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ABSTRACT

A microscopic Hamiltonian descriptive of the charge density
wave (C.D.W.) transitions occuring in the 2H transition metal
dichalcogenides is presented. From existing band structure
calculations of these highly two dimensional compounds, the
essential electronic feature is proposed to be the six equivalent
I’'-K saddle points of the conduction band which in the two
dimensional limit produce a logarithmic Van Hove type contribution
to the density of states. Incorporation of lattice dynamical
effects into the model Hamiltonian begins with the six equivalent
longitudinal acoustic A symmetric phonons belonging to the
star q=tGi/3, observed to partially soften as the C.D.W.
transition is approached from above.

With the C.D.W. active portions of the electronic conduc-
tion band and phonon Brillouin zone characterized, the model
Hamiltonian, incorporating both electron-phonon and anharmonic
interactions, is diagonalized in terms of the static lattice
distortion amplitude, the order parameter appropriate to the
C.D.W. phase. The C.D.W. electronic and phonon energy spectrum
resulting from the diagonalization process are used to calculate,
via numerical methods, the thermodynamical properities of the
C.D.W. phase transition. |

Taken as a whole, the results strongly support the model

of '-K saddle points coupled through the C.D.W. distortion
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amplitudes. Correlating the observed ratio of zero temperature
electronic gap to lattice distortion with the observed partial

softening of the q=%G longitudinal acoustic A symmetric

i/3
phonons, a susceptibility difference comparing favorably with
experiment is predicted. Also, the electronic saddle point
model suggests a Fermi surface consistent with the de Haas-
van Alpen results.

Finally, the temperature dependence of the six A symmetric
modes in the C.D.W. phase, where they couple to form optically

actice Raman modes, is given and shown to conform well with

experimental results.
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CHAPTER 1

INTRODUCTION

1.1 Charge Density Wave Transitions in the Layered Metal
Dichalcogenides

A remarkable class of displacive phase transitions exist
in a large number of the group VB transition metal dichalco-
genides}' Now realized as a manifestation of electron-phonon
coupling enhanced by the two dimensional environment existing
in these layered compounds, these transitions were first
interpreted by Wilson et all where, using electron diffraction,
the emergence of superlattice reflections about the parent Bragg
points at sufficiently low temperature indicated new components
to both the lattice and electronic periodicity. In addition to
the simultaneous appearance of these charge density waves (C.D.W.)
and periodic lattice distortions (P.L.D.) at the transition tempe-
rature, abrupt changes in the resistivity, magnetic suscepti-
bility and specific heat were also observed.

Chemically based on the composition MX, where M is vanadium,
niobium or tantalum and X is sulfur, selenium or tellurium, the
transition metal dichalcogenides are structurally based upon a
sandwiching format where hexagonally ordered planes of metal
atoms are coordinated from above and below by hexagonally
ordered chalcogen planes. Only relatively weak Van de Waals

forces couple one X-M-X unit to the next.



-2~

In many respects, the C.D.W. transition occurring on the
transition metal dichalcogenides is a two dimensional realiza-
tion of the electronic/lattice instability initially envisioned
by Peierls2 and Fréhlich3 as the mechanism which would necessarily
drive a one dimensional metal to the insulating state by the
introduction of an electronic gap at the Fermi surface, a result
of the splitting of electronic states, Ek—kf and Ek+kf by
coupling to a lattice distortion of 2kf. It is the special
circumstance of one dimension, where the Fermi surface consists

of the two points -k_ and k_, that ensures that, below some temp-

f i
erature, the gain in electronic energy will dominate the
positive lattice distortion energy and a C.D.W., indicative of
the new periodicity at Zkf, will manifest itself. However, for
higher dimensions, the criterion for a C.D.W. transition is a
complex issue with such causative agents as Fermi surface
topology, density of states structure and electron-phonon
coupling strength assuming key roleslo.

1.2 Structural and Electronic Properties of the 1T and 2H
Polymorphs

Depending upon the alignment of the two chalcogen sheets
which sandwich the transition metal, two basic polymorphs are
possible, octahedral or trigonal prismatic. In the octahedral
or 1T configuration, the chalcogen sheets differ by a 60 degree
rotation about an axis perpendicular to the sheets and passing

through the transition metal (c-axis) and thus assume a staggered
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arrangement with one MX2 unit per unit cell. In the trigonal
prismatic or 2H configuration, the chalcogens of a given sand-
wich align with each other but the successive sandwiches stacked
with 60 degrees relative rotation about the c-axis and thus
contain two MX, units per unit cell.

This layered format results in a large anisotropy between
basal plane and c-axis directions and thus renders these com-
pounds highly two dimensional. For example, in both 1T and 2H
polymorphs, the ratio of basal plane to c-axis resistivity is
approximately 30.

Despite their structural similarity, the 1T and 2H polymorphs
exhibit strikingly different properties in the C.D.W. state. For

example, in 1T TaSe entry into the C.D.W. state at 476K produces

97
an almost order of magnitude discontinuous increase in resisti-
vity, from 5 x 10—4 ohm-cm to 1.5 x 10_'3 ohm-cm, while in 2H
TaSe,, only the slope of the resistivity changes at the transi-
tion temperature with the C.D.W. state displaying a greater con-
ductivity than the normal state. Figures 1.1 and 1.2 clearly
correlates this contrasting C.D.W. transition behavior with
polymorphic form.

To understand these and other salient distinctions between
the C.D.W. transitions in the 1T and 2H polymorphs, recourse to

an intensive body of band structure calculations is fortunately

available4.
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Beginning with Wilson and Yoffes, simple tight-binding
arguments were employed to systematically interpret an extensive
portion of the observed optical and electrical properties of
the group IVB, VB and VIB transition metal dichalcogendies. The
valence band (bonding band) consists of six broad bands (v5eV)
derived primarily from the chalcogen p-orbitals, with each
chalcogen supplying three p-orbits. As each chalcogen has four
p-electrons, the remaining four electrons needed for a filled
valence band are supplied by the transition metal, two from
n-level s-electrons and two from (n-1) level d-electrons. Within
this admittedly naive bonding picture, the conduction band
(antibonding band) consists of three bands derived from the
metal n-level s-orbital and two (n-1) level d-orbitals. The
remaining three (n-1) level metal d-orbitals comprise the "non-
bonding” manifold, situated within the v6eV gap between the
valence and conduction band and, as will be seen, are the source
of C.D.W. activity.

Within the tight-binding context, the essential electronic
characteristics of the group IVB, VB and VIB transition metal
dichalcogenides can be explained. Starting with group IVB com-
pounds, its two d-electrons are involved in the valence band and
are thus semiconductors. Group VB compounds, with three
d-electrons, are metallic as the extra single d-electron only
partially fills the nonbonding band. Group VIB, as a result of
hybridization effects6 within the nonbonding manifold splits off

a single lower band, is semiconducting as its two nonbonding
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d-electrons £ill the lower nonbonding band.

The APW calculations of,MattheiSSG, elucidated the fine
structure of the nonbonding manifold which is instrumental to
the C.D.W. transition. The influence of octahedral as opposed
to trigonal symmetry upon the three bands of the nonbonding
manifold is drastic though the location and widths of the
valence and conduction band remain essentially independent
of polymorphic form.

In the octahedral situation, the character of the non-
bonding manifold is basically that of three triply degenerate
bands of d-symmetry with no hybridizing influences from either
conduction or valence band states. The bandwidth is large, of
the order of 4 eV and displays a relatively flat density of
states, indicative of its two dimensional nature. Using a
directed orbital approach Inglesfield7 attributes the large
band width to the strong overlap between the highly directed
orbital lobes on adjacent metal atoms.

By contrast, in the trigonal prismatic coordination,
extensive hybridization between the three nonbonding bands
results in a » 1.3 eV gap opening in this manifold with a single
lower band and a merging of the upper two bands into the bottom
of the conduction band. With the symmetry of dz2 at T, this
lower band, by virtue of the hybridization process, is quite
narrow, of the order of » 1 eV. Also, since the 2H polymorph
contains two MX, units per unit cell, the added complication of

all bands being double sheeted must be borne in mind.

’
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Figures 1.3 and 1.4 display the essential electronic and Fermi
surface features of the 1T and 2H polymorphs as gleaned from
a number of authors4'6'8.

In the 1T configuration the nesting Fermi surface model,
initially developed by Chan and HeinelO and involving coupling
large portions of the Fermi surface by a single wavevector,
appears applicable. A wavevector spanning either the elliposoidal
electron pocket across I'-M (g~ .58G, where G is a basal plane
reciprocal lattice vector) or self-spanning of the electron
pockets (g™ G-.58G) provides effective coupling of the Fermi sur-
faces. Experimentally, the abrupt increase in resistivity in-
dicates substantial loss of Fermi surface. Also, doping experi-
mentsl indicate that Fermi surface geometry dictates the C.D.W.
wavevector.

By contrast the 2H Fermi surface offers no readily
discernible nesting mechanisms. An alternative model9 for the
C.D.W. transitions in the 2H compounds implicates the large
density of states in the vicinity of the Fermi surface as the
causal electronic agent. This peak is derived from the saddle
points occurring approximately 1/2 to 2/3 out from T towards K,
which would contribute a logarithmic singularity, in the two
dimensional 1limit, to the total density of states.

A major concern of this thesis . are model calculations of the
C.D.W. state using the saddle point description to parameterize

the electrqnic Brillouin zone of the normal state.



1.3 Experiments Elucidating the C.D.W. State

The work of Wilson et al1 was of fundamental importance
in establishing the C.D.W. interpretation to the displacive
transitions observed in the transition metal dichalcogenides.
In addition to a wealth of new results derived primarily from
electron diffraction, they presented resolution within the C.D.W.
formulation of previously anomalous magnetic, electrical and
optical data.

With the neutron scattering experiments of Moncton, Axe
and Di Salvol3, progressive enhancement of the "Kohn-like"
anomaly in the L.A.(A) phonon branch, characterization of soft
mode behavior, was observed in 2H TaSe2 and 2H NbSe2 as the
C.D.W. transition was approached from above. Though the phonon
frequency remained finite at the transition temperature, the
static lattice displacements of the C.D.W. state are essentially
derived from the normal mode displacements of the L.A. (A)
phonon.

Also, with the resolution offered by neutron diffraction,

13 were able to detect slight modification of the

Moncton et al
C.D.W. wavevector with temperature. The electron diffraction
studies of Wilson et all had initially indicated a C.D.W. peri-
odicity of approﬁimately Gi/z, Gy being any of the three symmetry

equivalent Basal plane reciprocal lattice vectors of the




normal state. However, working with 2H TaSe2 the neutron
studies revealed progressive alteration of the C.D.W. wave-
vector from a slightly incommensurate value of g = Gj/3° (1+.02)
at the normal incommensurate phase transition of T, = 120K to

a commensurate value of d, = Gi/3 reached at a transition
temperature of TIC = 95K.

EXisting as an integral fraction of the lattice periodi-
city, a commensurate C.D.W. state retains the property of
lattice translational invariance while in the more general
incommensurate situation where lattice and C.D.W. periodicity
have no integral relationship, translational invariance is
lost. With departure from commensurability as a small effect,
this thesis will treat the 2H C.D.W. transition in the purely
commensurate context. As Figure 1.5 illustrates, entry into
the commensurate state from the incommensurate state as the
temperature is lowered manifests itself only as a slight modi-
fication of the C.D.W. distortion amplitude.

Though establishing the essential lattice dynamics
associated with the C.D.W. transition, the neutron work of
Moncton et al13 was not decisive enough to distinguish the
explicit symmetry of the C.D.W. configuration. This was
achieved by Holy et al15 where the observed Raman spectrum of
the C.D.W. phonons and attending selection rules corroborated
with the existence of an inversion symmetric three-C.D.W.

state. The temperature dependence of the C.D.W. phonons,
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more completely documented by Steigmeier et a122, revealed
softening and broadening as the transition temperature was
approached from below but, as with the neutron data13 no
mode was observed to go completely soft.

Regarding the C.D.W. influence on electronic properties,
Barker et alzo, using infrared reflectivity, concluded the
existence of gap formation at ~ .3 eV in the C.D.W. state
of 2H TaSez. The possibility of further structure below
.05 eV, the lower end of the investigated energy range,
exists as the conductivity, extracted from the reflectivity
by Kramers-Kronig analysis, extrapolated to a dc value signifi-
cantly below that experimentally observed.

