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ABSTRACT

A finite group G of order n is called a sequenceable
group if all its elements can be arranged into a sequence

,a.a

al,az,...,an such that the partial products ay 12270

.,alaz...an are all distinct.

In Chapter one, we give sohe sufficient and necessary
conditions of the sequenceable group. In Chapter two, a
complete characterization of sequenceable abelian groups
is given. Though the problem of determining which non-
abelian groups G‘are sequenceable is unsolved at the
present time, we know that there are infinitely many
non-abelian sequenceable groups. This is discussed in
Chapter three. 1In Chapter four, the definition of seqg-
uenceable is extended to symmetric and strong symmetric
sequenceable groups. |In the last chapter, we give some
applications of sequenceable groups to Latin squares,

Howell designs and Graph theory.
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CHAPTER ONE

Introduction

A finite group G of order n which possesses the
property that all its element cén be arranged into a
sequence al,az,aB,...,an in such a way that its partié]
products a_,a_a_,a_a_a .,a_a a are all distinct

1771727172377 71727 N
is called a sequenceable group.

Basil Gordon, who has investigated the problem of
sequenceable groups, completely determined all the finite
sequenceable abeiian groups. However, for the non-abelian
case, it is still not completely solved at the present
time. At the very beginning mathematicians either used
computer or trial and error to find the sequencings.

Later they derived methods to construct sequencings.

B.A. Anderson, Basil Gordon, J. Dénes, Richard Friedlander,
A.D. Keedwell, N.S. Mendelsohn, E. Torok and L.L. Wang,

are the mathematicians who worked on the non-abelian

case. Even though this problem is not completely solved,
we at least know that there exists an-infinite number of
sequenceable non-abelian groups of odd order and even
order.

If we add some restrictions to the sequencing of the
sequenceable group, wevwill have sequencings which we

call symmetric sequencings and strong symmetric sequencings.



There are some applications of sequenceable groups.
We can use the sequencing to construct complete lLatin
squares, Hamiltonian decompositions of an n-complete
graph, conStruction of Howell designs, etc.

Before we go to the next chapter, we give some necessary
and sufficient conditions for a group to be sequenéeab]e

which were shown by J. Dénes and E. Tordk[ 77.

Theorem 1.1 : A finite group (G,~) is sequenceable if

and only if there exists an arrangemenet of its element
81,35, 000 ,8 such that a1=e(the identity of G) and for

any integers i,j, l<i<n-1, 2<i+j<n, a. «eed, . Z2e,
Yy g LV ’ J ’ P+1 P+

Proof : We define br=a1a2...ar for 1<rs<sn. A group is
sequenceable if and only if there exists a sequence
a_,a ,...,an such that b_,b ,...,bn are all different.

172 172

The latter holds if and only if bixbi+, for 1<i<n-1, 2<i+j<n
J

which holds if and only if b;lbi+_¢e which in turn holds
J

...a, .ze for 1<isn-1, 2<i+js<n. O
J

if and only if ai+1ai+2 L4

Theorem 1,2 : A finite group (G,-) is sequenceable if
and only if there exists an arrangement of its elements

...,b such that b-¥ b.=b.L b. implies i=j.
n -1 i -1

2/
Proof : Suppose the group is sequenceable with a sequencing

. -1
al’?Z""’an' Define br=a1 geee@p. Then bi—lbi=ai'



Since a,=a. implies i=j, b?l b.=bt1 b. implies i=j.
i =177 j=173J

Conversely, assume there exists an arrangement of

. -1, _.-1 . .
its elements bl’b2"°"bn such that bi—lbi_bj—lbj implies

i=j. Define

a; = e .
az; = by by
_ .1
al - bi—lbl
and
a = -1
n n-1n’

Then the ai's are all different and

a1 = b1 bl = e
-1 -1 -1
a,a, = b,"b,b,"b, =b,"b,
a aa_ = b-lb

and



They are all different because bl,bz,...,bn are different

elements of G. Hence the arrangement a_,a_,...,a of the

19 2 n
elements of G is a sequencing of G. O

Theorem 1.3 : Let G be a finite sequenceable group of

ce.,a_
27 ‘“n

is a sequencing of G if and only if'®(a1),®(a2),...,®(an)

order n and ¢ be an automorphism of G. Then al,a

is a sequencing of G.

Proof : Note that if ® is an automorphism of G, then ®_1

also is an automorphism. Thus al,a ceesa is a sequencing

2/
if and only if a_,a.a ,...,a a_...a are all distinct
1" 1 2 1 2 n
which is true if and only if ¢(a ),%(a . a ),...,%(a . a ...a )
1 1 2 1 2 n
are all distinct. This is true if and only if
o(a_),%(a_)o(a ),...,%(a_)%(a )...®(a ) are all distinct
1 1 2 1 2 n
and in turn if and only if @(al),Q(az),...,Q(a ) is a
. n

sequencing of G. [

Theorem 1.4 : Let (G,*) be a sequenceable group of order

n having a normal subgroup H of order h. Let us represent
the elements of the factor group G/H by Hl’HZ""’Hk’ k=n/h,

where H1 represents the identity of G/H. Then there exists

an arrangement ai,aé,...,a; of Hl'HZ""'Hk such that

(i) a1 = Hl’



(ii) Hi(i=1,2,...,k) appears exactly h times among the
a}(j=1,2,...,n), and
(iii) Hi(i=1,2,...,k) appears exactly h times among the

elements a a} (j=1,2,...,n).

182...

Proof : Let bi=a1...ai, l<i<n, where a,.a ,a_ is a

greee 8@y

sequencing of G, and & be the natural homomorphism of G

onto G/H defined by ¢(a)=aH for any aeG. We know Hi are

all mutually disjoint, Hi=G and aH=H_  if aeHi. Therefore

1 1

e 3

i
the sequence a_H=a’ =a’, ... =a” consi f h H.'s
que 1 1,a2H 0 ,anH an consists o h |

for 1<i<k. The sequence blH,sz,...,an'a]so consists

of h Hi's for 1<i<k. Thus the theorem is proved. [

In the following theorem, we let
E, = {{a ,a ,...,a }:a a, ...a, = e for some integer j 1l<j<i
! 1 2 i J 3+l i

and a a ...a ze when 1<t<k<i} where a.eG\{el} and
t t+1 K i

ei denote the number of the elements In Ei'

Theorem 1.5 : Let (G,+) be a group of order n with

identity e. Then the group (G,:) is sequenceable if and

only if e2(n—3)! + e3(n-h)! + ..+ én_1<(n—1)l

Proof : Let us consider the set G\{e} and let us call

an arrangement of its elements a_,a,, wrong if

17827+ %-1

..a =e for 1l<is<n-2,

there exists i,k such that aia. 4k

i+1°

2<i+k=<n-1.



The total number of all distinct arrangements of the
set G\{e}=(n-1)!. By Theorem 1.1, the group is sequenceable
if and only if the number of wrong arrangements is less
than (n-1)!.

Let al,az,...,ai belong to E,, this ordered arrange-
i

ment can be completed into a permutation of all the elements
of the set G\{e} in (n-1-i)! different ways, and all these
permutations are different wrong arrangements. Thus, this
contributes ei(n—1~i)! wrong arrangements of the n-1
distinct elements of G\{e}.

However, if al,a is a wrong arrangement,

grrers@, 9

then there exists at least one pair of positive integers

u,v l<u<v<n-1 such that a a ...a =e. Let us choose of
u u+l \

all possible pairs the pair with the propertyhthat v is

minimal, and denote this pair by u,v. Then alaZ"'aVEEV’

and a.,a....a-...a 4E_for m>v because a-a-, ,...a-=e.
172 v m m u u+l v

Since v is minimal, al,az,...,atd:Et for t<v. Hence given

any wrong arrangement al,az,...,an_l,,there exists exactly

one positive integer v such that al,az,...,aveEv. Then

the total number of wrong arrangements is ez(n-3)!+e3(n—h)!+...

...+en_2(1)!+e . The proof is finished. [

By the last theorem, we can derive an algorithm to
decide whether or not a group is sequenceable. A group

is sequenceable if and only if its elements can be arranged



so that a = e

where’ao,al,...,an are all distinct.

Let ao,a .,a

1’ k

elements with the following properties: -

ag = e,

a. = e,

,311 such that a,,a 4 E

a, # e,a 5 %

1

-1 -1
a =ze,a ,a ,(aa) a such that a ,a ,a ¢ E
"T1772 1% %), 179273 ’

be an arrangement of the group

3

a #e,a ,a ,...,a ,(a a ...a ) ,(a 63---8 ) R

k 1 2 k-1 12 k-1

.,a such that a ,a ,...,a
" k-1 BIAPTARNAI

This means that Ei=¢, l<is<n-1. The

is called k-sequenceabkle if .the elements
-1 -1
(alaZ"'ak—l) seees8, 1 exhaust all the

group. We continue the procedure in the

E .
k
product NP RREE- I

e,aI/ ff.‘_."lak_ll
elements of the

above way. I



we can get an (n-1)-sequenceable product, then the group
is sequenceable and the (n-1l)-sequenceable product is the

required sequencing.



CHAPTER TWO

Seqguences in Abelian Groups with

Distinct Partial Products

Sequenceable abelian groups have been completely.
characterized by Basil Gordon [9]. In this,sectioh, the
necessary and sufficient conditions for an Abe]ian group
to be sequenceable are given and proved in detail.

Before we state and prove B. Gordon's Theorem, we
introduce the notion of a complete mapping of a finite
group and then state and prove four lemmas which will

simplify the proof of the main theorem of this section.

Definition 2.1 : A complete mapping of a finite group

G is a one-one mapping 6 of G onto G such that the mapping

n(g)=gb(g) is a one-one mapping of G onto G.

Lemma_2.1: If G is a group of odd order; then G has a

complete mapping.

Proof : Suppose G is a group of odd order and let geG
be an element of order 2t-1. 1f h=gl, then h2=g2t=g2t_1g=g.

Therefore h is a square root of g. Further, if keG and

- - ht-2
2)2t 1=g2t 1 which implies k =

k2=g, we have (k e, the

identity element of G. Since the order of an element

is a factor of the order of the group, the order of k



2t-1 2t t
must be odd. Hence, we have k =e gives k=k =g =h,
Thus, h is the unique square root of g. |t follows that

2 2
in a group of odd order with elements gl,gz,...,g , 8.=8.
n i)

only if i=j. Define 0(g )=g. for i=1,2,...,n. We have
i i
2 . . . .
n(g,)=gi (i=1,2,...,n). Since n(g_.)=n(g_. ) implies
1 i J
., we have that n is one-one.

J
Then the identity mapping © is a complete mapping. 0

g?=g? which implies g, =g
[ i

Llemma 2.2 : |f the group G has a complete mapping, then
there exists an ordering of the elements of G such that

g gz...gn is the identity element.

1

Proof : Let G={g1,g2,...,g } and g1=e. Assume 6(g)
n s
-1
is a complete mapping of G. Define 6*(g)=9(g)6(e) .

Then 6%(g) is one-one for e*(g,)=e*(g.) implies
] J
6(g )6(e) 1=6(g3.-1)6('é1)»—1-which implies e(‘gi')-ﬁe(gj ). . We
i S

have g_=g_.. Also n*(g) is one-one because n*(g.)=n*(g.)

i J l J

implies g.e*(g.)=g_6*(g,) which implies g.e(g.)e(e)~1=
i i j J i i

g,e(g_)e(e)_1 which implies n(g_J)=n(g . ). We have g =g .
J J | J - . ] 3

Note that 6*(e)=6(e)6(e)-1=e and n*(e)=ee*(e)=ee=e. Thus,
without loss of generality, we can take 8(e)=n(e)=e. Then
n(gi)=g.6(gi)¢e for g_=ze. Now consider gze(g2)=n(g2)¢e

i i

2

G\{e,gz}. ‘Then let e(gz)_1=g3. We form the product

gze(gz)gSG(gB). We continue in this manner and eventually

so that g_lze(gz). This means that 6)(g2)--1 occurs among

10



reach a product

0(g_J)...g 6(g )=e where 6(g, _)=g,.
3 [ [ i- i

(1) gze(gz)g 1

3
for i=3,...,s and G(gs)=g

2

If s=n, the theorem is proved. This is because o
is a complete mapping and n(gl),n(gz),...,n(gs)=n(gn)
is an ordering of the elements of G such that n(gl)n(gz)...
...n(gn)=g16(g1)g26(g2)...gne(gn)=e.

If s<n, we repeat the process beginning with gs (g ),

+1 s+1

+1 is an element of G distinct from gl'gZ’f"’gs'

Finally we arrive at a series of cycles similar to the

where
gs

above whose product is the identity element. Thus, we
have n(gl)n(gz)...n(gn)=g16(g1)g26(g2)...gne(gn)=eo Then

n(gl),n(gz),...,n(gn) is the required ordering of G. O

Lemma 2.3 : If the product of all elements of the abelian
group G is not the identity, then G has the form AxB with

k
A cyclic of order 2 , k>0, and B of odd order.

Proof : Since the product of all elements of G‘is not the
identity, then there exists no ordering of the elements of
G such that glgz...gn=e. By Lemma 2.2, G has no complete
mapping. By Lemma 2.1, G is of even order. Then G has the

form AxB with A cyclic of order,2k, k>0, and B of odd order. (]

Lemma 2.4 : If j is any positive integer, and 61,62,..0,6
) m

11



are positive integers, then there exist unique integers

jo,jl,...,jm such that

i =) (mod 6.6 ...8 ),
P = 172 i’

j o= J_+] 8§ +7 8§ 8 +.,..+] 8§68 ...8
J JJ21J312 J

Proof : The proof of the existence and uniqueness of
the expansion is entirely analogous to the expansion of

an integer in powers of a number base. Since j and 6162..;6m

are positive integers, then by the Division Algorithm,

there exist unique integers CP and jO’ 05j0<6162...6m,

such that J=J0+q06162...6m. That ls,‘JEJO (mod 5162...6m).

Similarly, for integers jO and 61 there exist unique

d ;i _-‘ . _- .
1 and J,. 0<J1<61, such that ig J1+q161 For

integers ql,ahd 62 there exist uniaue integers q2 and ]

OsJ2<62, such that q1=J2+q262.

C I
Jo = q%ay8y = 3 0 %a

integers q
2/
Therefore

+j,.6.+q9,6.6,.

8,00, = J *i,6,%a,68,8,

2

We now continue this process. Finally we obtain

12



j = j +j (S +. 6 6 +o‘on+q (S (S .4.6 Whel’e
0 17°2°1731 2 m-1 12 m-1

Since 0<) <6 & ...8 , then
0 1 2 m

JO‘Jl“JZSITO..

Jm—l

= G880 08 <66, .08 8

h -_— - i a
so that 0<qm_1<6m We replace qm- by in The Temma

1
is proved. [

Next we are going to prove B. Gordon's Theorem.
The necessary condition of the theorem is simple to prove. .
™

For the sufficiency, B. Gordon, using the elements of a

basis of the group, constructed the desired sequencing.

Theorem 2.5 : A finite abelian group G is sequenceable

if and only if G is the direct product of two groups A
and B, where A is cyclic of order 2k, k>0, and B is of odd

order.

Proof : To see the necessity of the condition, suppose

that G is sequenceable and let a o2 be an ordering

1'82}"
of the elements of G with distinct partial products.

Define bi=a1a2...ai for each integer i, 1l<isn. |If ai=e
for some i>1, then bi_1=a1a2...ai_1=a1a2...ai_1e=a1a2...
eeod a =b , contrary to our assumption and therefore

i-1 0 i

13



we have a1=b1=e. Hence bnze, that is, the product of

all elements of G is not the identity. By Lemma 2.3, G
has the form AxB with A cyclic of order Zk, k>0, and B
of odd order. .

To prove sufficiency of the condition, suppose that
G=AxB with A and B as in the statement of the theofem.
We then show that G is sequenceab]e.by constructing an

ordering al,a ...,an of its elements with distinct partial

2[
products. From the general theory of abelian groups, it

is known that G has a basis of the form c_,c ,.n.,cm,

0° 1

where c0 is of order Zk, and where the ordersyél,éz,.o.,ém

of cl,cz,...;cm are odd positive integers each of which

divides the next, that is, 6il6i+1 for 0<i<m. By Lemma 2.2,

if j is any positive integer, then there exist unique

integers jO’jl"°"jm such that

j = ig (modvéléz...ém),

j = j j j cco+. 6 00;6 2
To = dqtip0ytig8y 8yt ty 0.6,008

(1)

o
IA

o
A
—.
A
(o)

14



We are now in a position to define the desired se-
quencing of G, It is convenient to define the products

bl’bz""’bn directly, to prove they are all distinct,

and then to verify that the corresponding ai, as calculated

from the formula a;=e, aizbi-lbi’ are all distinct.

If i is of the form 2j+1 (0<j<n/2), let

byj+1 = S9 €1 S ---Ch

where jl,jz,...,jm are the integers defined in (1). On

the other. hand, if i is of the form 2j+2 (d§j<n/2), let
J+1 j_+1 j _+1 J *+1
b . = C cl ¢ 2
2j+2- 0 1 2 m
Now, we are going to prove the elements bl,bz,,.;,bn

defined above are all distinct.

Suppose bs=bt with s=2u+l and t=2v+1l. Then

-u ~u_, -u -u -V -V, =V -v

1 2 m _ 1 2 m
c0 c1 c2 °..cm c0 c1 c2 ...cm . Hence

k k
-u = -v (mod 27) or equivalently u = v (mod 2 ),

- = - d = d §.),

u1 v1 (mo 61) or u1 v1 (mo 1)
(2)

“uL = eV (mod Gm) or u.. = Vp (mod Gm)a

From the inequalities in (1), then Osui<6i and Osvi<6i

for each integer i, 1l<ism. We conclude that uy vy

15



Upg=Vo,ene, U=V, Since u0=u1+u261+u36162+..,+um6162...Gm_l

and v0=v1+v261+v36162+...+vm6162...6m_1, we have u,=v, so

that uz=v (mod 6162...6m). Together with the first con-

gruence of (2) and since (2 ,68.6 § )=1, this gives u=v

1 2... m
k
{(mod 2 6162...6m). Thus uzv (mod n), which implies u=v.

Suppose bs=bt with s=2u+2 and t=2v+2. Then

u+l u1+1 u2+1 um+1 v+l v1+1 v2+1 vm+1
c0 c1 c2 ...cm = CO c1 c2 ...cm and
_ k . e k
u+l = v+1 (mod 27) or equivalently -u = v {(mod 2 ),
u_+1 = v1+1 (mod 61) or u1 = v1 (qu 61),
(3) . .
u +1 = v +1 (mod § ) or u = v _ (mod & ).
m m m m m m

In a fashion similar to the above, b implies u=v.

=b
2u+2 2v+2
Finally, suppose bs=bt with s=2u+l and t=2v+2. Then

“u -u; -u, -u v+1 v1+1 v2+1 vm+1

cen = co d
€y 1 %y c ¢y S <, “c an

k
= v+1 (mod 2 ),

—U:

- = + d

u! v1 1 (mo 61),

- = v +1 (mod § ),
m m m

or equivalently



0 (mod 2k),

11

u+v+l

u_+v_+1 = 0 (mod (31),

(L)

u +v +1 0 (mod & ).
m m m

Since 05ui<6i and OSVi<6i, we have'0<ui+vi+1S2(6i-1)+1<26i

for each integer, l<ism. This together with the congruences

(4) forces us to have

u1+v1+1 = 61,
u2+v2+1 = 62,
u +v +1 = 6 .,
m m m

Multiplying the (i+l1)'st equation of this system by

6162‘..6i, l<i<m, we obtain

ul+v1+1 = 61,

§46

61 (uy+vy+l) 1

6162(u3+v3+1) = 616263,

2/

818y« e8 (U +v +1) = 6.6,...8

Adding them together gives us

+ +y +1)+8 6 +v_+1)+...
(u1+v1+1) dl(u2 v, ) 1 2(u3 Vs 1)

+6 § ...98 (u +v +1) =8 +§ § +§ &§ § +...+¥6 & 6
1 12 12353 1 3

1 2 m-1 m m

17



Simplifying we get

+8 +§ 6§ +,..+468.8 ...8
(U +6,u,*0,0,us EEE AP RREIS LY

’ §.6 +... e e = c o ’
AR AP A R A AR R R A S L P LP R

that.ls, u0+v0+1 = 616263...6m. Since uEu0 (mod 6162...6m)

= d “e z oo .
and v U, (mo 6162 ém), then u+v+l u0+v0+1 (mod 6162& Gm)

But u0+v0+1 = 6162...6m so that u+v+1=0 (mod 6162...6m).

Combining this with the first congruence of (4), we find

k k
that u+v+1=0 (mod 2 8§ 6_....8 ) because (2 ,86_ 8. ...8 )=1.
g » 12 m 12 m

Therefore u+v+1=0 (mod n), which on account of the inequal-
ities O<u<n/2 and 0<v<n/2 implies that O<u+v+l<n which is

impossible. Hence, the elements bl'b2""'bn are all distinct.

