
National Library I* of Canada . 
Bibliothwue nationale 
du Canada 

I ~ana&n  Theses Service Services des theses canadiennes 

Ottawa. Canada 
K1 A ON4 

. . 

CANADIAN THESES 

NOTICE, 
The quality of this microfiche is heavily dependent upon the 

,quality of the original thesis submitted for microfilming. Every 

. -. effort has k e n  made to ensure the highest qualip of reproduc- 
tion possible. 

,.- 
~ 

If pages are missing, contact the university which granted the 
degree! 

" - 

Some pages may have indistinct print especially if the original 
pages.were typed with a poor typawriter ribbon or if the uni~er-  
sity sent us an inferior pho;ocopy. 

Previously copyrighted materisk (journal articles, published 
tests, etc.) are not filmed. 

Reproduction in full or in part of this film is governed by the 
Canadian Copyright Act, R.S.C. 1970, c. G30.  

THIS DISSERTATION '- C 

HAS BEEN MICROFILMED 
EXACTLY AS RECEIVED 

THESES CANADIENNES 

La qualrt6 de cette mcrof~che depend grandement de la qualrtd 
de la these soumlse au mlcrof~lmage Nous avons tout fa~t pour 
assuter une qual1t6 supkrteure de reproductton 

S'il manque des pages, veuillez commu~tiquer avec I'univer- 
sit6 qui a confer6 le grade. 

L a  qualit6 d'impression de certaines pages peut laisser A 
dksirer, surtout si les pages originales ont 6t6 'dactylographi4es 
A I'aide d'un ruban us6 ou si I'universit6 nous a tait parvenir 
une photocopie de qualit6 infkrieure. 

Les documents qur font d6ja I'objet d'un droit d'auteur{kcles 
de revue, examens publies, etc.) r,e sont pas microfilm&. 

La reproduction, meme partielle, de cp microfilm est soumise 
A la Loi canadienne sur le droit d'auteur, SRC 1970, c .  C-30. 

LA THESE A ETE 
MICRO-FILMEE TELLE OUE 

NOUS L'AVONS RECUE 



ON TESTING THE BLACK-SCHOLES 
. - 

OPT! ON PRICING MODEL 

~ohammed Mahtabuddin Chaudhury 

B.A.'(Hons.), University of Dacca, 7977 

M.A., University of Dacca, 1979 

M.A., University of Waterloo, 1981 

A THESI S SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY - 
b -- -- 

in the Department - 

of P 

Economics 

0 Mohammed Mahtabuddin ~haudhury 1985 
# -. 

SIMON FRASER UNIVERSITY 

July 1985 

d 

Al1,rights reserved. This thesis may not be 

reproduced in whole or in part, by photocopy 

or other means, wibhout permission of the author. 



P e r m i s s i o n  h a s  b e e n  g r a n t e d  L ' a u t o r i s a t i o n  a E t E  a c c o r d g e  % 

t o  t h e  N a t i o n a l  L i b r a r y  o f  3 l a  B i b l i o t h P q u e  n a t i o n a l e  
C a n a d a  t o  m i c r o f i l m  t h i s  d u  C a n a d a  d e  m i c r o f i l m e r  
t h e s i s  a n d  t o  l e n d  o r  s e l l  c e t t e  t h B s e  e t  d e  p r s t e r  o u  
copiGs o f  t h e  f i l m .  d e  v e n d r e  d e s  e x e m p l a i r e s  d u  

f i l m .  

T h e  a u t h o r  ( c o p y r i g h t  o w n e r )  
h a s  r e s ' e r v e d -  o t h e r  
p u b l i c a t i o n  r i g h t s ,  - a n d  
n e i t h e r  t h e  t h e s i s  n o r  
e x t e n s i - ~ e  e x t r a c t s  f r o m '  i t  
may  b e  p r i n t e d  or o t h e r w i s e  
r e p r o d u c e d  w i t h o u t  h i s / h e r  
w r i t t e n  p e r m i s s i o n .  

L ' a u t e u r  ( t i t u l a l r e  d u  d r o i t  
d ' a u t e w r )  s e  r g s e r v e  l e s  
a u t r e s  d r o i t s  d e  p u b l i c a t i o n ;  
n i  l a  t h P s e  n i  d e  l o n g s  
e x t r a i t - s  d e  c e l l e - c i  n e  
d o i v e n t  S t r e  i m p r i m g s  o u  
a u t r e m e n t  r e p ~ o a u i t s  s a n s  s o n  , 

a u t o r i s a t i o n  G c r i t e .  