The de Haas-Van Alphen measurements on the C.D.W. state
of 2H TaSe2 by Graebner18 reveals 8 orbits with magnetic
field parallel to the c-axis. As the Fermi surface for the
2H configuration is composed of two sheets, a consequence of

there being two MX, sandwiches per unit cell, with topologies

2
equivalent except for differences arising through the rela-
tively weak interlayer interaction, the dHvA data is consistent
with the grouping of the orbits into two similar sets of four
orbits each. Tilting the magnetic field away from the c-axis
increases the effective radius of all orbits, a result reflect-

ing the topology of the parent undistorted Fermi surface,

characterized by essentially cylindrical sections centered
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about T' and the six K points and running parallel to the
c-axis. In Chapter 5, an explanation of these results will
be proposed within the context of the saddle point model.
Finally, the specific heat and resistivity results of
Craven et al21 for 2H TaSe2 and 2H TasS, in the vicinity of
the C.D.W. transition provided sensitive measurement of
these quantities. With the influence of critical fluctuation
clearly evident, the excess specific heat above the mean
field estimate for temperature just above the transition
temperature were used to provide a determination of the zero
temperature coherence length EO. Results indicated a coherence
length EO < 10&. This short coherence length, as McMillanll'
suggested, tends to implicate phonons, rather than electrons,
as the major entropy source driving the C.D.W. transition.
In subsequent chapters, a Hamiltonian incorporating both
electronic and lattice influences will be developed which
satisfactorily explains a major portion of the diverse body

of C.D.W. experimental data in the layered transition metal

dichalcogenides.
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CHAPTER 2

FORMULATION OF C.D.W. HAMILTONIAN

2.1 C.D.W. Hamiltonian

Microscopic theories of C.D.W. transitions mediated by
electron-phonon coupling10 usually begin with the Frohlich
Hamiltonian:

H = )-(eL + H»+ Hé“ 2-1

t

HZl and H;h describe the eigenvalue spectrum for electrons and

phonon respectively in the absence of coupling introduced by Hint:

° o +
H, =2 € C.C
K
o o . F
A = ) C2=2

+ +
E ZZ' T AL

sum over electronic states of the first Brillouin zone

where I =
k
I = sum over phonon states of the first Brillouin zone
g . . > > > .
G = reciprocal lattice vector such that (k +g+G) remains
within first Brillouin zone
+ + Do s . .
The c c, and b_, b are the annihilation and creation

k’ 7k g
>
operators of electrons of momentun k and phonons of momentum a

. > > > > >
respectively. I(k, k + g + G) scatters electrons from k to
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T+ a + & by either absorbing or emitting a phonon of momentum &

or —a and thus destroys the eigenvalue status of EE and mg. As
a problem in many-body field theory, Hamiltonians with this
interaction structure, bilinear in the fermion field and linear
in the boson field, have been a subject of extensive investiga-
tionl4. Though no exact solution of the full problem exists,
solutions consistent with the essential many-body physics can be
prescribed.

In the C.D.W. formulation developed by Chan and Heinelo, as
the phase transition is approached from above, dynamic electronic

screening originating from Hin and appropriately enhanced by

t
such factors as a nesting Fermi surface, progressively acts to
soften a particular phonon mode until at the transition tempera-
ture T, the mode in question collapses to zero frequency. 1In
the C.D.W. state, coherent electronic scattering between i,
X + ao’ X + ao + E, etc., where ao is the wavevector of the soft
mode and hence that of the static lattice distortion and ¢ is any
reciprocal lattice vector, couples electronic states from above
and below the Fermi energy to produce an energy gap at the
Fermi surface and a subsequent lowering of the electronic energy.
Within the Chan-Heine model, only a single mode in the
phonon Brillouin zone is renormalized by the electron-phonon
interaction while a large number of electronic states are coupled
by the lattice distortion. Thermodynamic behavior is thus
determined by entropy arising from electronic fluctuations across

the energy gap with negligible contributions from lattice

entropy.
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On the other hand, McMillanll, proceeding from a Landau
free energy expansion in the lattice distortion amplitude rather
than an explicit microscopic Hamiltonian, argues that the finite
electronic coherence characterized by a length io determines an
effective width of order Ak % l/?;o about ao in the phonon phase
space which is modified by the lattice distortion. In the limit
of A(T=O)/kTc > > 1, where A(T=0) is the zero temperature
electronic gap and Tc is the C.D.W. transition temperature,

McMillanll

neglects electronic entropy entirely and, within a
mean field framework, usesonly lattice entropy to destabilize

the C.D.W. state. In this treatment, the phonons which go soft
Tc acquire positive frequency below Tc as vibrations of the order
parameter characterizing the lattice distortion.

One aspect of the interacting electron-phonon system not
included in the Frohlich Hamiltonian are anharmonic interactions
coupling the normal modes of the lattice. To the extent that
phonons, the normal modes of the harmonic Hamiltonian, are well
defined, corrections arising from anharmonic contributions are small.
For example, in the phonon mediated superconducting transition,
the phonon dispersion exhibits no deviation from harmonic behavior,
though the electronic spectrum develops a gap at Tc. However,
with the C.D.W. transitions of the 2H layered dichalcogenides,
striking modification of ﬁhe + Gi/3 L.A. (A) phonons belonging to

the star along I'-M and their surrounding phase space occurs. For
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these phonons soften from a high temperature

2’
value of =2 8 meV to 5 meV13 at TC = ]120K. Below Tc’ the modes

example in 2H TaSe

derived from the original six equivalent modes experience energy
splittings of 2-3 meV about a mean energy of approximately 7.4 meV.
This strong phonon splitting in the C.D.W. state suggests the
introduction of anharmonic terms to the Frohlich Hamiltonian as
the natural means for describing the Bragg type scattering of the
phonon by the static lattice distortion. As a power series
expansion of the lattice potential energy W(rl...rn) about its

equilibrium value W(r ..rg), the anharmonic contribution

o
1°
consists of all terms beyond the gquadratic term. Sufficient
for our purposes is retention of just the cubic term in this

. 12
expansion " :

3
H =42 W iepsesy .
ank 3! ik 3?8{;*3?; °° SYSV;SY," 2-3

-~

where, as a tensor of the third rank in cartesian coordinate,

the symbol ! denotes a triple inner product. Expressing the

->
displacements Gri in terms of the normal mode coordinates Qq A
7

of the lattice:

R
— ¢q.. Yo =
sz =LYe Eox Qan 2-4
N ’
where & is the polarization vector for the atomic displace-

g,
ments within the unit cell characteristic of the A mode at wave-
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-5
vector g. The condition that the lattice displacement be real

requires:

E
Qq.ﬂ\ Q—QIJA

ﬁ —ﬁ

qu?x - E-q,,?&

Restricting discussion to a single phonon branch, expression

of A will be subsequently suppressed and the cubic anharmonic

contribution can be expressed as:

H 2 Vi) Q, Q,.Q, %

anh— ;+ -6
G = any reciprocal lattice vector
3 ,__)—-‘ - =
e i s SR U 2 /R L 4
\/-Gl(qj :.2_ ji:‘a LJ . E E-,E e ¢ e )''m
o4 ’ Y

As briefly discussed, motivation for introducing the
phonon-phonon scattering generated by the anharmonic interaction
is to account for phonon coupling to the static lattice distor-
tion of the C.D.W. state. The lattice distortion itself can
be viewed as the acquisition by an appropriate set of»normal
mode coordinates (qu) of a finite expectation value. Physically,
this finite expectation <Qq > signifies a phase coherence in the

. o
. . . s . s (o}
atomic displacements from their normal equilibrium position r;.
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For a lattice distortion occurring at wavevector ao with

vector displacement ¢ , the new atomic positions are given by:
o
Y. Y-+——Z‘EQ 2-T
q 9 W

taking the expectation value:

ry = Wk (g<ae °""+s<a>“°' H)

= e (6,400 +E.€3)) ()

dince <Q,$> =0 -for cl,# 9,

To accommodate this possibility of acquiring a finite expectation
value, the normal mode coordinates, as time dependent operators,

can be separated into time independent and dependent components:
N
8. () =<Qqy + Q1) 3-8

In the 2H-C.D.W. transition, six independent normal mode
coordinates belonging to the star of ao along I'-M acquire finite
expectation values. Being directly proportional to the lattice
displacement, the expectatibn‘valuescaf these normal mode co-
ordinates become ' the appropriate order parameter for the 2H-C.D.W.

transitions ‘and are given the form:
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<Q‘k> =0 Ty T

2-9

0
<Q$g> =JN.A. e Tk Sq,‘.q, TLT,

o

where hexagonal symmetry requires that the amplitude of all
expectation values be identical (vA) and the constraint of real
lattice displacement (6 o = —e_qo) restricts the number of
independent phase factors to 3.

Expressing all lattice degrees of freedom in terms of

normal mode coordinates decomposed into static and time

dependent components, the model C.D.W. Hamiltonian becomes:
o )
H = )-(el + X + Hine + X

°

©
el 2 EK CK CK

K
)-(I:h =2, I:P"'F“' + -}‘i-"f (aqr*’ (@) (@,+ <8 >>]

¢ Lam,

)_('vn’c = z z‘ I(K, K+$+G‘) C:+$+& Ck (§q+ <@4>)
H

2-10

)-(

]

Z V)@ <a >)(a +<8, >)

‘ —
Q'L | ~

2
(here (Co:) = Ao /'mo
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2

%y =2 /m

where (w
o' o

From this highly coupled Hamiltonian, the focus of interest

. .. . o o o
will be the mixing of electronic states, Ek’ €k+qo’ €k+qo+G'°'
etc. as well as normal mode coordinates .

Oq” Qq+qo’ Qq+go+G
etc. by the static lattice distortion amplitudes "[<Qq >}. To
o

this end, the strictly dynamical anharmonic contribution

dgi 9j gk
neglected. The neglect of this purely dynamical anharmonic

v L0 jQ will be assumed small, as is normally the case, and

term restores the model Hamiltonian to harmonic form in the
normal mode coordinates except for their coupling to the elec-
trons which essentially renormalize each mode independently.
Also, the matrix element for electron-phonon scattering,

I(k, k+g+G), will be ascribed a constant value equal to g

4 has suggested that the wavevector

though, for example, Doran
dependence of this matrix element may be significant in the 2H
layered compounds.

With these approximations giving final definition to the

model C.D.W. Hamiltonian, solutions to this model are now in-

vestigated.

2.2 Solutions for Model C.D.W. Hamiltonian

The energy eigenvalues €k and wq to the model C.D.W.

Hamiltonian can be obtained from the equation of motion method

for Heisenberg operators:

g'hA = [A,H] 2-11
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Using the commutation relations

+
Col + Culy = 9

KK’
£ 2-12
- P -5
RQy — Qe = 3 49
and oscillatory solutions of the form:
~ cOt 7
Q$(t) = ¢ ¢ Qar
2-13

€t
o (1) = ¢ K,

the coupled electron-phonon field equations are simply formu-

lated.

For T > Tc’ < Qq > = 0 and the anharmonic term is purely
o)

dynamical and, as previously discussed, is neglected. The
equations for the field operators in this temperature regime
become:

SO -0’ Q +3 +
0y Qq = - Q +WOZK‘ Cr-a+6 Ck
2-14
Qq

€ = €°C +i__
k Cx Kk “K WEQ;CK"‘WG
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As mediator of the Coulomb force, the influence of elec-

tronic density fluctuations on phonon frequency renormalization

can be drastic, especially at long wavelengths where it is well

known that electronic screening reduces the bare longitudinal

ionic plasma frequency from a finite value to zero at zero wave-

vector.

k
S o .+ o _+

k-9
g + et
i N g [C"“V Cigr ~Chogre C"] G/

. . + . .
The.equatlon of motion for the Ck_qC' coordinate 1is:

2-16

Within the context of the random phase .approximation only those

states with momentum equal to that of the combined value of the

particlg.and hole are considered. Thus:

T | + o T
ik ChoCh = € Curg Ck = €keg Ceg Ck F(n -Ny) Qg

Where T = <C|:q, CK.1,> 2-17

K-%

In this form, the equation possesses oscillatory solutions:
+ -ttt ¥
Chog (D) = € ¥ Ciq Ck
" § MNyg -Nk qu 2-18
LGB TN Ry - €0+ €ke
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Substituting this into the Qq equation of motion gives the

dynamically screened phonon frequencies:

P
(o‘,f1 = coq:" _ % > Ak~ M-y 2-19
- €9 o
Beginning with Kohnlz, it was realized that annomalies in

the dynamic electronic susceptibility:

X (B0 = Nk Nk-q 2-20
K FO -€ +€ q

would be mirrored in the phonon spectrum. Utilizing the concept
of nesting Fermi surfaces, first introduced by Lomerl7, to
produce an enhanced electronic susceptibility, Chan and Heine10
arrive at a criterion for C.D.W. formation in terms of which the
softening phonon is driven to zero frequency at the phase transi-
tion.

In an alternative model to the usual Fermi nesting scheme,
Rice and Scott9 suggest that saddle points in the two dimensional
band structure, located in the vicinity of the Fermi surface,
can produce a strongly enhanced susceptibility and in the limit
where the Fermi energy and saddle point coincide, a logarithmi-
cally diverging susceptibility as T =+ 0.

On the other hand, while electronic screening significantly
renormalizes phonon dispersion, renormalization of electronic

energies due to dynamic coupling with the phonons is usually

small except for those electrons within the Debye energy of the
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Fermi surface. For our purposes it will be assumed that this
contribution to the electronic energy can be ignored and, in

the same spirit, the dependence of the dynamic susceptibility

on phonon frequency wq will be neglected given that Ek’Ek—q > wq
for the majority of electronic states.

The equations for the electron and phonon energies thus

reduce to

2
2 o” _ Ny - Nk-
© @ LNQ_V_HZ i
° K €yq " Ck 2-31

It is worth remarking that the applicability of these
assumptions to the 2H layered compounds may not be entirely
correct. In the 2H compounds the phonons of interest occur at
8 meV in energy and as it is those electronic states with

~

x > Ek—q which contribute most significantly to the suscepti-

bility, it is not obvious that wq can be - consistently deleted

€

from the denominator of the electronic susceptibility. Also,
the problem is compounded by the relative narrowness (1.2 eV)
of the conduction band.

