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Abstract 

The development of deductive and object-oriented database (DOOD) systems by in- 

tegration of the object-oriented paradigm with the deductive paradigm represents a 

promising direction in the construction of the next generation of database systems. 

This thesis addresses the issues of query evaluation in DOOD systems and presents 

some promising approaches to the problems in DOOD query evaluation. 

First, a DOOD data model and its query language are presented to demonstrate 

the salient features supported by DOOD and to serve as research vehicles for the inves- 

tigation of DOOD query evaluation. After a comparative survey on query evaluation 

methods for relational databases, deductive databases and object-oriented databases, 

the impact of DOOD models and languages on query evaluation is discussed. A list 

of open and not well-solved problems is identified as a research guide towards DOOD 

query evaluation, which in turn motivates the research efforts presented in this thesis. 

An efficient navigation structure, called the join index hierarchy, is proposed to 

handle the problem of "pointer-chasing" or "gotos' on disks" in exploring logical re- 

lationships among complex objects. Effective optimization strategies are introduced 

to employ the constraint conditions expressed in the form of complex selection and 

join conditions for efficient set-oriented navigations and to exploit the common navi- 

gations among a query and encapsulated methods for efficient query evaluation. The 

query-independent compilation and chain-based evaluation, developed for deductive 

recursive query evaluation, are extended to process a class of DOOD recursions. 
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Chapter 1 

Introduction 

1.1 Motivation 

Effective and efficient management of large volumes of complex data are required in 

the advanced applications, such as computer-aided design and manufacturing, multi- 

media applications with audio and video data, and scientific and medical applications. 

New generation of database systems needs to support high level languages for defin- 

ing, reasoning, retrieving and manipulating the complex data and to provide efficient 

software architectures and techniques for achieving greater modeling power and higher 

performance. 

Research towards deductive database systems represents a promising direction in 

declarative database programming and integration of logic programming paradigm 

and relational database technology. Deductive database systems have made great 

strides in recent years with encouraging progress in fundamental research and imple- 

mentation [121,104, 1051. A large number of research prototypes have been developed 

to date, e.g., Aditi [122], CORAL [103], DECLARE and SDS [72], EKS [127], Glue- 

Nail! [33], LDL [27], LogicBase [50, 521, LOLA [36], MegaLog [17], and XSB [107]. 

These achievements clearly show that the deductive database technology has reached 

a level of maturity so that the development of deductive database systems for real 

applications is feasible. 
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On the other hand, research towards object-oriented and extensible database sys- 

tems represents a promising direction in extending relational database technology 

and integrating object-oriented programming paradigm and database technology for 

supporting a rich collection of sophisticated data modeling and manipulation con- 

cepts [4, 6, 81, 112, 1151. A large number of research prototypes and commercial 

systems have been available, e.g., DASDBS [108], EXODUS and Volcano [40, 19, 421, 

Gemstone [18], GENESIS [9], Iris and OpenODB [35], 0 2  [5], ObjectivityIDB [98], 

Objectstore [88], Ode [I], Ontos [99], Orion and Itasca [80], Postgres and Montage 

[116], Probe [loo], Starburst [45, 541, UniSQL [82], VERSANT [125], Zeitgeist and 

OpenOODB [128]. The intensive research and commercialization activities demon- 

strate that object-oriented database systems are at the forefront of supporting new 

applications. 

Although deductive database systems and object-oriented database systems have 

emerged as promising approaches for supporting advanced applications, both of them 

suffer from some drawbacks [lo, 120, 751. Despite a highly declarative and powerful 

logical framework, deductive databases only support a flat data model and do not 

provide a very powerful modeling mechanism. Object-oriented databases do not have 

a recognized logical foundation, which traditionally was considered as very impor- 

tant for database programming languages, and do not provide a highly declarative 

language interface for accessing and manipulating complex data. There is growing 

consensus that integrating the object-oriented paradigm and rule-based deduction 

may provide a powerful framework for the next generation of database systems, the 

so-called deductive and object-oriented databases (DOOD) l .  

DOOD models and languages address the issues of enhancing data modeling power 

and high declarativeness of database languages for advanced applications. The high 

complexity of DOOD models and languages requires efficient software architectures 

and techniques so that DOOD systems can achieve competitive or higher performance 

than those of traditional database applications. Efficient query evaluation has been 

crucial to the success of relational database systems. Thus it is expected that the 

lThe declarativeness of deductive database languages is so emphasized that deductive and object- 
oriented databases are also called declarative and object-oriented databases [104]. 
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success of DOOD will largely rely on the system performance, especially on the ef- 

ficient query evaluation techniques over large volumes of complex data. This thesis 

will concentrate on DOOD query evaluation. 

1.2 DOOD and Problems in DOOD Query Evaluation 

DOOD languages combine deductive database languages and object-oriented database 

languages and support features such as declarativeness, deduction, recursion, complex 

objects, object identities, class hierarchies, inheritances, encapsulated methods and 

abstract data types. A query, expressed in a DOOD language, is only a specification 

of what a user wants but not how a user's want can be executed. Thus the DOOD 

query language is said to be declarative rather than procedural. 

Query evaluation is a process to find and perform an efficient execution of a declar- 

ative query for information from databases. The goal of a query optimization is to 

translate a query into an (sub)optimal evaluation plan for accessing and manipulat- 

ing the databases. A query execution engine is then responsible for executing the 

optimal plans. Relational query evaluation techniques have been successful in the 

optimization of declarative query languages [112]. Extensive investigations have been 

conducted on those key techniques, such as algebraic query optimization, join met h- 

ods, and search strategies for optimal query evaluation plans [62, 95, 391. Recent 

research into deductive query evaluation has made significant progress in recursive 

query optimization [104, 1051. Some of the techniques outperform non-recursive (re- 

lational) query optimization in commercial database systems [104]. Query evaluation 

in object-oriented database systems is still developing and is the focus of the recent 

intensive research [6, 811. Some relational query evaluation techniques, such as alge- 

braic query optimization and join methods, have been extended to query evaluation 

in object-oriented database systems. 

Although there are some similarities between a relational database language and 

a DOOD language, the new DOOD features require new evaluation techniques to effi- 

ciently process complex DOOD queries. The traditional query evaluation techniques 

in relational databases and deductive databases are not powerful enough to handle 
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all kinds of complex queries. The following is a list of some recognized open or not 

well-solved problems in DOOD query evaluation: 

Support for eficient navigation or "pointer-chasing". Navigation is an essential 

logical operation in DOODs. A navigation is performed following object identi- 

fiers along a sequence of logical connections among complex objects. These con- 

nections represent logical relationships specified by class/subclass relationships, 

attribute relationships, methods, and deduction rules. Navigation operations 

may cause significant performance suffering because objects along a navigation 

path may be scattered in different pages or blocks of disks, and many 110 oper- 

ations on disks may be required to load those related objects into main memory. 

Optimization of queries in  the presence of complex selections, joins and aggre- 

gations. Path expressions, the main syntactic notions in DOOD languages, are 

frequently used to express navigations over complex object structures. Naviga- 

tions are performed over database objects, but are confined to selective objects 

in databases. The constraints are presented in the form of selection and join 

conditions, possibly with aggregation functions. These selections and joins are 

certainly more general and complicated than those in relational database sys- 

tems. The optimization of queries including these complex selections and joins 

is not well investigated. This issue is clearly related to the previous one. 

User-defined methods and encapsulation. The optimization of queries including 

encapsulated methods is still an open problem. Encapsulation is an effective 

mechanism for software maintenance. However, it blocks various kinds of the 

information, such as the semantics of a method, the cost of computing a method, 

the output size of applying a method to a set of input objects, the implemen- 

tation of a method, and the navigation operations in a method. These kinds of 

the information are considered very important for efficient query processing. 

Recursive queries. Recursive query evaluation was the focus of intensive research 

in deductive databases. However, little has been done on DOOD recursive query 

evaluation. It is not clear how the new features of DOOD impact the recursive 
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query evaluation and how the recursive query evaluation techniques, developed 

for deductive database systems, can be extended to handle DOOD recursive 

query evaluation. 

This list does attempt to serve as a guide for our research towards DOOD query 

evaluation. However, it is, by no means, a complete list of all open or not-well 

solved problems. There are other interesting problems in DOOD query evaluation. 

For example, the full support of object identities may lead to several definitions of 

"equivalent" between "semantically equivalent" object algebraic expressions. This 

causes not only the various problems of view definition in object-oriented database 

systems but also the equivalence conservation problem when performing algebraic 

query optimization [101, 1101. 

An object in a class can inherit attributes and methods from its superclasses. The 

implement at ions of these at tributes and met hods, however, could be different from 

those of its superclasses. It is impossible, at query compilation and/or optimization 

time, for a query optimizer to determine which implementations would be invoked 

at query run time. The polymorphism of attribute names and methods, therefore, 

makes it difficult for the query optimizer to perform optimization before queries are 

actually evaluated. 

1.3 Contributions 

This thesis focuses on DOOD query evaluation and presents new approaches to the 

issues in the previous list. The following research results constitute the main contri- 

butions of this thesis. 

0 Support for eficient navigations [130, 1311. A novel indexing structure, called 

the join index hierarchy, is proposed to handle the problem of "goto's on disk" 

or navigations through complex objects. The method constructs a hierarchy 

of join indices and transforms a sequence of pointer chasing operations into a 

simple search in an appropriate join index file, and thus accelerates navigations. 

The method extends the join index structure studied in relational and spatial 
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databases, supports both forward and backward navigations among objects and 

classes, and localizes update propagations in the hierarchy. An experimental 

study shows that partial join index hierarchy outperforms several other indexing 

mechanisms in overall performance. 

Query optimization in  the presence of complex selections, joins, aggregations 

and encapsulated methods [129, 1321. A systematic classification of complex 

selections and joins is presented. It is illustrated that different types of selec- 

tions and joins require different kinds of optimization strategies, and some se- 

lections and joins with aggregation functions can be transformed into equivalent 

but more efficient forms of selections and joins without aggregation functions. 

Path expressions (navigation operations) in encapsulated methods are revealed. 

Consequently, common navigation operations among encapsulated methods and 

queries can be exploited for improving query evaluation efficiency. Query graphs 

are employed to generate query evaluation plans. 

Recursive query compilation and evaluation [50, 51,521. The influence of DOOD 

features on recursive query evaluation is investigated. A normalization process 

is proposed to serve not only as a pre-processing stage for compilation and 

evaluation but also as a tool for classifying recursions. A class of recursions, 

called DOOD linear recursion, is identified which can be efficiently processed by 

the extension of the query-independent compilation and chain- based evaluation. 

In addition, the evaluation of DOOD nested linear recursions and the integration 

with other evaluation techniques are discussed as well. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 describes a DOOD model and 

a query language. The model and language are based upon F-logic [75] and XSQL [73]. 

They serve as research vehicles for the investigation of DOOD query evaluation in the 

later chapters. In Chapter 3, a comprehensive review of query evaluation techniques 

in relational, deductive and object-oriented database systems is presented. Problems 
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beyond relational query evaluation techniques are discussed. These problems motivate 

the research efforts reported in this thesis. In Chapter 4, a new index structure, called 

the join index hierarchy, is proposed to handle the problem of navigations through 

complex objects. Chapter 5 presents a systematic study of query optimization in 

the presence of complex selections, joins, aggregations and encapsulated methods. In 

Chapter 6, the influence of DOOD features on recursive query evaluation is investi- 

gated. The query-independent compilation and chain-based evaluation are extended 

to handle a class of DOOD recursive queries. Finally, Chapter 7 concludes the thesis 

with discussion and future research. 



Chapter 2 

Deductive and Object-Oriented 

Database Model and Language 

2.1 Introduction 

Considerable efforts have been made towards integrating a logic paradigm with object- 

orientation and formalizing the concepts of object-orientation, e.g., [2, 3, 93, 26, 74, 

76, 25, 75, 87, 751. Maier's 0-logic [93], influenced by kt-Kaci 's work on +-terms 

[2, 31, represents an early attempt. The subsequent work on C-logic [26], F-logic 

[74, 761 and PathLog [37] continues this effort. Although Hilog [25] is itself not a 

database programming language, it provides an implementation platform for object- 

oriented languages. SchemaLog [87] extends the approaches of Hilog and F-logic and 

provides a logical foundation of schema integration and evolution in heterogeneous 

database systems. Several database research prototypes, for example, CORAL++ 

[114], LDL++, and COMPLEX [43], incorporate some limited object-oriented features 

into deductive database languages. 

In this chapter, a DOOD data model based upon F-logic [75] and a DOOD query 

language based upon XSQL [73] are introduced not only to demonstrate the salient 

features of a DOOD model and language but also to serve as research vehicles for the 

investigation of DOOD query evaluation in the later chapters. 
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F-logic is a logic with higher-order syntax1. It supports all the major features of 

object-orientation including those higher-order concepts such as objects, object iden- 

tities, classes, methods, class hierarchies, inheritance, etc. Its semantics is restricted 

enough so that the first-orderness is preserved. F-logic intends to stand in the same 

relationship to the ob ject-oriented paradigm as the first-order predicate calculus to 

the relational system, and to lay a logical foundation for object-oriented data model. 

2.2 DOOD Data Model 

Like predicate calculus, the language of F-logic consists of a set of formulas which are 

built from object molecules connected by 7, V and A,  and the quantifiers 3 and V, 

and object molecules which are built from id-terms. 

Definition 2.1 id-term. An id-term is defined inductively: 

a variable is an id-term. 

a constant is an id-term. 

f (tl, ..., t,) is an id-term if f is an n-ary function and t l ,  ..., t, are id-terms. 

Objects are referenced via their denotations or identifiers which are ground id-terms. 

For example, alex and mother(a1ex) are ground id-terms which act as object identi- 

fiers. An id-term can alos be used to represent a class name, attribute name and a 

method name. 

Definition 2.2 Object molecules. There are four kinds of object molecules: 

Predicate object molecules: any predicates are predicate object molecules. 

'By first-order syntax, we mean that variables cannot appear in the places where predicates and/or 
function symbols do. In a logic with a higher-order syntax, variables are allowed to  appear in the 
places where predicates and/or function symbols do. In a logic with a first-order semantics, variables 
can only range over domains of individuals or over the names of the predicates and functions. By 
higher-order semantics, we mean that variables can range over domains of relations and functions 
constructed from the domains of individuals [25]. 
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is-a object molecules: either P:Q or P::Q where P and Q are id-terms. The 

first denotes a class-membership while the second represents a class/subclass 

relationship. 

data object molecules, denoted by 

or 

C : D[ll + C1; ...; 1, + Cn], 

where C is an id-term representing an object identity and D is an id-term denot- 

ing a class which C belongs to. A label 1; is of the form Attr or Method@X1, ..., Xm 

where Attr is an id-term representing an attribute name, and Method and X; 

are id-terms representing a method name and argument objects respectively. C; 

is an id-term, a set of id-terms, a data object molecule or a set of data object 

molecules representing the method result. 

signature object molecules, denoted by 

where C; is an id-term representing a class name. A label I; is of the form Attr 

or Met hod@X1, ..., Xm where Attr is an id-term representing an attribute name, 

and Method and Xi are id-terms representing a method name and argument 

object types respectively. C; is an id-term or a set of id-terms representing the 

method result type. 

For example, STUDENT :: PERSON is an is-a object molecule. It denotes that 

STUDENT is a subclass of PERSON. alex : STUDENT is also an is-a object 

molecule which represents that alex is an instance of the class STUDENT. 
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Example 2.1 Data object molecule for the student alex. 

a l ex[Name  + "A lex" ;  

Age + 30; 
HomeAddress + addr[Country 

C i t y  

S tree tName 

Street  Number 

ZipCode 

G P A  -+ 3.8; 

TalceCourse -+ {cmpt400)].  

-+ canada[Name -+ "Canada" ; 

Population -+ 24,000,000; 

Area -+ 9,900,000]; 

+ vancouver[Name -+ "Vancouver"; 

Population -+ 1,500,000; 

Area + 5001; 

+ 'L Winch1 ' ;  

-+ 6000; 

+ V 5 B  2L31; 

It defines several attributes of alex, i.e., N a m e ,  Age, HomeAddress,  etc. The follow- 

ing is also a data object molecule which defines the values of applying method 

FromLargeCountryOrMetro 

to alex to be T r u e ,  

alex[FromLargeCountryOrMetro@ -+ T r u e ] .  

Example 2.2 Signature object molecule for class D E P T  

D E P T [ N a m e  + Str ing;  Chairperson + P R O F ;  0 f ferCourse + { C O U R S E ) ]  

Signature object molecules are used to express the typing constraints. For example, 

the Name of a department is of type String and the Chairperson of a department is 

of type PROF. 

Definition 2.3 Formulas. Formulas can be defined inductively: 
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Object molecules are formulas; 

c p  V $I, cp A $J and 19 are formulas if y and $J are formulas; 

VXy, 3Y$I are formulas if c p  and 1C, are formulas, and X and Y are variables. 

Definition 2.4 Rule. A rule has the form 

where H2 and B; are object molecules. 

Example 2.3 Rule. 

X[StudentO f@ -+ {Y)] t- 

Y : PROF,  Y[TeachCourse 4 {C)], X : STUDENT[TakeCourse -+ {C}]. 

If a student is taking a course taught by a professor, then the student is a student of 

the professor. 

Definition 2.5 Query. A query has the same form as a rule without a head. 

Example 2.4 Query. 

?-  S : STUDENT[  

HomeAddress -+ addr[Country + country [Name + "Canada"]]; 

TakeCourse -+ {courses[Dept -+ cs[Name -+ "Computer Science"]]); 

GPA -+ 4.01. 

The query is to find all the students who come from Canada, are taking some computer 

science courses and have a 4.0 GPA. 

The above query could be presented in a simpler form by using a path expres- 

sion. A path expression, a syntactic notion, is often used to  refer complex objects. 

Intuitively, a path expression is a traversal over the class composition hierarchy. For 

example, 

s.HomeAddress.Country.Name 

H is a normalized object molecule. The definition of a normalized object molecule is in Chapter 6 
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describes a path expression which starts from an object s in class STUDENT,  con- 

tinues to the home address and the country of s,  and ends at the name of the country. 

It simply denotes the name of the country of the student s. The value of a path ex- 

pression can be either single-valued or set-valued which depends on whether there are 

set-valued attributes in the path expression. For example, the value of the following 

path expression 

s.TakeCourse.Dept.Name 

is a set of the names of the departments which offer the courses the student s is taking. 

Here TakeCourse is a set-valued attribute. Instead of 

S[HomeAddress -+ addr[Country -+ country [Name -+ "Canada"]]], 

it could be written as the following path expression 

S.HomeAddress.Country.Name = "Canada". 

Therefore the above query could be rewritten as 

? - S : STUDENT,  S[S.HomeAddress.Country.Name = "Canada", 

S.TakeCourse.Dept.Name = "Computer Science", 

S.GPA = 4.0. 

2.3 DOOD Query Language 

XSQL [73] is a query language based on F-logic and incorporates all major object- 

oriented features. It is capable of expressing sophisticated queries in a very compact 

way via path expressions. In XSQL, selections and joins could be in a more general 

form than those in relational databases. For example, 

s.HomeAddress.Country.Name = "Canada" 

selects all the students s who are from Canada. And 

s.TakeCourse.Dept.Namev = "Computer Science" 
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selects all the students s who are only taking computer science courses. Here V is a , 

quantifier over the set which is the value of the path expression s.TakeCourse. Dept. Name. 

The comparisons between path expressions form joins. A join between STUDENT 

and PROF could have the following comparison 

as a join predicate. It describes a pair of a student and a professor such that all the 

courses taken by the student are taught by the professor. 

Example 2.5 Finds all pairs of students and universities such that all the faculty 

members of the university are over 40, the total numbers of the courses offered by 

the universities are over 500, all the courses taken by the students are taught by the 

university presidents, and the students are from the city Prince George. 

S E L E C T  u.Name, s.Name 

FROM u U N I V E R S I T Y ,  s S T U D E N T  

W H E R E  u.Depts.FacultyMembers.Agev > 40 

A N D  COUNT(u.Depts.0 f f ercourse) > 500 

A N D  s.TakeCoursev = u.President.TeachCourse3 

A N D  s. HomeAddress.City.Name = "Prince George" 
0 

Example 2.6 Finds all the names of students who are from a metropolis or a large 

country with a population over 20,000,000, and who are only taking computer science 

courses and taking courses over 400 level. 

S E L E C T  s.Name 

FROM s S T U D E N T  

W H E R E  FromLargeCountryOrMetro(s) 

A N D  s.HomeAddress.Country.Population > 20,000,000 

A N D  s.TakeCourse.Dept.Namev = "Computer Science" 

A N D  s.TakeCourse.Numbert/ > 400 
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XSQL can be used to query not only databases but also schema information such as 

class hierarchy and class composition hierarchy information. 

Example 2.7 Query schema. Finds all the subclasses of PERSON. 

SELECT X 

W H E R E  X is-subclass-of PERSON 

The query returns the names of all subclasses of PERSON. 

Example 2.8 Query data and schema. 

SELECT Y 

FROM x PERSON 

W H E R E  x.Y.City.Name = "Vancouver" 

The query returns the attribute name HomeAddress if there exists a person in 

PERSON who is from Vancouver. Otherwise it returns N I L  even though 

HomeAddress is an attribute of PERSON.  0 

The semantics of XSQL is rooted in F-logic as it has been shown in [73] that there 

exists an effective procedure that for any given XSQL query returns an equivalent 

first-order query in F-logic. 



Chapter 3 

Query Evaluation in Database 

Systems 

3.1 Introduction 

Database models and languages have significant impacts on query evaluation tech- 

niques. Before the introduction of relational database systems, there were two popu- 

lar approaches used to construct database management systems. The first approach 

(called hierarchical), exemplified by IBM's IMS [58], has a tree-based data model and 

navigational query language. All data records are arranged into a collection of trees. 

An application programmer could navigate from root records to  some child records, 

and access records one at  a time by employing the navigational query language. The 

second approach (called network) is based upon a graph-based data model which was 

proposed by the Conference on Data Systems Languages (CODASYL) [30]. Similarly, 

all data records are assembled into a collection of directed graphs. An application 

programmer could access records from an entry point by navigations over the graphs 

with a navigational query language. In both approaches, an application programmer 

must write a complex program to navigate through a database in order to answer a 

specific database query. It is the responsibility of a user to specify not only what she 

or he wants but also how her or his wants could be obtained. 

In contrast, the relational data model provides a fundamentally different approach. 
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Data records are represented by relations. A user accesses a database through a declar- 

ative query language by specifying what she or he wants. It is the responsibility of a 

database system to actually evaluate the user's query. A query processor in a database 

system translates a user's query into an efficient evaluation plan, and executes the 

plan for accessing or manipulating the database. A query optimizer is responsible 

for translating a query into an (sub)optimal evaluation plan. The translation, called 

query optimization, is a process of planning and searching for optimal query evaluation 

plans and employing techniques from many disciplines, such as artificial intelligence, 

dynamic programming and operational research. An evaluation plan is optimal in 

the sense that it minimizes some measures, such as users' waiting time for results 

produced by a database system, CPU, I/O and network communication time and ef- 

fort, total resource usage, and possibly the combination of the above measures. After 

an optimal query evaluation plan is obtained, a query execution engine executes the 

plan, and accesses or manipulates the database as instructed in the user's y e r y l .  

Query evaluation has been explored in the context of relational database systems 

and deductive database systems and has received growing attention in the research 

community for the new generation of database systems. DOOD challenges the tradi- 

tional query evaluation techniques with its sophisticated modeling power and highly 

declarative language. The new features, such as complex objects, object identities, 

classes, methods, encapsulations, inheritances, etc., exert essential influence on query 

evaluation. In this chapter, query evaluation techniques in relational databases, de- 

ductive databases and object-oriented databases are surveyed. The emphasis is on 

query evaluation in object-oriented databases and the important problems in DOOD 

query evaluation. 

3.2 Query Evaluation Techniques in Relational Databases 

Many important studies on relational query evaluation are focused on algebraic query 

optimization, join methods and strategies of choosing optimal evaluation orders of 

'In a distributed heterogeneous database system, information may need to  be collected from 
several databases in different locations or of different types. 
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joins [62, 391. 

Algebraic query optimization is a process of transforming an algebraic expression 

of a user's query into an equivalent and but more efficient form. The new expression 

could be either logically equivalent to the original one based upon the relational 

algebra [62, 119, 34, 861, or semantically equivalent to the original expression [83, 21, 

22, 1341. The latter transformation is often called semantic query optimization which 

employs semantic information, e.g., integrity constraints, in databases. 

The join is the most important operator in relational databases. In a two-way 

join, the join result is a subset of the Cartesian product of the two input relations. 

The elements in the subset satisfy the join condition. Many join methods have been 

developed and the most important among them are the nested-loops join[79], sorted- 

merge join [85, 381, hash-based join [84, 951 and pointer-based join methods [ I l l ] .  

Some of the join methods, such as the nested-loops join and pointer-based join, can be 

applied to deductive and object-oriented databases [ I l l ] .  The recent surveys [95, 391 

cover some comprehensive reviews on join methods. 

Most queries in relational databases can be considered as select-project-join queries. 

