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Abstract

A Computed Tomography scan of a sawlog produces a cross-
sectional density map. Image processing techniques,
directed by knowledge about the internal structure of
logs, can be applied to segment a CT-scan into regions
corresponding to good wood and regions corresponding to
defects, such as knots and holes. This thesis describes
algorithms necessary to interpret a computed tomography
scan of a sawlog. Results are presented to show the
algorithm's robust performance on 1og samples of diffeking

wood species and water content.
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1. Introduction

In an era of declining quantity and quality‘of sawlogs, it
is important to mill sawlogs to méximize the yield of usable
lumber. Internal defects in the log, such as knots or Eot have
to be determined and avoided when the sawlog is cut. Computed
Tomography scans of logs non-destructively reveal the internal

structure of growth rings, knots, and rot.

In this thesis, algorithms capable of interpreting a
Computed Tomography scan of a log are described. 1In
particular, they determine the high density regions
corresponding to knots, the low density regions corresponding
to cracks and holes, and the clear wood and rotten wood in the .
remaining regions of medium density. These algorithms
incorporate knowledge about the internal structure of logs to

guide the CT-scan image interpretation system.

It should be noted that the research described in this
thesis represents the first step in automating the process of
determining cutting strategies for sawlogs. The algorithms
presented here interpret a single CT-scan image of a log. Work
remains to be done on linking adjacent interpreted CT-scan
images into a complete three-d%mensiona] model of the log,
which could then be used to determine the optimal cutting

strategy.



F

The organization of this thesis is as follows. First,
research related to CT-scan image interpretation by computer
will be discussed. After this, a brief introduction to the
International Imaging Systems (IIS) image processing system,
which was used extensively in this research, wi]]_be presented.
Next, algorithms to interpret CT-scan images of logs will be
presented, including implementation details. Finally, the
results of interpreting a wide variety of log samples,

including different species, will be shown.



2. Related Research

Computed Tomography scanning is an X-Ray imaging fechnique
primarily used in the field of bio-medical imaging. A CT-scan
is a cross-sectional view of an object reconstrucfed from a
number of X-Ray projections. A CT-scan is typically displayed
as a digital image, with pixel values corresponding to the X-
Ray attenuation of the object at that particular point. To be
more preéise, a pixel value corresponds to the average .
attenuation in the volume of the object corresponding to the
boundaries of the pixel and the thickness of the CT-scan. CT-
scan cross-sections of an object can be as narrow as 2 or 3 mm
(Gordon [1975] Katz [1978] Herman [1979]). Since X-Ray
.attenuation is propbrtiona] to density, the output of a CT-scan

can be treated as a density map.

In this research the CT-scanning process itself was not of
concern. Various factors, such as beam hardening (the upward
shift in the average energy level of XQRays as they pass
through an object), the number of projections, and the choice
and accuracy of a reconstruction algorithm could, however, havé
substantial effects on the.quality and cost of the scans. The
sample logs analysed in this thesis were scanned using a CT-
scanner at the University of éritish Columbia Acute Care
Hospital. When the sample logs were scanned, appropriate
parameters were chosen by the scanninglunit staff which they

felt yielded the best results in terms of image resolution and



contrast.

Machine interpretation of medical‘CT-scans has been
studied and there are some working computer intérpretation
Systems. Generally, their goal is to locate abnormalities in
CT-scans of human anatomy. Typical results are Hwang t1979],
Rhodes [19797], and Selfridge and Prewitt (Se]fridge [1981]).
Hwang segments single CT-scans into regions to locate
abnormalities, as do Se1fridge and Prewitt, while Rhodes

determines three-dimensional structures from adjacent CT-scans.

Hwang segments CT-scans in two phases. The first phase
divides the scan into atomic regions by linking adjacent pixels
of similar intensity together. The similarity measure is
determined by locating the local maxima of the histogram of all
pixel values and setting the similarity boundaries half wéy-
between adjacent local maxima. The second phase is to
determine larger regions by using the atomic regions to mésk

the texture Tocally.

Rhodes implements a.simpler technique, on adjacent CT-
scans, which 1inks neighbouring pixels with similar density
values to form three-dimensional volumes. Special control
structures are needed to corrgct1y handle the case where a
three-dimensional region grows through a particular CT-scan

image and then re-enters it later at a different location.



Selfridge and Prewitt implemented a computer system to
"delineate specific organs by incorporating some anatomical
knowledge". They describe their algorithm as "regionally
iterative, adaptive boundary—de]ineétion for specific
structures". In particular, they tailored these programs to
the detection of kidneys in abdominal CT-scans. Using the
assumption that human organs are of uniform density throughout,
they initially select a region in the vicinity of the known
location of the kidneys. This region of uniform density mugt
have an area‘of at least nine pixels. They used region growing
from this initial position to extend the boundary of the region
by iteratively cycling through all adjacent boundary points.
For each two adjacent boundary points, a calculation is
performed at the mid-point between them to determine if the
midpoint is inside or outside the region of interest. If the
midpoint is inside the boundary, then the boundary at that
point is moved out. The reverse is true if the mid-pdint is
outside the boundary.

"Reasonableness of performance can be monitored as the
iteration progresses. For example, inappropriate
initial points or parameter settings might be detected
by subsequently generated implausible changes in area
or boundary shape. "The algorithm could search for a

starting point that leads to stability" (Selfridge
[1981] p. 268).

~

The initial regions and parameters, as well as the adaptive
boundary delineation parameters are set by the users of the

system. Presumably parameter settings would become fixed over



time as optimal values for human CT-scans are found.

Whether explicitly stated or not, these systems re]y on
the fact that CT-scans of human anatomy possess certain
characteristics that can be exploited. The most obvious of

these is the consistency of human anatomy across subjects.

Region growing has also been used in the interpretation of
the 109 scans, although much differently. The boundary of the
initial regions is determined by histogram analysis, rather
than region uniformity. Further, regions were grown to remove
holes, tovmerge suitable adjacent regions, and, more
importantly, to enable their boundaries to be described in a
simple manner. As well, the parameters which controlled thé

region growing are generated automatically.

Although CT-scans have not been applied in a sawmilling
environment to date, tonventional X-Rays have been appiied, at
least on an experimental basis since the mid 1960's WWP [1968],
Caplan [1967a], Caplan [1967b], and Mi]ier [19647. X-Rays were
used to automate the sawmilling process in the following way.
After the bark was removed from a log, it would pass through a
sensor station. The station consisted of two television
Cameras viewing opposite sides\of the 1og, and a conventional
X-Ray device. The three images (two surface views and the X-
Ray) were presented simultaneously on a group of three

monitors. A human operator viewing all three screens as the



109 passed through the sensor station would press one of four
buttons to indicate the grade of the log. This system was
technologically advanced for the mid 1960's, but due to the
advances in Computed Tomography and the work on computer image
interpretation the process of determining the intérna]
structure of a sawlog can now be totally automated, and the

resulting interpretation better utilized.

CT-scanning has recently been applied in the field of
non-destructive testing (Ellinger [1979], Hopkins [1981],
Reimers [1980], Kruger [1978a], and Szymani [1981]). There is
also related research on the development of Computed Tomograbhy
devices for industrial applications (Kruger [1978b]). It is
hoped that industrial CT-scanners will be less costly than
medical scanners, since 1éss projections may be necessary if

higher radiation levels are used.

A CT-scan of a 1o0g reveals its internal structure in
surprising detail. In addition to pointing out the sujtabi]ity
of wood for CT-scanning, Hopkins [1981] also suggests histogram
analysis of various regions of the log as a possible
interpretation method. This method is inadequate for the
complete analysis df the internal structure of a log, since no
mention is made of how these regions are to be determined, nor
how to compensate for differing log species or water content.

