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Abstract

A new database concurrency control mechanism based on locking the leaves of a
binary tree is proposed. This is a modification of tree locking with all the data items
in leaf nodes and the interior nodes of the tree used only for concurrency control.
It is shown that this technique has greater possible concurrency than ordinary tree
locking. Furthermore, concurrency is greater than that exhibited by the two-phase
locking technique. Simulation results on the least favourable workload indicate that
‘le‘af locking results in a 30% increase in transaction throughput as compared o two-

phase locking,.
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Chapter 1
Introduction

A database server must process a large number of transactions. During the servicing

of a transaction the processor must often wait for disk I/O or else wait for a response
Afrom a client. It is desirable to use this idle time of the processor to handle another
transaction concurrently in order to increase database throughput and decrease re-
sponse time. This however cannot be done indiscriminately. A database transaction
scheduler must schedule incoming transactions so that the database is not left in an
incounsistent state after transaction execution. Consistency is guaranteed provided
the schedule generated is equivalent to a serial schedule, i.e., one where the transac-
tions are carried out sequentially. This is called serializability [1, 2] and forms the
~ cornerstone of concurrency control.

One way to ensure that the resulting schedule is serializable is to lock data items
in a mauner that ensures serial equivalence. All data items accessed by a transaction
must first be locked in accordance with a locking policy. The dominant such method
is called two-phase locking (TPL) [1, 2, 3]. While a data item is locked no other
transaction can lock the same item in a conflicting mode. Another transaction wishing
to access the same data item in a conflicting manner must wait until the lock is
released. The name two-phase refers to the requirement that no locks can be released
by a transaction before the last one is acquired. Thus, during the growing phase locks
are acquired and then during the shrinking phase locks are released. The two-phase

locking policy guarantees serializability since transactions are effectively serialized in
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the order in which they reach the lock point (the end of the growth phase).

Non-locking concurrency control schemes are also possible. The simplest one is
time-stamp ordering (TSO) [2, 3]. In this scheme database reads and writes proceed
at will but the time stamp of an operation is compared to read and write stamps
stored with the data item. If, for example, a transaction tries to read a data item last
written by a younger transaction it will have to be aborted. TSO relics on aborting

“transactions that would otherwise cause the 1‘e31ilti,[1g schedule to be non-serializable.
- An aborted transaction then restarts after some ’tr.irme delay.

It has been shown both theoretically [4] and with simulations [8] that TPL has the
greatest throughput for unstructured data. Recent results indicate that within TP,
the performance under high data contention can be improved by limiting the length of

- the chain of transactions waiting for a data item [5, 6]. Alternatively, one can consider
“structuring the data in order to improve performance. One example of a concurrency
control scheme which uses structured data is tree l(‘):ckinrkg (‘TL) [7,2,3]. For Tl the
data items are structured in a binary tree. In this scheme a transaction requiring a
number of locks starts at the common ancestor node of all the required data. items and
propagates locks downwards using lock coupling. Lock coupling means that in order
to get a lock on a child node a lock must be held on the parent. I'u I'L}']:(?I‘l]l()‘l‘(f, the lock
on the parent may not be released until the desired lock on the child node has been
acquired. This ensures that lock requests on common data items from a transaction
initiated later cannot overtake the current transaction’s requests anywhere in the tree,
Such a sequence of events is thus serializable. The transactions are serialized in the
order in which they were initiated (strictly true only if all lock requests start at the
root node). A major disadvantage of this method is that when locks are held on
several data items, one of which is at a node in the trec close to the root, a large
part of the tree below this node is inaccessible to other transactions and thus a loss of
concurrency results. TL is not optimal and an alternative structured locking policy

will be proposed in the next chapters.



_ Chapter 2

Leaf Locking

2.1 Leaf Locking Policy

[n this tkhes,is,a. leaf locking (LL) scheme will be proposed and compared to TL, TPL
and TSO. LL is a modification of TL with all the data items put in leaf nodes. The
interior nodes rof the tree are used only for concurrency control. This means that the
LL tree (il balanced) will contain twice as many nodes and be one level deeper with
the concomitant increased storage demands. The advantage is that now the interior
nodes need not be locked for long periods of time. They need only be locked long
enr()'l'lghr t’olplfo‘pa.ga.te a lock to the next level down. Thus the problem of unnecessarily
locking up parts of a tree can be circumvented at the price of increased storage. That
this method has increased concurrency as compdred to standard TL can be seen
from figure 2.1. Transaction 7 accesses both data items a and d while T3 accesses
elements e and f. Using TL T5 must wait until 7} releases its lock on « since in order
for 13 to acquire locks on e and f it must first. acquire a lock on the least common
 ancestor which is a. UsingiLL however, Ty can proceed almost immediately even if all
transactions are forced to start at the root node since in that case it need only wait
until 7} has propagated its lock one level down.

| LL’iS thus clearly better than TL if the additional storage is available. The extra
storage 1‘equ‘i'1'ed is actually quite modest since the interior nodes do not store any data

and are consequently very small. In order for the extra lock coupling overhead to be

3
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IL

LL

Figure 2.1: Treelocking and Leaflocking
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negligible as many of the interior nodes as possible should reside in main memory.
In the LL scheme outlined above it is still possible for part of the tree to become
unneccessarily inaccessible if multiple transactions attempt to lock the same data item.
Since the lock on the parent cannot be released until the child lock is held, waiting
for a previous transaction to finish with a data item causes part of the tree to be
unavailable. Consider the case of both transactions wanting to write data item b in
the LL case of figure 2.1. The second transaction would have to wait for the first to
finish and during this time must hold a lock on &’s parent. This has the side effect
“of causing data item a to be effectively unavailable to other transactions requiring a
. along with some other data item. To overcome this problem each data item (the leaf
nodes) should have a lock queue. The lock coupling rule can then be relaxed to the
rre:quirement that the lock on a parent of a leaf node can be released once all the lock
requests on child data items have been queued. Since the queue is FIFO the order in
which transactions access a data item is unchanged and the continued serializability
of all schedules is guaranteed. These queues can be either dynamically allocated as
needed or be of fixed length with a natural overflow handling mechanism.

