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Abstract 

A new database concurrency control mcchanisrn based otl lorlcing L1\(. lcit\rcb~ ol' il 

binary tree is proposed. This is a nloclificatiou of tree locking wi t,li a11 l,ll(. <1;1t,i1 i l ~ \ t ~ ~ s  

in leaf nodes and the interior nodes of the trec usccl o ~ l y  for c o t ~ c . u ~ ~ ( ~ ~ l ( * y  ( * 0 1 1 1 1 d .  

It is shown that this technique has greater possible coiicurrctlc*y t,1li111 olditra ry ~ , I Y Y *  

locking. Furthermore, concurrency is greater than that < x l l i  h ikd I)y t , l ~ c l  1,wo- pllasc~ 
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Chapter 1 

Introduction 

A t1at;lhasc server rnr~st process a large number of transactions. During the servicing 

of' a t,ransact,iori t,hc processor iliust often wait for disk I/O or else wait for a response 

C r w r l ~  a clicrlt. It is desirable to use this idle time of the processor to  handle another 

t,rar~saction col~currcnt ly in order to increase database throughput and decrease re- 

s p o ~ s c  tirrle. 'This hnwevcr cannot be clone indiscriminately. A database transaction 

sctletlulcr trlust schcdl~le ii~co~nirlg transactions so that the database is not left in an 

iltcwt~sistcwt stiltc. after tlalsaction execution. C!onsistency is guaranteed provided 

t,lw st.hdulc gc.l~cratwl is equivalent to a serial schedule, i.e., one where the transac- 

tions ;IR carried out seclumticzlly. This is called serializability [l, 21 and forms the 

c~or*nr~r.storlr~ of c o ~ c u  r.rcncy control. 

Orle way to ensure that the resulling schedule is serializable is to  lock data items 

i r l  n rnanllcr t.llat ensures serial equivalence. All data it,ems accessed by a trailsactioli 

~llusl  Ti rst, be locked i l l  accordance with a locking policy. The dominant such rnelhod 

is c.allec1 two-phase locking (TPL) [I, 2 ,  31. While a data item is locked no other 

1,rallsactiou can lock t3he same item in a conflicting mode. Another transaction wishing 

to accrw t11e sarncb data item in a conflicting manner must wait unlil the lock is 

rc-leased. 'I'llc Iianlr. two-phase rcfers to the requirement that no locks can be released 

i ) > s  ;I t ransaction beforc I he last one is accluirecl. Thus, during the growing pliase locks 

arc acquired and then during the sliriuliing phase locks are released. The two-phase 

locking policy guaca~ltees serializability since transactions are effectively serialized in 
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the order in which the!- reach the lock poilit ( t l i t t  c ~ ~ c l  of t 1ir g r o ~ t l ~  pl~asct). 
r \ Non-locking concurrencj- cont,rol scherl~es arc also possihl(~. I Irt. si~~ll)lvst or~v is 

time-stamp ordering (TSO) [2, 31. 111 this scl~ernc clat al)asc. reads i111tl \\.rit vs ~)~.oc-cv~l 

at will but the time stamp of an operatio11 is colnparcd to rc3atl i111tl \\.rit c stanips 

stored with the data item. If, for example, a transactio~i trics to r ~ i ~ c i  i1 ( l i l t  a i t t \111  li1'7t 

r ,  I written by a younger transaction it will have to be abortctl. 150  wlicts or1 i 1 1 ~ 1 . t  i l l g  

transactions that would otherwise cause the resdtirig srhcdulc to Iw no~i-~c.riaIizi~I~Lc>. 

An aborted transaction then  restart,^ after solnc t,imc clelii~.. 

It has been shown both theoretically [ill and with silii~llat,ioi~s [S] tllat '1'1'1, Iias 111 , .  

greatest tllroughput for unstructurecl data. Ileccnt  result,^ i~iclicatc I l ~ ; r t  w i t , l i i ~ i  '1'1'1, 

the performance under high data contention can he in~proved 13y I i l ~ ~ i  ti118  ti^^ I c ' I I ~ ~  I i  o f  

the chain of transactions waiting for a data item [Fi, 61. Alt,c~nativcly, oric3 ('il l1 cul~sitl(>r 

structuring the data in order to improve performance. One c~sarr~plc of a cwrrc.1 I r r c l ~ i c - ~ *  

control scheme which uses structured data is trec locking ( T I , )  ['i, 2, 31. I h r  '1'1, 1 I I V  

data items are stlxctured in a binary t'ree, In this schcme a i,ral~sact,ioli ~ q u i r i r ~ g  ;I 

number of locks starts at  the common ancestor 11odc oS d l  thc i*ecluir.cd tlata i t,c\~lis i i i t c l  

propagates locks downwards using lock co~ipling. Lock coupling nlc'alls t l~a  t, i I i o i ~ l ( ~ t ~  

to get a lock on a child node a lock must be lictlcl 011 tllc parc.rit,. I ~ ' i ~ ~ ~ t l ~ < ~ ~ ~ r ~ i o r c ~ ,  t , t ~ c *  loc,li 

on the parent may not be released until t,lle desired locli oli thc cllil(l ilorlc. 1i;rs I H W ,  

acquired. This ensures that lock requests on common data it,erns froll~ a tra,~isi\(.t,ioti 

initiated later cannot overtake the current tral~saction's rcqucst,~ airy wtic~rc~ i l l  t , I ~ v  1,iw. 

Such a sequence of events is thiis serializablc. The trmsactions arc. sc~ializvcl i l l  t , l ~ ( *  

order in which they were init!iated (strictly t r w  only i f  all loc:li rccl~lc~sts s ~ , ; L I ~  ; i t ,  t . 1 1 ( 3  

root node). A major clisaclvalltage of this inetl~otl is that, whc>ii locks arc. i i c l l ( l  or] 

several data items, one of which is at  a rioclc in t,k t r w  close t,o tlic root,, a Iargc~ 

part of the tree below this ilode is inaccessible to othcr transactior~s i i r i t l  tl~ris ir, loss ol 

concurrency results. TL is not optimal and an alter.nativc- st,l.lict,ur.cd lo(-kiiig 1)olir.y 

will be proposed in the next chapters. 



Chapter 2 

Leaf Locking 

2.1 Leaf Locking Policy 

III this thesis a, leaf lockjug (LL) scheme will be proposed and compared to TL, TPL 

arrd TSO. Ll, is a modification of TL with all the data items put in leaf nodes. The 

intcrior nodes of the tree are used only for concurrency control. This means that the 

1,L trce ( i C  balanced) will contain t,wice as many nodes and be one level deeper with 

the. co~~con~i lan t~  increased storage demands. The advantage is that now the interior 

nodes ncecl uot be loclcecl For long periods of time. They need only be locked long 

ctlorlgh to p.opaga,te a lock to the nest level down. Thus the problem of unnecessarily 

loclcing u p  parts of a trce can be circumvented at the price of increased storage. That 

(,his ~ncthod has increased concurrency as compared to standard TL can be seen 

I~.oru figure 2.1. 'I'rausaction Tl accesses both data items a and cl while T2 accesses 

clc~nents e and j. Using TL T2 il~ust wait until Tl releases its lock on a since in order 

for 'I; 1,o acquire locks on e and j' it inust first acquire a lock on the least common 

arlccstor which is u. Using LL however, T2 can proceed almost iimnediately even if all 

tra~~sac-t,ions are forced to start at the root node since in that case it need only wait 

urlbil 7'; bas propagated it.s lock one level down. 

LL is tllils clearly better than TL if the additional storage is available. The extra 

stnragc! rtquired is actually quite modest since the interior nodes do not store any data 

auil are conseque~ltly very small. In order for the extra lock coupling overhead to be 
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A& b c d e  

Figure 2.1: Treelocking and Leaflocking 



r~egligil~le as Irla,Ily of  the interior nodes as possible should reside in main memory. 

In  the I,l, schcnlc outlirlccl above it is still possible for part of the tree to become 

u~lncccssarijy inacccssihlc i f  multiple transactions attempt to lock the same data item. 