The classification of rotten wood is also not discussed.



3. Research Equipment

If this thesis were to be implemenfed commercially, rapid
execution of the CT-scan interpretation programkwould be a
necessity. CT-scanning a thirty‘foot log every six inches, for
example, wouldbgenerate sixty scans. These would have fo be

interpreted in only a few seconds.

The execution time of the interpretation algorithms was
reduced to approximately 90 seconds by utilizing an . |
International Imaging Systems model 70F interactive digital
image processing system (IIS). Almost all of the log
interpretation system uses the capabilities and features of the

IIS.

The IIS can be logically divided into two functions. Thev
first function displays the data stored in its image channelﬁ.
The second functfon performs image processing funétions, as
controlled by the host computer. The display process will be

described first.






Many of the display features of the IIS are table driven.
This is a very flexible and rapid way of mapping a given set of
jnput values to a set of output values. An example of this 1is
the lookup table (LUT) which takes as input pixels from'an
jmage channel. The LUT maps the input values to output values
and passes them to the pipeline colour processors. There are
three LUTs for each channel, one for each of the three pipeline
colour processors. In the default case, these LUTs perfprm an

indentity mapping between input and output pixel values.

There is also a special-purpose graphics channel, ‘
consisting of four 512 by 512 bitplanes, They can be used to
display text on the colour monitor. More importantly, the 1's
in a particular bitplane can be used to form a region of
interest (ROI). ROI's are used for image processing by
controlling fhe feedback arithmetic/logic unit, described

later.

Each pipeline colour processor takes as jnput the sum of
all the channels displayed through it. A pipeline processor
can scroll and zoom any channel displayed through it. The zoom
function is implemented in hardware and magnifies the image
channel by a factor of 2, 4, of 8. Image scrolling is simply a
re-definition of the origin (the upper left corner) of the
display. The II1S allows images to wrap around the display.

For example, the parts of an image scrolled off the bottom of

the display would reappear at the top of the display. After

- 10 -



the image channels displayed through a pipeline colour
processor have been scrolled, zoomed, and summed, they are
mapped through another table, called the output.functionvmemory
(OFM). OFMs function in the same manner as LUTs. Thelbutput
of the OFM for each of the pipeline colour processors is fed
through a D/A converter, which generates the red, green, and

blue video signals which drive the monitor.

The second function of the IIS is to process images stored
in its image channels. This processing can be divided into two
groups: that done at image display time, such as image
inversion (negation), false or random colouring, and contrasf
balancing; and that requiring image feedback and accumulation
through the arithmétic/]ogic unit, such as image convolution

and region growing.

Simple image processing, which can be done at image
display time, is implemented by modifying the lookup tables
assdciated with a displayed channel or the output function
memory of a pipeline co]ouf processor. For example, to perform
image inversion, the appropriate LUT is loaded such that the
lowest pixel value (zero) is mapped to the highest value (255),
and the highest to the lowest. Although the image data has not
been altered, an inverted image will be displayed. Note that
this image inversion is re-cdmputed every 1/30th of a second.
In contrast, more complex image processing typically requires

the change of the original image channel data, or the

- 11 -



accumulation of altered image data in another channel by using

the feedback arithmetic/logic unit.

The IIS has an arithmetic/logic unit (ALU) @hich can
process all of the pixels in an image in one video fraﬁe time
(1/30th of a second). The ALU has 2 image inputs, the output
of one of the pipeline colour processors, and the éccumulator.
The choice of which pipeline colour processor output to use as
input to the ALU is under user control. The accumu]atof is the
unprocessed (by the display hardware) contents of 1mége channel
1, or alternatively channel 1 and 2 treated as a 16 bit ‘
quantity. The input and ALU output data can have 16 bits of
accuracy. When a 16 bit accumulator is used, image channel 2
contains the 8 most significant bits of the data, and image
channel 1 the 8 least significant bits. The two image channels
are passed together to the ALU as a single 16 bit quantity.

The ALU can be loaded wifh any of over 40 functions. The input
and output of the ALU can be further modified, at the
discretion of the user, to scale or sigﬁ extend the data. As
mentioned, a region of interest (RQI) bitplane from the
graphics channel can be used to alter the performance of the
ALU. In this case, two ALU functions are loaded, one function
to be performed when the ROI bjtp]ane pixel contains a 1, and
another function to perform when the ROI bitplane pixel
contains a 0. ROIs are used in the interpretation of CT-scans

to select the output of an image-processing step (such as

- 12 -



convolution) oniy in specific regions (such as Tow density).
There is another table associated with the ALU, called the
output select table (0ST), which allows the user.to select
different outputs from the ALU depending on the contents of the
ROI bitplane, and ALU status flags (such as carry overflow on
addition). These IIS features are used to perform image

convolutions and other complex image processing functions.

Image convolution is the application of a two-dimensional
moving filter to an image. As an example of digital image

convolution, consider the following 3 by 3 mask:

This image smoothing maék works in the following way.  A pixel
in the convolved image is 0.8 times its value in the original
image, plus 0.4 times the pixel values of each of its 8
adjacent neighbours. The range of pixel values in the
resulting image is four times as large as that in the initial
image. If all the pixel values in the initial image under the

mask are 255 then the pixel value in the resulting image is:

0.8 * 255 + 8 * (0.4 * 255)

1020 (1)

The convolution can be implemented using the IIS as follows:

- 13 -



Assume the image is in channel 3.

The result of the convolution will be accumulated in

channels 1 and 2 (recall that a channel can hold 8 bits

of data, but the maximum result here may be 10 bits).

Clear channels 1 and 2.

Load the alu with the add function.

For each value in the mask:

- Write an output function memory (OFM) table that has
a slope equal to the mask value. That is: | |
OFM_output_value = channel_input_value * mask_value.

- Scroll the input image (channel 3) so that the
pixel corresponding to the mask value is aligned with
the central pixel.

- Feed the image back through the alu, adding in the
current contents of channels 1 and 2, and store the
result back into channels 1 and 2.

At this point, channels 1 and 2 hold the resulting

smoothed image. We need to scale this image to 8 bits

accuracy. |

Write LUT tables that scale the data in channels 1 and

2 to the correct range. That is:

LUT _output_value = inpuf_channe]_va]ues / 4.

Feed the output of these LUTs back through a linear

mapping OFM and store the result in channel 3.

Channel 3 now contains the smoothed image.



This image smoothing is accomplished in only 11 feedback
operations (each feedback completing in 1/30 second): 1 to
clear channels 1 and 2, 9 to perform the convolution, and 1
more to store the resulting image in channel 3. If this two-
dimensional smoothing operation were performed on an array of
data values in a conventional computer, it would be necessary
to perform 2,359,296 floating point multiplications and 262,144
floating point divisions. Any image processing operation that
can be specified as an image convolution can be imp]eménted

using the above method, and executed very rapidly on the IIS.

A VAX 11/750 is the host computer, providing storage for
image files and interpretation programs. There are a group of
software subroutines, as well as a large number of programs,
which provide the interface between the user and the IIS. This
software‘is supported under the UNIX operating system

environment.

- 15 -









striking difference between the two CT-scans of samples from
the same hemlock tree is due to thé two types of wood in a
1iving tree: heartwood and sapwood. Sapwood is the outer layer
.of growth in a tree. As its name implies, sapwood contains
more sap than heartwood. Since tree sap in green wood has a
very high water content, CT-scans of green wood,.-as shown in
Figure 3, show a brighter band of higher density wood. As a
log sample dries, the water content, and hence the density, of
the sapwood decreases, until the density approaches the density
of the heartwood. The algorithms can account for the possible
density difference between heartwood and.sapwood, and
compensate accordingly. Thus, the amount of time between when
a log is cut and CT-scanned does not affect the program's

performance.