A last optional requirement of LL is the insistence that all transactions start at the
rool node. This optional requirement has some advantages with only a slight penalty
(al least for centralized databases). For TL such a requirement would drastically
reduce concurrency since locking the root data item for a transaction would then

“effectively lock the whole tree. For LL the root node does not contain data and
1s thus never held for long. The increased lock coupling overhead is small and the
“effect on performance is minimal. If this rule is enforced all transactions are strictly
serialized in the order of their starting times. Furthermore, locking granularity can
then be naturally achieved. For example, as long as the tree root is locked all data
items are effectively locked. If the tree is organized so that related data items are
- all grouped together in the same sub-tree, then all these items can be simultaneously
locked by locking the sub-tree root node. However, for very large databases this rule
might be undesirable at the top level due to “bottle-necking”.

For TL, organization of the data in the tree can have a dramatic effect on per-

formance. If most transactions require access to a node close to the root, then large
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numbers of data items are unavailable during the time a lock 1s held on such a node.
Thus, heavily used items should be placed in leaf nodes. For L1, there are no such
concerns since all the data items are in leaf nodes. No special tree organization is
required from a performance point of view. It might still be desirable to group related
items together in the same branch so that they can all be locked together for special

purposes such as re-balancing the tree after inserting new items.

2.2 Lock Propagation Algorithm

In order to implement LL alock propagation algorithm is needed. The starting point is
a predeclared read and write set of data items and a database of data items organized
in a binary tree with the actual data items in leaf nodes. We require that locks be
propagated down to the appropriate leaf nodes using lock coupling starting {from the
root of the binary tree. It is important to minimize the time any interior node is locked
in order to make available the maximum amount of concurrency. 1t is thus undesirvable
to propagate the locks one at a time since then the root node would have to be locked
for the duration in order to prevent lock requests from other transactions [rom getting
in between. Fortunately it is possible to proceed in a breadth first manncr in which all
lock requests collectively move down one level at a time locking the required children
and then unlocking the parents once all requests have moved down one level.

In the implementation used here the lock requests corresponding to a transaction’s
data set are structures chained together in a singly linked list. The request structure
contains a pointer to its right neighbour as well as a leal pointer which at the end of
the algorithm will point to the leaf node containing the required data item. Initially
the leaf pointer of the request at the head of the list points to the root of the database
tree and all other leaf poiuters are null. Also note that the requests arc ordered by
data-item key value so that the request at the head of the list has the lowest key value
and the one at the end the largest. This key must he the same as was used to build
the binary database tree. The algorithm starts by locking the root node and setting
the leaf pointer of the first request to either the left or right child node of the root

depending on whether the request key value is less than or greater than the root key
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Le -1 bd H fHgH{h]

Database Tree Request list

Figure 2.2: Lock Propagation Algorithm
The labels on the interior nodes are the key values used for comparisons.

value (figure 2.2). If the right branch is chosen then all other requests also follow the
right branch since the list is ordered by key value. Hence the right child node is locked
and the root node released. If the left branch is followed then the head request leaf
~ pointer is set to point to the left child and the left child is locked. For the left branch
the request list must be traversed from left to right comparing the request key value
wi"r,hk the root key value. If a request key in this list to the right of the head request
is greater than the root key its pointer is set to point to the right child and the right
~child is locked as well. In this case list traversal can be terminated and the root node
unlocked.- If the end of the list is found without any key being greater than the root
* key then all requests follow the left branch and the root is unlocked without locking
the right child. At this point all lock requests have moved down one level in the tree,
are hd_l(ling only the required locks and the root is once again unlocked and ready for
the next set of requests. The algorithm proceeds down level by level in this fashion
with ‘each subset of requests starting with a non-null leaf pointer treated separately.

Note that in order to move down one level the request list need, at most, be
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traversed once in this algorithm. Thus if there are k requests and N data items
in the tree (log N levels) this algorithm will be of order O(klog N). Since & is in
general very small and log N is also small for all but the largest databases this lock
propagation algorithm is very efiicient. in the case of TPL and TSO the data items
can in principle be found using a hash table with efficiency O(k) which is clearly
more efficient. However, provided the LL concurrency control nodes can be kept in
 main memory which should be possible for all but the largest databases, the lock
propagation overhead is expected to be minimal since transactions will in general
have to wait much longer for resource or data contention.

Another aspect which could cause concern is bottle necking at the root node since
all transactions must access the root node. The 'kéy to high performance here is
| keeping the root node locked for the minimum amount of time. It can he shown
that at very high multi-programming levels (mpl) the throughpm, is limited to 1/k
“where £ is the fraction of the average transaction time spent accessing the root [l()]‘
As stated above the transaction is expected to spend the bulk of its time waiting
foi‘ resource or data contention so k& will be a very small fraction. Consequently, the
expected maximum mpl allowed by root node contention will be very large atl least
in a centralized system. Root node contention would be a much more serious issue in
a distributed LL system where communications delays will add considerably to the
time necessary to lock and unlock a node. Here we will restrict our attention to a
centralized LL system. It is not strictly necessary for every transaction.to lock the
root node for a version of LL to work. It is only required that the highest common
ancestor of all the requested leaves be locked. In a large database thatl point will
often be several levels down in the tree. In the context of the above lock propagation
algorithm it means that a lock need not be set until the request list must be split in
two in order to follow both the left and right branches. With this modification the

transactions are no longer guaranteed to execute in time-stamp order.
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2.3 Essentials of LL

In section 2.1 LL was presented as inspired by the genesis of the idea. LL was de-
veloped as an cvolution of TL in order to try and improve concurrency. In order
to compare LL to other concurrency control schemes presented in the literature it is

“useful to now distill the essential elements of the LI scheme.

