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The two essays in this thesis explore some aspects of the 

fundamental theorem of arbitrage pricing in modern finance. The 

focus in the first essay is on the existence of a state price 

functional under the presumption of no arbitrage opportunity in 

the financial market. Two cases are developed. In case one, we 

tackle the existence problem in the tradition of making no 

preference assumption. Here a "multiple-version" of Hahn Banach 

theorem is applied at the cost of introducing a less used 

continuity concept. The payoff of that approach allows us to 

remove some strong assumptions made in existing models. In case 

two, we strengthen the 'viability' of a price systcm by 

incorporating a recently improvised preference relations from 

general equilibrium theory. A continuous price function is 

derived and used to obtain the familiar Black-Scholes pricing 

density. 

In the second essay, effort is made to extract some 

implications by modeling an arbitraee free term structure. First, 

it is shown that this yield curve model enables one to price 

interest rate related contingent claims such as a bond option 

which is similar in spirit to the Black-Scholes approach to equity 

option pricing. A second result is that we derive a random 

variable that relates the pair of risk-adjusted probabilities 

obtained from the two closely related yield curve models. The 

existence of such a random variable throws light on characterizing 

futures and forward bond prices. Finally the two yield curve 

models are blended to validate one version of expectatjons 

hypothesis in continuous time. 
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A FUNCTIONAL ANALYSIS 

OF 

ARBITRAGE CONTINGENT CLAIMS PRICING 



CHAPTER 1. INTRODUCTION TO THE FIRST ESSAY 

Modern financial theory places considerable emphasis on the 

presumption of no arbitrage opportunity in pricing financial 

securities. Arbitrage opportunities represent riskless plans for 

profit without any initial investment. The absence of such 

opportunities is a necessary requirement in any meaningful asset 

pricing model. 

By arbitrage valuation is meant that suitably defined 

financial assets are identified with their 'rational' prices as 

long as profitable arbitrage is precluded. The existing finance 

literature (see for instance Ingersoll, 1987, ch.2, p.57; Dothan, 

1990, ch.2, p.24) establishes an operational principle under 'the 

absence of arbitrage' : namely, one is able to construct a set of 

arbitrage free linear state prices from a subset of observed asset 

values. The standard tool used to derive these state prices is 

Farkas lemma, or the theorem of the alternative, familiar from 

linear programming. 

The theorem of the alternative is well established in a 

linear algebraic framework (Mangasarian, 1969) but it often 

disguises the existence problem in a more general setting. One 

can develop a deeper insight by formalizing the notion of a 

'linear state spaces'. This entails interpreting the space of 

asset payoffs as a linear state space which embeds the idea of 

different states of the world. By modeling the state space as a 

vector space, an element can be interpreted as the payoff of a 

contingent consumption claim. A particularly useful connection 

between the linear state space and its dual space of linear 

functionals is then obtained by the following observation. 

The presumption of no profitable arbitrage opportunity in the 



vector subspace of marketed securities implies an empty 

intersection between the subset with arbitrage opportunity and the 

set of strictly positive future payoff. Given this condition, a 

basic Separating Hyperplane Theorem (Takayama, 1984, p.32) states 

there exists a closed hyperplane which is related to a continuous 

linear functional. This functional can be interpreted as the 

value for the contingent claims. 

Defining a state space for arbitrage valuation shares a 

similar spirit to the Second Welfare theorem in general 

equilibrium analysis. According to this theorem, if agents' 

preference are defined on a nonempty convex subset of a linear 

commodity space, then a Pareto optimal allocation can be found and 

is associated with a continuous linear functional (Lucas and 

Stokey, 1988, p.424). This functional can be interpreted as 

competitive market clearing prices. 

There remains a relation between arbitrage theory and general 

equilibrium analysis richer than the mathematical fact that both 

are founded on Separating Hyperplanes. A brief historical review 

of this connection is developed in section 1. Identifying this 

linkage between the two theories at the outset has the advantage 

of identifying some variables in arbitrage theory with their 

counterparts in general equilibrium theory. 

The canonical arbitrage model is presented in section 2 using 

the concept of convex cones and the dual cones. Cones are 

elementary geometric objects and present a compelling 

visualization of the arbitrage problem in a finite dimensional 

Euclidean space. Convex cones reappear in later development of 

the arbitrage valuation problem in more abstract linear spaces. 

After the linear state prices are derived, they are represented in 

three equivalent formulations articulated by the fundamental 

theorem of arbitrage valuation. Finally, in section 3 we discuss 



the existence problem in an infinite dimensional linear space. We 

end the present chapter by pointing out where the next two 

chapters are heading. 

1. An overview of the relation between the arbitrage theory 

and the general equilibrium model 

The fundamental theorems of welfare economics state 

conditions for a competitive equilibrium allocation to be a Pareto 

optimal allocation and vice versa. This equivalence between 

competitive and optimal allocations originated in the seminal 

paper by Arrow and Debreu (1954). That classic analysis presents 

in an axiomatic framework the properties of an economy with a 

finite number of agents and commodities. 

Uncertainty enters into the Arrow-Debreu model via an 

elaboration of a two-period economy (t = 0 , l ) .  There are l 

different goods available for trade in the two periods and S 

different states of the world at t = 1. Define p E R+ 
us+i) as a 

price vector of the l(S+l) number of goods. To close the model, 

Arrow-Debreu assume: 

(i) every agent knows which state obtains at t = 1 when it 

occurs ; 

(ii) there is a complete trust that contingent promises 

will be honored; 

(iii) every agent knows p; and 

(iv) exchange is costless. 

These four assumptions form a basis leading to the proof of 

the existence of an equilibrium price and a set of corresponding 

resource allocations in a simple exchange economy. One of the 



remarkable features of the equilibrium results is that it reduces 

a two-period model to a static setting. In particular, trading 

only takes place at t = 0 in which each agent faces one budget 

constraint. 

Within the same uncertainty setting, Debreu (1959, ch.5,7) 

proves that the competitive equilibrium price vector gives rise to 

Pareto efficient allocations. This is the first theorem of 

welfare economics. The separating hyperplane theorem from convex 

analysis is the key to the demonstration of the Second Welfare 

theorem. 

While the Arrow-Debreu equilibrium is epitomized by its 

simplicity and elegance, it suffers from a lack of subsequent 

market transactions after t = 0 .  This contradicts observed 

reality. Radner (1968, 19721, maintaining most of the setup of 

Arrow-Debreu, introduces the concept of a sequence economy. A 

sequence economy is one that allows trading at every date. 

The cost of organizing a large number of markets for complete 

insurance at t = 0 is the usual justification for introducing 

sequential markets; but such introduction rapidly complicates the 

original Arrow-Debreu model. Because of the opening of future 

spot markets, agents must be assumed to form future spot price 

expectations. The possibility of information asymmetry and 

potential for moral hazard all lead to a vast literature on 

transactions cost and market incompleteness. 

For pricing assets in a financial market setting, one can 

still redeem the relevance of most of the static general 

equilibrium result by focusing on a "stripped down" version of the 

sequential market model. This is achieved by assuming perfect 

foresight expectations on the part of the agents. That is, for s 

E S, there is a price vector p(s) E R: expected with certainty 



for t = 1 and is in fact faced by all agents at t = 1. This 

simplification in the expectation mechanism, coupled with assuming 

a contingent futures spot market for a good, say good 1, almost 

leads to the same Arrow-Debreu result except agents face two 

constraints in their choice problem. 

Define the payoff of a futures contract in terms of the S 

different spot prices of good 1 in a diagonal return matrix. 

Finally assume that return matrix has a full rank. The Pareto 

efficient allocation in this simple sequence economy can be shown 

to replicate the allocation attained by the Arrow-Debreu economy 

(Laffont, 1989, ch.6). Of course, by the Second Welfare theorem 

such efficient allocation is also an equilibrium allocation. 

Much earlier than Radner's formulation of an incomplete 

market model there existed an interesting result due to Arrow 

(1953). One of the main insight from Arrow's model is that we can 

use a trading mechanism (a security market) to reproduce the 

static Arrow-Debreu state prices. A fundamental contribution of 

Arrow's paper is the clever use of the arbitrage concept. Unlike 

Radner's setting that relies on a futures good market at t = 0, 

Arrow considers securities market at t = 0 that allows agents to 

trade wealth across future states. The following is a brief 

account of this model which serves as an inspiration for the 

modern theory of finance. 

2. The canonical arbitrage model 

Let n be the total number of securities traded at t = 0 and m 

the total number of states at t = 1. (Notation here follows the 

modern literature on arbitrage pricing with m states of the world 

and n traded securities. ) A marketed security, say j, yields a 



vector of state return denoted by 

where ' T '  denote the transpose of a column vector. The return is 

denominated in a numeraire unit of account called money. 

Given that m can be much larger than n, investors' interest 

is in the securities' future payoff which are captured by the mxn 

return matrix denoted by D. As in Radner's expectation mechanism, 

the investor is assumed to have perfect foresight regarding D. 

Finally, the current prices of the securities are given by the 

vector 

The problem is reduced to finding a relationship between p and D 

characterizing the absence of arbitrage opportunities. 

arbitrage opportunity is a portfolio of the n assets 

the vector of quantities held 

with two properties. First, 8 does not cost anything at t = 0. 

Second, 8 has a nonnegative payoff at t = 1 with a positive payoff 

in at least one state. Formally, the two statements can be 

expressed as 

( 1 )  
T 
p 8 = 0, D8 2 0 and D8 * 0. 

Arrow and others argue that a necessary condition for any 

7 



meaningful relation between the price vector p and the matrix D to 

exist is that one cannot find any 8 that satisfies (1). Loosely 

put, to rule out arbitrage situation like (1) for a given D, the 

price vector p must adjust until no 8 can be found that satisfies 

the definition for arbitrage. It should be emphasized that no 

serious adjustment process is provided for p. The word 'adjust' 

in the previous statement merely conveys the existence of a set of 

state price functionals once arbitrage is ruled out. 

Technically this entails finding a solution to the dual 

problem to (1). This dual problem involves finding a set of 

positive state prices, one for each state of the world, so that 

the vector p and the matrix D are linearly related. The Farkas 

lemma and the theorem of the alternative are the reigning methods 

of deriving the arbitrage free price functional in a discrete 

state space model. Here, we retreat to a less used yet more 

graphical concept known as convex cones and their dual cones for 

derivation. (See Gale, 1961). 

The theorem of the alternative and the theorems of convex 

cones are similar ways of solving system of linear inequalities. 

However the latter method has the advantage of offering geometric 

intuition in finite Euclidean spaces. Moreover, while infinite 

dimensional Farkas lemma is not well known, the insights from 

finite convex cones analysis can be extended to the infinite 

dimensional linear spaces. The representation of cones in a 

finite setting therefore provides some intuition for the general 

case. 

In what follows, A is a real number. 

Definition. A subset S in a vector space L is said to be convex 

if 



Ax+(l-A)y E S whenever x , y ~ S  and 0 'A 5 1. 

n Geometric objects in R such as a linear subspace, a line, a 

halfspace and a hyperplane are examples of convex sets. 

Definition. Convex cones are a class of convex set, having the 

property that 

n 
Important examples of convex cones are R and all linear 

subspaces. Moreover if H is a hyperplane through the origin, H is 

a convex cone. The difference between a halfline and a line is 

given by 

for any vector y; thus a half line satisfies the defining property 

of a convex cone. Halfspaces are also convex cones. This brings 

us to a useful correspondence between linear homogeneous 

inequalities and convex cones. To introduce this correspondence 

requires a concept of a finite cone. 

Definition. A set C is a finite cone if every element in C is 

expressed as a linear combination of a finite number of vectors. 

Alternatively 

(i) C is a finite cone if there exists a finite number of 
i 

vectors v such that 



(ii) C is a finite cone if there is a finite number of 

halflines (vi) such that 

The advantage of introducing a finite cone is that one can 

use it to represent the solution to a set of linear equations: 

C = {XIX = Au, u L 0) for A is a mxn matrix. 

As defined earlier absence of arbitrage is equivalent to placing 

some restrictions on a set of homogeneous inequalities. Since 

these inequalities are now identified a set of finite cones, the 

arbitrage restriction is reflected on "the other side of the same 

coin", that is the dual cone. 

Definition. If C is a convex cone, the set 

T 
C*={ylyxsO, V X E C )  is the dual cone of C. 

In geometric terms, the dual of a convex cone is the set of 

vectors making a nonacute angle with the vectors of the original 

cone. 

The two fundamental duality theorems about finite cones are 

stated below (see also Gale, (1960)). 

Theorem 1. If C is a finite cone, then C* is a finite cone. 



Proof. 

Then C* 

C * 

Given that C 

is given by: 

i is a finite cone, we can write C = C (v 1 .  
i 

which is a finite cone. If C is expressed in the form C = {xlx = 

Au, u 2 o), then C* = { y l y ~  5 0). 

0 

Theorem 2. (C*)* = C 

Proof. For notational convenience, write (C*)* as C**. For all z 

E C**, we have yz 5 0 if y E C*. But if y E C*, we have yx 5 

0, for all x E C. Now C* is a finite cone, so its dual C** is a 

finite cone. Thus we have C c C**. If C** c C, we are done. 

Suppose C** h C, then since C, C* are both finite cone and C 

c C**, we have 

j where (b ) are halflines not in C. Take dual again and define the 

resulting cone by C****. This second dual is related to C** in 

the same way as C** is related to C, that is 

where cj are halflines not in C** 

Taking duals repeatedly in this way, we add new halflines to 

cZn (where n is the number of times double duals have been taken) 
2n 

at each round. Since C is obtained by continually taking duals 



of finite cone, it must be a finite cone itself. But letting n 3 

2n 
a, C is not a finite cone which is a contradiction. Thus the 

hypothesis that C** # C cannot be true. Hence the desired result 

f 01 lows. 

0 

Application of finite convex cones and their duals to the 

arbitrage valuation boils down to showing the following result. 

T 
Proposition 1: There is no portfolio 8 that satisfies p 8 5 0 and 

D 8  2 0 if and only if there exists a mxl vector q > 0 such that we 

T 
have p = D q. 

Proof. Necessity. Denote 

- 
and by the definition of an arbitrage portfolio 8, we have DB > 0. 

T 
Given that there exists a mxl vector q > 0 such that p = D q, we 

claim that the existence of an arbitrage opportunity creates a 

contradiction. Let 8 be an arbitrage portfolio. Postmultiply 8 
T 

to the transpose of p = D q gives 

and rearranging yields 



- 
Since D8 > 0 and the q vector is positive, the above equalities 

lead to an immediate contradiction. 

Sufficiencv. Absence of arbitrage opportunity implies 

T 
{8\8p50)n {81~8 ~ 0 )  ={0). 

Now rewrite D8 r 0 as -D8 5 0 and consider the convex 

- - 
A = {81~8 5 0, 8 unrestricted), where D = 

cone 

[;:I 
is a (m+l)xn matrix. 

By the above fundamental theorem of duality for convex cones, 

we have the dual cone denoted by A* such that 

Setting b = 0, a nxl null row vector, the above implies a set of n 

hyperplanes through the origin. Since q* r 0, let the m+l-th 

element be the row sum and explicitly consider the set of n 

equalities in A* as follows: 

Expand the LHS to yield 



Rearrange the above: 

Let qi = - , i = 1,2, . . . ,  m, we have 
qm+ 1 * 

T or in matrix notation p = D q. This completes the proof. 

The (m+l)xl vector of q* embodies a useful market 

interpretation. Given there is no arbitrage opportunities in 

trading the n marketed securities, one can imagine there exists 

simultaneously a market for m state securities. Each of the first 

m elements of the q* vector, say qi, then represents the cost of 

obtaining one unit of numeraire at t = 1 if state i occurs and 

nothing otherwise. Viewed in this fashion, the existence of these 

m states securities traded at t = 0 allows one to fully insure one 

unit of numeraire good regardless which states occurs by buying 

one of each m securities at t = 0 .  The cost of this portfolio is 



m 
C q * which is the m+l-th element. i=l i 

As a package, one can interpret the absence of arbitrage as 

equivalent to the existence of a m+l state securities market, the 

last security being the riskless asset. 
i 
can be treated as the 

normalized state security price (relative to the price of the 

riskless asset). In the light of these state prices, three 

equivalent representation of the security price functionals are 

readily available. 

First, since by construction summing over all q. gives one, 
1 

i inherits a basic property of a probability measure and can be 

called the risk-neutral probability denoted by Q i  (Note that 

implicit in the designation for q * to be 1 qi* is the m+ 1 i 

presumption that the implied interest rate is zero. In a more 

general case let q * = 1, 
m+l 

so that Cmq 
i i 

Therefore the 

pricing equation can be written as 

m m - - C qidij = C Q.d.. = EQ(di), where q Qi 
'j i=1 i=l 1 1.J i 

Second, one can enrich the state space setting by adding 

probability assessments of different states occurring. Denote the 

investor's subjective probability of state i by F' The pricing i ' 

equation can be expressed as 

m 9 i m 9 i 
= CP.(-)d = C P A d  where A. - 
i=1 1 pi ij i=l i i ij' 1 

IP i 

is price per unit of probability of state i occurrence. 

Intuitively, one can view A as the risk premium per unit of i 



payoff in state i. 

Third, since q: &I;, the pricing equation can further be 
I I 

rewritten as 

where - is called the Radon Nikodym 
p: 
I 

equilibrium models, this variable is 

utility of an infinitely lived 

Ingersoll and Ross, theorem 4, 1985a) 

derivative . In some general 

identified with the marginal 

representative agent (Cox, 

In a simple linear state-space model, the three equivalent 

representations of pj in the absence of arbitrage opportunity 

constitute the fundamental theorem of arbitrage asset pricing 

(Ross and Dybvig, 1987). A special case worth stressing is where 

n = m, and the D matrix is nonsingular. The vector q from the 

proposition is then the unique arbitrage free state price 

functional. 

The resulting security market is said to be complete in the 

following sense. Any other payoff that is spanned by the D matrix 

can be priced uniquely by q: As Arrow (1953) implicitly points 

out, it is via securities trading at t = 0 and contingent spot 

market trading between the numeraire good and the other goods at t 

= 1 that one can replicate the Arrow-Debreu static budget 

constraint and simultaneously economize on the use of the 

contingent claims market. 



3. Discussion and direction of the thesis 

Two aspects of the linear state price functional q require 

emphasis. First, the existence proof of q does not require any 

preference specification of the agents. Except making the crucial 

assumption that there is no arbitrage opportunity, the entire 

derivation is due to the geometry of the finite Euclidean space. 

In order for the linear functional to carry economic meaning, it 

suffices to attach to q the mildest presumption that agents prefer 

more wealth to less. This implies the arbitrage free price 

functional is consistent with risk neutral or risk-averse 

preferences (the latter being a standard assumption in many 

finance models such as the Capital Asset Pricing Model). The 

definite merit of this result is that it removes the modeling and 

estimation of an unobserved preference parameter. 

A more important characterization of the price functional is 

that it is a continuous linear functional. This aspect is often 

subsumed when the underlying state space is a finite dimensional 

vector space. In this case continuity of the linear functional is 

exemplified by the standard Euclidean norm topology. Needless to 

say, continuity is a useful requirement from any price functional 

and only in this way can any arbitrary (contingent payoff) bundle 

in the state price be unambiguously valued. However, in an 

infinite dimensional vector space, which is the prevailing setup 

for many finance models, issues regarding the continuity of a 

linear price functional rapidly turn complicated. 

In an infinite dimensional state space setting, one is 

confronted with a vast number of linear topologies. While some of 

these topologies are simply natural generalization of the finite 

Euclidean topology, unfortunately these norm topologies are too 

strong to induce a continuous price functional. It follows that 

merely making appeal to the absence of arbitrage is far from 



necessary and sufficient to yield a meaningful valuation result 

In the next chapter we endeavor to look for a more robust 

existence result in the sense that we are motivated to use a 

specific class of linear topology for the linear space. The 

nature of the research in that direction is inevitably technical 

but fortunately in functional analysis there are well developed 

results suitable for our analytical setting. It will be shown 

that the existence of a continuous price functional is founded on 

the powerful Hahn-Banach theorem. Most of the topological 

considerations are embedded in the statements of the Hahn-Banach 

theorem. 

The plan of the next chapter is as follows. We begin to look 

for a version of the general Hahn-Banach theorem which allows us 

to derive a continuous linear price functional. Then we identify 

some existing arbitrage valuation models as consistent with the 

general result we present in that chapter. Because of the wide 

range of potential applications in pricing, the topological 

approach that retains the preference-free property in the general 

setting is deemed promising. 

The second aspect of the state price functional q is the 

concern about its role as a shadow price. Granted that the 

absence of arbitrage opportunity plus a linear topology are 

sufficient for the existence of q, there is no simple guide as to 

which topology to choose. As noted by Kreps (19821, in order to 

obtain a sound economic interpretation, one needs to endogenize 

any given price in the model. In a simple state space model with 

exchange only, the obvious fundamental related to the shadow price 

is the preference relation assumed for agents. 

While enriching the arbitrage model can be achieved by 

incorporating a preference relation, this preference approach 



interestingly presents an alternative solution to some of the 

topological difficulties raised in chapter two. The idea is that 

assuming a continuous preference relation implies the model 

builder has input a topology compatible with the linear space 

topology. This is then sufficient to permit the Hahn Banach 

theorem to yield a continuous price functional. The economic 

reasoning behind this is quite familiar. The arbitrage free 

security prices in the market model that can be extended to the 

entire state space is defined to be a viable price system if 

agents can find a solution to their optimization problem. 

The topological approach to valuation by making a set of 

assumptions about the preference relation is a useful device. 

Along this line of modeling and with a marginal effort, one can 

even treat the shadow prices as prices in a Walrasian equilibrium. 

One of the advantages in constructing an arbitrage equilibrium in 

this way is that one can skip over a full description of demand 

and supply and market clearing. Indeed this approach is very 

similar in spirit to the idea of the second theorem of welfare 

economics. 

The arbitrage equilibrium model based on standard of 

assumptions about preference relations were first developed in two 

influential papers by Harrison and Kreps (1979) and Kreps (1981). 

Recent theoretical advance in general equilibrium analysis suggest 

that there is room to improve these earlier models. In chapter 3, 

two examples illustrate that in some linear spaces where all the 

preference assumptions are satisfied, one is still unable to 

derive a nontrivial continuous price functional. We are then led 

to adopt a stronger notion of viability. As an application, this 

modification is then combined with a stochastic setting to derive 

the well known Black-Scholes state price density function. 



The goal of this chapter is to generalize the theory of asset 

valuation by arbitrage from a finite dimensional Euclidean setting 

to an infinite dimensional vector space. A vector space of 

infinite dimension can be thought of as a space of functions. In 

finance and economics, in which uncertainty is involved, function 

spaces are usually identified as state spaces with elements called 

random variables. Among all functions spaces, the normed linear 

spaces play an important role in this kind of stochastic analysis 

primarily because most of their defining characteristics can be 

matched with the concepts from finite dimensional Euclidean 

spaces. For instance, a norm can be treated as a generalization 

of Euclidean distance. 

A Banach space is a complete normed vector space. Linear 

functionals defined on a Banach space form a dual space of 

functionals. For any analysis that involves optimization, Banach 

spaces and a subset of their duals are functionally connected. 

This means any element in a linear space can be associated with a 

continuous linear functional in its dual space. In the arbitrage 

valuation theory, these continuous functionals are naturally 

interpreted as implicit state prices. 

Generalization of analysis to infinite dimensional spaces is 

not a straightforward exercise. Normed linear spaces do not in 

general have the desirable properties found in finite Euclidean 

spaces. For instance, in the last chapter convex analysis is 

employed to derive the extended price functional in a standard 

setting with m states and n securities. That approach, and many 

variants, to finding prices in the dual space are based on the 

single most important Hahn Banach theorem in functional analysis. 