Sirlw the lock or1 t11c pa~vnt  cannot be released until the child lock is held, waiting 

for a prcvio~ls t r a ~ ~ s a ~ t i o ~ l  to finis11 with a data item causes part of the tree to be 

~111availat)lc. ( h s i d c r  thrl case of both transactions wanting to write data item b in 

t,Iic T,TJ case ol' figure 2.1. The second transaction would have to wait for the first to 

filiish a.rtcl during this time rnwst hold a lock on b's parent. This has the side effect 

of causing data itciu n to be effectively unavailable to other transactions requiring n 

alortg with sorr~c otlicr cla,ta item. To overcome this problem each data item (the leaf 

rlodt\s) shoillcl 1ia.v~ a lock queue. The lock coupling rule can then be relaxed to the 

rcquircment that tllc lock otl a parent of a leaf node can be released once all the lock 

rv~clucast,s 017 child d a h  itcwis have been queued. Since the queue is FIFO the order in 

wl~icll transactions access a data item is unchanged and the continued serializahility 

of' all scl~cclules is guaranteed. These queues can be either dynamically alloc,atecl as 

l~ccclcd or he of fixed length witlli a natural overflow handling mechanism. 

/I last opt,ional rquirenlent of LL is the insistence that all transactions start at  t,he 

rool node. 'l'llis optional requirement has some a8cIvantages with only a slight penalty 

(at, least, for centralizecl databases). For TL such a requirement would drastically 

~.cdi~c.c collci1rrency since locliillg the root data item for a transaction would then 

clf'cctively lock the wllole tree. For LL the root node does not contain data and 

is t hus never llclcl for long. The increased lock coupling overhead is small and the 

cfrc~t  oti pcrfor~nance is minimal. If this rule is enforced all tra,nsactions are strictly 

stv~ializccl in  the orclcr of their starting times, Furthermore, locl<ing granularity can 

thcil I)c ~latui.ally achieved. For example, as long aa the tree root is locked all clat<a 

i tmls are effectively locked. If' the tree is organized so t,hat related data items are 

all groiipecl t.oget>lier in the same sub-tree, then all these items can be si~nultaneously 

i d 4  1)y locking t l ~ e  sub-tree root node. However, for very large databases this rule 

illigl~t bc unclcsirable at  the top level due to "bottle-necking". 
I 1  For 1 L, organization of the data in the tree can have a dramatic efFect on per- 

for~nancc. If most. transactions require access to  a node close to the root, then large 



CHAPTER 2. LEAF' LOCEiIA7G t i  

numbers of data items are unavailable during t Ire t ilnc a lock is lrt.lcl or1 sriclr a ~~otltl. 

Thus, heavily used items should be placed i n  leaf notlcs. 1 b 1  I,], t , l l r w  arc. rro sr~rtl 

concerns since all the clata itterns are in leaf lrodcs. No sp~cial  I I W  o~-gatri%atiorr is 

required from a perforrnancc point of view. Tt, might still l)c tlcsim1)lc t,o group  ~ . r ~ I i ~ , t , ( ~ ( l  

items together in the same branch so that they can d l  bc lockccl togrlt lrcr Sor sl)c.cii\I 

purposes such as re-balancing thc tree aft,cr ii~scrti~lg uccv iter~ls. 

2.2 Lock Propagat ion Algorithm 
I 1  In order to implement LL a lock propagatiol~ algorithm is r~cvxlccl. I trc st;l,rt,irlg poilrl is 

a predeclared read and write set of data items and a clatabase of data i t m ~ s  orgnt~iac.tI 

in a, binary tree with the actual clata items in leaf rloclcs. Wc ~.vclrlirc\ t.l~at, loc.lcs tw 

propagated clown to  the appropriate leaf nodes using loclc coupling st,art,ir~g I'WIII t,Irv 

root of the binary tree. It is important to minimize the  tin^ a,lry i~~ler ior  uoclv is loc*lit~tl 

in order to make available the nlaximum amountl of coucrlrrct1c.y. 11, is t,l~ris r~trtlcsi raI)lt1 

to propagate the locks one at a time since thcu the root nock wo~r lcl have t,o I)(. localcc~tl 

for the duration in order to prevent lock requests from otllct l,r*arlsacl~io~~s f1w111 gttt,i rrg 

in between, Fortunately it is possible to proceed i n  a breaxltl~ lirst Lna.nlltls i l l  wt~ic*l~ ;i l l  

loclc requests collectively move clown one lcvel at, a time locking 1 hc> r cyu i iw l  c l ~  i l t l  I Y > I ~  

and then unlocking the parents once all rccluests have n~ovctl tlowr~ O I I P  I(vt.l. 

In the irnplementatio~l used here the lock requests corscspor~dir~g t20 a t,t*a~~s;rx.~,ior~'s 

data set are structures chained together ilr a singly li111ied list. 'l'hv scq rtcst, sl,r.r~c:t,~~~.c~ 

contains a pointer to its right neighhour as well as a l e d  poi~~t,er wl~iclr a,i t,ltc P I I ~ I  of' 

the algorithm will point to the leaf node containirlg t he rocjr~iscd tla t,a i t r t ~ ~ .  I~~it,ial l y  

the leaf pointer of the recl~lest at the head of thc list points to tI1v roo1 of t ,11(>  tl;lt,:~,l)ascl 

tree and all other leaf poillters are null. Also note that the scc l~~~s t , s  ax(: o r ( lwd  Ijy 

data-item key value so that the request at  the hcad of the list llas t2hc lowc.st, Iwy v;~lrw 

and the one at  the end the largest. This key must be tlr(. sstl~c* as was r~scvl t,o I , ~ r i l c i  

the binary dahbase tree. The algorithm starts by locking t,l~c root, ~~otlc> a l ~ c l  sct,f,ir~g 

the leaf pointer of the first request to either t,hc lcSt or sigh1 chilcl rloclo of tt~c' soot, 

desending on whether the reauest kev value is less than or ~rrcatcr (,ha11 tJ11t: soot, k v v  
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Figure 2.2: Lock Propagation Algorithm 
'l'hc 1al)els on the interior nodes are the key values used for comparisons. 

vall~c (figure 2.2). Ti the right branch is chosen then all other requests also follow the 

riglit, hrandi since the list is ordered by key va.lue. Hence the right child node is locked 

;~,iitl the root node released. If the left branch is followed then the head request leasf 

pointer is set to point to the left child and the left child is locked. For the left branch 

t,hc rcquest list must be traversed from left to  right comparing the request key value 

with the root kcy value. If a request key in this list to the right of the head request 

is grealcr than the root key its pointer is set to point to the right child and the right 

cl~ilcl is loclied as well. In this case list traversal can be terminated and the root node 

~~nloclied: If the end of the list is found without any key being greater than the root 

key t l~en  all rcquests follow the left branch and the root is unlocked without locking 

t,hc right child. At this point all lock requests have moved down one level in the tree, 

arc holding only the required locks and the root is once again unlocked and ready for 

the liest set of requests. The a'lgorithm proceeds down level by level in this fashion 

wit11 each subset of requests starting with a non-null leaf pointer trea,tecl separately. 

Note that in order to  move down one level the request list need, a.t most, be 
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traversed once in this algorithm. Thus if t,here arc A. rcclucsts atld I\' data itcrlls 

in the tree (log N levels) this algorithm will be of ortlcr O(A. log AT). Si1ic.c. A* is ill  

general very small and log AT is also sinall for all but bhe l a ~ y s t  (tat a1);lsc~s t lris luc'li 

propagation algorithm is very efiicient. in tlie case of 'rPT, a11d TSC) tlw (lilt?il it,t>tlls 

can in principle be found using a hash tablc with cfIicicncy O ( k )  wlliel~ is clcnr~ly 

more efficient. However, provided the L L  concurreilcy cont,rol notlcs call lw I q t ,  i l l  

main memory which should be possible for all but ttlc 1;~rgi.st tl;tt,ahascs, t , t l c k  lock 

propagation overhead is expected to be mininlal since tran~act~ions will  i t 1  gt-rlcbri~l 

have to wait much longer for resource or data contention. 

Another aspect which could cause concern is bottle ucckii~g at tllc root node si1lc.c. 

all transactioi~s must access the root node. The key to high pcrforluaiic~c tloro is 

keeping the root node locked for tlie inininmin aniount of tinic. It can Iw sl~owll 

that at  very high multi-programming levels (mpl) the thi.oughp~l t, is l i t l ~ i  1,c.d t,o I / X .  

where k is the fraction of the average transaction time spent, a.cccssitlg t,hc rwot, [ 101. 