We now consider modifications of the equations of motion
resulting from a static lattice distortion with Fourier
components [g]- The requirement for such a configuration of

the system is that it minimizes its total free energy.
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The finite values of <Qq > are complemented by finite
o
expectation values for the [qo] components of the electronic

density fluctuation: ‘
<
(’O = <§CK-:-$CK> -~ A-é-m e 0'5“,0 2-22

Howevér, since the electronic density fluctuations couple
linearly to the lattice coordinates, the static components of
the electronic density have no dynamical consequence. The

equation of motion for Q and Ck are:
+
b AN
—0 Qg = - (;)0 (Q$+ <8q éa(%)n_m zck-wack +

_Q__ CEq)dqq,+ 37 [V0:3)8, <8, 06,
%9,
V(%:45) <6b=, <845y 8.4, 94:%0 ] 06,4+ 95+ %o

i = &y +J%§CK-$+G‘ CRECLINN 233

where again, the dynamical anharmonic contribution » Q Q Q
4; 94 9
has been neglected.

As noted above, the constant terms in the equation for Qq
are indicative of the coordinate transformation generated by
the lattice distortion but carry = no dynamical significance
and can be simply transformed away.

Also, as in the case where no static distortion is present,

dynamical electron-phonon coupling is neglected in the equation

for the electronic coordinate and we have:
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- Q(v— "‘w Q$+\I—_:—' ZCK—$+G\CK +3§§ V(q'qf)
Qq; (Bg0) OG,q+%: %0

Z Creqt & <Q‘b> 2-24

As before, the equation of motion applied to C

€, Cx = € Ck +

k-g k
within the R.P.A. yields the renormalization of(ug due to

dynamical electronic screening in the presence of the static

distortion

+ ¢ Mg-Nk-g i
Col Cu = 2 “K- Qg 22
RTIN € (<8, 30— €cKaw)

Thus, within the scope of the approximations employed, elec-
trons and phonon fields, while uncoupled from each other, experience
coupling amongst themselves as a result of the static distortion.

Solution to these equations as a proposed description of
the C.D.W. phase transition of the 2H layered dichalcogenides
will combine a specified set of distortion components [qo] with
electronic Brillouin zone built from the saddle point model of
Rice and Scott9 and a phonon Brillouin zone inferred from
Moncton's13 neutron results.

The issue of ascribing a set of distortion vectors [qo]

to the 2H C.D.W. transition is complicated by its incommensurate/

13
3
=G (-4) §o~ .02 120KHDT)I5K

T
3
4, = ¥ Gifs T <a5K 3-36

commensurate aspect. Citing for 2H TaSe
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The basic observation is that in the incommensurate
regime departure from commensurability is a two percent effect
and hopefully expressible as a perturbation of the commensurate state.
Thus, the distortion amplitudes will be taken as purely commensurate:
¢ 6,
9 :
<Q,>: AJNe " g =1Gf3
9 2-27
T<KT,
c
From the work of Holy et a115, the Raman activity of the
C.D.W. phonon modes implies that they transform as even parity

representatives of D4 the space group of both the C.D.W. and

6h’
normal phase. This requires that the phases of the distortion

amplitudes are all equal:

e‘h - e‘h: e = e 2-28

where 60 is determined by the condition that it minimize the

free energy.

2.3 C.D.W. Brillouin Zone

2.3A Electronic Zone

With the set [qO] established at one third of the normal
state reciprocal lattice vector, the hexagonal Brillouin zone
of the normal state is mapped into a Brillouin zone of again
hexagonal symmetry but with one ninth the area. This remapping
couples nine distinct f—points éf the normal Brillouin zone to
one K—point of the reduced zone. Where the distortion energy
is small_re%ative to the unperturbed electronic energies, only
those K—points with comparable energy will be significantly

coupled by the C.D.W. distortion.



-30-

The crucial aspect of the electronic Brillouin zone is
proposed to be the six equivalent saddle points along I'-k
with explicit positioning of

7 -2 ' : :
K. = ?; (}F<53'+<;K ) ):# K «=1,6 -9

The unperturbed electronic band energy about these six

equivalent points is given the simple hyperbolic form:
€ (R+K.)= K*Gs(0+Phi) -k  2-30
¢

where the chemical potential p locates the Fermi level relative
to the Ei Brillouin points and the phase factor Phi runs over
six successive sixty degree rotations.

As the locarithmic divergence in the density of states
produced by the saddle point regions are assumed to be active
element in the C.D.W. transition, these energy profiles are used
to generate the entire Brillouin zone. This is consistent with
the actual band structure shown in Figure 1.

Due to their assumed location of two-thirds out from T
along k, scattering from the distortion amplitudes < qu >
couples saddle points related by rotations of 120°. The
remaining points mapped with the saddle points (see Fig. 3.1) are
significantly removed in energy from the saddle points and can
be neglected. Thus the energies about the saddle points mix

into two separate but equivalent 3 x 3 couplings with the

electronic equation of motion expressible as:
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¢ L 91.1
Eicm-?. = C Cy R 3L (G Cee +(°. CHK‘)
where 6, 9_,‘ 2-31

¢

The resulting 3 x 3 matrix equation has the form

< iei
G gAee" gae

Le o i95K

éAe o € -¢€ §AC

iAéeKi gac ¥ €e-€

b
O

Where 2-33

€= K*Ccos (26)
€= K cos (26+120°)

-

€= K'cos(20+240)

The characteristic equation can be expressed as:

¢ (3 K‘+3(ga)z)-(*ﬁ?i%;(ga)scosd):o

CJ")QV‘Q QOOS L = co¢ ( e + e,K+ ek() Q"SS
€; + 65 + EK = O
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Solution to the resulting cubic equation immediately

yields the distortion dependent electronic energies.

€. (K8)=2 [K% +V? Cos[¢(K,@)+ R;]

where V= electionic éa.[: = éA

6 3
QS(K,Q): arcos | Ke Cog66+VCosx
(%% V)

B = 0°, 120° 240° 2-34

This cubic coupling removes the normal state degeneracy of
the saddle points with a splitting of either (-2v, +v, +v) for

cosa = 1 or (+2v, -v,-v) for cosa = -1. For N > 1, minimum

free energy is achieved with cosa 1 while for N < 1,
coso. = -1 minimizes the free energy. For N = 1, given the
electron-hole symmetry, coso =+1 yields identical free energies.
These energies form the basis for the electronic bands
of the reduced C.D.W. zone and will be examined in terms of

their Fermi surface topology, optical properties and thermo-

dynamic characteristics in subsequent chapters.
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2.3B Phonon Brillouin Zone

Focusing upon the phonon coordinates associated with the
C.D.W. transition, the neutron work of Moncton et al13 reveals that

the L.A. phonon of A symmetry with gq,=1G softens as the

i/3
C.D.W. transition is approached from above. Other phonon
branches investigated by Moncton reveal normal dispersion be-
havior with no suggestion of participation with the developing
C.D.W. transition. As the symmetry of the A symmetric L.A.
phonons is that of longitudinal displacements of the Ta ions,
this corroborates with their coupling to longitudinal electronic
fluctuations.

Singling out this A symmetric L.A. phonon and in particular
the six equivalent regions about the + Gi/3 Brillouin points as
the C.D.W. active phonon area, the model Hamiltonian offers a
coherent picture of the successive stages of phonon renormaliza-
tion.

As developed earlier, in the normal state the electronically
screened phonon frequencies are given by

2 o 2
— - -35
O = Oy - 5.8 X

From Moncton's dispersion results for the A symmetric phonon

leZHIaSeZ at T = 300K and 130K reproduced in Figure 2.1, the

suggestion arises of a screening anomaly in the vicinity of

qoziGi/3 which is surprisingly insensitive to temperature varia-

tion. Interpolating from what would constitute "ideal" L.A.
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phonon behavior, a rough estimate hints of an "ideal" 8-9 meV
phonon reduced to 7 meV at 300K and 5.5 meV at 130K by
electronic screening for wavevector 95 = + Gi/3'

With the transition temperature of:ZHTaSe2 at 120K,
this calls into guestion the issue concerning the frequency of
the softening mode as the C.D.W. transition is approached from
above and the’identity they assume in the C.D.W. state. As
previously noted, in the Chan and Heine C.D.W. formulation,
the phonon mode is driven completely soft at T.. Experimentally,
Moncton's neutron results substantiate only partial softening as
T, is approached.

Below Tc’ Lee, Rice and Anderson19 show that in the
incommensurate state invariance of the C.D.W. energy with respect
to the translations relative to the underlying lattice implies
the existence of a broken symmetry zero frequency mode as q * 0
while for a state of commensurability M, the mode acquires a

M
frequency v(A/eg)z -1 g g + 0 where A is the electronic gap. 1In

passing to the C.D.W. state, modification of the normal modes of

interest, Q_ ; 9. = + G.,,, occurs in two basic fashions. First,
qo o - 1/3

by renormalizing the electronic energies, the coherent component

of Qq alters the electronic susceptibility which dictates the

O

renormalization of W,
1o

Secondly, as new Fourier components of the lattice scattering

potential, the coherent amplitudes couple phonons differing in

+
wavevector by Aa = + Eixraj in a Brillouin zone remapping situa-
3
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tion analogous to that described for the electrons. Con-
sidering for the moment the q; = * Gi/3 phonons explicitly
and neglecting their coupling to the T and k zone points, the
equations of motion take the form:
~
0, Q. = £ Cq Q +3A2vm)e "qu.
qfi q’;

t ‘ Nm ( q’t
2-36

The anharmonic potential V(qiqj) coupling a given vector
belonging to the star of six Gi /3 vectors to the other five,
has three independent components. Assuming all phase factors

to be real, V(qiqj) is given the parameterized form:

V(qiqj) = a for a + qj = G/3
V(qiqj) = b for q; + aj = G/V3 2.37
V( ) = ¢ for + = gG

The resulting 6 X 6 matrix equation has the structure:

02
W - a b C b a
g g
o2
a wq —wq a b C b
: 02 2 2.38
b a w_ -w a b C
q g —
o2 =0
Cc b a W -w a b
g g
b cC b a woz—wz a
g g 5
a b c b a wo )
g g

o4 .
whe w = w - =2 = + G3
re q p q T 1/3
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Diagonalization of this 6x6 matrix eguation yields two
nondegenerate and two doubly degenerate eigenfrequencies.
Explicit representation of these C.D.W. modes is obtainable
from group theory. As representations of g=0 phonons in the
reduced zone, the C.D.W. phonons transform as irreducible
representations of the Dgh space group and are constructed
from a coherent superposition of the six q=iGi/3 phonons which

transform as representations of A symmetry under C the maximal

2v’

symmetry along M'—M. However, the nonsymmorphic Dgh

the single layer

space group
can be represented as the product of D3h'
symmetry, with the inversion operator. When interlayer coupling
is weak, as is anticipated herel, layer symmetry influences

remain strongly embedded in the full crystal symmetry. Neglecting
interlayer interactions entirely, the g=0 C.D.W. modes transform

as representations of D Character table analysis readily

3h°

establishes the representations of the original six A symmetric

modes in a C.D.W. state characterized by D symmetry as:

3h
¢C-D.w. = 2A, +2E 2 - 39

As D lacks a center of inversion, these four modes are

3h
both Raman and infra-red active. 1In terms of model parameters,
the C.D.W. lattice modes have frequencies given by:

Two A. modes:

1
2 2 2
0y, = (2, = Emlasl®)) £ G 2a) - 208

2-40
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Two E’ modes:

(*)34 ((“)G/z, é/‘rn e(u/s)) +Ab +A(@-¢)

o — -C
Us,e - (w%_ Q/mop_é/z;)) rab -A@ )

This frequency structure describes the C.D.W. phonons,

2-41

derived from the + Gi/3 modes and mapped to g = 0 in the

reduced zone, as splitting about the frequency:
2 2
o (2) = (¢

2
where ZC.) = CJA 2-43
(=1

As indicated for the normal phase, the renormalization
effected by electronic screening is weakly temperature dependent
and to the extent that the saddle point mechanism preserves
most of the Fermi surface in the C.D.W. phase, pq(A) can be
anticipated to be not radically different from that of the
normal phase.

