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Abstract 

The techniques of dynamic and static light scattering were used to characterize the size 

and shape fluctuations of large unilamcllar vcsiclcs made with the extrusion tech~liquc. At- 

t.cmpts were made to manipulate fluctuation amplitiidcs a n d  ti~ncscalcs by changing the 

temperature, viscosity, and excess surface area of the vesicles. By measuring the hydrody- 

namic radius of large unilamellar DMPC vesicles ( d ~  100 nm) as a function of temperature, 

a sharp decrease of the radius was observed at  23OC and this was attributed to the gel 

transition. However, no fluctuations were observed with the change of temperature. To 

decrease the decay rate of the fluctuations to a timescale that is more easily detected, the 

viscosity was increased by suspending the vesicles in a glycerol solution. No shape fluctu- 

ation timescales were observed with the increase in viscosity. To enhance the amplitude 

of the fluctuations, the effective surface area of DEPC vesicles was increased by creating 

an osmotic pressure difference with NaCl across the bilayer which resulted in a decreased 

volume. Vesicle suspensions a t  O%, 20%, 40%, and 75% volume-deflations were investi- 

gated. Aside from the timescale due to the translation of the vesicles, no other timescales 

were observed. The diffusion coeficient showed a scattering wavevector (q) dependence. By 

comparing the data  to simulated results with a known polydisperse Schulz distribution, we 

can a t  tribute this q-dependence to the polydisperse size distribution of the vesicles. The 

relative standard deviation of the diameter of the measured extruded vesicles was found to 

be 27%, much larger than expected. Unfortunately, one effect of the polydispersity is to 

obscure small amplitude clmnges of the shape of the vesicles. We believe that  due to the 

coln1)ination of thc polydispcrsity of the vesicle sample and tllc intrinsic small amplitude 

of the fluctuations, shape fluctuations in extruded vesicles of 100 nm can not be measured 

with these light scattering techniques. 
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Chapter 1 

Introduction 

Artificial vesiclcs and mc~nbrancs arc among thc Tcw biological s t r u c t ~ ~ r c s  l.hat call be (Ic- 

scribed with simple physical modcls. In the casc of the membrane, many of its properties 

can be modelled with a planar bilayer of molecules. One of the prime functions of the 

membrane in the cell is to act as a semi-permeable barrier to  the outside world, and in- 

deed, in laboratory experiments, the planar bilayer has been observed to selectivcly allow 

passage of substances across its width. Vesicles, which are "budded" from the membrane as 

illustrated in Fig. 1.1, can be modelled as a simple bilayer curved into a closed shape. Not 

surprisingly, physicists consider vesicles to be a useful model membrane system. Another 

aspect of vesicles that  makes them interesting to  researchers is the relative ease with which 

artificial vesicles can be produced in the laboratory. As such, vesicle experiments have been 

performed to  investigate the osn~otic properties of the bilayer (IIallett, 1993), the bending 

P I I C ~ ~ Y  of the bilayer (Evans and Needham, 1987), adhesion properties, and phenomena such 

as shape fluctuations and budding. From a fu~lctional point of view, vesicles are responsible 

for thc transport of proteins within the cell from the sitc whcrc they are produced to thc 

site where they are required. Biochemists, hoping to mimic nature, are developing artificial 

vesicles as carriers for drug delivery and attempting to  mark the drug-carrying vesicles for 

particular destinations in the body. 

Vesicles have the basic geometry of a hollow shell, with a certain amount of fluid inside. 

The shell consists of a bilayer of amphiphilic molecules and these molecules each consist of 

a llydrophilic "head" region and a hydrophobic "tail" region. Dispersed into solution, they 

may  self-assemble into structurcs to  shield the tails from contact with water. Hence, the 

molecules are brought into close contact via this hydrophobic effect. A common amphipllile 



Figurc 1.1: A very schematic picture of the budding process. The line represents the bilayer. 

in the cell is the phospl~olipid, which has a head region connected by a phosphate group 

and a glycerol nlolecule to the double llydropl~obic carbon chains in the tail region. Aside 

from vesicles, other sclf-assembled structures includc micelles and planar bilaycrs, as shown 

in Fig. 1.2. 

Thc property of the bilayer we are most interested in is its "stiffness". The quality 

of stiffness is characterized by a bending constant and is related to the energy required 

to bend the plane of the bilayer. It is generally believed that thc shape of the vesicle, at 

1)iologic;~I tcmperaturcs and sizes, is governcd for the most part by this bending cncrgy 

(IIelfrich, 1973). Sincc the bending energy for phospholipid bilaycrs is bctwccn 10 ksT to 

20 k s T ,  (Evans and Needham, 1987), the bilayer can experience thermal fluctuations and 

this will result in shape fluctuations of the vesicle. The fluctuations are further constrained 

by the constant volume and surface area of the vesicle. This can be understood in terms of 

the energy scales involved: the energy required to bend the bilayer is is much smaller than 

the cncrgy to change the surfacc area per lipid ~noleculc and hcnce thc surfacc area of the 

vesicle is conserved. The bending energy of the bilayer is also much smaller than either the 

energy needed to compress the fluid inside or outside of the vesicle. And, if the bilayer does 

not allow fluid transport across its width, so that the bilayer is impermeable on the time 

scale of the experiment and on the time scale of the shapc fluctuation, the vesicle volume is 

considered constant. Thus the escess area, which is defined as the surface area of the vesicle 

less that  of a sphere of the same volume, will characterize the fluctuations. 

Shape fluctuations have been observed in so-called giant vesicles using video microscopy 

techniques, (Duwe et al., 1990). Thcse giant vesicles, having diameters N 10 p n ,  are roughly 

the size of the red blood cell in the body. They are made by the gentle hydration of dry 

phospllolipid bilayers to produce vesicles that are a wide assortment of sizes with many that 



Figure 1.2: (a) A single amphiphile consisting of one hydrophilic head and two hydrophobic 
tails. Amphiphile self-assembled structures: (b) micelle, aqueous exterior with an oily 
interior; (c) inverted micelle, oily exterior with an aqueous interior; (d) vesicle, closed bilayer 
shell with aqueous exterior and interior; and (e) planar bilayer. 
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arc rl~ultilan~ellar, i.c. consisting of multiple bilayers. Only those vcsicles whicll appear to 

be unilamellar, that is they consist of a single bilayer, and which are considered to have 

a11 optimal esccss arca for fluctuations, arc tlicn isolatcd for study. Because stationary 

vesicles are desired for the microscope work, the fluid on the inside of the vcsiclc is rni~dc 

denser than that on the outside by washing the vesicles and then inserting thcm into a 

less dense medium. Thus, the vesicles will sink and translational motion will be inhibitcd. 

I n  t11c ~nicroscopc, bhc cross-scction of thc vcsiclc dcfincs it contour, wl~ich is obscrvcd to 

fluctuate about some time-averaged contour; it is this time dependence of the contour that 

is investigated. Results obtained for the bending constant are similar to ones obtained from 

planar bilayers. Although the n~icroscopy technique is straightforward and the results agree 

with thc predictions from theory, thcrc arc somc inhcrent difficultics: the dynamics of the 

observed 2-D contour, essentially a cross-section, are difficult to extrapolate to the dynamics 

of the 3-D vesicle. Also, the optical and time resolutions are insufficient to see short length 

scale fluctuations, which may carry significant excess area (Milner and Safran, 1987). And 

while analysis is performed on roughly 40 different vesicles, the bias in the choice of vesicle 

may not result in a representative sample. 

By examining a collection or an ensemble of vesicles, it may be possible to obtain better 

statistics of fluctuation measurements. Large unilamellar vesicles (LUVs), in which thc 

diameter is 100nm, are roughly 100 times smaller than giant vesicles and have a number 

of advantages over the latter. Not only are LUVs easily produced in the laboratory with 

a relatively uniform size distribution, they have the additional relevance of being similar 

in size to the transport vesicles in cells. They are, however, too small to be viewed using 

microscopy techniques and must be examined with a technique that is sensitive to  submicron 

length scales. As such, laser light scattering is the obvious choice for a suspension of these 

vesicles, since it is a probe of length scales comparable to vesicle size. 

But first it is important to better understand the behaviour of a suspension of vcsicles. 

If the suspension could be viewed in the microscope the individual vesicles would be seen 

to bc moving incessently in a random fashion, a behaviour called Brownian motion, as 

illustrated in Fig. 1.3. This behaviour is caused by the constant bombardment of the 

vesicles by the fluid molecules as they move about randomly due to their thermal energy 

and this leads to the diffusion of the vesicles. As the vesicles diffuse, a characteristic decay 

time can be associated with the diffusion and is dependent upon the size and shape of the 

vcsiclcs. Similarly, non-spherical vesicles may also havc an observable tumbling motion and 



Figure 1.3: A schematic representation of the Brownian motion of vesicles, which are drawn 
as circles. The arrows indicate the instantaeous velocity. 

a corresponding rotational diffusion decay time that  depends on the degree of asymmetry. 

By modelling the vesicle bilayer as having a bending constant such that the bilayer is not 

rigid, one can easily imagine shape deformation of the vesicle as it undergoes translational 

diffusion. A decay time may then be associated with the relaxation to the original shape 

which is dependent upon the characteristic "stiffness" or bending constant of the bilayer, as 

shown in Fig. 1.4. 

Shape fluctuations have been measured in the droplet phase of microemulsions, a physical 

system which is similar to vesicles; these emulsions consist of oil droplets coated with a single 

laycr of soap, suspended in water. Fluctuations were first nleasured by Iluang et  alfl987) 

from microen~ulsions of droplet size - 100 A using neutron spin-echo experiments, a form of 

neutron scattering. More recently, shape fluctuations of emulsions of a much largkr dmplet 

size N lpm, have been measured with diffusing wave spectroscopy (Gang et d., ~ ~ e p r i n t ) .  

DM'S is a technique of light scattering in the limit of a highly scattering sample, in which 

the light is scattered many times before exiting the sample. 

By scattering light from a suspension of large unilsmellar vesicles, we hope to a@wure 

1 1 i l u t t i o ~ s .  But LOW is ligl~t scattering a p r o b ~  01 fluctuations? The 

scattered light is actually an interference pattern that results from the light scattered from 

each individual vesicle. Furthern~ore, as each vesicle diffuses or rotates or ddorrn& the 



Figure 1.4: Timescale of possible shape deformation: The shapes represent one vesicle as 
it diffuses in time, with constant excess area. The left most shape is the time-averaged 
shape. The arrow indicates the push received from the fluid molecules which then results in 
the shape deformation. The shape then relaxes back to the time-averaged shape in time T, 
which is the decay time for the fluctuation. After a time larger than T,  the vesicle receives 
another push from the fluid molecules, and the cycle is repeated. 

interference pattern will change in time. By examining the time dependence of the scattered 

light, information about the dynamics of the vesicles can be obtained. 

Two typcs of light scattcring mcthods will be used: static light scattering and dynamic 

light scattering. Dynamic light scattering involves the correlation of the scattered intensity 

a t  a particular scattering wavevector. From a measurement of the intensity-intensity cor- 

relation function in time, information can be obtained about the characteristic decay times 

of the sample, with different types of motion having different characteristic decay times. 

