
5 e d.Name = "Computer Science"

on the class DEPT earlier than those implicit joins, the evaluation (navigation) can

be more efficient because only computer science departments need to be taken into

consideration.

2A implicit join is a join where two objects are joinable if one is an attribute of the other. The
algebra used in this chapter is similar to ENCOREIEQUAL in Shaw and Zdonik[llO]. Here s and
a stand for projection and selection operations respectively.

C H A P T E R 5. OPTIMIZING COMPLEX QUERIES 69

It seems that the migration of predicates is quite similar to "push selection inside

join" in relational databases. However, there are some important differences. In

Example 5.1, the selection condition is simplified and moved inside the implicit joins

and onto the tail class DEPT of the path expression. Furthermore, such kind of

simplification and movement of selection conditions can not always be performed.

Example 5.2 To find out all the students who are only taking courses offered by

the department of computer science, the navigation constraint can be expressed as

follows:

s.TakeCourses.Dept .Namev = "Computer Science"

An object s E S T U D E N T satisfying the above selection is an instance of the following

expression

r (~ ~ ~ ~ ~ ~ ~) (g (s . ~ a k e ~ o u r s e s . ~ e ~ t . ~ ~ = " ~ o m ~ u t e r Sciencew) (STUDENT

M COURSE M DEPT)).

An object s is an instance of the above expression if and only if for all object sequences

s ,c ,d , if s E STUDENT, c E s.TakeCourses and d = c.Dept, then d.Name =

"Computer Science". Therefore, in this case, whether an object s is an instance of

the above expression is related to all the object sequences with the same head s. The

selection

s.TakeCourses.Dept.Nametl = "Computer Science"

can not be simplified and moved inside the implicit joins as in the previous example.

That is, the above expression is not equivalent to

It is, therefore, not correct to perform the selection

d.Name = "Computer Science"

before the implicit joins. The reason is that the path expression

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

is a set-valued one, therefore, the path expression

may correspond to one or more instances in

S T U D E N T M COURSE M DEPT.

The path expression

s.TakeCourses.Dept.Name

satisfies the selection if all those instances satisfy the condition.

Clearly, Examples 5.1 and 5.2 show that different types of selections require different

kinds of optimization strategies.

Constraints on navigations can also appear in the form of join conditions. Sim-

ilarly, different optimization strategies should be applied to different types of join

conditions.

Example 5.3 To find out some professor and student pairs such that some courses

taught by the professors are higher level than all the courses taken by the students, a

navigation may need to be performed from an object in the class PROF to objects in

STUDENT via the attribute TeachCourses, the class COURSE, the attribute Take-

Course (in reverse), and the class STUDENT. The navigation constraint condition

could be expressed as a path expression comparison

which could be considered as a join predicate between the two classes PROF and

STUDENT. Here p stands for a variable denoting an object in the class PROF and s

represents a variable denoting an object in the class STUDENT.

In addition, aggregation functions could appear in a selection and join condition. For

example,

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

and

The questions arise whether it is possible to perform the simplification and movement

on these more complicated selection and join conditions as in the previous examples?

And when and how such kinds of the simplification and movement can be performed?

This chapter will answer these questions and present a framework for integrating

different strategies.

Interestingly, navigation information in encapsulated methods can also be ex-

ploited for efficient query processing since there may be some sharing of navigations

between user-defined methods and queries.

Example 5.4 Find all the names of students who are from a metropolis or a large

country with a population of over 20,000,000, and who are only taking computer

science courses and taking courses over 400 level.

S E L E C T s .Name

F R O M s S T U D E N T

W H E R E FromLargeCountryOrMetro(s)

A N D s.HomeAddress.Country.Population > 20,000,000

A N D s.Ta keCourse. Dept.Namev = LLComputer Science"

A N D s.TakeCourse.Numberv > 400.

If a student s comes from a metropolis or a large country, then the method

returns true. The factorization of common sub path expressions among the path

expressions in a query can be performed. Since both

s.TakeCourse. Dept

and

CHAPTER 5. OPTIMIZING COMPLEX Q UERIES

share the common sub path expression

s.TakeCourse,

the two selection conditions

s.TakeCourse.Deptv = "Computer Science"

and

s.TakeCourse.Numberv > 400

have a mutual binding on s.TakeCourse. The evaluation result of s.TakeCourse in

s.TakeCourse.Deptv = "Computer Science"

can be used for evaluating

or vice versa. Furthermore, there are four path expressions in the method

FromLargeCountryOrMetro

which include3

s.HomeAddress.Country.Population,

and

s. HomeAddress.City.Area.

Their maximal common sub path expression is

s. HomeAddress.

3Navigations could be expressed in other forms rather than dot expressions, e.g., function cas-
cades. It is easy to design a parser to extract navigation information from the source codes of
methods.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

The selection

of the query also has a sub path expression s.HomeAddress. Therefore, the common

sub path expression

s . HomeAddress

needs to be evaluated only once even though it appears in the five path expressions.

0

This chapter will also present a systematic study on the revelation of navigation

information in an encapsulated method and on the factorization of shared navigations

among not only those in a query but also in a method during query optimization

process.

5.3 Path Expression Definition

For clarity of explanation, only navigations via attribute relationships among classes

are considered in the presentation. Optimization strategies for navigations through

class/subclass hierarchies and relationships specified by methods and deduction rules

are discussed later.

We first introduce the definition of path expressions. The definition is quite similar

to that in [94]. Intuitively, a path expression represents a navigation from an object

in one class to other objects in other classes via attribute relationships on a class

composition hierarchy.

Definition 5.1 Path expression. oO.A1.A 2...An is a path expression associated with

the classes 0 0 , 01,, 0, if 00 is an object of class O0 and A; is an attribute of 0;-1

ranged on class 0; or set of 0; for i = 1,2, ..., n.

For example, s.HomeAddress.Country.Name denotes the name of the country the

student s comes from. s.TakeCourses.Dept.Name represents the names of the de-

partments which offer the courses taken by the student s.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 74

The attribute An can be either primitiveone such as the attributes Name and Age

of P E R S O N or non-primitive one such as the attribute HomeAddress of PERSON.

In this chapter, for easy presentation of the results, it is assumed that An's are prim-

itive attributes without loss of generality.

Definition 5.2 Object path. (oo, ol, .. ., on-l) is an object path satisfying oo.A1.Az . . .
A, if for i = 1,2, ..., n - 1, oi=o;-l.Ai when Ai is a single-valued attribute or o; E

oi-l.Ai when A; is a set-valued attribute. oo is called the head and the tail. The

attribute AnV1 is called the tail non-primitive attribute or the tail attribute in short.

For example, if the student s is taking computer science course CMPT200, then (s,

cmpt200, cs) is an object path satisfying

Here cmpt200 and cs are OIDs of CMPT200 and the computer science department

respectively.

Definition 5.3 Single-valued and set-valued path expression. A path expression

without any set-valued attributes is defined as a single-valued path expression, oth-

erwise as a set-valued path expression. If oO.A1.A 2...An is a set-valued path expres-

sion and Ak is a set-valued attribute and all A; (i < k) are single-valued attributes,

then Ak is called the first set-valued attribute of the path expression and the classes

OlcSl, . . . , On-1 are called the ending non-primitive classes or the ending classes in

short.

For example,

s.HomeAddress.Country.Name

is a single-valued path expression.

is a set-valued path expression and TakeCourses is the first set-valued attribute.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 75

Obviously, at most one object path may satisfy a single-valued path expression and

more than one object path may satisfy a set-valued path expression. For example, a

student may take more than one course, therefore, there may be more than one object

path satisfying s.TakeCourses.Dept. Name.

Definition 5.4 Value of a path expression. If o.A l...An is a single-valued path ex-

pression, the value of the path expression o.A l...A, is 0,-1 .A, where (o,ol, .. . , 0,-1)

is an object path satisfying o.A l...A,. If o.A l...An is a set-valued path expression, the

valued of the path expression o.Al ... A, is

{V I (0, ol, . . . , on-1) satisfies o.A1.. . A,,

v = 0,-1 .A, if A, is a single-valued attribute or

v E O,-~.A, if A, is a set-valued attribute).

For example, if the student s comes from Canada, then the value of

s. HomeAddress.Country. Name

is "Canada". If the student s is only taking the courses offered by the department of

computer science and the department of mathematics, then the value of

s.TakeCourses.Dept.Name

is {"Computer Science", "Mathematics").

The evaluation of oo.A l...An or the navigation from 00 via the attributes A;, in-

volves n object references. If these objects are not stored in a same block on a disk,

then many disk accesses may be needed. Usually, given a collection of object 00,

the evaluation of oo.A l...An for each oo E Oo are needed. A set-oriented evaluation

strategy is to calculate the implicit joins

whose instances are the object paths satisfying oo.A l...A, and 00 E 0. Therefore, the

evaluation of oo.A l...A, for oo E 0 is transformed into the evaluation of the implicit

joins. The next two sections will identify constraints conditions associated with path

expressions and show how these constraints can be employed effectively to optimize

navigations.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

5.4 Optimization of Complex Select ions and Joins

5.4.1 Path Expression-Based Selections

Since the values of path expressions may be sets, the quantifiers V and 3 and the

aggregation functions such as MIN, MAX, COUNT, AVG and S U M need to be

introduced in operations containing path expressions [73].

Definition 5.5 Path expression selection. Path expression selections have the fol-

lowing form

f (s)q$'cqz

where s is a path expression and c is a constant or constant set, 8 E {=, #, <, >
< >), and f E {I, MAX, MIN, COUNT, AVG, SUMI4. If s is a single-valued 7 - 7 -

path expression or f E {MAX, MIN, COUNT, AVG, SUM), ql can be 3 or V. If

c is a constant, q2 can be 3 or V. In both cases, ql and q2 are always chosen to be

3 by default. If f = I, then the path expression selection is defined as type B(ql)

path expression selection. If f E {MAX, MIN, COUNT, AVG, SUM) and s is a

set-valued path expression, the path expression selection is defined as type 8(V) path

expression selection.

Obviously, by definition, selections with aggregation functions are of type O(V) because

the path expressions are set-valued and the aggregation functions are applied on

these set-valued path expressions. Later we will show that some of them can be

transformed into selections of type 8(3) without aggregation functions. The following

path expression

s.TalceCourses.Dept.Nametl = "Computer Science"

represents that the student s is only taking computer science courses. It is a path

expression selection of type = (V).

4I is an identity function and used for easy presentation of the theorem with the aggregation
functions MAX, MIN, COUNT, AVG and SUM

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 77

The evaluation of a path expression can be transformed into the implicit joins

of its associated classes. The evaluation of a path expression selection is performed

by applying the selection to the implicit joins. A natural question is when and how

the selection should be "pushed"? The following Theorem 5.1 shows that different

optimization strategies should be applied to different types of selections.

Theorem 5.1 f (o.A1 ... A,),, 8cq2 is a path expression selection

If the selection is of type 8(3)

If the selection is of type O(V)

where o.A1. ..An is a path expression associated with the classes 0 0 , .. ., On, Ak is the

first set-valued attribute, ok-1 E Ok-l, f E {I, MAX, MIN, COUNT, AVG, SUM)

and 8 E {=, #, <, >, <,>I.
Proof: see Appendix C.

Example 5.5 Let us consider Example 5.1 and 5.2 again.

s.TakeCourses. Dept.Name3 = "Computer Science"

represents that the student s is taking some computer science courses. It is a path

expression selection of type = (3).

{sls.TakeCourses.Dept.Name3 = "Computer Science", s E STUDENT)

And

s.TakeCourses.Dept.Namev = "ComputerScience"

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 78

represents that the student s is only taking computer science courses. It is a path

expression selection of type = (V) .

{s~s.TakeCourses.Dept.Namev = "Computer Science", s E S T U D E N T)

-
- r (~ ~ ~ ~ ~ ~ ~) (o (s . ~ a ~ o u r s e s . ~ e p t . ~ a m e v = ' i ~ o m p u t e r Science") (S T U D E N T

cu COURSE W D E P T)) .

0

The above examples show when and how the path expression selections can be sim-

plified and moved inside the implicit joins of the classes associated with the path

expressions.

The following example illustrates when and how a selection with an aggregation

function can be simplified and moved inside the implicit joins of the classes associated

with the path expression.

Example 5.6 COUNT(p.Dept.0 f f erprograms) > 3 denotes that the department

the professor p is working for offers more than three programs.

{plCOUNT(p.Dept.O f f erPrograms) > 3, p E P R O F)

Here the selection condition migration is similar to "push selection inside join" which

usually generates efficient query evaluation in relational query processing. But it is

different from "push selection inside join" in relational query processing. If a path
; expression selection is of type 0(3), the selection condition can be simplified and

t moved onto the range class of the tail attribute of the path expression. If a path

expression selection is of type B(V), then the selection condition can only be simplified

and moved onto the implicit joins of the ending classes of the path expression. We

have the following observation:

CHAPTER 5. OPTIMIZING COMPLEX Q UERIES

Observation 5.1 Theorem 5.1 can be summarized as follows:

1. If a path expression selection is of type 8(3), then the selection condition can

be simplified and moved onto the range class of the tail attribute of the path

expression.

2. If a path expression selection is of type d(V), then the selection condition can

be simplified and moved onto the implicit joins of the ending classes of the path

expression.

Theorem 5.2 If s is a set-valued path expression, then

Similar results hold for other comparisons such as 2, <, and 5.
Proof: The proof is easy and omitted.

This theorem illuminates the relationship between selections with and without aggre-

gation functions. MAX(s) > c, which is a selection of type > (V), can be translated

into s3 > c, which is a selection of type > (3). Obviously, the later one can be

processed more efficiently than the former. For example,

denotes that the oldest professor in the university u is over 70. It is equivalent to

which is a selection of type > (3).

5.4.2 Path Expression-Based Joins

Constraints on navigations can also be present in the form of join conditions which

have more general form than those in the relational databases and include comparisons

operations between two path expressions.

C H A P T E R 5. OPTIMIZING COMPLEX QUERIES 80

Definition 5.6 Path expression comparison. Path expression comparisons have the

following form

f (s),,Og(t)m

where q; E {V, 31, s and t are path expressions, 0 E {=, #, <, >, I, 2, E, C, 2, >)
and f , g E {I, MAX, M I N , COUNT, AVG, SUM). If s is a single-valued path

expression or f E {MAX, M I N , COUNT, AVG, SUM), ql can be either 3 or V. If

t is a single-valued path expression or g E {MAX, M I N , COUNT, AVG, SUM), q 2

can be either 3 or V. In both cases, ql and q 2 are always chosen to be 3 by default.

If both f = I and g = I , the comparison is defined as type O(ql, q2). If f = I and

g E {MAX, M I N , COUNT, AVG, SUM), the comparison is defined as type O(ql, V).

If f E {MAX, M I N , COUNT, AVG, SUM) and g = I, the comparison is defined

as type O(V, q2). If f , g E {MAX, M I N , COUNT, AVG, SUM) and s and t are set-

valued path expressions, the comparison is defined as type O(V, V). Only when s and

t are set-valued path expressions, and f and g are identity functions then 0 could be

one of {El C, _>,I). In these cases, the comparison is defined as type O(V, V).

For example,

u.President.Age > d.FacultyMembers.Agev

denotes that the president of the university u is older than any faculty member of the

department d. The comparison is of type > (3,V).

The evaluation of the path expression comparison between

and

o l . ~ l . . . ~ ,

ii is transformed into a join between

Oo CU . . . CU and 0; cu . - . !A 0,-,

and the comparison operation becomes the join conditions.

I

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 81

Definition 5.7 Path expression join. A join corresponding to a path expression

comparison is called a path expression join.

A natural question arises as in the evaluation of selections. When and how join

conditions can be simplified and moved inside the implicit joins of the classes associ-

ated with the path expressions? The following Theorem 5.3 answers the question.