1. Alllocks a transaction may need are acquired or queued atomically at the start
of a transaction. In other words transactions must set locks in an equivalent
to serial order. It must not be possible for a second transaction to set locks on

common data items until the first transaction has finished acquiring locks.
2. All data items must have FIFO lock queues.

The first property insures that there are no deadlocks and that transactions subse-
quently execute in the same serial order. Choosing time-stamp ordering for the serial
order insures fair scheduling. The second property insures that conflicting accesses to
a data item are serialized in an order that can be established well before transaction
execution. The first and second properties together ensure that the serial orders at
cach data item are consistent with each other thereby allow the lock setting algo-
‘rithm to terminate and transactions to start while some locks are still held by other
transactions.

Using a tree to couple locks from the root to all the data items satisfies property
1 as well as imposing time-stamp ordering. A tree is however not strictly required as
property 1 can be satisfied with other mechanisms. For example making a single pro-
cess responsible for setting all locks would also satisfy property 1. In this scheme all
transactions would submit their data sets to the scheduling process which would ex-
~ ecute these serially in the order received. Transactions must delay starting execution
until receiving a locks set/queued return message from the scheduler. Alternatively
“instead of having a scheduling process each transaction could be required to get own-
ership of a shared semaphore before setting any locks to ensure locks are acquired in

a serial order.
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Both of the above schemes, while insuring property L, are wnferior to the binary
tree in terms of throughput due to contention for the serial scheduling process or
semaphore. As discussed in section 2.2 at high mpl the throughput is 1/k where now
k is the fraction of the total transaction time spent waiting for the locks to be set
and acknowledged. k is much smaller with a tree since there & is the fraction of time
the root node is locked. The root node is only held long enough to couple to the next
level down which is a much smaller interval than the time required to set all the locks.

If the data items are structured it is possible to use lock coupling to ensure prop-
erty 1. For example if all data items were linked together in a linked list then locks
could be acquired by starting at the first item and traversing the list to all the re-
quired items. In this way a second transaction could start setting locks as soon as the
_first had moved on to the second data item. As long as transactions cannot. pass eacl
other in the lock setting process property 1 will be satistied. Structuring the data
allows one to satisfy property 1 while minimizing & and hence maximizing through-
put. Structuring the data allows the acquisition of locks to be pipelined with many
transactions propagating locks concurrently. :

Structuring the data items as a tree, while not increasing throughput as compared
to a linear list, minimizes the number of lock couples and hence reduces the total time
required to set all locks. This reduces a transaction’s response time. A trec also has
some other advantages such as a built-in efficient index on the primary key and the
possibility of locking whole sub-trees withont locking the entire data structure. This
then is the primary motivation for retaining the tree structure lor insuring property -
1.

2.4 Concurrency

While LL is clearly superior to TL it is more interesting to compare LL to TPL. In
order to investigate which method has greater concurrency some concrete example

transactions will be used. Consider the following two transactions:
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Ty = Lwl[s]W[s]Lw[v]W[v]Lw([z]W[z|U[s,v,z] (2.1)
Ty = Lg[s]R[s]Lr[z]R|z])U]s, z]

Here Lw(x], Lp[z] and Ulz] respectively stand for write locking, read locking and

o unlocking data item x. R[z] and W{z] represent reads and writes of data item z.

‘Pime increases linearly to the right and two transactions are concurrent if they can
execute during the same time interval. Using TPL the above transactions cannot
overlap until 7y releases the lock on s at the end of 7} thus there can be no significant

"()vm'la.p. However, with LL, the equivalent transactions

T = Lwls,v,2]W[s)U[s]W]U[o]W[2)Ulz]
Ty = Lg[s,z|R[s]U[s]R[=]U]z] (2.2)

can ¢xecute their reads and writes concurrently. Are there some schedules which can

execute concurrently using TPL but not using LL? Consider the following schedule:

Ty = Lw[e]W[z]LwlylW[y]Lw(z]W[z]U[z,y, z]
Ti = Lg[z)R[z]U[z] (2.3)

These can execute concurrently using TPL as illustrated above. But using LL the

equivalent schedule

Ty = Lwle,y, )W[)U]W[y|U[y]W][z]U[z] (2.4)
Ty = Lr[z]R[z]U]z]

cannot execute concurrently.

The above example illustrates an important difference between TPL and LL. In
'T'PL locks arve acquired as needed but must be held until the lock point (end of the
growth phase). For LL all locks are effectively acquired (or queued) atomically at
the start of a trausaction but can be released immediately after the corresponding
data item is used. Thus in the first example the two transactions were able to execute

concurrently using LL, but not using TPL, because the LL method was able to release
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the lock on data item s much earlier. In the second example the two transactions can
run concurrently using TPL because the acquisition of the lock on data item z could
be delayed until just before writing z, whereas the LL method had to acquire a lock
on z at the very beginning.

Thus, at first glance, there does not seem to be a clear concurrency advantage of
one scheme over the other. However, the presence of the lock queues in the L1, scheme
provides an additional concurrency advantage as well as preventing the unnecessary

branch lock up discussed earlier. Consider a modification of transaction Ty:

T; = Ly [z)W 2] Lw[y)W [y] Lw[z]W [2])U[x, y, =]
Ts = Lg[s]R[s]Lr[z]R[z]U][s, =] (2.5)

These can execute concurrently using TPL as before. What about the equivalent LL

transactions?