Thus selecting an optimal query evaluation plan is to choose an optimal evaluation 

order of joins. In large database systems, there could be a large number of joins in 

a complex query. An exhaustive search for an optimal evaluation plan is unaccept- 

able. The pioneer relational database system prototype, System R developed at IBM, 

proposed the most influential principle of relational query optimization: perform pro- 

jection and selection as early as possible [log]. The idea is to  eliminate data (tuples) 

irrelevant to answers in an early stage of evaluation so that query execution is accel- 

erated. In addition, many query evaluation plans, which may be quite expensive, are 

eliminated from consideration. Consequently, the time spent on searching optimal 

evaluation plans is also reduced. Recently, randomized algorithms such as iterative 

improvement, simulated annealing and two-phase optimization [61, 118, 59, 601 were 

introduced to search optimal evaluation plans. An evaluation plan is represented as 

a join processing tree, which, in turn, can be considered a state in a state space. 

Randomized algorithms perform random walks in a state space via a series of moves 

(manipulations of join processing trees). A cost is associated with each state. The 
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algorithms try to find a state with local (global) minimum cost according to prede- 

termined criteria (termination conditions). 

3.3 Deductive Query Evaluation Techniques 

The magic-sets technique is the most influential evaluation method for recursive query 

evaluation in deductive database systems. It was originally proposed by Bancilhon, 

Maier, Sagiv and Ullman [7], and extended by Beeri and Ramakrishnan [12, 131 later. 

The motivation of the magic-sets rule rewriting technique [ l lg ,  1041 is that a query 

often only asks for a small set of the entire relation corresponding to an intensional 

predicate. A top-down search would start from the query as a goal and employ the 

rules from heads to bodies to create only goals relevant to  the query. Some of them, 

however, may lead to the "dead end". The disadvantage is that this kind of approach 

may get into recursive loops, perform repeated computation of some subgoals, and is 

very hard to determine whether all the answers to the query have been found. 

On the other hand, a bottom-up search begins from the rule bodies to  the heads. 

It may consider some facts which are not relevant to the query and would not be con- 

sidered in the top-down approach. However, this approach has advantages because it 

avoids the problems of looping and repeated computation and facilitates more efficient 

set-at-a-time processing than tuple-at-a-time processing in the top-down search. 

The magic-sets focus on the top-down approach combined with the looping-freedom, 

easy termination, and the efficient evaluation of bottom-up search. It can be used to 

rewrite the rules and pass the bindings from the query so that the advantages of both 

top-down and bottom-up approaches are integrated. 

Example 3.1 Same generation. Two people are the same generation if they are 

siblings or their parents are the same generation. Here "sg" stands for "same gener- 

ation". It is an intensional predicate. Both "sibling" and "parent" are extensional 

predicates. The first rule says that if X and Y are siblings then they are the same 

generation. The second rule means that if the parent U of X and the parent V of Y 

are the same generation then X and Y are the same generation. The query ?-sg(john, 
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Z) tries to find all the people who are the same generation as "john". 

sg(X, Y) : - sibling(X, Y). 

sg(X,Y) : - parent(X,U),sg(U,V),parent(Y,V). 

?- sg(john, 2). 

In all the relevant tuples (c, d), where c and d are the same generation, c must be 

an ancestor of john. A "magic predicate" is used as a filter to retain only those 

potentially relevant elements. john is the first relevant one, i.e., 

In a top-down evaluation, if the rule head is of the form sg(c, Y), where c is an ancestor 

of john, then the body of the above recursive rule will be 

parent (c, U), sg(U, V), parent (Y, V). 

U must be bound to a parent of c, thus an ancestor of john. Therefore, if c is relevant, 

SO are c's parents, i.e., 

magicsg(U) : - magicsg(X),  ~ a r e n t ( X ,  U). 

The original rules and the query can thus be rewritten as 

sg(X, Y) : - magicsg(X),  sibling(X, Y). 

sg(X, Y) : - magicsg(X),  parent(X, U), sg(U, V),  ~ a r e n t  (Y, V). 

magicsg(U) : - magicsg(X),  parent (X, U). 

magicsg(john). 

magicsg simulates how the goals are generated in a top-down evaluation. 

magicsg(john) and the generated facts of magicsg are used as a filter in the rules 

defining sg to avoid irrelevant facts to the answers. Thus a bottom-up evaluation of 

the rewritten rules reaches a selective search similar to that achieved by top-down 

evaluation of the original rules. CI 

The magic-sets were originally proposed to handle recursive queries, however, it 

is applicable to non-recursive queries as well and found to be superior to techniques 

used in commercial database systems [97]. 
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There are other approaches which have the same effects as the magic-sets. For 

example, the query-subquery approach [126,127] combines top-down, bottom-up and 

side-way information passing features. Queries and subqueries are passed top-down 

from the head of a rule to its body. Answers generated from a rule are returned 

bottom-up to their corresponding subqueries. In a rule, answers to the first several 

subqueries are passed side-way to derive answers to the rest of the subqueries. An in- 

teresting project XSB led by Warren [25, 1071 is founded on SLG resolution, a variant 

of OLDT resolution, which is top-down evaluation with memoing. SLG resolution is a 

partial deduction framework. Each query is transformed step by step into a set of an- 

swer clauses. It allows arbitrary control strategies for selecting which transformations 

to apply and has good termination characteristics. 

Chain-based evaluation by Han [47, 46, 481 and prototyped by Han, Ling and 

Xie [50, 521 represents an alternative approach to efficiently evaluate a very popular 

class of recursive queries. The method is motivated by the observations that most of 

studied recursions can be compiled into highly regular chain-forms. The compilation 

can capture the bindings which could be hard to be captured by other methods. The 

chain-based methods can explore the query constraints, regularity of recursions and 

other features of a program to efficiently evaluate recursive queries. 

3.4 Query Evaluation in Object-Oriented Databases 

Although relational data models only support small subset of functionalities of object- 

oriented data models, the commonalities promise the possibility of employing the 

relational query optimization and evaluation techniques to object-oriented query pro- 

cessing. Many query optimization techniques in object-oriented database systems are 

based upon algebras. These algebras are similar to the relational algebra in supporting 

bulk data types, e.g., sets, but are generalized to support operations on lists, arrays, 

user-defined operations and inheritance. This indicates that the relational algebraic 

query optimization techniques can be extended to object-oriented query processing. 

The approaches can be classified into two classes: graph-based object-oriented 
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query optimization and algebraic transformation-based object-oriented query opti- 

mization. In the first approach, queries are represented by query graphs. Trans- 

formations of queries is performed by manipulating the corresponding query graphs. 

Different ways of manipulating query graphs lead to different query evaluation plans. 

The second approach is featured by direct manipulation of queries in algebraic ex- 

pression forms. The algebraic expressions are translated into equivalent and but more 

efficient forms for processing. 

Any algebraic expressions can be represented in graph forms and vice versa. Thus 

there is no fundamental difference between the two. In fact, the approach in Cluet 

and Delobel [29] takes advantages of both. In Lanzelotte et al. [go], the regulations 

of generating processing trees, i.e., query evaluation plans, are expressed in rewrite 

rules, and the optimization is similar to the algebraic transformation-based approach. 

3.4.1 Graph-Based Object-Oriented Query Optimization 

Banerjee et al. [8] propose a very primitive query graph model which resembles the 

relational one. In a query graph, classes in a query are denoted by nodes, whereas 

attribute relationships, and classes/subclasses relationships are denoted by edges. The 

query optimization is considered as selecting an optimal order in which the classes in 

a query are traversed. Two basic ways of traversing the nodes in a query graph are 

proposed: forward traversal and backward traversal. A query cost model, which is 

quite similar to the relational one, is proposed to determine an optimal access plan 

for a query. Whenever the ordering of nodes in a query graph, i.e., an access plan, has 

been given, the evaluation of the query is performed in either forward or backward way 

according to the plan. This approach only considers two traversals, i.e., forward and 

backward in evaluating queries. Consequently, some better query evaluation plans 

might be eliminated from consideration. 

Lanzelotte et al. [go] consider a more sophisticated graph-based model which cap- 

tures not only logical relationships expressed in a query but also storage information 

relevant to the query. A query graph consists of predicate nodes, name trees and 

dataflow arcs which connect name trees to predicate nodes. The predicate nodes, 
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which connect name trees and represent explicit joins, contain conjunctive boolean 

formula of classes and their attributes in the name trees. An input name tree consists 

of nodes, which denote classes and their attribute classes. The nodes are connected by 

edges representing the attribute relationships (implicit joins). An output name tree 

specifies the projection result classes and their attributes in a query. A conceptual 

schema captures logical relationships between classes in a database while a physical 

schema captures storage information, such as clustering and path indices. For exam- 

ple, if objects in some classes are clustered together, then there will be one node in 

the physical schema which represent the cluster. A query is first translated onto the 

physical schema. The result of the translation is a connection graph which makes 

explicit the clustering and path indices information related to the query. A query 

evaluation plan can be represented as a processing tree derived from the connection 

graph. The selection of optimal query evaluation plans is formulated as a search prob- 

lem in a processing tree-based space. Rewrite rules for manipulating processing trees 

are presented for deterministic search to select optimal processing trees. 

Cluet and Delobel [29] propose a typed algebra and take advantage of both alge- 

braic rewrite rule and graph-based approaches. The rewrite rules in their approach are 

encoded with some object storage information, such as path indices and object place- 

ment policy. The typed algebra facilitates factorizations of not only local common 

subexpressions but also global common subexpressions. The algebraic expressions of 

queries can also be represented by directed acyclic graphs (DAGs) which can capture 

both logical relationships of classes (types) in queries and physical storage informa- 

tion. 

3.4.2 Algebraic Transformation-Based Query Optimizations 

in Object-Oriented Databases 

Shaw and Zdonik [I101 propose an object algebra which synthesizes relational con- 
. . 

cepts with object-oriented databases. Algebra operations include select, project, join, 

nest, unnest, dupeliminate and coalesce, which are the generalizations of relational 

operations. The last two are specifically for eliminating duplicate copies of objects 
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or duplications in tuple attribute values. The algebra model fully supports object 

identity in the sense that any query results are also considered as objects. Concepts 

of equality and identity between algebraic expressions are introduced with algebraic 

transformation rules which preserve the equality or identity between algebraic expres- 

sions before and after transformations. The approach adopted in Osborn [ l o l l  is also a 

typical example of an extension of relational algebraic query optimization. An object 

algebra is proposed to support most features of a structural object model. Transforma- 

tion rules include idempotence of unary operators, commutativity of unary operators, 

commutativity of binary operators, associativity of binary operators, and distributiv- 

ity of unary operators over combine, union, intersect and subtract. Transformation 

rules, which preserve equality and/or identity of algebraic expressions, are presented 

as well. These transformation rules form the basis for algebraic query optimizations. 

Vandenberg and DeWitt [124] present a many-sorted algebra with algebraic opera- 

tors on grouping, arrays, references and multisets, and a comprehensive collection 

of transformation rules governing these operators. Optimization of queries including 

methods and polymorphism of methods and attribute names are also discussed. 

Beeri and Kornatzky [ll] propose an object-oriented query language by extend- 

ing a functional programming language. The query language is structured around a 

small number of bulk data processing abstractions with a set of transformation rules, 

e.g., condition and composition of function applications, production and construction, 

apply-to-all, pump, etc. In addition, user-defined methods coded in the same query 

language are considered as subqueries when a query including the methods are opti- 

mized. Two rules, i.e., pushing an apply-to-all into a method and pulling a filter out 

of a method, are proposed for optimizing a query in the presence of methods. 

Object-oriented query optimization in Straube and Ozsu [I171 proceeds in two 

stages: logical and physical expression optimizations. In the first stage, a logical 

query expression is translated into an equivalent but more efficient form according to 

algebraic transformation rules. There are two types of algebraic rewrite rules: pure 

algebraic rewrite rules and semantic rewrite rules. The former rules can be applied to 

any expression if there is a pattern match of subexpressions. However, the latter are 

applicable only when additional conditions on a database schema are met. Hence the 
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semantic rules are specific to an application. In the second stage, an optimal logical 

query expression from the first stage is mapped into a sequence of data manipulations 

at an object manager level. Different mappings may lead to different query evaluation 

plans. Object storage and statistical information can be used to determine an optimal 

plan for a query. Blakeley, McKenna and Graefe [16] describe the Open OODB query 

optimizer generated from Volcano Optimizer Generator [42]. Query optimization is 

performed in two stages as well. An input query to the optimizer is expressed in 

an algebraic form similar to a relational one. The query is first simplified into an 

equivalent but more efficient form according to the transformation rules, and logical 

and physical properties. Then the correspondence between algebraic operators in a 

query and execution algorithms is established with implementation rules. This process 

generates an optimal evaluation plan. 

Guo et al. [44] present a unique algebra called association algebra. The domain of 

the algebra operations is a set of associated patterns which are collections of objects 

connected via attribute relationships and non-associations. The algebra maintains 

closure property, i.e., both input and output of an algebraic operation are associated 

patterns. It is not necessary to introduce equality or identity as in [110, 1011 since 

the algebraic operations directly manipulate associated patterns which preserve struc- 

tural information of objects as well as object identities. Even though the algebra is 

quite unique, the query optimization technique is quite similar to the other algebraic 

transformation-based approaches. 

3.5 Problems in DOOD Query Evaluation 

This section identifies several important open or not well-solved problems in DOOD 

query evaluation and reports research progress towards the problems. The problems 

include navigation through complex objects, query optimization in the presence of 

complex selections, joins and aggregations, user-defined methods and encapsulation, 

and recursive query evaluation. 
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3.5.1 Navigation through Complex Objects 

DOOD supports complex data objects and enables explicit and natural representa- 

tion of logical relationships among complex objects via class/subclass hierarchies, 

attributes, methods, object identities, etc. Thus, navigation among different classes 

and objects via class composition hierarchies and/or class hierarchies is an essential 

operation. A navigation from one object in a class to objects in other classes is essen- 

tially a "pointer chasing" (using object identity "OID" references) operation which 

may cause significant performance degradation because the objects to be accessed 

may be stored at widely scattered locations and many disk read operations may be 

required to fetch them into main memory [39]. The attempts to solve this problem 

can be classified into three classes of techniques: indexing methods which includes 

nested indices [94, 15, 14, 28, 241 for associative search and navigation index struc- 

tures [68, 57, 1301, replication and caching [ I l l ,  651, complex object assembly [66], 

and read-ahead buffering [102, 311. 

In Maier and Stein [94], a series of index components, indices on each level of 

the nested attributes, are maintained for the purpose of update propagations. In 

Bertino and Kim [15], three index structures are presented: the nested index, path 

index and multiindex, which have been later extended to handle inheritance of classes 

appearing in a path expression [14]. The nested index structure facilitates associative 

search and update by storing together the key values of the tail attribute, the objects 

of the head class, and the intermediate objects in a path expression into primary 

records. An auxiliary index, which basically keeps the direct reference information 

between objects, together with the information in primary records is used to propagate 

updates. The nested index structure in general outperforms the other two index 

structures [14]. Choenni et al. [28] propose an optimal index configuration by splitting 

a long path expression into some shorter ones, and by indexing the shorter paths with 

the index structures in [15, 141. Chawathe, Chen and Yu [24] take index interaction 

into consideration when selecting a set of nested indices for nested object hierarchies. 

The index interaction refers to the phenomenon that the inclusion of one index might 

have impact on the benefit obtained by the other indices if the former is overlapped 
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with the latter ones. The problem of selecting an optimal index scheme is formulated 

as an optimization problem against an objective function. The experiment shows the 

index selection does improve the overall performance. These approaches only support 

associative retrieval of objects through nested attributes but not navigations in both 

directions along a reference chain. 

Kemper and Moerkotte [68] present a data structure, called the access support 

relation, which keeps the identifiers of the objects connected by the attribute relation- 

ships in a path expression and can span over the reference chains of a path expression. 

Several alternatives which include the full, canonical, left and right extensions and the 

decomposition of access support relations for a given path expression are discussed. 

The optimal one is determined according to the domain-specific information such as 

the probabilities of different types of queries and updates. The storage size of each 

component in an access support relation could be la.rge because all the identifier se- 

quences of the joinable objects along an object path corresponding to the component 

are stored, and any two objects in two classes could be connected by more than one 

object path. Further, an update on one object may need to be propagated to sev- 

eral components or to the entire access support relation, which could be costly. Hua 

and Tripathy [57] propose a navigation structure, called the object skeleton, which 

essentially is a network of object identifiers. Two object identifiers are connected if 

the corresponding objects are associated by, for example, an attribute relationship. 

The approach is more general in the sense that the navigations can be supported 

between two classes not only in a path expression but also over a network of classes. 

The navigations, however, are supported efficiently only if the starting points of the 

navigations can be located by using some nested indices such as those in [15, 141. 

Besides, an update is required to be propagated over the network of object identifiers 

and the nested indices. 

Shekita and Carey [ I l l ]  describe a mechanism, called field replication, which repli- 

cates the values of nested attributes. In-place field replication stores the replicated 

data with the objects, whereas separate field replication stores the replicated data in 

a separated place. The separated replication is used to solve the issue of updating 

the shared replicated data. Inverted path structures, which are similar to the index 
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components in [94], are used to support update propagation. Kato and Masuda [65] 

present a mechanism, called persistent caching, which is similar to the field replica- 

tion [ I l l ] .  In this approach, the referenced objects are cached into the referencing 

objects. Update is delayed until the cached objects are required. A hash table stored 

in the main memory is employed to maintain the cached values consistent with the 

original objects. These approaches support only forward navigations along a reference 

chain. Besides, extra mechanism and information are needed in order to maintain the 

replicated or cached data consistent with the original data. 

Keller, Graefe and Maier [66] propose an assembly operator which efficiently trans- 

lates a set of complex objects from their disk representations to quickly traversable 

memory representations. The complex objects could be one or more objects connected 

by "inter-object" references. Templates are used to store structural and statistical in- 

formation of objects. Component iterators use the templates to determine what parts 

of a complex object to assemble, when assembly is complete or how to find unresolved 

references within a newly retrieved object. The assembly operator uses the templates 

and component iterators to selectively and intelligently assemble complex objects. 

Palmer and Zdonik [lo21 propose saving past reference patterns for predicting fu- 

ture object faults. If accesses similar to the stored patterns are detected, read-ahead 

is activated to prefetch the likely required pages. Curewitz, Krishnan and Vitter [31] 

discovered the similarity between data compression and prefetching. The intuition is 

that a data compressor usually compresses data by assuming a dynamic probability 

distribution on the data. A data compressor encodes highly expected data with fewer 

bits but unexpected data with more bits. Therefore, if a data compressor success- 

fully compresses data, its assumption of probability distribution on the data must be 

realistic and can be employed effectively for predicting and prefetching data. Three 

data compression algorithms are applied to prefetching. The experiment results show 

that the prefetches based on the data compression methods achieve more significantly 

reduced object fault rates than a pure LRU. If references fit well into the expected 

pattern, the prefetching is effective. On the other hand, any prefetching methods 

need to do some "guess work". The performance could be suffering if some changes 

occur in the reference pattern. 
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3.5.2 Queries Including Complex Selections, Joins and Ag- 

gregat ions 

Navigation operations are frequently expressed in the form of path expressions, a 

main syntactic notion in DOOD languages. Although navigations are performed over 

a collection of objects which are connected by some logical relationships and are stored 

in different pages or blocks on disks, the navigations are often constrained to some 

selective objects. These constraints are represented by selection and join conditions, 

sometimes with aggregation functions. It is, therefore, important to investigate how 

these constraints, i.e., selections and joins, can be employed to efficiently process these 

navigations. 

Kemper and Moerkotte [69] propose a rule-based query optimizer which uses access 

support relations to evaluate path expressions. Several rules are presented to handle 

path expressions, e.g., prolonging path expressions, splitting path expressions, etc. 

Cluet and Delobel [29] transform pointer chasing operations into join operations. 

By introducing typing and intermediary variables in path expression-based algebraic 

expressions, they make it possible to employ equivalences which can not be otherwise 

employed. The formalism also allows factorization of common sub path expressions 

in a query. 

In Blakeley, McKenna and Graefe [16], a logical algebra operator, called materialize 

or Mat, is proposed to optimize the evaluation of path expressions. It explicitly 

indicates the use of the inter-object references in a path expression. A materialize 

operator can be transformed into joins if theuscope" introduced by a materialize 

operator is aUscannable" object. The joins can be implemented by join methods such 

as the hybrid hash join and the assembly operator. 

These approaches address the matter of efficiently evaluating path expressions by 

using access support relations or translating them into joins. However, the issue of 

whether and how the constraints on path expressions can be employed effectively 

to evaluate the path expressions was not investigated in these studies. Chapter 5 

proposes "Push constraint condition inside navigation" to deal with the issue. 
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3.5.3 Met hods and Encapsulation 

Query evaluation in the presence of encapsulated methods is a challenging issue. In 

most of the previous studies, e.g., [8, 90, 29, 110, 101, 1171, encapsulated methods are 

considered as black boxes. Consequently some optimal query evaluation plans may 

be excluded from consideration. 

Encapsulation is good for effective software maintenance. However, encapsulation 

hides the implementations of methods and blocks the information required for query 

optimization. Graefe and Maier [41] and Daniel et al. [32] propose the revelation 

of encapsulated methods to query optimizers. Their papers indicate that methods 

may eventually be transformed into algebraic expressions and substituted by the cor- 

responding algebraic expressions. Thus queries can be optimized by a conventional 

query optimizer, e.g., the EXODUS extensible query optimizer. However, the trans- 

formations of arbitrary methods into algebraic expressions are not presented in their 

papers. 

Vandenberg and DeWitt 11241 take into account the optimization of queries in- 

cluding methods. Methods are coded by the EXCESS query language and therefore, 

can be substituted by the query language codes during the optimization process. In 

both Beeri and Kornatzky [ll] and Jiao and Gray [64], the revelation of encapsu- 

lated methods is discussed. However, both queries and methods are written in the 

same functional languages. Definitions of methods can be fully revealed to query 

optimizers. In these approaches, only methods coded in query languages are taken 

into consideration during query optimization. Thus the application of methods is 

restricted. 

Methods are usually defined by users in an arbitrary language, and in many cases 

they are coded in a procedural language such as C++. A query optimizer may 

perform more effective optimization if it can "understand" the user-defined methods. 

Chaudhuri and Shim [23] consider the query optimization in the presence of user- 

defined functions. The semantic information about these foreign functions is expressed 

in a declarative rule language. Queries could be transformed into equivalent but more 

efficient forms according to transformation rules. The traditional relational cost model 
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is extended to accommodate the presence of foreign functions. The traditional join 

reordering algorithm based on dynamic programming is modified to search for optimal 

query evaluation plans. 

In traditional database query optimization, it is often assumed that selections 

are simple and inexpensive. It is, therefore, preferable to perform selections before 

joins in order to reduce the sizes of join relations. However, this assumption is not 

valid any more if selections include expensive user-defined methods. Hellerstein and 

Stonebraker [56] consider the issue of optimizing queries with expensive predicates. 

The problem is formulated as placing expensive predicates in an optimal join plan 

such that the total cost including the cost of joins and selections is minimized. An 

algorithm, called predicate migration, is implemented in POSTGRES. The experiment 

shows that the performance gain could be significant. Hellerstein [55] continues this 

work and presents a family of algorithms: PushDown, PullRank, modified Predicate 

Migration and PullA11. The implementation in Montage and performance study show 

that predicate migration provides good query evaluation plans over a wide range of 

queries with expensive predicates. 

Semantic and cost information of user-defined methods is useful for efficient query 

evaluation, however, neither of them is easy to obtain in practice. In addition, the 

incompatibility between declaratively defined query and procedurally coded users' 

methods, and mismatch between set-oriented evaluation of queries and object-at-a- 

time computation of methods are not well solved. Precomputing or materializing user- 

defined methods represents an alternative approach. Instead of computing methods in 

an object-at-a-time fashion at run time, access of the materialized results is performed 

in a set-oriented way. Materialization is especially effective and beneficial when meth- 

ods are expensive to compute. However, the crucial issue for materialization is update 

maintenance. Kemper, Kilger and Moerkotte [67] describe several tuning strategies 

for method materialization maintenance. The main goal is to minimize the overhead 

of invalidation and rematerialization upon update operations. Objects involved in ma- 

terialization are distinguished from non-involved objects. The information of which 

attributes of those involved objects are accessed during materialization can further 

be exploited to decreased the overhead. Some operational semantics about methods 
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can also be employed to reduced maintenance costs. For example, the transformation 

scale is the only one that may invalidate the precomputed values of volume while 

rotate and translate do not. 

3.5.4 Recursive Query Evaluation 

Although recursive query evaluation has been explored in the context of deductive 

database systems, little has been investigated on how DOOD features impact the 

recursive query evaluation and whether the recursive query evaluation methods de- 

veloped in deductive database systems can be extended to handle DOOD recursive 

queries. 

There are research prototypes which integrate object-orientation with deductive 

database languages. However, these systems typically extend deductive database 

languages such as datalog with limited object-oriented features [43, 631 or a C++ 

type system [114]. Programs are first translated into Horn clause-like programs such 

as datalog, and then evaluated with the existing deductive query evaluation methods. 

COMPLEX [43] integrates datalog with limited object-oriented features such as 

object identity, complex objects and inheritance. The COMPLEX program can be 

translated into datalog program by incorporating rules which enforce object-oriented 

features. The deductive query evaluation method, query and subquery [126, 1271, is 

employed to evaluate recursive queries. 

Similarly, ConceptBase [63] incorporates structural aspects of object-orientation 

into a deductive database language. The object-oriented features such as object iden- 

tity, class and inheritance are represented as integrity constraints. Therefore, the 

object deductive database system can be viewed as a deductive database system with 

integrity constraints. Semantic query optimization is employed to optimize queries. 