The computer progrém segments a CT-scan of a 1og into
regions of four types. .These are good wood, rotten wood;
knots, and holes and cracks. Good wood is free of knots and
rot, and is indicated in CT-scans by uniform concentric growth
rings about the center of growth. Holes, cracks, and other low
density regions are visible in CT-scans as uniformly dark
areas. Knots are high density elliptically-shaped regions, and
are visible as brighter areas_in CT-scans. The major axis of
this elliptically shaped region is always oriented toward the
center of growth. Rotten wood may be of higher, lower, or

varied density, depending upon water content, and appear in



CT-scans as lighter, darker, or mottled regions, respectively,
There are also no growth rings evident in regions of rotten
wood. These real-world features, in part, are used to guide

the interpretation process.

The CT-scan interpretation process consists of a number of
distinct steps. The first is histogram ana]ysig, which resuilts
in three pixel values. They grossly divide the image into four
types of regions. They are, from lowest the highest dénéity:
(i) low density areas, corresponding to the air surrounding the
1og and internal holes and cracks; (ii) lTower density areas
corresponding mainly to low density good wood, but possibly
including some rotten wood; (iii) medium density areas,
corresponding to good wood; and (iv) the high density remainder
of the CT-Qcan, corresponding to possible knots. Further
processing of all but the first type of region is required to

differentiate between good wood, knots, and rot.

4.1. Histogram Analysis

Histogram analysis determines the threshold values used-to

segment the CT-scan image into the four basic types of regions.






included, the leftmost peak is not present in Figure 4, Its
presence or absence does not affect the histogram analysis. At
the far right of the histogram is a peak which indicates the
~average density of the knot regions. This}peak,in the
histogram may not be present in some CT-scans if the Tog sample
contains no knots. Again, the histogram analysis can

accommodate the presence or absence of this high density peak.

The middle area of the histogram corresponds to good wood,
but may also contain some rotten wood. This regioﬁ contains
one or tﬁo peaks. The leftmost peak corresponds to the average
density of heartwood, while the rightmost peak corresponds to
the average density of sapwood. As a log sample dries, the
average density of the ;apwood decreases, eventually causingF
.the peaks to merge. Thus, depending on the age of the 1ogv
sample, the rightmost portion of this middle area of the
-histogram may contain a distinct peak or may contain a smooth

plateau of the right shoulder of the left peak.
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image. Here we wish to find the points of maximal change of
slope, or curvature. Hence, we take the third derivative of
the histogram and locate its zero-crossings. These zero-
crossing points correspond to points of maximum histogram
curvature, which are generally the maxima (peaks) and minima
(valleys) of the histogram. Since we seek only points of
positive curvature (the valleys) in the original histogram, we
only consider zero crossings of the third derivative at points
with non-zero second derivatives. The first, second, and third
derivatives of the histogram are found by convolving the
original histogram data with the first, second, and third
derivatives of a smoothing Gaussian function. The Gaussian

function is 50 pixels wide, with a sigma value of 8.

The lower boundary between air and wood is easily found in
the histogram using this method. It is the leftmost zero-
crossing of the third derivative of the histogram. The upper
boundary between possible good wood and possible knots is
slightly more difficult to find. This is due to the
possibility of there being no knots in the log sample. If
there are no knots, the upper region of the original histogram
will be relatively flat and near zero in value, producing no

discernible peak for knots.
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is used as the threshold value to differentiate good wood from
possible knots. If the two pixel values of the zero-crossings
are both greater than the possible density of knots, then the
lesser of these two (corresponding to the left edge of the knot
peak) is used as the threshold value to differentiate good wood
from possible knots. In the case of the log sample of aged
hemlock, the density value for the knot region is so high that
the right shoulder of the knot peak is not present.
Fortunately, this case is analytically identical to the case

when no knot peak is present.

The remaining density value to be determined from the
histogram is the boundary between the low density good wood
which may contain some rotten wood, and completely good wood.
As rot progresses, it causes a breakdown and decay of the

internal structure of the log. If the internal decay of the
log has not progressed to a point where a hole is created, then
the breakdown has at least caused a reduction in wood density
to below that of the sound heartwood. A density value is

located that is greater than that of the air external to the
i]og, but less that the peak value for heartwood. It is used to
"threshold the region of good wood which may contain some rotten
wood. The upper boundary of the low density good wood,
possibly containing some rotten wood, is calculated as the
density at the first zero-crossing of the second derivative of

the histogram greater than the density previously calculated as

- 26 -






~witle En Figure 9. A% with ath -
' Results of Histogram Analysis
(1Tog sample of green hemlock)
The original histogram is shown in green. The first,
second, and third derivatives of the histogram are
shown in blue, red, and yellow, respectively. The four
boundary points determined by histogram analysis are
shown in red.
Figures 8 and Figqure 9 show the results of histogram analysis.
The original histogram is shown in green. The first, second,
and third derivatives are show in blue, red, and yellow,
.respectively. The pixel values that result from the
calculations described in the text are show as vertical red
bars. In both Figure 8 and Figure 9 the lesser of the two

upper values is discarded.



4.2. Possible Knot Analysis

High density regions, possibly cofresponding to knots, are
further processed to determine the‘]ike]ihood that they are
knots. Knots are roughly elliptical in shape, ahd genera]]y
have their majbr axis pointing towards the center of growth of
‘the log. The center of growth of a log is the ceﬁter of the
concentric growth rings. In most log samples, the center of
growth is near the geometric center of the log. Following
Baumgart [1974], the major and minor axes of inertié, and the
moments of inertia are determined for each region corresponding
to a possible knot. These values, combined with other
measures, are used to calculate an overall measure of the
possibility of a high density region being a knot. These
calculations cannot be done using the IIS, and must therefore
be implemented using the VAX 11/750 associated with the IIS.
Since digital image proce§sing can be very slow on a .
conventional computer, a very efficient representation of these
possible knot regions was needed. An algorithm, described in
the next section, was developed and implemented which
approximates arbitrary regions by convex regions with straight

sides in reqular directions.
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Figure 11.
My Possible Knot Regions -
from Histogram Analysis
(1og sample of green hemlock) v
The original CT-scan is displayed in magenta. The high
density areas, which are possibly knots, are displayed
in white.
Figures 10 and 11 show the binary regions corresponding to
possible knots as determined by the histogram analysis. A
binary image was formed using the density threshold. A pixel
is set to one (on) if the corresponding pixel in the CT-scan
has a value in the possible knot range, and set to zero (off)
elsewhere. When binary image regions are generated by
thresholding, as in this case, the boundaries and extent of the
regions are very ill-defined. In an effort to simplify the
regions, the region boundaries are smoothed and adjacent

regions are joined. Since knots are roughly elliptical in

shape, their shape can be approximated by convex regions.



iterative, locally parallel operation has been devised that

grows/prunes arbitrary regions into regqgular convex regions.

These regular convex regions are defined as follows. Each
region is convex and has 8 sides; however, the length of any
side may be zero. The direction of each side is limited to one

‘'of 8 directions (North, Northeast, East, ...).

This operator is locally parallel since the output at each-
pixel only depends on its initial value, and the initial values
of its 8 adjacent neighbours. This operator is iterative since
it is applied repeatedly until stable regions are obtained.’
The application of this operator to an image of stable regions
is equivalent to the identity transform. Stable regions are
always guaranteed to result after some number of applications

of the operator.