This is substantiated experimentally. Citing for 2H TaSez,
Moncton's neutron work shows a value of 6 meV at 130K just
above the phase transition and using the C.D.W. frequencies of
Holy et al15 at 27K yields a value of 7.4 meV for ( g w2 ) /6

However, to 1ncorporate the influence of gap depéngénce

upon electronic screening, pq(A) is given the simple para-

meterization:

€,(8) = ¢, () +d.a 2-43
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As developed in Chapter 4, the parameterization of the
phonon frequencies utilizes both zero temperature and T,
phonon frequencies. The task of the theory is to predict the
C.D.W. phonon frequencies for 0 < T < T, from the calculation
of A(T). Comparison of predicted with experimental C.D.W.

phonon frequencies is given in Chapter 5.
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Fig. 2.1: Softening of the L.A.(A) phonon
as TC is approached from above. Note that
between 300K and 130K (Tc=l20K) the softening

is relatively modest. From ref. 13.
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CHAPTER 3

THERMODYNAMICS

3.1 Free Energy Structure

Solutions to the electron-phonon Hamiltonian proposed in
the previous chapter, within the terms of reference assumed,
separates into dynamical electronic and phonon coordinates
and a static component generated by the coherent lattice dis-
placement. Correspondingly, the system's partition function
factors into the product of three contributions where the
independent thermodynamic variables are the lattice displace-

ment, temperature, volume and chemical potential:

Z (8 Tvp) =T &0 e e Phn T P

where {7 — A +
H~AN = D0 (€ -h)CkCk 1
el K il 3-
)_(P"- :th‘,’(ﬂ) bq‘ b‘V
v 2% 2 3
o
H,.= 6imQa+2A (2 V03.95)
st ° "9 ~
2 ° (FP)

As particle number is not conserved for phonons, the
associated chemical potential is zero, leaving a single
chemical potential py to ensure electron conservation. Also,
as the displacement amplitude occurs with finite wavevector

the C.D.W. transition conserves volume and its inclusion is

unnecessary and it will be omitted.
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Given the partition function, the thermodynamics of the
electron-phonon system directly follows from the Helmholtz
free energy:

- B (ex-M
F (AT N) = AN RTZLOQ(Heﬁ x77)
K

Fo (A7) = RT S log 1- 9% 32
$

Fot (8) = Hgp

As it is the phonons about g = + Gi/3 which are significantly
influenced by the distortion, other portions of the phonon
Brillouin zone are insensitive to the distortion and can be
neglected. Neglecting dispersion in the vicinity of + Gi/3'

a reasonable assumption for L.A. phonons removed from the zone
center, the sum over phonon coordinates is then approximated

by an effective weight Wo which characterizes the phase space
area about + Gi/3 affected by the lattice distortion. For the
two dimensional model assumed here, Wo is the product of the
widths of the Kohn anomalies about Gi/3 in the I'-M and T-K
directions. The form of the Kohn anomaly is determined experi-
mentally by neutron scattering experiments.

Moncton's neutron13 work indicates a relatively extensive
width of ~ G/é in the I'-M direction while the width in the T-K

direction was not determined. Assuming a I'-x width of AqﬂJG/B,
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relative to a maximum weight of one for the entire zone area, wO
is of ‘the order of & 0.1. The phonon Brillouin zone is thus

distilled to the six C.D.W. coupled + G; , phonons weighted by

/3
the factor W,-

The band structure calculations of MattheisssenuiWexler
and Woolley8 furnish the starting point for discussion of the
electronic Brillouin zone. As layer-layer interactions are
neglected in the model Hamiltonian, the two conduction bands,
which arise because of the two layer units per unit cell in the
2H structure, are degenerate and two dimensional. Figures 1.3 and 1.4
display the major features of the conduction bands. These
are maxima at T and k, a minimum close to but not exactly at M
and saddle points along T-k.

The positions of the I'-k saddle points, both in X space
along T'-k and in energy relative to the Fermi energy, are not
well established. Mattheiss gives a saddle point location of
% I-k set slightly below the Fermi surface while Wexler and
Woolley find a location a approximatefy % 'k and displaced
v 0.2 meV below the Fermi surface.

For the I'-k saddle points to effectively couple to the
Gi/3C.D.W. distortion, the % I'-k position (one third would also
suffice) is needed and this value will be assumed.

Density of state calculations in the 2H layered compounds

as performed by Mattheiss and later by Doran et al4 for NbSez,

indicate a large peak at midband, slightly below the Fermi
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energy, which drops off to either band edge. This peaked
structure we attribute to the saddle point regions where the
density of states acquires a logarithmic dependence while the
remaining portions of the zone are assumed to contribute an
essentially constant background component characteristic of
two dimensional behavior.

Focussihg our attention on the saddle point regions as
the active electronic agent in the C.D.W. transition, hyper-
bolic energy surfaces are used to parameterize dispersion
about the six saddle points. Assuming electron-hole symmetry

we have:

¢.(K) = CCOS 20 +Ph)  Ph=TT/g m=1.6 33

where the phase Phi gives the relative orientation of the saddle
points to some fixed k direction.

Though a reasonable facsimile of the energy dispersion for
roughly two-thirds the zone, it obviously falters in the T and
K regions as well as along the I'-M lines where the energy
surfaces intersect abruptly, rather than continuously. However,
cognizant of these limitations, the proposal that the essential
thermodynamics of the C.D.W. phase transition is generated by
states about the saddle point region suggest that the hyper-
bolic energy parameterization is a reasonable characterization

of the relevant electronic band features.
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With the saddle point energy below the Fermi energy,
Figure 3.1 illustrates themapping of the parent hexagonal zone
into the nine reduced zones of reciprocal lattice vectors:Gi/3.
The Fermi surfaces portrayed are those, except for the per-
pendicular intersection at zone boundaries, which characterize
the normal state. The Fermi surface of zones 2, 3 and most of 4
and 8 are expected to be essentially unaffected by the C.D.W.
distortion.

As the saddle points are the focus of attention, with the
introductionofGi/3 coupling a model which extracts the 3 x 3
saddle point coupling from the full 9 x 9 matrix is employed
to describe influences of the C.D.W. upon the electronic energy
band. The Brillouin zone is thus approximated by circular
areas of radius kO about the saddle points such that the

combined areas equal that of the full hexagonal zone:
2 2
6K, = G J3/2

3_
Ko = 0-23& §

The electronic energy within the kO circular regions is
obtained by extrapolating solutions from the cubically coupled
(3 x3) energy sheets. By superimposing the energies of the
three saddle points as they are coupled bytheGi/3 C.D.W. dis-
tortion, Figure 3.2 shows both the actual Brillouin zone, using

the reference scheme of Figure 3.1, and the model device of an
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area inscribed by ko radius. It is evident that kO area proce-
dure fails to include the hexagonal zone geometry and over-
extends the validity of the 3 x 3 factorization from the full

9 x9 coupling matrix.

However, except where detailed C.D.W. Fermi surface features
are to be inferred as discussed later, the representation formed
from the cubically coupled hyperbolic energy sheets situated
symmetrically about two—thirdslP—K can be expected to properly
analyze that feature correlated with the C.D.W. state, the
midband peak in the density of states.

Thus, for the purpose of calculation, the sum over the two
dimensional electronic band is replaced by integration about
the six circular areas.

Using symmetry to reduce angular integrations to a m/6
interval, introducing the variable substitution k' = k2/2, re-
placing ki by an effective electronic bandwidth 0 and including

a factor of two for spin, the Brillouin zone sum has the

normalized forr:v 3 TI'/6 %
Y o= Y ldeldk =2 3-5
K TTQC ‘(31 5 g

As the Gi/3distortion couples the six saddle points into
equivalent 3 x 3 couplings, the sum over six saddle points is
condensed into a sum over three regions.

Having isolated and characterized the features of the

electron and phonon Brillouin zone deemed responsible for the
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C.D.W. phase transition, the total free energy is given

the explicit form: 3 TVG GJ/ E )
F(aT,N)= AN-RT 5 (ae( e g 2% )
c"

Fon (8,T) =RT W, Z' [og (1-e _@t%‘( )) 3-6

E 6. -m,,wAz+A(Z'V(?9))

Statie

(8) 1
2
Requiring that the free energy be stationary with respect
to A and an absolute minimum relative to the A = 0 solution
establishes the criterion for a finite lattice distortion.
Deferring for the moment explicit numerical solution to these
equations with a parameterization appropriate to the 2H layered
dichalcogenides, a short discussion of the rich thermodynamics

contained in these free energy expressions will be given.

3.2 Saddle Point Model

At T = 0, the phonon contribution to the total free energy
vanishes as the ground state of any lattice contains no dynami-
cal excitations (phonons), leaving only electronic and static
contributions to establish the distortion magnitude. This
ignores the zero point energy of the phonon which is reduced
by at least an order of magnitude by the phase space constraint

(WO < .1) from the static distortion energy.
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In models based on a nesting Fermi surface mechanism, the
electronic free energy contains a negative logarithmic contri-
bution v Azlog(A/mc) which is always sufficient to energetically
override the quadratic lattice strain energy and guarantees a
finite distortion at T = 0

The zero temperature distortion and the ensuing thermo-
dynamics, where phonon entropy can be ignored, mathematically
parallels the energy gap equation of B.C.S. theory in the weak
coupling limit. The resulting energy gap solutions usually
employ the assumption that variations in the density of states
over a range set by the energy gap are small and can be neglected.

The saddle point mechanism, on the other hand, features a
logarithmic density of state structure in the vicinity of the
Fermi energy. Density of state variations on a scale of the
energy gap can be significant and the approximation of a
constant density of states is no longer applicable. By the same
argument, variations in the chemical potential induced by the
energy gap must be accounted for to ensure particle number
conservation.

As in the B.C.S. theory, a perfectly nesting fermi surface
produces a zero temperature energy gap related to the transition

temperature by:

2A(00) = 3.5RT, (3-7)
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The Debye frequency cutoff of the B.C.S theory is replaced
by the electronic bandwidth W+ The saddle point formulation
couples the logarithmic Van Hove singular points of the
electronic Brillouin zone. As such it is not directly pinned to
the Fermi surface though it will only be effective if the
saddle points are nearby to the Fermi level and are modified by
the C.D.W. distortion.

The existence of an energy separation between the saddle
point singularity and Fermi energy destroys the characteristic
B.C.S. logarithmic gap dependencg in the electronic free energy
as integrals of the form: A = Q)dﬁ//ETIET are supplanted by
A= {lgﬁ,//ifizf . Thus, non zero solutions to the zero
temperature gap equation are not necessarily assured. The

position of the Fermi energy relative to the saddle point

assumes a pivotal role.

3.3 Phonon Free Energy

At finite temperature, phonon excitations make a contri-
bution to the total free energy. The influence of phonon entropy
upon the stability of the C.D.W. phase depends upon the modifi-
cations lattice distortion introduces into the phonon frequency
spectrum and the extension of these modifications into the
Brillouin zone.

Within the context of the model Hamiltonian, frequency

modifications are of two types. First, there are "self energy”
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effects which modify all frequencies by equivalent amounts and
second, anharmonic coupling which splits the frequency degeneracy
about the self energy corrected frequency value.

If frequency splitting is neglected, the phonon free
energy, relative to the zero distortion state, will increase for
positive self energy contributions and decrease for negative
self energy contributions. If, on the other hand, self energy
corrections associated with lattice distortion are neglected,
anharmonic splitting always produces a lowering of the phonon
free energy relative to the unsplit configuration.

In the 2H layered dichalcogenides the proposal is that the
positive self energy corrections combined with significant an-
harmonic splitting cancel to a large degree. The positive self
energy reflects the reduced effectiveness of electronic screening
at the distortion wavevector in the distorted state. However,
dramaﬁic alterations of the electronic response between C.D.W.
and normal state are not anticipated as the saddle point model
involves only a small portion of the Fermi surface. Experi-
mentally, this is reasonable since the drop in the magnetic
susceptibility between Tc and zero degrees is only ~25%.

In the event that splitting dominates self energy effects,
lattice entropy is higher in the distorted configuration, due
to occupancy of those modes split to lower energy, and thus
acts to promote rather than destabilize the C.D.W. phase.

However, given that the mean C.D.W. phonon frequency at zero



o iR

~-50-

degree is 7.4 meV compared with a phonon energy of 5 meV at

Tc for 2H TaSez, numerical results of the next chapter attribute
to the phonons a destabilizing influence on the C.D.W. state,

as developed by McMillanll.

While the possibility arises for the phonons in the C.D.W.
state to have greater entropy and thus lower free energy than
the phonons of the zero distortion state, the electronic entropy
can only serve to destabilize the C.D.W. structure as thermal
smearing of the Fermi surface annuls the distinction between
C.D.W. and normal configuration.

The nesting Fermi surface model as used by Chan and Heine
involves only a single phonon mode thus Wo' as measure of
participating phonon phase space, is essentially zero. However,
citing for 2H TaSe2 where Tc = 120K and infrared work of

20 indicates new features in the optical absorption

Barker et al
below 120K at ~ .25 meV, McMillan suggests the inapplicability
of electronicallydriven B.C.S. scaling to the 2H C.D.W. transi-
tion since: A(0) = 20 ch.

Proposing a reformulation based on a correlation length Eo
which defines the distance scale over which the electronic gap
(wavefunction) is coherent, the premise is that, as the electrons

can not distinguish phonons differing by Aq ~ l/Eo,phononswithin

Ag ~ 1/5o of the distortion wavevector are renormalized.
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These Ag < 1/5O C.D.W. phonons, having been driven soft
at Tc’ are reinstated to finite frequency below Tc purely
as vibrations of the C.D.W. distortion amplitude and thus
constitute a higher free energy state than the zero frequency
condition.

In the limit that A(O)/ch > > 1, McMillan11 argues that
mounting phonon entropy drives the C.D.W. transition as the
large A(O)/ch ratio suppresses electron excitations across the
gap..

As numerical work in the next chapter suggest, McMillan's
phonon entropy mechanism appears operative to some degree in
the 2H system.