In its entirety, the Hahn Banach theorem is composed of the 

separation form and the extension form. The separa-Lion part of 

the theorem stipulates that provided with two disjoint convex 

sets, at least one of which has a nonempty interior, one can find 

a hyperplane slipping between the two sets. The extension part of 

the theorem states that provided a linear functional in a subspace 

is dominated by a convex functional, one can find a continuous 

extension of the subspace linear functional to the entire linear 

space. 

In spite of its usefulness in the arbitrage valuation problem 

and in optimization theory, application of the Hahn Banach theorem 

raises many difficulties. The present chapter focuses on two 

problems that arise mainly in finding a separating hyperplane. 

First, separation requires one of the convex sets to have a 

nonempty interior; unfortunately most infinite dimensional normed 

linear spaces fail to have this topological property. Second, if 

a linear subspace is closed, then a linear functional defined on 

the subspace is continuous. However, closedness of linear 

subspace is not guaranteed in infinite dimensional function 

spaces. 

Both of the above problems reveal that application of the 

Hahn Banach theorem depends crucially on the topological structure 

of the linear space. The lack of nonempty interior in normed 

linear spaces causes us to search for other weaker topologies 

compatible with the linear space. A class of topological vector 

spaces known as locally convex spaces is introduced. It will be 

shown that locally convex spaces include most of the useful 

function spaces adopted in economics and finance. 

In addition, associated with locally convex spaces is a wide 

class of weak topologies that are sufficient to satisfy the Hahn 

Banach theorem. This is indicated by the Mackey-Arens theorem 



which can be used to assert the existence of a weak topology for 

any pairing of L spaces. Two applications will be demonstrated 
P 

to illustrate the relevance of this theorem. 

Aside from the mathematical desirata, modeling arbitrage 

valuation in a locally convex space allows us to rediscover a 

number of features familiar from the arbitrage analysis in the 

finite dimensional setting. Similar to the finite setting with 

regard to investor's characteristics, the general setting 

specifies nothing other than that more wealth is better. This 

similarity of analysis by arbitrage between finite and infinite 

dimensional state spaces thus confirms its theoretical advantage 

that it is primarily a preference-free methodology. 

The plan of this chapter is as follows. Section 1 and 2 

recall some important facts for analyzing linear spaces. These 

two sections also serve to introduce notation and preliminary 

results that motivate two complementary formulations of the 

"Panglossian" functional. In section 3 we first deliver the 

"imprecise" Hahn Banach theorem. Crucial to this section is a 

device called the Minkowski functional that is used to prove the 

existence of an extended linear functional. 

However, the full-blown version of extension of a linear 

function from the subspace to the entire linear space ultimately 

depends on the possibility to separate two nonempty convex sets by 

a hyperplane. When the normed linear space is used, the 

nonexistence problem enters the picture since most of these spaces 

do not have subsets containing a nonempty norm interior. The 

exact nature of the problem is demonstrated in Section 4. 

In section 5, we consider the weak topology as a substitute 

for the strong norm topology. Then the Mackey Aren theorem is 

introduced. In the presence of this important topological result, 



we are able to derive a weaker version of the Hahn Banach theorem 

and later apply this theorem to the market model introduced by 

Ross (1978). After the general existence theorem for the market 

model is derived, we use the result to reconsider two existing 

arbitrage pricing models that used L spaces as the commodity 
P 

spaces. 

In the first model, which uses L as its commodity space, it 
2 

is shown that some strong assumptions can be removed if the 

functional analysis result developed here is adopted. In the 

second model, which uses L as its commodity space, the separation 

of two convex subsets in La is satisfied but the existence of an 

unambiguous continuous linear functional in the norm dual is still 

problematic since the dual space of La consists of uninterpretable 

elements. The duality theorem developed in this chapter combined 

with a result from Bewley (1972) is shown to resolve the problem. 

Finally, we discuss some further implications of using weak 

topology in the arbitrage valuation. 

1. Geometry of the vector space 

The essence of the Hahn Banach theorem lies in its 

irresistible geometric intuition: given certain conditions are 

satisfied, two nonempty convex subsets of a linear space can be 

separated by a closed hyperplane. To motivate this important 

result requires some basic definitions and properties of vector 

spaces. A vector space is a set L along with two algebraic 

operations on the elements of L: addition and multiplication by a 

scalar. The elements of L are referred to as vectors. By 

convention, there exists a unique vector 0 in L referred to as the 

zero vector or origin of L. 



As usual in economics, one interprets a vector as a commodity 

bundle with elements representing everything that an economic 

agent consumes. In analysis with uncertainty, a vector can be a 

contingent commodity bundle. The vector space most frequently 

used in economics and finance is Euclidean space, denoted as Rn. 

Most of properties of vector spaces, however, carry over to spaces 

other than Rn. 

i Letting S = {v E ~ l i  E I) be any collection of vectors 

indexed by the set I (of nonnegative integers), the linear 

combination is defined as 

c a . v L E L  for ai E R 
i ~ 1  

provided that only a finite number of a are not equal to zero. 
i 

For a set S c L, consider the set of all possible linear 

combination of vectors in S. The span of S is given by 

for which a finite number of scalars a are nonzero. If S c L, 
i 

then sp(S) is a subspace of L. If sp(S1 does not coincide with L, 

it is called a proper subspace. An example of a proper subspace 
2 

is a one dimensional line through the origin of R . 

A collection of vectors S c L is called linearly independent 

if 

That is, no vector in S can be expressed as a linear combination 

of the remaining vectors in S. Consider S as a subset of L. If S 



spans all of L, i.e., sp(S) = L, and if elements of S are linearly 

independent, then S is called a basis in L. The number of 

elements in a basis is called cardinality (which is a term 

allowing for sets with infinite number of elements). A vector 

space having a finite basis is called finite dimensional. All 

other vector spaces are said to be infinite dimensional. 

Let L be a linear space and L' be a subspace of L. Then two 

elements x,y E L are said to belong to the same class generated by 

L' if x-y E L'. The set of all such classes form a quotient space 

denoted by L-L' . The dimension of the quotient space is called 

the codimension of L' in L. Elements from L and L' are related by 

the following: 

L e m a  1: Let L' be a subspace of a linear space L. Then L' has 

finite codimension n if and only if there are linear independent 

elements x . . J n  in L such that every element x E L has a unique 

representation 

where a ,an are nonzero scalars and y E L'. 

The proof of of this result is in Kolmogorov and Fomin (1972, 

p.112). Given that M is a nonempty proper subspace of L, the 

translation of the subspace is called a linear variety (also 

called affine subspace, flat, or linear manifold). It is written 

as 

for xo B M 



2. Linear functional and hyperplanes 

A linear functional on a vector space L is a mapping p:L 3 R 

which obeys 

(a) p(x+xl) = p(x)+p(xl) V x,xl E L and 

(b) p(ax) = ap(x) V x E L and V a E R. 

A functional that satisfies (b) is called homogeneous. The set L- 

of linear functionals on L is called the dual space of L and is 
n 

itself a vector space. If L = Rn, the dual space L- is again R 

and the linear functional is given by the scalar product: 

where p and x are elements of R1l. 

Consider the linear functional p defined on a linear space L. 

Then the set M of all elements x E L such that p(x) = 0 is called 
P 

the kernel of p: 

Note that M is a subspace of L since for x,y E M implies 
P P 

Two cases arise from the definition of a kernel. If p = 0, 

then ker(p) = L. If p # 0, then ker(p) is one dimension less than 



L, and the resulting kernel is called a hyperplane. A further 

generalization is obtained by the translation of the kernel: 

A translated subspace is called an affine subspace; and if p + 0, 

the resulting affine subspace is called an affine hyperplane. 

Note that L and M have the following relationship. 
P 

L e m a  2: Let x be any fixed element of L-M . Then every element 
0 P 

of x E L has a unique representation of the form 

x = ax +y 
0 

where y E M . 
P 

Proof. By hypothesis x # 0 and p(xo) + 0. Take p(x = 1, 
0 0 

X 
0 

X 
0 

otherwise renormalize xo by - so that p(----- = 1 Given any 
P (xo ) P(x,) 

x E L, let 

y = x-ax 
0 

where a = p(x) 

We claim that y E M because 
P ' 

Therefore x = ax +y. 
0 

To prove uniqueness of such representation of x, assume to 

the contrary, there exists another representation 



x = a'x +y' 
0 

y' E M .  
P 

Taking difference of the two distinct representations yields 

(a-a' )x = y-y' 
0 

Y-Y' 
implying that x = - which belongs to M (since y-y' E M 1. 

O a-a' P P 
This contradicts x 6 M . 

0 P 

The one-to-one correspondence between hyperplane and linear 

functionals is given by the following theorem. 

Theorem 1: Given a linear space L, let p be a nontrivial linear 

functional on L. Then the set M = {xlp(x) = 1) is a hyperplane M' 

parallel to the kernel M of the functional. Conversely, let 
P 

M' = L'+x 
0 

for xo 6 L' 

be any set parallel to a subspace L' c L of codimension 1. Then 

there exists a unique linear functional p on L such that M' = 

{xlp(x) = 1). 

Proof. For a given p, choose x such that p(x 1 = 1. The above 
0 0 

lemma 2 states that every element x E M' can be represented as 

x = x + y  
0 

for y E M 
P 

Conversely, given M' = Lf+x0 (for xo 6 L' 1 it follows from 

lemma 1 that every vector x E L can be uniquely represented as 



x = ax +y 
0 

for y E L' 

The desired linear functional is obtained by setting p(x) = a. We 

claim that p is unique. To see this, consider another linear 

functional q such that q(x) = 1 for x E M' and q(y) = 0. Then, 

q(axo+y) = a = p(ax +y). 
0 

0 

The above theorem of correspondence between a hyperplane and 

a linear functional provides some analytical convenience. Any 

result that yields the former can allow one to conclude the 

existence of the latter. However, the theorem does not say 

anything about the boundedness and continuity of the linear 

functional given the existence of a hyperplane. Continuity of a 

linear functional is an enormously useful feature in economic and 

finance models. With suitable interpretation of the linear 

functional as a price vector in the arbitrage state space model, 

for instance, continuity of the linear functional implies that 

claims on every (infinitesimal) state of the world are given 

positive values. 

A price functional is discontinuous when it is not bounded 

(Luenberger, p.105 1969). Both concepts require a precise notion 

of openness defined on the linear space. A relevant topological 

concept that motivates the continuity of price functional is the 

denseness of the hyperplane in L. 

Definition: A subset A of a topological space T is dense if its 

closure is the entire T. 

To apply the above definition to analyze a vector space L, a 

topology must be introduced on L. Then T can be viewed as a 

subset of L and A is the subspace represented by the hyperplane. 

Intuitively, denseness of the hyperplane A in T means that there 



are sequences in the subspace that converge to any element of T. 

Since the entire linear space is unbounded, naturally the 

associated price functional is unbounded and hence discontinuous. 

To rule out such pathological situation, one need the following 

requirement for the hyperplane. 

Definition: A subset A of a topological space T is nowhere dense 

if its closure has empty interior. 

Again the abstract topological space T in the above 

definition can be viewed as a subset of the linear vector space L. 

Then the interior corresponds to the strictly positive orthant. 

Therefore to yield a non-trivial hyperplane requires that no 

sequence from the subspace "enter" into the positive orthant. A 

formal restatement of this intuition is the following: 

Lemma 3: Let L be a linear space. If p is continuous, then 

ker(p) is closed and nowhere dense in L. 

The proof of this result is delayed as that involves more 

topological concepts that are developed later. 

3. Valuation by Hahn Banach extension theorem 

As indicated in the previous subsection, the dual space of a 

linear space L is itself a large vector space of linear 

functionals, some of which are discontinuous. Our interest is 

restricted to finding the set of bounded continuous linear 

functionals so that all conceivable contingent claims can be 

unambiguously valued. (By valued is meant that the linear 

functional is positive.) 



The classic Hahn Banach theorem states conditions for the 

existence of continuous linear functionals extended from the 

subspace to the entire linear space L. As mentioned at the 

beginning of the chapter, the theorem is divided into a portion 

that deals with the separation of nonempty convex subsets and the 

remaining portion deals with the extension of linear functionals 

from the linear subspace to the whole space. In a general linear 

space, the topological consideration largely shows up in the 

separation part of the theorem. In particular it requires at 

least one of the convex sets separated to have a nonempty 

interior. 

If the linear space is a finite dimensional Euclidean space, 

the Hahn Banach theorem is usually presented in an algebraic form 

(see Nakaido, 1968, p.26) called the theorem of supporting 

hyperplane. In this elementary version, the topological 

requirement is often satisfied by the Euclidean topology. It is a 

basic fact that all subsets in R~ have interior given by open 

balls. 

Of interest here is the separation theorem in infinite 

dimensional linear space and different definitions of the topology 

on such spaces yield different versions of the separation theorem. 

The strategy at the moment is to present the Hahn Banach theorem 

in an imprecise form without explicitly identifying a specific 

topology. Doing this has the advantage of examining first the 

extension part of the theorem and then checking out its 

implications for arbitrage pricing. The crucial concept at this 

stage of the problem development is that of a convex functional 

whose characteristics are described by the following definitions. 

Definition: A functional p defined on a linear space L is called 

a convex functional if it obeys 



(i) p(x) 2 0 V x E L (nonnegativity) 

(ii) p(ax) = la1 .p(x) V X E L  and V a r O  

(iii) p(x+y) 5 p(x)+p(y) V x,y E L. 

As properties (i) - (iii) are basic criterion for a distance 

measure, p can be interpreted as a measure of distance for 

elements in L. 

Definition: A set C c L is called convex if x,y E L, 0 5 t 5 1 

implies tx+(l-t)y E C. Furthermore, C is called 

(i) balanced (or circled) if x E C, and It1 = 1 

implies tx E C; 

(ii) absorbing (or absorbent) if u tC = L. 
t>O 

Holmes (1975) calls a set C that satisfies the above 

characteristics a convex body. 

Definition: The interior of a convex body denoted by I (C) is the 

set of all points x E C with the following property: Given any y 

E L, there exists a number E > 0 such that 

Note that in defining the "encompassing" concept of an interior, 

no topology is mentioned. 

Definition: Let C be a convex body whose interior contains the 

point 0. The functional 



is called the Minkowski functional of C. 

The connection between a convex functional and a convex set 

is stated below. 

Theorem 1: If p is a convex functional on a linear space L and K 

is any positive number, then the set C = {xlp(x) 5 K) is convex. 

If p(x) < w ,  for all x E L, then C is a convex body with interior 

Conversely, given a convex body C with 0 in its interior, pC(x) is 

a finite convex functional and C = {xlp (x) 5 1). 
C 

Proof. If x,y E C, h , A  r 0 ,  hl+h2 = 1 ,  then 
1 2  

which shows that C is a convex set. By hypothesis, p(x) is 

finite. Let p(x) < K, p > 0, y E L. Then 

If p(-y) = p(y) = 0, then x+py E C for all p. If at least one of 

the numbers p(y), p(-y) is nonzero, then x+py E C provided 



Conversely, given any x E L, pick a sufficiently large r so 
X 

that - E C. Then p (x) is nonnegative and finite. Clearly, p (0) 
r C C 

= 0 .  To check the homogeneity of p if a > 0, then 
C' 

To check convexity of p consider E > 0 and any x 
C ' r x 2  

E L, choose 

r (i = 1,2) so that i 

Then - E C. If r = r +r then 
r 1 2' 
i 

X 1 X 2 
belongs to the segment with end points - and -. Since C is 

r 
1 

r 
2 

X +X 1 2  
convex, this segment and hence the point --- belongs to C. It 

r 

follows that 

Since E is arbitrary, we can conclude that 



Note that the Minkowski functional p(x) defines a measure of 

distance from the origin to x with respect to the convex body. 

The finiteness of p (x) is precisely the prerequisite to use the 
C 

Hahn Banach theorem. In its extension form, the theorem allows 

the extension of a bounded linear functional from a subspace of L 

to bounded continuous linear functional defined on the entire 

space. To prove the Hahn Banach extension theorem, a simplifying 

assumption about L is needed, namely it is a separable  space, 

(that is, containing a countable dense subsets). 

Hahn Banach extension theorem. Let L be a linear space and p(x) 

be a finite convex functional on L. Suppose f is a linear 

functional defined on a subspace M of L satisfying 

Then there is an extension F of f from M to L such that F(x) 5 

p(x) on L. 

Proof. Suppose y is a point in L but not in M. Consider all 

elements of the subspace denoted by [M+~]. Then x E [ M + ~ ]  has a 

unique representation 

x = m+ay, where m E M and a is a real scalar. 

An extension g of f from M to [M+~] has the form 



Hence the extension is specified by prescribing the constant g(y). 

It must be shown that this constant can be picked so that 

g(x) 5 p(x) 

Let m,m E M 
2 

f (ml )+f 

on [M+~]. 

, we have 

Rearranging the above yields 

By hypothesis, f is dominated by p which is finite and m and m 
1 2 

are arbitrary; therefore let 

c" = sup [f(m)-p(m-y)l; c' = inf [p(m+y)-f(m)l 
m€M m€M 

or we have c" 5 c'. 

Hence we can find a real constant c such that the following 

holds: 

Replace g(y) by c so that 

If a > 0 ,  then 



If a = -p < 0 ,  then 

Thus g(m+ay) 5 p(m+ay) V a and g is an extension of f from M to 

[M+~], then to [ [M+y I +y 1 and so on. 
1 2  

Finally, g (which is continuous since p is continuous in the 

metric space defined by p) can be extended by continuity from the 

dense subspace S to the entire linear space L. To see this, 

suppose x E L, then there is a sequence {s of vectors in S 
n 

converging to x. Define F(x) = lim g(sn). F is linear and 
n+co 

and so F(x) r p(x) on L. 

To sum up, the Hahn Banach theorem relates the linear 

subspace and its dual by a continuous linear price functional on 

L. The first rigorous application of the Hahn-Banach extension 



theorem to financial asset pricing problem is in Ross (1978, 

appendix). In Ross setting, there are a finite number of marketed 

securities in a linear subspace characterized by the absence of 

arbitrage opportunities. However, Ross acknowledges that the 

state space of returns is an infinite dimensional linear space and 

"a version" of the Hahn Banach theorem is required to generate a 

continuous price functional. 

We choose to interpret the Ross' (unproven) result in term of 

the Hahn Banach extension theorem presented above. Despite its 

'vague' topological treatment, the extension form does convey some 

good intuition. That is, on a linear subspace of L there is a 

linear functional with some "viable" economic properties, this 

functional can be "carried over" to the entire linear space 

according to the theorem. 

The above Hahn Banach theorem is derived under the 

presumption that the separation part of the theorem is satisfied 

by some unidentified convex functional. Any explicit 

consideration of the separation aspect of the theorem gradually 

reveals some analytical difficulties. First, if L is modeled as 

a normed linear space using an L -norm, there is a lack of 
P 

interior in the positive cone of such L spaces. Since separation 
P 

is only assured if at least one of the sets separated has nonempty 

interior, this poses a problem of existence of a separating 

hyperplane if the Lp-norm is used. 

Second, unlike finite dimensional Euclidean space, linear 

subspaces in an infinite dimensional linear spaces are not 

necessarily closed. This means that merely having a linear 

functional defined over a linear subspace does not automatically 

lead to continuity of that functional. 

Third, the working of the Hahn-Banach extension theorem 



hinges on the linear space being separable. This separability 

property is unfortunately not available in the space of 

essentially bounded functions, i.e. Lm. Each of these problems 

are examined in the rest of the chapter. 

4. Valuation in normed linear spaces 

A normed linear space is a class of functions space that 

combines the characteristics of a vector space and a metric space; 

the former embeds only the algebraic operations whereas the latter 

deals with the notion of distance between any two elements. This 

combination is captured by a norm. Formally, a norm in a linear 

space is a real-valued function defined by Il- ll:L + R. For all x,y 

E L, and a E R, 1 1 . 1 1  obeys the following axioms: 

n The finite dimensional IR is a classic example of a normed linear 

space. A Banach space is a complete normed vector space where all 

Cauchy sequences converge. 

An important family of normed linear spaces is called the L 
P 

space ( L  space if the elements are real valued sequences). In 
P 

addition to obeying the above properties, a L space can be 
P 

further induced by a measure space and in this case it is denoted 

as L (R,9,p) where the triple represent more primitive objects. 
P 

For instance, under uncertainly, R represents different 

states of the world, 9 is a c-algebra of subsets and p is a 



measure over all these subsets. (The interaction between a 

measure space and L spaces are discussed in Bart le, 1966 1. For 
P 

p(R) = 1, the measure is called a probability measure which is 

customarily denoted by P. If p is a counting measure, L is 
P 

reduced to a sequence space denoted by l . In the analysis to 
P 

follow, (R,g,p) is understood as the underlying measure space and 

will be omitted whenever appropriate to simplify notation. 

The norm of an element x in l spaces is given by 
P 

m 
Ilxll = ( P /xt 1 p)l'p, for 1 + p  < m and 

P t=l 

Define the space 2 [a, bl , for p r 1, consisting of those mappings 
P 

x from the interval [a,b] to IR such that 1 x 1 ~  is Lebesgue 

integrable. The norm for x E 2 is given by 
P 

where the expression inside the bracket is a Lebesgue integral and 

t E [a,bl. 

Note that llxll = 0 does not imply x = 0 since x may be 
P 

nonzero on a set of measure zero. Taken into account of this 

possibility, we consider a family of related normed linear spaces 

of equivalence classes of measurable functions. A standard 

notation for this class of function space is given by L (R,Y,P). 
P 

Two functions are said to be P-equivalent if they are equal 

P-almost everywhere. Elements of L are normed by 
P 



The sup norm on Lm is given by 

HxHm = inf{s(N)I~ E 9 ,  PIN) = 0 )  

E essential supremum (x(w)/, 

where S(N1 = sup{lx(wl / o  @ N}. An element of Lw is called an 

essentially bounded measurable functions. 

In finance theory, elements of L spaces are interpreted as 
P 

random variables. The norms of these elements are merely 

transformations of the various moments of these random variables. 

The algebraic dual of L space is denoted by L , which is a space 
P P 

of linear functionals over L . Of significance is the subspace of 
P 

the algebraic dual consisting of bounded continuous linear 

functionals. Let L be a normed linear space. The space of 

bounded linear functionals on L are called norm dual of L and is 

denoted by L* (also corresponding to the space of continuous 

functions on L ) .  An element f E L* is normed by 

= sup If(x)l. 
Ilxll=l 

One of the important properties about L* is that it is also a 

Banach space (Luenberger, 1969, p.106). For L 1 r p < w, define 
P ' 

consequent L* is then L with one exception. The exception is p = 
9 

w as the norm dual of Lw is larger than L 1' 



The economic interpretations of elements for L and L are 
P 9 

that the former is a space of state contingent payoff while the 

latter represents a linear space of price functionals for these 

contingent claims. As Banach spaces are vector spaces, they are 

typically characterized by two algebraic operations, namely 

addition of vectors and multiplication of any given vector by a 

scalar. These two operations have interpretable counterparts in 

the price-taking assumption of a security market model. 

Linearity of the functional in L over elements in L implies 
9 P 

the value of two separate commodities is the same as the values of 

two commodities added together. In a security market 

characterized by the absence of arbitrage opportunity, this 

linearity property of the price functional is then called value 

additivity. 

Although L spaces provide a natural setting for contingent 
P 

claims analysis, one of the crucial argument for applying the 

Separation theorem is missing: for infinite dimensional L 
P 

spaces, the positive orthants have empty interiors. To 

demonstrate this important fact, consider first the definition of 

the L norm interior. 
P 

Definition: Let P be a subset of a normed linear space L. The 

point p E P is said to be an interior point of 3' if there is an c 

> 0 such that all vectors x satisfying Ilx-pll < E are also elements 

of P. The collection of all interior points P is called the 

interior of P. 

Lenuna 1: (i) The positive orthant of lw has a nonempty interior. 