1:rom the decay time obtained for the translational dilfusion, the llydrodynanlic radius of 

the particles can be extracted. Additional decay times found may indicate either rotation or 

fluctuation of the vesicle. Static light scattering, however, is the measurement of the time- 

averaged intensity as a function of scattering wavevector, which is essentially the f o m  factor 

of the particles. For spherical shells, this is the square of the zeroth order Bessel function, 

which has various maxima and minima. At a minimum, the intensity of the scattered light 

from the shell is dramatically decreased and, here, the signal from the fluctuations would be 

cnllanced. Any dynamic light scattering measurements made a t  this particular scattering 

wavevector would be most sensitive to the fluctuations. 

To briefly summarize the chapters in this thesis: the theory of light scattering is discussed 

in Chapter 2, specifically how the correlation function of the fluctuations in the sample 
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relates to  the correlation function of the scattered intensity, and how tile decay rate is 

related to the diffusion cocficient and the hydrodynamic radius for Browniail particles. 

111 Chapter 3,  the experimental apparatus and set-up, the sample preparation, and the 

experimental procedure of the light scattering experiments on vesicles are described. In 

Chapter 4, the general form of the esperimental data measured is shown and the programs 

used to fit the data  are described. The remainder of the chapter is a discussion of the effect of 

polytlispersity on the data and the analysis. The esperimental results from light sca t t c r i~~g  

from vcsiclcs arc prescntcd and analyzed in Chapter 5. Chapter G is a brief summary of this 

h ( ' l ' i ~ h  or C S ~ ) C ~ ~ I ~ ~ C \ I I ~ , S ,  i111(1 i~ (liscussio~l of possiI)I~ ~ I I ~ I I ~ C  work. 



Chapter 2 

Light Scattering and Vesicles 

Light scattering is a useful non-invasive probe of submicron Iciigth scales. Thc light is 

scattered from all of the particles in the sample and the resulting interference pattern is 

analyscd to obtain infornlation about the particles' structure and dynamics. Appropriate 

samples arc non-absorbing, non-nmgnelic and dicicclric in cllaractcr - with examples in- 

cluding fluid mixtures and suspensions of Brownian particles, such as the vesicles in which 

we are interested. This chapter is a brief description of how the light is scattered and in 

what way the scattered light relates to the sample, with an emphasis on scattering from 

Brownian particles. 

2.1 Light Scattering Theory 

The basic geometry of a light scattering experiment is shown in Fig. 2.1: from a coherent 

source such as a laser, light enters the scattering cell and is scattered in all directions by 

the sample. The position of the detector which measures the intensity of scattered light 

ticfines the scattering angle 0, and the intersection of the incident light beam and that  of 

the scattered light intercepted by the detector is called the scattering volume. 

The  incident electric field can be described as a monochromatic plane wave, 

where ii, is in the direction of the incidel~t polarization of the electric field, E, is the 

field amplitude, and w, is the angular frequency. The incident wavevector k; poillts in the 

direction of propagation of the incident wave and has a magnitude of (kil E T, where Ai 



CHAPTER 2. LIGHT SCATTERING AND VESICLES 

Scattering volume 

Incident light Transmitted light 

" tSak Scattering " 

light Scattered\\/ 

B e t  ect or 

Figure 2.1: Basic light scattering geometry 

is the wavelength of the incident light in vacuum and n is the index of refraction of the 

scattering medium. 

An important quantity which is related to the geometry of the set-up and in particular 

to the scattering angle, is the scattering wavevector q. It is the difference in wavevectors of 

the incident and the scattered light, with the latter pointing in the direction of propagation 

of the scattered wave intercepted by the detector. As little energy is absorbed or lost in 

quasi-elastic light scattering, the magnitudes of the incident and scattered wavelengths are 

comparable, and so Ik;( 2 Ikfl. Then using conservation of momentum and the law of 

cosincs, the magnitude of scattering wavevector is given by 

whcre 6' is the scattering angle bctwcen k; and kf .  
The scattering volume of the sample can be considered as a collection of many tiny 

subsections, with the size of each one being much smaller than a wavelength of light. As 

such, each subsection has a local density and in turn, a local dielectric constant which 

governs the response of the medium to the incident field. The local dielectric constant of 

the scattering medium can be represented as a sum of an average term and of a fluctuation 

term, 

~ ( r ,  t )  = &,I + 6e(r, t )  , (2.3) 
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where I is a second rank identity tensor, and SE is the tensor representing the fluctuations 

of the dielectric constant. Tensor quantities are required for a complete description becausc 

of the optical anisotropies characteristic of many particles. These anisotropies result in the 

so-called depolurizution of the signal, i.e. there exists some component of the induced dipole 

nloment not parallel to the applied field. 

To the subsections of the sample, the effect of an incident light beam is that of an 

oscillating clectric field and as each one expcricnces a force tluc to this field, chargcs i ~sc  

accelerated and oscillating dipoles are induced with the frequency of the incident light. 

From classical electromagnetic theory, an accelerated charge produces radiation of energy 

and in this instance, the radiation is simply the scattered light. Since each subsection can 

then bc considered a source of scattered light, the scattered light as seen by the detector 

is actudly an intcrfcrcnce pattern resulting from interference from the radiated fields of 

different subsections. 

From solving Maxwell's equations in a far-field approximation1, the component of the 

scattered field with polarization hf is given by 

Eoei(kl  R-wt t )  
Es(R, t )  = 4; 

4x&,R x [J tJ d3r eiq'r6e(r, t ) ]  if 

where SE, (q ,  t )  is the component of the spatial Fourier transform of the dielectric constant 

iluctualion tensor, along tllc initial and final polarizations. Not only is the scattered field de- 

pendent upon the dielectric constant (density) fluctuations of the sample but the wavevector 

of the fluctuation that gives rise to the scattering is equal to the scattering wavevector. 

As the local densities of the sample change due to thermal fluctuations, etc., the inter- 

ference pattern will also change in a somewhat random manner in time, and this will result 

in a similar fluctuation of the scattered light. Correlation functions, which are a measure of 

the similarity or correlation of a property as it varies over time and/or space, can be used 

to characterize the fluctuations. The field-field correlation in time is written as 

Hence the autocorrelation of the scattered field is directly proportional to the autocorrelation 

of the dielectric constant (density) fluctuations and, by h d i n g  the former using experimental 

' A  detailed derivation of the results from electromagnetic theory can be found in in Chapter 3 of Berne 
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metllods, information about tllc latter may also be inferred. This type of ligllt scattering is 

referred to as dynamic light scattcring or photon correlation spectroscopy. 

Incidently, the temporal Fourier transform of the field-field correlation fullctioll is tile 

power spectruni of the scattered light, which is the range of its frcclucncy components. 

Illtcrfcromctry, which is csse~ltially the m e a ~ u r ~ m e n t  of the frc~llcncy spcctrllln of 

light intensity is then another method of detection and in such a way, the power spectrulll 

of the density fluctuations of the sample can be measured. However, this method is llot 

suitable for measuring vesicle shape fluctuations because, while the timescales of interest 

are in the the 1 liIIz to 1 MIIz range, while the incident wave is of N 1014 Hz and a good 

interferometer can only measure A f/ f = lo-'. 

Static light scattcring is thc measurement of the total scattered light as a function of 

the scattcring wavevector for a very narrow rangc of frequencies. Mathematically, it is 

the integral over time of the power spectrum for a particular q. As such, the scattered 

interference pattern will depend on the position of   he particles in the sample, i.e. the 

structure factor, and the internal structure of the particles, i.e. the form factor. For example, 

a suspension of identical spheres will have a structure factor of unity because the spheres 

are randomly located, and the form factor of the square of the first order Bessel function. 

Howver, a suspension of spherical shells will have the form factor of the square of the zeroth 

order Bessel function. Hence, at  the appropriate minima of the Bessel functions, the light 

scattered from the particles will be much diminished. 

2.2 Scattering from Brownian Particles 

Brownian particles were first observed in 1328 by Robert Brown as the incessant random 

motion of lnicroscopic pollen grains. By scattering light from these particles and correlating 

the resulting interference pattern, information can be obtained about their size and shape. 

Assuming that  the scattering particles are monodisperse in distribution, i.e. identical in 

size and in shape, the amount and polarization of the light scattered from a n  individual 

particle is determined by its molecular ~olar izabi l i t~ .  This microscopic quantity is the 

collective measure of response of the molecules of the particle to an applied electric field 

and is therefore a property of the arrangement of the molecules and the overall shape of the 

particle. However, the polarizability can be affected by motion of the  article. For example, 

the re-orientation of a non-spherical particle due to rotational motion will result in some 
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depolarization of the scattered light, but the scattering due to tra~lslalional motion of thc 

particle will not. 

I t  is important to assume first, that the particles are isotropic with an average polariz- 

ability, and second, that the size of the particles is small in comparison to the wavelength 

of light. In addition, since the amount of light scattered from lllese particles is a great deal 

more than from the density fluctuations of the suspending fluid and the time scales for the 

latter are also typically orders of magnitude smaller, the contribution from the fluid medium 

can be neglected for dynamic light scattering measurements. The detected scattered field 

is then proportional to the sum of the contribution scattered from each particle j in the 

scattering volume, 
N 

where the total number of particles in the scattering volume is N,  and nJ is average polar- 

ization of the j t h  particle. Using Eq. 2.6, the autocorreiation function of E can be expressed 

j=1 

This expression can be simplified by assuming the particles to  be statistically independent 

and identical so that  the result of the summation over the scattering particles is a factor of 

N . Therefore, 

and the field-field correlation is expressed as a function that  is dependent on three factors: 

the mean number of particles in the scattering volume, the polarizability of the particles, 

and the positions of the particles. 

The exponential -factor of Eq. 2.8 can be written as the mean value2 of an exponential 

for some arbitrary distribution such that 

where 

f's(R7~) (h (R  - [ r j ( ~ )  - rj(O)])) 7 

2 T h e  mean value of x is defined a s  

(x) = J r P ( l ) d x  , 

where P ( s )  is t he  probability distribution. 
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is a general probability distribution wllicll describes the location of each particle in the 

scattering volume. A particle experiencing 13rownian motion is modelled as cxccutil~g a. 

random walk consisting of many steps. Each step is independent of the previous step and 

is also equally likely to have any direction and so it is well known that the location of the 

particle can be described by a Gaussian distribution. For times long in comparison to the 

step time, the probability of a particle found at  a distance T away a t  time t later is givcn 

by a simple Gaussian function, 

where D is the diffusion coefficient. Upon substitution into Eq. 2.9 and followed by substi- 

tutioll into I3q. 2.8, tlic result of the integral is given by 

And thus the correlation function obtained from Brownian particles shows an exponential 

relaxation in which the decay rate is dependent upon the diffusion coefficient of the particles. 

This diffusion coefiicient in combination with hydrodynamic relations can yield further 

information about the size and possibly the shape of the particles. The Einstein relation for 

where kB is the Boltzmann constant, T is the temperature, and J is the friction constant. 

In the Stokes approximation, 

J = 6 ~ r l ~ ~  7 (2.14) 

where 7 is the viscosity and T ,  is the hydrodynamic radius of a sphere. Therefore, by finding 

the decay rate of the correlation function measured in experiment, the diffusion coefficient 

and the hydrodynamic radius of the Brownian particles can be calculated. 