Coral++ [I141 extends Coral [103], a deductive database system, with a C++ type 

system. Class definitions are handled by a C++ compiler. The system accommodates 

accessing named attributes and invoking methods by generating predicates which 

perform appropriate attribute accesses and method invocations. Therefore, method 

name binding and invocation are left to a C++ compiler. The transformed Coral++ 
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programs can be evaluated by using the existing Coral system. 

Although object-orientation is not explicitly supported, XSB [I071 provides a plat- 

form for implementing object-orientation with Hilog [25] syntax. XSB implements 

Hilog by transforming higher-order terms into first-order forms with apply/N,  and 

then compiling and optimizing the first-order forms. 



Chapter 4 

Join Index Hierarchies for 

Efficient Navigations 

4.1 Introduction 

Navigation is an essential operation for exploring logical relationships among complex 

objects via class/subclass hierarchies, attributes, methods, object identities, etc. For 

example, in Figure 4.1, several classes are connected via the relationships induced by 

attributes, methods and class/subclasses. To find out which departments offer the 

courses taken by the assistant professor Jones' students, navigation is performed from 

the object "jones" in the class AssistantProf to the objects in the class DEPT via 

the subclass/class relationship of AssistantProf and PROF, the method Supervise of 

PROF, the attribute TakeCourses of STUDENT, and the attribute Dept of COURSE. 

The objects in the intermediate classes STUDENT and COURSE have to be accessed 

in order to find out the objects in the class Dept which have the logical relationship, 

expressed in the query, with the object "jones" in the class AssistantProf. Naviga- 

tions may jeopardize the system performance because the objects along a navigation 

path may reside at widely scattered locations and many disk read operations may be 

required to fetch them into main memory. 

Following the philosophy of indexing methods, a join index hierarchy method is 

proposed in this thesis, which extends the join index technique developed in relational 
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databases [I231 and its variations in spatial databases [106, 921, constructs hierarchies 

of join indices to accelerate navigations via a sequence of objects and classes. In a 

broad sense, a join index here stores the pairs of identifiers of objects of two classes 

that are connected via direct or indirect logical relationships. Those formed by direct 

logical relationships are called base join indices; whereas those representing indirect 

logical relationships are called derived join indices. Base and derived join indices 

form a join index hierarchy. A join index hierarchy supports navigations through a 

sequence of classes in either a forward or a backward navigation direction and supports 

efficient update propagation starting with the base join indices by localizing update 

propagations in the hierarchy. 

The following considerations motivate the proposal of the join index hierarchy 

structures. 

First, by construction of join index hierarchies, the "pointer chasing" problem, 

that is, accessing objects and their properties via a sequence of referencing point- 

ers to widely scattered disk locations, is transformed into simple accessing of 

appropriate join index files. This may significantly reduce the 110 accessing cost 

in object-oriented query processing. The price for this 110 cost reduction is the 

increase of space for storing join index files, which is practically implementable 

since large inexpensive disk memories are available with reasonable cost based 

on the current hardware technology. 

Secondly, with join index hierarchies, appropriate join index files for specific 

navigation operations can be selected by consulting the index hierarchy direc- 

tory. Moreover, update propagation can be localized to a few base and derived 

join index files in the hierarchy. Both forward and backward navigations can be 

supported with minimum storage and update overheads. 

Thirdly, using join index hierarchies, object-at-a-time navigation is transformed 

into efficient, set-oriented and associative access of join indices. Moreover, it 

supports navigations among objects connected not only via a sequence of at- 

tribute relationships but also via a sequence of methods and deduction rules. 
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This is accomplished by precomputing methods and rules and storing the re- 

lated information in join indices. By doing so, the ob ject-at-a- time evaluation 

of computationally intensive methods or deduction-intensive rules can be trans- 

formed into efficient and set-oriented accessing of precomputed relationships. 

Moreover, retrieval from either direction becomes available even for methods 

and deduction rules. 

Fourthly, in some cases, the join of some classes on certain attributes may 

generate a substantially large join index file because of its large join selectivity, 

or some class may sustain regular and frequent updates. Joins involving such 

kind of characteristics should be considered as "fire walls" in the construction of 

join index hierarchies. The system should prohibit the construction of such join 

indices or the merge of such join indices into the hierarchy in order to  avoid the 

potential explosion on the size of join index files or the heavy cost of updates. 

Queries involving such joins can be processed by performing concrete joins or 

using the base join index files, if available. 

4.2 Preliminaries 

A join index hierarchy structure is proposed here to support efficient navigation 

through multiple object classes. For example, in Figure 4.1, one may like to find 

which departments offer courses taken by Jones' students, or which courses the un- 

dergraduate student "John" is taking, which departments offer the courses taken by 

a PhD student "Mary", etc. These queries correspond to navigations through a set 

of classes, such as AssistantProf, DEPT, UGRAD, COURSE, etc. via appropriate 

relationships. 

The variations of a join index hierarchy can be constructed based on the richness 

of the derived join index structures. Three kinds of structures: based-only, complete, 

and partial, are investigated in terms of their construction, navigation and update 

propagation. 

For the clarity of presentation, only the relationships between the existing at- 

tributes among object classes are considered in the construction and maintenance of 
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Figure 4.2: A Schema Path of Length 5. 

join index hierarchies. A join index hierarchy which handles the relationships induced 

by attributes, methods, rules, and class/subclass hierarchies will be discussed later. 

A database schema is a directed graph in which the nodes correspond to classes, 

and edges to relationships between classes. Suppose Ak is an attribute of class C;, 

and Ak ranges over class Cj. Then there exists a directed edge from C; to Cj in the 

schema graph, labeled with Ak. Moreover, if for i = 0,1 , .  . . , n - 1, there is a directed 

edge from C; to C;+l, labeled with A;+1, in a database schema, then (Co, All Cl, Az, 

. . . , A,, C, ) is a schema path. 

Regarding to a schema path (Co, All C1, A2, . . . , A,, C, ) over a database 

schema, a join index file (node) J I ( i ,  j) (1 5 i < j 5 n) consists of a set of tu- 

ples (OID(oi), OID(oj),  rn), where oi and oj are objects of classes C; and Cj re- 

spectively, and there exists an object path (o;, o;+l, . . . , oj-1, oj ) such that for 

k = 0,1, .  . . , j - i - 1, o;+k+l is referenced by o;+k via the attribute Ai+k+1, and m is 

the number of the above distinct object paths that connect the objects o; and oj. 

Definition 4.1 Join index hierarchy. Join index nodes connecting different object 

classes along a schema path form a join index hierarchy, denoted as J IH(Co ,  All C1, A1, 

. . . , A,, C,), or simply J I H ( 0 ,  n). The longest join index path, J I (0 ,  n), is the root 

of the hierarchy. Each node J I ( i ,  j )  where j - i > 1 may have two direct children 

J I ( i ,  j - k) and J I ( i  + 1, j )  where 0 < k < j - i and 0 < 1 < j - i .  The join index 

nodes J I ( i ,  i + I),  for i = 0,1, . . . , n - 1, are at the bottom of the hierarchy, and are 

therefore, called base join indices. 

Figure 4.2 shows a schema path of length 5 on a class composition hierarchy and 

Figure 4.3(a) (b) (c) illustrates the following three join index hierarchy structures. 

1. A complete join index hierarchy (C-JIH), as shown in Figure 4.3(a), con- 

sists of a complete set of all the possible base and derived join indices. It 
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supports navigations between any two directly or indirectly connected object 

classes along the schema path. 

2. A base join index "hierarchy" (B-JIH) ,  as shown in Figure 4.3(b), consists 

of only base join indices. It supports direct navigations only between any two 

adjacent classes. It cannot be entitled as a "hierarchy" in a rigorous sense but 

can be viewed as a degenerate hierarchy with all the higher level join index nodes 

missing, where the missing nodes can be derived from the base join indices. 

3. A partial join index hierarchy (P-J IH) ,  as shown in Figure 4.3(c), consists 

of a proper subset of the set of base and derived join indices in a complete join 

index hierarchy. It supports direct navigations between a pre-specified set of 

object class pairs since it materializes only the corresponding join indices and 

their related auxiliary (derived) join indices. 

Figure 4.3(c) demonstrates a typical partial join index hierarchy which supports 

direct navigations between Co and C4, and Cz and C5. Their corresponding J I  nodes: 

JI(O,4) and J I (2 ,5 ) ,  circled in the figure, are called target nodes. Notice that a 

materialized intermediate level node J I ( i ,  j) may be used not only for supporting 

navigations between C; and Cj but also (and sometimes more importantly) for ac- 

celerating update propagations from the base join indices to higher level join indices 

such as JI(O,4). 

For example, if there were no intermediate level join index nodes in the hierarchy 

JIH(O,5), four join-like (defined later) operations are needed on average to propagate 

an update from the base join indices to the target nodes JI(O,4) and JI (2 ,5) .  With 

the help of intermediate level join indices, it takes an average of 2.2 join-like operations 

to propagate an update from the base join indices. 

In a join index hierarchy J I H ( 0 ,  n), the base join index nodes J I ( i ,  i + 1) (for 

i = 0, . . . , n - 1) reside at level 1, and the root node J I (0 ,  n) at level n. Although a 

complete join index hierarchy could be quite large, each individual join index node is 

usually of reasonable size. In many cases, it is unnecessary to materialize all of the 

join index nodes in the hierarchy since it is beneficial to support only the frequently 
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used navigations. Given a set of frequently accessed schema paths, a partial join index 

hierarchy can be constructed to support the corresponding navigations. 

Definition 4.2 Target and auxiliary join index. In a join index hierarchy, a set of 

join index nodes which must be supported (due to frequent references) are called 

target join indices; whereas the others which are mainly used for update propagation 

are called auxiliary join indices. 

For example, J I (0 ,4 )  and J I (2 ,5 )  in Figure 4.3(c) are target join indices while 

JI (O,2), and JI (2,4) in Figure 4.3(c) are auxiliary join indices. Auxiliary join indices 

can of course be used, as a by-product, for support of the navigations between the 

corresponding classes. The target, auxiliary and base join indices are materialized 

join indices. The unmaterialized join indices are called virtual join indices. 

Update propagation includes three types of updates. 

1. Insert' an attribute relationship A;+l between an object o; in class C; and 

an object o;+l in class C;+l. This corresponds to inserting a tuple (OID(o;), 

OID(O;+~) ,  1) to the base join index J I ( i ,  i + 1). 

2. Delete2 an attribute relationship A;+l between an object o; in class Ci and 

an object o;+l in class Ci+1. This corresponds to deleting a tuple (OID(o;), 

O I D ( O ~ + ~ ) ,  1) from J I ( i ,  i + 1); 

3. Modify an attribute relationship A;+' from that between an object o; E C; 

and another object o ;+~  E C;+l to that between 0; E Ci and o:+~ E C;+'. 

This corresponds to deleting an existing tuple (OID(o; ), OID(O;+~) ,  1) from 

J I ( i ,  i + 1) and inserting a new tuple (OID(o;), O I D ( O ~ + ~ ) ,  1) to J I ( i ,  i + 1). 

As a notational convention, A J I ( i ,  j) denotes a set of tuples being inserted into 

J I ( i ,  j). A J I ( i ,  j) consists of tuples (OID(oi) ,OID(oj) ,m) and m > 0, indicating 

that there are m new object paths connecting o; and oj. Similarly, vJI(i, j) represents 

a set of tuples being deleted from J I ( i ,  j). It consists of tuples (OID(o;), OID(oj),  -m) 

and m > 0, indicating that there are m object paths connecting o; and oj being 

lInserting an existed relationship between two objects is ignored. 
'Deleting a non-existed relationship between two objects is ignored. 
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deleted. S J I ( i ,  j) denotes v J I ( i ,  j )  followed by A J I ( i ,  j ) .  A join operator "W,", 

which is similar to a join operation in relational databases, and another operator 

"U,", used in the update algorithm, are introduced as follows. 

Definition 4.3 W,. J I ( i ,  k) W, J I ( k ,  j )  contains a tuple (OID(o;), OID(oj),  ml x 

m2) if there is a tuple (OID(o;), OID(ok), ml)  in J I ( i , k )  and a tuple (OID(ok), 

OID(oj),  m2) in J I ( k ,  j ) .  That is, if there are ml distinct object paths from o; 

to ok and m2 distinct object paths from ok to oj, there are ml x m2 object paths 

from o; to oj. Notice that identical tuples, such as (OID(o;), OID(oj) ,  mk) (for k = 

0,1, .  . . , p )  are automatically merged into one with their path numbers accumulated, 

i.e., (OID(o;), OID(oj),  mk). 

Definition 4.4 U,. J I ( i ,  j )  U, A J I ( i ,  j )  indicates an insertion into J I ( i ,  j ) .  If there 

exists a path in J I ( i ,  j )  for the corresponding objects, the number of paths connect- 

ing o; and oj will increase. Similarly, J I ( i ,  j )  U, v J I ( i ,  j )  indicates a deletion from 

J I ( i ,  j ) ,  and the number of paths connecting the corresponding objects o; and oj will 

decrease. 

4.3 Construction and Maintenance of Join Index Hierar- 

chies 

4.3.1 Construction of a Partial Join Index Hierarchy 

A partial join index hierarchy can be constructed in three steps: (1) find a set of 

necessary auxiliary join indices for a given set of target indices; (2) build the corre- 

sponding base join indices; and (3) build the target and auxiliary join indices from 

the lowest level up. 

Example 4.1 In Figure 4.3(a), the join index J I (1 ,5 )  can be computed from J I (1 ,4 )  

and J I (4 ,5 ) ,  where J I (1 ,4 )  can be derived in turn from J I (1 ,3 )  and JI (3 ,4) ,  and 

J I (1 ,3 )  from J I (1 ,2 )  and J I (2 ,3 ) .  

The base join indices for J I (1 ,5 )  are the set: 
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The auxiliary join indices for supporting efficient update of J I (1 ,5 )  are: 

Notice that there could be other choices in selecting auxiliary JIs, such as {JI(1 ,3) ,  

J I (3 ,5 ) ) ,  etc. 

Example 4.2 To directly support the navigations between Co and C4, and C2 and 

C5, the set of target join indices are {JI(0 ,4) ,  J I (2 ,5)) ,  and the set of base join 

indices are 

Three different kinds of partial join index hierarchies are presented in Figure 

4.4(a)(b) and Figure 4.5. 

The sets of auxiliary JIs which supports the two target JIs are {JI(O, 3), J I (1 ,3) ,  

J I (2 ,4 ) )  in Figure 4.4(a), {JI (1 ,4) ,  J I (2 ,4)}  in Figure 4.4(b) and {JI(O, 2), J I (2 ,4 ) )  

in Figure 4.5. 

Given a set of target join index nodes, the join index nodes which need to be 

materialized are the union of the base and auxiliary sets derived from each target join 

index node. Since there could be more than one choice in the derivation, the optimal 

choice should be the one which minimizes (1) the total number of auxiliary join 

indices (and then the total storage costs); and (2) the total number of W, operations 

in updating the target join indices. This is performed by Algorithm 4.1. 

Algorithm 4.1 Construction of a minimum auxiliary set of JIs 

Input: A set of classes Co,. . . , C,, and a set of target J I  nodes (i.e., frequently 

referenced class pairs) in the schema path Co, A1, C1, Ag , . . . , A,, Cn. 

Output: A minimum set of auxiliary JIs nodes. 

Method: The method collects the set of auxiliary nodes which are used to generate 

the set of target nodes, and then selects those containing the minimum numbers 

of nodes, as shown below. 
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(a) A Partial Join lndex Hierarchy Supporting 

J1(0,4) and J1(2,5) 

avg # of operations for update=2.8 

(b)A Partial Join lndex Hierarchy Supporting 

J1(0,4) and J1(2,5) 
avg # of operations for update=2.4 

Figure 4.4: Two Partial Join Index Hierarchy Structures for Supporting JI(0,4) and 
JI(2,5). 
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1. Starting with the set of target nodes, find S: the set of sets of their imme- 

diate auxiliary nodes. Notice that the set of immediate auxiliary nodes for a 

(target or auxiliary) node J I ( i ,  j )  is { J I ( i ,  k), J I ( k ,  j)) for i < k < j with the 

removal of J I ( i ,  k) or J I ( k ,  j )  if it is a target node or a base node. If there 

is an empty set resulted from this removal, return the empty set. Otherwise, 

if there are more than one such k available, each k generates one set, and the 

result is a set of sets. Thus, S is in the form of {{JI(i,  k), . . . , J I ( k ,  j ) ) ,  . . . , 
{JIG, 4 , .  * - 7  J I (m , j ) ) ) .  

For each JI in the set s in S ,  find its immediate auxiliary nodes. If an immediate 

auxiliary node consists of 1 sets, a l ,  . . . , a[, make 1 copies of s, and add each of 

a; (1 < i < I) to a copy, which forms I new sets. This process repeats until no 

new immediate auxiliary nodes can be found. The result is a set of auxiliary 

node sets which are used for generating the set of target nodes. 

2. For each set s in the generated set of auxiliary nodes, count the number of 

(auxiliary) nodes. Only those with the minimum number of nodes are retained. 

3. From the retained sets obtained in Step 2 (i.e., the set in which each set contains 

the minimum number of auxiliary nodes), calculate the number of M, operations 

required for updating each set and select the one which requires the minimum 

number of M, operations. This is computed by averaging the sum of the numbers 

of all the M, operations needed for propagation of the updates on the base join 

index nodes. 

Example 4.3 We examine how the algorithm works on Example 4.2. At the begin- 

The target join index J I (0 ,4 )  has three immediate auxiliary sets { J I (0 ,3 ) ) ,  

{JI (1 ,4))  and {JI(O, 2), J I (2 ,4 ) ) ;  whereas the target join index J I (2 ,5 )  has two im- 

mediate auxiliary sets { J I (2 ,4 ) )  and { JI (3 ,5)) .  Among these nodes, only JI(O,3) 

and J I (1 ,4 )  have nonempty auxiliary sets. The former has { JI(O,2)) and {JI(1,3)}, 
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Figure 4.5: Build a Partial Join Index Hierarchy and Propagate Update. 

and the latter has {JI(1 ,3)) ,  and {JI(2,4)) .  Therefore, the set of possible auxiliary 

node sets should be all of their combinations, that is, 

Both {JI(1 ,4) ,  J I (2 ,4 ) )  and { JI (0 ,2) ,  J I (2 ,4 ) )  have the minimum number of 

auxiliary join indices. The first one corresponds to the partial join index hierarchy 

structure in Figure 4.4(b), whereas the second one to that in Figure 4.5. The average 

numbers of W, operations for update propagation in Figure 4.4(b) and Figure 4.5 are 

2.4 and 2.2 respectively. Obviously, the second partial join index hierarchy is the most 

preferable one. 

Algorithm 4.2 Construction of a partial join index hierarchy. 
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Input: A set of frequently referenced class pairs (i.e., target J I  nodes) in a schema 

path Co, All C1, A2, . . . , A,, C, and the corresponding classes. 

Output: J IH(Co,  All Cl, All . . . , A,, C,), a ~ a r t i a l  join index hierarchy which sup- 

ports navigations between these pairs of classes. 

Method: The computation includes both finding the minimum set of auxiliary J I  

nodes and computing all the necessary JIs. 

1. Find the minimum set of auxiliary JIs based on the set of target JIs by using 

Algorithm 4.1. 

2. Build base JIs by computing J I ( i ,  i + 1) for i = 0,1 , .  . . , n - 1 and constructing 

the corresponding B+-tree indices on i for each base JI. 

3. Build auxiliary and target JIs. This is accomplished by computing the selected 

auxiliary JIs and/or target JIs from the bottom level up using the M, operation, 

and constructing the corresponding B+-tree indices on i for each derived JI. 

4. Build "reverse" JIs for searching in the reverse direction. (A reverse J I  of 

J I ( i ,  j ) ,  J I ( j ,  i) ,  supports the search from class j to class i via the schema 

path in reverse to that of J I ( i ,  j ) ) .  JI(j, i)  is derived from J I ( i ,  j )  by sorting 

on j in a copy of J I ( i ,  j) and constructing the B+-tree indices on j .  

Notice that in step 3 there could be more than one pair (but at  most j - i pairs) of 

JIs of lower level nodes which can be used to compute J I ( i ,  j ) .  A cost model should 

be constructed to determine the minimum cost pair. Moreover, B+-trees can be used 

to build JIs for efficient retrieval and for efficient computation of JIs at higher levels. 

The join index hierarchy computes the logical relationships between the objects 

not only in two adjacent classes but also in the "remote" classes linked via a specified 

schema path. It maintains both forward and backward join indices and supports both 

forward and backward navigations efficiently. 

Furthermore, navigations on the virtual nodes (unmaterialized nodes) can still 

be performed efficiently using the partial join index hierarchy. For example, any 

virtual node in Figure 4.5 can be constructed by at most one join of two existing 
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materialized JI  nodes. Actually, it is easy to verify for n < 6, taking the root of 

J I H ( 0 ,  n)  as the single target node, there always exists a set of minimum auxil- 

iary nodes, with minimum update cost, and any virtual node in J I H ( 0 ,  n) can be 

obtained by at most one join of two existing (baselauxiliary) JI nodes. For exam- 

ple, { J I (0 ,3 ) ,  J I (3 ,6) ,  J I (1 ,3 ) ,  J I (3 ,5 ) )  is such a minimum auxiliary node set for 

JIH(O,6). This implies that any traversal from one object in any class to any other 

object class along the schema path with length less than 7 will need to search at  most 

two (indexed) J I  files using such a small partial join index hierarchy. Since one rarely 

constructs a J IH(0 ,  n)  for n 2 7 in practice, traversal along any subpath of a schema 

path in both directions can be performed fairly efficiently using the partial join index 

hierarchy. 

4.3.2 Update Maintenance of a Partial Join Index Hierar- 

chy 

An update in one class or in the relationship of one class with another may cause 

the update of a base join index, such as J I ( k ,  k + 1) (and its update is denoted as 

SJ I (k ,  k + 1)). Such an update will not affect other base join indices but may affect 

some corresponding join indices at higher levels. It is easy to show that for an update 

on J I ( k ,  k + I ) ,  only the materialized J I ( i ,  j) with i < k and j > k will need to be 

updated accordingly. For example, if J I (1 ,2 )  is updated in Figure 4.5, only those 

join indices in the dotted quadrangle need to be updated. 

Algorithm 4.3 Update propagation in a join index hierarchy. 

Input: A join index hierarchy J I H ( 0 ,  n) and SJI(k ,  k + 1). 

Output: An updated join index hierarchy. 

Method: Perform a bottom-up incremental update propagation starting at the base 

join index. 

1. Update the base join index J I ( k ,  k + 1) based on SJ I (k ,  k + 1). 



CHAPTER 4. JOIN INDEX HIERARCHIES 49 

2. Update the auxiliary JIs and/or target JIs from the bottom level up using the 

Wc operation. This is implemented as follows. 

for level 1 := 2 to n do 

for i := 0 to n -  1 do 

if J I ( i ,  i + I) is an auxiliary or target J I  and i 5 k and i + 1 > k 
then incrementally update J I ( i ,  i + I) to JI1(i ,  i + 1). 

Note: This is performed as follows. 

SJ I ( i ,  i + 1) := J I ( i ,  i + p) Wc SJ I ( i  + p, i + I), or 

SJ I ( i ,  i + 1) := SJI ( i ,  i + q) Wc J I ( i  + q, i + I), 
~ h e r e l < p < k - i a n d I c - i < ~ 5 1 - 1 ;  

JI1(i ,  i + 1) := J I ( i ,  i + 1) Uc SJI ( i ,  i + 1); 0 

Notice that incremental updates are performed on both forward and backward 

join indices. Also, there could be more than one way to compute SJ I ( i ,  i + I) in Step 

2, and the choice can be determined by a cost analysis. 

4.3.3 Base and Complete Join Index Hierarchies 

A base join index hierarchy (BJIH) can be constructed and updated in a way simpler 

than Algorithms 4.2 and 4.3 (only Step 1 of the algorithms need to be performed) since 

BJIH is a degenerate hierarchy and no upward propagation need to be considered. 

However, navigation between Ci and C;+[ in a base join index hierarchy requires 

the retrieval of a sequence of 1 base join indices: 

This is the major overhead of the base join index hierarchy in comparison with the 

partial join index hierarchy which requires the retrieval of only one or a very small 

number of join indices. 

Since all the join indices are materialized in a complete join index hierarchy (CJIH), 

Step 1 of Algorithm 4.2 does not need to be performed in the construction of CJIH: 

All of the join indices at each level are considered as target join indices. The retrieval 
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Table 4.1: Database Parameters 

1 Parameters 1 Meaning, Derivation and Default Values 1 
L 

IciI 

llCill 
fi 

Ti 

sz(0ID)  

sz(m) 
sz(ji) 
sz(p) 

B 
(Y 

BTf 
fwd(i, j ,  k) 

could be faster using a complete JIH in comparison with that using a corresponding 

partial JIH if the retrieval requires to  access a (virtual) node which is not directly 

materialized in the partial JIH. However, a complete JIH obviously takes more storage 

space and more update propagation cost than a partial JIH although the update 

algorithm is similar to  Algorithm 4.3. 