As previously emphasized, the experimentally realized
condition for the 2H layer compounds of a substantially finite
phonon frequency (v 5 meV) at Tc with splitting below Tc coupled
with band structure calculations (Mattheiss) indicating perhaps
greater saddle point than nesting character supports the re-
normalization mechanism features through the model Hamiltonian.
No correlation length EO appears to implicate phonons as they
couple directly to the lattice distortion. In the next chapter,
the thermodynamics of the model Hamiltonian is gquantitatively

developed.
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lteration

1C a

G/3 remapping of normal state full zone assuming no electron

3.1
alteration except perpendicular intersection of zone boundary. Illustrated

Fig.
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Compare with Fig.

Fermi surfaces are qualitative.
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CHAPTER 4

NUMERICAL RESULTS OF SADDLE POINT MODEL

4.1 Parameters of C.D.W. State

Summarizing the results of the last two chapters, the
total free energy per unit cell of the electron/lattice system
reduces to the sum of electronic, phonon, and static contribu-

tions.

FINTA) = F (NT.8) + E(8) + Fpu (7,0) 4-1

The electronic contribution consists of two dimensional
integrals over circular Brillouin zone sections centered on

the T'“K saddle points:
p 09&

2 _B(E:-
o (NT,8) = -RT Z I dk lof (1+ € B (e }‘))

4oz
= electranic banJ wthk

C-

E.(K.8)= 2 JKZ +V* Cog areos ( Ky €368 +V Cos
[""/z. +V3i]3%
V- electronic fob = §:2 .

Ph.= 0, 120", 240°

+1 ND>1

- W, latte h =
Cog { = C.D.W. laTlice phase 1 N<1

The static component depends only upon the C.D.W. distor-

tion amplitude A:

FS{- (A) = —%— 6emMm, (Jo/z AQ"' A (Z V(q'“q'))) 4-3
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The phonon component is described by the free energy of

the six q, = + Gi/3 L.A.(A) phonons weighted by wO:
F(AT) = WRT 3° Lo (1- € #5190 4ot
=1
W, <1
2 ¢ _ e @), 2
Agg modes: Wy = (Wep— 84, C-0gT'4da) E
A (c+2a)-24b
» C/3 /'Wloe"("é 4 A
CJ?' . Ab+ Alla-e)
- ) 2
5,6 = (u%"é/m,f’_éjg)*"A")*Ab’A(“"‘)

En§ ™odes *

The properties of this free energy structure depends
sensitively upon the parameter set employed. The electronic
energy scale is established by the conduction bandwidth W o
typically ~ .6 eV using 2H TaSe2 as the paradigm of the 2H
layered compounds while the relevant phonon energy, wq, to-
gether with an effective mass m,s typically 7 meV and 200 A.M.U.
respectively, determine the lattice distortion energy scale.

In addition, the electronic concentration N, though properly
equal to unity as one electron per unit cell is contributed to
the conduction band, will be given parameter status to compensate
for incompleteness in the model band structure. As model calcu-
lations proceed from symmetric hyperbolic energy surfaces
centered at the I'-K saddle points, the N = 1 condition rather
artificially places the Fermi energy exactly at the saddle
point energy. To simulate displacement of the saddle point be-
low the Fermi energy, as indicated by band structure calcula-

tions, a range of electronic concentrations are considered.

Explicitly, N =1, 1.1, 1.2 and 1.3 are investigated.
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The essential parameter of the theory, the electron-
phonon coupling g, linearly relates the electronic energy gap
to the static lattice distortion and thus correlates electronic
and lattice enérgy écales. To establish the magnitude of this
crucial parameter, contact is made with the temperature depend-
ence of the gq = Gi/3 L.A. phonon for T > Tc' As previously
discussed, the'phonon frequencies are renormalized by the

dynamic electronic susceptibility

0 2
w;(ﬂ = O - g/mox$(7)
4-5

Sy N(€x) - N(€Eksrq)

er(ﬂ
K Ex+q — €k

Momentarily deferring discussion of explicit numerical
techniques, Fig. 4.1 displays the g = + Gi/g (equivalent to
+ 2/3 Gi) electronic suceptibility as a function of temperature
where for N = 1 at zero temperature the susceptibility diverges
logarithmically. While the saddle point model can be expected
to satisfactorily characterize the degree of variation in
electronic quantities, which are postulated to arise primarily
from the T'-K saddle point regions, estimates of absolute
guantities, which reflect more the global properties of the
band structure, are less reliable.

From MonctOn's13 neutron work, revealing the q = Gi/3 L.A.

phonon softening from an energy of 7 meV at 300K to 5.5 meV at
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130K in conjunction with the susceptibility change predicted by
the saddle point model over this temperature range, the electron-
.phonon coupling constant can be deduced as follows.

Decomposing the electronic susceptibility into temperature
independent and dependent components, the renormalized phonon
frequ;ncy can bg expressed as:

0 P o /
(04(1)= G = &y, (X X, (M)
o , 4.6
where X‘}(T) = X“r + X$(T>

As the eigenvalue of the harmonic Hamiltonian, m; can be
consistently redefined to include the constant renormalization
factor of %% : XZ while from Fig. 4.1 it is sufficient to
measure Xl(T) relative to its 600K value as variations beyond
this temperature are small and can be neglected. The quantities
mg and g2/mO are now established by the conjunction of experi-

mental data with susceptibility variation from the following

relations
m2(300K) = moz— g2 (x (300K) - x(600K))
q a /mg
4-7
02 (130K) = 0@ - g%, (x(300K) - x (600K))
q q /mg
where ﬁmq(300K) = 7 meV
= 5.5 meV

ﬁmq(l3OK)
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Using Fig. 4 .1, where the susceptibility is in units of

wc—l, to establish the relevant ¥ (T) values, we have:

o} 2 2 . 2
f,wq -hg/mo(unlts of mev©-w )

N = 1. 8.1 meV 71.4
4-8

= 1.1 8 mevV 117.6

= 1.2 15,6 mev 375.

For N greater thanl.2, the effect of the logarithmic
density of states singularity upon the temperature dependence
of the susceptibility is annulled by depression below the Fermi
energy.

The values for wgareiJlline with values obtained by
extrapolating out electronic influences from the g = Gi/3 L.A.
phonon.

More relevant, however, is the combination mgzmo/g2 and
the magnitude of g itself.

To accentuate only those parameters essential to the
saddle point model, only the quadratic term of the static free
energy contribution is retained for subsequent calculations.
The distortion energy of the lattice in the C.D.W. state then

2

involves only the combination w%nl/g “and assumes the form:
oY A2

S,:(A).._«s'm g O = 2 6m§2¢v __gv 4-9
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where g' measures the effective lattice stiffness. Using the

compiled results for wg and gz/mO and measuring all energy

quantities in units of the bandwidth W, g', in units of

wc r assumes the values:

g' = 5.46 for N =1
3.2 for N = 1.1 4-10
1.2 for N = 1.2

Preempting results from the numerical calculations which
employ g' in the range 2-3, the zero temperature electronic
energy gap is of the order v = .15 W, - Using this together
with values of w, = .6 ev for the bandwidth and m, = 200 A.M.U.
for the effective mass, g and hence the static distortion of

the lattice can be determined. The results, for v = .15 w,, are:

g = 1.43 eV/R for N =1
1.83.ev/R for N = 1.1 4-11
3.37 ev/R for N = 1.2
.. A= .06 % for N = 1
.05 & for N = 1.1

.027 & for N = 1.2
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Experimentally, Moncton13 determined & for 2H TaSe2 to
be between .05 and .09 angstroms. These experimental results
compare quite favorably with those anticipated by the saddle
point model from a coupling constant extracted purely from
phonon and electronic susceptibility behaviour for T > T.-

Turning to the phonon contribution to the free energy, it
is expressible in terms of the phonon frequency spectrum to-
gether with Wo’ the extent of participating phonon Brillouin
zone. As previously discussed, the width of the Kohn anomaly
suggests that WO = ,1. To contrast the purely electronically
driven transition, WO = 0, with the mixed electron and phonon
free energy situation, numerical calculations will examine
both the WO = 0 and WO = ,1 case.

The phonon frequency spectrum at T = 0 and T = TC will
be taken from established experimental results. This suffices
to establish the unknown constants characterizing to the two
Alg and two E2g modes. Already the phonon energy at 130K
and 300K have been explicitly used to establish the electron-
phonon coupling constant. It will be the object of the

theory to predict the temperature dependence of the phonon

energy between zero degrees and TC as well as for T > Tc'

4.2 Method of Calculation

As elaborated in the previous section, the parameters
pertinent to a description of the C.D.W. transition in the 2H

layered compounds, ascribing to 2H TaSe2 exemplary status, are:
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Electronic ® .6 eV

N=1, 1.1, 1.2, 1.3

4-12
Phonons TWO =0, .1
2 Alg modes at T=0: 10.1 meV, 5.46 meV
2 E g modes at T=0: 8.06 meV, 6.2 meV
Gi/3 L+A. (A) phonon at TC: 5 meV
. bmowg”
Electron/Phonon Coupling g' = —5 = 2.2 - 3.0
g9

Proceeding with the numerical calculations of the thermo-
dynamics implied by these parameters in the context of the

saddle point model, on a mesh a size;
0 <v<.2 W intervals of .01 o

0 < kT < .1 W, intervals of .01 w,

The free energy F(N,T,A) and gi)qu?are evaluated. The
1

constraint of constant electron number N requires that the

chemical potential u(A,T) at each (v,T) mesh point satisfy the

condltlon / -“-/6 1/2

= _.?;1 fae g S GHTICES % gdefdk’{'ank(@_(f%@)
oo le +4) ALY

n MOJ
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This constraint is effected by determining electron number
N at each (v,T) mesh point for a range of chemical potential
values followed by a least square program to interpolate to

the chemical potential appropriate for the desired N value.
oF
oA
)N,T = 0 subject to the

With the values for F(N,T,A) and
oF
9A
—Fo) < 0 and 0 < v < + ch is realized by solu-
oF
oA

sign. Where the transition temperature Tc exists for TC< .1wc,

) N,T calculated at
each mesh point, the solution to
constraint (FA
tion to a quadratic fit to in the region where it changes
a least square interpolation program isolates this point and
the corresponding electronic gap in the situation of a first
order transition. The two dimensional electronic momentum

space integrals, which form the core of the numerical work,

are evaluated by means of Gaussian quadrature.

4.3 Numerical Results

The previous section established the electronic and lattice
parameters appropriate to a discussion of the C.D.W. phase
transition. In this section, results of numerical calculations
are given where the emphasis is upon correlating experimental
observations with trends established within the parameter regime
pertinent to the saddle point model.

Fig. 4.2 depicts the zero temperature energy gap solution
for variations in N and g'. As the phonon zero point energy is
surpressed by at least an order of magnitude relative to the

lattice distortion energy, these zero temperature results are



-63-

independent of Wo. For given N, as g' increases, the condi-
tion that (FA—FO) < 0 causes eventual termination of the line
of acceptable solutions, except for N = 1 where the saddle
point singularity structure guarantees a solution for any g'.
For N < 1, the condition of electron-hole symmetry results in
the solution for N being identical to (2-N).

For given‘g‘, the dependence of N upon the electronic gap
illustrates a novel and experimentally relevant feature
implicit in the saddle point model. As the saddle point is
depressed below the Fermi level by increasing N, only by in-
creasing the electronic gap can access to this region of high
density of states be achieved. As the condition realized in
the 2H compounds is that of the I'-K saddle points situated
below the Fermi level, the increase in electronic gap with
electronic concentration N corroborates with the relatively
large energy of .25 eV which Barker et al20 observed in the
absorption spectrum of 2H TaSe2 in the C.D.W. state.

Translating the .25 eV energy absorption into the energy
gap value employed in model calculations, requires recogniza-
tion that the cubically coupled energy bands, initially -
degenerate at the saddle point, are split into bands with
energies of (-2v, +v, +v) for N > 1 at the saddle points. 1In
addition, the logarithmic density of states singularity is
maintained in the C.D.W. state but contained in one of the

depressed energy bands at an energy essentially equal to -v



-64-
and only slightly displaced from its initial saddle point
position in momentum space. Thus, the anticipation is that
optical transitions from the high density of states region
of the lower band at energy -v to states of the upper band,
totally unoccupied for N < 1.33, at energy +2v constitute the
major new absorption feature of the C.D.W. state.

Attributing the .25 eV absorption to excitation across

a 3v gap, the electronic gap is established at:

3v = .25 eV

v .08 ev

Using W, = .6 eV for the bandwidth, the energy gap pertinent to
.08 eV is v = 14, expressed in units of 10_2 W, . As discussed
in the previous section, an energy of .08 eV taken together
with the value of g v 3 inferred from T > Tc electronic and
phonon characteristics favorably correlates with the observed
zero temperature lattice distortion of ~ .05 - .09 .

For finite temperature, Fig. 4.3, with W, = 0, displays
the characteristics of the purely electronically driven transi-
tion where, except for N = 1 where the transition is second
order, the phase transition becomes progressively more first
order with increasing N. For a given g value, increasing N,

though producing an increasing zero temperature gap value,

results in a lowering of the transition temperature T.- This
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is attributable to the progressive instability of the gap
produced by increasing N at fixed g against entropy accruement.