The 8—connected neighbours of a pixel are those eight
adjacent pixels in the eight directions (North, Northeast,
East, ...). The presence of the 8-connected neighbours to a
pixel can be encoded in 8 bits. Here is a possible encoding

scheme.



6 2
5 4 3
Figure 12.

Encoding Scheme for the 8-Connected
Neighbours of a Pixel

Bits O to 7 are set to one if the neighbour in that position
relative to the central pixel is present. Otherwise, the.bit
is set to zero. Since the values of these eight bits are one
or zero, there are 256 combinations of possible pixel patterns.
If we include the central pixel, with a value of one or zero,
there are 512 possible pixel patterns. However, there are many
redundant patterns in these 512, If we discard patterns which
are identical to another under a rotation by a multiple of 90
degrees, reflections of another pattern around a diagonal (NE-
SW or NW-SE), or .some combination of both, we reduce the 512

possible patterns to 102.
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Figure 13.
51 Unique 8-connected Neighbour
Pixel Patterns.
(central pixel not shown)
Figure 13 shows the 51 unique 8-connected neighbour patterns
determined from the 256 possible. The number under each
pattern is the numeric value assigned to it using the encoding
of Fiqure 12. The center pixel value has not been shown in

Figure 13. For each of these patterns, we decide whether to

turn the central pixel off, turn it on, or leave it unchanged.

This operator has been implemented on the IIS. An OFM is
used to scale the binary data to the appropriate power of 2
necessary to accumulate the data in a given bit position.
Using the horizontal and vertifa] scroll capabilities of the
binary data channel, in conjuhction with the proper 0FM, the
binary data can be fed back successively into an accumulator
channel, Thus, after eight feedback operations the accumulator

channel contains the necessary coding of the 8 connected
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neighbours of each pixel in the original binary data. This

neighbour encoded data, together with the original binary data
is then summed, passed through another pre-comﬂuted OFM, which
decides whether the pixel will bé zero, one, or unchanged, and

written over the original binary data channel.

For example, consider the pattern:

If the central pixel is 0 (a blank), then this pattern
represents a concavity in the boundary of the region, and the °
central pixel will be made a 1 (a #). If the central pixel 1is
al (a#), then this pixel will remain unchanged. Thus, if
pixel pattern 63 represents the location of the 8-connected
neighbours of the central pixel, then the central pixel will

always be turned on.

As another example, consider the pattern:

(1)

If the central pixel is 0 (a blank), then this pattern

- 36 -



represents a pixel next to a solitary pixel, or next to end of
a group of pixels, and should remain 0 (a blank). If the
central pixel is 1 (a #), then this pattern represents a pixel
at the end of a group of pixels, and should be made a 0 (a
blank). Thus, if pixel pattern 1 represents the location of
the 8-connected neighbours of the central pixel, then the

central pixel will always be turned off.

As a last example, consider the pattern:

(7)

If the central pixel is 0 (a blank), then this pattern
represents a pixel adjacent to a diagonal boundary of a region,
and the céntral pixel will be unchanged (a blank). If the
central pixel is 1 (a #), then this pattern represents a pixel
at the corner of the region, at the junction of horizontal and
vertical boundaries of the region, and the central pixel will
be unchanged (a #). Thus, if pixel pattern 7 represents the
location of the 8-connected neighbours of the central pixel,

then the central pixel will always be unchanged.

At each application of the operator, the new binary image
output by this operator is used as input for the next

application of the operator. This operator can be applied to a
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binary image approximately three times per second.

Figure 14. S
Possible Knot Regions e, _
after Region Growing e ®

L
e

(log sample of aged hem]ock)
The original CT-scan is displayed in magenta. The high
density areas, now with uniform shape, are displayed in
white.

This operator, although quite simple to specify and
implement, has some very powerful properties. The most
important is that a stable image will always result after a
finite number of applications of the operator. That is, after
some number of applications of the operator, successive
applications will not change\the resulting image. The number
of iterations necesséry to develop a stable image is
proportional to the maximum distance from the boundary of the

initial region to the boundary of the eventual convex region.



The initial high density regions may completely surround a

low density area, forming a hole. These holes are filled in as

the iteration continues. If the new uniform c6ﬁVex boundaries

of some initially distinct regions overlap, then these initial
> s o 0

regions are merged into a single uniform region. Single

pixels, or raows of pixels, are pruned.

Figure 15.
Ve Possible Knot Regions
after Region Growing
(log sample of green hem]ock)
The original CT-scan is displayed in magenta. The high
density areas, now with uniform shape, are displayed 1in
white.

Figures 14 and 15 show the possible knot regions (as determined

by histogram analysis) grown/pruned into convex regions.



4.2.2. Region Processing for Knot Measure

The previously grown regioné are processed, further to
determine a measure of the possibility that the region
corresponds toka knot. Because of the previous region growing,
the size and shape of regions is easily specified. Each can be
represented as a rectangle with a right isoceles triangle (of
possibly zero size) "missing" from each corner. A processed
region can be completely specified by the height and‘breadfh of
its bounding rectangle, the Tocation in the image of the upper
left corner of its bounding rectangle, and the size of each of
the "missing" corners (given as the length of the equal side of
the missing corner). Although the motivation for the following
calculations comes from Baumgart [1974], the actual algorithms.
are-adapted from Winston [1981]. The algorithms of Winston are
Spegified for a single binary region of arbitrary shape. They
are modified to process regions with standard convex shape.

The algorithms are simplified by ca]culating the values
reqUibed for the bounding rectangle, generally a simple task,
and then subtracting the values for each of the "missing"
corners. By simplifying these algorithms algebraically, we
reduce the computations required to a function of eight
variables. Therefore, this is.an implementation which will
calculate the required values in constant time, regardless of
region size. Details of the calculations performed here are

provided in Appendix A.
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Using the above algorithms, the following values are
calculated: the area of the region, the center of masS of the
region, the minimum and maximum inertia about the center of
mass of the region, and the angle of the principal axis of
inertia. The elongation factor of the region is calculated as
the difference of the minimum and maximum inertia divided by

their sum:

max. inertia - min. inertia .
elong. ct. = = : . " =
9. fact max. inertia + min. 1nertia ‘ (2)

The elongation factor of a circle is zero. The maximum value

possible for an elongation factor is one.

Recall that a knot is roughly elliptical in shape, with
its major axis pointing towards the center of growth. The kngt
measure is a measure of how nearly a particular region
satisfies the constraint of pofnting towards the center of
growth. A simple knot measure fs the angular difference
between the direction of the principal axis of inertia and the
line from the center of growth through the center of mass of
the region. For nearly circular regions (nearly octagonal
regions in our representation) the relative error in the
direction of the principal axis of inertia may be large.
Therefore we scale the angular difference by the elongation
factor so that the more circular the shape of a particular
region, less weight is given to the angular difference between

the principal axis of inertia and the 1ine from the center of
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growth through the center of mass of the region.

Since knots tend to occupy a significant local area of a
CT-scan of a 1og, .region area is used to prune out regions
"which may not be knots. Regions which are under 10 pixels in

area are not considered as knots.

Figure 16, remii.

e o Results of Possiblen"
o ° Knot Processing. A
(Tog sample of aged hemlock) Ve

The original CT~scan is displayed in magenta. The high
density areas are displayed in white. The principal
axis of inertia are displayed, together with the
calculated knot measures. Here a knot measure of .027
indicates that this region is a knot.

Figure 16 shows the results of the knot processing. The
region, its principal axis of inertia, and the calculated knot

measure are shown. Experimentally, over the log samples of



various species analysed, a knot measure of less than
approximately 0.3 indicates regions that are knots, while a
knot measure of greater than 0.3 indicates high density regions

that do not correspond to knots.

