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ABSTRACT

The lattice dynamics of the group Vb layered transition metal
dichalcogenides have been studied by Raman scattering and the experimental
results have been analyzed in terms of a valence force field model.
Explicit expressions for the Brillouiﬁ zone centre phonon frequencies have
been obtained from the model and have been used along with the
experimentally measured Raman frequencies to evaluate the force parameters
of the model for 2H--TaS2 and 2H—Nsz. This work represents the first
complete analysis of the Raman spectrum of both the 2K and 3R polytypes of
Nsz.

An ipnvestigation of the Raman spectrum of AngaS for various silver

2
concentrations and as a function of temperature has also been undertaken.
It has been found that for x £ 1/3 and at temperatures below about
150-200K, three new "A" modes appear in the Raman spectrum with frequencies
of 320, 335 and 427 cm_l. The appearance of these modes has been

attributed to zone-folding. Based on the force parameters evaluated for the
valence force field model, the phonon dispersion curves of 2H—TaS2 have
been plotted and used to determine the origin of these zone-folded modes.
The results indicate that the 427 cm_1 peak is due to zone-folding along

* _ :
the ¢ axis while the 320 and 335 cm 1 peaks modes are believed to

originate from either the K or M points of the Brillouin zone.
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I. Introduction

The layered transition metal dichalcogenides are so named because
they consist of vertically stacked, véry thin layers. Separating each layer
is a gap referred to as the van der Waals gap in deference to the weak
interlayer bonding forces. The strong intralayer bonding is covalent in
nature and this contrast in bond strengths gives rise to the anistropy
exhibited by many of the physical properties of these materials. A study of
lattice dynamics can give quantitative information on the nature of the
interatomic bonding and hence information on many of the physical
properties of these compounds.

There are several experimental methods available for investigating
the lattice dynamics of layered transition metal dichalcogenides, the most
powerful of which is neutron scattering. Neutron scattering experiments
have been carried out on relatively few transition metal dichalcogenides
however, because of the difficulty in obtaining large crystals. Exceptions
29 TaSe2 and M082 which have been examined by Wakabayashi
et al. (1974, 1975) and Moncton et al. (1975, 1977). The most widely used

to this are NbSe

methods for studying the lattice dynamics of fhe transition metal
dichalcogenides have been optical techniques such as Raman scattering and
far infrared spectroscopy (Karecki 1980, and references therein).
Ultrasonic techniques have also been used (Skolnick et al. 1977; Jericho et
al., 1980), but these experiments provide information only on the long
wavelength acoustic phonon branches.

Valuable information on the bonding and physical properties of these
materials (eg. specific heat, thermal conductivity, elastic constants) camn

be obtained by analyzing the results of these experiments in terms of



lattice dynamical models. A number of such models have been developed. The

lattice dynamics of the semiconductors MoS, and PbI2 have been described by

2
a simple central force model (Bromley, 1971) and by valence force field
models (Lucovsky 1977, Wakabayashi et al., 1975). More recently, Feldman
(1982) has demonstrated that a valence force field model can be
successfully used to interpret the lattice dynamics of the metallic
compounds 2H—TaSe2 and 2H-NbSe2.

The work described in this thesis was iuitiated‘with a view to
studying the lattice dynamics of the intercalated layered transition metal
dichalcogenides. Such compounds are not only of fundamental interest but
have many potential technical applications (Whittingham, 1978). In
particular the bonding of the intercalate atoms and their effects on the
physical properties of the host crystal are of great interest.

The first part of this work involves a Raman scattering investigation
of the lattice dynamics of the group Vb layered transition metal
dichalcogenides. Closed form expressions have been obtained for the zone
centre phonons in terms of the force parameters of Feldman’s model and

these have been used to interpret the Raman spectra of 2H-TaSe 2H-NbSe2

22
and 2H—TaS2 - compounds which have been the subject of a number previous
optical investigations (Wang and Chen 1974, Holy et al. 1976, Holy 1977,
Sugal et al., 1981). | ‘ ‘ -
This work also presents the first complete analysis of the Raman

spectrum of both 2B and 3R-NbS The only previously reported work

9"
involving the lattice dynamics of NbS2 are incomplete Raman studies of both
the 2H (Nakashima et al., 1982) and 3R polytypes (Nakashima et al. 1982,
Onari et al., 1979). This relative paucity of information likely stems not
from a lack of interest but from the difficulties involved in growing NbS2

with'é well defined structure. However Fisher and Sienko (1980) have



recently reported a technique for obtaining the desired polytype. In the
course of their investigation they also found that the prevailing polytype
was dependent on the concentration of Nb in Nb1+xS2 with the 2H polytype
corresponding to x= 0 and the 3R polytype to x > 0.07. Stoichiometric
3R—Nb82 was not observed, Later X-~ray work (Powell and Jacobson, 1981) has
shown that the excess Nb atoms reside in octahedral sites within the van
der Waals gap.

In addition to the possible effects of the excess Nb atoms on the

lattice dynamics of Nb this is also a system of interest from the

1+x82’
point of view that NbSé, unlike its sister compounds TaSz, TaSez, and
NbSe,, does not undergo a charge density wave (CD¥%) transition (Wilson et
al., 1975). The reason for this is apparently still unknown.

Finally, in the second part of this thesis, the Raman spectrum of
silver intercalated TaS2 (AngaSZ) is investigated. The intercalate atoms
in AgXTaS2 have been observed to undergo an order—disorder transition at
temperatures below room temperature (Scholz et al., 1982a and 1982b).
Additional Raman active modes have been observed from the orde}ed state in
these compounds. The appearance of these modes has been interpreted in

terms of the phonon dispersion curves predicted by the lattice dynamical

model developed for pure (ie. unintercalated) TaSz.



IT1. Theory

2.1 Crystal Structure

The group Vb transition metal dichalcogenides (hereafter referred to
as MX2 compounds) consist of three hexagonally packed sheets where a sheet
of metal atoms (M = Ta or Nb) 1s sandwiched between two sheets of
chalcogen atoms (X = S or Se) (Wilson and Yoffe, 1969). Each set of three
sheets is referred to as a layer and the layers are stacked on top of one
another separated by a gap of approximately the same width as the sandwich.

Different stacking arrangements of the layers and of the sheets
within a layer give rise to different polytypes of a particular MX2
compound. Each polytype is given a prefix, eg. 1T, 2H, 3R, where the
number refers to the number of layers within a unit cell and the letter to
the symmetry of the unit cell (trigonal, hexagonal, rhombohedral). Im both
the 2H and 3R polytypes the metal atom is situated at the centre of a
trigonal prism fprmed by six chalcogen atoms. Tge crystal structure of the
2H polytype is illustrated inm Fig. 2.1. The Qarious bond lengths, bond

angles and lattice parameters shown in the figure are listed in Table 2.1

for several MX2 compounds.

Calculations involving the 2H-MX2 compounds have been carfied out

using the lattice vectors (Fig. 2.lc)

=a(% %+ %n%)

a(-%x + %y)

o) ol 8y
l
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The resulting reciprocal lattice vectors

a* = *ga (2% + % 7)
b* = Uma (3% + 3, 9)
— _ 27T A
c* =Tz

give rise to the Brillouin zone shown in Fig. 2.2. Several of the symmetry
points in the zone have been labelled using the notational convention of‘
Slater (1965).

The primitive cell of 3RrNsz is rhombohedral and although the unit-
cell spans three layers it contains atoms from only one layer (Fig. 2.3b).
The relationship between the rhombohedral and hexagonal axes are shown in

Fig. 2.3a. The lattice parameters for 3R~Nb82 are given in Table 2.1.

2.2 Group Theory

Group theory is a powerful }ool in the analysis of the lattice
dynamics of crystals. Armed with the knowledge of the crystal structﬁre,
the symmetry, degeneracy and optical activity of the normal modes of
vibration can be determined from group theory (Burns 1977, Tinkham, 1964) .
The direction of the atomic vibrations for each normal mode can also be
determined but the frequency of vibration requires specific knowledge of
the interatomic forces involved.
compounds is D4 and it is-

2 6h

non-symmorphic. The various group operations are given by Schluter (1979).

