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Abstract 

During the Middle Ages and the early Renaissance in the Latin West the quadrant 

under its many guises was an important scientific and mathematical instrument for 

a number cjf scientific disciplines. The earliest use of the quadrant, as R.T. Gunther 

in his Early Science in Oxford suggests, was in surveying and then subsequently in 

the service of astronomy when horary lines were added. However, the quadrant was 

not limited just to the computational and mensurational needs of astronomers and 

surveyors. Cartographers, navigators and militiamen and bombardiers also adopted 

the quadrant for their work in the years to follow. 

Not only was the quadrant useful in the work of the astronomer et al., but in 

the hands of these specialists the quadrant was adapted and modified (either in the 

manner in which it was employed or through changes to various incorporated scales). 

The aim of this work will be to examine developments in the ways in which the quad- 

rant was constructed and used during the early Renaissance from the early sixteenth 

century to the mid-seventeenth century in Western Europe by specialists in the areas 

of astronomy, surveying, navigation and military science. 
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Chapter 1 

Introduction and Preliminaries 

1.1 Central Problem 

In the course of their studies, historians of science have often contemplated the mutual 

relationship and influence which science and technology have upon each other. If 

one observes the growth of Western Europe from the Late Middle Ages onward, for 

example, one sees a society struggling to understand its relationship to the rest of 

the world and the roles which science and technology play in this struggle, disciplines 

which allow them to investigate and affect the physical properties of the world in 

which they live. Today, we can look back upon that history to examine the roles of 

science and technology and to observe those mutual developments. 

It is with this hindsight that contemporary historians of science can see influences 

that certain scientific instruments have had upon particular areas of science. A case 

in point is the scientific instrument known as the quadrant, which enjoyed a fruitful 

life as a practical tool for Renaissance practitioners of astronomy, surveying and other 

applications. 

The theoretical developments of the quadrant can be broken down into three 

stages. The first is the acquisition of the contents of various Arabic texts; second 

is a period of exposition which corresponds to the university tradition of using this 

instrument as a pedagogical tool; the third, a time of innovation in the design and use 

of the quadrant, is the final stage in the development and use of the quadrant. It is 



this last stage which we shall examine in this work to see the professional influences 

on quadrant constructions and the incorporation of various scales and tables, as well 

as, the various uses for the quadrant. The various stages are not so clearly dsfined; 

however, the first is approximately from the loth to the 13~~'  cent,ury; the second is 

during the isth and 1 4 ~ ~  centuries; and the final stage is from the isth century to the 

middle of the 17th century. 

The first two stages in the development of the quadrant, although not the focus 0.f 

this study, are of course also importarit; we will provide a brief account of important 

developments during this time so as to set the stage for the examination of this 

instrument as it was used in the early renaissance. 

The quadrants which will be examined here are ultimately derivations of medic- 

val Islamic quadrants. David King describes in an article on Islamic astronomicai 

instruments four classes of The four classes, all of which were invented 

by Muslim astronomers, are : (i) the sine quadrant, (ii) the hctrary quadrant, (iii) 

the astrolabic quadrant and (iv) the shakk~z iyya  quadrant. Those quadrants which 

will concern us here will be the horary and astrolabic quadrants with other simpler 

variants as the various professions borrowed different ideas from these two quadrants. 

In general, we will consider only hand-held vertical quadrants. As such, we will not 

examine, for example, the mural or large azimuthal quadrants of Tycho Brahe or 

horizont a1 quadrants used for triangulation. 

Each of these quadrants functions to perform a particular set of tasks. The horary 

quadrant allaws one to determine the seasonal daylight hours12 and the astrolat~ic 

quadrant appears to embody the same operations as an astrolabe. The astrolabe 

bears a stereographic representation of certain stars and celestial circles such as the 

equator and tropics, the ecliptic and altitude circles onto the plane of the equator. 

Astronomers discovered that they could utilize symmetry about the meridian to allow 

'King, Some remarks on Islamic astronomical instruments, p. 16. 
2The seasonal daylight hour differs from the 24th equal part of a day or a complete revolution 

of the earth in that it is the 12th equal part of the total daylight for a given day. Consequently, 
under the assumption that one makes all observations from the northern hemisphere, the observer 
will notice that a seasonal hour is shorter for a day when the sun has a southerly declination arid 
longer when the sun has a northerly declination. 
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them to work with half of this celestial projection folded in half again, to produce a 

quadrant. 

Each quadrant is based upon ideas related to plane and spherical trigonometry 

and projective geometry, the mat hematical tools employed by the practitioners who 

constructed these quadrants, In the sections to come, we will examine briefly these 

ideas behind the construction of these various instruments; in the chapter on quadrant 

constructions, these ideas will come together in geometrical demonst rations of the 

validity of the various scales that appear on these quadrants. 

Original Sources 

The study and appreciation of scientific instruments in general is not a new phe- 

nomenon. Indeed, even during the early Middle Ages people were just as likely to 

collect instruments like the astrolabe and quadrant for their intrinsic value and beauty 

as for their utility; however, we hope here to extend this interest in scientific instru- 

ments, and more specifically in hand-held quadrants, to the investigation of original 

texts in the early Renaissance which demonstrate quadrant constructions and appli- 

cations in various scientific disciplines. These texts, like the instrument itself, can be 

viewed as important sources representative of scientific enquiry and progress within 

fields concerned with making more accurate measurements to allow for certain theo- 

retical and practical advances. 

These original texts for the most part remain dispersed throughout various mu- 

seums, universities and private collections. Hence, viewing these works, given our 

locality and availability of sources, has been not only difficult but next to impossible. 

I have, therefore, relied primarily on sources which have been made available in recent 

decades on microform in North America. This, however, has not provided a complete 

and thorough means for examining these original works. In such cases, where avail- 

able, later translations and editions were used and sometimes modern commentaries. 

In only a few instances were we able to examine original sources first hand. These 

sources which we have considered were for the most part written between the early 

16" and mid-17~~ centuries. 
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Maddison3 suggests that. the place with the largest collection of works on astro- 

nomical and mathematical instruments is the Museum of the History of Scieizce in 

Oxford. Of immense importame to scholars in the history of science, the museum is 

a treasury for significant collections of printed works, numerous scientific instruments 

and information on collections found elsewhere. We note also that the Deutsches 

Museum in Munich possesses an important collection of Latin texts on microfilm. 

However, the systematic examination of printed texts and early manuscripts which 

are scattered throughout the world's libraries and museums awaits more researchers 

in this field, which itself depends on generous research funding and further interest in 

this field. 

The texts which we have examined fall primarily in two groups. The first group 

consists of original works which discuss explicitly the construction of a given quadrari t . 

(In some cases, these works also provide examples of quadrant applications in the fields 

of astronomy and surveying.) In the second group, we have collected texts which 

demonstrate various applications of the quadrant within a given discipline. Those 

disciplines which form the backbone of this study include astronomy, cartography, 

navigation and ordnance work. 

After we have surveyed some of the various works available to us on the quadrant, 

pausing occasionally to examine more closely some important developments in quad- 

rant applications, we will discuss in some detail an advanced form of an astronomer's 

quadrant known as Gunter's quadrant. Edmund Gunter's influence can be seen in 

many of the works which we have examined, as well as the numerous examples of 

quadrants which exist today. We ourselves have constructed such a quadrant based 

upon Gunter's instructions from The description and use of the sector, cross-stafl, 

and other instruments, and a description and a printed reproduction of our quadrant 

is to  be found in the final chapter of this work. 

3~rancis  Maddison, Early Asironomical and Mathematical Instruments, p p .  21-22. 
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1.2.1 Important Scientific Works Examined Within the Con- 

text of Quadrant Developments 

U7e will now briefly outline, by profession, some primary works which are relevant 

to this study. They represent those works which were influential for decades and 

sometimes centuries, and demonstrate the principles behind these scientific arts, and 

the application and construction of a quadrant best suited to  these practices. 

Gunnery 

The first work to be written from a mathematical point of view on military ord- 

nance which studies the motion of projectiles and their trajectories was written by 

Nicolo Tartaglia in Nova Scientia in 1537. This work by Tartaglia begins a clearer 

understanding of the motion of a projectile and breaks away from earlier philosophies 

and in some sense from the authority of Aristotle. The break from Aristotle, however, 

is not one of complete abandonment as is evident of other important works on mili- 

tary ordnance and the trajectory of projectiles. These other related works by Lucar, 

Smith, Santbech and Norton will provide a greater sense of the problems faced by 

gunners in practice and theory and how the quadrant was employed. 

Astronomy 

We have found most of our primary works to be  astronomical in nature, and by and 

large works which were written in the late and the first half of the centuries. 

We mention Robert Recorde as an important scientific, literary and education figure 

who did much to aid the spread of astronomy throughout England. It is known 

that he intended to write a work on the quadrant, however, he must have used one to 

perform observations and tutor his students. The quadrant does arise in the discussion 

between a Master and a Scholar in his The Castle of Knowledge. 

Two other figures who were prominent astronomers in the century included 

Peter Apian and Oronce Fin&. Both men, the former of German descent and the 

latter of French origin, wrote works on various forms of the quadrant. In his Cosmo- 

graphicurn Caesareum, Apian describes the construction and use of a trigonometric 
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quadrant, and in another work he describes the construction of a new1 

astronomical quadrant. Likewise, Fin6 wrote a treatise on an astronomical quadrant. 

The 1 ' 7 ~ ~  century ushers forth a collection of new texts on quadrants - on their 

construction, but mostly descriptive approaches to the arrangement of the various 

curves on the quadrant. Edmund Gunter's The description and use of the sector 

stands as the most popular work on the quadrant during that century. Its influence 

can be seen in the work of William Leybourn and John Collins, and by the various 

examples of extant quadra~ts  which were constructed in the 1 7 ~ ~  century. 

Surveying 

In the field of surveying, the quadrant played a relatively small role since surveyors 

possessed many other instruments for performing whatever measurements they were 

doing. Nonetheless, early texts show how the quadrant could be applied to this 

science. There also existed texts which examined the art of surveying in addition 

to other sciences like geography, navigation and astronomy. George Atwell's The 

Faithfull Surveyour, Anthony Fitzherbert's work on surveying, Here begynneth a ryght 

frutefulb muter, Leybourn's The compleat surveyor and John Norden's The Surveyor's 

Dialogue represent works on surveying which are relevant here within the context of 

quadrant applications. 

Navigation 

Lastly, we have examined a few works on navigation to gain some understanding 

of this art and how instruments like the quadrant were used to sail the seas. At this 

point, we mention William Barlow's The Navigator's Supply, Martin Cortes' The arte 

of nauigation and Pedro de Medina's The arte of navigation as some texts which we 

have examined. 

Unfortunately, much of the modern literature has not examined the quadrant within 

the same context in which we have examined it. Indeed, we are tempted to say that 
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scholars have neglected to study the quadrant, and scientific instruments in general, 

until rather recently. Even then, the relative number of studies is quite small. 

Scholars like Emmanuel Poulle in "Le quadrant noveau mhdikval", Lynn Thorndike 

in "Who wrote quadrans vetus?" and David King in various works on astronomical 

instruments have focussed primarily on the quadrant in medieval times in the Latin 

West and medieval Islam. Others have produced works which provide insight into 

substantial collections of instruments. We mention, as an example, Anthony Turner 

and Harriet Wynters, two authors who have written on various collections of scien- 

tific and astronomical instruments. Works by Francis Maddison, Edmund Kiely and 

E.G.A. Taylor have been quite useful for their bibliographies which have provided us 

with much of those primary works on the constructisn and use of the quadrant which 

we have consulted. 

To our knowledge, little, if anything at all, has been done to study the quadrant 

as a scientific instrument in the context of its use by practitioners of several different 

professions. In the modern times, the quadrant has by and large only been looked 

upon as an astronomical instrument used for telling time. In this work, we have 

attempted to fill some of the void, particularly by looking at the mathematical tools 

behind the construction of astronomical quadrants. 

1.4 The Mathematical Tools 

In this section, we introduce two mathematical tools which were necessary for the con- 

struction of the quadrant: (i) the stereographic projection and (ii) spherical trigonom- 

etry. We will discuss the former from an historical point of view, taken as a tool devel- 

oped in antiquity and applied to areas like cartography, the mapping of the heavens 

and, in this instance, the construction of particular curves on the quadrant. 

Spherical trigonometry, for the most part, plays an important role in the con- 

struction of curves significant in astrooomical matters. Again we have provided a 

description of these tools for our readers within the historical context from which 

they developed, a description of trigonometry "functions" in the early Renaissance 

and how these functions were calculated. 
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1.4.1 Stereographic Projections 

The idea of representing points on the celestial sphere by those on a plane perpendicu- I 
lar to the axis of the celestial sphere by a projection from a pole of the sphere has been I 
of great importance in practical astronomy since antiquity. This idea, which tooday is ~ 
known as a "stereographic projection", was also employed later in the Late Middle 

Ages in the construction of certain types of quadrants (for astronomers), and indeed 

in the construction of the more commonly used instrument known as the astrolabe. 

Although the earliest known example of this projection is in the Planisphaerium of 

Claudius Ptolemeus4 (fl. 127-151 A.D.)? it is the opinion of Neugebauer that there 

is sufficient evidence that the invention of stereographic projections predates Apollo- I 
nius. Evidence for its invention indicates that it may be attributed to Hipparchus of 

Nicaea (ca. 180-125 B.C.). " 
A stereographic projection exhibits two important mathematical properties. The I 

first property is the mapping of circles to circles and the second is the preservation of I 
angles, or conformality. The second of these properties, however, does not appear to I 
have been known in ancient times. 

In Apollonius' Conics I, 5, he demonstrates the existence of two families of circles 

which arise from taking sections of an oblique cone.6 The first family consists of those 

sections taken parallel to  the circular base of the cone. In fig. 1.1, let ABC represent 

an axial triangle7 of an oblique cone. Then any section DE which is made parallel 

to  BC is also a c i r ~ l e . ~  The second family, known as the "subcontrary sections", is 

produced in the following manner. If an axial triangle, ABC, of the cone is cut by any 

line G F  such that LAGF = L A C B , ~  then the plane through G F  and perpendicular 

41n a recent work by J.L. Berggren on Ptolemy's work with celestial and terrestrial maps 
[Berggren, 1991, p. 31, he cautions readers against interpreting the Planisphaerium as a work on 
pointwise stereographic projections per se, rather than as simply describing a means for constructing 
images of celestial circles. 

so t to  Neugebauer, A History o j  Ancient Mathematical Astronomy, p. 858. 
6Apollonius further shows the uniqueness of these two families of circles in proposition 9 of Rook 

1. 

7 ~ n  axial triangle is the triangle which results by taking the intersection of an oblique conc: with 
a plane :ontaining the axis of the cone. 

8~pollonius proves this result in I, 4 of the Conics. 
9 ~ h e  equality of LAFG and LABC follows from the sirniliarity of AABC and AADE. 
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Figure 1.1: Two families of conic sections which are circles. 

to the axial triangle creates a subcontrary section. (In the case of a right circular 

cone, these two families of circles are one and the same.) In Conics I, 9 ,  Apollonius 

shows that no other section can be a circle. 

Apollonius' Conics provides us with the necessary elementary propositions needed 

to demonstrate the first of the aforementioned properties of a stereographic projection. 

Let us consider in fig. 1.2 a sphere AD with centre 0 and let B'C' be the diameter of 

a circle on the sphere. A stereographic projection maps the points B' and C' to the 

points B and C in the plane of projection respectively by the straight lines AB'B and 

AC'C where A is  the point of projection and the axis A0 extended meets the plane 

of projection at D at right angles. AAB'C' represents an axial triangle of a cone with 

vertex A and circular base whose diameter is B'C'. It remains to be shown that BC 

represents the diameter of a circle in the plane of projection. AAB'D is a right triangle 

since it subtends the diameter ,40. The equality of LACW and LADB' follows from 

the fact that they subtend the common chord AB'. Given that AABD is a right 

triangle, and BID is perpendicular to the other side of that triangle, then AAB'D is 
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B C D 

Figure 1.2: Under a stereographic projection circles map to circles. 

similar to AADB. Since LA is common to both triangles, LABD = LADB' and thus 

LABD = LAC'B'. Thus, the plane of projection cuts the cone in a subcontrary circle 

and BC is the diameter of that circle in this plane. 

The second property of a stereographic projection is of no interest here since it 

never was employed by practitioners in the construction of the curves on an astrolabe 

or quadrant. 

1.4.2 Trigonometry 

The development of trigonometry has been a long and fruitful one especially in the 

service of astronomy.1•‹ Indeed, from the Late Middle Ages up to the present we 

find trigonometry employed in the work of surveyors and navigators. What will con- 

cern us here is the use of spherical trigonometry in the application and construction 

of the quadrant, and some theorems on plane triangles used in the calculations by 

mat hematical practitioners. 

1•‹Cf., e.g., Edward S. Kennedy, "The History of Trigonometry," in Studies in the Islamic Exact 
Sciences. 



CHAPTER NTRGD UCTION Al' 

Figure 1.3: Menelaos' theorem for the plane. 

It would appear that spherical trigonometry arose from a need to identify the po- 

sition of a heavenly body in the celestial sphere, and theorems such that of Menelaos, 

provide us with a method for solving spherical triangles. This theorem of Menelaos 

for the plane states that if the sides of a triangle are cut by a transversal, then the 

product of three non-adjacect segments is equal to the product of the remaining seg- 

ments. For example, if ABC is a triangle and 1 is a transversal which cuts the three 

sides at  D, E, F respectively as in fig. 1.3, then it follows that 

or simply as, 
CF D F A E  -- - - . =  
BC DE AB (1.2) 

where we may write two "outer segments" in this configuration in terms of "inner 

segments". Likewise, we may write two inner segments in terms of outer segments as 



Given these two expressions for the ratio of two inner and outer segernents respec- 

tively, the follon ing trigonometric formulae for right spherical triangles arise from thc 

trigonometry of chords and their reiationship to our modern trigonometric functions: 

Figure 1.4: Trigonometric relations for spherical triangles. 

tan(b) 
COS(Q) = .--- 

tan ( c )  

Early trigonometry owes its existence and development to many different cult,ures 

and the astronomers thereof, especially to the Hindus, and not just the ancient Greeks; 

and it was expressed in geometric language using the lengths of chords which subtend 

angles or arcs in a circle. In the case of plane triangles, Menelaos assumed that thc 

"theorem of Menelaos" was well known to his peers. 

In Menelaos' treatise, the Sphaerica, which survives only in an Arabic translation, 

the analogous cases for spherical triangles are proven by their planar counterparts. 

These theorems, as we shall discover, played an important role in the development of 

observational astronomy and the construction of the quadrant. 
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Today we use and teach trigonometry to students as functions which represent 

ratios or numbers. Prior to this recent development in the history of mathematics, 

trigonometry for the Greeks, the Hindus, the Arabs, the Latin medievalists and early 

Renaissance practitioners meant trigonometric lines or lines which represented the 

values of trigonometric functions for various arguments. Discussing developments in 

Western European mathematics, Dirk Struik says that the use of the unit circle and 

the expression of trigonometric functions as ratios is attributable to Leonard Euler.ll 

The evidence for this lies in Euler's lntroductio in analysin infinitorurn. 

Though the conceptual change in trigonometric functions did not take place until 

the middle of the 18th century, changes had already begun to take place about two 

centuries prior to Euler's work. Trigonometry was becoming a separate science from 

astronomy and was being applied to other areas of mathematics like algebra and dis- 

ciplines like geography. Nonetheless, trigonometry meant the study of trigonometric 

lines which were expressed as a ratio of the diameter of some circle with a given radius. 

In the 1 6 ~ ~  century, Georg Rheticus, a student of Copernicus, broke with the view 

which traditionally held that trigonometric functions were defined with respect to 

the arcs of circles, and turned to the right triangle to  express all six trigonometric 

functions, i. e., sine, cosine, tzngent , cotangent, cosecant, and secant. Instead of 

expressing the trigonometric functions as the ratio of chords, tangent lines, secant 

lines and parts of the diameter of a circle with a very large radius, they were expressed 

using a right triangle with a hypotenuse or base given as a given number of parts.12 

This convention for describing the trigonometric functions was encountered by 

many scholars on the continent, but not in England. The use of trigonometric lines 

remained in use throughout England during the 1 7 ~ ~  century as can be observed 

through the works of people like Edmund Gunter and Richard Norwood in their 

respective works, Use of the sector and Trigonometaie. 

llStruik, A Concise History of Mathemaiacs, p. 90. 
12Rheticus in his Opus palatinum de tn'angulis uses 10,000,000 for a radius. Cf., e.g, Boyer and 

Merzbach, A History of Mathematics, p. 326-7. 