Next we calculate al,az,...,an. If 1=2j+2 (0<j<n/2), then
-1 =) =i, -J -j -1 j+1 j_+1 j _+1 J_+1
a. =b, _b (c_ c, lc 72 m 1 2 m

; =12 0 1 Sy Teeec ) (c0 SR eeeCo )

2j+1 25 _+1 2) +1
= ¢ c. 1, .cm

0 1 m

These are all different by the same argument as above. |If

i=2j+1 and j_=#0, then j = j d §6 ...8),
i=2] n Jl n j JO (mo 155 m)

Jo= i, 8 rig8 8,4 8.8,...8 o and 0<j <8, for

18



i=1,2,...,m, imply i-1

i =1 (mod & §

cead d
0 1 2 m) an

Paml = (G =1)%] 6 +]. 8.8 +.uuti 8 & ...68 with 0<j -1<g
1o ‘1 19°1773%1°, ‘m°1°%2 m- 1 1
and Osji<6i where i=2,3,...,m. Then
bl n =t b ! b
a = = =
i i-1i 2j 2j+1 20j-1)+2 2i+1
(i-1)+1 (j -1)+1 i,*1 i+l -1 -j -3y i, i
= (c0 cq c, -Co )( c0 c1 c2 . .cm
) C‘ZJC‘2J1C‘2J2‘1C"2J3"1 C-ZJm-l
0 1 2 3 "m
If i=2j+1 and j1=0 but j,=0, then j = iy (mod 5152;..5m),
= 8. 4] 8.8 +...%] 8.8 ...8 d 0<j.<6. for i=2,3,...,m,
To T 19°1%93%%, Im®1%2°° %p-1 @7 Ity ter 1=s 5, ke m
imply j-1 = j - d 66 ...5 d
imply j-1 JO 1 (mo 155 m) an
j =1 = =1+) §_ +j_8.8 +...+;] &§ & ...8
Jo7t 1+,0,+358,9, Tm°1°2 m-1
= (8 =1)+(] ~1)6_+j. 8.8 +.uut] 6.6 ...8
(6, -1+, 1 73°1% "m°1°%2 m-1
with 0561—1<6 , Osjz—1<62 and Osji<6i'where i=3,4,...,m. Then
-1
=b. _b
& P17
(J-1)+1 (j_-1)+1 (j -2)+1 ; +1 i+l -1 -5 -j -] -j
=(c c 1 c 2. c 3 cM Yy ¢ ¢ 2¢ 3, .¢
0 1 2 3 m 0 2 3. m
~25 =25 -2 -1 -2i -1
- 2 3 ‘m
C0 C2 C3 . .Cm
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Simitlarly, if j1=j2...=jt_1=0 but jtzo, then

_ C-ZJC—ZJtC-ZJt+1—1 -2Jm-1
a; = ¢ t t+1 oo C
These ai's are obviously distinct from each other by the
same reasoning as before. Because of the exponent ofvco,
they are also distinct from the ai with i even. This -

completes the proof of the theorem. [

Example :

Consider the group G=szz3x23. We use basis elements co,c1
and <, of orders 2, 3, and 3, respectively. Using the ‘
notation (o,B,Y) for the elements coaclsczY where co=(1,0,0),

c1=(0,1,0), c2=(0,0,1) and 61=3, 62=3 the sequences ai and

bi are then the following:

i T P PP b, e
1=20¢01 0 0 0 0 (0,0,0) (0,0,0)
2=2:0+42 0 0 0 0 (1,1,1) (1,1,1)

“3=2.1+41 1 1 1 0 (1,2,0) (0,1,2)
» =2.1+2 1 1 1 0  (0,2,1) (1,0,1)
5 =22¢1 2 2 2 0 (0,1,0) (0,2,2)

6 = 2-2+2 2 2 2 0 (1,0,1) (1,2,1)

7 = 2-3+1 3 3 0 1 (1,0,2) (0,0,1)
8 = 2+ 3+2 3 3 0 1 (9,1,2) (1,1,0)
9 = 2 4+] b b 1 1 (0,2,2) (0,1,0)

10 = 2.4+42 L b 1 1 (1,2,2) (1,0,0)
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11 = 2-5+1 5 5 2 1 (1,1,2) (0,2,0)

12 = 2-5+2 5 5 2 1 (0,0,2) (1,2,0)
13 = 2+6+1 6 6 0 2  (0,0,1) (0,0,2)
14 = 2+6+2 6 6 0 2 (1,1,0) (1,1,2)
15 = 2+7+1 7 71 2 (1,2,1) (0,1,1)
1€ = 2°7+2 7 7 1 2 (0,2,0) (1,0,2)
17 = 2°8+1 8 8 2 2 (0,1,1) (0,2,1)
18 = 2.8+2 8 8 2 2 (1,0.0,) (1,2,2)

In the 1emma below, p(A) denotes the product of all

elements of A where A is a subset of elements of the group G.

Lemma_2.6 : An abelian group G has exactly one element
of order 2 if and only if the product of all n distinct

elements of G is not the identity element of G.

Proof : Let the set H consist of the identity and all

the elements of G of order 2. Then H is a subgroup of G.

-1 2
This follows because eeH and if a, beH, then (ab- ) =

2 -12 2 2 -1 1 .
a (b ) =a (b ) =e so that ab eH. |If aeG is of order
-1 -1
greater than 2, aza . Thus, both a and a appear in

p(G) and hence p(G)=p(H).
Let n(G) be the number of elements of order 2 in G.
Suppose n(G)=1, then p(G)=p(H)ze. Suppose n(G)=0, then

p(G)=e because H={e}. Suppose n(G)>1. Then H has order
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greater than 2 so that H has order 2k, k>1. Then H has
k generators 81,89, 0,8y and every element of H has an

n, n n
unique representation in the forri1~g1 gzz...gk where ni

nl I'I2 n

is 0 or 1, Hence p(H) = H(g1 gl ...gk ), where the product

is over the distinct k-tuples (n_,n

1 2,oal[nk) wlth eaCh ni

faking the value 0 or 1. Then p(H)=(g1g2...gk)m where

m=2k_1 and since k>1, we have p(H)=e. This proves the lemma.l
From Theorem 2.5, weé know that the abelian group G is

sequenceable. if and only if the product of all elements of

G is not the identity. Together with the above lemma, we

can state that "a finite abelian group G is sequenceable if

and only if the abelian group has an unique element of order 2."
Before finishing this chapter, we give a simple method

to construct a sequencing of an abelian group of even order

ZZm' :

Let the elements of sz be 0,1,2,...,2m-1. "We c]aim

that S$:0,1,2m-2,3,2m-4,5,2m-6,7,2m-8,9,...,4,2m=-3,2,2m-1

is a sequencing of ZZm' Obvious]y,'the elements of S are

all distinct. The partial sum P is of the form 0,1,2m-1,

2,2m-2,3,...,m+2,m-1,m+1l,m and they are all distinct.

Thus, S is a sequencing of 22m
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CHAPTER THREE

Non-abelian Sequenceable Groups

At the present time, the problem of determining the
sequenceable non-abelian groups is still unsolved., Differ-
ent matheméticians have used different methods to construct
sequencings for non-abelian groups. We know only that tHere
exist an infinite number of éequenceab]e non-abelian groups.

Basil Gordon first constructed a sequencing of a non-
abelian group of order 10. N.S. Mendelsohn heuristicallyr
found five sequencings of a non-abelian group of oEder 21..
J. Dénes and E. T8rok used a computer to show that for all
non-abelian groups of order n<l4, the only non-abelian
D

sequenceable groups were the dihedral groups, D and

5 767

D,. They also found a sequencings of D, and 15 sequencings

7 8
of a non-abelian group of order 21. Lawrence Wang also

used a computer to test the finite group G where G of order

P_.4d -1

pgq is generated by a, b with a =b"'=1, a ba=br where r is

a positive integer, p, q are primes, q=1 (mod’p)-and rpzl
(mod q). He ran the program for n=6, 10, and 21, which were
known to be sequenceable already. Hé also tested for some
other n and found that for n=39, 55, 57, these groups are
also sequenceable. B.A. Anderson derived a technique to

find a sequencing of Dp where p>3 1s an odd prime with

primitive root r such that 3rz=-1 (mod p) and he gave
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sequencings for DS’ Dll’ and Dl7' Finally, Richard Friedlander
derived a method to construct a sequencing for D; where n
is a prime congruent to 1 modulo k4.

At ]ést we have an infinite family of sequenceable non-
abelian groups. A.D. Keedwell had constructed a sequencing
of a non-abelian group of order 27. Recently he showed that if‘
p is an odd prime which has 2 as a primitive root and q is
another odd prime of the form gq=2ph+l, then the non-abelian

group of order pqg is sequenceable.

we first give some basic definitions.

Definition-3.1 : A dihedral group.Dn is the group generated

by two elements a, b where a2=bn=1 and ab=b—1a.

Then Dn has order 2n and for any a, beDn, b?=ab ! for

any j. |If H=<b>, H is a normal subgroup of Dn’ and the
factor group Dn/H={H,H1} where H12=H.

Llet G=<a,b> be a non-abelian group of order pq; p<q
where p and q are distinct odd primes satisfying the relations

ap=bq=1 and ba=abS with spzl (mod q). Then (aubv)(axby) =

X
u+x, vs™+ . '
a b y. Also, H=<b> is a normal subgroup of order q

and the number of its Sylow p-subgroups is l+pk=q. Therefore,
(g-1) is divisible by p. Since g is odd, 2p divides (qg-1)

so g=2ph+1 for some integer h.

Definition 3.2 : A map & of group G into G' is a homomorphism
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if for any a, b belonging to G, ®(ab)=(da)(db).

The natural homomorphism ¢:G>G/H is a homomorphism defined
by ¢(a)=aH where aecG. If G=<a,b> such that ap=bq=1, ba=abS
where sPz1 (mod q) and H=<b>, then the natural homomorphish
$:G+G/H maps G onto the cyclic group of order p with elements

2 2 Xp—1=ap-1

1=H, x=aH, Xx =a H, ..., H.

Definition 3.3 : GHIpl denotes the set of residue classes

modulo the prime p.

Definition 3.4 : A generator x of the cyclic multiplicative

group of order p-1 of GF[pl is called a primitive root of GF[p].
For example, when p=11, the cyclic multiplicative group -
0
can be generated by 2 because the powers 2 =1, 2 =2, 2 =L,
3 L 5 6 7 8 9 .
2 =8, 2 =5, 2 =10, 2 =9, 2 =7, 2 =3, 2 =6 (mod 11) give all

the p-1=10 non-zero residue classes 1,2,...,10.

Definition 3.5 : Let G be a group of order n, H be a normal

subgroup of G of order h, and let G/H={x1,x .,xt} such

2, ..
that t=n/h. A sequence S of length n consisting of elements
from G/H is called a quotient sequencing of G if each xj,

1<j<t, occurs h times in both S and the sequence of partial

products of S.

By Theorem 1.4, we have the following statement. Let H
be a normal subgroup of G and ¢® be the natural homomorphism

defined by &®(x)=xH for xeG. If S is a sequencing of G,
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then the image of S under ® is a quotient sequencing of G.
This gives us a method to search for a sequencing of G. UWe
can select a normal subgroup H of G, list all quotient seg-
uencing of G, and 1ift these quotient sequencings back to G
hoping that one of these forms a sequencing of G. If all the

liftings fail to form a sequencing, then G is not sequenceable.

Example : lLet G = 83 = {e,(12),(13),(23),(123),(132)}

and H = A3 = {e,(132),(132)}.

So 83/A3 = {AS,{(IZ),(13),(23)}}.
For simplicity let 83/A3 = {1,x} where {e,(123),(132)} =1
and {(12),(13),(23)} = x. Then @(e) =:0(123) = ¢(132) =1

and 0(12) = o(13) = 9(23) = X, where ¢ is the natural homomor-
phism. A quotient sequencing Q of 83/A3 is a sequence of
length 6 such that Q and its sequence of partial products is
made up of three 1's and three x's. After checking all the
combinations, we find that there are 4 quotient sequencings:
'1;1,x,1,x,x; 1,1, x,x,x,1; 1,x,1,x,1,x; 1,x,x,1,x,1.

In order to get a sequencing of S the first 1l in the

3[
quotient must l1ift back to the identity e of 83. Using the
automorphisms of the group, we know that there exist inner
0]

automorphisms & such that ®1C123)=(132) or @2(123)=(132)

17 °2
and @1(13)=(12), @2(23)=(12). Then we can assume that the
second 1 lifts back to (123), and the first x lifts back to

(12). Then the third 1 must 1ift to (132). Now, we have a
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partial sequence e, (123), (12), (132). The partial products
are e, (123), (23), (13). However, if we put on a fifth
element of either (13) or (23), we repeat a partial product e
or (123), respectively. Therefore, the first quotient sequenc-,
ing fails to 1ift back to a sequencing of 53. Similarly, all
the other quotient sequencings fail too. We conc]ude that S

3

is not a sequenceable group.

§3.1 Sequencings of some non-abelian groups of even order

Suppose Dn is a dihedral group. Let H=<b)>. Then

2 ,
Dn/H={H,H1} such that H1=H. For simplicity we let H=1,

H1=x. By the method described above, in order to find a

sequencing of Dn’ we investigate the quotient sequencings of
Dn/H. Lifting the quotient sequencings back to Dn’ we hope

that one of the liftings is a sequencing of Dn. Since
2 n-1
<b>={e,b,b ,...,b }, the image of all these elements under

the natural homomorphism ¢ is 1, and the image of

2 n-1
{a,ab,ab ,...,ab } is x. Then the quotient sequencing of

Dn is a sequence of n 1's and n x's. For the case of D5,

Richard Friedlander found that the quotient sequencing
1,1,1,x,x(x,x,x,1,1 could be 1ifted back to give a sequencing

of D5.

One general form of a quotient sequencing of Dn which may
give a sequencing of Dn is

- k+1 2k+1 k
(1) — N — = —
’ 1,1,..-,1,X,X,...,X,l,l,...,l
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with n=2k+1. The sequence of partial products is

k+1 2k+1 “k

(2) '___._/\ ~ AN -~ /\___‘

-
1,1,...,1,%x,1,x,1,.c0,l, X, X, Xs06e0,X%

The original arrangement of the elements of Dn having (1)

as its quotient sequencing is of the form

a a a t t t t r.:r r
b 1b 2, .0 U ap L ab 2,ab 0, ... ap 2% 102 Tk

lts partial products in Dn are of the form

a. a.+a S ta=S, to-t-+S to=t,+t,-S
U R T SR R A IR B A

bttty ty*Sy ST=Sa _ StTSptry SqTSptrytry
: 4

b ,++s,ab ab ,ab s e e

ST-SA+r1+r2+,,,+rk
.,ab

Where A = {al,az,...,ak+1},
T = {tl'tZ""’t2k+1}' R = {rl,rz,...,rk} are sequences of

integers modulo n, and SA = a1+a2+...+ak+1,

Let D={d1,...,dk} and E={e0,e1,...,ek} such that

di = t2i_t2i—1’ 1<i<k,
= t_-S d
(3) e0 175, an
ei = t2i+1_t2i, 1Si£k.

Let (A,D) = {al,a d_,d

2,...,ak+1, 1 2,...,dk},
{eo,el,...,ek,rl,rz,...,rk} and

(E,R)

(EAD)

,e_,d_,e.,...,d

ley,dyreq.dyre,

klek}c
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Then the arrangement of all the elements in D reduces to

n
a a ' a e +S e +d. +S e +d,+e,+S
) b Lb 2 .. b kel L S077A  f0TH A b 0T1TT1TCA
e td,te +...+d, +e, +S r r r
,ap 0 171 KTRTTA e 2, K
and the sequence of partial products in Dn reduces to
a a.+a a,ta,+a S e S, +d e.+e
(5) b Ll p 172 125 A Gy O AL g 0T
SA+d1+d2 e0+e1+...+ek e0+e1+...+ek+r1
b ,+..,ab ,ab

7 * v

abe0+e1+ .o .+ek+r1+r2+. . .+rk
.7

Then we have the following theorem.

Theorem 3.1 : Let G be the dihedral group of order 2n,
n=2k+1. Suppose there exist sequences of integers

A={a1,a2,...,ak+1}, R={r1,r ,rk}, D={d_,d ,...,dk} and

2°°°° 172

E={e0,e1,...,ek} such that

di =ty tyio1v

0 ti—SA where SA = a1+a2+...+ak+1,

1<i<k,

1]
[}

e; = t2i+1_t2i’ 1<i<k, and satisfying cqndlﬁlons:
(i) A1s89, 000,841/ s gs00,r, are all distinct modulo n,
(ii) the elements of P(A,D), the sequence of partial sums

of (A,D), are all distinct modulo n,

(iii) the elements of P(EAD) are all distinct modulo n, and

(iv) the elements of P(E,R) are all distinct modulo n.

Then there exists a sequencing of Dn'

Proof Conditions (i) and (iii) guarantee that elements

29
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of (4) are all distinct and conditions (ii) and (iv)
guarantee that elements of (5) are all distinct. Then

(4) is a sequencing of Dn. 0

We are at the point of seeking values of n such that
there exist the sequences A,R,D,E satisfying all the con-
ditions as described in the above result. Richard Fried-
lander was sucessful in choosing the sequences A,R,D,E when
n is a prime congruent to 1 modulo 4. We have the following

theorem.

Theorem 3.208] : .The group D where n is a prime and

n =1 (mod 4) is sequenceable.
Proof : Since n is odd we write n=2k+1. Let
A=1{0,2,...,2k}, R = {1,3,5,...,2k-11},

D = {~h,-3h,-5h,...,-(2k-1)h} and E = {0,2h,b4h,...,2kh}

where the Legendre symbol (h|n)=-1.

In order to show Dn is sequenceab]e, it suffices to show
all these sequences satisfy conditions (i), (ii), (iii) and
(iv) as described in Theorem 3.1.

(i) Obviously all the elements of A and R are distinct

modulo n.

(ii) We have to show that the elements of P(A,D), the sequence
of partial sums of (A,D), are distinct modulo n. Supposé

the partial sums of (A,D) are not all distinct.
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Case 1. Two equal partial sums are from the A part. Then
there exist i, k such that

0+2+L+, ., . +21 0+2+...+2] (mod n) where O<i<j<(n-1)/2.

I

Thus, i(i+1l)

1

J(j+1) (mod n) so that (j=-i)(j+i+1) 0 (mod n).
This implies i=j so that all the partial sums from A are

distinct.

Case 2. Two equal partial sums are from the D part. Then
there exist i, jJ such that

SA—(h+3h+...+(2i—1)h)

SA—(h+3h+...+(2j-1)h) (mod n)

where 1l<i<j<(n-1)/2.

Then h+3h+...+(2i-1)h = h+3h+...+(2j-1)h (mod n) so that
i2h = 5%h (mod n) or (i+3)(i-j)h = 0 (mod n).

This implies i=j and all partial sums from D distinct.

Case 3. Assume one partial sum from A and one from D are
equal. Then there exist i, j such that
0+2+4+,, ., +21 = SA-(h+3h+...+(2j—1)h) (mod n)

where 0<is<(n-1)/2=k and 1<j<(n-1)/2=k.

Thus i(i+l) = SA—th {mod n).
k
Since Sy = I 2i = k(k+1) and n = 2k+1,
i=0
2
then hSA = 4k +4k (1)
and n2 = hk2+hk+1. (2)
Combining (1) and (2), we have 4S5, = n2—1.

A
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Then Li(i+1) h(SA~j2h) {(mod n) or

2

Li(i+1) = n2-1-4;%h (mod n) or

1l

(2i+1)2 = -43%h (mod n)

which implies (-h|n)=1. This is impossible as (h|n)=-1

and nz1 (mod 4).

(iii) Now EAD = {0,-h,2h,-3h,4h,...,-(2k-1)h,2kh} so that
P(EAD) = {0,-h,h,-2h,2h,...,~-kh,kh}. Since (h,n)=1,
they are all distinct modulo n.

(iv) This is similar to (ii).

Now (E,R) = {0,2h,4h,...,2kh,1,3,5,...,2k-1}.

Case 1. Two partial sums are both from the E part; Then
there exist i, j such that

(i+1)ih = (j+1)jh (mod n) where 0<i<jsk=(n-1)/2.

Hence (i-j)(i+j+1)h = 0 (mod n) and it is impossible as n

is a prime,

Case 2. Two partial sums are both from the R part. Then
there exist i, j such that
(k+1)kh+i2 = (k+1)kh+j2 (mod n) where 0Os<i<j<k

so that (i-))(i+j) = 0 (mod n). This is impossible.

Case 3. One partial sum is from A and the other is from R,
Then there exist i and j such that
(i+1)ih = (k+l)kh+j2 (mod n) where 0sgi<Kk, 0<j<k.

Then 4(i+1)ih = l;(k+1)kh+hj2 (mod n) or
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Ty

2 2
4L(i+1)ih = (n -1)h+4j (mod n) or,

L(i+1)ih -h+hj2 (mod n).

1

So hjz = h(2j+1)2h (mod n) which implies (h|n)=1.

This is a contradiction and the proof is finished. O

Example : We find a sequencing of D We have n=13, k=b

13°
and (2|13)=-1. We take h=2. The sequences A,R,D,E are

A=1{0,2,4,6,8,10,12},
R =1{1,3,5,7,9,11},
b = {11,7,3,12,8,4},
E ={0,4,8,12,3,7,11} and SA = 3 (mod 13).
Then we use di = t2i_t2i—1’ 1<i<6,
e0 = tl—SA,
e, = t2i+1—t2i’ 1<i<6,

to solve for the sequence T17={3,1,5,12,7,10,9,8,11,6,0,4,2}.

We know the sequences A, T and R and a sequencing of D1 is

3
2 4 6 8 10 12 3 5 12 7 10 9 8

e,b%,b,b°,b%,b",b%%,ab”,ab,ab>,ab %, ab’,ab ", ab”,ab°,

abll,abﬁ,a,abu,abz,b,b3,b5,b7,b9,b11.