To achieve the experimentally realized transition temp-
erature of 120K or Tc = 1.8 in units of 10_2 ® with w, = .6 ev,
the set (N = 1.3, g' = 2.8) offers a plausible energy gap
against temperature spectrum. Referring to table 4.1 and
table 4.2 for a compilation of susceptibility and specific heat
discontinuity results, for WO = 0, the susceptibility results
align well with experiment while the specific heat values,
though tenable over a range of N and g"with experimental
results, fails by approximately an order of magnitude for
(N =1,3; g' = 2.8), the case of interest.

Turning to Fig. 4.4, the influence of the weight factor W
upon the energy gap's temperature dependence is displayed.
The thermodynamic influence of Wo' as the factor multiplying

the phonon free energy difference
6 _ph6t _ph ey (1)
(FA-r°):wokT[Z log (1-e or5) - glog (1-€"" eis )
i=1
L-15
is dependent upon the C.D.W. phonon spectrum, determined by

the wG/3(T,A)'s, relative to the phonon frequency at T,

©°
G/3 _
is v 7.4 MeV compared with the Tc phonon energy of v 5 MeV,

(Tc). As the mean zero temperature C.D.W. phonon energy

the C.D.W. state lowers phonon entropy and thus assists the
electronic entropy in driving the C.D.W. transition, for a

given (N,g), to Tc values reduced from those of the WO =0
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situation. As Tables 4.1 and 4.2 indicate, while increasing
W, to finite values leaves the susceptibility essentially
unchanged, its enhancement of the specific heat discontinuity
produces numerical equality with the observed experimental
results for WO = .06 - .1. Due to limitations of mesh incre-
ments of .01 W, calculation of specific heat, based upon
polynomial fit to calculated entropy values, becomes unavail-
able for T < .04 W and recourse to established trends is

invoked.

The weak dependence of the susceptibility difference
X(Tc)—x(O) for N%1.1 emerges from two influences. First, x(0)
is esséntially independent of W, for W, 2.5 as lattice zero point
energy is small compared to the distortion energy. Second, as N
increases from N=1. where the susceptibility diverges
logarithmically at T=0, variations in susceptibility in the
vicinity of T, are relatively small. Fig. 4.5 displays

characteristic susceptibility features of the saddle point model.

Taken as a whole, these numerical calculations strongly
support the saddle point model as the key electronic agent in
the 2H C.D.W. phase transition, correlating the observed zero
temperature electronic gap/lattice distortion with the observed
partial softening of the g = Gi/4 L.A. phonon and producing a
suscepfibility difference X(Tc)-x(O) comparing favorably with
experiment. Also, given the large ratio v (0)/kT. = 15, model
predictions of this ratio are realized by displacing the T-K
saddle poiéts below the Fermi level, where band structure

calculations would place them.
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Fig. 4.2: T=0 solutions for the electronic energy gap
for various N values. Energy gap is in units of 10‘2wc.
For N=1., solutions exist for all values of the coupling
parameter. For N=1., line of solutions terminates as

coupling parameter increased beyond some critical value.
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Table 4.1 - Electronic Susceptibility

The bare magnetic spin susceptibility is defined by:

X (1) = lim Ko ke i (TZ; (d f(ex) - £ (Eyg)
W_)o CJ n (=1 ° « iz

) _“./6 ° E:K+‘ta - El:

X (T)= ks -—2—' d6 ax_i__—-—

e TT =1 Coskz(E‘_}“)
° IRT
Tabulating the quantity X(TC) - x(0) in units of
10—6 emu/mole (for We = .6 eVv)
g'=| 2.4 2.6 | 2.7 2.8 3.0
N = 1. -23.7 -21. -18. -15.6
1.1 38.2 45.2
1.2 60.3 63.7 66.3 72.2 W
1.3 73.8 77 78.7 78.1
1.32 80. 80.3 79.2
g'=| 2.2 2.4 2.6 2.8
N = 1. -7. -1. 8.62 16.7
1.1 34.4 43.1 51.9 57. W
1.2 55.5 61.4 64.1 66.2
1.3 74. 72.7
6

Experimentally: Ay = 55 X 10°° emu/mole for 2H TaSe,
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Table 4.2 - Specific Heat Discontinuity

From the calculated value of A(T), the entropy is given by:

S(ATN) = “B_IF_' NA: S + Sph
( ) +—[3(E -}
Sl = Ja 2 fd.e jdk Eka* X 1“;-}‘) +1+ log (4 )J

Sy - K wz LA oo e
= - W, <, - 1i-¢
bh B oy kBT eﬁt'w"- g

)

From a least square polynomial fit to the entropy

ST = X(DT + X(z)T2+ X(Z)Ta+ X (4)T"

the specific heat at constant value is obtained

=T as) X ()T + o X ()T 4 3X (BT + 4x<4)T
N
The specific heat discontinuity at TC is given as the difference

between normal and C.D.W. state specific specific heat. All

tabulated values are in units of kB per Ta atom:

W =0 WO = .1
2.4 12.62.712.813.0 2.212.412.6]2.8
§=l. - .25 .33}1.36 (.38 N=1. [1.2 |1.24} - -
1.1 - - .37]1.44 (.49 1.1|11.75{1.57(1.4 8
1.2 - .27 45]1.501.63 1.211.78{1.7 |1 -
1.3} .06 } .14 | .27].61} - 1.3] - - - -

Experimentally: ACV ~ .48 kB per Ta atom (Craven et alZl)
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CHAPTER 5

CONCLUSIONS

5.1 Fermi Surface Topology

In this final chapter, discussion is directed to two
rather diverse issues of the 2H C.D.W. phase which as yet lack
full understanding. First, as treated in this section, is the
nature of the electronic band structure in the C.D.W. state as
probed by the de Haas-van Alphen experiment of Graebnerlg.
Second, treated in the following section, is the C.D.W. normal
mode structure.

As the band structure calculations of Mattheiss indicated,
the Fermi surface of the 2H structure consists essentially of
cylindrical sections running parallel to the c-axis and centered
about the T'-K points. Measurement of a positive Hall constant24
is in accordance with the hole-like character of these cylindrical
regions.

The de Haas-van Alphen results of Graebnerls, as discussed
in Chapter 1, indicate four orbits per conduction band in the C.D.W.
state of 2H TaSez. Using a band structure reorganization
dictated by the I'-K saddle point coupling model, Fig. 5.1
qualitatively illustrates the resulting C.D.W. Fermi surface.
Noteworthy are the resulting four orbits, in agreement with the
de Haas-van Alphen results. Aléo, three of the four orbits are

. 2
electron like, consistent with the reversal of Hall coefficient

from positive to negative in the C.D.W. phase.
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To understand how this Fermi surface emerges from the TI'-K

saddle point coupling reference to Figures 3.1 and 3.2 is help-
ful. The cubic saddle point coupling mixes electronic "bands"
(4,5,9) and (4,5,8), where the Fermi surface of bands 4 and 8
contains both C.D.W. "active" (close to saddle point) and
"inactive" (removed from saddle point) portions. Given the
(+2v, -v, -v) saddle point splitting appropriate for the

N > 1 situation, coupling of bands (4,5,9) results in band 9
assuming the +2v value and accordingly pushed entirely above
the Fermi energy while band 4 and 5 are depressed in energy.
Thus, as Figure 5.1 illustrates, in £he C.D.W. state, band 9 is
completely empty while 5 remains totally occupied.

In passing from the (4,5,9) coupling region to the (4,5,8)
coupling region, the C.D.W. electronic energy value derived
from band 4 in the (4,5,9) region is associated with band 8 in
the (4,5,8) region while the energy eigenvalue derived fromband 9
in the (4,5,9) region is associated with band 4 in the (4,5,8)
region. This band "cross-over" couples the Fermi surface of
band 4 in the (4,5,9) region to that of band 8 in the (4,5,8)
region to produce the isolated hole pockets along TI'-M in one
of the (4,8) reduced zones. On the other hand, the coupling
of the "inactive" Fermi surface of band 8 with the "active"
portion originally associated with band 4 in conjunction with
the +2v saddle point elevation of this band, produces the K-point

electron pocket configuration of the other (4-8) reduced zone.
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This mixing of electronic energies from the undistorted

state to qualitatively generate a C.D.W. Fermi surface agreeing
with the de Haas-van Alphen as well as Hall constant data is
strong evidence for the applicability of the saddle point model.
As an alternate explanation of this data, Wilsor126 , using a

Fermi surface constructed from the 2H band structure results

of Wexler and’WoolleyBand with C.D.W. coupling phenomenologically
introduced principally amongst the K point cylinders, deduces a
C.D.W. Fermi surface structure resulting in five orbits. Thus

a fortuitous degeneracy in the extremal area of two Fermi sur-
faces is required before agreement with experimental data is

achieved.

5.2 The Raman Active C.D.W. Modes

Given the commensurability existing between lattice and
C.D.W. periodicity in the 2H layered dichalcogenides, it is
possible to construct representations for the C.D.W. normal
modes (phonons) as a finite linear superposition of normal modes
from the undistorted state. Assuming that only modes from a
given branch are coupled by the C.D.W. distortion, the Gi/3
C.D.W. distortion in the 2H system results in C.D.W. normal
mode coordinates expressible as a superposition of nine modes
from the undistorted phase.

As discussed, the six L.A.(A) g = Gi/sz normai modes of
the undistorted state, by virtue of their coupling to longi-
tudinal electronic fluctuations at g = Gi/ys are the principal

lattice modes participating in the C.D.W. transition. These
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six equivalent modes, together with the two K-point and single
zone center modes, form a representation for nine g=0 modes in
the reduced C.D.W. zone with reciprocal lattice vector Gi/3'
Given the energy separation between these three distinct
regions, the six modes belonging to the star of Gi/3 essentially
exist as a self coupled subspace independent of zone center and
K point influences and form a basis for the C.D.W. lattice modes.

The Raman work of Holy et al15 showed that the modes
appearing in the C.D.W. state were consistent with an even
parity triple-g C.D.W. state, though their use of the full Dgh
crystal symmetry required both layers of the unit cell to explain
the number and symmetry of the observed C.D.W. lattice modes.
As shown in Chapter 2, neglecting interlayer interactions leads

to a D symmetric single layer treatment of the C.D.W. lattice

3h
modes. The original six L.A. A modes from the star q=='=Gi/3 when
mapped to g=0 in the C.D.W. state transform as two Al and two E
representations of the D3h layer symmetry. Since the Al and E’
modes are Raman as well as infra-red active, the observed C.D.W.
Raman spectrum of two A and two E symmetric modes can be viewed
as a natural expression of the D3h layer symmetry. Note, as the
Raman scattering tensors for D3h and D6h are identical, Raman
scattering measurements do not distinguish between these two
symmetry types.

| In the context of the proposed microscopic Hamiltonian,

the six L.A. A modes couple in the C.D.W. state via a Bragg

scattering mechanism generated by the anharmonic term. The
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resulting g=0 C.D.W. lattice normal modes become strongly

split about a frequency renoirmalized by the electron-phonon term.

Their frequency dependence upon the C.D.W. distortion ampli-

tude emerges directly from the diagonalization of a 6 x 6

matrix egquation, as expressed in equations 2.38, 2.40, and 2.41.
A major feature of this interpretation is the existence

of a fixed splitting ratio separating the C.D.W. modes.

Figure 5.2 displays the observed C.D.W. frequency dependence

23 with thcse anticipated

taken from Steigmeier et al22 and Irwin
by model calculations. Using the experimentally determined
mode frequencies at T = 0 and T = Tc as given boundary condi-
tions, model calculations of the ratio A(T)/A(0) determines
the intervening C.D.W. mode frequencies. As the ratio A(T)/A(0)
is relatively insensitive to the particular [N,g'] parameter
set from which it is generated, the model dispersion result
illustrated in Figure 5.2 is characteristic of anharmonic
coupling influences rather than an artifact of the [N,g']
parameters.

General agreement between model and experimental results
is evident froﬁ Figure 5.2, especially in the low temperature
regime. As this thesis does not consider complications intro-

duced by incommensurate effects, model frequency behavior
near the transition temperature is only suggestive.

In closing, it is perhaps informative to compare this split
mode interpretation with the more usual "phase" and "amplitude"

mcde description which views the C.D.W. normal modes as phase
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and amplitude displacements of the C.D.W. lattice with respect

to the host lattice. Using the phase and amplitude mode

description, Holy et al15 argued that the lower lying (A )

19" %2g
set be equated with the phase modes while the more energetic
(Alg'EZh) set be equated with the amplitude modes. However,
as the work of Steigmeier et al22 revealed, the lower E29 mode
exists well into the incommensurate phase at finite frequency
which is contrary to the expected phase mode behavior19 of
approaching zero frequency as the transition temperature is
approached from below. This throws into question the applica-
bility of phase and amplitude characterization of these observed
C.D.W. modes. As Steigmeier notes, in the undistorted phase

(T > Tc), a broad feature at about 130 cm—l

(2H TaSe,) develops
which is ascribed to two phonon scattering by the g = Gi/3
L.A.(A) modes whose frequency corresponds to that obtained from
the neutron work of Moncton et all3. It would seem natural to
associate the new frequencies observed in the C.D.W. state as
emerging from this precursor two phonon peak but strongly split

by Bragg scattering influences.
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Illustrated Fermi surfaces are qualitative.

Fig.