(ii) The positive orthant of l for 1 5 p < w has a empty 
P 

interior. 



Proof. (i) Recall the L? norm is llxll = sup Ix I. Denote P as 
m t t  

the set of all x with nonnegative coordinates. Take any point x' 

in 3' which is bounded from zero i.e., Ix I > m for all t. Then x' 
t 

is an interior point. To see this, since x' is bounded away from 

zero, one can find an &-neighborhood around x' such that any 

element p in this neighborhood has distance from x' measured by 

x - I  < E. Hence x' is an interior point. 

m 2 1/2 
(ii) Consider 4 for p = 2. Its norm is llxll = ( X Ixtl ) . 

P 2 t=l 

Given any E > 0, denote x as an arbitrary element of the 

nonnegative orthant. Since llxll < m there exists N such that V n 2 
E 

r N, x 5 - Define z with 
2 

z = x for n * N, 
n n 

& 
2 = x - - 1 0  for n = N. 
n n 2  

Thus z < 0 and z is not in the nonnegative orthant of ! but is 
N 2 

inL2. Also, 

Since E and x are arbitrary, this shows that the nonnegative 

orthant of ! has an empty interior. 2 
0 

The implication of lemma 1 is that the Separating Hyperplane 

theorem, which stipulates one of the convex subsets to have a 

nonempty interior, fails to apply to the L spaces. This is so 
P 

since the discussion from section 2 illustrates that without a 
+ 

norm interior the hyperplane can be dense in L and the resulting 
P 

linear functional is discontinuous. If one insists to use L norm 
P 

as a measure of openness in L spaces, the absence of interior 
P 



points in these spaces seriously hinders the use of Hahn Banach 

theorem. Furthermore, the theoretical forces of arbitrage pricing 

which hinges on the existence of a continuous state price 

functional is heavily discounted. 

To appreciate the source of nonexistence problem, it is 

useful to recapitulate the pricing analysis where existence is not 

a problem. This occurs in a finite dimensional Euclidean space 

n where an interior point in R+ is guaranteed (Debreu, 1959, p.14). 

Harrison and Pliska (1981) explicitly consider an economy with 

finite number of terminal states. Contingent claims payoffs are 

n 
defined on R+ and these payoffs can be replicated by marketed 

n 
securities with payoff defined on a subspace of IR . 

The no-arbitrage restriction in this finite setting can then 

be translated as a requirement that the subspace has empty 

intersection with the positive orthant except at the origin 

(Harrison and Pliska, 1981, theorem 2.7). Therefore this provides 

a necessary condition that satisfies the Separation theorem, and 

the existence argument can go through. The required separation 

however fails in infinite L spaces (1 5 p < m) since the nonempty 
P 

+ + 
interior for L is missing. It follows that the subspace and L 

P P 
are not disjoined, and one is unable to push the existence 

argument through this case. 

As noted in the above lemma, of all L spaces, only the 
P 

positive orthant of Lm contains a nonempty interior which suggests 

separating hyperplane theorem can be applied. Unfortunately, the 

use of Lm as a state space setting for asset valuation' leads to 

another dilemma. The norm dual of Lm is larger than L1 and 

containing functionals that have no economic meaning. This 

observation is first pointed out by Radner (19671, extensively 



developed by Bewley (1972) and recently emphasized by Back and 

Pliska (1991). 

5. Topological vector space approach to valuation 

Granted that the Hahn Banach theorem is the pivotal step in 

obtaining a continuous price functional, the absence of L -norm 
P 

interior becomes a stumbling block to extending linear price 

functions from the subspace to the entire state space. As the 

vector space is a natural setting for modeling price-taking 

behavior, (rather than abandoning the linear framework) a better 

way to tackle the problem is to look for other definitions of 

interior in general linear spaces. 

Mathematically, this entails introducing a topology weaker 

than the L norm topology to the linear space. The study of 
P 

general topology is a vast subject in the mathematics literature. 

General references that are constantly adhered in working out the 

relevant materials below are from Royden (19681, Berge (1963) and 

Robertson and Robertson (1973). 

Our ultimate goal is to incorporate a class of topological 

vector spaces called the locally convex space (LCS) into the 

valuation analysis. As will be shown shortly, LCS includes some 

features akin to L spaces. Its advantage over other linear 
P 

topological spaces lies in its ability to square up some problems 

that arise in applying the Hahn Banach separation theorem in 

infinite dimensional L spaces. In particular, we show that there 
P 

exists a whole spectrum of locally convex weak topologies by the 

Mackey-Aren theorem. Each of these topologies presents a 

meaningful topological interior satisfying the requirement for 

deriving a closed separating hyperplane. The existence of such a 



wide variety of topologies then places arbitrage pricing in the 

general linear spaces on robust ground. 

t 
C 

k An additional benefit of using a locally convex linear 

topological space is that these spaces embody a lot of structures 
f 

that are expressible in terms of convex cones and dual cones. The 

duality of convex cones has already shown its immensely useful 

geometric insights given in our derivation of the state price 

functional in chapter one. Even though presenting geometry is 

nearly impossible in an infinite dimensional scenario, the basic 

idea of separation theorem between the finite state space and the 

infinite state space is not too remotely disconnected. 

Let X be a nonempty set. A collection z of subsets of X is 

said to be a topology on X if the following holds: 

( i )  The empty set 0 and the set X itself belongs to t. 

(ii) If z and t are members of t, then the intersection 
1 2 

t n t belongs to t. 
1 2 

(iii) If {tA> is an arbitrary collection of members of t, 
&A 

then the union u belongs to t. 
&A 

The pair (X,t) is called a topological space and the members are 

called the open sets in X. Complements of open sets are called 

the closed sets. 

A given set X can have more than one topology. Comparison of 

alternative topologies z and z' on a set X can be attained by set 

inclusion. If z < z', so that every open set under z is an open 

set under z' , then z is said to be coarser then z' . Equivalently 

t' is finer than z in the sense that the former contains more open 

sets. 



The most frequently employed topological concepts are the 

neighborhood base and the Hausdorff topology. A neighborhood of a 

point x is an open set containing x. Denote U(x) as the 

collection of all neighborhoods of x. An important class of open 

sets that separate elements in X are defined by a Hausdorff 

topology. Formally X is a Hausdorff space and t is a Hausdorff 

topology if for two arbitrary distinct points, x,y E X, there 

exists neighborhoods U of x and V of y such that U n V = 0. 

A subcollection U*(x) of U(x) is called a fundamental 

neighborhood system of x if it satisfies the following 

for any U E U(x), there exists V E U*(x) such that V c U. 

X is said to satisfy the first axiom of countability if for each x 

E X, there exists a fundamental neighborhood system of x which has 

countably many members. 

A family of open sets in X is called an open base for X if 

every open set can be expressed as a union of members of this 

family. X is said to satisfy the second axiom of countability if 

there exists an open base for X which has countably many members. 

X with a countable open base is separable. 

The primary reason to consider different topological space is 

that one can introduce weaker topologies than the norm induced 

topology for a normed space and its dual space of linear 

functionals. Formally, 

Definition: A topological vector space is a linear space L with a 

topology such that 

(i) the single valued mapping f of LxL into L given by 

f(x,y) = x+y is continuous; in other words, for each 



neighborhood V(x +y 1,  there exists neighborhoods U (x 
0 0 1 0  

and U (y so that 
2 0 

x E U1(xO), y E U2(yO) implies x+y E V(xO+yO). 

(ii) the single valued mapping g of RxL into L given by 

g(A,x) = Ax is continuous; in other words, for each 

neighborhood V(Ao,xo), there exists a number 7) and a 

neighborhood U(xo) such that 

[A-A0/ 3 3, x E U(xo) implies Ax E U(Ao,xo). 

Behind the above definition is the following intuition: any 

topology t which makes both algebraic operations f and g 

continuous is called a linear topology. z is translation 

invariant in the sense that a subset G c L is open if and only if 

the translate x+G is open for every x E L. It conveys the idea 

that one can characterize a linear topology in L in terms of a 

basis at any point in L. More precisely, if a convenient choice 

of a local base at 0 for L is made, then a local base at x is 

defined by translation 

Two important examples of a linear topology are given 

respectively. First, a normed space L is a topological vector 

space and the open balls induced by its norm 

z = {x E ~lllxll < e l  for X E  L and E > 0. 
S 

form a local base. z can then be called a linear topology (or 
S 



sometimes strong topology). 

Second, let L be a normed space and L' be its dual formed by 

a set of continuous linear functionals on L. Let be a finite 

subset of L'. Given E > 0 ,  define 

One can verify as and E vary, the sets of the form 

give rise to a fundamental base of neighborhoods for a topology in 

L, called the weak topology of L, denoted by tW. L together with 

the weak topology is a topological vector space. 

An important class of topological vector spaces is called the 

locally convex spaces. In this case, every open set containing 

zero contains a convex open set containing 0 .  We shall begin to 

verify the two previously looked at topological vector spaces as 

locally convex spaces and then consider more general cases. 

Lemma 1. A normed space L with its strong topology t is a 
S 

locally convex space. 

Proof. The fundamental base of neighborhood is given by the form 

Now, consider two points x,y such that 



The convex combination of x and y is normed by 

IlAx+(l-A)yll 5 Ac+(l-A)& 

= E where 0 < A < 1. 

Hence Ax+(l-A)y E B&(O) which verifies the neighborhood B (0)  is 
C 

therefore convex. 

0 

Lemma 2. A normed space L with its weak topology r is a locally 
W 

convex space. 

Proof. Consider the fundamental base of neighborhoods: 

where is a finite subset of the dual L' and & > 0 .  The set N a 
& 

is convex since it is the intersection of closed halfspaces. 

0 

A generalization of the previous two results is possible by 

introducing the concept of a seminorm. 

Definition: A seminorm on a vector space L is a real-valued map 

p : L  + [O,m) such that 

A seminorm is a norm if p(x) = 0 implies x = 0. 

Definition: A linear topology is locally convex if it contains a 



basis whose elements are open convex sets containing zero. The 

resulting topological vector space is called a locally convex 

space. 

The connection between seminorms and locally convex spaces is 

given by the following theorem. 

Theorem 1: To each seminorm p on a vector space L, there is a 

coarsest topology t on L compatible with the algebraic structure. 

Under t, L is a locally convex space. 

Ignoring the proof (which is given in Robertson and Robertson 

(1973, p.15)), the statement of the theorem points out clearly 

that in a locally convex topological vector space, the topology is 

given by a family of seminorms. In proving the Hahn Banach 

extension theorem earlier, the Minkowski functional is introduced. 

The defining properties of the convex Minkowski functional 

constitutes a useful example of a seminorm. 

Unraveled in this fashion, Hahn Banach theorem is a 

topological statement since for a continuous linear functional, 

one is able to uncover a linear topology for the given vector 

space. It follows that a seminorm induced topology can be 

substituted for the strong norm topology in the event that the 

latter fails to have an interior necessary for establishing a 

separating hyperplane. 

Rather than presenting the correspondence between a seminorm 

and a topology T as stated above, we shall use this result as the 

next stepping stone to motivate a more encompassing theorem, 

known as the Mackey-Aren theorem. The latter result identifies 

all seminorm induced locally convex topologies that are sufficient 

to derive a continuous linear functional in the dual space of L. 

Some definitions are in order. 



Definition: A dual system <L,L'> is a pair of vector spaces L and 

L' together with a bilinear function (x,xl) + <x,xl> from LxL' 
into R satisfying two properties. 

(i) if <x,xl> = 0 V x' E L' then x = 0, and 

(ii) if <x,xl> = 0 V x E L then x' = 0. 

Definition: A locally convex topology z on L is said to be 

compatible with the dual system <L,L'> whenever (L,z)' = L' holds. 

Equivalently t is a compatible topology whenever there exists a 

linear functional f:L R belonging to the topological dual of 

(L,t) if and only if there exists exactly one x' E L' such that 

f (XI = <x,x'> holds for each x E L. 

Two locally convex topologies that satisfy the above 

definitions for dual pair are the weak topology and the Mackey 

topology. 

Definition: Let (L,L1) be a dual pair. To each x' E L' 

corresponds a seminorm p on L given by 

The coarsest topology on L making this seminorm continuous is the 

weak topology on L' and is denoted by r(L,L1). 

Earlier on it is shown that the collection of the sets 

{X]~(X) < E )  forms a neighborhood base around zero and these bases 

topologize the vector space L. It is of interest to inquire 

whether there exists other seminorms topologizing L in a similar 



fashion. The next two definitions and the lemma immediately after 

makes one step towards addressing this inquiry. 

Definition: For each r (L' , L -compact convex subset C of L' , 

consider the seminorm on L given by 

Definition: Let (L, L' ) be a dual pair. The Mackey topology on L 

denoted by <(L,L1) is the topology of uniform convergence on 

c(Lf,L)-compact convex subsets of L'. That is 

x 4 x if and only if xl(x --+ xf (XI 
a <(L,Lf 1 a 

uniformly as x' runs through any fixed r(L1 ,L)-compact convex 

subset of L'. 

Lenma 3: <(L,L1) is a dual topology. 

Proof. The {PC} as C varies over all c(L1 ,L)-compact, absolutely 

convex sets of L' generating the <(L,L1 )-topology. Consider C c 
,., " 

L' c L where L is the algebraic dual of L. Since the 

restriction of v(L",L) to L' is r(L' ,L), C 

so c(L",L)-closed in L ~ .  From the bipolar 

the appendix), (cO10 = C. But the polar 
L" 

given by C0 = {X~IP~(X)I 5 1). The family 

is r(~~,~)-com~act and 

theorem (introduced in 

of the convex sets are 

of c0 

{CO I C is convex, balanced r (L' , L -compact subset of L' ) 

forms a neighborhood base at 0 E L' for the Mackey topology 

<(L,L1). Therefore 



As stated at the beginning of this section, to search for a 

robust aspect of arbitrage valuation in infinite dimensional 

linear spaces is equivalent to look for a general result that can 

establish the existence of a separating hyperplane. The following 

fundamental duality theorem meets this objective. 

Mackey-Aren theorem: Let (L,Lf be a dual pair. A locally convex 

topology z on L is a dual topology if and only if 

Proof. See the appendix. 

A crucial message of the Mackey-Aren theorem states that 

there exists a spectrum of linear topologies ranged from the weak 

topology to the Mackey topologies such that L under z is precisely 

L'. All these topologies are linear, Hausdorff and locally 

convex. Furthermore, to every z corresponds a continuous and 

finite seminorm (convex functional) so that the prerequisites for 

applying the extension and the separation forms of Hahn-Banach 

theorem are implied by these inclusive topologies. This is so 

since the Mackey-Aren theorem has established a well-defined 

t-interior for one of the disjoint convex subsets of L. 

Consequently, a nontrivial continuous linear functional is 

warranted to exist in the topological dual L' The next section 

illustrates how this topological result fits into an arbitrage 

valuation framework. 



6. Arbitrage valuation in a locally convex space 

Duality pairing via the locally convex spaces appears 

sparsely in economics literature. Two classical papers by Debreu 

(1954) and Bewley (1972) respectively make implicit and explicit 

appeal to Mackey-Aren theorem to extend the welfare theorem of 

Walrasian equilibrium to infinite dimensional vector spaces. More 

recently, Magill (1981) also exploits locally convex spaces to 

study infinite horizon programs in growth theory. 

As noted earlier, the application of the Hahn Banach theorem 

to finance and asset pricing is found in a terse analysis by Ross' 

(1978, appendix). Ross' paper is motivated by the prevailing use 

of a Brownian motion in financial valuation theory concerning 

options pricing. A Brownian motion is a continuous-time 

stochastic process that satisfies the def i-ning property of an 

element in an infinite dimensional linear space. More precisely, 

both the time and state on which the Brownian motion defined fall 

into a continuum. 

Ross introduces an abstract linear space and a subspace of 

marketed securities. His problem is therefore reduced to finding 

a closed hyperplane that separates the linear subspaces and the 

positive orthant. A fundamental assumption in that development is 

the absence of arbitrage opportunity in the subspace of marketed 

securities, which then implies the existence of a linear 

functional defined over that subspace. This part of Ross' 

argument overlaps the finite state space model developed in 

chapter 1. 

The departure of the two models begins when Ross assumes a 

topological interior for the positive orthant. This assumption 

however hardly leads to a direct derivation of a continuous price 

functional defined for the entire space for two reasons. First, 



the subspaces of a general topological space are not automatically 

closed. This forces us to consider the closure argument and the 

separating hyperplane theorem has to be applied in a roundabout 

fashion. Note that, if the marketed subspace is assumed to be 

closed, the exercise is enormously simplified. In this case, the 

subspace is the desired closed hyperplane. 

A second problem arises from the fact that the extension part 

of the Hahn Banach theorem requires the separability of the 

underlying linear space. This poses some difficulty when the 

linear space is L which is inseparable (Aliprantis and 
m 

Burkinshaw, 1981, p.212). The rest of this section endeavors to 

resolve these two problems using results from linear topological 

spaces developed in the last section. 

Let X be a topological vector space. A convex cone C is a 

convex subset of X such that 

x E C implies Ax E C for any scalar h > 0 

let A and B be convex cones in X. 

Definition: A continuous linear functional f :X 3 llR separates A 

from B if 

The function f strictly separates A from B if 

The following basic result records a relationship between a linear 

functional and linear subspaces of X. 



Lemma 1: Let f be a nonzero linear functional on X. Then the 

hyperplane H = {x 1 f (x) = c) is closed for every c if and only if f 

is continuous. 

Proof. It suffices to show the argument by letting X be a normed 

space. Suppose f is continuous. Let {x be a sequence from H 
n 

convergent to x E X. Then c = f (xn) 3 f and thus x E H and H is 

closed. Conversely, assume that M = {xlf(x) = 0) is closed. Let 

x = x +M and suppose x 3 x in X. Then 
0 n 

Let d denote the distance of xo from M, we have 

la -aid 5 Ilx -xll 3 0 
n n 

and hence a 3 a. Also 
n 

f(x n = anf(xo)+f(mn) 

= a f (xo) (since f(mn) = 0) n 

-+ af(x 1 = f(x). 0 

Thus f is continuous on X. 

The above lemma can be directly applied to the market model. 

If M is defined as a linear subspace, then if M is closed, any 

linear price functional from M can be extended to X. The next 

results streamline the nice property about linear subspaces of 

finite dimensional X. 

Theorem 1 (a) Every finite dimensional subspace of a linear 

topological space is closed. (b) Every linear functional on a 



finite-dimensional linear topological space is continuous. 

Proof. See Day (1973, p.15). 

0 

It follows from theorem 1 that in a finite security market model, 

absence of arbitrage opportunity is sufficient to derive a 

continuous linear price functional defined on the entire X. 

In a general infinite dimensional topological vector space, 

linear subspaces are not necessarily closed. Consider the space 

E2 with infinite sequences. Let Y be the subspace of C2 

containing vectors that possesses only a finite number of nonzero 

components, i.e. 

To show that Y is not closed, consider the sequence {y 1 in Y 
n 

1 1 1  
defined by yl = (1,0,. . 1 ,  y2 = (1,-,0,. . . 1, y3 = (1,-,-,(I,. . 1, . . . 

2 2 3 

We claim that the limit of this sequence is the vector 

1 1  1 m 1 
(I,-,- , . . . -, . . . 1 .  First, observe that llxll = C (-1 < m, hence 

2 3 'k n=l 2 
n 

x E E2. Next, 

tends to zero as n 3 m. However all components of y are not zero, 

k 
showing the limit of the sequence {y is not in Y. It follows 

that Y is not a closed subspace. 



In the light of this daunting example, the development of the 

next general separation theorem relies on using closures of linear 
- - 

subspaces. Denote the closures of convex sets A and B by A and B. 

Proposition 1: Suppose A and B are nonempty, disjoint convex 

cones in a locally convex topological vector space X. Then there 

exists a nonzero, continuous linear functional 

- 
F:X 3 R separating A from B if (B-A) # A. 

,., ,., 

Proof. Consider two nonempty disjoint convex sets A and B. 

Assume zero is an interior point of either one of them. Otherwise 

by translation, 

- - 
By hypothesis, (B-A) # A, there exists v 4 (B-A). W. 1.o.g. let 

0 

v belong to A. Therefore the set 
0 

is convex with 0 as its interior and v 4 K. Since X is a locally 
0 

convex space, there is a convex neighborhood of v N(v such 
0 '  0 

that 

N(v ) n (B-A) = 0. 
0 

Let C be the convex cone generated by N(v ) such that 
0 



C = {X E XIX = hy for some h > 0 and y G N(vo)}. 

The rest of the proof is to construct a linear subspace and 

define a linear functional in that subspace. To this end, let E 

be a flat subset of C which contains no interior point of K and 

let C be the smallest linear subspace of C containing E. Then E 
0 

is a hyperplane in Co with E = {xlf(x) = 1 Denote the 

Minkowski seminorm of K by p 
K ' 

Since E contains no point of 

interior of K, we have 

By homogeneity, 

f(tx) 5 pK(tx) if x E E and t > 0; 

f(tx) ' 0 5 p (tx) K 
if t 5 0. 

Hence f is dominated by p K' 
By Hahn Banach extension theorem 

proven in section 3, there is an extension F of f from E to X with 

F(xl 5 pK(x). Let 

Continuity of F comes from the continuity of the semi-norm p K' 

This implies H is closed. 

0 

The next corollary shows that the hyperplane H separates the 

sets A and B. 

Corollary: Let A and B be disjoint convex sets as above. Then 

there is a closed hyperplane H separating A and B. 



Proof. From the above separation, F is continuous so that 

F(x) 5 0 for x E K' = B-A. 

This implies 

for x E B and x E A ,  
1 2 F(xl) 5 F(x2). 

We can therefore find a real number c such that 

SUPx EB 
F(x) 5 c r inf F(x). 

1 x EA 2 

The separating hyperplane is identified to be 

H = {x~F(x) = c). 

6.1. Interpretation of the separation theorem 

Two aspects of the above separation theorem require comment; 

one is technical whereas the other concerns the economic 

interpretation. Throughout the above proof we incorporate an idea 

very similar in spirit to the well known theorem of minimum norm 

in Hilbert space (see Luenberger p.118). In a general linear 

topological space, the convex set K with zero as its interior 
X 

point has its Minkowski functional p (x) = inf{r 1 -  E K, r > 0) K r 

defines a kind of distance from the origin. 

If distance is given by an L norm one can then identify 
P 

p (XI as a distance measure for a unit sphere. However since K is K 
arbitrary, especially including convex sets that have no L norm 

P 



interior, p (x) represents a weaker but more robust notion of 
K 

distance from the origin. This robustness of p (x) is reflected 
K 

by the fact that implied by pK(x) is a family of locally convex 

topology ranged from weak topology to Mackey topology. The role 

of Mackey-Aren theorem is to transform the earlier imprecise 

extension theorem into a precise one with an identifiable family 

of locally convex topologies. 

Next, a subtle economic reasoning of the separation theorem 
- 

is crucially embodied in the restriction (B-A) * A. In terms of 

the market model with a linear subspace M representing portfolio 

of traded securities, both B and A are subsets of M. On the one 

hand, the set B consists of elements that are portfolio 

combination such that current cost is nonpositive whereas the 

future payoff is nonnegative. Therefore B is the feasible subset 

of M that has the arbitrage opportunity. On the other hand, the 

set A represent subset of M that are portfolio of securities with 

positive payoff and command positive initial cost. The objective 

of applying the Hahn Banach theorem is to separate the set with 

arbitrage opportunities from the set that is free of arbitrage 

profits by a linear price functional. 

Note that the standard presumption of absence of arbitrage 

opportunity is not sufficient enough for extension in a general 

setting. This is due to the earlier mentioned phenomenon that in 

an infinite dimensional vector space setting, linear subspaces are 

not closed. Kreps (1981) has characterized an approximate 

arbitrage opportunity called the free lunch in the following 

manner. 