Chapter 2 

The Quadrant Prior to the Early 

Renaissance 

2.1 Transmission and Translation - From Medie- 

val Islam to the Latin West 

Astronomy has occupied a place of great nobility within various cultures for millennia, 

long before most (if indeed not all) of the other sciences were established. This disci- 

pline has shown much utility in the pursuit of scientific knowledge and religious truth; 

however, much of its progress depended on the development of scientific instruments. 

From the earliest use of the gnomon to the use of dials, quadrants and astrolabes and 

developments in optics (which gave rise to the telescope), astronomy has helped us 

better to understand the universe and has sharpened our faculties for reflection on the 

nature of the world in which we live. It is not our intention to examine the history 

of astronomical instruments here, since many other scholars have already done so. 

We will, however, provide a brief discussion on the role of the quadrant in positional 

astronomy in Medieval Islam and in the Latin West before we discuss its use during 

the early Renaissance from the early to mid-17~~ centuries. 

The earliest known example of an instrument resembling a quadrant is described 

in Ptolemy's Almagest I, 12 where he describes the construction of an instrument for 
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determining the distance of the sun from the zenith when it crosses the meridian. 

Ptolemy's quadrant, which is drawn on the face of a square slab of wood or stone, is 

a quarter circle with the arc graduated into 90 degrees and further subdivisions; at 

the centre of the quadrant is fixed a peg from which the shadow cast at noon would 

provide the zenith distance of the sun in the meridian. From these observations made 

over time, the meridian altitude of the sun in the summer and winter solstices could 

be determined; hence, the obliquity of the ecliptic and the local latitude could be 

known.' Ptolemy 's work served as the authoritative text on mathematical astronomy, 

furthering the astronomical and religious needs of both the Medieval Islamic and Latin 

worlds. 

The acceptance of astronomy, as well as other matters foreign to  the Muslim world, 

occurred only after much debate over its utility for this theocentric society. Sayili has 

described in some detail the problems of acceptance of the secular sciences, and indeed 

astronomy, into the ideologies and religious doctrines of Medieval Islam; however, in 

time Islamic scientists adopted that framework established by the Greeks - and some 

influence from India - working to correct, extend and complete the astronomical cor- 

pus. (A scientist from later in the "golden age", al-Bhn';, aptly reflects these ideas by 

saying that the job of Muslim scientists was "to confine ourselves to  what the ancients 

have dealt with and endeavour to perfect what can be perfe~ted".~) The quadrant (as 

well as other observatory instruments) served within the development of Islamic as- 

tronomy to correct astronomical tables and tables of geographical coordinates, and to 

calculate the obliquity of the ecliptic with a much greater precision than ever achieved 

before the Arabs, as well as to be used in the distinctive branch of Islamic astronomy 

known as the science of time measurements (useful in the conduct of religious duties) 

and the determination of the direction of the qibla, the sacred direction toward Mecca, 

which Muslims face during prayer. 

' Cf., G.J. Toomer's translation and annotation of Piolemy's Almagest where Ptolemy in Book I 
has described the construction of two instruments which were used for determining the arc between 
the two solstices, pp. 62-63. 

2This appears quoted in [Lindberg, 1992, p. 1761 from Carra de Vaux, "Astronomy and Mathe- 
matics" (in Arnold, Thomas, and Guillaume, Alfred, eds. The Legacy of Islam, pp. 376-97. London: 
Oxford University Press, 1931). 
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To perform these tasks required the use of large quadrants (among other instru- 

ments) with graduated arcs constructed to provide the greatest amount of precision 

in the data collected from celestial observations. Such large quadrants were created 

at or for some given observatory. The Islamic observatory is a "product and partv 

of the Islamic society and civili~ation".~ Most were short-lived, and two were even 

intentionally dem~l ished .~  The short life span of some observatories (as opposed to 

observation posts) seem to have arisen, in part, from technical difficulties with the 

construction of such large astronomical instruments. While the quadrant was not the 

only instrument which the Muslims used, it seems quite possible, though difficult to 

show here, that the construction of large quadrants (with radii measuring several feet) 

may have resulted in the early closure of some observatories due to an inability to 

construct these instruments accurately enough. 

A number of texts and commentaries have come down to us on the nature of the 

observatory and the use of scientific instruments, as well as the quadrant5. We have 

commentaries from a number of astronomical observers which include remzrks made 

by al-Battad, al-~Triin? and al-'Urd; to name three whose work is discussed in some 

detail by Sayili. 

~ l - ~ h n i  is said to  have cited the location - just recently discovered - of the 

Qzsiy6n Observatory near the Dayr Murran monastery which Sayili concludes was 

built between the Fall of 830 and the Summer of 831 on the order of al-Mamun. 

Like most other observatories, Q&Gyun had a number of prominent astronomers, 

astrologers and instrument makers; most likely, like many of the other Islamic obser- 

vatories there were also others, such as engineers, architects, mechanics, treasurers, 

librarians and other clerks, who formed a part of this impressive and elaborate orga- 

nization. 

Though the text is not clear to Sayili, in his Determination of the Coordinates of 

Localities al-~i-riini mentions a wall quadrant made of marble with an inner radius of 

10 dhira'or about five metres. Fixed to the arc was a sliding device with an aperture 

3Sayili, "Introduction," The Observatory in Islam by Aydin Sayili, p. 4. 
41bid., p. 4. 
5The work The Observatory I n  Islam by Aydin Sayili is the authoritative study on this subject. 
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to allow an observer to take either the sun's altitudinal or zenith distance by aligning 

the sun and the spike located at the centre of the quadrant as viewed through the 

aperture. The graduation of the arc of this quadrant was done by 'Ali ibn %a al- 

Usturliib; who is cited by Ibn Yiinus with great praise in his 'AEiz: KitGb a1 Zz? a1 

h'abz? al-@6kimtas the instrument maker.6 

Al-Battgn; is known to have made numerous solar observations to determine 

amongst other things the obliquity of the ecliptic at his private observatory in Raqqa. 

Moreover, it is known that al-Bat t& possessed a number of astronomical instruments 

which included an astrolabe, a gnomon, various sun clocks, parallactic rulers and a 

mural quadrant. Of the latter, al-Battan; notes in his Z c  a l - S ~ b ~ t h a t  such a quad- 

rant should be at least one metre in radius and that any increase in the radius would 

enhance the precision in the instrument - and hence effect an improvement in making 

an observation. To use the quadrant, al-Brriinf says in his Tahdzd that al-Battan: had 

used an alidade with his quadrant and was the first to use such a sighting mechanism 

on a quadrant.' 

~ l - ~ i r i i n i  also gives an account in this same work of Sulaymsn ibn 'Isma who made 

observations in Balkh with a mural quadrant with a radius of 8 dhira 'or approximately 

4 metres. This quadrant, too, al-Biriini claims was equipped with an alidade and was 

used for determining the obliquity of the ecliptic.' AI-B&ni also claims that Abii'l 

Hasan Ahmad ibn Sulaymiin had used a large quadrant with a radius of 20 dhira' 

(approximately 33 feet) which he used to calculate the latitude of the city of Zarnaj 

in Sijistan.' 

Beside these citations by a l -Bkn i  of the work and astronomical instruments of 

other astronomers, al-Bhiny himself made observations of the heavens, some of his 

earliest ones being made in Khwarazm. He also is known to have made numerous 

astronomical observations in v ~ i o u s  cities of Khurasan and is reported to have used a 

quadrant with a radius of 3 metres. From these observations he was able to calculate 

'SaYili, The Obsematory  in Islam, p. 72. 
' Ib id . ,  p. 96-7. 
'Ibid.? p. 98. 
91bid.l p. 111. 
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the obliquity of the ecliptic and the geographical coordinates of a ixmber of cities." 

The 1 3 ~ ~  century observatory in Maragha, its foundation still extant, was probably 

one of the most important observatories in Medieval Islam. The observatory possessed 

a fine library containing 400,000 manuscriptsl1 many of which would have been writ- 

ten by the many prominent scientists attached to this observatory, including Na$r 

al- in al-Tusi, MuLayyad al-Dyn al-'Ur& and  MU$^? al-Dh al-hlaghribi. A~-'u&, 

the chief instrument maker at Maragha, is known to have constructed or suggested 

the construction of vari0u.s instruments for this observatory one of which includes a 

mural quadrant. He mentions that this quadrant had a radius of more than 14 feet' 

and was graduated in degrees and minutes. With the instrument which probably 

was the first instrument constructed at Maragha, the latitude for Maragha could be 

obtained and the obliquity of the ecliptic could be calculated. Undoubtedly, al-'l~r<fi 

had a number of astronomical instruments at his disposal, and this quadrant was not 

the only quadrant at  Mar6gha. Pannekoek states that al-'Urdy also constructed a 

quadrant with a radius of 10 feet.12 

Though the above helps to show the importance of both the observatory and 

the quadrant in astronomical and geographical matters, most observatories and as- 

tronomers would have had access to hand-held quadrants. As we have mentioned 

earlier in this study, David King has made numerous studies of Medieval Islamic 

quadrants of this nature, work which is part of an increasing trend of studying scien- 

tific instruments and their relationship to science. 

King talks about the horary quadrant which would have been used for time-telling 

either at  any latitude using seasonal hour lines which serve to divide the length of 

daylight into twelve equal parts or at  a specific latitude using equinoctial hour lines. 

Withoilt providing any information on the source of the particu1e.r manuscript, he 

mentions a $Ith century text from Baghdad where a horary quadrant is described 

which includes a fixed and a moveable cursor and shadow square. This poses a 

problem for historians of science, as King notes, who previously thought that such an 

'OIbid., p. 127. 
llPannekoek, The Hzstory of Astronomy, p.169. 
121bid.,  p. 169. 



I instrument was a latter European innovation known as the quadrans vetus. We should 

I not necessarily construe this to mean that a European as t rono~er  did not re-discover 

I such an instrument, and it seems risky to conclude any Islamic influence in Europe 
I 

on the basis of one text alone. (King, however, emphasizes that we have only begun 

to scratch the surface in our study of Islamic texts deaiing with instruments.) If its 

appearance in Europe does turn out to be due to Islamic influence, then the horary 

quadrant will turn out to be but one of a number of scientific instruments to have 

found its way into medieval Europe from the Islamic world. In any case, it will be 

discussed later. 

One other quadrant which interests us here is the astrolabic quadrant or as it 

is known in the Latin tradition quadrans novus or more appropriately as quadrans 

astrolabicus. It was used by Oronce Fin6 in 1534 in his work by the same name, but 

its origin is again very much a mystery. We will also discuss this form of quadrant 

shortly, but here it will suffice to say that it incorporates those symmetrical markings 

which are found on an astrolabe. The symmetry of the lines engraved on the tympans 

of the astrolabe about the meridian allows one to  use just half of the astrolabe (on 

either side of the meridian) which is then folded in half again to form a quarter 

circle. The rete of the astrolabe is replaced by a plumbline and bead which represents 

the sun or some star. Its popularity as an astronomical instrument, which we shall 

shortly examine, is evident from the greater appeal (over the astrolabe) which it had 

to practitioners in the Late Middle ages and the early Renaissance in Western Europe. 

Medieval Islam played an important role in the collection, the correction and the 

perfection of astronomy from other cultures around them, and in particular from the 

Hellenistic (e.g., Euclid, Apollonius and Ptolemy). Although without its contribution, 

it is difficult to predict how European science would have developed; astronomy in the 

Latin West, as a cultural region in its own right, is also important to our understanding 

of the evolution of the purpose of the quadrant within astronomy. We shall examine 

this evolution by briefly examining the role which the quadrant played in the area of 

astronomy in Late Medieval Europe. 

On the whole it is now accepted that the Middle Ages were not the "Dark Ages" 

of popular imagination. As in Medieval Islam, astronomy in the Latin West was 
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of great relevance to the human condition and of practical irnportanee both to the 

church (in regulating the civil and liturgical calendars) and to the secular world. 

And beyond its mundane benefits, astronomy was to enlighten man, free his soul 

from secular affairs and shift his attention to the more sublime. However, astronomy 

owes its existence on the whole to its utility and usefulness for time-reckoning and 

as a theoretical introduction to astrology. Moreover, astronomy formed part of the 

educational organization found in the universitas of Medieval Europe. 

The early history of Latin astronomy from the time of Isodore, Bishop of Seville, 

in the early 7th century and for the next four or five centuries seems to point clearly 

toward cosmology rather than mathematical astronomy as its greatest concern. Frsg- 

ments of mathematical astronomy do appear, although they are rare.13 The fact that 

the medievals were working with the summaries of Martianus Capella (5 th  century 

A.D.) rather than someone like Ptolemy reveals much about what was available. The 

fact that there was no significant link between theory and observations of heavenly 

phenomenon is emphasized by the fact that the best instrument of the time, which 

only became available in the gth century, was a crude sundial. 

2.2 Quadrants in the Latin West - Qnadrans ve- 

tastissirnus, vetus and novzls 

Recent discussions on the introduction of the quadrant to the Latins from the Arabs, 

and on the quadrant in general, have evolved into a few studies by scholars such 

as Paul Tannery, Henri Michel, J. Mill& Vallicrosa, Abb6 A. Anthiaume and Jules 

Sottas, Emmanuel Poulle, Lynn Thorndike and Nan Hahn.14 Here our discussion on 

the quadrant in the late Middle Ages will draw upon these works to provide a brief 

sketch of the types of quadrants which appeared during this time. 

Mill& Vallicrosa bas written about the history of the quadrans vetus, which we 

13Pedersen, Astronomy in Science in the Middle Ages, pp. 306-7. 
14Cf., Those texts by these authors to which we refer are listed in our bibliography. 
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shall descrj be shortly; however, he has also established the existence of an older quad- 

rant found in the Latin West, which is similar to the quadrans uetus, and which he 

calls quadrans vetustissimus. The quadrans vetustissimus, Mill& Vallicrosa claims, 

was introduced as early as the lo th  century during the transmission of Arabic science 

to the Latin West. Poulle cautions that certain people (he does not say who) have 

claimed incorrectly that the quadrant with a cursor was a Latin invention. This in- 

vention, these same people claim, began in the 1 3 ~ ~  century with the quadrans vetus 

and a text written by one Johannes or Robertus Anglicus of Montpellier.15 

There is a significant difference bet.ween the quadrans vetus and the quadrans 

vetustissimus. A series of parallel lines (parallel to one of the sides of the quadrant) 

is constructed on the latter instrument, in the space, which is itself a quarter circle, 

above the graduated limbus, the cursor and a representation of the ecliptic. These 

lines, Milliis Vallicrosa says, suggest the use of two trigonometric functions, the s i x  

and cosine, for some correspcinding angle. Poulle suggests that the use of these lines 

may have been beyond the comprehension of loth century scholars for calculating the 

seasonal hours. This would suggest that the invention of the quadrans vetus, which 

replaced this series of parallel lines with the construction of seasonal hour lines, is 

an invention of the Latin West. The cursor, however, is derived from Arabic sources. 

Of course, it is quite speculative to say that the quadrans vetus is a derivative of the 

older, but the use of hour lines is clearly easier than the use of this series of parallel 

lines for time-telling. Lorch even suggests that the development of horary quadrants 

comes after the quadrans vetustissimus. He does not discuss how the sine-quadrant 

might have been related to the quadrans vetustissimus. 

The earliest reference to a quadrant, which Millris Vallicrosa qualifies as quadr~ns 

uetustissimus, appears in the extant Latin work De operatione vel utilitate astrolabii 

translated from an Arabic work by the Jewish astronomer Mash2all&h (Messahala) 

who flourished around 815-820 A.D. As the title suggests, the work is on the astrolabe; 

however, those parts of the text which describe a double quadrant on the dorsal side of 

15There has been some debate as to who the author is of this text. Thorndike, for example, takes 
up this problem in his "Who wrote quadrans vetus?". Other scholars, like Hahn, have made attempts 
to re-appraise the evidence gathered together to determine the author of the Quadrans vetus. 
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the astrolabe have been interpreted as describing a separate instrument - t-he quadmas 

vetustissimus. Despite the problems of authorship with this work, Hahn, who has 

investigated this text, states that the appearance of an ordered de~cript~ion of the 

parts of this quadrant could be an artifact of the text. 

Today there survive numerous tracts on the quadrans vetus. These early treatises 

were not concerned with the construction and use of the quadrans oetus, per se. Early 

treatises were known by the title Tractatus quadrantis. The qualification of vet us only 

came into being when Jacob ben Machir ben Tibbon presented another quadrant - 

not neccessarily of his own invention - in the late century, known as the quad?.nns 

novus. 

The importance of the quadrans vetus during the late Middle Ages can be detes- 

mined by a number of factors. It is likely that treatises on the quadrans vetus were 

used in universities as pedagogical tools for teaching mathematics, astronomy and as- 

trology. Rashdall says that these subjects thrived in Italian universities like Bologna. 

Those who studied astrology at Bologna for instance, were required to read vari- 

ous works which included Mzisha'allah7~ treatise on the astrolabe and an anonymous 

Tractatus &uadrantis.16 

In the 1 2 ~ ~  century, we find the universitas emerging as a centre of knowledge, 

learning and creative scientific deveiopments. The universities, which were more than 

just places of learning, were places where knowledge was gathered, studied and shared 

by students and masters alike. As such, we find treatises and a few examples of 

quadrants which were employed pedagogically to further knowledge in the areas of 

astronomy and geometry as it might have been applied to surveying, for example. 

Of the numerous tracts on the construction and applications of the quadrant dur- 

ing this period (though certainly less abundant than the number of treatises on the 

astrolabe), we will nlention only a few relevant works here. 

The first of these appears around 1140 and is entitled Practica geometriae. The 

work which is attributable to Hugh of St. Victor is divided k t o  abstract arid prac- 

tical geometry. It is similar to another work analyzed by Hahn where geometry is 

partitioned in the same manner ("Geometri due sunt partes principales theorica et  

16Rashdall, The Universities in the Middle Ages, p. 248-249. 
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I pra~tica").'~ Here, the description of the essential parts of a quadrant is for the 

I construct,ii>n of the quadrant on the dorsal side of an astrolabe, and the practical ap- 

I plications are the usual mundane routines for obtaining measurements for altimetry, 

planimetry and stereometry. 

In the early l Y h  century, we find a Latin treatise by Sacrobosco, the Parisian 

teacher and author of De Sphaera Mundi, which discusses this device. Sacrobosco 

named this much smaller treatise on the quadrans vetus simply Tractatus magistri 

Ioannis de Sacrobosco super compositione quadrantis simplicis et compositi et utili- 

tatibus u t ~ ~ i u s ~ u e . ' ~  The treatise which describes the construction of a quadrant with 

and without a cursor and a few applications does not seem to have enjoyed a fruitful 

existence, though it must have been used frequently as a textbook by Sacrobosco in 

Paris if nowhere else. The treatise which provides instructions for finding the sun's 

declination, the time of day and the height of objects is important mathematically and 

stylistically. Stylistically, it differs from earlier works;lg mathematically, Sacrobosco 

remarkably describes how to construct equal hour lines. 

The extent to which people outside of academia knew about the quadrans vetus 

cannot be determined entirely, although Hahn has been able to locate 4 extant quad- 

rants. They are found in museums in Florence, London, Cambridge and Oxford, and 

date from the 1 3 ~ ~  century until approximately 1600.20 In addition, Hahn also sug- 

gests some reasons for the rarity of existing instruments, and suggests that broken 

cursors, the potentially short life span of wooden quadrants and melted down brass 

quadrants could account for relatively few extant examples of quadrants. 

Of course, the biggest case for the quadrant's popularity is the number of extant 

treatises and references to the quadrans vetus. Hahn has examined over 60 Latin 

17Cf., Nan L. Hahn, Medieval Mensuration, 1982. Hahn discusses and analyses this work by an 
unknown writer in this critical edition of two works which Save many textual similarities in an effort 
to answer questions about authorship, textual sources and developments of the quadrant. 

l8G'f., Olaf Pedersen, "In Quest of Sacrobosco," Journal for the History of Astronomy, 16 (3, 1985), 
pp. 185-186. In this article Pedersen provides an excellent study of the works of Sacrobosco (which 
also include his Compzstus and Algorismus) and insight into the enigmatic character of Sacrobosco. 
The manuscript examined by Pedersen who attributes this text on the construction of the quadrant 
to Sacrobosco is a Parisian manuscript (Paris BN Lat. 7196, 25r-27v, seac. XIII.). 

lgHahn, "Introduction,'Medieval Mensuration, p. m i i i .  
polbid., Medieval Mensuration, p. xi-xi. 
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manuscripts from various libraries across Europe from which he has composed a crib 

ical Latin edition. Translations also exist in German, Hebrew and Greek, and Paul 

Tannery has written a critical edition on the quadrans vetus in an attempt to det.er- 

mine the origin of a Greek translation of Geometrie due sunt partes. The treatise has 

also been printed in Gregory Reisch's Margarita Philosophica. The entire work also 

appears in De elementis geometrie by Johannes Griiniger, who erroneously attributed 

the work to Martin Walclzemiiller. 