Theorem 5.3 f (o.A1 ... A,),, Og(/ . B1 .. . B,),~ is a path expression comparison, we

1. If the path expression comparison is of type 0(3,3), then

2. If the path expression comparison is of type O(3, V), then

$

3. If the path expression comparison is of type O(V, 3) or O(V, V), then

where o.A1 ... A, and 4. B1 ... B, are path expressions associated with the classes 0 0 , . .., On

and o;, ..., 0; respectively, Aj is the first set-valued attribute of o.A1 ... A, and Bk

is the first set-valued attribute of /.B1...Bm, o; E Oil oi E 0; qi E {V, 31, and

0 E {=, #, <, >, <,>, C, C, _>,I). f , g E {I, MAX, M I N , COUNT, AVG, SUM).

Proof: The proof is similar to that of Theorem 5.1. 0

C H A P T E R 5. OPTIMIZING COMPLEX Q UERIES

Example 5.7

is a path expression join of type > (3 ,V) which denotes some courses taught by the

professor p are higher level than all the courses taken by the student s.

{ (p , s) Ip.TeachCourses.Number3 > s.TakeCourses.Numberv,

p E PROF, s E S T U D E N T)

= ~(PROF,STUDENT)(PROF W

~ (c . ~ u m b e ~ > s . ~ a k e ~ o u T s e s . ~ u m b e T ~) (~ o ~ R s X (COURSE' S T U D E N T))) .

0

We have the following observation:

Observation 5.2 Theorem 5.3 can be summarized as follows:

1. If a path expression join is of type O(3,3), the join condition can be simplified

and moved onto the join of the range classes of the tail attributes of the two

path expressions.

2. If a set-valued join is of type O(3, V) , then the join condition can be simplified and

moved onto the join of the class of the tail attribute of the left path expression

and the ending classes of the right path expression.

3. If a set-valued join is of type O(V, 3) or O(V,V), then the join condition can

be simplified and moved onto the join of the ending classes of both the path

expressions.

Theorem 5.4 If s and t are two set-valued path expressions, then

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 83

Similar results hold for other comparisons such as 2, <, and 5.
Proof: The proof is easy.

This theorem illustrates the relationship between path expression comparisons with

and without aggregation functions. sg > t g can be processed more efficiently than

the other three equivalent comparisons with aggregation functions. s g > tv and sa >
MAX(t) can be processed more efficiently than the other two equivalent comparisons

with aggregation functions.

5.5 Classification and Cost Estimation of Methods

5.5.1 Method Definition

A method is defined as a function associated with a group of classes:

The above form of the method m is equivalent to

m' : 01 x x On x t Boolean

Therefore, methods can appear in the same way as predicates. The usage of terms of

predicates and methods will be exchanged in the rest of the chapter. Here 01, 02, . .. ,
and are the range classes of the arguments of the method m. For example,

birthday : E M P L O Y E E -+ DATE

or

birthday : E M P L O Y E E x DATE t Boolean

where E M P L O Y E E is a persistent class while DATE may be a non-persistent class5.

5Since only objects of persistent classes are concerned, objects will refer to persistent objects
without confusion in the rest of the chapter. We also make an assumption that all methods do not
involve any update operations throughout the chapter.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 84

In a method, some navigations start from argument objects while others begin

with objects other than argument objects. Therefore, there are two types of path

expressions in a method. Argument path expressions are those path expressions origi-

nating from argument objects of a method. All path expressions not originating from

argument objects are called hidden path expressions. Hidden path expressions and

path expressions in queries do not share any direct mutual bindings. Only argument

path expression and path expressions in queries may possibly share mutual bindings.

Definition 5.8 Maximum common sub argument path expression. Argument path

expressions can be clustered according to the argument objects where they originate.

An n-persistent arguments method has n clusters of argument path expressions. For

each cluster, the maximal common sub argument path expression is defined as the

common sub argument path expressions of maximal length.

The method FromLargeCountryOrMetro, for example, has one cluster of argument

path expressions:

{s.HomeAddress.Country.Population,

s.HomeAddress is its maximal common sub argument path expression.

Path expressions in a conjunctive query may have bindings on all argument path

expressions in methods. However, argument path expressions in a method may not

have direct bindings on path expressions in a query even though argument path ex-

pressions in a method and path expressions in a query share common sub path ex-

pressions. It is only certain that maximal common sub argument path expressions

in a method may have direct bindings on path expressions in a query. For example,

consider the query in Example 5.4. In the method From LargeCountry OrMetro, the

maximal common sub argument path expression s.HomeAddress has a binding on

the path expression

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

in the query. However, the argument path expression

s.HomeAddress.Country.Population

in the method does not have a binding on the path expression

s.HomeAddress.Country.Population

in the query because of or in the method. Let us consider the following query,

Example 5.8 Find all the names of students who are from a metropolis and a large

country with a population of over 20,000,000, and who are only taking computer

science courses and taking courses over 400 level.

S E L E C T s .Name

F R O M s S T U D E N T

W H E R E FromLargeCountryAndMetro(s)

A N D s. HomeAddress.Country. Population > 20,000,000

A N D s.TakeCourse.Dept.Namev = "Computer Science"

A N D s.TakeCourse.Numberv > 400

If a student s comes from a metropolis and a large country, then the method

FromLargeCountryAndMetro(s)

returns true. Then the argument path expression

does have a binding on the path expression

s.HomeAddress.Country.Population

in the query because of "and" in the method. It is very hard to automatically ac-

quire semantics such as relationships among path expressions in a method. However,

maximal common sub argument path expressions can always be used as bindings on

path expressions in queries. In this sense, methods in our approach are still not white

boxes but grey ones.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

5.5.2 Met hod Classification

A method m with n-persistent arguments can be classified according to how many

of argument path expressions are in each cluster of argument path expressions and

whether there are hidden path expressions in the method.

Definition 5.9 Type n - (k l , kg, ..., k,) method. A method m is defined as type

n - (kl, k2, ..., kn) method if it has n persistent arguments and k; denotes that there

are k; argument path expressions originating from the i th persistent argument. If

m has hidden path expressions, it is defined as type n - (k l , k2, .. ., k,)(Y) method,

otherwise type n - (kl, k2, .. . , kn)(N) method.

In methods of types 1-(l)(N), 1-(l)(Y), n-(1, 1, ..., l) (N) and n-(1, 1, ..., l)(Y),

there is only one argument path expression in each cluster of argument path ex-

pressions. These argument path expressions are, therefore, maximal common sub

argument path expressions.

Definition 5.10 Selection-type and join-type methods. A method of type 1-(n) is

called a selection-type method. A method of type n - (kl, ..., k,), where n > 1, is

called a join-type method.

Theorem 5.5 m is a selection-type method with o.A l...A, as its maximal common

sub argument path expression.

1. If o.A1 ... A, is a single-valued path expression,

= {0lm'(0.~1 . . .A~) , o E 00)

= *(o,) (00 w . . w u,~(,~) (On))

where ml(o.A1 ... A,) = m(o) and on E 0,.

C H A P T E R 5. OPTIMIZING COMPLEX Q UERIES

2. If o.A l...A, is a set-valued path expression,

= {olmi(o.A1...AS-I), o E 00)

= % - (0) (0 0 . - - . . ~,(o,-l,(os-l))

where A, is the first set-valued attribute, mr(o.~l.. .A,-l) = m(o) and 0,-1 E

0s-1.

Proof. The proof is in Appendix C.

Theorem 5.6 m is a method of type 2 - (k, 1) with o.A l...A, and o).B1...Bq as its

maximal common sub argument path expressions.

1. If both o.A1.. .A, and o) . B1. . . B, are single-valued path expressions,

(0 ,) (o d) , o E 0 0 , d E 0;)

= { (o , o i) lmr(o.A1 ... A,, d .B1...B,), o E Oo, d E 0;)

= %- (00,o;) (0 0 w . . . w nm&,;)(OP w 0;) w . . - . 0;)

where ml(o.A1 ... A,, o).B1... B,) = m(o, o)), o, E 0, and oi E 0,.

2. If o.Al ... A, is a single-valued path expression and ol.B1 ... B, is a set-valued path

expression,

(0 , d) (0 ,) o E 00, o' E 0;)

= ((0 , d) lmr(o.~1...Ap7 o'. B1 ... Bt-l) o E 0 0 , o' E 0;)

= %-
(00 0;) (0 0 . . ~ , ~ (o p , o ~ ~ l) (O p oL) . . - w 0;)

where Bt is the first set-valued attribute, mi(o.A l . . .~, , o). B1...Bt-1) = m(o, o)),

o, E 0, and Oi-l E OS-~.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 88

3. If o.A l...Ap is a set-valued path expression and ol. B1... B, is a single-valued path

expression,

(0 ,) (o o'), o E 0 0 , o' E 0;)
I 1

= {(o,o)Im (0.A l...A,-l,d.~l...B,), o E 0 0 , o' E 0;)

= I T (00,o;) (0, w . . . s-l, o;)(O,-l w 0;) W . . - W 0;)

where A, is the first set-valued attribute, mf(o.A1 ... ~ ~ - 1 , d.B1 ... B,) = m(o, d) ,

0,-1 E 0,-1 and ob E 0;.

4. If both o.A l...A, and d . ~ l . . . ~ q are set-valued path expressions,

I I

= {(o, o) Im (0.A l...A,-l, o'. B ~ . . . B ~ - ~) , o E Oo, o' E 0;)

= IT (o,,o~, (00 . . om'(o,-, $0,-, ,(0,-1 o;-,) w . . . w 0;)

where A, and Bt are the first set-valued attributes, ml(o.A1 ... A,-1, ol.B1 ... Bt-1) =

m(o,d) , 0,-1 E 0,-1 and E O;-,.

Proof. The proof is similar to Theorem 5.5. 0

The theorems for methods of type n - (kl, ... , k,) are similar. In a method, if

some maximal common sub argument path expressions are single-valued ones, then

the method can be evaluated before the evaluation of the implicit joins of the classes

associated with these single-valued maximal common sub argument path expressions.

The evaluation of the method has to be delayed after those of the implicit joins of the

ending classes associated with those set-valued maximal common sub argument path

expressions.

Example 5.9

FromLargeCountryOrMetro(s)

can be rewritten as

FLCOM(s.HomeAddress)

where

C H A P T E R 5. OPTIMIZING COMPLEX Q UERIES

FLC0M:ADDR -, BOOLEAN

FLCOM(h:ADDR):BOOLEAN

begin

if (h.Country.Population > 15,000,000 and h.Country.Area > 2,000,000)

or (h.City.Population > 1,000,000 and h.City.Area > 500)

then return(True) else return(Fa1se)

end

The method FLCOM can be considered as a method on ADDR and evaluated before

the evaluation of the implicit join of the classes STUDENT and ADDR associated

with the maximal common sub argument path expression s.HomeAddress because

{s~FromLargeCountryOrMetro(s), s E STUDENT)

= STUDENT (STUDENT ~ F L C O M (~) (ADDR))

5.5.3 Cost Estimation of Met hod Evaluation

The cost of evaluating a method involves two parts: the cost involving argument path

expressions ARG and the cost involving hidden path expressions H I D . Since maximal

common sub argument path expressions are revealed, they will not be included in the

cost estimation of the methods. We define a unit cost as one reference of an object

in a class. For example, the cost of the reference of o.A, where A is an attribute of o,

is C(0.A) = 1.

m is of type 1 - (l) (N) or type n - (I l l , ..., l) (N) . In this two cases, there are

no hidden path expressions and the argument path expressions are themselves

the maximal common sub argument path expressions. Consequently, the cost

of calculating these types of methods is 0.

m is of type 1 - (l) (Y) or type n - (1,1, ... , l)(Y). Since all the argument path

expressions are themselves the maximal common sub argument path expressions,

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 90

the cost of calculating these types of methods only involves the hidden path

expressions.

m is of type 1 - (n)(N) or type n - (kl , . .. , kn)(N). There are no hidden path

expressions in these two types of methods. The cost of calculating these types

of methods only involves argument path expressions (excluding the maximal

common sub argument path expressions).

m is of type 1 - (n)(Y) or type n - (kl, ..., kn)(Y). In these two cases, since

there are both hidden path expressions and argument path expressions, the cost

of evaluating these types of methods involve both types of the path expressions

(excluding the maximal common sub argument path expressions).

In the following, we will show how to estimate the cost of the method

If a president of an university u is among the top 10 well paid presidents of all

universities, then the method

returns true. Obviously, it is of type 1 - (l) (Y) . Our approach is quite similar to

Kemper et a1 [71]. However, the maximal common sub argument path expression,

u.President, is excluded when the cost of evaluating the method is estimated.

where

and

C(ToplOWellPaidUniv) = ARG + H I D

ARG = 0

H I D = N * C(v.President.Sa1ary)

where N is the number of universities in class UNIVERSITY. Because the maximal

common sub argument path expressions are revealed and are not included in the cost

estimation, ARG = 0. C(v.President.Salary) = 2. Thus,

C(Topl0WellPaidUniv) = 2 * N

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 91

In the above estimation, we do not consider any storage information such as object

clustering, buffer size and object indices to avoid any complication. However, the

estimation illustrates the numbers of object references, therefore, highlights the cost

of evaluating a method. More advanced estimation methods are discussed later.

5.6 Query Graph and Query Plan Generation

In the previous two sections, we have considered optimization of selections and joins

which include path expressions and methods. The following definitions summarize

the classifications of selections and joins.

Definition 5.11 Selection. Single-valued selections include path expression selec-

tions of type O(3) and selections with selection-type methods as selection conditions

where their maximal common sub argument path expressions are single-valued. Set-

valued selections include path expression selections of type Q') and selections with

selection-type methods as selection conditions where their maximal common sub ar-

gument path expressions are set-valued. Both single-valued and set-valued selections

are called selections.

Definition 5.12 Join. Single-valued joins include implicit joins, path expression

joins of type 0(3,3), and joins with join-type methods as join conditions where all

maximal common sub argument path expressions are single-valued. Set-valued joins

include path expression joins of type 6(3,V), O(V, 3), O(V,V) and joins with join-

type methods as join conditions where some maximal common sub argument path

expressions are set-valued. Both single-valued and set-valued joins are called joins.

By identifying different types of constraint conditions and applying appropriate

optimization strategies, we can achieve "push constraint inside navigation". Thus

inexpensive but highly selective constraints can be evaluated to eliminate irrelevant

objects before costly navigation operations are performed. Common navigation oper-

ations are exploited among queries and user-defined methods by revealing the encap-

sulated methods.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

In a path expression selection of type 4(3), the selection predicate can be simplified

and moved to the class of tail attribute of the path expression. The selection can be

performed before the implicit joins of the classes associated with the path expressions

and should be done as early as possible. However, in a path expression selection of

type d(V), the selection has to be delayed after the evaluation of implicit joins of

the ending classes associated with the path expression. In a path expression join of

type 4(3,3), the explicit join can be evaluated before the implicit joins of the classes

associated with both the path expressions. In a path expression join of type 4(3 ,V) ,

the explicit join can only be evaluated after the implicit joins of the ending classes

associated with the right path expression. In a path expression join of type 4(V, 3) or

d(V,V), the explicit join can only be evaluated after the implicit joins of the ending

classes associated with both the path expressions. Some selections and joins with

aggregation functions can be translated into the equivalent and more efficient forms of

selections and joins. In a selection-type method with a single-valued maximal common

sub argument path expression, the method can be evaluated before the implicit joins

of the classes associated with the maximal common sub argument path expression.

