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ABSTRACT

The electronic structure of liquid and amorphous iron is
calculated by applying the linear combination of atomic orbitals
method to clusters representing these systems, generated by the
Monte Carlo technique. Tight-binding matrices representing the
one-electron Hamiltonian for these clusters have been obtained
by tvo different schemes that produce the band structure
appropriate to the crystalline phases. A comparative study of
these two schemes as well as two different methods of
calculating the local density of electronic states, namely, the
recursion method and the equation of motion technigque,is
presented. Both methods achieve similar results. However, the
recursion method is found to be considerably faster.

The essential change in the electronic density of
states(D0S) introduced by disorder seems to be a gradual
smoothing as one goes from the crystal to the amorphous and then
to the liquid phase. The double peaked structure of the DOS in '
bcc iron is found to survive in the amorphous but not in the
liquid state. The difference in the band widths for the solid ,
liquid and amorphous clusters is found to be inappreciable.

In calculating the electrical resistivity of transition
metals from the Boltzmann equation it is necessary to make an
assumption about which electronic states are the current
carriers. To shed some light on this problem, we have formed
Bloch—-like running states with wave vectors K from all the 4 or

the s states in the clusters and calculated the electronic DOS
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projected 6nto these states. For the s states in the liquid and
the amorphous clusters such projected DOS curves show a peaked
structure. The peak positions change with K falues, indicating
dispersion relations and hence propagating characters for these
states. For the 4 states, the projected DOS curve for each K
shows a sharp peak as long as K is small. For higher values of K
these peaks become broad. No appreciable change in the peak
position is observed on changing the K value.

A comparison of these results with various experimental

observations and other theoretical works is also presented.
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I. CHAPTER (1)

INTRODUCT JOR

In a system with an essential lack of periodicity, the most
important factor in determining the behaviour of the electron is
its immediate neighbourhood. This concept has greatly influenced
the study of the electronic states in condensed matter in the
recent past. Though the concept dates as far back as the fifties
when Priedel1 used it to explain several electronic properties
of dilute alloys, the importance of ‘this concept has been
realised only during the last decade in connection with the
study of the elementary excitations in disordered systems.
Unlike an extended crystalline solid, its amorphous counterpart,
solid or liquid, is devoid of any obvious symmetry. Hence the
theoretical machinery based on the ideas of translational and
point grour symmetries, which proved immensely successful in the
study of crystalline solids, vas of little help in the study of
aperiodic systems. This necessitated an altermnative formalisum,
an altogether different way of perceiving the behaviour of the
electron. The importance of the local environment was soon
realised and the concept of the local density of states,
introduced by Friedel, was nuch appreciated. Various methods
wvere proposed and developed to calculate this local density of

states (LDS), which is the total density of states modulated by



the probability of the electron being at a certain point in
space. In a compound it discloses the relative weights of
various bands on different atoms. At the surface of a solid, it
reveals the effect of the surface potential as well as the
decrease in the number of neighbours and shows remarkable
deviation from the bulk density of states. In a magnetic
material, the difference between the up and the down spin local
density of states describes the distribution of magnetic
moments. Thus in an aperiodic system, the local density of
states forms an important object of study. The density of
states (DOS) appropriate to the bulk system is obtained by simply
averaging over such local densities.

In this work we undertake the calculation and study of this
gquantity in liquid and amorphous iron. Being a member of the
transition metal series, iron provides an interesting and
nontrivial case of study. It is nontrivial in that it represents
a system wvith strong scattering potentials and cannot be,
therefore, treated within the premises of the nearly free
electron (NFE) model. It is a system for which realistic
calculation of the electronic DOS has been lacking,” though the
need for such calculations has been expressed from time to tinme.
Quite often calculations of electronic properties in liquid

transition metals have been based, for lack of realistic data,

. - — —— ——— -

*Tight-binding calculations on computer generated models of
liquid and amorphous iron have been performed by Fujiwvara and
Fujivara and Tanabe. However, these calculations neglect
hybridisation effects and use somewhat artificial transfer
matrix elements in the Hamiltonian (see chap.8).



on speculations about the nature of the DOS in these systenms.
Such intuitive speculations may often yield correct results.
However, verification of these results with reliable data on the
DOS is certainly desirable. Below we present a brief review of
the electronic DOS calculations that have been carried out so
far for liquid and amorphous transition metals, specially iron.
Detailed expositicn to the subject of liquid metals in general
has been provided by Ballentinez and Shimoji?

In principle all information regarding the electronic
properties of a liquid can be obtained from a knowledge of the
eigenstates of the electron. However, it is impossible to
calculate these for all possible arrangements of the ions in the
liquid state. Also, the wavefunctions contain so much irrelevant
detail that it is not at all useful to work with then directly.
An alternative formalism is based on studying the Green'sﬁ
function. Hovever, in structurally disordered systems such as
liquid and amorphous metals, it is necessary to calculate the
average of the Green's function over the ensemble of all
possible configurations of the ions. This ensemble averaging
requires a knowledge of the multi-ion distribution functions.
Since the only experimentally accessible distribution function
is the pair distribution function, the multi-ion distribution
functions are usually approximated by the sums and products of
the latter. In simple liguid metals, where the scattering by the
jonic potentials is weak, triplet and higher order correlation

4
effects can be altogether ignored {as in the theory of Edwards ).



However, in systems with strong scattering potentials, like
transition metals, short range correlations are important and
hence special care is required while approximating the higher
order correlation functions.

Thus most attempts made so far to study the electronic
structure of liquid transition metals have concerned themselves
with finding a reasonable approximate average of the entire
perturbation series for the one electron Green's function. Among
them are the quasicrystalline approximation (QCA) due to lax,
Ziman6 and Cyrot-Lackmann,-7 the self-consistent QCA due to
Gyorffy,8 Watabeq and Korringa and Hills,aand various
self-consistent single-site approximations due to Schwartz and
Ehrenreich,” Ishida and Yonezava’land Movaghar et alm.llJ A
mul tiple scattering theory based on a sing;e site approximation
was proposed by Anderson and ucuillanjs In their model, each ion
of the liquid was isolated within its Wigner-Seitz sphere, which
vas supposed to be embedded in a medium with a uniform complex
energy-dependent potential. Paralleling the arguments leading to

‘the effective medium

the coherent potential approximation(CPA),'
potential was determined by requiring that there be no further
scattering in the forward direction of an electron incident on
the isolated ion. Using a muffin-tin potential model, this
scheme was tested for liquid iron. The DOS in their calcnlation
showed a double-peaked structure. However, a computational error
in their work as well as the inadequacy of the single-site

lIJA review of these multiple scattering theories based on various
approximations has been provided by Ballentine? and Watabe.¥



' » 17-19
approximation used by them was pointed out by several vorkers.

Once the numerical error was corrected the DOS curve showed a
single-peaked structure, but with an unusually narrow d-bamnd
width. Schwartz and Ehrenreichiiproposed a different single site
approximation using the reaction operator formalism of DeDycker
and Phariseaufo and carried out a numerical calculation for
liguid Cu. The DOS curve in their calculation showved a
double-peaked structure similar to that obtained by Anderson and
McMillan for liquid iron. Chang et alisshoued that there are
some defects in the numerical calculations of Schwvartz and
Ehrenreich and made some modified calculations of the D0OS, which
still shoved a double-peaked structure, though with considerable
dif ference in the peak heights. Schwartz and Ehrenreich also
proposed higher crder expressions for scattering and reaction
operators, in vhich the correlations of ionic positions are
explicitly taken into account. However, no numerical calculation
has been done so far using these higher order equations.
Calculations for liquid iron and copper, using a scheme similar
to Anderson and McMillan's (but different approximations
regarding the effective medium), have been performed by John and
KelleIZiand Blaudeck and Lenk.z2

23 24
Keller and Jones and Keller et al have used the cluster
method of Klima, HcGill and Zinan:S vhich applies Lloyd'szs
expression for the integrated demnsity of states to clusters of N

atoms. Effects of multiple scattering betwveen clusters are

neglected. The determinant involving the reaction matrix in



Lloyd's expression for the integrated density of states is
evaluated for a finite cluster of N atoms and averaged over
various possible clusters. However, it is difficult to decide
what type of clusters to consider to represent the structure of
a particular liquid transition metal. Keller and Jones23
suggested that the only structural features that are important
for the DOS in liquid transition metals are the co-ordination
number and the nearest neighbour distance. House and Slith27
showved that although such an approximation is valid for copper,
it is not adequate for iron.

Some of the theories or approximations mentioned above were

developed with a view to establishing in the theory of liquid

metals a counterpart of the coherent potential

16
approximation (CPA) for substitutionally disordered alloys. It
28,29 '
was proved, hovwever, that the most straight forward and

satisfactory generalisation of the CPA to liquid metals is the
effective medius approximation (EMA) of Roth?o Recently it has
been shown how several of these theories{(e.g.,
Schwartz-Ehrenreichll Gyorffy:gxorringa and Mills,)o
Ishida-Yonezawaizand the EMA of Roth) can be derived from a
single abstract multiple scattering approaéh and that EMA is
the only theory completely consistent with the assumption needed
to derive all these theories from the multiple scattering
approachf'Some of these theories have also been known to suffer
from the problem of nonanalyticity of the Green;s function.

22
Asano and Yonezava have calculated the DOS in liquid Ni by



applying the KKR theory of Green's function under several of
these approximations. It is found that QCAs'gives reasonable
d-band width and works well outside the resonance region, but it
gives a negative DOS near the resonance level, where the
analyticity qf the Green's function breaks down. The
Ishida-Yonezawa theory works satisfactorily over the energy
region near the resonance level, but at higher enerqgy, where the
electrons are nearly free, the analyticity breaks down. The
results calculated by EMA, however, show a reasonable behaviour
over the whole energy region. Thus the EMA of Roth appears as a
theory capable of describing the behaviour of a strongly
scattering disordered system. However, quite understandably, it
is still an approximation and is unable to fully take into
account the detailed atomic description thgt really
characterises particular liquid and amorphous systers.

The approach that can actually take into account the
detailed atomic structure of orientationally disordered systems "
is the tight-binding method applied to finite cluster models of
these systems. Khanna and Cyrot-Lacknanngshave applied this
method to computer generated model of liguid Ni. Similar
calculations for liguid and amorphous Co have been performed by
Khanna et alfq Pujiwara?sand FPujivara and Tana.l::ex6 have performed
similar calculations for liquid and amorphous ircn. However,
their calculations include only the d-electron states. The

d-bands in iron are known to strongly hybridise with the s-band

and hence the effect of this hybridisation should be noticable



. . . s 37
in the density of states. A recent calculation by Pujivara,

based on the Linear Muffin-Tin Orbitals method, where the
secular equation assumes a form similar to the tight-binding
one, reveals that the hybridisation appreciably modifies the DOS
in the vhole energy range. This is also expected of liquid iron.
Hence we have decided to apply the tight-binding method to
liquid and amorphous iron by taking the hybridisation into
account. Tight-binding Hamiltonians defined on computer
generated realistic models of these systems and represented in a
basis of suitable s and 4 orbitals are used to compute the DOS.
The density of states that we are interested in, as mentioned in
the beginning of this section, is primarily the local density of
states, and the tight-binding approach seems to be a natural

language to express this quatity.



II. CHAPTER (2)

SIMULATION OF LIQUID AND AMORPHOUS IRON

Early attempts to describe the liquid or the amorphous
structure were based on the lattice gas or the microcrystallite
models. In the lattice gas model, the liquid or the amorphous
solid was supposed to consist of atoms that occupied
well-defined lattice sites with preassigned probabilities,
whereas the proponents of the micro(para)crystallite models
vieved the system as consisting of small microcrystallites with
vholly or partially coherent boundaries, wvhere a coherent
boundary simply ieans a surface with a regular shape. Such
podels were often inadequate to describe the desired liquid or
amorphous structure, as reflected by the discrepancies in the
measured and calculated structure factors and radial
distribution functions. A reviewv on this subject has been
provided by Cargilisﬁsee also Phillips, 1980,Ref.39). From a
theoretical point of view these models are not satisfactory for
amorphous and liquid metals, since they do not describe the
topological disorder that distinguishes these systems from a
substitutionally disordered solid or a solid with substantial

nunber of holes, dislocations, defects etc.



2.1 THE DRPHS MODEL

The first satisfactory attempt to simulate the topological
disorder in liquid and amorphous metals was made by Bermnal, when
he chose to represent these systems by dense random packing of
hard spheres (DRPHS). Such structures are arrangements of rigid
spheres wvhich are dense in the sense that they contain ro
internal holes large enough to accomodate another sphere, but
are random in that there are only weak correlations betveen
positions of spheres separated by five or more sphere diameters.
They do not apparently contain any recognizable regions of
crystalline-like order. Bernal and Finneyﬁoﬂﬁzve studied these
structures experimentally by filling rubber bladders with ball
bearings, and sgueezing and kneading these bladders to prevent
nucleation of periodic arrays at the container surfaces. Finnefz
measured the co-ordinates of the centres of several thousand
spheres packed in a rubber balloon and obtained the radial
distribution function with much better resolution than those
previously available. The packing fraction (fractiomnal volume
occupied by the spheres) was found to be 0.6366+0.0004 compared
with 0.7405 for close-packed crystalline structure.

43
Subsequently computer algorithms wvere developed by Bennett

44
and Adams and Matheson to create the DRPHS structures. Both
used an initial seed, i.e., an initial input of co-ordinates of
centres of spheres in a small cluster, to which new spheres vere

added by following a certain criterion. Bennett used a seed

consisting of three spheres forming an eguilateral triangle.

10



Adams and Matheson began with a cluster of ten spheres placed
randonmly around and in contact with another sphere. The
criterion for adding spheres to these initial clusters consisted
of enumerating all possible sites for which an added sphere
would be in hard contact with three spheres already in the
cluster but would not overlap with any of them. The site nearest
to the centre of the cluster was selected from this list and a
sphere vwas added there. The list of possible sites was then
vpdated, adding those created by the last sphere and removing
those blocked by it. The structures thus obtained by both
Bennett, and Adams and Matheson were roughly spherical in shape.
The packing fraction decreased with increasing radius. Adams and
Matheson reported a packing fraction of 0.628 for an assembly‘of
3900 spheres. Bennett found that the packing fraction varied
almost linearly with inverse of radius and obtained an
extrapolated value of 0.61 for the packing fraction for infinite
radius. The actual measured value of the packing fraction for
his cluster of 3999 spheres wvas 0.625+0.005. The radial
distribution functions of these clusters obtained by Bennett,
and Adams and Matheson were very similar. Both yielded a
co-ordination number (obtained by integrating upto the first
minimum following the first maximum) between 11 and 12. The
co-ordination number in the ball bearing model of Finney was 12.
Sadoc et alqsgenerated a DRPHS cluster of 1000 spheres
using a different criterion for adding newv spheres to the seed.

New spheres were added to an initial seed of three spheres

1M



arranged in an eguilateral triangle, at the site adjacent to
spheres with the smallest number of neighbours. The radial
distribution function for this cluster showed significant
difference from those obtained by Bennett and Adams and Matheson
in terms of the positions and relative heights of the secondary
peaks. No packing fraction was reported by Sadoc et al.

Ichikawageintroduced a parameter K in Bennett's algorithm
to control the short range tetrahedral perfection. In this
algorithm one starts with a small seed, and three spheres within
distances less than Kd (where d is the hard sphere diameter and
(1 £ K <£2) prepare a possible site for a new sphere in hard
contact vith these three spheres as long as it does not overlap
with any other existing spheres. After calculating the
co-ordinates of all pockets, a nev sphere is flaced at the
pocket nearest to the centre of the system. It can be seen that
K=1 requires the perfect tetrahedrai configuration for the
nearest neighbour arrangement. It is observed that the structure
with smaller K has high tetrahedral perfection and leads to a
high local density. However, smaller K values regquire the
structure to be much more porous with a smaller overall packing
fraction.