APPROVAL 

%hammed M. Ciaudhury 

1)t :~TCC : Doctor of Phi1.o ;ophy 

I i t . 1 ~  o f '  l ' hc s i s :  on' Test ing  t h e  B'-ack-Sc!wles Option Pr ic ing  Model 

I 

Lx' imi rt  irig Committee : 

C ~ M  i r.rhan : Robert  R .  Graauer 

- 
Pao Cheng 
~ r o f e s s o r "  
Senior  Supervisor 

Peter  Kenfiedy 
PrOfessor 

I 

Kobert E .  W d e y  
. k s o c i a t e  Professor 
External Ex-gniner 
FacuJty of b s i n e s s  
Universi ty of Alberta 

Date Approved: July 24, 1985 



I 
PARTIAL COPYRIGHT LICENSE 

I hereby- grant  t o  Simc.  Fraser unlver?hty the r i q h t  t o  lend . . 
my thes i s ,  proJect  o r  extended essay ( t h e  t i t le  o f  which i s  shown below) 

t o  users o f  t h e  Simon Fraser Un ivers l  t y  ,Library, a n d  t o  make p a r t i a l  o r  
7 

s i n g l e  copies on ly  f o r  such users o r  i n  response t o  a request from the 

l i b r a r y  o f  any o the r  u n i v e r s i t y ,  o r  o ther  educationa) I n s t i t u t i o n ,  on 

~ t s  own behalf  or f o r  one o f  i t s  users. I f u r t h e r  agree t h a t  permission 

for  m u l t i p l e  copying of  t h i s  work f o r  scho lar ly  purposes may be granted 

by me o r  the  Dean o f  Graduate Studies. It i s  understood t h a t  copying 

o r  p u b l i c a t i o n  o f  t h i s  work f o r  financial gain shal f not  be a l fowed 

wi thout  my w r i t t e n  permission. 

, T i t l e  o f  Thesis/Project/Extended Essay 

;< , ' 

On Testing the  Black-Scholes Option P r i c i n g  Mvciet : li 

d 

Author: 

(da te)  



ABSTRACT 

Empirical studies have found the Black-Scholes prices to 

deviate froa the actual call prices in certain systematic ways. 

But there is pronounced disagreement regarding the sources and 

directions of this mispricing. The conclusions may critically 
. l E  

depend upon the underlying testing procedures. The purpose of - ,- 

this dissertation is to show the inadequacies of the existing 
s 

testing procedures and offer some alternative tests. 4. 

We proposs a multiple regression model of Black-Scholes 

mispricing and derive an estimable regression equation. We find 

that one of the components in the expected response function 

will persist despite the assumption tdat the Black-Scholes mddel 

is valid. This component is the bias of the 

Black-Scholes price calculated with an estimated volatility 
4. 

rate. \ . 
0- 

Three alternative estimators for the Black-Scholes fiodel 
i a 

price are considered. In our Monte Carlo, none seem to show 

clear superiority over the simple formula estimator. We further 

note that the reletionships of the bias with moneyness, time to 

maturity or variance rate are option-specific. This in turn 

implies that the coefficientspin the regression equation will be 
A 

option-specif ic. Thus, the c%eff icient estimates in a constant 

coefficient esimation framework, prevalent in current empiri a1 f 
options literature, may not reflect the marginal biases. 

We are further concerned with the stochastic regressor 

problem arising from the use of estimated volatility rate as a 

iii 



regressor and the effect of omitted variables. They are 

identified as two probable sources of sign reversal of 

coefficient estimates across studies. 

As an alternative to handle dividend effect on mispricing, 

. we propose a Chow Test for the reported systematic biases. Our 

test results, indicate significant dividend inducement for the 
T?& 

entire 'r.egression relationship of Black-Scholes mispricing. The 

volatility rate seems to play e ddminant role behind this 
dividend' inducement. 

We undertake an indirect test of Black-Scholes validity by 

testing restrictions among the regression coefficients. These 

, restrictions are available*beca"se they are implied by the bias 
3 s 

in the"~la6k-~choles fcrmuls estimator. Unfortunately, our small 

sample and large sample test results are contradictory. 