In a selection-type method with a set-valued maximal common sub argument path

expression, the method can only be evaluated after the implicit joins of the ending

classes associated with the maximal common sub argument path expression. A join-

type method can be evaluated before the implicit joins of the classes associated with

single-valued maximal common sub argument path expressions and after the implicit

joins of the ending classes associated with set-valued maximal common sub argument

path expressions. The optimization strategies are summarized as follows:

0 perform single-valued selections as early as possible;

0 perform set-valued selections after implicit joins of ending classes of relevant

path expressions;

0 perform set-valued joins after implicit joins of ending classes of relevant path

expressions; and

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 93

perform transformation of selections and joins with aggregation functions into

the equivalent and more efficient forms of selections and joins without aggrega-

tion functions.

5.6.1 Query Graph

There are some proposals of query graphs for object queries, for example, Banerjee

et al. [8], Cluet and Delobel [29] and Lanzellote et al. [go]. However, their proposals

do not meet all of our requirements to facilitate the implementation of the proposed

optimization strategies. A query graph should be able to represent single-valued and

set-valued selections, single-valued and set-valued joins as well as the factorizations

of common sub path expressions among path expressions in a query.

Definition 5.13 Query graph. Query graph is a hypergraph H = (V, E), where V

is constructed as follows:

1. Nodes correspond to all object variables appearing in a query. Different object

variables correspond to different nodes even though they are in a same class.

2. If t.A1.A 2...Arn is a path expression appearing in the query, add nodes corre-

sponding to the range classes of A1, A2, ..., A,-1 to V.

E is constructed as follows:

1. If t.A1.A 2...Arn is a path expression appearing in the query, add an edge con-

necting the node corresponding to object variable t and the node corresponding

to the range class of the attribute Al and the edges connecting the two nodes

representing the range classes of the attributes A;-1 and A; where 2 5 i 5 m - 1.

2. If a path expression selection appears in the query, add an one node edge which

contains one node corresponding to the range class of the tail attribute of the

path expression if the selection is of type 8(3). The edge denotes the predicate

on the range class of the tail attribute. If the selection is of type d(V), add a

superedge connecting the nodes corresponding to the ending classes associated

with the path expression.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 94

3. If a path expression comparison appears in the query, add an edge connecting

the two nodes corresponding to the range classes of the tail attributes of the

two path expressions if the path expression comparison is of type 0(3,3). The

edge denotes the explicit joins. If the path expression comparison is of type

d (3 , V), add a superedge connecting the nodes corresponding to the range class

of tail attribute of the left path expression and the ending classes associated

with the right path expression. If the path expression comparison is of type

O(V, 3) or O(V, V), add a superedge connecting the nodes corresponding to the

ending classes associated with both the path expressions.

4. If a method appears in the query and t.A1.A 2...An is a maximal common sub

argument path expression, then add a superedge connecting following nodes.

If t.A1.A 2...A, is a single-valued path expression, the edge contains the node

corresponding to the range class of the tail attribute only. If t.A1.A 2...An is a

set-valued path expression, the superedge contains the nodes corresponding to

the ending classes associated with the path expression.

The following examples illustrate how a query graph is constructed and query

evaluation plans are generated.

Example 5.10 Finds all pairs of students and universities such that all the faculty

members of the university are over 40, the total numbers of the courses offered by the

universities are over 500, some courses taught by the university presidents are higher

level than all those of the courses taken by the students, and the students are from

the city Prince George.

S E L E C T u.Name, s.Name

F R O M u UNIVERSITY, s STUDENT

W H E R E u.Depts.FacultyMembers.Agev > 40

AND COUNT(u.Depts.0 f f erCourses) > 500

AND u.President.TeachCourses.Number3 > s.TakeCourses.Numberv

AND s.HomeAddress.City.Name = "Prince George"

0

C H A P T E R 5. OPTIMIZING COMPLEX QUERIES 95

Its query graph is in Figure 5.1. A node corresponding to an object variable or a

class is represented by an ellipse. A conventional directed edge denotes an implicit

join between two classes. A superedge is represented by an area which is bounded by

a closed line and contains all the nodes of the superedge. For example, the one-node

superedge { C I T Y) denotes the single-valued selection

c.Name = "Prince George"

which is the result of the simplification and movement of the single-valued selection

s. HomeAddress.City. Name = "Prince George".

{ U N I V E R S I T Y , DEPT, PROF) is a superedge which denotes the set-valued selec-

tion

u.Depts.FacultyMembers.Agev > 40.

The superedge { U N I V E R S I T Y , DEPT, COURSE) represents the set-valued selec-

tion

COUNT(u.Depts.0 f f erCourses) > 500.

Both the directed path

(U N I V E R S I T Y , DEPT, PROF)

and

(U N I V E R S I T Y , DEPT, COURSE)

share common sub path (U N I V E R S I T Y , DEPT) . It shows that the maximum

common sub path expression u.Depts between

and

u.Depts.0 f f erCourses

has been factorized. The superedge

{STUDENT, COURSE", COURSE1)

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 96

u.Depts.FacultyMembers.Age v '40

COUNT(u.Depts.OfferCourses)> 500
3

UNIVERSITY

J

I c.Name="Prince George" I

c'.Numben s.TakeCourses.Number v
Figure 5.1: Query Graph of Example 5.10

denotes the set-valued join

c l . ~ u m b e r > s.TakeCourses.Numberv

which is the result of the simplification and movement of the set-valued join

u.President.TeachCourses.Number3 > s.TakeCourses.Numberv.

Example 5.11 Find all the names of students who are from a metropolis or a large

country with a population of over 20,00070007 and who are only taking computer

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

s.TakeCourse.Dept.Name ="Computer Science" v
Figure 5.2: Query Graph of Example 5.11

science courses and taking courses over 400 level.

SELECT s.Name

FROM sSTUDENT

W H E R E FromLargeCountryOrMetro(s)

AND s.HomeAddress.Country.Population > 20,000,000

AND s.TakeCourse.Dept.Namev = "Computer Science"

AND s.TakeCourse.Numberv > 400

0

Its query graph is in Figure 5.2. {STUDENT, COURSE) is a superedge which

denotes the set-valued selection:

The one node superedge { A D D R) , which denotes FLCOM(a), is the result of the

revelation of the method

The one node superedge { C O U N T R Y) , which denotes

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 98

represents the result of the simplification and movement of the single-valued selection:

The superedge {STUDENT, COURSE, D E P T) , which denotes the set-valued se-

lection:

s.TakeCourse.Dept.Namev = "Computer Science".

The directed paths

(STUDENT, COURSE)

and

(STUDENT, COURSE, D E P T)

represent the two path expressions

and

s.TakeCourse.Dept.Name

respectively. Their common sub path expression s.Ta keCourse has been factorized.

The directed paths

(STUDENT, ADDR, C O U N T R Y)

and

(STUDENT, ADDR)

denote the path expression

in the query and the maximal common sub argument path expression

in the method FromLargeCountryOrMetro(s) respectively. Their common sub path

f expression s. HomeAddress has been factorized.

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

5.6.2 Query Plan Generation

Like in other query graph-based approaches, query plan generation corresponds to

query graph manipulation. The query evaluation plans are generated according to

the strategies proposed previously. Figure 5.3 illustrates the process of generating

the query evaluation plan of Example 5.10. The query graph of Example 5.10 is in

Figure 5.3(a) which is the same as in Figure 5.1 except that the labels of nodes have

been changed for convenience.

1. Early single-valued selection

c.Name = "Prince George".

Remove the one-node superedges {a) in Figure 5.3(a). The node remains but

its label is changed into a'. The resulting graph is in Figure 5.3(b).

2. Single-valued joins

C I T Y ADDR, ADDR w STUDENT,

D E P T w COURSE, UNIVERSITY w DEPT.

The above joins correspond to the directed edges (9, a'), (7, 9), (7, 8), (5, 6), (1,

5) , (2, 4), (2, 3) and (1, 2) respectively. Assume that the joins are performed in

the above order. The resulting graphs are in Figure 5.3(c)-(j).

3. Set-valued selections and set-valued join

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

Figure 5.3: Query Plan Generation of Example 5.10

CHAPTER 5. OPTIMIZING COMPLEX Q UERIES

Figure 5.4: Query Plan Generation of Example 5.11

Remove the one-node superedge { 156423) which corresponds to the above two

set-valued selections in Figure 5.3(j). The resulting graphs are in Figure 5.3(k)-

(1). Remove the superedge { 156423, a'978) in Figure 5.3(1) which corresponds

to the set-valued join c) .~urnber > s.TakeCourses.Nurnberv. The resulting

graph is in Figure 5.3(m).

Figure 5.4 illustrates the process of generating query evaluation plan of Exam-

ple 5.11. The query graph of Example 5.11 is in Figure 5.4(a) which is the same as

in Figure 5.2 except that the labels of nodes have been changed for convenience.

1. Early single-valued selections include

c. Population > 20,000,000,

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

Remove the corresponding two one-node superedges {5), and (4) in Figure 5.4(a).

The two nodes 5 and 4 remain, however, their labels are changed into 5' and 4'.

The resulting graph is in Figure 5.4(b)(c).

2. Single-valued joins include

ADDR M COUNTRY, S T U D E N T M ADDR,

S T U D E N T M COURSE, COURSE M DEPT.

The above joins correspond to the directed edges (4', 5), (1,4'), (1,2) and (2,3)

respectively. Assume that the joins are performed in the above order. The

resulting graphs are in Figure 5.4(d)-(g).

3. Set-valued selections include

s.TakeCourse.Dept.Namev = "Computer Science"

and

s.TakeCourse.Numberv > 400.

Remove the one-node superedge (14'5'23) which corresponds to the above set-

valued selections in Figure 5.4(g). The resulting graph is in Figure 5.4(h)(i).

5.7 Discussion

5.7.1 Optimization Strategies for Supporting Other Kinds

of Navigations

Optimization strategies are presented for performing navigations with constraint con-

ditions over class composition hierarchies, i.e., navigations via a sequence of attribute

relationships. The class/subclass relationships are not explicitly expressed in path

expressions since attributes of a superclass are inherited by its subclasses. For exam-

ple, to find out the salary of a president of a university, a navigation is performed

C H A P T E R 5. OPTIMIZING COMPLEX QUERIES 103

from the class UNIVERSITY to the class PRESIDENT via the attribute President,

the class/subclass relationship between the class PRESIDENT and the class PROF.

The corresponding path expression is as follows

The class/subclass relationship between the class PRESIDENT and the class PROF

is not explicitly represented since the attribute Salary of the class PROF is inherited

by the subclass PRESIDENT.

Similarly, the optimization strategies can be applied to navigations through a

sequence of relationships specified by methods and/or rule deductions. For example,

Supervise is a method of the class PROF which represents a relationship of supervising

and supervised between a professor and a student. Students supervised by a professor

p could be expressed as p.Supervise. Logically, the method Supervise is treated

similarly as an attribute of PROF. A navigation, to find out professors who supervise

some students from Canada, could be expressed as

p.Supervise.HomeAddress.Country.Name3 = "Canada",

which is a selection of type (3). However, there are some important differences be-

tween attributes and methods in the way they are implemented in database systems.

Usually, attributes of an object are precomputed in databases and probably stored

together with the object. For example, the object identifiers of the courses taught

by a professor are stored together with the object professor. A navigation follows

the object identifiers from the class PROF to the class COURSE. To find out the

students supervised by some professors, however, a navigation is performed from the

class PROF to the class STUDENT by invoking the method Supervise. A method

may require intensive computation or many I/O on disks, therefore, a navigation via

a relationship specified by methods and/or deduction rules could be more costly than

that via an attribute relationship. Relationships specified by methods and/or deduc-

tion rules can also be precomputed. Instead of invoking methods and/or performing

deductions, materialized results are accessed, for instance, to find out students su-

pervised by a professor. The materialized results are, however, subject to database

CHAPTER 5. OPTIMIZING COMPLEX QUERIES 104

updates. Extra mechanisms are required to maintain the precomputed relationships

updated.

5.7.2 Met hod Materialization for Query Evaluation

Exploiting sharing of navigations for optimizing queries including user-defined meth-

ods are effective when there are large number of sharings between queries and meth-

ods. Precomputing user-defined methods or methods materialization is an alternative

technique. Met hod materialization helps to avoid time-consuming computation, e.g.,

navigations, at run-time. It transforms ob ject-at-a- time evaluation of met hods into

set-oriented retrieval of materialized results. However, there are two major issues

related to method materialization:

Update maintenance. A mechanism which bookkeeps all information used in

computing a methods is needed to keep materialized method results updated.

Two-levels of information are considered

- Schema level. Schema information is used to capture global change which

leads to recomputing all materialized results. For example, RankAcademic

is a method which calculates the rank position of a student among his or

her fellow students according to GPA. Any change in one student's GPA

could lead to reordering of the rank positions of other students.

- Object level. Object information is used to capture local change which

only leads to recomputing one or some materialized results. For example,

Academicstatus is a method which evaluates a student's academic status

such as excellent(GPA 2 3.5)' good(2.5 5 GPA < 3.5)' etc. The change

of a student's GPA only leads to the change of this student's own academic

status and does not change any other students' status.

Indexing and allocating materialized results. Since the size of materialized results

could be large, it is important that these results be stored in a way so that they

can be efficiently retrieved during query execution.

C H A P T E R 5. OPTIMIZING COMPLEX Q UERIES 105

- Indexing on generic relationship. There are some interesting relationships

such as reflexive, symmetric, transitive and equivalent relationships. These

relationships have some useful properties. For example, if a method corre-

sponds to a symmetric relationship, the size of memories needed to store

its materialized results can be reduced by half.

- Employing class hierarchy information. Class hierarchy information can

be used to index materialized results for efficient retrieval. For exam-

ple, Friend is a method such that if two persons pl and pz are friends

then Friend(pl,pz) returns True. Suppose that there is a class hier-

archy rooted at PERSON. STUDENT and PROF are two subclasses of

PERSON. PhDStudent and MSStudent are two subclasses of STUDENT.

ASSISTANTProf, ASSOCIATEProf and FullProf are subclasses of PROF.

Some queries may only inquire whether some PhD students and full profes-

sors are friends, other queries may only like to know whether some students

are friends. Therefore class hierarchy information can be used to retrieve

only the materialized results of Friend between PhDStudent and FullProf

and between STUDENT and STUDENT which may be only a small part

of the materialized results.

5.7.3 Integrating with Indexing Techniques

The proposed optimization techniques can be integrated with indexing methods such

as join index hierarchies and nested indices. These indices are effective structures

for supporting efficient associative searches and/or navigations. However, they are

constructed for frequently performed navigations or associative searches because they

might sacrifice disk space and require update maintenance. The proposed optimiza-

tion techniques do not require extra space or update overhead, and accelerate naviga-

tions not supported by these index structures. For example, if there is a nested index

on the path

c. Dept. Name

C H A P T E R 5. OPTIMIZING COMPLEX QUERIES

where c is an object in the class COURSE, the selection condition

p.Supervise.TakeCourse.Dept.Name3 = "Computer Science1'

can be evaluated efficiently by searching the nested index to eliminate departments

other than computer science and computing the implicit joins among PROF, STU-

DENT and the collection of computer science courses. Unlike the nested indices which

only supports associative search, join index hierarchies provide more flexible and effi-

cient index structures which support both forward and backward along a navigation

path. If

s.TakeCourse.Dept

is a subpath of a path supported by a join index hierarchy, the selection condition

p.Supervise.TakeCourse.Dept.Chairperson.Name = "Jeff Ullmanl1

can still be evaluated efficiently by searching join index hierarchy rather than com-

puting the implicit joins among STUDENT, COURSE and DEPT. Integrating the

proposed optimization techniques with join index hierarchies does accelerate query

evaluation.

Furthermore, Theorems 5.2 and 5.4 suggest that not only selections and joins with

aggregation functions could be transformed into the equivalent and more efficient

forms of the selections and joins without the aggregation functions but also selections

and joins without aggregation functions could be replaced by the selections and joins

with aggregation functions. It thus suggests that the values of MAX and M I N of

path expressions, for instance, could be used as index values when evaluating selections

and joins. For example, M I N (s) > c is equivalent to sv > c. Therefore, M I N (s) can

be stored as an index value for evaluating the selection st/ > c.