The partial products are

e 62,65 612 b7 % b3 a,b,ab%, b8, ab2 2,611 abtt, b1l ab,

b5,ab8,bg,ab6,ab7,ab10,ab2,ab9,ab5,a53.

J. Denes and E. T8rd8k tested all the non-abelian groups
of order n<12 on the ICT 1905 computer, and found that only
D. and D. were sequenceable. Because it took L45-55 minutes

5 6
to test for n=12, for n>12, the program only ran for a certain
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period of time or found a sequencing.

D7 and D

Dihedral group DB:

The number of partial sequencings of
of
of

The group is not sequenceable (total

tested was 30).

Dihedral group Dh:

The number of partial sequencings of
of
of
of

The group is not sequenceable (total

tested was 448).

Quaternion group Q3 of order 8:

The number of partial sequencings of
of
of
of

The group is not sequenceable (total

tested was 336).
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It was found that

length
length
length

number

length
length
length
length

number

length
length
length
length

number

g are also sequenceable. These are the results,

3 obtained was 18,
4 was 12, and
5 was 0.

of products

L obtained was 20,
5 was 152,

6 was 270, and

7 was 0.

of products

L obtained was 72,
5 was 216,

6 was 48, and

7 was 0.

of products



Dihedral group D5:
The number of partial sequencings of length 5 obtained was 280,
| of length 6 was 1920,

~of length 7 was 3920,
of length 8 was 2240, -and
of length 9 was 320.

The group is seauenceable (total number of products tested

2
was 8680). One of the seauencings of length 10 is e,b,b,

a,ab,abu,abz,éb3,b3,bu. The partial product sequence is

e,b,b3,ab2,bu,a,bz,ab,abu,abs.

Dihedral group DG:
The number of partial sequencings of length 6 obtained was 935,
of length 7 was 17520,
of length 8 was 71580,
of length 9 was 108840,
of length 10 was 57312, and
of length 11 was 3072.
The group is sequenceable (total number'of products tested
was 259,260). One of the sequencings of length 12 is

e,b,bz,a,b3,ab2,ab,abu,ab3,bu,b5,ab5. The partial products

are e,b,b3;ab3,a,bz,abS,bS,abu,abz,ab,bu.

Group G={b,a:b3=au=e,ba=ab_1} of order 12:
The number of partial sequencings of length 6 obtained was 1152,

of length 7 was 14832,
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of length 8 was 64560,
of length 9 was 85824,
of length 10 was 39792, and
of length 11 was 0.
The group is not sequenceable (tofa] number of products

tested was 206,160).

Alternating group Au of order 12:

The number of partial sequencings of length 6 obtained was 1032,
of length 7 was 16224,
of length 8 was 63480,
of length 9 was 912@8,
of length 10 was 41472, and
of length 11 was 0.

The group is not sequenceable (total number of products

tested was 213,456).

For the dihedral group D, which is sequenceable, one of the

7

2
sequencing 1Is e,b,bz,bs,a,bu,bs,bS,abs,abS,abu,ab,abS,ab . The

partial products are e,b,bs,bs,ab,abS,abu,abz,bu,abs,bS,abS,bz,a.

For the dihedral group D8 which is sequenceable, one of the

2
sequencings is e,b,bz,bs,a,bu,b5,b6,ab5,abu,b7,ab6,ab3,ab,ab ,

ab7. The partial products are e,b,bs,bﬁ,abz,ab6,ab3,ab,bu,a,

ab7,b7,abu,b5;ab5,b2.

As mentioned earlier in this chapter, B.A. Anderson

introduced a method to construct sequencings of some dihedral
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groups of order 2p where p is an odd prime. He succeeded
in sequencing D5,'D11,D17 and D23 by this method.
We know that Dp is generated by two elements a, b

1

such that a2=bp=e and a_lba=b_ . The elements of Dp either

have order 1, (the identity); order p,(Zp\{e}, Z  the cyclic

p
subgroup generated by b) or order 2,(Dp\Zp). Suppose

S:ao,al,...,azp_1 is a sequencing of Dp. Then there is a
corresponding string T:n(aO),n(al),...,n(azp_l) where for

l1<i<2p-1, n(ai) is the order of a;. We know that

(p-1)/2 p (p-1)/2
" T

T:l,p,p,...,p,2,2,...,2,p,p,...,p

could be a string for some seguencings of Dp;

Anderson's method of construction is to split the ,
sequencing into three separated barts. He first considers
the middle part which contains all elements with order 2.
After sequencing the middle part he consjders the first
part and the sequencing of the first part induces a sequencing
of the last part.

Let C; = apgaq..-a; and t = (p-l)/2ﬂ Then

PZCO,Cl,eaf,C ,C

t t+1'Ct+2’""Ct+p’ct+p+1"""C2p-1
is the sequence of partial products of S and

CprCqreesCy belong to Zp,

Cr427C ey’ +Ctap-1 belong to Zp,

ees,C belong to Dp\Zp, and

Cte1/Ct+37 t+p

Ct+p+1'ct+p+2""'C2p—1 belong to Dp\Zp.
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Definition 3.6 : Suppose r=2s+1, where s is any positive

integer, and G is an abelian group of order r. S={{xi,yi}:1siss}
is a starter for G if every nonzero element of G occurs as
(i) an element of some paris of S and (ii) a difference of

some pairs of S.

I Xi+yi=0 for 1l<i<s, then we call S the patterned

starter for G.

Theorem 3.3 : Suppose p>3 is an odd prime with primitive

root r, n is a positive integer such that (n,p-1)=1, and

s
3rn5-1 (mod p). If t=(p-1)/2, ct=br for some integer s

rs+(k-1)n ik rs+kn

and = b ab = ab and

“t+2k-1
(1) r5+kn 3 rs+kn
Cipgp = aD" ab < =b for 1<ks<(p-1)/2,

then (i) { 1<ks<(p-1)/2} is a reduced residue system

"
modulo p,
rs+[(p—1)/2]n s

(fi) b a = ab =c , and
t+p

(iii1) {{ik } i 1<ks<(p-1)/2} is a patterned starter

Ijk
on Zp.

X
Proof : (i) We know (abY)(aXpY) = au*Xpv(-1)"+y,

Then we have

r

s+(k-1)n, _ . s+kn
ab’ - ( 1)+|k -

= ab’ and
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rs+kn(_1)+jk st+kn

b = b’ which implies

i o2 STRTDINEN Gy (mod p) 1sks(p-1)/2 and

jk = 2rS+kn (mod p) 1=<ks<(p-1)/2.

Assume that there exist u,v, 1<u,v<(p-1)/2 and u=zv-

s+(v-1)n, n rs+(u—1)n

such that r (r +1) = (rn+1) (mod p). This

vn un _ vn

implies r -r = r (1_r(u-v)n

) = 0 (mod p) which yields
r(u—v)n =1 (mod p). This is impossible for rtzl (mod p)
only if t is a multiple of (p-1). It is shown similarly

that ju and jv are distinct non-zero residues. Suppose

there exist u,v where 1<u,v<(p-1)/2, u=zv such that iuzjv (mod p).
Then 2rs+vn_rs+(u-1)n(rn+1) = 0 (mod p) and
rS+(u_1)n(Zr(V_U+1)n-rn-1) = 0 (mod p). Since rs+(u-1)n Z0

(mod p), then we have Zr(V_U+1)n-rn—1 = 0 (mod p). However,

l1<u,v<(p-1)/2 and u=zv, so that v-u can take on any value
from 1,2,...,p~2 modulo (p-1) except (p-1)/2. Then the
same is true of (v~-u)n for (n,p-1)=1. From our assumption,

3rn+1 = 0 (mod p). It is equivalent to‘-3rn—1 =0 (mod p)

or r"r2r P2 09 1 = 0 (mod p) for r P12 o 1 (hod p)

(p—l)/2+n_rn

or 2r -1 = 0 (mod p) which means that

Zr(V-U)n +n_rn_1 = 0.(mod p) has no solution. -Therefore,
all iu and jv are distinct (mod p).

rs+[(p—1)/2]n 9 fs+[(p-1)/2]n
(ii) Now‘b a = a‘b a

s+[(p-1)/21n
= abl (-1)

-rs*tL(p-1)/2]n
= ab .
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Since (p-1,n)=1, then n is odd. Then we have

rs+[(p-1)/2]n .S

b a = ab' ..

(iii) From (i), we can shbw similarly that the differences
of ik and jk are all distinct. What we have to prove
is that

(ik+jk) = 0 (mod p) for 1<k<(p-1)/2, or
(i +; ) = rs+(k-1)n(rn+1)+2rs+kn
k "k
- rs+(k-1)n+3rs+kn
- rs+(k—1)n(1+3rn)
= 0 (mod p) for 3p0 = -1 (mod p). O
Let us consider Dll’ then p=11. Let r=7, n=1, and s=4.
[ s+kn 4
r 3 r 77+k 3+k
Then Cy = b = b7, Cregk-1 = ab = ab = ab ’
s+kn 4
c = b" - b7 R s p3tK for 1ckss,
t+2k ,
s
r 3 2 9 3
ct+11 ab = ab’, at+1 = ab’, at+2 ab™, I ab
8 10 N
at+u = ab , at+5 = ab , at+6 ab, at+7 ab ,
a = ab7 a = ab6 a = ab” and a = a
t+8  Tt+9 ’ Tt+10 t+11

We have the following picture.
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a b = e
1 X 1
ab b
7 7
ab » b
5 5
ab b
2 2
ab b
b3 b
c = a b = ¢
. 1
t+11 i/ t
10 ° 9 10
= ab -
Ct+1 ) / b Ct+2
E
L 2o 4
c = ab 2\ ab8 .b =c
t+3 t+h4
190
6 22 ab 6
“t+5 T > % 0T “t+6
’ \o)
9 o7 9
c = ab ab — b = ¢
47 /ag/* tes
\
8 ab5 \ 8
ct+g = ab b = ct+10
Now {ik : 1<k<5} = {2,3,10,4,61}, {jk : 1<k<5} = {9,8,1,7,5}

{ik,jk : 1<k<5} is a reduced residue system modulo 11. Also,

{{i } : 1<k<5} is the patterned starter on Z_._.

k' k 11
Assuming the above conditions hold, we have the partial
sequencing of the elements of Dp\Zp. In order to complete

the sequencing, we have to order the elements of Zp.
Obviously, the first part of the partial product starts

s
at e, and ends at b" . Suppose F is a choice function on the
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patterned starter of Zp. Let‘F* be a sequence of F with 0

1,

f. . * = = s ey
as the first element If F {0 fO’fl’f2’ f(p-l)/2

, i
then for 0<i<(p-1)/2 =-t, define g(i) = z fj and ci =

Suppose F~ has the property that ct = b and {e,cl,...,ct

is exactly the set of elements of Zp that do not appear as

2,...,ct_l} n

. 1<k<(p-1)/2} = ¢. Then sequencing of F* will match

partial products. That is, {cl,c

etk

up with the middle part. Also we can use F” to finish the

remainder of Dp.

Let -F* = '{—f(p_l)/z,...,—fz,-fl} and for 1s<is(p-1)/2 = -
. t [ .
define h(i) = z —fj and ct+p+i = ab’ +h(i) and h(0)
j=t=-(i-1) :

*
elements of F* and -F give us all elements of Zp as F is

a choice function of the patterned starter. And for

. . .
. . _ _ _ - _ = S .
1<i<(p-1)/2, g(t-i) = jiofj ft—i+1 ft—i+2 o ft r>+h(i).

Then we see that the Ct+p+ils are exactly the elements of

1<ks(p-1)/2.
3

D \Z o) i

p\ b not appearing as Ct+2k-1’
*

Again, suupose p=11, r=7, n=1, ct=b , F ={0,7,5,1,3,91},

7 1 2

< 0
and _F*={2,8’10,5,u}. Then coéb , €q%b, < =b", c3=b . Cy=b,

2
3 5 2 1 7

bg(i).

1

5

c =b3“and c,.=ab”, c ,_=ab”, c,_=ab", c,_ =ab”, c,.=ab , c_._=a.

5 16 17 18 19 20 21

L2

0.

The



The sequencing of D11 can be determined completed by giving

p, r, n, Cy and F*.

B.A. Anderson using the above method, found sequencings

of D D D and D by hand. We have

5/ "117 “17° 23
3 *
DS: p=5, r=3, n=1, Ct=b and F ={0,1,2}.
3
Dt P=1l, r=7, n=1, c =b” and F*={0,7,5,1,3,9}.

3
D,,+ P=17, r=11, n=1, ¢ _=b~ and F*={0,5,6,14,13,15,16,9,10}.

»D23: p=23, r=15, n=1, ct=b3 and F*={O,h,7,2,17,18,15,1,20,

9,13,12}.
£ n-abelian grou f order

Now, we consider the groups G of order pqg, such that
G is generated by a and b satisfying the relations bp=aq=e,
ab=bar where e is the identity, r is a positive integer,
p, q are primes, q=1 (mod p) and rpzl (mod q).

Lawrence Wang used a computer to test for sequenceability
for n=6, 10, and 21, for which the answers were known. He
also succeeded in finding sequencings for n=39 (p=3{ q=13,

r=13), n=55 (p=5, g=11, r=3), and n=57 (p=3, q=19, r=7).

A.D. Keedwell found a sequencing for G={a,b:a9=b3

by trial and error. The sequencing is e, b2a6, ba, a7} ba7,

2a8, b2a7, au, b, b2a5, a. a2, a5, baz, bau, a3, b2a2, b2,

bzau, a8, b2a3} ba6, b2a, ba3, ba8, baS, a6 and the partial

products are e, b2a6, bzau, b2, ba6, ba7, as, ba3, ba2, baS,

ba8, a, a3, b, a2, b2a2, 2a8, a7, au, ba, b2a, b2a3, bau,

b2a5 a5, &b, blal.

=é,ab=bah}

b

b
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J.Dénes and E. T8rdk used computers to generate 15
- sequencings of the group G={a, b:b3=a7=e, ab=ba2}. N.S.
Mendelsohn succeeded in obtaining some sequencings of the
non-abe]ian.group G of order 21. Then the group G=<a,b)

q=1, ab=bar, rP=1 (mod q)

is a case of order pg such that bp=a
where p and g are both prime and g1 ( mod p). The Fo]]owing
is the method Mendelsohn used to sequence the group G mentioned
:above with p =3, g = 7. a

Let S be a set of all transformations of the form
(x)Tu,VEux+v (mqd q) where u=1,2,...,9-1, and v=0,1,2{...,q-1.

Obviously, S is a group of order (gq-1)qg.

Let H be a"set of transformations defined by (x)T n =

rnx+s where r is an integer rpzl (mod q), n=0,1,2,...,p-1,
and s=0,1,2,...,9-1. We see that H is a subgroup of S of
order pq.

We represent the element T n of H by (n,s). Then
r,s

(x)(u,v)(g,h) (x)T T

u
r ,v r ,h

u
(r x+v)T
rg,h

rg(rux+v)+h

utg g
r X+vr +h

= (u+g,vrg+h).»

The rule of multiplication of any two elements of H is

(u,v)(g,h) = (u+g,vr+h).
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Define a mapping ¢G-»S by @(aubv) = (u,v) for any
ab in G. It is clear that it is one-one and onto. Let
ab and agbh in G. Then
u

.
o(a'b¥adb™) urg vreth,

d(a

(u+g,vrB+h)

1l

(u,v)(g,h)

2(a"b¥)6(a%b") and

then & is an isomorphism.

Therefore iIf we can find a sequencing of S, itris
the same as finding a seduencing of G. In order to get a
sequencing of‘S, we arrange the first elements of the ordered-
pair (u,v), so that 0,1,2,...,p-1, each appears q times
and the differences of successive pairs also appear q times.
We do the same thing to the second elements of the ordered’
pairs. However, it is not easy to arrange the second elements.
Since we know that T is a sequencing of G if and onTy if o(T)
is a sequencing df G where & is an automorphism of G, we
can use the automorphism group of S to reduce the number
of possible sequences to be considered. For the case of

p=3, q=7, Mendelsohn obtained five sequencings heuristically.

They are all listed in the following table.
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(0,0)
(1,0)
(1,1)
(0,4)
(1,3)
(0,2)
(2,2)
(2,4)
(0,5)
(0,1)
(2,6)
(2,5)
(2,3)
(1,14)
(2,0)
(1,5)
(2,1)
(0,3)
(1,2)
(1,6)
(0,6)

(0,0)

(0,1)

(1,2)

(2,6)
(1,3)
(0,2)
(0,4)
(1,5)
(1,1)
(0,5)
(2,4)
(2,1)
(1,0)
(1,6)
(2,3)

(1,4)

(2,2)
(0,3)
(2,0)
(2,5)
(0,6)

L6

Il
(0,0)
(0,1)
(1,2)

(2,6)

(1,3)
(0,2)
(0,4)
(1,5)
(1,1)
(0,5)
(1,4)
(2,0)
(0,3)
(2,1)
(2,5)
(2,4)
(2,2)
(1,6)
(2,3)
(1,0)
(0,6)

(0,0)
(0,3)
(1,6)
(1,0)
(2,2)
(1,1)
(0,1)
(2,5)
(2,0)
(0,4)
(1,2)
(0,6)
(1,4)
(1,3)
(2,4)

(1,5)

(2,5)

(2,1)
(2,6)
(2,3)
(0,2)

(0,0)
(0,3)
(1,6)
(1,0)
(2,2)
(1,1)
(0,1)
(2,5)
(2,0)
(0,1)
(2,4)
(135)
(1,3)
(1,2)
(2,3)
(1,4)
(2,6)
(0,6)
(2,1)
(0,5)
(0,2)



A.D. Keedwell has shown that for an odd prime p with
2 as a primitive root and for another odd prime q of the
form g=2ph+1, then the group of order pg is sequenceable.
In particular, all non-abelian groups of order 3q except
D3,

are sequenceable,.

and all non-abelian groups of orders 5q, 11q, and 13q

The method that A.D. Keedwell used to show the seq-
uencings exist is by making Qse of the property that the
image under the natural homomorphism ¢:G+G/H of a sequencing
of G is a quotient sequencing of G. He claimed a particular
sequence is a quotient sequencing of the group G of order
pq with 2 as a primitive root of GF[p] and then he con-
structed a sequencing of the group for which the above
sequencing is the quotient sequencing under the mapping
?:G>G/H. He first solved the case with p=3 and then gen-

eralized to all odd primes p.

Definition 3.8 : A group G of order n is said to have

a near-sequencing if its elements can be arranged in a

sequence a.=e, a in such a way that the

0 1, a2, I.., an_l

partial products a_=e, a.a.a .., aja.a

0 49917 3?12y 09182 " ¥n-2
are all distinct and the product a a a ...a =e.
012 n-1
Lemma 3.4 : If g is an odd prime, then the cyclic group

(Zq,+) possesses near-sequencings.
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Proof : Let (Zq,+) be the addit've group of the field

GFLgl. Let r be a primitive root of GF[gl. We claim that

the sequence 0, rh—rh_1 rh+1_rh rq‘z_rQ‘3 _rq—2
h-1 h-2 . .
r -r is a near—sequenC|ngrqf (Zq,+). They

4 T 4 Il ’

r-1,...,
are all distinct. Each non-zero element is of the form

rl(r—l), l1<i<q-1. |If there exist i and j such that rl(r—l)E

rJ(r—l) (mod q), then r1 721 (mod g). This is impossible

for the range of i, unless i=j. The partial sums of the
h h-1 h+l h-1 g-2 h-1 h-1
sequence are 0, r -r , r -r Jeevs T -r , 1-r ,
2-1 h-2 h-1
-r 4eee, T -r , 0. They are all distinct except

the first and the last one because all non-zero elements
. i - . .

are of the form r -r and 1<i<qg-1 and izh-1. Also note

that the element which does not occur as a partial sum

h_
Lo

is -r

Let the image of the natural homomorphism &:G>G/H
2 p-1y - —fa.587 2 . :
be {1,x,x%,...,x } where H={a:a"}=e. We are going to
produce a quotient sequencing for the construction of the

sequencing of G.

Lemma_3.5 : Let p be an odd prime such that 2 is a primitive
root of the Galois field GF[p]l. Then the non-abelian group
of order pg where g is an odd prime greater than p has a

quotient sequencing.

Proof : We know that g=2ph+1 for some integer h. Let t
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be an element in GF[q] satisfying the condition 2tz1 (mod p).
Then (2t)i52it351 (mod p). If tisl (mod p), then 2i51
(mod p). That is, Zi-tiEO (mod p) which implies t is also
a primitive root of GF[p]J.

We show the following sequence is a quotient sequencing.
(i) A sequence of 2ph 1's followed by x, fo]lowed‘by a

sequence of 2ph-1, copies of the sequence xt—l,

-t - p-2_.p-3 P2
xt t, xt "t ) e, x ¢ t R x1 t , followed by

-2 ,p-3
t-1  t°-1 _t’-t tP 4ot 2 L
X , X , X ;) eees X , 1, x—, X",

P72 1-tP72
e, XT ., X where all indices are computed

modulo p.
(ii) The partial products are 2ph 1's followed by a sequence

t t2 t3
of 2ph-1, copies of the sequence x, x , x , x ,

P2 ' t 2
., X followed by the sequence x, x , x ,

tp-1 tp-2 tp-2 tp--3 ‘tp—u 2
e, X , X , X , X , X soeees X,
xt, X, 1. This arises from the fact that 2t=1 (mod p)

implies gP~2,P=2-4 (mod p) so that tp_252 (mod p).