2.3 Shape Fluctuations 

The vesicle is modelled as a thin hollow shell and can be thought of as a fluid droplet with 

constant volume and area. Its shape is determined by the bending energy of the bilayer 

as given by the Helfrich expression (Helfrich 1973) and any fluctuation of this shape can 

be described in terms of its deviation from a sphere. The work of Schneider, Jenkins, and 
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\\'ebb (19S.l) on thc hydrodynamics of droplet fluctuatiolis dcter~nincd the tinic rate of 

c.lla~rgc of the droplet shapc, and this thcory was further estcndcd to  include tlic casc of 

nonzero spontaneous curvature and the constraint of constant escess area by Milncr and 

Salran (1%:). The csccss arca is delinctl as the area of thc droplet Icss Illat of tllc spl~erc 

of the same volumc and it is this quantity that cliaractcrizcs the fluctuations. 

The contour of the droplet's surface is described by its distance from thc chosen origin, 

which is located witllin tlie droplct , 

where R is the solid angle as measured from the vertical axis. The F, are the spherical 

11a.rmonics - a set of orthonormal functions over a unit sphcrc, and ul, is the amplitude 

of the particular mode. r0 is a parameter that sets the lengthscale of the distorted shape. 

By specializing to an axi-symmetric shape and assuming the equipartition of energy, the 

cspression for the mean square amplitude of fluctuation is given by 

where 

and T is the temperature. The Lagrange multiplier, y ,  which accounts for the constraint 

of constant excess area, physically corresponds to a lateral tension arising from the higher 

modcs requiring more excess area than the lower modes. K ,  is the bending elastic modulus 

and it is this quantity that determines the "stiffness" of the bilayer. 

Because the modes are overdamped (Brochard and Lennon, 1975), the angular frequency 

of each mode is actually an imaginary frequency. This decay rate is given by 

where 

and rl is the viscosity of the fluid. In the limit of a stiff membrane, the lowest energy mode 

is forced to accept the escess area and this mode will develop a large amplitude and hence 

thc droplet will become an ellipsoid, as discussed by Peterson (1988). 
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Using nlicroscope techniques to observe giant Di-inyristol I'l~ospl~aticiylclloli~le vcsicles 

( I . ,  = 9 .91pn) ,  the lowest order mode was found to Ilavc an a~nplitudc of 1prn ; ~ n d  iL  

correspo~lding relaxation time of 2.55 seconds, (Duwe et al., 1990). By scaling these results 

for large vesicles, in which r N 50nm, the amplitude scales as r and the relaxation time 

scales as r3, and thcrcfore, an amplitude of 5 nm with a corresponding relaxation timc of 

.v 320 ns is expected. 



Chapter 3 

Experimental Details 

Two types of light scattering experiments, static light scattering and dynamic light scatter- 

ing, were performed to investigate the size and shape fluctuations of vesicles. This chapter 

contains descriptions of the light scattering apparatus and equipment set-up, the vesicle 

suspension preparation and the general experimental procedure that was followed. 

3.1 Equipment Set-up 

'L'hc light scil.tt~i.i~lg set-up used for both t lyni~~nic and static mca.surcments was built by 

ALV of Langcn, Germany. It consists of a laser, alignment optics, a temperature-controlled 

scattering chamber, detection optics including a photomultiplier tube, and a correlator. The 

mounting of the detection optics on a motorized control allows light scattering measurements 

to made a t  a range of scattering angles. Alignment of the incident laser beam and the 

detection optics is such that for each possible scattering angle, the centre of the scattering 

volume coincides with the center of the scattering cell. The optics are enclosed to minimize 

the effect of stray light. To isolate the experiment from external noise and vibration, the 

entire set-up is mounted on a floating Melles Griot optical table. 

3.1.1 Froill Source to Detection 

A schematic of the apparatus is shown in Fig. 3.1. The incident light from a 35 mW 

helium-neon laser, Spectra-Physics Model 127, has a wavelength of X = 632.8 nm that  is 

initially horizontally polarized. In the path of the beam between the laser and the scattering 
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Figure 3.1: Top view of experimental set-up 

chamber are two reflecting mirrors, a half-wavelength plate, an attenuator, and a focusing 

lens: the relecting mirrors simply direct the incident beam through the center of the sample 

volume. The half-wavelength plate rotates the polarization of the light by 90' to  a vertical 

polarization. The beam then passes through an attenuator which may be used to adjust 

the intensity of the beam to keep the scattered light to  levels safe for the photomultiplier 

tube. ,4 beamsplitter is used to direct a small part of the incident beam to a photodiode 

which monitors the incident intensity, a second photodiode also monitors the transmitted 

intensity. And finally, the lens focuses the beam onto the centre of the scattering cell. 

The scattering chamber is shown in detail in Fig. 3.2. It is of cylindrical symmetry 

and consists of a quartz vat filled with fluid in which sits the glass ampule containing the 

sample. The fluid, usually toluene, typically has an index of refraction comparable to the 

scattering cell and is used both to regulate temperature and to reduce reflections and stray 

light a t  the fluid/sample cell interface. The ampule is also of cylindrical symmetry and is 

accurately located on the optical axis of the apparatus by the use of a collet, which may be 

tightened to secure the ampule. The vat has an entry window for the entrance beam and an 

esit window for the transmitted beam which is also parallel to the optical axis. It is housed 

in a hollow casing constructed to allow the incident and transmitted beam to enter and esit 
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Scattering chamber 

Figure 3.2: This is the scattering chamber 

the chamber. The casing encloses the entire vat except for a thin half-circle slice from which 

the scattered light can be detected through the glass walls of the vat and for the opening 

in the top through which the sample ampule can be inserted and removed. Water from a 

Neslab RTE-100 Refrigerated Bath/Circulator is pumped through the hollow casing to act 

as a ther~nostatic control, with a temperature range from -15OC to +130•‹C with stability 

f O.Ol•‹C. A platinum resistance thermometer in the toluene measures the temperature and 

this is taken to  be the temperature of the sample. 

In the single scattering regime, in which there is a low probability of scattering, most of 

the light is transmitted. However, the light that is scattered by the particles is scattered in 

all directions. In the plane of the detection optics, the cylindrical symmetry of the vat leads 

to the low angular deviation of the detected light, although there is always some reflection 

of the light a t  each interface. 

While the detection optics are mounted on a motorized platform or goniometer, the 

range of possible scattering angles is 16' 5 9 5 150' and does not extend to a wider range 
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of mgles due to both stray light problerns from the incident and transn~ittcd beams, alrd 

11lcc11,~nical obs~ruction. The detection optics of the scattered light consists of two pinholes. 

an optio~lal polarizer, one lens, and a plloto~llultiplier tube. Each pil~llolc is 400 pnl i l l  

diameter. The first pinhole is the entrance pupil and defines Aq, the range of the scat tering 

wavevector, while the second pinhole is the exit window and defines the width of the beam 

as <wl" by the photon~ultiplier. The lens, which sits between the pinholes, images the 

sample volume onto the surface of the photomultipler. The signal from the photomultiplier 

tube is sent to the ALV-Correlator mounted in a Zenith 386 PC. 

3.1.2 Photomultiplier 

The scattered light falls on the photomultiplier where each photon is amplified to produce 

a current pulse. The total number of pulses n in a time At is given by 

where I ( t )  is the intensity defined as the number of photons hitting the area of the pho- 

tocathode per unit time, and Q is the quantum efficiency of the photomultiplier. Current 

pulses are counted in a digital correlator, and a correlation function is calculated. Since the 

number of counts in a time At is proportional to the total intensity I ( t ) ,  the photon count 

correlation is equivalent to an intensity correlation. 

3.1.3 Correlator 

The basic algorithm for a digital photon count correlator is as follows: input pulses are first 

counted for a sample time St and then stored. The current count is multiplied by a delayed 

count, which had been counted some time T = k6t previously, where k is an integer, and 

this time is called a'lag time. Then, this is followed by a summation of the products. The 

storing of the count, the n1ultiplic;ztion and the summation steps a,rc performed for several 

channels or lag times in parallel. From the algorithm, the measured correlation function is 

thus 

The apparatus used here incorporates the ALV-5000 Multiple Tau Digital Correlator. 

This correlator has lag times that  are a logarithmically spaced series, as obtained by in- 

creasing the original by powers of two, to provide a much larger range of detection for long 
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decay times. With 35 different sample times ranging from 0.2 ps to just under 4 minutes, a 

range of lag times from 0.2 ps up to several hours call be sampled. 

i\nothcr cllaracteristic of this correlator is that it performs a real-time co~nputation of 

the photon correlation function. At times less than 3 ms, the calculation is performed in 

I I , I ~  t lwarc  wit h 8 x 8 bit proccssi~rg Tor maximurn s p e d .  111 t liesc~ lag linirs, tri~nrat,inn 

errors are neglible since the number of counts is small and so the nurnbers to "carried over" 

are small. Each time the sample time is doubled, the computational load is decreased by 

a factor of two and so eventually the computation can be continued in software. At times 

above 3 ms, the calculation is performed in software with 16 x 1 G  bit processing, since speed 

of calulation is not so crucial but the increased accuracy is needed. 

The other function of the correlator is to normalize the correlation function. The cor- 

relator has two sets of monitors, "direct" and "delayed". The "direct" monitor records 

the exact sum of counts for each of the 35 sample times. The "delayed" monitor records 

the sum of counts processed for each lag time above the 1Gth channel. In the symmetric 

~~ormalization scheme, the normalized correlation function g 2 ( ~ )  is calculated to be 

where G z ( r )  is the raw correlation function, no is the sample-averaged count from the 

direct monitor and n, is the sample-averaged count from the delayed monitor. This form of 

~torlnalization significantly decreases the relative noise a t  large lag timcs over a normalization 

form with only a single set of monitors (Ruf, 1987). 

3.2 Sample Preparation 

Tllrec different types of vesicles were tested for their suitability: spontaneous surfactant 

vesicles, pH-jump vesicles, and extruded phospholipid vesicles. Surfact ant vesicles were 

produced following the method of Kaler (1992) using the surfactants cetyl trimethylam- 

nlonium tosylate (CTAT) and sodium dodecylbenzenesulphonate (SDBS). These so-called 

spontaneous vesicles form upon the dispersion of dry anionic and cationic surfactant into 

water. It is believed that the anionic and cationic surfactants combine into pairs to form 

wedge shapes and that these wedge shapes can fit together with some sort of natural cur- 

vature. IIence, by varying the relative amounts of surfactant, different vesicle sizes could 

then be accessed. The attraction of this method is in the ease with which various sizes of 



vesicles can be made and that these vesicles should be a thcrmodynan~ically stable phase. 

Ilowcvcr, while some of the mean vesicle sizes obtained were larger than for the extruded 

vesicles, the spontaneous vesicles were found to not only be very polydisperx but also to 

have multimodal distributions. 

Following the procedure of Li and IIaincs (1986), 1111-jump or pIl adjustment vesicles 

were made. This method consists of dissolving an anionic lipid di-oleoyl phosphatidyl- 

ethanolamine (DOPE) in a KC1 salt solution, adjusting the pH (raising it to about p H  10.65) 

and then rapidly lowering it to the original pII (pII 8.6). It is believed that balance between 

the attractive vs. repulsive interactions of the inner monolayer results in a spontaneous 

curvature. These vesicles ( T  N 200 nm) were found to vary from batch to batch with 

different sizes and degrees of polydispersity. Although the distributions were unimodal, 

they were wider than those obtained for the extruded vesicles. 