5.7.4 Integrating with Techniques for Searching Optimal

Query Evaluation Plan

The costs and selectivities of selection and join conditions are essential for choos-

ing optimal query evaluation plans. Unlike simple selection and join conditions in

CHAPTER 5. OPTIMIZING COMPLEX QUERIES

relational database systems, the evaluation of selection and join conditions includ-

ing user-defined methods may be costly. If the cost of a selection or join including

a method is too high and the selectivity of the selection or join is not very sharp,

the evaluation of the selection or join should be delayed even if it is a single-valued

selection or join. Section 5.5.3 describes a simple approach to estimate the number

of object references in a method. Other more complicated alternatives include sam-

pling. This approach collects the cost and selectivity information by examining a

small fraction of objects in databases.

It is possible, in principle, to determine the optimal order in which single-valued se-

lections, single-valued joins, set-valued selections and set-valued joins are evaluated.

In fact, set-valued selections and set-valued joins can be evaluated as soon as the

implicit joins of ending classes of path expressions have been calculated. Their eval-

uations do not need to be delayed until after all those of single-valued selections and

single-valued joins. However, if evaluations of set-valued selections and set-valued

joins are delayed until after all single-valued selections and single-valued joins, the

search strategy in Lanzellotte et al. [go] can be employed to determine optimal single-

valued join orders in Step 2 of query evaluation plan generation in Section 5.6.2.

So far, we have considered conjunctive queries and their query graphs. Since all

queries can be considered as unions of conjunctive queries, it is not hard to extend

our work to handle non-conjunctive queries. A query can be represented by several

query graphs each of which denotes a conjunctive query. These query graphs can be

manipulated and the results can be combined into a whole query result.

5.8 Summary

In this chapter, the optimization of queries containing complex selections, joins, aggre-

gations and encapsulated methods is studied. It has been clearly demonstrated that

different types of selections and joins require different kinds of optimization strate-

gies, and some set-valued selections and joins can be transformed into equivalent and

more efficient forms of selections and joins. Sharing of navigation information be-

tween queries and methods can be effectively exploited for efficient query evaluation.

CHAPTER 5. OPTIMIZING COMPLEX Q UERIES 108

Optimization strategies have been proposed and incorporated to support efficient pro-

cessing of complex queries.

Chapter 6

Recursive Query Evaluation

6.1 Introduction

Although recursive query evaluation has been investigated extensively in deductive

database systems, it is not well understood whether and how the existing recursive

query evaluation methods can be extended to handle DOOD recursive queries [114].

In deductive databases, data are conceptually grouped by properties. The informa-

tion about one object, e.g., a student, may be spread in different relations which,

in turn, are characterized by predicates. The deductive query evaluation methods

center on the evaluation of variables and predicates and explore available constraints,

e.g., query constraints and integrity constraints. The evaluations are performed either

bottom-up from database facts, top-down from query goals, or the integration of the

two approaches. In DOOD systems, however, data are grouped around objects de-

scribed by syntactic notions such as object molecules. Therefore, it is natural to adapt

the deductive recursive query evaluation methods and to focus on the evaluation of

variables and object molecules.

Higher-order features complicate unifications [75]. Variables are allowed to appear

in the places where class, attribute and method names do. Conventional most general

unifiers may not exist and are replaced by the complete sets of most general unifiers

[75]. Thus the algorithms for unifying two object molecules could be exponential

since the number of alternative matches between the two object molecules could be

CHAPTER 6. RECURSIVE QUERY EVALUATION 110

exponential. Furthermore, higher-order features complicates the exploration of the

regularities of connections among variables since there could be more than one way

to expand a rule if there were more than one most general unifier.

Example 6.1 Most general unifier. The following is a DOOD rule

where pl is a predicate. The complete set of the most general unifiers between

U : C[X + S ; Y + T]

and

v : C[X1 + S1;K +TI]

None of the above two is more general than the other. This fact implies that there

are two alternative ways to expand the rule.

Constraints on higher-order variables may be more selective than those on con-

ventional variables. For example, a constraint on a variable representing a class

name would eliminate the number of classes to be considered during query evalua-

tion, therefore, would effectively exclude the objects in those irrelevant classes from

consideration. Similarly, a constraint on a variable denoting an at tribute name could

reduce the number of attributes accessed. The saving on navigation cost could be sig-

nificant if nested at tributes are involved. Obviously, query evaluation met hods should

capture query constraints, especially constraints on higher-order variables and apply

the constraints at the early stage of query evaluations.

Although a DOOD program can be encoded into a first-order logic program [25,

751, the transformation may produce many predicates and rules. These predicates

represent the access of attributes or the invocation of methods. Thus this process

may change simple recursions into complex ones.

CHAPTER 6. RECURSIVE QUERY EVALUATION 11 1

Example 6.2 Transforming a DOOD program into a datalog program. The following

is a DOOD linearly recursive rule1,

where p is a predicate. A transformation similar to using apply /n [107] is to translate

an attribute into a predicate. For example,

is translated into a predicate

Attr(C, X, F, U)

where the first argument represents the name of class, the second represents the

object, the third represents the attribute name and the fourth represents the value of

the attribute. The above rule is transformed into the following rule,

which is a non-linearly recursive rule [48]. Obviously, a DOOD (single) linear recursion

may be transformed into a non-linear recursion. Thus the transformation from a

DOOD program to a datalog program may produce more complex recursions than

the original ones in DOOD programs. 0

In this chapter, we propose to extend the query-independent compilation and

chain-based evaluation approach [53, 47, 46, 481 and to explore the regularities of

connect ions among variables in object molecules.

The query-independent compilation captures the bindings that could be difficult

to be captured by other methods. The chain-based evaluation explores query

constraints, integrity constraints, recursion structures, and other features of the

programs with a set of interesting techniques, such as chain-following, chain-split

and constraint pushing.

'See Definition 6.4.

CHAPTER 6. RECURSIVE QUERY EVALUATION 112

A normalization process is proposed to serve not only as a pre-processing stage

for the compilation and evaluation but also as a tool for classifying recursions.

A class of linear recursions, DOOD linear recursions, is identified which can

be efficiently processed by the extension of the query-independent compilation

and chain-based evaluation. The evaluation of nested linear recursions and the

integration with other evaluation techniques are discussed as well.

Our proposal represents a promising approach toward efficient DOOD recursive query

evaluation. In contrast to the existing systems which handle limited DOOD features,

our method can deal with DOOD features including higher-order ones. Rather than

translating programs into datalog, our method extends the query-independent com-

pilation and chain-based evaluation to process DOOD recursions with normalization.

6.2 Normalization and Classification

A normalization process transforms a rule into a normalized form. Based upon nor-

malization results, rules can be classified into different classes, e.g., non-recursive,

recursive, single linearly and multiple linearly recursive rules. A class of linear recur-

sions is identified which can be compiled into chain-forms and evaluated by chain-

based evaluation techniques.

The normalization process includes Pullout, Compose, and Associate operations.

Intuitively, a Pullout operation flattens a nested structure.

a[ll + a1; . . . ; li + a$l + c] ; . . . ; 1, + a,]

PF a[ll -+ a l ; . . . ; li + a;; . . . ; I , + a,] A ai[ll + c] .

a[ll + a l ; . . . ; 1; + {a;[l l + c] } ; . . . ; 1, -+ a,]
Pull Z a [l l -+ a1; . . . ; li + {a;}; ...; I , + a,] ~ a ~ [l l + c].

However, it is different from the unnest operation in that it "unnests" a nested

structure by changing the syntactic expression of the nested structure without per-

forming the actual unnest operation. This is made possible by the id-term ai repre-

senting an object identity. The Compose operation collects all attributes and methods

CHAPTER 6. RECURSIVE QUERY EVALUATION

regarding one object into the same object molecule.

The Associate operation makes explicit a class membership between an object and a

class.

Assoc'ate a : X A a [l l + al; ...; 1, +a,] a a : X I I l + a l ; ...; I,+a,].

If a : X is not present or there is more than one a : Xi , then choose X as the most

specific class that a belongs to. If the root class2 is the most specific class a belongs

to, then the root class name is omitted.

After a normalization process, a rule consists of normalized object molecules in its

rule head and rule body. Normalized object molecules are introduced to mimic the

functionality of predicates in first-order logic.

Definition 6.1 Normalized object molecule.

A predicate object molecule is a normalized object molecule.

is-a term P:Q or P::Q is a normalized object molecule where P and Q are

variables or id- terms.

Normalized data object molecules, denoted by

where C is an id-term representing an object identity and D is an id-term

denoting the name of a class which C belongs to. A label I ; , called the method

expression, is of the form Method@Xl, ..., Xm4 where Method and Xi are id-

terms representing a method name and an argument object respectively. C; is

an id-term or a set of id-terms representing the method result.

2Every object belongs to the root class.
3Without confusion, a normalized object molecule is simply called object molecule.
*Attribute expression Attr is a special case of method expression.

CHAPTER 6. RECURSIVE QUERY EVALUATION

Normalized signature object molecules, denoted by

where Ci is an id-term representing a class name. A label 1; is of the form

Met hod@X1, ..., X , where Method and Xi are id-terms representing a method

name and an argument object type respectively. C; is an id-term or a set of

id-terms representing the type of the method result.

For example,

alex[HomeAddress t addr[Country t canada[Name t "Canada"]]]

is not a normalized object molecule while

alex : PERSON[HomeAddress t addr] A addr : ADDR[Country t canada]

Acanada : COUNTRY[Name t "Canada"]

is a conjunction of normalized object molecules.

Definition 6.2 Normalized rules.

All object molecules are normalized.

All properties regarding same objects and their class memberships in the rule

body are collected into the same normalized data object molecules.

All signatures regarding same classes in the rule body are collected into the

same normalized signature object molecules.

For example, the following is a normalized rule which defines a relationship between

a student and a professor.

X : STUDENT[StudentO f @ t { Y)] +

Y : PROF[TeachCourse t { C)] , X : STUDENT[TakeCourse -+ { C }] .

CHAPTER 6. RECURSIVE QUERY EVALUATION 115

Definition 6.3 Recursive object molecule. An object molecule O1 implies another

object molecule 02, say, O1 + 02, if there is a rule with an object molecule PI in the

rule body and an object molecule P2 as rule head such that PI can unify with 0 1 5

and 0 2 can be unified into P2. If O1 j 0 2 and 0 2 + 0 3 , then 0 1 * 0 3 . If 0 1 + 0 1 ,

then O1 is called a recursive object molecule. If O1 + 0 2 and 0 2 + 0 1 , then 0 1 and

O2 are at the same deductive level. Otherwise, if O1 + O2 and 0 2 f j 0 1 , then 0 1 is

at lower deduction level than 0 2 .

In the previous example,

Y : PROF[TeachCourse t { C)] + X : STUDENT[Studen tOf@ t { Y)]

and

X : STUDENT[TakeCourse t { C)] + X : STUDENT[Studen tOf@ --+ { Y)] .

Example 6.3 Database object browser.

X[direc t re f@ t { Y)] t X[U --+ Y] .

X[directre f @ --+ { Y)] t X[U -+ { Y)] .

browser[ref@X t { Y)] t X[directre f @ --+ { Y)] .

browser[re f @ X t { Y)] t X[directre f @ --+ { Z)] , browser[re f @ Z t { Y)] .

Since

browser[re f @X t { Y)]

can be unified with

browser[re f @Z --+ { Y)] ,

obviously,

browser[re f @X --+ { Y)]

is a recursive object molecule.

Definition 6.4 Non-recursive and recursive rules.

5Either Pl can be unified into O1 or 0 1 can be unified into PI (see Appendix D) .

CHAPTER 6. RECURSIVE QUERY EVALUATION 116

Non-recursive rule. If all object molecules in the rule body are non-recursive,

then the rule is called non-recursive rule.

Recursive rule. If one or more of object molecules in the rule body are recursive,

then the rule is called recursive rule.

Linearly recursive rule. If only one of object molecules in the rule body can unify

with the head object molecule and there exists a unique most general unifier,

and all the other object molecules in the rule body are non-recursive then the

rule is called linearly recursive rule.

Nested linearly recursive rule. If only one of object molecules in the rule body

can unify with the head object molecule and there exists a unique most general

unifier, and all the other recursive object molecules in the rule body are at lower

deduction level then the rule is called nested linearly recursive rule.

Multiple linearly recursive rule. If only one of object molecules in the rule body

can unify with the head object molecule and there exists more than one most

general unifier, and all the other object molecules in the rule body are non-

recursive then the rule is called multiple linearly recursive rule.

The condition that only one of object molecules in the rule body can unify with the

head object molecule cannot guarantee a recursive rule is a linearly recursive one. In

the following rule, for example,

there are two most general unifiers such that

can be unified with

CHAPTER 6. RECURSIVE Q UERY EVALUATION 117

It implies that two different expansions can be generated when the rule is expanded.

This example clearly shows that the correspondence between variables in

and

U [X + S ; Y + T]

is established through the unification. Thus the multiple correspondences complicate

the exploration of the regularities of connections among variables in object molecules.

Definition 6.5 Single linear recursion. A recursion is called a (single) linear recursion

if it consists of only one linearly recursive rule and one or more other non-recursive

rules.

The database object browser is a linear recursion. If the first two rules are changed

into
X[direct ref@ + {Y)] t X[U + Y].

X[direct re f @ + {Y)] t X[U + {Y)]

then the recursion is a database schema browser, which is also a linear recursion.

6.3 Compilation and Evaluation of Linear Recursions

In datalog, the correspondence between the variables in a recursive rule head and a

recursive predicate in the rule body is made explicitly by the argument positions in

the predicates. In DOOD, however, this kind of relationship is established between

the variables in the object molecule of the rule head and the recursive object molecule

in the rule body through named attributes and methods. Since variables may appear

in the places where attribute and method names do, the relationship can be deter-

mined by unification. In a linearly recursive rule, the most general unifier can be

used to determine the unique correspondence between the variables in the rule head

object molecule and the recursive object molecule in the rule body. This correspon-

dence is the basis for expanding the linear recursion and capturing the regularities of

connections among variables.

CHAPTER 6. RECURSIVE QUERY EVALUATION 118

A DOOD linear recursion can be compiled into chain-forms, which make explicit

the regularities of connections among variables and object molecules. A chain consists

of a sequence of formulas with same structures. Every two consecutive chain elements

share at least one variable. Each chain element is a sequence of connected non-

recursive object molecules, called a chain generating path. Chain generating paths

characterize the periodic property and the regularity of a DOOD linear recursion in

expansion.

Theorem 6.1 A single linear recursion can be compiled into chain-forms.

Proof. See Appendix E.

Example 6.4 Compiling a linear recursion into chain form. The following is a linear

recursion. The first rule is a linearly recursive rule while the second is the exit rule.

The most general unifier which unifies the recursive object molecule in the rule body

of the first rule

X1 : c[f -+ Ul,F@ -+ K]

into the object molecule in the rule head

The exit rule is considered the 0th expansion. The 1st expansion can be generated

by the unification of the recursive object molecule in the first rule with the exit rule,

The 2nd expansion is to expand the first rule with the most general unifier and to

unify the recursive object molecule in the expansion with the exit rule.

CHAPTER 6. RECURSIVE QUERY EVALUATION

Similarly, the ith expansion is as below,

Obviously there are three chains,

q(V, K) , - ,q(K-1, K) , . . . 1

r(X,X1), - - - ,r(X;-l,X;), - . . .