Even with Ichikava's modification of Bemnett's algorithnm,
the DRPHS models often fail to produce the particular features
of the radial distribution functicns observed in real amorphous
and liquid metals, though the agreement for the amorphous metals

is somewhat better than that for the liquid. It is suggested

12



that the harad sphere potential is not realistic and one must
consider scfter interaiomic potentials. Heimendah147has relaxed
the Bennett's modelésusing Lennard-Jones and Morse potentials
and obtained radial distribution functions in closer agreement
with that of glassy metals. Similar results have been reported
by Barker et a14gsho relaxed the Bernalqzstructure using
Lennard-Jones potential. The relaxation procedure consists in
starting with a given cluster and moving the atoms in the
cluster sequentially until a minimum in the potential energy of
the cluster in the neighbourhood of the initial configuration is
obtained. Yamamoto et aquhave obtained good agreement for the
radial distribution function in amorphous irom by relaxing the
Bennett structure modified by Ichikawa'®s parameter (K=1.2),
according to the interatoric potentials suggested for bcc iron.
It is perhaps worth mentioning that our initial attempt to
sinulate a cluster representing amorphous iron was based on
Ichikawa's method of modifying the Bennett cluster with a
suitable value of K. However, no value of K in the specified_
range {1<K<£2) could yield a satisfactory radial distribution
function. Hence we vere faced with the problem of either
relaxing the cluster or resorting to some alternate technique.
In the following wve discuss these alternate scheres. It should
be noted that relaxing a DRPHS cluster of ten generates
satisfactory models of amorphous metals. However, the method is

not suitable for creating clusters to represent liquid metals

vhich show significant difference in the radial distribution

13



function from their amorphous ccunterparts. .

2.2 ALTERNATIVE SCHEMES: MOLECULAR DYNAMICS AND MONTE CARLO

Alternatives to the DRPHS models are provided by Monte

$0-53 54-57
Carlo and Molecular dynamics methods. These methods have
been found to yield better models for the ligquid than the
relaxed DRPHS models. In the molecular dynamics method the
co-ordinates of each atom in the cluster are allowved to move
under the resultant force derived from suitably chosen
interatomic potential. The positicn and momentum co-ordinates of
the particles at any time are stored and their evolution in a
small interval of time is described by solving the Newtonian
equations of motion. In the equilibrium state the distribution

of velocities is Maxwellian, and hence the temperature of the

system of N particles should be

T = M 55 \Qi/ (2.1)
= M TKN

tz|

in which Vi is the velocity of the i-th particle with mass M and
K is the Boltzmann constant. All the velocities are, therefore,
limited within a specified allowable range, comnsistent with
eqn. (2. 1) . Surface effects arising from the boundaries of the
cluster are taken care of by imposing the periodic boundary
condition, and varioué equilibrium properties of the cluster are

calculated from the time averages.

14



Contrary to the deterministic approach followed in the
polecular dynamics method, Monte Carlo technique is based on a
stochastic or probabilistic approach. In this method only those
configurations of the atoms, which have a significant
statistical weight, are considered. One starts with an initial
configuration specified by the position co-ordinates of the
particles in a basic cell. 2 sequence of configurations of the
system is then generated by a process of random walk on a Markov
chain. The transition probability at every step is chosen so
that the limiting frequency of each configuration, as the length
of the Markov chain goes to infinity, becomes proportional to
the Boltzmann factor exp (-E/KT), where E is the energy
associated with the configuration, K is the Boltzmann constant
and T is the temperature of the system on the absolute scale.
This is achieved as follows. Each particle, chosen at random or

by succession, is moved by small steps of randomr sizes within

preassigned limits. After each move, the change in the energy of’

the system, DE, is calculated. A suitable interatomic potential
is used for this purpose. If DE L0, i.e., the Emove would bring
the system to a state of lower energy, then the move is allowved
and the particle is put in its new position. If DE > 0, then the
move is allowed with a probability exp(-DE/KT). To achieve this
result, a random number '§ is chosen between 0 and 1. If

exp (-DE/kT) is greater than §, then the particle is moved to its
nev position. Otherwise the move is rejected. If tﬁe move 1s

rejected, the o0ld configuration is counted as having occurred

15



again in the computation of averages.A.

Using the Markov chain of configurations constructed in
this way, one obtains the average of any function of
configuration simply by averaging over all members of the chain.
The result is equivalent to averaging over a canonical ensemble
as the limiting frequency of each configuration is proportional
to the Boltzmann factor exp(-E/kT). That the above procedure of
selecting the configurations does lead to a limiting fregquency
distribution proportional to exp (-E/kT) has been shown by
Metropolis et alfOOne could also do a calculation by choosing
configurations at random, and then assigning weights to then.
While such a procedure should give the same result as the above
method, if both are carried out for a sufficiently large number
of confiqurations, it has the disadvantage.that a large amount
of time would be wasted on relatively improbable configurations.
The Markov chain method is an example of "importance sampling"”
and gains efficiency by concentrating on the more probable
configurations.

We have employed the Monte Carlo technique to generate
clusters with 365 atoms representing liquid and amorphous iron.
The method followed is essentially the same as described above.
We used the interatomic potential as given by Johnson.nghis
potential is derived by fitting its first and second derivatives
at the nearest and next nearest neighbour separations in bcc
iron to the elastic modulii. The potential is cut off at a point

between ‘the second and the third nearest neighbours. The

16



original'forn suggested by Johnson consists of three third order
polynomials for three different regions of the interatonmic
distance. For computational efficiency we have reparameterised
the potential WU(T) using a single expression for all distances

upto the cutoff point, which consists of even powers of r only:

WO = Ay + Mi/pq+ A/ s + Az/s + Auspa,
¥y<4 23A°

o, T> 3_3A° (2.2)

vith A,z 0.07, A =-20.65, A, =174.7868,

A3: -445. 27 Aq = 1000.00 .

The constants ( A,- Aq ) vwere chosen to reproduce the Johnson
potential accurately between the nearest and next nearest
neighbours. We start with cubic cluster of 365 atoms supposed to
represent liquid La. This cluster was obtained by Ballentine

for calculations of electronic structure in ligquid La.
Appropriate change in the volume of the cluster vas made to
obtain the correct density of ligquid iron at 1550°C. Each atom
vas moved by succession and the resulting configuration was
accepted or rejected according to the criterion described above.
Periodic boundary condition was imposed to keep the particles
confined within the given volume. This cubic volume was supposed
to be surrounded by periodic replicas of itself to avoid surface

effects. The following criteria were used to determine the
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reaching of the equilibrium:

a) the fluctuations in energy had no longer any systematic
component,

b) the pair distribution function reached a stable limit,

c) slices of the cluster examined graphically revealed no
particular lines along which the atoms tended to lie.
Starting from our initial liquid La configuration, about six
bundred and fifty iterations, at a success rate of fifty per
cent, were needed to obtain a pair distribution function of the
type shown in Fig. (1). This is close to the experimentally
determined pair distribution function,so though it represents
somewhat more short raﬂge order than the liquid. .

The cluster representing the amorphous iron was generated
from the liguid cluster by carrying out the Monte Carlo
procedure at a much lower temperature (100°C). Appropriate
change in the volume of the cluster wvas made to represent the
density of amorphous iron. Starting from the liquid cluster,
about four hundred iterations were needed to generate a cluster
with the pair distribution function as shown in Fig. (2), which
is in reasonable agreement with the experimentally determined
distribution.s1

Small clusters with 125 atoms representing liquid and
amorphous iron were also obtained by the technique discussed
above. In this case the starting configuration vas chosen to be
a simple cubic one. About the same number of iterations as

quoted above were needed to achieve equilibrium. The pair

18



distribution function obtained for these clusters are displayed

in Figs. (3) and (4).
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FIG.1.

FIG.2.

FIG.3.

FIG.4.

FIGURE CAPTIONS

Pair distribution function for liquid Fe
near the melting point, according to
experiment (Ref.60) (smooth curve) and as
simulated in a cluster of 365 atoms (his-
togfam).

Pair distribution function for amorphous
Fe, according to experiment (Ref.61)(smooth
curve) and as simulated in a cluster of

365 atoms (histogram).

Pair distribution function for liquid Fe
near the melting point, according to
experiment (Ref.60) (smooth curve) and as
simulated in a cluster of 125 atoms (his-
togram).

Pair distribution function for amorphous
Fe, according to experiment (Ref.61) (smooth
curve) and as simulated in a cluster of

125 atoms (histogram).

20



9 (R)

1.50

2.50 3.00

2.00

:

1.00

0.50

FIG. (1)

P.00

4.00
R(A®)

21



9(R)
1.50 2.00 2.50 3.00 3.50

1,00

0.50

FIG.(2)

.00

.00

2.00

T
4

.00 R(

22

Aff.OO

8.00

1
10.00



2.00 2.50 3.00

.50

1

1.00

0.50

FIG. (3)

.00

¥
4,00

23

5.
R (A%)

00

—
8.00

—
10.00



Iso

o’

3.00

f

1.00 1.50 2.00 2.50

0.50

FIG. (4)

.00

.00

T
2.00

!
4.00

24

R(~°)

6.00

—
8.00

)
10,00



III. CHAPTER (3)

3. LCAQ METHOD

The basic requisite for a tight-binding calculation of the
electronic structure of a system, periodic or otherwise, is a
set of orbitals localised about the atomic sites. The method was
introduced to crystal calculations by Bloch,ézwhen he used a
basis of atomic orbitals {ld,‘,()}to express the one-electron

vavefunctions "}'g :

¢S = Y Cia I¢Q>',

(2.1)

where the subscript o refers to the site as vwell as the orbital
type. The Schrodinger egn. for the electron with the Hamiltonian

H,
HIw:S = 61w, (3.2)

" = £, ' | D, (2:3)
Z: H Ciy ¢,(> Z:Q >

can be transformed, by taking the inner product with a basis

vector |¢(D, to a matrix egn.
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| Z(Ho,d - Ecg(z,a)C.‘o( =0 (2.4
"

!
Here HolPs represent the mpatrix elements of the Hamiltonian in

the given basis, i.e.,
(3.¢5)

and Sd(;s represent the elements of the overlap matrix:

5"((s - <4>d] ¢B> . (3.6)

The eigen values E; of the egn. (3.3) can be obtained by solving

the secular eqn.
Jet [Ho((s - E.‘ Sd(g,] =0, (3.7)
or equivalently

cle,t[(s—’n)d(s - & 8,{(3:} = 0 (3.8)

-1
(S o @ represent the elements of the inverse of the overlap
. =1 . L .
matrix [S,,(s']. [$ H] can be given the following interpretation.
o
Suppose the Hamiltcnian H acting on the basis state '¢e¢>
produces a state that we approximate or in some cases ¥Write

exactly as a linear combination of the basis states, i.e.,

HIGLY = 3 Doyl (2.9)
(¢
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Using the expression

_ -1
[= % 1e (), <40l

(see Appendix (A-1))

for the identity operator

HI1GY = 21656 ) o <dalnl b
e :

11

YOS, 14> = LD 18>
X Y ol X

Thus the matrices D and §4H are identical. In what follows we
will refer to D as the Hamiltonian matrix and note that the
elements of this matrix are different from the matrix elements
of the Hamiltonian '4dﬁ- This distinction vanishes if the basis
%ldﬁ>} is orthogomnal.

This method of sclving the one-electron Schrodinger
equation has come to be known as the Linear Combination of
Atomic Orbitals (LCAC) method. However, the set {l@)}need not be
confined to atomic orbitals and subsequent tight-binding
calculations have often been based on various different basis
sets. The problem of nonorthogonality associated with the atomic
orbitals has been tackled by using orthogonalised Lowdin
orbitals,cgthus giving rise to the name LCOAO. Calculations
based on a basis of bond orbitals have been termed the LCBO

method. For crystalline solids Wannier functions as well as
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various other unitary transformations of Bloch functions,
molecular orbitals have been used. However, these orthogonalised
orbitals are more extended than atomic orbitals, having
oscillatory tails and are thus sensitive to their environment.
In other words, these orbitals form basis sets that are
non-transferable from one situation to another. There is a
direct conflict between the requirements that basis orbitals be
transferable and at the same time, be orthogonal in each new
situation. The transferability of the basis set from one
situation to another is a highly desirable property, not only
becanse of the obvious ease it provides for new calculations,
but also because it is appealing to the intuitive "chemical
building block"™ picture of solids and molecules. Atomic
orbitals, having no oscillatory tails, are transferable or at
least approximately transferable. Hovever, there are some basic
problems associated with the use ;f atomic orbitals. Expansion
{3.1) is apparently only an approximation in a variational
method unless vwe have a complete set of basis functiomns in the
representation. Inclusion of more and more states do not
necessarily help convergence of egn. (3.2) and the method breaks
down completely if one attempts to include the continuum of
unbound states without which the representation (3.1) is
incomplete.

The important advancement in the theory im this regard care
relatively recently with the work of Adans,4 Gilbertssand

66
Anderson, who showed for the first time how to write a defining
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equation for a localised atomiclike basis so that the influence
of the distant environment occurs only as a weak perturbation.
It was thus demonstrated that the LCAO expression (3.1) need not
be considered simply as a variational expansion in which by
adding more and more arbitrary functions one hopes to converge
on an accurate answer, but that sets of basis functions may be
defined in such a way that the expansion in local orbitals is
exact, and these localised basis functions are atomiclike and
therefore approximately transferable from one situation to
another. Belov we briefly discuss how to obtain such a localised
basis set. ¥We will concentrate on the work of Anderson, which is

of direct relevance to our work.

3.1 THE ANDERSON-BULLETT SCHEME

Let us consider aﬁ isolated band of some N atom system with
the one-electron Hamiltonian H. By an isolated band we simply
mean a group of closely spaced energy levels that is separated
fror any other such groups of energy values for the system. The
energy eigenvalues in the band are given by the eigenvalues

of the eguation

H | LP“) = €, ]w'> ] (Z.10)

Let P be the projection operator onto the band subspace, i.e.,

e Flvs <ol -
Y

where we have assumed that there are Nn number of energy levels
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in the band (n levels per atom). P is a hermitian operator
satisfying

2

P* = P (2.12)

Furthermore P commutes with H :
PH = HP, (3.12)

The basic idea of the localised orbital (LO) theories developed
64 33 43

by Adams, Gilbert, and Anderson 1is to represent exactly the

eigenfunctions in the band as linear combinations of atomiclike

LOs 4h'& , localised about the atom *a'. The subscript

denotes the type of the orbital and runs over the total number

of orbitals, n, per atom. The first condition that is imposed on

these LOs is that they must span the band subspace of the

functions \P; s, 1.€.,
Pl 4>a,c(> = | ¢a,d> . (2.14)

Using the identities (3.13) and (3.12), egqn.(3.14) can be

written as

Hid, > - PHPI®, 4> = O (3.15)

This eguation merely represeants the constraint that the LOs
belong to the subspace represented by P. To defimne the ¢a""s
uniquely, we need to specify another condition. For this we

divide the total Hamiltonian into two parts

H = H, + U, (3.16)

’
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vhere H, refers to the atom 'a' and U, refers to the 'rest of
64,66
the system'. Following Adaanms, ve demand that the LOs satisfy

the equation

PH, P 1, > = €441, (3.17)

In a single band consisting of Nn energy values, there are Nn
nontrivial functions that satisfy this equation. Of these, ve
take the lowest n as the functions 4aﬂ‘._rhese functions are
localised about the atom 'a'. Egqns. (3.15) and (3-17) are the
defining equations for the 1Os. These can be combined into a
single equation:

H | ¢q,d> - P H"Ha) P’¢a.d> = gd,d’¢a'4>»

(32.18)

or,

H10, S - PUaPI®ad = EaulPauy. (21)
This equation can also be written as

Ha l¢q‘d> + (ua - PuaP>l¢a,d> = Eq,o( l¢a,d>_ (3.20)

This latter form demonstrates why the effect of the
‘neighbouring atoms' c¢r the 'rest of the system' may actually be
small and the functioms d&’d only veakly distorted from the
eigenfunctions of the operator H, . The perturbation from the
surrounding atoms is weakened by projecting out the part that

acts within the band.
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To solve egn. (3.20), the projection operator P has to be

expressed in the nonorthogonal basis:

Z EIICY, .l Gan

Qo b
a,b=1 o,p=1
{see Appendix (A-1))

This is a rather complicated function of the Localised orbitals
and several approximate treatments, such as keeping only terms
of the first order in overlaps of the expamnsion of s-1 . have
been suggested.sg,gtz)ne can thus start with the eigenfunctions of
H, and solve egn. {3.18) by successive iterations until
self-consistency is achieved. If the residual interaction ternm
.u‘—PU&P is small, then the self-consistent solutions dZAﬂ are
expected to be close to the initial approx;nations.