The space group of the 2B-MX

There are N=6 atoms per unit cell and hence 3N or 18 normal modes of
vibration (for each wavevector) of which three are acoustic and 23N - 3 =
15 are optic. Infrared (IR) absorption and first order Raman scattering

involves q = 0 (or " point) phonons (see Fig 2.2 and Sec. 2.3) and thus



-l

M
PP, W

Figure 2.2 - Brillouin zone and symmetry points bf ZH--MX2 COITPOUHdS'
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attention is focussed on the modes at [ .
The | point symmetry is that of the factor group of the crystal

space group, in this case D and hence each (" point phonon has the

6h’

symmetry of an irreducible representation of D,. . The reduction of the 18

6h
normal modes into their irreducible representations can be carried out by a
variety of methods. Perhaps the simplest is that given by Fateley et al.

(1977) who describe the procedure in a step-by-step manner. Following this

procedure for the 2H compounds leads to the reduction

The A and B modes involve vibrational motion perpendicular to the plane of
the layers and are non-degenerate, while the doubly degenerate E
representations designate modes with displacements in the layer. These
modes have been calculated using the "transfer projection operator" method
(Burns, 1977) and are shown schematically in Fig. 2.4.

A transition between vibrational states involves ﬁmtrix elements of

the form

Hoalalbud

where Q is the operator that induces the transition. In géneral [‘#;b> is _
the ground state and group theoretical restrictions then permit transitions
only when the irreducible representations of f?éb> possess trapsformation
properties that are compatible with Q. For Raman transitions, where Q is a
second rank cartesian temsor (polarizability), the normal modes of
vibration (ie. P+&b> ) must transform as one of the compoments of the’

2

polarizability tensor, ie. as x°, yz, yz etc. For IR transitions, where Q

is the dipole operator er, the normal modes must transform as x, ¥y, or z.

11
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Figure 2.4 - Normal modes of the 2H-MX,, compounds. - The optical activity
is indicated in brackets:“R - Raman, IR - Infrared,

I - inactive.
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Acoustic modes have the same transformation properties as the IR active
modes. A more detailed explanation of these transformation properties can
be found in Burns (1977) or Heine (1960).

The transformation properties of the irreducible representations of
all 32 crystallographic point groups are listed in the character tables of
most books on group theory (eg. Burns, Tinkham) and hence the acoustic, IR
and Raman active nndes.can be identified by inspection. From (2.2.1) and

from the D6h character tables (Fig. 2.5) the three acoustic modes are

Azu @ Elu

The remaining A2u + E1u modes are IR active and there are four Raman

active modes?

Aig ® Eig ® 2E,

The 3RrMX2 compounds are characterized by the space group Cgv (R3m).
The " point symmetry is thus C and the reduction of the nine zone centre

3v

normal modes into their irreducible representations is given by

3A, @ 3E

From the C3v character tables (Fig. 2.5) it is seen that the three

acoustic modes are A1 + E and that the remaining modes are simultaneously _
IR and Raman active. The atomic displacements for each of the modes can be
found using correlation tables relating D6h and C3v point groups and from

consideration of Fig. 2.4. These modes are shown in Fig. 2.6.

13
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Cayr E 205 30
A.l 1 1 1 z x2+y2, 22
A2 1 1 -1 R
4
2 2
E 2 -1 0 (%, ¥) (R, Ry) (x"y", xy) (xz, yz)

Figure 2.5b - Character Table for C3v point group.
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2.3 Raman Scattering

In this thesis Raman scattering refers to the inelastic scattering of
light by phonons and can be treated with a classical, semi-~classical or
full quantum mechanical formalism.

Classically, when light impinges on a crystal it induces a dipole
moment. The light scattered by the crystal can be considered to be

radiation from the induced dipole moment 4 , where M4 is given by
M= «E (2.3.1)

and where E = Eocosa%t is the electric field associated with the inqident
radiation and ¢« is the polarizability of the crystal. The lattice
vibrations of the crystal will modulate the polarizability and if omne

expands o in terms of the atomic displacements uj

2
o® = o, * -g—iuj + G U.;_Uj +
au.i 5’u,;9uj
> x, + & cosw;t (2.3.2)

the expression for the dipole moment becomes
M= B coswt «,Eo[cos(wo+wj)t +cos(w,—w,-)£] - (2.3.3)

The intensity of the scattered radiation is proportional to

2 .
I}A| . The first term in (2.3.3) thus corresponds to scattered light
unshifted in frequency (Rayleigh scattering) while the second and third

terms correspond to imelastically scattered light shifted to higher

17



(Anti-stokes) and lower (Stokes) frequencies respectively. These latter two
terms account for Raman scattering in the classical picture.

The modern approach to the analysis of Raman scattering utilizes
quantum mechanics. Such a treatment is given by Loudon (1963, 1964, 1973)
and an overview of some the relevant material is presented below.

From the quantum mechanical viewpoint, a Stokes (Anti-stokes) Ramén
scattering process involves the destruction of an incident phéton of
frequency W; , the creation (destruction) of a phonon of frequency ¢J) and
the creation of a scattered photon of lower (higher) frequency Wg -

Conservation of energy and momentum for the Stokes event can be written

W = W o+ wg ‘ (2.3.4)
ki =q + ks | (2.3.5)

For photons in the visible range, ¢w; >> ¢ and thus W; = Wg - This in
- =N -— —
turn implies ’ki‘ = lksl and hence from (2.3.5) 0 < Iq' < 2'ki|.

Since the size of the Brillouin zone is typically 7T/a ~108cu™!

cm © and

17,1 ~ 1%, e 4 3 '

k;1 ~ 107em ', it is seen that only q = 0 (long wavelength) phonons
participate in first order Raman scattering.

The principle process governing Raman scattering is illustrated in -~

Fig. 2.7b, The terms H,, and Hel represent the electron-radiation and
electron-lattice interactions respectively. The electrons act only as an
intermediary, coupling the radiation to the lattice. All electronic

transitions are virtual and the initial and final electronic state is taken

to be the ground state.

18
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"Figure 2.7 - Raman scattering. a) Scattering geometry (momentum
.conservation). b) Scattering process.
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The probabillity per unit time of this process occurring is obtained

from third order perturbation theory (Loudon, 1964):

2
w = 2T Z {ni=1, 1, no+1,0H laY{alHIb>{Nn;,0,n,, 0D S
¢ = 1% (Wa=-wi) (wWp-wy)
I |
x §(w;-w-wg) (2.3.6)

_where o, 0, o, indicates respectively the number of incident photons,
scattered photons and optic phonons present iIn the initial state, and the
final 0 indicates the electron is in its ground state. The sum is over all
possible virtual intermediate states a and b and H1 = Hel + Her' The usual

— el el
practice 1s to express Her in terms of A.p, where A is the vector

potential and ﬁ'the electron momentum, and to take He as the lattice

1
deformation potential, je. the perturbation, produced by the lattice
vibrations, of the periodic potential acting on the electrons. Using these
forms for Hel and Her in (2.3.6) results in an expression for w
propotional to|R|2 where R is the Raman tensor and is defined in terms of
the matrix elements appearing in (2.3.6).

In general R depends on the symmetry and frequency of the phonon, and
the polarizations ;nd frequencies of the incident and scattered photons.

Physically however, R is essentially the same as the coefficient of the -

linear term in the Taylor series expansion of the polarizability tensor

. , ,
Sy = oy % Kuy Uy *+ ‘TZT Koy UgUz + *°°  (2.3.7a)
2 Y
Xy 2 v
wher o= £ ’ = AY 2.3.7b

20
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The utility of the Raman tensor arises form the fact that the
scattering efficiency S, defined as the ratio of the number of incident

photons to the number of scattered photons, is given by (Loudon, 1964)

=X,

> i - s]?
S = A [ﬂ,v 6/,(. R/U»V CV} (2.3.8)
. z

where A is a constant of proportionality and gi

(8°) is the direction of
polarization of the incident (scattered) light. The form of R depends on
the crystal symmetry and on the syﬁmetry of the phonon. For a crystal of
known symmetry and for ' point phonons, the non-zero elements of R for
each mode can be determined from group theory (Burns, 1977). Thus, as is
evident from (2.3.8), by varying the incident and scattered polarizations
experimentally, the symmetry of a particular phonon mode can be determined
and compared to the symmetry predicted by group theory.