In the first chain, for example, the i th chain element is P(U;-~, U;). Each two con-

secutive chain elements P(U;-~, U;) and p(U;, U;+l) share a variable U;. Each chain

actually represents a transitive closure. Consequently,

can be considered as the union of all the expansions, i.e.,

00

X : c[f -+ U,F@ -+ V] = U (e (x i , U i , K , F) , X = X o , U = U o , V = Vo,
i=l

pi(ui-1 ~ i) , qi(K-1 K), ri(xi-1 xi))
where

and

CHAPTER 6. RECURSIVE QUERY EVALUATION 120

The chain-based approach includes the algorithms for testing finite evaluability and

termination, and a set of evaluation techniques such as chain following, chain-split

and constraint pushing [47, 46, 481. Since some functional predicates and built-in

predicates are defined on infinite domains, the number of answers to a query may be

infinite. Sometimes, even though the result is finite, inappropriate evaluation meth-

ods may lead to infinite intermediate results. To insure proper evaluation, two issues

should be considered: finite evaluability and termination. The former means that an

evaluation is performed on finite inputs and generates finite intermediate results at

each iteration. The latter guarantees that an evaluation generates all the answers

and terminates after a finite number of iterations. A set of finiteness constraints is

employed to check the finite evaluability. For example, apply-cons(X, Y, Z) is a func-

tional predicate corresponding to the list construction function cons. The finiteness

constraint

Z -+ X, Y.

holds because a finite number of values for Z will determine the finite number of

values for both X and Y. Similarly, a set of monotonic constraints is used to test the

termination of an evaluation. For instance, list manipulations often result in shrinking

or growing of lists. cons makes a list longer while cdr makes a list shorter.

If query constraints make all the object molecules in a chain generating path im-

mediately finitely evaluable, a chain following evaluation can be performed. However,

some object molecules in a chain generating path may not be immediately finitely

evaluable with the currently available constraints, then the chain is not immediately

finitely evaluable. The chain-split evaluation is performed by splitting the chain gen-

erating path into the two portions: the immediately evaluable portion and the bufered

portion. The former consists of the immediately evaluable object molecules while the

latter cont ains those not immediately evaluable object molecules. Iteration evaluation

is performed on the immediately evaluable portion until no more answers are gener-

ated. A reverse iteration evaluation is conducted with the results from immediately

evaluable portion and exit portion (exit rules). Query constraints can be pushed into

chain-forms (iterative evaluation) to eliminate irrelevant data from further iterative

evaluations.

CHAPTER 6. RECURSIVE QUERY EVALUATION 121

Example 6.5 Append. A linear recursion, append, is defined by the following rules

where cons is a list construction function and list(T) is a type of a parameterized list

whose elements are of type T.

nil[append(T)@L t L] - L : list(T).

cons(X, L)[append(T)@M t cons(X, N)] - L : list(T)[append(T)@M -+ N],

X : T.

The first is the exit rule while the second rule is a linearly recursive rule which defines

append. After the normalization and rectification6, they becomes

L : Listv[A@M t N] - L = nil, M = N,apply-append(T,A),

apply-list(T, Listv).

L : Listv[A@M t N] t- L1 : Listv[A@M + Nl],

apply -cons (X, L1, L) , apply -cons (X, Nl , N) ,
X : T, apply-list(T, Listv), applyappend(T, A).

They can be transformed into the chain-form,

L : Listv[A@M t N] =

00

U (L = Lo, M = N;, N = No, L; = nil,
i=O

apply-consi(x;, L;, Li-1, Ni, Ni-I)).

where

True if i = 0,

applY-con~i-l (xi-1, Li-1, Li-2, Ni-1, Ni-Z),

apply-cons(X;, L;, Li-l), apply-cons(X;, N;, Ni-I),

Xi : T, apply-list(T, Listv), applyappend(T, A) if i > 0 .
Here the two functional predicates

6The definition of rectification is in Appendix E

CHAPTER 6. RECURSIVE QUERY EVALUATION

apply-cons(Xi, N;, N;-l)

and the is-a object molecule

Xi : T,

are connected because they share the variable Xi. The two functional predicates

apply-list(T, Listv)

are connected with the above is-a object molecule since they share the variable T.

When both L and N are instantiated, the iterative evaluation can be performed on

the chain generating path

apply-list(T, Listv), applyappend(T, A),

apply-cons(Xi , L;, Li-1), apply-cons(X;, N;, N;-I), X; : T.

The first two functional predicates

apply-list(T, Listv), applyappend(T, A),

are common to all the chain elements, therefore, can be factorized. For example,

is a query regarding lists of persons. Here pi are object identities representing per-

sons. Chain following can be performed to evaluate the query. In a chain following

evaluation from query end to exit end, the lengths of the second arguments in the

following two functional predicates

are getting shorter by one after each iteration. This guarantees that the evaluation

will terminate in the finite number of iterations. The query constraint

C = PERSON

CHAPTER 6. RECURSIVE QUERY EVALUATION 123

confines the elements of the list to persons only. It should be evaluated as soon as

possible to exclude other types of elements in the list. Thus,

From the two common functional predicates,

T = PERSON, Listv = List(PERS0N).

In the first iteration, the remaining chain generating path is

In the second iteration, the remaining chain generating path is

It implies that

X2 = p2, L2 = nil, N2 = [p3].

In the third iteration, the remaining chain generating path is

apply-cons(X3, Lg, nil), apply-cons(&, N3, [p3]), X3 : PERSON.

It implies that further iteration will not generate any answers to the query. Thus the

answer to the query is

M = N2 = [p3].

i: However, if one of L and N is not instantiated, some part of a chain generating path
i
k may not be immediately evaluable. Consider the query, r
'i

? - [pl,p2][append(C)@[p3] -+ N], C = PERSON.

Again,

T = PERSON, Listv = Lis t (PERS0N) .

CHAPTER 6. RECURSIVE QUERY EVALUATION

can be derived from the query constraint

C = P E R S O N

and the two common functional predicates. In the first iteration, the remaining chain

generating path is

The first functional predicate is finitely evaluable which derives

However, the second functional predicate is not finitely evaluable with the only in-

stantiation

x1 = Pl.

The remaining chain generation path can be split into two parts

and

appl y -cons (XI, NI , NO)

The first, immediately evaluable portion, can be evaluated iteratively. However, the

second part, buflered portion, will not be evaluated until the exit portion is evaluated.

In the second iteration, the immediately evaluable portion is

apply-cons(X2, L2, b2]), X2 : PERSON.

It derives

X2 = p2, L2 = nil.

In the third iteration, the immediately evaluable portion is

apply-cons(X3, L3, nil), X3 : PERSON.

C

CHAPTER 6. RECURSIVE Q UERY EVALUATION 125

It implies that further iteration will not produce any answers to the query. The

buffered portions can be evaluated via inverse iterations. In the previous second

iteration,

X2 = p2, N2 = A4 = b3] (from the exit portion).

therefore the buffered portion is

It implies that

Nl = b2, ~31 .

In the previous first iteration, the buffered portion is

It implies that

N = No = bl,~2,~3]

which is the answer to the query.

Example 6.6 Travel plan. There are three alternatives for traveling, by air, sea and

train. A customer may choose the combination of the three or only one of them. The

following are is-a object molecules

f light-timetable :: trans-timetable

cruise-timetable :: trans-timetable

train-timetable :: trans-timetable

which describe that flight, cruise and train are means of transportation. The fol-

lowing are signature object molecules which specify the typing constraints on the

classes trans-timetable, flight-timetable, cruise-timetable and train-timetable, and on

CHAPTER 6. RECURSIVE QUERY EVALUATION

the signature of the method plan(X).

trans-timetable [departure + C I T Y ; arrival + C I T Y ;

departure-time + T I M E ; arrivaldime + T I M E ;

fare@ + REAL]

f light-timetable [f l ightno + I N T ; airplanemaker + S T R I N G ;

class + INTI

cruise-timetable [cruisename + S T R I N G ; class + INTI

train-timetable [trainno + INTI

travel [plan(X)@CITY, C I T Y , T I M E , T I M E , R E A L

+ {list(transdimetable))]

The following is a linear recursion which defines the method plan(X).

travel

travel

[plan(X)@Dep, Arr, Dep-Time, Ar rT ime , Fare t {cons(T, n i l))] +

T : X[departure + Dep; arrival + Arr; departure-time t Dep-Time;

arrivaldime + Arr-Time; fare@ t F] , X :: trans-timetable.

[plan(X)@Dep, Arr, Dep-Time, Ar rT ime , Fare t {cons(T, L))] t

T : X[departure t Dep; arrival + I n t A r r ; departure-time t Dep-Time;

arrivaldime 4 In tArr -T ime; fare@ t Fl] , X :: trans-timetable,

travel[plan(X)@IntArr, Arr, IntDep-Time, A r r T i m e , F2 + { L)] ,

F = F1 + F2.

The rules can be normalized and rectified into

travel [P@Dep, Arr, Dep-Time, Ar rT ime , Fare + { L)] t-

T : X[departure t Dep; arrival + Arr; departure-time t Dep-Time;

arrivaldime t Arr-Time; fare@ t Fare], X :: trans-timetable,

apply-plan(X, P) , apply-cons(T, nil, L) .

travel [P@Dep, Arr, Dep-Time, A r r T i m e , Fare + { L)] t

T : X[departure t Dep; arrival + I n t A r r ; departure-time -+ Dep-Time;

arrivaldime t In tArr -T ime; fare@ t Fl] , X :: trans-timetable,

t ravel[P@IntArr , Arr, IntDep-Time, A r r T i m e , F2 + {L1)] ,

sum(Fl, F2, Fare), apply-plan(X, P) , apply-cons(T, L1, L) .

CHAPTER 6. RECURSIVE QUERY EVALUATION

and transformed into the chain-form.

travel[P@Dep, Arr, DepTime, A r r T i m e , Fare + { L)] =

00

U (travel-plan'(~i-l, I;, DTi, AT;, L;, F;, S ;)
i=l

I. = Dep, Ii = Arr, DTo = Dep-Time, AT; = ArrJ' ime,

The

,
True if i = 0,

Ti : X[departure t arrival t I;, departure-time t DT;,

arrivaldime t AT;, fare@ t F;], sum(F;, Sil S i - I) ,

apply-cons(Ti, L;, L;-l) , apply-plan(X, P) ,

X :: trans-timetable,

t r a ~ e Z - p Z a n ~ - ~ (I ~ - ~ , I;-1, DT;-1, AT;-1, L;-1, Fi-17 Si-1) i f i > O

following query

? - t r a ~ e l [~ l a n (X) @ D e p , Arr, DepTime , A r r T i m e , Fare t { L }] ,

Dep : CITY[name t "Vancouver"], Arr : CITY[name t "Toronto"],

Dep-Time > 8, Arr-Time 5 22, Arr-Time 2 20, Fare > 400, Fare 5 800,

X = f light-timetable.

is to find only air travel plans which depart from Vancouver after 8 am. and arrive at

Toronto between 8 pm. and 10 pm. The fare should be between $400 and $800.

The constraint on high-order variable X

X = f light-timetable

should be pushed into the iterative evaluation first so that only the air travel is

considered. Since the query constraints at arrival end

Arr : CITY[name -+ "Toronto"], Arr-Time 5 22, Arr-Time > 20

CHAPTER 6. RECURSIVE QUERY EVALUATION

are more selective. The evaluation should start at this end. The query constraints

at arrival end can be pushed into the iterative evaluation. The remaining query

constraints can be applied at the end of the iteration. However, it could be benefitial

to apply these constraints as early as possible. The query constraint

Fa r e 2 800

can be pushed into the evaluation to eliminate those plans with fares higher than

$800. This is based upon the monotonically increasing property of the function sum.

Dep-Time 2 8

can be used to exclude those plans with departure time earlier than 8 am. because

the integrity constraint

indicates that Dep-Time is a monotonic argument. If only air and train travel means

are considered, then the query can be posed as

? - travel[plan(X)@Dep, Arr, DepTime, Ar rT ime , F a r e -+ {L)],

Dep : CITY[name -+ "Vancouver"], Arr : CITY[name -+ "Toronto"],

Dep-Time 2 8, Arr-Time 1 22, Arr-Time 2 20, F a r e 2 400, F a r e 5 800,

(X = f light-timetable V X = train-timetable).

The same strategies can also be applied here.

6.4 Discussion

6.4.1 Compilation and Evaluation of Nested Linear Recur-

sions

In the previous section, it is shown that a (single) linear recursion can be compiled

into chain-forms, and the chain-based evaluation can be applied to the compiled chain-

forms. This section illustrates through an example that nested linear recursions can

also be compiled into chain-forms and evaluated with the chain-based evaluation.

CHAPTER 6. RECURSIVE QUERY EVALUATION 129

Definition 6.6 Nested linear recursion. A recursion is called a nested linear recursion

if each recursive object molecule is defined by one linearly or nested linearly recursive

rule and one or more non-recursive rules.

In a nested linearly recursive rule, an recursive object molecule which does not

unify with the head object molecule is at a lower deduction level than the head object

molecule. Therefore, it can be treated as a non-recursive object molecule during the

compilation and evaluation.

Example 6.7 Joint things. This nested linear recursion describes a generic relation-

ship among a group of persons. For example, a group of students take same one

course, a group of researchers work on same projects, etc.

X[joint(M)@nil t {Z)] - X : PERSON[M + {Z)].

X[joint(M)@cons(Obj, Rest) t {Z)] - Obj : PERSON[M t {Z)],

lmember(Obj, Rest), Obj # X,

X : PERSON[joint(M)@Rest + {Z)].

member(X, cons(X, L)).

Memebr(X, cons(Y, L)) + Memebr(X, L).

The recursive predicate (object molecule) member is at a lower deduction level than

the object molecule

X[joint (M)@cons(Obj, Rest) t {Z)].

It is treated as a non-recursive object molecule during the compilation of the first two

rules. The above rules can be normalized and rectified into

CHAPTER 6. RECURSIVE QUERY EVALUATION

X : P E R S O N [J @ L + { Z)] t- X : P E R S O N [M + { Z)] ,

L = [I , apply-joint(M, J) .

X : P E R S O N [J @ L + { Z)] t X : PERSON[J@Res t + { Z)] ,

Obj : P E R S O N [M + { Z)] ,

apply-joint(M, J) ,

apply-cons(Obj, Rest, L) ,

imember(Obj, Rest) , Obj # X .

member(X, L) t apply-cons(X, N , L) .

Memebr(X, L) t apply-cons(Y, N , L) , Memebr(X, N) .

which can be transformed into the chain form,

X : P E R S O N [J @ L + { Z)] =

03

U (~ e s t ; = nil, L = Resto, O B J " O ~ ~ ; , Resti, Rest;-,))
k 0

and
03

member(X, L) = U (L = Lo, Y , = X , apply-consi(Y,, Lil Lib'))
i=O

where

Obj; : P E R S O N [M + { Z)] ,
OBJ" Obj;, Rest;, =

Obj; # X , lmember(Obj;, Rest;),

I apply-cons(Obji, Rest;, Restivl),

apply-joint(M, J) if i > 0.

and

CHAPTER 6. RECURSIVE QUERY EVALUATION 131

For example, the following query is to find what john and a group of people mary, joe

and mark are doing together.

? - john[joint(M)@[mary,joe, mark] -+ {Z)].

The chain following method can be applied to evaluate the query since all the object

molecules in the chain generating path are immediately evaluable. The two arguments

of member are bounded, therefore, only the existence checking [47, 461 is needed to

evaluate member. However, the chain-split method should be performed to evaluate

the following query

? - john[joint(TakeCourses)@L -+ {Z)].

The immediately evaluable portion is

Obj : PERSONIM -+ {Z)],apply-joint(M, J).

while the bufferd portion is

apply-cons(Obj, Rest, L), imember(Obj, Rest), Obj # X.

0

In [49], the query-independent compilation and chain-based evaluation are extended

to handle some non-linear recursions, e.g., Tower of Hanoi and Quicksort.

