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ABSTRACT

MODERN DEVELOPMENTS IN CHI-SQUARE GOODNESS-OF-FIT TESTING

An examination of the historical development of the Pearson chi-square
statistic is presented followed by a review of the recently developed tech-
niques in the field of chi-square goodness-of-fit testing. In particular, a
study of the new statistics (the Rao-Robson statistic and the Dzhaparidze-
Nikulin statistic) claiming to offer improvement over Pearson's X2 is provided;
Monte Carlo points for these statistics for finite n are determined, power
studies are performed and comparisons drawn between competitors, and test
procedures are applied to real data to illustrate their usage. Finally,
conclusions are drawn as to the success of the modern chi-square methods and

a summary of their current applicability given.
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I. INTRODUCTION

Since it was first proposed in 1900, Karl Pearson's chi-square statistic
has become one of the most popular techniques in goodness-of-fit testing today.
However, though there are situations where the chi-square statistic is ideal
and irreplaceable, its flexibility and ease of computation are often not
sufficient to warrant its use, and the trend is towards the use of more power-
ful goodness-of-fit statistics. Pearson's statistic, denoted by XZ, has been
unable to compete with these statistics in many situations due to the fact
that it does not use the total information given by the individual data points;
it considers only the number of observations falling within specified cells and
consequently lacks power.

Recently there have been attempts made to overcome some of the difficul-
ties historically associated with Pearson's statistic which have increased
chi-square's stature in goodness-of-fit testing. Some questions that have
been of interest in the past such as "How can degrees of freedom lost due to -
parameter estimation be recovered?" and "How should the unknown parameters be
estimated?" are being re-evaluated in the 1ight of new statistical approaches.

This paper sets out to examine these new techniques with the intention of
determining how they have improved on Pearson's chi-square statistic in
goodness-of-fit testing and to ascertain how good these improvements are in
terms of increased power and/or applicability.

Part II deals with the historical development of the chi-square statistic
since 1900, examining the theory behind it, the problems encountered, and the
existing solutions to these problems. A review of the old method sufficient
to prepare for an examination of the new methods is provided. Despite its

long existence, it is still useful.



Part III takes a Took at the latest developments and provides an in-

depth study of a selection of the more promising techniques.

Part IV presents some practical applications of the new statistics, and
Part V provides tabled Monte Carlo points for the new statistics determined

for finite n. Part VI examines the comparative power of the new statistics

against selected alternatives.

Finally, in Part VII, conclusions are drawn as to the success of the

modern chi-square techniques and a summary of their current applicability

given.



IT. THE HISTORICAL DEVELOPMENT OF THE CHI-SQUARE

GOODNESS-OF-FIT STATISTIC

A problem frequently arising in statistics is the goodness-of-fit problem
where we wish to test whether or not a random variable X is distributed accord-
ing to a particular distribution function Fo(x). Fo(x) may be a completely
specified function (e.g. Fo(x) js the Normal distribution function with mean
uy and variance og) or it may be only partially specified (e.g. Fo(x) is in
the normal family of distributions.)

The famous statistic, X2, that Karl Pearson proposed in 1900 is frequently
used to tackle this problem. It is a favourite due to its ease of application
and the abundant availability of tabled values for the Chi-Square distribution.
Pearson's X2 was developed on the basis of measuring whether or not the
observed frequencies of observations on the variable X falling into "cells"
were consistent with the "expected" frequencies; that is, the number of
observations we would expect to observe given that Fo(x) is indeed the true
distribution function. The theory underlying Pearson's X2 statistic is
dependent on whether or not the hypothesized distribution function Fo(x) is
completely specified (the Simple Hypothesis Case) or only partially specified

(the Composite Hypothesis Case) and requires parameter estimation.

A. The Simple Hypothesis Case

Suppose we are in a goodness-of-fit situation where we wish to test the
simple hypothesis Hy: F(x) = Fo(x) where Fo(x) is completely specified. We
assume a random sample of n independent observations on the random variable X
has been gathered, and that we have arbitrarily divided the range of X into k
mutually exclusive cells (the actual selection of these cells will be

considered later). Let X' denote the row vector of observations, so that



X' = (X5 Xpsuennn ,xn). We can now calculate N' = (Nl, Nysewsen ,N, ) where N

)
denotes the number of observations falling into the ith cel1, for i=1,...,k.
These Ni's constitute a sample of k observations from the Multinomial distri-
bution. If we assume that the null hypothesis is true, we can immediately
find the probability P; that an observation will fall into the ith cell, and
subsequently the joint probability that n observations fall into the first

cell, n

5 observations fall into the second cell,..... , and nk observations

fall into the kth cell.
The multivariate form of the Central Limit Theorem states that N' will

tend, as n goes to infinity, to have a Normal distribution with mean u, where

p = (npl, nP,ysece.. ,npk), and dispersion matrix V, where
p, (1-p;) ~p,P, PPy - e e PPy, PPy
-P,P, Po{1-py)  =PyPy - e PPy PRP
L 1 T
PPy PPz PP - PiProy Py (1-py)
- ]

This matrix V is of dimension k, but since we have the restriction that the
sum of the Ni's is equal to n, V is of rank k-1 and hence is not invertible.
Since the theory requires that V be invertible, we overcome this problem by
deleting a row and column, say the last row and the last column, and will call

this new matrix V*.



The inverse of V* is then:

1, 1 1o 1
Py Pk Pk Pk
1 1,1 1..... 1
Py P, P, Py Py
T S
A
1. 1 1, 1
Py Pk Pr-1 Pk
L» —

The quadratic form Q of the exponent of the Multivariate Normal distribution,

general form, is then given by:

Q= (N - )V (N - )

This can be reduced algebraically as follows:

k-1 2 k-1 k-1
Q=7 (N, - np,) , 1 D (N5 - np,) (Nj - npj)

i=1 np; NPy i=1 j=1
k-1 2 k-1 k-1

= ? (Ni - npi) N 1 ? (Ni = npi) T (Nj - npj)
i=1 np, np i=1 Jj=1
k-1 2 k-1 k-1 2

- MNyome) g G N ey
i i=1

=1 np, np i=1



k 2
- ) 2
= 3 (Ni Py + A (ank - n(lwpk))
S =l np, npy T
k 2 2
= ¢ (N -npy) s L (=N +np)
o1
i np; npy
k
- 3 (N.i - np.i)
i=1 np

This last expression is, of course, Pearson's chi-square statistic Xz.
Hence, X2 is asymptotically chi-square distributed with k-1 degrees of freedom.
This result follows from the theory of the Multivariate Normal distribution
which states that the quadratic form in the exponent of this distribution is
chi-square distributed with degrees of freedom equal to the rank of V*, in this

case k-1.

An alternative proof of the same conclusion that avoids any mathematical.
complexities (and is a popular item in reviews of chi-square theory) is
Fisher's famous proof of 1922. For all its simplicity, it proves to be
extremely enlightening for reasons that will later become obvious when the

Composite Hypothesis Case is considered.

Suppose we have that Xys Xpaeennn sX, are k independent Poisson distributed
variates, the 1th variate having parameter np; associated with it. Then, the

probability that x,=N,, x,=N =N

PR PETRERE ,xk is Just



P(x1= Nl"""’xk=Nk)

The sum of the k independent Poisson variates, denoted here by S, is

Poisson distributed with parameter np, = n. Hence, the probability of S

z
1=

1

being equal to n is:

We can now find the probability that X)= Mps Xo% NyseveeasX =Ny conditional on

nmx
=
-
n
3
~—
[]
©
—
ped
1
=

[sereen ax =N | S = i




This we recognize as the Multinomial distribution, If we define

y; = Ni - np, for i = 1,2,..... .k
L
(np.)

then as n goes to infinity, the distribution of Y; approaches the Normal
distribution with mean 0 and variance 1. Since X2 can be expressed as the sum
of these k independent standard normal variates subject to the single linear
constraint S=n, we can now establish, by quoting well-known theorems, that in
the Timit X2 follows the Chi-Square distribution with k-1 degrees of freedom.
This concludes Fisher's proof.

The revealing aspect will be appreciated more fully in the section on
parameter estimation, following, where each parameter to be estimated imposes

an additional linear constraint.

B. The Composite Hypothesis Case

Suppose now that we are in the situation where we wish to test the
composite hypothesis H: F(x) = Fo(x) where Fo(x) is a continuous distribu-
tion not totally specified but having s of its parameters unknown. The
immediate consequence here versus the Simple Hypothesis Case is that the
required probabilities Pi» i=l,..... ,k, are no longer calculable, at least
prior to observing the data. If we denote the s unknown parameters of the
distribution function Fo(x) as 0,6

,es, then the pi's are themselves

functions of 6' = (61,62, ..... ,es). To emphasize this relationship, the



unknown probabilities will be denoted by pi(g). To calculate X2 in this
situation, now of the form

2

1 np;(8)

>
|
I x

.i

we will require estimates of the unknown parameters, These estimates will

here be denoted collectively by 8 = (6,, 6,,..... 6).

This presents a new distribution problem, for it is not obvious that the
asymptotic distribution of this statistic will be of the same form as in the
Simple Hypothesis Case. Pearson himself did not believe that the estimation
of unknown parameters using the sample data would significantly alter the
distribution of his statistic. He believed that regarding X2 as chi-square
distributed with k-1 degrees of freedom when unknown parameters were estimated
would cause only negligible error in the approximation and would not,
therefore, affect practical decisions. His conclusion was perhaps justified
for some applications, but his statistic performed so poorly in some of the
most common tests employing X2 that a "degrees-of-freedom battle" ensued. It
was not until 1924 with the appearance of Fisher's famous paper on the subject

that the battle was resolved.

The Estimation of Parameters

If we now reconsider Fisher's proof in the Simple Hypothesis Case, we can
regard the estimation of unknown parameters as simply the imposition of a
further s linear constraints. This clearly has the effect of reducing the
degrees of freedom from k-1 to k-s-1. HoWever, this conclusion turns out to

be further dependent on the method of estimation used.
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The common estimators will be considered here, namely the Maximum Multi-
nomial Likelihood estimators and the Maximum Density Likelihood estimators,
We will discover that if the Maximum Multinomial Likelihood (MML) estimates
are employed (calculated by maximizing the joint density of the Ni's) then a
further s linear constraints are imposed as suspected, and the degrees of
freedom are reduced to k-s-1 accordingly. These estimates, however, are

rarely ever used because of the difficulties associated with their computation.

By far the most popular method of estimation is that based on maximizing
the joint density of the xi's. This method yields the Maximum Density Likeli-
hood (MDL) estimators, and in this situation, the reduction in the degrees of
freedom is considerablv more complicated. We will discover through the
following analysis that the degrees of freedom are bounded by k-1 and k-s-1,
but beyond that we can draw no further conclusions. If k is large, then this
difference is negligible, but for small k, errors due to the difference between

the critical points for these two distributions will be significant,

A further investigation into the conditions which lead to a reduction in’
the degrees of freedom is provided by Watson in his paper of 1959 where he
gives a general approach to the problem. A good review of the theory as

2

applied to Pearson's X~ statistic is presented by Kendall and Stuart (1963),

pages 425-430.

Kendall and Stuart show that if we have estimators with variances and
covariances of order n'z, then X2 is asymptotically chi-square distributed with
k-1 degrees of freedom. However, this is not the usual case. Generally, we
have that 6-6 = O(n—%), and it is in this situation that they present their

theory.
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In the Simple Hypothesis Case, with y defined as:

Y= (yys Ypoeren- SYi)
where y. = Ny - npi(g)
L

(np.(8))~

they show that the dispersion matrix V(y) has a trace equal to k-1 so that G

js chi-square distributed with k-1 degrees of freedom in the limit.
In the Composite Hypothesis Case, the theory is more complicated, and the

results are given below according to the particular estimates being considered.

a. The Maximum Multinomial Likelihood Estimators

The Multinomial Likelihood, L, is:

To maximize L with respect to the unknown parameters 6, the log likelihood 1is
computed and then minimized by setting the first partial derivatives to zero.

This gives:

k
3]09 L = Z Ni ip_l___ = O fOI" j = .l’ 2, * ’S
26 i=1 3B, p
J J 1

The roots of these s equations will provide the MML estimators, Note that each
equation is a homogeneous linear relationship with respect to the Ni's so that
together they impose s additional linear constraints within Fisher's proof

2

Presented earlier. Hence, X" is asymptotically chi-square distributed with

k-s-1 degrees of freedom.
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Kendall and Stuart show that if these estimates are used, then the
dispersion matrix of y (defined on page 11), V(y), has a trace equal to k-s-1
implying that X2 is chi-square distributed in the 1imit with k-s-1 degrees of
freedom.

The Maximum Multinomial Likelihood estimates determined from the grouped
data are difficult to obtain. For this reason, when the individual data
points are available, they are not used in practice. Rather, the Maximum
Density Likelihood estimates obtained from the ungrouped data are utilized.
The use of these MDL estimates also implies more efficient use of the informa-

tion provided by the data given that the ungrouped observations are available.

b. The Maximum Density Likelihood Estimators

The Density Likelihood, Lps is LD = f(xl) ----- f(xn) where X,

i=l,..... ,n are independent observations on the random variable X with
probability density function f. The Maximum Density Likelihood estimators

are obtained by maximizing L, and are given by the roots of the equations:

D

dlog LD = 0 for i =1, 2,.....,5 .

96 .,
i

Kendall and Stuart show that if these estimates are used, then the
dispersion matrix of y, V(y), has a trace bounded by k-s-1 and k-1 so that in
the Timit, the distribution of X2 is not chi-square, but is bounded between a
Chi-Square distributiqn with k-s-1 degrees of freedom and a Chi-Square
distribution with k-1 degrees of freedom. Hence, for large k, the effect of
using the Chi-Square distribution with k-s-1 degrees of freedom in goodness-
of-fit testing will not lead to serious error. However, an examination of a

table of Chi-Square distribution values will show that this is not the case
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for small k, and this fact should be kept in mind for practical applications.