Compare this C.D.W. electronically

modified situtation with the undistorted situtation of Fig. 3.1
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APPENDIX A

COMPUTER ROUTINES

The basic numerical format was outlined in Chapter 4.
In this appendix, two computer programs characteristic of the
essential numerical processing are reproduced.

The first program (program Gaussian) is a 12-point
Gaussian integration routine designed to integrate a function
F(6,k) over the two dimensional electronic Brillouin zone.
Usual formating conditions specified for the decomposition of
the k-space area into 12 regions with evaluation at 144 points
in each region. Essential for numerical accuracy was to in-
corporate the Fermi surface into the set of boundary points
between different regions. By integrating various known
functions or increasing the number of integration regions,
the numerical accuracy is assessed at better than 1%.

The second program (program Least Square), taking re-
sults from the integration routine as input data, determines
the electronic gap which minimizes the total free energy at
a given temperature. Essential to this program, as well as
program Gaussian, are package programs available from IMSL.
In this instance, program LLSQF calculates the least square
coefficients used in the polynomial fit to the free energy

in the wvicinity of its local minimum.
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//ACXBELLN JOB (**¥*, *%%*x*) SCOTT,MSGCLASS=R,TIME=10
//EORTRAN EXEC PORTGCG
DIMENSION R2(40) ,V3 (40)
DIMENSION FR(70) ,TOT1(80),T0T2(80) ,TOT3 (40) ,T0TU (4D),
C TOT5(40) ,TOT6E (40) ,TOT7 (40)
DIMENSION U2(40) ,V2(40),04(231),7RL (40)
DIMENSION C11(13),T11({13)
DI¥ENSION GW(12) ,GP (12)
DIMENSION HP(12) ,H¥ (12)
DIMENSION C1(13),T1(13)
DIMENSION CU(12) ,CU01{12)
DIMENSION TT(4) ,¥T(4)
EXTERNAL FGO
COMMON T,U,V,R,AD1,AD2,AD3,E0P,ELO,CC, 2
PI=3.14159265
NGU=12
NGUU=12
SCAL=100.
ANN=1, 37
A=0.0
AM=1./((1<-3)*¥2.) ¥*SCAL
FOR A GIVEN ELECTRONIC CONCENTRATION, THE CHEMICAL
POTENTIAL CORRESPONDING TO A GIVEN RANGE OF
ELECTRONIC 5APS AND TFEMPERATURES IS INPUTED
D0 €00 JR=1,33
J1=(JR=1) x7 +1
J2=J1+6
READ (5, 606) (U4 (LP) ,LP=J1,J2)
606 FORMAT (7F8. 5)
6500 CONTINUE

nan

NX=5

NN=11
C THE FREE ENFRGY FOR A RANGE OF TEMPERATURES (NV)
C AND ELECTRONIC GAPS (L) IS CALCULATED

D052 NV=1,11

R=R2 (NV) *SCAL

NZ= (NV=1) *21+1

UXX=U4 (NZ) *SCAL

D050 L=1,21

V=V2 (L) *SCAL

LYXX= (NV-1) *21+L

U=U4 (LXX) *SCAL

AD1=1.

AD2=V*V/AD1/AD1

AD3=V*V*V/AD1/AD1/2D1

AD=AD1
c THE INTEGRATION LIMITS FOR THE 12 POINT GAUSSIAN
c QUADRATURE METHOD ARE ESTABLISHED (CU({1),--,CU{6))

cc=1.

EUP=2.%*V

ELO=-V

IF(CC .LT. 0.) EUP=V

IF(CC .LT. 0.) ELO=-2.%V
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2Z=1.%*CC

B= (U.*R+ZZ) * (4. *A+7Z)

P=((6-*ZZ*CC*B-54. *ZZ2*CC) =SQRT ( (6. *B~54.) * (E. *B-54.)
C ~8.%¥(9.*3-81.)*(9.%¥B=3.)))/2./(2-*B=31.)

E=2.%A*P+ (P*ZZ+CC-ZZ*SQORT (9. *%P*D-6_%ZZ*CC*P+3.)) /2.

EM1=ExV

P=P*V/AD1

IF( U .GT- FM1 .AND. CT .LT. 0.) 30TO13

IP( U .LT. EM! .AND. CC .GT. 0.) GOTO13

AL=(V+U*CC) /(1. +2.*% A*CT)

GOTO14

R==6. ¥ CO¥ZT* (4. %A+ 2Z) ¥ (2.%U/V=CCT) ~T2.+9 # (L. ¥R+Z7) * (4. ¥R +272)
C #3.%(2.%¥U/V=CC) *(2.*U/V-CC)

QP=SQRT (QR)

AL=( (4. *A4Z2)* (2.%0/V=CC)=3.*%CC*2ZZ~QR) /((Ue*A+ZZ) * (4. *A+22)=9.)

AL=AL*V/AD1

Bl= (2. ¥A+2. ¥CC) *V*CC-1%* (4. *A+CC)

R2= (2. ¥ A42. *CC) * (2. *A=CZ)

B3=U*U-UXV*CC=2, *%V*V

A6= (-B1-SQRT (B1*B1-4. *B2*B3)) /(2. *B2)

ne=1

IF( U .LT. EM! _AND. U .GT. ELO.AND. CC .LT. 0.) Nu=-1

IP( U .GT.EM1 .AND. U .LT. E=0P .AND. CC .GT. 0.) NG4=-1

SHEL=8.

IF( U .GT. ELO .AND. U .LT. EUP) NR=3

IF( U .LT. TLO) NR=1

IF (U .GT. EUP) NBR=5

U0=U XX

AL1=UO/ (AD1#2.* (A=-1.))

IF( UO .GT. O.) AL1=00/(AD1¥2.%* (A+1.))

IF( AL1 .LT. .0001) AL1=.0001

IF( AL .LT. .0001) AL=.0001

S=AR

NGG=1

IF( AL .GE. S) NGG=-1

IF( AL .GE. S) AL=S

CU(1)=0.0

CU (3) =AL

CU (4)=RAL+ (S-AL) /b.

CU (5) =AL+ (S-AL) /2.

CU(6)=S

cu1(1) =0.

CU1(2) =2AL1

CU1(3) =AL 1+ (S-AL1) /4.

CU1T(4) =AL1+ (S-AL1) /2.

CU1(5) =3AL 1+ (S-AL1) *3. /4.

CU1 (6) =S

pous Kv=1,13

C1(KV) =0.

T1 (KV) =0.

T11(KV) =0.

C11 (KV)=0.

CONTINUE
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INTEGRATION OF THE FREE ENERGY FT, DEFINED IN
SUBPROGRAM PTV, OVER THE VARIOUS K-SPACE REGIONS
D020 NA=1,NGUD
TT (1) =PT/4.*GP (NA) +DPI /4.
TT(2) =PI /4. *GP (NA) +PI*3. /4.
WA=PI/24.*GV (NA)
D023 KT=1,2
T=COS (TT (KT))
CU (2) =AL*2. /3.
IF (N4 .EQ. -1 GOTO19
ITHAX=100
ALM1=1.E-6
IF(U .GT. EUP) ALM2=AL#1.
IF( U.LT.E0UP .AND. U .GT. ELD) ALM2=AL
IF( U.LT. EIO) ALM2=AL+1.
CALL ZPALSE (FGD,.0001,5,2LM1,ALM2, P, ITMAX, IER)
CU (2) =P
19 RAY=44 .
D021 NO=1,2
NUU=XNU+1
D022 NB=1,NGU
P=(CU(NUU)=CU (NU)) *GP (NB) /2. + (CU(NUU) +CU (NU)) /2.
WP= (CU (NUU) -CU (NU) ) *GW (NB) /2.
FT=FTV(T,?,U,R,V,AD1,AD2,AD3,CC,2) *WP*WA
C1 (NU) =C1 (NU) +FT
22 CONTINUE
21 CONTINUE
23 CONTINUE
20 CONTINUE
IF( NGG .E0. -1) GOTO 101
D034 NU=3,NX
NUU=NU+1
D031 NB=1,NGU
p=(CU(NUU) ~CU (NU)) *¥GP (NB) *. 5+ (CU (NUU) +CU (NU)) *.5
WP= (CU (NUU) =CU (NU) ) *GW (NB) *.5
TC=ARCOS ( (COS (3. *ARCOS ( (~A*P+U/AD1/2. ) /SQRT(P*P+AD2))) *SQRT( (
C P*P+AD2)* (P*¥DP+AD2) * (P*¥P+2D2)) -CC*AD3) / (P*P*P))
D032 NA=1,NGUU
TT (1) =HP (NR) ¥TC/2.+TC/2.
WT (1) =HW (NA) *TC/12.
TT (2) =HP (NA) * (3. 14159265-IC) /2. + (3. 14153265+TC) /2.
WT (2) =HW (NA) *(3. 14159265-TC) /12.
DO 33 KT=1,2
T=COS (TT (KT))
FT=FTV(T,P,U0,8,V,AD1,AD2,AD3,CC, ) ¥ P*4 T (KT)
C1(NU)=C1 (NU)+FT
33 CONTINUE
32 CONTINUE
31 CONTINUE
3y CONTINUE
GO TO 101
102  DO4O NU=1,NX
NUU=NU+1

e X8R
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DO41 NB=1,NGU
P=(CU1 (NUU) =CU1(NU) ) ¥GP (NB) *.5+ (CU1 (NUU) +CU1(NU)) *. 5
WP= (CU1 (NUU)=CU 1 (NU)) *G¥ (NB) *.5
TC=3.14159265/3.
IF( UXX .E0.0. .OR. NU .GT. 1) GOTO70
GOTO71
TC=ARCOS (ABS (A-UYXX/ (2.*AD1%¥P)))
RAY=3.
D042 NA=1,NGOU
TT (1) =HP (NR) *TC/2.+TC/2.
WT (1) =H¥ (NA) *TC/2.
TT(2) =HP (NA)* (3. 14159265/2.=TC) /2 +(3.14153265/2.+TC) /2.
WT (2) =HW (NR) *(3.14159265/2.~TC) /2.
DOuU3 KT=1,2
T=COS (TT (KT) )
FT=FTO (T,P,0XX,R,AD1,A) *WP*¥T (KT)
T1(NU)=T1 (NU) +FT
CONTINUE
CONTINUE
CONTINUE
CONTINUE
GAIL=44.

TOT1 (L) =0.

TOT2 (L)=0.

DO46 KC=1,13

TOT2 (L) =TOT2 (L) +T1 (KC) +T 11 (KC)

TOT1(L) =TOT1 (L) +C1 (KC) +C 11 (KC)

CONTINUE

FR(L) =4./ (PI*AA) * (TOT1 (L)) +U*ANN

FRL(L) =4./(PI*AA) *TOT 2 (1) +UXX*ANN

CONTINUE

WRITE(6,808) (FR(LP) , LP=1,7)

WRITE (6,808) (FR(LW) , LW=8, 14)

WRITE(6,808) (FR (LZ) ,L2=15,21)

CONTINUE

FORMAT (7F9.14)

DATA V2/1.E-12,.0105,.0205,.0305,.0405,.0505,.0605,.0705,.0805,
¢ .0905,.1005,.1105,.1205,.1305,.1405,.1505,.1605,.1705,.1805,
C .1905,.2005/

DATA R2/1.E-17,.01,.02,.03,.04,.05, .06,.07,.08,.09,.1/

DATA GP/-.3815606,-.904117,-.769302,-.5873179,-.367831,-.125233,
C.125233,.367831,.5873179,.769902,.904117,.9815606/

DATA GH/.047175,.106939,.160078,.203167,.2334325,.249147,

C .243147,.233432,.203167,.160078,.106939,.047175/

DATA HP/-.9815606,-.304117,~.7693302,-.5873179,-.367831,-.125233,
€C.125233,.367831,.5873179,.769902,.904117,.9815606/

DATA HW/.047175,.106339,.160078,.203167,.2334925,.249147,

C .289187,.233u92,.203167,.160078,.106933,-047175/

STOP

END

FUNCTION FGO (X)