The quadrans novus, to distinguish it from the quadrans vetus, was known only as 

such in Latin circles. Its original name, given by Jacob ben Machir ben Tibbon, was 

the quadrant of Israel. The quadrans novus was quite different from its predecessors. 

In essence, it was derived from the astrolabe by a double abatement of the face of the 

astrolabe along two axes of symmetry. Oftentimes, the cursor was omitted, though 

the shad.ow square and the equal hour lines remained intact. 

The quadrans novus was quite a novel invention; however, the diurnal motion 

of the sun and the stars, as they were represented on the quadrant, became more 

complex despite the fact that a greater precision can be achieved with this instrument 

versus the astrolabe. Although the quadrant's size accounts for its greater accuracy, 

performing a calculation now takes a few steps and only presents an opportunity 

for errors to accumulate. Extant examples of the quadrans novus have examined 

by E. Poulle in Le quadrant nouveau me'die'val and L'astrolabe-quadrant du Muse'e 

des antiquite's de Rouen by Anthiaume and Sottas. R.T. Gunther's Early Science in 

Oxford also provides some insight into scientific instruments at Oxford. 

All of these quadrants or their various constructed parts would appear again over 

the next 400 years in Western Europe. For instance, Oronce Finit's Quadrans as- 

trolabicus omnibus Europae regionibus deserviens was a very important treatise on 

the quadrans novus which was published in the century; Edmund Gunter would 

modify the quadrans novus by including a cursor and reducing the construction of 

certain curves to two stereographic projections. 

Together, these extant works and surviving instruments provide some insight into 

the Arabo-Latin roots of the quadrant during the late Middle Ages. 



Chapter 3 

Renaissance Practitioners and the 

Quadrant 

3.1 The Astronomers 

By the middle of the 1 5 ~ ~  century astronomy was beginning to play to the practical 

needs of the people of western Europe. The numerous treatises on calendar reform 

prompted by the church and various councils serve to show the usefulness which 

astronomy was seen to possess; in addition, navigation and cartography made high 

demands on astronomy during a time when merchants, sailers and wayfarers, amongst 

others, needed assistance to travel abroad. Also, yearly astrological prognostications 

soon became the order of the day and were a major impetus for the development of 

astronomy in the Latin West. 

The spread of astronomical information had much of its roots predominantly in 

Paris until the mid-14~~ century.' Soon, other universities in Europe strengthened in 

this area, and knowledge of advanced astronomers eventually made its way to England. 

However, Pedersen notes that the best known astrc-mmical tradition for the early 1 5 ~ ~  

century lies in Vienna with a succession of students and teachers beginning with John 

of Gmunden, Georg Peurbach and Regiomontanus.2 We shall begin here by looking 

'Pedersen, Astronomy in Science in the Middle Ages, p. 329. 
2,rr)id., p. 330. 
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at the work of these three men, their influence on astronomy and use of the quadrant 

in their work. 

John of Gmunden (ca. 1380-1442) is known to have left a document behind which 

states that his sizable library of books and instruments were to be bequeathed to the 

university's new Faculty of Arts library in Vienna.3 This document even hints at the 

extensive work which John of Gmunden did to correct and update various astronorn- 

ical tables, and to teach his students on theological, mathematical and astronomical 

matters using various important texts of the day and scientific instruments like the 

quadrant. 

John of Gmunden possessed at  least two quadrants and is known to have written 

two tracts on the use and construction of the quadrant. The first, Profacius Judaeus, 

De compositione novi quadrantis et de eiusdem utilitatibus, was a discussion of a trea- 

tise written by Jacob ben Machir ibn Tibbon, known as Profatius Judaeus, in the 

1 3 ~ ~  century. The second tract that John of Gmunden wrote is also based upon the 

same work. Evidence for the year in which they were written indicates that John of 

Gmunden may have written the first of these tracts as early as 1425. The third tract 

(and other smaller tracts with uncertain dates) show further interest in the quadrant 

- possibly written by some of John of Gmunden's  student^.^ John of Gmur~den did 

not limit himself to the discussion of various texts (which show his familiarity with 

scholars like Campanus, Richard of Wallingford and Robert Grosseteste), nor just the 

correction and calculation of old and new astronomical tables. His knowledge and use 

of various instruments like Campanus' equatorium, Richard of Wallingford's Albion, 

the astrolabe, sundials and Jacob ben Machir's novus quadrantus were applied for the 

purposes of performing certain calculatio~ls in conjunction with given observations, 

3Mundy, "John of Gmunden," p. 198. Mundy supplies in his study of John of Gmunden the 
original text which Gmunden wrote describing his gift to the library. John of Gmunden says, "Ego 
Mag. Johannes de Gmunden, baccalan'us formatus in theologica, canonicus s. Stephani Wienn. et 
plebanus in Laa augere cupiens utilitatem ac incrementurn inclite facultatis artium studii Wienn. 
volo et dispono, qaod libn' mei ... el similiter inst~umenta astronomica post obitum meum maneant 
apud facultatem arcium .... " 

41bid., p. 200. 
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and not for purposes of performing observations of celestial bodies for the mere pur- 

pose of obtaining data through new observati~ns.~ This would seem to support John 

of Gmunden7s working as a teacher of astronomy. 

A student of John of Gmunden, Georg Peurbach (1423-61) is most known for his 

work, Theoricae novae planetarum (1454), which is derived from his lecture notes on 

planetary theory to replace the older Theorica planetarum by Campanus of N ~ v a r a . ~  

Peurbach is also known to have worked with Johannes Muller or Regiomontanus, as 

he is better known, to improve upon observational instruments like the quadrant in 

at tempts to make improvements in astronomical tables, and in particular the Alphon- 

sine Tables. Unfortunately, Peurbach passed away in his prime, and while Peurbach's 

ambitions to write a new tramlation of Ptolemy's Almagest based upon Greek texts 

which he had hoped to obtain with assistance from Cardinal Bessarion of the Byzan- 

tine church were not accomplished fully, his student, Regiomontanus, continued in his 

mentor's steps to devote the rest of his life to reforming astronomy. 

Regiomontanus (1436-76) is known for his work in performing celestial observa- 

tions and the faithful. restoration of texts some of which include the Commentariolus 

written with Peurbach, the Ephemerides and the completed Epitome of Ptolemy's 

Almagest which he and Peurbach were to complete together. While we cannot say 

with any great certainty (based upon our sources), it is quite likely that both Peur- 

bach and Regiomontanus used quadrants for their astronomical observations. Peur- 

bach and Regiomontanus are seen as supporters of the mathematical astronomy of 

Ptolemy. However, to make Ptolemy's models for the sun, the planets, the moon, 

etc., work requires the knowledge of various parameters. To obtain corrected values 

for the parameters would have required Peurbach and Regiomontanus to do accurate 

observations with instruments large enough and accurate enough to improve upon 

those provided by Ptolemy and tables like the Alphonsine Tables and possibly the 

Toledan Tables. 

51bid., p. 201. 
'Pedersen, Astronomy in Science in the Middle Ages, p. 330. Pedersen remarks that this text 

by Peurbach was not a text written in the tradition of the century humanists when classical 
texts were restored to  their original form, in this case Ptolemy's Almagest, but rather as a corrected 
edition of Campanus' work with some additions. 
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By the middle of the 1 6 ~ ~  century, England witnessed the beginning of a number of 

important developments and traditions in astronomy. These developments included 

the vernacular movement in scientific writing, original compositions and the improve- 

ment of scientific instruments. While we cannot offer any proof, we may hypothesize 

that this growth in the number of English treatises on the construction and applica- 

tion of quadrants is due primarily to the later developments in English universities in 

the fields of mathematics, astronomy, the other mathematical sciences and eventually 

a growing organization of instrument makers; certainly prior to this time period, the 

language of scholarship was Latin, and moreover, original scholarship was limited to 

writing commentaries on those authorities whose work was used to teach young schol- 

ars subjects like astronomy. Hence, the appearance of English works on the quadrant 

was a relatively late development. This can be seen by the number of English trea- 

tises on the quadrant in our bibliography. We shall now examine approximately a 

dozen mathematical practitioners and instrument makers from the middle of the 

to the middle of the 1 7 ~ ~  century who were major figures in further developing astron- 

omy, mathematics and improving scientific instruments - primarily those who made 

quadrants. 

It can be argued that Robert Recorde7s Castle of Knowledge (1556) represents 

the greatest textbook on astronomical science written in the lfjth century. Robert 

Recorde (1510-58) is known to have studied physics at Oxford and Cambridge where 

at the latter he completed his Doctor of Medicine in 1545. He became widely known 

by many for his teaching abilities and his talents as a writer. Recorde was also a 

master of the Latin and Greek languages. The Castle of Knowledge (1556) is the 

first comprehensive and original treatise on the elements of astronomy written in the 

English language; the arrangement of this 300 page text shows Recorde7s masterful 

ability as a teacher. Moreover, this book reflects his ability to impart to his students 

information in a precise and logical manner, teaching first principles and concepts and 

then having the students apply such knowledge to real problems, e.g., constructing 

their own celestial spheres. 

We must also note that during this century, we can see a growing number of scien- 

tists who are producing works which are anti-Aristotelian and embrace the Copernican 
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system over the Ptolemaic view of the universe. Recorde, who introduced Copernicus' 

ideas in English, clearly falls into this category; moreover, he indicates his willingness 

to introduce his students to the idea of the earth rotating about its own axis, as well 

as its revolving about the sun when they were more fully capable of understanding 

Copernicus' system . He says, 

but an other time, as I sayd, I will so declare his [Copernicus] supposition, 

that you shall only wonder to hear it, but also peraduenture be as earnest 

then to credite it, as you [the young scholar] are now to condemne 

We should note that Recorde was not really a staunch anti- Aristotelian nor greatly 

against Ptolemy, however, he does say that 

all men take heed, that both in him [Ptolemy] and in a1 mennes workes, 

you be not abused by their autoritye, but euermore attend to their reasons, 

and examine them well, euer regarding more what is saide, and how it is 

proued, then who saieth it: for aoutoritie often times deceaueth many 

menne." 

We have discussed Recorde's views on teaching and the Copernican system not 

merely for the sake of revealing his own views on teaching and astronomy. Indeed, 

both are quite important here to the use of scientific instruments in general and the 
I influence which Recorde, and others as we shall soon see, had upon the community of 

mathematical practitioners and instrument makers. Recorde is known to have used 

astronomical instruments to demonstrate various principles and concepts in astron- 

omy. In his work the Gate of Knowledge, which would otherwise be unknown if he had 

not made reference to  it in his Castle of Knowledge, Recorde says that the construc- 

tion and use of the astronomer's quadrant was discussed. In the unpublished parts of 

his The Pathway to Knowledge, Recorde also intended to expound the description of 

a newly designed geometrical quadrant. 
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Although the use of instruments designed at a time when the idea of a geocentric 

cosmos held sway might seem to be impossible once that view was replaced by a he- 

liocentric cosmos, such is not the case. Francis R. Johnson discusses the nature of this 

apparent dilemma in his Astronomical Thought in Renaissance England. Johnson as- 

serts that the change brought about by Copernicus' De revolutionibus was theoretical 

only, and did not affect the place of the traditional instruments within observational 

a s t r~nomy.~  For purposes of observation, an observer of the heavens must use the 

geocentric model of the heavens since an observer must necessarily be at the centre of 

his astronomical coordinate system. Even today, astronomical instruments are based 

upon the geocentric model of the universe since an astronomer looks out upon the 

starry heavens from some place on :he earth and not the sun.1•‹ Indeed, we cannot 

assume anything about an author's beliefs on the true nature of the heavens based 

upon his use of astronomical instruments. Recorde serves to demonstrate this point 

of view. Indeed, even Copernicus realized this problem and demonstrated this using 

Jupiter as an example to show that one could determine the position of the planet 

relative to the earth and then relate this to the determination of the planet in its orbit 

about the Sun. 

The popularity of Recorde's work on the Copernican model of the cosmos and the 

influence of the Castle of Knowledge did not overshadow the work of another early 16th 

century scholar. Leonard Digges (1510-58)) also an early Copernican, helped to propel 

the principles and concepts of astronomy to a much larger audience. Digges' A Prog- 

nostication of Right Good Effect (1555) and later editions printed by his son, Thomas, 

which Thomas titled A Prognostication euerlasting (1576) were popular works, which 

Johnson claims were the best of the "perpetual almanacks"." This work by Digges, 

however, was not a textbook like Recorde's Castle of Knowledge, but it is a good 

indication of the tendency of scholars of the time, like Digges and Recorde, to write 

in the vernacular for much wider audiences who lacked an appropriate knowledge of 

Latin. Digges also wrote a work called A geometrical practise named Pantometria in 

gJohnson, Astronomical Thought in Renaissance England, p.117. 
1•‹Ibid., p. 117. 
l l Ib id . ,  p. 123. 
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which he describes a number of instruments, including a quadrant which resembles 

most other quadrants of the time, possessing a shadow square and a graduated limbus 

with three scales marking every degree, every fifth degree and every tenth degree.12 

One astronomer who undoubtedly represents a great scientist in the century is 

Peter Apian (1495-1552), who made numerous improvements in observational meth- 

ods, scientific instruments and scientific theories. Apian is also quite well known for 

his many contributions to mathematics, and particularly as an early German Re- 

ichenmeister or calculator. Peter Bennewitz, who took the Latinized form of his 

name, Petrus Apianus, is known for a number of important texts in astronomy and 

mathematics. His Astronomicum Caesareum which he wrote in 1540 is a magnum 

opus on astronomy and represents a true gem in early printed works. The work in- 

cludes a number of volvelles which served to ease the burden of those who were not 

so mathematically gifted, but wished to know the positions of the planets and the 

moon. 

Apian was truly gifted as an astronomer. To his credit is attributed the discovery 

that the tails of comets point away from the sun. He also constructed sundials, and 

is known to have constructed one in 1524 which was mounted on the southern wall 

of the Trausnick castle near Landshut.13 Many of his astronomical publications were 

on astronomical instruments including quadrants, the torquetum, the cross-staff and 

other measuring devices. 

In 1519, he had already written a work on the horary quadrant (Quadranturn 

horarium), and in 1532 he wrote Quadrans Apiani Astronomicus which describes 

the use of the quadrant in astronomical and surveying matters.14 In the latter, he 

describes a quadrant with equal hour lines. His Instrument Buch of 1533 also discusses 

the use of a "new" quadrant, and in the second part of his astronomicum Caesareum, 

Apain describes the use of another quadrant called Meteoroscopion planum Apiani 

IZAn illustration of Digges' geometric quadrant from his work A geometrical practise named Pan- 
tornetria is pictured in plate 9 in the English translation of Maurice Daumas' Scientific Instruments 
of the 17'"and 18'~ centuries. Cf., [Daumas, 19531. 

13A commentary on Apian's work and the Astronomieum Caesareum accompanies the 1969 fac- 
sirnjlie of the Astronomieum Caesareum. C', p. 45. 

141bid., p. 48-9. 



which was used to perform calculations involving right spherical triangles. 

Apian's Astronomicum Caesareum may have been a masterpiece, but it did not 

please everyone. Rheticus, for example, mocked it, calling the work "an art of threads" 

- a reference to the use of threads with the volvelles for performing calculations. Also 

Kepler, in his Astronomia nova, criticizes Apian's work which he calls L'n~isdirected" 

and a poor reflection of the physical world, and he shows no appreciation for Apian's 

"automatons" which use many "wheels in order to reproduce the figments of the 

human imagination" .I5 Despite these barbs, Apian's scholastic career brought him 

many honours. 

Of course, we should not forget at least to mention the Danish astronomer, Tycho 

Brahe (1546-1601). Like Copernicus, Tycho Brahe and his work have been exam- 

ined extensively16, almost to the point where his work (and that of Copernicus) have 

clouded the achievements of others during the 16th century. Science in the 1 6 ~ ~  century 

was very strongly related to astronomical and astrological matters to which mathe- 

matics was inextricably tied. Brahe's work and the work of his contemporaries reflect 

this general feeling. 

Tycho Brahe used many observational instruments including many different types 

of quadrants. Unfortunately, very little is told about his use of hand-held instruments. 

He did, however, possess many large quadrants for performing various observations, 

most of which were done at  Uraniborg on the island of Hveen. 

In the 1 6 ~ ~  century, we see a rising number of instrument makers in England, as 

well as practitioners, teachers and tutors of astronomy and mathematics who used 

scientific instruments like the quadrant. John Cheke (1514-57), first Regius Professor 

of Greek at Saint John's College at Cambridge (1530-44), and Provost of King's 

College (1548-57), played an important role in teaching mathematics to others, and in 

particular to Prince Edward who later became Edward VI. He designed a quadrant for 

the young prince in 1551 which was engraved (most likely) by William Buckley (1519- 

71).17 Other makers and designers of scientific instruments during this century include 

151bid., p. 62. 
''See the biographical work by Victor Thoren on Tycho Brahe called The Lord of Uraniborg 

(Cambridge University Press: New York, 1990). 
17Taylor, The Mathema-tacal Practitioners of Tudor and Stuad England, p. 168-9, This instrument 
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I John Dee (1527- 1608)) William Cunning (1531-86) who designed a new quadrant ,I8 

I William Bourne (fl. 1565-88)) the Cambridge mathematician from Christ's Church, 

I Oliver Thomas (8. 1569-1624)) whose patrons included Lord Petre of Ingatestone 

I who was interested in Oliver's work on the making and use af simple instruments 

like the quadrant, and Thomas Hood (A. 1577-96) who concerned himself primarily 

with nautical astronomy and the practical uses for astronomical instruments in his 

mat hematical lectures. 

I The 17th century seems to have assembled quite a large number of mathematical 

I practitioners in England. Taylor briefly describes the lives and major works of ap- 
I 
I proximately 400 mathematicians, astronomers, navigators, surveyors and instrument 

makers in her The Mathematical Practitioners of Tudor and Stuart England. Her work 

in this area served as an important tool in identifying those practitioners who were 

associated with quadrant developments and applications in the service of astronomy 

and also other sciences. 

Many of these practitioners were quite familiar with Edmund Gunter (1581-1626). 

We will not say much about this man here since we will briefly discuss him and his 

work in the final chapter of this thesis. Gunter belonged to a few academic circles 

at Gresham Collge and in London which included people like Henry Briggs (1561- 

1630), William Oughtred (1575-1660), George Atwell (ca. 1588-1659), Elias Allen 

(fE. 1606-54), Samuel Foster (fl. 1619-52), Henry Sutton (fl. 1637-65) and John 

Collins (1625-83) to name but a few with whom he was familiar. Based upon the 

number of texts and extant examples of his quadrant, Gunter obviously influenced 

many practitioners of the mathematical sciences;1s however, while Gunter may have 

influenced many people, Taylor tells us an anecdotal story about the relationship 

between Gunter and Henry Savile, and a further story about Gunter and O~ghtred .~ '  

Apparently, Gunter had been sent for by Savile who was about to appoint nim as the 

was in the British Museum when Taylor wrote this book. 
l8Ibid., p. 172. 
lgGunter quadrants are known to have been constructed by people like Samuel Flower, Walter 

Hayes, Elias Allen. Cf., [Gunther, 19231 for other extant examples of Gunter's quadrant. Gunter 
also influenced people like Leybourn and Collins, as is shown in the final chapter of this work, as a 
source for their own writings. 

20~ay lo r ,  The h4athernatical Practitioners of Tudor and Stuart England, p.60- 62. 
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first Savilian Chair of Geometry at Oxford; however, upon his arrival, Savile felt that 

Gunter's knowledge of geometry was nothing more than a "showing of tricks" with 

his sector and quadrant in hand, and, showing no appreciation for Gunter's work, 

dismissed Gunter and sent for Briggs at Cambridge. We also know that Oughtred 

was not a great admirer of Gunter after Gunter had copied from memory Oughtred's 

'horizontal instrument' and inserted this plane projection and other projections into 

his Description and Use of the Sector without acknowledgment. To make matters 

worse, Elias Allen insisted that Oughtred include in a short book on navigation one 

of Gunter's tables, which only outraged Oughtred further. 