The Raman tensors for phonons with symmetries belonging to the D

6h
and C4, point groups are given in Fig. 2.8 (Loudon, 1964).

2.4 Second Order Raman Scattering

Second order Raman scattering is a two-phonon process involving
either the creation or destruction of two phonons or the creation of one
phonon and the destruction of another. The coefficient of the quadratic
term in (2.3.7) gives rise to second order Raman scattering.

The conservation of energy and momentum conditions for the second

order Stokes process are

w; = Wae + 0)1, + Wg

-0

ki = .§. + %3 + kS
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and the restriction on the phonon wavevectors 1is
0 < ,'?“ + 22‘[ < 2]k;| ~ (2.4.1)

From (2.4.1) it 1is clear that the phonons participating in second order
scattering must have essentially equal and opposite waveQectors‘but, in
contrast to the first order process, scattering can be observed from all
parts of the Brillouin zone. Hence, the second order Raman spectrum is
proportional to the two~phonon denstiy of states - the intensity of a
second order feature at frequency w 1s dependent on the combined density
of states of pairs of phonons whose frequency difference or sum is W .
The second order spectrum thus generally consists of a broad continuum
background with superimposed peaks and shoulders that arise from

singularities in the density of states.

2.5 Temperature Dependence of Raman Spectra

The intensify of peaks in first(second) order scattering is governed
by the mean number of phonons in the appropriate state(s). This is given

by the tempefature dependent Bose-Einstein population factor

n = [exp(ﬁ‘*’/kT) "l]—l

This dependence on n is summarized in Table 2.2 (after Burstein, 1964).



Process

1st Order ®
2nd Order (overtone) 2w
2nd Order (sum) w+ o'

2nd Order (difference) o - ©'

Stokes Antistokes
1+ n. n.
J J
(1 + n.)2 : n.2
J J
1+n.) (14n. n.n.
( j)( J.) 5751
n.n., + n. n.n., + n
J 2 J J ]

‘Table 2.2 - Temperature dependence factors for Raman spectra.
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2.6 Zone-folding

Later work in this thesis involving silver intercalated TaS2 intro-
duces the concept of zone-folding. This concept 1is breifly described here.

The presence of ordered intercalate ioms introduces a new periodicity
to the latticé that 1s described by new and larger lattice Vectors. This
new lattice is referred to as 2 “superlattice’. Figure 2.9, for example,
shows the lattice vectors that describe J?ao and 2ao superlattices.

The larger superlattice unit cell results in a smaller Brillouin zone
and hence points which were formerly situated away from the zone centre now
occur at the centre 6f the new zone. These points are said to have been
‘zone-folded” and being situated at the centre of the new zone may bécome
Raman active.

Which points become zone-folded is dependent on the fype of
superlattice formed. In the case of a 2ao superlattice, the M point is

foldeq_(Fig. 2.10a) and for a Vrgao superlattice the K point is folded

(Fig' 2-101')).
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Figure 2.9 - Hexagonal superlattices. a) Undistorted lattice. b) V3a
superlattice, indicated by open squares.—~¢) 2a superlat®ice
indicated by open circles, Original lattice points are
indicated by solid circles and the new lattice vectors are
indicated by primes in b) and c).
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- Figure 2.10 - Brillouin zone corresponding to a) a 2a_ superlattice and
b) a v3a_ superlattice. Symmetry points of the original

zone (dashed lines) are unprimed, the new symmetry points
are shown with prines. ‘
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IITI. Valence Force Field Model

3.1 Introduction

A number of lattice dynamical models have beem developed to account
for experimentally observed Raman and IR spectra, neutron dispersion curves
and velocity of sound data in the layered transition metal dichalcogenideé.
Probably the most frequently quoted model is that of Bromley (1971) which

was originally developed for MoS, but which has been applied to many of

2
the other layered materials (Agnihorti et al. 1973, Wang and Chen 1974,
Holy 1977, Opari et al., 1979).

Bromley’s model is wvery simple in that it incorporates only three
intralayer central force constants and ideal geometry 1s assumed. Only a
single layer is considered and heoce the E rigid layer mode (see Fig.
2.4) is not predicted. Bromley succeeded in obtaining closed form
expressions for the phonon frequencies at the [, K, and M points of the
Brillouin zone. This model predates all Raman scattering work on the group
Vb MX2 compounds and the expressions for the phonon frequencies at [ have
been widely used.

Bromley’s model was subsequently modified to incorporate interlayer
coupling. Expressions were introduced that included interlayer néarest
neighbour shearing (Verble et al. 1972, Wieting 1973) and compressional
(Wieting 1973) force constants whose values could be determined from
measurements of the so called rigid layer modes.

‘Although Bromley’s central force model is qualitatively correct for

zone centre modes, it predicts more phonon dispersion than that observed
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experimentally from neutron scattering. The valence force field (VFF)
model, which is a model that includes force constants arising from bond
angle bending as well as bond stretching, gives a better fit to the ‘
neutron data (Lucovsky 1977, Wakabayashi et al. 1975). Feldman (1982) has
used a VFF model to fit Raman and ﬁeutron data for 2H—TaSe2. The model
successfully predicted one Raman mode not used in the fitting procedure and
upon the appropriate mass changes all Raman and available neutron data for
2H-NbSey. The model involves four intralayer and two interlayer force
. constants as well as a phenomenological metal-metal interaction term
introduced to account for the anomalous flattening of the 2., acoustic
branch observed by neutron diffractiom (Moncton et al. 1977).

This model has been used to describe the work undertaken in this

thesis and analytic closed form expressions have been obtained for all 18

zone centre phonon frequencies,

3.2 Lattice Dynamics

As a prelude to the lattice dynamical model to be introduced in the

next section, a brief review of lattice dynamics is presented below.
Further information on the subject can be obtained from most standard solid
state physics texts (see for example Maradudin et al. 1963, Born and Huang ~
1954, Ashcroft and Mermin 1976).
The equilibrium position of atom K in unit cell £ is givern by

-l _ - S .

Fle) = (L) + F(k) (3.2.1)
where T(£) is the position vector of unit cell £ and T(k) 1is the

equilibrium position of the atom within the cell. The potential energy §
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of the crystal is assumed to be a function of the atomic positions and can

be expanded in a Taylor series of the displacements 'ﬁ(i) from equilibrium:

2,K ‘
L Ay ey
"3 2L T Bl ®ult) o v
29
where _@/‘(f) = m o (3.2.3)
| aa§
and §/“’ LL)E (2.2.4)

£) au, (&)

The subscript 0 in (3.2.3) and (3.2.4) indicates the term under
consideration is to be evaluated at the equilibrium postion, and/u,vrare
cartesian coordinates. The coefficient (2.2.3) of the linear term in
(3.2.2) is seen to be the force acting on atom (f) at eqﬁilibrium and
hence this term is zero. Terﬁls of order u3 and higher are neglected

(harmonic approximation) which leads to the equations of motion

mx’uﬂ() = -5 Zv:,ezz @,‘w (ﬁi’,) :) C(3.2.5)

From (3.2.5) the physical interpretation of (3.2.4) is clear: it is the -

force in the s direction on atom (;5) due to a unit displacement in the

Yy direction of atom (i/).

The solutions to (2.2.5) are assumed to be of plane wave form:
2 - .
2y (K) \/"’" Ll/; (K) exp L[_wt r(l)] (2.2.6)
Substitution of (3.2.6) into (2.2.5) and taking advantage of the
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restrictions on (3.2.4) imposed by lattice periodicity (Maradudin et al.,
1963) reduces the infinite set of equations (3.2.5) to a set of 3N coupled

equations

W up (k) = 2 D/u,, (KK )u (k') (3.2.7)

v, k’

where

Dav (% K’ ) Z m Su L) e t@re) o

, :
and £ s £ -4 is a consequence of the above mentioned restriction on

(3.2.4). There will be solutions to (3.2.7) 1if and only if

= Q0 (2.2.9)

lD,uv (jx') - W S/uv S,C,u

The 3Nx3N matrix Duy appearing in (2.2.9) is known as the dynamical
matrix and its eigenvalues are the squares of the normal mode frequencies.