Application of X2 to Goodness-of-Fit Testing

In order to use X2 in hypothesis testing, cells into which the observa-
tions can be grouped must be selected. There are two immediate problems
posed by this task. The first is in terms of the subjectivity involved; the
foregoing theory applies independently of the choice of cells actually made.
This subjectivity has been an area of criticism for the chi-square statistic
because a variety of results can be obtained from the same data.

Secondly, the theory applies however the cells are chosen as long as they
are selected without reference to the data. In practice, of course, the
observations are often reviewed to actually determine the class boundaries.

No consideration is given in the preceding theory to the case where class
boundaries are themselves random variables. It is therefore pertinent to ask
how the theory is affected when the classes are determined in this manner.
Fortunately, in practice, the limiting distribution of X2 with random cells is
exactly the same as if the fixed cells had been used (see, for example, Moore
(1975)).

We ook first at the selection of the cell boundaries, assuming that the
number of cells, k, has been fixed. In situations where natural groupings
exist or in the case of a discrete distribution, this problem may take care of
itself. However, if fewer cells than are provided "naturally" are desirable,
or in particular, if the distribution of interest is continuous, then it is
beneficial to choose cell boundaries that are in some sense optimal;
specifically, optimal in terms of maximizing the power of the test.
Unfortunately, this problem has not been studied systematically.

The current and generally accepted method appears to be to choose cells
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that are equally probable. The benefits of such a choice as given by Moore
(N.D.).
(i) The distance sup | Fl(x) - F(x) | to the furthest alternative
F indistinguishable from F by X2 is minimized (this property appears to
be misstated in Moore (N.D.)).

(ii) The chi-square test is unbiased. (Mann and Wald (1942)
proved only local unbiasedness, but the test is in fact unbiased against
arbitrary alternatives Fl.)

(ii1) Empirical studies have shown that the Chi-Square distribution

is a more accurate approximation to the exact distribution of X2 when

equiprobable cells are employed.

Selection in this way does, however, require that tables be available to
provide the necessary values. It also implies that the data must be available
ungrouped. Given that either of these requirements is not met, it has been
suggested that cells be chosen as equal intervals on the range of the random
variable with hypothesized distribution Fo(x) except in the tails which are

allowed to go to infinity (Kendall and Stuart, 1963, page 431).

With the problem of selecting class boundaries removed (if not in the most
satisfactory manner) we come to the task of selecting k. Studies have been

conducted to determine an "optimal" k based on one of two criteria:

(i) Maximization of the power of the test, or
(ii) Attainment of a better approximation of the Chi-Square

distribution to the distribution of XZ.

Criterion (i) was the motivation for studies performed by Mann and Wald
who, through a sophisticated and rigorous argument not detailed here, arrived

at the conclusion that k should be chosen according to
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1/5
k=4 | 4n°

Z(a)

2

where n = sample size, o = significance level of the test, and z(a) = the
point of the standard Normal distribution that places a-probability in the
tail.

This formula is generally criticized for providing values of k that are
much too large in the sense of criterion (i). It is also criticized on the
grounds that the results are accurate only for n greater than or equal to 300.

Dahiya and Gurland (1973) performed a thorough study based on the first
criterion utilizing the chi-square test with data-dependent cells (i.e. cells
chosen according to the data). They concluded that optimal k was heavily
dependent on the alternate hypothesized distribution. For instance, in testing
for normality against the alternative Logistic distribution, k = 3 was the
optimal choice. For alternatives other than those of or related to the normal
family, k of moderate size (7, 12, etc.) proved best.

In terms of the criterion (ii), at least two studies have been performed ;—
one by Roscoe and Byars (1971) and one by Good, Gover, and Mitchell (1970).
Moore (1975) states the results of the Roscoe and Byars study, noting the fact
that current recommendations are in terms of the average expected cell
frequencies as opposed to Cochran (1954) who gave the commonly accepted rule
of thumb in terms of minimum expected frequencies.

Here are the findings:

(i) With equiprobable cells, the average expected cell frequency
should be at Teast 1 (that is, k less than or equal to n) when testing fit
at the a = 0.05 Tevel; for a = 0.01, the average expected frequency should

be at least 2 (that is, 2k less than or equal to n).
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(ii) When cells are not approximately equiprobable, these average
expected frequencies should be doubled.

(iii) These recommendations apply when k is greater than or equal
to 3. For k=2 (1 degree of freedom), the chi-square test should be

replaced by the test based on the Binomial distribution.

The formula credited to Mann and Wald falls within these guidelines, but
it appears to give tests of lTower than optimal power. Moore, however,
justified his use of the Mann-Wald estimation in his work due to his experienc-

ing greater sensitivity with it than with the Dahiya-Gurland calculations.
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ITI. MODERN METHODS

This paper was largely motivated by an article written by David Moore (N.D.),
and this section takes its cue from his publications. In this section that
examines the latest developments in the field of chi-square goodness-of-fit
testing, you will find a review of those areas which Moore has indicated are
worth investigating and omission or brief mention only of those items which he
intimates are a dead end. In a sense, and particularly in the remaining two
chapters, this péper is an extension of his studies. Otherwise, it may simply
reiterate conclusions he has reached without further investigation due either
to the apparent futility in the face of better alternatives or to the irrelevancy
of the material to this paper.

This chapter is divided into three categories. The first encompasses
actual new statistics that have been developed to improve on Pearson's X2
while attempting to retain its advantages. Following Moore's example (Moore,
1976), these are referred to as "standard" statistics or those statistics
whose large-sample theory resembles that of X2.

The second category includes other "nonstandard" statistics and fechniques
that are related to the subject matter but are not considered in detail here;
these items introduce ideas for potential further study.

The third area looks at specially designed chi-square tests; that is chi-
square goodness-of-fit tests based on the most promising new statistic adapted
to specific cases. A test of fit for the Multivariate Normal distribution and
a test of fit for data that are censored in a particular manner are considered.

Following is an outline of the material taken from the broad range of new

chi-square techniques that is included in this chapter.



18

1. Standard Statistics

i. The Rao-Robson Statistic
ii. The Dzhaparidze-Nikulin Statistic

2. Other Techniques

i. The Kempthorne Statistic
ii. The Dahiya-Gurland Statistic
iii. The Effect of Dependence on Chi-Square
Tests of Fit

3. Special Applications

i. A Chi-Square Test for Type II Censored Data
ii. A Chi-Square Test for Multivariate Normality

1. Standard Statistics

As previously indicated, the chi-square statistics considered here are
categorized as "standard" due to their similarities to Pearson's statistic X2
in terms of their large sample theory. These statistics involve quadratic

forms in the standardized cell frequencies Ni " "Pi other than the sum of

squares used by Pearson. There is a general approach to the construction of

such statistics, called "Wald's Method", a good review of which is provided by

Moore (1977). To summarize briefly, let 6 denote the vector of parameters
th

8ys 62, ..... ’es and V(8) the vector of standardized frequencies with i~ entry:
N; - np,(8) for i=1, 2,..... , k
1L
(np.(8))*

Let Q denote a kxk symmetric, nonnegative definite matrix, possibly data-

dependent. The generalized form of the Wald's Method statistic W is then:

W=v(e)av(e)
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For the particular choice of Q = I, where I denotes that kxk identity matrix,
W is Pearson's X2 statistic. For some alternate choices, we arrive at the

statistics detailed below.

Statistics of the form discussed in Wald's Method are, in the 1imit, a
linear combination of independent chi-square random variables. For the cal-

culation of their distributions, refer, for example, to Davis (1977).

Given a generalized method for the construction of chi-square statistics,
the advantages of X2 that should be retained by a new quadratic form are of
interest. The criteria that a goodness-of-fit chi-square test statistic
should ideally satisfy in order to achieve a worthwhile degree of competitive-

ness are summarized below:

a) The observed value of the statistic should be easily calculable, The
main determinant of chi-square statistics' popularity is ease of use, The
widespread availability of computers has aided considerably in this respect as
the iterative solutions to nonlinear equations and the evaluation of quadratig

forms are simplified by computer library routines.

b) The limiting null distribution should be chi-square, This factor
enables immediate access to critical points eliminating the need for the con-

struction of special tables for each newly hypothesized distribution,

i) The Rao-Robson Statistic

- The item that is deemed most worthy of further investigation and that
which receives the most in-depth study here, particularly in terms of

application, is the statistic credited to Rao and Robson.
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Returning now to Wald's Method, define Q as:
Q= (I -831g")?

where I is again the kxk identity matrix, J the sxs information matrix of the

th

distribution function F(x), and B the kxs matrix with ij~ entry

1
=2

P;~ 9P;

36,
J.

For this choice of Q, W = V'QYV is the Rao-Robson statistic. K,C. Rao and
D.S. Robson (1975), however, obtained thair statistic by an alternate approach
which will not be detailed here.

Rao and Robson set out to overcome the problem encountered by Pearson's
statistic in the case where the more efficient maximum density 1ikelihood
(MDL) estimators are used in its calculation., To reiterate earlier findings,
under this condition and for the case where class boundaries have been pre-
determined, the statistic X2 is asymptotically distributed as a linear combin-

ation of chi-square variables; that is, in the limit, as n-:

where the yi's are independent standard normal variables, and the Ai's are
restricted to the unit interval such that 0ga.<1 for i=1, 2y.....,5 and
may depend on the unknown parameters CPTREPRS 0 - In the more realistic
case where the class boundaries are themselves functions of 6, Watson (1958)
proves that if the parameters involved are those of location and scale, the
asymptotic distribution as given above is independent of parameters.

Rao and Robson argued that the asymptotic dependence on both the para-
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meters and the functional form of f(x;g) can be eliminated by adding a correc-

tion term, denoted by YZ, which converges in law to:

This would enable total recovery of the s degrees of freedom lost by X2 when
the parameter estimates are based on the grouped data, as opposed to only

partial recovery resulting from the use of the MDL estimates.

The Rao-Robson statistic, denoted by RR, is then:

RR = x2 + y2

where, as usual, X2 denotes Pearson's statistic, and the form of Y2 remains to
be determined. Rao and Robson (1975) present their derivation of Y and the
development of their statistic under the assumption that the null distribution
is a member of the Exponential family. To arrive at the same statistic via
Wald's method, this particular assumption is not required. In either case,
the statistic is defined as follows:

AR T
i oc1 38 1

a6 .
J

for 1 =1,2,.....,k=15 § = 1,2,.....,k-1

where fl denotes the probability density function of Xl;

let U represent the kxs matrix with ijth entry uij and U' its transpose;

let T represent the (k-1)x(k-1) matrix with ijth entry:
Pi(l—pi) for i=j ‘

i,j=1,2,....,k-1
PiP; for i#j

Tet N' = (N

. Nk-l) denote the vector of cell counts;

Tet p' = (pl, ..... R pk-l) denote the vector of cell probabilities.
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For large n, has mean np and covariance matrix T - UVU'.

m\"‘l =

n

Consider the statistic defined by:

RR = (N = np)*(T - UVU')_l(ﬂ_- np)

1
n
If we denote by a\].k the jkth entry of the matrix A defined by:

A= (vlogyd

k
z

where J has jkth entry __1__u1.\].u1.k , then RR reduces to:
i=1 p.
i

k s k k
=z (- mp)? w1z e T "Piyu s re(tT e b e,
sl ————  ni.k i p b P; J

1

with 6 replaced by the MDL estimates. The first term we recognize as Pearson's
X2; the second term is Y2. Provided that the asymptotic conditional distribu-
tion of N - np given é_is Multivariate Normal with mean zero and covariance
n%

matrix T - UVU', then the statistic RR is asymptotically chi-square distributed
with k-1 degrees of freedom (Rao & Robson, 1975). Rao and Robson do not pro-
vide the complete supporting theory within their paper; for theoretical details
refer instead to Davis (1977).

The specific form of RR will be derived for the Normal and other distribu-

tions.

a) The Normal Distribution

Suppose we wish to test that a random sample of n observations, XgseeesX

n

was taken from a normal population with unknown mean and variance. The prob-

ability density function is:
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f(XsQ) = 1 exp{‘(x‘u) } -.co2< g <o
2
(270) 202 " o0
The covariance matrix is:
a2 0
n
v o=
" 0 2"
n
. - 2
T(x, - x)

and V = V with o2 replaced by the estimate s° = ]

Let X denote the MDL estimate of . Then the natural choice of class

intervals is (x + Z: _15» X + zis), for 1=1,2,...,k, where the z.'s are chosen

so that P;i= 1 for every i. In particular, z, == and z) =. The values of

Zysenee- 52y 1 may be determined from a standard normal table.
Accordingly, define the boundaries Cprerene »C as follows:
C = -
0
c, = X + 2.8 i=1, k-1
Cp = °

Let fl denote the probability density function of the random variable Xl‘

Then,
c.
_ 11 of -
Usq ¢ __%g dx1 i=l,....,k
9 X

-z 2 -z 2
= 1 (exp “i-1 -exp i)

(2n52) 2 2



i of
and, u, = ! 1dxg i=1,....,k
i-1 2
3s
2 ;2
= 1 (z 1 eXP i-1 -z, exp i)
2, 5 2 2
2s“(2w)*
To obtain the ajk's, j,k=1,2:
A= wloogt
_ -1
k 2 k
= - & =Y -z Ui
s i=1 P i=1 Pi
k
-3 LUl 1 Ko 1w, ,2
i=1 Pi PR R
2s i=1l 74

Using the fact
;

that 1. k for every i, and defining Vip T SUiq and

= szui2 for simplicity, and consistency with the literature,

Vi2
1 -2z 2 k £ v, v
Vi2 i1'j2
6 4 3
A = 2s_ 2s S
D
k £ v.,v 1 -kzv 2
i2'il il
s3 52 ]
_ 2 2 2 2
where D = (1 - 2k I Viy (1 - k 2 Viq ) - 2k°( = Vilviz)
_ 2 2
Hence, ajp =S (1 -2k z Vio )/D
a = a = 253k T V..v.,/D
12 21 il i2
_ .. 4 2
2,5, 2s (1 -k ¢ Viq )/D
. _a _ _a _ 4a 1ot
If we redefine ajq = _l%_, a1 = 3y _l%_, and a5 _gg_, the 's' terms
s s s

24



will cancel. Substitution into the general form of RR and subsequent
simplification yields the Rao-Robson statistic for testing of the Normal

distribution:

RR = k = (N, - n)2 + K21 (N, =~ n)v 123
i — — i =71 11
k n k
+ 2k2{( (N, = n)v., )z (N, - n)v.,)}a
_— i =771 i = i27°712
n k k
2 2
+ ﬁ { Z(Ni - E)V12} 2,9

This formulation agrees in every respect to the derivation given by Rao and

25

Robson (1975) except with respect to the definition of a5 which in their case

is:

s4(1 -k = v, 2)

il /D

[o1]
|
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P 2
versus a,, = 2s'(1 - k = Vi )/D

A copy of the Fortran program for the calculation of this statistic is included

in the Appendix.