Ty = Lwl(z,y, z)W[2|U[z]W[y|U[y]W[z]U[z]
Ts: = Lgls,z]R[s]U[s]|R[z])U][z] (2.6)

These can execute concurrently under LL as well since T3/’s write-lock request on data
item z, which at the start of transaction 7% is locked by Tsi, can be queued in data
item 2’s lock queue. Thus T3/ can start and as long as Ty does not actually try to
access data item z until after Ts releases its lock on z they can run concurrently. Of
course if T3/ did try to access z before T released its lock T3 would have to wait uatil
its queued lock request was converted to an actual lock. ’

The crucial difference between T5, Ty and T3,, ng is the starting order of the two
transactions. Using LL transactions are strictly serialized in the order of their starting
times. Two transactions accessing common data items acquire locks on all common
data items in the same order as their respective starting orders. A nice side eflect of
this is that LL (and TL) unlike TPL, is deadlock free. The addition of lock queues in
LL increases the number of possible transactions which can run concurrently.

It thus appears that LL has a concurrency advantage over TPL. However, an
estimate of the magnitude of this advantage, if any, requires a simulation which is the

topic of Chapter 4.
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2.5 Comparison with other Methods

Concurrency control algorithms can be roughly divided into two types aggressive and
conservative schedulers [2]. Conservative schedulers attempt to avoid serialization
problems by delaying (blocking) transactions while aggressive schedulers don’t delay
transactions much, relying instead on restarts when problems appear down the line.
There are often conservative and aggressive versions of the same algorithm. For ex-
ample, conservative TPL requires that all locks be held before a transaction begins.
This ensures that deadlocks will be avoided and hence a transaction need never be
restarted. The price for this is reduced concurrency since locks are held longer and the
possibility of starvation of a transaction requiring a large number of data items [2].
Ordinary TPL is somewhere in the middle requiring restarts only on deadlocks. TSO
on the other hand is very aggressive never delaying a transaction at all, but con-
sequently suffers the penalty of many restarts when data contention increases. In
general as an algorithm becomes more conservative the number of restarts decreases
but also the concurrency decreases. Conservative schedulers also require that the
read and write sets be predeclared so that a decision on serializability can be made
in advance.

LL is unique since it is ultimately conservative. Read and write sets must be pre-
declared and restarts are never required for concurrency control reasons. Nevertheless,
from section 2.1 LL appears to have greater concurrency than TPL the current dom-
inant concurrency control scheme. This makes LI a very promising candidate from
performance considerations.

L1 also compares very favourably to TSO. As for LL, the TSO scheduler attempts
to exccute transactions in time-stamp order. The difference is that TSO must abort
a transaction if a serialization problem appears. Thus, if there is heavy contention
Sfor data items many transactions will need to be aborted, often more than once.
This means that a lot of useless work is being done. By useless it is meant read and
write operations that will eventually be undone by aborting the transaction. While
doing useless work is not a problem in an infinite resource system, it rapidly hinders

performance in more realistic systems [8]. LL on the other hand never aborts a
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transaction for concurrency control reasons and thus does no useless work.

A variation of TS0 is conservative TSO [2, 9]. Here the scheduler waits and quenes
requests until it has received an operation request [rom every transaction manager
before issuing the oldest request. It is required that cach transaction manager send
requests to the scheduler in serial order. In that case the scheduler will output oper-
ations in time-stamp order and no transaction need ever be aborted. At first glance
this thus appears equivalent to LL. However conservative T'SO has only one quene
(at the scheduler) rather than queues at each data item and this forces it Lo output
schedules that execute all operations in serial order not just conflicting ones. I'his is a
consequence of not satisfying property 2 of section 2.3. This means that conservative
TS50 is much more restrictive than LL which only forces conflicting operations to
execute in time-stamp order. LL thus has much greater possible concurrency.,

LL also has some similarities to conservative TPL. In both schenies all locks must
be acquired at the start of transaction execution. Transaction exccution and the
release of locks in LL appears to be equivalent to the transaction exccution and
lock release of the shrinking phase of conservative TPL. Furthermore, both LI and
conservative TPL are deadlock free and never abort a transaction. The difference lies
entirely in the lock acquisition phase before the start of execution. In conservative
TPL [2] a transaction tries to obtain all required locks at the start. If there is a
conflicting lock held then all the locks must be released and the transaction must wait
until the conflicting transaction terminates and then tries again to acquire all the locks.
This means a transaction can not start execution until it actually holds all required
locks. LL on the other hand can often start execution as soon as all lock requests
are queued and the locking/queuing algorithm never [ails. Lor conservative TP
an equivalent queuing strategy cannot be used as queucing requests is not sufficient,
to guarantee a serial order of all conflicting database operations. In other words
the greedy locking algorithm used by conservative TPIL does not satisly property |
of section 2.3. The inability to start transactions as carly as LL results in greatly
reduced concurrency without any offsetting benefit. Instead conservative TP, still

suffers from possible transaction starvation which is also not possible in L.



CHAPTER 2. LEAF LOCKING 15

2.6 Advantages and Disadvantages of LL

For L1 it is necessary for a transaction to know in advance all the data items it will
need so that locks can be propagated down to the corresponding leaf nodes when the
transaction starts. If a data item might be needed in a transaction a lock must be
propagated down to the corresponding leaf. This must be considered a disadvantage
of LI as compared to TPL. As discussed in section 2.1 a previous transacticn may still
be holding a lock required by the current transaction, but the current transaction can
~queue its lock request and start executing provided it does not immediately require
this data item.

LL naturally allows database check pointing unobtrusively and simply. Since trans-
actions are serialized in their starting order and can start without holding firm locks
ofi all data items, a checkpoint can be done by simply issuing a transaction that reads
every data item. The resulting checkpoint is guaranteed to be of a consistent state
since the checkpoint read is effectively inserted between two transactions. Data items
Jocked by other transactions at the time of the checkpoint read will simply have read
l()y(:.rk requests queued. Thus, checkpoints can be easily done without interfering with
normal transaction processing. In contrast, a consistent read of all data items using
TPL requires that all the data items be locked simultaneously.