Using the pseudopotential ideas of Austin,Heine and sﬂam,
Anderson 6developed a simplified version of the above theories,
justifying and suggesting semiempirical approaches such as the
extended Hickel parameterisation schemes in case of organic
molecules. Pollowing Anderson, let us foreally represent the
total Hamiltonian as

N
H =T+ YV, , (3.22)
azl
wvhere T is the kinetic emnergy operator and V, is the effective
potential from atom 'a'. Such a representation is alwvays

possible in principle, since it is perfectly within our power to

choose VL for b f a to be the difference, whatever it may be,
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from the potential Vo due to the presence of 'b'. With such a
division of the total potential, the pseudopotential eguation
defining the localised orbitals in the theory of Andefson can be
derived from the general form (3.19) by setting
n
Ua= YRV , B=2 14 ,><d .| (3.23)
L#a 2 (3=' BJﬁ ba@ -

We note that this choice of Ua implies

Ha = H-U, = (T-}-'VA) + 2 (Vb" P],VL>' (2.24)
bta

Egn.(3.19) thus assumes the fornm

[(T+ V) + N (V- RV 6. = Eaa ey (229
bta *

[(T+Va)+ g: T, (- 14,0 <% by = £ ltad (526
=] b2a

The form of V, is yet unspecified. However, it is desirable
that the eigenfunctions of T + V, be fairly localised. The
self-consistent solutions to egn. (3.26), which are expected to
be only weakly perturbed from these functions, will then be
localised about the atom 'a'. Hence, one can choose V, to be the

atomic potential centered about the atom 'a'}
Vo - V(O) (3.27)

However, since the total potential seen by the electron cannot

be obtained by simply summing over atomic potentials, the
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potential VB for b # a will then have a foram

(
VL-‘-V,,

*) + S'V'X ) (2.28)
where VJ°) is the free atom potential centered about the atom
'h*, and 81& can be looked upon as a correction term. The form
of S\Q used in our calculation will be specified in the next
section. The important point is that such a division of the
total potential can be achieved in turn for each atom ‘'a‘', to
solve for the corresponding 42“‘ in (3.26). Once a particular
V,is set equal to VAUO, the potentials V, (b # a) will then be
given by the form (3.28) to be consistent with the actual
potential seen by the electron in the presence of all the atoms
in the vicinity of t'a‘.

With this division of the potential, the eigenfunction of T

+ V, are the unperturbed atomic orbitals,

. . o) o
(T+v) 18, 2% = (T+v, )¢ ) = o 1B

0, ot

o

Thus one can start with the atomic orbitals q%ifjas the initial
approximation to the localised orbitals and solve egn. {3.26)
iteratively till self-consistency is achieved.

To compute the eigenvalues of the Hamiltoiam H, egn. (3.26)

can be put into a more convenient form

1025 = % 3 1900, 1014,y + . 18,5

(=1 bz
b¥a N n
r, H l¢°'°‘> - .Z:. E(;:::'DL(*,M I¢5(3> ) (3.29)
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where,

-Dao(,a(z. = €a,0 04 (2.20)

and
:Db@ ad - <¢L,(3 ]-v-b l ¢a,<>(> 3 Eia (3‘31)
Recalling egqgns. {3.8) and (3.9), we see that the Anderson scheme

-1
helps us find the matrix elements (S qu‘ directly and the

b

secular equation that has to be solved to obtain the eigemvalues

in the band is

Aet[.baohl,{; - & 500‘,3(3]:0, (2.22)

Thus the overlap matrix (gadjdg)does not appear explicitly in
the secular equation, although the basis orbital% ¢hm‘are not
rutually orthogonal. The price paid is that the matrix D is in
general nonhermitian. It is hermitian if and only if the
hermitian matrices S and H commute.

As a test of the validity of this scheme, Anderson
considered the |[-orbitals in benzene. The purpose was to offer
a justification for the Hiuckel type parameterisation scheme in
organic molecules?m7luhere inspite of large overlap betwveen the

atomic orbitals on neighbouring sites (the basis functions), the

secular equation which is found to work very well is of the type

Jet[(“e{f)am - £ 5“@] = 0

Anderson found that for the T}orbitals in benzene, the matrix

elements {(3.31) calculated with the unperturbed atomic orbitals
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¢2.:) were very close to those obtained with the iterated
solJtions ¢a”(. This résult, apart from providirng a proper
understanding as to wky the simple minded Huckel model works so,
offers a practical scheme for calculating the energy values in a
band. One can simply start sith atomic orbitals and potential
{(with exchange and correlation properly included), calculate the
matrcix elements IL(@ as defined and obhtain reasonably good
results for the eigenvalues E} by solving egn. (3.32). Bullett
has applied this methcd to calculate the bard structure for Se
and Te as well as the electronic DOS in their amorphous phaseszl
He ﬁas also applied this methocd to the calculation of band
structure in the Chevrel phases, where other methods are
difficult to apply due toc the large number of atonms per unit
ce11,73We will thus call this version of the LCAC method the
Anderson-Buliett scheze and apply it to the computation of the
energy eigenvalues in iron. We suppose that the basis set to

represent the s-d bands in iron can be obtained from the atomic

s and d wavefunctions and calculate the matrix elements

Do = bV 16> . «FB (333)

which can then be used to sclve the secular equation(3.32). In
{3.33) the subscripts a,qd for the orbitals have been condensed

to o/ and we have used V for V .
24 : a
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3.2 EXCHANGE AND CORRELATION EFFECTS

Although the total potential seen by an electron can always
be formally written as a sum of contributions centered on each
atom, it is clear that this, if only because of exchange and
correlation effects , is far from the sum of atomic potentials.
In particular, the atomic potential at large radii goes as 1/r,
while the electron actually sees neutral atoms at all distant
sites. The potential.Vain (3.33), therefore, should combine
atomic potemntial with modifications caused by exchange and
correlation effects. The actual exchange potential is nonlocal
and extremely difficult to handle froa the computational point
of view. Hence some local approximation to the exchange
potential is necessary. An approximation that is frequently made
replaces the Hartree-Fock exchange ternm by‘a local potential
dependent only on the local charge demnsity (of parallel spin
electrons, in case spin is included). The form suggested by

74
Slater is

Rz
Vi) = se §3R(P) P (234)
2

uheref(?)is the electron charge density. However, the density
functional formalism of Hohenberg, Kohn and Shamvssupports the
original derivation of Dirac,76 vho obtained a value only 2/3 of
that given by (3.34). Most often, therefore, one assumes an

effective Dirac-Slater exchange potential( Xo{ approximation)

containing a disposable parameter « ,

V() = V() (235
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and .adjusts o{ (in the range 2/3$ o {1) so that the effective
Hamiltonian reproduces in scme optimum way the energy levels of

27
isolated atoms in the syster. In some calculations the

parameter d is taken to be a function of the charge density..]‘g
Further corrections such as correlation potentials and gradient
terus go are sometimes added to (3.35).

We have calculated the 4s and 3d atomic orbitals and the
potential in Fe using the Herman—-Skillman program and the
Slater exchange potential. Since the Slater exchange potential
is proportional to one-third power of the electron density, the
additional potential due to an atom 'b' placed at a distance R
from an atom 'a' at the origin is vé°7+ S\&,where V‘fo)is the

atomic potential centered at atcm 'b' and SN& is the correction
due to the ronadditivity of the atomic potentials :
5 . ‘2 Y '
- - =Y -—
o= cy[e e - [e@)] - [e@®)] | s
E]
where ea(?> is the atomic charge density, and the constant C

is given by

1 : ‘
c=-2 e""(éw.)/3 (using ofzd im (335))

The transfer matrix elements (3.33) are computed as

D@‘* - <¢(‘lv(!(o)!¢d> * <4’(5]8vx1¢a>, (3.37)

(e)

where V@ is the free atom potential on the same center as B -
The two terms in (3.37) partially cancel each other, reducing

the magnitude of the overlap.
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The term &V (?)is centered about a point somewhat midway

-

between the sites O,i?.u Thus the second term in (3.25) does
not have the form of a two-center integral and is difficult to
compute. However, it is found to be slowly varying in the region
of overlap of ndarest and next nearest neighbour orbitals and
thus may be approximated by a constant. To calculate the matrix
elements 'D05~ we follow a method suggested by Ballentine.sq
From a plot (see Fig.5) of 8‘&?)for the nearest and the next
nearest neighbour separations, vwe firsf guess the limits within
which SV; may be varied. This is then treated as a parameter in
our subsequent band structure calculation and varied within
reasorable limits to yield the correct s band width{ H4s - 1 )
in bcc iron. Our reference band structure is the one computed by
Callaway and Wang(CH),gZHho have carried opt a self-consistent
tight-binding calculation for the majority and the minority spin
states in ferromagnetic bcc iron using three different
spin-dependent exchange potentials. For our paramagnetic model, ~
ve have used, as reference, their band structure for the
majority spin states obtained with the von Barth and Hedin78
exchange-correlation potential. We have adjusted the difference
between the s and the d atomic levels to yield the correct
separation betveen the s and d bands at the zone center and the
constant SV; in (3.37) to yield the correct s band width. The
band structure, thus obtained, is displayed in Fig. (6). The band

structure near the Permi level, which comsists of predominantly

d bands, is reproduced reasonably well. Since the basis set used
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by CW is much larger than ours, we do not expect to reproduce
exactly their results away from the Fermi level. The important
difference between the band structure in Fig.(6)‘and the band
structure of CW (Fig.(7)) is the size of the hybridisation gap,
which is substantially less in the former. However, the above
scheme provides a convenient way to obtain parameters which can
be transferred to the disordered phases fcr the purpose of
electronic structure calculation. These parameters are also
found to reproduce reasonably well the band structure in fcc
iron as obtained by the APW calculations of Wood.gsaence, in our
susequent electronic structure calculation for the disordered

phases we decide to use these parameters to generate the

tight-binding Hamiltorian matrices for various clusters.

3.3 EMPIRICAL LCAO SCHEME

Since the hybridisation gap produced by the LCAO method
(Anderson-Bullett scheme) described above falls short of the
expected value (as obtained in the calculation of Callaway arnd
¥ang), we also use an ad hoc parameterisation scheme in an
attempt to fit the C¥ band structure more closely. ¥e refer to
this as the empirical LCAO scheme as we directly parameterise

the mpatrix elements of the Hamiltonian, E?), without

«p
specifying the basis functions.
The symfetry of a matrix element of the Hamiltonian,

HI"\”Q'"" (?), is the same as the symmetry of the overlap

integral between two functicns,
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gEM(?) ix'm’(?—?> 4%+ (2.29)

We therefore introduce two functions, depending upon certain

parameters,
T - o .
30('?) = (e _,.Ae“a"")yo(,.)’ (3.39)
¥ = 2 7B ym s 2=2,-1,0,1, 2
S2.'“\(%‘.) - L) e yz (Y))'\")- =051, &y
(3-40)
and set

Hss(?) = G ff,(?) ?,(?-Ti’) 431) (341)

Ho (R) = Hy (R7) = Czjf;,ﬁ*’) 50 (?-E))J?w, (3.42)

Has (B) = ¢ g (7 4 o) | (3w

Egns.3 4 | to2 {3 involve seven constants, namely, ,,of,, oAz,

A, C,, (Zz, C3 . These constants are treated as parameters in
the band structure calculation. In addition, the on-site
energies of the s and the d basis functions, Hgs(o) and Hyy(o),
are also treated as parameters. The Slater functions é's are to
be viewved as mathematical entities that provide a convenient
eeans of parameterising the matrix elements He((;(?) and should

not be confused with the basis functions. In other words, ve
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pretend that using egqns. (3.4} -3.43) we have obtained the matrix
elements of the Hamiltonian in a localised basis consisting of
functions with s and d symmetries, although we do not know what
these basis functions are.

Our parameterisation schemef generates a symmetric
Hamiltonian. Therefore in calculating the band structufe ve
assume that the basis of this representation is orthogonal and

solve the secular eqgn.
det [HJ,(S - ES,((E] = 0, (3-44)

The nine parameters mentioned above are varied to obtain a
least square fit to the majority spin state band structure of
CW. In the least sguare fitting, btands near the Fermi level are
given greater weightage than those far above or below this
level., The band structure, thus obtained, is shown in Fig. (8) .
We note that the size cf the Lybridisatioa gap has increassad
from the band structure in Fig.(6). It is still less than that ~
in the band structure cf CW (Fig.7). However, it is of the sanme

magnitude as in a previous calculation by Tawil and Callaway.

- ——— i ——— —— i — —— — o

The values of the parameters used in this scheme and the
Anderson-Bullett scheme discussed in section {(3.1) are listed in
Appendix (A-3).
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FIG.5.

FIG.6.

FIG.7.

FIG.8.

FIGURE CAPTIONS

Contours of SVX(?) 103(Ryd.).

SVX(?) is the nonadditive part of the
potential of two atoms. One atom is shown
on the +X axis, the other being at the same
distance from the origin along the -X axis.
Band structure for bcec Fe along certain
symmetry directions, obtained by employing
the Anderson-Bullett scheme (section 3.1).
Band structure for bcc Fe along cértain
symmetry directions, as obtained in the
calculations of Callaway and Wang(l977)
(Ref.82).

Band structure for bcc Fe along certain
symmetry directions, obtained by employing

the empirical LCAO scheme (section 3.3).
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3.4 EVALUATION OF IHE TWO-CENTER INTEGRALS

In our calculations involving the LCAO scheres discussed in
sections (3.1) and (3.3) all wavefunctions and potentials are

expressed in the form of Slater type functions

-ol¥ nNnN+L-4 ™ A
£ (d,7) = ¢ Y il YL (%) o (349)

vegm ’

Thus the transfer ratrix elements (Ib@) and (fup) are written

as lipnear combinations of two center integrals involving Slater

type functions. Overlap integrals of two such functions centered

on different atoms have been evaluated by several workers by
85-4972

employing various techniques. However, these results are

sca ttered throughout the literature in various notations and

often expressed in an inconvenient co-ordinate system. For this

reason we have chosen to generate all the overlap integrals in a

systematic fashion that is convenient for computation. The

met hod, which is due to L. E. Ballentine, has been discussed

59

briefly in a recent publication.

Suppose

[(R): {f™ fo-R)dx,

where N,

_gl(;)) - ‘g (4”'?) ete.

9|ﬁ‘
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Then
FETRI] = @™ P e™Frfnmy

where F§-~-~}denotes the Pourier transform of the function

inside the brackets,e.qg.,

F{f.r:’)} - (R =(m 7 fe“ ) o

Ny
' -3 cK.¥ ~-d,r -} .™ a3
o [T A s,

(3.47)
Fourier transform of Slater_}ype functions can be calculated
(k.9
analytically. Expanding ¢ in spherical harmonics about the

~
vectors K and ¥ , the angular and radial parts of the imntegral

in (3.22) can be carried out separately to yield

ROE) = Y, (R) X oh (k)

where ~ (e 3
X:;. (K) = iQ' k-‘/z (otg+ K")( A /J/% " (22,4n,42)
- )
‘ (k.(f:.fz,_) (efr (ot 4 kz)-%),
We have usedqq

o0

- of - | -
og e XJ;(px) < ax = (a’+(s=)}‘/" P(v+p)

-v 1
F;_, (ot (4%p™) /;) L B, Re(vidH 0
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I;(?) is the Bessel Function of the first kind of order Vaad

related to spherical Bessel function by

32 (2) = TT/ZE_ T (=)

a+y ’

and F;(?)is the associated Legendre function of the first kind.

Thus

32 m, my \ X
F§I(E’)} = (2nm) Y, (E)); (E‘)Xd(K)XB‘(K)

L7, lzna

Writing

e
- K. R

L »
e = 4m Y ) Y R YD (kR
L,M

ve obtain

mMm, Lnng

- = M A
1(®) “E;,sz YRS, ) (oo, R) o

“‘n ma
vhere CQ Lg are the Gaunt Co-efficients:
} 3

m.l"lm

™M M * My
Connr = I Y RO 00 dSu,

Lnn
and S i

£, 9 ("(u"‘z,g) are integrals of the type:
1 L2

Ln|'n2

L ,
S ("(n ,d,,R) = (""') J‘JL(KR) Xl X; KzJK )(3-9?)

L%,
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with
X, = x (k) ere.

‘ZI nl
These integrals can be done by contour integration by applying

the residue theorer and hence ICE?) can be obtained from
(3.48) . The integrals (3.49) can be done relatively easily for
ﬂ,: n,=0 and the rest can be generated by differentiation

]
v.r.t. o$§ ,i.e.,

Loo

W M,
(" 3/30(:> (—b/bd;> Sﬂ.iz - (3.50)

Ln.n,.

S
'(, Lz

The spherical harmonics

Y, (6,4) = 14,

are complex for =m # 0, with _
m  -~M
V) 6.4y = 0T Y, (6.)