-. 
number of objects in class C; 
number of pages or blocks of class C; 
average number of references from an object in C; to objects in Ci+l 
(fan-out) 
average number of objects in class C; referencing the same object in C;+l 

ct * . f i )  
(= k 
number of bytes for storing an object identifier (= 8) 
number of bytes for the counter in a tuple of a join index (= 4) 
number of bytes of a tuple in a join index (= 2 * sz(0ID)  + sz(m)) 
number of bytes of a page pointer (= 4) 
number of bytes in a block or page of a disk (= 4096) 
average page occupancy factor(= 70%) 
fan out of a Bf -tree ( I= sz( ,~~~o,,,l) 
average number of distinct objects in Cj referenced by a set of k objects 
in C; 

bwd(i, j, k)  

I J I ( i ,  j)l 
1 1  J I ( i ,  j)ll 

4.4 Performance Evaluation of Join Index Hierarchies 

average number of distinct objects in C; referencing a set of k objects in 

cj 
number of tuples in J I ( i ,  j )  
number of blocks or pages of J I ( i ,  j) 

An analytical model is constructed to study the performance of different join index 

hierarchies, the access support relation [68], a competitive index structure for naviga- 

tion through a sequence of object classes, and the nested index [15, 141 for associative 

search. The study is focused on several crucial performance measurements, including 
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Table 4.2: Database Parameter Values 

the storage size of a join index hierarchy, the cost of navigation (query processing), 

and the cost of update propagation over a join index hierarchy. Table 4.1 lists some 

database parameters used in the cost analysis. The details of the estimation of some 

of these parameters are in Appendix A. 

4.4.1 Storage and Navigation Costs 

The number of pages for a join index J I ( i ,  j) is 

C4 
2000 
1.0s 

C3 
3000 
1.0s 

Following Valduriez [123], the number of disk accesses for a forward navigation from 

a set of n; objects in Ci to  objects in Cj using a target join index is 

C5 
1000 
3.0s 

s 

Parameters 

ICd 
fi 

where y is a function from Yao [133], 

C1 
2000 
2.0s 

s = 0.170.5,1,1.572.0,2.5,3 

Co 
1000 
1.0s 

It represents the number of page accesses for retrieving k objects out of n objects 

distributed over m pages. Here it is assumed that a typical B+-tree is of two levels 3. 

One page access is needed to retrieve the root node. To find the page pointers for n; 

object identifiers, y(ni, [%I, lCi I )  leaf pages of the B+-tree are accessed. There are 

3The results for a B+-tree of more than two levels can be calculated similarly as in Valduriez 
[123]. 

Cz 
1000 
1.0s 
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y(n; ,  1 1  J I ( i , j ) l l ,  IC;I) pages that need to be accessed to find the tuples corresponding 

to n; object identifiers. Thus the number of disk accesses for a forward navigation 

from a set of ni objects in C; to objects in C j  using a base join index hierarchy 

The first sum is the number of page accesses when the join index J I  ( i ,  i  + 1 )  is scanned 

and related tuples retrieved. The second sum covers the case when f w d ( i ,  k ,  n; )  object 

identifiers from the previous join index J I ( k  - 1, k )  are used to search the join index 

J I ( k ,  k  + 1 ) .  

4.4.2 Update Cost 

Assume that there is an update on an object in C k  which causes the update on 

J I ( k ,  k  + I ) ,  either deletion or insertion SJI (k ,  k  + 1 ) .  The cost of updating a partial 

join index hierarchy consists of three parts. The first part is the cost of updating 

J I ( k ,  k + l )  itself in Step 1  of Algorithm4.3. The cost of updating forward J I ( k ,  k + l )  

where IS J I ( i ,  j ) l i  stands for the number of identifiers of distinct objects of C ;  in the 

tuples of S J I ( ~ ,  j) and lSJI( i ,  j )  1 stands for the number of identifiers of distinct 

objects of C j  in the tuples of SJI ( i ,  j ) .  Here ISJI(k, k  + l ) l k  and ISJI(k, k  + l ) lk t l  

are initialized, e.g., to 1  at the beginning. One page access is needed to retrieve the 

root node of the Bt-tree of J I ( k ,  k  + 1 ) .  The second sum covers the cost of retrieving 

the leaf pages of the B+ tree for finding the page pointers. The third sum handles 

the cost of inserting or deleting the related tuples which includes reading and writing 

back the related pages. The cost of updating backward J I ( k ,  k  + 1 )  is similar. The 
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second part is the cost U J I ( i ,  i + I) for updating materialized join index J I ( i ,  i + 1) 

at level 1. According to step 2 of Algorithm 4.3, ISJI(i,i  + 1)1; and ISJI(i , i  + l)l;+[ 

can be calculated iteratively from ISJI(k, k + 1) l k  and ISJI(k, k + 1) lk+l. If the first 

expression in the step 2 of Algorithm 4.3 is chosen, then 

If the second expression in the step 2 of Algorithm 4.3 is chosen, then 

where 1 5 p < k - i and k - i 5 q 5 1 - 1. Also, if the first expression in the step 2 

of Algorithm 4.3 is chosen, UJI ( i ,  i + 1) is calculated as 

+y(ISJI(i+p,i  + l)Ii+p, IIJI(i,i+ p)II, Ici+pI). 

If the second expression in step 2 of Algorithm 4.3 is chosen, UJ I ( i ,  i + 1) is calculated 

As it is noticed that there could be more than one choice of updating J I ( i ,  i + I) in 

step 2 of Algorithm 4.3, p or q is chosen such that the cost of updating J I ( i ,  i + l), 

i.e., UJI ( i ,  i + 1) is the minimum. The third part is the cost of inserting or deleting 

S J I ( i ,  i + 1) into or from J I ( i ,  i + I). The cost of updating the forward J I ( i ,  i + 1) is 

+2 * y([SJI(i, i + l)li, IlJI(i, i + 1)117 ICiI). 

The cost of updating the backward J I ( i , i  + 1) is similar. The way of calculating 

the update cost for a complete join index hierarchy structure is similar to  that of a 

partial join index hierarchy structure. The update cost for a base join index hierarchy 

structure includes either deleting or inserting SJ I (k ,  k + 1) from or to J I ( k ,  k + 1). 
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Figure 4.6: Storage Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs. 

4.4.3 Explanation of Performance Results 

The performance is conducted in the two group experiments for the index structures 

supporting navigations and associative searches. In the first one, four data structures, 

which support navigations, are compared in our performance study: (1) C-JIH as 

shown in Figure 4.3(a); (2) B-JIH as shown in Figure 4.3(b); (3) P-JIH as shown in 

Figure 4.3(c); and (4) Full- ASR (full access support relation), which stores the full 

sequences of object identifiers of the path (of length 5) in one full access support 

relation. Notice that cases (2) and (4) correspond to two extreme cases of the access 

support relation method proposed in [68], in which the former (case 2) decomposes 

each class pair into one component (i.e., binary decomposition of a full ASR, thus, a 

B-JIH is labeled B-JIH/B-ASR in the performance curves.), whereas the latter (case 

4) merges the access path (sequence) into one relation. 

The fan-out factors (join selectivities) is taken as the x-axis variable in Figures 

4.6, 4.7, 4.8, 4.11, 4.13 and 4.14 because the performance is sensitive to the increase 

of the fan-out factors (join selectivities), which matches our expectation and experi- 

mentation. The set of class sizes, fan-out values, and scale changes in the analysis are 

in Table 4.2. The scale change factor s is introduced so that the performance under 

varying fan-outs can be presented in one graph. Other database parameters are set 
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Navigation Cost 
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Figure 4.7: Navigation Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs. 

to the default values as shown in Table 4.1. 

Figure 4.6 shows that the storage costs increase as the fan-outs do. Full-ASR 

stores all the sequences of object identifiers in complete or incomplete paths. P-JIH 

materializes some higher level join indices of the join index hierarchies; whereas C-JIH 

materializes all of the higher level join indices. These are reflected in the storage cost 

graph. Obviously, the storage sizes of Full-ASR, P-JIH and C-JIH increase faster than 

that of B-JIH/B-ASR. 

Figure 4.7 presents how the navigation costs increase as the fan-outs grow. It is 

assumed that the forward and backward counts 50% and 50% in the total cost of the 

navigation respectively. The navigations between Co and C5, Co and C4, and Cz and 

C5 weigh 20%, 40% and 40% in the total cost respectively. Notice that the navigation 

between Co and C5 is not supported directly in the chosen P-JIH. The selectivity 

of navigation starting point is fixed as follows. If the navigation starts at C;, the 

selectivity is chosen to be sel t 3 where sel is the selectivity of the navigation 

starting at  Co. Here sel is set at 0.01, therefore, every navigation starts with 10 

objects. P-JIH and C-JIH perform much better than B-JIH/B-ASR and Full-ASR. 

Full-ASR has the poorest performance because the whole ASR has to be retrieved 

(the relation is usually sorted on both head and tail classes to facilitate retrieval from 
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Figure 4.8: Update Costs of B-JIH, P-JIH, C-JIH and Full-ASR vs. Fan-outs. 

the starting and the end points) when the navigations other than the one between 

head and tail classes are required. 

Figure 4.8 illustrates the update costs. It is assumed that the update probability 

of all the base join indices are equal. Obviously, B-JIH/B-ASR has the lowest update 

overhead since each time only base join indices need to be updated. The update cost 

of Full-ASR is higher than those of other index structures and grows faster. 

Figure 4.9 describes the cost of navigation and update operation mix. The total 

cost is defined as 

(1 - p) * NavigationCost + p * UpdateCost, 

where p is the update probability, and p = 0.2 means that there are 20% probability 

of updates and 80% probability of navigations among all the operations. The scale 

s on fan-out is set to be 1.0. With less frequent update (update probability less 

than 0.4), the overall performance of P-JIH and C-JIH is much better than that of 

B-JIH/B-ASR. All the three structures perform better than Full-ASR. 

Figure 4.10 presents the navigation costs vs. navigation selectivities. The scale 

s on fan-outs is set to be 1.0. The selectivity at Co is set from 0.001 to 0.5. The 

navigation cost grows as the navigation selectivity increases. 

Figure 4.11 presents the storage requirements vs. large fan-outs. The reason that 
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Cost of Navigation and Update Mix 
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Figure 4.9: Costs of Navigation and Update mix for 
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Storage Cost 
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Figure 4.11: Storage Explosion with Large Fan-outs. 

Figure 4.12: Partial Join Index for Supporting JI(O,5). 

only large fan-outs are analyzed but not large cardinalities of classes is because our 

other performance results shows that the costs of storage, navigation and updates do 

not grow very fast as the cardinalities of classes increase. As one can predict, the 

storage cost (and hence the navigation and update costs) grows rapidly when the 

fan-out ratio grows. Full-ASR has the highest storage cost since multiple access paths 

from Ci-l to C; will have to be multiplexed when pairing with the objects in C;+1, 

etc. This also suggests that the fan-outs should be considered as an important factor 

for setting "fire walls" to avoid cost explosion. 

In the second group experiment, five index structures, which support associative 
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Figure 4.13: Associative Search Costs of B-JIH, P-JIH, C-JIH, Full-ASR and Nested 
Index vs. Fan-outs. 

searches, are compared: (1) C-JIH as shown in Figure 4.3(a); (2) B-JIH as shown in 

Figure 4.3(b); (3) P-JIH as shown in Figure 4.12; (4) Full-ASR; and (5) Nest which 

denotes the nested index in [15, 141. Notice that the target node is J I (0 ,5 )  in the 

partial join index hierarchy in Figure 4.12. 

Figure 4.13 presents how the associative search costs increase as the fan-outs grow 

(only the backward navigation between Co and C5 is considered.). Since P-JIH and 

C-JIH support J I (0 ,5 )  directly, their associative search costs are the same. This is 

indicated by the overlap of their performance curves. P-JIH and C-JIH perform better 

than Nest since the root node JI(0,5) of P-JIH and C-JIH is smaller than the nested 

index. 

Figure 4.14 illustrates the update costs. When the fan-outs are small, the update 

costs of P-JIH and C-JIH are higher than that of the nested index. This reflects 

the fact that P-JIH and C-JIH maintain two copies for both forward and backward 

navigations while the nested index structure only keeps one (backward) copy and 

can only be employed for associative search (backward navigation). It is significant, 

however, that the update cost of the nested index grows faster than those of P-JIH 

and C-JIH, and exceeds them when the fan-outs become large (fan-outs scale s > 1.5). 

In a nested index, the reference information in a path has to be retrieved iteratively 
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Figure 4.14: Update Costs of B-JIH, P-JIH, C-JIH, Full-ASR and Nested Index vs. 
Fan-out s. 

from the auxiliary index so that all the appropriate records in the primary index can 

be updated accordingly. 

In summary, the performance study shows that both P-JIH and C-JIH outper- 

form B-JIH/B-ASR, Full-ASR and Nest in navigation, associative search and overall 

performance. P-JIH has better storage and better update costs than C-JIH. Clearly, 

join index hierarchy, especially the partial one, provides an interesting data structure 

to support efficient navigations in ob ject-oriented databases. 

4.5 Discussion 

4.5.1 Join Index Hierarchy Which Supports Other Kinds of 

Navigations 

The join index hierarchies discussed in the previous sections are designed for support 

of class composition hierarchies, i.e., navigations through a sequence of object classes 

via their attribute relationships. Similar join index hierarchies can be applied to 

support of navigations through class/subclass hierarchies, or through a sequence of 

classes via the relationships specified by methods and/or deduction rules. 
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In a schema path involving class/subclass hierarchies, if a set of subclasses as- 

sociated with the same higher-level class have similar kinds of attributes, it could 

be beneficial to construct one (combined) base join index node instead of a large 

number of small join index files. This is in the same spirit of Kim, Kim and Dale 

[78] and Bertino 1141. For example, in Figure 4.1, the class STUDENT contains 

two subclasses: UGRAD and GRAD; whereas the latter in turn contains two sub- 

classes: PhDGrad and MasterGrad. It is more beneficial to construct one (combined) 

base join index JI(STUDENT, COURSE) instead of three join indices: JI(PhDGrad, 

COURSE), JI(MasterGrad, COURSE) and JI(UGRAD, COURSE). However, if a set 

of subclasses, associated with the same higher level class, contain a relatively large 

number of objects with different kinds of class components, it could be more efficient 

to construct several join index files. For example, in a university database, STU- 

DENT, PROFESSOR, and SECRETARY may belong to the same higher level class 

PERSON. Since each subclass could be large and different subclasses usually have 

quite different kinds of attributes and methods, it could be more efficient to construct 

different join index nodes for these subclasses. 

In a schema path, same class names are allowed to appear more than once. There- 

fore, the corresponding join index hierarchy will support navigations with loops. This 

indicates that join index hierarchies can also be used to process transitive closures, 

a special case of linear recursions. Chapter 6 will discuss DOOD linear recursion 

processing. 

Furthermore, there may exist more than one semantic linkage between two object 

classes. For example, a professor may teach a student (in a course), supervise a student 

(on research work), or hire a student (for some programming job). Thus, there may 

exist three kinds of semantic linkages between PROFESSOR and STUDENT in this 

database. A join index node is for a particular kind of semantic association which 

cannot be mixed up with other kinds of semantic linkages since they carry different 

semantics. The schema paths should be stored in the schema (data dictionary) with 

the identification (such as by labeling) of each semantic linkage for each join index 

node. 

Some relationships between different classes of objects may not be specified by 
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existing attributes but by deduction rules or computational methods. For example, 

the voting eligibility of a stockholder could be defined by deduction rules based on 

hislher current shares of stocks, the stock holding history, etc. Thus, the linkage 

between the two classes, STOCKHOLDER and VOTER, are defined by rules and 

instantiated by rule evaluation. Similarly, the relationships between the objects in 

two classes, PARK and LAKE, could be specified by a spatial computational routine, 

which computes, based on a geographic map, whether one is inside the other, or 

whether two intersect, or their shortest (or highway) distances, otherwise. 

The method- or deduction rule- specified object linkage can be constructed using 

the structure of join index hierarchy as well, by evaluation of the methodlrule at the 

join index construction time rather than at the query processing time. 

One advantage of the construction of join indices for rule- or method- defined ob- 

ject linkages could be the transformation of the expensive rulelmethod computation 

from query evaluation time to join index construction time. Since a method or a rule 

may involve recursion or iterative computation of a relatively large number of complex 

(such as spatial) objects, it could be quite expensive to perform such computation 

at the query processing time. The evaluation of such linkages at the join index con- 

struction time and the storage of the join indices together with other frequently used 

information (such as distance, etc. [92]) in join indices will trade storage space for 

query evaluation efficiency. It will be especially beneficial if such computation must 

be performed repeatedly or iteratively. 

Furthermore, by storage of important information in join indices, some queries, 

especially those involving traversing in the direction in reverse to those specified in 

the methods or rules, can be answered efficiently. For example, to find all the lake and 

park pairs whose intersected regions greater than 1 square kilometer, one can retrieve 

the join indices and return the results directly (if the information-associated join 

indices [92] are constructed and the area of intersection is the associated information). 

However, it is impossible to compute a region from an area based on the same method 

which defines only the computation of an area from a geographic object but not in 

reverse. 
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4.5.2 "Fire Walls" in the Construction of Join Index Hier- 

archies 

There may exist long object referencing sequences in queries, and any object class 

may serve as the starting point in a sequence of object referencing. Nevertheless, this 

does not suggest the construction of join index hierarchies on a very long sequence 

of a schema path because of the size of such a hierarchy and the cost of updates. 

Therefore, it is often necessary to partition a long schema path into a few short ones, 

or prohibitive to build some join indices or merge them into join index hierarchies. 

A class linkage (by either attribute relationship, methods, or rules) which is not 

suitable for constructing join indices or for being merged into a join index hierarchy 

is called the "fire wall" of the hierarchy. It is important to identify fire walls and 

partition a long schema path into a set of smaller ones for the construction of easily 

accessible or updatable join index hierarchies. 

"Fire walls" are suggested to set in the following places in the design of a join 

index hierarchy. 

1. Rarely referenced class linkages: Some class linkages, though referable, are rarely 

used in applications, based on the examination of a relatively long history of 

referencing patterns. It is relatively safe to set up a fire wall at a rarely referenced 

point since it is fair to let rarely used referencing pay a little higher cost in 

accessing. 

2. Large join selectivities: A large join selectivity implies a potentially large (or 

huge) join index relation. The further construction of upper level join indices 

would usually result in large join index relations as well. The break of the chain 

at  this point may contribute to a relatively small join index relation and/or 

hierarchy. 

3. Frequently updated or multiple-source class linkages: Some join indices may sus- 

tain frequent updates or be derived from multiple objects, classes or class rela- 

tionships (such as, those computed using multiple objects or classes by meth- 

ods). Such kind of class linkages may need frequent or sophisticated updates, 
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and update propagation to upper level join indices will likely be costly and thus 

it could be beneficial to set up "fire walls" there. 

4.6 Summary 

A join index hierarchy approach has been proposed and investigated here for efficient 

navigation through a sequence of object classes. The join index hierarchy organizes a 

set of (direct and indirect) join index nodes into a hierarchy. Three kinds of join index 

hierarchies are proposed and studied. Our analysis and performance study show that 

partial join index hierarchy has reasonably small space and update overheads, and 

speeds up query processing considerably in both forward and backward navigations. 

Join index hierarchy is an interesting indexing structure which could be a promis- 

ing candidate at solving "pointer chasing" problems in DOOD query processing. It 

would be interesting to compare and/or integrate the join index hierarchy method 

with other object optimization techniques, such as read-ahead buffering [I021 and 

complex object assembly 1661. 



Chapter 5 

Optimizing Queries Including 

Complex Select ions, Joins, 

Aggregations and Met hods 

5.1 Introduction 

Navigation is essentially "pointer chasing" operation which follows object identifiers 

from one object to another and accesses objects in one-object-at-a-time fashion. Al- 

though a navigation operation is performed over objects along a navigation path, 

the navigation is confined to selective objects. Constraints on the navigation can 

be "pushed" inside the navigation so that only relevant objects are accessed. Fol- 

lowing the methodology of set-oriented query evaluation in relational and deductive 

database systems, a navigation operation is transformed into a sequence of join op- 

erations among a collection of object classes along the navigation path. Thus, the 

navigation can be performed in an efficient and set-oriented manner. 

Navigation is the most widely used but costly operation for exploring logical rela- 

tionships among complex objects in both queries and methods. Thus, the revelation 

of common navigation operations between a query and a method is essential for op- 

timizing queries with encapsulated methods, reducing redundant computations, and 

achieving efficient query evaluation. 
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The following observations motivate the optimization strategies proposed in this 

chapter . 

Navigation constraints. Navigation operations are often expressed in the form of 

path expressions with constraint conditions such as selections and joins. "Push 

selection inside join" in relational database systems, and its variation "push 

selection inside recursion" in deductive database systems, are the effective prin- 

ciples to eliminate irrelevant data before the expensive computations, such as 

joins and recursions, are performed. "Push constraint condition inside navi- 

gation" is similar to these principles in that it effectively excludes irrelevant 

objects from consideration. Unlike selection and join conditions in relational 

and deductive database systems, however, constraints on navigations are more 

complicated. Different types of constraint conditions require different kinds of 

optimization strategies to process navigations. 

Set-oriented evaluation. Object-at-a-time "pointer chasing" is transformed into 

set-oriented evaluation of a sequence of joins. Therefore, some join methods 

developed for relational database systems can be applied or extended to pro- 

cess navigation operations, e.g., nested loop, pointer-based join algorithms [ I l l ]  

and join index [123]. The transformation also facilitates both forward and 

backward navigations among objects via a sequence of attribute relationships, 

class/subclass hierarchies, and relationships specified by methods and deduction 

rules. 

Common navigations. Navigation is also the most widely used operation for 

exploring complex objects in a method. It frequently happens that some nav- 

igations or part of navigations are shared between a query and a method. To 

avoid repeated computations over the shared navigations, the navigation infor- 

mation in a method should be revealed. Consequently, the common navigations 

can be exploited to accelerate query evaluation. This revelation approach offers 

the advantages over black box approach and the approach of restricting meth- 

ods to be coded only in query languages. The former may exclude some better 
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query evaluation plans into consideration while the latter limits the application 

of user-defined methods. In addition, the revelation approach does not need 

to acquire the semantic information of methods, which is difficult to obtain in 

practice. 

5.2 Motivating Examples 

Navigation constraints are often expressed in the form of selection and join conditions. 

The following motivating examples demonstrate that different types of the selection 

and join conditions require different kinds of optimization strategies1. 

Example 5.1 To find out all the students who are taking some courses offered by 

the department of computer science, a navigation is performed from the objects in 

the class STUDENT to the objects in the class DEPT via the attribute TakeCourses, 

the class COURSE, the attribute Dept and the class DEPT. Thus the navigation can 

be expressed as the following path expression 

where s is a variable denoting an object in the class STUDENT. Since the query 

is interested only in the students who are taking some computer science courses, 

this navigation needs not to be performed on all objects in the above classes but 

is confined to some selective objects. Obviously, computer science departments are 

the only relevant objects in the class DEPT. The constraint can be expressed as a 

selection: 

s.TakeCourses.Dept .Name3 = "Computer Science". 

A set-oriented way of evaluating the path expression (performing navigation) 

 he sample database schema is in Appendix B. 
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is to calculate the implicit joins2 

STUDENT W COURSE W DEPT. 

An object s E STUDENT satisfying the above selection is an instance of the following 

expression 

~ ( ~ ~ ~ ~ ~ ~ ~ ) ( ~ ( s . ~ a k e ~ o u r s e s . ~ e p t . ~ a r n e ~ = ~ ~ ~ o r n p u t e r  Science") (STUDENT 

W COURSE D E P T ) ) .  

An object s is an instance of the above expression if and only if there is an object 

sequence s,c,d such that s E STUDENT,  c E s.TakeCourses, d = c.Dept and 

d.  Name = "Computer Science". Therefore the above algebraic expression is equiv- 

alent to 

The selection 

s.TakeCourses.Dept.Name=~ = "Computer Science" 

has been simplified to 

d.Name = "Computer Science" 

and moved inside the implicit joins and onto the class DEPT.  By performing the 
y. 

select ion 
5 e d.Name = "Computer Science" 

on the class DEPT earlier than those implicit joins, the evaluation (navigation) can 

be more efficient because only computer science departments need to be taken into 

consideration. 

2A implicit join is a join where two objects are joinable if one is an attribute of the other. The 
algebra used in this chapter is similar to ENCOREIEQUAL in Shaw and Zdonik[llO]. Here s and 
a stand for projection and selection operations respectively. 
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It seems that the migration of predicates is quite similar to "push selection inside 

join" in relational databases. However, there are some important differences. In 

Example 5.1, the selection condition is simplified and moved inside the implicit joins 

and onto the tail class DEPT of the path expression. Furthermore, such kind of 

simplification and movement of selection conditions can not always be performed. 

Example 5.2 To find out all the students who are only taking courses offered by 

the department of computer science, the navigation constraint can be expressed as 

follows: 

s.TakeCourses.Dept .Namev = "Computer Science" 

An object s E S T U D E N T  satisfying the above selection is an instance of the following 

expression 

r ( ~ ~ ~ ~ ~ ~ ~ ) ( g ( s . ~ a k e ~ o u r s e s . ~ e ~ t . ~ ~ = " ~ o m ~ u t e r  Sciencew) (STUDENT 

M COURSE M DEPT)). 