These frequencies are dependent on q.

3.3 VFE Model

The essence of the model used in this work is the assumption that

the potential energy for the crystal can be written

¢ = %?__-_M kp (ary*  + ‘z"xZ_;kR, (arI)* + % x}_:x ko, (8R2)

+%Z ’<e(me)’l +%Z k¢(rA¢) + zxZ ‘k (rA\,lf)

X-M-X M-X-M
e (q 3.1)



where bond lengths and éngles are aé shown in Fig. 2.1la.

The procedure used to calculate the dynamical matrix inﬁolves
expressing Ar and rA6 in terms of cartesian coordinates, determining ali
combinations of atoms that must appear in the sums in (3.3.1), and then
differentiating the terms in (3.3.1) to construct the matrices (3.2.4).
These martrices are then summed according to (3.2.8) yielding the dynamical
matrix. This procedure is outlined in more detail in Appendix I.

For the 2H compounds the dynamical matrix is an 18x18 complex
Hermitian matrix and extracting the eigenvalues involves numerical methods
and requires a computer. However, for the particular and important case of
'a = 0, analytic expressions for the éigenvalueS'have been oBtained by hand
calculation._ldenfifying the correct frequency with the appropriatebnormal
mode can be done by comparing the eigenvectors of the dynamical matrik to

those calculated from group theory. The results are presented below:

a)z(Az_u.) = O | | (2.3.2a)

U

w (Eu) o (2.3.2b)

! 2
W Ew) = Zm, (%) [kr+(l‘Cose.)2ka +

+ (t-cosg)’ K ] o (3.3.2¢) -
2
wz(Eng) = wz(Em) + ;‘:‘—x (é}z ku. + %22 km) (3.3.2d)
3 (22 )
wa(B.u) = x (r) [kr + Z(H*COS\P) k\” +
+

4 (1-cos6) kg + 4(i~cos@) kg]  (2:3.20)
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w? (/\{9)

n

w? (B.u 24wz ( Rt km riz" knz)

2My + My

w2(E,) = % m“) (%)2 [,kr + 2(1-cosy)? kq,:

+ (1-cos8)* kg + (1-cos¢)? k¢]

w(Ay) = 3 (%)(%)Z[kr + 4 (1-cose)* kg
+4(1-cosg )? ke ]
" 2—
wz(E:lLs): ks 2 B

(Ezg

Wz(B;.g)’:

)A\/

2

_ Cc~Vc*-0
cuz'(Egzg) -

where

and My m

X

2

A = wz(E“‘) + wz(Elg) - wz(Ezu)

8my
o - 12 e [y e
c = wz(Azu,) + wz(Alg) - wz(B“‘)

8Mx

D = Tty w? (Azu) [ wz(Atg)" wz(Bw)]

(3.

(3.

(3.

.2f)

.2g)

.2h)
.21)
.23)
2K)

.21)

are the metal atom and chalcogen atom masses respectively, and

where the lattice parameters,_bond lengths and bond angles are as shown in

Fig. 2.1.
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IV. Experimental Procedure

4.1 Samples: Pure Crystals

The majority of the 3R—NbS2 studied were provided by Dr. F. Levy of
the Institut de Physique Appliquee in Lausanne, Switzerland, while all the
2H-MX, and the remainder of the 3R crystals were provided by Dr. R. F, |
Frindt and Per Joensen of the SFU Physics depa?tment. All crystals were
grown using the iodine vapour transport technique.

The 3R-Nb82, 2H—TaSe2 and 2H~NbSe2 crystals had smoéth, mirror-like
surfaces with a high metallic lustre. In contrast the 2H—TaS2 and 2H—Nb32
surfaces were a dull metallic blue-gray and badly wrinkled = reminiscent of
crumpled tin foil. The sample dimensions were typically 5-10 mm2 in area by
50~100u thick,

The samples used for Raman studigs were affixed to small copper disks
using commercial nail polish. |

After exposure to laser light for several hours the sample surfaces
would 6ccasiona11y deteriorate. In such cases a fresh surface could be
exposed by cleaving the sample using ‘Sell-o’ brand adhesive tape.

Orientation of the 3R—NbS2 sample was done by Laue X-ray back
reflection. The Laue patterns for 2H—Nb82 were not clear enough to
determine the crystal axes and hence these crystals were oriented visually

using hexagonal growth edges. .
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4,2 Samples: Intercalated Crystals

Several silver intercalated 2H-—TaS2 crystals were also examined by
Raman scattering. These crystals were produced by cleaving puré Tas,
crystals with “Sell-o” tape. The cleaved sections were removed from the
tape by dissolving the glue in trichloroethylene and the recovered crystals
were then trimmed and placed in the intercalation cell shown in Fig. 4.1.

Silver 'ions from the AgNO3 solution spontaneously intercalate between
the layers of the T382 crystal, Thevsilver ions in solution are replenished
from a piece of pure silver metal and overall electrical neutrality is
maintained by pressing both the crystal and silver onto nickel foil with
pieces of neoprene. This provides a path for electron flow between the
silver metal and the crystal.

The intercalation process will continue until a saturation silver
concentration of x = 2/3 mole fraction is reached (Scholz and Frindt, 1580)
but intermediate values of x can be obtained by removing the crystal before
the reaction is complete. The silver concentration was determined by
weighing the crystal before and after intercalation using a Cahn G-2
electrobalance. |

Typical crystal dimensions were 1-2mm on a side by»2-10ﬂ. in
thickness with a mass of 30-200 ugm. These smaller crystals were chosen to
yield a more uniformly intercalated sample. Typical intercalation times are
given in Table 4.1.

After intercalation the surfaces were observed to become rougher,
more wrinkled, darker and less lustrous than the pure crystal. Homogeneity
of the intercalated samples was inferred from (i) visual inspection, whiéh
indicated a basically uniform surface texture and colour; (ii) the Raman

spectra of cleaved crystals, which did not change before and after
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clamped . clamped
<5 microscope slide NV g
nickel foil 0.1 M AgNO, // neoprene seal
microscope slide 4N  Agmetal 2H-TaS,’ 2N
: ' crystal

microscope slide

neoprene seal
neoprene

nickel foil .
microscope slide

Figure 4.1 - Cell used to intercalate silver into 2H—Ta52.
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X TIME (hrs.)
< 0.1 ’ 0.3 - 1.5
0.2 0.5 -2
0.3 1-3
0.4 1-23.5
0.5 1.5 - 4
0.6 2 -6

Table 4.1 - Typical intercalation times for Ag TaS,
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cleaving; and (iii) the fact that the Raman spectra obtained never

indicated the presence of the unintercalated host crystal.

4.3 Raman Scattering Apparatus

Raman spectra were obtained using the system and backscattering
geometry shown schematically in Fig. 4.2.

The sample was situated in an Air Products Displex model (S W-202
refrigeration system. The ambient crystal temperature could thus be
controlled between the ranges 15-300K.

The incident light waé provided by either a Spectra Physics model 165
or 170 argon ion laser tuned to 514.5 nm. The beam was circular in cross
section but was focussed onto the sample in the shape of a thin lime
approximately 0.3 mm wide by 1 cm long by means of a cylindrical lens.
This was done to reduce sample heating and to match the optics of the
system., Output power from the laser was in the range 100-500m¥ but
approximately 50% of this was lost before reaching the sample due to
reflections at the various prisms used for beam alignment.

The scattered light was collected and focussed onto the éntrance slit
of a :Spex 14018 double monochromator equipped with holographic gratings
having 1800 rulings/mm. The slit widths that were typically used resulted -
in a bandpass of 3cm_1. The double monochromator was followed by a Spex
1442 single monochromator which provided a third diffraction grating.