As stated above the transaction is expected to spend the hulk of its t,inlc waitij~g 

for resource or data contention so k will bc a very small fractioll. Conscclucl~tly, tllc 

expectecl maxinlum inpl allowed by root, uocle coiltent,iou will Ijc very Iargv at, Icasl, 

in a centralized system. Root node contention would I>e ;I nluch i1io1.c scrious issw i t 1  

a distributed LL system where corrununications clelays will add cor~sicloral)l,y to t l r ~  

time necessary to lock and unlock a node. Here we will rcst,rict our a,ttcvt,iol~ t,o a, 

centralized LL system. It is riot strictly necessary for cvct.y t,l.a.l~sa,c:t,ion Lo loclc t,11(1 

root node for a version of LL to work. It is only required t,l~at th(: I~igltc:st, co~nnlor1 

ancestor of all the requested leaves he lockccl. In a largc clatabasc that poil~t will 

often he several levels down in the tree. In thc context of the ahovc lock ~>l'~j)i~giltioll 

algorithm it means that a lock need not, Ix sct until the recjr~cst list,   nu st hc sl~lit, i r l  

two in order to follow both the left and right braliches. With t,lris ~notlific;lt,ic,ll t,11(. 

transactions are no longer euaranteed to execute in tin~e-statl~r) orclor. 



2.3 Essentials of LL 

I I I  scc t i o~~  2.1 LIJ was prese~itecl as inspired by the genesis of the idea. LL was de- 

vc:lopccl as an evolution of 'l'L in order to try and improve concurrency. In orcler 

to compare. I,L to other concurrmcy control schemes presented in the literature it is 

uscful t,o now clistill the csscntial elements of the LL scheme. 

1. All locks a tralisaction may need are acquired or queued atomically at  the start 

of a transaction. In other words transactions must, set locks in an equivalent 

to scrial order. It  iiiust not be possible for a second transaction to set locks on 

common data items until the first transaction has finished acquiring locks. 

2. All data items rriust have FIFO lock queues. 

' I ' l ~ h  first propc.rty insures that there are no cleadlocks and that transactions subse- 

quently execute in the same serial orcler. Choosing time-stamp ordering Ear the serial 

o r t l t ~  insures fair scheduling. The second property insures that conflicting accesses to 

a cla.ta item arc serialized in an order that can be established well before trai~sa~ction 

cwxution. The first and second properties together ensure that  the serial orders at  

each clat,a item are consistent with each other thereby allow the lock setting algo- 

rithnl to termi~iate and transactions to start while some locks are still held by other 

t,r;msactions. 

Using a t,rec to couple locks from the root to all the clata items satisfies properly 

I as well as imposing time-stamp orclerirlg. A tree is however not strictly required as 

propcrty 1 can he satisfied with other mechanisms. For example making a single pro- 

c ~ s s  respomible for setting all locks would also satisfy property 1. In this scheme all 

tlw~sactions woulcl submit their clata, sets to the scheduling process which woulcl cx- 

c ~ u t c  tlwsc scsially in the orcler received. Trarlsactions must delay starting execution 

utltil receiving a locks set/clueued return message from the scheduler. Alternatively 

i ~ ~ s t c a d  of having a ~c l i~ t lu l ing  process each transaction could be required to get own- 

cwhip of a s h a r d  scniaphore before setting any locks to ensure locks are acquired in 

a scsial orclcr. 
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Both of the above schemes, while insuring propcarty 1, arch i11t;hrior t,o t11t. bi11tlrjt 

tree in terms of throughput clue to c.o~it.cnt~ion for ttlc sc.ri;tl si.licdr~li~~g ~)roc.tw o r  

semaphore. As cliscussed in section 2.2 at high rnpl the thro~~ghprlt, is l / A .  wl~cw I I O W  

k is the fraction of the total transaction tinle spcnt waiti~lg for thi. 1c)c.k~ to Iw act 

and acknowleclged. k is ruucll smaller with a tree since tl~crc. k is 1 h  frac.t,io~~ of t i n ~ t .  

the root node is locked. The root node is only held long cllo~lgll tlo c-ouplc to 1,Iw 11est 

level down which is a much snlaller interval than the t>inle requirctl to svt, id1 k11(\ loc.1~~. 

If the data items are structured it is possihle to usc lock coupl i~~g t,o c.llstlrcn prop  

erty 1. For example if all data items were litllcecl toge1,her in a linlic.ci list, ~ , I I ~ * I I  loc.Iis 

could be acquired by starting at  the first item ant1 travcrsii~g ig11(\ list, to all t , t ~ c %  I-(.- 

quired items. In this way a second transaction could start setti~lg loc*lis as  soot1 as I l ~ t '  

first had rnoved on to  the second data item. As long as t,r.a,nsilctia~ls V ~ I I I I O ~ ,  pilss (vI(.II 

other in the lock setting process property I will be ~a~tistictl. St2rur lur i~~g t l ~ v  t l i l l , ~  

allows one to satisfy property L while minitmizing k m c l  llcncc ~nasi~~iir/,ing t,l~r.ougI~- 

put. Structuring the data allows the accluisi tion of loclcs to  I)c pi pcdi~rcd wil,11 1lliIll.y 

transactions propagating locks concurrently. 

Structuring the data items as a tree, while not increasing throrrgllput, as  co~r~pi~rtvt 

to a linear list, minimizes the number of lock couplcs a,utl hcl~cc reclucos t,lw t,ohl t,ir11c 

required to set all locks. This reduces a transaction's respollsc t,i~nc~. A t ~ w  also has 

some other advantages such as a built-in efliciet~t index on t , i~c .  p r i ~ ~ ~ a r y  Iir'y a ~ t l  t , I ~ c *  

possibility of locking whole sub-trees withol~t locking the cwtirc tlal,a st,rt~cturc*. 'I'l~is 

then is the primary motivation for retaining thc tree st ruck urcb Tor ilisuri~~g propcd,y 

2.4 Concurrency 

While LL is clearly superior to TL it is nlorc interesti r~g to c.otr~par.c~ 1 1 1 1  la '1'1' 

order to investigate which method has grea,ter concllr.rerlcy soruck cQo~~crqc+c. ('xi1 

transactions will be used. C;onsider the following two tr;msa,c~l,iot~s: 



I / ;  = /lM'[~~]W[~]l/w'[v]w[v]Lcv[~c]W[x]U[.s:v,x] (2.1) 
r~ l z  = L R [ s ] R [ s ] L R [ z ] R [ z ] U [ S ,  31 

Ilcrc* Lw[a.] ,  Ln[z]  alicl lJ[.r] respectively stand for write locl<ing, read locking ancl 

~inlockiug data item .r. Il[:t'] and W [ T ]  represent reads ancl writes of data item x. 

' I ' i~rw iricrcases liricarly to the right and two traiisactions are concurrent if they can 

c>xec:ut,c rlurirtg the sarrie time iliterval. Using TPL the above transactions cannot 

ovorla,p until 7; ~deases  thc lock on s  at the end of TI thus there can be no significant 

ovcdap. Ilowevcr, with LL, the equivalent transactions 

ca.11 c~xccutc: t,hc:ir wads and writes concurrently. Are there some schedules which can 

clxccutc coi~currctltly using TPL but not using LL? Consider the following schedule: 

T = LH,[.c]I/T~[a]L~~[y]PTf[y]L~,[z]W[z]U[x,y,z] 

= / J ~ [ z ] ~ [ z ] U [ Z ]  (2.3) 

r i  I htsc cat1 exccutc coilcurrently using TPL as i l l~st~rated above. But using LL the 

c.ar111ot c~xecut,c concurl-ently. 

'I'hc above example illustrates an iniportant difference between TPL and LL. In 

'1'1'1, locks are acquired as needed but must be held until the lock point (end of the 

gi.owt,h phasc). For LL all locks are effectively acquired (or queucd) atoniically at  

the st,art, of a trausaction but can be released immediately after the corresponding 

t1at.a itm~ is used. Thus in the first example the two transactions were able to execute 

co~~curr.ent~ly using LL, but not, using TPL, because the LL method was able to release 
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the lock on data item s much earlier. In the second csample tlw t,wo tral~sac-t io11s C ~ I I  

run concurrently using TPL because the acquisitio~~ of the lock 011 t1at.a i t t * t ~ i  2 c-oi~ltl 

be delayed until just before writing 2. whereas the L L  ulcl,hotl hatl to acquire a lock 

on z at the very beginning. 

Thus, at first glance, there does not seem to be a clear col1currtwc.y atlviu~tngc~ ol' 

one scheme over the other. However, the presence of tllc lock cji1cut.s i l l  the I l l ,  sc.lwl~~i~ 

provides an additional concurrency advantage as well as prcvci~t~i~lg i,hc Il1lllwcssary 

branch lock up discussed earlier. Consider a modification oS transac-liou '111: 

L,[x] W[x]L,[y]T/V [y] Lw[-']T/T/[z]CJ[.r, y, 2'1 

These can execute concurrently using TPL as beforc. What ahol~t  t l ~ c .  c~cllliva.lcl11, I J I J  

transactions? 