Finally, in ordeqr to combat o&ion specificity, we conduct . - 

multivariate cubic spline -regr&&ion to allow curvature in the 

relationship of Black-Scholes formula mispricing to individual 
I 

factors. The spline predictions of these relationships are then 

visually compared with our Monte Carlo results, which have been 

generated on the assuxption that the Black-Scholes model is 

valid. The comparisons do not show support for the Black-Scholes 

model. 
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INTRODUCTION AND SUMMARY - 
& P '  

Since the pioneering work pf Black and Scholes(1973), there 

has been substantial research i n  extending and modifying their 

European call valuation model, along with the'monfe carlo and 
-, 

empirical testings. The American call valuation model developed 

by ~ o 1 1 (  1977) ,Geske( 1979a) ,and whaley( 1981 ) has inspired another -- 
surge of research to investigate the adequacy of the 

-Black-Scholes European call valuation model or its modified 

versions in the context of American calls on dividend-paying 

stocks. 

Black and Scholes(1973) assumed a known volatility rate in 

deriving their valuation formula. Since the true volatility rate 

is not known, researchers have commonly used some estimate of 

the volatility(or variance) rate in the f~~rmula, in order to 

investigate the--%lack-Scholes pricing empirically. The resulting 

price is an estimate of the price that would have been given by 

the formula with the true voJatility rate. Since the difference 

between these two price magnitudes would assume a vital role in 

our discussions ahead, we would like to :,lake clear the terms to 

be used while referring to them. The price siven by the formula 

with the true volatility(or variance) rate woula be referred to 

as the 'Black-Scholes model price', or simply the 'mode% price', 
-/ 

when there is no chance of confusion. On the other hand, 

whenever any estimate of the true volatility (or variance) rate, 

rather than the true volatility(or variance) rate itself is usedA 

in the formula, we would refer to the resulting price 



alternatively as the 'estimated model price', the 'estimated 

formula price", oq simsi,y the 'formula estimate'. Thus, when the 

authors of ,empirical stuid<ies make statements about the model's 
,' ------' 

pridng, almost invariably those statement's are in fact about 

tx= estimated formula's pricing1. In what follows, when we 
mention re:;ults of various studies based on empirical data, 

I 

they should- be interpreted as for the formula estimate. 

M c k  and Scholes(1972) undertook the first empirical study 

of their model. They found the- model to overestimate 

;underestimate) the market option prices for options on 

high(1ow) historically estimated variance s~ocks. This has come 

to be known as the variance bias of the Black-Scholes pricing. 

Later, Black(1975) found that the model tended to 

overprice(underprice) deep-in-the-money(deep-out-of-the-money) 

options. This is referred to as the direct striking price bias. 

He also found options u i ; h  short maturities(1ess than 90 dayd) 

to be underpriced by the model. 

MacBeth and Merville(1979,1980) found that the direction of 

the striking price bias of the dividend-adjusted Black-Scholes 

prices is exactly opposite to what was reported by ~lack(1975). 

This bias came to be known as the inverse striking price bias. 

Since the data used for empirical purposes were data on 

unprotected America: calls, the impact of the early exercise 

possibility on the probable mispricing and the systematic but ------------------ $ 

' These comments apply, whether the Europen, the simple stock 
price adjustment, or the Pseudo-American version of the 
Black-Scholes is being used. 



reportedly conflicting biases of B! ack-SchoJes pricing came to 
' 

i 
be the subject matte:' of a number of studies,e.g., Whaley ( 1982), 

~terk(1982,1983),Gultekin,Rogalski, and ~inic(1982), Geske and 

~o11(1984,1984a). Wnaley41982) compared two modified(for - 

dividend) versions of the Black and.Scholes model against the 

Roll-Geske-Whaley American valuation modei and found that the 

latter model eliminates all the biases of the former, except for - 
the variance bias as reported by Black and ~choles(1972). The 

striking price bias was not significant, and the time to 

expiration bias was in the same direction as found'by 

 lack( 1975). ~terk( 1982) compared the pseudo-American *.rersic~n of 

the Black and Scholes and the ~merican call valuation model as 

developed by Roll(1977) and Geske(1979a). He found the latter 

model to reduce the striking price bias of the former. He also 

confirmed the direct striking price bias of the Black and 

Scholes model. Gultekin, Rogalski,and ~inic(1982) considered the 

Roll-Geske-Whaley model and found that its bias characteristics 
, 

are identical to that of the Black-Scholes. They confirmed the 

direct striking price bias and the direct estimated variance 

bias. That both models have identizal bias characteristics was 

also supported by Blomeyer and Klemkosky (1983). 