3.2 The Surveyors and Engineers 

The art sf surveying is one laden with numerous scientific instruments and tools for 

mensuration and discovery. As Edmond Kiely says in his work, Surveying Instruments, 

the well known adage that "Necessity is the Mother of invention" holds much truth 

when held up to the developments in surveying, and many other  science^.^' The same 

would hold true for developments in astronomy and navigation, two disciplines which 

we also examine in this work. Instruments have served practitioners since the times 

of the ancient Babylonians, Egyptians and Greeks, and continued to do so through 

the Middle Ages in Islam and the Latin West. 

The need for surveying and surveyors developed early from various needs, and 

in particular the need for calculating taxes according to  the size of one's estate, the 

construction of buildings and for irrigation developments. Plumb-bob levels, sight- 

ing instruments and ropes and chords of various lengths were used to perform these 

tasks. These instruments were employed for matters of levelling, sighting and direct 

measurement; nor can we forget the use of right-angled instruments from which our 

modern day carpenter's square was ultimately derived. 

During the Middle Ages, the Arabs and the Latins continued to use some of the 

same surveying instruments which existed in antiquity. For levelling, however, water 

levels do not seem to be so common, and instruments like the geometric square, 

'IKiely, Surveying Instruments, p. 8. 
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astrolabe and quadrant were used for such tasks. Besides testing whether a stretch 

of land, for example, was level using a quadrant, the Muslims also described methods 

for testing if some object were straight or plane. To test the straightness of some 

object, a taut string would be used, and once one straightedge was established, this 

straightedge could be used to verify the straightness of other devices. To determine 

the planeness of a given surface, a straightedge would be applied to  the surface in all 

possible directions, and one would observe whether any light would pass between the 

straightedge and the plane s~ r face .~"  

In the world of academia, surveying was a practical geometric application. Ge- 

ometry for the Latins took on quite a literal meaning, i. e., measuring the earth. The 

rediscovery of the corpus agrirnensorum in the l l t h  century, due in part to Gerbert, 

signalled a new approach to geometry.23 In universities, geometry was approached by 

those who taught it as a practical science. Not only was it useful for surveying or tak- 

ing measurements, but it had a place in erecting buildings and geographical matters. 

In the quadrivium of the university, the emphasis shifted from the early distinction of 

Boethius - the philosophical ponderings of arithmetic, and continuous magnitudes of 

geometry (continuous magnitudes without motion) and heavenly bodies (continuous 

magnitudes with motion) - to applications useful in the lives of all people.24 

Despite the fact that most geometrical knowledge consisted of nothing more than 

the study of right angle triangles and the use of proportions, Hugh of St. Victor, 

who wrote Bractica geornetriae, does describe the use of the astrolabe. In the late 

13" century, Kiely says that the quadrant was introduced as a tool to be used in 

surveying, and in the first half of the 1 4 ~ ~  century the geometrical square was also 

introduced to this discipline. 

Leonardo Fibonnaci of Pisa (ca. 1180-1250) was a man learned in both practical 

and theoretical mathematics. He was the first of medieval writers to  mention the use 

of the plumb-bob in surveying and its use in measuring the distance between two 

221bid., p. 57. 
23Brian Stock, "Science, Technology, and Economic Progress in the Early Middle Ages," Science 

in the Middle Ages, p. 36. 
'4Pearl Kibre and Nancy G .  Siraisi, "The Institutional Setting: The Universities," Science in the 

Middle Ages, p. 122.  
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points on the slope of a hilL2' He also describes in his Practica geornetriae how the 

quadrant could be use to determine the height of a tower. But this work does not 

just pertain to practical geometry. He also includes some theoretical work based on 

Euclid's Elements and work by A r ~ h i m e d e s . ~ ~  Fibonnaci's quadrant was a relatively 

simple quadrant which consisted of a graduated arc and a shadow square. Considering 

the types of exercises which Fibonnaci describes for this quadrant, as Kiely suggests, 

we may be inclined to conclude as Kiely suggests, that his quadrant was used primarily 

for surveying.27 

Examples of these instruments which we have noted above were used; however, 

we have very little evidence that land surveying was done during the Middle Ages. 

There was often little need for measuring estates since the boundaries of the property 

were denoted by land markers like trees, boulders and buildings. Land was owned 

by nobles and monastic figures, and was leased on a yearly basis to tenants. Land 

was arbitrarily assigned to people at the whim of the nobleman who owned the land. 

Hence, there was no need for accurate surveying, and areas were determined only 

During the Renaissance, developments in surveying were due to  five movements. 

These five, Kiely says, involved the disintegration of feudalism, a growing interest in 

cartography through Ptolemy's work in geography and the discovery of new places, 

the art of shooting ordnance and need for protective fortifications, navigation upon 

the seas and the need for more accurate astronomical instruments for performing 

 observation^.^^ Numerous instruments were used during the Renaissance including 

water levels, plumb-bob levels, right angle surveyor squares, the surveyor's cross, 

various derivatives of the astrolabe and the quadrant, theodolites, triangulation in- 

struments and the magnetic compass. 

We have observed that the quadrant was used primarily for astronomical work 

until about the beginning of the 1 6 ~ ~  century when it was used more and more by 

25Kiely, p. 57. 
26MichaeI S. Mahoney, "Mathematics," Science in the Middle Ages, p. 159, 
" ~ i e l y ,  p. 79. 
281bid., p. 97. 
291bid., p. 102. 



CHAPTER 3. RENAISSANCE PRACTITIONERS APi7B THE QUADRANT 37 

surveyors and navigators. These quadrants were relatively simple compared to their 

astronomical counterparts. They consisted primarily of graduated arcs and shadow 

squares and used plumb lines for levelling. Some quadrants used alidades, but these 

were primarily used for triangulation and were oriented horizontally on a staff. The 

first large scale attempt at triangulation was done with a quadrant by Willebrod 

Snellius in Holland in 1617.~' 

Clearly, the quadrant did play a role in surveying in the early Renaissance; how- 

ever, it is difficult to say how popular it was as an instrument among surveyors. 

Numerous texts, such as the Quadrans vetus and The compleat surveyor by William 

Leybourn, do show how the quadrant would be used to take the height of a tower, or 

the depth of a well or the height of an inaccessible object. Texts seem to demonstrate 

basic Euclidean principles disguised as various methods for surveying. Gunners' quad- 

rants and astronomical quadrants do exist, as do simple quadrants with graduated 

arcs and shadow squares; however, it would be difficult t o  say that the quadrant was 

a comnionly used instrument among surveyors, especially when surveyors possessed 

many other instruments suitable for surveying. It does seem possible that the quad- 

rant was superseded by other instruments, since it would be best suited for taking the 

elevation or height of some object. The quadrant could, of course, be used for levelling, 

however, many other instruments existed for this task as well, e.g. water levels and 

plumb bobs. Moreover, texts like George Atwell's The Faithful Surveyour and The 

Surveyors Dialogue by John Norden demonstrate that one can do more easily with 

other instruments the same tasks for which one might be tempted to use a quadrant. 

We are inclined to believe that the quadrant did not play an important role to advance 

the art of surveying, but was only employed to demonstrate simple relationships with 

similar triangles disguised in relatively ordinary surveying problems. 

3 0 ~ b i d . ,  p. 16811. Kiely also notes that Jean Picard also attempted to do a similar survey in the 
north of France. 
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3.3 The Navigators 

In the section, "Signs in the Sky" from her book The Haven-Finding Art, Eva Tay- 

lor says that "even today, of course, since the ultimate sources of time-keeping and 

position-finding are the heavenly bodies, the sailor must look up at the sky".31 This 

is true only to a certain extent. For the earliest navigators relied just as much and 

perhaps even more upon other skills and knowledge of the seas and coastal waters. 

These sea-going explorers and merchants relied on the knowledge of the winds, water 

currents, various forms of marine life, marine bed deposits and the recognition of 

diverse ports and landmarks from sea. 

So it is without the hid of scientific instruments and the observations of celestial 

bodies that the first navigators left for the open bodies of water. Nonetheless, it would 

appear that the first use of any instruments for navigating, namely lead and line, was 

very early. Sailors used the lead and line to study marine sediment on the bottom of 

the sea to give an idea of the nature and distance of the shoreline being approached. 

With regards to early ~avigational techniques prior to the Late Middle Ages, 

it would have been difficult for northern navigators to apply techniques related to 

time-telling and such when they relied upon the sun for determining the time and 

position of their ship. The low altitude of the sun at higher latitudes must have made 

accurate solar observations difficult to perform. Likewise, sailing by the stars would 

be difficult as well since the stars would appear to move around the Celestial Pole 

in a more oblique plane to the local horizon when an observer moves closer to the 

North Pole. While this, in the opinion of Taylor,32 may explain why northern sailors 

lagged behind their counterparts in the South, people still sailed with the aid of the 

sun in the more northern latitudes throughout the seasons. Southern sailors who were 

unexperienced in such matters, however, might have found sailing more difficult while 

attempting to observe the sun's position in the sky. 

With the arrival of texts from the Islamic world also came certain attitudes toward 

science. The Arabs advanced not only science, but technology as well, through the 

31Taylor, The Haven-Finding Art, p. 3. The term "heavenly bodies" here also includes artificial 
ones such as geopositional satellites. 

321bid., p. 65. 
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and the construction of observatories where these 

instruments were used.33 One of the first mathematical instruments at  this time to 

have been possibly used at sea was the astrolabe - an instrument which embodies 

many of the features of the quadrant. We cannot say with any certainty how early 

the astrolabe was employed as part of the equipment on board a ship; whenever that 

might have been, sailors still relied upon more traditional sailing techniques and when 

the astrolabe was used it most likely was used on land since any attempt to use the 

instrument on less than calm seas would have given inaccurate results. 

Until this time, uneducated navigators could still (in some sense) sail a ship, but to 

use navigational aids the sailor required training and education, and the more numer- 

ous illiterate sailors continued to use the magnetic needle and windrose as navigational 

aids, for the use of such instruments as the astrolabe would be difficult to comprehend 

by anyone untrained in mathematics. Moreover, the mathematicians did not have the 

uneducated sailor in mind when they themselves were struggling to master these new 

mathemadtical ideas and instruments. 

It seems quite plausible then that an astronomer or astrologer would have been 

employed on a sailing vessel. There certainly would have been the need for such a 

person to  operate an astrolabe or an astronomer's quadrant at sea. Taylor suggests 

that the astronomer's quadrant does not antedate the 13th century. We are inclined to 

accept the truth of this though the same principles had been embodied on the dorsal 

sides of astrolabes for a few centuries prior to the invention of the quadrant. 

It is not until the mid-15~~ century, with the invention of the mariner's astrolabe, 

the frequent employment of the cross-staff and the use of the magnetic needle and 

compass, that we find the first record of an observation taken with a quadrant.34 

The adoption of the quadrant (and indeed the astrolabe) for sailing purposes saw 

modifications in the features of the quadrant. No longer present were the complex 

lines used for time-telling and determining planetary positions. The lines for the 

tropics and the ecliptic were no longer preserved, and the shadow square was removed 

(only to  be restored later). The quadrant as first used by sailors in the 1 5 ~ ~  century, 

33Cj., e.g., Sayili, The Observatory in Islam. This is the standard reference on this subject. 
34Taylor, p. 159. 
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was constructed from boxwood or brass and consisted only of a sighting apparatus, a 

plumb line and a graduated limb divided from 0-90 degrees. 

At the time of Henry VI in the mid-isth century, sea captains tended to use the 

quadrant not to determine unknowns such as angular measurements, but, rather, their 

position relative to  some port. On the quadrant would be inscribed, in addition to 

the graduated arc on the limbus of the quadrant, the names of various ports and 

important landmarks. The position on the quadrant where, at a particular site, the 

plumbline crosses the limbus represented the ship7s latitude determined by altura 

(i.e., by the instruction and observation of solar or stellar altitude), and the various 

alturas provided the method by which ports were sought. By travelling up or dowrl 

through the various latitudes while sighting the Pole Star when the Guards were in 

an east-west position until the plumb line fell across the name of the port of interest, 

the vessel would then be in an east-west position with that particular port. 

The first text on navigation which describes uses for the quadrant at sea appears 

in 1518.~~ Taylor does not give any indication of who the author is though she says 

that the work was written as a compilation of early observations made by Portuguese 

sailors and printed by a "scholarly German printer in Lisbon". In this work, the 

author describes the relationship between a given number of degrees of longitude and 

the equivalent number of leagues. Also described is the method of using the altura 

for determining the latitude of the port of destination, which remained a standard 

practice for many years, as well as the use of the sun in its meridional transit at noon 

to determine a ship's terrestrial position. 

To this point we have discussed briefly points which reflect the work which the 

Portuguese did to develop the art of sailing and the role which the quadrant played. 

Indeed, the Portuguese laid down the foundations for navigational techniques based 

on astronomical observations; however, the Spanish and the French soon shared centre 

351bid., p. 160. This appears to contradict what Taylor says two pages later, that the oldest extant 
manuscript of a navigation manual is the Regimento do Astrolabio e do Qzladranie which was printed 
in Lisbon in 1509 with the likelihood of an earlier printed version being possible. Without consulting 
this work, we cannot resolve this question though perhaps the reference to the quadrant would be 
to the quadrant on the back of the astrolabe, rather than the independent instrument mentioned in 
the 1518 treatise. 
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stage with their Portuguese counterparts. The travels of Christopher Columbus and 

his interest in and utilization of Portugese navigational techniques quickly piqued the 

interests of Spanish navigators. Likewise, a work entitled Le Grant [sic] Routier et 

Pilotage by Pierre Garcie written in the late i5th century proved to be quite popular 

in France and in an English translation for many decades. 

A development in the early century was the mandatory training of all Spanish 

navigational pilots in the use of the mariner's astrolabe and the quadrant. On the 

instructions of Queen Joanna of Castile in 1508, Amerigo Vespucci began to carry out 

her majesty's decree to train and test all Spanish merchants and shipmasters. Soon 

a school of teachers and navigational practioners emerged to educate all of Spain's 

navigators-to-be. The formation of marine pilot educators, however, did not make a 

big splash in other countries, even if the English Arctic explorer, Stephen Borough, 

did try (to no avail) to convince Queen Elizabeth I to  adopt a similar program to 

educate marine pilots. 

3.4 The Military Gunners and Bombardiers 

During the Middle Ages, the "science of motion" was a significant part of natural 

philosophy. Indeed, "the division of natural philosophy reflect[ed] the distinctions 

between mobile bodies".36 In medieval times, Aristotle was considered one of the 

great authorities, and his Physics represents the most influential work on motion in 

that epoch. For Aristotle the idea of motion encompassed more than just locomotion, 

but in terms of projectiles, the "science of motion" concerns only locomotion. In this 

section on military gunners, bombardiers and the quadrant, we will examine a few 

works by mat hemat ical practitioners who were influenced by Aristotle, then Tartaglia 

and also Galileo. 

Aristotelian motion can be understood through two basic principles: a moving 

36Gesffrey of Haspyl provides us with this bit of insight into the medieval arrangement of Aristotle's 
works which defined nature as being a principle of motion. Here, Geoffrey of Hespyl's thought on 
motion comes from his introduction on his commentary on Aristotle's On Generation and Corrupiion 
which is found in "The Science of Motion" by John Murdoch and Edith Sylla in Science in the Middle 
Ages by David Lindberg, p. 206. 
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object requires something to move the body, and the distir~ction between "natural" 

motion and "violent" motion.37 The force which moves 3 body under natural motion, 

however, really was not a force as we understand forces, but an internal characteristic 

of the body which "is responsible for its tendency to move [the body] toward its 

natural place as defined by the ideal spherical arrangement of the  element^".^' And 

a body would cease to  move under natural motion when the body reached its natural 

place within the order of the elemental spheres. When a body is moved under violent, 

motion an external force is the mover. This force violated the heavy object's natural 

preference to remain in or move toward its most natural resting place; such motion 

would continue so long as the external force was continually applied to the object. 

This seems like a very plausible framework; however, it could be problematic under 

certain circumstances. For instance, why does an object projected horizontally not 

suddenly stop in its path when the external mover of he object ceases to move it 

and fall downward to the ground? Aristotle answers this problem by indicating that 

the medium through which the object travels also acts upon the object since the 

external mover of the object also acts upon the medium.39 The medium also acts as 

a resistant to the motion of the object. In other words, air, for example, plays a role 

in how fast an object moves through it; however, Aristotle was not concerned about 

the quantitative aspects of a body in motion, i. e., space-time relationships, but rather 

the qualities characteristic of all types of motions. 

Aristotle's theory s f  local motion (motus localis in a medieval context), represents 

only one part in his theory on change. His theory on local motion, which we shall 

henceforth call motion, seems quite odd when we view it within the context of dy- 

namics; however, Aristotle's theories and his medieval commentators' views on motion 

play a very different role within the whole conception of change. We must not forget 

this, even though we are only examining Aristotle's influence on medieval minds and 

37Lindberg, The Beginnings of Western Science, p. 58. Motion in this context applied only to 
sublunary motion. 

38~bid., p. 58. The arrangement of the elemental spheres in Aristotelian cosmology puts at the 
centre of this arrangement earth, and then moving outwards towards the celestial firmament the 
elements water, air, fire, the lunar sphere, the celestial region for the planets and then the sphere of 
the stars. 

39~bid., p. 59. 
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thinkers of the early Renaissance as it pertains to projectiles and ultimately the use 

of the quadrant when it is used to mount any piece of ordnance. 

Lindberg talks about the science of motion in the Middle Ages rather briefly. In 

fact, few people are really capable of seeing and comprehending the entire picture 

of this science in medieval times. He says, "The intellectual framework of medieval 

theories of motion is a conceptual jungle, suitable only for hardened veterans and 

certainly no place for day-trips from the twentieth cent~ry".~'  Nonetheless, we must 

take a brief look at late medieval and early Renaissance views of motion in order to 

understand the context in which projectile motion was developed in the late 1 6 ~ ~  and 

early 1 7 ' ~ ~  centuries. 

The mathematical descriptions of motion more or less belong to a medieval pro- 

cess developed by scholars over a number of centuries beginning in the Late Middle 

Ages. It never was a part of the purely qualitative analysis of the theory of change. 

Mathematics, after all, has nothing to do with healthy individuals becoming sick, a 

pot of water brought to a boil on the stove and the quality of virtue in a human being 

who becomes corrupt. But these are the sort of qualitative changes which Aristotle 

and medieval thinkers pondered. 

Discussions on motion look at issues related to kinematics and dynamics. The 

former is primarily concerned with mathematically-based discussions without any 

reference to causation and the latter is taken up by questions on the nature of the 

causative forces behind a body in motion. In essence, motior, was studied either from 

the position of motion as a cause or an effect. Both views had strong supporters, 

but in terms of ordnance in the late 1 6 ~ ~  century, a new tradition based on these two 

different perspectives was used to explain this type of motion. 

This new tradition had its beginnings in the first half of the century with Jean 

Buridan who saw violent motion as an impressed motion which he called an impetus. 

This theory of impetus remained intact until the 1 7 ~ ~  century when new attempts were 

made to describe unresisted motion as a change in position which required neither 

an internal nor an external motive force.41 This theory says that an impetus by the 

401bid., p. 291. 
41  lb id . ,  p .  303. 



CHAPTER 3. RENAISSAhrCE PRACTITlON'ERS AAID THE Q UADRANT 4.1 

projector is transmitted to the object being moved, and the impetus t,hen "continues 

to act as an internal cause of its continued motion" .42 Critics of the theory of impetus, 

like those of Aristotle, found it difficult to explain how this impetus, which comes from 

nowhere, could possibly decrease over time. 

Early in the 1 6 ' ~  century, mathematicians like Nicolo Tartaglia were making at- 

tempts to explain mathematically the motion of a projectile. With the help of math- 

ematics and natural philosophy, cannons or other ordnance could be mounted to the 

required angle above or below the horizon for a successful shot using a gunner's quad- 

rant. The quadrant was used primarily for setting the cannon at the proper angle for 

discharging the shot. I t  was, however, used for other purposes as well, as we shall see. 