Rao and Robson performed simulation studies of the power functions of

2

three statistics, namely Pearson's X° with MML estimates, X2 with the MOL

estimates denoted by &, and the Rao-Robson statistic based on a test for the
Normal distribution. Their results indicate that RR is the most powerful
against alternatives including Double Exponential, mixtures of Double
Exponential and Normal variates, and mixtures of Normal variates with equaT
means and unequal variances. Equiprobable cells were employed in all cases,.
Since it appears that the form of the Rao-Robson statistic derived by Rao

and Robson for testing of the Normal distribution employed the definition of

V following:
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[—- -
Z 0
i o= | "
“n .4
0 g
n
when in fact
— » -
2 o
v o= | 0
n
o 26°
n

these simulations are somewhat questionable; this error results in a discrep-

ancy in a,, such that a is one-half of its true value. It is not obvious

22 22
what impact this would have on the power simulations. However, given a
critical point in the upper tail of the Chi-Square distribution as a basis
for rejecting the null hypothesis, RR may appear less powerful than it really-
is if the magnitude of 3,9 is of any significance. Work by the writer

indicates the discrepancy does not result in serious error.

b) The Exponential Distribution

If we wish to test that a random sample is exponentially distributed,

with 6 unknown, then:

f(x30) = 1 exp —g- x>0,0>0
0
denotes the probability density function. The variance of & is 62,

Let x denote the MDL estimate of 6 so that 0 = 22. The natural choice of

class intervals is (izi_l,izi), for i=1,....k, with z =0 and z, =e. Values of



27

-»Z,_q a@re chosen so that P; = %‘for every i. This is achieved by

Zys--
taking:
i .

z; = -Tog(1 - o) i=1,...,k=1

Let Ci = xzi, then
= C'
V1- 7 df.l Xm
i-1 d)_(

To obtain a9 and defining Vi = Xxus,
_ S | -1
A = aj, = (v = - )
1 k 2,-1
=z - v
)-(2 )—(2 1
_ =2
= X
1 -kz v.2
i

Substitution into the general formula and minor simplification yields the Rao-

Robson test statistic for the Exponential distribution:

2
sl g Ny - E)Vi}

(1 -%kz viz)

A copy of the Fortran program for the calculation of this statistic is con-

tained in the Appendix.

c) The Logistic Distribution

Suppose we wish to test that a random sample came from the Logistic



distribution. Then,

f(x30) = exp y g >0
B(1 + exp y)?

where 6=(a,B) and y = _ii—é—gl-. The covariance matrix V is defined as:

382 0
V:
0 9g°
2
3+ 7
| .
so that
_lf 0
38
yl= )
0 3 +7
A 2
_ 98 -
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where g denotes the MDL estimate for B @ will denote the MDL estimate for a,

Transformation of the data into standard form implies that, for equi-

probable cells, the cell boundaries CoareneoCy are defined as follows:

~log( % -1)  9=1,....,k-1

O
1}

Then,

u. = 7 of i=l,....,k
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- %_{ exp C; 4 exp ¢, }
2 : 2
(1 + exp Ci—l) (1 + exp Ci)
and
¢
Ujo = é Efl. dxl i=l,....,k
i-1 2B
1 c.exp ¢, P L
= B 2 7}
(1 + exp Ci) (1 + exp Ci-l)

The required ajk's, Js.k=1,2, are the entries of the matrix:

A=(vlogt
Using the substitution 3 + nz =Cys
2 2
ClB -k z Uss k = u.lu.2
A= &
S I 382 - k 1 u. 2
Yi1Yi2 i1
L —
_ ~2 2 ~2 2 2 2
where D = (38" -~ k = Usq )(cle -k z Us o ) - k°( = uiluiz) .

The Rao-Robson statistic for testing goodness-of-fit to the Logistic distribu-

tion is then:

2
k n
+— z {z (N, -Pu..}{z (N, -Hu. la.
n ik i i ij j i k' 7ik” T jk

_k _ 02
RR =~z (N, - 1)

~|3
~|=

A copy of the Fortran program for calculating this statistic may be found in
the Appendix. Note that the parameter estimates for this distribution must
be found through numerical iteration and subroutines (provided by

Dr. M.A. Stephens) are included for this purpose.
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d) The Extreme Value Distribution

If we wish to test for fit of data to the Extreme Value Distribution,

then:

f(x;6) = = exply - exp y) B >0

1+ 6 (1-v)° 6(1-y
1T2 'lT2
vV = ‘L
2
: 6(1-v) 6
2 2
L .
Taking the inverse gives:
— —
1 -(1-v)
vlo- 8
2
-(1-v) nf 4 (1-y)
3

Transformation of the data into standard form implies that, for equiprobable

cells, the cell boundaries c s+vessCy MAY be defined as:

0
CO - -0
i . _
c; = -Tog{-Tog( E—)} i=1,2,...,k-1
c, =
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Then,
U;qa = (Ci 0 af, d for i=1 k
i1 I ofy Xq or i=l,....,
i-1 3a
= l-{exp(c -expc, ) - explc. - exp c.)}
B i-1 PCia PAC, P&
and
u,, = i °f1 ax for i=1,.....k
i2 — 1
€i.1 °F

1
E—{ciexp(ci - exp Ci) - ci_lexp(ci_1 - exp Ci-l)}

The required ajk's are the entries of the matrix A defined by:

A=t ot
Substitution of c1=(l-Y) and c2=EE_+ (l-Y)2 gives:
6
1 c2 - kZd].2 c2 + kZd].ld].2
A=

2

‘Cl + kZdildiZ 1 - kZdil
- 4

- 2 2 2
where D = (1 - kZdil)(CZ - kZdiZ) - (c1 + kZdildiZ)

The Rao-Robson statistic for testing goodness-of-fit to the Extreme Value

distribution is then:

2
k n
+ =z {z (N, - Pu..X z (N
n 5.k i i k7] j

2 n
) iUy

-k _n
RR = . z (Ni K

ajk
A copy of the Fortran program for the calculation of this statistic is

included in the Appendix along with the required subroutines (provided by

Dr. M.A. Stephens) for the calculation of the parameter estimates.



e) The Circular Bivariate Normal Distribution

To test the fit of data to the Circular Bivariate Normal distribution,

f(x,y;8), the probability density function, is defined as:

f(x,y38) = =5 exp =5 ((x - ”1)2 + (y - u2)2) o >0

The MDL estimates of the unknown parameters 6 = (ul,uz,oz) are:

U1=X

u2=y

N n n

of = o1 (x; - X)7+ 2 (y. - §)21 = s°
j=1 9 =1

02 0 0
v= 10 & o0
0 0 4l
and Q' is: — -
1
< 0 0
S
viz o —; 0
S
0 0 1
452
. ]

For the choice of equally probable cells, define the cell boundaries Coovre

as:
c. =0

1

)12 for i=1,2,...,k-1

(@]
]

{-210g(1 - i
K

= @
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th

The cells are then annuli centered at (X,y). If we denote the i~ cell by

Ii’ then for i=1,.....,k,

I = {{x,y): ci_lzs2 < (x%)% + (y-5)% < cizsz}

The uij's, for j=1, 2, 3 are:

= I
Uiy . Efl_ dxldy1

1 aul
= II
Uso : Efl_ dxldy1
i Buz
= II
and Uig : ifl_ dxldy1
i 2
90

where fl = f(xl,yl;g). When evaluated at é) Usq and u;, are equal to zero,

and u.. becomes:
i3

_ 1, 2
U3 = 5 Lejopexnl

2 2 2

—%ci_l ) - cs exp(-%ci )}

If we define di = SUui3 substitution into the general form of the Rao-Robson
2

statistic yields the statistic for testing fit to the Circular Bivariate Nor-

mal distribution:

A copy of the Fortran program for the calculation of this statistic is con-

tained in the Appendix.
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ji) The Dzhaparidze-Nikulin Statistic

Returning once again to Wald's Method, define

Q=1 - B(B'B)"lB'

where B is (as for the statistic RR) the kxs matrix with ijth entry

then W = V'QV is the Dzhaparidze-Nikulin statistic.

K.0. Dzhaparidze and M.S. Nikulin (1974) sought to find a statistic which
would, when the MDL estimators or other n%—consistent estimators are used,
have the same asymptotic distribution as Pearson's X2 using the MML estimators;
that is, a statistic asymptotically chi-square distributed with k-s-1 degrees

of freedom.

Analogous to Rao and Robson's addition to Pearson's X2 of a term Y2

s
converging in law to I

1 (l'xi)yk-s-1+i’ Dzhaparidze and Nikulin derived a

1

term converging to r Whereas the Rao-Robson statistic

'Y

2 M Ykes-14

1
recovers the partial loss of degrees of freedom resulting when the MDL esti-
mates are used in the calculation of X2, the Dzhaparidze-Nikulin statistic
loses degrees of freedom so that its asymptotic distribution is equivalent to
that of X2 when the MML method of estimation is employed.

Their development given in Dzhaparidze and Nikulin is very brief and is

essentially contained in a single theorem.
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Simulations indicate the Dzhaparidze-Nikulin (DN) statistic is generally
not as powerful as the RR statistic (Moore (N.D.)), and it is therefore prefer-
able to employ RR in tests of fit for best results. However, DN is versatile
in that it can be used with any reasonable estimate of 6 -- DN is chi-square

distributed with k-s-1 degrees of freedom whenever é_approaches 6 at the usual
1

1 -
n? rate. It is, further, a useful substitute for RR in cases where (I-BJ

B')
is not invertib]e, a theoretical requirement of RR. The form of DN is here
derived for the case of testing fit to the Double Exponential distribution

where RR is not defined for this reason.

a) The Double Exponential Distribution

Suppose we suspect that a random sample of n observations was taken from
a population following the Double Exponential distribution. Then, the

probability density function f(x) is:

f(x) = 1 exp (_lx—ell) - < X <
262 62 - < e < o
1
62 >0
The covariance matrix is:
—
62 —1
2 0
n
v
n
2
0 %2
n




The maximum likelihood estimates of 61 and 62 are:

8, = median (xl, ..... ,xn)
62=l2|xj-61]
n
The natural choice of cell boundaries is then:
C1=61+a].62
where for k=2v, a, = -», a =0, a o, and
0 v k
- - - L o -
LN I Tog(1 v) for i=1,2,..... ,v-1

Recall that the matrix form of the Dzhaparidze-Nikulin statistic is:

DN = V' (I-B(B'B) 1B')V

The entries of the matrix B are:

Differentiating first with respect to 61 gives:

-1 6, for i=1,2,..... sV

Bip = K

16, for i=vtl,.....,k
k

2
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Next differentiating with respect to 62 gives:

_ j
B., = 1 (Ci-le -c.e )
262
If we define
-C -C.
_ i-1 i
di = Ci-le 'Cie
then B'B becomes:
1 0
B'B = 1
2
%, 0 w:df
5 _

Hence, the Dzhapardize-Nikulin statistic DN, after some simplification,

becomes:

1

DN = V'(I-B(B'B) "B')V
= kz(N, - n)2 -k 1 {zd.(N + N )}2
=i T — it vt v-i+l
n k n 27d

The statistic DN has the chi-square limiting null distribution with k-3 degrees
of freedom. A copy of the Fortran program for the calculation of this statistic

is included in the Appendix.
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2. Other Techniques

In this section several "nonstandard" tests of fit are considered. The
Rao-Robson and Dzhaparidze-Nikulin statistics studied earlier are quadratic
forms in the normalized cell counts with large-sample theory analogous to that
of Pearson's X2. The tests reviewed in this section differ in one or both of

these aspects and for this reason are considered separately here.
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i. The Kempthorne Statistic

The paper "The Classical Problem of Inference: Goodness-of-Fit" by
0. Kempthorne (1968) is reviewed in Moore (1976), but the statistic presented
by Kempthorne is not considered as a serious competitor of the standard chi-
square statistics. Moore states that preliminary simulations have shown K to
be superior in power to standard chi-square tests only for very short-tailed

alternatives and may be quite inferior in other cases.