6.4.2 Integrating with Indexing Techniques

The chain-based evaluation can be integrated with the indexing techniques for sup-

porting efficient navigations. For example, if only Canadians are considered in the

lists of Example 6.5, then the recursion can be redefined as

nil[append(T)@L -+ L] t L : list(T), T :: PERSON.

cons(X, L) [append(T)@M -+ cons(X, N)] t L : list(T) [append(T)@ M -+ N],

T :: PERSON,

X : T[HomeAddress -+ A],

A : ADDR[Country -+ C],

C : COUNTRY[Name -,

"Canada"].

CHAPTER 6. RECURSIVE QUERY EVALUATION

The following query only considers Canadian students.

A join index hierarchy, which supports navigations between the class PERSON and

the class COUNTRY or a nested index, which supports associative search on the path

expression

X.HomeAddress.Country.Name,

surely accelerates the chain-based evaluation of the recursion. Instead of evaluating

X : T[HomeAddress + A], A : ADDR[Country + C],

C : COUNTRY[Name + "Canada"]

in the iteration, our method can access the join index hierarchy or the nested index.

6.4.3 Exploring Typing Information

Although typing information can be exploited to eliminate some semantically mean-

ingless results as a consequence of the introduction of higher-order features, semantic

information is still necessary to guarantee correct answers. For example, the following

is a typical definition of transitive closure. G represents an attribute name.

X[transit ivedosure(G)@ + {Y)] t X[G -+ Y].

X[transit ivedosure(G)@ + {Y)] t Z[transitiveAosure(G)@ + {Y)],

X[G -+ Z].

Based upon type checking, it can be concluded that X, Y and Z are of the same

type. G should be an attribute relationship defined and ranged on the same class

that X, Y and Z belong to. The type checking rules out alternatives which G can

match otherwise. For instance, G cannot be the attribute names such as TakeCourse,

HomeAddress, etc. However, typing information cannot guarantee to exclude all se-

mantically meaningless results. For example, the relationship co-author between pro-

fessors is not transitive. Although John co-authors with Mary and Mary co-authors

with Mark, John may not co-author with Mark.

CHAPTER 6. RECURSIVE QUERY EVALUATION

6.5 Summary

In this chapter, the query-independent compilation and chain-based evaluation are ex-

tended to process a class of DOOD linear recursions. Instead of transforming DOOD

programs into Horn-like programs, the DOOD programs are preprocessed into nor-

malized forms. The normalization process helps not only to compile and evaluate

DOOD recursions but also to classify recursions. It is interesting to see how the other

deductive evaluation met hods can be extended to handle DOOD recursions.

Chapter 7

Conclusion and Future Research

7.1 Summary

Deductive and object-oriented database systems provide powerful modeling facilities

and highly declarative languages, but require efficient query evaluation to achieve

high performance in advanced applications. In this thesis, we have investigated the

influence of DOOD data model and language on query evaluation. As a result, sev-

eral important issues have been identified, including support for efficient navigation

or "pointer-chasing", optimization of queries in the presence of complex selections,

joins and aggregations, user-defined methods and encapsulation, and recursive query

evaluation. The following research results constitute the major contributions of the

thesis.

0 Join index hierarchies for efficient navigations.

Query optimization in the presence of complex selections, joins, aggregations

and encapsulated methods.

0 DOOD recursive query compilation and evaluation.

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH

7.2 Future Research

In addition to the problems identified in this thesis, there are other interesting issues

in DOOD query evaluation.

Index structures over class hierarchy. Classes in DOOD form hierarchies. A

query can be posed against objects in a class including and/or excluding objects

of its subclasses. It is, therefore, a very important issue how an index can provide

an efficient access structure for both cases.

Extensibility to support abstract data types and search strategies. DOOD sys-

tems support abstract data types, and provide a dynamic environment in which

users can define new database types, and access databases via arbitrarily-defined

methods. Query processing must adapt to the ever-changing environment, pro-

vide new algorithms and techniques for new database types, handle different

kinds of complex queries with different but effective strategies, and incorporate

newly developed techniques and algorithms into the systems.

7.2.1 Indexing over Class Hierarchy

Since DOOD supports class/subclass hierarchies, the access scope of a query posed

against a class may be the instances of only that class or the instances of all its

subclasses. Thus, it is important that an index for DOOD could support efficient

retrieval of a class including or excluding its subclasses.

Kim et al. [78] propose a class hierarchy tree, called CH-tree, which maintains only

one index tree for all the classes in a class hierarchy. The performance shows that

CH-tree performs better than that which supports one index for each class in a class

hierarchy. The problem is that CH-tree does not support class/subclass relationships

naturally. Retrieval of values in one class of a class hierarchy is treated the same as

retrieval of values in a hierarchy of classes.

Low, Ooi and Lu [91] present an index tree, called H-tree. A H-tree is main-

tained for each class in a class hierarchy. These H-trees are nested according to the

class/subclass relationship. A H-tree of a class in a class hierarchy is nested with

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 136

H-trees of its immediate superclasses in the class hierarchy. The index structure is

constructed as a hierarchy of index trees. The index supports subclass and superclass

relationships naturally and efficiently.

The disadvantage of the H-tree is that the index structure is too complicated and

requires many physical pointers among H-trees. The retrieval cost increases as the

number of classes in a hierarchy does. In the retrieval of objects in some classes in

a hierarchy, H-tree outperforms CH-tree. However, in the retrieval of all objects in a

hierarchy, CH-tree could perform better than H-tree. Kilger and Moerkotte [77] take

advantage of both CH-tree and H-tree, and propose CG-tree. It maintains one tree,

CG-tree, which groups objects according to their key values. However, the objects

belonging to the same class in a hierarchy are clustered in same pages or pages linked

together. The leaf pages of a CG-tree are organized into several doubly linked lists,

each corresponding to a class in a hierarchy. Each record in the second level of a CG-

tree contains references for each class in a hierarchy. The other records in higher levels

are similar to those in a B+-tree. The experiments show that if an application requires

queries posed against several classes in a hierarchy, and the number of classes is large,

CG-tree outperforms CH-tree and H- tree. Independently, Sreenat h and Seshadri [I131

present a similar index structure, hcC-tree which solves conflicting requirements for

querying only one class and all classes in a class hierarchy.

7.2.2 Extensibility to Support Abstract Data Types and

Search Strategies

DOOD systems allow users to define new data types and access objects via arbitrary-

defined methods. Efficient query processing requires that a query optimizer provide

the extensibility to handle the changing environment by incorporating multiple strate-

gies and newly developed techniques.

EXODUS [40, 191, its successor Volcano [42], and Starburst [45, 541 are the typical

representatives in achieving the extensibility of query optimizers [20]. In EXODUS

and Volcano, a query optimizer generator is used to produce a query optimizer from

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 137

a rule-based specification of data model, query operators, access methods, costs, ap-

plicable transformation rules, and execution algorithms. The extensibility is achieved

by regenerating an optimizer with modifications to the new input information. Star-

burst also takes a rule-based approach. However, grammar-like rules are used to

generate database access operators from low-level operators. The construction of

these database access operators provides extensibility in the sense that different ways

of constructing these operators produce different methods of accessing databases.

Lanzelotte and Valduriez [89] propose a solution of the extensibility of the search

strategy in a query optimizer. Search strategies are specified independently from

search spaces. A search space is formulated as follows: an initial state constitutes

relations and predicates from an input query; a state corresponds to a join node

in a processing tree [go]; a goal state is a join node corresponding to the complete

processing tree; and an action is an expand method. Search strategies are classified

into different classes, enumerative and randomized which include iterative, simulated

annealing and genetic searches, and arranged into a search class hierarchy. The ex-

tensibility of the search strategy in a query optimizer is achieved by the ability to add

new search strategies into the search strategy class hierarchy. Mitchell, Dayal and

Zdonik [96] present an extensible architecture for controlling an optimization process

by providing multiple optimization control strategies and the ability to add new con-

trol strategies. The optimizer consists of a collection of optimization regions. Each

region can transform a query according to a particular strategy, a set of transformation

rules and a cost model. The optimizer coordinates the movement of a query among

the regions. Kemper, Moerkotte and Peithner [70] propose a similar extensible archi-

tecture for searching optimal query evaluation plans step by step. The architecture is

organized as a sequence of regions on a blackboard. A query is initially expressed in

an internal form and put in the first region. A knowledge source between each suc-

cessive pair of the regions transforms a query by moving it from a lower region to the

next higher one. It can access information, such as database statistical information,

database schema, etc., generate several alternatives and put them in the following

region. An A* based algorithm is employed to search optimal query evaluation plans.

The extensibility is achieved by the ability to add new knowledge sources between

CHAPTER 7. CONCLUSION AND FUTURE RESEARCH

any successive pairs of regions and to add new regions.

7.3 Concluding Remarks

DOOD systems enable natural representations of logical relationships among complex

objects and classes with attribute relationships, class/subclass relationships and rela-

tionships specified by user-defined methods and deduction rules. User-defined meth-

ods and deduction rules provide extensible mechanisms to define and model complex

and ever-changing relationships among objects. Exploration of logical relationships

among complex objects in user's queries, user-defined methods and deduction rules

require performing efficient navigation operations to get over with "gotos' on disks".

This thesis has presented promising approaches to the problems in DOOD query

evaluation with the following features.

This thesis promotes set-oriented evaluation of navigation operations by trans-

forming ob ject-at-a-time navigation operations into set-oriented access of appro-

priate join indices or constraint-based evaluation of a sequence of joins. Both

forward and backward navigations among complex objects can be performed

efficiently through a series of logical relationships.

Join index hierarchies support efficient navigations via a sequence of logical

relationships specified not only by attribute relationships and class/subclass

relationships but also by user-defined methods and deduction rules. This is

achieved by storing in join indices the precomputed relationships specified by

user-defined methods and deduction rules. Thus, the evaluation of computation-

intensive methods and deduction-intensive rules is transformed into efficient,

set-oriented and associative access of the materialized relationships.

"Push constraint inside navigation" is accomplished by identifying different

types of constraint conditions and applying appropriate optimization strate-

gies. Thus inexpensive but highly selective constraints can be evaluated to

eliminate irrelevant objects before costly navigation operations are performed.

CHAPTER 7. CONCL USION AND FUTURE RESEARCH

Common navigation operations are exploited among queries and user-defined

methods by revealing the encapsulated methods. Query graphs are employed to

represent different types of constraint conditions, to integrate different kinds of

optimization strategies, and to generate efficient query evaluation plans.

A normalization process is proposed to serve not only as a pre-processing stage

for compilation and evaluation but also as a tool for classifying recursions.

Rather than translating programs into datalog, our method extends the query-

independent compilation and chain-based evaluation to process DOOD recur-

sions with normalization. The query-independent compilation captures the

bindings that could be difficult to be captured by other methods. The chain-

based evaluation explores query constraints, integrity constraints, recursion

structures, and other features of the programs with a set of interesting tech-

niques, such as chain-following, chain-split, and constraint pushing.

We are planning to extend LogicBase [50, 51, 521 into a DOOD system and to incor-

porate the proposed strategies. This thesis will serve as a step towards efficient query

evaluation in DOOD systems.

Appendix A

Evaluation of Some Parameters in

Chapter 4

Table 4.1 lists some database parameters which are used in the analytical cost model

in chapter 5. The probability of an object in Ci-l which does not reference a particular

object in Cj is

()

The probability of m objects in Cj-l which do not reference a particular objects in

The probability of a particular object in Ci which is referenced by m objects in Cj-l

APPENDIX A. PARAMETER EVALUATION 141

Therefore, the average number of objects in Cj which are referenced by these m objects

Hence,

where

The number of tuples in J I (i , j) is

Similarly,

[~(Icil, ri, k)l i f j = i + l bwd(i, j, k) =
[p([C;I, r;, bwd(i + 1, j, k))l if j > i + 1

The number of tuples in J I (i , j) can also be calculated by

Appendix B

Sample Database

Class PERSON Class ADDR

Subclass STUDENT, PROF Attributes

Attributes Country:COUNTRY

Name: String City: CITY

HomeAddress: ADDR StreetName: String

Age: Int StreetNumber: Int

ZipCode: String

Class CITY

Attributes

Name: String

Population: Int

Area: Real

Class COUNTRY

Attributes

Name: String

Population: Int

Area: Real

APPENDIX B. SAMPLE DATABASE

Class DEPT Class PROF

Attributes Subclass CHAIRPERSON, PRESIDENT

Name: String Attributes

Chairperson: CHAIRPERSON Salary: Real

OfferCourses: Set of COURSE TeachCourses: Set of COURSE

OfferPrograms: Set of PROGRAM Dept: DEPT

FacultyMembers: Set of PROF

Class CHAIRPERSON

Attributes

Dept: DEPT

University: UNIVERSITY

Class STUDENT

Attributes

GPA: Real

TakeCourses: Set of COURSE

Major: PROGRAM

Class COURSE

Attributes

Name: String

Number: Int

Dept: DEPT

University: UNIVERSITY

Class PROGRAM

Attributes

Name: String

Depts: Set of DEPT

Class UNIVERSITY

Attributes

Name: String

President: PRESIDENT

Depts: Set of DEPT

Class PRESIDENT

Attributes

University: UNIVERSITY

FromLargeCountryAndMetro: STUDENT + Boolean

FromLargeCountryAndMetro(s:STUDENT):Boolean

begin

if (s.HomeAddress.Country.Population > 15,000,000

and s. HomeAddress. Country. Area > 2,000,000)

and (s.HomeAddress.City.Population > 1,000,000

APPENDIX B. SAMPLE DATABASE

and s.HomeAddress.City. Area > 500)

then return(True) else return(Fa1se)

end

FromLargeCountryOrMetro: STUDENT -+ Boolean

FromLargeCountryOrMetro(s:STUDENT):Boolean

begin

if (s.HomeAddress.Country.Population > 15,000,000

and s. HomeAddress. Country. Area > 2,000,000)

or (s.HomeAddress.City.Population > 1,000,000

and s.HomeAddress.City. Area > 500)

then return(True) else return(Fa1se)

end

ToplOWellPaidUniv: UNIVERSITY -+ Boolean

ToplOPaidUniv(u:UNIVERSITY):Boolean

begin

n=O;

for each v E UNIVERSITY do

if (u.President.Salary 5 v.President.Salary) then n=n+l;

if (n 2 10) then return(Fa1se) else return(True);

end

Appendix C

Proof Sketch of Theorem 5.1 and

Theorem 5.5

In the following, Theorem 5.1 is proved when f = I . The theorem can be proved

similarly when f E {MAX, M I N , COUNT, AVG, SUM).

1. ~ (O . A ~ . . . A ~) ~ , B C ~ , is of type B(3).

Assume

L = {o(f(o.Al ... An),,8cq,, o E 0 0)

R = ~ (0 ,) (00 ---On-2 g(f (on-, 8cq2) (on-1))

we now prove that L = R.

Suppose 00 E L, then f (O ~ . A ~ . . . A ~) ~ , B C ~ , is true. There exists an object path

(00~01, .. . , on-l) satisfying 00. A1 ... An and 01 = oo.A1, . . . , ok E ok-1. Ak, . . . ,on-1 =

o ~ - ~ . A ~ - ~ if AnW1 is a single-valued attribute or on-1 E o , - ~ . A ~ - ~ if An-1 is a

set-valued attribute, and on-1 .AnBcq2 . Therefore, (oO, 01, ..., on) is an instance of

00 W - - - 0 n - 2 ~ (f (o n - 1 . ~ n) q l ~ c q 2)(On-1)

and 00 E R.

Suppose 00 E R, then there exists an object path (o07 01, ..., 0,-1) which is an

instance of

0 0 ...0n-2 ~ (~ (O ~ - ~ . A ~) ~ , D C ~ ~) (O ~ - ~)

145

APPENDIX C. PROOF SKETCH OF THEOREM 5.1 and 5.5 146

01 = oO.A1, ..., o k E ~ k - ~ .Ak, ..., = 0,-2 -An-l when An-1 is a single-

valued attribute or E O , - ~ . A ~ - ~ when An-1 is a set-valued attribute, and

0,-1 .An8cq2. Therefore, (00 , 01, ..., on-1) satisfies o.A1 .. .An and f (oo.A1...An)ql dcq2

is true, i.e., 00 E L. So L = R.