Tartaglia's Nova Scientia, which he wrote in Venice in 1537, is the first work which 

treats the art of projectiles within a mathematical framework. The impetus for this 

work, Tartaglia says in his Letter of Dedication to the Duke of U ~ b i n o ~ ~  was a question 

directed to Tartaglia by a friend who was an "expert bombardier" on how one ought 

to aim a piece of artillery to obtain the furthest distance. Tartaglia indicates that he 

took up this problem despite not ever having operated a piece of artillery or guns.44 

Tartaglia presented his findings, based upon physical and geometrical reasoning, to 

his doubtful friend, showing him how to mount a piece of artillery. He says, 

And to do this most expeditiously, you must have a square made of metal 

or hard wood that includes a quadrant with its vertical pendant . . . and 

placing a part of its longer leg in the barrel or mouth of the piece lying 

straight along the bottom of the tube, elevate the said piece so that the 

pendant, [i. e., plumb line] cuts the curved side of the quadrant [i. e., the 

graduated circular arc or limbus] in two equal parts.45 

The graduated arc of the quadrant is divided into 12 equal parts as Tartaglia says 

and shows in an illustration of erecting a cannon at 45' above the horizon using a 

42Murdoch and Sylla, p. 212. 
*The Duke of Urbino, Fsancesco Maria della Rovere was an employed member of the Venetian 

government who organized the defense against the Turks who threatened to invade Italy and partic- 
ularly Venice. 

44Drake, Mechanics in Sixteenth-Century Italy, p. 63-4. 
451bid., p- 64. 
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quadrant. And he then explains how this artillery piece makes a 45" angle with the 

horizon. 

Tartaglia continues to tell another story where two other bombardiers challenge 

Tartaglia to the same question, but one of the bombardiers had claimed that "the 

gun would shoot much farther at two points lower on the square".46 A bet was made, 

and the men set out to a field near Santa Lucia to determine which hypothesis was 

correct. Naturally, as Tartaglia recounts the story, Tartaglia wins. He describes how 

Each man shot according to his proposition, without any advantage in 

the powder or in the and he that used our determination shot a 

distance of 1972 perches of six feet per perch, while the other, who aimed 

two points lower, shot only 1872 perches. By this trial all the bombardiers 

and other people saw the truth of our determination though before this 

experiment they were in disagreement.. . .48 

The Nova Scientia sought, a s  Tartaglia says, to investigate the kinds of motion 

that can take place in a "heavy body".49 The influence of Aristotle on Tartaglia's 

work is quite clear since Tartaglia's physical description of a projectile is done by 

considering natural and violent motion. But Tartaglia realized that the knowledge of 

how a shot is fired and moves under these physical constraints was not sufficient. A 

bombardier required practical experience and the knowledge of 

the extent of his artillery shots according to their various elevations. Know- 

ing both these [i.e., also the ability to judge the distance to one's target], 

he will not err much in his shots; but lacking either of them, he can never 

shoot by reasoning but only by his judgement. And if by chance on the 

first shot he hits the place or comes close to the place he wishes, it is 

rather by luck than by science, especially in long shots.50 

4 6 U T ~ 0  points lower on the square" would have meant that the quadrant would h- dve been set for 
an elevation of of 90' (and not & of 90") which is 30•‹. 

4'Tfiey used a 10 foot long, 4300 pound cannon called a 20 pound culverin. 
481bid., p- 65. 
*sibid., p. 65. 
501bid., p. 67- 
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The problem at hand is merely being able to determine the distance to some in- 

accessible place using various inventions (like the quadrant). This, of course, was 

nothing which could not have been done decades and centuries before this time. In 

fact, Tartaglia cites Johannes Stoeffler, Oronce Fin6 and Peter Lombard as practi tion- 

ers who knew how to perform such measurements; however, Tartaglia claims he knows 

a better way for determining such distances. He does not appear to say anything more 

about this in his letter of dedication. 

Tartaglia almost did not publish this work. He felt that working to improve such 

a "damnable exercise, destroyer of the human species, and especially of Christians 

in their continual wars" was "deserving of no small punishment by God".51 He ac- 

knowledges how he once destroyed all of his work on this subject so that no one could 

profit from this sort of wrong doing; however, when threats of danger from the Turks 

under the emperor, Suleiman, loomed over Venice, Tartaglia realized that it was n ~ t  

permissible for him to keep this information from others who would defend Venice. 

The structure of Tartaglia's work is Euclidean in nature. The first book is an 

axiomatic approach to the study of motion of a heavy body comprising 14 definitions, 

5 suppositions, 4 axioms and 5 propositions. His second book, which he writes in a 

similar manner, provides a descriptive approach to the nature of the trajectory of a 

projectile. 

In definitions 5, 6 and 7, Tartaglia describes the meaning of motion and its two 

types. "The movement of a uniformly heavy body is that transmutation which it 

makes occasionally from one place to another, the endpoints of which [movement] 

are two  instant^".^' Tartaglia notes that some scholars of his time say that there 

are 6 types of movement or transmutation; however, Aristotle cites only three: a 

change in quantity, quality and location. Naturally, as Tartaglia says, the first two 

transmutations are irrelevant here. He then describes natural and violent motion as 

motion governed by no force and some "motive power" respectively. In the case of 

artillery, the motive power comes from the cannon and the use of gun powder. 

The first proposition deals with the much debated question of the nature of an 
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accelerating body in natural motion. Tartaglia, however, says that the swiftness 

of some object is related to the distance traversed. In other words, he considered 

acceleration to be a change in distance and not a change with respect to time, a view 

which was held until Galileo demonstrated the contrary. Tartaglia also discusses the 

nature of the motion of a heavy body travelling through a tunnel passing diametrically 

through the earth, as Galileo later discussed in his Dialogue.53 

Figure 3.1: The trajectory of a projectile. 

Tartaglia describes the trajectory of a projectile in supp~sition I1 in the second 

book as that which "will always be partly straight and partly curved, and the curved 

part will form part of the circumference of a circle",54 and upon the termination 

of any such violent motion "will move with natural motion which will be tangent 

to the curved part of the violent motion",55 i.e., in a direction which is ultimately 

perpendicular to the apparent plane of the horizon. 

In fig. 3.1, A B  represents a straight line, and BC represents an arc of a circle which 

together represent the projectile under violent motion. CD, as mentioned above, is 

tangent to the arc BC and represents the natural motion of a heavy body back to 

its natural resting place; however, Tartaglia did not believe that the motion from A 

to B was along a straight line "because of the weight residing in that body, which 

5 3 ~ b i d . ,  p. 75-76. 
54 Ibid . ,  p. 84. 
551bid. ,  p. 85. 
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continually acts on it and draws it toward the center of the To him, this 
part of the trajectory was insensibly curved. As a final note on Tartaglia, we observe 

t l r ~ ~ t )  in proposition 8 of his second book, he addresses the fact that a projectile travels 

farthest if mounted with a quadrant to an elevation of 45'. His proof uses a physical 

argument which is "anything that passes from the less to the greater, and through 

everything in between, necessarily passes through the equal". 57 

However, an example presented later is somewhat problematic. He gives the ex- 

ample from astronomy where the day can sometimes be longer or shorter than t9he 

night. It does follow, as he says, that there will be a point in time during the year 

when the day shall be equal to the night and can be "verified to the senses and to 

the intelle~t".~' Tartaglia seems almost a little unsure of himself; he says that if his 

reasoning is not correct here, then our senses can still verify the validity of this state- 

ment. But this theorem is constructed primarily on physical arguments and what is 

sensibly so to an observer. Tartaglia, however, realizes this and notes that phenomena 

like the motion of the sun may provide us with situations where things are not quite 

as the seem, but for d l  intents and purposes such things are not so problematic. 

Soon, works on the art of projectiles by other practitioners appeared more or less 

in the same vein as Tartaglia until Galileo tackled this problem. Daniel Santbech, for 

example, wrote a section on sphaeras tormentarias in his Problematum astronomico- 

rum et geometricorum sectiones septern where he demonstrates the use of a quadrantus 

geometricus. 

The trajectory which Tartaglia describes as consisting of three parts was not always 

treated in those terms by later writers. Santbech is indeed one of these writers. The 

method which he describes in his Problematum astronomicorum et geometricorum 

is similar to the work of Sebastian Miinster in his R~dimenta mat he ma tic^.^' The 

problem no longer includes the circular arc of the course of the projectile, thus reducing 

the determination of the range of a shot to the solution of a right triangle. 

561bid., p. 84. 
571bid., p. 91. The proof of this theorem is based upon a law of continuity and physically dernon- 

strates the intermediate value theorem taught in a first year calculus course. 
581bid., p. 92. 
59Kiely, Surveying Instruments, p. 115. 
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To determine the path of the projectile of the trajectory, according to Miinster, 

we need to know- the force with which the cannon can discharge a known weight. 

Once this is known along with the distance to the mark which the gunner wishes to 

target, the artillery piece may be mounted to its correct elevation since this amounts 

to knowing the hypotenuse and base of a right angle triangle. Hence, the angle which 

to elevate the cannon is known, and is done using a quadrant. Thus, the shot may 

travel along the hypotenuse, and upon reaching the end of its violent motion falls 

under natural motion upon its target. 

William Bourne (A. 1565-88) was a very able instructor and mathematical practi- 

tioner despite not having a formal education. Indeed, his steadfastness in instructiag 

others on the most important subjects to be learned earned much criticism from other 

practitioners and scholars. 

Bourne himself had been a gunner on the ramparts of Gravesend and Tilbury in 

the 1560's under Sir William Winter.60 He felt that there were no texts available in 

English for gunners and that there certainly was a grave need for such a text. Bourne 

writes in The Arte of Shootin9 in great Ordnance, 

the cause that hath moued me to write this rude voliie, is this, for that we 

English men haue not beene counted but of late daies to  become good Gun- 

ners, and the principal1 point that hath caused English men to be counted 

good Gunners, hath been, for that they are hardie or without fear about 

their ordnance: but for the knowledg in it, other nations and countries 

haue tasted better therof, as the Italians, French and the Spaniardes, for 

that English mens haue had but little instructions but that they haue 

learned of the Doutchmen or Flemings in the time of King Henry the 

eight .61 

He adds in chapter 6 of this work that 

I [i.e., Bourne] baue not seen any such book, although it hath been very 

neer two hundred yeeres since the first inventi6 of Ordnance: and excepte 

'O~aylor, The Mathemaiical Practitioners of Tvdor and Stuart England, p. 176. 
61~ourne ,  The Arte of Shooting in great Ordnance. The pages of the preface are unnumbered in 

this edition. Further citations from the preface will be cited as "Bourne, Preface". 
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there bee any better booke in some mens hands, such as I haue not seene, 

as it is like ynough that there may be, there is no Arte in any of 

In other words, the "Arte" to which Bourne is referring is the "describing of a way 

or methode, how to atteyne to the certayntie of any matt.ern .63 The art of shooting 

ordnance had not yet reached the status of a mathematical science, but Bourne would 

help to change that. 

Bourne explains the one reason why English gunners are thought to be the best. 

Me says that "they are handsome [i.e., skillful or adroit] about their Ordnance in 

ships, on the sea, & c . " . ~ ~  However, on the other hand Bourne explains those things 

with which gunners have difficulties. He shows great concern that 

those prooues that haue beene made then were no proofes, but to cause 

those Gunners that did see the experience of those profes, to commit te a 

further errour as touching the Shooting in great Ordnan~e.~ '  

The reason for the errors pertains to the use of the quadrant. Bourne notes that 

the quadrant has a graduated arc of 90 degrees and that "the principal1 use of the 

quadrant, is to know what any peece will cast at the mount of euerie Degree, and 

so from degree unto degree, unto the best of the Rander" .66 The problem lies in the 

gunner's ability to determine the distance as the crow flies to that point the gunner 

wishes to strike. He says the problem has to do with the fact that on the most part 

there is seldome any ground that you shall find leuell, but it will be higher 

or lower then the ground that the peece standeth upon . . . and yet in the 

time of service there is no using of the Quadrant but in some cases, and 

then take a great large one [ i . e . ,  quadrant], for in a small [one] you soone 

comni t errour .67 
- 

62Bourne, The Arte of Shooting in great Ordnance, p. 21. 
631bid., 21. 
64Bourne, Preface. 
"Bourne, Preface. 
66~ourne ,  Preface. The "best of the rander" is when the piece of artillery would be elevated to 

shoot a mortar or shell the farthest distance, i e . ,  an angle of 45'. 
67Bourne, Preface. 
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Bourne also reiterates the age-old problem of accuracy which small hand-held 

quadrants lack for an observer who performs observations with such instruments. 

Because such instruments were most likely never used in practice, gunners relied 

upon their own experience. Experience, however, could still not help to determine 

the effects which the combination of different cannons, shots, powder, and ramming 

of the shot, etc., could have upon the distance a shot travels, and the height of the 

gunner's target. 

Bourne shows a great deal of indignation toward the habits and knowledge of 

gunners in his time. He says that although gunners use quadrants, which some call 

"a Triangle and other fond and foolishly names", and "haue not knowledge what a 

degree signifieth" .68 Bourne's outrage is not merely directed to gunners, but to those 

writers before him who lacked any mathematical training. And to make right some of 

the ignorance of gunners and writers on artillery matters, he describes what a degree 

is geometrically and tells how a quadrant is divided into 90 degrees. On the quadrant, 

he says that it is like 

fourth part of the heavens, for the Zeneth or pricke in the heauens (ouer 

the Crowne of your head, downe to the horizon) is deuided into 90. equal1 

partes, according unto the Quadrant .69 

Bourne tackles the problem of setting an artillery piece level with the horizon to 

fire s shot at point blank range. To begin he says, 

Repaire unto a very leuell ground, as a plaine marrish, that is iust water- 

leuell, and then to finde the right line or point blanke, rayse a butte or 

banke in that plain ground, and then sette uppe a marke the iust height of 

the peece that lyeth in the carriage, and take a quadrant, with a rule fast 

thereunto, and put the rule into the mouth of the peece, and coyne the 

breech of the peece up and downe, until1 the plummet hang at the corner 

of the Quadrant, and then ... shall the peece, lye right with the h o r y ~ o n . ~ ~  

68~ourne, The Arte of Shooting in great Ordnance, p. 21. 
69~bid.. D.  22. 
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Now that the mouth of the piece of artillery has been adjusted. a shot is discharged; 

by noting whether the shot hits the embankment below, above or at the mark on the 

embankment, the artillery piece is moved closer to, further away from or at the same 

distance from the embankment. Under the same conditions, the cannon is discharged 

again until the target is hit. The distance for this cannon, and type of shot and 

powder for which the shell has been shot at point blank range can be determined. 

With this information now known, the cannon can be elevated to each degree, and 

the distance of the shot determined. 

In chapter 9, Bourne considers the trajectory of a shot through the air when the 

artillery piece is mounted at any degree. Bourne's work here departs slightly from the 

theory which Tartaglia laid out, and may be viewed as an attempt to approximate 

a parabola by a series of straight lines and circular arcs. When the piece is elevated 

between 0" and 45", all trajectories are similarly described in terms of 4 piece-wise 

curves in space which describes the motion of a shot propelled by the "violence of the 

blast of the p~wder" .~ '  The first part of the trajectory is a straight line (OA). While 

the projectile still travels under violent motion, the second part of the trajectory is 

circular in nature (AB). The third part ends when the projectile reaches the highest 

part of its trajectory ( at C). This part of the trajectory is also circular. The fourth 

and final part is downwards circular (D). The entire trajectory is completed under 

violent motion. 

If we cmsider mounting an artillery piece at an elevation higher than 45"' the 

trajectories will be described by 5 piece-wise curves. The trajectories are similar to 

these with an elevation less than 45*, except the final course of the projectile is in a 

"perpendicular line downe to the earth";72 the final course of this trajectory is done 

under natural motion, whereas the shot otherwise travels under violent motion. The 

trajectory is such that 

firste it is driuen violently by the blast of he powder up into the ayre by 

a ryght lyne, and then serondlye, as the violent drifte doth decay, so it 

flyeth circularly, and thirdly, the force of the drifte being all decayed, it 
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muste needes haue hys natural1 course, and all things that be of earthly 

substance, muste needes returne to  the earth agayne.73 

For the remaining sections in Bourne's work, he discusses tasks like shooting mor- 

tar, discharging shot from a hill top or a valley and shooting from a coastline "at the 

brode side of a Shippe that is under sayle, and going".74 Mortar pieces are mounted 

above an elevation of 45" and "those peeces are used at the seege of Townes, for the 

annoyance of their enimies, is to say, to the intent to beat downe their lodgings or 

houses, with diueres other purposes more" .75 

To shoot a mark on a hill or in a valley, the artillery is mounted as if the mark 

were at  the same level as the mouth of the cannon, but then to this is added the angle 

that the gunner and the mark make with the horizon. And lastly, the discharging of 

a shot from shore at a ship at sea requires being able to aim the artillery piece so as 

to hit the ship broadside under calm seas with the best possible gunpowder. 

In 1588, Lucar Cyprian (b. 1544) wrote an important work which was based upon 

the work of Tartaglia. His work, Three Bookes of Colloquies Concerning the Arte of 

Shooting in Great and Small Peeces of Artillerie, was a translation and augmentation 

of Tartaglia's work to which Lucar added an additional work which he called A Treatise 

Named Lucar Appendix, Collected b y  Cyprian Lucar Gentleman, Out of Divers Good 

Authors in Divers Languages. The work, as the title suggests, is a collection of 

dialogues which Lucar wrote with Tartaglia, the Duke of Urbino, Gabriel Tadino, the 

prior of Barletta, a bombardier and a gun founder et al. as the participants in the 

various discussions. 

In the first dialogue, Tartaglia and the Duke are discussing the construction and 

use of a quadrant for mounting and shooting various ordnance. Lucar's description 

of the quadrant is slightly different from Tartaglia's description. The quadrant, as 

is shown in Tartaglia's work, is indeed a quarter circle; however, Lucar describes the 

same quadrant with a few additions. Each of the twelve divisions is divided further 

into twelve parts; however, Lucar does not show this in his diagram of the quadrant. 
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He says, "although I have not diuided this figure into so many parts, because they 

would heere marre the same [i. e., the figure of the quadrant pictured in this book]".7" 

Moreover, the quadrant also bears a shadow square, the sides of which are marked 

with "right shadow" and "contrarie shadow", and also a sighting mechanism. All of 

this suggests that Lucar was familiar with the shadow square as a tool for determining 

altitudes and areas in surveying. 

Lucar continues with the dialogue between Tartaglia a1 d the Duke. They discuss 

the nature of a projectile shot at various elevations. Tartaglia concludes that at an an- 

gle of 45", the shot will travel the farthest distance; if the ordnance is mounted higher 

than this, then the ordnance will be mounted for mortar. The colloquy concludes with 

their discussion of creating a table for specific ordnance for all elevations. Tartaglia 

then concludes by saying that the whole art of shooting ordnance is not merely to be 

understood, but rather to be tested by the senses, i.e., "seeing is believing". 

The second dialogue again involves Tartaglia and the Duke who discuss the nature 

of the projectile. Lucar says a couple of times in commentaries at the side of the main 

text, that Tartaglia "by these words in a right line, meaneth an insensible crooked 

line".?? Tartaglia draws upon Aristotle and the science of weights to describe how a 

piece of ordnance when it is mounted horizontally "flyeth more heauily out of a peece 

... than it wil doe out of the same peece any whit eleuated." Moreover, 

a pellet shot out of a peece lying leuell rangeth in a more crooked line, and 

more sooner beginneth to decline downwards to the ground than it will do 

when it is shot out of a peece somewhat eleuated, & it striketh with lesse - 
force than it wil do out of the same any whit e l e~a ted .~*  

The remaining colloquies discuss the effects of a warm cannon on shooting pellets. 

A warmer cannon will shoot farther since the powder will not be as wet, and hence 

76Lncar, Three Bookes of Colloquies, p. 2. 
771bid., p. 6. 
781bid., p. 8-9. Tartaglia does not, to our own knowledge, say this in his own work, and therefore it 

must be an addition made by Lucar. The text does appear as  part of Lucar's running commentary on 
the discussion between Tartaglia and the Duke. In fact, in Tartaglia's own work, he never discussed 
the effect of the weight of a body on its speed in free fall. He does, however, discuss the effect of the 
medium as a resistance on the motion of a body. That is, a body will appear to travel faster, if it 
makes a greater effect, i.e. a greater penetration through the air, on the resistant, 2.e. the air. 
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ignite with a greater force. Other dialogues discuss how by sighting along a particular 

line and given elevation, the trajectory of the projectile is determined. The effect of 

danlaged ordnance or the use of hand guns finishes book one of Lucar's work.7g 

In A Treatise Named Lucar Appendix, Lucar lists a number of authors whose work 

Lucar had drawn upon to write his work. He cites 9 Italian writers, 11 Latin and 5 

English authors. Some of these include Tartaglia, Girolamo Cataneo, Cosimo Bartoli, 

Daniel Santbech, Sebastion Munster, Hieronymus Cardano, Gemma Frisius, Robert 

Recorde and Leonard and Thomas Digges. 