However one can introduce normalised real basis functions as

follovs:
le,m” > = & g [g,m> + <-o""l&—m>}=& Pdf(e@),
- ™
lgn’) = & {!2, my = (-1) I&-m>} = Jz 51.,71 (6,%),
’W\> o

If the overlap between the complex basis functions |lﬂ€> are
written as Im“,".then the overlap between the real basis

functions are related to these by

5



(AP ";:)> = -'i {I”'-m;',' CORE | + (-l;”.l

-m))'mz ‘M,,M;

(- - ™,
<‘h, )]rn(,_) - 3':5 "'l""a.""(-') Hf" - (-0 -r

l“")“--m2

(.+7l o ~) > g g : (-1) I"’h)'"’l}
27 { e = (0 Ly m, * 60 'L

-, my

"').:"\1

(-)I (+)> { o, -(-""nm;. - (-l)szm.a-mz }

™
r‘”’l s=hy T (-0 ‘I"”‘nmz-'- C-’)m}"h""”!}

m,, ms DO

If m=0‘, then l',C‘+)> and ]fg")need not be defined, since
o
=10 = Y, (6,9)

is real. The real overlap integrals with m>0 are

o 8 = & {I,,,., ) Io,-m}
1%y == S, el L §
10y =L {1y e @ Lng §
(R 1ey = 1= {IM - c~:>"1-m,o}

The remaining case is

<010> = Io,o

The necessary evaluation of the residues at higher order poles
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Loo
to calculate gZ 2 , differentiation to generate values for
1 L3

(3.50) for 'n,,nl>o and the use of L'Hospital's rule to obtain
the limit o(|-.-.o{2 vere conveniently performed by means of a
program written in the symbolic computing language FORMAC73. The
resulting formulas for I(-P?) vere expressed in FORTRAN notation

and compiled for numerical evaluation.
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IV. CHAPTER (4)

4.1 LOCAL DENSITY OF STATES
In a system with one-electron energy levels En + the

density of electronic states is given by

M (E) = 9, 8(E-Ea) (4.1)
n

Correspondingly the number of electron states in the energy
range (E, E+dE) is counted as n(E)dE. In case each energy level
is occupied by two electrons of opposite spins, we multiply the
expression (4.1) by two. The summation in (4.1) should be taken
either as a sum or as an integral, depending on vhether one is
dealing with the discrete or contiﬁuous part of the spectrus.
For a finite system the spectruﬁ is discrete even for the
extended states and N(E) is strictly a set of delta functions.
For a macroscopic system the emnergy levels corresponding to
states not bound to a particular potential form a continuum and
HCE) is smeared out into a continuous function of E throughout
the band. To calculate N(E) one can introduce the spectral

operator P(E) in terms of the energy eigenstates [¥ny ,

CCe) = ) 1wy {¥.) § (E-En) (4.2)

” P4
and obtain the trace of this operator in amny convenient

representation.
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The local density of states(LDS), as introduced by
i
Friedel, 1is given by the diagonal matrix element of the

spectral operator in the position representation:

n(exy = elee]ed = TIceledl§(e-ea), &3

The total density of states can be obtained by integrating this
local density over the configuration space of r. The gquantity
71(&;!:) reveals the effect of the local environment on the
electronic structure and hence constitutes an important object
of study for systems such as surfaces and interfaces, liquid and
amorphous metals, semiconductors and alloys, defects and
impurities in solids, molecules, microcrystallites and clusters
etc. Even when there is perfect crystal symmetry, one may be
interested only in the local environment of an atom and use the
local density of states to study the properties like the bonding
of the atom with its neighbours etc. The local aspect of
M(€,x¥) is aptly described by the so-called invariance theoren
{see section (2) of the article by V. Heine in Ref.95). In
approximate terms, the theorem states that as long as r is a few
wavelengths awvay from the boundary of a cell surrounding this
point, M (E,x) does not change appreciably on changing the
condition to be satisfied by the wavefunction and its derivative
at the cell boundary. Friedel used this theorem to explain
several electronic properties in dilute alloys where, for the
cell mentioned above, he considered the regiom occupied by the

solvent, excluding the solute atoms. The theorem explains why
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several local electronic properties in dilute alloys change less
rapidly than linearly in concentration. It explains the local
magnetic moments in such systems, e.g., why the average magnetic
moment at an Fe site in an FezAl alloy is remarkably close to
that in pure Pé?gggr cluster calculations like ours, it suggests
that the LDS at a point more than a few wavelengths away from
the boundary should be independent of the boundary conditions.
For example, the LDS of the diamond Bethe lattice should be
similar to the LDS in the diamond structureQ7or the LDS for a
cluster with periodic boundary conditions should be similar to

%
that with free(cluster) boundary conditions etc.

4.2 RELATION TO GREEN 'S FUNCTION

Egn. {4.3) relates the local density t9 the eigenstates of
the whole system. Obviously trying to calculate 7\(5,1) from the
eigenstates is an impractical task as this would mean solving
for the En% and "kﬁ;s first for the entire systen.
Individuval eigenstates refer to the entire system and may be
extremely sensitive to small perturbations in the systen,
vhereas the local quantity 71(Eat> lacks such sensitivity if ¢
is beyond some distance from the perturbation. Hence calculating
M (E,x¥) from the eigenstates is not a good idea even in
principle, unless they are easy to obtain as in a periodic
so0lid. An alternative approach is based on the theory of Green's

function. We first introduce the resolvent or the Green operator
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G(E) = (E-H)-i, (4-4)

where H is the one-electron Hariltonian for thke system. In terms

of the eigenstates ‘4k> we have

6CE) = T IWS <Rl Je-Ea) | (4-5)

where the summation is to be understood as a sum over tkhe
discrete spectrum and an integral over the continuous part.
Analogous to the local density of states, we define the local
Greeﬁ's function as the diagonal matrix element of G{E) in the
pesition representation, i.e.,

Cle vr) = 6(ExxD |y

2

G(E,T.fl) = <'Il@»(E)l'!"> = z <I’q’n><‘l’nlf’>/ce_sh) , (4.9

Cne can analytically continue this function to the complex plane
and define

C(2,%.%x') = z <IH"’><“P'~"-">/(2-E.\) . (4.¢a)

n

Since the eigenvalues Ev, of a hermitian cperator 4 are real,
(4.6a) is regular off the real z-axis. The singularities of G (z)
lie on the Teal z-axis, where it has simple poles at the
discrete eigenvalues of H and a bfanch cut coinciding with the
continuous spectrum. Actually, in an infinite disordered syster

part of the continuous spectrum may belong to localised
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eigenstates. This part vhich belongs to the localised states is
called the singularly continuous part. In this region, the line
of singularities is formed by a dense distribution of poles, but
in a finite energy range only a finite number of these have
residues larger than any preset small value.quhe branch cuot on
the real z-axis coincides with the spectrum of the extended
states only. The singularly continuous part belonging to the
localised states is referred to as the natural boundary (this
term has been used by EconomouWQand Papatriantafillon et aluuto
distinguish it from the branch cut). For this part of the
spectrum Lic;o+ﬁ;ft i(E,I.r') does not exisgfoln the region of
the extended states such limits exist , but are unegual. The

difference between these two, i.e., the discontinuity across the

branch cut is related to LDS (4.3). This can be easily seen from
a [
G(Ex,x) =z Lim [&Chte,:,z)-G.CE-c‘e,z.:)]
€0t
2
- Lin 21<I“Pn>l [' i ]
g0t n

E~E-En  E-(E~En

-2mi N ILelwy]” 8(e-En),

where we have used the identity

. | - N
L:;;o*‘ X&iy P T T,
Thus ~ | 3 g +
N(Er) = -k Gz gk In16 Enng
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with
+ .
Eot ’

and

¢ = Lin L G(e-ig, x,x)

E—o0 ‘
Thus in order to obtain the LDS one first obtains the Green's
function and then utilises eqn. (4.7). The important point is
that the Green's function does not haje to be evaluated in the
eigenfunction representation and one may choose a representation
suitable for.the prcbler at hand. However, in all calculations

special care has to be taken to see that
1) G(z,r,r') is regular off the real axis.

2) G(z,r,r"') c=atisfies the reality condition, which

reflects the hermiticity of the Hamiltonian or that the

eigenvalues of H are real,
»
C(z,x,x) =3 LIy {alx)

n 2* . En

3) The imaginary part of G{(z,r,r') is negative for z in the

= G (3" ~'~ (4.3)

I = Y =

upper hailf of the corplex plane,
jvn G(z; I»I,> < o ) j""’ 2’> o (41)

Utilising condition(2) this yields

g G (2, 2,70 > 0 3. 2 <o
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This ensures that the residue of each eigenvalue in (4.6) is
positive. This condition is necessary for the positive
definiteness of the LDS. A function satisfying conditions (4.9a)

and (4.9b) is called a Herglotz function.

8)
G(2; x,x') "-31

(12) »e)  (410)
This is true if the spectrum of H has an upper bound, i.e., the
branch cut on the real axis is of finite extent, representing

bands of finite width.

Green's function satisfying conditions 1) to 3) are called
analytic. The condition (4) is a boundary condition and holds

for all Hamiltonians represented in a finite basis.

TIGHT-BINDING FORM
In a tight-binding calculation, the eigenstates “P#) are
expanded in a basis of localised states fl bq)} centered on

each atom in the cluster,

]tp,,> = 2 Coa | P

One then defines the LDS as the density of states(DOS) projected

onto a particular localised state [¢§> i.e.,

NolE) = <o l0(E)] 4, = Zl<¢lm1 §(e-En)
-~ Lim L 3m <¢3J6(E+t'€)l¢.> (4.“)

T et T
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Thus, uhile TL(E,I) refers to LDS per unit volume, Y (E)
refers to LDS per orbital 4%(!). LDS per atom can be obtained
by summing .n,(5> for all orbitals centered on a particular
site. The total DOS can be obtained by summing the LDS over all
orbitals in the cluster (see Appendix (2-2) for further
discussion on this point). However, in a small cluster
consisting of a few hundreds of atoms, large number of atoms are
on or very close to the surface and may be strongly affected by
the surface states. Thus it is only from the LDS near the center
of the cluster that one can obtain results characteristic of the
bulk material and not from the total DOS of the whole cluster.
Since in an amorphous system each atom has a slightly different
environment, it is necessary to calculate an average over a few

atoms, five to ten usually being more than adequate.

4,3 METHODS OF CALCULATIORS

During the last decade several methods for calculating the’
LDS from eqn. (4.8) have been proposed and developed. The most
important are the recursion method , the moments method, the
cluster Bethe lattice method and the eguation of motion
technique. All these methods have been proven useful when the
system lacks translational symmetry and the Bloch theorem is aot
useful. Nearly ten years of experience has revealed that all
these techrniques yield similar results, though each method has
its characteristic advantages as well as limitations. Below we

describe the recursion methcd and the eguation of motion
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technique and also present a brief discussion of other methods

that have been used so far.

4.31 RECURSION METHOGD

The recursion method, introduced by Haydock, Heine and
Kellqum'otas become increasingly popular because it provides a
simple and probably the fastest algorithm to calculate local
electronic properties. Detailed account of this method and
various related aspects has been provided by Haydockqs(s".oge also
articles by Heine and by Kelly in Bef.95). The method is based
on the Lanczos method of tridiagonalising a matrix. The local
Green's function acquires a continued fraction representation in
terms of the eiements of the tridiagonalised Hamiltonian matrix
and can be calculated recursively with considerable ease. There
are several algorithms that carry out the Lanczos’oe
tridiagonalisation procedure. Out of these, the recursion method
uses the algorithm which has been shown by Paige”qto yield
extremely good results for the eigenvalues of the
tridiagonalised matrix (in terms of convergence to the
eigenvalues of the original matrix) and to be numerically
stable. Below we discuss first the recursion method for a
symmetric Hamiltonian matrix and then describe Haydock and

los

Kelly's extension of the method to the case of nonsymmetric

matrices.
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Q.31(a)’S!HHETRIC RECURSION IN ORTHOGONAL BASIS

Let { l¢d>’} represent the localised orthonormal basis
used to represent the one-electron Hamiltonian H. The
Hamiltonian matrix is hermitian in this representation. The new
basis which brings this matrix to a tridiagonal or Jacobi form
is obtained by a unitary transformation of the original basis.
Members of this new basis are obtained iteratively via a
three-term recursion relation which guarantees that each new
member interacts only with its preceding and folloving members.
For this reason the pnewv basis is said to provide a chain model
for the Hamiltonian.

If ve denote the nev basis set as §A'u§>a0=0,b2r"'-}:
then the first member of the new basis IQJ} , is chosen to be
the orbital ,¢§> vhose local density is sought. Let us
suppose this vector is normalised. The next member of the new

basis, |4y , is obtained by demanding
HlWe) = aplue) + b 1u (4.12)

vhere @, and b4 are real numbers. To find Q, and b, in

(4.12) we take the inner product of both sides with Iud>;
<uo]H’u0> = Q <Uo|u°> + b, <Uolun> .
Since we vant the nev basis toc be orthogonal, we demand

<UOl ui> = oa

and thus
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a, < <:Qo| H ]U;>

>

assuning ,UJ> to be normalised. Having determined G, , we

write

L| IU,> - H lu0> - ao’u°>
Pl
and take the inner product of this vector with itself giving

Ll"—(U:,Un) = <Q,l (H-a,)+(H- ac)luo>_
We demand

lulw) = 1 ,

and take 51 as the positive square root of

2

Lo o= (uol(H-a.)+(H-Av>'“°>.

We nov obtain IU|> as
Judy = (H- as) |ue) /’31

Thus by construction 'U,> is normalised to unity and is

orthogonal to | Yo .
To obtain the subsequent vectors in the new basis or the

chain, we use a three-term recursion relation
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HluS = anlua$ # by, fusn> +b [y, 021,
(4.13)

Consider the case n=1, i.e.,

H]u.‘> = 451U1> + Lz’u2> +L| 'u‘>.

Taking the inner product of both sides with 'Ua> and demanding

<ullu2> = OJ
ve have

a, = <U:’H’u'>.\

since <ull Qo> vanishes by construction. As before, we write

L = [l 0n-at Gt | [en- ety - e e

using <Uzl Uz> = 1

2
We take bz as the positive square root of b; and write

| U (H-a) w5 - L"u°>/b,_ (4.15)

so that lh;) is normalised to unity and is orthogomnal to

fw,> and ]u,) , where the last result follows by using
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b, = <u,|l4lu,>)

vhich follows from using the self-adjointness of H. It is easy

to see that

b, = <“olHlu,> 2 o | H] Wy (4.16)

The higher order co-efficients @w and Ln and the chain
states are obtained by following the above prescription. In

genaral

An = dunlH]UsdD ; (4.17)

L2 +
ot = [ CUn] (H=an) - <Una b0 ][ (H-amdlty ~bnluns)]
(4.18)

]Un+|> = (H- dn) ’ u°> - L, ’un-l>An+' >

2
where Lh+,is the positive square root of En+, - In the basis

1lua> 7,
<u..l HlusS = a, | <u.5_,lHIu.,> - <U.,,,)Hlu.~.> <bn
LunlHlunS =0 | oam] >1,

(4.19)

i.e., the matrix H is tridiagonalised and is symmetric about the
line of the diagonal elements. It should be noticed that ,Bnl ¢
being the inner product of a vector with itself is always

positive.
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By construction lu»+c> is normalised to unity and
orthogonal to [Us) and |4n,> . It is also orthogomal to
'u“-;> J'“ﬂ-3> d e e v L,i.e., all the previous states in
the chain. To see this, we take the inner product of both sides

of (4.13) with |un-i> to obtain

‘>n+n <ub-zl U.,.,.,> = <u“-ll H ' u°>A

since <un-zl Un> and <Uo-z I (4.,-,> vanish by construction.

Thus

Lb.'“ {un-q ) Un+:>‘ = <u", H | u""->*

= Gy, <u.,] u.,_{>*+ b, un| Un-:>”.+L,,_2 <Un’Uo-§

Each term on the right hand side of this egn. vanishes by
construction, showing the orthogonality of ’Un+f> and 'u“*i>.

This argument can be extended down the chain to show
the orthogonality of ]Un+t> to all the previous states in the
chain.