2. f (~ . A ~ . . . A ~) ~ , d c ~ , is of type d(V).

Assume

L = (0lf(o.A1...A~)~,dc~,, o E 0 0)

we now prove that L = R.

Suppose 00 E L, then f (oo.A1...An)q,8cq2 is true. For all object path (o0,01, ..., 0,-1)

beginning with 00 (actually 00, ..., ok-1) satisfying oo.A I... A,, 01 = oo.A1, ...,
ok E ok-1 .Ak, ..., 0,-1 = on-2.An-l when Andl is a single-valued attribute or

0,-I E on-2.An-1 when An-1 is a set-valued attribute, and 0,-1 .An&,, . There-

fore, all those (00, 01 , ..., on) are instances of

and 00 E R.

Suppose 00 E R. For all the instances (oo, 01, ... , on-1) of the following expression

beginning with 00 (actually 00, ..., ok-1)

- 01 = oO.A1, ..., ok E ~ k - ~ .Ak, ..., on-1 - O ~ - ~ . A , - ~ when An-1 is a single-

valued attribute or E O,-~.A,-~ when An-1 is a set-valued attribute, and

0,-1 .AnOcq2. Therefore, all those instances (00, 01 , .. . , on-1) satisfy o.A1.. .An and

f (~ .A~. . .A ,)~ ,dc~, is true, i.e., oo E L. So L = R.

Theorem 5.5 is proved as follows.

1. o.A1. ..An is a single-valued path expression.

APPENDIX C. PROOF SKETCH OF THEOREM 5.1 and 5.5 147

Since the maximal common sub argument path expression of the method m

is a single-valued path expression, the method can be be rewritten as mi (see

Example 5.9) such that

m(o) = m ' (o . ~ ~ . . . ~ ,) .

m1 can be considered as a method on the class 0, and

where o E Oo, on E 0, and on = o.A l...An. Obviously, the first equation is true.

Assume

L = {o lmi (o .~ l ... A,) o E 00)

and

R = ~(,,)(OO w w ami(,n) (On)).

If o E L, then m i (o . ~ 1...An) is true. There exists an object path (0, 01, ..., on)

satisfying o.A l...A, such that ol = o.A1, ..., on = 0,-1 .An. Thus mi(on) is true.

(0, 01, ..., on) is an instance of the following expression,

Hence, o E R.

Assume o E R, then there exists an object path (0, 01, ..., on) which is an

instance of the following expression,

Therefore 01 = o.Al, ..., on = on-l.A, and mi(on) is true. Thus (0, ol, ..., on)

satisfies o.A l...An and m ' (o . ~ ~ ... A,) is true. Hence, o E L. It is proved that

2. o.A 1...An is a set-valued path expression. The proof is similar to the above.

Appendix D

Unification Definition

The unification of id-terms, is-a object molecules and predicates is similar to that

in classical first-order logic. However, the definition of unification for data object

molecules and signature object molecules is different [75].

Definition D . l Object molecule unification. A substitution a is a unifier of object

molecule O1 = I[. . .] into object molecule 0 2 = I[. . .] if and only if every attribute or

method expression in a(O1) is also an attribute or method expression in ~ (0 2) .

The unification between two object molecules is asymmetric. For example, I [M@X -+

Y] can be unified into I [M@U + V, A + W] with the substitution {M\N, X\U, Y\V),

but not vice versa.

Definition D.2 Most general unifier. A unifier a is more general than a unifier P,
denoted by a 4 P, if and only if there is a substitution y such that

A unifier a is most general if for any unifier P, ,B 4 a implies a 4 ,6.

There could be more than one most general unifiers such that one can be unified into

another. For instance, both

APPENDIX D. UNIFICATION DEFINITION

are most general unifiers such that

can be unified into

IIP + U ; Q t V] .

A set C of most general unifiers of O1 to 0 2 is complete if for each unifier 0 of O1

to 0 2 there is a E C such that a + 0.

Appendix E

Proof Sketch of Theorem 6.1

In the following, we show that a single linear recursion can be compiled into chain-

forms.

Proof Sketch.

1. Correspondence between the method expressions in the rule head and the recur-

sive object molecule in the rule body of a linearly recursive rule. Since there

exists a unique most general unifier such that the recursive object molecule in

the rule body can unify with the rule head object molecule, there is a mapping

from the method expressions of the recursive object molecule in the rule body to

the method expressions of the rule head object molecule such that any two dif-

ferent method expressions of the recursive object molecule in the rule body are

mapped to two different method expressions of the rule head object molecule.

2. Rectify the linearly recursive rule.

0 The rule head and the recursive object molecule are rectified by

- performing function-predicate transformations l,

- replacing const ants with variables and putting the corresponding equa-

tions between the constants and the variables in the rule body, and

'a function f (XI , ..., X,) is replaced by f v and a functional predicate apply-f (XI , ..., X,, f v) is
added to the rule body.

APPENDIX E. PROOF SKETCH OF THEOREM 6.1 151

- making each variable occurrence only once and putting appropriate

equations between the variables and new variables.

Other object molecules are rectified by performing function-predicate trans-

formations.

3. Correspondence between variables in the rectified rule head and the rectified re-

cursive object molecule. Suppose

are all the variables in the method expressions in the rule head which corre-

spond to method expressions in the recursive object molecule in the rule body.

According to I) , there should be m variables in the rectified recursive object

molecule

{K, .--, Ym}

such that Xi corresponds to k; for i = 1, . . . , m.

4. V-matrix initialization and expansion [53].

Identify U-connection. Two object molecules in a rule body are connected

if they share variable(s) with each other or with a set of connected ob-

ject molecules. Two non-recursive object molecules in a rule body are

U-connected if they share variable(s) with each other or with a set of U-

connected object molecules. A set of variables are U-connected if they are

in the same non-recursive object molecule or in the same set of U-connected

non-recursive object molecules.

V-matrix initialization and expansion. Copy

into the first row of the V-matrix and

into the second row. The rest of compilation process follows those in [53].

Bibliography

[I] R. Agrawal and N. H. Gehani. ODE (object database and environment): the

language and the data model. In Proc. ACM-SIGMOD Conf. Management of

Data, pages 36-45, Portland, OR, May 1989.

[2] H. Kit-Kaci and R. Nasr. LOGIN: a logic-programming language with built-in

inheritance. J. of Logic Programming, 3: 185-215, 1986.

[3] H. fit-Kaci and A. Podelski. Towards a meaning of LIFE. J. of Logic Program-

ming, 16(3, 4):195-234, 1993.

[4] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik.

The object-oriented database systems manifesto. In W. Kim, J.-M. Nicolas,

and S. Nishio, editors, Deductive and Object-Oriented Databases, pages 223-

240. Elsevier Science, 1990.

[5] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an object-oriented

database system: the story of 02. Morgan Kaufmann, San Mateo, CA,, 1992.

[6] F. Bancilhon and W. Kim. Object-oriented database systems: in transition.

ACM SIGMOD Records, 19(4):49-53, Dec 1990.

[7] F. Bancilhon, D. Maier, Y. Sagiv, and J . D. Ullman. Magic-sets and other

strange ways to implement logic programs. In Proc. Symp. Principles of

Database Systems, pages 1-15, Cambridge, MA, March 1986.

BIBLIOGRAPHY 153

[8] J . Banerjee, W. Kim, and K. C. Kim. Queries in object-oriented databases.

In Proc. Int. Conf. Data Engineering, pages 31-39, Los Angeles, CA, February

1988.

[9] D. S. Batory, J. R. Barnett, J . F. Garza, K. P. Smith, K. Tsukuda, B. C.

Twichell, and T. E. Wise. GENESIS: an extensible database management sys-

tem. IEEE Trans. Software Engineering, l4 (l l):l7ll-l730, Nov 1988.

[lo] C. Beeri. Formal models of object oriented databases. In Proc. 1st Int. Conf.

Deductive and Object-Oriented Databases (DOOD'89), pages 405-429, Kyoto,

Japan, Dec. 1989.

[ll] C. Beeri and Y. Kornatzky. Algebraic optimization of object-oriented query

languages. In Proc. Int. Conf. on Database Theory, pages 72-88, Paris, France,

December 1990.

[12] C. Beeri and R. Ramakrishnan. On the power of magic. In Proc. Symp. Prin-

ciples of Database Systems, pages 269-283, San Diego, CA, March 1987.

[13] C. Beeri and R. Ramakrishnan. On the power of magic. J. of Logic Program-

ming, 10(3,4):255-300, 1991.

[14] E. Bertino. An indexing technique for object-oriented databases. In Proc. Int.

Conf. Data Engineering, pages 160-170, Kobe, Japan, April 1991.

[15] E. Bertino and W. Kim. Indexing techniques for queries on nested objects.

IEEE Trans. Knowledge and Data Engineering, 1(2):196-214, 1989.

[16] J . A. Blakeley, W. J . McKenna, and G. Graefe. Experiences building the open

OODB query optimizer. In Proc. ACM-SIGMOD Conf. Management of Data,

pages 287-296, Washington, DC, May 1993.

[17] J . Bocca. MegaLog: a platform for developing knowledge base management

systems. In Proc. 2nd Int. Symposium on Database Systems fo r Advanced Ap-

plicaytions, Tokyo, 1991.

BIBLIOGRAPHY 154

[18] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, and H. Williams.

The Gemstone data management system. In W. Kim and F. H. Lochowsky,

editors, Object-Oriented Concepts, Databases and Applications, pages 283-308.

Addison-Wesley, Reading, MA, 1989.

[19] M. Carey, D. DeWitt, and S. L. Vandenberg. A data model and query language

for EXODUS. In Proc. 1988 ACM-SIGMOD Int. Conf. Management of Data,

pages 413-423, Chicago, IL, June 1988.

[20] M. Carey and L. Haas. Extensible database management systems. ACM SIG-

MOD Records, 19(4):54-60, Dec 1990.

[21] U. S. Chakravarthy, J. Grand, and J. Minker. Foundations of semantic query

optimization for deductive databases. In J . Minker, editor, Foundations of de-

ductive databases and logic programming, pages 243-274. Morgan Kaufmann,

1988.

[22] U. S. Chakravarthy, J. Grand, and J . Minker. Logic-based approach to semantic

query optimization. A CM Trans. Database Systems, l3(2): 162-207, June 1990.

[23] S. Chaudhuri and K. Shim. Query optimization in the presence of foreign func-

tions. In Proc. Int. Conf. Very Large Data Base, pages 529-542, Dublin, Ireland,

August 1993.

[24] S. S. Chawathe, M. S. Chen, and P. S. Yu. On index selection schemes for

nested object hierarchies. In Proc. Int. Conf. Very Large Data Base, Santiago,

Chile, September 1994.

[25] W. Chen, M. Kifer, and D. S. Warren. Hilog: A foundation for higher-order

logic programming. J. Logic Programming, 15:187-230, 1993.

[26] W. Chen and D. S. Warren. C-logic for complex objects. In Proc. Symp.

Principles of Database Systems, pages 369-378, 1989.

BIBLIOGRAPHY 155

[27] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi, S. Tsur, and C. Zaniolo.

The LDL system prototype. IEEE Trans. Knowledge and Data Engineering,

2:76-90, 1990.

[28] S. Choenni, E. Bertino, H. M. Blanken, and T. Chang. On the selection of opti-

mal index configuration in 00 databases. In Proc. Int. Conf. Data Engineering,

pages 526-537, Phoenix, AZ, USA, February 1994.

[29] S. Cluet and C. Delobel. A general framework for the optimization of object-

oriented queries. In Proc. ACM-SIGMOD Conf. Management of Data, pages

383-392, 1992.

[30] CODASYL. CODASYL Data Base Task Group April 71 Report. ACM, New

York, NY, 1971.

[31] K. M. Curewitz, P. Krishnan, and J . S. Vitter. Practical prefetching via data

compression. In Proc. ACM-SIGMOD Conf. Management of Data, pages 257-

266, Washington, D. C., May 1993.

1321 S. Daniel, G. Graefe, T. Keller, D. Maier, D. Schmidt, and B. Vance. Query

optimization in revelation, an overview. IEEE Data Engineering Bulletin, pages

58-62, June 1991.

[33] M. A. Derr, S. Morishita, and G. Phipps. The Glue-Neil deductive database

system: design, implementation, and evaluation. The VLDB Journal, 3(2): 123-

160, April 1994.

[34] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Bem-

jamin/Cummings, 1989.

[35] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors, J . W. Davis,

N. Derret, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A. Neimat, T. A.

Ryan, and M. C. Shan. Iris: an object-oriented database management system.

ACM Trans. Ofice and Information Systems, 5(1):48-69, Jan 1987.

BIBLIOGRAPHY 156

[36] B. Freitag, H. Schutz, and G. Specht. LOLA: a logic language for deductive

databases and its implementation. In Proc. ,2nd Int. Symposium on Database

Systems for Advanced Applicaytions, Tokyo, 1991.

[37] J . Frohn, G. Lausen, and H. Uphoff. Access to objects by ~ a t h expressions and

rules. In Proc. Int. Conf. Very Large Data Base, Santiago, Chile, September

1994.

[38] G. Graefe. Heap-filter merge join: A new algorithm for joining medium-size

inputs. IEEE Trans. Software Engineering, 17(9), Sept 1991.

[39] G. Graefe. Query evaluation techniques for large databases. ACM Computing

Survey, 25(2):73-170, June 1993.

[40] G. Graefe and D. J. DeWitt. The exodus optimizer generator. In Proc. ACM-

SIGMOD Conf. Management of Data, pages 160-172, 1987.

[41] G. Graefe and D. Maier. Query optimization in object-oriented database sys-

tems: a prospectus. In Advances in Object-Oriented Database Systems. Springer-

Verlag, 1988.

[42] G. Graefe and W. J . McKenna. The Volcano optimizer generator: extensibility

and efficient search. In Proc. Int. Conf. Data Engineering, pages 209-218, 1993.

[43] S. Greco, N. Leone, and P. Rullo. COMPLEX: an object-oriented logic program-

ming system. IEEE Trans. Knowledge and Data Engineering, 4(4):344-359,

August 1992.

[44] M. Guo, S. Y. W. Su, and H. Lam. An association algebra for processing object-

oriented databases. In Proc. Int. Conf. Data Engineering, pages 154-162, 1991.

[45] L. M. Haas, J . C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query

processing in starburst. In Proc. ACM-SIGMOD Conf. Management of Data,

pages 377-388, 1989.

BIBLIOGRAPHY 157

[46] J . Han. Chain-split evaluation in deductive databases. In Proc. 8th Int. Conf.

Data Engineering, pages 376-384, Phoenix, AZ, Feb. 1992.

[47] J . Han. Compilation-based list processing in deductive databases. In A. Pirotte,

C. Delobel, and G. Gottlob, editors, Extending Database Technology - EDBT792

[Lecture Notes in Computer Science 5801, pages 104-119. Springer-Verlag, 1992.

[48] J . Han. Constraint-based query evaluation in deductive databases. IEEE Trans.

Knowledge and Data Engineering, 6(1):96-107, January 1994.

[49] J . Han and L. V. S. Lakshmanan. Evaluation of regular nonlinear recursions by

deductive database techniques. In SFU CSS/LCCR Technical Report TR93-09,

Simon Fraser University, July 1993.

[50] J . Han, L. Liu, and Z. Xie. LogicBase: a system prototype for deductive query

evaluation. In Proc. ILPS Workshop on Programming with Logic Databases,

pages 146-160, Oct 1993.