In this work, Lucar discusses such things as checking with a quadrant to  see that 

the ground under a piece of ordnance is level. The mounting of a piece of ordnance 

is also examined, and Lucar notes that while a piece of ordnance mounted at 45' 

shoots the farthest, as Tartaglia says in his own work, Lucar also says that William 

Bourne was quite aware that the wind could have a significant affect on the distance 

travelled by some shot or pellet. Lucar considers various scenarios under which a piece 

of ordnance may be shot, including at a ship on a river. He ends this short treatise 

by showing how one may determine the heights of buildings, inaccessible points and 

the altitude of the sun with a gunner's quadrant, a geometric square and a semicircle. 

The Gunner: The Making of Fire Works by Robert Norton was printed in 1628. 

Norton does not claim to know much about artillery; however, he indicates that he 

wrote this work to represent the truth according to  experience* Rhetoric had no place 

in his work. Moreover, he wrote this work to show others of the errors found in the 

works of Tartaglia, Rosselli, Cataneo and a Mr. Smith.80 

Norton begins to  describe the trajectory of the projectile at theorem 28 in his work. 

In theorem 28, he introduces natural and violent motion. Theorem 32 indicates that 

there are three parts to the trajectory of a projectile, namely as straight line, followed 

by a curved declining arc and then a straight line; however, the curved arc is not the 

arc of a circle. In theorem 40, Norton says that the middle part of the trajectory 

has "a very great resemblance of the Arkes Conicall. And in the Radons aboue 45. 

7 9 ~ e  have not been able to examine books two and three which consist of another 25 pages. 
sowe do not know who Mr. Smith is; however, Norton indicates that Smith wrote a work called 

the Art of Gunnery which was later called the Complete Souldier. 
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[i.e., when the ordnance is mounted at  an angle of 45'1 they doe much resemble the 

Hyperbole, and inall vnder the Ellipsis: But exactly they neuer accord.. ." .81. Theorem 

42 says that the apparently straight line which is the final stage of the trajectory 

is still helical in nature and consists of both violent and natural motion. Just as 

surprising, Norton says in theorem 43 that when a piece of ordnance is mounted at 

45", the greatest distance travelled by a shot is not achieved; however, he does not 

say anything further. 

In Chapters 1 and 2, Norton provides some interesting historical detail on the art 

of shooting ordnance in ancient and "modern" times, as well as, various types of ord- 

nance. Norton talks about various authors who attribute the creation of gunpowder 

to the Chinese, or Archimedes or even a King Vitey who summoned an evil spirit to 

show Vitey how to defeat the Tartars, and others still. 

Norton, of course, describes how to mount a piece of ordnance, but he also tells 

how a particular type of gunners' quadrant can be used to tell if the "peece is then 

truly bored".82 That is, the quadrant is used to determine if the bore of the gun 

is smooth and evenly so around the entire inside of the bore. Norton also shows a 

number of different types of gunner's quadrant.83 The gunner's quadrant set inside 

the mouth of the cannon is not only graduated with the usual 12 points, but it is also 

graduated into 90". 

The final work which we shall examine here is a work called The Compleat Gunner 

in Three Parts written in 1672. The a ~ t h o r  is not known to us, but the work does 

appear listed in short title catalogues (STC's). Although the work was written in 

1672, one c m  see from the work the progress which had been made over the previous 

centuries. Instruments needed for the gunner to do his job included calibers, com- 

passes, gunners scales and quadrants, geometrical squares, various levels and weights, 

various tables, ladles, sponges and rammers and much more. The work also discusses 

how these instruments were to  be made. 

In the second part of the work, various chapters outline how the quadrant could 

 orton ton, The Gunner: The Making of Fire Works, p. 12.  
s 2 ~ b i d . ,  p. 81-2. 
831bid., p. 90-1. In the text, the diagram is titled "La facon forme de reparternent des quadrants". 
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be used for determining the heights of towers and inaccessible points. The a u t h ~ r ,  

however, still uses Tartaglia as the authority on the nature of the trajectory of a 

projectile which is described according to violent and natural motion, but also includes 

mixed motion which Tartaglia said could not exist. 

Appended to this work is a short treatise entitled The Doctrine of Projects Applyed 

to Gunnery By those late famous Italian Authors Galilaeus and TorriceEEio. In this 

work we find references to Galileo's studies on motion where the trajectory of a pro- 

jectile is described as parabolic in nature. In Proposition 2, the author describes how 

"The impetus and Amplitude being given, to find the direction according to which 

the Parabola was made; as also to find the Altitude". The text is difficult to read and 

the accompanying diagram is unclear. 

The work concludes with the description of a quadrant with unequal divisions. 

The divisions are not meant to represent elev&ions, but rather "the lengths of the 

Ranges". It's construction is based upon the theory which Galileo laid out on the 

parabolic nature of the trajectory of a projectile. The divisions on the quadrant 

marked 1 through 12. The author says, 

Thus we shall be assured, that the Gun, if it shall be elevated to one point 

of the said Quadrant, shall carry such a distance, whatever it be: and 

elevated to two points, shall precisely double that Range: and if to three, 

it shall carry three of thosz spaces...84 

At the sixth point, the greatest distance is achieved; this occurs when the ordnance 

is elevated to 45". From the points 6 through to 12, the distance achieved "shall go 

in the same manner decreasing". Their construction is then described according to 

Galileo's theory. 

In a span of approximately 200 years, the theory of projectiles developed quite 

considerably from the point of view of kinematics and dynamics. The theory of natural 

and violent motion was replaced by a theory of impetus and then eventually by the 

ideas of momentum and a gravitational force. The characteristics of the trajectory 

were studied, and eventually the trajectory was described parabolically. And lastly, 

*' The Doctrine of Projects, p. 17. 



CHAPTER 3. RENAISSANCE PRACTITIONERS AND THE QUADRANT 58 

we find a newly constructed quadrant used for determining the distance which a shot 

would travel over a level piece of ground. 



Chapter 4 

Constructing and Using a 

Quadrant 

In this chapter, we will describe the construction of a number of curves found on most 

astronomical quadrants; however, we will examine how these curves are constructed 

in light of those constructed on Gunter's quadrant. Edmund Gunter (1581-1626), a 

Queen's Scholar at Westminster School and Christ Church, Oxford, is best known for 

his work, Description and Use ofthe Sector, which was originally written in Latin and 

published in 1607 as De Sectore. Descriptio et Usus. Gunter possessed a keen interest 

in mathematics and sundials and was a Professor of Astronomy at Gresham College 

from 1619-1626. He constructed various types of dials and is known for various other 

inventions.' 

Gunter's Description and Use of the Sector was originally circulated in the form 

of copies of his own hand-written notes, which he made available to his students and 

friends. The tedium of writing each copy of the text by hand finally prompted him 

to  produce an English translation for printing in 1623.2 In 1624, he wrote The Use of 

'Taylor, The Mathematical Pmctdioners, p. 196. She notes that Gunter also created a new 
crossstaff and a surveying chain based on the decimal principal. Also, Oughtred states in his Circles 
of Proportion that " [tjhe honour of the invention of logarithms, next to the Lord of Merchiston [John 
Napier] and our Mr. [Henry] Briggs, belongth to Master Gunter, who exposed their numbers upon 
a straight line." 

*IbiL, p. 339. 
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the Quadrant to accompany his quadrants which were constructed by the well-known 

mathematical instrument maker, Elias Allen (8. 1606-54). 

I 

Figure 4.1: Gunter's Qrradrant. 

Before we proceed to elaborate on the construction of the various parts of the 

quadrant, we shall briefly describe those parts common to most quadrants as they 

appear on Gunter's quadrant as in fig. 4.1. A plumb line with a sliding bead is 

attached to the vertex (loosely called the centre) of the quadrant. The face of the 

quadrant is etched with a shadow square ( A )  used for trigonometrical calculations, 



and planar projections of the ecliptic (B), azimuth lines (C) and equal hour lines 

(D). The quadrant is also fitted with a scale for determining the sun's declination 

(E), a fixed cursor (F) which provides the user with the sun's noon altitude for 

a given day and latitude, and a graduated 90 degree arc on the limbus (G). The 

Tropics of Cancer and Capricorn are represented by the quarter circle (H) and 

the equator is represented by the quarter circle (I). 
The parts of Gunter's quadrant are noted here to  provide an easy reference for the 

reader when the individual parts are discussed later in this section. Technical words 

which have been mentioned thus far and later on in this chapter and are printed in 

bold type appear in a glossary at the end of this study. 

4.11 On the Graduated Limbus 

As the name suggests, the shape of the quadrant is one quarter of a circle. It is 

this physical feature and the division of the curved outer limbus of the quadrant 

into degrees and oftentimes fractions thereof that appear to be the only common 

features in ail forms of vertically hand-held quadrant used by all practitioners. As is 

apparent, the graduated limbus allows the user to determine an appropriate angular 

measurement; however, the answer to the question of who thought of using a device 

like the quadrant to take such a measurement perhaps will remain out of our reach. 

Nonetheless, the procedure used to  take an angular measurement can be explained 

in the light of Euclid's Elements VI, 8. Whether the Euclidean proposition was the 

original idea for the invention of such a device will not be answered here, although it 

provides an exact demonstration for this operation with the quadrant. 

Proposition VI, 8 says that 

If in a right-angled triangle a perpendicular be drawn from the right angle 

to  the base, the triangles adjoining the perpendicular are similar both to 

the whole and to one another. 

Since the quadrant is a quarter of a circle, the angie at  A is a right angle as is shown 

in fig. 4.2. The plumb line from A falls perpendicularly to the plane of the apparent 
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local horizon at D. Thus, by proposition 8, A A B C  A D B A  - AD.4C. Therefore, 

0.. . . 
\ . 

\ 

A 
Figure 4.2: Sighting an object to give the angular measurement made with the local 
horizon. 

the plumb line which crosses the graduated limbus provides the angle that the sighted 

object makes with the plane of the local horizon since LBAD = LACB. (In Euclid's 

proof of this theorem, he also identifies the corresponding angles.) 

With the limbus graduated from 0" to 90' starting from the radial edge AR, a 

user may perform a number of tasks. An astronomer might use a quadrant, with 

additional tables, to carry out calculations requiring the knowledge of one's latitude 

or the sun's declination, both of which may be obtained by taking the altitude of the 

sun in its meridional transit. One may also determine the latitude of one's locality 

by sighting the Pole Star. Navigators, as well, used the same method of sighting the 

Pole Star to determine their ship's latitude or the altura for a given port or landmark. 

In the Middle Ages, many manuscripts of the corpus agrimensorum tradition, like 
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Boethius' Geometria show numerous examples of the sorts of tasks a surveyor might 

perform. Though other instruments like the theodolite, the torquetum and the sector 

became available in the early Renaissance, the quadrant remained an important tool in 

demonstrating the underlying geometric principles to the surveyor. ProbIems related 

to altimetry, planimetry and stereometry were of great importance, for example, in 

determining the height of a building, or the depth of a well. And a military gunner 

would use the quadrant in this manner to mount his gun at  a predetermined angle to 

strike his enemy. 

4.2 On the Shadow Square 

The shadow square as it was known by the medieval and early Renaissance practi- 

tioners originated in Medieval Islam. The shadow square is one element which was 

also constructed on the dorsal side of astrolabes. The square is placed with two of its 

sides along the two radial edges of the quadrant at the vertex of the quadrant. The 

remaining two sides, the umbra versa and the umbra recta, are divided into an equal 

number of divisions, usually twelve in number, though sometimes they are divided 

into nine or ten divisions and sometimes into further equal  subdivision^.^ Each of 

these two sides is divided from zero to  twelve, starting from each radial edge of the 

quadrant to where the two scales meet at  the twelfth division. On the quadrant, the 

side of the square known as the umbra recta (B'O) is perpendicular to the side used 

for sighting objects; the remaining side is designated as the umbra versa (C'O) in 

fig. 4.3. 

Its name is derived from its original function of using the length of the shadow to 

calculate the height of some erect object. A similar example involves replacing the 

gnomon by a building, for example, and the shadow cast by the building is used to 

calculate the height of the building. When an object like the sun is sighted at an angle 

with the horizon of less than 45", the plumb line on the quadrant passes through the 

umbra versa. When the angle made is between 45" and go0, then the plumb line will 

3Cf., e.g., Sutton, A description and use of a large quadrant, 1669. In this work, Sutton describes 
the construction of a shadow square with 10 equal divisions. 
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Figure 4.3: Using the shadow square to find the height of an accessible object like the 
top of a steeple. 

fall on the umbra recta. 

A practitioner taking the altitude of a steeple on a building, for example, as in 

fig. 4.3, would perform the following task. The length BC would be measured, and 

then the the top of the steeple would be sighted along the side BB'. The plumb line 

would then fall across OC' or OB' at A' depending on whether LCBA was less or 

greater than 45". In the case when the angle is less than 45", DABC is similar to 

AA'BC' and 
AC A'C' - --- 
BC BC' 

and hence 
A'C' BC 

AC= 
BC' 

- 

BC', since it is a side of the square, is equal to the number of equal divisions which 

are graduated on both the umbra recta and umbra versa. The plumb line crosses the 
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umbra versa at some known point A' such that the length of A'C' can be determined;4 

hence, the height of the steeple is known. Specifically, if the scale has 12 divisions 

and the plumb line falls at graduation mark n, then the height is 6 of the distance 

to the base point C 
If on the other hand LABC should be greater than 45" then AABC is similar to 

A BA'B'. Hence, 
A'B' B C  -- - - 
BIB AC 

and hence 
B'B - BC 

= B'AI ' 

and hence the height of the steeple is known. 

In the first case, when LABC is less than 45", the ratio is equivalent to 

In the other case, is equivalent to 

The remaining scales and lines found on an astronomer's quadrant are the stereo- 

graphically projected lines of the horizon, ecliptic, equator and tropics, a set of az- 

imuth lines, the equal and unequal hour lines and the cursor. We shall demonstrate 

here the underlying mathematical constructions which are needed to produce these 

various lines on the quadrant. 

4.3 On the Stereographic Projection of Certain 

Celestial Circles 

We shall describe the construction on the plates of an astrolabe of the horizon, ecliptic, 

equator and the tropics of Cancer and Capricorn as shown in fig. 4.4 in a represen- 

tation of these circles on a plane. Here the underlying idea rests upon the principle 

4The length corresponding to this point may need to be interpolated if the plumb line A'B falls 
between two consecutive graduated points on the scale. 
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Winter 

Solstice 

Figure 4.4: The celestial sphere. 

of the stereographic projection. As is noted in (1.4.1), a stereographic projection is a 

one-to-one relation which maps circles on a celestial sphere onto circles on some plane 

(usually the plane of the equator) from a point of projection (usually a pole of the 

celestial sphere). The projection of the equator is nothing more than the equator it self 

since it lies in the projection plane. All other circles which lie in planes parallel to the 

plane of the equator are projected as circles which are concentric with the e q ~ a t o r . ~  

Although we have not discussed the second property of a stereographic projection 

which deals with conformality or the preservation of angles in any detail, since there 

is no evidence of this being known, we can say that writers on the quadrant and 

the astrolabe certainly realized that the projections ~f two tangent circles were also 

tangent. With this in mind, the construction of oblique circles can be explained. 

To construct the projection of an oblique circle on the plane required knowing the 

Cf., Apollonius, Conics I, 4. 
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projection of two other circles, namely the two circles tangent to it that are parallel 

to the equator. 

Figure 4.5: Stereographic projection of an oblique circle. 

In fig. 4.5, let PQRS represent the celestial sphere with O as centre and the 

equatorial plane QOS, as well as the stereographic projection of the equator. Let A B  

be the given oblique circle. Constructing the stereographic projection of this circle 

requires two tangent circles which lie on planes parallel to the plane of the equator 

QOS, i - e .  the circles BD and AC. These circles BD and AC, which are called 

circles of declination, are mapped to the circles B'D' and A'C' respectively and 

are concentric with the equator PQRS. Hence, the stereographic projection of the 
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Figure 4.6: Stereographic projection of the ecliptic, tropics, and equator. 

circle AB, i.e. circle A'B', will be tangent to the two aforementioned circles BID' and 

A'C'. 

This gives us a method for constructing, for example, the ecliptic. The ecliptic is 

a great circle which intersects the plane of the equator at two diametrically opposite 

points which correspond t o  the spring and autumn equinoxes. The obliquity of 

the ecliptic is approximately equal to 23'30' and varies insensibly over one person's 

lifetime. To construct the stereographic projection of the ecliptic, we require two 

circles tangent to the ecliptic which lie in planes parallel to the plane of the equator: 
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namely the tropics of Cancer and Capricorn. They touch the ecliptic at those 

points which correspond to the solstices or the beginnings of the zodiacal signs of 

Cancer and Capricorn and lie in planes parallel to the celestial equator. 

Again, let PQRS represent both the celestial sphere with centre 0 and equato- 

rial plane QOS, as well as the stereographic projection of the equator as shown in 

fig. 4.6(b). Let A B  be the ecliptic; AC and BD represent the tropics of Cancer and 

Capricorn respectively. The stereographic projections of the tropics of Cancer and 

Capricorn result in the concentric circles A'C' and B'D'. Hence, the ecliptic will be 

mapped to the circle A'RB'P which is tangent to the projections of both tropics at A' 

and B'. And the desired ecliptic circle can be constructed, as the one with diameter 

A'B'. 

Any great circle in the celestial sphere will cut the equator at  diametrically oppo- 

site points, so that when it is projected, its image will cut the equator at the same 

diametrically opposite points. In the case of the ecliptic, it cuts the equator at the 

points P and R. 

Figure 4.7: The plane of the horizon. 
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Likewise, the horizon for a given locality will cut the equator at diametrically 

opposite points and its projected image will cut the equator at the same diametrically 

opposite points since it, too, is a great circle. (Note that on the astrolabe, the rete 

which has the projection of the ecliptic is not on the same plate as the horizon.) The 

horizon is like the ecliptic except that it lies in a plane with an obliquity equal to 

the complement of the local latitude. In fig. 4.1, 2 0 ,  where Z is the zenith of the 

given locality, makes a right angle with the local horizon through A and B. The 

local latitude which is 4 and the obliquity of the horizon, namely LEOA, together 

are a right angle. Hence, the obliquity of the horizon is 90" - 4 or the complement 

of the latitude which we represent here by 4. The construction of the stereographic 

projection of the local horizon is therefore similar to that of the ecliptic. 

4.4 Constructing Certain Circles by Stereographic 

Projections 

Figure 4.8: The constructed curves of the equator, tropic, ecliptic and horizon. 
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Thus far we have provided a theoretical basis from which we may now actually con- 

struct these circles, 2 .  e., the ecliptic, horizon, and the tropics of Cancer and Capricorn. 

To begin, a quarter circle is constructed with a given radius, AB as in fig. 4.8 . Let A 

be the centre and the radius AB sweep out a 90•‹ arc, BC. This arc, as Gunter says, 

will represent either tropic. Some texts like John Collin's The sector on a quadrant 

indicate the length of the radius e-g. "from the Center is placed a Line of equal parts, 

of 5 inches in length ...'7.6 On the other hand, works like Gunter's Description and 

Use of a Portable Instrument [known by the name of Gunter's Quadrant] describe the 

construction of the various curves in relation to an arbitrary radius. 

The next curve which can be constructed easily is the equator. This arc is concen- 

tric with the arc representing either of the tropics. Gunter describes the construction 

of this arc by dividing the radius AB at some point D such that 

then through D with A as centre, construct the arc DE.  This ratio is just an approx- 

imation to four correct decimal places of the ratio 

where E is the obliquity of the e ~ l i p t i c . ~  

The construction of the ecliptic requires calculating the centre of the projected 

circle representing the ecliptic. The theory behind the stereographic projection of the 

ecliptic indicates that the projection of the ecliptic will touch the tropic (at C) and 

meet the equator (at D). 

To calculate the center of this circle, we shall use fig. 4.6(b) to  determine the 

location of this point. First, we calculate the radius of the ecliptic, i.e., the circle 

A'RB'P. The diameter is A'B', and A'B' = B'O + OA' where B'O and OA' are the 

radii of the circles which are stereographic projections of the tropics of Capricorn and 

Cancer, respectively. Also 

OB' = OQ 
1 + sin(&) 

cos ( E )  

' ~ o h n  Collins, The sector on a quadrant, p. 1. 
7Relatively few texts, e.g., Collins, Gunter, Leybourn, describe the actual construction of these 

lines and are more apt to provide only a description of the curves. 
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and 
cos ( E )  

OA' = OQ . 
1 + sin(€) ' 

Thus, the radius of the circle A'RB'P is 

and the centre is 

OQ . tan(€) (4.11) 

from 0 .  Thus, in fig. 4.8 we can now construct a new point G on AC such that 

AG = AD . tan(€) (4.12) 

since AD is the radius of the projection of the celestial equator. Now with G as 

centre and GD as radius construct the arc CD. This describes that part of the 

ecliptic which lies within the quadrant bounded by O R  and OQ in fig. 4.6(b). The 

symmetry about the meridian, B'OD' allows us to concern ourselves with only a half 

of the stereographic projection. 