The transformation terminates when Ln+3' in (4.18) is
zero. Since Ln&wl is the inner product of a vector with
itself, this can happen only when the new vector
(H-QWD1“0> -bn IUQ4>' is zero. In practice, there is a
cumulative decay of orthogonality in the chain due to rounding
error. Hence for a N dimensional matrix H, bpq may be small but
nonzero, and the chain continues producing multiple eigenvalues

for each eigenvalue of the original matrix. However, in order to
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calculate the local DOS one needs to calculate only a small
nunber of co-efficients and thus, in practice, we terminate the
chain long before all degrees of freedom have been exhausted.
The cumulative loss of orthogonality does not pose any problenm
until linear independence of chain states is lost. Although
nonorthogonality accumulates, eigenvalues remain accurate to a
single rounding error, provided the co-efficients dn and bnq
are calculated by the algorithm discussed above. This point has

been discussed in detail by Haydock (refernce 95).

4.3 (1) NONSYHHElTRIC RECURSION

In general the Hamiltonian matrix [34(31 is nonhermitian
or nonsymmetric. We recall that in the Anderson-Bullett scheme
discussed in section {3.1), bo{@ is given by egn. (337), which is
different from I%Bd if the orbitals ¢Q and d% are
geometrically inequivalent. The algorithm discussed in the
previous section assumes <“h)**= (“'u4>)+i for evaluating the
inner product bn+? <Lhwahn+f> - If H is nonherrmitian, the
left and the right eigenvectors of H are different. In the chain
model, this results in the left and the right chain states being

105
dif ferent. Haydock and Kelly, therefore used a two sided

loé
recursion algorithm based on Wilkinson's description of the
unsymme tric Lanczos method. They generate a biorthogonal
sequence of vectors {lun>z and §|V0>} by means of two three

term recursion relations
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Lh.“ Iu"+l>
bngs | Vos >

vhere

(H- Q) ll-l.-.> - Ln l“n—b, (4.20)

(H+- an) VoY N an-p>J (4.21)

<V“‘Iu"> = S‘M'h ’
and ,U°> = 'Vo>"

the orbital whose local density is sought. The co-efficients

4n and bepys; are nov given by

an s (Valmluey = <unl Ty (4.22)

+
L2 Lo B a0) 1V = bo 1¥0.7] [(H-a)ltn -bi fnc)
D '

(4.23)

Though the storage and time requirements are doubled, this still
provides a fast algorithm to tridiagonalise the nonsymmetric
Hamiltonian matrix. An important point to note is that Bn+? is
no longer given by the inner product of a vector with itself and
hence it can be negative. This may lead to complex eigenvalues
and a negative DOS. If this occurs, the chain has to be

terminated at that point.
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4.31(c) LDS IN TERMS OF THE RECURSION CO-EFFICIENTS
In terms of the elements Op and Ln of the
tridiagonalised matrix, the local Green's functicn acquires a

continued fraction representation:

G (E) = Ul G(E)| Uy

1
= (424)

E- a, - b,*
E—q""‘le
E"Qz_—bsz

Ao a e sy

The derivation 1is simple and has been provided by Haydock,Heine
and Kellyq%éee also Heine,Ref.95,p90 and Haydock,ibid.,p252).
Expression (4.24)., even when truncated at a finite level,
satisfies all the analyticity conditions for (QofE) discussed in
section (4.2), provided Q, are real and an are positive.

In practice, one conputes only a finite number of
co-efficients Qn and Ln and tries to approximate the
remaining co-efficients. In case the co-efficients are not
rapidly ccanvergent cor show oscillatory behaviour, one simply
sets the remaining recursion co-efficients to zero. This
truncation as well as the finiteness of the cluster causes the
LDS to be strictly a set of delta functions. To obtain a smooth

LDS curve one evaluates

M, (E) = jm G, (E+i€) (4.25)

-1
m
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for a small but positive ¢ , thus broadening the delta functions
into Lorentzians. This methcd obscures details within an energy
range of ¢ . Also the resulting LDS has blurred tand edges and
ripples from the poles. However, if one has sufficiently large
number of delta functions, these effects are small.

An alternative methcd, isplemented in the subroutine RECTAB
of the Cambridge Recursion Libraryfﬁ7is based on the
differentiation of the mean of the upper and lower 1limits to the
integrated density of states. Details of this method have been
discussed by Haydock (Ref.95,p1%7) and Kelly({same Ref.,p3i¥).

For calculations involving an isolated band inva periodic
solid (i.e., only one type of orbital per site), the
co-efficients 6@w and bn settle down quickly to asyarptotic

102,108
values (Cl,o,Lw) v where doo provides the center of the band
and Eeo determinés the band width. In this case, one can
analvtically evaluate the remainder of the continued fraction
(4.34) for TM)YN with dn=8yyand ba:b,,, and thus
GO(E> can be okttained exactly.

When the co-efficients an,kr) do not show any signs of
settling to some asymptotic values, as is the case in most
applications, one has to decide about the number of
co-efficients to be considered. Actually GO(E) is not
sensitive to @n,bn for large n if the state |[by) is
localised, and ofter a fairly small number (~30) is sufficient to

obtain a good approximation to G'(E) . In any case one can

decide as to where to terminate the chain, simply by studying
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the variation im the LDS with increasing number of
co-efficients. Certain rules ot thumb to help one decide about

this number have been discussed by Heine and Haydock.

4.32 EQUATION OF MCTION HMETEOD

Equation of motion method was first used by Alben et a;ojto
calculate the eletronic DOS in model disordered alloys. Beeman
and Albeg|zsed it to calculate the vibratiomal DOS in model
amorphous semiconductors. Later Weaire and Williams applied this
methcd to study localisation in the Anderson model of a
disordered Hamiltonian.‘ll |

In this method one carries out a step by step numerical
solution of the Schrodinger equation for the one-electron

wavefunction. Suppose at time t=0, the electron is in a state

{$.> , Which has the form:
18y = ) a o) 14 (4.26)
ol

where gML)} represents the localised basis. The state

function lﬁt:> at time t satisfies the Schrgdinger equation

%,§t> = - é/k Hl$e>) (4.27)

where H is the one-electron Hariltonian. Writing

| 4.5 = 2 0,(({>]¢a> , (4.2¢)

ol

eqn. (4.77) is transformed isnto
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L[2 (a0 ] 14y = =/ Vaue vt
ok (4.24)

If the basis is orthogonal, then

HipsS = % How 186, (4.30)

vhere }JP‘ﬂ represent the matrix elements of the Hamiltonian,

i.e.,

Hoa = <$eln] &5

(4.31)
If the basis is nonorthogonal, then
Hi¢Y = D Dp ld>,(3)3- (4.32)
where ‘ ¢ .
Dpa = (s"u)(‘d_ (4.33)

Using (4.32) in egn.{(4.29), we have
Z[ 0 (a,((f>)] l¢d> = "‘/k 2 D(So( Q'{(.f>’¢(;> (4.34)
Ap

Using the linear independence of the set {ld’d>} , we obtain

"oaf 28 = =L ; Dy~ Ax (47 (4.35)

This equation can be =olved numerically for a given set of
a, (o)'s , i.e., amplitudes of the initial state of the

electron on various basis vectors. 0Often one chooses the initial
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state to be a particular basis state, i.e.,

a, (o) = Sa(}‘ (4.2¢)

'
Knowing all Q_(¢+) S , ve can obtain I’}t> . To obtain the

local DOS we write the formal solution of egn. (4.27) as
U Ht ~i4 Ent
% - £
3. = e EN DI I AR TRE R
n ¥

where En and H’.,) are the eigenvalues and the eigenvectors

of H. Thus

2 ¢ Ent'
- L
<$o’§t> - §l<\pnl§o>l © (4’37)
The local DOS is given by
Ny (E) = N1l %51 8 (- En)
2 T te-En) £
- TICnIsl- 4 ] e .
2 %0 i(e-En) F
« TI<el 451 LR { &
Using (4.37) we obtain
= CEE
-n$b(E) < T'T_ ge {o <§al—$t> e - {4'38)

The expressions (4.26) and (4.28) yield -VZQO(E) in terms of
the ampiitudes (o J¥) “‘),

. €0 ~ cEt
N, ()= = a
s (€)= 2 e f [;5“ p@ S a w]e ar (439
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Particular simplifications occur when the basis is orthogonal
and the initial amplitudes satisfy(4.36)- Then eqn. (4.39) yields

)-1Rf°; (&) ' ar 4
Tl_so(E): n¢P(E "-TT ?,o fa € (-‘)0)

while the equation to be solved is

i ) = = ; H. ¢ Oy (5] (4.41)

vith the initial conditions being given by (4.36). For a finite
system, (4.40) is strictly a set of delta functions and to
obtain a smooth LDS, we add a small but positive imaginary part
€ to E as is done even in the time independent approach

described in section (4.31). Thus LDS is calculated fronm

©0
CEt -£t+
N, () = 4+ R, a)*(i-)e e .d&u- (440a)
¢L v o
-Et
The tern e acts as a convergence factor for the integral.

4.33 OTHER METHODS
Various other methods are available for calculating the
H2-14
LDS. The most widely used one is the method of moments, vhere

one calculates various power moments /4:(of the LDS:

rE 2 e ntl e = T EICwIeD)
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+ o0 C ted
= % l<¢;l¢d>12_£ 8 (E-E;) E AE :~;£E (FOELS
(4.42)

In principle, if one knows all the moments, then one can

calculate the characteristic function

(08

Con? d
Foo = Y G0 A
mz O f)! ’

and obtain the LDS as the Fourier transform of F(x):

+ ©o
'r( (E) - t X E
o = e F(x) Jdx
- 00
In practice, one calculates only a finite number of moments
using eqn. {(4.42) and tries to extract 'QO((E) from them. Initial
attempts in this regard lay in identifying 'nw((E) with a
function f(E, Ay, Aq+-- An), vwhere A),... An wvwere adjustable
. na, ny

parameters to fit the first n moments of 714(5). Later on, a
continued fraction method was developed , where the Hilbert

ny
transforn ofvl(E) was expressed as

+ o 0
R(=) = ( N (E)SE  _ Z }m/zn“
N=zo

-0 2-E
_ 1
2 - ¢ - di
z2-c¢, -d2
2-Cqy-d3 (4.42)
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The co-efficients C¢,d; involve determinants constructed fronm

the moments. In this form, this method is very similar to the

recursion method discussed earlier. However, this method is not

numerically as stable as the recursion method. Interrelations

between these two methods have been discussed by Haydock, Heine
o2

and Kelly.

Another useful approach in the study of electronic
structure in disordered systems has been based on the
cluster-Bethe lattice method?SJQ;he method involves treating
part of an infinite connected netvork of atoms exactly as a
cluster, and representing the effects of the rest of the
environment by connecting a Bethe lattice (of the same
co-ordination number as the cluster) to the surface of the
cluster. Tﬁe Bethe lattice (or the Cayley tree) is a lattice in
which any closed loop of sequential bond is forbidden. The
reasons for using the Bethe lattice as a boundary condition are
threefold. Pirst of all, the eguations involving the Green's
function at different sites can be solved exactly. Also
attaching the Bethe lattice preserves the connectivity of the
system. And finally, the DOS of the Bethe lattice is smooth and
featureless. Hence, any structure found in the local density of
states at the central atom is essentially determined by the
local environment of this atom. A detailed discussion and review
on this method has been provided by Joannopoulos and Cohen.

Recently Lambin and Gaspard bave used the idea of

. 108
generalised moments
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o oo

+
- dE
A2«-1 ) _'Q(D (8 P"“(E”lo((E)

to calculate the continued fraction co-efficients C;, d¢ in
(4.43). Here PT,(E) is a polynomial of degree n in E. This
method is claimed to offer greater numerical stability than the
pover moment method.

An interesting method that has been used to study the
excitations in disordered systems is based on the
renormalisation group or the decimation approach. Da Silva and
Koiller have used the method to calculate local density of
phonon states in a disordered linear chain:zouhile Aoki has used
this technique to calculate the electronic DOS and study

121
Anderson localisation in a square lattice.
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V. CHAPTER (5)

COMPABISON OF RESULTS OBTAINED BY THE RECURSION BETHOD AND THE

EQUATION OF MOTION TECHNIQUE

To compare the local DOS obtained by the recursion and the
equation of motion methods, calculations were performed on small
clusters of 125 atoms representing bcc, amorphous and ligquid
iron. The reason for choosing such small clusters is the
comparatively large computation time required by the eguation of
motion method. The liguid and amorphous clusters were obtained
by the Monte Carlc technique as discussed in section {2.2). The
pair distribution functions for these clusters are shown in
Figs. (3) and (4). These clusters were of cubic shape.

The Hamiltonian matrices used in these calculations were
obtained by following the empirical LCAO scheme described in
section (3.3). The band structure for bcc iron obtained under
this scheme is displayed in Fig.(8). The parameters obtained by
fitting to this band structure were used to calculate the
elements of the Hamiltonian matrices for variouns clusters, as
functions of actual interatomic separations. The Hamiltonian
matrices, thus generated, were symmetric. Thus for calculating
the LDS by the recursion method, we used the symmetric version
discussed in section (4.3%1a). Calculations for the LDS by the

equation of motion method were performed by solving egn.(4.41),

79



instead of (4.35), i.e., the basis was assumed orthonormal,
despite the fact that the transfer matrix elements vere obtained
from the Slater type orbitals centered at the atomic sites and
these orbitals have nonzero overlap. We note that the Slater
type orbitals simply provide a means of directly parameterising
the matrix elements and do not represent the basis orbitals. In
all calculations, the results were obtained by applying the free
condition to the respective clusters, i.e., the interaction of
the atoms at the surface with the medium surrounding the cluster
vas set equal to zero.

In the equation of motion method, one has to carry out the
numerical integration of the Schrddinger equation, i.e., solve
an initial value problem of the type (see egqs-(4.35) and

(4.41))
JH‘./M - jC‘. (4, Yoy )

yc(o) = y.° , c=1l, 2,---+ N (9,-3,)

¢

where N is the total number of orbitals in the cluster. Since
there are several numerical methods available for solving such
problems, one has to find out whether there is any advantage in
choosing a particular method over the others. In particular, one
may be interested in saving on computation time by using
sophisticated methods with larger step size. ¥We carried out some

preliminary calculations of LDS for a simple cubic cluster with
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randor on-site potentials and constant nearest neighbor

122,123
interaction. We used the fifth order Runge-Kutta method and the

extrapolation method of Bulirsch and Stoe;zqq%gr solving the
system of equations (4#.41) with the initial conditions (4.36)-
The results obtained by these two methods for a given step size
were very similar. However, it was also found that similar
results could be obtained irn somewhat less time by using the
simplest one-step method (known as the 'polygon method' of
Euleruj) with spaller step size. In this method the

approximations . to the solutions Y;=Y(X¢) of a

differential equation
dﬁ/d}( = f (X,'j) ) j (XO> = tfo (ng)

are given by

Ne = Yo (5.3
Upy = U+ h f(x;, ), Koy =Xe b
€0, 1,2,..... (5.4)

Thus though the sophisticated methods allowed us to use a larger
step size h, the simple prescriptions (5.3), (5.4) yielded
similar results in less time provided a sufficiently small h was

chosen. Hence, in our subsequent calculations of the LDS in the
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clusters representing the various phases of iromn, we decided to
use the prescriptions (5.2),(5.3) with sufficiently small step
size. Supposing that over such small steps in time the variation
in the integrand of (4.4(Q) would be linear, we employed the
simple mid-point integration rule to obtain the Fourier
transform 71¢%‘(E) . The Fourier transform and the solution to
the Schrodinger equation were carried out simultaneously, i.e.,
at every step of the calculation we obtained an approximate
solution to the Schrodinger equation (4.4]) and then calculated
the contribution to the Fourier integral (4.40)-

In Figs. (9-14) we display the LDS obtained by the two
methods for various clusters. For each cluster the LDS was
calculated at a site near its center. FPor the recursion method,
fifty recursion co-efficients were found sufficient to calculate
the LDS, i;e., increasing the number of co-efficients beyond
this point did not bring in new features in the LDS. The value
for the imaginary part of the energy £ , which broadens the
delta functions into Lorentzians was chosen to be 0.025 Ryd. The
same value of £ was used in the equation of motion method to
calculate the Pourier transfora (4.40a), The step size of
integration ¥was chosen as 0.04 and sixteen hundred integration
steps vere used, bringing the upper limit of integration in
UL4OQ)to 64. The choice of this upper limit depends on several
factors. It should actually depend on the inverse of the spacing
between the eigen;alues. In practice, one chooses this limit

depending on the broadening parameter £ . Another criterion to
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follow is the variation of the Green's function with time. For
an infinite system, the ampli tude ‘%A(t) or the local Green's
function slowly decays to zero as the electron diffuses away
from the initial localised orbital. However, for a finite
cluster the local Green's function decays for some time and then
starts rising due to reflections from the boundary.LIJ The bigger
the cluster, the longer the time before such a reversal in the
variation of the local Green's function will take place. To
avoid the contribution from the boundary one should follow the
time evolution of the Green's function and truncate the integral
in (4.40) at a time where it has become negligible. In our
calculations, this criterion was combined with the additional
condition that the results for the LDS should converge to those
obtained by the recursion method. Thus we first obtained the LDS
by the recursion method and then adjusted the step size h and
the upper limit of integration T in the equation of motion
method till we converged to these results. As can be seen in
Figs. (9-14), this convergence is really good except at low
energies wvhere the effects of truncating the Fourier integral in
the equation of motion method appear as oscillations in the LDS.
Actually, truncating the integral at a lower time causes parts

of the LDS at low E to become negative.