An object s is an instance of the above expression if and only if for all object sequences 

s ,c ,d  , if s E STUDENT,  c E s.TakeCourses and d = c.Dept, then d.Name = 

"Computer Science". Therefore, in this case, whether an object s is an instance of 

the above expression is related to all the object sequences with the same head s. The 

selection 

s.TakeCourses.Dept.Nametl = "Computer Science" 

can not be simplified and moved inside the implicit joins as in the previous example. 

That is, the above expression is not equivalent to 

It is, therefore, not correct to perform the selection 

d.Name = "Computer Science" 

before the implicit joins. The reason is that the path expression 
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is a set-valued one, therefore, the path expression 

may correspond to one or more instances in 

S T U D E N T  M COURSE M DEPT.  

The path expression 

s.TakeCourses.Dept.Name 

satisfies the selection if all those instances satisfy the condition. 

Clearly, Examples 5.1 and 5.2 show that different types of selections require different 

kinds of optimization strategies. 

Constraints on navigations can also appear in the form of join conditions. Sim- 

ilarly, different optimization strategies should be applied to different types of join 

conditions. 

Example 5.3 To find out some professor and student pairs such that some courses 

taught by the professors are higher level than all the courses taken by the students, a 

navigation may need to be performed from an object in the class PROF to objects in 

STUDENT via the attribute TeachCourses, the class COURSE, the attribute Take- 

Course (in reverse), and the class STUDENT. The navigation constraint condition 

could be expressed as a path expression comparison 

which could be considered as a join predicate between the two classes PROF and 

STUDENT. Here p stands for a variable denoting an object in the class PROF and s 

represents a variable denoting an object in the class STUDENT. 

In addition, aggregation functions could appear in a selection and join condition. For 

example, 
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and 

The questions arise whether it is possible to perform the simplification and movement 

on these more complicated selection and join conditions as in the previous examples? 

And when and how such kinds of the simplification and movement can be performed? 

This chapter will answer these questions and present a framework for integrating 

different strategies. 

Interestingly, navigation information in encapsulated methods can also be ex- 

ploited for efficient query processing since there may be some sharing of navigations 

between user-defined methods and queries. 

Example 5.4 Find all the names of students who are from a metropolis or a large 

country with a population of over 20,000,000, and who are only taking computer 

science courses and taking courses over 400 level. 

S E L E C T  s .Name 

F R O M  s S T U D E N T  

W H E R E  FromLargeCountryOrMetro(s) 

A N D  s.HomeAddress.Country.Population > 20,000,000 

A N D  s.Ta keCourse. Dept.Namev = LLComputer Science" 

A N D  s.TakeCourse.Numberv > 400. 

If a student s comes from a metropolis or a large country, then the method 

returns true. The factorization of common sub path expressions among the path 

expressions in a query can be performed. Since both 

s.TakeCourse. Dept 

and 
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share the common sub path expression 

s.TakeCourse, 

the two selection conditions 

s.TakeCourse.Deptv = "Computer Science" 

and 

s.TakeCourse.Numberv > 400 

have a mutual binding on s.TakeCourse. The evaluation result of s.TakeCourse in 

s.TakeCourse.Deptv = "Computer Science" 

can be used for evaluating 

or vice versa. Furthermore, there are four path expressions in the method 

FromLargeCountryOrMetro 

which include3 

s.HomeAddress.Country.Population, 

and 

s. HomeAddress.City.Area. 

Their maximal common sub path expression is 

s. HomeAddress. 

3Navigations could be expressed in other forms rather than dot expressions, e.g., function cas- 
cades. It is easy to design a parser to extract navigation information from the source codes of 
methods. 
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The selection 

of the query also has a sub path expression s.HomeAddress. Therefore, the common 

sub path expression 

s .  HomeAddress 

needs to be evaluated only once even though it appears in the five path expressions. 

0 

This chapter will also present a systematic study on the revelation of navigation 

information in an encapsulated method and on the factorization of shared navigations 

among not only those in a query but also in a method during query optimization 

process. 

5.3 Path Expression Definition 

For clarity of explanation, only navigations via attribute relationships among classes 

are considered in the presentation. Optimization strategies for navigations through 

class/subclass hierarchies and relationships specified by methods and deduction rules 

are discussed later. 

We first introduce the definition of path expressions. The definition is quite similar 

to that in [94]. Intuitively, a path expression represents a navigation from an object 

in one class to other objects in other classes via attribute relationships on a class 

composition hierarchy. 

Definition 5.1 Path expression. oO.A1.A 2...An is a path expression associated with 

the classes 0 0 ,  01, ......, 0, if 00 is an object of class O0 and A; is an attribute of 0;-1 

ranged on class 0; or set of 0; for i = 1,2,  ..., n. 

For example, s.HomeAddress.Country.Name denotes the name of the country the 

student s comes from. s.TakeCourses.Dept.Name represents the names of the de- 

partments which offer the courses taken by the student s. 
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The attribute An can be either primitiveone such as the attributes Name and Age 

of P E R S O N  or non-primitive one such as the attribute HomeAddress of PERSON.  

In this chapter, for easy presentation of the results, it is assumed that An's are prim- 

itive attributes without loss of generality. 

Definition 5.2 Object path. (oo, ol, .. ., on-l) is an object path satisfying oo.A1.Az . . . 
A, if for i = 1,2, ..., n - 1, oi=o;-l.Ai when Ai is a single-valued attribute or o; E 

oi-l.Ai when A; is a set-valued attribute. oo is called the head and the tail. The 

attribute AnV1 is called the tail non-primitive attribute or the tail attribute in short. 

For example, if the student s is taking computer science course CMPT200, then (s, 

cmpt200, cs) is an object path satisfying 

Here cmpt200 and cs are OIDs of CMPT200 and the computer science department 

respectively. 

Definition 5.3 Single-valued and set-valued path expression. A path expression 

without any set-valued attributes is defined as a single-valued path expression, oth- 

erwise as a set-valued path expression. If oO.A1.A 2...An is a set-valued path expres- 

sion and Ak is a set-valued attribute and all A; (i < k) are single-valued attributes, 

then Ak is called the first set-valued attribute of the path expression and the classes 

OlcSl, . . . , On-1 are called the ending non-primitive classes or the ending classes in 

short. 

For example, 

s.HomeAddress.Country.Name 

is a single-valued path expression. 

is a set-valued path expression and TakeCourses is the first set-valued attribute. 
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Obviously, at  most one object path may satisfy a single-valued path expression and 

more than one object path may satisfy a set-valued path expression. For example, a 

student may take more than one course, therefore, there may be more than one object 

path satisfying s.TakeCourses.Dept. Name. 

Definition 5.4 Value of a path expression. If o.A l...An is a single-valued path ex- 

pression, the value of the path expression o.A l...A, is 0,-1 .A, where (o,ol, .. . , 0,-1) 

is an object path satisfying o.A l...A,. If o.A l...An is a set-valued path expression, the 

valued of the path expression o.Al ... A, is 

{V I (0, ol, . . . , on-1) satisfies o.A1.. . A,, 

v = 0,-1 .A, if A, is a single-valued attribute or 

v E O,-~.A, if A, is a set-valued attribute). 

For example, if the student s comes from Canada, then the value of 

s. HomeAddress.Country. Name 

is "Canada". If the student s is only taking the courses offered by the department of 

computer science and the department of mathematics, then the value of 

s.TakeCourses.Dept.Name 

is {"Computer Science", "Mathematics"). 

The evaluation of oo.A l...An or the navigation from 00 via the attributes A;, in- 

volves n object references. If these objects are not stored in a same block on a disk, 

then many disk accesses may be needed. Usually, given a collection of object 00, 

the evaluation of oo.A l...An for each oo E Oo are needed. A set-oriented evaluation 

strategy is to calculate the implicit joins 

whose instances are the object paths satisfying oo.A l...A, and 00 E 0. Therefore, the 

evaluation of oo.A l...A, for oo E 0 is transformed into the evaluation of the implicit 

joins. The next two sections will identify constraints conditions associated with path 

expressions and show how these constraints can be employed effectively to optimize 

navigations. 
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5.4 Optimization of Complex Select ions and Joins 

5.4.1 Path Expression-Based Selections 

Since the values of path expressions may be sets, the quantifiers V and 3 and the 

aggregation functions such as MIN, MAX,  COUNT, AVG and S U M  need to be 

introduced in operations containing path expressions [73]. 

Definition 5.5 Path expression selection. Path expression selections have the fol- 

lowing form 

f (s)q$'cqz 

where s is a path expression and c is a constant or constant set, 8 E {=, #, <, > 
< >), and f E {I, MAX, MIN, COUNT, AVG, SUMI4.  If s is a single-valued 7 - 7  - 

path expression or f E {MAX, MIN, COUNT, AVG, SUM),  ql can be 3 or V. If 

c is a constant, q2 can be 3 or V. In both cases, ql and q2 are always chosen to be 

3 by default. If f = I, then the path expression selection is defined as type B(ql) 

path expression selection. If f E {MAX, MIN, COUNT, AVG, SUM)  and s is a 

set-valued path expression, the path expression selection is defined as type 8(V) path 

expression selection. 

Obviously, by definition, selections with aggregation functions are of type O(V) because 

the path expressions are set-valued and the aggregation functions are applied on 

these set-valued path expressions. Later we will show that some of them can be 

transformed into selections of type 8(3) without aggregation functions. The following 

path expression 

s.TalceCourses.Dept.Nametl = "Computer Science" 

represents that the student s is only taking computer science courses. It is a path 

expression selection of type = (V). 

4I is an identity function and used for easy presentation of the theorem with the aggregation 
functions MAX, MIN, COUNT,  AVG and SUM 
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The evaluation of a path expression can be transformed into the implicit joins 

of its associated classes. The evaluation of a path expression selection is performed 

by applying the selection to the implicit joins. A natural question is when and how 

the selection should be "pushed"? The following Theorem 5.1 shows that different 

optimization strategies should be applied to different types of selections. 

Theorem 5.1 f (o.A1 ... A,),, 8cq2 is a path expression selection 

If the selection is of type 8(3) 

If the selection is of type O(V) 

where o.A1. ..An is a path expression associated with the classes 0 0 ,  .. ., On, Ak is the 

first set-valued attribute, ok-1 E Ok-l, f E {I, MAX, MIN, COUNT, AVG, SUM) 

and 8 E {=, #, <, >, <,>I.  
Proof: see Appendix C. 

Example 5.5 Let us consider Example 5.1 and 5.2 again. 

s.TakeCourses. Dept.Name3 = "Computer Science" 

represents that the student s is taking some computer science courses. It is a path 

expression selection of type = (3). 

{sls.TakeCourses.Dept.Name3 = "Computer Science", s E STUDENT)  

And 

s.TakeCourses.Dept.Namev = "ComputerScience" 
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represents that the student s is only taking computer science courses. It is a path 

expression selection of type = (V) .  

{s~s.TakeCourses.Dept.Namev = "Computer Science", s E S T U D E N T )  

- 
- r ( ~ ~ ~ ~ ~ ~ ~ ) ( o ( s . ~ a ~ o u r s e s . ~ e p t . ~ a m e v = ' i ~ o m p u t e r  Science") ( S T U D E N T  

cu COURSE W D E P T ) ) .  

0 

The above examples show when and how the path expression selections can be sim- 

plified and moved inside the implicit joins of the classes associated with the path 

expressions. 

The following example illustrates when and how a selection with an aggregation 

function can be simplified and moved inside the implicit joins of the classes associated 

with the path expression. 

Example 5.6 COUNT(p.Dept.0 f f erprograms) > 3 denotes that the department 

the professor p is working for offers more than three programs. 

{plCOUNT(p.Dept.O f f erPrograms) > 3, p E P R O F )  

Here the selection condition migration is similar to "push selection inside join" which 

usually generates efficient query evaluation in relational query processing. But it is 

different from "push selection inside join" in relational query processing. If a path 
; expression selection is of type 0(3), the selection condition can be simplified and 

t moved onto the range class of the tail attribute of the path expression. If a path 

expression selection is of type B(V), then the selection condition can only be simplified 

and moved onto the implicit joins of the ending classes of the path expression. We 

have the following observation: 
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Observation 5.1  Theorem 5.1 can be summarized as follows: 

1. If a path expression selection is of type 8(3), then the selection condition can 

be simplified and moved onto the range class of the tail attribute of the path 

expression. 

2. If a path expression selection is of type d(V), then the selection condition can 

be simplified and moved onto the implicit joins of the ending classes of the path 

expression. 

Theorem 5.2 If s is a set-valued path expression, then 

Similar results hold for other comparisons such as 2, <, and 5. 
Proof: The proof is easy and omitted. 

This theorem illuminates the relationship between selections with and without aggre- 

gation functions. MAX(s)  > c, which is a selection of type > (V), can be translated 

into s3 > c, which is a selection of type > (3). Obviously, the later one can be 

processed more efficiently than the former. For example, 

denotes that the oldest professor in the university u is over 70. It is equivalent to 

which is a selection of type > (3). 

5.4.2 Path Expression-Based Joins 

Constraints on navigations can also be present in the form of join conditions which 

have more general form than those in the relational databases and include comparisons 

operations between two path expressions. 
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Definition 5.6 Path expression comparison. Path expression comparisons have the 

following form 

f (s),,Og(t)m 

where q; E {V, 31, s and t are path expressions, 0 E {=, #, <, >, I, 2, E, C, 2,  >) 
and f , g  E {I, MAX, M I N ,  COUNT, AVG, SUM).  If s is a single-valued path 

expression or f E {MAX, M I N ,  COUNT, AVG, SUM),  ql can be either 3 or V. If 

t is a single-valued path expression or g E {MAX, M I N ,  COUNT, AVG, SUM),  q 2  

can be either 3 or V. In both cases, ql and q 2  are always chosen to be 3 by default. 

If both f = I and g = I ,  the comparison is defined as type O(ql, q2). If f = I and 

g E {MAX, M I N ,  COUNT, AVG, SUM),  the comparison is defined as type O(ql, V). 

If f E {MAX, M I N ,  COUNT, AVG, SUM) and g = I, the comparison is defined 

as type O(V, q2). If f , g  E {MAX, M I N ,  COUNT, AVG, SUM)  and s and t are set- 

valued path expressions, the comparison is defined as type O(V, V). Only when s and 

t are set-valued path expressions, and f and g are identity functions then 0 could be 

one of {El C, _>,I). In these cases, the comparison is defined as type O(V, V). 

For example, 

u.President.Age > d.FacultyMembers.Agev 

denotes that the president of the university u is older than any faculty member of the 

department d. The comparison is of type > (3,V). 

The evaluation of the path expression comparison between 

and 

o l . ~ l . . . ~ ,  

ii is transformed into a join between 

Oo CU . . . CU and 0; cu . - .  !A 0,-, 

and the comparison operation becomes the join conditions. 

I 
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Definition 5.7 Path expression join. A join corresponding to a path expression 

comparison is called a path expression join. 

A natural question arises as in the evaluation of selections. When and how join 

conditions can be simplified and moved inside the implicit joins of the classes associ- 

ated with the path expressions? The following Theorem 5.3 answers the question. 

Theorem 5.3 f  (o.A1 ... A,),, Og(/ .  B1 .. . B,),~ is a path expression comparison, we 

1. If the path expression comparison is of type 0(3,3), then 

2. If the path expression comparison is of type O(3, V), then 

$ 

3. If the path expression comparison is of type O(V, 3) or O(V, V), then 

where o.A1 ... A, and 4. B1 ... B, are path expressions associated with the classes 0 0 ,  . .., On 

and o;, ..., 0; respectively, Aj is the first set-valued attribute of o.A1 ... A, and Bk 

is the first set-valued attribute of /.B1...Bm, o; E Oil oi E 0; qi E {V, 31, and 

0 E {=, #, <, >, <,>, C, C, _>,I). f , g  E {I, MAX, M I N ,  COUNT, AVG, SUM). 

Proof: The proof is similar to that of Theorem 5.1. 0 
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Example 5.7 

is a path expression join of type > ( 3 ,V )  which denotes some courses taught by the 

professor p are higher level than all the courses taken by the student s. 

{ (p ,  s )  Ip.TeachCourses.Number3 > s.TakeCourses.Numberv, 

p E PROF, s E S T U D E N T )  

= ~(PROF,STUDENT)(PROF W 

~ ( c . ~ u m b e ~ > s . ~ a k e ~ o u T s e s . ~ u m b e T ~ ) ( ~ o ~ R s  X (COURSE' S T U D E N T ) ) ) .  

0 

We have the following observation: 

Observation 5.2 Theorem 5.3 can be summarized as follows: 

1. If a path expression join is of type O(3,3), the join condition can be simplified 

and moved onto the join of the range classes of the tail attributes of the two 

path expressions. 

2. If a set-valued join is of type O(3, V ) ,  then the join condition can be simplified and 

moved onto the join of the class of the tail attribute of the left path expression 

and the ending classes of the right path expression. 

3. If a set-valued join is of type O(V, 3) or O(V,V), then the join condition can 

be simplified and moved onto the join of the ending classes of both the path 

expressions. 

Theorem 5.4 If s and t are two set-valued path expressions, then 
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Similar results hold for other comparisons such as 2, <, and 5. 
Proof: The proof is easy. 

This theorem illustrates the relationship between path expression comparisons with 

and without aggregation functions. sg > t g  can be processed more efficiently than 

the other three equivalent comparisons with aggregation functions. s g  > tv and sa > 
MAX(t)  can be processed more efficiently than the other two equivalent comparisons 

with aggregation functions. 

5.5 Classification and Cost Estimation of Methods 

5.5.1 Method Definition 

A method is defined as a function associated with a group of classes: 

The above form of the method m is equivalent to 

m' : 01 x x On x t Boolean 

Therefore, methods can appear in the same way as predicates. The usage of terms of 

predicates and methods will be exchanged in the rest of the chapter. Here 01, 02, . .. , 
and are the range classes of the arguments of the method m. For example, 

birthday : E M P L O Y E E  -+ DATE 

or 

birthday : E M P L O Y E E  x DATE t Boolean 

where E M P L O Y E E  is a persistent class while DATE may be a non-persistent class5. 

5Since only objects of persistent classes are concerned, objects will refer to  persistent objects 
without confusion in the rest of the chapter. We also make an assumption that all methods do not 
involve any update operations throughout the chapter. 
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In a method, some navigations start from argument objects while others begin 

with objects other than argument objects. Therefore, there are two types of path 

expressions in a method. Argument path expressions are those path expressions origi- 

nating from argument objects of a method. All path expressions not originating from 

argument objects are called hidden path expressions. Hidden path expressions and 

path expressions in queries do not share any direct mutual bindings. Only argument 

path expression and path expressions in queries may possibly share mutual bindings. 

Definition 5.8 Maximum common sub argument path expression. Argument path 

expressions can be clustered according to the argument objects where they originate. 

An n-persistent arguments method has n clusters of argument path expressions. For 

each cluster, the maximal common sub argument path expression is defined as the 

common sub argument path expressions of maximal length. 

The method FromLargeCountryOrMetro, for example, has one cluster of argument 

path expressions: 

{s.HomeAddress.Country.Population, 

s.HomeAddress is its maximal common sub argument path expression. 

Path expressions in a conjunctive query may have bindings on all argument path 

expressions in methods. However, argument path expressions in a method may not 

have direct bindings on path expressions in a query even though argument path ex- 

pressions in a method and path expressions in a query share common sub path ex- 

pressions. It is only certain that maximal common sub argument path expressions 

in a method may have direct bindings on path expressions in a query. For example, 

consider the query in Example 5.4. In the method From LargeCountry OrMetro, the 

maximal common sub argument path expression s.HomeAddress has a binding on 

the path expression 
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in the query. However, the argument path expression 

s.HomeAddress.Country.Population 

in the method does not have a binding on the path expression 

s.HomeAddress.Country.Population 

in the query because of or in the method. Let us consider the following query, 

Example 5.8 Find all the names of students who are from a metropolis and a large 

country with a population of over 20,000,000, and who are only taking computer 

science courses and taking courses over 400 level. 

S E L E C T  s .Name 

F R O M  s S T U D E N T  

W H E R E  FromLargeCountryAndMetro(s) 

A N D  s.  HomeAddress.Country. Population > 20,000,000 

A N D  s.TakeCourse.Dept.Namev = "Computer Science" 

A N D  s.TakeCourse.Numberv > 400 

If a student s comes from a metropolis and a large country, then the method 

FromLargeCountryAndMetro(s) 

returns true. Then the argument path expression 

does have a binding on the path expression 

s.HomeAddress.Country.Population 

in the query because of "and" in the method. It is very hard to automatically ac- 

quire semantics such as relationships among path expressions in a method. However, 

maximal common sub argument path expressions can always be used as bindings on 

path expressions in queries. In this sense, methods in our approach are still not white 

boxes but grey ones. 
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5.5.2 Met hod Classification 

A method m with n-persistent arguments can be classified according to how many 

of argument path expressions are in each cluster of argument path expressions and 

whether there are hidden path expressions in the method. 

Definition 5.9 Type n - (k l ,  kg, ..., k,) method. A method m is defined as type 

n - (kl, k2, ..., kn) method if it has n persistent arguments and k; denotes that there 

are k; argument path expressions originating from the i th persistent argument. If 

m has hidden path expressions, it is defined as type n - (k l ,  k2, .. ., k,)(Y) method, 

otherwise type n - (kl, k2, .. . , kn)(N) method. 

In methods of types 1-(l)(N), 1-(l)(Y), n-(1, 1, ..., l ) (N)  and n-(1, 1, ..., l )(Y),  

there is only one argument path expression in each cluster of argument path ex- 

pressions. These argument path expressions are, therefore, maximal common sub 

argument path expressions. 

Definition 5.10 Selection-type and join-type methods. A method of type 1-(n) is 

called a selection-type method. A method of type n - (kl,  ..., k,), where n > 1, is 

called a join-type method. 

Theorem 5.5 m is a selection-type method with o.A l...A, as its maximal common 

sub argument path expression. 

1. If o.A1 ... A, is a single-valued path expression, 

= {0lm'(0.~1 . . .A~) ,  o E 00) 

= *(o,) (00 w . . w u,~(,~) (On)) 

where ml(o.A1 ... A,) = m(o) and on E 0,. 
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2. If o.A l...A, is a set-valued path expression, 

= {olmi(o.A1...AS-I), o E 00) 

= % - ( 0 ) ( 0 0  . - - .  . ~,(o,-l,(os-l)) 

where A, is the first set-valued attribute, mr(o.~l.. .A,-l) = m(o) and 0,-1 E 

0s-1. 

Proof. The proof is in Appendix C. 

Theorem 5.6 m is a method of type 2 - (k,  1) with o.A l...A, and o).B1...Bq as its 

maximal common sub argument path expressions. 

1. If both o.A1.. .A, and o) . B1. . . B, are single-valued path expressions, 

( 0 ,  ) ( o  d ) ,  o E 0 0 ,  d E 0;) 

= { ( o ,  o i )  lmr(o.A1 ... A,, d .B1...B,), o E Oo, d E 0;) 

= %- (00,o;) ( 0 0  w . . . w nm&,;)(OP w 0;) w . . - . 0;) 

where ml(o.A1 ... A,, o).B1... B,) = m(o, o)), o, E 0, and oi E 0,. 

2. If o.Al ... A, is a single-valued path expression and ol.B1 ... B, is a set-valued path 

expression, 

( 0 ,  d )  ( 0 ,  ) o E 00, o' E 0;) 

= ( ( 0 ,  d )  lmr(o.~1...Ap7 o'. B1 ... Bt-l) o E 0 0 ,  o' E 0;) 

= %- 
(00 0;) ( 0 0  . . ~ , ~ ( o p , o ~ ~ l ) ( O p  oL) . . - w 0;) 

where Bt is the first set-valued attribute, mi(o.A l . . .~, ,  o). B1...Bt-1) = m(o, o)), 

o, E 0, and Oi-l E OS-~. 
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3. If o.A l...Ap is a set-valued path expression and ol. B1... B, is a single-valued path 

expression, 

( 0 ,  ) ( o  o'), o E 0 0 ,  o' E 0;) 
I 1  

= {(o,o)Im (0.A l...A,-l,d.~l...B,), o E 0 0 ,  o' E 0;) 

= I T  (00,o;) (0,  w . . . s-l, o;)(O,-l w 0;) W . . - W 0;) 

where A, is the first set-valued attribute, mf(o.A1 ... ~ ~ - 1 ,  d.B1 ... B,) = m(o, d ) ,  

0,-1 E 0,-1 and ob E 0;. 

4. If both o.A l...A, and d . ~  l . . . ~ q  are set-valued path expressions, 

I I 

= {(o, o ) Im (0.A l...A,-l, o'. B ~ . . . B ~ - ~ ) ,  o E Oo, o' E 0;) 

= IT (o,,o~, (00 . . om'(o,-, $0,-, ,(0,-1 o;-,) w . . . w 0;) 

where A, and Bt are the first set-valued attributes, ml(o.A1 ... A,-1, ol.B1 ... Bt-1) = 

m(o,d) ,  0,-1 E 0,-1 and E O;-,. 

Proof. The proof is similar to Theorem 5.5. 0 

The theorems for methods of type n - (kl, ... , k,) are similar. In a method, if 

some maximal common sub argument path expressions are single-valued ones, then 

the method can be evaluated before the evaluation of the implicit joins of the classes 

associated with these single-valued maximal common sub argument path expressions. 

The evaluation of the method has to be delayed after those of the implicit joins of the 

ending classes associated with those set-valued maximal common sub argument path 

expressions. 