The signal was detected by either an RCA C31034A-02 or ITT FW-130
photomultiplier tube. The tube was mounted in a Products for Research
TE-104 refrigeration chamber and the dark count of the cooled tube was 5-10

counts/sec, The output from the tube was processed using standard photon
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: f‘igure 4.2 - Raman scattering apparatus in backscattering geometry.
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counting electronics and the data displayed om a strip chart recorder
and/or accumulated in a PDP11/10 mini-computer. The mini-computer was
interfaced to the apparatus enabling the entire scanning operation to be
done automatically if desired.
A 5145 A interference filter was generally used to eliminate unwanted
argon plasma lines from the spectra. (The lines are sometimes desired for
calibration purposes). The filter transmitted about 70% of thé incident
light.
To determine the polarization of the modes in NbSZ, a half-wave plate
and polaroid analyzer were used as shown in Fig. 4.2. The direction of
incident polarization could be set using the half-wave plate and scattered
polarization selected using the analyzer. The notation used is such that,
for example, ‘XY’ means the incident light is polarized in the x direction
and the scattered light in the y direction, both with respect to the
cartesian axes of the crystal.
In order to produce incident light.polarized in the z direction, the
" 90° scattering configuratioq was used. This is shown in Fig. 4.3c. Because
the angles & and ¢ (Fig. 4.3) cannot be made zero for practical reasons,
" there is always some unwanted ’leakage’ of the incident light into another
direction. In Fig. 4.2a there is z leakage and x leakagg in Fig. 4.2c.

The thinness of the crystals and fixed geometry of the apparatus

prevented any analysis of scattered light polarized in the z direction.
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V. Results and Discussion -~ Pure Crystals

5.1 Tanfalum’Diselenide and Niobium Diselenide

Room temperature Raman spectra of 2H-TaSe, and 2H—NbSe2 are shown in
Figs. 5.1 and 5.2. The results are similar to those previously reported
(Wang and Chen 1974, Holy 1977) and the measured frequencies are displayed
in Table 5.1.

The Elg peak is too weak to be seen but the frequency has been
determined by others and found to be 133 cm—1 in the case of NbSe2 (Duf fey
et al. 1976) and 139 cm ! for TaSe, (Holy 1977).

Both spectra are characterized by a broad feature occurring at about
150 cm_1 in TaSe2 and about 180 cm_1 in NbSez. This feature is closely
related to the charge density wave (CDW) that forms in these compounds. It
arises from two-phonon scattering involving longitudinal acoustic (LA)
phonons located in the vicinity of 2/3 M (Klein 1982, Tsang et al.,
1978) . The LA phonon branch in these compounds exhibitsba Kohn anomaly
(Monctoﬁ et al. 1975, Wakabayashi et al. 19745 and consequently a higher
two—phononkdensity of states. However, it has been shown (Maldague and
Tsang, 1977) that the dominant contribution to the relatively large
intensity of this mode is not the two-phonon density of states but rather
is the strong electron-phonon coupling present in these compounds. This
large electron-phonon coupling is closely associated with the presence qf
CDW's in these materials (Ibid.).

As the temperature is lowered and approaches the normal-ICDW

(incommensurate charge density wave) transition temperature, this broad
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Figure 5.1 - Raman spectrum of 2H—-TaSe2 at 300K.
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Figure 5.2 - Raman spectrum of 2i-NbSe, at 300K.
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Mode TaSe NbSe TaS - 2H-NbS Mode 3R-NbS

Mode 2 > Tas, 2 Mode  3R-NbS,
A 234 231 400 379 + 2 al 386 + 2
1g 1

ol

29 207 238 285 304 *+ 3 E, 330 ¢ 3
E 139 133 230 260 + 5 a2 458 + 3
1g 1

2 .
By 23 30 26 31 % 2 E| 290 + 5

Table 5.1 - Freguencies (dm_l) of Raman active phonons in group V transition
metal dichalcogenides.
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peak softens and is greatly reduced in intensity (Tsang et al. 1976, Holy
et al. 1976). Below this temperature new Raman active modes appear which

are associated with the formation of the CDW superlattice (Ibid.).

5.2 Tantalum Disulphide

Much less work has been reported for 2H-TaS, than for either NbSe, or

2 2
TaSez.'This is likely due to the poor optical quality of the crystal
surface. The room temperature Raman spectrum is shown in Fig. 5.3. The E;;

rigid layer mode was observed using different instrumental settings than
the rest of the scan in order to attenuate the Rayleigh scattered light.

The Elg peak cannot be seen on the spectra but Holy (1977) has tentatively

identified it as a weak peak occurring at 230 cm-l. The measured
frequencies are listed in Table 5.1 and are in agreement with the finéings
of others (Holy 1977, Sugai et al. 1981)

The broad peak at 190 cm'-1 is due to two-phonon scattering as in

TaSe2 and NbSez. Its temperature dependence, shown in Fig. 5.4, is also

similar and shows a reduction in intensity and slight softening with
decreasing temperature. From this behaviour coupled with the fact that

2H-TaS, also undergoes a CDW transition, it is expected that the LA phonon

2

branch contains a Kohn anomaly analagous to TaSe, and NbSez. However this._

2

has not been seen directly because neutron diffraction experiments have yet

to be reported for TaSz.
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Figure 5.3 - Raman spectrum of ZH—Ta52 at 300K.
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.. Figure 5.4 - Tenperature dependence of Raman spectrum of 2H—TaSZ.
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5.2 2H-Niobium Disulphide

An unpolarized spectrum of 2H—-NbS2
Fig. 5.5. The Egg rigid layer mode (shown in inset) can be clearly

identified at 31 + 2 cm l.

at room temperature is shown in

The broad feature at 290 cm_1 is characteristic of a two phonon peak.
However, this is not believed to be the case for two reasons. First, on
cooling to 15K the peak did not show a significant decrease in intensity
relative to the other features as would be expected from the temperature
dependence of a second order mode given in Table 2.2. Second, since 2H—Nb82
does not undergo a CDW transition (Wilson et al., 1975) a strong second
order feature similar to that observed in the other 2H compounds would not
be expected.

Figure 5.6 shows NbS2 spectra taken in XX and XY po;afizations.
Spectra with ZX and ZY polarizations were found to be qualitatively similar
to the XX and XY spectra respectively which is attributed to the previbusly
mentioned leakage (Sec. 4.3). |

The broad peak is seen to be composed of two features, ohe of which,
at. 304 + 2 cm_l, is present on both scans. From Fig. 2.8 this is seen to
be characteristic of an Ezg mode and is thus identified as E;g. The sharp

1

peak at 379 + 2 cm_1 and the broader peak at 260 + 5 cm ~ both have

diagonal symmetry. The former can be identified as the Alg mode on the
basis of its similarity in width and intensity with the Alg modes in

NbSez, TaSe2 and TaSz.

1

The one remaining Raman active mode, E. , is assigned to the 260 cm

1g

peak. The appearance of this mode in the XX spectrum is attributed to ZX

leakage. In this context, and considering the weakness of the E peak in

1g
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Figure 5.5 - Raman spectrum of 2H-NbS2 at 300K.
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Figure 5.6 - Polarization dependence of 2H—Nb52 Raman spectrum
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the other 2H compounds, this mode assignment must be considered very

tentative.

. 5.4 3R-Niobium Disulphide

Raman spectra for 3R?Nb52 in XX and XY polarizatioms at room
temperature are shown in.Fig. 5.7. The spectra were found to be independent
of temperature on cooling to 15K which indicates that none of these
features are due to two phonon processes.

From Fig. 5.7 it 1is clear that the strong peak at 386 + 2 cm“1 is an
A mode and is assigned thus. In addition the weaker peak at 458 + 2 cm_1
also has diagonal symmetry and has been assigped as the second A1 mode.

The two prominent features at 158 and 330 en~l as well as the 290
cm-1 shoulder all show polérization behaviour characteristic of an E nmae
and the symmetry assignments are less certain than for the éase of the A
modes. More conclusive evidence could be obtained from a ZZ polarization
spectrum but éuch a spectrum could not be obtained because of the crystal
dimensions. However, the identification can be made by a comparison with
the 2E spectrum since the frequencies of the E modes should be
approkimately the same in the two polytypes (Verble and Weiting, 1970).

This information leads to the assignment of the 290 and 330‘cm—1 peaks as

the two E modes.
It is possible that the 158 cm—1 peak is due to an impurity or

defect mode, similar to that observed in impure NbSe, (Sooryakumar et al.,

2
1981) . Since this feature was observed in all of the 3R crystals studied

it would appear likely that it is associated with the lack of stoichiometry

inherent in 3R-NbS, (Fisher and Sienko, 1980).