For LL the data items must be organized as the leaves of a binary tree. It thus
makes sense to order the items according to some primary key value so that data items
- can be efficiently found and locks propagated to them. The concurrency control tree
then also provides a permanent binary tree index on the primary key. Addition and
deletion of data items can be accomplished in a straightforward and inexpensive man-
ner by adding and deleting elements from the tree. A tree built in such a haphazard
manner is unlikely to be a binary tree of minimum height but this is not necessary for
correct operation of the LL scheme. An unbalanced tree will just cause some slight
increase in lock propagation overhead. The tree could be re-balanced periodically
during times of light transaction loads.

While an index on the primary key naturally exist in LL secondary indicies require

additional processing overhead. In TPL for example, multiple indicies may exist with
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each index pointing directly at data itemns which can be locked at will il available.
For LL, secondary indicies may point to data items but these items cannot be locked
directly since coupling from the root of the primary tree is required for concurrency
control. Thus using a secondary index is a two step process. irst, the secondary
index is used to obtain the primary keys required and then the primary index or
tree is used to set the locks on the desired data items. This additional overhead
is not a serious problem provided the LL tree V(VGXV(‘;ll,l(l'lng leal nodes) is in memory
and the database system is I/O bound. Alternati\}ely a hybrid of conservative TPL
and LL could be used. In this scheme a transadion first. dtt(nm’)s to get all its locks
immediately without using lock coupling as in conservative TPL. Tu this case data
~items found using secondary indices can be immediately locked. If all data items are
~available (i.e., locks obtained not queued) then the transaction can start. If not, the
transaction releases all locks and uses LL to queue or obtain locks on all data items
whose primary keys are now known. With this scheme the optional LI requirement,
of all transactions starting at the root node has been given up with the corresponding
consequences discussed earlier. This hybrid scheme produces serializable schedules
since if all locks are immediately obtained then there is no conflict with LI set locks
and both LI and conservative TPL produce serializable schedules. This hybrid does
thus not have the extra lock propagation overhead in low data contention situations
(conservative TPL lock setting almost always succeeds) but gracelully switches to L1,
and its corresponding advantages when the data contention increases.  [lowever in
high data contention situations this hybrid has more overhead than pure LL since it
always attempts to directly set all the locks which almost always lails.

On the negative side LL releases its locks much earlier than TPL and hence cas-
cading aborts {2, 3] are, comparatively, more likely to occur. This is hecause there is
a greater chance that a later transaction will have read a value written by the enrrent
transaction at the time that the current transaction is aborted. Fortunately, L never
aborts transactions for concurrency control reasons and hence abortions are relatively
rare. Consequently, relatively expensive abortion processing can be tolerated. 1f a
transaction is aborted, all later transactions must be tested for interscetion of their

read sets with the aborted transaction’s write set. If a non-empty intersection is found
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the corresponding later transaction must also be aborted. The data set intersection
test must be done recursively until no additional cascading aborts are found.

A strict [2] implementation of LL, i.e., one that avoids cascading aborts, can be
achieved by holding all write locks until after a transaction has been committed.
T'his would reduce LL’s concurrency comparatively‘r‘nuch more than a similar strict
implementation of TPL since LL achieves most of its concurrency by being able to
release its locks early.

It appears that the LL concurrency control scheme is a good candidate for real
dalabases since it is deadlock free, starvation ,ffee, restart free, and has high con-
currency. The disadvantages are lock propagation overhead, slightly larger storage
recﬁ;irements, required predeclaration of the data set ‘and greater propensity for cas-
- cading aborts. In the following chapters LL, TPL and TSO will all be implemented

and a simulation study conducted in order to estimate their relative performance.



Chapter 3
Implementation

'Using a multi-threaded operating system (0S/2) [11] modelling transactions is very
straightforward.r Each active transaction runs as a separate thread independently
~from all the other transactions. It first reads a sequence of reads, writes and r(ltrla,ys
that constitutes ‘the simulated transaction from a file and then builds an ordered
* linked list of lock requests. The lock propagation 'algoritl'mil of Chapter 2 is then run
in order to acquire or queue all the necessary locks. Each individual node in the
tree contains a mutex semaphore [11] and a lock on an interior node is held when
a thread has acquired ownership of that particular semaphore. Unlike the interior
node, leaf node locks are not held simply by semaphore ownership because this would
preclude simultaneous read locks by several transactions on one data item. Leal node
lock status is determined by comparing the thread id stored in the leal node’s lock
structures with the thread id of the thread requesting a read or write. The leal node’s
mutex semaphore is used only to control access to the leal node’s shared variables
such as the held and queued lock lists and is never held for long. Once all locks
have been acquired or queued the thread proceeds to read and write data values.
Between each read or write request there is a random delay corresponding to the time
needed to retrieve the item from a disk in a real database. For the duration of the
delay the thread sleeps and relinquishes the remainder of its time slice allowing other
transaction threads to run, thereby interleaving many transactions. The number of

simultaneously active threads is equivalent to the multi-program level (mpl). Active

18
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here means that a transaction has been started but there are still some operations
outstanding. An active transaction may be sleeping waiting for simulated I/O. During
a read or write request the leaf node pointed to by the request structure is examined

to see if the current thread in fact holds a lock. If so, the read or write proceeds

'nof'ma.lly and the thread continues on to the next delay. If the current thread’s lock

recuest is only queued rather than held, the thread sets an event semaphore [11] and

blocks until the lock request is granted. When a transaction has written a particular

data item the lock is downgraded to a read lock. The lock is immediately released
once a transaction is done reading and writing a data item.
“Eacl leaf node in the database tree has associated with it two lock pointers. One

points to a list of currently held locks, which if there are more than one, must all be

: ,,"Qafl locks. The, other points to a list of que‘ue;d locks. If the held-lock(s) are read

locks the first queued lock, if any, must be a write lock, because a read lock could
justr be added to the held locks. If the held lock is a write there can only be one
and the first queued lock can be either a read or a write. In this implementation the

lock structures are actually part of the lock request objects built by the transactions.