Definition: A free lunch is a sequence {(rn,,~,)) in MxX+ 

satisfying 



(i) m r x - 
n n' 

(ii) x converges to some nonzero k E X+, and 
n 

(iii) lim inf f(m 5 0. 
n 

The closure of the set of arbitrage portfolio represented by 

(B-A) capture the essence of Kreps' notion of free lunch. To 

obtain a meaningful separation theorem for valuation, it is 

therefore necessary to rule out such asymptotic arbitrage 

opportunity. This is given by (B-A) # A in the theorem. Define 

v E M as a sure payoff in the market model with a value of one. 
0 

Then the absence of free lunch can be equivalently stated as 

N(vo) n (B-A) = 0, 

where N(v represents a convex neighborhood of v 
0 0 ' 

A stronger condition is often invoked to substitute (B-A) # 

A, namely, the marketed subspace M is closed. In this case, 

absence of arbitrage opportunity in M is equivalent to having M as 

the closed hyperplane. Any linear function defined on M is 

continuous and can be extended to the entire linear space. 

Translated into economic language, the assumption of M being 

closed is equivalent to assuming that the security market as being 

complete. This M is effectively reduced to be a linear span of 

the space X. 

6.2. Application of the separation to valuation 

Two valuation models are reviewed in this subsection. The 

objective here is to consider how the general separation theorem 

developed above can fit into these existing models. The first 



model is developed by Hansen and Richard (1987). While it is a 

generic market model, Hansen and Richard's framework are strongly 

colored by two features. The linear space of payoff is modeled by 

an infinite dimensional space X = L (R,Z,P) with the mean-square 
2 

norm given by 

Hansen and Richard assume the subspace M with marketed 

securities has no arbitrage opportunities. Furthermore, M is 

assumed to be a closed subspace in the sense that for any sequence 

(m in M such that m m, it follows that m E M. The resulting n n 

linear functional extended from the subspace M to X is essentially 

an application of a separating hyperplane theorem (see Duffie, 

1992, p.227). 

As mentioned above, assuming M is closed is equivalent to 

making the strong assumption that the security market is complete. 

Following the more general approach developed here, X = L2(R,S,P) 

is treated as a topological vector space. The topology is induced 

by the open neighborhood of seminorm convex functionals. More 

specifically, let t be a locally convex topology that is 

compatible with the dual system < L ~ , L ~ > .  That is (L2,r)' = L2' 

where L ' denote the topological dual of L2. Suppose M is the 
2 

marketed subspace on which is defined a linear price functional f. 

Let A and B be subsets of M and (B-A) # A. Then by the general 

separation theorem, we obtain a linear extended price functional F 

defined on X. 

A second application of valuation in locally convex space is 

to pricing of contingent claims in a space of bounded functions, 

L . Of all the L spaces, Lm is the only one that has a nonempty 
m P 



norm interior; hence applying Hahn Banach separation theorem does 

not seem to pose any problem in this case. Unfortunately 

valuation in L is confounded by the fact that the norm dual of Lm 
m 

is not L but a space of bounded additive linear set functions. 
1 ' 

From the classic theorem of Yosida and Hewitt (l952), the linear 

functional is decomposed into a countably additive component and 

the finitely additive component. While the countably additive set 

functional is an element of L the finitely additive set function 
1 ' 

has very little economic interpretation. 

In a general equilibrium setting where the commodity space is 

chosen to be Lm, Bewley (1972) introduces Mackey topology into his 

model and under that topology, the topological dual is L More 1' 

precisely, treating Lm as a locally convex space and by the Mackey 

Aren theorem discussed earlier, there exists a locally convex 

topology such that (La,L1 ) forms a dual pair. That topology is 

the Mackey topology. The same method applies to arbitrage 

valuation but in this case one needs to incorporate a mild 

assumption that investor' s preference relation is upper 

semicontinuous with respect to the Mackey topology. All that 

said, we shall illustrate here how existence of a price functional 

can be resolved, retrieving most of the insights from Bewley 

(1972). 

Denote the linear space by L = La(R,9,P) and let <(L,LJ ) be 

the linear Mackey topology defined on L. As before, M (not the 

same M as denoted in <(L,L1)) is the linear subspace where a 

finite number of securities are traded. Investors' preference is 

given by ) .  
* 

Definition: ) is said to be convex and upper-semicontinuous in 
* 

m + 
the sense that for each x E L+ , {y E La ly x} is convex, and {y - 



+ 
E Lw Iy XI is a closed subset of Lw in the r - M' 

Absence of arbitrage leads to the existence of a nonzero 

continuous linear function 9 on Lw since the upper contour 

preference set is separated from the budget set by a closed 

hyperplane. The rest of the problem becomes exclusively an 
+ 

analysis of 9. For any x E Lw , 9(x) has the representation 

(Yosida and Hewitt, 1952, theorem 2.3) 

where 9 is a countably additive measure and 9 is a nonnegative 
C P 

purely finitely additive measure. Also by Yosida and Hewitt 

(1952, Theorem 1.22), there exists sequence of measurable events 

gi, such that 

lim P(Yi) = 0 ,  lim 9c(3i) = 0 and 9 (9iC) = 0. 
ijo3 ijo3 P 

The interpretable content of 9 is that it is a distantly i 

remote event with very low likelihood of occurrence and therefore 

is assigned a value insignificantly different from zero by \kc. 

Its almost singular value is derived mainly from the finitely 

additive measure 9 . The next result (the proof of which mimics 
P 

that offered in Bewley, 1972) argues that if - ) is Mackey upper- 
semicontinuous, 9 = 0. 

P 

Theorem. If ). is Mackey upper semicontinuous, \k is a countably 
-1  

additive set function on R. 



Proof. If \k is not countably additive on R, there exists an 

increasing sequence of sets 3 Zk c R ,  such that k ' 

Let Ek = Zk u (R\u yk) (where "\" represents set subtraction) and 
k 

9(R) = 1. Then u E = R and 9(E = I-& for all k. 
k k  k 

Next, consider the measurable functions 

x = X+EX and x = x - 2 ~  . 
R k R\Ek 

A 

We claim that x ) x for sufficiently large k. This is so since by 

Alaoglus's theorem (Dunford and Schwartz, 1958, p.4681, subsets of 

L are Mackey compact under Mackey topology; hence 
1 

A A 

x x for large enough k, 
k 

therefore 9(xk) > 

But 

This yields a contradiction. 



7. Conclusion 

This chapter has developed a self-contained functional 

analysis of the arbitrage pricing model. A weak existence result 

for the linear extended price functional can be established by 

means of defining a Minkowski convex functional. However for 

squaring up the nonexistence problem in L spaces due to lack of 
P 

norm interior, we are motivated to explore the linear topological 

spaces. The key to the existence of an extended linear price 

functional is based on the duality theorem in a locally convex 

linear topological space. 

In a loose sense, the present analysis is an anologue to an 

infinite dimensional Farkas-Lemma, a result not known to the 

author. Such analogy aside, the present analysis has its own 

merit for it interprets a general commodity space as a space of 
n 

function which then incidentally the customarily used Euclidean !R 

as a special case. This in turn stresses the role played by Hahn 

Banach theorem in terms of relating a function space and its dual. 

In this chapter absence of arbitrage can be identified as a 

economic force that induces the Hahn Banach theorem. However 

other economic presumption can also be made to invoke the same 

theorem. To head off a bit more in that direction, note that it 

is a paradigm in finance that investor maximizes their expected 

utility While a shadow price functional is derived in the 

present setting that says nothing much about specific investor's 

preference, it is natural to wonder whether one can tightly relate 

some familiar preference characteristics such as marginal rate of 

substitution to the linear price functional. That possibility is 

investigated in the next chapter. A more challenging objective in 

the next chapter, however, is to present an alternative solution 

approach, which again relies on applying the Hahn Banach theorem, 

to the pricing of contingent claims by absence of arbitrage in an 



infinite dimensional setting. 

Appendix: Proof of Mackey Aren theorem 

The discussion of Mackey Aren theorem is found in a number of 

advanced functional analysis texts, for instance, Robertson and 

Robertson (1973), Choquet (1969) and Narici/Bockenstein (1985). 

The material here follows from the more easily assessable proof of 

Reed and Simon (1980). One of the crucial concepts that derives 

the Mackey Aren theorem is that of polar sets. 

Definition: Let <L,L'> be a dual pair and A c L. The polar of A ,  

denoted by A', is given by 

An equivalent notation for A' is A' 
L' ' 

Some basic facts about A" are 

(a) A0 is convex, balanced and c(L,L1) closed. 

(b) If A c B, then B' c A'. 

Lemma A. 1. (The bipolar theorem). Let L and L' be a dual pair. 

Then using c(L,L1)-topology on L, we have 



where ach(L1, the absolutely convex hull of L, is the smallest 

balanced convex set containing L. That is 

and the closure is in the o(L,L1 topology. 

Proof. Let LC = ach(L). Clearly L c LO O  and since (L')O is 

convex, balance, and o(L,L1 )-closed, LC c (Lolo. On the other 

hand, if x e LC, we can find f E L' with f(e) 5 1 for e E LC and 

f (x) > 1. Since LC is balanced, sup If (el / 5 1, so f E LO. 
ecL C 

But then 

If(x)l > 1 implies x 4 LOO. 

Lemna A . 2 .  The Mackey topology is a dual topology. 

Proof. This is done in the text. 

0 

Lemna A.  3. Let U c L be a balance, convex neighborhood of 0 in 

some <L,L'> dual topology. Then ULI0 is a o(L1,L)-compact set in 

Proof. This is a restatement of the Banach-Alaoglu theorem. 

0 

Lennna A . 4 .  Every dual topology is weaker than the Mackey 

topology. 



Proof. Let p be a seminorm on E in some given dual topology. We 

will shown that p = p for some cr(L,L')-compact, convex subset, C, 
C 

in L'. Let U = {xllp(x)( 5 1). Then U is balanced, convex and 

cr(L, L' )-closed. Thus (u' ) ' = U by the double polar theorem. Let 

C = U' c L'. By Lemma A.3, C is cr(L1,L)-compact and it is convex. 

By definition (~'1' = {XI lpC(x) l + 11 = U, so pC = p. 

Proof of Mackey Aren theorem: Since r(L,L') and <(L,L1 1 

topologies are dual topologies (Lemma A.2) any z in between is 

also a dual topology. By definition, L ,  1 is the weakest 

possible dual topology and by Lemma A . 4 ,  <(L,L1) is the strongest 

possible dual topology. 

0 



This chapter probes deeper with the issue of price extension 
I 

from a subspace of random variables to the entire space of 

contingent payoffs. While the analysis is still based on the 

topological method in the sense that extension of a continuous 

price functional is equivalent to finding a closed hyperplane the 

treatment of the existence problem here differs from the 

preference free approach in the last chapter. As discussed in the 

previous chapter, the general existence problem can be handled 

without referring to preference characteristics. In that 

framework, the correspondence between the absence of arbitrage and 

the existence of a continuous linear functional is confirmed since 

the pricing problem is then reduced to a reformulation of the Hahn 

Banach theorem in a locally convex space. 

The analysis of arbitrage pricing problem is more far- 

reaching than merely motivating the existence of a price 

functional, however. Intuition suggests that pricing in economics 

should be ultimately related to optimization and equilibrium. In 

a simple finite setting with a linear state space, the equivalence 

among the absence of arbitrage, the optimal solution to an 

investor's portfolio choice problem, the existence of a linear 

price functional, the use of a risk neutral probability for asset 

pricing and the representation of the price functional by the 

marginal utility of an average agent can be shown by the 

fundamental theorem of arbitrage valuation (Dybvig and Ross, 1987 

and Back and Pliska, 1991). 

In the finance literature, the formalization of a price 

extension that takes into account of preference continuity with 

respect to a topology is due to an influential analysis by 

Harrison and Kreps (1979). One of the important results from 



these authors 

existence of a 

measure. This 

and Duffie and 

is a theorem about correspondence between the 

price functional and a risk-adjusted probability 

leads to further insights developed by Kreps (1982) 

Huang (1985) in terms of an interesting connection 

between static economic equilibrium and multiperiod dynamic 

economic equilibrium under uncertainty in a Walrasian model. To 

sum up briefly, these results are mainly consolidations of 

Arrow's insight (1953) about the role of security market in an 

optimal allocation of risk. 

While the static-dynamic correspondence is an important 

theoretical achievement, a more fundamental contribution of 

Harrison and Kreps' paper is its application of the separating 

hyperplane argument to financial asset pricing problem. In 

particular they generalize the earlier arbitrage options pricing 

theories from Black and Scholes (1973) to Cox and Ross (1976) by 

developing a mathematical economics approach to these finance 

models. Implicit in these earlier models is an assertion about 

the existence of a continuous state price functional that, upon a 

probabilistic transformation, can be used to value random payoffs 

defined on an abstract infinite dimensional vector space. 

Harrison and Kreps observe that the extension form and 

separation form of the general Hahn-Banach theorem yielding such 

price functional can be combined as a problem of finding a 

geometric separating hyperplane in their model. The idea is to 

assume absence of arbitrage opportunity in a linear subspace of 

marketed securities and then deduce a closed hyperplane that 

separates the subspace from the positive orthant. 

As the analysis from the last chapter can testify, this 

separation is hardly straightforward in an infinite dimensional 

setting. The difficultly arises since, on the one hand, the L 
P 

spaces are traditionally used to model state spaces for stochastic 



finance models. On the other hand these spaces in general suffer 
+ 

from a lack of norm interior in L which is a basic requirement 
P 

for the separation theorem to work. 

Harrison and Kreps' attack on the problem is to invent a 

concept called the viability of the security price system. A 

price system is viable when it meets two criteria. First, no 

arbitrage opportunities in the marketed subspace implies the 

values of all portfolio combination of assets can be represented 

by a linear functional in that subspace. Second, given the 

subspace of securities and the price functionals, agents with a 

prespecified preference are able to solve their portfolio choice 

problem. The solution of the agent's optimization implies the 

linear price functional from the subspace can then be extended to 

the entire state space. 

One of the sufficient conditions, as pointed out by Harrison 

and Kreps, satisfying the definition of viability is that agent's 

preference is representable by an expected utility functional. In 

the usual finite dimensional state space, the solution to the 

maximization of expected utility is both necessary and sufficient 

for the existence of a continuous state price functional as 

demonstrated by Rubinstein (1974). Via the solution to the 

expected utility maximization, the extended state price functional 

can be interpreted as the familiar Lagrange multiplier (Back, 1991 

appendix). 

Expected utility representation of preference is unduly 

restrictive since it calls for the existence of infinite moments 

of a random variable. Moreover the assumptions for preference to 

satisfy are subject to strong criticisms (Kasui and Schmeidler, 

1991). Recent development by Duffie and Skiadas (1994) looks into 

two extensive classes of functional representations of preference. 

The first class, originally discussed by Constantinides (19891, is 



called the habit-formation preference. The second class, 

motivated by Duffie and Epstein (1992), is called the differential 

utility. These modifications lead to the more general non- 

expected utility functional that is developed to tackle the 

"equity premium puzzle" (Prescott and Mehra, 1985). The relation 

of these general utility functions to the extended state price is 

collectively expressed as the utility gradient approach to asset 

pricing (Duffie and Skiadas, 1994). 

A more subtle interpretation of Harrison and Kreps notion of 

viability than stipulating preference to be representable by 

expected utility can also be offered. This view is more in line 

with the usual general equilibrium modeling. A preference 

relation is assumed to be transitive, convex, increasing and 

continuous with respect to a topology denoted by z. The last 

topological assumption about preference is then combined with the 

linear price function from the marketed subspace to induce the 

theorem of separating hyperplane. 

Note that the preference continuity especially plays a 

productive role for the existence of a closed hyperplane in the 

case where the linear space does not have an open interior in its 

positive orthant. One of the advantages of this approach over the 

utility gradient approach is that it neither asks for any specific 

functional form such as a quadratic utility function nor requires 

differentiability assumption. 

However, there is a danger associated with the topological 

interpretation of viability. As an analogy to the discrete state 

space theory, given a z continuous preference one would like to 

conclude that in an infinite dimensional function space the state 

price functional is represented by a continuous marginal rate of 

substitution function. This is unfortunately not always the case 

and two examples are used in this chapter to illustrate the 



possible source of the existence problem. We are therefore 

motivated to 'strengthen' the restrictions on preference so that 

the resulting marginal rate of substitution can be representable 

as a continuous price functional. 

In an independent path-breaking paper on the general 

equilibrium analysis Mas-Cole11 (1986a) introduces an instrumental 

concept known as uniform proper preference. Other advances on 

general equilibrium problems utilizing the same concept is found 

in Richard and Zame (19861, Mas-Cole11 (1986b1 and Aliprantis, 

Brown and Burkinshaw (1987). A relaxation for uniform properness 

to pointwise properness is found in Yannelis and Zame (19861, and 

Araujo and Monteiro (1989). 

Primarily developed to deal with a Walrasian general 

equilibrium problem in an infinite dimensional commodity space, 

Mas-Colell's notion of uniform proper preference turns out to be 

an ideal candidate to handle the above arbitrage pricing problem 

in general state spaces as well. It will be shown below that a 

useful feature of bringing uniform preference into the model is 

that it leads to a bounded marginal rate of substitution, 

sufficient for the existence of a continuous price functional. A 

price system in which preference is uniformly proper is also 

consonant with Harrison and Kreps notion of viable price system. 

Incorporating some of the tools from general equilibrium 

analysis for the arbitrage pricing has an additional payoff as it 

illuminates an underlying methodological issue. It brings closer 

the linkage between the arbitrage theory and the Walrasian 

equilibrium theory so that the two perfect foresight information 

models can be treated as complementary to each other. There is an 

on-going tradition in finance that for the purpose of valuing 

derivative securities one can derive the continuous pricing 

functional in the dual space without explicitly identifying the 



underlying equilibrium allocations. However, that same setting 

can be enriched if one is concerned with the issues regarding 

Pareto optimality of the model parameters since the same valuation 

framework can be readily expanded for such purpose. 

This chapter unfolds as follows. Section 1 reexamines the 

original idea of pricing by viability. In this context, the 

continuity of preference relation plays an important role in 

deriving the separating hyperplane. Merely having preference 

continuity in an infinite dimensional setting does not necessarily 

lead to a price extension. In section 2 two examples are 

recollected from the general equilibrium literature to illustrate 

this unfortunate pathology. This motivates the introduction of 

the uniform proper preference due to Mas-Cole11 in section 3. 

The mathematical significance of uniform proper preference is that 

it can be well coordinated with most of the commonly used linear 

spaces in finance and most importantly it induces a nontrivial 

separating hyperplane. 

In section 4, the canonical market model is retrieved and 

some basic feature of the market model can be derived quite 

independently of the preference characteristics. However, 

incorporation of the uniform proper preference is the main key to 

the existence of a continuous linear price functional in this 

model. In this market model, we define the state space of payoff 

as a topological vector lattice. Some of the characteristics of 

vector lattices are collected in the appendix. Finally, by 

further specializing the commodity space to be a Banach lattice, 

the Black-Scholes state price density is rediscovered in section 

5. 



Part of the thesis from the last chapter unravels the fact 

that arbitrage pricing in a general linear space is a topological 

problem. This is so since the separation part of the Hahn Banach 

theorem entails one of the pair of disjoint convex sets to have a 

nonempty interior. Among most of the commonly used L spaces in 
P 

finance, the above topological requirement presents difficulty for 

obtaining an extended linear price functional as the interior of 

positive orthant of these spaces is proven to be empty. 

In their seminal paper, Harrison and Kreps (1979) and Kreps 

(1981) introduce a Separating Hyperplane argument by invoking an 

assumption about continuous preference defined on the positive 

orthant of L spaces. Attached to this methodology is a 
P 

presumption that one can associate a security market model with a 

general equilibrium model. The resulting continuous price 

functional is also dubbed the arbitrage equilibrium price 

functional. Incidentally, the same connection between absence of 

arbitrage and the equilibrium of the security market is also 

foreshadowed in the original Black-Scholes paper (1973). 

There are two principal components to the Harrison and Kreps 

pricing argument. First, a finite number of marketed securities 

are traded in a subspace of a given linear commodity space L. 

However, separation of the subspace that embodies arbitrage 

opportunity from the positive orthant is not possible if L is 

modeled by a Lp space as the interior under the L norm is empty. 
P 

This problem is removed by regarding the commodity space as a 

topological space where investor' s preference is specified. As a 

consequence of preference continuity, one is able to recreate a 

topological interior. 

More specifically, the space is endowed with a Hausdorff, 



metrizable topology z that is compatible with the L norm 
P 

topology. An axiomatic specification of preference can then be 

introduced. Namely, a preference relation denoted by ) is assumed 
." 

to be 

(i) reflexive, transitive and complete; 

(ii) convex: theset { y ~ ~ l y ) x )  - isconvexforeveryx~L; 

(iii) continuous: is both upper- and lower-semicontinuous 
." 

Upper-semicontinuous ) implies the set {x E L ~ X  ) y) are z-closed 
." .., 

for all y E L; lower-semicontinuous ) implies the set {x E ~ l y  ) - .., 

x) is t-closed for all y E L. 

The next result follows immediately from the above 

characterization of . Let L be a topological space with a 
.., 

topology t. 

Theorem 1: For a preference relation defined on L, the .., 

following are equivalent. 

(a) The preference ) is continuous. - 
(b) The preference ) is closed in LxL. - 
(c) If x ) y holds in L, then there exists disjoint neighborhoods 

Ux and U of x and y respectively such that a E Ux and 
Y 

b E U implying a ) b. 
Y 

Proof. (a) + (c). Let x ) y. We have two cases 

Case L: There exists some z E L such that x ) z ) y. In this 

case, the two neighborhoods 

U = {a E  la 1 z) and U = {b E L I Z  ) b) 
X Y 



satisfying the desired properties. 

Case a: There is no z E L satisfying x z y. In this case, 

take 

U = {a E Lla ) y) and U = {b E Llx ) b). 
X Y 

(c) + (b). Let {(xa,ya)) be a net of - ) satisfying (xa,ya) 3 

(x,y) in LxL. If y x holds, then there exists two neighborhoods 

U and U of x and y respectively, such that 
X Y 

a E Ux and b E U imply b ) a. 
Y 

In particular, for all sufficiently large a, we must have y ) x 
a a' 

contradiction. Hence x ) y holds and so (x,y) belongs to } .  That - -. 
is, is a closed subset LxL. - 

(b) + (a). Let {y be a net of {y E ~ l y  ) x) satisfying y 3 z a w a 
in L. Then the net {(y ,XI) of > satisfies (y XI + (z,x) in LxL, 

a - a' 

we see that (z,x) E 1. Thus z ) x holds, proving that the set {y - - 
E ~ l y  ) x) is a closed set. - 

In a similar fashion, we can show that the set {y E Llx 1 y) - 
is a closed set for each x E L and the proof is complete. 

0 

The above result is an important building block to the 

application of the Separating Hyperplane theorem. Harrison and 

Kreps motivates the separation argument by introducing the concept 

of a viable price system. In words, a price system with a set of 

marketed securities is viable if agents with the above preference 



characteristics are able to form an optimal portfolio of 

securities. As an example if preferences are representable by a 

smooth expected utility function, viability is readily captured by 

the familiar first order condition of utility maximization. 

More generally, the feasible sets of portfolio of securities 

and the set of preference relation are convex. In addition, the 

continuity of preference relation has induced a nonempty open 

neighborhood by the above theorem 1. Given this scenario, the 

Separating Hyperplane theorem can then be appealed to yield a 

linear functional which by continuity of ) can be extended to the - 
entire L. This is the basic logic behind the viability 

proposition of Harrison and Kreps (1979, theorem 1 p. 386 ) .  In 

the next subsection, it is shown that because of the important 

role born by the preference relation, some further restrictions on 

> will be needed to ensure viability of the price system is a 
* 

sufficient condition to generate a continuous price functional. 