For (i), observe that t-1, t2-t, e, tp—2_tp—3,
1-tP72
t are all distinct., The reason is similar to that
used in Lemma 3.4. Also, ZEtp_l, 22£tp_2, . ey 2p_251 (mod p)

are-also distinct.
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For (ii), we note that lztp-l, t, t2, ceey tp—2 are

all distinct non-zero elements of GF[p] as t is a primitive
root of GF[pl. Therefore, the sequencing (i) is a quotient
sequencing for 1 and each distinct power of x occurs exactly

2ph+1=q times in both sequences (i) and (ii). O
Now we are going to show that for the case p=3, the
group G of order 3q has a sequencing.

Theorem 3.6 : Let G = {a, b:aq=b3=e, ab=bas} be a non-

abelian group of order 3gq, where spzl (mod gq) and 2 be a

primitive root of GF[pl. Then G is sequenceable,

Proof :We are going to show the following ordering of G

is a sequencing of G.

Quotient Seguencing Sequencing Partial Products
1 e e
rh__'rh-l rh_rh—l
1 a a
rh+1_rh rh+1_rh—1
1 a a
2ph times
rh_z—rh_3 rh_z-rh_l
1 a a
a (rh_z—rh—l)s+a
X ba ba
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(
ba

2

(
ba

2

’ b a

(
ba

2

h-2

h-2

h-1

-r

2
)s +as+o

1

r —rh_l)s+a+(alsz+81)

(rh—2

h-2

h-1

-r

2
)s T +as+o

1

+(81s+a2)

P2 svar (o s 2ep )+ (a5 2e8,)

(rh—z-

h-2

r —rh_l)s+a+

(rh—z—

h-2 h

h

h-1
r

q=2

i=1

)52+as+a + ¥ (B.s+a,

2
)s tostogtut z (Bis+a

1

gq-2
i=1
q-2

i=1

HyeasB s + oy

|f the ordering described above

following conditions have to be satisfied:

(1)

The elements a, o,

1

(ii)y The elements Bl, B

21

)3 (ai52+8i)

|+1)

g-2

i=1

1+u)s+8q+.2 (

i+l

r ~1)52+as+a1+(Bls+a2)+(625+a3)

)

1 2 2
)s+a+8q_1+(aq_1+u)5,+.2 (a;s +B8:)

q-2

i =1

is a sequencing, the
e, O must be all distinct.
q-1
., Bq must be all distinct.

51
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h=1_ h-2

(iii) u=r -r
(iv) The elements 0, o 52+B (a 52+B Y+ (o 52+B )
| 1’ 17 "1 2 277
a-2 2 2 q-2 2
, L (o,s°+B.), (a +u)s“+p + I (a.s%+B8.)
i=1 | i q-1 . q-1 j=1 | i

are all distinct.

(v) The elements 0, Bls+a (Bls+a2)+(825+a3),

2/
2 q-2

., E (Bi5+ai+1)’ u+i£1(8is+ai+l) are all distinct,

: h-1 2 a2 2
(vi) (r -r )+(a+Bq_1)s +(aq—1+“)5+8q+i=1(ai5+8is )

= -rh-l,for —rh—1 is the element which differs from

rh_rh--l rh+1_rh—1 rh-2_rh-1 _
e, a , 4 s +ss, @ , and

2
(vii) s +s+1 = 0 (mod q) for s3 = 1 (mod q) implies
(S—l)(52+s+1) = 0 (mod q) which implies (52+s+1)15 0

(mod q) as s=1.

Let t be a primitive root of GF[q] and let the following

2 T .1-1
hold: a;s +Bl =t -t ,
2 1T 1-1 1+1 1
+B, = t(t - =t -t
azs 82 ( t ) t
o s2ep - tq—B(tl_tl-l) - tq-3+1_tq-4+1 - t1-2_t1-3,
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1-2
d +p)2 + = - .
an (aq_l u) Bq-l t
Then 0 = 0,
O B
2 2 1+1 1-1
(als +Bl)+(u25 +82) =t -t ,
2 2 2 1+2 . 1-1
(als +Bl)+(uzs +82)+(a35 +83) =t -t ,
q-2 - -
)} (u.52+8.) = t] Z—t] 1, and
i=1 '
. q-2 _
(o .+u)s’+8  _+ T (a.s2+8.) = 0-t L.
g-1 g-1 j=1 | i

Obviously all these elements are different and condition

(iv) is satisfied.

Wwith the above assumption, we can have Oiiq T tai and
- e _ = 41
Bi+1 = tBi for i=1,2,...,9-3. Hence ai+1 t ul and
- 4 F _z
Bi+1 =t Bl for i=1,2,...,9-3. |
In order to meet condition (i), we can choose
aq—l = tq_zul and a=0. |In order to meet condition (ii),

we can let B B e {0, tq—ZB } and R z B
q 1 q

-1’ "q -1 q’
For condition (v), weé let

u, 1 1-1 2
Bysta, = ti(t -t ) = tu(als +8.),
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B s+a C= tu(t] -t ) = t (o _ 52+B _,2, and

Then we have 0 = 0,

u 1 1-1
t (t -t ),

Bls+a2

(B.s+a )+(B.s+a.) = to(e 1-¢17h
Bls a, st ag) = t (t t ,

(B s+, )+(B s+a)+(B s+a,) = t (¢t ‘ot T
Bls a, st Gy 835 au) =t (¢t -t ),

q-2 u 1-2 1-1
(Bis+ai+1) =t (t -t ), and
i=1
q-2 u+l-1 u -1
p+ I (Bis+ai+1) = -t =t (0-t ).
i=1 '

They are all distinct elements of GF[q].

In order to have condition (vi) be satisfied, we must

h-2 2 .
r

have 0 = +(a+8q_1+61+82+...+Bq_2)s +(u+a1+a2+...+

., 0 are all distinct

o )Js+B . From (i), a.,a
q-1 q q-1

17%9 -

q-1

modulo g so we have ai = [(gq-1)/2]1g = 0 (mod q) and

i=1

Sh



from (ii), Bq_1+8q+81+82+...+8 g = [(g-2)/2]q = 0 (mod q).

q—
h-2 2 .
Therefore, we have 0 = r +(a—8q)s +us+8q with a=0.

Now, we restate all the conditions:

To meet conditions (i), (ii) and (iv),

a = 0,
ai+1 = t'on1 for i=1,2,...,q9-2,
i
Bi+1 = t Bl for i=1,2,...,9-3,
2 1-1
s +B1 = t (t-1), and
(0 s Tee = =t with
t 0q*u)s q-1 ° t wi
q-2
Bq-l' Bq e {0,t Bl}, Bq—l z Bq.
To meet conditions (iii) and (v),
h=-2 +1-2
U o=r (r-1) = -tu and
Yo, 5748
+ = .
Bls ta1 t als 1

To meet condition (vi),

h-2 2 . '
r +(a-6q)s +us+Bq = 0 with a = 0.

2 .
From Bls+ta = tu(a s +Bl) we obtain

1 1

Bi(s—tu) = al(sztu-t) (a)
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2 1-1
From s +Bl =t (t-1), we obtain

1
al = st (t-l)-SBl. (b)

Substitute (b) into (a) and obtain

1-1 2
CBy(s=t) = st (t-1)-s8 1(s t"-t)
u 3 1-1 u( 1) u l( .
Bls Blt = s t t (t- Blt st (t-1) sBlt

2 1-1 u 1

81(s—st) = (s t t -t )(st-s)
PR B b S

1~ [ t
-1 2 u
=t (t-s t ). (c)

Substitute (c) into (b) and obtain

1-1 2 u
0. = st (t-1)-st (t-s t )

1-1 u
t (t —S)n

u
Substitute al = t (t -s) into the condition

q 2 =2
(t a1+u)s +Bq_1 = -t yielding
-2 1- -
[tq t 1(tu—s)+u]sz+8q_1 = -t] 2 which becomes

1-2, u 2
t Tt -s)+ + = -t
L s)+uls Bq—l
. . . u+l
Mulitiply by s on both sides to produce t +u+B [

u+tl-2
Then yu = -t if and only if B8 1 = 0.
q-
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-2 -2
Bq € {O,tq B.}, then Bq = tq B.. The set of

Si
ince Bq 1

_1’

conditions reduces to

o = 0,
-t f = 2 2
al+1 =t al or + =1,2,...,9-2,
i
B|+1 =t 81 for i =1,2,...,9-3,
_ 1—1( u
(11 - t t _s),
_ - ( 2 u)
81 =t t-s t ),
Bq-l =0,
q-2
Bq =t 81, and
h-2 u+l-2
L o=r (r-1) = -t (A)
-2 2
r +us+8q(1-s ) = 0. (B)
' -2 g=-2 1-1 2 u
We know Bq = tq Bl which implies Bq =‘tq t (t-s t ),
' 1-1 2 +1-2 .-
Now Bl =t (t-s tu) ;ou o= —tu . From (A) and (B) we obtain
u+l-2 2 ,
-t +[us+8q(1-s Yi(r-1) = 0 or
L2 U2 92 T LYy (1-82y 1(r-1) = 0.

1-1 2 u
Thus, t (1-s t

+1-

1 2 u 2
J(1-s )(r-1) =t [1+s(r-1)]

and”’ (1—52-52tu_1+stu~1)(r-1) = [1+s(r-1)]tu_1
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1

(szr-52+1)tu- and

yielding (1-52)(r-1)

u-1

sz(s-l)(r—l) sz(r-1+s)t .

Wwe obtain tY71 = [(s-1)(r-1)1/(r+s-1) (mod q). Since

a, = 0, 81 # 0. Then from the equations for ay and 81, we

u u-1 u-1 ) .
have t = s, t #z s, Note that t z s implies

s = (s—1)(r—1)(r"1+s)_1, s(r-1+s) = (s-1)(r-1), and f z s+2Z2.,

- Now, we can construct a sequencing as follows for a
non-abelian group of order 3q, q prime and q = 6k+1. We
choose a quadratic root of 52+s+1 = 0 (mod q) and a primitive
root r of GF[qgq]l such that r # s+2 and r =2 1-s., 1t is
possible if g > 7 and ®(g-1) > 2. Otherwise, tu—1 =
[(s-1)(r-1)1/(r+s-1) (mod q) is not finite or equal s. We

. e u
choose another primitive root t of GF[gl such that t = s

and then calculate

o = (t'-sye' T, By = (t-se%ye' 1, By = tq—zsl,
Bq-l =0 =0, rhn2 = *tu—l(r-l)_lt]_l, and u = rh_z(r-l).
We choose t]“1 arbitrarily, and coﬁpute both
Or1 = tial and Bi+1 = tiBl. We substitute these values

into the sequence. A sequencing of the non-abelian group

of order 3q, g an odd prime is obtained. [

We are going to use the case p = 3 as a guideline to

find a sequencing of the non-abelian group of order pg.
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Lemma 3.7 : Let p be a prime with 2 as a primitive root

"

1 (mod p). Then oP™F = o1 1_4P-2

-r -r-1 -
p=r_.P = -gP7r

of GFL[pl and 20 = -1

and more generally o (mod p).

1 (mod p), then (20)°™" = 1 (mod p)
r=p

Proof : Since 2¢
p-r

which implies o = 2 (mod p)
= 2727 (mod p)
= 2r—1 (mod p).

Also, 20 @1 (mod p) implies 2P 16P72 = 2 (mod p)
which is equivalent to op_z = 2 (mod p). Then we have
l-op_2 = -1 (mod p). Now 20 = 1 (mod p) is equiva]ént to
2PTPTN = (mod p) if and only if o° ' = 2" 7P (mod p).

Similarly Op—r—l z 2r+1—p (mod p). Then

PP s TP
= -2' P

_op—r (mod p). O

i

We make use of the above lemma and the fact that if
p is an odd prime such that 2 is a primitive root of
the Galois field GFLpl, then the non-abelian group of
order pgq, where g is any odd prime greater than p, has a
quotient sequencing, which we have shown before, to séek

a sequencing of the non-abelian group of order pgq.

Theorem 3.8[12]1 : Let p be an odd prime which has 2 as

a primitive root and let g be another odd prime of the form
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g=2ph+1. Then the non-abelian group of order pg is sequenceable.

Proof : For the case of p = 3, it was shown previously.
Using the case p = 3 as a guideline, we are going to construct

a sequencing of the non-abelian group which is of the form

o h-1 H*l_h HH*2_ hel rh—z_rh-S
e, a , a , a , , a , b,
o-1 0q g -0 oq 0 -0 aq a - 01
b a , b a , b a , , b a R
_, (p-1) (1) (2) _o  (p-1)
1-0p 2 0q g-1 %y 0 -0 oy l—op 2 %y
b a Vi b a ’ b a Vi rd b a ’
(1) (2) p-2 p-3 (p-2) pLz
g-1 oz 0 =0 asz g -0 0q-1 u o]
b a , b i ,ee4, b a , a, b R
- - (p-1)
op 3 op 4 o —1'uq_1 _ h-1 h-2
b , b ,.+., b, b a , where p =r ~-r , O is

an element of G such that 20 = 1 (mod p).

This sequencing gives rise to the partial products which
are listed in the following. We represent the element bYa®

by the ordered pair v, w and s is one of the roots or the con-

p

gruence s = 1 (mod q)[ They are listed below.
v, w
( o, 0 )
h h-1
( o0, r -r )
rh+2_rh_1 )

( o,
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OL(p-3)
1

*
r s+(ao

* 0
r s +a

*0'2
S

a(l)so
2

2_
+a(1) 0" -o,

(1) o-0 (2) @
+Q +0Q S

1 ° 1

1 ° 1
gP~2_5P"3 (p-2
S dl

+

(1)sl_o+a(2)sl—o
1 1

(1)+(a
1 1

< a(2)+
1 1

2
-, (2)
+a2 ) )

61

3

)

2

...

1

(a

-g2

)

(3)
1

(3)
+a

1

(p-2) 1-gP~2 (p~-1)
[0 S +0

1

(2) g-g2 (3) G-g°
+0 S +

02‘0

« oP72 (1) P25 (2) oP~ 242
s +a +a S

3

)

+..I

.+

1 )

)

(p-1) o-1, (1)
o S +0

1

.+

2

1

- 2_
Ot(p 1)So 1+

)

)



p-2 p-2_ p-2_ 2
r¥sO +oc§1)so o+a§2)so O +... 1

o a=3 ,._
aip 2) + Efp 2) )

i=1 "

+

q-2
r*s+ )X ESO) )

i=1 !

-2
5 Eg” )

i=1

q
r*so+a§1)+

q-2
F¥s0 . a(2)+ (2)

2_
a(l)so 94 L E, )
1 1 i=ll

- p-2_ p-3
+a(D 3)50 o

* 0p-2 a(l)sop—2‘0+
1 ) 1

r s +

- q-2 -
N 0L(p 2), 5 Efp 2) )

i=1 !
p-2_
Ol.(l)s0 o e
1 1

p-2
r s +

- q-2 -
o (P22, 9% (p-2)

i=1 |

p-3 p-3._ - p-3_ p-k
r*s0 +oc§1)sO ,°+...+a§p h)so -0

- q-2 - - p-2
. aip 3)+ . E{p 3)+(a(p 2)+U)SO y
=1 | q-1
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CoPh P D P, L (p-5) 0P TH 0P (pmu)
1 1
L2 (pm2) L oPT2egPTE (p-3) P
z (a__ ) +a, )
i:l 1 Q-l
q-2 _ p-2, p-3, 2
(1, ey E(0) (a(p 2)+u)50 +g *o.toHo,
g-1 ,
i=1
L (P=3) 6P~ 34gP e L4g24g (2) g2+g (1) L0
s +., .40 s +a
q 1 q-1 q- 1
q-2 - - p-2 -3
- r*s+ 5 E(O) (a (D 2)+1J)Sl g +o (D 3) 1 o Tel .
l—l I Q"l q 1
(2) 1-42 (1) 1-0
.+aq_ls +0 q 1 )
q-1 _ _ 2 _ _ _p-2 _ _p
€0, P 5 (al1)s7040 206707, | lPT2) gm0 +u§p 1)g-o
21 ] i i
_-P-1 _p-2
+ épll)(l-s 9 )+us 9 )
2

- - _.3 (e _.p-2
where £¢%) (1100, (2) 170" (3 10 o agPTRGI70
i i

i}

- _.3 _ b
E(1) _ a(Z)SG o +a(3)sc o +OL(Lt)so o,

u
+a(D-1)50—1+a(3) =t

i i+l

1(t1_t]-1)t|_1,

63



2 3 2 4 2 5
£(2) = (350770 ()0 ot () a7,
i
2_ ( u o1
..+af1)sO O+0L,2) =t 2(el-t171y¢i-1  4pnd
i+1 i+1

'._ _ p-2_ p-2_ p-2_ 2
ESD 2) _ ufp l)so 1+uf1)so 0+u€2)so o

i i i+1 1+1

- p-2__p-3 -
bo4a PT3)g0 0" T (Pm2)

i+1 i+1
u__ _ .
N 2(t]—t] 1)tl 1
(] (J . . :
We also let a,ii = tu_J) for i=1,2,...,9-2 and j=1,2,...,p-1.
i i

From all the equalities above we obtain

(1)__(0) o-1 _ (1) (1) _ , Y1 o-1 1 1-1
E1 E1 [ = uz al = (t s Y(t -t ),
2 u u 2
(2) (1) -0 (2) (2) 2 Y1 g6 1 1-1
E1 E1 s = uz —al = (t -t s y(t -t ),
£(P=2)_ (p=3) oP"2-0P73 - (p-2) (p-2)
1 1 T2 1

u._ u__ p-2_.p-3 _
= (t b 2-t P 3sO ° )(t]—t] 1), and

(p-1)_ (p-1)

(0)__(p-2) 1-gP72 _
S = tOLl OLl
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(1) 1-1, Y1 o-1

Then ¢y =t (t ~-s ),
- u u 2 _
aiZ) - t] 1(t 2_t lsc 0),
_ u u 3_.2
OLiS) - t] 1(t S_t 250 o y,
- - u_._ u__ p-2__p-3
aip 2) = t] 1(t P 2-t P 3sO ° ), and
- - u_ _ _.p-2
aip 1) = t] 1(t—t P 251 ° ).

We are géing to check that all the partial products
(i)
i

B

of the form bO a are different./

(p-2)
OD‘Z Bi

Case j = p-2, b a

2

- p-2 p-2_ p-2_
(p-2) * g OL(l)sc o+a(2)sc o .

= +
81 r s 1 )

- p-2_.pP-3 -
'+a(p B)SG o +OL(p 2),

1 1
B(p-2) - B(p-2)+E(p—2),
2 1 1
(p-2) _ (p-2) _(p-2) _(p-2)
83 - Bl +E1 +E2 4
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(p-2) (p-2) 972 (p-2)

Bq—l = Bl +i)i1Ei , and
(p-2) (p-2) 972 (p-2)
g PTE L iR Tyl

g 1 =1 |

We notice that

(p~2) Up-2 1 1-1
= t (t —t )/

1

(p-2) (p-2) Up-2 1+1 1-1

1 +'2 (t ~t ),
9-2 (p-2) Up-2 1-2 1-1

T E P = P (t -t ), and

i=1 !
972 (p-2) Up-2  1-1 Up-2  1-2
7 Eip su o=t 0 (-t ), provided that u = t © “(-t %y,
i=1

(p-2)
oP~2 Bj . ..
and 0 are all different. Then b a are all distinct.
(p-3)
P35 By
Case j = p~3, b a
(p-3) x+ oP™3 (1) 6P 3.5 (2) oP 7342 (p-3)
Bl = r s +a1 S +a1 S +...+oc1 ,
_3 - -

B(p ) - B(p 3)+E(p 3)’

2 1 1
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(p-3) (p-3) (p-3) _(p-3)
B = +E +E_ -,
3 1 1 2
(p-3) (p-3) 92 (p-3
= P + X E_p ), and
q-1 1 i=1 1
(p-3) (p-3) 9-2 (p-3)  (p-2)
= B + I E.p +(a P
q 1 i=1 q_l
We notice that
(p-3) Up-3 1 1-1
E1 = t (t -t ),
(p-3) U(p-3) Up-3 1+1 1-1
E1 +E . = (t -t )
2
4-2 (p-3) Up-3 1-2 1-1
I E. = (t -t ), and
]
i=1
9-2 (p-3)  (p-2) p-2
z Eip +(a ? u)sO
i=1 1
Up-3 1-2 -1 g-2 (p-2)
=t (t -t Y+ ( o +
u u u
=t P21y 9720 1 P2 P3O0
- u. _ p-2
+t] 2(—t p Z)JSO
u._ _ _ u__ -
=t P T Ty P 1
u. -
=t P37
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(p-3)
and 0 are all distinct so that b ~a - are all distinct.

Similarly for the cases j = p-4, p-5, ..., 1.