Example 5.9 

FromLargeCountryOrMetro(s) 

can be rewritten as 

FLCOM(s.HomeAddress) 

where 
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FLC0M:ADDR -, BOOLEAN 

FLCOM(h:ADDR):BOOLEAN 

begin 

if (h.Country.Population > 15,000,000 and h.Country.Area > 2,000,000) 

or (h.City.Population > 1,000,000 and h.City.Area > 500) 

then return(True) else return(Fa1se) 

end 

The method FLCOM can be considered as a method on ADDR and evaluated before 

the evaluation of the implicit join of the classes STUDENT and ADDR associated 

with the maximal common sub argument path expression s.HomeAddress because 

{s~FromLargeCountryOrMetro(s), s E STUDENT)  

=  STUDENT (STUDENT ~ F L C O M ( ~ )  (ADDR)) 

5.5.3 Cost Estimation of Met hod Evaluation 

The cost of evaluating a method involves two parts: the cost involving argument path 

expressions ARG and the cost involving hidden path expressions H I D .  Since maximal 

common sub argument path expressions are revealed, they will not be included in the 

cost estimation of the methods. We define a unit cost as one reference of an object 

in a class. For example, the cost of the reference of o.A, where A is an attribute of o, 

is C(0.A) = 1. 

m is of type 1 - ( l ) (N)  or type n - ( I l l ,  ..., l ) (N) .  In this two cases, there are 

no hidden path expressions and the argument path expressions are themselves 

the maximal common sub argument path expressions. Consequently, the cost 

of calculating these types of methods is 0. 

m is of type 1 - ( l ) (Y)  or type n - (1,1, ... , l )(Y).  Since all the argument path 

expressions are themselves the maximal common sub argument path expressions, 
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the cost of calculating these types of methods only involves the hidden path 

expressions. 

m is of type 1 - (n)(N)  or type n - (kl ,  . .. , kn)(N). There are no hidden path 

expressions in these two types of methods. The cost of calculating these types 

of methods only involves argument path expressions (excluding the maximal 

common sub argument path expressions). 

m is of type 1 - (n)(Y) or type n - (kl,  ..., kn)(Y). In these two cases, since 

there are both hidden path expressions and argument path expressions, the cost 

of evaluating these types of methods involve both types of the path expressions 

(excluding the maximal common sub argument path expressions). 

In the following, we will show how to estimate the cost of the method 

If a president of an university u is among the top 10 well paid presidents of all 

universities, then the method 

returns true. Obviously, it is of type 1 - ( l ) (Y) .  Our approach is quite similar to 

Kemper et a1 [71]. However, the maximal common sub argument path expression, 

u.President, is excluded when the cost of evaluating the method is estimated. 

where 

and 

C(ToplOWellPaidUniv) = ARG + H I D  

ARG = 0 

H I D  = N * C(v.President.Sa1ary) 

where N is the number of universities in class UNIVERSITY. Because the maximal 

common sub argument path expressions are revealed and are not included in the cost 

estimation, ARG = 0. C(v.President.Salary) = 2. Thus, 

C(Topl0WellPaidUniv) = 2 * N 
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In the above estimation, we do not consider any storage information such as object 

clustering, buffer size and object indices to avoid any complication. However, the 

estimation illustrates the numbers of object references, therefore, highlights the cost 

of evaluating a method. More advanced estimation methods are discussed later. 

5.6 Query Graph and Query Plan Generation 

In the previous two sections, we have considered optimization of selections and joins 

which include path expressions and methods. The following definitions summarize 

the classifications of selections and joins. 

Definition 5.11 Selection. Single-valued selections include path expression selec- 

tions of type O(3) and selections with selection-type methods as selection conditions 

where their maximal common sub argument path expressions are single-valued. Set- 

valued selections include path expression selections of type Q') and selections with 

selection-type methods as selection conditions where their maximal common sub ar- 

gument path expressions are set-valued. Both single-valued and set-valued selections 

are called selections. 

Definition 5.12 Join. Single-valued joins include implicit joins, path expression 

joins of type 0(3,3), and joins with join-type methods as join conditions where all 

maximal common sub argument path expressions are single-valued. Set-valued joins 

include path expression joins of type 6(3,V), O(V, 3), O(V,V) and joins with join- 

type methods as join conditions where some maximal common sub argument path 

expressions are set-valued. Both single-valued and set-valued joins are called joins. 

By identifying different types of constraint conditions and applying appropriate 

optimization strategies, we can achieve "push constraint inside navigation". Thus 

inexpensive but highly selective constraints can be evaluated to eliminate irrelevant 

objects before costly navigation operations are performed. Common navigation oper- 

ations are exploited among queries and user-defined methods by revealing the encap- 

sulated methods. 
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In a path expression selection of type 4(3), the selection predicate can be simplified 

and moved to the class of tail attribute of the path expression. The selection can be 

performed before the implicit joins of the classes associated with the path expressions 

and should be done as early as possible. However, in a path expression selection of 

type d(V), the selection has to be delayed after the evaluation of implicit joins of 

the ending classes associated with the path expression. In a path expression join of 

type 4(3,3), the explicit join can be evaluated before the implicit joins of the classes 

associated with both the path expressions. In a path expression join of type 4(3 ,V) ,  

the explicit join can only be evaluated after the implicit joins of the ending classes 

associated with the right path expression. In a path expression join of type 4(V, 3) or 

d(V,V), the explicit join can only be evaluated after the implicit joins of the ending 

classes associated with both the path expressions. Some selections and joins with 

aggregation functions can be translated into the equivalent and more efficient forms of 

selections and joins. In a selection-type method with a single-valued maximal common 

sub argument path expression, the method can be evaluated before the implicit joins 

of the classes associated with the maximal common sub argument path expression. 

In a selection-type method with a set-valued maximal common sub argument path 

expression, the method can only be evaluated after the implicit joins of the ending 

classes associated with the maximal common sub argument path expression. A join- 

type method can be evaluated before the implicit joins of the classes associated with 

single-valued maximal common sub argument path expressions and after the implicit 

joins of the ending classes associated with set-valued maximal common sub argument 

path expressions. The optimization strategies are summarized as follows: 

0 perform single-valued selections as early as possible; 

0 perform set-valued selections after implicit joins of ending classes of relevant 

path expressions; 

0 perform set-valued joins after implicit joins of ending classes of relevant path 

expressions; and 
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perform transformation of selections and joins with aggregation functions into 

the equivalent and more efficient forms of selections and joins without aggrega- 

tion functions. 

5.6.1 Query Graph 

There are some proposals of query graphs for object queries, for example, Banerjee 

et al. [8], Cluet and Delobel [29] and Lanzellote et al. [go]. However, their proposals 

do not meet all of our requirements to facilitate the implementation of the proposed 

optimization strategies. A query graph should be able to represent single-valued and 

set-valued selections, single-valued and set-valued joins as well as the factorizations 

of common sub path expressions among path expressions in a query. 

Definition 5.13 Query graph. Query graph is a hypergraph H = (V, E), where V 

is constructed as follows: 

1. Nodes correspond to all object variables appearing in a query. Different object 

variables correspond to different nodes even though they are in a same class. 

2. If t.A1.A 2...Arn is a path expression appearing in the query, add nodes corre- 

sponding to the range classes of A1, A2, ..., A,-1 to V. 

E is constructed as follows: 

1. If t.A1.A 2...Arn is a path expression appearing in the query, add an edge con- 

necting the node corresponding to object variable t and the node corresponding 

to the range class of the attribute Al and the edges connecting the two nodes 

representing the range classes of the attributes A;-1 and A; where 2 5 i 5 m - 1. 

2. If a path expression selection appears in the query, add an one node edge which 

contains one node corresponding to the range class of the tail attribute of the 

path expression if the selection is of type 8(3). The edge denotes the predicate 

on the range class of the tail attribute. If the selection is of type d(V), add a 

superedge connecting the nodes corresponding to the ending classes associated 

with the path expression. 
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3. If a path expression comparison appears in the query, add an edge connecting 

the two nodes corresponding to the range classes of the tail attributes of the 

two path expressions if the path expression comparison is of type 0(3,3). The 

edge denotes the explicit joins. If the path expression comparison is of type 

d ( 3 ,  V), add a superedge connecting the nodes corresponding to the range class 

of tail attribute of the left path expression and the ending classes associated 

with the right path expression. If the path expression comparison is of type 

O(V, 3) or O(V, V), add a superedge connecting the nodes corresponding to the 

ending classes associated with both the path expressions. 

4. If a method appears in the query and t.A1.A 2...An is a maximal common sub 

argument path expression, then add a superedge connecting following nodes. 

If t.A1.A 2...A, is a single-valued path expression, the edge contains the node 

corresponding to the range class of the tail attribute only. If t.A1.A 2...An is a 

set-valued path expression, the superedge contains the nodes corresponding to 

the ending classes associated with the path expression. 

The following examples illustrate how a query graph is constructed and query 

evaluation plans are generated. 

Example 5.10 Finds all pairs of students and universities such that all the faculty 

members of the university are over 40, the total numbers of the courses offered by the 

universities are over 500, some courses taught by the university presidents are higher 

level than all those of the courses taken by the students, and the students are from 

the city Prince George. 

S E L E C T  u.Name, s.Name 

F R O M  u UNIVERSITY, s STUDENT 

W H E R E  u.Depts.FacultyMembers.Agev > 40 

AND COUNT(u.Depts.0 f f erCourses) > 500 

AND u.President.TeachCourses.Number3 > s.TakeCourses.Numberv 

AND s.HomeAddress.City.Name = "Prince George" 

0 
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Its query graph is in Figure 5.1. A node corresponding to an object variable or a 

class is represented by an ellipse. A conventional directed edge denotes an implicit 

join between two classes. A superedge is represented by an area which is bounded by 

a closed line and contains all the nodes of the superedge. For example, the one-node 

superedge { C I T Y )  denotes the single-valued selection 

c.Name = "Prince George" 

which is the result of the simplification and movement of the single-valued selection 

s. HomeAddress.City. Name = "Prince George". 

{ U N I V E R S I T Y ,  DEPT,  PROF)  is a superedge which denotes the set-valued selec- 

tion 

u.Depts.FacultyMembers.Agev > 40. 

The superedge { U N I V E R S I T Y ,  DEPT,  COURSE)  represents the set-valued selec- 

tion 

COUNT(u.Depts.0 f f erCourses) > 500. 

Both the directed path 

( U N I V E R S I T Y ,  DEPT,  PROF)  

and 

( U N I V E R S I T Y ,  DEPT,  COURSE) 

share common sub path ( U N I V E R S I T Y ,  DEPT) .  It shows that the maximum 

common sub path expression u.Depts between 

and 

u.Depts.0 f f erCourses 

has been factorized. The superedge 

{STUDENT,  COURSE", COURSE1) 
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u.Depts.FacultyMembers.Age v '40 

COUNT(u.Depts.OfferCourses)> 500 
3 

UNIVERSITY 

J 

I c.Name="Prince George" I 

c'.Numben s.TakeCourses.Number v 
Figure 5.1: Query Graph of Example 5.10 

denotes the set-valued join 

c l . ~ u m b e r  > s.TakeCourses.Numberv 

which is the result of the simplification and movement of the set-valued join 

u.President.TeachCourses.Number3 > s.TakeCourses.Numberv. 

Example 5.11 Find all the names of students who are from a metropolis or a large 

country with a population of over 20,00070007 and who are only taking computer 
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s.TakeCourse.Dept.Name ="Computer Science" v 
Figure 5.2: Query Graph of Example 5.11 

science courses and taking courses over 400 level. 

SELECT s.Name 

FROM sSTUDENT 

W H E R E  FromLargeCountryOrMetro(s) 

AND s.HomeAddress.Country.Population > 20,000,000 

AND s.TakeCourse.Dept.Namev = "Computer Science" 

AND s.TakeCourse.Numberv > 400 

0 

Its query graph is in Figure 5.2. {STUDENT,  COURSE)  is a superedge which 

denotes the set-valued selection: 

The one node superedge { A D D R ) ,  which denotes FLCOM(a),  is the result of the 

revelation of the method 

The one node superedge { C O U N T R Y ) ,  which denotes 
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represents the result of the simplification and movement of the single-valued selection: 

The superedge {STUDENT,  COURSE, D E P T ) ,  which denotes the set-valued se- 

lection: 

s.TakeCourse.Dept.Namev = "Computer Science". 

The directed paths 

(STUDENT,  COURSE) 

and 

(STUDENT,  COURSE, D E P T )  

represent the two path expressions 

and 

s.TakeCourse.Dept.Name 

respectively. Their common sub path expression s.Ta keCourse has been factorized. 

The directed paths 

(STUDENT,  ADDR, C O U N T R Y )  

and 

(STUDENT,  ADDR) 

denote the path expression 

in the query and the maximal common sub argument path expression 

in the method FromLargeCountryOrMetro(s) respectively. Their common sub path 

f expression s. HomeAddress has been factorized. 
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5.6.2 Query Plan Generation 

Like in other query graph-based approaches, query plan generation corresponds to 

query graph manipulation. The query evaluation plans are generated according to 

the strategies proposed previously. Figure 5.3 illustrates the process of generating 

the query evaluation plan of Example 5.10. The query graph of Example 5.10 is in 

Figure 5.3(a) which is the same as in Figure 5.1 except that the labels of nodes have 

been changed for convenience. 

1. Early single-valued selection 

c.Name = "Prince George". 

Remove the one-node superedges {a) in Figure 5.3(a). The node remains but 

its label is changed into a'. The resulting graph is in Figure 5.3(b). 

2. Single-valued joins 

C I T Y  ADDR, ADDR w STUDENT,  

D E P T  w COURSE, UNIVERSITY w DEPT.  

The above joins correspond to the directed edges (9, a'), (7, 9), (7, 8), (5, 6), (1, 

5 ) ,  (2, 4), (2, 3) and (1, 2) respectively. Assume that the joins are performed in 

the above order. The resulting graphs are in Figure 5.3(c)-(j). 

3. Set-valued selections and set-valued join 
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Figure 5.3: Query Plan Generation of Example 5.10 
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Figure 5.4: Query Plan Generation of Example 5.11 

Remove the one-node superedge { 156423 ) which corresponds to the above two 

set-valued selections in Figure 5.3(j). The resulting graphs are in Figure 5.3(k)- 

(1). Remove the superedge { 156423, a'978 ) in Figure 5.3(1) which corresponds 

to the set-valued join c) .~urnber  > s.TakeCourses.Nurnberv. The resulting 

graph is in Figure 5.3(m). 

Figure 5.4 illustrates the process of generating query evaluation plan of Exam- 

ple 5.11. The query graph of Example 5.11 is in Figure 5.4(a) which is the same as 

in Figure 5.2 except that the labels of nodes have been changed for convenience. 

1. Early single-valued selections include 

c.  Population > 20,000,000, 
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Remove the corresponding two one-node superedges {5), and (4) in Figure 5.4(a). 

The two nodes 5 and 4 remain, however, their labels are changed into 5' and 4'. 

The resulting graph is in Figure 5.4(b)(c). 

2. Single-valued joins include 

ADDR M COUNTRY, S T U D E N T  M ADDR, 

S T U D E N T  M COURSE, COURSE M DEPT.  

The above joins correspond to the directed edges (4', 5), (1,4'), (1,2) and (2,3) 

respectively. Assume that the joins are performed in the above order. The 

resulting graphs are in Figure 5.4(d)-(g). 

3. Set-valued selections include 

s.TakeCourse.Dept.Namev = "Computer Science" 

and 

s.TakeCourse.Numberv > 400. 

Remove the one-node superedge (14'5'23) which corresponds to the above set- 

valued selections in Figure 5.4(g). The resulting graph is in Figure 5.4(h)(i). 

5.7 Discussion 

5.7.1 Optimization Strategies for Supporting Other Kinds 

of Navigations 

Optimization strategies are presented for performing navigations with constraint con- 

ditions over class composition hierarchies, i.e., navigations via a sequence of attribute 

relationships. The class/subclass relationships are not explicitly expressed in path 

expressions since attributes of a superclass are inherited by its subclasses. For exam- 

ple, to find out the salary of a president of a university, a navigation is performed 



C H A P T E R  5. OPTIMIZING COMPLEX QUERIES 103 

from the class UNIVERSITY to the class PRESIDENT via the attribute President, 

the class/subclass relationship between the class PRESIDENT and the class PROF. 

The corresponding path expression is as follows 

The class/subclass relationship between the class PRESIDENT and the class PROF 

is not explicitly represented since the attribute Salary of the class PROF is inherited 

by the subclass PRESIDENT. 

Similarly, the optimization strategies can be applied to navigations through a 

sequence of relationships specified by methods and/or rule deductions. For example, 

Supervise is a method of the class PROF which represents a relationship of supervising 

and supervised between a professor and a student. Students supervised by a professor 

p could be expressed as p.Supervise. Logically, the method Supervise is treated 

similarly as an attribute of PROF. A navigation, to find out professors who supervise 

some students from Canada, could be expressed as 

p.Supervise.HomeAddress.Country.Name3 = "Canada", 

which is a selection of type (3). However, there are some important differences be- 

tween attributes and methods in the way they are implemented in database systems. 

Usually, attributes of an object are precomputed in databases and probably stored 

together with the object. For example, the object identifiers of the courses taught 

by a professor are stored together with the object professor. A navigation follows 

the object identifiers from the class PROF to the class COURSE. To find out the 

students supervised by some professors, however, a navigation is performed from the 

class PROF to the class STUDENT by invoking the method Supervise. A method 

may require intensive computation or many I/O on disks, therefore, a navigation via 

a relationship specified by methods and/or deduction rules could be more costly than 

that via an attribute relationship. Relationships specified by methods and/or deduc- 

tion rules can also be precomputed. Instead of invoking methods and/or performing 

deductions, materialized results are accessed, for instance, to find out students su- 

pervised by a professor. The materialized results are, however, subject to database 
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updates. Extra mechanisms are required to maintain the precomputed relationships 

updated. 

5.7.2 Met hod Materialization for Query Evaluation 

Exploiting sharing of navigations for optimizing queries including user-defined meth- 

ods are effective when there are large number of sharings between queries and meth- 

ods. Precomputing user-defined methods or methods materialization is an alternative 

technique. Met hod materialization helps to avoid time-consuming computation, e.g., 

navigations, at run-time. It transforms ob ject-at-a- time evaluation of met hods into 

set-oriented retrieval of materialized results. However, there are two major issues 

related to method materialization: 

Update maintenance. A mechanism which bookkeeps all information used in 

computing a methods is needed to keep materialized method results updated. 

Two-levels of information are considered 

- Schema level. Schema information is used to capture global change which 

leads to recomputing all materialized results. For example, RankAcademic 

is a method which calculates the rank position of a student among his or 

her fellow students according to GPA. Any change in one student's GPA 

could lead to reordering of the rank positions of other students. 

- Object level. Object information is used to capture local change which 

only leads to recomputing one or some materialized results. For example, 

Academicstatus is a method which evaluates a student's academic status 

such as excellent(GPA 2 3.5)' good(2.5 5 GPA < 3.5)' etc. The change 

of a student's GPA only leads to the change of this student's own academic 

status and does not change any other students' status. 

Indexing and allocating materialized results. Since the size of materialized results 

could be large, it is important that these results be stored in a way so that they 

can be efficiently retrieved during query execution. 
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- Indexing on generic relationship. There are some interesting relationships 

such as reflexive, symmetric, transitive and equivalent relationships. These 

relationships have some useful properties. For example, if a method corre- 

sponds to a symmetric relationship, the size of memories needed to store 

its materialized results can be reduced by half. 

- Employing class hierarchy information. Class hierarchy information can 

be used to index materialized results for efficient retrieval. For exam- 

ple, Friend is a method such that if two persons pl and pz are friends 

then Friend(pl,pz) returns True.  Suppose that there is a class hier- 

archy rooted at PERSON. STUDENT and PROF are two subclasses of 

PERSON. PhDStudent and MSStudent are two subclasses of STUDENT. 

ASSISTANTProf, ASSOCIATEProf and FullProf are subclasses of PROF. 

Some queries may only inquire whether some PhD students and full profes- 

sors are friends, other queries may only like to know whether some students 

are friends. Therefore class hierarchy information can be used to retrieve 

only the materialized results of Friend between PhDStudent and FullProf 

and between STUDENT and STUDENT which may be only a small part 

of the materialized results. 

5.7.3 Integrating with Indexing Techniques 

The proposed optimization techniques can be integrated with indexing methods such 

as join index hierarchies and nested indices. These indices are effective structures 

for supporting efficient associative searches and/or navigations. However, they are 

constructed for frequently performed navigations or associative searches because they 

might sacrifice disk space and require update maintenance. The proposed optimiza- 

tion techniques do not require extra space or update overhead, and accelerate naviga- 

tions not supported by these index structures. For example, if there is a nested index 

on the path 

c. Dept. Name 
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where c is an object in the class COURSE, the selection condition 

p.Supervise.TakeCourse.Dept.Name3 = "Computer Science1' 

can be evaluated efficiently by searching the nested index to eliminate departments 

other than computer science and computing the implicit joins among PROF, STU- 

DENT and the collection of computer science courses. Unlike the nested indices which 

only supports associative search, join index hierarchies provide more flexible and effi- 

cient index structures which support both forward and backward along a navigation 

path. If 

s.TakeCourse.Dept 

is a subpath of a path supported by a join index hierarchy, the selection condition 

p.Supervise.TakeCourse.Dept.Chairperson.Name = "Jeff  Ullmanl1 

can still be evaluated efficiently by searching join index hierarchy rather than com- 

puting the implicit joins among STUDENT, COURSE and DEPT. Integrating the 

proposed optimization techniques with join index hierarchies does accelerate query 

evaluation. 

Furthermore, Theorems 5.2 and 5.4 suggest that not only selections and joins with 

aggregation functions could be transformed into the equivalent and more efficient 

forms of the selections and joins without the aggregation functions but also selections 

and joins without aggregation functions could be replaced by the selections and joins 

with aggregation functions. It thus suggests that the values of MAX and M I N  of 

path expressions, for instance, could be used as index values when evaluating selections 

and joins. For example, M I N ( s )  > c is equivalent to sv > c. Therefore, M I N ( s )  can 

be stored as an index value for evaluating the selection st/ > c.  

5.7.4 Integrating with Techniques for Searching Optimal 

Query Evaluation Plan 

The costs and selectivities of selection and join conditions are essential for choos- 

ing optimal query evaluation plans. Unlike simple selection and join conditions in 
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relational database systems, the evaluation of selection and join conditions includ- 

ing user-defined methods may be costly. If the cost of a selection or join including 

a method is too high and the selectivity of the selection or join is not very sharp, 

the evaluation of the selection or join should be delayed even if it is a single-valued 

selection or join. Section 5.5.3 describes a simple approach to estimate the number 

of object references in a method. Other more complicated alternatives include sam- 

pling. This approach collects the cost and selectivity information by examining a 

small fraction of objects in databases. 

It is possible, in principle, to determine the optimal order in which single-valued se- 

lections, single-valued joins, set-valued selections and set-valued joins are evaluated. 

In fact, set-valued selections and set-valued joins can be evaluated as soon as the 

implicit joins of ending classes of path expressions have been calculated. Their eval- 

uations do not need to be delayed until after all those of single-valued selections and 

single-valued joins. However, if evaluations of set-valued selections and set-valued 

joins are delayed until after all single-valued selections and single-valued joins, the 

search strategy in Lanzellotte et al. [go] can be employed to determine optimal single- 

valued join orders in Step 2 of query evaluation plan generation in Section 5.6.2.  

So far, we have considered conjunctive queries and their query graphs. Since all 

queries can be considered as unions of conjunctive queries, it is not hard to extend 

our work to handle non-conjunctive queries. A query can be represented by several 

query graphs each of which denotes a conjunctive query. These query graphs can be 

manipulated and the results can be combined into a whole query result. 

5.8 Summary 

In this chapter, the optimization of queries containing complex selections, joins, aggre- 

gations and encapsulated methods is studied. It has been clearly demonstrated that 

different types of selections and joins require different kinds of optimization strate- 

gies, and some set-valued selections and joins can be transformed into equivalent and 

more efficient forms of selections and joins. Sharing of navigation information be- 

tween queries and methods can be effectively exploited for efficient query evaluation. 
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Optimization strategies have been proposed and incorporated to support efficient pro- 

cessing of complex queries. 



Chapter 6 

Recursive Query Evaluation 

6.1 Introduction 

Although recursive query evaluation has been investigated extensively in deductive 

database systems, it is not well understood whether and how the existing recursive 

query evaluation methods can be extended to handle DOOD recursive queries [114]. 

In deductive databases, data are conceptually grouped by properties. The informa- 

tion about one object, e.g., a student, may be spread in different relations which, 

in turn, are characterized by predicates. The deductive query evaluation methods 

center on the evaluation of variables and predicates and explore available constraints, 

e.g., query constraints and integrity constraints. The evaluations are performed either 

bottom-up from database facts, top-down from query goals, or the integration of the 

two approaches. In DOOD systems, however, data are grouped around objects de- 

scribed by syntactic notions such as object molecules. Therefore, it is natural to adapt 

the deductive recursive query evaluation methods and to focus on the evaluation of 

variables and object molecules. 

Higher-order features complicate unifications [75]. Variables are allowed to appear 

in the places where class, attribute and method names do. Conventional most general 

unifiers may not exist and are replaced by the complete sets of most general unifiers 

[75]. Thus the algorithms for unifying two object molecules could be exponential 

since the number of alternative matches between the two object molecules could be 
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exponential. Furthermore, higher-order features complicates the exploration of the 

regularities of connections among variables since there could be more than one way 

to expand a rule if there were more than one most general unifier. 