The asymptotic theory underlying standard chi-square statistics changes
radically if the number of cells, k, is allowed to increase with the sample
1
size n at a rate faster than o(n?). Such is the case of Kempthorne's Statistic

K. K is simply Pearson's X2 with k = n cells, each equiprobable with P; = 1

n!
for i=1, 2,..... » k, under the null hypothesis; that is, the Kempthorne
statistic is given by:

K=Z(N1.—1)2

For the Simple Hypothesis Case, the Ni are Multinomial and K has a Normal
1imiting null distribution (see, for example, Morris (1975)). For the Compos-
ite Hypothesis Case, the Timiting null distribution has not been investigated,
but it is suspected that the Timiting null distribution of K will remain

unchanged.
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ii. Dahiya-Gurland Statistic

John Gurland and Ram Dahiya also developed a test statistic free of the
complications associated with Pearson's X2. In particular, the question of
how to form class intervals has been removed in tﬁeir proposed test of fit.
Further, their statistic is distributed in the 1imit exactly as chi-square when
the parameters are estimated from the ungrouped data. Their statistic is non-
standard, however, in that it does not involve cell counts, and hence the
large-sample theory is not associated with that of X2. The test of fit that

Dahiya and Gurland propose is for continuous distributions, but the authors

indicate it can be adapted to discrete distributions.

The development of the Dahiya-Gurland statistic is based on sample

moments, a review of which follows.

Let Xps Xopseerns X represent a random sample from a certain distribution
with probability density function f(x;8) where 6 is defined in the usual
manner. Denote the jth raw moment by:

J

X
1 1

m' =1
n

J

M3

J
and let m' = (ml', m2',...., mq') where q, q s, is a fixed number that remains

to be specified (a low value of q is generally desirable due to the large

*

* * *
sampling fluctuations of higher order moments). Letm ' = (ml', m2',...., mq')

represent the population counterpart of m'. Further, let hi’ i=1,2,...., 0q,

*
be functions of m' such that their population counterparts hi are differenti-

*
.

* *
able to the second order with respect to ml', m2',...., m

o
h' = (hys Bpseeens )
h*| * * h*
h* = (h], hyeeeees )
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Further, let Q = JGJ' where J denotes the qxq Jacobian matrix with 1jth entry

*

oh. . . . .th *u *I *I

i and G the matrix with ij~ entry (m.'. - m. 'm.').
—_— it] i)
om.'

J

*
The vector of moments m' is Multivariate Normal with mean m ' and
* 1L
covariance matrix G (MVN(m ', G)). A Taylor expansion of n*h yields the
L *
result that n*(h - h ) is MVN(Q, Q). Hence, by the theory of the distribution

of quadratic forms,
* *
DG = n(h - h)'Q
js asymptotically chi-square distributed with q degrees of freedom.

*_
Thus far it has been assumed that Q 1 is known when in fact it requires
*
estimation. However, if Q is a consistent estimator of Q (which is obtained
*
from Q on replacing the parameters with maximum likelihood or other consis-

tent estimators) then the asymptotic distribution of

*

D6 = n(h - h)'Q  (h - h)

*
is the same as the asymptotic distribution of DG (see Gurland (1948) and

Barankin and Gurland (1951)).

If the functions hi are chosen in such a manner that h:, i=1,2,....5 Qs
are linear functions of the parameters el, 62,...., es’ then an estimator of 6
can be found by minimizing the expression for DG. In particular, letting
h = We where W is a gxs matrix of known constants, then the estimator 8 is

given by:
§ = wo gt
In this setting, we can view the problem of estimating 8 as the linear
regression of h on the parameters 8; the errors are approximately normal so

that the technique of generalized least squares was applicable in determining

8.
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As a fjna] step, let:

h = W

R = w(w'Q W) twg!

A=ql(1-R)

Then DG = n(h - Rh)'Q"1(h - Rh)

nh' (I - R)'Q"H(I - R)h

= nh'Ah

Roughly speaking 5b may now be viewed as the error sum of squares in the
generalized least squares procedure and the conclusions follow immediately.
The asymptotic distribution of nhfﬁﬂ is the same as the asymptotic distribu-
tion of nh'Ah, where A is obtained by replacing Q by Q* in A. Assuming W is
of rank s, the null distribution of nh'Ah is chi-square with q-s degrees of

freedom (Gurland (1948) and Barankin and Gurland (1951)).

For illustrative purposes, a test of fit for the Normal distribution is
derived: The development presented here is that given by Gurland and Dahiya

(1972); they provide a clear and easy-to-follow formulation:

Suppose we wish to test the hypothesis that X has pdf

2
Flxs0) = 2 exp (- - 01)%)
th N
(21762) 262
-°°<X<°°,—°°<61<°°,62>0

Let Mys Mas and my denote the second, third, and fourth central sample moments

respectively. The statistics bl’ b2 given by
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If we define

62 = log 92

*
h*l - ( *I ] * * ] (m4))
n ml s 109 m2, m3, 0g ___3_

* *
then the elements of h are linear functions of the parameters 6, and 6, so

that we can now write

*
h = g
with
- 7
1 0
0
1
*
w: 01 . -e_ =
0 0 o
2
0 2

The corresponding hi functions are given by
m
h, =m! , h, = logm h, =m h, = log (—i)
1 1° 2 23 34 3

where mi is the sample mean, and Mys My and m, denote the second, third, and

fourth central sample moments respectively, as previously indicated.

The transformation from sample raw moments to functions hi is achieved in
two stages, i.e., from mis mz, m3, m, to mys My s m3, m, and then finally to

hy, h,, hys h

1 "2° "3 4°
L * *
The asymptotic distribution of n*(h - h ) is N(0,Q ) where

*
Q = J,d,6;4;



— )
1 0 0 0
0 1 0 0
Jl =
-362 0 1 0
0 0 0 1

and

After simplification we obtain:

Replacing 0, by its maximum likelihood estimator m

—e

0

10
0 1/6
J =
2 0 0
0 0
2 -
0 365 0
2 3
25 0 1205
3
0 1567 0
3 4
123 0 90,
—
0 0 0
2 0 4
3
0 663 O
&0 32/3
—r

2

statistic DG for testing normality where:

A

DG = nh'Ah,

Q"1 - R)

wiw Q™ W)~y g!

to obtain Q, we have the

44
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After simplification

B ]
0 0 0 0
0 1.5 0 -.75

0 0 1/(6mg) 0

LP -.75 0 .375

so that a simplified form of DG is given by DG = nv'Bv where

LI = m
V. (hz, has hy) (1og M,y Mas 109(_%))
1.5 o -.7;]
_ 3
B = 0 1/(6m2) 0
-.75 0 .375
L_ —ud

The statistic DG = nv'Bv can be easily computed on a desk calculator. Its
asymptotic distribution is chi-square with 2 degrees of freedom (here g=4

and s=2). To carry out a test of fit for normality at a particular level of
significance, one merely requires the corresponding critical point of the Chi-

Square distribution.

Dahiya and Gurland go on to prove that the power of the test based on
DG = nv'Bv is invariant with respect to the location and scale parameters of
the alternative distribution and calculate the power of the statistic for

normality against five alternatives.
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iii. The Effect of Dependence on Chi-Square Tests of Fit

David Moore (1977b) in his paper entitled "The Effect of Dependence on
Chi-Square Tests of Fit" examines the effects on Pearson's chi-square
statistic when the assumptions of independent; ijdentically distributed (iid)
random variables is not valid. In particu]ar; he examines the case where the

data form a Stationary Stochastic Process (SSP).

In practice, it is common to assume that the observations on which a test
of fit will be based are iid. This may not alwavs be reasonable as when
2"""’Xn are

observations on a SSP, and that a goodness-of-fit test is to be performed

observations are from a time series. Suppose then that Xl’ X

requiring that the data be iid. Moore examines the effect of the dependence

on such a test when the null hypothesis is true. From the minimal literature
already existing on the subject (Gasser, 1975), it was discovered from a small
simulation study including Gaussian autoregressive processes that when iid
critical points were used, Pearson's X2 test rejected normality too often., In
addition, the test was more powérfu1 against iid alternatives than against non-

Gaussian autoregressive processes.

Moore undertakes a theoretical study of the effects of dependence, again
using the Pearson X2 test. He shows that for a general class of Gaussian
SSP's, positive correlation "is confounded with lack of normality" as implied
by Gasser's study. Since Moore's formulation makes use of only one property of

the Normal laws, the results can be extended to include other distributions as

well.
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Moore ascertains that if the SSP structure of the data is known, a test
statistic for goodness-of-fit can be produced that will have a known limiting

null distribution. This area remains open for investigation.
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3. Special Applications

In the field of goodness-of-fit testing today, the movement is more and more
towards the formulation of specially designed tests and test statistics to meet
the needs of precise conditions arising in real-life settings. It is not sur-
prising, therefore, to observe the adaptation of chi-square tests of fit to

special conditions as well.

Much of the more recent work of David Moore (1979 to 1981) has been to this
end. In this section, some of the findings that have extended the contribution of

chi-square techniques to goodness-of-fit testing are examined.
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i. Chi-Square Tests of Fit for Type II Censored Data

Type II censored data is data that are "censored on one or both sides at
sample percentiles". Data of this type may result from engineering studies.
A chi-square goodness-of-fit test can be applied to Type I censored data, or
data that are censored at fixed points, as the censored observations fall
into one or more fixed cells. By similarly choosing cells as sample percen-
tiles, chi-square tests can also be applied to Type II censored data. This

is the objective and goal of Daniel Milhalko and David Moore (1980).

The development Milhalko and Moore present results in goodness-of-fit
test statistics that are asymptotically chi-square distributed. For large
n, this eliminates the need for separate tabled critical points for each
hypothesized family. Since, in addition, they develop a test for the Compo-
site Hypothesis Case (many tests of fit for completely specified distributions
have already been proposed), they provide a very useful tool. Due to the
dependence of the Type II data, the proofs included in their formulation are
analogous to, but quite different from, the usual large sample theory of chi-

square statistics provided in Moore and Spruill (1975).
Following is a review of their proposal:

Suppose that from a random sample X1 Xgseenes X WE observe only the

order statistics:

“(tna}+1) = *({najt2) < -ooc < X({n8})
where 0<a<g<l and {x} denotes the greatest integer in x. The k cells are

formed by taking the cell boundaries c,, €4,....., . =
y 9 0° C1»- Ck to be c, X({nai}),
the Gi-quant11e from XQoeeses X with 0=60<61< ..... <6k=1. To accommodate

nontrivial left censoring (that is, a>0), right censoring (that is, 8<1), or
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both, with a single notation, let a=61 when a>0 and otherwise a=60=0. Simi-
larly, B=6k_1 when B<l and otherwise B=6k=1. The observed frequencies Ni’ for

i=l, 2,...., k, are then nonrandom with Ni = {néi} - {néi—l}'

Suppose we wish to test the composite null hypothesis that the distribu-
tion of the X is a member of the family of continuous distribution functions
F(X;8). The parameter 8 must be estimated by an estimator 6 which is a func-

tion of the observed ordered statistics.

Chi-square tests of fit which employ data-dependent cells are construc-
ted by "forgetting" that the cells are functions of the data. Therefore, the

probability that an observation will fall into the 1th cell is:

~

Pi = Fleg38) - Fley 138), 121, 2,.0nns K

Since the pi‘s depend on the estimates of the parameters 6, they are random

quantities, unlike the Ni's.

The derivation of the asymptotic normality of the vector of standardized
cell frequencies in both the central and noncentral cases for a quite genera{
class of estimators is provided by Milhalko and Moore. It is, however, a
rather lengthy procedure and is not detailed here. The approach is to treat
the central case first and then to use contiguity methods to obtain corres-

ponding noncentral results.

Based on the results of this derivation, the large-sample behaviour of
several chi-square statistics for Type Il censored data is-discussed. The
statistics are Pearson's X2, the Chernoff-Lehmann statistic (Pearson's X2)
using the MDL method of estimation), the Rao-Robson statistic, and the Dzhap-

aridze-Nikulin statistic.

For illustrative purposes, the test derived for the Exponential distri-
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bution will be reviewed. The test statistic employed is the Rao-Robson

statistic RR. The censored sample analog of RR is:

RR = X2 + V'B(K-B'B) !By

2 .. . . .
where X° represents Pearson's statistic, V is the covariance matrix of 8,

B is the matrix with ijth entry:

Nt

op
30

and K is the Fisher information matrix of the ordered data.

Using simplifications that arise in the case where F(X;g) is from a

location-scale family, Milhalko and Moore show that:

_ =2
K = 60
2
B'B = 6(-)2 z Vi
Pj
where v, = —(l-Gi)1og(1—61) + (1-61_1)109(1—6i_1) and

Pi =85 - 8y

When the cell boundaries are chosen to be the sample éi-quanti1es, then the
form of the Rao-Robson statistic becomes:
N.v.

x2 + (na) (£ -1y
Pi

RR 2

]

= - 2
where A=1- exp(-x({ns})/e) - Zvi/pi
RR is asymptotically chi-square distributed with k-1 degrees of freedom.

Test statistics for the Normal family, the two-parameter Uniform family,



and Weibull family are also derived.

52
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ii. Chi-square Tests for Multivariate Normality

Another special distribution that David Moore undertook to develop a chi-
square goodness-of-fit test for was the Multivariate Normal distribution.
Together with Stubblebine, he applies the theory of chi-square tests with
data-dependent cells to this family. When Pearson's X2 is employed, it has
critical points asymptotically bounded between those of the chi-square distri-
bution with k-1 degrees of freedom and k-2 degrees of freedom. It has proven
sensitive in the detection of peakedness, broad shoulders, and heavy tails.
Since, as noted by Andrews, Gnanadesikan, and Warner (1973) in their summary of
proposed methods of assessing Multivariate Normality, it is desirable to have a
variety of procedures that are sensitive to some of the possible departures
from joint normality, the added fact that it is not sensitive to lack of
symmetry is not a serious handicap. In the case where a lack of symmetry is

suspected, an alternate test would be appropriate,

In brief, Moore and Stubblebine propose a chi-square test for Multivariate
Normality using data-dependent cells bounded by hyperellipses ((x - Z)'S_l ’
(x - x) = Ci» for i=1, 2,...,k) with parameters estimated from the data. The

hyperellipses are centred at the sample mean Z with their shape being determined

by the sample covariance matrix S. This test would fall into the category of

Andrews, et al., "tests based on distributional densities".