This does not explain, however, why the projection of the ecliptic on Gunter's 

quadrant is merely one arc instead of two since the projection would be folded yet 

again along POR. This is most perplexing since Gunter does not address this. It can 

be explained by considering two stereographic projections: one from the north pole 

and the other from the south pole. The projection from the north pole projects all 

celestial points in the northern hemisphere onto the equinoctial plane. The same is 

done for those points in the southern hemisphere, except the point of projection is 

the south pole. Therefore, circles of declination equidistant from both sides of the 

celestial equator will coincide when projected onto the plane of the equinoctial. Hence, 

the tropics will coincide with each other, and together the two projections provide a 

four-fold symmetry along the prime meridian and the celestial meridian through the 
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east and west cardinal points8 

In the same manner, to construct the stereographic projection of the horizon for 

one's latitude, q5, we determine a point GH on AC such that 

then we construct the arc DF with centre GH and radius GHD. This arc DF repre- 

sents that part of the horizon that falls between one of the tropics and the equator.' 

4.5 On Graduating the Ecliptic and the Horizon 

In the case of the ecliptic and the horizon, we must now discuss the process by which 

we graduate both circles into degrees and minutes. However, due to the symmetry 

which already exists within the stereographic projection of these celestial circles we 

need only consider doing the divisions for a part of each of these circles, namely a 

quarter of the ecliptic and only that part of the horizon that falls between the equator 

and one tropic. 

In order to accomplish these unequal divisions on the projected circles, we use the 

trigonometric properties of right spherical triangles. To divide the ecliptic, the right 

8Gunter describes the construction of the ecliptic by dividing AC at  G such that AG : AD = 
4343 : 10000 (the labels are mine). The true ratio of AG : AD = tan(23"30i) x 0.4348. Quadrants 
like Gunter's would have been relatively small, i.e., approximately 6-8 inches; and given the error 
for constructing such curves with engraving tools, an error of five ten-thousandths would have been 
negligible. However, Gunter still does not provide the reader with the knowledge of how he calculated 
such a result. In the first book of T h e  description and use of the s e c t o ~ ,  he describes how to divide 
a line into a given ratio. Still Gunter would have had to  rely upon tables of trigonometric lines to 
approximate the value of tan(23"30i), if he had not used a sector (as he describes in chapter one) 
to determine the length of the tangent line in a circle with a radim of 10000 units corresponding to 
the angle 23"301. 

'Gunter describes the construction of the horizon in a slightly different manner. For purposes 
of using the quadrant, the horizon is constructed so that it passes through the equinox. With this 
arrangement of curves, Gunter calculates the point of intersection which the horizon makes with the 
tropic. The point of intersection cuts the tropic a t  arcsin(tan(~)/cot(4)), i.e., F in fig. 4.8 where E is 
the obliquity of the ecliptic and 4 is the latitude of the given locality for which we are constructing 
the horizon. Gunter then says: "[alnd if you finde a point at [GH], in the line AC, whereon setting 
the compasses [sic], you may bring the point a t  [Dl, and this point in the tropique [ i e . ,  F] both into 
the circle, the point [GH] shall be the horizon". Ln essence, Gunter finds the centre of the projected 
circle and its radius to  construct that part of the horizon between the tropic and the equator. 



CHAPTER 4. CONSTRUCTING AND USING A 4  QUADRANT 
X T  

Figure 4.9: Dividing the ecliptic. 

ascension for each degree of longitude on the ecliptic is found. The same holds 

true for dividing the horizon - a corresponding right ascension is found for a given 

azimuth on the horizon. In each case, the longitude or azimuth is measured from 

one of the two points of intersection with the equator. 

Let us consider the right spherical triangle ABC in fig. 4.9(a) where A is the vernal 

equinox and AC is the given longitude/azimuth (A) on the ecliptic/horizon we wish 

to  divide. Given the obliquity ( E )  of the ecliptic/horizon, the right ascension (a )  is 
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then uniquely determined according to the formula 

which is equivalent to (1.7). 

Tables of right ascensions for each integral value of longitude were quite common 

in most texts on quadrant constructions; a writer would either copy such a table 

from some other known work or construct a table using (4.14), but in the manner 

of computation for the early Renaissance.'' Armed with such a table, the right 

ascensions for each of the signs in the ecliptic and any intermediate divisions, for 

example, could be used to  easily divide the ecliptic as we shall demonstrate here. 

Gunter provides the following table of right ascensions as shown in fig. 4.10. 

With the exception of one entry, all entries are correct to the nearest minute.'' 

In fig. 4.9(a), the arc BC meets the celestial equator at  right angles since BC 
extended passes through the pole of the equator. Since the image of any circle which 

passes through the pole of projection will be a straight line, the points C and B 

when projected will lie on a straight line where it crosses the ecliptic and the equator 

respectively as in fig. 4.9(b). Hence, one only needs to mark off on the equator a 

point corresponding to the right ascension associated with the given longitude on the 

ecliptic. Join the vertex and this point with a straight line (extending the straight 

line if necessary). The straight line meets the ecliptic in the plane at  that point which 

corresponds to the given longitude in the ecliptic. The same holds true for dividing 

the horizon since it is also a great circle. 

We will demonstrate how the ecliptic can be graduated into degrees and minutes. 

For example, let us mark X = 30' - the beginning of Taurus - on the ecliptic. The right 

ascension for X = 30' cao be calculated most accurately using (4.6) where e = 23'30' 

or using the calculated value from Gunter's table where he gives cr = 27'54'. With the 

''We find such examples of tables in Gunter's The description and use of the sector, Fin6's Quad- 
runs Astrolabicus and in the appendix of Foster's The Art  of Dialling. The table in Foster's work 
is in fact a table of declinations for every 25' and the corresponding longitude. The table could 
have been used to  solve this problem, but would have required an auxiliary table relating the solar 
declination with the right ascension. 

"For A = 85' or 25' in Gemini, a x 84•‹33'1" which is 1'1" larger than Gunter's calculated entry. 
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A Tab Ee of Right Ascensions 

[Aries] 

Figure 4.10: A table of right ascensions from Gunter's The description and use of the 
sector. 

[Taurus] [Gemini1 -.-- I 

vernal equinox at  A, we construct LANB = a and extend NB to meet the ecliptic 

at C. This procedure then gives AC = X = 30•‹, and a continuation of this procedure 

divides the ecliptic correctly. 

Save for circles which lie in a plane parallel to the plane of the equator, all other 

circles which are divided into equal intervals which are projected onto the plane reveal 

divisions which are unequally spaced. Dividing into degrees those projected circles 

which correspond to circles of declination result in divisions which are equally spaced. 

Discussions of how to mark off the divisions of an oblique circle go back to Ptolemy. 

(For some medieval writers on the astrolabe, the problem of dividing the ecliptic 

was either considered unimportant or was simply not well understood.12) Moreover, 

while Islamic writers provided a number of variations for dividing the ecliptic, early 

Renaissance writers in Europe appear to have used only the method we have explained 

for dividing the ecliptic on the quadrant. 

12Thomson (ed.) ,  Jordanus d e  Nemore and the mathematics of astrolabes: De plana Sphera, p.  62. 

27 54 
- 

32 42 
37 35 
42 31 
47 33 
52 36 
57 48 

57 48 

63 3 
68 21 
73 43 
79 7 
84 32 
90 0 
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In the following sections (4.6 - 4.10) we explain only how to construct the various 

curves on the quadrant. The reader who wishes to know how to use these curves 

should consult (4.11). 

On the Construction of the Hour Lines 

We can now turn our attention to the construction of the hour lines on the quadrant. 

There are two types of hour lines: (1) unequal or seasonal hour lines and (2) equal 

hour lines. The seasonal hour lines define twelve equal intervals cf time during which 

the sun lies above the local horizon (daylight) or below the horizon (night). Naturally, 

if an observer were in the northern hemisphere, then a seasonal hour would be longer 

the more northerly is the declination of the sun. Moreover, there are two days in the 

year during which the seasonal hours of day and night are equal, namely the spring 

and fall equinoxes. Otherwise, the seasonal hours for a given day of the year will differ 

in length from day to  night depending on the declination of the sun and the latitude 

of the observer. 

4.7 Constructing Unequal or Seasonal Hour Lines 

The seasonal hour lines are represented by a set of six circular arcs drawn within a 

quarter circle which represents the time for half of the diurnal arc of the sun in its 

transit across the sky. These are not shown in fig. 4.1; however, some Gunter quad- 

rants did possess them either within the shadow square on the front of the quadrant or 

on the dorsal side. To construct the seasonal hour lines is relatively easy to perform. 

Let AB be a quarter arc of some circle with radius C B  as in fig. 4.11. Divide A B  

into six equal parts at M, N, 0, P and Q. Now construct circular arcs through C and 

each of the points h f , N , O : f  and Q one at a time? such that the centres of these 

circular arcs lie on C B  or C B  extended. As Lorch demonstrates, l3 this procedure 

for constructing the hour lines provides a graphical means for determining solutions 

13Lorch, "A note on the horary quadrant," p. 117. 
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Figure 4.11: The constructed lines of unequal hours. 

to  the formula 

sin(h) = cos(t) . sin(H) 

where t corresponds to the seasonal hour before or aft8er the sun's meridional transit 

at  noon and h is the solar altitude at  hour t on that day for which the sun's altitude 

at noon is H as is shown by a graphical demonstration based on fig. 4.12.14 

We can show that fig. 4.12 provides a graphical representation for (4.15). The hour 

line, O F ,  is the arc of a circle with diameter OY. The semi-circle on OB represents 

the hour line for noon, and the point M' is the intersection of the plumbline with 

this hour circle. (In practice, a bead would be positioned on the plumb line where it 

meets this hour line for noon.) 

We know that O M  = OM' since M and M' represent the fixed position of the 

sun in the ecliptic on a given day when it falls on the hour line O F  and noon, 

respectively. O F  = O B  by construction since they are radii of the same circle with 

14~bid. ,  p. 116. This modified figure and proof as outlined here appear in Lorch. 
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Figure 4.12: Determining the unequal hour for a given sighting. 

centre 0. But AOM'B is a right triangle since LOM'B subtends the diameter of a 

semi-circle on OB.  Both L AOM' and LOBMI are complimentary angles of L M'OB. 

Hence, LAOM' = LH = LOBM. Therefore, 

OM OM' -- - -- 
OF O B  

- sin(H) 

since O B  is the hypotenuse and OM' is the side opposite LOBM'. 

Moreover, LOMY and LOFY are right angles since they subtend the diameter 

OY of the arc O M F .  Now = s i n ( L 0 Y M )  and = s i n ( L 0 Y F )  Hence, 

but LOYM and LAOM are complementary angles of LMOY. Hence, LOYM = 

LAOM = Lh, and LOYF is complementaryto LYOF = Lt. Therefore, s i n ( ~ 0 Y M )  = 

sin(h) and s i n ( L 0 Y F )  = C O S ( ~ ) .  Thus, 
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and (4.16) and (4.18) together imply 

s in(h)  -- - sin(H).15 
cos ( t )  

The construction of these curves is not the result of a stereographic projection 

of azimuth lines on the celestial sphere. Such celestial circles would meet at two 

points when they were projected onto the plane of the equator; however, their very 

construction indicates that they are not azimuth lines since they meet at only one 

point, namely 0. 

Figure 4.13: Finding the sun's altitude in the sky using equal hours, 

This provides a graphical means for calculating H or h in terms of t (measured 

in degrees, i.e., 15" for each hour) when the other is known, but why does (4.15) 

provide us with the means for calculating the seasonal hours? Let fig. 4.13 represent 

the diurnal arc of the of the sun. We assume that the dirunal arc is a semi-circle; 

however, this would only be true if the sun were at the celestial equator. Let C be the 

culrnination point of the sun at noon, so LCOE = LH represents the sun's altitude. 

Let LFOD = Lh be the sun's altitude at some other time. Now A C E 0  - ADFG. 

Hence, 
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But 

and 

But CO = DO since they are radii of the semi-circle ACDB. Therefore, 

Now the arc C D  represents the arc in which the sun travels & hours from the 

prime meridian (i. e., the plane through C, E and 0 ) .  Hence, LCOD = t. 

Given that LCOD = LODG, CO = DO and % = cos(LODG), we have 

and (4.20), (4.23) and (4.24) imply that 

or simply (4.15). 

4.8 Constructing Equal Hour Lines 

We may now turn to the construction of the equal hour lines. In this case, an hour 

corresponds to  one twenty-fourth part, or 1 5 O ,  of an hour circle or circle of declination 

along which the sun appears to travel in a given day.16 To construct the equal hour 

lines, writers like Gunter describe a method whereby the altitude of the sun is deter- 

mined for a gi-?en hour of three different days, which gives three points, one on each 

of three different circles of declination, on which the sun lies at a given hour on three 

different days. These three points are calculated to construct a given hour line when 

the sun has either a strictly positive or negative declination for all three points. This 

I6An alternate definition would be to say that an hour corresponds to one twelfth part of the time 
between midnight and midday. 
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allows us to construct two sets of hour lines: one for the winter hours and the other 

for summer hours. These three points would be plotted, and then a circle would be 

drawn through these three points. To plot the points requires only the intersection 

of the stereographically projected circle of declination with a straight line from the 

vertex of the quadrant to the point on the graduated limbus equal to the altitude. 

Figure 4.14: Determination of the solar altitude when the sun lies in the equator. 



4.8.1 Finding the Sun's Altitude When the Sun Travels 
I Along the Equinoctial 

When the sun has no declination, it lies in one of the two equinoxes on the ecliptic. 

These correspond to the first days of spring and fall. Moreover, the day-circle or the 

circle of declination in which the sun appears to travel during these two particular 

days is the equator. Consider fig. 4.14 where the celestial sphere is given with the 

sun ( S )  shown above the horizon in its position at one of the equinoxes. The figure 

is labelled with the equator, the north pole (N), the local horizon, its zenith point 

(Z), and Z M  is equal to the latitude ( 6 )  of the locality. S is the sun at some given 

time of the day, and SH represents the altitude of the sun as measured in a plane 

vertical to the plane of the horizon through the local zenith and the sun. Since we 

are concerned with the equinoxes here, the diurnal motion of the sun describes half a 

great circle which cu'is the horizon, which is also a great circle, at two diametrically 

opposite points, one of which is 0 .  MO is 90•‹, and MI9 represents the meridional 

solar height at noon. 

With the problem described geometrically as above, we can determine the altitude 

of the sun for any hour when it lies in either of the two equinoxes by considering the 

two spherical triangles, AMOD and ASOH which share the angle LMOD = 3. By 

(1.4), we know that 

and sin(MO) = 1 since M O  is a quarter arc. Z M  is the complement of MD, and 

hence sin(MD) = sin(?) = cos(q5) = cos(ZM). Likewise S O  is the complement of 

MS; thus, s in(S0)  = cos(MS). Hence, (4.26) implies that 

sin(SH) 
cos(MZ) = 

cos (MS) 

which gives the relation of the sun's altitude with its corresponding hour angle mea- 

sured from the prime meridian when the sun lies in the equator. 
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Figure 4.15: Determining the hour lines when the sun has a non-zero declination. 

4.8.2 Finding the Sun's Altitude When the Sun Travels 

Along a Day-Circle Different from the Equator 

We may now consider the case when the sun lies upon some day circle other than 

the celestial equator. Here, as in the case when the sun had no declination, the sun's 

altitude is determined for the particular hour of interest. To explain the construction 

of the equal hour lines when the sun has a non-zero declination, we shall refer to 

fig. 4.15. 

If the hour is six in the morning or six at night, we may easily calculate the altitude 

of the sun since the sun will lie 90" to the east or west of the meridional transit point 
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of the sun in the diurnal arc. Hence, the LMNA is a right angle and A Z N S  is a 

right spherical triangle. Hence, by (1.7), 

where SZ is the complement of the sun's altitude PS, S N  is the complement of the 

sun's declination A S  and Z N  is the complement of the local latitude M Z .  Hence, 

(4.29) becomes 

sin(PS) = sin(M2) . sin(AS), (4.30) 

i. e., sin(h) = sin($) - sin(S), where 6 is the declination of the sun, $ is the latitude of 

the observer and h is the latitude of the sun. At noon, the sun's altitude is given by 
- 
f 6. The declination (5) will be added to the complement of the latitude (q) in the 

case when the sun has a northerly declination; otherwise, it is subtracted. (Medieval 

texts do not show negative declinations.) 

To determine the sun's altitude (SP) for any other hour, we first must calculate 

the magnitude of arc AH. A H A 0  is a right spherical triangle and LAOH is equal to 

the complement of the local latitude. Furthermore, arc A 0  is the complement of the 

hour away from noon or 90' - MA.  Thus, by (1.6)) we have 

or equivalently 

Given that 4 and the number of hours until noon (arc A M )  are known, the arc AH 

is then uniquely determined. 

With the arc AH calculated, we will mark off on arc NSH a point R such that 

arc NR = arc AH.  Hence, arc A R  is the complement of both the arcs H A  and NR.  

It can now be shown that the great circle containing Z R  makes a right angle with 

SN, since (1.4) implies 

or equivalently 
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Hence, 

cos(~M1L'A) = 
tan  ( RN)  
tan(ZiV)  

since cos(AM) = cos(LMIVA). And (4.35) implies that I Z R N  is a right angle by 

(1.5). 

Thus, A Z R S  and A Z R N  are both right spherical triangles with a comxnorl side 

ZR. Therefore, by (l.'i), we obtain both 

cos(SZ)  
cos(ZR)  = 

cos (S R )  

and 

Together, equations (4.36) and (4.37) imply 

cos (2 N )  - cos ( S Z )  - 
cos(N R) cos(S R) ' 

by Euciid's Elements V, 11, or by considering the complements of these arcs, we may 

write 

The arcs AR, M Z ,  and H S  are all known since they are respectively the complements 

of the calculated value for A H ,  the latitude for the given locality, and the calculated 

value of the sun's declination AS added or subtracted to the previously calculated 

value AH.  Hence, P S  is uniquely determined and yields a calculated value for the 

sun's altitude for a given locality for any hour required. The formula given in (4.39) 

and the calculation for A H  from (4.32) provide a two step calculation for this problem. 

The construction of the point Y on the arc N S N  is not so obvious; one might opt 

for an additional calculation to determine the altitude, arc P S .  Instead of (4.39), 

we can determine LAB0 by a formula which provides a relationship of the sidcs and 

the angles in the right spherical triangle AHAO.  With this angle known, we may 

then determine the altitude of the sun (arc S P )  by using the right spherical triangle 

AHSP and the sine law for spherical triangles where 



and then since LHPS is a right, angle, 

sin(SP) = sin(iSHP) . s in(HS) .  

4.8.3 Determining the Time of Sunrise and Sunset 

Figure 4.16: Determing the time of sunset and sunrise. 

?Ve may also determine the hour when the sun rises and sets for any given declinatiorl 

which the sun may ha-i~e, though this is not pertinent to construct any of the lines on 

the quadrant. With the hour lines and the horizon constructed, one may simply read 

off the time when sun sets or rises when its position in the ecliptic is known by either 

its declination, right ascension or longitude. Nonetheless, one may ascertain a morc 



precise time. With reference to fig. 4.16, the sun (S) lies in the hour circle MSN 

where it has reached the horizon. The point E represents the position of the sun at 

six in the morning or at night; hence, arc ES is the hour away from the hour of six. 