(0)
Bi
Case jJ = 0, ba
(0) _ =*
Bl =r s,
B(0) - r*s+E(O) )
2 1
B(0) _ r*s+E(0)+E(O),
3 1 2

(0) « 972 (o)

B = r s+ ¥ E and
g-1 i=1 i

q-2 _.p-2 ) _,P-3
B(0) - r*s+ Z E(0) +(o (p 2) 1)s l1-0 +OL(p 3)51 o

(2) 1-62 (1) 1-o
+Q S +Q S .

g-1 g-1
We notice that

(0) 1 1-1
E =t -t ,

1

(0) (0 1+1 1-1
E +E = t -t ’

1 2
a-2 (o 1-2 1-1

X E( ) = -t , and
\ i

i=1
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q-2 B _p-2 _ _..p-3
z E$0)+(a(p 2)+u)sl ° +0L(D 3)sl o +o..
i=1 | g-1 q-1
(2) 1-62 (1) 1-0
.+ S +ao S
q-1 qg-1
- - - U p-2__pP-3 ,_ p-2
- (t] 2_t1 1)+t] 2[—t p 350 o S1 o
u__ u_ p-2__p-3 _P~3
s(p PTRog PTHGOT TTOT Tyglmem Ty
u u 2_ _ 2 u _ _
f(t 2_t 1 o O)Sl it 1_Sc 1) 1 9
_ (t]—Z_t]—l)_t]-Z - _tl-l
(0)
Bi )
and 0 are all distinct. Then all ba are different.
0 j .
Case b a = 0, a alone.
q-1 _ _ 2 _ _.p-2 _ _.p-1
Since I (ugl)s G+o¢§2)s 9 +...+a§p 2)5 o +u§p 1)5 ° )= 0,
i=1

then in order to have partial products which are powers of

a alone, we require that

-1 h-1

* a(p_l) B -r (mod q).

r o+ (1-s 1)+us
q-1

We must have

H1

-2 _h- -2 1- Up-2 1-0P2 -1 h-1 h-2, -2
rh 2-r 1+tq Zt] 1(t—t P 251 ¢ Y(1-s )+(r -r )s
h-1
= -r
. . h-1 h-=2 . .
At the beginning we set py =r -r , which implies
u_ _ _ u__,+1-2 _
rh_l—rh_2 =t P 2(-t] 2). That is, rh z . -t P 2 (r-1) 1.
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We need

u +1-2 u -2 u +1-2
-2 -1 1- - -gP - - -
e P (r-1)tet "2(g-r P20 Ly_g P72 7 742

This is equivalent to

u
_2 - -
t P [(r-1) 1+s 1(l-s Y+s ] = t(1-s 1) or

u -1 :
-2 -1 - -1
t P [(r=-1) " +s 1] = 1-s 1 or

Ur_n=-1
t p-2 = (s-1)(r-1)/(r+s-1).

A sequencing of a non-abelian group of order pg where
2 is a primitive root of GF[pl, can be constructed as follows.
First we select one of the roots s where s = 1 of the

1 (mod q) and also a primitive root r of

congruence sp
GFLqg] such that r+s-1 #Z 0 (mod q). We do so because we need

-1

Up-2
t P = [(s-1)(r-1)]/(r+s-1) 2 0. Then select another

primitive root t of GF q and integers ul,uz,...,up_1 such

u _ U, =-u 2_ Uz -u 3__2 U._»»=U__
that t 1¢sO 1, t 2 1¢sc O, t 3 2¢sO © s, t P-2 "p 3¢
p-3_ _p-2 ‘u _2-1 ‘
SO 7 ot P = [(s-1)(r-1)1/(r+s=-1) #Z s (mod q).
This is because we require aiJ)x 0, for i=1,2,...,p-1.

Then we can compute aiJ) fpr 1=1,2,...,9-1, j=1,2,...,p-1.

2 1-1, Up-p-1
Eventually, we select h such that r (r-1) = t (-t

)
(mod gq). Arbitrarily choose an index 1 and we obtain a

sequencing of the group. O
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For example, consider the non-abelian group of order
55 where p=5, g=11 and the group’fe]ationé are ab=ba3,
abZ=b%a”, ab’=b’a’, ab*= b a®.

We need 201 (mod p) with o=3. We may choose s=3
since 3551 (mod 11) and r=2 which is a primitive root

of GFL[11] as r+s-1=4 (mod 11) which is not zero., Then

US_]. u _1
t = (r-1)(s=-1)/(r+s-1) = 6 (mod 11) so t z s, We

may choose t=2, a primitive root of GF[L11]1. Then

u u u u -
t 3 =1, If we choose t 1 =t 2 = t 3 =1, and also t] 1 =1,
then
u -
a(l) -t 1_50 1 _ 1_32 -3,
1
u 2 _
a(Z) -t 2_50 o _ 1_36 -9,
1
u 3_.2
q(S) -t 3_50 o 1_318 -7,
1
u —~3
a;h) = t-t 3sl o7 - 2-3u =9,
(1) (2) (3) (W)
O = 6, o, =7, o, =3, az =7,
(1) (2) (3) (4)
u3 =1, a3 = 3, uS = 6, us = 3,
(1) (2) (3) (4)
o = 2, uu =6, au =1, uu = 6,
(1) (2) (3) (W)
aS = Q, aS =1, as = 2, qs =1,
(1) (2) (3) (4)
o 8, u6 2, uG i, u6 = 2,
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(1) (2) (3) (L)
5 L B 8

a7 = , a7 = , a7 = , a7 - ,
(1) - 10 (2) _ (3) _ (L) —>8
us = , a8 = 8, a8 = 5, a8 = 8,
(1) - 4 (2) _ s (3) - 10 (L) - s
% T 7 % T2 g T e %9 T o
(1) (2) (3) (L)
o = 7, o =10, o = 9, and a =
10 10 10 10
_ _ _ u_-1
Also we require'rh 1—rh 2 . t] 1(-t E ), that is,
2""2 = _6 which implies h = 6. Now ab = ba>, ab? = b2a?
ab3 = b3a5, ab5 = buau. The following is a sequencing of

the non-abelian group of order 55.

Sequencing Partial products

Sequencing Partial products (contd) (contd)
e e buag ba8
a10 a10 b2a6 b3a
a9 a8 ba7 bh 10
a7 au b3a3 b2 9
a3 a7 bua7 ba10
a6 a2 bza b3a3
a a3 ba3 bua
a2 a5 b3a6 b2

au ag bha3 ba3
a8 a6 b2 2 b3a7
b ba’ ba ba®
b2 3 b3 b3a bzau
ba b*a? b*a® b
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Sequencing

Partial products

Seguencing Partial products (contd) (contd)
b3a7 b2a8 b2au bBau.
ba . bha2 bua8 ba9
b>a’ b’a bZa® b>a’
bua ba5 ba bu
b2a8 b3a9 bSalo b2a10
ba2 bua7 bha5 ba

b3 L b2a6 b2a7 b3a5
bua2 ba b 10 bua3
b2a5 b3a8 b3 9 b2a2
ba bua6 a5 b2a7
b>a® b2a’ b2 b*a®
buau ba bu b3a10
b2 10 b3 6 b3 ba

ba buau bua]O ‘a

b3 5 b2a3

However, whether or not non-abelian groups of order pq,

where 2 is not a primitive root are sequendeable is still

unknown.
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CHAPTER FOUR

Symmetric and Strong Symmetric Sequencings

84,1 Symmetric sequencings

Definition 4.1 : Suppose G is a group of order 2n with

identity 2 and unique element g* of order 2. A sequencing

a1a2,...,a is called a symmetric sequencing if and only

2n
* -1
i = = <i<n-1.
if an+1 g and an+1+i (an+1-i) for 1l<iz<n

Before proving that the abelian group of order 2n is
symmetric sequenceable, we need to outline the construcfion
of the sequencing of the appropriate abelian group by B. |
Gordon. Suppose G is an abelian group of order 2n. B.
Gordon showed that it is sequenceable and G = AxB where A
is cyclic of order 2k, k>0 and B has odd order. The group

k
G has a basis co,cl,...,cm where ¢ has order 2 and the

orders 6.,8.,...,8 of ¢.,c.,...,c are odd positive integers
1772 1772 m

such that-0<i<m implies dildi If j is any positive

+1°

integer, then there exist unique integers, Jo,ji,.;.,jm

such that

I (mod 6162...6m) and

—.
1

(1)
i o= jL+) j coeot] ved® where
T = Aqtd 0tz 8ty 60, n-1 Whe

< <5 <8, ..., 0<j <6 .
0<j <8,. 0=i, <0, Im™m

The sequence of partial products P is defined as follows:

74



=J _Jl "J2 =J

If 1 = 25+1, 0<j<n, then b2j+1 = Cy Cp "Cy T..eCp and
(2) j+1 j1+1 j2+1 jm+1
If i = 2)+2, 0<j<n, then b2j+2 =Cy © <, s e e Co
The sequencing S of G is defined as follows:
If j = 2j+2, 0<j<n, then
_ b_l L 2j+1 2jq+1 2j,*1
a; T Pi-1%1 T 9“1 *Cm ’
if 1 = 2)+1, 0<j<n and s = min {r: jr¢0}, then
-1 -2) -st —st+1—1 —ij—l
(3) a; = b, b, = o S Cesl e e C , and
. fieu iF =0 _ -2)
in particu ar‘n ig = 0. a, = c0 .

- - *
Let g be any element of G. Since (g 1g*g)(g lg g) = e,
*
(recall that g 1is the unique element of order 2 in G), then
g—lg*g = g* which implies g*g = gg*. So g* is in the center

of G. Thus, symmetric sequencings have the form

S: e,az,;..,an,an+1,a;1,a..,a;1 and have the associated

partial product sequence.

* -1 -1 % £ =1 -1 -1

g a =ba g ,...,b g a, an_l.‘..a2

*
""bn’bng ,b n n—n n

P: e,b

27 n

where bi = alaz...ai.

- -1 - -oo=1
..s.,b ,b g*,b a*lg*,...,b a 1,71 *
n“n nn

Therefore, P: e,b a ...a,. g,
nn n-1 2

2/

o, * * * %
can be rewritten as P: e,bz,...,bn,bng 'bn-lg ,...,bzg /8

B.A. Anderson is the only mathematician who did some

work "on symmetric sequencing. However, the purpose of the

75



first theorem of this chapter is to show the sequencings

of B. Gordon are symmetric.

Theorem 4.1 : Suppose G is a sequenceable abelian group of

order 2n. Then there exists a symmetric sequencing of G.

Proof : Let 81,89, 00,8 be the sequencing described in
(3)., We are going to show it is a symmetric sequencing of G.

Suppose a;a =e. From (3) it follows that either i

and k are both even or i and k are both odd. For if i = 2j+2,
k = 2t+1, then C§J+1C62t = c%(J_t)+1 z e because 5 has order

2k, k>0. This contradicts a;ay

e. The case where i is odd,
k is even is similar.

Now suppose i = 2j+1 and k

21+1, 0<j,l<n. By Definition
4.1, we only need to show that i+k ¢ {2,2n+2}. The case

itk = 2 will happen only when a. =a = e as will be seen later.
. _-2j . .
If.JO = Q, then a, =¢4 . Since a;a, = e, then

: 2
ap = cOJ so that 10 = 0, Similarly, if ]0 = 0, then jO = ),

In the case jo = 0, 10 z 0, by (3) we have

) C—2j -2jS -2js+1—1 c—2jm-1 g
a; = ¢y Cg Corq Y an
i C—21C—21tc-21t+1—1 C-Ztm~1
A 0 “t t+1 o .
Now each Gi is odd so that we have s = t, otherwise
k
aa, #e. Hence, 2(j+1) = 0 (mod 2 ) and
JS+]S = 0 (mod 55),
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Js+1+ls+1+1 = 0 (mod 65+1),
J +1 +1 = 0 (mod 6§ ).
m

Thus,. j +1 =6 ,

Js+1+]s+1+1 - 65+1'

j_+t1 +1 = §

m m- m ,
because 05ji<6i, Osli<cSi i =1,2,...,m. We multiply the

th . .

(65+i) equation by 61"'Gs+i—1 and obtain
(JS+1S)6162...65_1 = 6162...65,
(Js+1+1s+1+1)6162...6s = 6162...65+1,
(Jm+1m+1)6162...6m_1 = 6162...6m.4

We add then together to obtain

(Gg#1g)898 5 v 8 g * (gt q*1)878,-008 +uut (J_+1 +1)6.6,...

"'Gm-l = 6162...65 + 6162...6s+1 ... 6162...6m origquiva]ent]y

G818 a8 1 ® Jguq8q8,.u 8 tuiit) 616,008 4

.65_1 + ls+16162...6s +...f1m6162...6m_1 = 6162...6m_16m.

j = AN s ) = d
By (1) we have J0+10 6162 Gm Thus, j+1 0 (mov

6162...6m) and 2(j+1) 8 0 (mod 2n). Since 0sj,1<n, we

+ 1561 g
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conclude that 2(j-1) = 0 or 2(j+1) = 2n. If 2(j+1) = 0, then
j =1 =0 which implies a; = a, = e, If 2(j+1) = 2n, then
this implies j+1 = n and i+k = 2n+2.

The case where both i and k are even is similar. This

finishes the proof. O

Now we know that the sequencings of B. Gordon are
symmetric. In the following, we are going to determine

some more groups which have symmetric sequencings.

Theorem 4.2[21 : If G is a sequenceable group of odd order

n, then GXZ2 has a symmetric sequencing.

Proof : Since the order of G is odd, then G has no element
of even order. Therefore, G\{e} can be partitioned into
2-element subsets such that each subset consists of an
element and its inverse. Since G is sequenceable, it has a
sequencing_e,xz,...,xn. Now choose one element from each
2-element subset. If X is a chosen e]ement, we associate
(xi,-l) with xi. I f X is not a chosen element, we associate
(xi,l) with x . For e we associate 1 with it. .Then we have

= (e,1),(x

a string yl,yz,e--,yn

2),(xs,is),...,(x ,1.) of

i
27 n“ n

elements of GXZZ. We construct a symmetric sequencing of

GxZ2 by exfending the above sequencing. Define yn+1 = (e,-1)
-1 -1 . ‘
d = ( = S ) which is equail
an yn+1+j yn+1—j) (xn+1—j N+l q
to (x L it . hat { } = GxZ
. : = X .
to xn+1—j"n+1—j . we see that yl,yz,...,y?_n 2
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Since (xj,ij)(e,41) = (e,—l)(xj,ij) for 1<j<2n, (e,-1) is

in the center of GXZZ. The sequence of partial products is

(e,1), (x Y, eees (X X, ...X Peeai ),

Yo (xyx 2%3 n’'2'3 n

2,12 3,|2|3
(x2x3...xn,—|2|3...|n),-(x2x3...xn_l,-12|3...|n_1) , see
oo, (x2x3,-|2|3 2,—12). They are all distinct from
each other. So the partial products also include all the

), (x

elements of GXZZ. Thus, G><Z2 has a symmetric sequencing. [I

Theorem 4.302]3 : Suppose the group G has a symmetric

sequencing and B is an abelian group such that gcd(]G|,|B|) = 1.

Then GxB has a symmetric sequencing.

Proof : Suppse G is of order 2n and has a symmetric

be a symmetric seguencing

sgquencing. Let SG: Xl’XZ""’XZn
of G and PG: yl,yz,...,y2n be the associated partial product
sequence. In order to have (|G|,|B|) =1, B must be of odd

order, say k. We are going to construct a symmetric sequencing

S of GxB. Let {cl,c .,cm} be a basis

gre
,dm'are odd positive

GXB: al,az, .....,aznk

of B such that the orders 6,,8

17097 >

integers with 0<i<m implying dildi+1' If j is any positive

integer then there exist unique integers jo,jl,...,j such
m

that ) = I (mod 6162...6m) and

: : . :
I8 ti g8 8 ] 86,8

where Osj1<61, Osj2<62,...,‘0$jm<6m.

Now the partial products are defined as follow.

j

1o
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—h
1]

2j+1, 0<j<nk, then

b ( 1 &
Paj+1 Yi(mod 2n)’°1

—h
1i

2;+2, 0<j<nk, then

. _—
b = (y, S Y.

2j+2 i(mod 2n)’ "1 m

We are going to show all the bi's are distinct. Suppose
bS = bt where s = 2u+l and t = 2v+1, 0<u,v<nk. Hence

2u+l = 2v+1 (mod 2n), then 2u

i

2v (mod 2n) which implies

u=v (mod n). As in Theorem 4.1, u = v (mod k). Since
gcd(n,k) = 1, we have u = v (mod nk) and thus u = v. It is’
similar for the case s = 2u+2 and t = 2v+2, 0O<u,v<nk. Finaliy,

if s = 2u+l and t = 2v+2, then Yo # Yp SO that bS z b

t te

Now the sequence of S is as follows.

GxB

If i = 23+2, 0<j<nk, then
— —1b
aj = by_1b;
-J -j -1 ' j.+1 j_+1
- 1 m 1 m
= O 1(mod 20)°%1 " %m Y Witmod 2n)°€1° %m )
2).+1 25 +1
- 1 m
- (xi(mod 2n)’°1 S )
If i = 2j+1, 0<j<nk and s = min{r: jrzO}, then
-2j_ =25 -1 -2 -1
-1 - s s m
3 = bi1P T Xi(mod 2n)7%s Cs+1 t 7 Cm ).
It ig = 0, then a, = (xi(mod 2n),e).
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All a"s are distinct by an argument similar to the

above in which that bi's were shown to be distinct. Then
GxB is a sequenceable group.

he | -
Choose any ag, a, such that a a, e where aS and a,

. “o i ri nci
GxB 97 /Xy, 15 @ symmetric seque ng

of G, which forces either s and t are both even or s and

are in S Since Xq0X
't are both odd, we then do the same thing as in Theorem

4.1 to show that SGxB is a symmetric sequencing of GxB. []

From the above theorems we can conc]ude that abelian
and non-abelian symmetric sequenceable groups of arbitrari]y
large even order exist.

Before we go to the next section, we take a look at a

relation between symmetric sequencings and even starters.

Definition 4.2 : Suppose G is a group of order 2n with

identity e and unique element g” of order 2. Then E = {{xi,
yi}: l<isn-1} is a left (right) even starter for G if and
only if (i) every nonidentity element of G except one denoted
m, occurs as an element of some pair of E and
(ii) every nonidentity element of G except g* occurs
-1 -1

. . -1 -1 . .
in {xi V. oY, xizlsnsn—l} ({Xiyi PV X :1<is<n-11}).

If G is abelian, there is no distinct between left and

right even starters.

Theorem 4.4721 : If the group G has a symmetric sequencing
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al,az,...,an then G has a left even starter.

Proof : Suppose ]Gl = 2n and G has a symmetric sequencing

b Now let

with partial product sequence bl'b2""’ on*

E = {{b2j+2'b2(j+1)+1}: 0<j<n/2-1}
) {{bZn—(2j+1)'b2n—2j}: 0<j<n/2-1}
and let m = bn+1 if n is odd and m = bn if nis even. When

n is odd,

E = {{bz’b3}’{bu'b5}""’{bnfl’bn}}

R S L LE LI T VLT TN PR RPAL IS PLIVE 28,
and every nonidentity element of G except m occurs as an
element of some pair of E. When n is even,

E = {{b,,bs},{by,bc}, ..., {b__,,b_ _ }}

AL I R TR T VL P T S PR LIS RLINT R
and every nonidentity element of G except m occurs as an
element of some pair of E. Now, for 0<j<n/2-1,

y b =
2j+2° C2(5+1)+1- 7 T2(j+1)+1
On the other hand, 0<j<n/2-1 implies
-1
= = <q<2 d i
(bZn—(2j+1)) b2n—2j aZn—Zj aq where n+2<q<2n and q is
even. We see that the total number of p's and g's is n-1.

(b = ap where 3gp<n+l and p is odd.

Since we have a symmetric sequencing, it is clear that
C = {ap:35p<n+1 and p odd} v {aq:n+ZSq52n and g is even}
contains a set of n-1 distinct elements of G\{e,g*}. Moreover

a; = (aj) 1 if and only if i+j = 2n+2., Since the sum of two
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p's or two q's or a p and a q is never equal to 2n+2, no
element of C is the inverse of itself or another element of C.

- - * -
Thus every non-identity element of G except g occurs in

Lby. o) T(by ity )

b2(j+1)¥1) (b2j+2) : 0<j<n/2~1}

an-(25+1))  Pon-2527Ponig;) By (a541)) ¢ 0sisn/2-1).

Then E is a left even starter for G. O

u {(b

However, the converse is not true. That is, a group G

may have even starter but have no symmetric sequencing.

Example : Consider the quaternion group Q3 with generators
a and b and defining relations aLl = e, b2 = a2 and ba = a3b._
The group Q3 is of order 8 with identity e and an qnique
element a2 of order 2.
Let E = {{a,ab}, {a’b,a’b}, {a’,b}}. It is easy
to verify that E is both a left and right even starter
for Q3, It has been verified by computers that Q3 has
no sequencing. Thus it certainly has no symmetric seq-

uencing. We can also prove algebrically that Q3 does

not have a symmetric sequencing and shall do so now.

-1 _-1. _-1

Suppose S : e,az,aB,aL},g*,aLl ,a3 ,a2 is a symmetric

2
sequencing of Q3. Now Q3/<a >

{e<a2>, a<a2>, b<a2>, ab<a2>}

{{e,az}, {a,aB}, {b,baz}; {ab,abaz}
2 3 2 3
{{e,a”}, {a,a”}, {b,a"b}, {ab,a"b}}.
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Now, <a2> is a normal subgroup of Q3 of order 2, and we

see that Q /<a2> =~ 7 xZ_. Let ¢:Q.-Q /<a2> denote the
3 2 2 3 73
2

natural homomorphism of G onto the quotient group Q3/<a >.
Let the members of 22x22 be designeated by e,1,2,3 where e
is the identity, each nonidentity element of 22x22 is its

own inverse and the product of any two distinct noniden-

tity elements is the remaining nonidentity element. So

we can write Q3/<a2> = {e,1,2,3}. Let Ei = @(ai), ai€Q3’
and bi = 3132"'3i' Then each XGQ3/<a2> must occur two
times in both of the sequences al,az,...,an and Bl'bz""'bn'

Thus the sequence S must induce a sequence S on 22x22 such
that evéry element of Z,xL, occurs exactly twice in S and
its associated partial product sequence P. The sequence
S force S to be in the formS : 1,x,v,z,1,z,y,x. But then
the associated partial product sequence is P : 1,x,z,1,1,

z,x,1. So Q3 has no symmetric sequencing.