The advantages of the proposed statistic cited by Moore and Stubblebine

are several:

1. Cells having prespecified estimated cell probabilities are easy to

choose.
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2. The test statistic is relatively easy to evaluate, and the analysis is
particularly simple when the cells are equiprobable,

3. The large sample theory of the test is nearly standard and allows use
of chi-square critical points to assess the significance of the statistic,

4. The nature of departures from normality is indicated by the observed
cell frequencies. Common departures exhibited by peakedness; broad shoulders,
and heavy tails are directly apparent in the cell counts,

5. Once the boundaries (Ci = 1=0,1,...,k) are selected, the estimated
cell probabilities Pis i=1,2,...,k are fixed. For the particular choice of C;
equal to the % point of the appropriate Chi-Square distribution, these cells
are equiprobable.

6. The Pearson statistic is affine invariant, that is, unaffected by
affine transformations on the xj. The relationship between the cells and data

2

implies affine invariance of V, where X~ = V'V, and hence of X2. Other

statistics than Pearson's considered by the authors are also affine invariant,

Typically, chi-square tests are not highly sensitive, and in this multi- -
variate circumstance X2 must, as in the univariate case, compete for usage on

the basis of its ease of application and interpretation.

The test that is investigated is, as mentioned above, the data-dependent
cell version of Pearson's XZ, which was studied by Chernoff and Lehmann (1954)
and sometimes subsequently referred to as the Chernoff-Lehmann statistic. This

statistic is defined in the usual manner:

>
"
-
-
]
H ™Mx

(Ni - npi)z

np;

where V is again the vector of standardized.cell frequencies Ni " "5 with

L
(npi)
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the parameters on which the probabilities P; depend estimated by the Maximum

Density Likelihood method from the ungrouped data.

The theory underlying the Chernoff-Lehmann and other statistics in this
setting follows from that of V. The results of Moore and Stubblebine's

development are given in their Theorem 1 which states:

Under the null hypothesis of normality the limiting distribu-

tion of the Pearson statistic X2(§) for cells defined by

A

c.q 2 (x- §1)'s‘1(x - 8;) < ¢y, where By = (Xp, Xpe.niuX)

with parameters estimated by the MDL estimators x and S is dis-
tributed asymptotically as the sum of a chi-square variable with k-2
degrees of freedom and a chi-square variable with 1 degree of freedom
and coefficient A where the variabhles are independent chi-square
random variables with the indicated coefficient satisfying

0< x< 1. When p; = 1 then

= b
k
A=1-2kv I d,°
i=1 '
v/2 -c. ,/2 v/2 -c./2
where d. = (c. , e -0 e )bv
i i-1 i =

and b = (v(v—2)...(4)(2))_1 for v even

_g2\k -1

= (;) (v(v-2)...(5)(3)) for v odd

This implies the previously-mentioned conclusion that the critical points of

X? are bounded between those of xﬁ_z and xﬁ_l.

k is very small, these bounds are sufficient.

For practical purposes, unless

Two alternatives that are suggested for this Pearson test, but not

pursued in detail due to the acceptability of Theorem 1, are the computation
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of the exact asymptotic critical points following the methods of Dahiya and
Gurland (1972) and Moore (1971), or the use of the Rao-Robson statistic RR.
Except for small k, the improvement realized from the exact asymptotic critical
points will probably not be significant, and as far as employing the RR

statistic is concerned, it is computationally complex in most instances.

The results of Moore and Stubblebine's development is summarized in their
Theorem 2:
When (Xi’Yi) have density function:
~1

(210°) )2

f(x,yle) exp(- —lg-{(x—u1)2+(y-u2 1

20

the statistic

?
4-kr Vs
has the X*(k-1) asymptotic distribution.

The final undertaking of the authors is to illustrate the use of this
adapted Pearson test to the logarithms of common stock prices usually assumed
to be Multivariate Normal. For comparative purposes, they also apply this test

to simulated Multivariate Normal data.
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IV. PRACTICAL APPLICATIONS

To illustrate the use of the Rao-Robson statistie, it is used in the

following examples to test fit to:

1. The Normal Distribution
2. The Exponential Distribution

3. The Extreme Value Distribution

The real data sets were chosen to allow for comparison of the results with
those of other test procedures. The data sets were drawn from Spinelli (1971)
originally having been provided by Dr. W. G. Warren in the first two cases

and van Montfort (1973) in the third. Spinelli performs several Regression

and EDF tests on each data set.

Following is a summary of the Rao-Robson tests of fit and a comparison

of the results with those of Spinelli's procedures.
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Example 1: A Test for Normality

Sixty-four values of modulus of elasticity were measured on Douglas Fir
and Larch two-by-fours; a sample of 50 of these values was tested for normality.

The ordered data points are as follows:

43.19 45.84 49 .44 51.55 54.14
55.37 56.93 59.63 60.04 61.07
65.74 67.09 72.24 72,34 73.46
76.52 77.35 78.36 78.47 78.79
82.00 83.57 84.95 86.59 87.96
90.19 91.57 91.74 92.45 94.24
94.54 95.00 98.39 99.74 100.22
103.48 105.54 107.13 108.14 108.64
108.94 109.62 110.81 112.75 116.39
116.79 119.46 120.33 121.16 131.57

The number of cells used in the test was k = 10. The value of the Rao-Robson
statistic calculated from the data was 4.75904. Comparison with the exact Xi
or Xg percentage points shows a significance level of greater than .80. Hencéi
the Rao-Robson test fails to reject the hypothesis that the data is normally

distributed.

This result again agrees with the test results obtained by Spinelli where
all 10 test procedures accepted the null hypothesis and concluded normality of

the data.
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Example 2: A Test for Exponentiality

Thirty-two values of modulus of rupture measured on Douglas Fir and Larch
two-by-fours were tested for exponentiality. The ordered data points are as

follows:

43.19 49.44 51.55 55.37 56.63 67.27 78.47 86.59
90.63 92.45 94 .24 94.35 94.38 98.21 98.39 99.74
100.22 103.48 105.54 105.54 107.13 108.14 108.64 108.94
109.62 110.81 112.75 113.64 116.39 119.46 120.33 131.57

The number of cells used in the test was k = 5. The value of the Rao-Robson
statistic calculated from one data was 66.1773. Comparison with the exact xi
or xi percentage points shows a significance level of less than .005. Hence, 1
the Rao-Robson test rejects the hypothesis that the data came from the

Exponential distribution.

This agrees with the test results obtained by Spinelli where all 10 test

procedures also strongly rejected the null hypothesis.
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Example 3: A Test for the Extreme Value Distribution

Forty-seven values in cubic feet per second of annual maxima of the
discharges of the North Saskatchewan River at Edmonton were tested for the

Extreme Value distribution. The ordered data points are as follows:

19.885 20.94 21.82 24.888 27.5
28.1 28.6 30.38 31.5 38.1
39.02 40.0 40.0 40.4 44.7
50.33 51.442 58.8 61.2 65.597
66.0 84.1 106.6 121.97 185.56

The number of cells used in the test was k = 5. The value of the Rao-Robson
statistic obtained from the data was 18.71547, Comparison with the exact Xi .
or xi percentage points shows a significance level of less than .005. Hence,
the Rao-Robson test rejects the hypothesis that the data came from the Extreme

Value distribution.

The summary of test results provided by Spinelli shows that at a .10
significance level, seven of the 10 test procedures rejected the null
hypothesis and at a .05 significance level, four of the 10 rejected the null

hypothesis.
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V. MONTE CARLO POINTS FOR FINITE SAMPLE SIZE

For each of the six distributions to which the theory of the Rao-Robson
or Dzhaparidze-Nikulin statistic was applied, Monte Carlo methods were used to
simulate the percentage points for the test statistics for finite sample sizes.
Three different sample sizes were considered, namely n =_20, 50, and 100;
10,000 samples were generated in each case. In all instances, equiprobable
cells were formed, and the parameter values were assumed unknown and were

estimated by Maximum Density Likelihood.

Monte Carlo points for the test statistics were also simulated for an
additional sample size employing the same number of cells (for example, n=20,
k=4, and n=50, k=4). This generated two points from the same distribution
(namely the Chi-Square distribution with k-1 or k-s-1 degrees of freedom for
the Rao-Robson and Dzhaparidze-Nikulin statistics respectively) which together
with the asymptotic distribution point were used for the purpose of "smoothing"

the points. The indication in all cases was that smoothing was not warranted,

and the actual points derived in the main runs were instead left unadjusted.

For use with the power studies, the Monte Carlo points were determined
for Pearson's chi-square statistic Xz in the same manner, These points are
jncluded alongside of the associated Rao-Robson or Dzhapardize-Nikulin points
in Tables 1 to 18 following. In addition, the exact asymptotic chi-square
points are provided on the right hand side of each table for comparative

purposes.

In most instances, convergence of the finite n points to the asymptotic
points appears reasonably rapid. Note, however, that in the case of the
Exponential distribution, convergence is comparatively slow with very high

values still existing at n = 100.
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You may note that there are some critical points that do not change from
probability level to another. This is due to the fact that the Rao-Robson
and Dzhaparidze-Nikulin statistics are discrete statistics; even though the
parameters estimated have continuous distributions, terms in the parameters
cancel out, and the statistics depend only on the number of observations per

cell. Hence, the probability may be concentrated in areas.



TABLE 1

The MNormal Distribution

Percentage Points

1-o Pearson Statistic Rao-Robson Statistic X§

.990 7.59 8.10 11.34
.975 5.99 6.24 9.35
.950 5.19 5.44 7.82
.900 3.99 4.04 6.25
.850 2.79 3.30 5.32
.750 2.39 2.81 4.11
.500 1.19 1.27 2.37
.250 0.39 0.56 1.21
.100 0.39 0.41 .58
.050 0.39 0.41 .35
.025 0.07 0.07 .22

.010 0.07 0.07 .12



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 2

The Normal Distribution

Percentage Points

N

Pearson Statistic Rao-Robson Statistic x9
18.78 20.26 21,67
16.38 17.74 19.02
14 .38 15.50 16.92
12.38 13.26 14.68
10.78 11.90 13.29

9.18 10.06 11.40
6.78 7.22 8.34
4.78 4.98 5.90
3.18 3.42 4.17
2.38 2.70 3.33
1.98 2.18 2,70
1.58 1.62 2.09

64



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 3

The Normal Distribution

n = 100

k =10

Percentage Points

N

Pearson Statistic Rao-Robson Statistic x9
18.97 20.70 21.67
16.37 17.83 19.02
14 .38 15.43 16.92
12.38 13.37 14.68
11.18 12.03 13.29

9.38 10,10 11.39
6.58 7.23 8,34
4.58 4,97 5.90
3.18 3.50 4.17
2.58 2.70 3.33
1.98 2.23 2.70
1.58 1.63 2.09

65



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025

.010

The Exponential Distribution

TABLE 4

Percentage Points

Pearson Statistic Rao-Robson Statistic ;
9.19 13.10 11.34
7.59 10.32 9.35
5.99 8.77 7.82
5.19 7.06 6.25
3.99 6.03 5.32
2.79 4.39 4.11
1.59 2.70 2.37
0.79 1.34 1.21
0.39 0.59 .58
0.39 0.46 .35
0.39 0.46 .22
0.06 0.06 .12

66



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025

.010

TABLE 5

The Exponential Distribution

Pearson Statistic

Percentage Points

Rao-Robson Statistic

20.

17
15

13.

11

10.

77

.57
.57

17

.97

37

.57
.17
.57
A7
.37
.57

33
29
25

21.
19.
16,

11

.97
.08
.52

37
17
12

.53
.98

.43

4,33

3.48

2

.63

N

X

21.67
19.02
16.92
14,68
13.29
11.39
8.34
5.90
4,17
3.33
2.70

2.09

67



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 6

The Exponential Distribution

n = 100

k

=10

Pearson Statistic

Percentage Points

Rao-Robson Statistic

20
17
15

13.

11
10

.35
.55

.35

35

.95
.15
.35
.15
.55
.95
.35

.75

34,
29.
25,
21.

18
15
11

43
10
17

30

.97
.90
.43
.97
.57
.37
.57
.70

X

21.

19.

16.

14,

13.

11.

.33

.70

.09

68



TABLE 7

The Double Exponential Distribution

Percentage Points

1-oa Pearson Statistic Dzhaparidze-Nikulin x2
Statistic L
.990 6.78 5.01 6.64
.975 5.18 4,99 5.02
.950 3.98 3.19 3.84
.900 3,58 3.19 2.71
.850 3.18 1.79 2.07
.750 1.98 0.81 1.32
.500 0.78 0.21 .46
.250 0.38 0.19 .10
.100 0.38 0.06 .016
.050 0.13 0.06 .004
.025 0.13 0.06 .001

.010 0.13 0.06 .000



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 8

The Double Exponential Distribution

= 10

Pearson Statistic

Percentage Points

Dzhaparidze-Nikulin
Statistic

17
15
13

11.

10

.97
.58
.58

98

.78
.18
.38
.38
.18
.38
.98
.58

17

15.
13.

11
10

.81

33
57

.78
.43
.81
.29
.29
.81
.22
71
.19

18.

16
14

12.