2. The insufficiency of preference continuity for valuation 

As discussed in the last chapter, the derivation of the 

linear state price functional can be deduced without any need for 

preference characterization. However, with preference 

incorporated in deriving the arbitrage price functional does have 

a conceptual advantage. Given that a linear topology is chosen 

for the linear state space of payoff, the latter approach implies 

there exists investors' preference that is continuous with respect 

to the choice of the topology. It follows that the resulting 

price functional can be represented by the marginal rate of 

substitution of the investor. Further, such marginal utility 

representation of the state price functional can be suitably 

readjusted to yield a "risk-neutral" probability measure for 



valuing contingent claims. 

Pushing the above reasoning one step down, it is tempting to 

offer the following conclusion. A continuous linear price 

functional implies the marginal rate of substitution is a 

continuous function; conversely a continuous preference relation 

likely yields a marginal rate of substitution that is a continuous 

linear functional in the dual (price) space. While the first 

implication may be valid by definition, the reverse implication 

can be found on a shaky ground if the linear space does not have 

any clear-cut interior. The following two examples illustrate the 

need for additional topological characterization for preference 

other than continuity. 

Example 1 (Jones 1984) 

Consider the commodity space L = L' = l which is a space of 
2 

square summable (infinite) sequence. L is endowed with the weak 

topology, that is t = cr(C ,l 1. There is only one consumer in 
2 2 

this economy and his utility function is given by 

is called the felicity function. U(x) is continuous with respect 

to t, which captures a good economic intuition. Brown and Lewis 

(1981) has shown that continuity of preference relation with 

respect to the weak topology (r(L,L1) is equivalent to assuming 

patience on the part of the economic agents in some intertemporal 

models. 

1 
Introduce the endowment bundle as w(t) = -. Cox, Ingersoll 

t2 



and Ross (1985) demonstrate that an equilibrium price is obtained 

if the single agent is induced to optimally choose his own 

endowment in the economy. Yet this resulting price is not 

continuous. To see the problem, note that the only price that 

clears the market is found by setting it equal to marginal utility 

evaluated at endowment. That is 

m 1 /2 
But the condition [ Z (u' ( ) , tj2] < m is not satisfied since 

t=l 
the above sequence is not square summable. Therefore, the 

resulting p(t) represented by a marginal utility function is 

linear but not continuous. 

0 

Example 2 (Mas-Colell, 1986) 

The commodity space is L = ca(K), where K = Z +  n { m )  is the 

compactification of positive integers. This is a linear space of 

countably signed additive measures with the bounded variation 

norms. For x E L and i E K, let x = x({i)) and define a felicity 
i 

function ui:[O,m) 3 [O,m) by 

i 1 
u p )  = 2 t for t s - 

22i 
1 1  1 

+ t for t > -. 
2' 22i 

22i 

The preference relation on L+ is represented by a concave utility 

function U(x) = C u. (x.) where U(x) is continuous for the weak 
i=l 1 1 



convergence for measure (i.e. weak* continuous). Introduce an 

endowment by 

I 

0 = -  for i < m and 0 = l  
i a, 

22i+1 

Within the relevant range where the endowment lies, the 
i 

marginal utility is given by u ' = 2 . The infinite sum of the i 
above sequence of marginal utilities is unbounded. The only value 

for the given endowment bundle in this one person economy is zero. 

To see this, let p be a nonzero positive linear functional. For 

any x r 0, 

w+x ) w - hence p - x r O .  

For i E K, define p = pSei 
i 

where e({j)) = 1 i f j = l  

0 otherwise 

Assume p-w > 0 and by equating the marginal rate of substitution 

to relative prices, we have 

Next create a nonnegative bundle as follows. Define z E L+ 

1 n 
by zi = - ; and z E L+ by 

i 

0 otherwise. 



It follows that 

n n 
z-z 2 0  implying p-z S p - z  V n. 

However, 

n 
For a sufficiently large n, p-z >> p-z. This is a contradiction, 

which can only be avoided when p = 0 ,  i.e. p-w = 0. 

0 

In the previous examples 1 and 2, preferences are 

representable by an increasing concave utility function. More 

specifically the utility function in the first example is 

differentiable in addition to being continuous whereas in the 

second example it is only continuous. However none of these 

continuous preference generates a nontrivial continuous linear 

price functional, since their corresponding marginal utilities are 

unbounded. 

In principle, prices are measured by marginal utility. Given 

the underlying commodity spaces for these two examples are 

infinite dimensional linear spaces, the implication is that 

imposing continuity on preference alone does not place enough 

restriction on the resulting marginal utility to yield a 

continuous price functional. One is tempted to conjecture that in 

the dual valuation space, the set of continuous price functional 

is contained in larger et of functionals representable by 



marginal rate of substitution. The next section establishes more 

substance to this conjecture. 

3. Uniform proper preference 

In two seminal papers Mas-Cole11 (1986a, 1986b) introduces 

the concept of uniform proper preference to tackle existence 

problems for a wide class of general equilibrium models. These 

models share a number of similar characteristics. The underlying 

commodity spaces are infinite dimensional linear spaces, including 

the L spaces and ca(K) which is the space of countable additive 
P 

signed measures on a compact metric space K. Moreover, all these 

linear spaces can be ordered so that they can be treated as vector 

lattices (also called Riesz spaces). An important generalization 

of vector lattices gives rise to the topological vector lattices. 

In finance, the space of contingent payoff consists of 

elements that are random variables. As discussed in the previous 

chapter, these random variables with suitably defined norm are 

merely elements of L spaces. It is shown in the appendix that 
P 

normed L spaces induce an important class of topological vector 
P 

lattices known as Banach lattices. Given this environment modeled 

by lattices, uniform proper preference defines an open cone in the 

positive orthant. Two consequences of the induced openness from 

uniform properness will be derived in this section which serves as 

preliminaries to invoke the separation theorem in the next 

section. 

Let L be a Riesz space and define z to be a linear 

topology on L. Also, let ) be a preference relation defined on 
.-" 

L'. That is, denote the better than or indifferent set by 



The following definitions of ) are due to Mas-Cole11 (1986a). - 

Definition: The preference relation - ) is t-proper at some point x 
E L+ if there exists some v > 0 and some t-neighborhood V of zero 

such that 

+ 
x-av+z ) x in L - with a > O  implies z 4 aV. 

Definition: The preference relation - ) is uniformly t-proper if 

there exists some v > 0 and some neighborhood V of zero such that 
+ 

for any arbitrary x E L satisfying 

+ 
x-av+z ) x in L - with a > O  implies z @ aV. 

The requirement of the point v > 0 to exist in the above 

definitions may not be clearly justified in most economic models 

as noted by Yannelis and Zame (1986). However it is common in 

finance to assume the existence of a riskless asset relative to 

other risky assets in the state space. One can therefore 

interpret the point v as the return of a riskless asset. An 

immediate consequence of the definition of uniform proper 

preference is the following. 

Theorem 1: Let t be a locally convex topology on a Riesz space L 
+ 

and let ) be a preference on L . Then is uniformly t-proper if - - 
and only if there exists a nonempty t-open convex cone r such that 

+ 
(a) r n (-L # 0, and 



Proof. Let ) be uniformly t-proper and suppose v r 0 be a vector 
* 

of uniform properness corresponding to some open, convex, 

t-neighborhood V of zero. We construct the t-open convex cone as 

follows: 

r = {w E L13 a > 0 and y E V with w = a(y-v)). 

+ 
Since -v E r ,  r n (-L * 0. 

By the method of contradiction, assume that (x-T) n P(x) * 0. 
Let z E (x-T) n P(x) and write 

By uniform z-properness of >, ay 4 aV, which implies y @ V. This 
* 

is impossible since y E V and y 4 V cannot hold simultaneously. 

Conversely, let a non-empty z-open convex cone that satisfies 
+ 

(a) and (b) . Consider w E T n (-L and some t-neighborhood V of 

zero with w+T G T. Define v = -w > 0 and let 

+ 
x-av+z ) x in L 

* 
with a > 0. 

Suppose z E aV, then z = ay, for some y E V and so 

is an element of (x+T) n P ( x ) .  This violates the hypothesis that 

(b) holds. We therefore conclude that 



x-av+z > x in L+ - with a > O  implies z e aV. 

0 

The intuition behind theorem 1 can be expressed as follows. 

Proper preference has induced a t-open convex cone at a given 

point x E L+ and restricted the r-cone to have an empty 

intersection with the better than set of x. This is part (b) of 

the theorem. "Uniformity" ensures that such property holds for 
+ 

every x E L . That r is a t-open convex cone forms a key argument 
to apply the separation Theorem subsequently. Part (a) of the 

theorem captures the property that the t-neighborhood V is a 

topological base around the origin and V spans T.  

The definition of a uniform proper preference also induces 

the following property regarding marginal rate of substitution. 
+ 

Let L be a norm lattice. Then 

x-av+z > x implies llzll 2 as. 
* 

This reflects the idea that the vector v is so much valued and 

will not be given up unless the compensating bundle z is of a 

certain size measured by the norm. A more familiar 

characterization of this aspect of uniform proper preference is 

that the marginal rate of substitution is bounded. 

To make the above argument precise, we adopt a modified 

argument from Zame (1987, p.1087) who shows that a uniform proper 

production set leads to a bounded marginal rate of technical 

substitution. Let ) arise from a continuously differentiable - 
monotone utility function u and let D u(y) denote the directional 

X 

derivative of u at y in the direction x, so that 



v Z 
Denote v* = - and z* = - as per unit of the commodity bundle v 

llvll ll  z l l  

and z measured by their respective norms. The mean value theorem 

implies that 

u(x-ax+z) = u(x)+D u(h) where h E (x,x-av+z). 
-av+z 

Since u is continuously differentiable, D u(y) is linear in 
X 

x. Theref ore, 

Trade will occur whenever 

D u(h) 
v * l l  z ll  

which implies < -. 
D u(h) allvll 
z * 

In the above development, is the marginal rate of 
D u(h) 
z * 

substitution between bundle v* and z*. Thus uniform properness 

preference has the implication that marginal rate of substitution 
ll  z ll  

is bounded by the quantity - . The next stage of the analysis 
allvll 

is to incorporate this important preference feature into a 

security market model to derive a price extension. 



3. The canonical market model 

The present analysis retains most of the elements from the 

Harrison and Kreps framework (1979). As the current focus is on 

examining the concept of viability of a price system and its 

extension, most of the continuous time details of their model 

regarding information flows and dynamic trading strategies are 

stripped away for simplicity. While these details are crucial 

ingredients for a model of valuation under uncertainty, suitable 

extension of the current simple formulation can retrieve these 

continuous time insights. 

For instance, a given linear commodity space can be induced 

by an underlying measure space ( R , 9 , 5 ' )  and 9 can be further 

partitioned into a family of increasing sub-sigma-algebra. 

Similarly, admissible trading strategies can be defined in a 

linear subspace with securities payoff that can be identified as 

square integrable random variables (see Harrison and Pliska, 

(1981) and Duffie and Huang (1985)) in order to avoid nontrivial 

continuous time arbitrage strategies. 

Formally, let L be a vector lattice. Denote a subset of L by 

X which is given a locally convex, linear Hausdorff topology z. A 

topology is Hausdorff if for any two elements x,y of a set X, 

there exists open neighborhoods for x,y which are denoted U and 
X 

U and which are disjoint. Note that z is compatible with the 
Y 
algebraic and a lattice structure of X. This means both the 

addition and scalar multiplication as well as the two order 

operations inf(x,y) and sup(x,y) are continuous functions with 

respect to T. The resulting commodity space is therefore a 

topological vector lattice. Our focus is placed exclusively on a 

class of topological vector lattice called Banach lattice. Some 

relevant properties of a Banach lattice are reported in the 

appendix . 



Economic activity only occurs at the two extremes of the time 

interval [O,Tl. There is only one single good available for 

consumption. An element of X are interpreted as a state 

contingent commodity bundle. Agents in the economy are 

f represented by their preferences for terminal consumptions. Each 
i 

agent's preference is denoted by - ) and is assumed to satisfy the 
following conditions: 

(i) continuous in t: for all x E X, the sets {x' E XIX - ) x') 
and {x' E XIX' 1 X) are closed in t; - 

(iil convex: x,xl ) x" and h E [0,11 imply hx+(l-hlx' ) x"; - - 
(iii) strictly monotonic: let k E X+ and k * 0 ,  then 

x+k 1 x V x E X; 

(iv) uniformly proper: there exists some v > 0 and some 

neighborhood V of zero such that for any arbitrary 

x E X+ satisfying x-av+z ) x in X+ with a > 0, - 
we have z e aV. 

In a finite state space setting, conditions (i) - (iii) are 

sufficient for the existence of a continuous state price 

functional. 

- 

Agents are allowed to have terminal endowments x E X but to 

simplify the setup, preferences on net trade bundle are instead 

defined as follows: 

when x and y are net trades. In this way, - ) represents preference 
on net trades that is derivable from the more primitive preference 

given by )*. 



Denote a subspace of X by M which represents the subset of 

terminal space of all attainable commodity bundles. Elements of M 

are denoted by m that can be obtained by a combination of existing 

marketed commodity bundles. More specifically there is a basis of 

bundles denoted by M that spans elements in M. M is called the 
0 0 

marketed subspace where tradings do not incur any transactions 

costs. 

In the parlance of Harrison and Kreps, Mo is a subspace 

consisting of n+l marketed long-lived securities indexed by j = 

0 1 ,  n .  Each of these securities is characterized by its 

terminal payoff denoted by d One can interpret d . (o) as number 
j ' J 

of units of the single good entitled to the owner of one share of 

security j if state w occurs. Also assume that security zero 

promises its owner one unit of consumption good regardless which 

states of the world occur at t = 1. 

The initial value of each of the long-lived securities is 

defined by a functional S.:MO 3 R. In vector notation, S = 
J 

T 
(SO,S1,. . . ,Sn) , where " T "  stands for the transpose of a row 

vector. A trading strategy is (n+l)-dimensional vector denoted by 

T 
8 = (f30,81,..,8n) . One can interpret 8 as the number of shares 

j 
of the j-th security held by an investor. Elements in M can be 

attained by agents via the initial tradings of portfolios of 

marketable securities. 

Definition: A consumption plan m E M is attained if there exists 
T T 

a trading strategy 8 such that m = 8 d, where d = (do, . . . ,  dn) . 

All that developed so far is a set up for a two period model 

with infinite number of terminal states of the world. Agents are 

assumed to agree on the possibility of each state although their 



probability assessments of the states occurrence 

expand the setting to a continuous time framework 

may vary. To 

would entail a 

number of specifications such as defining S as a vector of 

stochastic processes. Furthermore, information flow in the model 

would have to be suitably restricted in order to motivate a 

reasonable class of dynamic trading strategy. 

These developments are important in their own right 

especially for modeling multiperiod asset valuation (see Duffie 

1988 and Dothan 1900).  The present focus is however a more modest 

treatment of a price extension by viability in a two period model. 

An immediate issue to confront at the moment is to define a 

reasonable value for claims in M. The standard procedure is to 

impose the absence of arbitrage trading opportunities in M 
0 ' 

Definition: An arbitrage opportunity is a trading strategy 8 such 
T T T that 8 S 5 0 and 8 d r 0 with 8 d > 0 for some states. 

In words, an arbitrage opportunity is a trading strategy that 

gives rise to a nonnegative consumption plan with zero initial 

cost. The implication of the existence of an arbitrage 

opportunity is that an agent who prefers more to less will not 

find a solution to his portfolio problem. On the other hand, the 

absence of arbitrage opportunity allows us to assign a particular 

functional form for values of all attainable claims in M. Define 

n:M -+ IR as the value for any attainable m E M. 

Proposition 1: Given there is no arbitrage opportunity in M 
0 '  

Then n is a unique linear functional on M. 

Proof. To show that n is unique, we use the method of 

contradiction. Assume n(m) is nonunique for some m E M. Consider 

n' and n" and let n' > n" such that 



T 
m = e 1 d  with initial cost n' = elTs 

T 
m = W d  with initial cost n" = W"'S. 

A 

Next define a claim m E M as follows: 

A 

m has a strictly positive value regardless of the terminal states 
A 

of the world. The initial cost of m is given by 

This violates the assumptions of no arbitrage opportunity and we 

conclude that n(m) is unique. 

To show that n is linear, consider m 
r m 2  

E M and is given 

by the formula 

Assume that n(m) + Xln(ml)+h2n(m2). Then uniqueness of n(;) is 

violated and it contradicts the assumption of no arbitrage 

opportunity. Therefore, 

which proves the linearity of n. 



The first intuition behind linearity of n is compelling. 

Given a reasonable price system. It is impossible to yield the 

same terminal bundle by repackaging two different portfolio of 

basis bundles with different initial values. The second intuition 

about linearity of K is that as a consequence of no arbitrage 

opportunity, the terminal bundles in M is forced to be independent 

of trading strategies 

The following two definitions are an embodiment of a viable 

price system introduced in Harrison and Kreps. 

Definition: The pair (M,n) is supported if there exists some - 
and m* E M such that 

n(m*) 5 0 and m* ) m V m E M so that n(m) 5 0 - 

That is an agent with ) can always find a solution to his - 
portfolio optimization problem in the marketed subspace. Such 

preference ) is said to support (M,n) . Denote 9 to be the set of ,., 
t continuous and L+ strictly positive linear functionals in L. 

Definition: The pair (M,K) has extension property for ( L , z )  if n 

can be extended to all x E L. 

Proposition 2: The pair (M,n) is supported by preference - ) if and 
only if it has the extension property. 

Proof. Two cases are considered. Case (i) The topology t is 

generated by L -norm. Define the better than set 
P 



The set B is convex since ) is a convex preference. Consider a 
A A 

point x. By hypothesis, is proper at x. This implies (from 

theorem 1 of the last subsection) the existence of an open cone. 

Also from theorem 1, we conclude that both 

A A A 

x-T(x) and B(x) 

A A A 

are disjoint implying x-T(x) n B(x) = 0. 

A A 

Furthermore, x-T(x) is convex with a nonempty interior. 

Accordingly, the Separation theorem (Holmes, 1975, p.63) can be 
A 

applied to yield a hyperplane passing through x. Let the linear 

functional associated with the hyperplane be denoted by #. 

Uniform properness then implies that the hyperplane is defined on 

any arbitrary x E X+. Since L is a Banach lattice, a result form 

the appendix (theorem A . 3 )  shows that @ is a continuous linear 

functional 

To verify + is consistent with (M,n), two things need to be 
shown. First, pick m E M such that mo } 0. Since } supports 

0 

(M,n), n(mo) > 0. It must be shown that #(mO) > 0 as well. To 

see this, let x E X+ such that #(XI > 0. By continuity of 

preference, there must exist A E R so that m-Ax > 0. Therefore, 

Linearity of I) implies 

leading to the conclusion that #(m ) > 0. Finally, since #(m > 0 0 

0 and n(m ) > 0, @ can be normalized to yield $(mO) = x(mO). 
0 



Next choose any m E M and let A be such that 

By linearity of n, both m+Am and -m-Am are both in M implying 
0 0 

#(m+Am ) 5 0 and @(-m-Am ) 5 0. 
0 0 

Therefore, @(m+Amo) = 0 .  It follows 

Thus, we have shown that @ extends n .  

Case (ii) The topology t is a semi-norm generated weak 

topology. Then the upper contour set B(x) has a t-open interior. 

In this case, both B(x) and x-T(x) are convex, disjoint and having 

nonempty interior. Therefore, the separation theorem again 

applies. 

0 

When (M,n) has an extension to (X,z), the resulting security 

market is called "viable", a term first employed by Harrison and 

Kreps. It must be emphasized that viability in the current 

context has a stronger meaning. This is so because extension of 

price functional as shown in the above proof relies mainly on the 

additional topological property defined by proper preference. 

When the upper contour set has empty interior, properness induces 

an open cone leading to the separating hyperplane. In the case 

that upper contour set has a t-interior, the role of properness is 

98 



again reinforced. 

However, in both cases, the resulting linear functional is 

ensured to be bounded. This is a defining property of proper 

preference, a provision not found in Harrison and Kreps. The 

possibility that a hyperplane exists and yet the resulting 

functional being discontinuous is ruled out. 

4. Derivation of the Black-Scholes state price density function 

This section applies the above linear functional to the 

famous Black-Scholes economy and deduce the state price density 

process. Two specializations have to be taken into account for 

this economy. First, Black and Scholes (1973) model a dynamic 

economy which involves a description of the market securities as 

stochastic processes. In principle a full fledged dynamic 

information model will be entailed to describe a general 

stochastic security price process. However for a constant 

coefficient price model like Black-Scholes, the analysis can be 

dramatically simplified since the underlying uncertainty is easily 

seen to be generated by a Brownian motion process. It follows 

that the derivation of the state price process is reduced to 

applying a few mathematical properties associated with a Brownian 

motion. 

Second, since a Brownian motion is a square integrable random 

variable, the Banach lattice used for the above modified Harrison 

and Kreps economy is specialized to be a Hilbert lattice. The 

main result of this section is to exploit the representation of a 

linear functional on Hilbert lattice by an expectation of the 

inner product of two random variables in the Hilbert space. 



In the Black-Scholes economy, only two securities are traded. 

One of them is risky stochastic process but does not pay dividends 

on the time interval [O,Tl and the other is a riskless process. 

More specifically the former is a traded security price process 

S(t) with a stochastic representation given by: 

where p and cr are two strictly positive constants. {w(t)) is a 

standard Brownian motion that starts at zero at t = 0 with 

probability one w p l  The riskless security does not pay 

dividends on [O,Tl and has a price process B(t) with a 

deterministic representation given by: 

An investor in this economy is interested in trading in the 

two securities to achieve a desired random wealth a time T. It is 

assumed that terminal random variables have finite second moments. 

Traders' preference satisfy the properties discussed in the 

previous section. The vector (~(t),~(t)) is restricted to be a 

viable price system. This means that w.p. 1 it is impossible for 

any trader to obtain a strictly positive terminal wealth with an 

initial portfolio strategy that has nonpositive cost. 

Equivalently by proposition 2 of the last section a viable price 

system has an extended continuous price functional @ defined over 

the entire space of terminal random wealths. 

We emphasize that there are two kinds of arbitrage 

opportunities in models that allow dynamic tradings. The first 

type is what has been discussed so far and is ruled out by the 

existence of a price extension. The second kind of arbitrage 

opportunity can occur even in the absence of the first kind. 



Harrison and Kreps (1979, p.403) illustrate the second kind by the 

doubling strategy which can be removed by admitting only simple 

trading strategies in the model. Formally, a trading strategy is 

said to be simple if it is bounded and if it only changes its 

values a finite number of times in a given time interval. 

Given the existence of the price functional Q and a 

simplified stochastic security model, the derivation of the Black- 

Scholes state price density will be obtained in two stages. The 

next subsection retrieves some brief but essential details about 

Ito's calculus. These details will then be used as ingredients 

for obtaining a specific formula for a state price density. 

3.4.1 A quick summary of Ito's integral related to 

Black-Scholes economy 

Investors are assumed to observe the realization of the two 

securities process over t E [O,Tl and these realizations are 

accumulated to form the information set to the traders at time t. 

As the riskless asset is deterministic, traders know its future 

value at t. On the other hand, traders infer the future values of 

W(S) at time t, s > t indirectly from observing S(s). 

{%t 

the 

Formally the information set is given by a filtration F = 

It E [o,TI). In this case as information is generated by w(t), 

filtration is therefore denoted as IFW = {ytwl t E IO,TI). 