Example 6.1 Most general unifier. The following is a DOOD rule 

where pl is a predicate. The complete set of the most general unifiers between 

U :  C[X + S ; Y  + T ]  

and 

v :  C[X1 + S1;K +TI]  

None of the above two is more general than the other. This fact implies that there 

are two alternative ways to expand the rule. 

Constraints on higher-order variables may be more selective than those on con- 

ventional variables. For example, a constraint on a variable representing a class 

name would eliminate the number of classes to be considered during query evalua- 

tion, therefore, would effectively exclude the objects in those irrelevant classes from 

consideration. Similarly, a constraint on a variable denoting an at tribute name could 

reduce the number of attributes accessed. The saving on navigation cost could be sig- 

nificant if nested at tributes are involved. Obviously, query evaluation met hods should 

capture query constraints, especially constraints on higher-order variables and apply 

the constraints at the early stage of query evaluations. 

Although a DOOD program can be encoded into a first-order logic program [25, 

751, the transformation may produce many predicates and rules. These predicates 

represent the access of attributes or the invocation of methods. Thus this process 

may change simple recursions into complex ones. 
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Example 6.2 Transforming a DOOD program into a datalog program. The following 

is a DOOD linearly recursive rule1, 

where p is a predicate. A transformation similar to using apply /n  [107] is to translate 

an attribute into a predicate. For example, 

is translated into a predicate 

Attr(C, X, F, U )  

where the first argument represents the name of class, the second represents the 

object, the third represents the attribute name and the fourth represents the value of 

the attribute. The above rule is transformed into the following rule, 

which is a non-linearly recursive rule [48]. Obviously, a DOOD (single) linear recursion 

may be transformed into a non-linear recursion. Thus the transformation from a 

DOOD program to a datalog program may produce more complex recursions than 

the original ones in DOOD programs. 0 

In this chapter, we propose to extend the query-independent compilation and 

chain-based evaluation approach [53, 47, 46, 481 and to explore the regularities of 

connect ions among variables in object molecules. 

The query-independent compilation captures the bindings that could be difficult 

to be captured by other methods. The chain-based evaluation explores query 

constraints, integrity constraints, recursion structures, and other features of the 

programs with a set of interesting techniques, such as chain-following, chain-split 

and constraint pushing. 

'See Definition 6.4. 
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A normalization process is proposed to serve not only as a pre-processing stage 

for the compilation and evaluation but also as a tool for classifying recursions. 

A class of linear recursions, DOOD linear recursions, is identified which can 

be efficiently processed by the extension of the query-independent compilation 

and chain-based evaluation. The evaluation of nested linear recursions and the 

integration with other evaluation techniques are discussed as well. 

Our proposal represents a promising approach toward efficient DOOD recursive query 

evaluation. In contrast to the existing systems which handle limited DOOD features, 

our method can deal with DOOD features including higher-order ones. Rather than 

translating programs into datalog, our method extends the query-independent com- 

pilation and chain-based evaluation to process DOOD recursions with normalization. 

6.2 Normalization and Classification 

A normalization process transforms a rule into a normalized form. Based upon nor- 

malization results, rules can be classified into different classes, e.g., non-recursive, 

recursive, single linearly and multiple linearly recursive rules. A class of linear recur- 

sions is identified which can be compiled into chain-forms and evaluated by chain- 

based evaluation techniques. 

The normalization process includes Pullout,  Compose, and Associate operations. 

Intuitively, a Pullout  operation flattens a nested structure. 

a[ll  + a1; . . . ; li + a$l + c ] ;  . . . ; 1, + a,] 

PF a[ll  -+ a l ;  . . . ; li + a;; . . . ; I ,  + a,] A ai[ll + c] .  

a[ll  + a l ;  . . . ; 1; + {a;[ l l  + c ] } ;  . . . ; 1, -+ a,] 
Pull Z a [ l l  -+ a1; . . . ;  li + {a;};  ...; I ,  + a,] ~ a ~ [ l l  + c]. 

However, it is different from the unnest operation in that it "unnests" a nested 

structure by changing the syntactic expression of the nested structure without per- 

forming the actual unnest operation. This is made possible by the id-term ai repre- 

senting an object identity. The Compose operation collects all attributes and methods 
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regarding one object into the same object molecule. 

The Associate operation makes explicit a class membership between an object and a 

class. 

Assoc'ate a :  X A a [ l l  + al;  ...; 1, +a,] a a : X I I l + a l ;  ...; I,+a,]. 

If a : X is not present or there is more than one a : Xi ,  then choose X as the most 

specific class that a belongs to. If the root class2 is the most specific class a belongs 

to, then the root class name is omitted. 

After a normalization process, a rule consists of normalized object molecules in its 

rule head and rule body. Normalized object molecules are introduced to mimic the 

functionality of predicates in first-order logic. 

Definition 6.1 Normalized object molecule. 

A predicate object molecule is a normalized object molecule. 

is-a term P:Q or P::Q is a normalized object molecule where P and Q are 

variables or id- terms. 

Normalized data object molecules, denoted by 

where C is an id-term representing an object identity and D is an id-term 

denoting the name of a class which C belongs to. A label I ; ,  called the method 

expression, is of the form Method@Xl, ..., Xm4 where Method and Xi are id- 

terms representing a method name and an argument object respectively. C; is 

an id-term or a set of id-terms representing the method result. 

2Every object belongs to  the root class. 
3Without confusion, a normalized object molecule is simply called object molecule. 
*Attribute expression Attr is a special case of method expression. 
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Normalized signature object molecules, denoted by 

where Ci is an id-term representing a class name. A label 1; is of the form 

Met hod@X1, ..., X ,  where Method and Xi are id-terms representing a method 

name and an argument object type respectively. C; is an id-term or a set of 

id-terms representing the type of the method result. 

For example, 

alex[HomeAddress t addr[Country t canada[Name t "Canada"]]] 

is not a normalized object molecule while 

alex : PERSON[HomeAddress t addr] A addr : ADDR[Country t canada] 

Acanada : COUNTRY[Name  t "Canada"] 

is a conjunction of normalized object molecules. 

Definition 6.2 Normalized rules. 

All object molecules are normalized. 

All properties regarding same objects and their class memberships in the rule 

body are collected into the same normalized data object molecules. 

All signatures regarding same classes in the rule body are collected into the 

same normalized signature object molecules. 

For example, the following is a normalized rule which defines a relationship between 

a student and a professor. 

X : STUDENT[StudentO f @ t { Y ) ]  + 

Y : PROF[TeachCourse t { C ) ] , X  : STUDENT[TakeCourse -+ { C } ] .  
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Definition 6.3 Recursive object molecule. An object molecule O1 implies another 

object molecule 02, say, O1 + 02, if there is a rule with an object molecule PI in the 

rule body and an object molecule P2 as rule head such that PI can unify with 0 1 5  

and 0 2  can be unified into P2. If O1 j 0 2  and 0 2  + 0 3 ,  then 0 1  * 0 3 .  If 0 1  + 0 1 ,  

then O1 is called a recursive object molecule. If O1 + 0 2  and 0 2  + 0 1 ,  then 0 1  and 

O2 are at the same deductive level. Otherwise, if O1 + O2 and 0 2  f j  0 1 ,  then 0 1  is 

at lower deduction level than 0 2 .  

In the previous example, 

Y : PROF[TeachCourse t { C ) ]  + X : STUDENT[Studen tOf@ t { Y ) ]  

and 

X : STUDENT[TakeCourse  t { C ) ]  + X : STUDENT[Studen tOf@ --+ { Y ) ] .  

Example 6.3 Database object browser. 

X[direc t re f@ t { Y ) ]  t X[ U --+ Y ] .  

X[directre  f @ --+ { Y ) ]  t X[ U -+ { Y ) ] .  

browser[ref@X t { Y ) ]  t X[directre  f @  --+ { Y ) ] .  

browser[re f @ X  t { Y ) ]  t X[directre  f @ --+ { Z ) ] ,  browser[re f @ Z  t { Y ) ] .  

Since 

browser[re f @X t { Y ) ]  

can be unified with 

browser[re f @Z --+ { Y ) ] ,  

obviously, 

browser[re f @X --+ { Y ) ]  

is a recursive object molecule. 

Definition 6.4 Non-recursive and recursive rules. 

5Either Pl can be unified into O1 or 0 1  can be unified into PI (see Appendix D ) .  
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Non-recursive rule. If all object molecules in the rule body are non-recursive, 

then the rule is called non-recursive rule. 

Recursive rule. If one or more of object molecules in the rule body are recursive, 

then the rule is called recursive rule. 

Linearly recursive rule. If only one of object molecules in the rule body can unify 

with the head object molecule and there exists a unique most general unifier, 

and all the other object molecules in the rule body are non-recursive then the 

rule is called linearly recursive rule. 

Nested linearly recursive rule. If only one of object molecules in the rule body 

can unify with the head object molecule and there exists a unique most general 

unifier, and all the other recursive object molecules in the rule body are at lower 

deduction level then the rule is called nested linearly recursive rule. 

Multiple linearly recursive rule. If only one of object molecules in the rule body 

can unify with the head object molecule and there exists more than one most 

general unifier, and all the other object molecules in the rule body are non- 

recursive then the rule is called multiple linearly recursive rule. 

The condition that only one of object molecules in the rule body can unify with the 

head object molecule cannot guarantee a recursive rule is a linearly recursive one. In 

the following rule, for example, 

there are two most general unifiers such that 

can be unified with 
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It implies that two different expansions can be generated when the rule is expanded. 

This example clearly shows that the correspondence between variables in 

and 

U [ X +  S ; Y  + T ]  

is established through the unification. Thus the multiple correspondences complicate 

the exploration of the regularities of connections among variables in object molecules. 

Definition 6.5 Single linear recursion. A recursion is called a (single) linear recursion 

if it consists of only one linearly recursive rule and one or more other non-recursive 

rules. 

The database object browser is a linear recursion. If the first two rules are changed 

into 
X[direct ref@ + {Y)] t X[U + Y]. 

X[direct re  f @ + {Y)] t X[U + {Y)] 

then the recursion is a database schema browser, which is also a linear recursion. 

6.3 Compilation and Evaluation of Linear Recursions 

In datalog, the correspondence between the variables in a recursive rule head and a 

recursive predicate in the rule body is made explicitly by the argument positions in 

the predicates. In DOOD, however, this kind of relationship is established between 

the variables in the object molecule of the rule head and the recursive object molecule 

in the rule body through named attributes and methods. Since variables may appear 

in the places where attribute and method names do, the relationship can be deter- 

mined by unification. In a linearly recursive rule, the most general unifier can be 

used to determine the unique correspondence between the variables in the rule head 

object molecule and the recursive object molecule in the rule body. This correspon- 

dence is the basis for expanding the linear recursion and capturing the regularities of 

connections among variables. 
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A DOOD linear recursion can be compiled into chain-forms, which make explicit 

the regularities of connections among variables and object molecules. A chain consists 

of a sequence of formulas with same structures. Every two consecutive chain elements 

share at least one variable. Each chain element is a sequence of connected non- 

recursive object molecules, called a chain generating path. Chain generating paths 

characterize the periodic property and the regularity of a DOOD linear recursion in 

expansion. 

Theorem 6.1 A single linear recursion can be compiled into chain-forms. 

Proof. See Appendix E. 

Example 6.4 Compiling a linear recursion into chain form. The following is a linear 

recursion. The first rule is a linearly recursive rule while the second is the exit rule. 

The most general unifier which unifies the recursive object molecule in the rule body 

of the first rule 

X1 : c[f -+ Ul,F@ -+ K] 

into the object molecule in the rule head 

The exit rule is considered the 0th expansion. The 1st expansion can be generated 

by the unification of the recursive object molecule in the first rule with the exit rule, 

The 2nd expansion is to expand the first rule with the most general unifier and to 

unify the recursive object molecule in the expansion with the exit rule. 
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Similarly, the ith expansion is as below, 

Obviously there are three chains, 

q(V, K) , -  ,q(K-1, K ) , .  . .  1 

r(X,X1), - - -  ,r(X;-l,X;), - . .  . 

In the first chain, for example, the i th chain element is P(U;-~, U;). Each two con- 

secutive chain elements P(U;-~, U;) and p(U;, U;+l) share a variable U;. Each chain 

actually represents a transitive closure. Consequently, 

can be considered as the union of all the expansions, i.e., 

00 

X :  c[f -+ U,F@ -+ V] = U ( e ( x i , U i , K , F ) , X  = X o , U = U o , V =  Vo, 
i=l 

pi(ui-1 ~ i ) ,  qi(K-1 K),  ri(xi-1 xi)) 
where 

and 
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The chain-based approach includes the algorithms for testing finite evaluability and 

termination, and a set of evaluation techniques such as chain following, chain-split 

and constraint pushing [47, 46, 481. Since some functional predicates and built-in 

predicates are defined on infinite domains, the number of answers to a query may be 

infinite. Sometimes, even though the result is finite, inappropriate evaluation meth- 

ods may lead to infinite intermediate results. To insure proper evaluation, two issues 

should be considered: finite evaluability and termination. The former means that an 

evaluation is performed on finite inputs and generates finite intermediate results at 

each iteration. The latter guarantees that an evaluation generates all the answers 

and terminates after a finite number of iterations. A set of finiteness constraints is 

employed to check the finite evaluability. For example, apply-cons(X, Y, Z) is a func- 

tional predicate corresponding to the list construction function cons. The finiteness 

constraint 

Z -+ X, Y. 

holds because a finite number of values for Z will determine the finite number of 

values for both X and Y. Similarly, a set of monotonic constraints is used to test the 

termination of an evaluation. For instance, list manipulations often result in shrinking 

or growing of lists. cons makes a list longer while cdr makes a list shorter. 

If query constraints make all the object molecules in a chain generating path im- 

mediately finitely evaluable, a chain following evaluation can be performed. However, 

some object molecules in a chain generating path may not be immediately finitely 

evaluable with the currently available constraints, then the chain is not immediately 

finitely evaluable. The chain-split evaluation is performed by splitting the chain gen- 

erating path into the two portions: the immediately evaluable portion and the bufered 

portion. The former consists of the immediately evaluable object molecules while the 

latter cont ains those not immediately evaluable object molecules. Iteration evaluation 

is performed on the immediately evaluable portion until no more answers are gener- 

ated. A reverse iteration evaluation is conducted with the results from immediately 

evaluable portion and exit portion (exit rules). Query constraints can be pushed into 

chain-forms (iterative evaluation) to eliminate irrelevant data from further iterative 

evaluations. 
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Example 6.5 Append. A linear recursion, append, is defined by the following rules 

where cons is a list construction function and list(T) is a type of a parameterized list 

whose elements are of type T. 

nil[append(T)@L t L] - L : list(T). 

cons(X, L)[append(T)@M t cons(X, N)] - L : list(T)[append(T)@M -+ N], 

X : T. 

The first is the exit rule while the second rule is a linearly recursive rule which defines 

append. After the normalization and rectification6, they becomes 

L : Listv[A@M t N] - L = nil, M = N,apply-append(T,A), 

apply-list(T, Listv). 

L : Listv[A@M t N] t- L1 : Listv[A@M + Nl], 

apply -cons (X, L1, L) , apply -cons (X, Nl , N )  , 
X : T, apply-list(T, Listv), applyappend(T, A). 

They can be transformed into the chain-form, 

L : Listv[A@M t N] = 

00 

U ( L  = Lo, M = N;, N = No, L; = nil, 
i=O 

apply-consi(x;, L;, Li-1, Ni, Ni-I)). 

where 

True if i = 0, 

applY-con~i-l (xi-1, Li-1, Li-2, Ni-1, Ni-Z), 

apply-cons(X;, L;, Li-l), apply-cons(X;, N;, Ni-I), 

Xi : T, apply-list(T, Listv), applyappend(T, A) if i > 0 . 
Here the two functional predicates 

6The definition of rectification is in Appendix E 
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apply-cons(Xi, N;, N;-l) 

and the is-a object molecule 

Xi : T, 

are connected because they share the variable Xi. The two functional predicates 

apply-list(T, Listv) 

are connected with the above is-a object molecule since they share the variable T. 

When both L and N are instantiated, the iterative evaluation can be performed on 

the chain generating path 

apply-list(T, Listv), applyappend(T, A), 

apply-cons(Xi , L;, Li-1), apply-cons(X;, N;, N;-I), X; : T. 

The first two functional predicates 

apply-list(T, Listv), applyappend(T, A), 

are common to all the chain elements, therefore, can be factorized. For example, 

is a query regarding lists of persons. Here pi are object identities representing per- 

sons. Chain following can be performed to evaluate the query. In a chain following 

evaluation from query end to exit end, the lengths of the second arguments in the 

following two functional predicates 

are getting shorter by one after each iteration. This guarantees that the evaluation 

will terminate in the finite number of iterations. The query constraint 

C = PERSON 
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confines the elements of the list to persons only. It should be evaluated as soon as 

possible to exclude other types of elements in the list. Thus, 

From the two common functional predicates, 

T = PERSON, Listv = List(PERS0N).  

In the first iteration, the remaining chain generating path is 

In the second iteration, the remaining chain generating path is 

It implies that 

X2 = p2, L2 = nil, N2 = [p3]. 

In the third iteration, the remaining chain generating path is 

apply-cons(X3, Lg, nil), apply-cons(&, N3, [p3]), X3 : PERSON. 

It implies that further iteration will not generate any answers to the query. Thus the 

answer to the query is 

M = N2 = [p3]. 

i: However, if one of L and N is not instantiated, some part of a chain generating path 
i 
k may not be immediately evaluable. Consider the query, r 
'i 

? - [pl,p2][append(C)@[p3] -+ N], C = PERSON. 

Again, 

T = PERSON, Listv = Lis t (PERS0N) .  
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can be derived from the query constraint 

C = P E R S O N  

and the two common functional predicates. In the first iteration, the remaining chain 

generating path is 

The first functional predicate is finitely evaluable which derives 

However, the second functional predicate is not finitely evaluable with the only in- 

stantiation 

x1 = Pl. 

The remaining chain generation path can be split into two parts 

and 

appl y -cons (XI, NI , NO) 

The first, immediately evaluable portion, can be evaluated iteratively. However, the 

second part, buflered portion, will not be evaluated until the exit portion is evaluated. 

In the second iteration, the immediately evaluable portion is 

apply-cons(X2, L2, b2]), X2 : PERSON.  

It derives 

X2 = p2, L2 = nil. 

In the third iteration, the immediately evaluable portion is 

apply-cons(X3, L3, nil), X3 : PERSON.  

C 
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It implies that further iteration will not produce any answers to the query. The 

buffered portions can be evaluated via inverse iterations. In the previous second 

iteration, 

X2 = p2, N2 = A4 = b3] (from the exit portion). 

therefore the buffered portion is 

It implies that 

Nl = b2, ~31 .  

In the previous first iteration, the buffered portion is 

It implies that 

N = No = bl,~2,~3] 

which is the answer to the query. 

Example 6.6 Travel plan. There are three alternatives for traveling, by air, sea and 

train. A customer may choose the combination of the three or only one of them. The 

following are is-a object molecules 

f light-timetable :: trans-timetable 

cruise-timetable :: trans-timetable 

train-timetable :: trans-timetable 

which describe that flight, cruise and train are means of transportation. The fol- 

lowing are signature object molecules which specify the typing constraints on the 

classes trans-timetable, flight-timetable, cruise-timetable and train-timetable, and on 
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the signature of the method plan(X). 

trans-timetable [departure + C I T Y ;  arrival + C I T Y ;  

departure-time + T I M E ;  arrivaldime + T I M E ;  

fare@ + REAL]  

f light-timetable [ f l ightno + I N T ;  airplanemaker + S T R I N G ;  

class + INTI 

cruise-timetable [cruisename + S T R I N G ;  class + INTI 

train-timetable [ trainno + INTI 

travel [plan(X)@CITY,  C I T Y ,  T I M E ,  T I M E ,  R E A L  

+ {list(transdimetable))] 

The following is a linear recursion which defines the method plan(X). 

travel 

travel 

[plan(X)@Dep, Arr, Dep-Time, Ar rT ime ,  Fare t {cons(T, n i l ) ) ]  + 

T : X[departure + Dep; arrival + Arr; departure-time t Dep-Time; 

arrivaldime + Arr-Time; fare@ t F ] ,  X :: trans-timetable. 

[plan(X)@Dep, Arr, Dep-Time, Ar rT ime ,  Fare t {cons(T, L ) ) ]  t 

T : X[departure t Dep; arrival + I n t A r r ;  departure-time t Dep-Time; 

arrivaldime 4 In tArr -T ime;  fare@ t Fl] ,  X :: trans-timetable, 

travel[plan(X)@IntArr,  Arr, IntDep-Time, A r r T i m e ,  F2 + { L ) ] ,  

F = F1 + F2. 

The rules can be normalized and rectified into 

travel [P@Dep, Arr, Dep-Time, Ar rT ime ,  Fare + { L ) ]  t- 

T : X[departure t Dep; arrival + Arr; departure-time t Dep-Time; 

arrivaldime t Arr-Time; fare@ t Fare], X :: trans-timetable, 

apply-plan(X, P ) ,  apply-cons(T, nil,  L) .  

travel [P@Dep, Arr, Dep-Time, A r r T i m e ,  Fare + { L ) ]  t 

T : X[departure t Dep; arrival + I n t A r r ;  departure-time -+ Dep-Time; 

arrivaldime t In tArr -T ime;  fare@ t Fl] ,  X :: trans-timetable, 

t ravel[P@IntArr ,  Arr, IntDep-Time, A r r T i m e ,  F2 + {L1 ) ] ,  

sum(Fl,  F2, Fare), apply-plan(X, P ) ,  apply-cons(T, L1, L) .  
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and transformed into the chain-form. 

travel[P@Dep, Arr, DepTime,  A r r T i m e ,  Fare + { L ) ]  = 

00 

U (travel-plan'(~i-l,  I;, DTi, AT;, L;, F;, S ; )  
i=l 

I. = Dep, Ii = Arr, DTo = Dep-Time, AT; = ArrJ' ime,  

The 

, 
True if i = 0, 

Ti : X[departure t arrival t I;, departure-time t DT;, 

arrivaldime t AT;, fare@ t F;], sum(F;, Sil S i - I ) ,  

apply-cons(Ti, L;,  L;-l) ,  apply-plan(X, P ) ,  

X :: trans-timetable, 

t r a ~ e Z - p Z a n ~ - ~ ( I ~ - ~ ,  I;-1, DT;-1, AT;-1, L;-1, Fi-17 Si-1) i f i > O  

following query 

? - t r a ~ e l [ ~ l a n ( X ) @ D e p ,  Arr, DepTime ,  A r r T i m e ,  Fare t { L } ] ,  

Dep : CITY[name  t "Vancouver"], Arr : CITY[name  t "Toronto"], 

Dep-Time > 8, Arr-Time 5 22, Arr-Time 2 20, Fare > 400, Fare 5 800, 

X = f light-timetable. 

is to find only air travel plans which depart from Vancouver after 8 am. and arrive at 

Toronto between 8 pm. and 10 pm. The fare should be between $400 and $800. 

The constraint on high-order variable X 

X = f light-timetable 

should be pushed into the iterative evaluation first so that only the air travel is 

considered. Since the query constraints at arrival end 

Arr : CITY[name  -+ "Toronto"], Arr-Time 5 22, Arr-Time > 20 
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are more selective. The evaluation should start at this end. The query constraints 

at  arrival end can be pushed into the iterative evaluation. The remaining query 

constraints can be applied at  the end of the iteration. However, it could be benefitial 

to apply these constraints as early as possible. The query constraint 

Fa r e  2 800 

can be pushed into the evaluation to eliminate those plans with fares higher than 

$800. This is based upon the monotonically increasing property of the function sum. 

Dep-Time 2 8 

can be used to exclude those plans with departure time earlier than 8 am. because 

the integrity constraint 

indicates that Dep-Time is a monotonic argument. If only air and train travel means 

are considered, then the query can be posed as 

? - travel[plan(X)@Dep, Arr, DepTime,  Ar rT ime ,  F a r e  -+ {L)], 

Dep : CITY[name -+ "Vancouver"], Arr : CITY[name -+ "Toronto"], 

Dep-Time 2 8, Arr-Time 1 22, Arr-Time 2 20, F a r e  2 400, F a r e  5 800, 

(X = f light-timetable V X = train-timetable). 

The same strategies can also be applied here. 

6.4 Discussion 

6.4.1 Compilation and Evaluation of Nested Linear Recur- 

sions 

In the previous section, it is shown that a (single) linear recursion can be compiled 

into chain-forms, and the chain-based evaluation can be applied to the compiled chain- 

forms. This section illustrates through an example that nested linear recursions can 

also be compiled into chain-forms and evaluated with the chain-based evaluation. 
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Definition 6.6 Nested linear recursion. A recursion is called a nested linear recursion 

if each recursive object molecule is defined by one linearly or nested linearly recursive 

rule and one or more non-recursive rules. 

In a nested linearly recursive rule, an recursive object molecule which does not 

unify with the head object molecule is at  a lower deduction level than the head object 

molecule. Therefore, it can be treated as a non-recursive object molecule during the 

compilation and evaluation. 

Example 6.7 Joint things. This nested linear recursion describes a generic relation- 

ship among a group of persons. For example, a group of students take same one 

course, a group of researchers work on same projects, etc. 