~ Since each request requires one and only one lock this avoids any unnecessary memory

allocation. Furthermore, there is then no limit to the length of the queues. The held
locks and queued locks are maintained as doubly linked lists with two pointers in the
leaf node pointing to the head of the held and queued lists respectively.

When a transaction unlocks a leaf node the corresponding lock is removed from
th(* held list. If the held list is now empty but the queue list is not, then the first
queued request is moved to the held list and the corresponding transaction’s event
qemaphoro is posted so that if the transaction is blocked waiting for this lock it will
bc reactivated. If the newly held lock is a read then any further read requests at the

]l(‘ch of the queued requests are also moved to the held list and their corresponding

~transactions restarted. Lock downgrading from write to read is very similar except

that instead of removing the held lock it is changed to a read lock. Any read locks at
the head of the queue are also granted.
| Since TSO and TPL are standard methods the implementation of these will not

be discussed in any great detail. In order to be able to make meaningful performance
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comparisons fairly sophisticated implementations are required. I'SO is inherently sim-
pler than LL and consequently required less programming effort than LL. A suitable

~version of TPL on the other hand is considerably more complicated than LL given
the need to deal efficiently with deadlocks.

TSO is intrinsically very easy to implement. A basic feature of 'T'SO is the restart-
delay time. Such a delay is necessary in order to prevent two transactious from
repeatedly interfering with each other. In order to insure that TSO would run at all
in conditions of heavy data contention, it was necessary to use an adaptive restart
delay [8]. When a transaction is aborted it is derlarvred by an'exponentially distributed
delay of average value equal to the running average of transaction run times before
being restarted. Thus as contention increases and tr allSdQLIOIl run times increase due

- torestarts, the running average increases and the 1esta1t deldyb become 1011go| thereby
reducing the effective mpl and reducing data contention so that active tmn.sadums
have a better chance of finishing. - »
~ TPL was first implemented using a simple timeout strategy to (I(‘L(‘(t deadlocks.
This proved to be unsatisfactory since there was then no-way to control which {rausac-
tion was aborted. Since the algorithm was tested under conditions of heavy contention
where multiple restarts were common throughput rapidly drbpped to zero. Also, set-
ting suitable timeout values is difficult since if they are chosen to be large then too

“heavy a price is paid for restarts in low contention situations. [fthey are too small then
transactions which are not deadlocked can needlessly time out in high contention sit-

“uations. An adaptive timeout strategy where the timeout value is adjusted depending

on the current load could have been used. Instead a wait-for graph testing approach
was used [12]. Whenever a transaction is forced to block waiting for a lock, a node is
added to the wait-for graph with a directed arc to a node representing the transaction
holding the lock. Whenever a lock is requested or relcased the wait-for graph is tested
for cycles indicating a deadlock. Thus deadlocks can be detected immediately. When

a deadlock is found the time stamps of all transactions on the (ﬁy(:le arc compared

and the one with the largest time stamp (youngest transaction) is aborted. In this
way it is possible to insure that the oldest transaction will make progress and will

eventually finish (perhaps after restarting due to a later deadloek with an even older
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transaction). Restarted transactions are not given new time stamps unlike in TSO.
While it is not strictly necessary to use a restart delay for TPL [8] it was found to be
very bencficial in high contention situations. The same adaptive restart delay used
for the TSO algorithm was used for TPL as well. Again this works as a negative
- feedback mechanism limiting the effective mpl. This actually increases throughput
at_high contention since the extra transactions which are in their restart delay state
W(qu more than likely cause further deadlocks and restarts if allewed to run.

"T'wo common simplifying assumptions which have been shown to adversely affect
rééﬂlt’s were deliberately not used in these simulations. These are fake restarts and
no lock upgrading [8]. Fake restarts are relevant to both TPL and TSO. A fake
restart is simply using a new transaction rather than repeating the same aborted
one. Lock upgrading is only relevant to TPL. If a data item is first read and then
later erritt‘en, it is commonly immediately given a write lock. This however needlessly
limits concurrency.

Vrrll\nother concurrency issue tfor TPL is what to do when a write lock is released
and there are several read and write request waiting [2]. For maximum concurrency
it-is desirable to allow other read requests to jump ahead of write requests if the
next granted lock is a read. This however can prevent a write request from ever
getting granted if there is a steady stream of read requests arriving. In the TPL
implementation used here read locks are not allowed to jump ahead of write locks in
order to minimize response time variations. An even better strategy would be to give
every traunsaction -a time stamp and then before granting the next lock sorting the
queued lock request by time stamp. The next lock granted would then be the one
belonging to the transaction with the smallest time stamp. Now read locks would
only be allowed to jump ahead of write locks with larger time stamps. Note that this
strategy in the limit of high contention, where every data item always has some lock
requests qu(;‘[ued becormes identical to LL. This is, however, not in the spirit of the TPL
policy and was thus not used. It is interesting to note that these refinements to basic
TPLi.e., time-stamp ordering of queued lock requests and deciding which transaction
to abort in a deadlock based on time stamps brings elements of LL into TPL. In

LL transactions are serialized in time-stamp order and all queued lock requests are
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automatically in time-stamp order. The performance comparisons in the next chapter
indicate that existing TPL implementations could be brought closer in perfortiance

to LL by implementing the above proposed sorting of queued lock requests.