Figure 17.
Results of Possible
Knot Processing.
(1og sample of green hemlock)

The original CT-scan is displayed in magenta. The high
density areas are displayed in white. The principal
axes of inertia is displayed, together with the
calculated knot measure. Here knot measures of .107
and .285 indicate that these regions are knots.

Figure 17 also shows the results of region growing and possible
"knot region processing. Notexthat some of the sapwood which
was initially found to be possible knots can be discounted
because of the knot measure. That is, high density sapwood,

when located as possible knots by the histogram analysis, is



typically a region parallel to the growth rings, and hence
perpendicular to regions corresponding to knots. Also, many of
the small possible-knot regions generated by the region grower

have been eliminated because of their small area.

4.3. Possible Good Wood Analysis

The remainder of the CT-scan of a log, after the low and
high density regions have been identified, is initially taken
'to be an area of good wood, with the possible exception of some
rot. Good wood contains uniform concentric growth rings which
show up distinctly in CT-scans. Rotting wood, on the other
hand, causes a breakdown in the internal structure of a log,
and thus destroys the growth rings. This difference, in
combination with density information, is used to identify

rotten wood.

The growth rings in a CT-scan of a log present a locally
uniform texture. Since growth rings afe destroyed by rot, a
possible measure of good wood is the uniformity of the growth
ring texture. To compute this texture measure, the growth
rings in the CT-scan of a log are first found by applying an
edge detector. The resulting\edge elements are then
interpreted to determine a directional uniformity measure.
This structural measure of texture is similar to the work of

Nevatia [1979], Nevatia [1981], and Tomita [1979].



4.3.1. Growth Ring Edge Detection

In order to process the regions of possib[e good wood, it
was necessary to first determine the edge elements in the‘CT-
scan of the Tog. The edge detector used here waé first
proposed by Marr and Hildreth (Marr [1979]). Edges are located
at the zero-crossings of the Laplacian (sum of thé unmixed
partial second derivatives) of the smoothed original CT-scan
image. Taking the Laplacian of the smoothed CT-scan image is
equivalent (Castleman [1979]) to convolving the original CT-
scan image with the Laplacian of the two-dimensional Gaussian
smoothing function, and this method is employed here. After
convolving the CT-scan with the Laplacian of the Gaussian
function, the zero-crossings must be located. Zero-crossings
are the boundaries between the positive and negative regions in
the convolved image. Zéro—crossings are found by convolving
the result of the first convolution with a small mask wh%ch
locates those pixels with a non-negatiye value (positive or
zero) which have pixels with a negative value above, below, or

beside them.

This edge detector‘is implemented on the IIS in two
stages. In the first stage, the original image is convolved
with the Laplacian of a twoadfmensiona1 Gaussian function. 1In
the second stage, the zero-crossings between the positive and

negative regions of this convolved image are determined.
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Figure 18.
Cross-Section of the Laplacian of a Two-Dimensional
Gaussian Function Convolution with this mask is used to
determine the second derivative of the of the original
CT-scan.

The Laplacian of a two-dimensional Gaussian function has
the shape of a inverted Mexican hat, as shown in Figure 18. It
can be pre-computed, and is stored as a two-dimensional array
of floating point values. The result of this convolution is a
16-bit signed-value image in channels 1 and 2. The next stage
is to determine the zero-crossings, and hence the edge

elements.

For edge detection, we are only interested in the sign of
the result of the convolution with the Laplacian of the two-
dimensional Gaussian function, since the zero-crossings are the

boundaries between the positive and negative regions. The



magnitude of the convolived image will be used Tater. An edge
element is defined as a pixel in a non-negative region of the
convolved image which has, as a 4-connected neighbour, a pixel

in a negative region of the convolved image. Edge elements can

be found as follows:

- write a LUT to create a binary image of the convolved
image, such that a zero indicates a non-negative region,
and a one indicates a negative region.

- convolve this binary image with the mask:

1 0
1 0 1
0 1 0

to create a possibie edge element image.

-~ rewrite the Qrigina] LUT so that non-negative fegions
have value 255, and negative regions have value O,
to create a non-negative region image. |

- take the logical AND of the non-negative region image
and the possible edge element image.

- the edge e]eﬁent image 6ontains values from zero
to four. Write a LUT to map the values from 1 to

4 to 1.

The third and fourth steps are necessary, since the mask
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applied to the binary image will have non-zero values in
negative regions, and these must be eliminated. The logical
AND of the two images is accomplished using the same feedback
mechanism used in image convolution, except that the alu
function is changed. Thus, the Togical AND of the two images
is accomplished in one video frame time. The complete edge
detection operator executes in roughly 15 seconds, depending on
the size of the Gaussian mask. This speed is significant when
one considers the 31,719,424 floating point multiplications and
262,144 floating point divisions necessary to convolve a 512 by
512 image with an 11 by 11 mask without the IIS. These
floating point operations alone take over 9 minutes to execute

on the VAX 11/750.
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Figure 189.
Results of Edge Detection
(Tog sample of aged hemlock)
The edge elements generated by the edge detector are
shown, Edge elements correspond to growth rings, and
crack, knot, and 1o0g boundaries.

Figure 19 shows the result of applying the Marr and Hildreth
edge detector to a CT-scan image of a Tog. The edge elements

primarily correspond to growth rings, while a few correspond to

the knot boundary.



Figure 20.
-~-Results of Edge Detection
(log sample of green hemlock)
The edge elements generated by the edge detector are
shown. Edge elements correspond to growth rings, and
crack, knot, and log boundaries.
In addition, in Figure 20, which shows the edge elements
detected in a CT-scan image of green wood, some reflect the
boundary between sapwood and heartwood, and the "sappy" areas

{higher intensity) of the heartwood.

4.3.2. Growth Ring Edge Uniformity

We can use the edge elements we have found, together with
the convolved image, to deterqine the 'uniformity' of growth
rings. Such uniformity is an indicator of good wood. The
heuristic which is implemented here may be described as

follows. Good wood is evident in a CT-scan by the presence of



uniform, well-defined growth rings. Rot, and other
abnormalities in the internal strﬁcture of a log w111 cause the
growth rings to become discontinuous. They will also introduce
- edges (such as rot boundaries) into the CT image which are not
parallel to the direction of the growth rings. For any given
region, the maximum number of edge elements in any given
direction divided by the total number of edge elements in that
region is used as a measure of edge element uniformity. .Since.
the growth rings are the only artifacts with uniform direction,
this measure of edge element uniformity is also a measure of
growth ring unfformity, and hence a measure of good wood. -
Within a small region, the edge elements to consider are those
which are the non-terminating end of a linear group of edge
elements, and non-zero in magnitude. An edge element is a
non-terminating end of a linear group of edge elements if it
has edge elements on any 2 opposite sides of it. Note thatvan
edge element may be part of at most 4 linear groups‘of edge
elements. The magnitude of an edge element is the difference,
in the convolved image, between the 2 pixel values adjacent to
the edge element perpendicular to the direction of the linear

group of edge elements.

Uniformity calculation is implemented in the IIS as
follows. Since the result of convolving the original CT-scan
with the Laplacian of the two-dimensional Gaussian function is

a 16-bit image, it is necessary to extract only the 8 most



significant bits. This is accomplished by feeding back the
16-bit two-channel convolved image onto itself, but on each
feedback operation, shifting all the values right by 1 bit.
After some number of operations (at most 7) the 8 most

significant bits of the original convolved image are in the

lowest byte of the data, and this can be stored in one channel.