Definition: A stochastic process x on a filtered probability t 
space {R, 3 ,5,~) is adapted to 5 if and only if x is measurable 

T t 
W on Yt. (In our case, S(t) is adapted to Yt . )  

Definition: An adapted process x on {R,Y~,F,IP} is called a 
t 



martingale on [O,Tl if and only if 

(a) for each 0 a t a , EP(lxtl) < m, 

(b) for each 0 5 u 5 t 5 T, w.p.1. E (x 14 ) = xu. 
P t u  

It can be shown that a Brownian motion process is a 

W P-martingale on dt (Breiman, 1968). The two sample path 

properties of a Brownian motion process that are useful for later 

purpose are the optional quadratic variation and predictable 

quadratic variation processes. The former describes the limit of 

the sum of squared changes of w(t) while the latter describes the 

limit of the sum of conditional expected squared changes of w(t). 

Definition: Let x be a stochastic process on ( R , B  ,F,P) and time 
t T 

interval [O,tl. Corresponding to dyadic partitions of [O,tl, (i) 

consider sequences of sums of squared changes of xt. 

It there exists a stochastic process, denoted by {[x,xlt) such 

that for every 0 r t I T and every e > 0, 

then we say [x,xl is the optional quadratic variation of x (ii) t ' 
Consider consequences of sums of conditional expected squared 

changes, Sm(x)(t,w) of xt 

If there exists a stochastic process, denoted {<X,X>~) such that, 



for every 0 5 t 5 T and every E > 0, 

lim dsup ISm(x) (u,o)-<x,x>(u,w) 
m-m O3lSt 

then we say that <x,x> is the predictab 

process of x. 

le quadratic variation 

For a Brownian motion process, it can be shown that 

[w,wlt = t and <w,w>~ = t. 

An additional characteristics of [x,xlt and <x,x>~ is that both 

are increasing processes. In differential form they are expressed 

as 

The mathematical development of Ito's integral is built on 

the above sample properties of a Brownian motion process. In 

finance and economics literature, the Ito's integral is defined to 

reflect that it has a martingale property. This particular route 

to define an Ito's integral can be motivated by the following 

existence theorem. 

Theorem 1: Suppose a(t) is a stochastic process on the interval 

W T 2 
[ O , T l ,  adapted to Yt measurable, and such that, w.p.1. S a(t) dt 

0 

< m. Then there exists a sequence of adapted, measurable, simple 

stochastic process {a ) such that w.p.1. 
mt 



t 
and w.p.1. the sequence of integrals J a dw converges uniformly 

0 
ms s 

t 
on the interval [O,T]. Furthermore, the quantity lim amsdws 

m- 0 

does not depend on the choice of approximating sequence of 

T 
adapted, measurable simple processes {a ) such that 1 at2dt < m. m t 

0 

Definition: For a stochastic process {at) in the previous 

theorem, 

t t 
J' asdws = lim S arnsdws. 
0 m- 0 

The left hand side is called the Ito's integral of the process 

{at } . 

In precise term (Chung and Williams, 1990 chapter 21, Ito's 

integral is an isometry. Loosely this means the integral is a 

transform of the process a by the Brownian motion process {w ) .  
t t 

Two important properties of Ito's integral are recorded below. 

L e m a  1: If the adapted measurable process {alt) and {azt) are 

T T 
such that S alt2dt < m and J' aZt2dt < m, then consider xt and y t 

0 0 
t - - t 

defined by x alsdws, yt - JOaZsdws. Then we have 

(ii) [ x , ~ ] ~  = = ~ ~ a ~ ~ a ~ ~ d s .  
0 

Part (ii) of the above lemma gives the optional and 

predictable quadratic covariation of two Ito integrals. In terms 



of increments this can be written as a Ita2tdt. Associated with 

I to' s integral is an important representation result according to 

H. Kunita and S. Watanabe (1967). 

Theorem (Kunita-Watanabe). If {x ) is a square integrable t 
W 

martingale on the filtration 3. 
t ' 

then there exists an adapted 

'1 2 
measurable process {at } such that ~ ~ ( 1  at dt) < m and 

0 

This result, also called martingale representation can be 

heuristically explained as follows. The right side of the 

equality can be viewed as the resulting application of Ito lemma 

1 
to f(t,w ) = exp(w --t) with the fact that the coefficients of 

t t 2  

the time differential and the quadratic variation cancels each 

other out before integration from 0 to t. One can also extract a 

familiar interpretation from this representation theorem. That is 

in a space of square integrable martingales, the Brownian motion 

can be treated as an infinite dimensional basis and spans other 

martingales in t E [O,Tl. 

3.4.2 Black-Scholes state price as an Ito integral 

The extended linear functional I) from section 3 itself has 

very little applicable value unless it can be transformed into a 

tractable form ready for asset pricing. This is implied by the 

construction of an equivalent martingale measure. The fundamental 

Riesz Representation theorem is a vehicle through which the change 

of measure can be subsequently performed. This theorem allows a 

real-valued linear functional to be expressed as an inner product 



of a random terminal wealth and its random state prices. Prior to 

stating that result, it must be shown that any square integrable 

random wealth is a 5'-martingale. 

The first defining property of a martingale is easily 

satisfied by a square integrable random variable since square 

integrability implies absolute integrability V t E [O,Tl. The 

second property of a P-martingale is obtained by the law of 

iterated expectation. Define x 5 E (x 1 %  1. Then T P T T  

since the filtration formed by a Brownian motion is increasing, Yt 

c Ss, s > t. 

Theorem 3 (Riesz representation). Given that I) is a continuous 

P linear functional on x E L (P I  with p E [ l , r n ) .  Then there exists 

a unique z E ~ ~ ( 5 ' )  such that 

Moreover, if @ is positive, then z r 0 a.s. and if @ is strictly 

positive, then z > 0 a.s. 

Proposition 1. Suppose the price system is viable in the Black- 

Scholes economy and assume all positive terminal random wealth are 

square integrable, i . e. , x E L' (5') , p = 2. Then the time zero 

value of x is given by 



Furthermore, there exists a strictly positive random variable z 
T 

T 
given by z = 1 a dw 

0 
t t' 

Proof. By martingale representation theorem, any square 

T 
integrable random variable can be written as x = xO+S qtdwt 

T 
0 

where 1) is a square integrable predictable process. Since the t 
price system is viable, time zero value of x is given by @(xT). T 

Next by Riesz representation theorem, there exists z such T 
that the linear functional can be expressed as expectation of 

scalar product of x and z That is @(XI = E (x z I. We argue 
T T' P T T  

that zT has a stochastic integral representation. To see this, 

note that the RHS of the above representation is a Stieltjes 

integral. On the other hand Protter (1990, p.75) shows that the 

optional quadratic covariation process [w,xl has finite variation 

on compact interval. Given that xT is a square integrable 

martingale, it is necessary that zT has a stochastic integral 

representation 

where a is an adapted process and is square integrable. That is 
t 



The Ito integral representation for z can be interpreted as T 
the state price process for the strictly positive random variable 

X 
T' Since t)(x is a nontrivial positive linear functional, it T 

w 

follows that z is strictly positive. Let z = In z. By Ito's T 

- 
The next result shows that the adapted process z(t 1 has the 

familiar form of the market price of risk in the Black-Scholes 

economy. A definition is in order. 

Definition: Let two measures P and Q define on the measurable 

space (R,Y). The measure 0 is said to be absolutely continuous 

with respect to V and is denoted by Q << V such that 

P(B) = 0 implies Q(B) = 0 V B E Y .  

Theorem 4 (Girsanov). Let {w 1 be a Brownian motion process on t 
the probability space (R,Y,F,V). Let {a ) be measurable process t 

adapted to the natural filtration {ytW1 such that 

T 2 
EP(exp(eJ at dt)) < m for some 8 > 1. 

0 

Furthermore, let Q be a probability measure on (R,F) such that 



t d<w , ;>s w Denote ; = E(--lY . Then w *  = wt-J t is a Brownian 
PdlP t 0 ; 

S 

motion process on the filtered probability space (R,F,Q,{Y ) )  t 

Proposition 2: Suppose the two price processes (~(s) ,s(s)) form a 

viable price system in the Black-Scholes model. Then there exists 

a measure Q such that 

- (p-r 1 
where a t . Moreover the discounted security price process 

0- 

S(t) 
is a Q-martingale. 

B(t) 

T 1 T 
Proof. Given that ;(TI = exp(J.adw+-Ja2dt), where a = 

0 t t 2 0  
t t 

- (p-r 1 
, it must be shown that Q is a probability measure and the 

0- 

discounted stock price process is a Q-martingale. The first claim 

can be verified by directly integrating ;(TI with respect to the 

density function of P-Brownian motion. This yields 



Let Q ( A )  E 1 ;(T)~P for A E S. By Ito's lemma, the discounted 
A 

price process is given by 

- -(p-I-)?.. 
One the other hand, dgt - -- zdw t ' Now the predictable 

0- 

quadratic covariation of a Brownian motion and g is given by 

From Girsanov theorem, the process w * given by t 

is a Q-Brownian motion. Substituting wt* into the discounted 

price process gives 

S(t) T B(t) 2 S(t) 
where - satisfies E (1 (-1 ds) < m. Hence - is a 

B(t) a 0 S(t) B(t) 

Q-martingale process. 

S(t) 
Conversely, given - is a Q-martingale, it must be shown 

B(t) 



that the state price process take the form stated. Let Q be a 

probability measure equivalent to P. By Radon Nikodym theorem 

dQ - - (Bartle 1966, p.851, - - z is a P-square integrable random 
dP 

variable. Martingale representation theorem implies that z t  = 

t S(t) 
1+J psdwt. Note also that by Bayes rule, - is a Q-martingale 

0 B(t) - S(t) 
if and only if z - is a P-martingale. This implies 

t~(t) 

S(t) 
By observation the "drift" term of the above is zero since z - 

t~(t) 
-(p-r 1- 

is a P-martingale. It follows that pt = z Therefore 
0- t' 

The proof of necessity is completed. 

0 

The formula for z(T) in the above proposition defines a state 

price density. As a result of modeling the commodity space as a 

Hilbert lattice, a closed form state price density is derived in a 

modified Harrison and Kreps framework which is further rigged to 

be the Black Scholes economy. Relaxing the whole exercise to 

other Banach lattice in principle will retain the spirit of the 

above result. A subtle feature of the Hilbert lattice will be 

lost nevertheless if the analysis is extended to other norm 

lattices. The uniqueness of the equivalence martingale measure is 



not preserved in other lattices partially because the martingale 

representation theorem does not hold in these other spaces. 

The nonuniqueness problem and the resulting incompleteness of 

securities market is further emphasized by Harrison and Pliska 

(1983) and Duffie and Huang (1985). The problem has not been 

resolved since yet although recent work by Aase (1988) and He and 

Pearson (1992) show some promising progress. 

5. Conclusion 

The previous sections have derived a linear price functional 

by means of an arbitrage partial equilibrium approach. It differs 

from Harrison and Kreps formulation in that it imposes strong 

restriction on the preference of the investor, namely the 

preference satisfies the uniform proper condition. The resulting 

price functional has the property that it can be represented by a 

bounded marginal rate of substitution in the dual valuation space. 

An investor in this economy is able to attain an optimal terminal 

wealth given a strongly viable price system. 

Furthermore with presence of a continuous state price 

function and specialization of the terminal random variables to be 

elements of Hilbert lattices, a formula for the state price 

density process is obtained. It follows that we have obtained the 

risk-neutral martingale probability measure. This thesis 

therefore represents one formulation of the fundamental asset 

pricing theorem popularized by Dybvig and Ross (1987) and Back and 

Pliska (1991). There remains a few issues that are not explored 

thoroughly in the above research program. 

The topological vector lattice is a useful mathematical 



structure that can be exploited in a richer analysis than is 

presented here. In the current partial equilibrium model, the 

state price functional is exogenously taken but as expressed 

cogently by Kreps (l98Z), it is the responsibility of a good 

economist to endogenize basic data like prices in an economic 

model. In other words, it should be possible to push forth the 

result here to obtain a representation of the state price 

functional as a general equilibrium price functional. 

Kreps's proposal can be approached on two fronts. Cox, 

Ingersoll and Ross (1985) have formed a fully dynamic model with 

marketed securities and production and the state variables are 

represented by diffusion processes. Relying on the usual market 

clearing and rational expectations assumptions, these authors are 

able to derive the marginal utility of a representative individual 

as the static Arrow-Debreu general equilibrium state price 

functional in their theorem 4. (Other general equilibrium 

formulations include Huang (1987) and Richard and Sundaresan 

(1981)). 

On the flip side of this dual economic equilibrium 

formulation, the existence of Arrow-Radner dynamic equilibrium can 

be taken for granted initially. Then one can carry out the static 

Arrow-Debreu equilibrium analysis where the mathematical property 

of a Riesz space can manifest its full strength. In particular, 

Aliprantis-Brown-Burkinshaw (1987,1989) have introduced rich 

mechanics of vector lattice in analyzing a general Walrasian 

model. How that general model can be narrowed down to incorporate 

a subspace of marketed securities remain an interesting research 

topic. 

A less obvious aspect of incorporating uniform proper 

preference in defining a viable price system must be unraveled in 

this conclusion. While that preference specification has 



delivered a desirable property that the price functional is 

bounded, it also rules out unfortunately some utility function 

(logarithmic utility function in particular) which are widely 

adhered to in many finance models. The popularity of log-utility 

is understandable for it is one of the few examples that has a 

closed form solution to a stochastic dynamic control problem via 

solving a highly nonlinear Bellman partial differential equation. 

It remains to explore how uniform proper preference can be relaxed 

so that this important utility function can become admissible to a 

strengthened viable price. 

Appendix 

In this appendix, some properties of vector lattices are 

defined since these properties are occasionally employed in the 

text. A relation r on a non-empty set X is said to be an order 

relation if it satisfies 

(i) x r x  holds V X E X ;  

(ii) x r y  and y r x  implies x = y; 

(iii) x r y  and y r z  implies x r z. 

The resulting X is an order set. A lattice is an ordered set X 

such that sup(x,y) and inf(x,y) exists for each pair x,y E X. In 

notations 

xvy sup(x,y) and x ~ y  inf(x,y). 

A partially ordered vector space X is called a Riesz space or 

a vector lattice whenever for any two elements x and y of X both 

xvy and x ~ y  exist. The set 



is called the positive cone of X. For each x E X, the "parts" of 

x can be expressed in terms of "v" operator, namely 

+ - 
X = xvo; X = (-xIv0; 1x1 = xv(-XI. 

Intuitively the above equalities represent the positive, negative 

and absolute values of x respectively. 

The two results below are readily verifiable. 

Lemma A. 1. 
+ - 

X A X  = 0 ;  

Lemma A . 2 .  Let x,y,z be elements of a vector lattice. Then the 

following inequalities hold: 

Similar to a topological vector space that generalizes the 

normed vector space, a topological Riesz space is defined by a 

linear topology z consistent with the algebraic and lattice 

structures. In particular, if z is induced by a norm I I .  II on a 

vector space X, a norm lattice is resulted. That is 

1x1 I lyl in X implies llxll 5 Ilyll. 

When a norm lattice X is complete, then X is referred to as a 



I 

Banach l a t t i c e  

As an important example of the norm lattice on X, recall the 

P linear space induced by a measurable space is denoted as L (R,%,F') 

and is normed by 

P l/p 
HXII = (1 1x1 ~IP> for x E L'. 

P R 

One typically treat x as a random variable. A special case of an 

element defined on the positive cone is the lognormal random 

variable. 

P Proposition A . l :  L is a vector lattice. 

+ - + 
Proof. First, from lemma 1, x = x -x and it can be shown that x 

- 
and x are nonnegative random variables and belong to L'. 

P Moreover, for any pair of random variables in L , say x and y, we 

have 

+ + 
xvy = (x-y) +y and XAY = y-(y-XI . 

We therefore conclude that the space of random variables are 

normed lattices. 

0 

The well known Riesz-Fischer theorem for LP(R, 9, F') also 

applies to this norm lattice. 

Theorem A . 1 :  If 1 s  p < a, then LP(R,9,F') is a Banach lattice. 

Proof. It suffices to show that L~(R,Y,P) is a Banach space. 

This is a standard result shown in Bartle (1966). 



Theorem A . 2 :  L~(R,S,P) is a Banach lattice. 

Proof. It suffices to show that L~(R,S,IP) is a Banach space. 

This is a standard result shown in Bartle (1966). 

0 

The above two theorems together constitute a formal 

definition for a Banach lattice. 

Definition: A lattice is said to be a Banach lattice if it is a 

Banach space and the lattice operations are continuous in the 

norm. That is, if {x 1 converges in the norm to x in the space, 
n 

+ + 
then {x also converges in theorem to x which is an element of 

n 

the lattice. 

Another useful fact regarding linear functional on Banach 

lattices is as follows. 

Theorem A.3 :  A positive linear functional on a Banach lattice is 

continuous in the norm. If the norm is given by LP(R,9,P), then a 

P positive linear functional on LP is L -norm continuous. 

Proof: See Schaefer (1974, theorem 11.53, p.84). 
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IMPLICATIONS OF ARBITRAGE APPROACH 

TO BOND OPTIONS PRICING 



1. Early literature review on bond options pricing 

Historically, the valuation of a European call option on a 

pure discount bond can be linked to the original equity option 

pricing model. In this development, Merton's insight (1973) 

should be credited for he extends the Black-Scholes model by 

incorporating a stochastic interest rate. Given a specific 

interest rate process, Merton is able to generate a bond option 

solution that maintains much of the original flavor of the Black- 

Scholes formula. 

In order to distinguish from the modern treatment of bond 

option valuation adopted in this thesis, Merton's approach will be 

referred to as the spot rate approach. Other papers that employ 

similar techniques for bond pricing include Vasicek (19771, 

Richard (19781, Dothan (1978) and Brennan and Schwartz (1979). In 

this class of models, a bond option formula is obtained in a two- 

step procedure. 

First, an equilibrium bond pricing problem is solved with a 

risk premium parameter introduced to represent the compensation to 

investors for random changes in the instantaneous spot rates 

(usually the only state variable in these models). Then the 

conditional expectation of the bond option payoff (which also 

incorporates the risk premium function) is computed. 

Alternatively the same bond option solution is obtained by solving 

a second order parabolic partial differential equation. 

Aside from the technical treatments, there is a 

tyrannsaurausic difference between taking a risk adjusted 

conditional expectation and solving a partial differential 



equation in finding a solution to a bond option. Cheng (1991) has 

shown the potential trouble from exogenously specifying a bond 

price process and then deriving a partial differential equation 

via a simple hedging argument. In some extreme cases, the 

resulting partial differential equation is nothing but an 'empty 

mathematical shell'. However, with 'careful' selection of the 

market price of risk function, both solution approaches satisfy 

the necessary and sufficient conditions for pricing bond option by 

absence of arbitrage (Cheung, 1992). In fact, the logical 

connection between these two solution approaches can be shown by 

the Feynman-Kac formula (Duffie, 1992). 

A variant and in-depth treatment of this spot rate approach 

is to construct a general equilibrium model so that the preference 

parameter can be directly derived from market clearing conditions 

instead of arbitrarily determined in some partial equilibrium 

models. A leading example of the general equilibrium approach to 

solving a bond option pricing problem is developed by Cox, 

Ingersoll and Ross (1985a). (CIR is now a customarily used 

pseudonym for these authors' names.) 

As a theoretical advantage, specifying a dynamic general 

equilibrium formulation for option pricing provides consistency 

between a viable interest rate process and the equilibrium 

interest rate. Thus, in a variety of contexts, Cox, Ingersoll and 

Ross (1981a,b, 1982) propose an arbitrage free square root 

interest rate process and then separately (1985b) illustrate how 

the coefficients of that process are all derivable from a typical 

economy with the preference of an infinitely lived individual and 

with carefully specified production. Standard market clearing 

plus the rational expectations assumptions are the keys to close 

the CIR model. In other words, one can claim that all the 

parameters in the square root interest rate process are the 

embodiment of the essential optimal conditions that characterize a 



Walrasian competitive equilibrium. 

Derivation of the bond option formula according to the spot 

rate approach suffers from two interrelated drawbacks. Although 

the solution shares a similar structure to the Black-Scholes 

equation, it differs from the latter formula in one crucial 

aspect. Whereas the Black-Scholes takes the currently observed 

stock price as given, the current bond price in the bond option 

case has to be obtained from an equilibrium model. This implies 

in principle the applicant of the model would have to find an 

estimate of the market price of risk function. Such a risk 

premium is not needed in applying the stock option model. 

A second unsatisfactory aspect of the traditional bond option 

formula arises from its insufficient use of currently observed 

information. Unlike the Black-Scholes formula, the currently 

available bond prices are not incorporated in the bond option. If 

one were to view currently observed prices as conveying relevant 

information about future states of the world, then an efficient 

pricing formula should embody this information as part of its 

elements. 

The two aforementioned drawbacks have rendered the spot rate 

approach to bond option pricing undesirable. In particular, the 

information aspect of the model cannot match the insight offered 

by the Black-Scholes case. Recent researchers have taken 

seriously these drawbacks and started reformulation of the bond 

option model in a manner closer in spirit to the Black-Scholes' 

methodology. 

In a discrete time framework, Ho and Lee (1986) have 

exogenously specified a dynamic fluctuation of the yield curve 

according to a binomial process. Placing restrictions on the 

yield curve movement via an appeal to the absence of arbitrage 



opportunity, these authors are able to derive a set of martingale 

probabilities which they then use to price a bond option. This 

approach has the beauty that it takes the initially observed term 

structure as input data to the option pricing problem. An 

important assumption of the Ho and Lee model is that there are 

always enough zero coupon bonds traded to span the yield curve for 

a given time interval. 

Heath Jarrow and Morton (1992) (hereafter denoted as HJM) 

advocate an approach similar to the Ho and Lee model. Instead of 

building a discrete time model, HJM construct a stylized scenario 

with continuous trading. A crucial assumption in these authors' 

models is that at every instant there exists a continuum of 

discount bonds to span the yield curve. The exogenous stochastic 

process that governs the evolution of the term structure is 

identified as the forward rate process. Choosing a savings 

account as the numeraire and expressing the bond price function 

relative to this numeraire, HJM work out the necessary and 

sufficient conditions for the relative bond and option prices to 

be martingale processes. 

Merely for the purpose of pricing a bond option, we argue in 

this thesis that HJM's methodology can be simplified. This 

simplification is inspired by an idea from Bick (1987). One of 

the insights in Bick's analysis is to transform the payoff of a 

call option with a positive exercise price to a payoff with zero 

exercise price. This is achieved by introducing a theoretical 

asset called ZEPO (zero exercise price option). Pricing a call 

option on the usual terminal equity value net of exercise price 

can be shown to be equivalent to pricing a call option on a ZEPO. 

The interesting feature of a ZEPO asset is that when it is 

combined with different number of discount bonds in a dynamic 

trading strategy one can exactly replicate the payoff from a 



forward price contract. Equivalently, specifying a dynamic 

trading strategy of forward contracts alone is sufficient to 

produce the payoff of a ZEPO. An extra arrangement with the 

latter strategy is required to produce the standard payoff of the 

European call option. That is, one needs to determine an initial 

borrowing to replicate the exercise price of the option at 

maturity. 

The key to understand the equivalence of the standard 

approach to solving a general call option pricing problem and 

Bick's proposal is that in the latter approach, one needs to 

specify as numeraire the discount bond with the same maturity as 

the option, and then express the payoff of the forward contract in 

terms of this numeraire. This subtlety in Bick's approach makes 

it especially relevant to the pricing of a bond option. The 

following paragraphs provide a synopsis of this thesis that 

attempts to relate the use of two different numeraires to price a 

bond option: one from the saving account in HJM model and the 

other from the discount bond in Bick's model. 

Instead of denominating the terminal bond options payoff in 

units of the savings account, one picks as the numeraire an 

initially traded discount bond having the same maturity as the 

option. Next, one chooses the current number of initial forward 

contracts for discount bonds. This effectively creates the 

deterministic exercise price of the option. The remaining 

business is to specify a dynamic strategy for trading forward 

contracts in order to produce the random bond price at maturity 

(which plays the role of the ZEPO asset in the terminology of 

Bick's framework). Because of this last requirement, one needs to 

introduce a stochastic process to model the forward bond price 

movements prior to the planned maturity. Consequently, this 

formulation using forward contracts allows one to produce the same 

payoff function as that from the direct HJM model. 