The technique of extrusion involves the use of pressure to push the phospholipid suspen- 

sion through double polycarbonate membranes. Extruded vesicles, in comparison to  those 

produced by other methods, are more monodisperse and can be made fairly consistently 

(Olson et al., 1979). Through freeze-fracture electron-micrographs, it has been found that 

100 nrn pore-size filters produce 100 nm diameter unilamellar vesicles with a relatively nar- 

row size distribution, while increasing the pore size increases not only the average size but 

also the distribution of sizes and the occurrence of multilamellar vesicles. The size distri- 

bution has also been found to vary with the number of extrusion passes, with the greatest 

difference occurring in the first two passes, by the tenth pass, the extrusion process seems to 

have very little effect on the distribution of the suspension. It is believed that those vesicles 

sn~aller than the filter pore size will, once formed, pass unaltered through the filters (Clerc 

and Tllon~pson, 1994). 

The pl~ospl~olipids used were Di-elaidoyl Phospl~atidylcholine (DEPC) and Di-myristoyl 

Pl~osphatidylcl~oline (DMPC) purchased from Avanti Polar Lipids. Although both these 

pl~ospholipitls have the same headgroup regions, their tails differ in the numbcr of carbon 

atoms. In each tail, DMPC has 14  carbons and no double bonds while DEPC, depicted in 

Fig. 3.3, has 18 carbons with a trans-bond, which is the more stable double bond configu- 

ration. 

Dry pl~ospholipid was dispersed into the appropriate solution - de-ionized water, NaCl 

solution, or glycerol solution - to a concentration of 1 mg/ml of lipid. Once hydrated, 

the lipids spontaneously assemble to form closed multilamellar structures of varying shapes 
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Figure 3.3: Chemical Structure of phospholipid DEPC. A phospholipid consists of a hy- 
drophilic head region connected by a phosphate group and a glycerol molecule to the two 
hydrophobic carbon chains in the hydrophobic region of the tail. 

with sizes of 5-10 pm. 

The phospholipid suspension was then subjected to a freeze-thaw procedure, which is 

found to produce more vesicles of unilamellar character rather than of multilamellar char- 

acter (Hope et al., 1985). This procedure consists of 5 freeze-thaw cycles with each cycle 

consisting of the following steps: 5 minutes of immersion in liquid nitrogen to freeze thc 

suspension, followed by approximately 5 minutes in a heated bath set a t  w 40•‹C to thaw 

the suspension, followed by approximately 5 minutes of vortexing (i.e. shaking) to mix the 

suspc~ision. Icc formation during frcczing is belicved to disrupt thc multilclycrs m d  prornotc 

solute equilibrium. 

The vesicle suspension was then pressure filtered or extruded through two stacked Nucle- 

opore membrane filters using the Lipex Extruder, as schematically shown in Fig. 3.4. The 

cxtruder has 10 mL capacity and is constructed so as to allow temperature control of an 

extrusion using a water bath. Extrusion of the suspension was performed at  400 psi and a t  

25•‹C for DEPC phospholipid and 40•‹C for DMPC phospholipid. After 10 successive passes 

through the Extruder, the suspension was diluted to the desired concentration with the 

appropriate filtered solution. The pore size of the membrane filter used was either 100 nm 

or 200 nm, depending on the size and distribution of vesicles desired. 
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Figure 3.4: Multilamellar structures are pushed tlrrough the liltcrs to become unilamcllar 
vesicles 
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3.3 Experimental Procedure 

The sanlple is n u d e  via the steps in Section 3.2. Since dust in the sample is a serious problem, 

great care is taken to  avoid contaminating the sample with dust and most of the preparation 

work is carried out in a laminar flowhood. Dust that is much larger than tllc particles of 

i~~ tc rcs t  scatters a g r ~ i ~ t  (lea1 of light and will distort the hilsclinc of thc correlation f~lnct.ion. 

Dust that  is about the same size as the sample particles may lead to false conclusions about 

the dynamics of the particles. Samples with obvious dust contamination, as observcd in 

the count rate or in the shape of the correlation function, are filtered or re-extruded or 

discarded. However, dust that is particle-sized could not be filtered out. Thc suspension 

is diluted to a final concentration such that the particles are 100 particle lengths apart to 

minimize multiple scattering and interparticle interactions. For phospholipid vesicles a t  this 

concentration, thc suspension appcars marginally cloudier than purc watcr. 

The glass ampule which holds the sample to be measured is checked for scratches and 

imperfections which may distort the light. Its exterior is also cleaned before insertion into 

the scattering chamber to avoid corltamination of thc toluenc in the vat. Once the ampulc 

is in place, the transmitted beam is checked to see that the ampule is centered on the 

beam by using the position of the beam as an indicator, because deviation of the beam 

is usually caused by an uncentered ampule. The sample is then allowed to equilibriate to 

the set temperature before measurements begin. Intensity of the beam is adjusted via the 

attcnuator if the sample is strongly scattcring to kccp thc count rate a t  lcvcls safe for the 

photomultiplier. 

For dynamic light scattering, the expression 

as discussed in Degiorgio and Lastovka (1971), was used as a guideline to  set the mea- 

surement time t ,  where l? is the characteristic decay rate of the sample for the particular 

scattering angle. Note that the measurement time required for the same precision is longer 

for a slow decay rate (large lag time 7) than it is for a fast decay rate. However, if the 

count rate is too low, there will be noise in the fast channels due to the small number of 

accumulated counts therein and the total measuring time t must be increased. 

The polarizer, located among the detection optics, transmits only light of a particular 



polarization while light othcrwisc polarized is bloclicti with a 99% cficic~~cy.  For the fol- 

lowing cspcriments, since the incident light is vertically polarized, the main con~poncnt of 

scattered light is similarly polarized, while the other scattered co~npo~lcnts are colisidc~ctl to 

be dcp10ri;cd. The polarizer, set to transmit mainly horizontally polarizctl light, was usctl 

to increase the signal of dcpolarizcd scattering relative to the main cornpor~cnt of thc S C ~ L L -  

trrctl light, since rotational diffusion and fluctuations arc believed to rcsult in a dcpolarizctl 

signal. 



Chapter 4 

Methods of Analysis and 

Polydispersity 

The time dependent intensity-intensity correlation function g 2 ( r )  was computed by the 

- 4 L V - 5 0 0 0  correlator for light scattered from a suspension of vesicles. Various curve fits 

were then attempted to determine the number and the values of individual decay rates. 

While an exponential decay is espected from the translational diffusion of the vesicles, the 

presence of a second decay time may indicate the presence of shape fluctuations. Should 

the fluctuations have such a small amplitude that a second decay time is not determined, 

systematic deviations of tllc crponcntial dccay at  short r will indicatc them indircctly. Thc 

difficulty of fitting the correlation function is further complicated by the problem of polydis- 

persity, meaning that  the sample is not monodisperse but has a distribution of particle sizes. 

This polydispersity influences the shape of the correlation function g z ( r )  and the scattered 

intensity I ( g ) .  

In this chapter, the form of the data is discussed, as are the fitting procedures. The 

remainder of the chapter is an analysis of the effects of polydispersity on modelled data. 

4.1 Analysis 

Although the measured quantity is the intensity-intensity correlation, 

g2(7-) = ( I ~ s ( ~ ) ~ s ( r ) l ~ )  , 
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the quantity that is calculated through theory is the field-ficlrl correlation function, 

How are the two related? As a result of the many particles in thc scattering volume and 

their independence, the total scattered field is considered to be a sum of independent random 

variables. The Central Limit Theorem then implies that  the scattered field, whicll itself is a 

random variablc, must bc distributed according to a C;aussian distribution. Because such ;I. 

distribution is completely cllaracterized by its first and second moments, its higher moments 

can bc written in tcrnls of the first two: 

in which ,D is a geometrical factor of the esperimental setup. Because this relation is valid 

when thc number fluctuation of the particles in and out of the scattering volume is small, ss 

explained above, deviations will be on the order of 1 /N,  where N is the number of particles 

in the scattering volume. 

A typical normalized intensity-intensity correlation function obtained from experiment is 

shown in Fig. 4.1. The general shape of the function is exponential but not single exponential 

- its initial slope is called the decay rate, its asymptotic value is referred to as the buseline, 

and its y-intercept is the amplitude of the decay. As discussed in Section 2.2, the correlation 

function for a sample of diffusing identical particlcs should be a single exponcnlial. That  this 

is not the case, is a signal that the vesicles are polydisperse and perhaps are also exhibiting 

more than one type of motion, i.e. other than translational diffusion, since both have the 

effect of distorting the exponential. 

Because of the polydispersity, there will be contributions to the correlation function from 

the entire distribution. Particles larger and smaller than the average size will have contribu- 

tions slower and faster than that of the average size. A "smearing" effect will be produced 

and this will increase with increasing polydispersity; and so the resulting correlation function 

will have the shape of a distorted exponential. 

A second time scale may similarly result in a distorted exponential for the correlation 

function. Two types of motion of the vesicles could be the cause of this additional time 
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Figure 4.1: Typical-correlation function measured using DLS from a sample of extruded 
vesicles. The initial slope is the mean decay rate, the y-intercept is the amplitude, and 
the asymptotic value is the baseline. These were DEPC vesicles extruded through 100 nm 
pore size filters, measured a t  a scattering angle of 90' and at  a temperature of 25OC. As a 
comparison, the dotted line represents a single exponential decay. 
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scale: shapc fluctuation and rotational diffusion. Vesicles fluctuating in shape will have a 

time scale 011 the order of 10 liIIz to 10 MIIz associatctl wit11 their fluctu,ztion, as cliscussecl 

in Section 2.3. It is likely that the shape fiuctuation's amplitude relative to that of the trans- 

lational diffusion is quite small and so wliile a second dccay is not obvious, the cffcct of thc 

fluctuation could bc a distortion of the correlation function away from a single expor~cntial. 

Alternatively, the additional time scale could be associated with the rotational diffusion of 

an ellipsoidal vesicle; depending upon the stiffness of the bilayer, the time-averaged vesicle 

shape may be spherical (in the floppy limit) or it may be ellipsoidal (in the stiff limit). 

Although the time scale for rotation is supposedly much closer to that of translation than 

that for the shape fluctuations, it is unclear that  the effects are independent. A collection 

of vesicles fluctuating from one cllipse to another may very well appear as a collection of 

rotating ellipses. 

So then the task is to analyse the correlation function to quantify the polydispersity of 

the vesicles and to  distinguish the presence of additional time scales. By writing the field- 

field correlation function as an integral of correlation functions averaged over the distribution 

of decay rates w ( r ) ,  it can be recognized as the Laplace transform of w(I'), 

assu~ning positive decay rates. To find the distribution of decay rates, the correlation 

function must be inverted to obtain w(r) .  Because it is impossible to measure the range of 

I' = 0 to w, only an approxi~nation to thc invcrsc may bc found. In prscticc, the result is 

an cntirc set of solutions that exist to within experimental crror, howcvcr, the members of 

this solution set can also be very different from one another. Such mathematical problems 

are classified as being ill-conditioned and the challenge is to  find the most probable solution 

from a11 of the possible solutions. 