§4,2 Strong symmetric Sequencings

If we put some more restrictions on symmetric sequencings,
they can be used to construct families of Howell Designs
which we will discuss in the next chapter. B.A. Anderson
and P.Af Leonard showed that 22p had a strong symmetric
sequencing if p25 and p prime. Also, B.A. Anderson showed
that when p>3 is a prime and p=5 or p=+3,+13 (mod 40), Zp_1
had & strong symmetric sequencing. We shall first take a
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look at the sequencings.

Definition 4.3 : Suppose G is an abelian group of order
1
2n and S is a symmetric sequencing of G. S is strong if

and only if the associated partial product sequence P
satisfies the following conditions:

(i) 1<i<j<n-1 implies bibi+1 #z b.b and

jTi+l

(ii) 1<i<n-1 implies bibi+1 é {e,mz} where m = bn if nis

even, m = bn+1 if n is odd.

The sequencing of B. Gordon is symmetric but not

strong because b sz.+2 = CgCpe++Cphpyr 0<j<n for n=zh.

2j+1

Up until now, the only known groups with strong symmetric

sequencings are the cyclic groups Zzp, where p>5, p prime,

and the cyclic groups Zp—l' where p>3 is a prime and p = 5,
or p=*3,%x13 (mod 40).
Suppose p=z3 is a prime, Z2p is the additive cyclic

. Note that x is eveh,
2p

the subgroup <x> generated by x has p elements and all

group of order 2p and x = 2yeZ

elements of (x> are even. Also <x>+p u<x> = Z2p
We are going to define a sequence S and thus compute

the partia1 sums P such that S and P have many of the"

properties required to be a strong symmetric sequencing.

The sequencing S is as fo]]ows.

(i-1)x (mod 2p) when 1 < i < (p+1l)/2

M

w
o]
"

2(i-1)-p when (p+3)/2 < i < (3p+l1)/2 and

(i-1)x (mod 2p) when (3p+3)/2 < i < 2p.
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When 1 < i < (p+l1)/2,

bi = a1+a2+...+ai

111

%(a1+ai)

%EO+(E-1)X]

i1

[iLiéll]x (mod 2p).

When (p+3)/2 < i < (3p+l1)/2,

bi = a1+a2+...+a(p+1)/2+a(p+3)/2+...+ai
-r{p+1)/2 i-(p+3)/2+1 :
s Ilagra gy 0t 2 ILahe3y/2%3]

i

iD;1>(D;1>x+[(2350'1>][2(R§i-1>—p+2(i-1>—p1x

11

2 2
(ﬂ~§l)x+(i—9§l> (mod 2p).

When (3p+3)/2 < i < 2p,

by = At et hu1y2 A pe3y 2t B (5pe3) /2

"B(3pesy/2t T

[fQ+2L)z2][0+(Q,_2"'_l.__1)]X+[(3D+1)/§"(D+3)/2+1]

[(i-1>x+(i9§i—1>x3 (mod 2p).

2_ 2 I . _
(B—Lyxep + (222021 (2123071

2_ A
(Qﬁgl)x+p2+(hl hé+1 9p ) x

I

[LL%:l)]x+p (mod 2p).
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Then the sequence of partial products is as follows:

[iLiﬁll]x (mod 2p), 1 < i < btl

2
P:b, = Bx+(i-E%l)2 (mod 2p), 2%1 < i < 39;1,
[LLL§ll]X+p (mod 2p),iR§é < i < 2p,

where Bx = = [(pz—l)/8]x.

b
(p+1)/2

Before going any further, we give two examples. In
4
each case, S is the sequence of ai's and P is the sequence
of bi's. The elements BX are starred and the elements

m, = bp+1 are underlined.

Example 1 We let p = 11, Xx= 6 and do the arithmetic modulo

22. We have

$: 0, 6, 12, 18, 2, 8, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 14, 20, 4, 10, 16;

P: 0, 6, 18, 14, 16, 2%, 3, 6, 11, 18, 5, 1
14, 13, 5, 3, 7, 17, 1l=p;

C: 6=b.b,, 2=b,b, 10=b3bu, 8=b b, 18=b b, 5=b6b7, 9=b7b8,

17=b8b9, 7=b9b10, 1=b10b117 Bx=2 and mx=16.

Example 2 We let p = 13, x = 4 and do the arithmetic modulo

26. Then

S: 0, 4, 8, 12, 16, 20, 24, 1, 3, 5, 7, 9, 11, 13, 15, 17,
19, 21, 23, 25, 2, 6, 10, 14, 18, 22;

P: 0, 4, 12, 24, 14, 8, 6°, 7, 10, 15, 22, 5, 16, 3, 18,

9, 2, 23, 20, 19, 21, 1, 11, 25, 17, 13=p;
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10=b;b 12=b

3/ 3Dy, 22=b.b 1b=b

L=57 5767

13=b_bg, 17=bgbg, 25=bgby,, 11=byybyq, 1=byibi,,

21=b12b13; Bx=6 and mx=3.

C: L=b,b 16=b2b

12~ g7

In the next theorem, we are going to give properties

which the sequences S and P have.

Theorem 4.404]1 : Suppose pz3 is a prime, x = 2yel and

2p
S and P are defined as above. Then

(1) {aizl < i < 2p} = Z2p (We will write this as S = Zzp);

(it) a; =b

1=0' ap+1=b2p=p;
(iii) 1 < k < p-1 implies ap+1+k = ~(ag,q-k);
(iv) 1 <] s 2p implies b,+p = byp-(j-1)°

(v) 2 s<i < j<p+l implies b;_q+b; # b;_;+b; (mod 2p) and

(vi) 2 < i < p+l implies bi—1+bi Z 0 (mod 2p).

Proof : The proofs of statements (i) to (iv) are based
on calculations which are straightforward.
(1) In order to prove (i), we have to show that all the
ai's, 1 <1 £ 2p, are distinct. Assume a, = aj}
For 1 < i, j < (p+1)/2. This implies

(i-1)x-(j-1)x = 0 (mod 2p)

which implies (i-1)x = 0 (mod 2p)

which implies (i-j) = 0 (mod p)

which implies i = j.
For fp+3)/2 < i, 3 < (3p+1)/2 we have

2(i-1)-p-L2(j-1)-pP] = 0 (mod 2p)
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which implies 2(i-j) = 0 (mod 2p)
which implies (i-j) = 0 (mod p)

which implies i

jo

For (3p+3)/2 < i, j

A

2p we have

(i-1)x-(j-1)x =

tl
o

(mod 2p)
which implies (i-j)x = 0 (mod 2p)
which implies (i-j) = 0 (mod p)
which implies i = j,
For 1 < i < (p+1)/2, (p*3)/2 < j < (3p+1)/2 we have
(i-1)x-0[2(j~1)-p1 = 0 (mod 2p)
which implies (i-1)x-2(j-1) = -p (mod 2p)

which implies (i-1)x-2(j-1)

2kp-p (for some integer k)

p(2k-1)

which is impossible because the left hand side is even
while the right hand side is odd.
For (p+3)/2 < i < (3p+1)/2, (3p+3)/2 < j < 2p we have
(j-1)x-L2(¢i-1)-p1 = 0 (mod 2p)

which implies (j-1)x~2(i-1) -p (mod 2p)

which implies (j-1)x-2(i-1)

2kp-p (for some integer k)

p(2k-1)
which is also impossible because the left hand side is
even while the right hand side is odd.
For 1 < i < (p+1)/2, (3p+3)/2 < j < 2p we have
(i-1)x=-(j-1)x = 0 (mod 2p)

which implies (i-j)x = 0 (mod 2p)
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which implies (i-j) = 0 (mod p)
which is impossible because p+l1 < j-i < 2p-1.

These cases finish the proof of (i).

(ii) Clearly, a; = (1-1)x = 0 and b1 =a; = 0. Now
ap+1 = 2 (p*1)-1 -p = p and
b2p = 2 (22’1 Ix+p (mod 2p)
= 2p(2p-1)y+p (mod 2p) where x = 2y
= p (mod 2p).
(iii) Now 1 < k < p-1 implies p+2 < p+l+k < 2p and

2 < ptl-k < p. If 1 < k < (p-1)/2 then p+2 < p+l+k < (3p+1)/2

and (p43)/2 < p+l-k £ p. Therefore,

ap+l+k = 2(p+1+k-1)-p = p+2k and
ap+1—k = 2(p+1l-k-1)-p = p-2k. Then
_ap+1—k = p+2k., We have

ap+1+k B —ap+1-k'

If (p+1)/2 < k < p-1, then (3p+3)/2 < p+l+k < 2p and

A

2 < p+tl-k < (p+1)/2. Therefore,

ai1+k = (P*1+k-1)x = (p+k)x = kx (mod 2p) and
a = (p+tl-k-1)x = (p-k)x (mod 2p).  We have
p+1-k A

= - i -(p- = d .
ap+1—k ap+1-k since -(p-k)x kx (mod 2p)

(iv) Suppose 1 < j < (p-1)/2. Then (3p+3)/2 < 2p-(j-1) < 2p.

We have F(i-1)
b +p [J_...J_Z_
J

Ix (mod 2p) + p

j(j-1)y (mod 2p) + p and

H
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= ([2p~-(j-1)1[2p~-(i-1)-1]
b2p—(j—1)“‘ { 5 }x+p (mod 2p)

[hp2-2pj-2p(j-1)+j(j-1)Ty+p (mod 2p)

m

m

jJ(j-1)y+p (mod 2p)
~which-is congruent to bjfp.

Suppose j = (p+1)/2., Then 2p-(j-1) = (3p+1)/2. We have

b +p = {L(p*1)/2 2( *10/2=314, (mod 2p) + p
; ,
2_4 ,
= (Q—E—)y (mod 2p) + p and
b = (Dz“l)x+(3p+1—0+1)2 (mod 2p)
2p-(j-1) ~ 3 2 2

i

2
(-D-——il)y**p2 (mod 2p)

1

2
(Q-ﬁl)y+p (mod 2p)
which is congruent to bj+p.
Suppose (p+3)/2 < j < (3p-1)/2. Then (p+3)/2 < 2p-(j-1)

< (3p-1)/2. We have

2 i
(Q—El)x+(j-ggl)2+p (mod 2p)

b.+p =
J
21, . 2i-p-1,2 |
= (9—E~0y+(~i~%—*) +p (mod 2p) and
b = (Qzll) +02p-(;-1)-22112" (mod 2p)
2p-(j-1) = g XtLepmly 2 mod 2p

Wi

2_
(Q—El)y+E2p-(j-1)-Q§l]2 (mod 2p)

A

2 P
(E~ﬁl)y+(2l~%—l)2+p (mod 2p)

which is congruent to bj+p.
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Suppose j = (3p+1)/2. Then 2p-(j=-1) = 2p-[(3p+1)-11 = (p+1)/2.

We have

R

b.+p

2_
J (P——S—l—)x+[i%l-2-;-1-12+p (mod 2p)

2.
(9—§ldx+p2+p (mod 2p)

2
4 Og—él)x (mod 2p) and

T

[(p+1)/2]70(p+1)/2-1]
b2p-(j-1) { 5 }x (mod 2p)

2
(Q—él)x (mod 2p)
which is congruent to bj+p.
Suppose (3p+3)/2 < j < 2p. Then 2p-(2p-1) < 2p-(j-1)

< 2p-(3p+3)/2-1, that is, 1 < 2p-(j-1) < (p-1)/2. We have

bj+p = [iiiéllJX+p+p (mod 2p)
= [_Lﬁ_l_z-_l_)_]x (mod 2p) and
b2p-(j—1) 5'{EZD'(J‘1)122p—(j—1)—1]}x (mod 2p)

{LZD_(j'%.l(’zD-j)}x (mod zp)

it

Lii%lli]x (mod 2p).
We see that (v) and (vi) are slightly stronger state-
ments than those given in Definition 4.3 though one part of

that definition is not covered by these statements.

(v) For 2 < i < p, let Ci = bi-1+bi°
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When 2 < i < (p+1)/2

bi_1+bj

i

(=111 pE=12% (mod 2p)

.2 . .2 .
[d 3‘;2+' “'1x (mod 2p)

2i2—hi+2
2 .

L I1x (mod 2p)

(i-1)%x (mod 2p).

when (p+3)/2 < i < p+l,

b. +b, = B

c oy _(p+1)42 . _(p+1),?
i -17b; « L(i-1) . +Bx+[| _—5~—] (mod 2p)

I

. _p+3y2. .. p+l,2
28X+(I “—""‘2 ) +(,| T) (mod 2p).

Thus ((i-1)%x (mod 2p) 2 < i < (p+1)/2 and

0
I
o
|
=
+
e
m

i 28x+[(i-Q%l)2+(i—Q§l)2] (mod 2p)
(p+3)/2 < 1 < p+1l.
Since x = 2y, (i-l)zx (mod 2p) is even. Therefore, c; is

even for 2 < i < (p+1)/2. For (p+3)/2 < i < p+1,
_ . p+3 2 . 9+1 2 .
c. = 28x+[(l—*5“) +(i- 5 ) 1 (mod 2p)

2
=g, i -1 (p+3)+ (B2 Bei i (pe1)+ (B2 % (mod 2p)

11

2
28x+2i2—i(2p+h)+2p+2+2———2+—l (mod 2p).

We see that (p2+1)/2 is always odd. Therefore, c; is

odd if (p+3)/2 < i < p+1l. Thus it will suffice to show that\

there is no duplication in either half above. Suppose there
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exist i, j where 2 < i < j 2 (p+1)/2 such that
(i—1)2x = (5-1)2x (mod 2p).
Then [(i—l)z-(j-l)zjy = 0 (mod p)
iff (i2—2i-j2+2j)y =-0 (mod p)
iff (i-j)(i+j=-2)y = 0 (mod p)
iff either 1 = j (mod p)
or i+j = 2 (mod p) for v # 0 (mod p).
But neither of these cases is possible so that the even
ci's are all distinct.
Suppose‘there exist i and j where (p+3)/2 < i < J = ptl
such that |

28,40 G222 24 (5 -21)%) (mod 2p)

26 +0 (i-232) 24 (i P70y )

' 2

and 2i2—ui = 2 -4 (mod 2p).
Let i = t+(p+3)/2 and j = s+(p+3)/2. Then 0 < t < s < (p-1)/2.

The above then becomes

+3 2 + 2
204252y oy (4B = 2(s+ I3y 4 (54223 (mod 2p)
22 ) 2 2 2
iff 2t +2t = 2s +2s (mod 2p)
iff t(t+1) = s(s+1) (mod p).
Let s = t+k. The above reduces to

t(t+l) = (t+k)(t+k+1) (mod p)
iff k(2t+k+1) = 0 (mod p)

iff either k

0 (mod p)

m

or 2t+k+1 0 (mod p).

But since k £ (p-1)/2-t, it follows that
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2t+k+1 < 2t+(p-1)/2~t+1

(p-1)/2+t+1 < (p-1)/2+(p-3)/2+1
= p-1.
Neither of these cases is possible so that the odd ci's
are distinct and (v) is verified.
(vi) For (p+3)/2 < i < pt+l, the ci's are odd numbers. There-
fore, in order to show (vi), it suffices to show that
2 < i < (ptl)/2 implies ¢, Z 0 (mod 2p).

For 2 < i < (p+1)/2, ci (i—1)2x (mod 2p).

Thus, c; = 0 (mod 2p)
iff (i-1)2y = 0 (mod p)
iff (i--l)2 = 0 (mod p) for y Z 0 (mod p)
iff (i-1) = 0 (mod p).

This is impossible. We have finished the proof. O

In example 1 and example 2, the rows 1abe11ed C show
ci's in each case. They are all different.

From Theorem 4.4, if S is a sequencing, it is symmetric
and it has several of the properties of strong symmetric
sequencings. Thus, we would like to find out when it is
the case that S is a sequencing and when it is true that
Zmzci (mod 2p), 2<i<p+l. Clearly S will be a sequenéing
precisely when {bi:lsiSZp}=Zzp, that is, when P=22p' We
will determine exactly when this happens in the foi]owing.

If we can choose x so that P=Z and 2m misses all the ci's,

2p
then'we will have a strong symmetric sequencing.
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Theorem .5 : Let T = {(0+1+...+i)x (mod 2p)
X
0 < i < (p-1)/2}
2
" and wx £ {[B +(2k) 1 (mod 2p) : 1 < k < (p-1)/2}

_ 2_ _
where Bx = [(p™=1)/81Ix. If x = 2y EZZDI then

|2, ] = (p*1)/2 and W | = (p-1)/2.

Proof : Suppose x = 2yeZ, . In order to show;lle = (p+l)/2,

it is sufficient to show that all elements of Zx are dis-

tinct. If we assume the contrary, then there are il, i2

within the specified 1imits and il>i2 such that

(0+1+...+i1)x = (0+1+...+i2)x (mod 2p)

}Iff |1(|1+1)y = 1,(i,*1)y (mod 2p).

Let i1 = i2+t. The above reduces to

|2(|2+1)y

iff t(2i2+t+1)y = 0 (mod 2p).

(i +t)(i2+t+1)y (mod 2p)

But 0 < t < (p-1)/2-i_. and it follows that

2
2i2+t+1 < 212+(p-1)/2-i2+1 = i2+(p—1)/2+1 < p-1 and y<p,
f<p. Therefore, t(2i2+t+1)y Z 0 (mod 2p) is impossible.
Then all elements of I  are distinct. We have 1Zx] = (p+1)/2.

Similarly, suppose not all elements of wx are distinct.

There exist k1 and k2 with 1 < k2 < ki < (p-1)/2 such that

2 2
Bx+(2k1) = Bx+(2k2) (mod 2p)
Fff 2(k1-k2)(k1+k2) = 0 (mod 2p)
i -k k = .
iff (k1 2)( 1+k2) 0 (mod p)

This is impossible and therefore |Wx| = (p-1)/2. O
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In the next theorem, we are going to see under what
conditions S is a sequencing. That is, under what con-

ditions P = {bi : 1 < i < 2p} = ZZp'

Theorem 4.6 : If Z oW, = ¢, then P =Z

2p’

{{i,2p-(j-1)}:1<j<p}.
Suppose D = {1,2,...,(p+1)/2} and E = {(p+1)/2+2k

Proof : Let N = {1,2,...,2p} and Q

1<k=<(p-1)/2}. Let V = DuE. We see that if X1rXy betlong

to DuE, then x1+x2 z 2p+1. Hence V = DuE contains exactly

one element of each member of Q. By the definitions‘of
I and W , Z = {b :reD} and W = {b :reE}. Then

X X X r- X r

2 ud = {b :revV}. Also all elements of £ and W are

X r X X

X
even. So I uW < <xD>.
X X .
If T _aW_ = ¢, then by the last theorem |I uW | = p.
X X X X
We have ZXUWX= <{X>. It implies {br treV} = <x>. By
Theorem 4.4(iv), {bt:teN\V} = (x>+p. Then

P ={b :teN} = <x>4+p U x> =2 _ . O
t 2p

Theorem 4.704] : Suppose p = 3 is a prime, x = 2y622p and

S and P are defined as uSua]. Then

(1) (y]|p) -1 if and only if ZXUW* = <x> if and only

if S is a symmetric sequencing.

(2) (y|p) 1 if and only if £ \{B8 } =1l
X X - X

Proof : anwx~¢;¢ means that there exist i, 0<i<(p-1)/2,

and k, 1l<ks<(p-1)/2, such that
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(0+1+...+1)x [Bx+(2k)2] (mod 2p)
PFf [i(i+1)/272y = [(p>-1)/812y+4k’ (mod 2p)

iff 4i(i+1)y = [(pz-l)y+16k21 (mod 2p)

t

Ff 16k = (2i+1)%y (mod p). (%)
Also, we notice that 16k2 Z 0 (mod p) for 1 < k < (p-1)/2

and i 2 (p-1)/2.

2
(1) If (y|p) = -1, then (y(2i+1)2|p) = -1((2i+1) " |p) = -1.
Therefore, (*) does not held. Hence anwx = ¢ which
implies quwx = {xX>.

Now, suppose quw = (x> so that anwx = ¢

X
If (y|p) = 1, then ((2i+1)%y|p) = 1. This means
that for any given |1 there exists a k such that

2 = (2i+1)%y (mod p). Thus (y|p) = -1. It is

16k
obvious that ZiJWX = <x> if and only if S is a

symmetric sequencing.

(2) Suppose (y|p) = 1. For a given i, there exists an
unique k such that (*) holds. The-existence is as
above. For uniqueness, suppose that for a given 1 .

there exist k1 and k2, k1 z k2 su;h that

2 2

16k1 = (2i+1) y (mod p) and
2 2

16k2 = (2i+1) y (mod p). Then
2 2

16k1—16k2 = 0 (mod p).
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This is equivalent to 16(k1—k2)(k1+k2) = 0 (mod p) which
is impossible for any k in the allowed range. Thus there
are (p-1)/2 solutions to (*). Since i = (p-1)/2 is eli-
minated at the beginning, it follows that ZX\{BX} = wx.
Suppose W, = Zx\{Bx}, then LW, = ¢, which implies
16k? = (2i+1)%y (mod p) for some i, k. Then |
((2i+1)2y|p) =»((2i+1)2|p)(y|p) = (y|p) = 1. The proof

if finished. 0

From the above theorem, we know that for a prime p = 3,
if we can choose a y such that (ylp) = -1, then S is a
symmetric sequencing. We are going to show such a seauencing
S is a strong symmetric sequencing if p > 5. In the
following, let

C = {bi_1+bi : 2<i<p+l}

= {ci: 2<i<p+1}.