The above description of replicating the ZEPO payoff via a 

forward price process has likened the bond option pricing problem 

to the original Black-Scholes version of an equity-option payoff 

replicated by a stock trading process. This analogy allows us to 

appeal to the standard arbitrage analysis of Harrison and Pliska 

(1981). According to a fundamental result of Harrison and Pliska, 

the absence of arbitrage opportunity restricts the forward bond 

price process to be a martingale. One of the principal theorems 

in the next chapter is to derive the necessary and sufficient 

conditions for a forward bond price process to be a martingale 

under a risk-adjusted probability measure. 

It is worth emphasizing that the valuation problem here is 

based on a transformation of pricing a bond option on a stochastic 

term structure into pricing of the same option on a forward bond 

price process. Note that the maturity matching between the option 

and a discount bond is strongly facilitated by the assumption of a 

complete bond market. This is the same assumption made by the HJM 

model in terms of a fully spanned term structure. The other focus 

of the thesis extends well beyond the valuation of a bond option. 

With this objective in mind, the results developed here are not to 

be considered as theoretically competitive but rather 

complementary to HJM's results. Given the existence of both the 

forward equivalent martingale measure and the risk neutral 

measure, a number of existing results about a stochastic term 

structure will be re-examined in the next chapter. 

First, a basic intuition suggests that the value of the 

option should reman unchanged even though there is a change of 

numeraire in the price system. This invariance principle will be 

formalized by a necessary condition for the existence of a random 

variable called the Radon Nikodym derivative. The sole function 

of this random variable is to preserve the 'fair game' 



characterization of the option as a result of a martingale to 

martingale transformation. 

Next, the difference between the forward price and futures 

prices can be explored once again in the presence of the Radon 

Nikodym derivative. The fact that in general the two prices 

differ is thoroughly presented by Cox, Ingersoll and Ross (1981). 

Here the difference between the prices is phrased in terms of an 

implausibility proposition. 

Finally, by carefully blending the forward equivalent 

martingale measure with the risk neutral measure, we are able to 

recover a version of the traditional expectations hypothesis. 

This last result makes the reformulation of the bond option 

valuation particularly rewarding since some earlier influential 

studies by Cox, Ingersoll and Ross (1981) have expressed concern 

about the validity of the expectations hypothesis in a continuous 

time setting. 

The rest of this chapter is to present a brief review of the 

rigorous model of Heath, Jarrow and Morton (1992). The insights 

and notations of this model will then be used to compare and 

contrast with the results developed in the next chapter. 

2. Review of Heath Jarrow Morton model 

The starting point of the HJM model is to exogenously specify 

a stochastic movement of the implied forward rates. The 

probability space is described by , 9  Here R is the 

underlying state space, 9 is the c-algebra representing measurable 

events and F = (9  It E [O,TI) is a family of sub-c-algebra of 9 t 

satisfying the usual conditions (Duffie, 1992, appendix C). 



Lastly, P is a probability measure. 

HJM's paper assumes that uncertainty is generated by multiple 

Brownian motions. The present review only assumes a one 

dimensional Brownian motion adapted to 3 in order to highlight t 

the important issue at hand. 

Consider an economy with continuous trading in an interval 

[O,tl for a given z > 0. It is assumed that a continuum of 

default free zero coupon (discount) bonds trade with various 

maturities denoted by T E [O,zl. This presumption guarantees the 

term structure is dynamically spanned. Define P(t,T) as time t 

price of a T maturity discount bond for V T E [O,tl and t E [O,zl, 

t 5 T. Bond prices are required to satisfy the following 

properties 

(i) P(T,T) = 1 V T E [O,tl 

(ii) P(t,T) > 0 V T E [O,zl and t E [O,zl. 

As a note, implicit in the HJM economy is a complicated 

mathematical framework which has 'double infinity'. The state 

space is an infinite dimension because of the introduction of a 

Brownian notion. The assumption of a dynamically spanned term 

structure implies an infinite number of bond assets traded in this 

economy. This latter aspect of the model therefore necessitates 

more boundedness restriction on the bond price process parameters 

below. 

A yield curve describes the relationship between spot rates 

(yields to maturity) and a spectrum of maturities for a given set 

of discount bonds at a single point in time. This relationship is 

also called term structure of interest rates. While the 

fluctuation of the yield curve can be captured by specifying 



either the bond prices dynamics for all maturities T E [O,tl or a 

process for the forward rates, HJM has chosen the latter because 

of its stationarity property. The crucial idea however is that 

once the forward rate process is specified, the stochastic 

processes for bond prices of various maturities are also 

determined. 

Following the argument of HJM , the continuous stochastic 

movements of the forward rates process is modeled by the Ito 

processes. Let the instantaneous forward rates for date T viewed 

from date t be f (t,T). Bond prices and forward rates are 

connected by the following basic relationship: 

The evolution of the forward rates is given by 

where f (0,T) is a set of nonrandom initial forward rates, V T E 

[O,tl and B(v) is a one dimensional Brownian motion process with 

the standard properties (see Friedman, 1975). 

The following regularity conditions are imposed on the drift 

and volatility of the forward rate process. The drift 

p : { (t, s) 1 0 ~ t ~ s s ~ ) x ~  3 IR is jointly measurable from 
f 

33{(t,s)l0stsss~)xff 3 33, adapted, with 

Here B(-) is the Bore1 c-algebra restricted to [O,tl. The 

volatility c: {(t, s) l0stsss~)x~ 3 R is jointly measurable from 



B{ (t , s) 1 0StssS~)x~ + B ,  adapted and satisfies 

In differential form, the fluctuation of forward rates is 

described by 

Note that the spot rate at time t, r(t), is defined by the 

instantaneous forward rate at time t, namely 

It follows that by satisfying the regularity conditions on the 

forward rates process the spot rate process can be defined by 

Note that f(0,t) is the initially observed forward rates (at t = 

0). 

In addition to discount bonds, there exists a saving account 

traded in this economy. Define the saving account process as 

The interpretation of the saving account process is quite 

straightforward. An investor with an initial one dollar can 

invest into this saving account and let it grow instantaneously at 

the stochastic spot rate. The time t value of rolling over the 



0 0 
dollar is given by Z (t,w). Note that Z (t,w) satisfies the 

regularity conditions since r(t) is transformed by an exponential 

function. 

Given the forward rates process, there is a functional 

relationship between the bond return process and the forward rates 

process. Define the instantaneous return on the discount bond by 

where the dependence of all the variables on w is suppressed for 

notational ease. From (1) and Ito's lemma, 

The partial differential operator (w.r.t. T) can be loosely 

treated as a linear operator on the variable T inside the bond 

price process P(t,T). A  more rigorous description of this partial 

differential operator is found in HJM (lemma A . 1 .  appendix, p.96, 

1992). 

Matching volatility terms from equations (2) and (6) results 

in 

a 
( 7 )  IT (t,T) = -cp(t,T) f 

which implies 
aT 

Also, matching the drift of the forward rates gives 
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which upon rearranging leads to 

Note that the second term on the right is obtained by chain rule 

of differentiation. 

Up to this point, all developments are primarily 

definitional. Theoretical substance can now be introduced to the 

model. The necessary condition for absence of arbitrage is stated 

by the following classic condition: 

where r(t) and A(t) (the market price of risk) are common 

parameters to all bonds of various maturities and hence 

independent of T for T E [O,zl . An original justification for A 

to be independent of T is developed by Merton (1973) and Vasicek 

(1977) in a one stochastic interest rate model for bond pricing. 

(10) is couched in a highly interpretable form namely: the excess 

expected return on holding a risky discount bond is measured by 

its total risk times per unit risk price. 

The derivation of equation (10) for a simple one state 

variable is given by Vasicek (1977); and for the more general 

multiple state variables is given by Cox, Ingersoll and ROSS 

(1981). Differentiation of (10) with respect to T gives 



Substituting this result into (9) produces one of the main 

results in Heath, Jarrow, Morton (c.f. HJM Proposition 3, p.86, 

1992) : 

Equation (12) represents an arbitrage restriction on the 

drift of the forward rates process. Note also the market price of 

risk function, for t 3 T, becomes 

sinceop(t,T)I = O  (andpf(t,t) ando (t,t) arenow simplified 
T= t f 

as pf(t) and of(t)). That is a T-maturity bond has no volatility 

at T = t by definition. 

For contingent claims to be priced by arbitrage, HJM proceeds 

to show in their theorems 1 to 3 (HJM p.84-86, 1992) that there 

exists a risk neutral measure Q* such that bond prices relative to 

a saving account, 

is a @-martingale process. By Girsanov theorem (Duffie, 1992, 

appendix Dl, they introduce 



where B(t)* is a Brownian motion measurable with respect to 

probability Q*. 

The theoretical break-through of the HJM model lies in its 

ability to eliminate the market price of risk in contingent claims 

valuation. To see this, substitute (12) and (14) into equation 

(4) for the spot rate process: 

Both the market price of risk parameter A(t) and the forward rate 

drift p ( - 1  vanish in the last equality. In this reduced form, f 

the spot rate process depends on the initially observed forward 

rates as well as on the volatility of the term structure which 

consists of o ( - 1  and cf[.). P 

In the light of equations (14) and (15), contingent claims 

valuation can be carried out according to the standard procedure 

spelled out clearly in Harrison and Pliska (1981). First, since 

P(T,T) = 1 V T E [O,t], the sufficient condition for absence of 

arbitrage implies 

0 
Rearranging the above together with the definitions of Z (t) and 

0 Z (TI gives 



Second, the terminal payoff of a European bond option with 

expiration date t is given by 

We have therefore rederived the following 

Proposition 1 (Heath, Jarrow, Morton (1992)). Given an arbitrage 

free forward rates process, the initial value of a European bond 

option (which expires at TI is given by 

Two aspects of the above formula need emphasis. First, the 

right hand side of the above equality does not involve the 

variable h(t). It should be pointed out that the price of risk 

parameter is indirectly reflected in the risk-adjusted probability 

Q*. This is the preference free property of HJM valuation 

approach. Second, the present value of the bond option requires 

the joint distribution between the stochastic exponential function 

and the terminal option payoff at time t. This presents 

cumbersome computation for a closed form solution even if the 

forward rate process is a Guassian random walk. 

3. Conclusion 

To sum up, the HJM approach to bond option valuation has a 
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clear advantage over the spot rate approach. Their major 

contribution is primarily in terms of deriving an arbitrage free 

restriction on the forward rates drift. Combining this constraint 

with the sufficient condition for absence of arbitrage results in 

the elimination of the market price of risk function. 

In this regard, the contingent claim valuation problem is 

simplified considerably. Merely specifying a particular forward 

rates process and applying standard procedure will lead to a 

closed form option solution that involves only initially observed 

data as well as volatility parameters. These nice properties will 

reappear in the next chapter in a slightly different model which 

is also targeted for pricing a bond option with a stochastic term 

structure. 



CHAPTER 5. ARBITRAGE APPROACH TO BOND OPTION PRICING 

AND ITS IMPLICATIONS 

The thesis of this chapter shares the same spirit with a 

basic tenet in the general equilibrium analysis. In the Walrasian 

equilibrium price system, only a change in relative price can have 

real effects in the economy. On the other hand a change in the 

numeraire used in the price system cannot lead to any reallocation 

of resources. In finance, one would expect the same principle to 

hold in a viable price system that precludes all free lunches. 

That is a change in the numeraire should not change the 

fundamental state prices and similarly arbitrage free prices of 

contingent claims should be independent of the unit of account. 

In this chapter we adopt the preference-free approach to the 

continuous time bond option pricing problem which is advocated by 

Heath Jarrow Morton. Instead of using a savings account on which 

the bond price function is denominated, a discount bond is chosen 

as the numeraire which has the same maturity date as the European 

option written on an underlying discount bond with a more distant 

maturity date than the numeraire. This has the effect of 

converting the terminal value of a bond option to be a function of 

the prevailing forward price which must be identical to the 

underlying discount bond at the delivery date. Given this 

observation, our bond option valuation problem begins by 

specifying a forward price process and then employs a dynamic 

forward strategy to replicate the terminal bond option payoff. 

The necessary and sufficient conditions for absence of 

arbitrage opportunities in trading forward contracts allows us to 

derive a probability measure equivalent to the investor's 

subjective probability measure. This equivalent measure will be 

called the forward equivalent martingale measure. The value of a 



contingent claim (with the same maturity date as the European bond 

option) relative to the value of the numeraire discount bond is a 

martingale under the forward equivalent martingale measure. 

One of the major themes of this chapter is to show that 

pricing a bond option on a forward bond price process produces the 

same present dollar value for the option originally priced on a 

stochastic term structure. The switch of numeraire, however, does 

change the appearance of some price processes. The bond option is 

transformed from a martingale under the risk-neutral measure (via 

the HJM approach) to be a martingale under the forward equivalent 

martingale. A principal advantage of our approach is the 

resulting simplification of computing the present value of the 

bond option. 

This approach via specifying a forward price process in 

valuing a bond option has been first pointed out by Merton (1973) 

and later analyzed by Jamshidian (1987). Targeting for different 

purposes, these earlier approaches do not explicitly use the 

assumption of a dynamically spanned term structure which plays a 

crucial role in the results derived below. Also the solution of 

this early literature is derived by solving a partial differential 

equation. Here, the bond option is priced by necessary and 

sufficient conditions of absence of arbitrage. 

One can therefore argue that one of the principal payoffs of 

the present approach over the HJM approach is that computing the 

arbitrage free bond option prices is cloning the procedure used 

for evaluating the Black-Scholes equity option. In addition, a 

by-product of the forward bond price approach is that it motivates 

the existence of a Radon Nikodym derivative. With the aid of this 

state price density function, a number of existing theories 

related to stochastic term structure can be analyzed from a 

different perspective. 



Section 1 develops the technical aspects of the forward 

equivalent martingale measure and their interpretations. The 

valuation of a bond option with respect to this forward equivalent 

martingale measure is presented in section 2. Section 3 examines 

the consequence of adopting a different numeraire in contingent 

claims pricing. Here a neutrality principle is introduced and 

discussed. The result from section 3 provides another chance to 

look at the difference between the futures and forward prices. 

This is illustrated in section 4. 

In section 5, both the risk neutral measure and the forward 

equivalent martingale measure are combined so that the unbiased 

expectation hypothesis can be seen in a new light. We are able to 

show that the expectations hypothesis is basically an arbitrage 

statement. Section 6 concludes this chapter with a suggestion for 

further research. 

1. The forward equivalent martingale measure 

Let G(t,t*,T) be the forward bond price at time t defined by 

a forward contract that entitles the holder to buy a T-maturity 

discount bond at the delivery date t*. This implies 

The above definition has the following important meaning. 

Although a forward price can be contracted explicitly at time t 

and effective at time t* (for t* > t), equation (1) states that 

the forward contract can be replicated by the currently available 

time t discount bonds. 



Consider at time t a portfolio of going long one unit of T 
P(t,T) 

maturity discount bond and simultaneously going short 
P(t,t*) 

number of t* maturity bonds. The initial time t cost of this 

portfolio is 

P(t,T) 
At time t*, the portfolio has an obligation to deliver 

P(t,t*) 

dollars, and at time T one dollar will be received. Consequently, 

the payoff of this portfolio duplicates the payoff of a forward 

contract of T-maturity discount bond. 

Turning the definition in (1) around, the payoff at t* of the 

T maturity bond denoted by P(t,t*,T) can be replicated by a 

combination of forward contracts and borrowing. This implies that 

any derivative asset's terminal payoff that is a function of 

P(t,t*,T) can be attained by forming a dynamic portfolio of 

forward contracts. An interesting characteristic of this approach 

is that no additional borrowing or lending is required prior to t* 

since it does not cost anything to enter into forward contracts. 

Our first objective is to specify the stochastic behavior of 

the forward bond price process. Given the definition of a forward 

bond price, its dynamics evolution can be obtained from the 

following result where dB is a standard Brownian motion process. 

Lemma 1. The forward price process is given by 

where 



Proof. Note that both P(t,T) and P(t,t*) have the following 

dynamics: 

dP(t, t*) 
= pp(t,t*)dt-c,(t,t*ldB(t). 

P(t, t*) 

Then apply Ito's lemma to (1) and simplify to obtain the dynamic 

evolution for the forward price, namely 

which yields the desired result. 

0 

A well functioning financial market with zero transaction 

cost can be characterized by the absence of arbitrage 

opportunities. An arbitrage opportunity is defined to be a 

trading strategy with zero initial cost and a nonnegative future 

payoff with probability one. In terms of the forward bond prices 

process, no financial free lunch means that it is impossible to 

form a riskless arbitrage portfolio by exploiting these forward 

price processes. This in turn leads to a set of restrictions on 

the forward price process parameters as demonstrated in the 



following lemma. 

L e m a  2. If there is no arbitrage opportunity in the forward 

price process, then 

Proof. The value of a forward contract, denoted by g, at the 

initiation date t is zero and the embedded forward price is 

G(t,t*) where t* is the delivery date. For any later date u such 

that t < u < t*, g(u) = (G(u,t*)-G(t,t*))P(u,t*) which can be 

established by an arbitrage argument. 

Now at t, choose any two dates T T > t*. Next from a 
1' 2 

portfolio of newly initiated forward contracts with delivery dates 

at t*. In particular long 8 number of t*-maturity forward 
1 

contracts that deliver the underlying discount bond maturity at 

T2; and simultaneously short 0 number of t*-maturity forward 
2 

contracts that delivers the underlying discount bond maturity at 

TI. Denote the current value of the portfolio by V(t) so that 

By construction, g(-;TI) = g(.;T = 0 .  After an instant, 2 

At, the value of the portfolio is given by 



oG(t,t*,T1) oG(t,t*;T2) 
Choose 8 = and 8 = . This then implies 

G(t,t*,T2) 2 G(t,t*;T1) 

One cannot express the above in percentage change since V( t) = 0. 

However the above can be simplified by substituting in the 

respective forward price dynamics: 

Since P(t,t*) > 0 by construction and the initial cost of the 

portfolio is equal to zero, to rule out riskless arbitrage, the 

terms inside [. - 1  after the second equality must be zero. That 

is 

which implies 



As T1,T2 are arbitrary, absence of arbitrage opportunity in 

trading forward contracts implies the ratio of the drift to 

volatility functions of the forward price process is independent 

of maturities of underlying bonds. Therefore we can define 

The above result has a nice interpretation. Given a future 

date t*, any two different maturity bonds (T1,T2 > t* 1 purchased 

at t* will bear the same source of risk that comes from dB(t). 

The usual assumption of no default applies at maturity which 

consequently does not command any premium. As discussed earlier, 

the forward price process is used to replicate the discount bond 

process: at t*, G(t*,t*,T) must converge to P(t*,T). The 

combination of these two observations allows us to rationalize 

A(t,t*) as the ratio of p ( - )  and cG(-) in the above theorem. 
G 

Moreover, the ratio is independent of the maturities of the 

constituent bonds. 

Except for the missing opportunity cost, r(t), A(t,t*) plays 

a similar role to the classical necessary condition found in 

Vasicek (1977) for valuing a pure discount bond 

The variable h(t) in Vasicek's model is called the market price of 

risk that arises from the fluctuation of the Brownian motion 

process. While it can be specified to be a function of r(t), it 

is independent of any arbitrary maturity T. Because of its 



resemblance, h(t,t*) will be called hereafter the forward market 

price of risk. Note that the missing r(s), s E [t,t*l in the 

expression for A(t,t*) is understandable since the holding of the 

bond asset is not effective until t*. 

The link between h(t and h(t, t*) can be established by the 

following: 

Proof. Part (ii) follows trivially from (i) since s (t,t) = 0 for 
P 

a bond that matures at t*. To verify (i), use the definition 

since s (t,t*) = s (t,T)-s (t,t*). G P P 
0 

Theorem 1 states that the forward market price of risk and 

the usual market price of risk for holding a risk bond asset 



differs by cr (t,t*) prior to t*. Provided that both A(t) and P 
A(t,t*) are positive values (since bond prices and forward prices 

are randomly fluctuating) part (i) implies that risk premium from 

holding the bond asset is higher than the premium from entering 

into a dynamic portfolio of forward prices contracts; that is 

The rationale for this difference comes from the recognition 

that with the case of a bond price strategy, the asset is 

physically held and rebalanced at each instant. On the contrary, 

the forward price is not a traded asset, the risk exposure with 

the forward contract strategy is lowered but not entirely 

eliminated as the forward price is ultimately used to replicate 

the terminal random P(t*,T). 

Part (ii) states that at the expiry date of the forward 

contract, the classic risk premium is identical to the forward 

market price of risk. This is so since the long position of the 

forward contract has an obligation to purchase a T-maturity bond 

at t*. That is the time when the bearing of T-maturity risky 

bonds begins. 

Provided that cr (t,t*) obeys a set of regularity condition, 
P 

A(t,t*) will inherit the properties of A(t). The following 

assumption is therefore adopted. 

Assumption. cr (t,t*,w) is adapted with respect to Yt, jointly 
P 

measurable and uniformly bounded on {(t,v) 10 5 t 5 v 5 t * h .  

Proposition 1. Define 



Then h(t,t*):Rx[O,tI + lR satisfies 

where .! is a Lebesgue measure 

- 
if and only if there exists a probability measure Q such that 

dQ t 1 t 2 
(a) - = exp(-S h(v, t*)dB(v)--1 h(v, t*) dv) 

dP 0 2 0  

w 

is a Brownian motion on {R,~,F,Q) 

r.. 

(dl the forward bond price is a Q-martingale process. 

Proof. Given (i), (ii) and (iii), Girsanov's theorem (Elliot, 

1982, ch.13) implies (a) and (b). Substitution of (b) into the 

definition of the process K(t,t*) gives (c). By construction 

Elliot (theorem 13.5, (1982)) shows that there is a unique 

solution to the above stochastic differential equation, namely 



Since the exponential function is strictly positive, the above 
- ,., 

shows that G(t,t*) is a Q-supermartingale. G(t,t*) is a Q- 

martingale only if ~-(G(t,t*)) = G(O,t*), V t E [O,zl. Therefore 
Q 

it has to be shown that 

,., 

dQ 
Substituting p (t,t*) = h(t,t*)oG(t,t*) and - into the above and G dP 

simplifying yields 

Now by (iv), part (dl is obtained. 

Conversely, given (a), (b), (c) and (dl, (ii) and (iii) 

follows because of Radon-Nikodym theorem (Bartle, theorem 8.9, 

(1966)). Substituting (b) into the definition of K(t,t*) gives 

- 
Given (c), it follows that (i) holds a.e. Q. Finally, from (dl 

- 
G(t,t*) is a Q-martingale implying that (iv) holds. 



Proposition 1 has transformed the forward bond price to be a 

martingale process with respect to the forward equivalent 

martingale measure. In contrast to the HJM model which places a 

nontrivial restriction on the drift of the forward rate process, 

here the forward bond price is restricted to have a zero drift. 

Harrison and Kreps (1979, theorem 2 )  have shown that a viable 

price system is a martingale after a suitable normalization. Now 

the forward bond price at maturity must be identical to the spot 

price of a discount bond to avoid obvious arbitrage at the 

settlement date. That is, 

Furthermore, the forward price process can be replicated by 

managing a dynamic portfolio of two discount bonds with their 

respective values P(t,t*) and P(t,T). This is implied by the 

definition of a forward price 

Therefore the forward bond price is a discounted price 

process in the sense that the T-maturity bond is discounted by t*- 

maturity bond which is selected to be the numeraire. While this 

reasoning suggests why the arbitrage free forward price as a 

martingale goes back to the insights of Cox and Ross (l976), the 

actual transformation is performed by the application of the 

Girsanov theorem as shown in the above proof. 