10

48

.01
.07

02

.75
.04
.35
.26
.83
.17
.69

1,24

70



TABLE 9

The Double Exponential Distribution

n=100 k=10

Percentage Points

1-oa Pearson Statistic Dzhaparidze-Nikulin x2
Statistic T
.990 18.40 18.12 18.48
.975 15.98 15.78 16,01
.950 14.19 13.93 14 .07
.900 11.98 1173 12.02
.850 10.81 10.53 10.75
.750 8.98 8.88 9.04
.500 6.60 6.33 6.35
.250 4.40 4.18 4,26
.100 2.98 2.78 2.83
.050 2.40 2.18 2.17
.025 1.81 1.68 1.69

.010 1.40 1.18 1,24



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 10

The Circular Bivariate Distribution

Pearson

Percentage Points

Statistic

.99
.59
.99
.79
.99
.79
.59
.79
.39
.39
.39
.07

N

Rao-Robson Statistic x3
11.22 11.34
9.14 9.35
7.58 7.82
6.26 6.25
5.10 5.32
4.06 4,11
2.30 2.37
1.34 1.21
0.54 .58
0.42 .35
0.42 .22
0.10 12

72



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE

11

The Circular Bivariate Distribution

Percentage Points

N

Pearson Statistic Rao-Robson Statistic x7
17.18 18.78 18.48
14.30 15.98 16.01
12.70 13.74 14.07
10.78 11.74 12.02

9.50 10.58 10.75
7.90 8.98 9.04
5.66 6.34 6.35
3.74 4,30 4.26
2.46 2.86 2.83
1.82 2.18 2.17
1.18 1.78 1.69
0.86 1.26 1.24

73



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 12

The Circular Bivariate Distribution

n = 100

k =10

Pearson Statistic

Percentage Points

19

17.

15
13

12.
10.

.97

58

.58
.38

18
38

.58
.18
.58
.98
.38
.78

Rao-Robson Statistic xg
21.42 21.67
19,05 19.02
16.85 16.92
14 .62 14.68
13.18 13.29
11,38 11.39

8.35 8.34
5.95 5.90
4,25 4.17
3.42 3.33
2.82 2.70
2.22 2.09

74



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 13

The Logistic Distribution

Percentage Points

Pearson Statistic Rao-Robson Statistic xg
7.18 10.82 11.34
5.98 9.82 9.35
4,78 7.58 7.82
3.58 6.62 6.25
2.78 5.52 5.32
1.98 4,12 4.11
1.18 2.52 2.37
0.38 1.18 1.21
0.38 0.98 .58
0.08 0.08 .35
0.08 0.08 .22
0.08 0.08 .12

75



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 14

The Logistic Distribution

Pearson Statistic

Percentage Points

15.
13.
11.

28
05
12

.52
.25
.95
12
.12
.85
.18
.18
.88

Rao-Robson Statistic xg
18,38 18.48
15.86 16.01
13.94 14,07
11,94 12.02
10.74 10.75

8.98 9.04
6.38 6.35
4.34 4,26
2.86 2.83
2.18 2,17
1.70 1,69
1,22 1.24

76



.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 15

The Logistic Distribution

n = 100

k =10

Pearson Statistic

Percentage Points

N

18
15
13
11
10

.46
.94
.98
.98
.70
.98
.34
.30
.86
.26
.74
.18

Rao-Robson Statistic Xg
21.30 21.67
18.77 19.02
16.63 16.92
14,57 14.68
13.17 13,29
11.30 11.39

8.30 8.34
5.90 5.90
4.17 4.17
3.30 3.33
2.70 2.70
2.03 2,09
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.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 16

The Extreme Value Distribution

n =

20 k=4

Percentage Points

Rao-Robson Statistic

Pearson Statistic
7.59 10
5.99 9
5.19 7
3.99 6
3.19 5
2.79 3
1.19 2
0.39 1
0.39 0
0.39 0
0.06 0
0.06 0

.81
.19
.79
.24
.44
.81
41
.29
.84
.61
.06
.06

11.

.35
.82
.25
.32
.11
.37
.21
.59
.35
.22
.12
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.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 17

The Extreme Value Distribution

Percentage Points

Pearson Statistic Rao-Robson Statistic xi
15.26 18.48 18,48
13.34 15.78 16.01
11.42 13.75 14.07

9.50 11.82 12.02
8.54 10.62 10.75
6.94 ' 8.92 9.04
4.70 6.32 6.35
3.10 4.35 4 .26
2.14 2.92 2,83
1,50 2.25 2.17
1.18 1.75 1.69
0.86 1.32 1.24
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.990
.975
.950
.900
.850
.750
.500
.250
.100
.050
.025
.010

TABLE 18

The Extreme Value Distribution

n = 100

k

Pearson Statistic

= 10

Percentage Points

Rao-Robson Statistic

18
16
14

12.

10

.97
.37
.38

38

.98
.38
.78
.58
.18
.58
.98
.38

21

19.

16
14

13.
11,

.67

12

.82

.43

18
33

.33
.93
.23
.33
.68
.13

21
19
16
14
13
11

X

N

.67

.02

.92

.68

.29

.39

.34

.90

A7

.33

.70

2,09
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VI. POWER COMPARISONS

Based on 10,000 samples of sizes 20 and 100, the powers of the Rao-Robson
test statistic (as derived for the five distributions previously given) and the
Dzhaparidze-Nikulin test statistic (as derived for the Double Exponential
distribution) were estimated by Monte Carlo methods. For comparative purposes,
the power of the Pearson test statistic was also simulated. In addition, the
power of the Anderson-Darling test statistic, A2, was determined for those
distributions for which the percentage points were available; reference to some
existing power results for A2 were also made. The Anderson-Darling statistic
is based on formulas provided in Stephens (1974, 1977, and 1979). Specifically,

the procedure employed was as follows:

a) estimate parameters by Maximum Density Likelihood
b) calculate z; = F(xi;é), i21,2,.....,0

2

c) A = ~(z (2i-1){1n z, + 1n(1-z Y})/n - n

n+l-i
d) reject the null hypothesis if A2 exceeds the critical

value for a specified significance level.

In all cases, a significance level of o = .05 was used. Wherever
possible, the alternative distributions were chosen according to those
previously employed by others in power simulations (Normal, Extreme Value,
Exponential). Otherwise, the alternates were chosen based on their general
resemblance to the hypothesized distribution and an attempt to incorporate a
variety of departures from the null distribution (such as skewness, heavy tails,

broad shoulders, etc.).

For all sample sizes of n = 20, k = 4 cells were employed; for n = 100,

k = 10 cells were used.
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The finite n critical points for the Rao-Robson and Pearson statistics

were provided by the Monte Carlo percentage points of the previous chapter,

The finite n critical points for the Anderson-Darling statistic were
given in Stephens (1974) for the Normal or Exponential distributions;
Stephens (1977) for the Extreme Value distribution and Stephens (1979) for the
Logistic distribution. The power comparisons given for A2 in Table 19 were

provided in Stephens (1974).

bahiya and Gurland produced simulated power results for the Normal
distribution. For the case where the alternative is the Logistic distribu-
tion, their result at the .05 level of significance and for n = 100 is
directly comparable to that obtained for RR. It is clear that the power of the
DG statistic is far superior to that of the Rao-Robson statistic, at least in
this instance. DG rejected successfully 65.4% of the time versus RR's 10%

success.

In general, for small n, the powers of the Rao-Robson and Dzhaparidze-
Nikulin statistics are low, surpassed, where considered, by the EDF Anderson-
Darling statistic. This is not unexpected given the grouping inherent in chi-
square tests. In cases where the alternative distribution is very close to the
null distribution (such as in the Normal versus Logistic case above) the
improvement of A2 over RR and XZ is not significant, with all tests considered
having low power. However, the comparisons performed are relatively common,
and other, more powerful statistics (some specially designed) are readily

applicable and therefore preferable,



TABLE 19

Power Comparisons

Normal Distribution

Test Statistic

Alternative Sample Size RRStat _XE_ AE:
Logistic n =20 .08 .08 -
n = 100 .10 .09 -
tq n=20 .50 .50 --
n = 100 1.00 1.00 --
ty n=20 .15 .14 .23
n =100 .34 .32 .691
Lognormal n =20 .55 .52 .91
n = 100 1.00 1.00 1.002

* Provided by Stephens (1974).

1. Based on n 90.

2. Based onn 50.



Alternative

Half-Normal

TABLE 20

Power Comparisons

Exponential Distribution

Sample Size

n =20
n = 100
n =20
n = 100
n =20

n = 100

RRStat

.66
1.00

.10

.52

.86
1.00

Test Statistic

X2

—————

.69
1.00

.13
.45

.89
1.00

84

.88
1.00

17
17

.99
1.00



Alternative

Logistic

Normal

TABLE 21

Power Comparisons

Double Exponential Distribution

Sample Size
n =20
n =100
n =20
n = 10C
n =20
n = 100

Test Statistic

DNStat

.12

.23

.11
.14

.12
.11

X2

.07

.26

.06
.15

.05
11

85



TABLE 22

Power Comparisons

Circular Bivariate Distribution

Test Statistic

Alternative Sample Size RRStat _ZE
Uniform n =20 .22 .21

n = 100 .95 .94
Bivariate Normal n=20 .05 .07

n = 100 .92 .90



TABLE 23

Power Comparisons

Logistic Distribution

Test Statistic

Alternative Sample Size RRStat _XE _AE

Normal n =20 .04 .06 .04

n = 100 .09 .07 .09

t4 n =20 .04 .06 .05

n = 100 .14 .08 .18

x? n =20 .07 .07 .16
8

= 100 .45 .47 .85

3



TABLE 24

Power Comparisons

Extreme Yalue Distribution

Test Statistic

Alternative sample Size RRStat X2 a2
Beta (1,4) n=20 .12 .09 .15

n = 100 57 .32 87
X2 n = 20 .05 .00 .04
6

n = 100 .08 .06 11
.2 n = 20 .07 .06 .08
y

n = 100 21 .12 .40
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VII. CONCLUSIONS

Clearly, there has been a good deal of attention centred on chi-square
goodness-of-fit techniques, and interest in the area is continuing. As
long as the versatility and ease of computation are retained, developing

. C e G2 . .
improvements to Pearson's test statistic X  1is a worthwhile endeavour.

The review of some of the modern methods indicates the areas into
which interest has evolved, namely in overcoming the handicaps of Pearson's
test by producing alternate quadratic forms, by adapting a chi-square test
to other than full sample data where competitive procedures are unavailable,
and by tailoring a chi-square test to, for example, a multivariate distri-
bution where, again, other tests are not applicable. There is a wide area

open for future study.

The results of the previous sections indicate that implementation of
the Rao-Robson (or Dzhaparidze-Nikulin in cases where RR is undefined)
statistic in favour of X2 is recommended. The obvious advantage is that the
asymptotic distribution is exactly that of chi-square, and the convergence
of the finite n percentage points is rapid enough to justify its use; parti-
cularly for small values of k, there is potentially large error inherent in
the X2 test when the MDL estimates are used. The disadvantage of the new
test procedures is the necessity of deriving the particular form of the
statistic for each hypothesized distribution. This, as shown, is usually
not difficult. For some specific distributions, such as the Beta distribution,
the integrals involved must be solved numerically for the Rao-Robson statistic,

but in many cases, the derivation is quite simple.

As far as the general application of chi-square tests is concerned, it is

still recommended that, where the conditions of the test allow, more powerful



statistics such as the EDF statistics be used. To emphasize a frequently
made point, the basis for preference of a chi-square test remains to be

its wide-spread applicability and ease of calculation.
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i. Subroutine RRMNORM

THIS SUBROUTINE TAKES THE INPUT DATA X AND CALCULATES THE
RAO ROBSON STATISTIC RRSTAT. ASSUMING WE WISH TO TEST FOR
NORMALITY, N IS THE NO. OF DATA POINTS AND K IS THE NUMBER
OF CELLS.

SUBROUT INE RRNORM(X,N,K,RRSTAT)
INTEGER 08S(K),NUM(K)

DIMENSION C(K),D(K,2),BOUND(K)
DIMENSION X(N),DIFF(N),A(2,2),V(K,2)

REQUIRE ONE X(I) IN ASCENDING ORDER
CALL VSRTA (X,N)
CALCULATE THE PARAMETER ESTIMATES

SUM1=0.0

XN=N

DO 1 I=1,N

SUM1=SUM1+X(1I)

TH1=SUM1/XN

SuM2=0.0

DO 2 I=1,N

DIFF(I)=X(I)~TH1
SUM2=SUM2+(DIFF(I)*DIFF(1))
TH2=SQRT(SUM2/(XN-1.0))

THE K+1 CLASS BOUNDARIES ARE OF THE FORM TH1+4C(I)TH2,
WE CAN OBTAIN THE C(I)'S EASILY FROM THE STANDARD
NORMAL TABLE. THE FOLLOWING ARE GIVEN FOR K=10.

CZER0=-999999.0
€(10)=-CZERO
c(1)=-1.28
€(9)=-C(1)
C(2)=-.84
c(8)=-C(2)
€(3)=-.52
C(7)=-C(3)
C(4)=-.255
c(6)=-C(4)
€(5)=0.0

FOR K=4, THE C(I)'S ARE:
CZER0=-999999.0

C(1)=-.675
c(3)=-c(1)
€(2)=0.0

C(4)=-CZERO
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51

10
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CALCULATE THE BOUNDARIES.

BDZERO=TH1+(CZERO*TH2)
DO 3 I=1,K

~ BOUND(I)=TH1+(C(I)*TH2)

TO DETERMINE THE NUMBER OF OBSERVATIONS PER CELL, FIRST CALCULATE
THE NUMBER OF OBSERVATIONS LESS THAN OR EQUAL TO BOUMD(I),I=1,M

15=1
DO 4 J=1,K

TEMP=BOUND(J)

DO 5 I=IS,N

IF(X(1).GT.TEMP) GO TO 50

CONTINUE
IF((I.EQ.N).AND.(X(I).LT.TEMP)) GO TO 51
NUM(J)=I-1

15=1

GO TO 4

NUM(J)=N

1S=N

CONTINUE

NOW CALCULATE THE NUMBER OF OBSERVATIONS PER CELL.

0BS (1)=NUM(1)
DO 6 I=2,K
0BS(I)=NUM(I)-NUM(I-1)

DETERMINE THE D(I)'S, V(I)'S, AND A(I,J)'S REQUIRED TO CALCULATE
THE TEST STATISTIC.