2
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5.5 Comparison of 2H and 3R Niobium Disulphide Spectra

Upon examination of Figs. 2.4 and 2.6 it would be expected that the

A and Ai modes would have approximately the same frequency and that the

1g

E%g should have a slightly higher frequency than the E, mode due to the
interlayer coupling. From Table 5.1 it can be seen that the two A modes do

indeed have reasonably similar frequencies but that the E, frequency is 25

i

1
28 mode!

cm-l higher than that of the E

An explanation of this apparent anomaly was put forward by Nakashima
et al. (1982) who suggested that the predominant interlayer force could be
due to interaction between thé Nb atoms of one layer and the nearest S
atoms of the adjacent layer. This seems unlikely however since it neglects
interiayer nearest neighbour S-S interactions despite the fact that the S-S
distance (3.44 A) is almost a full angstrom less than the ﬁb—S distance
(4.42 A). Also, suchAan interlayer interaction is likely to be far too
weak to cause a difference in frequency of more than a very few
wavenumbers for these modes.

A more plausible explanétion is the very probable enhancément of
interlayer bonding in 3R-Nsz due to the excess Nb atoms situated in the
van der Waals gap. The strength of a force constant describing a M-X
(intralayer) bond is typically 20-100 times greater than the usual force
constants associated with interlayer bonds. Thus, the presence of 10%

excess Nb atoms, located in the gap, could conceivably account for the

observed frequency difference.
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5.6 Application of the VFF Model to Zone-centre Phonons

The VFF model described in Sec. 3.3 involves six parameters. However,

for purposes of fitting the model to the experimental data of NbS2 and

Ta52 only one interlayer force constant has been used. In addition,

inspection of (3.3.2) shows that.]<¢ and kg always appear together and

with the same‘coefficient (since @ = ¢ in these compounds)5 Hence there
are effectively only four parameters which have been used in fitting the
data, namely kr, le,
The force constants obtained by fitting the Raman data are given 1in

kl,b and (ke + k¢ ).

Table 5.2. Although ke and k¢ appear as separate force constants, only

their sum i1s meaningful. The force constants for TaSe2 and NbSe2 are those

obtained by Feldman in fitting Raman, neutron and acoustic data for TaSez.
The phonon frequencies obtained using these force constants in equations
(3.3.2) are given in Table 5.3.

It was decided to exclude the E mode from the fitting procedure for

ig
2H—Nb82 based on the somewhat uncertain nature of its experimental
determination. Instead the 458 cm-1 Af mode observed in 3R—Nb82 was fit to
the A2u mode in 2H—Nb82. These two A modes can be expected to have nearly
the same frequency based on the similarity of their vibrations (Figs. 2.4
\and 2.6) and the experimentally observed similarity of>thelAlg and A; -

modes. Although all four of the 2H—NbS2 Raman modes can be as equally well
fit as the four modes chosen, and in fact the four 2H—Nb52 Raman modes as

well as the A2u mode can be simultaneously fit to better than 6%, the

resulting force constants did not seem to be in keeping with those of the

other compounds or with those of MoS, obtained from a very similar model

2
(Wakabayashi et al., 1975). This stems from the difficulty of trying to fit
the Eig mode, which, if the model can be used as a criterion, seems to
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TaS

2
kr 0.77
le 0.053
kR2k -
kw 0.1
ke 0.2
k¢ 0.2

NbS

0.79

0.0475

0.05
0.178

0.178

TaSe2

0.74

0.0377

0.0137

0.1

0.078

0.1892

NbSe2

0.74
0.0377
0.0137
0.1
0.078

0.1892

Table 5.2 - Force constants for 2H compounds (lO5 dyn/cm)
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TaS NbS TaSe NbSe

2 2 2 | 2

Mode Model  Expt. Model Expt. Model Expt. Model Expt.
A, (B 400 400 379 379 232 234 231 231
E;'g (R) 283 285 305 304 198 207 236 238
B, (®) 232 230 231 2607 139 139 139 133
Eég (R) 26 26 31 31 24 23 29 30
A, (IR) 420 - 458 458* 281 - 336 -
B, (IR 279 - 303 - 196 - 235 -

u
B;' (1) 430 - 465 - 285 - 338 -

g
B, (D 385 - 365 - 223 - 222 -
B, (T) 227 - 226 - 134 - 134 -

u

2
By, (D) 54 - 64 - 43 - 49 |

* - Based on frequency of A?_ mode in 3R—N082 (see text).

Table 5.3 - Frequencies of zone centre phonons in 2H compounds. Optical
activity shown in brackets.

57



to cast further uncertainty on the validity of the Elg frequency.

In an effort to determine k, and k¢ for TaS,, an attempt was made to
simultaneously fit the four Raman modes and the initial slope of the LA
dispersion’curve. fhe slope has been measured with ultrasonic techniques
(Jericho et al., 1980). Unfortunately this proved unsuccessful and only the
four Raman modes were fit. The problem with trying to fit the initial
slope is attributable to the fact that long wavelength acoustic phonons are
likely to involve forces of a lbng range nature whereas the model contains
only short range forces. The speed of sound, calculated from the initial
slope as predicted by the model, is 4.7x10° cm/s. The measured value is
3.6x10° cm/s.

"There are apparently no other experimental results with which the
validity of the model can be tested. Measurement of the frequencies of the
IR active phonons, which can be easily compared to equations (3.3.2), will
probably be the best independent check of the models predictive ability.
and NbS

The full dispersion curves for Ta$ based on the force

2 2?
constants of Table 5.2, are presented in the next chapter and in Appendix

II.
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VI. Results and Discussion - Intercalated Crystals

6.1 Results

Approximately 30 samples of AngaS2 were studied with concentrations
ranging from 0.10 £ x £ 0.67 and temperatures ranging from 15-300K. In
general these samples showed no structure in the Raman spectrum, likely
because of the very poor surface quality. However, in four of the samples
studied, with concentrations of x = .13, .26, .28, and .32, three new
Raman active modes were observed.

The spectrum of Ag.staS2 is depicted in Fig. 6.1. It should be
mentioned that the signal-to-noise ratio in this spectrum is far higher
than that typically observed in these compounds. The three new peaks are
observed at 320, 335, and 427 cm-l..The peak at 400 <:m_1 is the only
apparent feature surviving from the pure crystal.

Because of the generally poor quality of the spectra obtained from
these intercalation compounds, any qﬁantitative information other than the
frequencies was difficult to obtain. However a rough estimate of the )
temperature dependence of the modes in Ag.staS2 may be obtained from Fig.
6.2. At 15K (Fig. 6.1) and 40K (not shown) all peaks were clearly defined.
As the temperature was raised, the 320 and 335 cm_1 modes were seen to

1 ﬁeak remained

dissappear between about 130 and 160K while the 427 cm
until somewhere between about 160 and 190K. (All temperatures quoted do not
take laser heating into account). Surprisingly the 400 cm—1 mode, which

should” be present up to 300K, disappeared into noise at approximately 200K.

Spectra from the other three samples which showed these three new modes

59



-
500

(c m-1)

1
400
SHIFT

FREQUENCY

Ag,glas,

15K
]
300

] I | 1 ! 1 I

~(smun Aoapquo)  ALISNIINI  NVWVY

Figure 6.1 - Raman spectrum of Ag 28TaS2 at 15K,

60




, ..Nwmu._mm.mm 30 unI3joads uewed JO souspusdep ainjeradusy - Z°9 2anbtg

100
127K
160K

| | | I _ | 1

190K

(N'8) ALUSNILNI NVIAVY

400 450
FREQUENCY SHIFT (cm™

350

300

61



were obtained at temperétures less than 80K.
Polarization checks of the modes in Fig. 6.1 showed that all four had
A (diagonal) symmetry.
' Despite investigation of several intercalated crystals with
concentrations 1/3 4 x % 2/3, and in particular with x = 2/3, no spectra

could be obtained.