Theorem 4.8[4] : Suppose p =2 3 is a prime, x = 2yel

2p
and S and P are constructed as usual. ‘We have that

(1) if p = 1 (mod 4), then 2m ¢ C iff (y!|p)

[t}

(y-1|p) and

(2) if p =3 (mod &), then 2m ¢ C iff (y|p) = (y-1{p).
Proof : If 2m ¢ C, then there exists an i, 2<is<p+1l, such
that b, 1+b_ = 2m (mod 2p).
i- i .

However, 2m is always even so that we only have to
consider the i's such that 2<i<(p+1)/2 as c. is even only
i

when 2<i<(p+1)/2. We have only to consider
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(i—1)2x = [(pz—l)/u]x+[(p+1)2]/2 (mod 2p) for 2<is<(p+1l)/2.
This is equivalent to
2 2 2
(i-1) v 2 [(p -1)/47y+[(p+1) 1/4 (mod p)

2
and k(i-1) v = (-1)(y-1) (mod p).
' 2
Hence (u(i-1) y|p)

((-1)(y-1)|p) and then

(y|p) = (-1|p)(y-1|p).

Tterefore, 2m ¢ C if and only if (y|p) = (-1|p)(y-1]|p).
(p-1)/2 1.if p =1 (mod 4) and
Now (-1|p) = (-1) =’{
-1 if p =3 (mod k),
If p =1 (mod 4), then 2m ¢ C
iff (ylp) = (-1|p)(y-1]p)
iff (y|p) = (y-1]p).
If p 23 (mod k), then 2m ¢ C
iff (y|lp) = (-1|p)(y-1]|p)
iff (yjp) = -(y-1

p)

iff (ylp) = (y-1|p). O

Theorem 4.9[4] : Suppose p =z 3 is a‘prime, X = ZyEZ2p

and S and P are constructed as usual. We have that

(1) if p =1 (mod 4), then S is a strong symmetric seg-
uencing if and only if (y|p) = -1 and (y-1|p) =1 and

(2) if p =3 (mod‘h), then S is a strong symmetric seq-

uencing if and only if (y|p) = -1 and (y-1|p) = -1.

Proof : Let P = 1 (mod 4) for case (1). |If S is a strong

symmetric seauencing, then from Theorem 4.7 (ylp) = -1 and
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from Theorem 4.8 (y|p) = (y-1|p), that is, (y-1lp) = 1.
If (y|p) -1 and (y-1|p) = 1, then from Theorem 4.7 S is

a symmetric sequencing and from Theorem 4.8 2m ¢ C. That
is, S is a strong symmetric sequencing.

Case (2) is similar to (1). QO

If we use the process given above for Z_., we get a

6
sequencing S: 0,4,1,3,5,2 which is a symmetric sequencing

but not strong. The only other symmetric sequencings for

Z6 are

5, 0,5,2,3,4,1; Pi¥ 0,5,1,4,2,3; C: 50,5 2m = 3;
S,: 0,2,5,3,1,45 P,r 0,2,1,4,5,3; C,: 2,3,5; 2m, = 3;
33: 0,1,4,3,2,5; P3: 0,1,5,2,4,3; C3: 1,0,1; 2m3 = L ;

S,:0,4,1,3,5,2; Pur 0,4,5,2,1,3; Ch: 4L,3,1; 2mLl = L,

None of them is strong. Therefore, no strong symmetric

sequencing exists from 26.

Now we come to one of our main theorems.

Theorem 4.10f47 : If p > 5 is a prime, then Z has a

2p
strong symmetric sequencing.

Proof : According to the previous theorems, what we have
to prove is to show that when p = 1 (mod 4), there exists

3

i

yeZ such that (y|p) = -1 and (y-1|p) = 1 and when p

2p

(mod 4), there exists yeZ -1.

gp Such that (ylp) = (y-1|p)

We know that the number of pairs of consecutive integers
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in [1,p-1] in which the first is a quadratic residue and

the second is a quadratic nonresidue modulo p is

(p-l)/2] and the number of pairs of

N (p) = (1/B)[p-(-1)
consecutive integers in [1,p-1] in which the first is a
quadratic nonresidue and the second fs a quadratic non-
residue modulo p is'Nz(p) = (1/4)[(D-2)+(-1)(p_1)/2j see [5],
Then when p 2 5 and p = 1 (mod &) Nl(p) > 1 and when p = 5
and p = 3 (mod 4), Nz(p) > 1, That is, when p =25, p =1

(mod 4), there exists yeZ, such that (y|p) = -1 and

2p
(y-1|p) = 1 and when p 2 5, p = 3 (mod 4), there exists

yezzp such that (y|p) = -1 and (y-1|p) = -1. Thus a strong

symmetric sequencing always exists for Z2p when p =2 3. 0

5, x =4 and y = 7. Then p = 1 (mod L),

Example : Let p
(6]5)

(y-1]p) 1, and (y|p) = (7]5) = -1. Also,
S =0,4,8,1,3,5,7,9,2,6;

p=20,4,2,3,6,1,8.7,9,5;

O
il

4,6,5,9.,7;
my = b6 = 1; and 2mx = 2,

Thus S is a strong symmetric sequencing.

In the following we are going to show that strong
symmetric sequencings occur for the cyclic groups Z 17
p-

when p > 3 is a prime and p. =5 or p = #3, *#13 (mod 40).[10]

In order to show this, we begin by defining the definition

of starter first.
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Definition 4.4 : Suppose n is a positive integer and G

is an abelian group of order 2n written additively. Suppose
that G has exactly one element g* of order 2. Then E is
an even starter for G if and only if E = {{xi,yi : 1l<i<n-1}
such that
(1) Every nonzero element of G except one, denoted by m,

> occurs as .an element in some ‘pair of E and
(2) Every nonzero element of G except g* occurs as a

difference of some pair of G.

If 1< i< j < n-1 implies Xty ® xj+yj, X *y. d {O,ZW},
and m # g* we call E é strong even starter. Strong even
starters can be used to construct Howell designs and even
starters induce 1-factorizations of K2n+2 which we will

discuss in the next chapter. At this time we are only

interested in the construction of strong symmetric sequences.

Theorem 4,11 : If G has a strong even starter, then G

has a strong symmetric sequencing where G = Zzn.

Proof : Suppose G has a strong even starter
*x*
E = {{Xi’yi} : 1<is<n-1}. Let E = Eu{0,m} and
*
Q = {{x,x+g"} : xeG}. Then every element of G occurs as
. * * *
an element in some pair of Q and Q nE = ¢. Therefore,

* * _ . _
E =.{0,h1} U {{hi+g 'hi+1} : 1<i<n-1} where h1 m.

llet us define H to be a sequencing in the form
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* *

. . * * _
H: 0,h ,h1+g ,hz,h2+g PP hn_1+g ,hn = g

1 'hn-l'
According to H, we construct the sequence P of partial

products. |If n is even, we start h1 =m in the middle at

bh. If n is odd, we start h ='m in the middle at bn

1 +1°
Then we work to the ends of P alternating from side to side.

* *
g 4 vy h3/ h2+g 4 hll
*

h,+g" ", h + h
21 3 g 4 "'I. n_‘l g ’ nl and

We have PeVen: 0, hn—l' hn-2+

h1+g*, h
* *
POdd . 0/ hn_ll hn_2+g 7 v e ey h’-l-' h3+g ’ hzl

ho+g*, h ., h +g", h., h +g°, ..., h g*, h_.

r'd 7’ +
1 2 3 b n-1

*
For n even, bn = h1 = m, b2n = hn = g and for n odd,

n+1 h1 and b2n = hn' We construct the sequencing

S = {af : aizbi_bi-i' 2<i<2n} and a1 = 0. We have an+1 = g

*_* - * =- b
for =g = &', and a g,y = "y g*hive s 3. = Mg ™hiE

l<i<n-1. So A 41+] T -(an+1_1) and each a 41-; 15 2

o
I}

difference of a pair {hi+g*, hi+1} of the starter E. There-
fore, S induces every element of G and is a symmetric
sequencing. |

Since E is a strong even starter, then for 1l<i<js<n-1,

we have bi+bi+1 # bj+bj+1 and bi+b ¢ {0,2m}. So S is

a strong symmetric sequencing. [0

i+1

Example : For n =5, E = {{4,2}, {3,6}, {8,7}, {9,5}} with
m=1, g =5 is a strong even starter of Z10 because

b+2 = 6, 3+6 = 9, 8+7 =5, 9+5 = 4 are all distinct and not

equal to 2m = 2. Now Q* {{x,x+g¥} : xeG}

{{o,5}, {1,6}, {2,7}, {3,8}, {u,9}};
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H: 0,1,6,3,8,7,2,4,9,5;
p: 0,4,2,3,6,1,8,7,9,5; and
S: 0,4,8,1,3,5,7,9,2,6.
Thus S is a strong symmetric Sequehcing.
In order to show that there exists a strong symmetric
sequencing in Zp-l’ we have to show that there exisfs a

strong even starter in Zp-l'

Let f: (Zp\{O}) > Zp_1 be the function defined by

f(rl) = i where r is a primitive root of GFLpl. Obviously

f is a 1-1, ontd function.

Example : For p = 11, 2 is a primitive root of GF[11] because
0 1 2 3 L 5 6 7 8 9

2 =1, 2 =2, 2 =4, 2 =8, 2 =5, 2 =10, 2 =9, 2 =7, 2 =3, 2 =6
(mod 11). Therefore, f(1)=0, f(2)=1, f(3)=8, f(4)=2, f(5)=4,
f(6)=9, f(7)=7, f(8)=3, f(9)=6, f(10)=5. Evidently it is

1-1 and onto.

(p-1)/2
P / -1 (mod p).

n
Note that p-1 2 t, t odd and r

n-1

t i
Therefore, r

-1 (mod p). If x =r , x = 0, then

fFCir',-r'Y) = fC{r',-1-¢' )

f({x,-x}) =
. ...n-1 -
= £l e 2 Ty oo, i+ ey 2 i) /20,
Let us consider the sequence T: {ai}p_ = {1,3,5,...
i=0 :
‘/p—u/p_zlozzlulsl'~-/p_5fp—3/p—l}°
Let E = {{ai’a } ¢ i =1,3,5,...,p"2}

i+l
\ {the pair with 0 as one of the elements}.
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Note that the element in T paired with 0 is either 2 or =-2.

Theorem 4.12 : If p > 3 and p =5 or p = 23, %13 (mod 40),

then f(E) is a strong even starter.

Proof : Let K = {{ai,ai+1} : 1 =0,1,...,p-2, minus the

two pairs with zero}. We see that if {ai,ai+1} € K, then

{-a.,-a } € K and f(a. )~-f(a, ) = f(-a_,)-f(-a, _). For
i i+ i i+

i i+l 1 1

if a. = r3 and a. = rt, then f(a.)-f(a. .) = s-t and
i i+1 i i+1

f(-ai)-f(-ai+1) = [s+(p=-1)/21-[t+(p-1)/2]1 = s-t. And,

+1} e E, then {—ai,-ai+1} ¢ E. Since f({x,-x}) =

{i,i+(p-1)/2} where r!' = x and none of the pairs in E have

if {a.,a,
P70

one entry that is the inverse of the other, then there
exists no pair {i,j} in E such that f(i)-f(j) = (b—l)/Z = g*

in Z Also f(i)-f(j) = 0 for any pair {i,j} € E because

p-1°
f is one-one and onto. Thus f(E) will be an even starter

for Zp—l’ if we can show that 1 < i < j < (p-3)/2 implies
[f(2i)-T(2i+2)] # 2[f(2j)-f(2i+2)] (mod p-1).

Suppose 2 = rk, i =r%and j =rt. Then i = j,
rk(rs+1) = +™ and rk(rt+1) = r",

To the contrary, assume that for some i,j, we have

[f(2i)-f(2i+2)] = [f(2))-f(2j+2)] (mod p-1). Then

(k+s)-f(rkrs+rk) = (k+t)-f(rkrt+rk) (mod p-1)

or (k+s-m) (k+t-n) (mod p-1)

I

or s+n t+m (mod p-1).

s+n _

Therefore, r rt*M (mod p) or
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rsrk(rt+1) = rtrk(rs+1) (mod p) or
sk < rtrk (mod p) or

s rt (mod p).

-
1l

This is a contradiction.
Assume [f(2i-f(2i+2)] = -[f(2;-f(2j+2)] (mod p-1).

Then (k+s-m)

11}

~(k+t-n) (mod p-1) or

s+t = m+n-2k (mod p-1).
Therefore, rS+t = rm+n-2k (mod p) or
PSTE = bR Sh1y b K(rBa ey r 72K (mod p) or
PPt = (rS+1)(rt+1) (mod p) or
rS+rt = -1 (mod p) or
i+j = -1 (mod p).
This is impossible for the range of i,j. 1t follows that

f(E) is an even starter for Zp—l'

To show f(E) is a strong even starter, we still have
to show m = g* in f(E), the sum of the pairs of f(E) are
distinct and they are neither 0 nor 2Zm.

We know that m = f(2) or m = f(-2) and g* = (p-1)/2.

Suppose 2 = rK. Then f(2) = k and f(-2) = k+(p-1)/2. If

r(D-l)/2+(p-1)/2

k = (p-1)/2, then -2 = =1 and p = 3.

If k = 0, then 2 = r(p—l)/2 = 1. Both cases are impossible
so that m = g~.
Consider the pairs in K. 1t is clear that

f(ai)+f(ai+1) = f(—ai)+f(—ai+1) (mod p-1). The sums of

the pairs of f(E) are distinct if we can show

107



f(2i)+f(2i+2)] 2z [f(2;)+f(2j+2)] (mod p-1)
for 1 < i < j < (p-3)/2.
To the contrary, assume for some i,j, we have

CF(2i)+f(2i+2)] = [£(2j)+f(2j+2)] (mod p-1).

I

Then k+s+m k+t+n (mod p-1l) or

s+m = t+n (mod p-1) or
rs+m - rt+n (mod p) or
r2(r®+1) = rS(rf+1) (mod p) or
rsrs-—rtrt = -(rs'rt) (mod p) or
(r5+rt) = -1 (mod p).

THis is a contradiction. All sums of pairs of f(E) are
distinct modulo p-1. We can show the sums of the pairs in
f(E) are not equal to 0 or 2m, similar to the above. The
prime p will have the required properties if and only if
for 1 =1 £ (p=3)/2 neither

0 (mod p-1) nor

i

LF(2i)+f(2i+2)]

Cf(2i)+f(2i+2)] 2f(2) (mod p-1) has a solution.

0 (mod p-1)

Now f(2i)+f(2i-2)
iff (kts+m) = 0 (mod p-1)

Pff TS

=1 (mod p)
iff rsrk(rs+1)rk = 1 (mod p)
iff 4i(i+1) = 1 (mod p). (a)

Also, [f(2i)+f(2i+2)] = 2f(2) (mod p-1)

iff s#m = k (mod p-1)

FE ST 2 rk (mod p)
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iff rS(r+1)

i

1 (mod p)

iff i(i+1) = 1 (mod p)- (b)
If p =5, obviously (a), (b) do not both hold. Since
(-n-1)(-n-1+1) = n(n+1), if n is a solution to either
(a) or (b) so is -n-1. This means that if we have integer
n1 where 1 < n1 < (p-3)/2 which is a solution to eifher

(3) or (b), then there exists n2 which has the same pro-

and p/2 £ n, € p-2 as n, = -1-n If p > 5,

1 2 2 1
(p-1)/2 is not a solution of either (a) or (b), and (p+1)/2

perties as n

has the same properties as (p-1)/2. This reduces the
problem to looking for the primes p such that there are no

solutions at all to (a) and (b). Since

it

n(n+l) = 1 (mod p)

iff L4n(n+l) = 4 (mod p)
iff un2+un+1 = 5 (mod p)
iff (?.n+1)2 = 5 (mod p).
Then (a) has no solution if and only if (5|p) = -1. ‘Now

bn(n+l1) = 1 (mod p)

t

PFf 4nl+hn+l = 2 (mod p)

iff  (2n+1)% = 2 (mod p).

Therefore, (b) has no solution if and only if (2|p) = -1.
We know that (5|p) = -1 iff p = 3 (mod 5) and
(2]p) = -1 iff p = 23 (mod 8)

which implies that p = %3, #13 (mod 40). Therefore, f(E)

I
1+
N
~
1+
—
N

is a-strong even starter if and only if p = 5 or p =

(mod 40).
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CHAPTER FIVE

Applications of Sequenceable Group

In this cahpter, we will discuss some applications
of sequenceable groups to Latin Squares, Howell Designs

and Graphy Theory.

§5.1 Applications to Latin Sguares

Definition 5.1 : A Latin square L of order n is an nxn

matrix with n2 elemants based on a set X with n distinct
elements such that none of them occurs twice in any/fow

or column of the matrix.

Definition 5.2 ¢+ A Latin square L of order n on a set X

with n distinct elements is called row (column) complete
if for every ordered pair (a,b) where a = b, a,b ¢ X,
there exists exactly one row (column) of the Latin square
in which a and b appear as adjacent elements. |

If a Latin square is both row and column complete, we

call it a complete Latin square,

Let [mst] denote a Latin square of order n on X.  Then
it is row (column) complete if for any ordered pair (a,b),
where a,b € X, there exists exactly one pair of integers
s, t where 1 < s < n, 1< t‘s\n such that

mst = a ms,t+1 =b

(mst = a

ms+1}t b).

110



Examples

0. 1. 3: 2
The Latin'square 1 2 0 3 1is row complete.
2 3 1 0
3 0 2 1
0 1 2 3

The Latin square 1 2 3 0 1is column complete.

Finally, the Latin square 1 0 3 2 is complete.

B. Gordon found a sufficient condition for the ex-

istence of a complete Latin square.

Theorem 5.1 : If G is a sequenceable group of‘order n,

then there exists a complete Latin square of order n.

Proof : Let S:al,az,...,an

P:bl,bz,.-..,bn be the sequence of partial products of S.

We are going to verify that the matrix [mst] with
-1

mSt = bS bt = as+1as+2...at is a complete Latin square.

be a sequencing of G and

Since S is a sequencing, then a a, #

s+1as+2"' t

if s 2 r. That is, m Z2 m ifr=s.

-4 st rt

41942 t
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Therefore, each row of [mst] contains each element of G

exactly once. Furthermore, m z

if =
rt me, Ift u, as

@ 41849 o+ A48 400 .- . Therefore, each column
of Emst] contains each element of G exactly once. Thus
[mst] is a Latln square.

To show [ms 1 is row complete, suppose

t
Mg = Myy and ms,t+1 = mu,v+1'
We have to show s = u and t = v. By the definition of mst'
-1 -1 .
bs bt = bu bV (i)
-1 -1 ..
and bs bt+1 = bu bV+1 (i)
i), (b.'b,) " = (b b )L which impli
From (i), ( s t) = ( u bv) whlc implies
-1 -1
bt bS = bV bu. (iii)

The product of (ii) and (iii) yields

-1 -1 -1 -1
(by bg)(bg byyy) = (b, b )(b b 1)

. . . -1 _
which implies bt bt+1— v Py+1-

That is, a = a and we have t = v.

t+1 v+1l’

Put t = v into (i) which produces bs = bu and implies

S = U. Therefore,~[mst] is row complete. Similartly, [mstJ
is also column complete. Then the matrix [mst] which is

based on the sequenceable group G is a complete lLatin square.

! 112



Using the proof of the preceeding theorem, we can
construct a complete Latin square of order n if a seq-

uenceable group of order n exists.

Example : Let us consider the gfoup 28. $: 0,1,6,3,4,5,2,7
is a sequencing and P: 0,1,7,2,6,3,5,4 is the sequence of
partial products. Then the Latin square

0 1 7 2 6 3 5 4

7 0 6 1 5 2 4 3

1 2 0 3 7 &4 6 5

S'c:l

3 4 2 5 1 6 0 7
L 5 3 6 2 7 1 O is complete.
We notice that for a comple Latin square, if we inter-
change some rows (columns), this complete square will become

a row (column) complete but not column (row) complete.

Example : Let us consider ZG' Now S: 0,1,4,3,2,5 is a seq-
uencing and P: 0,1,5,2,4,3 is the partial product sequence.
Then the Latin square

01 5 2 4 3

1 2 0 3 5 &

3 4 2 5 1 0 is complete.
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The Latin square
0 1 5 2 4 3

1 2 0 3 5 &

2 3 1 4 0 5
5 0 & 1 3 2
is row complete.
We now consider some relations between sequenceable

groups and orthogonal Latin squares.

Definition 5.3 : Two Latin squares [kij] and [tij] of
order n on the n-sets R and S respectively, are orthogonal
if every ordered pair of symbols occurs exactly once among

2

the n“ pairs [kij’tij]’ i=1,...,n, j =1,...,n.