T31 = Lw[x, y, z]W[x]U[:c] I/V[y]li[y]T/V[,-]/J[,-] 

GI = LR[s, z ]  R[.s]U[s] R[z]U [ z ]  ( 2  4) 

These can execute concurrently under LL as well since 7bt's wl-i1,c-lock rcvlr~c'st, 011 (li~.t,t\, 

item z ,  which at the start, of transaction 1'3, is loclted by '&, ('it11 I N .  qr~cwccl i n  tlnt,a 

item z's lock queue. Thus T31 can star1 and as long as ' r 3 1  does not, act,rdly t , ~ . y  1,o 

access data item z until after T5/ releases its lock on z t,hcy can run c o r ~ c r ~ ~ ~ ~ - o ~ ~ l , l y .  Of 

course if T31 did try l o  access z before T5t released its lock 7ij1 woi~ltl Iravc to w;\,it unl, i l  

its queued lock request was converted to  an actual lock. 

The crucial difference between T31, T4t and G I ,  T51 is ttlc st,arl,ir~g ortlc~r of tl~c. 1,wo 

transactions. Using LL transactions are striclly serialized in t l ~ c  order of t,l~cir sl,i~r.l~i~~p, 

times. Two transactions accessing cornmclir data items acqr~isc locks 011 all c.oi 111 rlor I 

data items in the same order as their respective starting osclcrs. A rliw sitlc d c ~ l  of 

this is that LL (and TL) unlike TPL, is deadlock free. 'The aclcli tion of 1oc.l; q~rc:rrvs i r ~  

LL increases the number of possible transactions which ca,ll run cco~~(~~~rr(v~l,Iy.  

It thus appears that LL has a concurrency advarrtage ovcr 'l ' llJ,.  Ilowc:vc~, a11 

estimate of the magnitude of this advantage, if any, requires a simula1,ion which is 1,!1(: 

topic of Chapter 4. 



2.5 Comparison with other Methods 

( k~nc.rlrrc.rlc.,y co~ltrol dgori t,l~rris car1 hcl roughly divided into two types aggressive and 

c*ollsc.rvativcb sct~c:tltilers [%I. Collscrvative schedulers attempt to avoid sesialization 

trarlsac.t,ioris trir~ch, rclying instead on restarts when proble~ns appear down the line. 
r~ 1 lwro ;LIT' oftcn conservative a,ntl aggressive versions of the same algorithm. For ex- 

; I , I I I ~ ~ P ,  cwr~wrvativc: '1'1'1, requires that, all locks be held before a transaction begins. 
1 1  1 Ilis clrisrirc,s tllat tleadlocli~ will bc avoided and hence a transaction need never bc 

~wt,a,r-tml. 'l'lic price. Sor this is retlucccl concurrency since locks are held longer and the 

possi 1); lit,y of starvation of a t ralisaction requiring a largc number of data items [2], 

Ordinary '1'131, is sornewhcse in the middle requiring  restart,^ only on cleadloclis. ?'SO 

on  thr  othcr hand is very aggressive never delaying a transactioli at  all, but con- 

s c ~ l ~ o ~ i t l y  sufl'crs the pcnalt,y of many restarts when data contention increases. In 

g c w ~ a l  as a 11 algori t11 nl hccomes more conservativc the numhcr of restarts decreases 

I)ut allso tlic concurrency clecrcases. Coliscrvative schedulers also require that the 

~wrd and \vritc S P ~ S  IIC prcdcclarecl so that a decision on serializability can be made 

I,I, is t~niclrw since it, is ultimately conservative. Read and write sets must be pre- 

clccla r c ~ l  aucl ~ w t a r t s  are lievcr required for concurrency control reasons. Nevertheless, 

I'ronr scct.ion 2 .  I LL appears to h a w  grcater concurrency than TPL the current dom- 

iuant coiicurrc~lcy cont,rol s c h c n ~ .  This makes LL a very promising candidate from 

pc-rror~~ia~~cc cousiclcratio~~s. 

LT, also cwnlparos \.cry Cavoural>ly to ?'SO. As for LL, the TSO schecluler attempts 

to c s c ~ u t c  Ira nsact ions i l l  t inic-stamp order. The difference is that TSO must abort 

a ttrar~saction i f  a serialization prohlem appears. Thus, if there is heavy contention 

for data i tc~ns maliy transactions will necd to be aborted, often more than once. 
r 7 1 llis illcans tliat, a lot, of i.tseless work is being done. By useless it is meant read and 

wit v o p ~ a t  ions tlmt will eventually be undone by aborting thc transaction. While 

cloi~~g usc>less work is not a problem in an infinite resource system, it rapidly hinders 

pc~rlorrna~icc in nsorr realistic systems [8]. LL on the other lland never aborts a 
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TSO is much more restrictive than L L  wltich only krrccs corl[lict,irlg opc\r.at,io~~,s to 

execute in time-stamp orcler. L L  thus ltas much grcat,cr possihl(~ c~orlc.t~r't*t~trc-y. 

LL also has some sinlilarities to  conscrvativc TPL. In botli scltc.~uc>s all lo(-lis t t t~~st  
r 7 be acquired at the start of transactioli esecut ion. I ri~~ts(zc.!,iorl c w \ c - t t  t iorr a r l t l  1,11(.  

release of locks in LL appcars to be ccl~~ivaleilt lo lllc t,riutsac.tioi~ c ~ s c * c * l r t , i c ) t ~  ar~tl 

lock release of the shrinking phase of co~lscrvativc T P L .  Il ' t~t~t,lti~rt~~ort~, 1)otIr 1 I l 1  ;I tic1 

I 1  conservative TPL are deaclloclc Srce ancl mver abort a tra~tsact iot~. I I I V  t l i f l im~~~cr~  lics 

entirely in the lock accluisit ioll phasc beforc thc stat% ol' c.xc~-tt t,iot~. 111 cwtrsc~rvati v t ~  

TPL [2] a transaction tries to obtain all reql~irccl loclcs at t,11t. start,. I f '  I,hc*rcl is ;I 

conflicting lock held then all the locks must bc rclcnsctl il,~t(l tlrc t I * S L I I S ; I C ~ ~ ~ I ~  111 I I S ~  ~ i l i t ,  

until the conflictirig transaction twminatcs and then tric~s agaill to acqr t i  IT all t , I t ( l  lwks. 

This nleans a transactio~i can iiot sta.rt executiol~ uutil i t ,  actuillly Iiolds all  rwlt~itwl 

locks. LL on the other hand can often s t ; ~ ~ ~ t ,  exec11 tion as  soot^ i l s  all loc*l< rc~j~~c.st,s 

are queued and the locking/clt~euing. algorithrri 11cvc.r Sails. llbr C ' O I I S ~ ~ Y V ~ L ~ , ~  V P  ' I ' 1 ' I I  

an equivalent clueuing strategy canl~ot he used as clrtouch~g I . ( Y ~ I  IWLS is rtot stt l i i c - i c > l ~  t ,  

to guarantee a serial orcler of all conflictillg tlatahasc opcr.i~t~iorrs. 111 ot11c1- worrl:; 

the greedy locking algori tlzm usccl by  collscwa tivc T P  1, docs trot s i~ t i s l ' ~~  ~ ) ~ w y ) c ~ r t , , y  1 

of section 2.3. The inability to start transac1,ions as c ~ ~ r l y  its 1,11 r ~ ~ + ~ t l t s  i t 1  ~t.(*it.t,ly 

reduced concurrency without any ofFsettirlg bcnc4it. Irlstc~atl collsclrva t,i v o  '1'1'1, still 

suffers from possible trarisaction ~t~arvation which is also rtot possihl(* i t )  ],I,. 



2.6 Advantages and Disadvantages of LL 

[;or. [,I, it is rlecwsasy for a i,rar~saction to know in advance a11 the data ite~:ls it will 

rrcc(l so ttli~t locks can I)c propagatkd down to the corresponding leaf noclcs when the 

t,sa~~sa,ct,ion staxts. If' a data item might he needcd in a transaction a lock niust he 

p r ~ ~ ) a g a t ~ t l  down to Ihc co~wsponcling leaf. This must be c.onsidered a disadvantage 

c ~ f  I,L ;ts ( .~~r lp i~~ .c ( l  to 'L'PL. 11s discusset1 in section 2.1 a previous transact,ic;n rnay still 

I I ~  holding a lock reyuireil by the current transaction, but the current transaction can 

cpeilc its lock rccp1c3st and start executing provided it does not immediately require 

this tl;it,;~ item. 