To determine if an edge element is a non-terminating
member of a linear group of edge elements, first treat the edge-
element image as a binary image, with a 1 corresponding to the
presence of an edge element. Then apply the 8-connected
neighbour encoding operator as in the convex region grower,
storing the locations of the pixel neighbours in 8 bits. An
edge element is a non-terminating member of a linear group of\
edge elements in a particular direction if bits 0 and 4, 1 and
5, 2 and 6, or 3 and 7 are on. IWrite a LUT for this neighbour
encoding image, storing the diréctions for each edge element in

bits 0, 1, 2, and 3.

To determine if there is a non-zero magnitude for each
edge element, in each of the above 4 directions, convolve the

previously saved 8-bit image with the fo]]oWing mask:

0] 1
oo
0 [-1]0

rotated by 0, 45, 90, and 135 degrees. After each convolution,
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take the absolute value of the result and form a binary image,
with a one corresponding to a noanero result, and a zero
otherwise. These binary images are stored in bits 4, 5, 6, and

7, respectively, and ORed into the 4 bit direction image.

Thus, we have an 8-bit magnitude/direction 1mage; The
first 4 bits have a bit set if the magnitude of the edge
element is non-zero in that direction, and the second 4 bits
have a bit set if there is an edge in that corresponding
direction. For each of the four directions (as abdve), set up
a LUT to create a binary image, with a one if there is both a
non-zero magnitude bit and non-zero direction bit for that
direction, otherwise zero. Convolve this binary image with a
mask of all ones, which counts up the number of occurrences of
that magnitude/direction in the region. Compare this resu]tk
with the result of the previous count (initially zero). Sfore
the maximum of the two va]ueé. Next, determine the total
number of magnitude/direction pairs in the region by writing a
LUT which has values 0 through 4, depehding on the number of
magnitude/direction pairs in any edge element, and then

convolve it with the same mask of all ones.

The remaining step in défermining uniformity is to divide
the maximum number of magnitude/direction pairs found by the
total number in the region.v This can be accomplished by
writing a logarithmic LUT for the maximum image channel, a

negative logarithmic LUT for the total image channel, and an
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exponential OFM to display them through. Since displayed
channels are added, the displayed result is the result of
dividing the maximum number of magnitude/direction pairs in any
one direction divfded by the total number of

magnitude/direction pairs.

Figure 21.
Growth Ring Uniformity
(Tog sample of aged hemlock)
The result of the uniformity measure is shown as
intensity. The higher the intensity, the higher the
measured uniformity. The areas of Tow uniformity
correspond to the knot and the crack on the left side.
The radial lines through the center of growth are
quantization errors and can be factored out Tater.

Figure 21 shows the results of this uniformity measure. Areas
of higher intensity correspond to areas of good growth ring

uniformity. The darker areas passing axially through the

center of growth are merely an artifact of the quantization of



the directions into four possible values. This log has no rot,
so the uniformity measure is relatively consistent across the
image. Discontinuities may be noted, however, in areas
adjacent to knots,‘but these knot regions are already accounted

for.

| Figqure 22.
Growth Ring Uniformity

(Tog sample of green hemlock)
The result of the uniformity measure is shown as
intensity. The higher the intensity, the higher the
measured uniformity. The radial Tines through the
center of growth are quantization errors and can be
factored out Tater.

Figure 22 shows the result of applying the uniformity measure
to green wood. Although there were many edge elements
generated by the edge detector not corresponding to growth

rings, the uniformity measure is nonetheless relatively

consistent. This CT-scan also does not contain any rot.



Results of further CT-scan image interpretation, described in a
later section, will illustrate the uniformity measure applied

to CT-scans of log samples containing rot.

4.3.3. Determining Rotten Wood

Rotten wood has both low density and low uniformity. Good
wood may have low density, but the growth ring structure
generates a high uniformity measure. Conversely, good wood may
have high density, but 1ow uniformity (typically caused by
closely packed growth rings not being detected by the CT-

scanning process nor by the edge detector).
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Figure 23.
Rotten Wood Indentification
(1Tog sample of aged hemlock)
Areas of low uniformity are shown in green. Areas of
low density are shown in cyan. Rot, the combination of
low density and low uniformity, is shown in bright
green.
Figure 23 shows the combination of low density and 1ow
uniformity. The low density threshold values were determined
from the histogram analysis. The low uniformity threshold was
obtained experimentally from the results of the previous
section. Low density areas are shown in cyan. Low uniformity
areas are shown in green. Rotten areas, the combination of
these two, are shown in bright green. As previously noted,

this log sample contains no rot, even though it has both low

density and low uniformity regions.



Figqure 24.
Rotten Wood Identification
ieme . 2¥. (10g sample of green hem1ock)

Areas of low uniformity are shown in green. Areas of

Tow density are shown in cyan. Rot, the combination of

low density and low uniformity, is shown in bright

green.
Figure 24 shows the combination of low density and low
uniformity for a sample of green wood. As in the previous

sample, this log has no rotten wood.

As a final processing step, the rotten wood regions are
grown using the same region growing operator used for knots.
The results of this process are shown on a log sample

containing rot in the next section.



Figure 25. Lo 7
CT-Scan of a Log
(1og sample of green cedar with knots)
The CT-scan is displayed as a black and white image.
Higher density areas, such as knots, are displayed as
brighter regions.

=

Figure 25 shows the CT-scan of a green cedar log which contains
no rot. This log has a narrow, but high density, band of
sapwood surrounding the heartwood. There is a single knot in
the Tower right quadrant. Cedar is one of the least dense
woods, but the interpretation algorithms successfully interpret

the CT-scan.



Figure 26.
. Results of Histogram Analysis
(log sample of green cedar with knots)
The original histogram is shown in green. The first,
second, and third derivatives of the histogram are
shown in blue, red, and yellow, respectively. The four
boundary points determined by histogram analysis are
shown in red.

Figure 26 shows the histogram analysis of the CT-scan. Even
though the sapwood has high density, the analysis detects the
knot boundary. As in previous examples of histdgrém analysis
there is no significant knot peak in the histogram, so the

rightmost zero-crossing is taken as the boundary between good

wood and possible knots.



Figure 27.
Final Interpretation
(log sample of green cedar with knots)

Air, and other low density regions are displayed in

blue. Good wood is displayed in magenta. Rot is

displayed in green. The knots and the calculated knot

measures are also displayed.
Figure 27 shows the final results of the interpretation of the
CT-scan of the l1og. Regions of low density, corresponding to
air and internal holes, are displayed in blue. Knots, with
their knot measure, are displayed in red. Of the remainder of
the CT-scan, rot is indicated by green areas, and good wood
appears, in magenta, as it did in the initial CT-scan. Also
shown are the results of deterﬁining the possible knot measure
for the convex regions in the lower right portion of the CT-

scan. As shown by the knot measures of less than 0.3, this

regions are correctly identified as knots.



Figure 28.
CT-Scan of a Log
(Tog samp]e of green cedar without knots)

The CT-scan is displayed as a black and white image.

Higher dens1ty areas, such as knots, are displayed as

brighter regions.
Figure 28 shows the CT-scan of another sample of green cedar,
taken from the same tree as the previous CT-scan, except this
log sample does not contain any knots. The interpretation
process, in particular the histogram analysis process, can

accommodate the absence of knots.



Figure 29.
Results of Histogram Analysis
(Tog sample of green cedar without knots)
The original histogram is shown in green. The first,
second, and third derivatives of the histogram are
shown in blue, red, and yellow, respectively. The four
boundary points determined by histogram analysis are
shown in red.

Figure 29 shows the result of histogram analysis of the CT-
scan. Note that even though there are no knots, the possible

knot threshold is nearly the same value as in the previous

cedar log sample with knots.