¢Certain shapes of the boundary may be preferable to others to
avoid a coherent superposition of the reflected vaves at the
central site. For example, for a simple cubic s band, a cubic
shape is preferable to a spherical or octahedral one (see Heine,
Ref.95, page 75).
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We will only briefly discuss the nature of the LDS for
various clusters obtained in these calculations, as the emphasis
in the present discussion is on the comparison of the results
obtained by the two methods. Each of the Figs. (9-14) shows the
LDS calculated at a single site chosen near the center of the
corresponding cluster. For the d states in the bcc cluster, the
LDS has a double peaked structure. However, the gap between the
two peaks is not as pronounced as expected for the d states in a
conventional bcc transition metal. This is a reflection on the
corresponding band structure shown in Fig. (8), rather than the
smallness of the cluster. The shape of this LDS curve, as we
will see in the next chapter, remains essentially unchanged when
the calculations are carried out on a bigger cluster. For the
amorrhous cluster, the small peak at 1ouer.energy changes to a
shoulder, while it is smoothed .further in the liquid. The
maximum in tﬁe LDS for the amorphous cluster is lower than that
for the bcc cluster. For the liquid cluster this maximum
(Fig.14) is higher than that in the amorphous cluster (fig.12).
However, this result is true only for the particular site where
the LDS has been calculated. On the average the LDS for the
liquid cluster has a lower maximum than the amorphous. The LDS
for the s states in the amorphous and the bcc clusters is double
peaked. This is also true in general for the liquid cluster. The
deviation from this structure in Fig. (13) is typical of the
particular site only. The peak near the top of the's band in the

average DOS for the liquid is somewhat broader than that in the
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amorphous cluster. Since we will come back to a detailed
discussion on these points in the next chapter, we end the
present discussion with the note that the convergence between
the results obtained by the equation of motion and the recursion
methods is remarkable and as far as resolving the structure in

the LDS is concerned, both methods are equally good.
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FIGURE CAPTIONS

FIG. (9-14).
Comparison of results for the LDS calculated
by the recursion method and the equation of
motion technique, in clusters of 125 atoms
representing bcc, amorphous and liquid Fe.
The vertical axis is labelled in
states/Ryd./atom. The curves have been obtained
by adding an imaginary part = 0.02 Ryd. to

the energy.
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Thé important difference between the two methods lies in
the computation time reqgquired by them. While the recursion
method provides a fast algorithm to calculate the LDS, the
equation of motion technique demands careful integration with
sufficiently small step size, requiring large computation time.
For clusters with 125 atoms and six orbitals per atom, the tinme
required by the eguation of motion method was approximately 42
times larger than the recursion method, where 50 recursion
co-efficients were calculated. In the recursion method the time
required to calculate the LDS (sampled at a given number of
energy points) depends on the length of the chain (the number of
co-efficients) and the system size (total number of orbitals in
the cluster). If the state for which the LDS is sought is well
localised, then cnly a modest number of co-efficients{ 30) are
needed and this makes it an efficient method to calculate the
LDS as well as any-local properties depending on this quantity.
In the equation of motion method the corresponding time depends’
on the system size and the number of integration steps. Unless
the LDS is particularly featureless, the number of integration
steps required to reproduce the required structure will be quite
high, thus making this method umsuitable for the calculation of
highly structured DOS as in transition metals.

One important point to note is that a substantial part of
the information generated by the eguation of motion method
remains essentially unused, if one is interested only in

obtaining the LDS. To calculate a particular orbital amplitude
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ap(*)'(see eqn. (4.41)) for different values of t, one has to
follow the time evolution of all the amplitudes. The Fourier
transforms of these amplitudes yield one entire row(or column)
of the off-diagonal elements of the Green's function. These
off-diagonal elerents can be used to study other properties like
2

the spectral functions etc. 1In a disordered system, one can use

these to calculate the inverse participation ratio
S 4
Pe = X I<ual 5] HivaY = EL1eS  (59)
3z ‘

11),128
and study localisation of energy eigenstates 'as well as

calculate electrical conductivity as has been done by Kramer and
Heariézqand Kramer et al!xoThus althouagh the equation of motion
method is rather slow in calculating the lpcal DOS, its real
potential lies in generating the off-diagonal elements of the
Green's function, which can be obtained in a modest amount of
additional time. In the recursion method, calculation of each
off-diagonal element ij involves calculating four diagonal
elements for states that are linear combinations of |d¥> and

,¢§> (see Haydock, Ref.95,section 17) and in that case the two

methods are perhaps of comparable efficiency.
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VI. CHAPTER (6)

6.1 LCCAL DOS BY RECURSION METHQOD

6.1 (a) NCNSYMMETRIC HAMILTCNIAN

In this section we will discuss the results for the LDS
obtained by employing the Andersop-Bullett scheme described in
section (3.1). The elements of the Hamiltonian matrix D are

written as (see egn.(3.37))

Dipz LAV 10) + <& 18014  (61)

where d&

free atom potential at the same center as ¢L - SWG is a

[
'S are the atomic orbitals (s and d) and \Q is the

correction due to the non-additivity of exchange and correlation -
effects. We treat 534 as a constant and adjust its value as well
as the atomic s and 4 energy levels to reproduce a band
structure appropriate to the bcc phase of iron (Fig.6). These
parameters together with the atomic orbitals and potential are
then used to compute the Hamiltcnian matrices for the clusters
representing bcc, fcc, amorrhous and liquid iron. These clusters
are bigger than those considered in the previous chapter. The
ligquid and the amorgphous clusters, obtained by the ¥onte Carlo

technique, are of 365 atoms each, while the clusters
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representing the crystalline phases consist of about 400 atoms.
The pair distribuotion functions for the liquid and the amorphous
clusters are shown in Figs. (1) and (2) respectively. FPor each
cluster, the size of the Hamiltonian matrix is kept within
reasonable limits by retaining the overlap integrals only upto
the second nearest neighbour distance in the crystal.

Since, the Hamiltonian matrices defipned by (6.1) are
nonsymmetric, vwe employ the ncnsymmetric recursion method
discussed in section(4.31(b)). The results are obtained by
epploying the free boundary conditions to the clusters. In
Pigs. (15-20) we display these results, comparing two systeas at
a time. The curve for bcc iron, obtained as a check against
known results, compares well with that cobtained by Callawvay and
Hang(CW)fz'The two main peaks in the d reg;on, characteristic of
any bcc transition metal, are at the right places. The small
peak towards the bottom of the 4@ band that appears in the
calculation of CW is missing from ours. This is indicative of
smaller s-d hybridisation in our model. In this respect, our
curve for bcc irom is similar to that obtained by Gallagher and
Haydock:?,vho use localised 4@ orbitals obtained by minimising
the hybridisation with the conduction band. The fine structure
in the DOS curve for solid iron that can be obtained by tbhe
conventional Brillouin zone summation method, camnot be seen in
our results for a finite cluster (387 atoms), wvwhere, in order to
obtain a smooth spectrum, we have added an imaginary part equal

to 0.02 Ryd. to the energy(see section 4.31(c)). The DOS, in
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this case, is a set of delta functions that have been broadened
into Lorentzians obscuring fine details. This is why the DOS
curves in Figs. (15-20) do not show any sharp tand edges.
However, these curves indicate that the change in the bandwidth
from one system to another is inappreciable.

The DOS for the amorphous iron retains the doukble-peaked
structure of bcc irom in the 4 region, while the s peak is
broadened. For the liquid, this double-peaked structure
vanishes, the peak towards the bottom of the band merging into a
shoulder. For both the liquid and the amorphous clusters, the
LDS for the s states is observed to undergo significant changes
from one site to another. The d states are affected to a much
lesser degree. Because of the srmall weight associated with the s
states, their variation from one site to apother only slightly
affects the overall DOS and hence averaging over a few sites
near the center of the cluster is sufficient to obtain the
complete DOS curves. In Figs. (15-20), we have displayed the
results obtained by averaging over four sites near the center of
the amorphous amnd liquid clusters. It is interesting to note
that the DOS for the amorphous and the liquid cluster is closer
to that of fcc than bcc iron, a result similar to that obtained
by Asano and Yonezawax2 for liquid Ni. Comparison of the DOS
curves for the crystalline and the amorphous phases seems to
suggest that the short range order in the amorphous system is
somewhat intermediate betwveen the bcc and fcc structure(Fig.21).

Hovever, this conclusion is only tentative and should be
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verified by a direct observation and analysis of the structure
in amorphous iron.

In Figs. (15-20), small oscillations near the maximum of the
DOS curves for the liquid and the amorphous clusters are
actually spurious. These arise because of the small number of
recursion co-efficients used in the calculation. The
nonhermiticity of the Hamiltonian sometimes causes the recursion
co-efficients, b*) « to become imaginary, thus stopping the
chain!osThough this never happened for the clusters representing
the crystal, it occurred frequently for the liquid and somewbhat
less often for the amorphous clusters. In obtaining the results
displayed in Pigs. (15-20), we have used 50 recursion
co-efficients, except for the cases where the chain had to be
terminated due to lh: becoming negative. The minimum number of
co-efficients was 10 for the liquid and 16 for the amorphous
clusters. The 1DS calculated from such small number of
co-efficients shows spurious peaks, since it consists of only a
small number of Lorentziam broadened delta functions.

Some features of these results are summarised in table (1).
Here B; and N(Ef) denote the Permi level and the DOS at the
Fermi level respectively, and My stands for the number of d
electrons per atom. The subscripts 1 and 2 associated with N(gf)
imply results obtained by employing two different smoothing
procedures, the former referring to the lLorentzian broadening of
delta functions and the latter to the method based on the

differentiation of the mean of the upper and lower bounds to the
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integqrated density of states, and implemented in subroutine
RECTAB of the Cambridge Recursion Library (see C. M. M. Nex,
Ref.107). We note that there is no significant change in the

number of 4 electrons due to a change of phase.
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TABLE (1)

Some characteristics of the DOS in solid, liguid
and amorphous iron, obtained by using nonsymmetric

hamiltonian matrices

{

| | : | i |
! CLUSTER R 0 S W SV H 1S WA
. T S £71 | £72 | a !
: :(Ryd.):states/- |states/- :elec—:
: : 1atom/Ryd. 1 atom/Ryd. | trons/i
e I o Yoo jatom |
: . : A
i BCC i1~0.59 | 40.5 ; 48 L 7.4 |
| | | | | |
e e e e A I, j I, L |
i | } | | .‘
| FCC ~0.58 | 30.0 { 33,5 ! 7.4 |
i

| | | l i I
et it Am rm————————— e tmm———— |
: N : o
| AMORPHOUS 1-0.59 | 34.0 | 36 Lo7.4
|

| | : I ! |
| et T == T-——~""77=—~ T =="= T "= |
: ] : I
! LIQUID 1-0.58 1 30.0 : 31 | 7.4 |
] | I I | :
e e [ D, j B P I |

* Results obtained by adding an imaginary part
equal to 0.02 Ryd. to the energy.

# Results obtained by using the subroutine
RECTAB of the Cambridge Recursion Library

(reference107) .
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FI1G.

FIGURE CAPTIONS

(15-20).

DOS in various clusters obtained by applying

the recursion method to nonsymmetric Hamiltonian
matrices(eqn. 3.%1). The vertical axis is
labelled in states/Ryd./atom. The curves have
been obtained by adding an imaginary part

€= 0.02 Ryd. to the energy.

(21).

DOS in bcc, amorphous and fcc clusters obtained
by applying the recursion method to nonsymmetric
Hamiltonian matrices(eqn. 3.37). The vertical
axis is labelled in states/Ryd./atom. The curves
have been obtained by adding an imaginary part

€= 0.02 Ryd. to the energy.
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DENSITY OF ELECTRON STATES
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6.1 (b) SYMMETRIC HAMILTONIAN

Since the hybridisation gap produced in the nonsymmetric
Hamiltopian model is smaller than that in the calculation of ng,2
ve resorted to a different LCAO scheme with more adjustable
paramreters in an attempt to better represent the hybridisation.
In section(3.3) we discussed this alternative parameterisation
scheme, in which we directly parameterise the matrix elements of

the Hamiltonian by fitting to the band structure of CW. This

scheme generates a symmetric Hamiltonian, i.e.,

ke use the parameters obtained by fitting to the band structure
of CW to compute the Hamiltonian matrices for the same clusters
considered in the previous section(6.1(®)).Symmetric version of
the recursion method outlined ip section 4.31(a) was used to
calculate the LDS in various clusters. In all calculations 50
recursion co-efficients were used and we employed free boundary
conditions to the clusters. For the liquid and the amorphous
clusters the DCS was obtained by averaging the LDS over 4 sites
chosen near the center. These results are displayed in

Figs. (22-27), where we compare two systems at a time. These
curves are similar to those obtained for smaller clusters (125
atoms) considered in chap.5. The tvo main peaks for the LDS in
the bcc cluster are not distinctly resolved as for the

nonsymnetric Hamiltonian. Though the s-d hybridisation gap is
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larger in thié case (compare Figs. (6) and (8)), we still do not
obtain the small peak near the bottom of the d-band, which
appears in the calculation of CW.

Though these curves are different (in terms of the relative
peak heights) from the corresponding curves for the nonsymmetric
Hamiltonians, the change observed from one system to another is
essentially the same. For example, there is no appreciable
change in the bandwidth. The LDS for the amorphous or the liguid
cluster is closer to that of the fcc tham bcc iron. The curve
for the amorphous cluster lies in between those of the bcc and
fcc iron (Fig.28), indicating that the short range order in the
amorphous cluster is intermediate betveen the two crystalline
structures. The smaller of the two peaks in the bcc phase
gradually merges into a shoulder as we go from the bcc to the
amorphous and then to the liquid phase.

In takle(2) we indicate the Fermi level, the DOS at the
Fermi level and the number of d electrons for various clusters.
The DOS at the Fermi level is slightly higher (except for the
becc system) than that for the nonsymmetric Hamiltonians, while

the number of 4 electrons essentially remains unaltered.
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TABLE (2)

Some characteristics of the DOS in solid, liquid
and amorphous iron, obtained by using symmetric

hamiltonian matrices

e ey A-———————= i D F=———————== f
] I | 1 I
| | E l * | |
| e TR b Ta
: CLUSTER i (Ryd. ) |states/atom/—:eleCe,‘ -1
: 1 ARya. : Ryd. | trons/ |
1 1 | 1 ~atom 1
jmmm e m e i Db B i Fo———————= 1
1 I § I |
; BCC ! -0.61 I 39 1 7.5 '
1 | | | i
} 1 [ | |
e o e e o R N, b e I
i 1 i I I
| | | | i
! FCC ! -0.62 b33 bo7.4 :
| I I | |
1 | | | |
U, Y U S, ]
' ' | : |
| AMORPHOUS | =0.61 | 38 I 7.5 i
| : | | :
| 1 1 1 |
o=mmmmmmemmos HE— Ammmmmmmmmmme e |
LIQUID ! ~0.62 1 34 1 7.5
| : :
] i |

- —————— —— - ———— — " ——— — - —— e ——— " — — - T W G —— A —— S —— ——

* N(Ef) is calculated by adding an imaginary

part equal te 0.02 Ryd. to the energy.
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FIG.

FIG.

FIGURE CAPTIONS

(22-27).

DOS in various clusters obtained by applying

the recursion method to the symmetric Hamiltonian
matrices(egn. 3.41-3). The vertical axis is labell-
ed in states/Ryd./atom. The curves have been
obtained by adding an imaginary part €= 0.02 Ryd.

to the energy.

(28).