!,I, rlatu rally a,llows cla~a.hase check poi~lt i~lg unobt,rusi\~ely mil simply. Since trans- 

;~.ctior~s arc. serialized in t,heir stparting order and can start wit1hout holding firm locks 

or1 all data items, a checkpoint call be clone by simply issuing a transaction that reads 
r i  t3vc~ry cla ta itcv!~. 1 hc resultir~g checkpoint is guaranteed to  he of a consistent state 

sincc Oh(- chccklmint rcad is efkcl,ively inserted between two transactions. Data items 

lockt~l by oltwr t r a n s ~ t i o n s  at the lirne or tlle checkpoint read will simply have read 

lock rcyuests queued. 'I'l~r~s, checkpoints can he easily done without interfering with 

r~onnnl transactiorl proces,c.;ng. 111 contrast, a consistent read of all data items using 

Tl'L requires thal a11 the clata itcrns be locked simultaneously. 

For L L  i,lic data, items must he organized as the leaves of a bina,ry tree. It thus 

~nalws SCIW t,o o r ~ i ( ~  t,he ittelns according to some primary key value so that data it,erns 

vart IN. cffiCicwtly foouncl and locks propagated to them. The concurrency control tree 

t11cw also provides a permaticnt binary tree index on the primary key. Aclclition and 

tl(-ld.ion of clat a i tcrns call be accomplished in a st raight forward arid inexpensive man- 

IICI-  11s titltling a l ~ d  clcletir~g elcinents from the tree. A tree built in such a haphazard 

inanllrr is unlikely t,o hc a binary tree of minimum height but this is not necessary for 

c.o~-rcct opcratioa of thc LL scheme. A11 unbalanced tree will just, cause sorne slight 

i~lcrcilse i r ~  lock propagation overhead. The tree could be re-balanced periodically 

during t i l r m  of light transaction loads, 

W11ilc an inties oil thc primary key naturally exist in LL secondary inclicies require 

iltl(iitiona1 proctwirlg s\*e~.liead. In TPL for example, multiple indicies may cxist with 



tree is i~secl to set the locks on the desired data, itcx~~is. 'l'his acltlit,io~l;~l ~ \ . ( ~ ~ . l ~ t ~ i l t l  

is not a serious problem provided the LI, tree (exc111c-li11g I d '  ~lotlcs) is i l l  I I I (~I I IOI . \ .  

and the database system is I /O bound. Alt,erl1atJivcly a 11yl)rid of cor~sc~rviri i\;v 'l'l'i, 

and LL could be used. In this scheme a transaction first attcvnps to gc.1, all its 1oc.k~ 

immediately without using lock coupling as in co~lservat~ivc TPL. 111 1,11is c;rsc3 tlata 

items found using seconclary indices call be ilu~ncdia tely lo~lictl. Lf all (la ti1 it,w 11s ;1 I Y ~  

available (i.e., locks obtained not queued) tstlen the trallsactiol~ call starl . l f  I I O ~ ~ ,  t , l r c .  

transaction releases all locks and uses I,L to queue or ohtail1 locks on all  (la t,a ittb~rrs 

whose primary keys are now known. With this schcnrc t,hc optionill I,I ,  rwlui t.c~rrc~l~t, 

of all transactions s ta r thg  at  the root node has becw given up wit,tr t11c c.or~.csl,o~~tli~rg 

consequences discussed earlier. This 11 ybricl scheme prodl ~ccs  sc1.ial izatilc scllc~ 1 1 1  lvs 

since if all locks are immediately obt,aincd then thero is 1 1 0  c-o~~llicl, with I, 1, sc.1, lo(.lis 
1 7  and both LIJ and conservativc TPL produce sctializahle sc~l~cdr~l(~s.  1 his I~y l , r i t l  (lo(*!; 

t,llus not have the extra lock propagation ovetllearl iu low data cw~rt,c.lit,io~~ sit,~ti~t,io~~:, 

(conservative l'PL lock setting alrnost always succectls) but graccl'ully swit,c.llw 1,o I l l 1  

a11c1 its correspo~lding advantages when the clata content io11 i ~lcrc.ascs. I l o w c w ~  i I I  

high data contention sitnations this hybrid has morc overt~clacl t h a ~ ~  prt1.c 1,IJ si~lcc* i t ,  

always attempts to directly set all the locks which almost ;~,lwa,ys fails. 

On the negative side LL releases its locks much earlier t l ~ a , ~ ~  'I'I'I, ; L I I ~  I I ( ~ I I ( T '  ( ' i\S 

r -  cading aborts [2, 31 are, comparativc:ly, more likcly to  occur. 1 11is is Iwcar~sc~ t , t 1 ( 3 1 ~ .  is 

transaction at  the time that thc current transa.ction is at)ort,c:tl. lcor1,rt11;it~(-i>g, Ill, w v c 3 r  

aborts transactions for concurrency control reasons ant1 tlel~ce al)ortio~rs ;I IT  ~+c>lat,ivc-.ly 

rare. Consequently, relatively expensive abortion procc~ssirrg car1 I)(* l ,o l~r ;~ t,cd. 11' e 

transaction is aborted, d l  later transa.ctioris must 1x1 tested for i~~t,r:rsc~:t,io~~ of' t , l ~ c ~ i r  

read sets with the aborted transaction's write set. If a non-ernplay irltwsc:c:tio~r is f011r i t l  



t,hc corresponcling later transaction must also be aborted. The data set intersection 

test niiist he donc recursively until no additional cascading aborts are found. 

A strict, [2] implementation of LL, i.e., one that avoids cascading aborts, can be 

achicvtd by holding d l  write locks until after a transaction has been committed. 

'I'his would reduce LL's concurrency comparatively much more than a simila,r strict 

i~l~piernentatioa of TPL since LL achieves most of its concurrency by being able to 

release its locks early. 

It appcars that, the LL concurrency control scheme is a good candidate for real 

rlatalmxzs since it, is deadlock free, starvation free, restart free, and has high con- 

currency. The disadvantages are lock propagation overhead, slightly larger storage 

t~ccluirernents, rcguired predeclaration of the data set and greater propensity for cas- 

cat l i~~g ahort,~. In the following chapters LL, TPL and TSO will all be implemented 

and a simulation study conducted in  ordcr to estimate their relative performance. 



Chapter 3 

Implement at ion 

Using a multi-threaded operating system (0,512) [ I l l  rnoclellii~g tramsactio~~s is vc~y  

straightforward. Each active transaction runs as a separatc thscacl i~~tlcl)c~r~tlcl~t,ly 

from all the other transactions. It first reads a sequence of reads, writm al~tl tlclays 

that constitutes the simulated transaction from a, filc and then huilds a,ll o r t l ( ~ c ~ l  

linked list of lock requests. The lock propagation algorithni of Chapt,cr 2 is thcr~ sun 

in order to acquire or queue all the necessary loclis. Each jnclivjdual norlc i n  tllr 

tree contains a mutex semaphore [ll] and a locli on an interior 11ocle is held w l l c ~ ~  

a thread has acquired ownership of that part icula,r semaphore. l J n  li lic t,1 I ( >  int,c~sios 

node, leaf node locks are not held simply by semaphore ownership I > ( ? C ~ ~ U S C  t l~is would 

preclude simultaneous read locks by several transactions on one data i tcn~.  1,(d rlotlc 

lock status is determined by comparing the thread id storcd in thc Icaf ~iotlc's lo(*Ii 

structures with the thread id of the thread requesting a read or write. 1'11(! lcaf ~~oclc's 

mutex semaphore is used only to control access t,o the leaf node's sl~arccl vi~,ri ihl~s 

such as the held and queued lock lists and is never held for long. Orrcc. ;ell loclts 

have been acquired or queued the thread proceeds to read autl writ,(: clat,a villu(>s. 