'l'l~e anslysis methods usccl to dcal with the dilliculty of the Laplacc transform can in- 

volve limiting the amount of information obtained, incorporating some cs priori information, 

regularization methods or some combination thereof. By assuming a specific analytic form, 

will1 such forms as a single or double exponential, the ill-conditioned nature is essentially 

removed and the data  can be fit using a non-linear least squares fit program. For roughly 

exponential decays, the method of cumulants is an expansion of the distribution about 

its moments, and is useful for obtaining an average decay rate and an indication of thc 

width of the distribution about this average. A double exponential functional form is used 
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when fitting a bimodal distribution of decay rates. If the form of the distribution is not 

lino\v~l, CONTIN, a general Laplace inverse transform pacliagc incorporating regularization 

(i.e. smoothing) is useful as a qualitative probe for determining the number and relative 

magnititude of decay rates. 

4.1.1 Non-linear Least Squares Fit 

l"or both the analytic forms of the cumulant expansion and the doublc csponc~ltisl function, 

the C program nnlsq-Nonlinear Least Squares Fit written by A. Kornblit, was used to fit 

the data. In the nnlsq program, a given set of N data  points is fitted to a given moclel 

function with adjustable parameters. The sum of the squares of the residuals, the so-called 

is an indication of the goodness of the fit, where yi is the i th data  point, y j i t  is the i th 

fit point, and o; is the weighting factor of the it11 data  point. The merit function is mini- 

mized with respect to all model parameters aj to  find the maximum-likelihood of the fitted 

pammeters, such that the matrix of derivatives vanisl~: 

Since the dependence of the model function on its parameters is non-linear, a closed form 

cannot be found, and an iterative procedure must be used to find the solution. A correction 

vector towards the absolute minimum of the X 2  surface in parameter space is calculated 

from the given initial trial parameter values. A new correction vector is then calculated 

from the adjusted parameters and the process is continued until convergence is reached, 

where the correction vector is less than some preset value. 

The Marquardt algorithm that is used to  search for the minimum in this program is 

actually a combination of two common algorithms, the Taylor expansion method and the 

Gradient method. The former is suitable in the vicinity of the minimum, where the function 

is e s p a ~ ~ d e d  as a local quadratic surface about the minimum, while the latter is useful for 

rapid convergence far from the minimum. The Marquardt algorithm combines the advan- 

tages of both methods by varying smoothly between the two until convergence is reached. 

For further details, refer to Press (1992). 
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C umulant Expansion 

The method of cumulants to extract information from the field correlation function was 

first cliscussed by Iioppel (1972). Cumulant expansion has become widely used due to its 

applicability to many systems, its low number of parameters, and its good convergence and 

stability of the fittcd parameters. The cumulant expansion is defincd by setting 

\vherc IL,, is the nth cumulant. If the field corrclation function can be written in the form 

of a weighted set of csponentials, as in Eq. 4.5, then the first three terms of the espansion 

;11.(1 1~1i1.tcd to t,he ~ n o ~ n c n t s  of tlic distribution, 

(I"'') are the moments of the distribution, defined such that  

While the probability distribution is completely specified if all the moments are known, 

the expansion can be truncated if the higher moments are small. The mean value of the 

distribution is the initial slope of the decay and is given by the first cumulant. The second 

cumulant is the variance of the distribution and thus the dimensionless ratio, , L L ~ / I ' ~  gives 

t~11  cstinmte of the dispersion about thc Illcan valuc and an indication of the polyclispersity 

of the distribution. For convergence reasons, such an expansion is valid for small T and 

narrow w(r) for which (empirically) 

The model function that  was fitted using the nnlsq routine was 

where B is the baseline, A is the amplitude, r is the average decay time, and p2 is the 

second cumulant. Higher order terms were not necessary. 
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Double Exponential Function 

'l'llc tloriblc exponential function is used to fit a bimodal distribution of T, wliicli 111ay a r k  

f ~ o m  thc scatteri~lg due to the translation and shape Lluctuation or to t,hc transI;~tioll and 

rotation of vesicles. The model function that is used in the fit is 

where A l ,  rl are the amplitude and the decay rate of one time scale and 112, I'2 are associated 

with the second time scale, B is the baseline. In looking for rotation or fluctuation of the 

vesicles, the data  over a range of q was first fitted with the cumulant fit to find the most 

likely value of the diffusion coefficient and the corresponding decay rate. The data  was 

then re-fitted using the double exponential function using this mean decay rate as a fixed 

parameter while allowing the other parameters to float. Oncc fitted, random residuals and 

a consistent second non-zero amplitude and characteristic decay time are an indication of 

other dynamics such as rotation or fluctuation. 

4.1.2 General Laplace Transform Inversion 

The program Contin was developed by Provencher (1%2a,b) to invert noisy linear integral 

equations without having to specify an analytic form. An optimal solution is found by 

searclling for the simplest solution consistent with a priori knowledge and experimental 

data. The merit function is the sum of a least squares quadratic term with a quadratic 

co~lstraint term, 

X2 = + X B ~  (4.14) 

Consider the merit function as the sum of two terms, A2 and AB'. Term is an indication 

of the agreement of-the model with the data and is the same expression as for the merit 

function of the non-linear least squares fit as discussed above. By minimizing a merit func- 

tion of alone, the resulting solution will have good agreement with the data  but may be 

unstable, physically impossible, or oscillating. In contrast, the second term is a measure of 

thc s~noothness of the fit, although minimizing it alone rcsults in solutions that are stable 

; ~ n d  smooth, these may have very little relation to the actual data. As uscd by CONTIN, the 

constraint term is calculated from the second derivative of the distribution. The strength 

of the regularization/smootl~ncss is controlled by A, which is a positive number. The merit 
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function is calculated for a specified number of X and the nlost probable valuc using the sta- 

tistiml Fisher F-tcst is chosen such that X is a t  its Ii~rgest valuc consistent with thc a.va.ilablc 

data.  For further details as to the actual fitting routine, refer to Provencher (1982s,b).  

.4s implemented by the ALV-5000 board, Contin fits to the field correlation functiou 

f J I ( ~ ) .  Tlic Sicgert relation, Eq. 4.4, is usccl to transform the intc~lsity-intc11sit.y corrcla- 

tion g2(r)  of the csperimental data, to the field-ficld correlation. Unfortunately, wit11 tlic 

procedure of taking the square root, the noise level a t  large lag times is increased and any 

negative noise may result in extra spurious, shifted or broadened peaks when analysed. 

7'11~ I I I ; \ , ~ I I  ; \ , ( l~ i i .~~t i \ .g~ of 11si11g CONTIN is I , l~ ; i~ t ,  stt;~.l)l(~ ; I , I I ~  s111oot11 solut io~~s (:;HI I)(: ~ U I I I I ~  

without knowing very much about the dynamics of the sample. For our purposes, it was 

used mainly as a qualitative tool to identify multimodcs, for example, ratllcr than as a 

quantitative method of analysis. 

4.2 Polydispersity Calculations 

To better understand the polydispersity of the vesicle sample arid its effect on the data 

obtained from light scattering experiments, results with a known distribution and polydis- 

pcrsity were calculated. By comparing the values obtained from analysing these calculated 

results with the parameters used in its creation, the analysis methods can be tested and cal- 

ibrated. Simulatcd results arc also a good way to determine the effcct of the polydispcrsity. 

4.2.1 The SchuIz Distribution 

The two parameter unimodal Schulz distribution (Aragon and Pecora, 1976) shown in 

Fig. 4.2 was used to  model this polydisperse system. The normalized distribution of particles 

having a radius ratio 2 = r/F is 

where F is the number-average radius of the particles, and m = 0 , 1 , 2 , .  . . is a measure of 

the sharpness of the distribution. The common measure of the width of the distribution, 

the standard deviation o, is related to the parameter m such that  
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Figure 4.2: The Schulz distribution was used to model the polydisperse vesicle sample where 
,- is the fractional size and nz is the polydispersity parameter. The smaller the in value, 
the higher the polydispersity, and the more skewed is the distribution. The distribution is 
normalized such that the area under the curve is equal to one. 

Thus, the smaller the value of m, the wider and the more skewed is the distribution. For 

large in, the function has an asymptotic approach to a Gaussian shape. Although a Gaus- 

sian distribution could also be used, the skew of the function towards the larger sizes of 

the distribution appears to be especially appropriate for biological systems, which have a 

tendency to form small quantities of aggregates. 

4.2.2 Effect of Polydispersity on Forin Factor 

lnitislly, the effect of polydispersity on the form factor was investigated by modelling the 

vesicles as thin spherical shells, with the same fluid inside and outside. This form factor is 

the scattering due to  the internal structure of the scattering particle. For identical spherical 

shells of some thickness much smaller than the wavelength of light, the form factor is given 
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11y the square of the asympotic limit of the zeroth-order Bessel function, 

whcrc the dimensionlcss parameter, 

x = q r  , 

and q is the scattering wavevector and r is the radius of the scattering particle. The scattered 

intensity consists of this form factor and a mass factor which arises because the polarizability 

of each particle is proportional to the number or mass of the molecules in the particle. Since 

the scattering particles are spherical shells, the mass of each scatterer is proportional to 

the surface area ( N  r 2 )  and not the volume. Because the intensity is proportional to the 

square of the polarizability, the mass factor has a r4 dependence. To include the effect of 

polytlispersity, the scattered intensity was integrated over the Schulz distribution via the 

Numerical Recipes in C routine, qsimp, 

As shown in Fig. 4.3, the resulting function with polydispersity is similar in shape to the 

function without polydispersity but with far less sharp minima. Furthermore, increasingly 

polydisperse results have shallower minima, and, the distribution in size causes a superpo- 

sition of form factors according to thc size distribution. 

4.2.3 Effect of Polydispersity on the Correlation Function 

Correlation functions incorporating polydispersity were calculated for different values of m. 

the polydispersity parameter of the Schulz distribution. The ensemble-averaged correlation 

function is the integral of a single exponential over the Schulz distribution weighted by the 

scattered intensity a t  a given q value, 

where the angular brackets denote a light-scattering ensemble average, D is the diffusion 

coeEcient calculated for the number-average radius, and the denominator is simply a nor- 

~nalization factor. 

The form of the results calculated was 

g2(r )  = 1 + P ( ~ ; ( T ) )  0.1% noise . 
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Figure 4.3: Spherical shell scattered intensity for varying degrees of polydispersity as a 
function of qr, a dimensionless parameter, where F is the number average radius. Note 
the larger the polydispersity (decreasing 112 parameter of the Schulz distribution), thc more 
sl~allow the minima of what was originally (without polydispersity) the zeroth order Bessel 
function. 
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Figure 4.4: Relation of the second cumulant to  the standard deviation: the small dots are 
results of cumulant expansion fits to functions of polydisperse samples calculated using the 
Scllulz distribution, for F = 50nm, 0 = 90•‹, nz = 0,1 , .  . . ,30. For the Schulz distribution, 
the standard deviation is related to the polydispersity parameter m via U / F  = 1 / J K .  
The curve is a guide for the eye. 

in w11icli ,f3 is a f a c t ~ r  associated with the geometry of the experimental set-up and was 

chosen to have the value of 0.4 to agree with the value obtained with our current apparatus. 

The noise was created by a random number generator initialized in connection with the time 

clock of the computer. Correlation functions were generated for polydispersity parameters 

7n = 1, . . . ,30 a t  a scattering angle of 0 = 90'. The calculated results were analysed with the 

cumulant expansion fit and a relation was obtained between the characteristic polydispersity 

of the sample a/&  and the standard deviation of the fit, p z / T 2 ,  as shown in Fig. 4.4. It 

was found that  the higher the polydispersity, the wider the distribution of the fit. By fitting 

csperimental data  with the cumulant fit, a value of the polydispersity m of the sample 
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can then be estimated by the comparison of the experimental and the sinlulated second 

cumulant f ts. The effect of the polydispersity was a horizontal stretch of the exponential of 

the correlation function, where again, the size distribution has caused a distribution of the 

decay times. Results obtained using Gaussian distributions are similar (Aragon and Pecora, 

1 !17(j). 