Figure 30.
Final Interpretation
(Tog sample of green cedar without knots)
Air, and other Tow density regions are displayed in
blue. Good wood is displayed in magenta.

Figure 30 shows the results of the complete interpretation
process. The results displayed here are very similar to the
results of the previous CT-scan of a green cedar log, with the

[ 3 1

exception of the knot.



Figure 31.
CT-Scan of a Log
(1og sample of green hemlock with rot)
The CT-scan is displayed as a black and white image.
Higher density areas, such as knots, are displayed as
brighter regions.

Figure 31 is a CT-scan of a green hemlock log containing a
rotten region in the upper right quadrant. In addition, this

log also contains a knot in the Tower right quadrant.



Figure 32.
Results of Histogram Analysis
(1og sample of green hemlock with rot)
The original histogram is shown in green. The first,
second, and third derivatives of the histogram are
shown in blue, red, and yellow, respectively. The four
boundary points determined by histogram analysis are
shown in red.

Figure 32 shows the histogram analysis. The rotten region has
density values in the center low enough to indicate a hole, but
also density values near the edge of the regions high enough to
be included as possible good wood. However, these values are:

within the range of possibly rotten good wood determined by the

histogram analysis.



Figure 33. '

Results of Possible Knot Analysis
(1log sample of green hemlock with rot)

The original CT-scan is displayed in magenta. The high
density areas are displayed in white. The principal
axes of inertia are displayed, together with the
calculated knot measure. Here knot measures of .902
and .791 indicate that these regions are not knots,
while the other knot meeasure of .293 indicates a knot.

Figure 33 shows the knot analysis. Many regions, generated by
thresholding using the value for possible knots from histogram
analysis, have been pruned out during the calculation of the

knot measure due to their small area.



— Figqure 34. —

Results of Low Density and Low Uniformity Measure
(1og sample of green hemlock with rot)

Areas of low uniformity are shown in green. Areas of

low density are shown in cyan. Rot, the combination of

low density and low uniformity, is shown in bright

green,
Figure 34 shows the combination of low uniformity areas, and
Tow density possible good wood areas. There are Tow density
good wood areas detected between the growth rings,
particularily near the center of growth, but the uniformity is
high (due to the good growth ring structure). There are low
uniformity areas detected in the region of sapwood, primarily
due to the lack of discernible edge elements, but the density
is too high to be rot. The region containing the rot has both
low density and Tow uniformity, as can be seen in Figure 34.

The central area of this region of rot has a density value

similar to that of air and is indicated as a hole. This hole



[ ] Figure 35.
Final Interpretation
(1og sample of green hemlock with rot)

Air, and other Tow density regions are displayed in

blue. Good wood is displayed in magenta. Rot is

displayed in green. The knots and the calculated knot

measures are also displayed.
Figure 35 shows the final result of interpreting the Tog sample
of green hemlock containing some rot. As can be seen, the
rotten region is indicated as a hole, surrounded by a region of
rotten wood. This is consistent with the breakdown of the
internal structure of a 109, where rotten wood eventually
decays until a hole is created. The knot measure can be used

to prune out all possible knot regions, with the exception of

the true knot.



Figure 36.
CT-Scan of a Log
(Tog sample of fir with rot)
The CT-scan is displayed as a black and white image.
Higher density areas, such as knots, are displayed as
brighter regions. -~

Figure 36 is a CT-scan of a fir log containing extensive rotten
regions. This log sample was too large to be CT-scanned and

was cut longitudinaly prior to scanning.



Figure 37.

Results of Histogram Analysis

(1og sample of fir with rot)
The original histogram is shown in green. The first,
second, and third derivatives of the histogram are
shown in blue, red, and yellow, respectively. The four
boundary points determined by histogram analysis are
shown in red.

Figure 37 shows the histogram analysis. The extensjve rotten

region is determined primarily by its low density.



Figure 38." Fr-%geEIs? .-
Final Interpretation
(Tog sample of fir with rot)

Air, and other Tow density regions are displayed in

blue. Good wood is displayed in magenta. Rot is

displayed in green The knots and the calculated knot

measure are also displayed.
Figure 38 shows the final result of interpreting the rotten fir
log sample. This Tog contains such extensive rot that it would
not typically be present in the sawmilling environment.
However, CT-scans of heavily damaged logs can be interpreted by
these algorithms. Small regions of marginal good wood

identified as rot were pruned by the convex region grower.



6. Conclusions

Algorithms are developed in this‘thesis which interpret
CT-scan images of Tlog samp]es.‘ The a]gorithms combine a number
of image-processing techniques,‘such as histogram ana]ysis, and
texture analysis, directed by knowledge of the internal
structure of logs. The implementation of these é]gorithms
used, in part, a digital image processor. Results were
presented showing the application of the interpretation
algorithms on a variety of log samples. These 1og‘samp1es were
of different species and age. This interpretation process can
occur quite efficiently through the use of special purpose
digital image processing hardware. This thesis is a successful
first step in the total computerization of determining optimq]
sawlog utilization. . However, further work needs fo be done on:
developing an industrial CT-scanner, capab]e of continuous
operation in an industrial environment; improving the execution
speed of the é]gorithms outlined in this thesis; and creating a
three-dimensional model of the internal structure of a log from
a number of adjacent CT-scans, and manipulating this

representation to create an optimal cutting strategy.

- 73 -



7. Appendix A

Our purpose in this appendix is to show the derivation of
the functions which compute the required va]ue; for the convex
knot regions. Fifst, let us Jobk at the equations of Winston
[1981] which we will simplify. Assume that our imagé contains
only one region, represented as a binary image. "Pixel values,
denoted Pij (pixel value at coordinates i and j), are either
zero if outside the region, or one if inside. The area, ‘A, of

the region is simply:
A=33TP.. - (3)
ig

The center of mass of a region, at coordinates I0 and JO, is

calculated as follows:
[ = Llysysis (4)
K <« ij ‘
i ,
and
J =+ 35 j*p | (5)
A << ij v

1]
We can define a new coordinate system centered about the center
of mass:

it =i -1 . (6)

and
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it=4 -4 | (7)

The perpendibu]ar distance from any point in the region to an

axis passing through the center of mass of the region is:
perp dist = i'*sin(8) - j'*cos(6) ' (8)

where 8 is the angle of this axis from the horizontal. The
inertia, I, of this region is simply the sum of the square of
this perpendicular distance for all pixels in the region:

1(8) = X X Py *(i'*sin(8) - j'*cos(8))2 (9)
i

Expanding the squared term and simplifying yields:

1(6) = U*sinz(e) - V*sin(6)*cos(8) + w*cosz(e) (10)
where:
U =33 i%%p, . - a*12 (11)
i iJ 0 _
V o= iZJZi*j*PiJ. - 2%AXT *J (12)
W= j2*p,. - A*g2 (13)
i J 1] 0

Differentiating the above and-solving for zero determines that

the inertia is maximal when:

tan(2*9) = —(-U-¥W-)- ) ‘ (14)
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or

1

8 = ?*tan'l( v )

U=y (15)

As well, using U, V, and W, we can calculate the maximum

inertia, I and the minimum inertia, 1

min®

max (U+W) + \IV2+(U-W)? - (16)

max?

—
1]

I

nin = (UH) - NVEr(uow)? . - an

Qur method here is to calculate U, V, and W, and then determine
the angle of the principal axis of inertia, as well as the

values of the maximum and minimum inertia.