Between each read or write request there is a random delay correspondii~g to t hc tirnc: 

needed to retrieve the item from a disk in a real database. For t l ~ c  duration ol' ~ I I P  

delay the thread sleeps and relinquishes the remainder of its timc sl iccl allowing o t h ~ s  

transaction threads to run, thereby interleaving many transactions. 'I'ho rrunilwr of' 

simultaneously active threads is equivalent to the multi-progra~n levd (mpl). Activr: 



hcre means that a t r a~mct ion  has been started hut there are still sorne operations 

ot~tst,a~lding. An  activc transaction may be sleeping waiting for simulated 110. During 

;L road or write request, the leaf node pointed to by the request structure is examined 

to sec i f  the current thread in fact holds a lock. If so, the read or write proceeds 

r~or~na.lly and t hc thrcatl continues on to the next delay. If the current thread's lock 

 quest is only yueucd rather than held, the thread sets an event semaphore [ll] and 

t~locks until the lock request is granted. When a transaction has written a particular 

clata item the lack is downgraded to a read loclt. The lock is immediately released 

once a, t,ransaction is clone reading and writing a data, item. 

Each lcaf node in the da,tabase tree has associated with it two lock pointers. One 

points to a list of currently helcl locks, which if there are more than one, must all be 

rcacl laclcs. The other points to a list of queued locks. If the helcl lock(s) are reacl 

loclts the first queued lock, if any, must be a write lock, because a read lock could 

jmt bc added the helcl locks. If tlie held lock is a write there can only be one 

and  tahc first clueuecl lock ca,n be either a read or a write. In this implementation the 

lock slructurcs are actua,lly past of the lock request objects built by tlie transactions. 

Sincc eacli request requires one and only one lock this avoids any unnecessary memory 

allocat,ior~. Furthermore, there is then no limit to the le-gth of the queues. The held 

locks and queuetl locks axe maintained as doubly linked lists with two pointers in the 

leaf noclc pointing to the head of the held and queued lists respectively. 

Whcn a transaction unloclcs a leaf node the corresponding lock is removed from 

tlw held list. If tlie held list is now empty but the queue list is not, then the first 

q~~cuecl request. is moved to tlie held list and the corresponding transaction's event 

scma,phor.c, is posted so that if the transaction is blocked waiting for this loclt it will 

be rcactivatcd. If the newly helcl lock is a read then any further read requests at  the 

]wad ol the queued requests are also moved to the held list and their corresponding 

transactions restaxtecl. Lock downgrading from write to read is very similar except 

that instead of retnoving the lleld lock it is changed to a reacl lock. Any read locks at  

the head of thc queue are also granted. 

Since TSO and TPL are standard methods the implementation of these will not 

bc discussed in any great detail. In order to be able to make meaningful performance 



comparisons fairly sophisticated illlplelllel~tat~ions arc rcquiretl. '1'SO is i l l  t~c\l'twtly sinl- 

pler than LL and consequently required less programnlilig efTort t,llsll [,I,. i\ suit nhlc 

version of TPL on the other hand is considerably rriorr cornplic-attd t l l i~~l  I l l ,  giw11 

the need to deal efficiently with deadloclts. 

TSO is intrinsically very easy to inlplernent. A basic feat,ilrc of ' l lSO is tlic: rcvtart,- 

delay time. Such a delay is necessary in order t,o prevent two t rw~si lc t io~~s I'ro111 

repeatedly interfering with each other. In order to ir~surc t,l~at TSO would r t l l r  at, all 

in conditions of heavy data contention, it was necessary to use a11 a.rlil.pt,ivc~ rc~stnrt 

delay [S]. When a transaction is aborted i t  is delayeel by w n  cxpoilcwt,i:~lly tlist,ril)~~lcd 

delay of average value equal to the running average oI' tra,nsa,ction ~ ~ I I I  l , i tu~s twforc\ 

being restarted. Thus as contention increases anel trailsactior1 run t i ~ ~ l e s  i~lcrcasc cli~cb 

to restarts, the running average increases 2nd the restart delays l)ecotl~c loligcr tl~cw~by 

reducing the effective mpl and reducing data contention so t,hat nctivc t r a~~s i l c t i o~~s  

have a better chance of finishing. 

TPL was first irriplemented using a simplc tiineout stra,tcgy to dctcct, clc:tcllocks. 

This proved to  be unsatisfactory since there was then no way to cont,rol w l ~ i c - l ~  ~ , ~ : L I I S ~ Z C -  

tion was aborted. Since the algorithm was tested under. condi t,ious of heavy C O I I  t , c ~ ~ l i o ~ ~  

where multiple restarts were common throughput rapidly clroppccl t,o zero. Also, s d -  

ting suitable timeout values is difficult since if they are choson to l ~ c  largo tlrcrl too 

heavy a price is paid for restarts in low contention situaiions. If tllcy arc1 too simall t , h r  

transactions which are not deadlocked can neerllessly tirnc out i l l  hig11 c.onic~~t,ior~ silt- 

uations. An adaptive timeout strategy where the timeout valuc is adjustctl clcpcwcli~ig 

on the current load could have been used. Instead a wai t-for graph tc!sf,ii~g i ~ l > l ) t ' c ) i ~ ( : t ~  

was used [12]. Whenever a transaction is forced to block waiting for a lock, a 11ot1~ is 

added to the wait-for graph with a directed arc to a nodc rcprcscrltir~g tt1c. t,rar~sit~ctitrn 

holding the lock. Whenever a lock is requested or rclcascd the wait,-for gra,ph is t,c~st,cd 

for cycles indicating a deadlock. Thus deadloclcs can he clctect,cd irr~tncclii~l,cly. WIi(:lt 

a deadlock is f ~ u n d  the time stamps of a.11 transactio~is or1 the c:yc:lc atre co~np;~~rotl 

and the one with the largest time stamp (youngest trailsact,ion) is a,lm.trrl. 111 t , l ~ i l i  

way it is possible to  insure that the oldest transaction will rnalcc I)rv)grc5ss s t ~ d  will 

eventually finish (perhaps after restarting due to a later clcadloclt with it11 cvc:~~ olrl(:r 



t,ransact:torl). Iic~stjartcd transactions are not given new time stamps unlike in TSO. 

Wtrilc i t  is not strictly necc:ssary to use a restart delay for TPL [S] it was found to be 

very hcr~cficial ill high contcrltiori situations. The same adaptive restart delay used 

for t,hc 'I'SO algorit,hm was used for TPL as well. Again this works as a negative 

fceci hack rnechanisrn linliting the effective mpl. This actually increases throughput 

at high contcmtiorr sir~cc the extra trarisactions which are in their restart delay state 

would rnorc t haa likely cause further deadlocks and restarts if allcwed to run. 

'f'wo cornrnori siniplifyirlg nssurnptions which have been shown to  adversely affect 

rcul ts  wcrc deli bcratcly not used in these simulations. These are fake restarts ancl 

no lock ilpgrading [S]. Fake restarts are relevant to both TPL and TSO. A fake 

restart, is simply using a new transaction rather tlian repeating the same aborted 

one. Lock upgrading is only relevant to 'I'PI,. If a data item is first read and then 

l a t ~ ~  writlm, i t  is co~n~nonly immediately given a write lock. This however needlessly 

lirrlits concurrency. 

A~lol~i~cr  concurrency issue for TPTJ is what to do when a write lock is released 

~ L I I ~  there are scwral read ancl writc request waiting 121. For rnasiml~in concurrency 

it is clcsirahlc to allow othcr read rcquest,~ to jump ahead of write requests if the 
r~ ncxt grantecl locli is a read. I his how~ver can prevent a write request, from ever 

get,t,ing gracted it' there is a stmcly stream of read requests arriving. In the TPL 

ir~~plcmcntatiw used here reacl locks are not allowed to jump ahead of write locks in 

ordcr to minimize response time variations. An even better strategy would be to give 

every t,rarlsactiori a time stamp and t l~en  before granting the next loci< sorting the 

C ~ I I ~ L I ~ ~  r ~ c ~ u c s t  by time stamp. The next lock grar~tcd would then be the one 

bclot~gir~g to tlw transaction with the srilallest time stamp. Now read locks would 

only bc allowed to j ~ x n p  ahead of write locks with larger time stamps. Note that this 

strategy i l l  t l ~ e  limit of high contention, where every data, item always has some lock 

rcquests qucued bcco~ncs identical to LL. This is, however, not in the spirit of the TPL 

poticy artd was thus not used. It is interesting to note that these refinements to basic 

'I'P L i.c., time-stamp ordering of queued lock requests ancl deciding whicli transaction 

to abort in a deadlock basccl on time stamps brings elelnent,~ of LL into TPL. In 

],I, tra~~sastions arc scria.lized in tirne-stamp orcler and all queued lock requests are 
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indicate that existing TI'L impleruentations could bc bro~lgl~t~ closrr i n  ~)<brSc>r t r~ i~ l~c- t .  

t o  LL by implementing the above proposccl sorbing of qucuctl lock rCq~lc*st,s. 