[51] J . Han, L. Liu, and Z. Xie. Outline of LogicBase demonstration. In Proc. ILPS

Workshop on Programming with Logic Databases, page 165, Oct 1993.

[52] J . Han, L. Liu, and Z. Xie. LogicBase: a deductive database system prototype.

In Proc. Int. Conf. Information and Knowledge Management, pages 226-233,

Nov 1994.

[53] J. Han and K. Zeng. Automatic generation of compiled forms for linear recur-

sions. Information Systems, 17:299-322, 1992.

[54] L. M. Hass, W. Chang, G. M. Lohman, J . McPherson, P. F. Wilms, G. Lapis,

B. Lindsay, H. Pirahesh, M. Carey, and E. Shekita. Starbust mid-flight: As

the dust clears. IEEE Trans. Knowledge and Data Engineering, 2(1):145-160,

March 1990.

[55] J . M. Hellerstein. Practical predicate placement. In Proc. ACM-SIGMOD Conf.

Management of Data, pages 325-335, Minneapolis, Minnesota, May 1994.

BIBLIOGRAPHY 158

[56] J . M. Hellerstein and M. Stonebraker. Predicate migration: optimizing queries

with expensive predicates. In Proc. ACM-SIGMOD Conf. Management of Data,

pages 267-276, Washington, D. C., May 1993.

[57] K. A. Hua and C. Tripathy. Object skeletions: an efficient navigation structure

for object-oriented database systems. In Proc. Int. Conf. Data Engineering,

pages 508-517, Phoenix, Arizona, Feb 1994.

[58] IBM. Information management system/virtual storage general information.

IBM Form Number GH20-1260, SH20-9025, SH20-9026, SH9027, 1978.

[59] Y. E. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join

queries. In Proc. ACM-SIGMOD Conf. Management of Data, pages 312-321,

1990.

[60] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: an analysis of

strategy space and its implemetations for query optimization. In Proc. ACM-

SIGMOD Conf. Management of Data, pages 168-177, 1991.

[61] Y. E. Ioannidis and E. Wong. Query optimization by simulated annealing. In

Proc. ACM-SIGMOD Conf. Management of Data, pages 9-22, 1987.

[62] M. Jarke and J . Koch. Query optimization in database systems. ACM Com-

puting Survey, 16(2):111-152, Sept 1984.

[63] M. Jeusfeld and M. Staudt. Query optimization in deductive object bases. In

J . C. Freytag, D. Maier, and G. Vossen, editors, Query Processing for Advanced

Database Systems, pages 146-176. Morgan Kaufmann Publishers, San Mateo,

CA, 1994.

[64] 2. Jiao and P. M. D. Gray. Optimization of methods in a navigational query

language. In Proc. Int. Conf. Deductive and Object-Oriented Databases(DOOD),

pages 22-42, 1991.

BIBLIOGRAPHY 159

[65] K. Kato and T. Masuda. Persistent caching: an implementation technique

for complex objects with object identity. IEEE Trans. Software Engineering,

18(7):631-645, July 1992.

[66] T. Keller, G. Graefe, and D. Maier. Efficient assembly of complex objects. In

Proc. ACM-SIGMOD Conf. Management of Data, pages 148-157, Denver, CO,

May 1991.

[67] A. Kemper, C. Kilger, and G. Moerkotte. Function materialization in object

bases. In Proc. ACM-SIGMOD Conf. Management of Data, pages 258-267,

1991.

[68] A. Kemper and G. Moerkotte. Access support in object bases. In Proc. ACM-

SIGMOD Conf. Management of Data, pages 364-374, Atlantic City, NJ, May

1990.

[69] A. Kemper and G Moerkotte. Advanced query processing in object bases using

access support relations. In Proc. Int. Conf. Very Large Data Base, pages 290-

301, Brisbane, Australia, August 1990.

[70] A. Kemper, G. Moerkotte, and K. Peithner. A blackboard architecture for query

optimization in object bases. In Proc. Int. Conf. Very Large Data Base, pages

543-554, Dublin, Ireland, August 1993.

[71] A. Kemper, G Moerkotte, and M. Steinbrunn. Optimizing boolean expressions

in object stores. In Proc. Int. Conf. Very Large Data Base, pages 79-90, Van-

couver, Canada, August 1992.

[72] W. KieBling, H. Schmidt, W. StrauB, and G. Diinzinger. DECLARE and SDS:

early efforts to commercialize deductive database technology. The VLDB Jour-

nal, 3(2):211-244, April 1994.

[73] M. Kifer, W. Kim, and Y. Sagiv. Quering object-oriented databases. In Proc.

ACM-SIGMOD Conf. Management of Data, pages 393-402, San Diego, CA,

May 1992.

BIBLIOGRAPHY 160

[74] M. Kifer and G. Lausen. F-logic: a higher-order language for reasoning about

objects, inheritance, and scheme. In Proc. ACM-SIGMOD Conf. Management

of Data, pages 134-146, Portland, OR, May 1989.

[75] M. Kifer, G. Lausen, and J. Wu. Logical foundations for object-oriented and

frame-based languages. In Journal of ACM, 1994.

[76] M. Kifer and J. Wu. A logic for object-oriented logic programming(Maier's o-

logic revisted). In Proc. Symp. Principles of Database Systems, pages 379-393,

March 1989.

[77] C. Kilger and G. Moerkotte. Indexing multiple sets. In Proc. Int. Conf. Very

Large Data Base, Santiago, Chile, September 1994.

[78] K. C. Kim, W. Kim, and A. Dale. Indexing techniques for object-oriented

databases. In W. Kim and F. H. Lochovsky, editors, Object-oriented concepts,

Databases, and Applications, pages 371-394. Addison-Wesley, 1989.

[79] W. Kim. A new way to compute the product and join of relations. In Proc.

ACM-SIGMOD Conf. Management of Data, pages 179-187, New York, NY,

1980.

[80] W. Kim. Introduction to Object-Oriented Databases. The MIT Press, 1990.

[81] W. Kim. Object-oriented databases: Definition and research directions. IEEE

Trans. Knowledge and Data Engineering, 2:327-341, 1990.

[82] W. Kim. UniSQL/X unified relational and object-oriented database system.

In Proc. ACM-SIGMOD Conf. Management of Data, page 481, Minneapolois,

MN, May 1994.

[83] J. J. King. Query optimization by semantic reasoning. UMI Research Press,

1981.

BIBLIOGRAPHY 161

[84] M. Kitsuregawa, H. Tanaka, and T. Motooka. Application of hash to data base

machine and its architecture. In Proc. 6th International Workshop on Database

Machines, June 1983.

[85] R. P. Kooi and Frankforth . Query optimization in Ingres. IEEE Data Engi-

neering Bulletin, 5(3), Sept 1982.

[86] H. F. Korth and A. Silberschatz. Database System Concepts, 2ed. McGraw-Hill,

1991.

[87] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. On the logical founda-

tions of schema integration and evolution in heterogeneous database systems.

In Proc. Int. Conf. Deductive and Object-Oriented Databases(DOOD), pages

81-100, Phoenix, AZ, USA, December 1993.

[88] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore database

system. Communications of the ACM, 34(10):50-63, October 1991.

[89] R. S. G. Lanzelotte and P. Valduriez. Extending the search strategy in a query

optimizer. In Proc. Int. Conf. Very Large Data Base, pages 363-373, Barcelona,

Spain, September 1991.

[go] R. S. G. Lanzelotte, P. Valduriez, M. Ziane, and J. Cheiney. Optimization

of nonrecursive queries in OODBs. In Proc. Int. Conf. Deductive and Object-

Oriented Databases(DOOD), Munich, Germany, December 1991.

[91] C. C. Low, B. C. Ooi, and H. Lu. H-tree: a dynamic associative search index for

OODB. In Proc. ACM-SIGMOD Conf. Management of Data, pages 134-143,

San Diego, CA, May 1992.

[92] W. Lu and J. Han. Distance-associated join indices for spatial range search. In

Proc. 8th Int. Conf. Data Engineering, pages 284-292, Phoenix, AZ, Feb. 1992.

[93] D. Maier. A logic for objects. In Proc. of Workshop on Foundations of Deductive

Databases and Logic Programming, pages 6-26, Washington, D. C., August

1986.

BIBLIOGRAPHY 162

[94] D. Maier and J . Stein. Indexing in an object-oriented DBMS. In Proc. IEEE

Int. Workshop on Object-oriented Database System, pages 171-182, Asilomar,

Pacific Grove, CA, September 1986.

[95] P. Mishra and M. H. Eich. Join processing in relational databases. ACM Com-

puting Survey, 24(1):63-113, March 1992.

[96] G. Mitchell, U. Dayal, and S. B. Zdonik. Control of an extensible query opti-

mizer: a planning -based approach. In Proc. Int. Conf. Very Large Data Base,

pages 517-528, Dublin, Ireland, August 1993.

[97] I. S. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic is

relevant. In Proc. ACM-SIGMOD Conf. Management of Data, May 1990.

[98] Objectivity. Objectivity database system overview. Objectivity, Inc., Menlo

Park, CA, 1990.

[99] Ontos. Ontos reference manual. Ontos, Inc., Burlington, MA, 1993.

[loo] J . Orenstein and F. Manola. Probe spatial data modelling and query pro-

cessing in an image database application. IEEE Trans. Software Engineering,

14(5):611-629, May 1988.

[loll S. L. Osborn. Algebraic query optimization for an object algebra. Technical

Report 251, University of Western Ontairo, 1989.

[I021 M. Palmer and S. B. Zdonik. FIDO: a cache that learns to fetch. In Proc. Int.

Conf. Very Large Data Base, pages 255-264, Barcelona, Spain, 1991.

[lo31 R. Ramakrishnan, D. Srivastava, and S. Sudarshan. The CORAL deductive

system. The VLDB Journal, 3(2):161-210, April 1994.

[I041 R. Ramakrishnan and J . D. Ullman. A survey of research on deductive database

system. Journal of Logic Programming, To appear.

[I051 K. Ramamohanarao and J. Harland. An introduction to deductive database

languages and systems. The VLDB Journal, 3(2):161-210, April 1994.

BIBLIOGRAPHY 163

[I061 D. Rotem. Spatial join indices. In Proc. 7th Int. Conf. Data Engineering, pages

500-509, Kobe, Japan, April 1991.

[lo71 K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database

engine. In Proc. ACM-SIGMOD Conf. Management of Data, pages 442-453,

Minneapolis, MN, May 1994.

[I081 H.-J. Schek, H.-B. Paul, M. H. Scholl, and G. Weukum. The DASDBS project:

Objectives, experiments, and future prospects. IEEE Trans. Knowledge and

Data Engineering, 2:25-43, March 1990.

[log] P. G. Selinger, D. Astrahan, D. Astrahan, R. Lorie, and T. Price. Access path

selection in a relational database management system. In Proc. ACM-SIGMOD

Conf. Management of Data, pages 23-34, June 1979.

[I101 G. M. Shaw and S. B. Zdonik. A query algebra for object-oriented databases. In

Proc. Int. Conf. Data Engineering, pages 154-1 65, Los Angeles, CA, February

1990.

[I l l] E. J . Shekita and M. J . Carey. Performance enhancement through replication

in an object-oriented DBMS. In Proc. ACM-SIGMOD Conf. Management of

Data, pages 325-336, 1989.

[112] A. Silberschatz, M. Stonebraker, and J . D. Ullman. Database systems: achieve-

ments and opportunities. Communications of the ACM, 34(10):110-120, Octo-

ber 1991.

[I131 B. Sreenath and S. Seshadri. The hcC-tree: an efficient index structure for

object oriented databases. In Proc. Int. Conf. Very Large Data Base, pages

203-213, Santiago, Chile, September 1994.

[114] D. Srivastava, R. Ramakrishnan, P. Seshadri, and S. Sudarshan. Coral++:

Adding object-orientation to a logic database language. In Proc. Int. Conf.

Very Large Data Base, pages 158-170, Dublin, Ireland, August 1993.

BIBLIOGRAPHY 164

[115] M. Stonebraker, R. Agrawal, U. Dayal, E. Neuhold, and A. Reuter. DBMS

research at a crossroads: The vienna update. In Proc. 19th Int. Conf. Very

Large Data Bases, pages 688-692, Dublin, Ireland, Aug. 1993.

[I161 M. Stonebraker, L. Rowe, and M. Hirohama. The implementation of Postgres.

IEEE Trans. Knowledge and Data Engineering, 2(1):125-142, Mar 1990.

[I171 D. D. Straube and M. T. Ozsu. Queries and query processing in object-oriented

database systems. ACM Trans. Ofice and Information Systems, 6(4):387-430,

Oct 1990.

[I181 A. Swami and A. Gupta. Optimizing large join queries. In Proc. ACM-SIGMOD

Conf. Management of Data, pages 8-17, 1988.

[I191 J. D. Ullman. Principles of database and knowledge-base systems, Vol 1) II.

Computer Science Press, 1989.

[I201 J . D. Ullman. A comparison of deductive and object-oriented database sys-

tems. In C. Delobel et . al., editor, Deductive and Object-Oriented Databases

(0000 '91) [Lecture Notes in Computer Science 5661, pages 263-277. Springer

Verlag, 1991.

[I211 J.D. Ullman and C. Zaniolo. Deductive databases: achievements and future

directions. ACM SIGMOD Records, 19(4):75-82, December 1990.

[I221 J . Vaghani, K. Ramamohanarao, D. B. Kemp, Z. Somogyi, P. J . Stuckey, T. S.

Leask, and J. Harland. The Aditi deductive database system. The VLDB

Journal, 3(2):245-288, April 1994.

[I231 P. Valduriez. Join indices. ACM Trans. Database Systems, 12(2):218-246, 1987.

[I241 S. L. Vandenberg and D. J. DeWitt . Algebraic support for complex objects with

arrays, identity, and inheritances. In Proc. ACM-SIGMOD Conf. Management

of Data, pages 158-167, Denver, CO, May 1991.

BIBLIOGRAPHY

[I251 Versant. Versant technical overview. Versant Object Technologies, Inc., Menlo

Park, CA, 1990.

[I261 L. Vieille. From qsq towards qosaq: Global optimization of recursive queries.

In Proc. 2nd Int. Conf. Expert Database Systems, pages 743-778, Vienna, VA,
April 1988.

[127] L. Vieille, P. Bayer, V. Kuchenhoff, and A. Lefebvre. Eks-vl, a short overview.

In AAAI-90 Workshop on Knowledge Base Management Systems, Boston, MA,

July 1990.

11281 D. L. Wells, J. A. Blakeley, and C. W. Thompson. Architecture of an open

object-oriented database management system. IEEE Computer, 25(10):74-82,

October 1992.

11291 Z. Xie. Object query optimization containing encapsulated methods. In Proc.

Int. Conf. Information and Knowledge Management, pages 451-460, Washing-

ton, DC, November 1993.

[130] Z. Xie and J . Han. Join index hierarchies for efficient navigation in object-

oriented databases. In Proc. Int. Conf. Very Large Data Base, pages 522-533,

Santiago, Chile, September 1994.

[131] Z. Xie and J . Han. Join index hierarchy: An indexing structure for efficient

navigation in ob ject-oriented databases. submitted to IEEE Trans. Knowledge

and Data Engineering, 1994.

[I321 Z. Xie and J . Han. Optimization of queries containing complex selections, joins

and aggregations. Journal of Computing and Information (Special Issue: Pro-

ceedings of the 6th International Conference on Computing and Information),

1(1):1410-1425, May 1994.

[133] S. B. Yao. Approximating block accesses in database organizations. Communi-

cations of the ACM, 20(4):260-261, April 1977.

BIBLIOGRAPHY 166

[134] C. T. Yu and W. Sun. Automatic knowledge acquisition and maintenance for

semantic query optimization. IEEE Trans. Knowledge and Data Engineering,

1(3):362-375, Sept 1989.