4.2.4 Effect of Polydispersity on the Diffusion Coefficient 

Following the lnethod of Fujime, Takasaki-Ohsita, and Miyamoto (1988), the diffusion co- 

efficient was calculated as function of q, the wavevector. By noting that (D) is the first 

tilnc dcrivativc of (g l ( r ) )  and performing an explicit integration ', llw ensemblc svcragcd 

expression for the diffusion coefficient was found to be 

where y = 2qf/(nz f 1). Figure 4.5 is a graph of (D) vs q and shows the q-dependence of 

the translational diffusion coefficient for varying degrees of polydispersity. While the trans- 

lational diffusion of a monodisperse system is q-independent because the particles diffuse a t  

tlic same rate, the particles of a polydispersc system each diffuse at  a rate that is dependent 

upon their sizc. Furthermore, since the contribution of scattered light from each particle 

is tlcpendent upon its sizc for a given q, larger particles will contribute more a t  slnallcr q ,  

while smaller particles will contribute more at  larger q. Thus, the diffusion coefficient will 

be q-dependent for a polydisperse system. 

From the relation of the variance of the distribution to the standard deviation, the second 

cumulant can be espressed as a function of the moments of the diffusion coefficient, 

where (D)  = kBT/G~1lF is the Stokes-Einstein relation as discussed in Section 2.2, and 7. is 

the number-average radius. Shown in Fig. 4.6, the second cumulant of a polydisperse sample 

is certainly q-dependent, becoming more q dependent as the polydispersity increases. 

'By  use of the integral formula, for a, cr > 0 and a E I, 
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Figure 4.5: The q-dependence of the diffusion coefficient. D(F) represents the number- 
average value for the diffusion coefficient. Note that the larger the polydispersity, the 
greater the deviation from this mean value. 



Figure 4.6: The q-dependence of the second cumulant. The larger the polydispersity, the 
greater the change in the apparent width of the distribution with q .  
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4.2.5 Polydisperse Ellipsoidal versus Spherical Shells 

Because the lowest fluctuation mode is ellipsoidal and such a shape is also the equilibrium 

shape of a vesicle with small escess area. the scattering from polydisperse ellipsoidal shells 

was considered. The difference between the scattering from spherical shells and ellipsoidal 

shells is then an indication of the amplitude of shape fluctuations which should be observ- 

able. The axial ratio b l a  was chosen to be 1.1 or 0.9 for slightly prolate or slightly oblate. 

respectively, where b  is the major axis and a  is the minor axis of the ellipsoid. Using the 

ellipsoidal shell scattering form factor of Fujime, Takasaki-Ohsita, and Miyamoto, (1988), 

where 

and < = cos(0). By integrating over all angles to account for the random orientation of 

the particles, the ensemble-averaged form factor was calculated. The scattered intensity 

further incorporating polydispersity was then calculated with Eq. 4.19. Scattering from 

ellipsoidal shells and spherical shells of equivalent polydispersity and hydrodynamic volume 

was compared as a function of the scattering wavevector. The percent difference in the 

structure factor as a function of qr is shown in Fig. 4.7 for varying degrees of polydispersity. 

The greater the polydispersity, the smaller the difference due to  scattering from an ellipsoidal 

shell and from a spherical shell. In effect, the polydispersity hides the effect of the asymmetry 

of the ellipsoidal shell and makes it difficult to  distinguish between a polydisperse spherical 

distribution and a polydisperse ellipsoidal distribution. 

4.2.6 Summary 

In summary, the polydispersity will have two important effects: first it will make both the 

diffusion coefficient and the standard deviation dependent upon the scattering wavevector 

and second, it will obscure small amplitude fluctuations. 



CHAPTER 4. JIETHODS OF .4AV.4Ll'SIS .4SD POLYDISPERSITY 

Figure 4.7: The percent scattered intensity difference between a 10% prolate ellipsoidal shell 
and a spherical shell of equivalent polydispersity and hydrodynamic volume. 



Chapter 5 

Experimental Results 

Light scattering experiments were performed on vesicle suspensions to measure size and 

shape fluctuations of the vesicles. Because such fluctuations are known to  depend on tem- 

perature, the viscosity of the suspending fluid, and the excess area of the vesicles, these 

effects were investigated. First, the effect of temperature on the hydrodynamic radius of 

DMPC vesicles will be discussed. This will followed by a discussion of the results of increas- 

ing the viscosity and then by increasing the excess area for DEPC vesicles. 

5.1 Effect of Temperature 

The effect of temperature on the mean size of DMPC phospholipid vesicles was investigated 

using dynamic light scattering. Although increasing the temperature should also increase 

the amplitude of the shape fluctuations, as discussed in Section 2.3, this is a very small effect. 

-4 much larger effect is the increase in the excess area that comes about due to the more 

rapid thermal expansion of the bilayer relative to  the increase in the volume of the vesicle. 

By enhancing the amplitude of the shape fluctuations to  the point where the fluctuations 

scatter a significant amount of light, we hope to  measure the characteristic time scale of 

the fluctuations. In other experiments based on varying the temperature, such phenomena 

as budding and increased shape fluctuations have been observed in giant vesicles (H.-G. 

Dobereiner et al., preprint ). 

DMPC phospholipid was hydrated in de-ionized water and extruded a t  40•‹C to  produce 

roughly 100 nm vesicles. The temperature was dropped in steps and at  each step the 

measurement was made after the temperature of the sample had stabilized. As the area of 



the bilayer is thermally contracted, the fluid inside of the vesicle diffuses out of the vesicle 

due to mechanical pressure. Water was chosen as the suspending fluid because of the ease 

with which it crosses the bilayer. 

Ai single exponential decay was measured for the correlation function and found to be 

consistent with only translational motion of the vesicles. The correlation function was 

initially fit with a single exponential function but since the fit residuals were systematic and 

suggested polydispersity, it was then fit with the second cumulant expansion to obtain both 

an average decay constant and its standard deviation. From this value of the average decay 

constant, the diffusion coefficient was calculated for the particular wavevector and then used 

to determine the hydrodynamic radius via the S tokes-Einstein relation, D = kT/(G.irl;lr), as 

discussed in Section 2.2. Note that this relation was developed to describe the diffusion of 

spheres, and as such, the hydrodynamic radius is not necessarily a characteristic length of 

the diffusing objects, but only a measure of the effective size of the objects as they diffuse 

and tumble through the fluid. 

As shown in Fig. 5.1, the hydrodynamic radius was found to  decrease with decreasing 

temperature. The area per phospholipid headgroup in the bilayer will decrease with decreas- 

ing temperature and this results in a contraction of the surface area of the bilayer, and thus, 

a smaller mean radius of the vesicles. Thermal properties of the bilayer have been studied 

with sonicated vesicles using both calorimetry and light scattering (Cornell et al., 1981), 

and with planar bilayers using light scattering (Grabowski and Cowen, 1977). Between 

23•‹C and 24OC, there was what appeared to  be a sudden 5% decrease in the hydrodynamic 

radius. This jump was attributed to the so-called gel transition of DMPC phospholipid: 

below this transition temperature, the bilayer is in a gel phase in which hydrogen bonds are 

formed between the hydrocarbon tails of adjacent phospholipids and the phospholipids are 

'.bound". Above the gel transition temperature, the phospholipid molecules are not bound 

to one another, but are free to  translate and rotate within the bilayer plane and, as such, 

the bilayer is considered to be fluid. It is well known that ,  as the gel phase is formed, the 

phospholipids bind closer together, and this results in a sudden decrease in the surface area 

of the bilayer and hence also the radius of the vesicle. It has been observed that the bending 

elastic modulus is increased by roughly a factor of three in the gel phase for DMPC planar 

bilayers (Evans and Needham, 1987). The effective decrease of the surface area due to  the 

formation of the gel phase is larger (over a given temperature range) than that  due to  the 

thermal contraction of the bilayer. 
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Temperature (CO) 

Figure 5.1: Temperature dependence of the hydrodynamic radius of DMPC vesicles in water, 
as measured a t  decreasing temperature at  a scattering angle of 90'. The sudden change 
in the radius a t  N 23OC can be attributed to  the gel transition of DMPC phospholipid. 
The error bars are 1% as observed from repeated measurements for the same duration of 
measurement. p2/I'2 had an average value of 0.7. 
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Following the step-wise temperature decrease. the temperature was raised, again in 

steps. up to the original temperature. The values of the hydrodynamic radius were found to 

agree with the ones obtained previously and the gel transition was found to be reversible, 

insofar as the hydrodynamic radius was concerned. Additional measurements were made 

at  the various temperatures for a range of scattering angles, with similar results. Not only 

was a second time scale not observed, but the standard deviation, which is an indication 

of the polydispersity and can be expected to  increase with an increased amplitude of the 

fluctuations, appeared to be independent of the temperature. 

5.2 Effect of Excess Area 

The excess area of the vesicle was increased to enhance the amplitude of the fluctuations by 

decreasing the volume of the vesicle relative to the surface area. This was done by creating 

an osmotic pressure difference between the interior and the exterior fluids of the vesicle and 

exploiting the permeability properties of the bilayer. The permeability of the bilayer, which 

is a measure of the speed with which a particular substance can diffuse across its width, 

is such that  the bilayer is readily permeable to  water, but far less permeable to salt ions. 

Water, for example, having a permeability coefficient for planar egg-phosphatidylcholine of 

roughly 10+~cm/s  (Deamer and Bramhall, 1986), will diffuse the width of the bilayer in 

approximately 1 ps. Under similar conditions, sodium and chlorine ions, common salt ions, 

will diffuse respectively 10l0 and lo7  times slower than water though the bilayerl. Thus, by 

engineering a differential salt concentration between the interior and exterior of the vesicles, 

the salt ions should remain on their respective sides of the bilayer during the time frame of 

our experiments and water will pass through the bilayer to equalize the osmotic pressure. 

The vesicles were prepared in the following manner: the hydrated DEPC phospholipid 

suspension was extruded in a particular salt solution and then the exterior salt concentration 

was altered through dilution with a salt solution of an even higher concentration. Water then 

leaves the vesicle to  make the salt concentration of the interior of the vesicle essentially equal 

to the exterior salt concentration. Because we assume that  the surface area of the vesicle is 

conserved, then as the volume of the vesicle decreases, a certain amount of excess surface 

area is created. In principle, since the excess area is the area available for fluctuations, this 

' o t h e r  ions are also used for this purpose. For example, Cullis et al. (private communication) at  UBC 
have used Na2S04 because the sulphate group of the salt diffuses through the bilayer a t  a much slower rate 
than the chlorine ion. 



volunle deflation should increase the amplitude of the fluctuations. 

,An additional complication is the shape of the vesicles upon extrusion. As found from 

cryo-EM micrographs by Mui et al. (1993). vesicles extruded in some non-zero salt con- 

centration are sausage-shaped or elliptical, and will remain so in order not to create an 

osmotic pressure difference. Vesicles extruded in pure water or zero salt concentration are 

initially sausage-shaped but will become spherical in shape a few hours after extrusion. It 

would seem that the extrusion process produces vesicles of sausage-type shapes, and hence 

vesicles made in salt concentrations will have an already existing excess area prior to  vol- 

ume deflation. This unknown amount of excess area may complicate the analysis of the 

volume-deflated vesicles. 