6.2 Discussion

The formation of a CDW has been reported for AngaS2 with x £ 1/4 and
with a transition temperarure of about 76K (Scholz et al., 1982b). However
the three new Raman modes are bot beleived to be associated with the CDW
since they have been observed well above the transition temperature.r
Instead it 1is felt that they are result of zone-folding caused by the
formation of a superlattice arising from the ordering of fhe intercalate
atoms. Similar zone-folded Raman active phonons have been observed in other
intercalated materials (Leonelli et al. 1980, Wada et al. 1981, Plischke et
al., to be published).

An extensive study on the formation of superlattices invAngaS2 has
been reported (Scholz et al., 1982a and 1982b). This study, undertaken
using electron diffraction, showed that the type of suﬁerléttice formed was
a rather complex function of both temperature and silver concentration. The
results are summarized in Table 6.1 (after Scholz et al., 1982b).

The experimentally observed temperature and silver concentration
dependence of fhe new Raman modes can be correlated with the superlattice
variations observed by Scholz et al. (Table 6.1) and thus should determine

the type of superlattice present in the Raman samples. This in turn

indicates from which point zone-folding can be expected to occur or,
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equivalently, from which point in the Brillouin zone the new Raman modes
originate. Since these modes have not been observed for x » 1/3 it is
assumed that they are not related to the (v@kZ)ao or (24§x5)ao
superlattices (or their ‘orientational variants’) which are observed at
these concentrations. In addition, since they have been observed up to
abogt 150K, it is expected that are not associated with the (54§x2)ao
superlattice (and its orlentational variants) which forms at f £ 100K in
Agl/BTaSZ'

The only superlattice present ét all temperatures in Agl/BTaSZ is
2ao. For 1/4 £x £ 1/3 the room temperature superlattice is ﬁao but upon
cooling a 2ao superlattice also appears. Although the 2ao superlattice is
weaker than the 4350, particularly at lower concentrations, the first
appearance of the 2ao superlattice is reported at 230K for x = .26 and
180K for x = ,13. This roughly corresponds to the temperature at which the
new Raman modes appear and thus it seems plausible that the new modes are
associated with the 2ao superlattice. However, zone-folding from the K
point due to the formation of the v@ho superlattice certainly cannot bé
ruled out.

Still a third possibility is presented by considering the’fact that
the new modes have been observed only in stage 2 compounds (ie. x £1/3)
and not for stage 1. X~-ray diffraction studies (Scholz and Frindt, 1980) of"
Agl/BTaS2 (stage 2) and Ag2/3TaS2 (stage 1) show that while the c-axis
triples to accomodate six layers per unit cell in the stage 2 compound, it
remains essentially unchanged in the case of stage 1. Hence zone-folding is
also quite possible from points along the A symmetry direction. In

particular, it can be expected to occur from a point 2/3 along the line

[A.
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In an attempt to check the origin of the new modes, phonon'dispersion

curves for pure TaS based on the VFF model and the force constants of

27
Table 5.2, have been plotted along TI'A, I'M and TI'K. These are shown in
Figs. 6.3a and 6.3b.

The assumption is made that the intercalate atoms in Ag TaS, serve
only to change the periodicity of the host lattice and do not affect the
phonon frequencies. Under this assumption the frequencies shoﬁld correspond
to the frequencies calculated at M, K or 2/3 TA.

Figures 6.3a and 6.3b indicate that the 427 em! peak originates from
zone—-folding along the uppermost A, or A, branches which, at 2/3 ['A, have
frequencies of 428 and 423 cm ! respectively.

The origin of the 320 and 335 cm_1 peaks is not as clear. It dogs
appear that they do not originate from A points since, from Fig. 6.3a,
there are no phonons along ["A with frequencies at all close to 320 or 335
cm . However, whether these two modes are a result of zoné—folding from M
or K is uncertain. A first glance at Fig. 6.3 indicafes that zone-folding
is most likely to occur from K where the uppermost T3 branches are
degenerate with a frequency of 325 el In contrast, at M, the phonons
with frequencies of 302 and 344 cm—l are the closest in frequéncy to those
of the two new Raman modes. Unfortunatley however, no firm conclusions can
be reached as there still exists considerable uncertainty - this is -
principly due to the fact that the force constants kg and k¢ are
indeterminate but which both have effects on the dispersion of the optic
branches. For example, by choosing kg, = 0.3 and k¢ = 0.1, which keeps the
zone centre frequencies unchanged, the 320 and 335 cm_l frequencies can be
simultaneously matched to within about 3 cm.-1 of frequencies at either Ehe

K or M points. However such a value for kg is felt to be too large when

compared to Feldman’s value (Table 5.2) or that of Wikabayashi et al.
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(1975) for MoSz. Further data will be required before a determinate

statement can be made about the origin of these two peaks.
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VII. Concluding Remarks

7.1 Summary

A valence force field model has been used to assist in the
investigation of the lattice dynamics of layered compounds. Explicit
expressions for the zone centre phonon frequencies of the 2H compounds have
been obtained from the model and these expressions, along with the
experimentally measured Raman frequencies, were used to evaluate the force

parameters of the model for 2H-TaS, and 2H—Nsz. Using these parameters,

2

the phowon dispersion curves for TaS2 were plotted and later used to
interpret the Raman spectrum of AngaSZ.
The frequencies of all the Raman active phonons predicted by group

theory were measured for 2H—NbS2 and 3R—Nb82. The frequencies were found to

1 1 1 1

be 290 cm - (E;), 330 cm (Ai) for

1

(EZ)’ 386 cm
1

(Ai), and 458 cm

1 1

3R-NbS, and 31 cm ™~ (E2), 304 cm™' (E}), 379 em™! (A, ) and 260 cm”
2 2g 2g 1g v
(Elg) for 2H—NbS2 although the latter frequency 1is still somewhat

AL, A and E} freqﬁencies had been previously

pncertain. Only the E 1° Mg 2g

2°
reported.

The Raman spectrum of AngaS2 (for x £ 1/3) was measured and found to
contain three modes not present in the pure crystal. The new modes had
frequencies of 320, 335 and 427 cm—l. All three modes only become evident
below temperatures of about 150-~200K and all possessed diagonal symmetry
characteristic of an A mode.

. The appearance of these new modes was attributed to a zone-folding

mechanism due to the formation of a superlattice caused by the presence of
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ordered intercalates. The phonon dispersion curves for TaS, were used in an

2
effort to determine the origin of the zone-folded phonons. The results
indicated that the 427 (:m-1 peak was due to zone—folding along the c*

axis. The origin of the other two modes is not as clear but the two most

likely locations are the K and M points of the Brillouin zone.

7.2 Suggestions for Future Investigations

The 2H and 3R polytypes of NbS2 appear to possess properties that
should make it a sysfém of interest to both experimentalist and
theoretician and worthy of further study.

A very basic question that remains to be answered is why 2H—Nb82
lacks a CDW but perhaps a more intriguing question is the effect of excess
Nb atoms on the physical properties of Nsz. A very preliminary
investigation of the Raman spectrum of apparently pure ZH—Nb52 has shown
that as the temperature is decreased from room temperature the spectrum
changes very noticeably, becoming similar to that of 3R-Nb52. This
behaviour is reproducible and reversible and suggests a 2H - 3R structural
phase transition in Nb1+x82. The existence of such a transitioﬁ could be
clarified by doing X-ray structural analysis at different temperatures onm
Nb,, S, samples of known x. It would also be of interest to conduct Raman
scattering experiments on Nsz intercalated with Ag, Cu, Fe, etc. not only
for general interest but to determine whether there is any difference
between the presence of intercalate atoms or excess Nb atoms in the van

der Waals gap.

In the case of unintercalated 2H and 3R~NbS it would be worthwhile

2’
to perform a detailed calculation of the interlayer bonding enhancement in

3R-NbS. to determine whether the excess Nb atoms can account for the

2
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and E! modes or whether another

frequency difference between the E2 28

mechanism is responsible.