Chapter 4 

Simulation Results 

4.1 Workload 
'1 I he siniulatior~ of LL, TPI, and TSO was carried out on two distinct workloacls. In 

t l ~ e  first, each tran~act~ioir consists of a purely random set of read and writes with each 

trsrisactiorl accessing 5 data i1,erns. The mean percentage of write accesses was fixed 

a1 33%. In thc seconcl ~orl i load each transaction consists of 4 random data item reads 

tbllowcd by xcro or more writ,es of the same set of clata items, with the probability 

of a, data, i h n  being written set at  33%. This second workload is expected to more 

c.loscly rcwrnblc red world trallsactions as well as being the least favourable for LL as 

co~upawcl t,cr TPL. LL inust rcquest all locks at the beginning and thus with all the 

writcs a t  t,hc cmcl, thc, exclusive write locks must be held or queued for the bulk of the 

trallsactio~l, unlike in  7'PL wliere they can be acquired just before writing the values. 

'1'110 lat tcr ~ o r l i  load is also expecled to be very detrimental to ?'SO since t,he wsitcs at  

tlie cncl wor~ld invalitlate values read by concurrent transactions of larger time stamp 

t,hus forcirig t lie writing tra~isactiori to restart near the end of the transactiou. This is 

t,llt. worst time for a restart to happen as all the work already done by a transaction 

is tlirls cvastect. Between each clata item access and at  the beginning of a transaction 

thew was an exponcritially distributed [13] delay of average value td .  The value of 

I,{ was acljlist,cd so that eve11 at the nlaxirnum mpl level used the processor was idle 

most, of 1,hc timc. This ensures that t,he following results are essentially in the infinite 



resource limit [S] since the only resource usc-.cl i u  this si~lluli~t io~i is tht' ~ I W T S S O I ~ ,  

Each simula.tion wa,s run for 10,000 transac-tions after riirltii~ig all i l i i  t ial I00 t ra1w- 

actions. The  result,^ from the first 100 transactioris were ignortd i r i  vrclc~ to allow 

the system to "warm up" [23]. ?'he remaining 10,1100 t ratlsac.tiorw wcw sl,li t i l l t  o 

10 batches of 1000 t,ransactions and the batch rrlcaus ~iict,tiocl [I:). I,C] I I S ~ Y I  to nlii1 

lyze the results. Each concurrency control algorithm o p c w t d  on thc iclcwl,iriiI s r ~ t  of 

4.2 Throughput 

The primary performance metric of a conr.urrency cor~trol sctrciiic~ is t,lw tli~~o~iglipi~t. 

in transactions per second (TPS). 111 figurc 4.1 the sitnulalio~l r c s ~ ~ l t ~ s  ;I IY p ~ ~ s t ~ i t ~ c ~ l  for 
I \  LL, TPL and TSO operating on the corriplctely ranclonl work load. t Iw I , I I I ~ C > I ~ ~ I ~   pi^ l8 

in TPS is plotted as a function of the multi-yrogranmi~lg lcvcl for  co~~clitions of 

light, medium, and heavy data contention corresponcling to 1 024, 1 28 w lid I (i tli~t~a~ 

items in the database. For the ligllt contention results t,h~.ouglipnl iilc,rcasrs ;t,liliosI 

linearly with mpl, as expected for all algorithms, but LL is clearly t l ~ c  I)ost,. 1Co1. t11t~ 

medium contention results the throughput saturat,es and furthor ir~c.rci~.sc~s i l l  tilpl cir,  

uot increase the throughput. This is due t,o data cont,cwl,iol~ t, tlrast~i~iq (i)r I l l 1 ,  ~ ' ( ' ~ t i ~ r t ~  

for TSO and a combination of the two for TPL. Again i t  is inlportanl t,o rdizc* th i~ l  

the throughputs for both TSO and TPL would drastically d l ~ p  at, higtl 11 i j ) l  W(>IY* it 

not for the adaptive restart delays used. As call bc seen fro111 [igurcl 4 .1  i l l  s i t ,~i;~,l~io~~s 

of high contention and effectively infinito rcsorlrces IJlJ is 111orr: ttit1.11 !,wic*c: as goocl iIs 

either TPL or TSO. 

What about for the less favourable but probably more rc.a,list ic srbr.u~ t t l  wc>~~I<loi\(I? 

Figure 4.2 is identical to figurc 4.1 oxccpt tha,t this timc LlJ ,  '1'1'1, a3ll(l 'I'SO opc1rakrl 

on the second workloac! which has all the data writes ovarlappirig the* rcird sc4 irmd i~tq 

the end of the transactions. Thc results are clualitaCtively si~nilar t,o t,hosc~ for I , /W first 

workload with LL significantly better than 'I'PL or 'I'SO. As cxpc~A,t-d, anti c i i s r ~ w d  

above, TPL is the least, affected by the change i l l  workload whtbl.(>i~s both 1111 1111~1 

TSO experience diminished throughput, However while hcrc 'I'I1lJ pc:rfor~r~s hc:ttlor 



1024 Data ltems 

128 Data ltems 

MuHi Programming Level 

Figure 3.1: Throughput with random worlcload 

16 Data ltems 



CHAPTER 4 .  SlMtrLATIOlV RRES t!'LTS 

0 25 50 
Multi Programming Level 

1024 Data ltems 

128 Data ltems 

16 Data Items 

Figure 4.2: Throughput with all w r i t m  at, ctrltl 



t han  'I'SO, LL still has a 30% greater throughput than TPL. The remaining results 

presctntecl here were all generated using this second, less LL favourable workload unless 

otherwise stated, 

4.3 Response Time 

Altcrr~atively the simulation results can be presented in terms of the mean response 

tirric of a transaction. Here thc response time is the time elapsed between the start 

and cnd of a transaction. It is essentially the inverse of the throughput results arid 

I,[, has thc: lowest mean response time (figure 4.3) as expected from the throughput 

resultis. Not much additional information can be gleaned from these results. What is 

more enlightening are the standard deviations of the mean response times presented 

in figure 4.4. The response time varia,tions are much larger for both TSO and TPL 

than for LI,. ?'his is beca,use under LL transactions need never be restarted and they 

proceed in time-stamp order. Thus, each transact ion finishes in a very predict able 

tirnc with only a small variance, as is confirmed by the simulation results. Concurrency 

co~~ t ro l  algorithms which require restarts have la,rge variances since if a transact ion 

~ m s t  1~ t.csta,rtecl tlle rcsponse time for that transaction will suddenly become much 

Ior~gcr. A small response-tirne variance is a desimble property from a database user's 

point of view and in this regard LL is vastly superior to both TSO and TPL. 

4.4 Blocks and Restarts 

It is also i~iformat~ive t,o look at two other results which enable us to deterrnine why 

LL is better than 1' PT, cvcn for the second workload. In figure 4.5 the mean number of 

hloclts per transaction a ~ l d  in figure 4.6 the mean number of restarts per transaction 

are presented. First note that the mean number of blocks per transaction is zero for 
r l *  1 5 0  since i t  is s pure restart concurrency control method. Similarly, the numbcr of 

restarts per transaction for CL is zero since it is a pure blocking method. Furthermore, 

note that thc number of blocks per transaction are almost identical for TPL and LL 

indicating that data contention for these t,wo methods is about the same. Thus 



CHAPTER 4. SlAJULATION R ESU L17'S 

0.6 1024 Data Items 

1.5 128 Data Items 

20 

10 16 Data Items 

0 
0 25 50 

Multi Programming Level 

Ei'igure 4.3: R.csponsc time 



0.5 1024 Data Items 

128 Data ltems 

0 25 5 0 
Multi Programming Level 

Figure 4.4: Response time standard deviation 





1024 Data Items 



C H A P T E R  4. SIM ULATION R E S  lJLTS 

the fact that TPL has a non-zero mean number of restarts pcr tIra~~sac.tio1\ 111r1st 

be to blame for its poorer performance. As estensivcly clisc~~sscd l>y Agrawal ct 

al., [S] the performance of a concurrency control scl~eme is critically clcpc~~tl~wt o~r  

the assumptions made about the database system. It was s l low~~ tlrat, pr~hlislrc~tl 

discrepancies [15, 16, 17, IS] in the relative perlorimancc of c o ~ ~ ~ p c d i l g  collc.rllwlrcqy 

control schemes were oft8en due to  different, underly i~ lg  assumplions. I n  part irr~lil t-, 

concurrency control schemes which rely heavily on restarts wero s l m w ~ ~  to pcrforir~ 

much worse when the throughput is resource contention limited rat11c.r Ilrnn i ~ r  i , I ~ t h  

infinite resource limit. This is because all the resources alrcacly usccl by ;I, l,ra11saci,iotr 

about to restart were wasted and thus reduced the amount of ~wourcc~+ availa l>lc i,o 

other transactions doing useful work. Consequently it is possiblc l o  infw l,ha,t 1,1, will 

perform even better relative to TPL and especially TSO in the Itlor(* ~.(:a.list,ic. t.ctsolll-c-rl 

limited case since LL never needs to restart a transactioir for collcurr(wcy colli,lwl. As 

in the case of the workload, the system assunlption llsetl for the rwults p1.cserrlcd l r c w  

(infinite resources) is the least favourable to LL. 