Chapter 4

| Simulation Results

41 Workload

!;H:]'e sixnulation of LL, TPL and TSO was carried out on two distinct workloads. In
“the first, each transaction consists of a purely random set of read and writes with each
transaction accessing 5 data items. The mean percentage of write accesses was fixed
al 33%. In the second workload each transaction consists of 4 random data item reads
followed by zero or more writes of the same set of data items, with the probability
~of a data item being written set at 33%. This second workload is expected to more
closely resemble real world transactions as well as being the least favourable for LL as
compared to TPL. LL must request all locks at the beginning and thus with all the
writes at the end, the exclusive write locks must be held or Queued for the bulk of the
transaction, unlike in TPL where they can be acquired just before writing the values.
The latter work load is also expected to be very detrimental to T'SO since the writes at
the end would invalidate values read by concurrent transactions of larger time stamp
“thus forcing the writing‘tra,nsa.ction to restart near the end of the transaction. This is
~the worst time [or a restart to happen as all the work already done by a transaction
is thus wasted. Between each data item access and at the beginning of a transaction
there was an exponentially distributed [13] delay of average value t;. The value of
tq was adjusted so that even at the maximum mpl level used the processor was idle

" most of the time. This ensures that the following results are essentially in the infinite
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resource limit 8] since the only resource used in this simulation is the processor.
Each simulation was run for 10,000 transactions after rununing an initial 100 trans-
actions. The results from the first 100 transactions were ignored in order to allow
the system to “warm up” [13]. The remaining 10,000 transactions were split iuto
10 batches of 1000 transactions and the batch means method [13, 14] used to ana-
lyze the results. Each concurrency control algofi’thm operated on the identical set of

transactions.

4.2 Throughput

‘The primary performance metric of a concurrency control scheme is the thronghpnt
in transactions per second (TPS). In figure 4.1 the sit’nulal;idﬂ results are presented for
LL, TPL and TSO operating on the completely random work load. T'he throughput

“in TPS is plotted as a function of the multi—progra.mming level for conditions of
light, medium, and heavy data contention corresponding to 1024, 128 and 16 data
items in the database. For the light contention results throughput increases alimost
linearly with mpl, as expected for all algorithms, but LL is clea.l‘ly‘th(‘. best. Tor the
medium contention results the throughput saturates and further increases in mpl do
not increase the throughput. This is due to data contention thrashing for LL, restarts
for TSO and a combination of the two for TPL. Again it is important. to realize that
the throughputs for both TSO and TPL would dra.sti(:alfy drop at high mpl were it
not for the adaptive restart delays used. A’s can be seen from figure 4.1 in situations
of high contention and effectively infinite resources LL is more than twice as good as
either TPL or TSO.

What about for the less favourable but probably more realistic second workload?
Figure 4.2 is identical to figure 4.1 except that this time LL, TPL and TSO operated
on the second workload which has all the data writes overlapping the read set and at
the end of the transactions. The results are qualitatively similar to those for the first
workload with LL significantly better than TPL or TSO. As expected, and discussed
above, TPL is the least affected by the change in workload whercas both LL and

TSO experience diminished throughput. However while here TPL performs better
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than TSO, LL still has a 30% greater throughput than TPL. The remaining results

presented here were all generated using this second, less LL favourable workload unless

otherwise stated.

4.3 Response Time

‘ rAlterr,nb‘atiVVerly the simulation results can be pr'eﬂsént‘ed in terms of the mean response

B tirne of a transaction. Here the response time is the time elapsed between the start

anrdyend of a transaction. It is essentially the inverse of the throughput results and

LL has the lowest mean response time (figure 4.3) as expected from the throughput

results. Not much additional information can be gleaned from these results. What is

~ more enlightening are the standard deviations of the mean response times presented

in figure 4.4. The response time variations are much larger for both TSO and TPL
than for LL. This is because under LL transactions need never be restarted and they

proceed in time-stamp order. Thus, each transaction finishes in a very predictable

time with only a small variance, as is confirmed by the simulation results. Concurrency

control algorithms which require restarts have large variances since if a transaction
must be restarted the response time for that transaction will suddenly become much
longer. A small response-time variance is a desirable property from a database user’s

point of view and in this regard LL is vastly superior to both TSO and TPL.

4.4 Blocks and Restarts

It is also informative to look at two other results which enable us to determine why

LL is better than TPL even for the second wofkloa,d. In figure 4.5 the mean number of

~blocks per transaction and in figure 4.6 the mean number of restarts per transaction

are presented. First note that the mean number of blocks per transaction is zero for
TSO since it-is a pure restart concurrency control method. Similarly, the number of

restarts per transaction for LL is zero since it is a pure blocking method. Furthermore,

note that the number of blocks per transaction are almost identical for TPL and LL

_indicating that data contention for these two methods is about the same. Thus
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the fact that TPL has a non-zero mean number of restarts per transaction must
be to blame for its poorer performance. As extensively discussed by Agrawal et
~al., [8] the performance of a concurrency control scheme is critically dependent on
the assumptions made about the database system. [t was shown that published
~discrepancies [15, 16, 17, 18] in the relative pe:rforma.nce‘of competing councurrency
control schemes were often due to different uudérlyiﬂg assumptions. In particular,
Lc'oricurrency control schemes which rely ]1ea,'vilyr on restarts were shown to perforin
much worse when the throughput is resource contention limited rather than in the
infinite resource limit. This is because all the rrééoh’rces: ;w'.l're'a.dy used by a transaction
about to restart were wasted and thus reduced ,t‘he amount of resoutces available 1o

other transactions doing useful work. Consequéritly it is possible to infer that L1 will

‘perform even better relative to TPL and-especially TSO in the more realistic resource

limited case since LL never needs to restart a transaction for concurrency control. As
in the case of the workload, the system assumption used for the results presented here

(infinite resources) is the least favourable to LL.