EO is the sun's declination in the right sphericd triangle AOES.  And LESO is the 

complement of the latitude of the given locality; thus, by (1.6) 

On the Construction of the Lines of Azimuth 

To complete our survey of the various curves constructed on a quadrant, we will 

examine the lines of azimuth which are closely related to the equal hour lines. An 

azimuth circle is a great circle of the sphere which goes through the zenith of a 

given locality and the azimuth line is the stereographic projection of that circle onto 

the quadrant. The azimuth circle cuts the horizon at  some point whose angular 

measurement from the intersection of the local meridian and the horizon is called 

the azimuth of the celestial body. In our case, the celestial body is the sun. The 

appearance of the azimuth lines is a result of a stereographic projection, and there 

are a few methods which one might use to construct them. One geometrical method 

requires projecting stereographically the zenith point of the give11 locality and two 

diametrically opposite points on the intersection of the horizon with the azimuth 

circle. Once these are known, a circle may be constructed through these three points, 

or more correctly the arc of this circle which lies between the tropics of Cancer and 

Capricorn. This method uTas certainly known in medieval Islam in addition to other 

graphical methods;*' however, it appears that in the texts which we consider here, 

"Cf. ,  c-g. ,  J.L.  Berggren, Medieval Islamic Methods for Drawing Azimuth Circles on the Astrolabe 
for a survey of graphical methods for constructing the azimuth circles on the astrolabe. These 
methods used on the astrolabe hold equally as well for the quadrant though the nature of the 
construction of the azimuth lines on quadrants in medieval Islam should be considered in some other 
study. 



numerical methods were used to construct the lines of azimuth. For example. for a 

particular azimuth circle and three different declinations of the sun when it lies either 

northerly or southerly of the equator for all three declinations, the sun's position on 

that azimuth circle might be projected stereographically onto the plane of a quadrant. 

Through these points an arc of a circle could then be drawn betveen one of the tropics 

and the equator. (Typically the points where the azimuth circle crosses the two tropics 

and the equator would be taken as the three points through which one would construct 

the circle to represent the azimuth circle; but in the case of Gunter's quadrant, we 

need two other points to construct the entire azimuth circle between both tropics 

and the celestial equator: one when the sun's declination is positive and the othcr 

negative.) 

When the sun is at  either of the equinoxes and hence has no declination, ?.e. the 

sun is on the equator, we may easily determine its azimuth and use fig. 4.14 to dernon- 

strate the spherical geometry and trigonometry needed to perform this calculation. 

In this figure of the celestial sphere, i"v' is the north pole? Z is the zenith of the given 

locality and S represents the sun. Arc SH is the sun's altitude and its corresponding 

azimuth is the arc HO on the horizon. The angle at 0 or LSOH is the complement 

~f the local latitude. Hence, in the right spherical triangle ASQH,  

by (1.6) or equivalently 

To determine the azimuth of the sun when it has some declination requires first, 

knowing the sun's altitude at the equator which we have just discussed. So now let us 

assume the sun has a non-zero declination, say arc S A  in fig. 4.17, and let us examine 

the right spherical triangles A Z M B  and ASAB. By (1.4), we know that 

and 
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Figure 4.17: Determining the azimuth of the sun from a given solar altitude when the 
sun has some declination. 

But arc Z B  is the complement of arc BP, the altitude of the sun were it on the same 

azimuth but at the equator; thus, szn(ZB) = cos(BP). Since both triangles share a 

common angle at B ,  LZBM = LSBA and hence sin(LZBM) = sin(LSBA). It then 

follows that 

Now that we have the calculated the values of the sun's altitude when it is on 

the celestial equator ( B P )  and the arc of the altitude circle from the equator to the 

sun ( B S )  when it is not, we must now consider three cases to determine the sun's 

altitude given its a imuth  and its declination (AS) .  If the latitude of the given locality 



and the sun's declination are both northerly or southerly , t,hen, if the azimuth lies 

between 0" and 90" of the prime meridian as measured from the southernmost paint, 

of the horizon, the sun's altitude is determined by adding BS to the altitude of the 

sun's projection onto the celestial equator. If the azimuth is greater than 90" and 

the sun lies above the horizon, then the sun's altitude is equal to the depression of 

the sun as if it were on the same azimuth circle at the equator subtracted from the 

sun's declination (6). If, however, one of gi or S is northerly and the other southerly, 

then the sun's altitude when it lies above the horizon is calculated also by taking the 

depression of the sun as i t  lies in the same azimuth circle and subtracting it from the 

sun's declination. 

Given the sun's altitude for any prescribed declination and any azimuth, we can 

construct the corresponding lines of azimuth on the quadrant. Texts which we have 

examined, describe the construction of the azimuth lines numerically instead of geo- 

metrically. The sun's altitude was calculated from three different solar declinations 

for a given azimuth with all declinations chosen to be positive or negative, and thesc 

points would be plotted on the quadrant. An arc of a circle would then be constructed 

through these points between one of the tropics and the equator. 

4.10 On the Cursor 

Lastly, we will describe the construction of the cursor which appears on many as- 

tronomer's quadrants. In some cases it appears as a fixed engraving on the quadrant, 

but in some 'late rnedieval examples, it is movable and can slide about an arc so as 

to function for any latitude. The texts that Y V ~  have examined on quadrant construc- 

tions, however, possess only instructions for constructing and using a fixed cursor. In 

one way this is quite sensible since the other sets of lines, i.e. the azimuth lines and 

the equal hour lines, are constructed for only one given latitude; however, a practi- 

tioner who possessed tables for such things could still use a quadrant with a movable 

cursor. Without such tables, the usefulness of such a qcadrant for telling time would 

not be so great. 

To construct the cursor for a given latitude ( 4 ) )  we need to know the declination 



of the sun for every day of the year; however, typically, only every fifth or tenth 

day of the month is used in the construction of the cursor. During the 1 6 ~ ~  and 

17f"enturies, tables would be calculated for or sometimes by the instrument makers 

who constructed quadrants. In the few works which explicitly give tables for the sun's 

declination or longitude,ls none explain how the tables were derived. They could have 

been obtained from earlier texts or through observation or through calculation usirig 

the mean solar motion to name just a few possibilities. In the end, the construction 

of the cursor will have a error so insensibly small for such a small quadrant that we 

need not be too concerned here. Only larger quadrants on the order of several feet 

in radius will require more careful attention in the construction of the tables for the 

construction of the cursor. 

With a table of solar declinations in hand, we now need to calculate the solar 

meridional altitude, i. e. the sun's altitude at noon for every day of the year. This is 

easy to compute since the sun's altitude for a given day is equal to $ f S, where 6, 

is the declination for day n, and the sun's declination is added in the case when the 

sun's declination and the latitude of the given locality lie in the same hemisphere as 

is defined by the equator; otherwise, the sun's declination is subtracted.19 

The cursor is usually placed between the tropic and the graduated limbus of the 

quadrant. To inscribe the days and the months of the year in the quadrant, a straight 

edge would be placed through the vertex of the quadrant and through the graduated 

division on the outer limbus corresponding to the solar meridional altitude for that 

day. At that point a h e  would be drawn. One must remember that for every possible 

declination, there will be two positions of the sun with that declination; or at least 

there will be two days whose solar declinations will be quite close to one another. If one 

to  draw these lines they would appear so close together as to be indistinguishable 

especially on a hand-held vertical quadrant. To avoid this problem, half of the space 

l e y ' - ,  e+g- Edmund Gunter's The description and use of the sector, the crosse-staff and other 
instruments, and William Leybourne's transcriptions of Gunter's works on quadrants. 

"The construction of the cursor in my representation of the quadrant, however, was constructed 
using the equations of time. The greater accuracy attained by using these equations on the other 
hand would not necessarily produce better results when one actually used the quadrant in practice 
because of its size. 



reserved for the cursor would be used for marking the solar meridional altitudes ~ 1 1 ~ 1 1  

the sun lies between the summer and winter solstice; the other half would be reserved 

for marking the solar meridional altitudes when the sun traverses the remaining half 

of the ecliptic on its journey from the winter solstice back to the summer solstice. 

Normally, every fifth day of the month would be marked off on the quadrant, and the 

first day of each month would also be noted. 

we have thus described the construction of the major curves which were found on 

a quadrant from the early Renaissance until about the mid-17~~ century. Quadrar~ts 

were still constructed after this time, but slowly fell out of fashion perhaps for want 

of more accurately computed astronomical parameters. Practitioners also worked on 

other nomographic representations of some of the various functions considered here 

and others as well. Gunter's quadrant represents a truly advanced form of the more 

traditional quadrants, and we shall stop here with our description of the methods for 

constructing the various curves as we have done in this chapter. 

4.11 Employing the Quadrant and Its Curves in 

Ast sonornical Matters 

We have now constructed those curves necessary to perform observations and calcula- 

tions; however, as in many texts and manuscripts which we have studied in this work, 

we need to complete this study with an examination of how the quadrant is used. 

To use the quadrant, two sights need to be added on the side of the quadrant 

which meets the limbus at the 90" mark - one sight near the vertex and the other 

nearer the limbus. Lastly, a plumb line needs to be attached to the quadrant at its 

center. A small sliding bead must also be placed upon this plumb line. 

4.11.1 Finding the Solar Altitude 

One obvious use of the quadrant is to  take the altitude of the sun, moon, or stars. 

To take the altitude of the sun on the 22nd day of November, for example, a sighting 

of the sun is taken, "shooting the sun" through both sights, and the plumb line cuts 
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the limbus at that angular measurement which corresponds to the altitude of the sun 

at the time of the observation. Hence, on the 22nd day of November at noon, the 

plumb line crosses the limbus at 20'47' for an observer at the latitude of 49", e.g., 

Vancouver. Likewise, if the time is 300 p.m., the solar altitude for that same day and 

observational latitude is 10'3'. 

4.11.2 On the Sun's Position in the Eciiptic 

If the sun's position is known in the ecliptic, then we may easily determine either the 

declination or the right, ascension of the sun. To determine the right ascension, we 

lay the plumb line over the point in the ecliptic, and where the plumb line crosses the 

iimbus, the right ascension is then determined; however, if the sun, as it lies on the 

ecliptic, has a longitude of more than 90•‹, then the right ascension will be more than 

90". For example, Gunter says 

As if the place of the Sunne given be the fourth degree of [Gemini], the 

thread laid on this degree shall cut 62 degrees in ther Quadrant, which 

is the right ascension required. But if the place of the Sunne be more 

then 90 gr. from the beginning of [Aries], there must be more then 90 gr. 

allowed to the right ascension; for this instrument is but a quadrant [i.e., 

a quarter circle]: and so if the Sunne be in 26 gr. of [Cancer], you shall 

finde the thread to fall in the same place, and yet the right ascension to 

be 118 gr.20 

Just as we can determine the sun's right ascension by knowing its position in the 

ecliptic: so, reversing the procedure, we can calculate the sun's position in the ecliptic 

from its right ascension. Moreover, to determine the sun's declination, the plumb line 

is placed over the known longitude or right ascension. The bead on the plumb line is 

placed over the point where the plumb line crosses the ecliptic. Then the plumb line 

is placed over the line of declination (without moving the bead) to provide the sun's 

declination. And vice versa, we may determine the longitude or the right ascension of 

"Gunter, On $he sector, p. 202. 
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the sun from a given solar de~linat~ion. Care, however, must be taken to note wh-ther 

the sun lies in the northern or southern celestial hemisphere, i. e., whether the sun's 

declination is positive or cegative. 

To demonstrate, we cite the following by Gunter who says 

As if the place of the Sunne giuen be the fourth degree of [Gemini], the 

beade first set t.0 this place, and then moued to the line of declination, 

shall there shew the declination of the Sunne at that time to be 21 gr. 

from the equator.21 

Likewise he goes on to say 

.4s if the declination be 21 gr. the beade first set to this declination, and 

then moued to  the ecliptique, shall there shew the fourth of [Gemini], the 

fourth of [Sagittarius], the 26 of [Cancer], and the 26 of [Capricorn] and 

which of these foure is the place of the Sunne, may appeare by the quarter 

of the yeare.22 

4.11.3 On Using the Cursor 

The cursor may be used to determine the solar meridional altitude. If we lay the 

plumb line across the day of the month in which we are interested, the sun's meridional 

altitude is provided by where the plumb line crosses the limbus. Moreover, the sun's 

place in the ecliptic may be determined when either the day of the month is known or 

the solar meridional altitude is known. In the subsection, Finding the Solar Altitude, 

the sun's altitude at  noon could have been determined without doing an observation. 

4.11.4 On Using the Seasonal Hour Lines 

To use the seasonal hour lines, we need to take a sighting at noon or determine 

the sun's altitude a t  noon by some other means to pcsition the bead over the arc 

corresponding to the hour of twelve. Once the bead is rectified, if a sighting is taken 
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at some other time of the da3;, the position of the bead indicates the time of this 

observation. 

4.11.5 On Using the Equal Hour Lines 

Those lines which are labelled 6,7,8,9,10, 11, and 12 at  the equator and those marked 

1,2,3,4,5, and 6 at the tropic represent the hour circles. The hour line which begins 

at  12 on the equator and terminates at 0 at the tropic near the middle of June on 

the cursor, represents the hour circle for noon when the sun lies in the northern 

celestial hemisphere. Those lines drawn from 11 to 1, 10 to 2, 9 to 3, etc., are the 

hour circles for 11 a.m./lp.m., lOa.m./2p.m., etc., when the sun lies in the northern 

celestial hemisphere. The other collection of arcs emanating from 6,7,8,9,10,11, and 

12 represents the same hour circles for the case when the sun lies in the southern 

celestial hemisphere. 

If the day of the month or the solar meridional altitude is known, the position 

of the sun in the ecliptic can be found. We begin by laying the plumb line across 

the day of the month on the cursor (or across the limbus for the meridional height). 

Where the plumb line crosses the hour circle for noon, set the bead at that point of 

intersection. The bead has now been rectified (to use Gunter's term) for the given 

day of the month in which we are interested. (Now that the bead has been rectified, 

we can determine the sun's position in the ecliptic. Simply move the plumb line until 

the bead falls on the ecliptic. And vice versa, if the point in the ecliptic is known, we 

can determine the day of the month.) 

At any other time of the day for which the bead has been rectified, the time may 

be determined by sighting the sun. The point where the bead lies indicates the time. 

It may lie between two consecutive hour circles, and, thus the hour may need to be 

interpoiated. This also provides the observer with the altitude of the sun at  that time. 

Likewise, if we know the solar altitude, the hour can be determined. 

Moreover, we can determine when the sun meets the horizon in the morning or 

evening. Once the bead on the plumb line has been rectified, move the plumb line 

until the bead falls on the horizon. The hour can then be determined as it is described 



above. This also allows us to find the rising and setting sun's distance from t,he points 

due east or west on the horizon, and where the plumb line crosses the lirnbus gives the 

ascensional difference (useful for computing the length of daylight, on a given day). 

4.11.6 Using the Azimuth Circles 

The remaining arcs which lie between the equator and the tropic are the azimuth 

circles. The left-most azimuth represents the meridian. That which is marked 10 is 

the azimuth that is lo0 from the meridian. 

Again, we must rectify the bead on the plumb line for that day of the mont,h i n  

which we are interested. If we then move the plumb line so t*hat the bead fails upon 

some azimuth, then the point where the plumb line crosses the limbus provides us 

with the zenith distance of the sun. And vice versa, if the zenith distance is known, 

then the azimuth can be determined. Moreover, we can determine the sun's azi=uth 

for a given time since we can determine the solar altitude at that time; the zenith 

distance is just the complement of the solar altitude. 

We shall not describe the uses of the shadow square at this point, since we have 

already decribed them earlier in this chapter. 

This completes our examination of quadrant constructions and applications. 



Chapter 5 

Conclusions 

Scholarship in the history and philosophy of science and technology which examines 

developments in scientific instruments and their relationship to science is a relatively 

recent development within the world of academia. The history of scientific instruments 

like the quadrant is slowly becoming a field of great interest by researchers who are 

interested in how the instruments were constructed, who constructed them, how the 

instruments affected developments in science and vice versa, and texts which described 

their use and construction. We have considered many of these areas in this study; 

however, we have barely begun to see the entire picture of the quadrant's developments 

in the Latin West during the early Renaissance. 

We have drawn upon many works by other scholars and available texts and 

manuscripts to put together this study. The primary texts have helped us to un- 

derstand the construction and some applications of the quadrant; however, we have 

had to rely upon a lot of secondary material to gain a glisnpse into approximately 

SO0 years of history in astronomy, mathematics, navigation, surveying and scientific 

instruments. Undertaking such a study is quite daunting, and it is clear that his- 

torians of science and technology must work together with each other to uncover a 

fairly accurate interpretation of instruments like the quadrant and their relationship 

to science. 

?Vhile we have relied upon the work of other scholars, this work is not a mere 

derivative. Based upon our knowledge of today's available literature, scholars have 
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not previously attempted to view the developments of the quadrant within thc. sslnc 

parameters which n-e have set for this thesis. That is, there has been no visible at- 

tempt to construct the interlocking pieces of several different puzzles which examine 

the influence from various sciences, other areas of technology and the educational a t  - 

mosphere within each of these disciplines. Still, many pieces of the puzzle are  missing, 

for this is hardly a definitive work. However, we believe i t  presents a plausible frame- 

work within which we and other scholars can continue to look at the development s of 

the quadrant in this period of history and its role within scientific developments and 

the ideas of scientists. 



Chapter 6 

Glossary 

azimuth The angular measurement of an arc along an ob- 

server's celestial horizon measured from the south- 

ern most point on the horizon to another point 

on the horizon where a vertical circle at a right 

angle to the horizon passes through some celes- 

tial body. It can also refer to the angle measured 

at one's zenith contained by the prime meridian 

and another celestial circle which passes through 

the zenith and some celestial body. 

azimuth circlesjlines These are great circles on the celestial sphere which 

pass through an observer's zenith point. Since 

they are great circles through the pole of the 

horizon they must meet the horizon at right an- 

gles and pass through the nadir (the point on the 

celestial sphere directly opposite the observer's 

zenith point). We will refer to those lines which 

represent projections of these circles on the quad- 

rant as azimuth lines. They are also called az- 

imuth circles. 
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celestial equator The great circle on the celestia.1 sphere whic,h is 

co-planar with the Earth's equat'or aad is perpen- 

dicular to the Earth's axis of rotation. 

circles of declination These are celestial circles -which are parallel to the 

celestial equator. In the context of this thesis, by 

and large they represent the apparent pa.th of the 

sun across the sky over one solar day. 

cursor 

declination 

ecliptic 

equinoctial 

equinoxes 

That part of the quadrant which represents the 

sun's declination at noon throughout a given year. 

It is constructed on the quadrant so as to repre- 

sent the sun's solar altitude at noon throughout 

a given year 

An angular measurement or the measurement of 

an arc of a great circle through the pole of the 

celestial sphere as measured between the celestial 

equator and some celestial body. 

The great circle upon the celestial sphere which 

marks the apparent path of the sun in one solar 

year as seen from the earth which results from 

the earth's orbit around the sun. 

The apparent circle on the celestial sphere which 

coincides with the sun's apparent daily path when 

the sun lies in either of the equinoxes. 

The two points on the celestial sphere where the 

equator intersects with the ecliptic. These points 

are identified on the ecliptic as the first point of 

the zodiacal signs of Aries and Libra (i. e., the 

first days of Spring and Fall). 
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hour lines On the quadrant these represent the hour circles 

on the sphere, which are great circles through 

both celestial poles and serve to identify a given 

part of a day as measured by equal hours. The 

hour angles are the angles these circles make with 

the meridian. 

limbus The 90' graduated arc of the quadrant. 

longitude 

meridian 

The measurement of an arc of the ecliptic mea- 

sured from the first point of Aries. 

A great circle through the poles of the equator 

and the observer's zenith. 

obliquity of the ecliptic The angle at which the ecliptic meets the celestial 

equator. 

prime meridian The great circle on the celestial sphere which passes 

through the pole and an observer's zenith. It 

necessarily passes though the most northern and 

southern points on the horizon. 

prime vertical The great circle which passes through the poles 

of the prime meridian and an observer's zenith 

point. It necessarily passes through the most 

easterly and westerly points on the horizon. 

right ascension The measurement of the arc of the celestial equa- 

tor measured from the Spring equinox to the point 

where an hour circle passes through some celestial 

body. 

scale of declination A scale on Gunter's quadrant which represents 

the sun's declination. 
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shadow square 

solstices 

Tropic of Cancer 

A scale on the quadrant which ultimately rep- 

resent the tangent and cotangent trigonometric 

functions. It was used in surveying for determin- 

ing the length of a side of some right angle tri- 

angle which is similar to some other given right 

angle triangle. 

Correspond to those points on the celestial sphere 

when the sun has the greatest declination north 

and south of the celestial equator. These points 

are identified on the ecliptic as the first points 

of Cancer and Capricorn respectively, or the first 

day of Sumrrler and Winter. 

The circle on the celestial sphere which is parallel 

to the celestial equator and tangent to the ecliptic 

at Cancer. It marks the northern limit of the sun 

during the year. 

Tropic of Capricorn The circle on the celestial sphere which is parallel 

to the celestial equator and tangent to the ecliptic 

at  Capricorn. It marks the southern limit of the 

sun during the year. 

aenit h The point directly over an observer. It is the pole 

of the observer's own horizon. 
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