2. Pricing of bond option by the forward equivalent 

martingale measure 

The forward prices restrictions derived from the last section 



significantly simplify the evaluation of the bond option. To see 

this, define a terminal payoff of a European (discount) bond 

option as follows 

where t* expiration date of the option 

K exercise price 

and t* < T. 

In the original HJM formulation, the present value of the 

above payoff is evaluated by taking the conditional expectation 

with respect to the risk neutral martingale measure, i.e. 

for to < t* < T. This formula requires the knowledge of the joint 

distribution of the discount factor and P(t*,T) before the 

expectation can be taken. The computation turns cumbersome 

rapidly if both exp(.) and P(t*,T) are complicated functions of 

the stochastic interest rates. 

On the contrary, using the forward equivalent martingale 

approach can avoid such complication. Rewrite the terminal payoff 

since P(t*,t*) = 1. Consequently expressing the terminal call 

payoff in terms of a t*-maturity discount bond has transformed the 



payoff to be a function of the forward price at the expiration 

date. 

Given the above interpretation of the call option payoff, its 

present value can be determined by taking conditional expectations 

of the terminal payoff. This is given by 

The only information required to compute the current call value is 

the univariate distributional property of the forward price at the 

option's expiration date. 

Since the arbitrage free forward price is a driftless 

martingale process with respect to the forward equivalent 

martingale measure, the forward price volatility structure IT G 
fully determines the bond option value. In several special cases 

where IT is a deterministic function, the solution of the bond 
G 

option resembles the Black-Scholes formula. 

Proposition 1. If IT (t,t*,T) is nonstochastic, then 
G 

P(tO,T) 
ln[ 

P(tO,t*).K 
I 

-2 t* 2 
where IT = .f cG(t,t*,T) dt, P = 

, 
0- 



and N(.) is the cumulative normal distribution function. 

dG(t - 
- o (t,t*,T)dB(t) and cG(t,t*,T1 is Proof. Given that --- - 

G(t) G 
nonrandom, the forward price process is a simple stochastic 

differential equation with solution given by 

- 
Let to = 0 for ease of notation. Note that since dB(t) is a 

Gaussian random variable, the right hand side loosely represents a 

linear combination of Gaussian random variables. Denote 

where z(t*) is a normal random variable with zero mean and unit 

variance and 

The solution of the bond option can now be computed as 

follows: 

- 
where Q ~rob(G(t*) > K). 



The first term can be simplified as follows: 

Deflate G(t*) by exp(-) so that the last equality can be 
2 

turned into a cumulative normal distribution. Note that 

G(t*) 0- * 2 

> K implies G(t*) > exp(---)K 
'T * 2 2 

exp (-1 
2 

so that 



n 1 
Define = ++r* and y = cr*-z so that 

c* 2 

Therefore (P.2) can be rewritten as 

- 
Similar manipulation is applied to Q - K  with G(t*) being 

cr* 
2 

deflated by exp(-). Hence 

G(0) 
d l  

2 1 
-** 

cr* 2 
1 

@-+r* 1. 
2 

This yields 



Substituting (P.3) and (P.4) into (P.2) gives 

P(O,T) 
because G(0) = 

~ ( 0 ,  t*)' 

The above bond option formula is similar to the Black-Scholes 

equity option closed form solution in the sense that it takes the 

initially observed term structure as an input. Note that P(tO,T) 

is the discount bond that matures at T while P(t ,t*) represents 
0 

the bond that has the same maturity as the underlying option's 

expiration. This maturity matching does not create a problem 

since the entire term structure is spanned by assumption. 

A second similarity between the Black-Scholes case and the 

present formula is found regarding the role played by P(t t*). 
0' 

Whereas Black-Scholes model treat the riskless bond as a 

numeraire, here P(tO, t*) is taken as a numeraire so that any 

contingent claim' s terminal payoff expressed in terms of P ( to, t* 

is a martingale process with respect to the forward equivalent 

martingale measure. 

Lastly as a reflection of Black-Scholes model, the only 

estimable parameter in the bond option formula is the volatility 

of the forward price process. However the two analyses diverge at 

this point. While Black-Scholes formula has a constant stock price 



volatility, the bond option formula is a function of the forward 

price volatility. This variable in turn is related to the bond 

yield volatilities according to lemma 1 in the last section: 

Therefore the condition in proposition 1 will be satisfied if 

the bond yield volatilities are nonstochastic. A particularly 

convenient two factor term structure model can be used to meet the 

deterministic volatility requirement. This is chosen primarily to 

illustrate the simplicity of the present approach. The model of 

interest is expressed as: 

V t,T E [ O , t l ,  where 

K = mean reverting parameter, 

- - 
c and c are constants and where dB and dB are two uncorrelated 

1 2 1 2 

Brownian motions. 

Both volatility specifications have rich intuitions in that 

as t approaches maturity T in the limit, bond price uncertainty 

vanishes entirely. This aspect display the convenience for 

specifying a term structure movement since having constrained the 

term structure to be arbitrage free will automatically impose 

constraint on a discount bond price process as well. Working the 

other way around by means of imposing an absence of arbitrage 

constraint on a bond price process need not necessarily produce a 

simultaneous constraint on the term structure movement. Cheng 



(1991) has shown that modeling a 'viable' bond price movement by a 

Brownian bridge process can still lead to arbitrage in the model. 

Returning to the description of the two factor model, the 

first factor has a relatively straightforward interpretation, 

namely the random influence of dB on bond returns is the same for 1 

all maturities. On the contrary, dB has a larger influence on 2 

yield with short maturity than distant maturity. As T enlarges, 

the influence of dB2 dwindles and the bond yield gets pulled 

towards a mean value by the mean reverting parameter K .  

According to proposition 1, the drift of the bond yield plays 

no role in determining the bond option value. Thus to complete 

the computation, substitute the specifications of and 

-2 
c ( - 1  into CT . This is performed in the following 
2,p 

Lemna 2. Given the bond yield volatility s ( - ) ,  02,P(. 1, the 
1,p 

corresponding forward prices volatility is computed as 

where 

Corollary. Given the bond yield volatilities as above, the 



corresponding bond option formula is given by 

where O and N(.) are given in proposition 1 and 

The above corollary has been obtained as a one factor model 

by Heath, Jarrow, Morton (1992) and a two factor model by Jarrow 

and Brenner (1990). It is characterized by the full use of 

initially observed term structure as input parameters. Unlike the 

spot rate approach which entails a market premium function, there 

is no need for estimating such preference parameter in the option 

formula. Furthermore, instead of computing a cumbersome joint 

distribution of the terminal payoff as in HJM, the approach here 

requires merely simple integration once the nonstochastic 

volatility assumption is adopted. 

3. Comparison between risk neutral measure and 

forward equivalent martingale measure 

Granted that the forward equivalent martingale measure has 

produced an arbitrage free bond option value, it is natural to 

question whether it is by accident that this value is identical to 

that calculated from the risk neutral measure via the HJM model. 

Intuition suggests that these two values cannot differ. This is 

so since in a viable price system that is free of arbitrage 



opportunity, the 'real' cash flow should be determined independent 

of the numeraire chosen. In other words, the riskiness of the 

terminal payoff has already been reflected by the shadow state 

price, whereas any chosen numeraire only plays the role of a 

scaling factor so that the state price density can be transformed 

to be a risk adjusted probability measure. 

The following proposition formalizes the above intuition. 

Before stating this useful result, denote the terminal payoff of a 

contingent claim (that may pay continuous dividend) by c(t,T) 

where t < T. Furthermore, let 

1 
and let q(t) = 

t 
P(t,t)exp(J r(s)ds) 

t 

t ,  t 
Proposition 1. E,(J c(s)ds) = E (J c*(s)ds) 

Q 0 Q* 0 

Proof. From the left hand side, 



T 
exp(-! r (s Ids) 

t 0 
= S S  

Throughout the proof of the above proposition, we have 

assumed the conditions for Fubini theorem is satisfied. Therefore 

interchanging integrals (applied twice) is justified. This 

proposition manifests the 'numeraire invariance principle' for it 

illustrates the irrelevance of the particular choice of numeraire 

in computing the arbitrage free contingent claim value. 

The invariance principle is not a surprising result since an 

arbitrage free viable price system shares a feature familiar from 

a Walrasian general equilibrium models. That is that a change in 

numeraire does not cause a reallocation of resources in the 

economy. Only changes in relative price can trigger real economic 

changes. The necessary condition that upholds the equality in the 
,., 
dQ - above proposition is the existence of the R-N derivative - - 
dQ* 



An alternative interpretation of the invariance principle is 

that in an arbitrage free viable system "martingale to martingale" 

transformations should be permissible. With this interpretation, 

$(TI is merely performing a risk reshuffling function, but in 

doing so guaranteeing the fair game feature of the model is 

preserved. One must be careful of not using the term risk 

transformation to qualify $ ( T I ,  for in that context, as explained 

by Cox and Ross (1976) and Harrison and Kreps (19791, the usual 

role played by the Radon-Nikodym derivative is drift removal for 

viable price processes. 

If it is just a matter of interchanging martingale measures, 

the risk transformation may just be discarded as an esoteric 

exercise. However, it is an immensely important transformation 

for the last section is a testimony of the analytical convenience 
,., 

of valuing a bond option with respect to Q rather than Q*. The 

cumbersome joint conditional expectation of the terminal options 

payoff and the stochastic terms structure under Q* has suddenly 

become a matter of finding a simplified univariate conditional 
,., 

expectation of the terminal option payoff with respect to Q. Thus 

the use of a forward equivalent martingale measure has recovered 

the attractive Cox and Ross approach of obtaining Black Scholes 

formula. 

,., 

A slightly different way of comparing Q and Q* can be 

accomplished by re-examining the concept of futures and forward 

prices given a stochastic term structure. In their famous paper, 

Cox, Ingersoll and Ross (1981) have couched the analysis of the 

difference between the futures and forward prices in terms of 

applying the fundamental arbitrage principle. One of the 

important insights of these authors is to express the futures and 

forward prices as values of traded assets in the absence of 



arbitrage opportunities. The determination of futures and forward 

prices are then reduced to the determination of the rational 

values of these assets even though the futures and forwards and 

not themselves asset prices. 

Specializing CIR's general result to the present context with 

a stochastic term structure, the futures bond price can be viewed 

as the present value of a terminal discount bond price P(t,T) 

times a saving account that accumulates interest from present 

until time t. From the arbitrage-free analysis of HJM, such a 

payoff with the saving account chosen as numeraire immediately 

implies that the futures price is necessarily a Q*-martingale 

process. On the other hand, the forward bond price can be viewed 

P(t,T) 
as the present value of the terminal payoff given by 

P(t,t) 

The last section has already justified that the forward bond 
,., 

price is a Q martingale process. Here it is useful to focus on Q* 

to present an alterative to CIR's characterization of the 

difference between futures and forward price. Using CIR's 

notation momentarily, define H(t) and G(t) as futures bond prices 

and forward bond prices respectively. 

In a fairly general setup, CIR demonstrate the necessary 

condition that a contingent claim F must obey. That is in a 

continuous time and continuous state economy, the valuation 

equation for F 

(their equation 

is a fundamental partial differential equation 

(43) 1 

where subscripts on F defines partial derivatives and X is a 

vector containing all variables necessary to describe the current 

state of the economy. Also, 



pi the 

cov(X. ,X.) = the 
1 J 

the 

r(X.,t) = the 
1 

6(X,t) = the 
the 

local mean of the changes in X 
i 

local covariance of changes in X with 
i 

changes in X 
j 

spot interest rate 

continuous payment flow received by 

claim 

4.  factor risk premium associated with X 
1 i' 

The above necessary condition combined with sufficient 

condition for valuation by arbitrage is now applied to streamline 

the essential difference between a future price and a forward 

price. 

Proposition 2: In the absence of arbitrage opportunity, the 

futures bond price is a Q*-martingale process. The forward price 
,., 

dQ 
- 1 is a Q*-martingale if and only if the R-N derivative - - 

dQ* 
almost everywhere. 

Proof. By proposition 2 of CIR, futures bond prices is the 

current value of an asset that has a terminal value given by 

Also by proposition 7 of the same paper, these authors have shown 

that 

Substituting these results into the fundamental partial 

differential equation and with appropriate relabelling H = F, we 



have their equation (44): 

subject to terminal condition H(X,t) = ~(r,~)ex~(.J~r(u)du). 
t 

By the sufficient condition of pricing by arbitrage, there 

exists an equivalent martingale measure Q* such that H(X,T) 

H(X, t) 
relative to the saving account given by is a Q*- 

martingale process. This yields 

which is a specialized version of CIR equation (46). 

Next by proposition 1 of CIR, the forward bond price is the 

P(t,T) 
current value of an asset that has terminal payoff G(t) = ---- 

P(t,t)' 
This G(t) can only be a Q*-martingale if the conditional 

G(T) 
expectation of yielding 

t 
exp(J r (u du) 

t 

dQ T 
The second equality can hold only if - P(t,t)exp(J r(u)du) = 

dQ* t 
1. 

0 



The first part of the above proposition has verified an 

intuitive aspect of a futures price. Namely, in a viable price 

system H(t) is simply the risk adjusted predictor of the terminal 

random spot price. The second part of the proposition states that 

the forward price can also be expressed as a Q*-martingale, and 

therefore equivalent to futures price if the stringent condition 
M 

dQ - -  dQ 
- 1 is satisfied. However, this effectively reduces - to be 

dQ* dQ* 
a deterministic constant one almost everywhere, contradicting the 

,., 

dQ 
property that - is a Q*-measurable random variable. 

dQ* 

Cox, Ingersoll and Ross express the same concern about the 

seeming contradiction if the equivalence between the futures and 

forward prices is maintained. They explain this implausible 

equivalence between the two prices as the equivalence of the 

strategy of "going long" with "rolling over" strategy. 

Within the argument developed above, we can observe that for 

the equivalence of the two strategies to hold, 

is required almost everywhere. This leads to an extremely 

stringent requirement in a stochastic interest rate context. It 

constrains the geometric rate of return from a sure deposit to be 

the average of a sequence of stochastic instantaneous returns. 

Such an implausibility is the intuition that motivates the concern 

from Cox, Ingersoll and Ross about the equivalence of forward and 

futures prices. 



4. A comment on the reexamination of the Expectations Hypothesis 

This section reviews the validity of the traditional 

Expectations Hypothesis of the term structure of interest rates. 

The Hypothesis has a long history in financial economics and can 

be traced back to the writings of Irving Fisher (1896) and Hicks 

(1939). Despite a number of possible formulations, the original 

Expectations Hypothesis attains its popularity by the assertion 

that the implied forward rates are the unbiased predictor of the 

random future spot rates. The status of this version, however, 

has been shaken by the modern term structure literature (notably 

led by the paper of Cox, Ingersoll and Ross (1981~). 

Cox, Ingersoll and Ross' attack on the above Hypothesis rests 

fundamentally on the Jensen inequality. In this regard, their 

analysis is a prime example of the spot rate approach to the 

determination of an equilibrium term structure. In particular, 

given a stochastic specification of the instantaneous spot rates 

as 

one can use a simple hedging argument to obtain the classic no 

arbitrage condition, namely 

where p ( - 1  and r ( . )  are the drift and volatility of the bond P P 

price process and A(t) is the equilibrium market risk premium. 

Applying Ito's lemma to the coefficients p and r of a T- P P 

maturity discount bond can turn the no-arbitrage condition into a 

partial differential equation 



subject to the boundary condition that P(T,T) = 1. The solution 

to the above fundamental valuation equation is proven by Cox, 

Ingersoll and Ross using a result from Friedman (Theorem 5.2, 

1975) 

Note that the expression 

dQ* 
is the Radon Nikodym derivative - which can be interpreted as 

dP 
the equilibrium state price density function. 

It can be further shown that the Expectations Hypothesis does 

not hold in this framework. To see this, denote 

In this model, the forward rate is derived from the equilibrium 

bond price solution via the following relationship: 

where subscript denotes partial derivative. By Ito's lemma 



To test the consistency of Expectations Hypothesis with this 

model, one merely need to check if E (r(~)) is equal to f(t,T). 
P 

That is 

A(T) 
Since r(T) and e are likely correlated, the RHS is larger 

than the left hand side by Jensen inequality. (More precisely, 

the inequality should be called the Holder's inequality which 

arises because of the nonzero covariance.) Note that even if A = 

0, the two sides of the above expression still remain unequal. 

This result therefore also falsifies a tendency to infer that 

Expectations Hypothesis may become valid in a risk neutral world. 

Next, we approach the Expectations Hypothesis from the 

perspective of the pure arbitrage analysis developed here. The 

notable difference comes from taking the bond yield as given 

instead of being derived from the equilibrium. In this regard, 

the forward rates process is an exogenous stochastic process: 

In integral form, 



The spot rate is obtained by having T + t so that r(t) = f(t,t) or 

Applying the arbitrage free condition to the forward rate 

process via the HJM model yields 

where dB*(t) is a Brownian motion with respect to the risk neutral 

probability measure Q* and the second equation is the forward rate 

drift restriction. Substituting dB*(t) and pf(-) into the spot 

rate yields 

Note that first integral from the second equality is not zero and 

the future spot rate is not a driftless Q*-martingale. 

On the other hand, applying the arbitrage free conditions of 

the forward price process converts the future spot rate process to 
,., 

be a Q martingale. This is shown in the next proposition: 

,., 
Proposition 1. Given that the forward price is a Q-martingale 

process, then the future instantaneous spot rate process r(t), 

where 0 < t* < t < T, is also a forward equivalent martingale 



w 

process with respect to Q. 

Proof. From theorem 1 and proposition 1 of section 1, 

Because the forward rates restriction holds for all times, for t* 

< t 

pf (v, t*, t) = o (v, t*, t)[op(v, t*, t)-h(t.11 f 
= -of (v, t*, t)[h(t)-op(v,t*,t)1 

Then 

Substituting these expressions into the spot rate process yields 

t - 
+f of (v, t*, t)[d~(v)+h(t*,v)dvl 
0 
t t ,., 

= f(0,t)-1 of(v,t*,t)h(t,v)dv+S ef(v,t*,t)dB(t) 
0 0 
t 

+I of(v.t*,t)h(t*,v)dv 
0 
t - 

= f(O,t)+J ef(v,t*,t)dB(v). 
0 

Finally taking conditional expectations with respect to forward 

equivalent martingale measure yields 



To sum up, two approaches have been used to examine the 

validity of a version of the Expectations Hypothesis under 

uncertainty. On the one hand, this Hypothesis is inconsistent 

with the prediction from the equilibrium spot rates approach. The 

problem is mainly caused by the Jensen's inequality. The 

investor's preference plays no role in causing such inconsistency. 

On the other hand, deriving the instantaneous spot rate 

process from the exogenously specified forward rates process 

recovers the Expectations Hypothesis. This is achieved by 

applying the arbitrage free conditions from the forward price 

process to the spot rate so that it becomes a forward equivalent 

martingale process. The spot rate process however is not a 

martingale with respect to the risk neutral measure. 

Early analysis of Cox, Ingersoll and Ross (1981) have pointed 

out that a seemingly special case for unbiased Expectations 

Hypothesis would be a scenario of full certainty. The catch of 

their remark is that trivial risk neutrality alone is not 

sufficient to produce the unbiasedness of forward rate as a 

prediction of future spot rate. In the above analysis the bond 

market is assumed to be dynamically complete and the term 

structure is fully spanned by existing discount bonds. One of the 

fundamental insights from an Arrow-Debreu complete securities 

market setting is that it effectively reduces the economy to full 

certainty. 

Therefore this comparison of a stochastic economy with an 

equilibrium world of perfect certainty allows us to recover a 

classic version of Expectations Hypothesis. Of course, this 



rationalization of the unbiased expectations hypothesis in a 

complete market is just heuristic. The main result is primarily 

driven by the absence of arbitrage opportunities which transforms 

the spot rate process to be forward equivalent martingale process. 

It suffices to conclude that the unbiased Expectations Hypothesis 

is a statement of absence of arbitrage. 

6. Summary and conclusion 

This chapter presents the arbitrage free approach to 

valuation of a bond option and its implications. The approach is 

based on the simple presumption that there is a completely spanned 

term structure. It is still a relatively fresh methodology and 

likely promising more interesting results than the few presented 

above. Therefore rather than conclusively closing the topic, it 

is perhaps more useful to streamline further the idiosyncrasy of 

this approach. 

Our modern treatment of valuing interest rate related 

contingent claims manifests a fundamental guiding principle in 

finance. That is by observing a set of traded assets prices, one 

is able to extend these prices to value other derivative 

securities by an appeal to the absence of arbitrage opportunity. 

The payoffs to this approach is quite far-reaching and so it is 

worth to reiterate some of them here. The arbitrage free 

methodology stress the preference free advantage of pricing 

financial assets. This advantage spans both the theoretical and 

empirical aspects of the topic. The empirical convenience of the 

preference free feature is quite obvious. One is freed of the 

nagging chore of estimating the market price of risk function in 

this case. The only set of parameters left for estimation are 

those embedded in the volatility functions of the term structure. 



On the theoretical side, the principle of parsimonious 

parameterization is almost always the advisable approach to asset 

pricing. The advance of options pricing as a major finance 

paradigm since Black-Scholes' contribution is primarily founded on 

risk neutral pricing. The only parameter in that model requiring 

specification is the volatility of the equity process. 

Cox, Ingersoll and Ross (1985b) argue that it may be 

inappropriate to remove the preference parameter from bond options 

pricing problem when the underlying state variable is the non- 

traded interest rate. The fact that the interest rate is a 

fundamental economy wide variable forms a basic motivation for 

these authors to use an equilibrium approach to the valuation 

problem. Indeed, the equilibrium approach to pricing bond options 

is more driven by the need to endogenize the value of a pure 

discount bond. 

The priority interestingly works in reverse if the objective 

is primarily to value an interest rate related derivative 

security. Once the dramatic assumption of a complete market is 

adapted, the power of Black-Scholes and Harrison and Kreps absence 

of arbitrage methodology reveals itself immediately by the removal 

of the drift of the price process. Thus as shown above, pricing 

bond options by the absence of profitable arbitrage entails merely 

the specification of a volatility function for the forward price 

process. 

Furthermore, a by-product of this option pricing problem is 

the preference free pricing of the unit discount bond can also be 

solved as well. First, one can express the terminal payoff of the 

discount bond relative to a chosen numeraire. The conditional 

expectation of this numerated payoff with respect to the 

corresponding equivalent martingale measure must be the initially 

observed term structure. This is first pointed out in Ho and 



Lee's discrete time model (1986). The validity of this 

observation is promoted in further Hull and White (1992) and 

Jamshidian (1987). 

Given the above credit for supporting the preference free 

methodology to bond options pricing, it is fair to square up some 

of the remaining unresolved problems with this approach. As 

mentioned above, the arbitrage approach adopts a reverse priority 

to the equilibrium spot rate approach. Initially specifying a 

forward rate process, one is led to a random spot rate that is 

highly non-Markovian. The path-independence feature of a Markov 

interest rate process is an appealing feature for much analysis. 

Needless to say this is one of the main reasons motivating the 

early spot rate literature. 

With an arsenal of mathematical tools in the stochastic 

calculus literature, one would be less surprised that the non- 

Markovian part of the problem will soon be resolved. At this 

point, we conjecture the technique used will be a time change 

Brownian motion. The creative part of the problem, however, is to 

provide a sound justification for employing any relevant 

mathematical tool. After all, Black Scholes' contribution is not 

about introducing PDE to economics and finance but rather 

foreshadowing the concept of risk-neutral pricing. 

Similarly, Harrison and Kreps should not be merely credited 

for first applying the mathematical martingale representation 

theorem but also the dynamic spanning concept and the deep 

justification for the continuous tradings. There is definitely a 

distinction between the mathematics of passion and the passion for 

mathematics. 
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