CoMMON T,U0,V,R,AD1,AD2,AD3,EUP,ELO,CC,A
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IP{ V.LT..01) GOTO 10
D2=V*Y/AD1/2AD1
D3=V*V*V /AD1/AD1/AD 1
F=ARCOS ((X*Y*X*T/D3+CC) /SORT ((X*Y¥/D2+1.) * (X*X/D2+1.) * (X*¥X/D2+ 1.
c )N)/3.
GOTO11
10 RAY=4.
F=ARCOS ((Y*¥%Y*T+CC*AD2) /SQRT ( (X ¥X+1AD2) * (X*X +AD2) * (X*X+AD2))) /3.
11 RAT=4.
IF( U .GT.EUP) GOTO200
IF( U .LT. FLO) GOTO0202
GO=AD1* (A*X+SQRT (X*Y+AD2) * (=. 5%COS (F) +SORT (3. ) *.5*SIN(F))) =-U/2.
GOT0201
200  FGO=AD1* (A% X+S)DRT(X*Z+AD2) *COS (F))-U/2.
GOT0201
202 FGO=AD1* (A* X+S)QRT (X*X+AD2) ¥ (-.5*COS (F) =SORT (3. ) *.5*SIN(F))) -U/2.
201 RAY=UU4.
FETURN
END
FUNCTION FTO(T,P,UXY,R,AD1,A)
A2= (AD1* (A¥DP=-P*T)-UXX/2.) /R*2.
A1=(AD1% (A*P+P*T) -UYY¥/2.) /R*2.
IF (A1 .1T. -14.) F1=R*a1
IF (81 .GT. 20.) P1=0.
IP (A1 .GT. .0 .AND. A1 .LT. 20.) F1==-R*ALOG (1.4EXP(~21))
IF (A1 .LT. .0 .AND. Al .GT. =-14.) F1=R¥A1-R*ALOG(1+EXP(-ABS(A1)))
IP (A2 .LT. —-14.) FP2=D0*A2
IF (A2 .GT. 20.) F2=0.
IF (A2 .GT. 0. .AND. A2 .LT. 20.) F2==R¥ALOG (1. +EXP(~12))
IF(A2 .LT. 0. .AND. A2 .GT. =-1U4.) F2=R¥A2-R¥ALOG(1.+EXP (=235 (A2)))
FTO=.5%* (F 1+ F2)
FETURN
END
FUNCTION PTV(T,P,U,R,V,AD1,AD2,AD3,CC,A)
F=ARCOS ( (P*DP¥DP*T+CC*AD3) /SQRT ( (P*D+AD2) * (P¥P+AD2) ¥ (P*¥P+AD2))) /3.
DR 1=P*P*D*D* (1.~T*T) 43, %P*P*AD2-2, #¥P*T*CC*AD3+3.*AD2% AD2
DK= (P*T* AD2-CC¥ AD3) /SQRT ((P*P+AD2) *DR1)
C2=CO0S (F)
S2=SIN (FP)
A1= (AD1* (A¥P+SQRT(P*P+AD2)* C2) -U/2.) *2. /R
A2=(AD1¥ (A*P+SQRT (P*P+AD2) ¥ (-.5*C2-SORT (3.) *.5*%52)) ~U /2. ) *2./R
A3= (AD1* (A*P+SORT (P*P+AD2) * (-.5%C2+SQRT (3.) *.5%S2) ) -U/2.) *2./R
IF(A1 .LT. -14.) F1=R*A1
IF(A1 .GT. 20.) F1=0.
IF (A1 .GT. .0 .AND. A1 .LT. 20.) F1==R*ALOG (1. +EXP (-2 1))
IF (A1 .LT. .0 .AND. A1 .GT. =-14.) F1=R*¥A1-R*ALOG(1+EXP(-ABS(A1)))
IF (A2 .LT. =-14.) F2=R*A2
IF (A2 .GT. 20.) F2=0.
IP(A2 .GT. 0. .AND. A2 .LT. 20.) F2=-R¥ALOG (1.+EXP(-A2))
IF(A2 .LT. 0. .AND. A2 .GT. =-1U4.) F2=R*A2-R*ALOG(1.+EXP(-2BS(22)))
IF(A3 .LT. -14.) F3=R¥A3
IF(A3 .GT. 20.) F3=0.
IF( A3 .GT. 0. .AND. A3 .LT. 20.) F3=-R¥ALOG(1.+EXP (-23))




IF{A3 .LT7. O.
FTV=F14#F2+#F3
RETURN
END

/*

//G0.SYSIN DD *

«AND.
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A3 -GT- -1!4-)

F3=P*A3-R¥ALOG(1.+EXP(-ABS(23)))
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//ACXGRSIN JQOB (¥ *** *¥*xxXx) S5COTT,MSGCLASS=R
//FORTRAN EXEC TFORTGCG

10
90

70
71

NN nNnn

DIMENSION FR(1386),TOT6 (40),TOTH4 (40),TOT7 (40),ILP (40)
DIMENSION V2(22),R2(12)

DIMENSION AA(3,3),BB(3),Xx(3),HH(3),IP(3)
DIMENSION SC(40) ,TOTAL(21,11,56)

DIMENSION E3(6,6,11),v3(6,6,11),03(6,6,11),U4 (1386)
FREE ENERGY AND CHEMICAL POTENTIAL VALUES CALCULATED
IN SEPARATE PROGRAM CONSTITUTE INPUTED DATA

DO 10 JR=1, 198

J1=(JR=1) *7 +1

J2=31+6

READ (5,90) (FR(J),J=J1,32)

CONTINUE

FORMAT (7 F9.4)

Do 70 JR=1, 198

J1=(JR=-1) *7 +1

J2=J1+6

READ (5,71) (U4 (JX),JX=J1,J2)

CONTINUE

FORMAT (7 F8. 5)
W1S=(82.%82.+U4 *Ul_+2.% (65.%¥65.450. *50.)) /6.
W2S=38.%38.

WC=.6

W=1.E-11 _

FOR A GIVEN ELECTRBON CONCENTRATION (NN), COUPLING
PARAMETER (LC) AND TEMPERATURE (K), THE CORRESPONDING
ELECTRONIC GAP (V) AND CHEMICAL POTENTIAL (U) ARE
CALCULATED FROM INPUTED FREE ENERGY AND CHEMICAL
POTENTIAL DATA BY FPITTING THE FREE ENERGY TO A
QUADRATIC IN THE VICINITY OF THE MINIMUM

DO 11 NN=1,6

DO 49 LC=1,6

Lo 12 K=1,11

R3 (NN, LC, K) =R2 (K)

IF( K .EQ0. 1) VV=1000.

DO 13 L=1,21

V=v2 (L)

R=R2 (K)

LX 1= (NN=1) *231+ (K- 1) *21+ 1
LX=(NN=1) ¥23 14 (K=1) *21+L
E1={(W1S-W2S)*V¥V/VV/VV+W2S+V/VV*(82.%82.-W15S))
E2=((W1S=W2S) *V*V/VV/VV+H25+V/VV* (4U4.*4l_-¥1S))
E3=({(W1S-W2S) *V*V/VV/VV+W2S+V/VV*(65.%65.-4W1S5) )
E4=((W1S-W2S)*V¥V/VV/VV+H2S+V/VV*(50.%50.-F15))
ES5=SORT (W2S) /(80.65*HC*R)

FPH=0.

TOT6 (L) ==20.~. 1¥L

TOTAL(L,K,LC)=TOT6 (L)

IF(K -EQ. 1) GDTO 18

IF(E1.1T.0. .OR.%2.LT.0. -OR.E3.LT.0..0R.E4.LT.0.)G0TO13
E1=SQRT (E1) / (80.65*WC*R)

F2=SQRT (F2) / (80.65* HC*R)




18

13

50

33

51

an

300
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E3=SQRT (E3) /(80.65% HC*R)

E4=SQRT (EY4) / (80.65*WC*R)

FPH=W*R* (ALOG ((1.=EXP (~E1) ) * (1.-EXP (=E2)) *(1.-EXP (-E3)) ¥
C (1.-EXP(-E3))* (1.-EXP (~Eu4))* (1.-EXP (-El4)))
C =6.*¥ALOG(1.-EXP(-ES5)))

SHELL=4.

TOT6 (L) =V*V*SC (LC) /100. #+FR (LX) =FR(LX 1) +FPH

TOTAL (L,K,LC)=TOT6 (L)

CONTINDE "

LP=1

XP=TOT6 (1)

DO 50 LL=2,2!1

IF(TOT6 (LL) .LT. XP) LP=LL

IF (TOT6 (LL) .LT. XP) XP=TOT6 (LL)

CONTINUE

V3 (NN, LC,K)=0.

IF( LP .FQ. 21) V3 (NN,LC,K)=20.

TLP(K) =LP

IF(LP .EQ. 1 .OR. LP .EQ. 21) U3 (NWN,LC,K)=40.

IF(LP .EQ. 1 .OR. LP .EQ. 21) GOTO 51

po 33 I=1,3

J=LP+I-2

AA(I,1)=1.

AA(T,2) =V2(J)

AA(I,3)=V2(J)*V2 (J)

BB (I)=TOT6 (J)

CONTINUE

IA=3

MM=3

NK=3

TOT=0.0

KBAS=3 ‘

LEAST SQUARF PROGRAM FITS FREE ENERGY TO A QUADRATIC

IN THE VICINITY OF THE LOCAL MININMUM

CALL LLSQF(AA,IA,MM,NK,BB,TOT,KBAS,XX,HH,IP,IER)

V3 (NN, LC,K) ==XX (2) / (2. *XX (3))

LUD= (NN=1)#231+ (K-1)*21+LP

LU1=LUU=-1

IP (V3 (NN,1C,K) .GT. V2 (LP)) LU1=LUU+1

U3 (NN, LC,K) =Ul (LUU) +ABS (V3 (NN, LC,K)=V2 (LP)) * (U4 (LU1) -U4 (LUU))
FRAN=4.

IF(K .GT. 1) GO TO 12

IF{ LP .NE. 1 .AND. LP .NE. 21) VV=V3(NN,LC,K)

CONTINUE

THE TRANSITION TEMPERATURE AND CORRESPONDING ELECTRONIC

GADP FOR A GIVEN NN AND LC ARE CALCULATED

LTE=39

DO 300 J=1,10

JI=J +1

IF (ILP (J) -NE. 1 .AND. ILP(JJ) .EQ. 1) LTE=J
CONTINUE

IF ( LTE -EQ. 99) GO TO 48
NL=ILP (LTE) +1




303

304

306

302
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DO 302 MT=1,8

no 303 JX=1,NL

LTZ=LTE+1

TOT7 (JX) = (TOTAL (JX,LTE,LC) -TOTAL (1,LTE,LC)) + (TOTAL (JX ,LTZ,LC)~
C TOTAL(1,1TZ,LC)-TOTAL (JX,LTE,LC) +TOTAL (1,LTE,LC))* (MT=1) /7.

CONTINUE

LP2=1

XTT=TOT7 (1)

£O 304 JS=2,NL

IF (TOT7 (JS) .LT. XTT) LP2=J5S

IF(TOT7(JS) .LT. XTT) XTT=TOT7 (JS)

CONTINUE

IF(LP2 .E0. 1) GO TO 302

DO 306 JG=1,3

JA=LP2+JG~-2

AA (JG,1)=1.

AA (JG, 2) =V2 (JA)

AA (JG,3)=V2 (JA) *V2 (JA)

BB (JG) =TOT7 (JA)

CONTINUE

12=3

MM=3

NK=3

TOT=0.0

KBAS=3

CALL LLSQF(AA,IA,MM,NK,BB,TOT,KBAS,YY,HH,IP,IER)

2G==X¥ (2) / (2 *XX (3) )

TEM=LTE*1.+ (MT=1) /7.~ 1.

LUU= (NN=1) #2314+ (LTE-1) #21+LP2

LUT=LUU+1

IF(ZG .LT. V2(LP2)) LU1=LUU-1

LU2=LUU+21

LU3=LU2+1

IF (2G -1T. V2(LP2)) LU3=LU2-1

UG=UU4 (LUU) +ABS(ZG-V2(LP2))* (U4 (LU1)+ (U4 (LU3) =04 (LU1)) *
C (MT=1)/7.- (U4 (LUU) + (U4 (LU2) =U4 (LUU) ) *(MT~1) /7))

CONTINUE

KH=LTE+1

R3 (NN, LC,KH) =TEM

KH1=KH+1

IF(NN .NE. 1 .AND. KH1 .LT. 12) R3(NN,LC,KH1)=TEMN

U3 (NN, LC,KH)=UG

IF( NN .EQ. 1) U3(NN,LC,KH)=1.E~10

LUU= (NN=1) #2314 (LTE=1) *2 141

LUT=LUU+1

IF(ZG .LT. V2(LP2)) LUI=LUU-1

LU2=LUU+21

LU3=LU2+1

IF (2G .LT. V2(LP2)) LU3=LU2-1

UG=UY4 (LUU) +ABS (2G-V2 (LP2) ) * (U4 (LUT)+ (U4 (LU3)~OU(LUT)) *
C (TEM- (LTE-1)*1.)- (U4 (LUU)+ (U4 (LU2)-U4 (LUD) )* (TEM=- (LT E-1)*1.)))

JF (NN .NE. 1 .AND. KH1 .LT. :12) U3(NN,LC,KH1) =UG

V3 (NN, LC,KH) =ZG
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IF( NN .EQ. 1) V3(NN,LC,KH)=0.
48 FRAN=U.
WRITE(6,446) (V3 (NN,LC,K9) ,K9=1,7)
WRITE(6,u447) (V3 (NN,LC,K6) ,K6=8,11)
WRITE(6,446) (U3 (NN,LC,K8),K8=1,7)
WRITE(6,447) (U3 (NN,LC,KU4),K4=8,11)
WRITE(6,446) (R3(NN,LC,N4),N4=1,7)
WRITE(6,447) (R3 (NN,LC,N5),N5=8,11)
447  FORMAT (4F8.4) ,
446  FORMAT (7 F8. 4)
43 CONTINUE
1 CONTINUE
DATA V2/1.F-7,1.05,2.05,3.05,4.05,5.05,6.05,7.05,8.05,
C 9.05,10.05,11.05,12.05,13.05, 14.05, 15.05, 16.05,17.05,
C 18.05,19.05,20.05/
DATA R2/1-E=11,10,20,30,8e,5.,6c,72¢8,9.,10.,11./
DATA SC/2.2,2.4,2.6,2.7,2.8,3.0/
STOP
END
//G0.SYSIN DD *
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