4.5 Dummy Locks

It is possible to look at the effect of one of LL’s disadvantages and its impact on
perfbrmance. As mentioned in Chapter 2 LL’s read and write sets need o be prede-
clared since all data items that may be needed must be locked at the beginning of the |
transaction. Thus if the transaction contains an if clause where one of two data items
is to be accessed, then both of these data items must be locked. ‘This will decrease
concurrency since more locks are held. Predeclaration is not required for standard
TPL and thus TPL’s performance is not affected by transactions containing if clauses.
The—qu“es‘tion is how many additional locks LL can afford to lock befo;fé ]‘)m‘fornm,t‘uﬁ(i
drops down to the level of T‘PL?" To answer this LL was modified so that Tor the set
of lock request there was a probability of setting a dummy lock of the same type on
the neighbouring data item in the tree (if not already used in the transaction). The
probability values used were 0, 0.25, 0.50, 0.75 and 1. These dummy locks were held

‘or queued until its associated neighbour was released. The results are presented in
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figure 4.7 and indicate that approximately 50% more locks can be requested before
LLs perforn‘la.nce (‘Irops by the 30% advantage it held over TPL. The performance
pendlt& due to these additional locks is somewhat less than might be expected because
a dummy lock might never be held since it is not read or written. A dummy lock
rnight‘j ust be queued for the duration of the transaction while a concurrent, smaller

time-stamp transaction holds a lock on the dummy data item.

4.6 Strictness

As discussed in Chapter 2, LL is much more susceptible to cascading aborts than
TPL. In applications with many user driven aborts this could make LL in its present
form unworkable. In brdelj to avoid cascading aborts LL can be made strict. In
a strict implementation of LL (SLL) all write locks must be held until the end of
the transaction. This is expected to be much more detrimental to LL than to TPL.
Nevertheless, for ‘t.h'e. second, more realistic workload with all the writes at the end,

all the write locks are already held for the bulk of a transaction and a strict version
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of LL might still be better than strict TPL. The throughput of SLL as compared to
strict TPL is shown in figure 4.8. These results show that SLL compates {avourably
with strict TPL for the second workload with its t.hroughplylt‘ still marginally larger.
The effect of enforcing strictness on the first workload is illustrated as an aside in

figure 4.9 and as expected, is much more detrimenyta..l.“

4.7 Multi-version Leaf L(')cfki'ng

Instead of allowing user driven abortions one could insist that Ule‘erffécts of a given
transaction on a database can only be reversed by issuing a transaction that cancels
~the effect of the previous one. If no abortions*a,rerallowe'd then even greater concur-
rency can be achieved by performing some in- queue proc essing. Under conditions ol
high data contention leaf nodes will have loug queues of lock Iqul(‘blH Since these
queues are FIFO the order of data item accesses is fixed. It is then posslblc for a
transaction writing a value to write the new value to the lock 1('qumt, i clfect writ-
ing a new version, rather than blocking. When the lock request carrying the new value
- reaches the data leaf node the value is simply transterred. Read transactions in the
“queue ahead of this in-queue write still read the old value as required. A read trans-
action, behind the in-queue write but before the next write, may read the in-quene
value once the in-queue writing transaction is done with it, without waiting wuntil
the lock request reaches the leaf node. With this 'rﬁulti’-vorsion leaf lockiug (MVl'l )
wiite operatlons need never blocl\ and read operations block only il the nearest write
request ahead of it in the queue has not yet bLLIl satisfied. A transaction which reads
a gien data value may finish processing before its lock request ever reaches the leal
node in which case the request can simply be removed from the queue. Satisfied write
- requests cannot be removed since the new va,lue must be written to the leaf node whc'n
the request reaches the leaf. A satisfied write request is simply flagg,(‘d as done so
that once it reaches the leaf node a lock for the transaction alwddy finished with this
data item is not applied. Depending on the workload a significant. amount of work
may be done while the requests are in the queue. Note also that this is a very space

efficient multi version protocol since extra versions are only created if really needed
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Figure 4.9: Throughput comparisons of multi-version, ordinary and strict LI,

and kept only for the minimum amount of time. |

The throughput results under heavy data contention for MVLI, are shown in fig-
ure 4.9. These results indicate that for the random workload throughput increases by
almost a factor of 3 with in-queue processing but for the writes-at-end workload there
is no change in throughput. This is as expected since for the second workload each
data item written must first be read. Hence no in-queue writes are done since transac-
tions must block waiting for the read. Whether the extra complexity and restrictions

of MVLL are worthwhile is thus éxtremcly workload dependent; '




- Chapter 5
Conclusions

- The téi(nulatioﬁ results confirm the predictions ,orf jnel‘eased' concurrency for LL as
compared to TPL even for workload and system aSsump‘tions least favourable to LL.
FO[‘VWOI‘.klOIdeS where the number of additional data items to be locked due to if clauses
in the transactions is less than 50%, LL is superior to TPL. The increased throughput
as compated to T PL appears to be due to the corﬁplete lack of concurrency-control
forced restarts for LL. No useless work is done by LL provided that there are no user
driven abortions. The scarcity of abortions implies that LL will perform even better
as compared to TPL in resource limited environments. All forms of LL are very fair
in the sense of having a very small response time standard deviation. All forms of LL
are also naturally deadlock and starvation free. Lasrtly, LL is comparatively simple to
implement. The above statements apply to database fsystems‘rwh’ich are 1/0 bound
(implicitly-assumed in the simulations) and have the LL concurrency control tree
eomﬁletely in main memory such that LL’s lock coupling overhead (as well as TPL’s
deadlock detection) is'a completely negligable part of the transaction processing time.
No attempt was made to compdre the concurrency control schemes in a CPU boﬁncl
=.§stc~1’n | , ' ' ,
| Several lTlO(llﬁCdthllS of the basu, LL policy are pos51ble such as strict LL and
"ymulh version LL. The desnablhty of these modifications depends strongly on the
type of workload and the probability of user driven abortions.

~ As yet unanswered questions include LL’s performance in distributed database

37
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systems and its applicability in parallel machines.
The results of the previous chapters clearly show that LI s a viable and compet-
itive concurrency control mechanism at least for centralized databases. Iurthermore,

given LL’s performance and other advantages it should find wide spread use in actual

database systems.
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