DOS in becec, amorphous and fcc clusters obtained
by applying the recursion method to the symmetric
Hamiltonian matrices(eqn. 3.41-3). The vertical
axis is labelled in states/Ryd./atom. The curves
have been obtained by adding an imaginary part

¢= 0.02 Ryd. to the energy.
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DENSITY OF ELECTRON STATES
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DENSITY OF ELECTRON STATES
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In Figs. (29,30) we have compared the DOS obtained by using
tvo different Hamiltonian matrices for the bcc and the amorphous
clusters. While the curves for the bcc cluster refer to the LDS
at a single site, the curves for the amorphous cluster show the
LDS averaged over the same four sites for the two Hamiltonians.
The peak towards the top of the band, due to the s states,
occurs at a higher energy for the nonsymmetric Hamiltonian. The

d band width is a little larger for the symmetric Hamiltonian.
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FIGURE CAPTIONS

FIG.(29,30).

Comparison of the DOS obtained by the two
different LCAO schemes (sections 3.1 and 3.3)

for bcc and amorphous clusters.
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6.2 HYBRIDISATION EFFECTS

To find the effect of hybridisation in our model, we have

calculated the density of 4 states with the full Hamiltonian (s
and 4 orbitals on each site) and the Hamiltonian generated by
the 4 orbitals only. In Figs.(31,32) we show the d density of
states obtained with these two Hamiltonians for the bcc and the
amorphous clusters. The curves for the bcc cluster refer to the
LDS at a single site,xuhile the curves for the amorphous cluster
have been obtained by averaging over the same four sites. ¥We
have used only the nonsymmetric Hamiltonian model for these
calculations. For this model, the effect of hybridisation on the
d-band width is not significant. There is a srall increase in
the band width due to the hybridisation, but no appreciable
change near the Fermi level is observed. We recall that for this
model the size c¢f the hybridisation gap is small compared with
that in the band structure of CW and hence the above result is
not surprising. For the symmetric Hamiltonian model, the
hybridisation gap is larger. Hence for that model, we expect a
more pronounced effect of the hybridisation on the DOS.

The effect of hybridisation on the LDS for the s states is
more pronounced. In Fig.33 we show the s DOS {averaged over 4
sites) in amorphous cluster with and without hybridisation. The
peaks in the DOS for the s states are observed to be pushed
outwards as a result of hybridisation with the d states. Similar

effect is expected for the s states in the liquid cluster.
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FIG.

FIG.

FIGURE CAPTIONS

(31,32).
Density of d states in bcc and amorphous
clusters with and without hybridisation

(nonsymmetric Hamiltonian model).

33.

Density of s states in amorphous cluster
with and without hybridisation (nonsymmetric

Hamiltonian model).
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6.3 SIZE EFFECTS

" Pigs. (34,37) display the density of states obtained for the
symmetric Hamiltonian model applied to the clusters with 365 and
125 atoms. The effect due to the cluster size on the density of
d states is negligible. Since, in both the liquid clusters the
density of s states undergoes significant changes from omne site
to another (im terms of the peak rositions and the heights), one
has to obtain an average over a large number of sites to resolve
any difference due.to the cluster size only. Our results show an
average over five sites for the bigger cluster and fiffeen for
the smaller. The multiple subpeaks in the main peak towards the
top of the s band in the liquid clusters are due to averaging
over insufficient number of sites. In this_case we cannot sAy
anything conclusive about the size effect. For the amorphous
case, the two main peaks in the s band seem to broaden with an
increase in the cluster size. Whatever the effect of the systenm-
size on the s DOS may be, duve to their small weight on the total
DOS we expect very little change in the latter as the system
size is increased from 125 to 365. In any case, there is no
appreciable change near the Fermi level for the symmetric

Hamiltonian model.
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FIGURE CAPTIONS

FI1G.(34-37)
Effect of cluster size on the DOS obtained

by using the symmetric Hamiltonian model.
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DENSITY OF ELECTRON STATES

DENSITY OF D STATES
IN AMORPHOUS Fe

FIG. (35)
40
35
30 i
i
:
254
20
15 s
'.
10
5.-
Legend
CLUSTER OF 385 ATOMS
CLUSTER OF 125 ATOMS
0 1 1 1 't i l L
-1.4 -1.2 -1 -0.8 -0.6 -0.4 ~0.2 0
ENERGY(Ryd.)

132



DENSITY OF S STAIES

IN LIQUID Fe

FIG. (36)

CLUSTER OF 385 ATOMS
CLUSTER OF 125 ATOMS

Legend

-0.2

-0.8

3.5

SA1IVLS NO¥10313 4O ALISNIC

0.5

-0.4

—0.6

-1.2 =1

-1.4

ENERGY(Ryd.)

133



DENSITY OF ELECTRON STATES
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VII. CHAPTER (7)

STUDY OF THE PROPAGATING CHARACTER OF THE STATES

T — — S——

In iransition metals like iron, the electrical transport
properties are often described according to a picture developed
by Hottfszihich divides the conduction electrons into two
categories, namely the s and the 4 electrons. Thus one can
calculate the electrical conductivity by utilising the Boltzmann
equation and making an assumption about which of these two types
of electrons provides the effective current carriers. Such
calculations for liquid iron have been performed on the
assumption that it is the s electrons that provide the effective
current?auxthe other hand, calculations based on a hybrid
nearly free electron tight-binding (NFPE-TB) model and the
Kobo-Greenvood formula indicate important d electron :
contribution to the electrical conductivity in such systens!qun
order to shed some light on this issue, we have studied the
propagating character of the s and the 4 states in various
Clusters. We employ a method used by Ballentinegqto carry out
similar studies in liguid La.

For the various clusters, we form Bloch-like running vaves

of wave vector K, - =
(o KR ) (7-1)
' ¢£ > ’ R=0,2 ‘

lup > =T e
¢
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Hhere.ﬁt denote the positions of the atomic sites and

the l¢f>'s are either the s or the d states. ¥e then calculate
the electronic DOS frojected onto this state [déb. This
projected DOS, which we will call the spectral function can be
studied as a function of K. If the spectral function shows a
sharp peak at a particular energy, then this enerqgy E can be
associated with the corresponding K value. A shift in the peak
position with changing K would then suggest a dispersion (E vs.
K) relation and hence a propagating character of the states. The
absence of such a variation can be taken as an indication of
weakly propagating o£ nonprcpagating states. This method of
studying the propagating character of the states can be
considered as the K-space analogue of the method that studies
the imaginary part of the Green's function as a function of the
position in real space{ZSSimilar studies have been carried out
by Pujiwara and Tanabe 3on model amorphous systems wWith
hydrogen-1like 1s wave functions.

Figs. (38,39) show the s and the d state spectral functions
for several values of K for the liquid cluster, ohtained by
using the nonsymmetric Hamiltonian model. Figs. (40,41) show
similar curves for the amorghous system. The s state spectral
functions exhibit well-defined peaks, although they are quite
broad in the midband region where s-d hybridisation is strong.
The positions of the peaks yield é dispersion relation,
suggesting propagating nature of these states. In other words

these states retain the memory of the band structure in the
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solid to a large extent. The d state spectral functions, on the
other hand, show almost complete lack of such memory. These
curves, shovwn in Figs. (39,41), exhibit very little K-dependence.
For both the amorphous and the liquid clusters, these d state
spectral functions shov a sbharp peak for small K, which
gradually becomes broad as the K value is increased. There is a
small change in the peak position with changing K for the
amorphous cluster. For the liquid cluster this change is almost
imperceptible. Thus the dispersion relation for the 4 states in
the liquid is almost flat, while there is, perhaps, a very small
change of E with K in the amorphous cluster. In view of these
results, one can at best conclude that these states are only
weakly propagating. For comparison, in Pig. (42), we show similar
curves for the d state spectral functions in bcc iron, where a
definite dispersion can be seen. We conclude that the s electron
states in iron retain their propagating character in the
disordered phases, while the d states appear to lose this

property to a considerable extent.
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FIGURE CAPTIONS

FIG.(38,39).
s and d state spectral functions for liquid

iron (nonsymmetric Hamiltonian model).

FIG. (40,41).
s and d state spectral functions for
amorphous iron (nonsymmetric Hamiltonian

model).

FIG.42.

d state spectral functions for bcec iron

(nonsymmetric Hamiltonian model).
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Pigs. (43,46) exhibit the results of similar studies done on
the symmetric Hamiltonian model. For both the amorphous and the
liquid clusters (Figs.43,45), the s state spectral functions
exhibit dispersions, suggesting strongly propagating character
of these states. The d state spectra are sharply peaked for
small K. These peaks broaden to some extent as the K value is
increased. However, there is no appreciable change in the peak
position. For higher values of K, these curves look like the
local density of states in these systems. It ceems that the 4
states are only weakly propagating compared to the s states in

these systens.
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FIGURE CAPTIONS

FIG. (43,44).
s and d state spectrél functions for liquid

iron (symmetric Hamiltonian model).

FIG. (45,46).
s and d state spectral functions for amorphous

iron (symmetric Hamiltonian model).
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DENSITY OF ELECTRON STATES
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In Figs.(38—u6), we have considered the K values in a
particular direction (001) only. For a proper comparison one
should probably average over various directions for the same
value of K. However, in a randomly disordered system like the
liquid there should be no significant dependence of the results
on the orientation of K with respect to the sides of the cube.
We have performed some calculations to verify this for the
liquid cluster in both the symmetric and the nonsymmetric
Hamiltonian models. Figs. (47-50) showv the results for the
nonsymrmetric Hamiltonian model, while Figs. {51-53) show similar
results for the symmetric Hamiltonian model. In Lkoth models, the
s state spectra for a particular K value in various directions
show some change in the peak heights and some fine structure,
although the peak position remains the same. This is most
probably due to the fact that these states have somewhat large
orbit and feel the presence of the boundary to some extent. The
d states are more localised than the s and less prone to the
effects of the finite cluster size. Thus the d state spectra
essentially remain unaltered for various directions of K. Since
the shape of the spectral functions is independent of the
direction of K, our conclusions regarding the nature of the s

and the 4 states are, therefore, not subject to any chamnges.
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FIGURE CAPTIONS

Spectral functions for s and d states in liquid

-
iron cluster (365 atoms) with K in various

directions,

(indicated in a.u.)

but having a constant magnitude

FIG.(47-50) show results for the nonsymmetric

Hamiltonian model.
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FIG. (48)
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FIG.(49)
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FIG. (50)
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FIGURE CAPTIONS

Spectral functions for s and d states in liquid
iron cluster (365 atoms) with-E in various
directions, but having a constant magnitude
(indicated in a.u.)

FIG.(51~53) show results for the symmetric
Hamiltonian model.
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FIG.52. s state,
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FIG.53. s state,

K_,K_,K_ = (0.6276,0.0,0.0)
= (0.1500,0.4309,0.4309)
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FIG. (51)
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FIG.(52)
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FIG.(53)
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VIII. CHAPTER (8)

COMMENTS AND CORCLUSIONS

In this section we compare our results with similar
calculations carried out for liquid and amorphous iron. We also
indicate how our results compare with the available experimental
data on these systems. And finally we present a summary of the

results of the present calculation.

8.1 COMPARISON WITH OTHER CALCULATIONS
Tight-binding cluster calculations like ours have been

carried out on models of liquid and amorphous iron by Fujiuarass
and Fujiwara and Tanahe?‘ Hovever, the Hamiltonian matrices used
in these calculations consist of d states only and hence these
calculations do not consider the hybridisation effects. Also the
transfer matrix elements in these calculations are somewhat
artificial in that they are assumed to have a certain distance
dependence. These are expressed in terms of the Slater and
Kosterl37hopping parameters (dd6 ,dd 7,448 ) and the latter are
assumed to have a form
I Res ]

)

Ap

(84

dd}‘ - V}‘ (1+ %+ x"/s)ex}a(-ﬂ , X =
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vhere }. stands for either of 6,7 or § and I-%_,;)j is the vector
joining the sites i and j, and Vu and ﬂp are constants depending
on the particular hopping parameter. This is in contrast with
our calculation, where instead of assuming an arbitrary form for
the transfer matrix elements, we calculate these explicitly for
the actuyal interatomic separations.

The DOS in the calculation of Fujiwara and Tanabe, obtained
by employing the moment method, shows gqualitative resemblance
with our results. For example, the DOS for the liquid is
single-peaked, while that for the amorphous cluster is
double-peaked, though the dif ference in the peak heights is much
smaller than in ours. The d band width for the amorphous cluster
is approximately the same as in our calculations ( 0.5Ryd.).
However, they obtain a larger 4 band width for the liguid, while
no appreciable change in the band width is observed in our
calculations. The density of the 4 states at the Fermi level is
smaller in their calculation ( 30 states/atom/Ryd. for amorphous
and 26 states/atom/Ryd. for the liquid iromn, compared to 34
states/atom/Ryd. for amorphous and 30 states/atom/Ryd. for the
ligquid in our calculation). However the Fermi level in their
calculation is only approximate, since it is obtained by
assuming that there are 7 4 electrons per atom in the liquid and
the amorphous systems. This number varies between 7.4 and 7.5
according to our calculations (see tables (1) and (2)).

Fujiwara's results, obtained by employing the recursion

method, are similar to those obtained by FPujiwara and Tanabe.
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The LDS in both clusters is found to undergo significant changes
from one site to another. Such drastic changes are not seen in
our calculations.

R recent calculation for amorphous iron by Fujivara?7 based
on the linear combination of muffin-tin orbital method in the
atomic sphere approximation (see Bullett,Ref. 95 ,section 15),
offers better agreement with our results. In this calculation
the model consists of both the s and the d electron states. The
density of states at the Fermi level (~31 states/atom/Ryd.) is
close to the value obtained by us ( 34 states/atom/Ryd.). This
calculation by Pujiwvara shows significant change in the DOS due
to s-d hybridisation in the entire energy range. The curve for
the unhybridised 4 density of states is much narrrower than the
hybridised one. Also the double peaked nature of the 4 density
of states is much more pronounced wvithout hybridisation. Our
calculations show similar hybridisation effects, only to a
lesser degree.

32

Asano and Yonezava have calculated the electronic DOS in
liguid transition metals by using the KKR method for the Green's
function. The liquid is treated as a syster with nonoverlapping
muffin tin potentials, and the ensemble averaged Green's
function is calculated by employing various self-consistent
single site approximations. Among these approximations, only the
effective medium approximation of Rotﬁyais found to yield
reasonable result for the DOS over the entire energy range.

Asano and Yonezawa carry out the explicit calculations only for
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liquid Ni and then predict the DOS curves for other 34
transition metals by appealing to the rigid band approximation.
This DOS curve is similar to ours in shape. The 4@ band width is
0.5 Ryd. as in our calculation. However, N(Ef) i.e. the DOS at
the Fermi level is 36 states/atom/Ryd. as compared with a value
of 30 states/atom/Ryd. in our calculation.

Keller et alzqhave used the cluster method of Mcgill, Klima
and Zimanzsto calculate the DOS in so0lid and liquid iron. Their
calculation generates somevwhat different results. The DOS curve
for the bcc iron shows one narrow and high peak with three low
peaks, as compared with the double peaked structure in our
calculation. The DOS for the liquid shows fine structure and

peaks, not observed in any of the calculations discussed above.

8.2 COMPARISON WITH EXPERIMENTAL RESULTS

Detailed profile of the electronic DOS in bulk condensed
matter can be obta;ned from various experiments, such as
photoemission, soft x-ray emission, positron annihilation and
Coipton scattering etc. However, extracting this information
from the exprimentally observed energy distribution of the
emitted electrons or the photons is often a difficult task. For
exanple, photoemission can be envisaged as a three-step process
consisting of 1) optical excitation of an electromn, 2) tranansport
to the surface and 3) escape into the vacuumr. It is difficult to
estimate the energy lost by the electron during the processes 2)

and 3). There is also the problem of separating the surface fron
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the bulk contributions. Usually one writes the distribution of

electrons photoemitted with energy E as
2
I(E,x0) = L IKHIHIDL 8 (6 -Ei-t0) S(E-E,) (8
f

where kW is the photon energy and H is the interaction
operator. It is sometimes further assumed that the matrix

elements of tramsition are constant. This yields

I(E40) = C N (E) N(E-$w) (83)

i.e., the energy distribution of the photoemitted electrons is
supposed to be proportional to the product of the initial and
the final density of states. Eqn. (8.3) has been used by Willianms
and Norrigsgto compare the emnergy distribution of the
photoemitted electrons in liquid Cu with the theoretically
calculated results for the density of states. Hovever, no such
experiment has been performed for liquid or amorphous iron. The
transition matrix elements may play an important role in
determining the energy distribution of the photoemitted
electrons. The theory to calculate such matrix elements in case
of surface photoemission has been provided by Mclean and
139

Hay dock.