Qur simplification of these algorithms can be described as
follows. For every region in the image, there is a bounding
rectangle. This is a rectangle formed by extending the top,
bottom, and vertical sides of the region. Since the remaining
sides of the regions are diagoné] (oriented at 45, 135, 225 and
315 degrees), a region can be thought of as its bounding
rectangle, less a right isoceles triangle at each corner. The
measure of this triangle will be the length of one of the equal
sides. For example, here is a typical region, with its

bounding rectangle:
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rigure 39.
<. * A Typical Region with
Its Bounding Rectangle

From this figure, we can define the following quantities:

X, ¥ - the coordinates of the upper left corner of the
bounding rectangle of a region.

m, n - the height and width, respectively, of the bounding
rectangle.

k K

0 Kis k2, k3 - the size of the missing corners.
These values are the length of the equal side of the
right isoceles triangle which forms the missing
corner. The corners are numbered in a clockwise

manner, with corner 0 at the upper left.



These 8 values completely specify‘the‘]ocatfon and
boundaries of a region in the image are uséd to calculate the
values U, V, and W. Each of the values needed is first
éa]cu]ated for the bounding rectangle, and then the value for
each of the corners is subtracted. As an example of this
calculation simplification, consider calculating the area of a

typical region. It is the area of the bounding rectangle:
A . =m *n \ (18)
less the area of each of the missing corners (say corner 0):

A k0 *‘(k0+1) (19)
0 2

The equation is the same for calculating Al’ A2, and A3 from

and.k . Thus, the area of a region, A, is:

k 2 3

1> K

3
A=A - 3 A, ' | (20)

Using the above method, the center of mass of a region is

calculated as follows. First calculate IO:

1 .
fo T TXT " Py (21)

By trans]ating‘the bounding rectangle to the origin, the double

sum becomes (for the bounding rectangle):

C. = (m+l) * m * % (22)
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for the upper corners (k0 and kl):

(k0-1)‘* kg * (kg+l)

C. = (23)
0 | 3 ~
. (ky-1) * kg * (kq+1) (24)
| 6
and for the lower corners (k2 and k3):
. (m-1)*A, (kp=1)%k,*(k,+1) (25)
2 2 6 ‘
-1)* -
. (m-1)*A, ) (ky=1)*k *(kq+1) (26)
3 3 6 .
Thus:
3
- 036 (27)
T = x # A

The analysis is the same for calculating JO, except the
distinction is made between the left énd the right corners of

the bounding rectangle, rather than the top and bottom corners.

Using the above method, we now calculate the values U, V,
and W, and hence the axis of inertia. Recall the equation for
U:

) .2 Y .
U ? ? P15 A*TC | (28)

Because of our previous calculations, only the double sum (here

denoted U') is calculated for the bounding rectangle and the
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corners., For the bounding rectangle, this is:

x+m-1 y+n-1 2

u! = X > i % P (29)
rect i=x j=y S 13 N

Since Pij is always 1 inside the bounding rectangle, this

simplifies to:

x+m-1

u' = > i
rect i=x

2ap (30)

which further simplifies to:

U' oer = DEh % (6%x*(i4m-1) + (2%m-1)*(m-1)) (31)

Following the same manipulation, U' for one of the top corners

(ko or kl) is: (assume corner size is k)

gt o KX (k+1)?

() * (o)) o _ k. 2y (32)
t 4 2 .

X =33

Following the same manipulation, U' for one of the bottom

corners (k2 or k3) is: (assume corner size is k)

2

Ut = KCF(k+1)"  k*(k+1)*(2%k+1) (x+m-k-1)+ (33)
b .4 3
KE(KH1) % (2%ka(k-1)% + m*(me2*x-2%k-2)-2%x+1)
Thus, U is: .
2
= i - ' - ] - ] - ] - *
U= U=l (k)= (kD=0 (K, )-Ut, (k) -A%I2 (34)

The value of W is calculated in exactly the same manner, except
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W' is calculated for the left and right corners, rather than

the top and bottom:

2 (35)

W' (k) Wy (kg )Wy (kp) =W (kg)-A*g

The calculation of V is more complex, but the method used

is similar to that used above. Recall the formula for V:

= ;% . *
V = % ? 1*J*Pij 2% A IO*JO | (36)

Since A, Io’ and JO are already known, we will calculate the
value of the double sum (here denoted V'). For the bounding-

rectangle, the value of V' is:
Xx+m-1 y+n-1

= = RSN (37)
i=x  J=y

]
v rect

Since Pij is always 1 within the bounding rectangle, this
simp]ﬁfies to:

x+m-1 y+n-1

V'ect = = 1 33 | (38)
i=x =y

By evaluating the sums, this yields:

Vv _ mFn*(m+2*x-1)*(n+2*y-1)
rect 2 i

(39)

Unfortunately, each of the corners has to be treated

separately. They are (for corner ko):
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x+k0-1 yt+ko-i+1
V' = 3
0 i=x J

(40)

Mo

i*j

y

by simplifying, and making the following substifutions:

d

1 x+_y+k0 d2 = d1 -1

X+k e, = € - 1

€1 0

this becomes:

] 2*eg-xz*(x-l)2 (d1+d2)*e1*e2*(2*1+2*k-1) .(41
V‘ = *( - + )
0 q 2 3

(d1+d2)*x*(x—1)*(2*x-1)
3 + el*ez*(dl*dz_y*(y_l)) -

x*(x=1)*(d; *dp-y*(y-1)))

The. value for V‘1 is:

i+k1-1 nty-1

v, = X > P*j*Po. (42)
» i=x j=y+n+1’-x—k1 J

By simplifying, and making the following substitutions:

Qo
1}

y+n-i-k, d, = dy-1

1
e, = x+k1 e2\= el-l
] 1
Vi o= 2% (((n+y-1)*(n+y)-d *d,) * (e;*e,-x*(x-1)) - (43)
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€2 xz*(x-l)2 _
2

(dy+dy)*ey*e,* (2*x+2%k; -1)

3 +
(d1+d2)*x*(x—1)*(2*x-1)
3
The value for V'2 is:
x+m-1 y+n-1
v o = > > 1*J*P1j

1'=x+m-k2 j=y+n-1+x+m—k2-1

By simplifying, and making the following substitutions:

dl = y+n+x+m—k2-1 : d2 = dl-l
ey = y+n ’ e, = el-l
f1 = x+m--k2 f2 = fl-l
9y = x#m 9p = 9p-1

yT'e'ldS:
] 1
v 2 = z*((e1*e2-d1*dz)*(gl*gz—fl*fz) +

(dy+d,)*g *g,*(2*x+2*m-1)
: -
\ 2,.2 2,2
(d1+d2)*fl*fz*(Z*x+2*m-2*k2—1) fl*f2 91*92

3 + 2 - 2 )

The remaining corner V'3 can be specified as follows:
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y+ks-1 x+m-1
Vig = X z T¥3*P 5 - (46)
J=y  i=xtmtj-y-kg

By simplifying, making the follow substitutions:

n
o

d x+m—j-k3 d2 -1

1

-1

ey = ytkj €y, = €

V' = %*(((m+x—l)*(m+x) - dy*d,)*(egre, - y*(y-1)) - (47)
)2

24,2
e *e, . yz*(y-l
2 2

(d1+d2)*e1*e2*(2*y+2*k -1)

3

3

+

(dy+d,)*y*(y-1)*(2*y-1)
3

" And thus the formula for V is:

3
= 1 _ 1 - * * )
) ) rect E ) j 2 A*I0 Jo (48)

- And finally, to reiterate, we calculate the angle of the

principal axis of inertia, 6, and the maximum and minimum

inertia, Imax and Imin’ as:
1 -1 v )
6 = —Z*tan (_(W)-) . (49)
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nax = (UrH) + JVZe(u-? - (50)
win = () - VEuen? ‘ (51)

n
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