For example, let

2 3 1 2 1 3

[k,.1 = 1 2 3 and [t..] = 1 3 2
(] ]

3 1 2 3 2 1

Superimposing one upon the other yields
2,2 3,1 1,3
1,1 2,3 3,2
3,3 1,2 2,1.
We see that the Latin squares [kij] and [tij] are othogonal.

The following theorems were proven by K. Heinrich,
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Theorem 5.2 : If G is a sequenceable group of order n and

if there are two orderings of G, say hl’hZ""’hn

-1 -1
hé,...,h;, with the property that hl(hi) ,hz(hé) JU
...,hn(h;) is also an ordering of G, then we can construct
a pair of orthogonal Latin squares of order n with the"

property that one is row complete and the other

Proof : Let al,az,...,a be a sequencing of G.

n

1 n

Latin square [tij] with the first row being aj,aqag, ..
...,alaz..{an; Row | is obtained by multipling each ele-
ment of row one on the left by hi' Construct the Latin

square [kij] with the first row being a_,a_a

1"1

Row i is again obtained by multipling each element of row

one on the left by h;. Then by Theorem 5.2,

[tij] is complete and [ki'] is row complete.
J

In order to show [ti‘] and [k,. 1 are orthogonal, -
J

i

assume that there exist ordered pairs (r,s) and (u,v)

such that the ordered pairs (t

rs’

equal. We have to show r = u, s = v. From our construction
we have h a,a,...a_ = h a.a,...a
r 12 s ul-2 \;

and hralaz...a = hualaZ"'av'

s
hen (h. a ) (h] AR P h”
Then p8789. -85 (8139 +-3;) = (h,aja,...a,)(h a;a,...a
which implies h.(h )™t = h (h')7!
P : r r u'u *
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Latin square

k ) and (t L,k ) are
rs uv’ uyv .
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)
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L, on, o™t oo, hoth )T s an ordering

SinCe hl(hl)
of G, then r = u. Substituting r = u in the above, we obtain

s = v. The proof is finished. O

Theorem 5.3 : )f the non-abelian group G of order n = pq,
where p and q are distinct odd primes and p|q—1, is seq-
uenceable, then there exists a set of p-1 pair wise ortho-

gonal Latin squares of order - n all of which are row complete.

Proof : Suppose G is the group described in the above.

Then G = <a,b)> and is defined by-aq = bP = 1'and ab = ba"

where rp =1 (mod gq), r 1 (mod q) and p[q-l.-
let us Consider

Gk = {1,(bi)k,(ai)k,(biaj)k : 1sis<p-1, 1l<j<q-1} for a fixed

k, 1<ksp-1. Since (b )X = b K and a1 (61X, 5K, ..., 3 HX
are distinct given the-range of i, then {('bi)k : l<isp-1} is
equal to {bi : 1l<isp-1}. 'Sfmi]ar]y,

{(aj)k : l<i<q-i} = {aj : 1<j=<q-1}. Let us consider the set

D
{(b'aJ) : 1l<i<p-1, 1<i<q-1} for a fixed k. We have
21 i
r

. oL (k=1)i (k=2)i .
(blaj)k _ blkaJ[r +r +..,.+ +r +1] for ab = ba'

Suppose there exist (il,jl) and (i ) such that

242
il jl k
(b "a ™) =(a "a “) . From what we have shown above, we

know that il must be equal to i2 and jl may not be equal

1y oy .
to j. only when r(k 1)|+r(k 2"+...+r2'+r|+1 = 0 (mod q).

2 )
That is, (r<'-1)/(r -1)

0 (mod q) and hence rkI =1 (mod q).
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Assume ki = oq+s where o is a positive integer and

ki apts s
r = r

1}

0 < s < p. Sincé rp =1 (mod p), then r
=1 (mod q). But p is a prime and r Z 1 (mod q) so that

s = 0 which impTies ki = ap. This is impossible for the

ranges of i and k. Therefore, r(k-1)1+r(k_2)l+...+r2'+rl+1

Z 0 (mod g). Hence Gk = G for 1 < k < p-1.

If we have an ordering of G, let us say hl'h2'
i i '

2,...,hn is also an ordering of G where 1 < i < p-1.

i
then h_,h
1 P
Also, if we choose any two orderings hl,hz,...,h and

h?,h?,...,h) where 1 < i < j < p-1, then
1’72 n ™

1

I 1
h” (h_)
1 1 -

b0 - yb, b -1 .
, h2(h2) ; e eey hn(hn) is also an ordering of G.
By Theorem 5.2, we can construct a set of p-1 pairwise
orthogonal Latin squares of order n all of which are row

complete. O

Theorem 5.4 : If the non-abelian group of order n = p3 on

two generators is sequenceable, then there exists a set of
p-1 pairwise orthogonal Latin squares of order n all of

which are row complete.

Proof : If G is the group described 'as above, then there

: p2 p p+1 '
exist a and b such a = b =1 and ab = ba . We can use
the method of the last theorem to construct p-1 pairwise
orthogonal Latin squares of order n all of which are row

complete., 0
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§5,2 Applications to Howell Desligns

Definition 5.4 : Suppose X is a set such that |X| = 2n.

A Howell design on X of fype H(s,Zﬁ) consists of a square

array of side s such that

(i) each cell is either empty or contains an unordefed
pair of elements taken from X,

(ii) each element of X appears exactly once in each row
and each column of the arfay and

(iii) every unordered pair appears at most once in a cell

of the array.

We can see that the range of possible values of s
is n< s < 2n-1 for if s < n condition (ii) is violated

and if s > 2n-1, .condition (iii) is not satisfied.

Definition 5.5 : Consider a Howell design on X of type

H(s,2n) such that there is a set YcX with order 2n-s and
no pair of elements of Y occupy a cell of the design of
type H(s,2n). We denote such a Howell design by H*(s,2n)

- - - * - .
and say it satisfies the -condition.

In this section we are only interested in the relation-
ship between sequencing groups and Howell designs. By using
the characteristics of strong symmetric sequencings, we
will show that the Howell designs of types H*(2p,2p+2)

exist for all primes p.
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Examglé : The array
1,6 0] 4,5 2,3
5,4 2,6 ¢ 1,5
2,5 4,1 3,6 ¢
) 3,5 1,2 4,6
is a H*(4,6) Howell design with Y = {1,3} and
¢ ¢ 1,2 3,4 5,6 7,8
¢ ¢ 5,7.6,8 1,3 2,4
4,5 1,8 ¢ ¢ 2,7 3,6
3,7 2,6 0 ) 4,8 1,5
2,8 3,5 4,6 1,7 ¢ ¢
1,6 4.7 3,8 2,5 ) ¢

is a H*(6,8) Howell design with Y = {1,4}.

In fact, all designs of .type H(2n=-2,2n) satisfy the
*_condition. This follows because an element x is paired
with 2n-2 other elements so there remains an element y
with which x is not paired in a cell.

We are going to show that a strong symmetric sequencing
on an abelian group of order 2n will induce a Howell design
of type H*(2n,2n+2).‘ In Chapter four we showed that when
p =5 with p a prime, Z2p has a strong symmetric sequencing
and when p > 3 is a prime and p = 5 or p = +3,+13 (mod 40),

Z has a strong symmetric sequencing. This means that for

p-1
such a prime, p, H*(Zp,2p+2) exists. Together with the
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example above, H*(2p,2p+2) exists for all primes if we can
prove our first statement in this paragraph.

Suppose an Abelian .group ZZn has a strong symmétric
sequencing S: al,az,...,a2n associated with the partial

product sequence P: b b2,...,b

2n°’
} : 0<j<n/2-1}

1'

{{b b

Let E 27+27°2(5+1)+1
v {{b

2n-(2j+1)Pan-2;} ¢ 0si<n/2-11.

By Theorem 4.4, E is an even starter.
{-(b2j
u {-(b

Let A

i}

+2+b2(j+1)+1) : 0<ji<n/2-1}

. . _1
an-(2j+1) Pon-g;) ¢ 0sisn/2-1}

u {-2m,0}.
Then all elements in A are distinct because S is a strong

symmetric sequencing. Also we notice that

-(b b -(b

+ +
2541 P2 (G+1y+12 Po 40 25+1 P2 e1y+12 P2+ 1y 41

for 0<j<n/2-1; ‘(bzn-(zj+1)+b2n-2j)+b2n—(2j+1)'

-(b )+b for 0<j<n/2-1; 0+40, -2m+m

; +b . .
2n-(2j+1) 2n-2] 2n-2]

are all distinct elements of ZZn' We call A an adder of
the group ZZn'

Theorem 5,5[11] : A strong symmetric sequencing on an

Abelian group Z with an unique element of order 2, induces

2n
a Howell design of type H*(Zn,2n+2).

Proof : Consider the integers modulo 2n with two additional

elements © P such that wn+1 = o & +1 = ©L+1 " From
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the above discussion, we know that there exists an even
starter and adder which satisfy the properties in above.

Let the set E

{{Xi’yi} : 1l<i<n-1} be a starter of ZZn'
Let {=,zn}, {*n+1,2n+1} be the pairs such that z =0,
Zn+1 = m where m is a nonzero element of G which does not
occur as an element of some pairs of the starter. Also
let A = {ci : 1l<is<n+1l} be the adder. Then X *C., yic,
where 1 =1,2,...,n-1 and 2j+cj’ J = n,n+l are all distinct.
Now, we can construct a Howell design of type H*(2n,2n+2)
as follows. First we place {Xi’yi} in the first row,
(2n—ci)th column; {zn,wn} in the first row, (2n—cn)th
column; and {zh41,°q4+1) in the first row, (2n-cn+1)th
column. Then if the pair {x,y} occupies the cell in the
ith and jth column, the pair {x+1,y+1} occupies the cell
in fhe (i+1)th row and (j+1)th column (row and column
indices are taken modulo 2n),
I|f the cell In the ith row and jth column is empty,
then so is the cell in (i+1)th row and (j+1)th column.

Then the above construction produces a Howell design of type

H'(2n,2n+2). O

Now we can conclude that the designs of all types

H*(2p,2p+2) exist for p a prime.

Example : Consider the symmetric sequencing of Z10 with n =5

$: 0,4,8,1,3,5,7,9,2,6 with partial product sequence
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P: 0,4,2,3,6,1,8,7,9,5 where m = 1 and
{b,+b, = 1<i<n-1} = {4,6,5,9}.
i i+l
Then S satisfies all conditions of strong symmetric seq-

uencings. The associated even starter is

E

{{M,Z},{3,6},{8,7},{9,5}} and its associated adder

A

fl

{-(4+2),-(3+6),-(8+7),-(9+5),-2,0}

{4,1,5,6,8,0}
can be applied to the pairs {4,2}, {3,6}, {8,7}, {9,5},
{WG,O} and {m5,1} to get a starter-adder construction of

H*(10,12). We have H*(10,12)

¢ =1 ¢ 9,5 8,7 4,2 ¢ ¢ 3,6
w,1 ¢ °,2 ¢ 0,6 9,8 5,3 ¢ ¢
5,8 w6,2 ) w5,3 o) 1,7 0,9 6,4 o)

® 6,9 w.,3 b @ b b 2,8 1,0 7,5

o) o) 7,0 we,h o) w5,5 ) 3,9 2,1
9,7 ¢ ¢ 8,1 =5 ¢ =6 ¢ 4, 0
4,3 0,8 9 ¢ 9,2 =6 ¢ =7 0
6,2 5,k 1,9 o) ¢ 0,3 w6,7 0 m5,8

o} 7,3 6,5 2,0 ¢ o} 1,4 w6,8 o}
wS,O" 0 8,4 7,6 3,1 o 0] 3,5 w6,9
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§5.3 Applications to Graph Theory

We will discuss the relationship of decompositions
of a complete graphs and sequencing groups. We give some

definitions first.

Definition 5.6 : An undirected (directed) graph G is a

set V of vertices together with a set E of edges where E
is a subset of the set of all unordered (ordered) pairs

of elements of V.

Definition 5.7 : An undirected (directed) complete graph

is a graph such that the set E consists of all the unordered.

(ordered) pairs of elements of V. It is an n-graph when |V|= n.

Definition 5.8 : If G and G2 are graphs with vertex-sets

Vl,V2 and edge-sets El'EZ respectively, then their union

and intersection are defined as follows:
G_uG_ ha: tex-set V_uyV_  and edge~-set E_uE_ and
1u ) as vertex-se 1U ) ge-se 1u )

G,nG, has vertex-set V_nV,_, and edge-set ElnE

1 2 1 2 2"

Definition 5.9 : A set EICE of edges of the graph G is
called a matching of G if any two distinct edges of E1 have

no common endvertices.

Definition 5.10 : A matching of a graph G is called a

l1-factor if every vertex of G appears as an endvertex of

some edge in the matching.
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Definition 5.11 : If M, ,M

1/ 2""’Mn are mutually edge-

disjoint 1-factors of a graph G containing all edges of G,

then these 1-factors are said to form a 1l-factorization of G.

Definition 5.12 : A Hamiltonian path (circuit) is a path
(circuit) that pacsses through each of the vertices in a

graph exactly once.

Definition 5.13 : An Eulerian circuit is a circuit that

traverses each edge in a graph exactly once.

Suppose, we have a complete directed n-graph and we
want to see whether it can be decomposed into n directed
Hamiltonian paths. N.S. Mendelsohn found a relationship
between sequenceable groups and decompositions of a com-
plete directed n-graph into n direc£ed Hamiltonian paths.

Let us take a look at the theorem in the following.

Theorem 5.6 : If G is a sequenceable group, then the com-
plete directed graph with vertex set G can be decomposed

into n Hamiltonian paths.

Proof : It is clear that the length of each Hamiltonian
path is equal tc n-1. The total number of edges is equal
to n(n-1).

Let us consider the Latin square such that the square

is the multiplication table of the group G of order n.
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Each row of the lLatin square has n-pairs of consecutive
letters, the total numbers of pairs in all the rows of the
lLatin square is equal to n(n-1) and the total number of
ordered pairs amongst n letters is also n(n-1). This means
that each pair appearing exactly once in the'rows is equi-
valent to no pair of letters repeated in the rows. So, if
we can construct a row complete Latin square of order n,

we can decompose a complete directed graph of order n into
n Hamiltonian paths. Since G is a sequenceable group of

order n, there exists a row complete Latin square of order

n. The proof is finished. O

The above theorem tells us that if a sequenceable
group of order n exists, then we can decompose a complete

directed n graph into n Hamiltonian directed paths.

Example : Let us consider the complete-directed n-graph

where n = 6, Then

2 3 1 4 0 5
5 0 4 1 3 2

is a row complete Latin square of order 6.
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Figure 1.

A complete directed

6-graph is shown to

the left.
The decomposition is shown below.
0 1 0 1 0, el
5 > P 5 2 5
bol > o3 L 3 Lo é3

hol = o3

Figure 2.
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Sequenceable groups also help us to deocmpose a complete
undirected graph into Hamiltonian paths. Now S: 0,1,2m-2,
3,2m-u,5,2m—§,...,u,2m~3,2,2m-1 is a sequencing of sz
Let us construct a row complete Latin square by taking P

as the first row and row i by adding i (modulo 2m) to the

sequencing P. Then

0 1 2m-1 2 2m-2 ... m+2 m-1 m+1 m

1 2 0 3 2m-1 ... m+53 m m+2 m+1
m-1 m m-2 m+1 m-3 . 1 2m-2 0 2m-1
m m+1 m-1 m+ 2 m=2 .. 2 2m-1 1 0
2m-1 0 2Zm-~2 1 2m=-3 ee. m+l m=-2 m m-1

is row complete Latin square. Note that the last m rows

are the same as the first but in reverse order. Thus,
the first m rows of the Latin square exhaust all the pos-
sible unordered pairs i,}] where i,jesz. This leads to

the following theorem.



Theorem 5.7 : For every positive integer m,

(i) the complete undirected graph on 2m vertices has a
decompositfon into m.disjoint Hamiltonian paths;

(ii) the complete undirected graph on 2m+l vertices has
a decomposition into m disjoint Hamiltonian circuits
each of length 2m+1; and

(iii) every complete undirected graph on an odd number
2m+1 of vertices has an Eulerian circuit with the
property that, when a certain vertex and all the
edges through it are deleted, the remaining portions
of the Eulerian circuit are Hamiltonian paths of the

residual graph on 2m vertices.

Proof : Consider the Latin square above. Then the first
’m.rows define the required Hamiltonian decomposition of
the undirected graph on 2m vertices.

Now let us add two columns at the beginning and the
ending of the Latin square where all the elements of these
two columns are equal to 2m. We only cénsider the first m

rows. We have,

2m 0 1 2m=-1 2 .o s m-1 m+1 m 2m
2m 1 2 0 3 e m m+2 m+1 2m
om - m=1 m m-2 m+l ... 2m-2 0  2m-1 2m.
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Obviously, each row of the above defines a Hamiltonian
circuit of length 2m+1 and they are all disjoint. The
cbmp]ete undirected graph on 2m+1 vertices is decomposed
into m disjoint Hamiltonian circuits each of length 2m+1.
Moreover, the union of all the above disjoint circuits
forms an Eulerian circuit. Also this Eulerian circuft has
the property that when a certain vertex and all the edges
through it are deleted, the remaining portions of the
Eulerian circuit are Hamiltonian paths of the residual

graph on 2m vertices. [

A sequencing of a group G can be used to construct
a decomposition of a completed graph into Hami]tonian
paths. In the following, we are going to show that a
symmetric sequencing can be used to construct a l-fact-
orization of a complete graph.

As in Chapter four, we use g* to denote the unique
elament of order 2 in the appropriate group G of order
2n. E is used to denote the even starter induced by the
symmetric sequencing of G and m is an element which is

not in E.

Theorem 5.8 : If E is the even starter induced by a sym-

metric sequencing of the group, then E*UQ* is a Hamiltonian

circuit of a complete graph‘KIGI where E* = Eu{e,m} and
*

Q" = f{x,xg*} : xeG}.
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Proof : As in Theorem L.k,

E = {{b2j+2'b2(j+1)+1} : 0<j<n/2-1}
i « NI< -
v by (2541 Pon-g) ¥ Osisn/2-1)
which is an even starter of G and note that g* = a =b_,
n+l " 2n
*
g Z m.

Obviously, there is no element in the intersection of

E¥ and Q*. Let the vertex set of Kl be G. Then Q¥ and

G|
EY are disjoint 1-factors of KIGI.
When n is odd,

*

m = bn+1' E™ = {{bz'bS}’ {bu’bS}""’{bn—l’bn}} _
Y {{bZn’bZn-l}' {b2n—2'b2n—3}"’"{bn+3’bn+2}}
u {{e,bn+1}}.
When n is even,
*
m = bn' E = {{bz’bS}’ {bu’bS}""'{bn—Z’bn-l}}
ALY D L PP P R UL IR
u {{e,b,}}
* *
and Q" = {{x,xg } : xeG}

= {{bi’big*} : 1<i<2n}

= {{e/bzn}/ {bz,b _1}/---/{bn/bn+1}}

2n
In each of the two cases, n even and odd, we can see

that E¥uQ* is a Hamiltonian circuit of KI t

G|’

Theorem 5.9 : If G is a group of order 2n with a sym-

metric sequencing, then the even starter E, as described

above, induces a l-factorization F(E) on K .
. 2n+2
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Proof : Let the vertex set of Kopeg = Gu{w1,®2}. Extend
the group operation by defining
Xroo) = @yux = e and Xe2y = ®yeX = @, for every xegG.
Let Ef = Eu{e,=;} u {m,,} and Q* = {{x,g*x}:xeG} vu {eg,2,}.
Let F(E) = {xE#:XeG} u Q#. Since E¥ and Q# are both 1-factors
of K2n+2’ then each element of F(E) is a 1l-factor of‘K2n+2.
The order of F(E) is 2n+1., It will suffice to show that

every edge of K occurs in some element of F(E). It is

2n+2
obvious that all'{x,ml} and {x,mz} belong to a 1-factor of

F(E) and {ml,mz} € Q#. We need to show that {g,h} belongs

to some element of F(E) for any.g,heG and g = h.

*

A -1 _
Suppose g h = g", Then h = g*g which implies

{g,h} = {g,g*g} which belongs to Q#.

Suppose g_lh 7 g*1 Then there exists a pair {x,y}eE

such that g h = x"ly. Thus, gx_1 = hy_l.

are equal to k. Then gx”1 = k which implies g = kx and
hy™l = k so that h = ky. We have ki{x,y} = {g,h} which

Let us say they:

belongs to ke®, Thus, F(E) is a 1-factorization of K2n+2' 0

Example : Let us consider 26'

Now S: 0,1,4,3,2,5 is a symmetric sequencing of Z

and P: 0,1,5,2,4,3 is the partial product sequence of S.
{{bszB}’ {bs,bu}}

{{1,5}, {3,4}}

Then E

and m = 2, e = 0 and g* =3,
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Also, E = {{1,5}, {3,&}{0,m1}, {Z,WZ}}
and  Qf = {{x,g*+x} : xeG} v {= =)}
= {{0,3}, {1,4}, {2,5}, (= ,= 1},

Then F(E) = {xE' : xea} v’
= (1,5}, {3,8}, {0,=}, {2,=})
H2,0}, {4,5), (1,=}, {3,=,}}
{{3,1}, {5,0}, (2,2}, {h,=, 1}
{{s,2}, {o0,1}, (3,2}, 15,=,1}
{{5,3}, {1,2}, {u,wl}, {0,=,1}
A{o,u}, {2,31, (5,2}, {1,=,1}

{{0,3}, {1,4}, {2,5} , {wl,mz}}-
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The above diagram is a 1-factorization of K8'

Figure 3.
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