XN=N
XK=K .

p(1,1)=0.0

Q1=SQRT(2.0*3.1416)

D0 7 I=2,K

Q2=-(C(I-1)*C(I-1)/2.0)

@3=-(C(I)*C(1)/2.0) :
D(I,1)=(1.0/(TH2*(Q1)))*(EXP(Q2)-EXP(Q3))

CONTINUE

D(1,2)=(1.0/(2.0*TH2*TH2*Q1))* (~C(1)*EXP(Q3))

D0 9 I=2,K :
D(1,2)=(1.0/(2.0%TH2*TH2*Q1))}*(C(I-1)*EXP(Q2)-C(I)*EXP(Q3))
CONTINUE

DO 10 I=1,K

V(I,1)=TH2*D(I,1)

v(I,2)=TH2*TH2*D(1,2)

CONT INUE

THE A(I,J)'S ARE THE ENTRIES OF THE MATRIX (V+ - J)+ WHERE +
DENOTES INVERSE.
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SuM3=0.0

DO 11 I=1,K

SUM3=SUM3+V(I,2)*Vv(I1,2)

SuM4=0.0

SuM5=0.0

DO 12 I=1,K

SUM4=SUMA+V(1,1)*V(I,2)

SUM5=SUM5+V(1,1)*V(I,1)

CONTINUE

Q4=(XK*SUM5-1.0)* (XK*SUM3-2.0)- (XK*XK*SUMA*SUM4 )

READY TO CALCULATE A(I,J)'S.

(XK*2.0%SUM3-1.0)/04
XK*SUM4 )/ Q4

(1,2)
(XK*SUM5-1.0)/Q4

. unn

1 >~

DETERMINE THE SUMS REQUIRED.

SuM6=0.0

SUM7=0.0

SuM8=0.0

XNK=XN/XK

DO 14 I=1,K

X0BS=0BS(1)
SUM6=SUM6+(X0BS~XNK)* (XORS-XNK)
SUM7=SUM7+((X0OBS-XNK)*V(I,1))
SUM8=SUM8+( (X0BS-XNK)*V(1,2))
CONTINUE

XKN=XK/ XN
Q5=SUM7* SUM7
Q6=SUM8*SUM8
Q7=SUM7*SUM8

READY TO CALCULATE THE RAO-ROBSON STATISTIC.

RRSTAT=XKN*SUMG+XKN*XK*Q5*A(1,1)+2.0*XKN*XK*Q7*A(1,2)+XKN*XK*Q6*A(2,2)

RETURN
END
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ii. Subroutine RREXP

THIS SUBROUTINE TAKES THE INPUT DATA X AND CALCULATES THE
RAO ROBSON STATISTIC RRSTAT. ASSUMING WE WISH TO TEST FOR
EXPONENTIALITY, N IS THE NO. OF DATA POINTS AND K IS THE
NUMBER OF CELLS.

SUBROUTINE RREXP(X,M,K,RRSTAT)
INTEGER OBS(K), NUM(K)

DIMENSION C(K).D(K).V(K),BOUND(K)
DIMENSION X(N)

WANT X(I) IN ASCENDING ORDER
CALL VSRTA (X,N)
CALCULATE THE PARAMETER ESTIMATES

SuM1=0.0

XN=N

XK=K

DO 1 I=1,N
SUM1=SUM1+X(T1)
CONTINUE
TH1=SUM1/XN

THE K+1 CLASS BOUNDARIES ARE OF THE FORM XBAR*C(I-1)

CZER0=0.0
C(K)=999999.0

KK=K-1

DO 2 I=1,KK

XI=1

C(1)=-ALOG(1.0~(XI/XK))

CONTINUE

CALCULATE THE D(I)'S:
D(1)=(1.0/TH1)*(-C(1)*EXP(~C(1)))
D0 3 I=2,K
D(I)=(1.0/TH1)*(C(I-1)*EXP(~C(I-1))-C(I)*EXP(-C(I)))
CONTINUE

CALCULATE THE V(I)'S:

D0 4 I=1,K

V(I)=TH1*D(I)

CONTINUE

DETERMINE THE BOUNDARIES,
BDZER0=0.0 |

DO 5 I=1,K

BOUND(I)=TH1*C(I)

CONTINUE

DETERMINE THE NUMBER OF 0BS. LESS THAN BOUND(J)
15=1

DO 6 J=1,K

TEMP=BOUND(J)

95
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DO 7 I=IS,N

IF(X(I).GT.TEMP) GO TO 50

CONTINUE

IF((I.EQ.N).AND.(X(I).LT.TEMP)) GO TO 51
NUM(J)=1-1

IS=1

GO TO 6

NUM(J)=N

IS=N

CONTINUE

DETERMINE THE NUMBER OF OBS. IN EACH CELL
0BS(1)=NUM(1)

DO 8 I=2,K

OBS(I)=NUM(I)-NUM(I-1)

CONTINUE

READY TO CALCULATE THE RAO-ROBSON STATISTIC
SuM2=0.0

SUM3=0.0

SuM4=0.0

XNK=XN/XK

DO 9 I=1,K

X0BS=0BS(1I)

SUM2=SUM2+( XOBS-XNK)* (XOBS-XNK)
SUM3=SUM3+((XOBS-XNK)*V(I))*((XOBS-XNK)*V(I))
SUM4=SUMA+V (TI)*V(I)

CONTINUE

XKN=XK/XN

RRSTAT=XKN*SUM2+( XK*XKN)* (SUM3/ (1.0-XK*SUM4))
RETURN
END
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iii. Subroutine DNDEXP

THIS SUBROUTINE TAKES THE INPUT DATA X AND CALCULATES THE
DZHAPARIDZE-NIKULIN STATISTIC TO TEST FOR DOUBLE EXPONENTIALITY.
N IS THE NO. OF DATA POINTS AND K IS THE NUMBER OF CELLS.

SUBROUT INE DNDEXP(X,M,K,DNSTAT)
DIMENSION DIFF(N),X(M),C(K),D(K),BOUND(K),X0BS(K)
INTEGER OBS(K),NUM(K)

K MUST BE CHOSEM AS EVEN FOR THE FOLLOWING:
NU=K/2

WANT THE DATA POINTS IN ASCENDING ORDER:
CALL VSRTA (X,N)

NOW CALCULATE THE PARAMETER ESTIMATES:

IF N IS ODD, TH1 IS X(N+1)/2. OTHERWISE, TH1 IS
(X(M/2)+X(N/2+1))/2.

NN=N/2

NN=(N+1)/2

NN1=NN+1

IF N IS EVEN, USE:

TH1=(X(NN)+X(NN1))/2.0

IF N IS 0DD, USE:
TH1=X (NN)

SuM1=0.0

RO 1 I=1,N

DIFF(I)=X(I)-TH1

IF(DIFF(I).LT.0.0) DIFF(I)=-DIFF(I)
SUM1=SUM1+DIFF(I)

CONTINUE

XN=N

XK=K

TH2=SUM1/XN

CELL BOUNDARIES ARE CHOSEN SUCH THAT P(I)=1/K.
THE ITH BOUNDARY IS TH1+ QR ~C(I)TH2, NOW FIND THE
C(I), SETTING CZERO AND C(NU) SEPARATELY.

CZER0=0.0
C(NU)=999999.0
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NUU=NU=1

XNU=NU

DO 2 I=1,NUU

XI=I ,
C(I)=-ALOG(1.0-(XI/XNU))

- CONTINUE

NOW CALCULATE THE D(I)'S:

D(1)=-C(1)*EXP(-C(1))

SuM2=D(1)*D(1)

DO 3 I=2,NU
D(I)=C(I-1)*EXP(-C(I-1))-C(I)*EXP(-C(I))
SUM2=SUM2+D (1)*D(1I)

CONTINUE

NOW CALCULATE THE BOUNDARIES:

BDZER0=-999999.0

BOUND (NU)=TH1 |

DO 4 I=1,NU

BOUND (NU+I)=THI1+C (I)*TH2
DO 5 I=1,NUU
BOUND(NU-1)=TH1-C(I)*TH2

NOW CALCULATE THE NO. OF OBSERVATIONS LESS THAN OR
EQUAL TO BOUND(J).

IS=1

DO 6 J=1,K

TEMP=BOUND(J)

DO 7 I=IS,N
IF(X(I).GT.TEMP) GO TO 50
CONTINUE
IF((I.EQ.N).AND.(X(I).LT.TEMP)) GO TO 51
NUM(J)=I-1

IS=1

GO TO 6

NUM(J)=N

IS=N

CONTINUE

NOW CALCULATE THE NUMBER OF OBSERVATIONS PER CELL:
0BS(1)=NUM(1) |

DO 8 I=2,K

OBS(I)=NUH(I)~NUM(I—1)

CONTINUE

READY TO CALCULATE THE STATISTIC.

SUMZ2 IS CALCULATED ABOVE. SUM3 RUNS FROM 1 TO N. BUT SUM4 FROM 1

TO NU, SO DETERMINED SEPARATELY.
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SuM3=0.0

SuM4=0.0

XNK=XN/XK

DO 9 I=1,K

XOBS(1)=0BS(I)
SUM3=SUM3+(XOBS(I)-XNK)*(XOBS(I)-XNK)
CONTINUE

DO 11 I=1,NU

XOBS(1)=0BS(1I)

SUM4=SUM4+D (1)* (XOBS(NU+I)+XOBS(NU-I+1))
CONTINUE

SUM4=SUM4*SuMa

XKN=XK/XN

CALCULATE THE D-N STATISTIC.
DNSTAT=XKN*SUM3- (XKN/ (2.0*SUM2) ) *SUM4

RETURN
END
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iv. Subroutine RRCB

THIS SUBROUTINE TAKES THE INPUT DATA X AND CALCULATES THE
RAO ROBSON STATISTIC RRSTAT TO TEST FOR THE CIRCULAR
BIVARIATE DISTRIBUTION. N IS THE NO. OF DATA POINTS AND
K IS THE NO. OF CELLS.

SUBROUTINE PRCB(X,Y,N,K,RRSTAT)
INTEGER OBS(K),NUM(K)

DIMENSION C(K),D(K),V(K),BOUND(K),X(N)
DIMENSION Y(N),DIFF(2N),RADIUS(N)

PLACE DATA IN ASCENDING ORDER

CALCULATE THE THREE PARAMETER ESTIMATES.
XN=N
XK=K
SUM1=0.0
SUM2=0.0
SUM3=0.0

SUM4=0.0

DO 1 I=1,N

SUM1=SUM1+X (1)

SUM2=SUM2+Y(1)

CONTINUE

THI=SUM1/XN

TH2=SUM2/XN

DO 2 I=1,N
SUM3=SUM3+(X(I)-TH1)* (X (I)-TH1)
SUM4=SUMA+(Y(I)-TH2)*(Y(I)-TH2)
CONTINUE
TH3=(SUM3+SUM4 )/ (2.%*XN)
TH3=SQRT (TH3)

(o> Nen)

n nu

CELLS ARE CENTRED AT (XBAR,YBAR) WITH SUCCESSIVE RADII C(I)TH3,

FIRST REQUIRE THE C(I)'S.

CZER0=0.0

KK=K-~1

DO 3 I=1,KK

XI=I
C(I)=SQRT(-2.0*ALOG(1.0-(XI/XK)))
CONTINUE -
€(K)=999999.0
V(1)=-(C(1)*C(1))*(EXP(-.5*(C(1)*C(1))))
DO 4 I=2,KK

QTY1=(C(I-1)*C(I-1)

QTY2=(C (I1)*C(I))*(E

V(I)=QTY1-QTY2

*(EXP(-.5%(C(I-1)*C(I-1))))

1))
(EXP(-.5*(C(1)*C(1))))

4 CONTINUE
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V(K)=(C(KK)*C(KK))*(EXP(-.5*(C(KK)*C(KK))))
CALCULATE THE D(I)'S

DO 5 I=1,K
D(I)=v(1)/2.0
CONTINUE

FIND THE BOUNDARIES BY DETERMINING THE RADII C(I)TH3.

DO 6 I=1,K
BOUND(I)=C(I)*TH3
CONTINUE

IF THE DISTANCE FROM (XBAR,YBAR) TO (X(I),Y(I)) IS LESS THAN
RADIUS(I) THEN THE NUMBER OF OBS. IN CELL(I) INCREASES BY
ONE. ALTERNATIVELY, WE CAN CALCULATE ALL THE DISTANCES
(XBAR,YBAR) TO (X(I),Y(I)) AND THEN FIND THE NUMBER LESS THAN
RADIUS(I).

DO 7 I=1,N

DIFF(I)=X(I)=TH1

NN=N+I

DIFF(NN)=Y(I)-TH2

IF(DIFF(I).LT.0.0) DIFF(I)=DIFF(I)*(-1.0)
IF(DIFF(NN).LT.0.0) DIFF(NN)=DIFF(NN)*(-~1.0)
CONTINUE

NN=2*N

Do 8 I=1,N
RADIUS(I)=SORT((DIFF(I)*DIFF(I))4+DIFF(N+I)*DIFF(N+I)))
CONTINUE

CALL VSRTA (RADIUS,N)

NOW FIND THE NUMBER OF OBSERVATIONS LESS THAN BOUND(I).

FIRST REQUIRE THAT THE DISTANCES FROM XBAR,YBAR BE IN
ASCENDING ORDER.

15=1

DO 9 J=1,K

TEMP=BOUND (J)

DO 10 I=IS,N

IF (RADIUS(I).GT.TEMP) GO TO 50

CONT INUE

IF((I.EQ.N).AND.(RADIUS(I).LT.TEMP)) GO TO 51
NUM(J)=1-1

1S=1
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GO TO 9
NUM(J)=N
IS=N

CONTINUE

NOW CAN FIND THE NUMBER OF OBS. PER CELL.