Dynamic light scattering measurements were performed on the volume-deflated vesicles 

by measuring a correlation function a t  a particular scattering wavevector q value. The 

measured correlation function had the form of an exponential decay that was dominated 

by a single time scale and this time scale was consistent with only translational motion 

of the vesicles. No evidence of a second time scale was observed, i.e. no direct evidence 

of fluctuations. The analysis was similar to that  performed for the experiment where the 

temperature was varied: the correlation function was fitted with the second cumulant ex- 

pansion to  obtain the standard deviation and the mean decay rate, from which the diffusion 

coefficient and the hydrodynamic radius were calculated. Measurements were repeated for 

different scattering wavevectors to obtain curves of the second cumulant and the hydrody- 

namic radius as a function of the scattering wavevector. These curves were then examined 

for possible anomalous behaviour. 

5.2.1 Zero Percent Excess Area 

The hydrodynamic radius as a function of the scattering wavevector was investigated for 

vesicles extruded in de-ionized water. These vesicles should exhibit neither rotational diffu- 

sion nor shape fluctuations due to sphericity. The standard deviation of the decay rate will 

then correspond to  the polydispersity in the size of the extruded vesicles and not the shape. 

-4s shown in Fig. 5.2, the hydrodynamic radius was found to be q-dependent, changing a 

total of 3% in a roughly linear fashion. The non-zero slope is the result of polydispersity of 

the sample, as discussed in Section 4.2.4, or at least something that can not be distinguished 

from the polydispersity. There is an apparent increase in the magnitude of the slope a t  both 

the higher and lower values of the scattering wavevector: the anomalous increase of the 
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magnitude of the slope at  high q may be due to the presence of smaller vesicles. A possible 

explanation for the increased slope at  low values of q is the presence of larger objects in the 

scattering volume, either dust or aggregates of vesicles. Although dust contamination was 

minimized with the thorough cleaning of glassware and careful sample preparation under 

a laminar flowhood. some samples were found to have high levels of dust, and these were 

discarded. Because of the relatively small amplitude of scattering from these larger objects, 

which is not much more than from the vesicle suspension, we conclude that the larger objects 

are likely aggregates and not dust. Furthermore, the polydispersity appears to  increase with 

age of sample, which reinforces the idea that the vesicles are clumping together. 

Another indication of the apparent polydispersity is the second cumulant or the standard 

deviation which is shown as a function of the scattering wavevector in Fig. 5.3. The curve 

was compared with the results of the polydispersity analysis of the previous chapter to  

show that  the vesicle sample is consistent with a Schulz distribution having a polydispersity 

parameter of m = 11, and a relative standard deviation of 27%. Because of the irregular 

influence of the larger-sized objects a t  low q as observed by comparing different vesicle 

batches, and the anomalous increase a t  high q, the most representative data points were 

taken to  be from the scattering wavevector midrange. 

5.2.2 Effect of Volume Deflation 

The hydrodynamic radius as a function of both the scattering wavevector and the deflated 

volume is shown in Fig. 5.4 for vesicles extruded in 50 mM NaCl solution. The 0% volume 

decrease represents the vesicles in an iso-osmotic (same initial salt concentration inside and 

outside the vesicles) solution and does not refer to  zero excess area, as explained above. 

As the vesicle volume was decreased by 20% and by 40%, the hydrodynamic radius was 

found to  decrease, as expected - the vesicles appear to  be shrinking as their volume is 

deflated. With the 75% decrease in volume however, the curve of the radius was found t o  

lie between those of the 20% and the 40%. This suggests a relatively large change in shape 

for 75% volume-deflated vesicles, a change large enough to  significantly affect the manner 

in which they diffuse. The graph of the second cumulant, as shown in Fig. 5.5, also shows 

a higher polydispersity for the 75% volume-deflation sample than for the others. As shown 

in Fig. 5.6, similar results were observed for the radii of volume-deflated vesicles that  had 

been extruded in 100 mM NaCl solution. 

Again, the non-zero slope of the radius indicates either polydispersity of the sample or 
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Figure 5.2: The hydrodynamic radius versus the scattering wavevector for DEPC vesicles 
in de-ionized water at  25OC. The non-zero slope is either indicative of the polydispersity of 
the sample or something else that can't be distinguished from the polydispersity. Again the 
error is 1%. 



CHAPTER 5 .  ESPERIhlEXT4L RES I'LTS 

Figure 5.3: The second cumulant, p2/ l?2 ,  as a function of the scattering wavevector from 
the same analysis of DEPC vesicles in de-ionized water at  25OC as shown in the previous 
figure. From the analysis described in the previous chapter, the second cumulant or standard 
deviation of vesicle size is estimated to be 27% and the dotted line is a curve to represent 
m = l l .  The data points from the scattering wavevector mid-range were inferred to be the 
most representative because of the variation in the low q radii between different vesicle 
batches and the anomalous decrease of the radii at  high q. 
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something else that cannot be distinguished from the polydispersity. 

5.2 .3  Effect of Salt Concentration 

The effect of salt concentration on the hydrodynamic radius was investigated to rule out 

the possibility that the effect produced by increasing the excess area is actually an effect 

that  is induced by merely increasing the overall salt concentration both inside and outside 

of the vesicle. As shown in Fig. 5.7, an increased salt concentration generally resulted in an 

increase of the hydrodynamic radius or a decrease of the diffusion coefficient. This behaviour 

is opposite to  the trend that was found in the volume-deflated vesicles. We can compare the 

volume-deflated samples with the iso-osmotic samples: for the 75% volume-deflated vesicles 

in which the final exterior salt concentration for the 50 mM initial salt concentration was 

200 mM, the result of the deflation was a 9% decrease in the hydrodynamic radius. For 

the 50 mM and 200 mM iso-osmotic samples, however, the change from the former to latter 

of the hydrodynamic radius is a 10% increase. This suggests that  the salt concentration 

alone does not determine the excess area during the extrusion process but that an osmotic 

difference is needed. 

The 100 mM salt concentration vesicles, for a number of different extrusions, were not 

entirely consistent with the other results and this is an indication of the possible difficulties 

and nonlinearities of working with phospholipids and charged ions. 

5.2.4 Cryo-Electron Microscopy 

Samples similar to  those used in the volume-deflation experiments, were examined by Dr. 

Barbara Mui a t  UBC using an electron microscope at  16000x magnification. This cryo-EM 

technique involves quickly freezing a thin film of the sample prior to  examination under an 

electron microscope. -One experimental problem is the evaporation of the sample prior to  

freezing which leads to a change in concentration. As shown in Fig. 5.8, the 0% volume- 

deflated vesicle suspension was found to be very similar to others of the particular salt 

concentration that  have been observed previously (Mui, private communication) . These 

vesicles, from the electron-micrographs, appear to  be a mixture of prolate and oblate shapes. 

In contrast, the 40% volume decrease seemed to  have the effect of "rounding" up the vesicles, 

as shown in Fig. 5.9. Since there were also what appeared to be edge-on views of disc 

shapes, it is entirely possible that the suspension was now for the most part,  oblate shaped. 
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Figure 5.4: The dependence of the hydrodynamic radius as a function of both the scattering 
wavevector and the decreased volume at  25OC for vesicles initially prepared in 50 mM 
NaCl solution. Initially, the radii appear to  decrease as the vesicle volume is progressively 
decreased, but the curve for the volume deflation of 75% was found to  lie between those of 
the 20% and 40% curves. Again the negative slope of each radius curve is indicative of the 
polydispersity of the vesicles. A possible explanation for the upward turn of each curve a t  
low q is the presence of aggregates. 



C'H.4 P T E R  5. ESPERIMENT.4 L RES ULTS 

Figure 5.5: The second cumulant p2 / l?2  as a function of scattering wavevector and the 
percent volume deflation for the same samples as shown in the previous figure (measured a t  
25OC for vesicles initially prepared in 50 mM NaCl solution). Note that  the 75% volume- 
deflation shows a higher polydispersity than the others. 
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Figure .5.6: The hydrodynamic radius as a function of both the scattering wavevector and 
the decreased volume a t  25OC for vesicles initially prepared in 100 mM NaCl solution. Note 
that  the general trends are similar to  those of the volume-deflated vesicles prepared in 50 mM 
NaCl solution. 
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Figure 5.7: The hydrodynamic radius us the scattering wavevector as a function of salt 
concentration at  25OC. The greater the salt concentration, generally the larger the radius; 
opposite of the trend observed the volume deflated vesicles. This would suggest that  the 
variation in the hydrodynamic radius as a function of the salt concentration is not an effect 
of the excess area. The location of the 100 mM salt curve is an indication of possible charge 
effects introduced by the salt ions that  lead to  irregularities. 
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What is unclear though is the progression to the 75% volume-deflated vesicles, as shown in 

Fig. 5.10. Some difficulty was incurred in properly freezing the sample and this puts into 

question the micrographs taken for this percentage volume decrease. The vesicle shapes 

appear to approach bi-concave or invaginated or even toroidal geometries. 

5.3 Effect of Viscosity 

The time scale of the shape fluctuations is inversely proportional to  the viscosity of the 

suspending fluid, as discussed in Section 2.3. Using water as the suspending fluid, the time 

scale of fluctuation predicted for the lowest mode of a relevant vesicle size is in the lower 

limit of detection of our experimental equipment. By increasing the viscosity by a factor of 

10, the time scale is placed comfortably in the mid-range of detection. Thus, by increasing 

both viscosity and the excess area via volume deflation, the probability of detecting the 

fluctuations should be higher. 

DEPC lipid vesicles were hydrated and extruded in a 60% by weight glycerol 50 mM 

NaCl solution. The viscosity of the suspension was roughly 10 cp at  25OC, 10 times more 

viscous than ordinary water. The volume of the vesicles was then decreased following the 

method described previously in Section 5.2. Not one but two different time scales were 

apparent in the observed correlation function. The dominant decay was again due to  the 

translational diffusion of the vesicles while the second decay was much smaller in amplitude 

and faster in time. Because the effect was not only visible at  low vesicle concentration and 

was of the same magnitude for all volume deflations (0%, 20%, 40%) but also visible for a 

glycerol solution, without vesicles, we concluded that this additional timescale was caused 

by density fluctuations of the glycerol itself. 

5.4 Summary of Results 

While light-scattering experiments performed on vesicle suspensions showed no evidence of 

shape fluctuations, they also did not show evidence against shape fluctuations. The methods 

used to enhance the fluctuations included changing the temperature, increasing the viscosity 

and increasing the excess area of the vesicles. 

By altering the temperature of the DMPC-vesicle suspension, the hydrodynamic radius 

was measured as a function of temperature and was found to vary with temperature. A 



Figure 0.8: T h e  0% volume-deflated solution: shapes observed include possible prolates and 
oblates. 



Figure 3.9: T h e  40% volume-deflated solution: the vesicles, on the whole, a.re rounder than 
they 2ppea.r without volume deflation. T h e  bar represents roughly 100 nm. 



r'ignre 3.10: The  7.5% volume-deflated solution: some difficulty was met in freezir~g tllr 
5c~rrlplc. Shapes appear to  be quite different than in the previous samples of 0% and 10'A 
volunle-deflation. 
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sharp change in the hydrodynamic radius at  23OC was attributed to  the gel transition of 

the DXIPC phospholipid. 