In the absence of any IR or neutron data the VFF model can be
further refined by performing a two-phonon density of states calculation
and correlating the results to the observed two phonon peak in the Raman
spectrum of TaSz. This should enable a determination of all the force
constants in the model lending more confidence to the phonon'dispersion
curves and likely resolving the question of whether zone-folding occurs
from the M or K point in AngaSZ.
Finally, the model might be used to interpret the Raman spectra of

very thin crystals of NbS, and TaS$

2 2° Such crystals, at most only a very
few layers thick, have been examined and new features in the Raman spectra
have been observed. Density of states calculations based on the model could
possibly determine whether the new features are related to the finite

thickness of these crystals, in an analagous manner to that reported for

microcrystallites of graphite (Nemanich and Solin, 1979).
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Appendix I - Procedure Used to Construct Dynamical Matrix

Expressing Ar in terms of cartesian position vectors and atomic

displacements 1s straightforward:

to first order in |ul. The

as shown in Fig. Al.la and

~ + (F-T) (G, -T;) - (ALD

primes denote non-equilibrium position vectors

the subscripts 1, j, k are used Instead of the

. /
more conventional K , K'.

The starting point 1in evaluating A8 is to take

A(cos8) = sine A8

(A1.2)

where, with reference to Fig. Al.lb,

!
cos @

and

cosé

= cos8’ - cosé
= (- - (W -7) C (A1.3)
%70 16 -7
ri-7) (T -1
= (dL _;:) (__;k _;}) (Al.4)
Ir-%1 1n-751

Here the convention has been adopted that the subscript “j° refers to the

apex atom of the bond. For the 2H-MX2

compounds, all angles appearing in
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Figure Al.1 - Diagrams used to express a) Ar and b) A6 in terms of
: cartesian position vectors and displacements. Prines
denote non—-equilibrium positions.
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(3.3.1) are approximatély 80° hence the sin® term in (Al.2) can be taken
as upity. Using this approximation along with (Al.3) and (Al.4) in (Al.2)

and keeping only terms to first order in 'ﬁl yields
5 ] — — —_ -
A6 = r2 [(Ri_J . u;'j + RkJ ’ij) cos o
— _..o» .—Q '-‘ . .-_‘.- Alo
(Rij Uy + Ryj-Uy) ] - (A3

where Rij = r, - rj and uij = u - uj. Using (Al.l1) and (Al.5), the general
expression for the bond stretching and bond angle bending terms appearing

in the potential energy (3.3.1) are

] 2 — _l_ _'_ - — 2
z k, (Ar)° = 32 k, 7 [Ri.j 'u;,_-‘] (A1.6)

and

| - - - 2
7 ko(rae) = ke 12 [(Rij Uyt Rk_j'“ij)'

- 2.¢c0s8 (72';.,' Uy +-§kj 'akj)(éij ‘akj *_ékj 'ULJ' )

+ cos’® (-éaj Uy + -Iikj, -Tik-)z] (A1.7)

A particular unit cell 1is chosen and all interactions appearing in (3.3.1)
involving atoms in this unit cell are identified. This unit cell has been
designated “0° and hence at least one of the cell indices in (3.2.4) must
be 0. The matrices (3.2.4) involving bond stretching can be obtained by a

straightforward differentiation of (Al.6):
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ol - o o 7
§,uv(.J‘L) - E{[(rf’—-rj)ﬂ(r.‘_r.)y] (A1.8)

where f, may or may not be ‘0°.

The bond angle bending terms are three body interactions and
evaluation of (2.2.4) for these terms is dependent on which two of the

threenatoms are considered. Three cases arise from the differentiation of

(A1.7):

(1)
(o 2.) - - B_@ {[ £ o ' o ] Iy o‘
$ v i e (ri—rj);(rk-—rj.)/‘ (rk-rj )y
g o 2 o L 0 t
—cosef(ra—rj)ﬂ"("k"’j )/“][(ra‘rj)v+(rk"rg)V}
2 £ o 2 o 2 o
+ ¢cos 9[( L—r.’)/‘*'(.'“k"'j)p](vt"rj)v} (A1.9)
(ii)

o Ly _ _ ,( ! ' !
@uv(”) = -r%{(rﬁ—rf)ﬂ [(rf-rf)y+(r1.r¥)y]
= cose[(r{’-rf)/,+(ri’~rf)/u] [(rf-rf)y + ("ﬁ"rf)]

TR ¢
+¢06°8 (r‘:-rf)/u[(rf ‘rj‘l)y * (rk"'j)]} (A1.10)
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(111)

o£') -

'kO .{ ’ _
B (L) = F R L(rE-rPuleg-rf),

. . g '
~cos 8 [(rﬁfrf)p (r2-rf), + (rk-rf)/u (rp —rf),]
e costo (r3-rtu(rl- ), ]

(Al1.11)

Recall that the subscript j appearing in (A1.9)—(A1.11)‘designates a vertex
atom and it should be nqted that (Al.11) involves second nearest neighbours
while (A1.9) and (A1.10) represent first nearest neighbour interactions.

" Since ope of the cell indices is always 0, the potation of (Al.é) -

(A1.11) can be changed, rewriting these matrices as

2 A
§FV(3 L) . (A1.12)

if it is remembered that the left atom index represents an atom in cell O.
This form is now equivalent to that appearing in (3.2.8)
Lastly, there is one form of the matrix (3.2.4) which has not been

considered, namely

) ( Lfi) | (A1.13)

In principle this can be evaluated using the same procedure used in
arriving at (Al1.8) - (Al.l1). However it proves to be more expedient to

use éhe condition (Maradudin et al., 1963)
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Z @,uv(itj) ‘= O . (A1.14)
2,; | |

from which it follows that

B(5) = L Buld) - LI Bulij) @
£+0 2 g#i

For the 2H compounds there are 156 matrices obtained from (41.8) =~ (Al.l1l1)
and another six obtained from (A1;15) which must considered. These are
summed according to (3.2.8) and result in the 18x18 dynamical matrix
appearing in (3.2.9). Tﬁe explicit form of the dynamical matrix, for the
special case of ¢ = 0, is presented below. (For the more .general case of
g # 0 there are many additional non-zero terms). The labelling of the
atomé, ie. 1 and j (or alternatively K and k‘’as in (3.2.9)), is as

indicated in Fig. 2.lb.
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where the terms appearing in the dynamical are given by

T (8 [k + 20-cosyyiky + 201-cosof ko
+2(i-cosg) k¢]

Cl = -3

2= i () [k, + 4 0-coseftky + 4(1-cosg)t kg

s = ~ = [ 7w ke, '+2é2‘2kfzz]
¢4 = #Z_x Wz[éfzkm * Rt Kol
cs = -2 V@ Cl

ce = -2 '%62

c7 = —-(‘/——2—:‘;‘1u+63+c9)

c8 = _(\/?;’._I:.‘cz + C4 +c/o)

cq = +é'~x (%)2(|~cos‘+) ky/
cio = ~ ‘my %)2('+C05’7")2 k;;,
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'Appendix IT - Dispersion Curves for Tantalum and Niobium Disﬁlphide

Feldman’s VFF model #2 (Feldman, 1982) included a phenomenological
q-dependent term, D’(q), which was added to the dynamical matrix to fit the
observed flattening of the X, acoustic branch in TaSez. The same term
predicted the Kohn anomaly observed in'NbSez remarkably well,

The effect of D’(q) on the dispersion curves of TaS2 along Z is
shown in Fig. A2.1. The term has a small effect on the higher freqency
optic modes and inclusion of the term does not affect the discussion of
section 6.2.

Since D’(q) was fit to data for TaSe, and since the Z, acoustic

2

branch is very semsitive to kg , which is undetermined for TaS Fig. A2.1

29
gives only a qualitative picture of the expected dispersion curves in TaSz.
However it remains of interest to see how closely Fig. A2.1 predicts the
actual curves for TaS, should they become available from neutron data.

For completeness, the dispersion curves for 2H—NbS2 based on the
force constants of Table 5.2 are presented in Fig. A2.2. Since the Raman
spectrum of Nb82 does not show a prominent second order feature the
existence of a Kohn anomaly is somewhat more questionable thanvin TaS2 and

hence the D’(q) term has not been included in the dispersion curves of

Fig. A2.2.
The speed of sound predicted by the model and based on the initial

slope of the LA dispersion curve in Fig. A2,2 is 5.6x105 cm/sec.
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