OBS(1)=NUM(1)

DO 11 I=2,K
OBS{I)=NUM(I)-NUM(I-1)
CONTINUE

FORMAT (/2X,5I10)

READY TO CALCULATE THE RAO-ROBSON STATISTIC.

SUM5=0.0

SUM6=0.0

SUM7=0.0

XNK=XN/XK

D0 12 I=1,K
X0BS=0BS(I)
SUM5=SUM5 +( XOBS-XNK)* ( XOBS~XNK)
SUMBE=SUMB+X0BS*D (1)
SUM7=SUM7+(D (1)*D(I))
CONTINUE

XKN=XK/ XN

RRSTAT=XKN*SUMS5+( XK*XKN* (SUME*SUM6B) )/ (1.0-XK*SUM7)
RETURN
END
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v. Subroutine RRLOG

THIS SUBEROUTINE TAKES THE INPUT DATA X AND CALCULATES THE
RAO ROBSON STATISTIC RRSTAT. TO TEST FOR THE LOGISTIC
DISTRIBUTION N IS THE NO. OF DATA POINTS AND K IS THE NUMBER
OF CELLS.

SUBROUTINE RRLOG(X,N.K RRSTAT)

DIMENSION C(K),D(K,2),V(K,2),A(2,2),0(K)
DIMENSION X(N),Z(N)

INTEGER OBS(K),MUM{K)

REQUIRE X(I) IN ASCENDING ORDER:
CALL VSRTA (X,N)
CALCULATE THE PARAMETER ESTIMATES:

FIRST CONSIDER THE CASE WHERE BOTH PARAMETERS ARE UNKNOWN.
THE MEAN AMD STANDARD DEVIATION*PI/SQRT3 WILL BE THE INITIAL
USED IN THE ITERATIVE NUMERICAL SOLUTION:

XN=N

XK=K

SUM1=0.0

SUM2=0.0

DO 1 I=1,N
SUM1=SUM1+X(I)
CONTINUE

TH1=SUM1/XN

DO 2 I=1,N
SUM2=SUH2+(X(I)—THl)*(X(I)—THl)
CONTINUE
STD=SQRT(SUM2/XN)
PI=3.14159265
TH2=(PI/SQRT(3.0))*STD
TH2=STD

BEGIN THE ITERATIVE PROCESS TO FIND TH1,TH2:

COUNT=0.0

COUNT=COUNT+1.0

CALL FUNS(X,N,TH1,TH2,FXY,GXY)

CALL DERIV(X,N,TH1,TH2,FPX,FPY,GPX,GPY) :
XS=((GXY*FPY)- (FXY*GPY) )/ ( (FPX*GPY)~(FPY*GPX))
YS=((GXY*FPX)- (FXY*FPX))/((FPY*GPX)-(FPX*GPY))
TH1S=TH1+XS

TH25=TH2+YS

DIF1=ABS(XS)

DIF2=ABS(YS)

IF (COUNT.GT.30.) GO TO 52

IF ((DIF1.LT..0001).AND.(DIF2.LT..0001)) GO TO 50
TH1=TH1S
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TH2=TH2S

GO TO 51

WRITE (6,294) ’
FORMAT(//2X,"' ITERATION DOES NOT CONVERGE')
CONTINUE

THE FINAL PARAMETER ESTIMATES ARE:

TH2=(SQRT(3.0)/PI)*TH2

TRANSFORM THE 'X' POINTS TO STANDARD 'Z' POINTS:

DO 3 I=1,N
Z(1)=(X(I)-TH1)/TH2
CONT INUE

PREPARE TO CALCULATE THE STATISTIC. FIRST REQUIRE THE

STARDARDIZED BOUNDARIES, C(I)'S:

CZER0=-999999.0

KM1=K-1

DO 91 I=1,KMI

XK=K

XI=1
C(1)=-ALOG((XK/XI)-1.0)
CONT INUE

C(K)=999999.0

TO DETERMINE THE NUMBER OF OBSERVATIONS PER CELL, FIRST

CALCULATE NUMBER OF OBSERVATIONS LT C(I)
IS=1

T.TEMP) GO TO 96

CONTINUE

IF((I.EQ.N).AND.(Z(I).LT.TEMP)) GO TO 95
NUM(J)=1-1

IS=1

GO TO 4

NUM(J)=N

IS=N

CONTINUE

CALCULATE NUMBER OF OBSERVATIONS PER CELL
0BS(1)=NuM(1)

DO 6 I=2,K
O0BS(I)=NUM(I)-NUM(I-1)
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DETERMINE D(I,J)'S (HAVE STANDARD Z POINTS AND PARAMETERS THI1,

DO 7 I=1,KM]
Q(I)=EXP(-C(I))/((1.0+EXP(-C(1)))**2)
CONTINUE

]
———
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1)-0(1))
*Q(1)+C(
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I-1)*Q(I-1)

DETERMINE A(I,J)'S

SuM1=0.0

SUM2=0.0

SuM3=0.0

DO 8 I=1,K

SUM1=SUM1 + D(I,1)*D(I,1)
SUM2=SUM2 + D(I1,2)*D(I,2)
SuM3=SuM3 + D(I,1)*D(I1,2)
CONTINUE

PI=3.1415926536
G1=(3.0+PI**2)/9.0
DD=(G1-XK*SUM2)*(1.0/3.0-XK*SUM1 )~ ((XK*SUM3)**2)
CC=1.0D0/DD

=CC* (G1-XK*SUM2)
=CC*XK*SUM3

=A(1,2)
=CC*(1.0/3.0-XK*SUM1)

READY TO CALCULATE RRSTAT

SUM4=0.0
SUM5=0.0

SUM6=0.0

XNK=XN/XK

XKN=XK/XN

DO 9 I=1,K

X0BS=0BS (1)

SUM4=SUM4 + (XOBS-XNK)*(XOBS-~XNK)
SUM5=SUM5 + (XOBS-XNK)*D(I,1)
SUMB=SUM6 + (XOBS-XNK)*D(I,2)
CONT INUE

Q5=SUM5*SUMS5

Q6=SUM6*SUM6

Q7=SUM5*SUM6

TH2)
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SUBROUTINE TO CALCULATE THE VALUES OF F(A,B) AND G(A,B):
SUBROUTINE FUNS(X,N,A,B,FXY,GXY)
DIMENSION X(N)

XN=N

SUM1=0.0

SUM12=0.0

PI=3.14159265

DO 100 I=1,N
C=EXP((PI*(X(I)-A))/(B*SQRT(3.)))
D=1./(1.+C)

SUM1=SUM1+D

E=(1.-C)/(1.+C)

F=(X(1)-A)/B

D2=E*F

SUM2=SUM2+D2

CONT INUE

FXY=SUM1/XN

GXY=SUM2/ XN

FXY=FXY-.5

GXY=FXY+(SQRT(3.)/PI)

RETURN

END

SUBROUTINE TO CALCULATE THE DERIVATIVES OF F(A,B) AND G(A,B):

SUBROUTINE DERIV(X,N,A,B,FPX,FPY,GPX,GPY)
DIMENSION X(N)
PI1=3.14159265
CON=PI/(SQRT(3.)*B)

XN=N

SUM1=0.0

SUM2=0.0

SUM1A=0.0

SUM2A=0.0

DO 100 I=1,N
W=DON*(X(I)-A)

EW=EXP (W)
SUM1=SUM1+EM/ (1., +EW)**2
DUDB=DON*( (A/B)-(X(I)/B))
SUM1A=SUMIA+(EW/ (1.+EW)**2)*DWDE
P1=W-W*EW
P2=1./(1.+EW)**2
P3=1.-W*EW-EW
P4=1./(1.+EW)
PROD=-1.*P1*P2*El{+P3*P4
SUM2=SUM2+PROD
SUM2A=SUM2A+( PROD*DWDB)
CONTINUE
FPX=(CON/XN)*SUM1
FPY=SUMIA/XN*(-1.)
GPX=SUM2*(-1./ (B*XN))
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GPY=SUM2A* (SQRT(3.)/ (XN*P1))
RETURN
END
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vi. Subroutine RREVD

THIS SUBROUTINE TAKES THE INPUT DATA X AND CALCULATES THE
RAO ROBSON STATISTIC RRSTAT. TO TEST FOR THE EXTREME VALUE
DISTRIBUTION N IS THE NO. OF DATA POINTS AND K IS THE NUMBER
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OF CELLS.

SUBROUTINE RREVD(X
DIMENSION X(N),XX
DIMENSION C(K),D(
DIMENSION Q(K)

(K)
)

,N,K,RRSTAT ,PEAR, TH1,TH2)
N),Z(N)
QZ)QA( )

,NUM(K)

(
K
INTEGER OBS

REQUIRE X(I) IN ASCENDING ORDER

CALL VSRTA (X,N)
CALCULATE THE PARAMETER ESTIMATES.

VAR=0.0
SUM=0.0

XN=N

DO 33 I=1,N
SUM=SUM + X(I)
CONTINUE
TH1=SUM/ XN

DO 22 I=1,N
XX(1)=X(1)-TH1
VAR=VAR+(XX (I)*XX (1))
CONT INUE

STD=SQRT (VAR/(XN-1.0))
TH2=STD/1.3

CALL THETA(X,N,TH2)
CALL ZI(X,N,TH2,TH1)

STANDARDIZE THE X VALUES: Z=(X-TH1)/TH2

DO 1 I=1,N
Z(I)=(X(1)-TH1)/TH2
CONTINUE

REQUIRE STANDARDIZED CELL BOUNDARIES C(I)'S

CZER0=-999999.0

KM1=K-1

DO 2 I=1,KkM1

XI=1

XK=K
C(I)+-ALOG(-ALOG(XI/XK))
CONTINUE

C(K)=999999.0
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TO DETERMINE THE NUMBER OF OBSERVATIONS PER CELL, FIRST
TO CALCULATE THE NUMBER OF OBSERVATION LT C(I)

15=1
DO 4 J=1,K
TEMP=C(J)

DO 5 I=IS,N

IF(Z(1).GT.TEMP) GO TO 50

CONTINUE
IF((I.EQ.N).AND.(Z(I).LT.TEMP)) GC TO 51
NUM (J)=1-1

15=1

GO TO 4

NUM(J ) =N

1S=N

CONTINUE

o~

NOW CALCULATE THE NUMBER OF OBSERVATIONS PER CELL
0BS({1)=NUM(1)

DO 6 I=2,K

OBS{I)=NUM(I)-NUM(I-1)

DETERMINE D(I,J)' S HAVE STANDARDIZED DATA POINTS AND PARAMETERS
TH1 AND TH2.

I)-Exp(-C(1)))

Mo =0

Q(I)

Mmoo 1 Q.o

PREPARE TO CALCULATE A(I,J)'S:

EC=.577215664
P1=3.1415926536
SUM1=0.0

SUM2=0.0

SUM3=0.0

DO 8 I=1,K

SUM1=SuM1 + D(I,1)*D(I,
SUM2=SuM2 + D(I,2)*D(I,
SUM3=SUM3 + D(I,1)*D(I,
CONTINUE

C1=PI*PI/6.0

1)
2)
2)
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C2=1.0-EC
C3=C1+C2*C2
T1=C3-XK*SUM2
T2=1.0-XK*SUM1
T3=C2+XK*SUM3
DD=T1*T2-(T3*T3)
CC=1.0D0/DD

CALCULATE A(I,J)'S:

T
T

I| Il non

A(1,1
A(1,2
A(2,1
A(2,2
PREPARE TO CALCULATE THE INPUTS FOR RRSTAT

SUM4=0.0

SUM5=0.0

SUM6=0.0

XNK=XN/XK

XKN=XK/XN

DO 9 I=1,K

XOBS=0BS (1)

SUM4=SUM4 + (XOBS-XNK)*(X0OBS-XNK)
SUM5=SUM5 + ((XOBS-XNK)*D(I,1))
SUM6=SUM6 + ((XOBS-XNK)*D(I,2))
CONT INUE

Q5=SUM5*SUM5

Q6=SUM6*SUM6

Q7=SUM5*SUM6

READY TO CALCULATE RRSTAT:

RRSTAT=X KN*SUMA+X KN*XK*Q5*A (1,1)+2.0*XK*XKN*Q7*A(1,2) +XKN*XK*Q6*A(2,2)
RETURN
END

SUBROUTINE THETA (X,N,T)
DIMENSION X(N)
WRITE(6,100)
FORMAT(7X,'T"',11X,'T1',5X, 'COUNT")
WRITE(6,200)

$1=0.0

COUNT=0.0

IF(T.GT.1.8) T=T/1.5

Do 10 I1=1,N

S1=S1+X(I)

CONTINUE

S1=S1/N

$2=0.0

$3=0.0
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COUNT=COUNT+1.0
DO 20 I=1,N
E=EXP(-X(I)/T)
S2=S2+X(I)*E
S3=53+E

20 CONTINUE
T1=S1-S52/S3
WRITE (6,200) T,T1,COUNT
T1=(T+T1*2.0)/3.0
FORMAT (2X,3F12.6)
Z=ABS(T-T1)
T=T1
IF (COUNT.GT.20.0) GO TO 31
IF (Z.LT.0.001) GO TO 30
GO TO 15

30 CONTINUE

WRITE (6,300) T

300 FORMAT(/2X,'T =
RETURN

31 T=1.0
WRITE (6,700)

700 FORMAT (/2X,'ITERATION DID NOT CONVERGE')
RETURN
END

',F12.6)

SUBROUTINE ZI(X,N,T,Z)
DIMENSION X(N)
$=0.0
DO 10 I=1,N
S=S+EXP(-X(1)/T)
10 CONTINUE

Z=-T*ALOG(S/N)
WRITE (6,100) Z

100 FORMAT(2X,'ZI=',F12.6)
RETURN
END
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