X[joint(M)@nil t {Z)] - X : PERSON[M + {Z)]. 

X[joint(M)@cons(Obj, Rest) t {Z)] - Obj : PERSON[M t {Z)], 

lmember(Obj, Rest), Obj # X, 

X : PERSON[joint(M)@Rest + {Z)]. 

member(X, cons(X, L)). 

Memebr(X, cons(Y, L)) + Memebr(X, L). 

The recursive predicate (object molecule) member is at  a lower deduction level than 

the object molecule 

X[joint (M)@cons(Obj, Rest) t {Z)]. 

It is treated as a non-recursive object molecule during the compilation of the first two 

rules. The above rules can be normalized and rectified into 
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X : P E R S O N [ J @ L  + { Z ) ]  t- X : P E R S O N [ M  + { Z ) ] ,  

L = [ I ,  apply-joint(M, J ) .  

X : P E R S O N [ J @ L  + { Z ) ]  t X : PERSON[J@Res t  + { Z ) ] ,  

Obj : P E R S O N [ M  + { Z ) ] ,  

apply-joint(M, J ) ,  

apply-cons(Obj, Rest,  L ) ,  

imember(Obj, Rest) ,  Obj # X .  

member(X, L )  t apply-cons(X, N ,  L) .  

Memebr(X, L )  t apply-cons(Y, N ,  L ) ,  Memebr(X, N ) .  

which can be transformed into the chain form, 

X : P E R S O N [ J @ L  + { Z ) ]  = 

03 

U ( ~ e s t ;  = nil,  L = Resto, O B J " O ~ ~ ; ,  Resti, Rest;-,)) 
k 0  

and 
03 

member(X, L )  = U ( L  = Lo, Y ,  = X ,  apply-consi(Y,, Lil Lib')) 
i=O 

where 

Obj; : P E R S O N [ M  + { Z ) ] ,  
OBJ" Obj;, Rest;, = 

Obj; # X ,  lmember(Obj;, Rest;),  

I apply-cons(Obji, Rest;, Restivl),  

apply-joint(M, J )  if i  > 0. 

and 
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For example, the following query is to find what john and a group of people mary, joe 

and mark are doing together. 

? - john[joint(M)@[mary,joe,  mark] -+ {Z)]. 

The chain following method can be applied to evaluate the query since all the object 

molecules in the chain generating path are immediately evaluable. The two arguments 

of member are bounded, therefore, only the existence checking [47, 461 is needed to 

evaluate member. However, the chain-split method should be performed to evaluate 

the following query 

? - john[joint(TakeCourses)@L -+ {Z)]. 

The immediately evaluable portion is 

Obj : PERSONIM -+ {Z)],apply-joint(M, J). 

while the bufferd portion is 

apply-cons(Obj, Rest, L), imember(Obj, Rest), Obj # X. 

0 

In [49], the query-independent compilation and chain-based evaluation are extended 

to handle some non-linear recursions, e.g., Tower of Hanoi and Quicksort. 

6.4.2 Integrating with Indexing Techniques 

The chain-based evaluation can be integrated with the indexing techniques for sup- 

porting efficient navigations. For example, if only Canadians are considered in the 

lists of Example 6.5, then the recursion can be redefined as 

nil[append(T)@L -+ L] t L : list(T), T :: PERSON.  

cons(X, L) [append(T)@M -+ cons(X, N)] t L : list(T) [append(T)@ M -+ N], 

T :: PERSON,  

X : T[HomeAddress -+ A], 

A : ADDR[Country -+ C], 

C : COUNTRY[Name -, 

"Canada"]. 
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The following query only considers Canadian students. 

A join index hierarchy, which supports navigations between the class PERSON and 

the class COUNTRY or a nested index, which supports associative search on the path 

expression 

X.HomeAddress.Country.Name, 

surely accelerates the chain-based evaluation of the recursion. Instead of evaluating 

X : T[HomeAddress + A], A : ADDR[Country + C], 

C : COUNTRY[Name + "Canada"] 

in the iteration, our method can access the join index hierarchy or the nested index. 

6.4.3 Exploring Typing Information 

Although typing information can be exploited to eliminate some semantically mean- 

ingless results as a consequence of the introduction of higher-order features, semantic 

information is still necessary to guarantee correct answers. For example, the following 

is a typical definition of transitive closure. G represents an attribute name. 

X[transit ivedosure(G)@ + {Y)] t X[G -+ Y]. 

X[transit ivedosure(G)@ + {Y)] t Z[transitiveAosure(G)@ + {Y)], 

X[G -+ Z]. 

Based upon type checking, it can be concluded that X, Y and Z are of the same 

type. G should be an attribute relationship defined and ranged on the same class 

that X, Y and Z belong to. The type checking rules out alternatives which G can 

match otherwise. For instance, G cannot be the attribute names such as TakeCourse, 

HomeAddress, etc. However, typing information cannot guarantee to exclude all se- 

mantically meaningless results. For example, the relationship co-author between pro- 

fessors is not transitive. Although John co-authors with Mary and Mary co-authors 

with Mark, John may not co-author with Mark. 
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6.5 Summary 

In this chapter, the query-independent compilation and chain-based evaluation are ex- 

tended to process a class of DOOD linear recursions. Instead of transforming DOOD 

programs into Horn-like programs, the DOOD programs are preprocessed into nor- 

malized forms. The normalization process helps not only to compile and evaluate 

DOOD recursions but also to classify recursions. It is interesting to see how the other 

deductive evaluation met hods can be extended to handle DOOD recursions. 
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Conclusion and Future Research 

7.1 Summary 

Deductive and object-oriented database systems provide powerful modeling facilities 

and highly declarative languages, but require efficient query evaluation to achieve 

high performance in advanced applications. In this thesis, we have investigated the 

influence of DOOD data model and language on query evaluation. As a result, sev- 

eral important issues have been identified, including support for efficient navigation 

or "pointer-chasing", optimization of queries in the presence of complex selections, 

joins and aggregations, user-defined methods and encapsulation, and recursive query 

evaluation. The following research results constitute the major contributions of the 

thesis. 

0 Join index hierarchies for efficient navigations. 

Query optimization in the presence of complex selections, joins, aggregations 

and encapsulated methods. 

0 DOOD recursive query compilation and evaluation. 
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7.2 Future Research 

In addition to the problems identified in this thesis, there are other interesting issues 

in DOOD query evaluation. 

Index structures over class hierarchy. Classes in DOOD form hierarchies. A 

query can be posed against objects in a class including and/or excluding objects 

of its subclasses. It is, therefore, a very important issue how an index can provide 

an efficient access structure for both cases. 

Extensibility to support abstract data types and search strategies. DOOD sys- 

tems support abstract data types, and provide a dynamic environment in which 

users can define new database types, and access databases via arbitrarily-defined 

methods. Query processing must adapt to the ever-changing environment, pro- 

vide new algorithms and techniques for new database types, handle different 

kinds of complex queries with different but effective strategies, and incorporate 

newly developed techniques and algorithms into the systems. 

7.2.1 Indexing over Class Hierarchy 

Since DOOD supports class/subclass hierarchies, the access scope of a query posed 

against a class may be the instances of only that class or the instances of all its 

subclasses. Thus, it is important that an index for DOOD could support efficient 

retrieval of a class including or excluding its subclasses. 

Kim et al. [78] propose a class hierarchy tree, called CH-tree, which maintains only 

one index tree for all the classes in a class hierarchy. The performance shows that 

CH-tree performs better than that which supports one index for each class in a class 

hierarchy. The problem is that CH-tree does not support class/subclass relationships 

naturally. Retrieval of values in one class of a class hierarchy is treated the same as 

retrieval of values in a hierarchy of classes. 

Low, Ooi and Lu [91] present an index tree, called H-tree. A H-tree is main- 

tained for each class in a class hierarchy. These H-trees are nested according to the 

class/subclass relationship. A H-tree of a class in a class hierarchy is nested with 
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H-trees of its immediate superclasses in the class hierarchy. The index structure is 

constructed as a hierarchy of index trees. The index supports subclass and superclass 

relationships naturally and efficiently. 

The disadvantage of the H-tree is that the index structure is too complicated and 

requires many physical pointers among H-trees. The retrieval cost increases as the 

number of classes in a hierarchy does. In the retrieval of objects in some classes in 

a hierarchy, H-tree outperforms CH-tree. However, in the retrieval of all objects in a 

hierarchy, CH-tree could perform better than H-tree. Kilger and Moerkotte [77] take 

advantage of both CH-tree and H-tree, and propose CG-tree. It maintains one tree, 

CG-tree, which groups objects according to their key values. However, the objects 

belonging to the same class in a hierarchy are clustered in same pages or pages linked 

together. The leaf pages of a CG-tree are organized into several doubly linked lists, 

each corresponding to a class in a hierarchy. Each record in the second level of a CG- 

tree contains references for each class in a hierarchy. The other records in higher levels 

are similar to those in a B+-tree. The experiments show that if an application requires 

queries posed against several classes in a hierarchy, and the number of classes is large, 

CG-tree outperforms CH-tree and H- tree. Independently, Sreenat h and Seshadri [I131 

present a similar index structure, hcC-tree which solves conflicting requirements for 

querying only one class and all classes in a class hierarchy. 

7.2.2 Extensibility to Support Abstract Data Types and 

Search Strategies 

DOOD systems allow users to define new data types and access objects via arbitrary- 

defined methods. Efficient query processing requires that a query optimizer provide 

the extensibility to handle the changing environment by incorporating multiple strate- 

gies and newly developed techniques. 

EXODUS [40, 191, its successor Volcano [42], and Starburst [45, 541 are the typical 

representatives in achieving the extensibility of query optimizers [20]. In EXODUS 

and Volcano, a query optimizer generator is used to produce a query optimizer from 
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a rule-based specification of data model, query operators, access methods, costs, ap- 

plicable transformation rules, and execution algorithms. The extensibility is achieved 

by regenerating an optimizer with modifications to the new input information. Star- 

burst also takes a rule-based approach. However, grammar-like rules are used to 

generate database access operators from low-level operators. The construction of 

these database access operators provides extensibility in the sense that different ways 

of constructing these operators produce different methods of accessing databases. 

Lanzelotte and Valduriez [89] propose a solution of the extensibility of the search 

strategy in a query optimizer. Search strategies are specified independently from 

search spaces. A search space is formulated as follows: an initial state constitutes 

relations and predicates from an input query; a state corresponds to a join node 

in a processing tree [go]; a goal state is a join node corresponding to the complete 

processing tree; and an action is an expand method. Search strategies are classified 

into different classes, enumerative and randomized which include iterative, simulated 

annealing and genetic searches, and arranged into a search class hierarchy. The ex- 

tensibility of the search strategy in a query optimizer is achieved by the ability to add 

new search strategies into the search strategy class hierarchy. Mitchell, Dayal and 

Zdonik [96] present an extensible architecture for controlling an optimization process 

by providing multiple optimization control strategies and the ability to add new con- 

trol strategies. The optimizer consists of a collection of optimization regions. Each 

region can transform a query according to a particular strategy, a set of transformation 

rules and a cost model. The optimizer coordinates the movement of a query among 

the regions. Kemper, Moerkotte and Peithner [70] propose a similar extensible archi- 

tecture for searching optimal query evaluation plans step by step. The architecture is 

organized as a sequence of regions on a blackboard. A query is initially expressed in 

an internal form and put in the first region. A knowledge source between each suc- 

cessive pair of the regions transforms a query by moving it from a lower region to the 

next higher one. It can access information, such as database statistical information, 

database schema, etc., generate several alternatives and put them in the following 

region. An A* based algorithm is employed to search optimal query evaluation plans. 

The extensibility is achieved by the ability to add new knowledge sources between 
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any successive pairs of regions and to add new regions. 

7.3 Concluding Remarks 

DOOD systems enable natural representations of logical relationships among complex 

objects and classes with attribute relationships, class/subclass relationships and rela- 

tionships specified by user-defined methods and deduction rules. User-defined meth- 

ods and deduction rules provide extensible mechanisms to define and model complex 

and ever-changing relationships among objects. Exploration of logical relationships 

among complex objects in user's queries, user-defined methods and deduction rules 

require performing efficient navigation operations to get over with "gotos' on disks". 

This thesis has presented promising approaches to the problems in DOOD query 

evaluation with the following features. 

This thesis promotes set-oriented evaluation of navigation operations by trans- 

forming ob ject-at-a-time navigation operations into set-oriented access of appro- 

priate join indices or constraint-based evaluation of a sequence of joins. Both 

forward and backward navigations among complex objects can be performed 

efficiently through a series of logical relationships. 

Join index hierarchies support efficient navigations via a sequence of logical 

relationships specified not only by attribute relationships and class/subclass 

relationships but also by user-defined methods and deduction rules. This is 

achieved by storing in join indices the precomputed relationships specified by 

user-defined methods and deduction rules. Thus, the evaluation of computation- 

intensive methods and deduction-intensive rules is transformed into efficient, 

set-oriented and associative access of the materialized relationships. 

"Push constraint inside navigation" is accomplished by identifying different 

types of constraint conditions and applying appropriate optimization strate- 

gies. Thus inexpensive but highly selective constraints can be evaluated to 

eliminate irrelevant objects before costly navigation operations are performed. 



CHAPTER 7. CONCL USION AND FUTURE RESEARCH 

Common navigation operations are exploited among queries and user-defined 

methods by revealing the encapsulated methods. Query graphs are employed to 

represent different types of constraint conditions, to integrate different kinds of 

optimization strategies, and to generate efficient query evaluation plans. 

A normalization process is proposed to serve not only as a pre-processing stage 

for compilation and evaluation but also as a tool for classifying recursions. 

Rather than translating programs into datalog, our method extends the query- 

independent compilation and chain-based evaluation to process DOOD recur- 

sions with normalization. The query-independent compilation captures the 

bindings that could be difficult to be captured by other methods. The chain- 

based evaluation explores query constraints, integrity constraints, recursion 

structures, and other features of the programs with a set of interesting tech- 

niques, such as chain-following, chain-split, and constraint pushing. 

We are planning to extend LogicBase [50, 51, 521 into a DOOD system and to incor- 

porate the proposed strategies. This thesis will serve as a step towards efficient query 

evaluation in DOOD systems. 



Appendix A 

Evaluation of Some Parameters in 

Chapter 4 

Table 4.1 lists some database parameters which are used in the analytical cost model 

in chapter 5. The probability of an object in Ci-l which does not reference a particular 

object in Cj is 

( ) 

The probability of m objects in Cj-l which do not reference a particular objects in 

The probability of a particular object in Ci which is referenced by m objects in Cj-l 
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Therefore, the average number of objects in Cj  which are referenced by these m objects 

Hence, 

where 

The number of tuples in J I ( i ,  j) is 

Similarly, 

[~(Icil, ri, k)l i f j = i + l  bwd(i, j, k) = 
[p([C;I, r;, bwd(i + 1, j, k))l if j > i + 1 

The number of tuples in J I ( i ,  j) can also be calculated by 



Appendix B 

Sample Database 

Class PERSON Class ADDR 

Subclass STUDENT, PROF Attributes 

Attributes Country:COUNTRY 

Name: String City: CITY 

HomeAddress: ADDR StreetName: String 

Age: Int StreetNumber: Int 

ZipCode: String 

Class CITY 

Attributes 

Name: String 

Population: Int 

Area: Real 

Class COUNTRY 

Attributes 

Name: String 

Population: Int 

Area: Real 
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Class DEPT Class PROF 

Attributes Subclass CHAIRPERSON, PRESIDENT 

Name: String Attributes 

Chairperson: CHAIRPERSON Salary: Real 

OfferCourses: Set of COURSE TeachCourses: Set of COURSE 

OfferPrograms: Set of PROGRAM Dept: DEPT 

FacultyMembers: Set of PROF 

Class CHAIRPERSON 

Attributes 

Dept: DEPT 

University: UNIVERSITY 

Class STUDENT 

Attributes 

GPA: Real 

TakeCourses: Set of COURSE 

Major: PROGRAM 

Class COURSE 

Attributes 

Name: String 

Number: Int 

Dept: DEPT 

University: UNIVERSITY 

Class PROGRAM 

Attributes 

Name: String 

Depts: Set of DEPT 

Class UNIVERSITY 

Attributes 

Name: String 

President: PRESIDENT 

Depts: Set of DEPT 

Class PRESIDENT 

Attributes 

University: UNIVERSITY 

FromLargeCountryAndMetro: STUDENT + Boolean 

FromLargeCountryAndMetro(s:STUDENT):Boolean 

begin 

if (s.HomeAddress.Country.Population > 15,000,000 

and s. HomeAddress. Country. Area > 2,000,000) 

and (s.HomeAddress.City.Population > 1,000,000 
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and s.HomeAddress.City. Area > 500) 

then return(True) else return(Fa1se) 

end 

FromLargeCountryOrMetro: STUDENT -+ Boolean 

FromLargeCountryOrMetro(s:STUDENT):Boolean 

begin 

if (s.HomeAddress.Country.Population > 15,000,000 

and s. HomeAddress. Country. Area > 2,000,000) 

or (s.HomeAddress.City.Population > 1,000,000 

and s.HomeAddress.City. Area > 500) 

then return(True) else return(Fa1se) 

end 

ToplOWellPaidUniv: UNIVERSITY -+ Boolean 

ToplOPaidUniv(u:UNIVERSITY):Boolean 

begin 

n=O; 

for each v E UNIVERSITY do 

if (u.President.Salary 5 v.President.Salary) then n=n+l;  

if (n 2 10) then return(Fa1se) else return(True); 

end 



Appendix C 

Proof Sketch of Theorem 5.1 and 

Theorem 5.5 

In the following, Theorem 5.1 is proved when f = I .  The theorem can be proved 

similarly when f E {MAX, M I N ,  COUNT, AVG, SUM).  

1. ~ ( O . A ~ . . . A ~ ) ~ , B C ~ ,  is of type B(3). 

Assume 

L = {o(f(o.Al ... An),,8cq,, o E 0 0 )  

R = ~ ( 0 , )  (00 ---On-2 g( f (on-, 8cq2 ) (on-1)) 

we now prove that L = R. 

Suppose 00 E L, then f ( O ~ . A ~ . . . A ~ ) ~ , B C ~ ,  is true. There exists an object path 

(00~01, .. . , on-l) satisfying 00. A1 ... An and 01 = oo.A1, . . . , ok E ok-1. Ak, . . . ,on-1 = 

o ~ - ~ . A ~ - ~  if AnW1 is a single-valued attribute or on-1 E o , - ~ . A ~ - ~  if An-1 is a 

set-valued attribute, and on-1 .AnBcq2 . Therefore, (oO, 01, ..., on) is an instance of 

00 W - - - 0 n - 2  ~ ( f ( o n - 1 . ~ n ) q l ~ c q 2  )(On-1) 

and 00 E R. 

Suppose 00 E R, then there exists an object path (o07 01, ..., 0,-1) which is an 

instance of 

0 0  ...0n-2 ~ ( ~ ( O ~ - ~ . A ~ ) ~ , D C ~ ~ ) ( O ~ - ~ )  

145 
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01 = oO.A1, ..., o k  E ~ k - ~  .Ak, ..., = 0,-2 -An-l when An-1 is a single- 

valued attribute or E O , - ~ . A ~ - ~  when An-1 is a set-valued attribute, and 

0,-1 .An8cq2. Therefore, (00 ,  01, ..., on-1) satisfies o.A1 .. .An and f (oo.A1...An)ql dcq2 

is true, i.e., 00 E L. So L = R. 

2. f ( ~ . A ~ . . . A ~ ) ~ , d c ~ ,  is of type d(V). 

Assume 

L = (0lf(o.A1...A~)~,dc~,, o E  0 0 )  

we now prove that L = R. 

Suppose 00 E L, then f (oo.A1...An)q,8cq2 is true. For all object path (o0,01, ..., 0,-1) 

beginning with 00 (actually 00, ..., ok-1) satisfying oo.A I... A,, 01 = oo.A1, ..., 
ok E ok-1 .Ak, ..., 0,-1 = on-2.An-l when Andl is a single-valued attribute or 

0,-I E on-2.An-1 when An-1 is a set-valued attribute, and 0,-1 .An&,, . There- 

fore, all those (00,  01 ,  ..., on) are instances of 

and 00 E R. 

Suppose 00 E R. For all the instances (oo, 01, ... , on-1) of the following expression 

beginning with 00 (actually 00,  ..., ok-1) 

- 01 = oO.A1, ..., ok E ~ k - ~  .Ak, ..., on-1 - O ~ - ~ . A , - ~  when An-1 is a single- 

valued attribute or E O,-~.A,-~ when An-1 is a set-valued attribute, and 

0,-1 .AnOcq2. Therefore, all those instances (00,  01 ,  .. . , on-1) satisfy o.A1.. .An and 

f (~ .A~. . .A , )~ ,dc~,  is true, i.e., oo E L. So L = R. 

Theorem 5.5 is proved as follows. 

1. o.A1. ..An is a single-valued path expression. 
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Since the maximal common sub argument path expression of the method m 

is a single-valued path expression, the method can be be rewritten as mi (see 

Example 5.9) such that 

m(o) = m ' ( o . ~ ~ . . . ~ , ) .  

m1 can be considered as a method on the class 0, and 

where o E Oo, on E 0, and on = o.A l...An. Obviously, the first equation is true. 

Assume 

L = {o lmi (o .~ l  ... A,) o E 00) 

and 

R = ~(,,)(OO w w ami(,n) (On)). 

If o E L, then m i ( o . ~  1...An) is true. There exists an object path (0, 01, ..., on) 

satisfying o.A l...A, such that ol = o.A1, ..., on = 0,-1 .An. Thus mi(on) is true. 

(0, 01, ..., on) is an instance of the following expression, 

Hence, o E R. 

Assume o E R, then there exists an object path (0, 01, ..., on) which is an 

instance of the following expression, 

Therefore 01 = o.Al, ..., on = on-l.A, and mi(on) is true. Thus (0, ol, ..., on) 

satisfies o.A l...An and m ' ( o . ~ ~  ... A,) is true. Hence, o E L. It is proved that 

2. o.A 1...An is a set-valued path expression. The proof is similar to the above. 



Appendix D 

Unification Definition 

The unification of id-terms, is-a object molecules and predicates is similar to that 

in classical first-order logic. However, the definition of unification for data object 

molecules and signature object molecules is different [75]. 

Definition D . l  Object molecule unification. A substitution a is a unifier of object 

molecule O1 = I[. . .] into object molecule 0 2  = I[. . .] if and only if every attribute or 

method expression in a(O1) is also an attribute or method expression in ~ ( 0 2 ) .  

The unification between two object molecules is asymmetric. For example, I [M@X -+ 

Y] can be unified into I [M@U + V, A + W] with the substitution {M\N,  X\U, Y\V), 

but not vice versa. 

Definition D.2 Most general unifier. A unifier a is more general than a unifier P, 
denoted by a 4 P, if and only if there is a substitution y such that 

A unifier a is most general if for any unifier P, ,B 4 a implies a 4 ,6. 

There could be more than one most general unifiers such that one can be unified into 

another. For instance, both 
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are most general unifiers such that 

can be unified into 

IIP + U ;  Q t V ] .  

A set C of most general unifiers of O1 to 0 2  is complete if for each unifier 0 of O1 

to 0 2  there is a E C such that a + 0. 



Appendix E 

Proof Sketch of Theorem 6.1 

In the following, we show that a single linear recursion can be compiled into chain- 

forms. 

Proof Sketch. 

1. Correspondence between the method expressions in the rule head and the recur- 

sive object molecule in  the rule body of a linearly recursive rule. Since there 

exists a unique most general unifier such that the recursive object molecule in 

the rule body can unify with the rule head object molecule, there is a mapping 

from the method expressions of the recursive object molecule in the rule body to 

the method expressions of the rule head object molecule such that any two dif- 

ferent method expressions of the recursive object molecule in the rule body are 

mapped to two different method expressions of the rule head object molecule. 

2. Rectify the linearly recursive rule. 

0 The rule head and the recursive object molecule are rectified by 

- performing function-predicate transformations l, 

- replacing const ants with variables and putting the corresponding equa- 

tions between the constants and the variables in the rule body, and 

'a function f (XI ,  ..., X,) is replaced by f v and a functional predicate apply-f (XI ,  ..., X,, f v) is 
added to the rule body. 
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- making each variable occurrence only once and putting appropriate 

equations between the variables and new variables. 

Other object molecules are rectified by performing function-predicate trans- 

formations. 

3. Correspondence between variables in  the rectified rule head and the rectified re- 

cursive object molecule. Suppose 

are all the variables in the method expressions in the rule head which corre- 

spond to method expressions in the recursive object molecule in the rule body. 

According to I ) ,  there should be m variables in the rectified recursive object 

molecule 

{K, .--, Ym} 

such that Xi corresponds to k; for i = 1, . . . , m. 

4. V-matrix initialization and expansion [53]. 

Identify U-connection. Two object molecules in a rule body are connected 

if they share variable(s) with each other or with a set of connected ob- 

ject molecules. Two non-recursive object molecules in a rule body are 

U-connected if they share variable(s) with each other or with a set of U- 

connected object molecules. A set of variables are U-connected if they are 

in the same non-recursive object molecule or in the same set of U-connected 

non-recursive object molecules. 

V-matrix initialization and expansion. Copy 

into the first row of the V-matrix and 

into the second row. The rest of compilation process follows those in [53]. 
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