4.5 Dummy Locks 

It is possible to look at the effect of one of LL's clisadvnntnges a,trcl its i1ripi1.c.1, O I I  

performance. As mentioned in Chapter 2 LL's reacl a,ncl writ,(: sets lrcctl l o  I ) (> prctlc- 

clared since all data items that may be ncerled must be locltcd at, t l ~ c  I)cgir~~~ilig ol' tllc 

transaction. Thus if the transaction contains an if clause wllcrc: ono of t,wo c l n t , ; ~  i t,c?~r~s 
r ?  is to be accessed, then both of these data items rliust he locli~tl. I Iris will drcrcww 

concurrency since more locks are held. Predeclaration is riot rcquirccl I'or s t~. l r t l ;~~d 

TPL and thus TPL's performance is not affected by trairsactio~is corltairrir~g i f  ( : I ~ L ( I S ~ S .  

The question is how many additional locks LL can afford to lock beforc. pcrTorrrla.rtt*c~ 

drops down to  the level of TPL? To answer this LL was rnodificd so that I'or 1h(! sc:l, 

of lock request there was a probability of setting a dummy lock of tlrc sairlr: t,y13~ orr 
r 1  the neighbouring data item in the tree (if not already used in  thc tra~isa<:f,io~i). I Irc 

probability values used were 0, 0.25, 0.50, 0.75 and 1. These rlurn~ny locks wc!rca held 

or queued until its associated neighbour was released. The results are prc-t~cnl~ctl in  
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Figure 4.7: The effect of additional locks 

figur<x 4.7 and inclica,te that approximately 50% more locks can be requested before 

I,l,'s pcrfornlance drops by the 30% advantage it held over TPL. The performance 

pcnalt,y duc to thesc aclclitional locks is somewhat less than rnight be expected because 

a dunmy lock might never be held since it is not read or written. A dummy lock 

rnight j 11st hc clueucd for the duration of the transaction while a concurrent, s i d l e r  

tirne-stal~lp transaction holcls a lock on the dummy data item. 

4.6 Strictness 

A s  c-liscusscel ill C:liaptcr 2,  LL is mucli more susceptible to cascading aborts tliarl 

'1'1'L. It1  applica,tio~ls wit11 many user driven aborts this could make LrJ in its present 

fort11 u~iworkable. Ill order to avoid cascading aborts LL can be made strict. In 

a strict in~plcinentation of LL (SLL) all write locks must be helcl until the end of 

thc t1ransaction. This is cspected t80 be much more detrimental to LL than to TPL. 

Nevertheless, for the second, more realistic workload with all the writes at the end, 

locks a,re alrmdy held for the bull< of a transaction and a strict version 
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of LL might still be better than strict. TPI,. The tl~roughput of S 1 J l l  as c.or~~pnrchtl to 

strict TPL is shown in figure 4.8. Tllcse results show that, SI,I, conlpaws favot~rat)ly 

with strict TPL for t,he second workload with its tthroughputC still ~~~arginal l? .  Iilcgcr. 

The effect of enforcing strictness on the first workload is illu~t~ratccl as au asitlc i ~ t  

figure 4.9 and as expected, is much more dctrimental. 

4.7 Mult i-version Leaf Locking 

Instead of allowing user driven abortions one coulci insist that the c f f t ~ t s  of i\ givtt~~ 

transaction on a database can only be reversecl by issuing a trausactio~~ t l ~ a l  c.i~1lc*c4s 

the effect of the previous one. If no abortions are allowecl thc11 c\vcB~1 grcattr c.orlc+~~r- 

rency can be achieved by performing some in-queue proccssiug. I J l l t l ~ r  cw~~di tio~ls ol' 

high data contention leaf nodes will have long cliIeues of lock ~~ccltlc~sts. Sittcc t11cw 

queues are FIFO the order of data item accesses is fixccl. It is t1w11 possible. for a. 

transaction writing a value to write the new va,lu~ to t l i ~  lock iS~quc~st,, i l l  c K ( Y ~  writ- 

ing a new version, rather than blocking. When the lock cequcsl, c a r ry i~~g  tlic I IPW valiw 

reaches the data leaf node the value is simply t ransferrecl. R e d  t ra.nsac:tio~~s i l l  t , l ~ c b  

queue ahead of this in-queue write still read t l ~ c  old valuc as rcciuirc.tl. A ~*c;~tl t,ra~ls- 

action, behind the in-queue write but before the next writk, rna,y rrcatl tl~c. i ~ ~ - c i t ~ c b l ~ c .  

value once the in-queue writing transaction is clone with it, wi t l~o t~ t  wa,ibi~lg u~itil 

the lock request reaches the leaf node. With this ~riulti-vc:rsio~i I c d  loclii~~g (MVI,I ,)  

write operations need never block and read operations I>locli only il' 1,hc ~lca,rcst writ,t\ 

request ahead of it in the queue has not, yct bceri satisficcl. A t~-a.~~s;tctio~i wllict~ I - c d s  

a gi :en data value may finish processing before its lock rcqritxit ever I . ( ~ ~ L ( ~ ~ ( ~ s  t , l ~ ( k  I(.;r.l' 

node in which case the request can simply be rernoved from t,hv qt~cuc. Satisfitvl writ(- 

requests cannot be removed since the new value must be w r i t t c ~  to t hc: lcbaf t~otl(* w ~ I P I I  

the request reaches the leaf. A satisfied write requcst is sirr~ply flaggod i ts  (loll(* so 

that once i t  reaches the leaf node a lock for the transactioii already fiuisllctl wit11 t,l~is 

data item is not applied. Depending on the workload a sigsiifica~~t~ ar~~ount,  of' w c ~ k  

may be done while the requests arc in the queiic. Notc also that, tllis is a very spare: 

efficient multi version protocol since extra versions are only crcatcd if'  rc:ally ~loctlctl 
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Conclusions 

The  sirrit~latiorl results confirm the predictions of increased concurrency for LL as 

cotnparctl to TPrJ even for workload and system assumptions least favourable to LL. 

For worltloadv where thc nuinber of additional data items to be locked due to if clauses 

i l l  thc transactions is less than 50%, LL is superior to TPL. The increased throughput 

as comparccl to TPL appears to be clue to the complete lack of concurrency-control 

ttorcetl sestarts for LL. No useless work is done by LL provided that there a,re no user 

clriven a.bortior~s. The scaxcity of abortions irnplies that LL will perform even better 

as c.o~~lparetl to TPL in resource linlitecl environments. All forms of LL are very fair 

i u  t l ~ e  swse  of having a very small response time standard deviation. All forms of LL 

arc also rmturally deadlock a i d  starvation free. Lastly, LL is comparatively simple to 

implcrnt:~~t. T l ~ c  above staterncnts apply to database systems which are 110 bound 

(i~nplicitly assun~cd in thc simulations) and have the LL concurrency control tree 

con~plctely in main memory such that LL's lock coupling overhead (as well as TPL's 

dcacllock deiectioli) is a conipletely negligable part of the transaction processing time. 

No a t t en~p t  was macle to compare the concurrency control schemes in a CPU houncl 

systcm. 

Several moclificatio~is of the basic LL policy are possible such as strict LL and 

mu1 ti-version 1JL. The desirability of these modifications depends strongly on the 

tJyptt of workload and the probability of user driven abortions. 

As yet unanswered questions include LL's performance in distributed database 
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systems and its applicability in parallel machines. 

The results of the previous chapters clearly sllow t>ltat, LI,  is a vial)lv aritl cwii~pd- 

itive concurrency control nlechai~ism at least for cetltralizecl tlnt i~l)ascs. l4lrt Iicwtwrt., 

given LL's performance and other aclvantages it sltould h t c l  w i t k  spi-tvltl us(. ill act-ual 

database systems. 
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