The escess area of DEPC vesicles was increased by introducing an osmotic difference 

between the inside and the outside of the vesicles, and thereby deflating the volume of the 

vesicle. Initial salt concentrations of 50 mM and 100 mM NaCl were used. Although the 

vesicle volume was deflated by 20%, 40% and 75%, no evidence was observed to suggest 

shape fluctuations of the vesicles. However, the hydrodynamic radius was found to decrease 

with decreasing volumes for the 20% and 40% samples. Curiously, the 75% volume-deflation 

was anomolous to  the trend shown from the other samples. To support the light-scattering 

data, cryo-EM micrographs showed an assortment of ellipses for the 0% deflation, a much 

rounder shape for the 40% deflation, and quite deflated shapes for the 75% deflated sample. 

The light-scattering data in conjunction with the micrographs would suggest that the 

volume deflation causes a shape change of the vesicles, and this results in a change of the 

hydrodynamic radius. From calculations of the change in the diffusion coefficient as a result 

of a deflated volume, assuming a prolate ellipsoid form, a 20% volume deflation should 

result in a 1% decrease in the hydrodynamic radius, while a 40% volume deflation should 

result in a 2% decrease, and a 75% volume deflation should result in a 5% decrease in the 

hydrodynamic radius (Frisken, private communication). In comparison, the experimental 

results showed decreases of 2%, 20%, and 9%, respectively, for the hydrodynamic radius. 

This difference between the expected values and the experimental values may, in part, be 

due to assumptions made in the calculation. Not only is a zero initial excess area assumed 

but the diffusion coefficient was calculated for a hard ellipsoidal (prolate) form. Because 

it is quite resonable to  believe that the vesicle has a large excess area at  a 75% volume 

deflation and this is supported by the micrograph, the diffusion coefficient calculated from a 

rigid particle may be inappropriate to describe the diffusion of the vesicle. This is a possible 

indication that  the vesicles are undergoing shape fluctuations. However, because of the 

uncertainty in the initial excess area and form, and the uncertainty in the final form, i.e. 

prolate or oblate, and the lack of an observable second decay time, this is only one possible 

hypothesis. 

Additional work has been done to reproduce the results of the excess area volume- 

deflation experiments presented here but there has been little success. Because the vesicle 

solutions, once extruded, were found to aggregate within a time span of a couple of days, 

suspensions were often re-extruded. Dr. Barbara Frisken has since observed that  the vesicles 
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are considerably smaller upon re-extrusion and this may be partially the cause of the size 

differences measured. However, the cryo-EM micrographs, which were taken from samples 

that had been identically extruded. do suggest a difference between the volume deflations 

that should be measurable. 

The vesicles were also measured for a variety of salt concentrations, to investigate the 

possible relation between salt concentration and the hydrodynamic radius of the vesicles. 

It was found that  the hydrodynamic radius generally increased with increased salt con- 

centration, which is opposite to the effect observed in the volume-deflated vesicles. This 

suggests that the salt concentration alone does not determine the excess area but that an 

osmotic difference is needed. The hydrodynamic radius curve for 100 mM NaCl DEPC 

vesicles was found to  be anomalous to the trend observed for the other salt concentrations. 

Such an anomaly may be an indication of the possible difficulties of working with ions and 

phospholipids. 

The time scale of the fluctuations was increased away from the threshold of detection by 

suspending the DEPC vesicles in a more viscous 60% by weight glycerol solution. The excess 

area was also decreased via volume deflation. Although the fluctuations of the suspension 

were effectively slowed down by an order of magnitude, no evidence of the shape fluctuations 

was observed. 

The vesicle suspensions were found to  be much more polydisperse in size and in shape 

than had been assumed. The polydispersity is manifested in the width of the distribution 

as given by the second cumulant and the variation of the diffusion coefficient/hydrodynamic 

radius with the scattering wavevector. By comparing the second cumulant from experiment 

with the results obtained from polydispersity analysis using the Schultz distribution, the 

standard deviation was estimated to be 27%. In addition, electron-micrographs of the 

vesicles in 50 mM NaCl solution showed not only a distribution of sizes but also a variety 

of ellipsoidal shapes for the vesicles. 

In general, the hydrodynamic radius was found to  vary linearly as a function of the 

scattering wavevector. Sharp upturns of the hydrodynamic radius at  small wavevector were 

attributed to  larger structures in the sample, possibly larger vesicles or aggregates. In 

many of the samples, a downturn of the hydrodynamic radius curve at  larger values of 

the scattering wavevector was also observed. Because this also occurred for the vesicles 

suspended in de-ionized water, which should be spherical and have no excess area and hence 

no fluctuations, this anomaly is probably not due to fluctuations. It may be due to smaller 
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vesicles. 

X small number of static-light-scattering measurements were made but because of the 

small size of the vesicles and the particular range of the scattering wavevector that  was 

available, the emphasis was placed on dynamic-light-scattering measurements instead. 



Chapter 6 

One aspect of artificial vesicles is their usefulness as an experimental means of substantiating 

the theoretical work done on model membrane systems, and of particular interest are the 

shape fluctuations of vesicles, which arise from the relatively low bending energy of the 

bilayer. -4s the vesicles fluctuate in shape, characteristic time scales can be associated with 

the different modes of the fluctuations. It was our intent to  measure the time scales of the 

fluctuations with light-scattering methods. 

The vesicles were prepared in a variety of ways to  increase the likelihood of detection 

and measurement of the shape fluctuations. By increasing the viscosity of the suspending 

medium with the addition of glycerol, the fluctuations were slowed down t o  a more com- 

fortably measureable time scale. And by increasing the temperature, the excess area should 

increase and thereby increase the amplitude of the fluctuations. Furthermore, by increasing 

the excess area by altering the relative salt concentrations inside and outside of the vesi- 

cles, the amplitude of the fluctuations is increased and so the shape fluctuations should be 

more easily detected.. However, no evidence of fluctuations was observed. We believe that  

this is due to  a number of reasons: the small amplitude of scattering from the vesicles, the 

polydispersity in size and shape of the vesicle suspension, the small amplitude of the shape 

fluctuations, and the small size of the vesicles. Very briefly, the signal due to  scattering 

from the vesicles themselves is weak but not difficult to  detect. However, it is likely that  

the shape fluctuations scatter far less light, and are thus much more difficult to detect. 

Polydispersity in the size of the vesicles was found to  have two important effects: first, 

both the diffusion coefficient and the standard deviation varied with the scattering wavevec- 

tor and second, small-amplitude shape fluctuations were obscured. While many researchers 
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often look for the scattering wavevector dependence of the diffusion coefficient as an indica- 

tion of surface fluctuations, this is inappropriate for a polydisperse system such the vesicles. 

Because of the second effect, we endeavoured to minimize the polydispersity. Although the 

extrusion technique for making vesicle suspensions was chosen for its comparative unifor- 

mity of vesicle size distribution and reproducibility, we have determined that the extruded 

vesicles are not as uniform in size as previously expected. From comparisons of the ex- 

perimental data  with the results of a polydispersity analysis using the Schultz distribution, 

the vesicle suspension was found to have a 27% standard deviation. In addition, this value 

was obtained for 100 nM diameter vesicles, with other vesicle sizes having even wider size 

distributions and more polydispersity. The size distributions of larger vesicles were gener- 

ally found to be bimodal with one mode centered about the extrusion filter pore size and 

another around 100 nM. Because the smaller vesicles are always present, filtering does not 

have the desired effect of reducing the polydispersity of the size distribution for the larger 

vesicles. Other methods of mechanical separation such as centrifuging and dialysis are also 

irnpractical due to the low density of the vesicles and their tendency to aggregate. 

While the cryo-EM micrographs of the vesicles show a distribution of sizes, the mi- 

crographs also show a distribution of shapes that is not observable in the light scattering 

data. This shape distribution highlights another aspect of the polydispersity, and that is 

the variation of excess area from vesicle to vesicle. Since vesicles extruded in salt do not 

.'round up" but remain ellipsoidal, there is not only a polydisperse size distribution but 

also distribution of excess area or shape. Because a second timescale corresponding to  the 

rotation of asymmetrical shapes such as ellipsoids, either prolate or oblate, is not observed, 

it would seem that  shape variations are obscured by the degree of polydispersity. Another 

possible contribution to  the variation in shape as shown in the micrographs is the shape 

fluctuations themselves, but if this is the case, we have not been able to  detect a related 

time scale. Hence, either there is not a distinct time scale or the amplitude of the shape 

fluctuation is very small in relation to  that of the translational diffusion. 

To estimate how to  improve the probability of measuring the shape fluctuations, we first 

assume a double exponential form for the correlation function, as expressed in Eq. 4.13. 

Again, one exponential would represent the translational diffusion, while the second expo- 

nential would represent the shape fluctution. Empirically, it has been found that two decays 

are measurable if their amplitudes are such that: 
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for a double exponential form (Frisken, private communication). By approximating the 

shape fluctuation amplitude as the difference in the intensity scattered from spherical shells 

and elliptical shells, as shown in Fig. 4.7, an estimate of the measurable shape fluctuation 

can be obtained. So, a difference of 10% or more between the intensity scattered by a 

spherical shell and an elliptical shell should be measurable. 

It is important to observe that the shape fluctuation amplitude is then dependent upon 

the polydispersity of the sample. the scattering wavevector q and the number average radius 

r .  In general, the less polydisperse is the sample, the larger the shape fluctuation amplitude. 

However, this is also strongly dependent upon the accesible range of qr,  with the range of 

the scattering wavevector being essentially a constant of the experimental apparatus. For 

the large unilamellar vesicles, ( r  ~ 5 0  nm, qr 5 1.3), that were used in these experiments, 

it is interesting to  note that there is no polydispersity (large or small) a t  which the shape 

fluctuation amplitude is larger than 10%. By considering the polydispersity alone, the 

m = l l  value obtained for these vesicles is close to the minimum m value that would allow an 

observable shape fluctuation amplitude. Recall that the smaller the m value, the larger the 

polydispersity. By increasing the vesicle size by a factor of two, a t  the same polydispersity, 

shape fluctuations should be measureable. In addition, assuming that the relaxation time 

scales as r3,  from Eq. 2.18, the relaxation time would increase by a factor of eight, and this 

would be easier to  measure. Therefore, to  measure the shape fluctuations: the size of the 

vesicles must first be increased by at  least a factor of two, and the vesicles must have either 

a similar or smaller polydispersity. 

One approach to  increasing the sensitivity of measurement to the fluctuations is to  

decrease the relative amplitude of the signal due to translational diffusion. This can be done 

by making dynamic measurements at  the scattering wavevectors q which give the minima 

of the structure factor for the particular sized vesicles. It is unfortunate that vesicles of the 

100 nm size are too small to  give a sufficient q range with the existing experimental set-up. 

Larger vesicles of sizes r > 150 nm would permit measurements to  be made a t  the first 

minimum of the structure factor, at  qr = n; but the polydispersity of these vesicles would 

greatly reduce both the sharpness of the minimum and effectiveness of this method. 

In conclusion, we were unable to measure the size and shape fluctuations of vesicles 

because of the obscuring effects of the polydispersity of the vesicles, the small amplitude of 

fluctuations, and the small size of the vesicles. 
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