X-ray emission and absorption experiments offer information
regarding the band width. While the emission experiments yield
the wvidth of the occupied portion of the valence band, the

absorption experiments can be used to extract information

regarding the uboccupied part of the band. Also the selection
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rules (under the dipole approximation) governing the transitions
to and from the core levels make the K emissicn (valence band~>
1s) and absorption (1s—>conduction band) experiments reflect
only the p like character of the band, while the L emission
(valence band—>2p) or absorption (2p—>conduction band)
experiments show the s and the 4 character. Many body effects
and the lack of accurate knowledge of the transition matrix
elements make it difficult to extract information about the
magnitude of the density of states from the intensity
distribution curves. However, the information about the band
vidth can be ottained. Such experiments on liquid iron bhave been
performed by Garg and KElanqoand Hague et afﬁ' The K emission
experiment of Garg and Kdllne shows no change in the intensity
distribution curve from the solid to the liquid. The width of
the occupied band remains unaltered and the half-width of the
band is found to be (7.5 %+ 0.5)eV. The L3 emission (valence band
—+2p%&) and absorption (Zpy;—aconduction band) experiments on-
solid and liquid iron by Hague et al bear similar results. The
L3 emission of liquid Fe is indistinguishable from the solid.
The absorption curves for these two systems are only slightly
dif ferent, suggesting small modification in the density of
unoccupied states of the conduction band. However, this is
reported only as a tentative conclusion by Hague et al. No
change is observed at the Fermi level in the emission or the
absorption curves. The band width from the emission experiment

is approximately 10eV.
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PoSitron annihilation and Compton scattering experiments
yield information about the momentum distribution H(g) of the
conduction electrons. Theoretically this can be calculated from
the spectral function P(EZE) , Which is the density of states

projected onto plane wave states of wave vector it
E{ ,
- 4
N (R) = f (K,E) dE (843
- 00

The data available frcm positron annihilation experiﬁents are
difficult to interpret on account of the many-electron effects
involved. The positron—-electron interaction results in the
polarisation of the background and the response of the
interacting electron gas. So far these experiments have not been
performed for liquid or amorphous iron. Compton scattering
experiments pfovide reliable data on the momentun distribution
of the electrons. Since the photon interacts only weakly vwith
the electrons, the experiment measures effectively the
unperturbed momentum distribution. Unfortumately such
experiments have not been performed for liquid or amorphous
transition metals.
142

Meyer et al have proposed a method of evaluating N(Ef),
the DOS at the Fermi level, in liquid transition metals from the
measured structure factors and entropies. Assuming that the
theory originally proposed for simple liquid metals by Silbert
et a;43§orks also for liquid transition metals, they express the

total entropy St as a sum of three terms; Sg, the entropy of the

ideal gas; Sp, the excess entropy described by the hard sphere
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model and Se, the entropy due to electrons. The last term, in

the first order in temperature, is given by
2 R
Se = T'./3 N(E;) kB T (8'5)

Since 5t is observed and Sg and Sp can be calculated when
temperature, the density and the packing fraction are known, Se
or N(Ef) can be calculated. However, Sg and Sp sum up to 80% of
St. Thus even a few percent error in St will cause a difference
in N(Ef) as much as a factor of two or even larger. Therefore
the theory is useful for evaluating the total entropy
theoretically from the calculated N(Ef), but not for evaluating
N(Ef) from the observed total entropy, except perhaps for an
order of magnitude estimate of N(Bf). Utilising this idea we
calculate the total entropy of liguid iron at 1560°C. We use the
value of the packing fraction quoted by Meyer et al?zUsing the
value of N(Ef) obtained in our calulation( 30 states/atom/Ryd.)
we obtain a value of 11.4 Kb/atom (Kb is the Boltzmann constant)

for the total entropy im liquid iron, which compares well with

the experimental value of 12 Kbsaton.

8.3 SUAMARY OF RESULTS
The results of the present calculations are summarised as
follows:
1. The double-peaked structure of the electronic DOS in bcc
iron is found to survive in the amorphous but not in the

liquid phase. There is a gradual smoothing of.the structure
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as 6ne goes from the bcc to the amorphous and then to the
liquid state.

There is no appreciable change in the band width from one
system to another. X-ray emission measurements on solid and
liquid iron tend to support this result.

There is a small decrease in the DOS at the Fermi level as
ve go from the amorphous and then to the liguid phase (see
Tables 1 and 2).

The DOS in the liquid and the amorphous iromn is closer to
that of the fcc than the bcc iron.

In calculating the local density of states, the Recursion
method of Haydock, Heine and Kelly is found to be
considerably faster than the eguation cf motion method.
However, the results cbtained by the two methods are very
similar.

A study of the dispersion relation of the s and the d states
in various clusters reveals that the s states retain their
propagating character in the disordered phases, while the d
states in these clusters can at best be said to be weakly
propagating. However, this does not imply that the
contribution of these d states to the electrical
conductivity in these systems is small compared to that due
to the s states. A tight-binding calculation of resistivity

based on the Kubo formula is required to resolve this issue.
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IX. APPENDIX

{A-1)

In this section we will derive some results involving
vectors and matrices in a nonorthogomal basis, which we have
used earlier in the main body of the thesis. For convenience, ve
will use a notation involving raised and lowered indices and

follow the convention of summing over the repeated indices.

a) THE IDENTITY OPERATOR

Let §l4’4>} form a complete set of npnorthogonal but
linearly independent basis vectors in a linear vector space V.
Any general vector lq’g> in this vector space can be written as

a linear combination of |¢d 's :
d .
l¥.> = ¢.7 14> (A.1)

If {"P.}} form a complete set of orthonormal vectors spanming
the same space V, then the identity operator I in this space can

be written as
I = N’:> <q"c| (A.2)

Using expansion of type (A.1),

I-= Cid C;B" !¢.¢> <¢‘gl (A-3)
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Let Sk@ represent the elements of the overlap matrix for the

basis gldb)} s 1.€.,
(e, deY = Sup (A.4)

If the basis vectors ,¢¥> are normalised, then the diagonal
elements of S are unity. The elements of the inverse,s-t of the

overlap matrix will be given by
A B o<
}
(S ) S@Y = ® Y

Sup (s)FY

§ Y (A.5)

Taking the inner product of both sides in eqn. (A.1) with l¢h >

ve obtain
<¢,‘J .S = ¢ Seu (A.6)

Using (A.5),

(s B4 = C;“(s")Y@SFd =c*8, ¢

L

T
Using this expression for C; in (A.3), we have

T - (S”) Y <¢Yl¢‘,‘> [ (<) (’»5<¢8 | %}] *, ¢.> <¢(5|
A RPN () LR AT IS PN

Using (A.2), ¥e can write

<¢~c§|‘l’;><4’;l¢5> = Sxs
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Thus

N CO M COL RN
- 5 (€9°% 105 <ol
= 18,y (6)7F el (A7)

This is the expression for the identity operator in the-
nonorthogonal basis §M?,,)?.
For convenience, ve sometimes write (A.7) in a slightly

different form. To do this we introduce kets vith raised indices
144> = o> () F” A0
The inverse relatiomship is |
| I%D - )¢d> g«(s (A.q9)
The bra corresponding to the ket |$%) will be given by
<¢4‘ - (¢ ks <4,(£, (A.10)
and the inverse relationship is given by
<¢,<, = So((%<¢(" (A.11)
The vectors |¢%) and |¢p) form a biorthogonal set, i.e.,
{8%1d) = (€07 = (€75, = 87,
and <¢.(M>(S> = <¢,1 ¢~¢>(S.')T(S = &, ¢ (A-13) (12
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, T
The matrix elements (3 ) are the inner products of the
kets with raised indices. This follows by taking the inner

product of both sides of (A.8) with I¢T>:

(o %) = <dVdp> (s = 57, ()

= ()" (A.14)

In terms of the kets and bras with raised indices, the identity

operator has the following representation :

Iz 1050 = 1455 <l = 165 &Y s

b) REPRESENTATIONS OF OPERAIORS
The representation of an operator in the basis of the

nonorthogonal vectors §l¢,‘\}} is obtained as follows :

A =16,5(S) ¢a 1 AL ()T

=16 (S")*@AM (s)¥ 8<4>gl
16> A%® byl (A.16)

where

Apy = <¢(;,IA|¢.(>
and Adsz (S")dﬁA(sY(s-')rg = <¢d, Al ¢8> (A.17)
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Introducing the matrix elements
)
Ada = (¢“IA]¢5> > Ad = <¢dlﬁi¢6> 3 (Aag)

we can vrite

A= 16y A%0<4s) = | Ay g <O
= |¢°‘> A,(5<¢8' = l¢d> Ad5<¢sl . (A.19)

The action of an operator A on the ket ,d’(;} generates a linear

combination of M)_l)'s, i.e.;
Albey = 165 <o%1 Al s>
= A% 1

In particular, the Hamiltonian operator, H, acting on “b(_;» will

yiela
Higey = Kl
In section (3.1) ve used the motation
HIGy = Dypl ).
mus Dyy = H'p = LPTIHIGD
= O ED Kb nl gy = () T Hyg

= (s “).‘ ¢
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o
While [H (s] or equivalently [Dd (&] represents the Hamiltoniam
matrix, the elements of this matrix are different from the
matrix elements of the Hamiltonian Hc(@ - This distinction

disappears when the basis iM’.b} is orthonormal, i.e.,
>«p = Oug

¥e note that the Anderson-Bullett scheme discussed in section

(3.1) (chapter(3)) directly generates the elements D"(‘ or H.‘(A.

c) TRACE OF AN OPERATOR
if {!q’()} represents a complete set of orthogonal vectors

in V, then for any operator A,
Te A = <Al

In the nonorthogonal basis gléa)} . this takes the following

form :

Te A = <\P;J¢,,>(S")d@<d>ﬂ)/\l¢,> (s"')w(%qu‘)
using {glw.) {Geldd = gSo(

we get Tz A = ggo( (S-)a(@<¢(5’Al¢y> (S-I)Y{
= <4>5IAI¢.,>(S")YS: (S-')YSAcST
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Thus trA is not the sum of diagonal elements Agof - It is given

by the sum of the diagonal elements of (Q-iA) or (RS") ,

T, A = Aa‘mt = AO‘G( (A.20)

d) PROJECTION OPERATOR

The expression for the projection operator, P, ghich will
project any vector in the space V onto one of its subspace, U,
can be obtained in a wvay similar to that used for the identity
operator. If §_|$.>} forms a complete set of orthonormal
vectors in the subspace U, then the projectiom operator P is

given by
(A.21)

P = 5551 .
I1f {M{b} fores a complete set of nonorthogonal vectors

spanning the subspace U, then following the derivationn for the

identity operator, we can urite

P= |¢.D (s")d@d}@) . (422

e) TIGHT-BINDING(LCAO) EQUATIORS
The tight-binding eigenvalue equations of section (3) can
be reexpressed in the present notation. The eigenfunctions

|¥:> of the equation

HIY:,S = E: ¥ (A.23)
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can be expanded in the localised basis §l¢°‘>2' giving
vy = G, (A24)
Substituting (A.24) into (A.23) we obtain
GYHIG,Y = E; ;M 14, (A.25)
Taking the inner product of both sides with '4’(;>, Wwe get
C.;%Hay = E;C; Spe .
The homogeneous system of equations
(Hpa - E:Spx)C % =0
has nontrivial solutions for C.'duhen

det [H(;,,( - E;S@,‘] = 0 : (A.26)

Alternatively one could take the inner product of both sides in

n
(A.25) with |$ Dto obtain
o« B . o ch
G RO, = E;GT 6T,
Thus the secular equation is

Jei. [HB.( - E" Be’d] =0 . (A,Z-’)

If H(-\)'s are expanded in the basis l¢°‘>, then the form of the

secular egqguation is

det [H,®-E: 8 B]=0 (A.28)
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Thus depending on the matrix elements available, one can decide
to solve either of the equations (A.26), (A.27) and (A.28).These

equations are related to each other as

det [Hpwu - Ei Spal = det [Spy (sD¥H, - E: 67,)]

- det [S(‘a"c] det [H"o( - E; 5Y"‘J .

Similarly,

det [Hpw -EcSau] = dot [Hg"-E: 8.7 ] dot [Sva]

Thus solving any one of the egns. (A.26), (A.27) and (A.28) is

equivalent to solving the others if
det [sxp] # 0,

which is true if the set {|¢d>} is linearly independent. For a

linearly dependent set

JQ{'[So{@] = 0 )

or equivalently, the smallest eigenvalue of [ S« ¢] is zero. In
that case, the secular determinant (A.26) vanishes for any E¢,
and solving (A.27) or (A.28) will no longer yield the
eigenvalues of the original Hamiltonian. For near linear
dependence of the set {l‘k()}, the smallest eigenvalue of
[Sd(g] is only slightly greater than zero. In this case, the

almost identically vanishing secular equation will cause a
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corresponding loss of accuracy in E;. Thus it is necessary that

the set §|¢.¢>} be linearly independent.

{A-2)

THE TOTAL DENSITY OF STATES

In appendix (A-1), we discussed the trace of an operator A
in a nonorthogonal basis. In this case the trace is no longer
the sum of the diagonal matrix elements of A. This means that in
calculating the total or the average density of states, one
cannot simply sum over the local density of states in the
nonorthogonal basis {“b.,)z. The total density of states is

given by

TL(E) = T« (P(E))
= -1 ,.i-m T’r 311\ G(E 4-«'5)

T 5ot
-!; lim ~3vs_rr C (E'*éED
B T 07 , ’
-1\ .
2 - %T.. Léﬁ:; o j'm [(S ) GF'T CE-D-tE)]
‘ -NYE \ -1
- -%18.:0+ [ ()l Eace-w)" |4, D] (a2)

Thus if one vworks in the basis {l(ﬁ,f)} « it is necessary to
calculate the nondiagonal elements of the Green's function,
G(i‘((E)- which can be obtained by forming four independent

.linear combinations of ’4)(;) and l¢~¢> {see Haydock, Ref.95,page
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250) and calculating the local Green's function for these
states. Howvwever, the problem can be simplified by working in a
mixed basis. This is because (A.29) can be written as

NeE) = -2 Lim e @Y CErie-m A
T €0t

Since

(8% Cevico ' |6> <aF1CEvcem [ &9 =87y

or,

2

(o] Cenie-m)" 1 da> ((Eriers® -nfe) = 87y

<¢dl(5+i€-ﬂ)-"¢7d> is the diagonal element of the inverse of
the matrix [(E +i€)8°{5 - Hd@]. By using the ponsymmetric
recursion method, one can first tridiagonalise the matrix
[Lf‘@] and then calculate the diagonal element of the Green's
function (;dd(E)in the mixed basis, by expanding this gquantity
as a continued fraction in the elements of the tridiagonalised
matrix. A sum over the imaginari parts of these diagonal
elements will then yieid the density of states, and nb
nondiagonal element or inverse overlap matrix need be

calculated.
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{a-3)

PARAMETERS USED IN THE BAND STRUCTURE CALCULATIONS

a) ANDERSON-BULLETT SCHEKE (section 3.1)
The atomic potential and the orbitals obtained by using the
Herman-Skillman program are as tollows:

1) Atomic Potential,

° -0'265‘2Y -2-lq7€8Y'
VY = (Hhasia e ~ 36.6920 ©_ )Rjd-
. o —
2) U4s Atomic orbital
~21.071838r _
O (¥) = ¢ gles e L2 41cy e51T06s Y
~3.8637¢¢ T ~0:77987Y

3) 34 Atomic Orbital

-3.4 8915 Y v -1 5
¢ (+> = 20.717v" € +OST7U34 Y e 494427

The parameters used in this scheme are:

1) The correction tera in the potential (see eqn. (3.37)):

2) Atomic s levels € = -0.200 Ryd.
3) Atomic d level: Ed = -6.6€72 RJ'J'
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b) EMPIRICAL LCAO SCHEME (section 3.3)

In expression (3.39),

d, =3.8378 | o, = 7.3796 , A= -2.7892 .
In expression (3.40),
dy = 238073

In expressions (3.41)-(3.43),

-77 3713 PIJ.,

C‘ -

¢, = =-I.0000 Ryd . |
C3 - —0-2464 Rjd')
He (o) = - 0. 4870 Ryd. |
| - -06.7683 Ryd.
Hdd(") - 6.7 g 9
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