Geske and ~oll(1984) showed that the conflicting reswlts on 

the direction of the striking price bias, in particular, could 

be explained by the early exercise probability of the sample 

options. Geske and ~oll(1984a) reported that the striking price 

and the time to expiration biases are essentially 



dividend-induced, while the estimated variancebias is 

measurement-error- in-var iance-indue$. They shoved that the use 
of James-Stein estimator of the variance rates elidnates the 

Q estimated variance bias, 

It may be said that the conclusions of empirical studies 

about the validity of the Black-Scholes model are far from being 

decisive, especially in view of ,the fact that the results of, 

various studies are not directly comparable due to the varied 

P nature of (1)the data used, f2)the tkchnique of volatility rate 

estimation used, and (3)the approach to model validation and/or 

comparison adopted2. Moreover, confusion arose from the 

difference in the types of statements used to report their + 

findings. After a brief survey of the theoretical literature. in 

the first chapter, we detail these complaints in chapter 2. For, 
. . - 

example, we will raise questions such as: 

(a)What problems lie behind the use of ISD, as was used by. 

MacBeth and Merville(1979) among many others? 

(b)Were the reportedly deeper-away-from-the-money opti.ons 

of Black ( 1975) truly deeper-away-•’ rom-the-money? 

(c)1s MacBeth and Mervil~e(1979)'s result, based on the 

classification in-'the-money and out-of-the-money, comparable to 

~lack(1975)'s result which does not seem to be based on similar 

classification? d 

------------------ 
I n  this thesis, we would not be concerned with the data 

differences. . - 



(d)Can MacBeth and Merville(1979)'s, ~halej(l,.b82)'s or 
a 

Geske and ~ o l l (  i 984a) 's regression coefficients be construed as 

the marginal biases or their unbiased estimates? 

(e)Can we offer an alternative approach to address general 

problems iuch as testing the validity of the  lack-~iholes model 

or more specific problems such as testing the dividend?, 
*' 

8 $* 
inducement of ,th; reportid empirical systematic 'biases of $he 

Black-Scholes formula estimate? 
3- 

In dealing with these type of questions, our discussion 

about Implied Standard Deviation(1SD) plays an important role. 

ISD is computed by equating the market price to the mode,l price 

and solving for the only unknown--the volatility rate. That ISD 

is not the true volatility rate is indicated by the empirical 

finding of varying ISDs of options on the same stock. I f  it is 

an estimate of the true volatility rate only, it will be a 

biased estimate, even if the model is valid.  his bias arises 

since the inverse function of the formula will be nonlinear in 

the estimation error(of the volatility rate) when the model is 

valid. But more importantly the bias of ISD as an estimate of 

the volatility rate would be related to the moneyness and timg 
% \ h 

to maturity of- the option, and the true volatility rate. Thus 

the technique of model validation which takes sytematic 

tendencies of ISD as e.+idence against the model would be 

! x 

'~utler and ~chachter(l984) provide an interesting discussion of 
these issues. They also numrically analyze the bias of ISD as an 
estimator of the volatility rate and the biases in option prices 
generated by the use of ISD. 



This also raises fundamental questions such as how does the 

market prices options, and what can be considered as a valid 

model. Since the -volatility rate would in general be unknown, we 

are not permitted to assume that the market price would be 

identically equal to the fair value of the option4. Nor we can 

assume that the market plugs-in some estimate of the volatility 

rate in a nonlinear formula such as the one of Black-Scholes, 

since that would admit the possibility of the market being 

systematically off the fair value of the option5. If we believe 

in the wisdom of the market, then we need to assume that the 

market prices options in such a way as to allow only zero-mean 

perturbations around the fair value of the option 6 .  This 

perturbation can also accommodate the idiosynchratic behavior of 

traders. 

Under this scenario, a model can be said to b e  'validhif 

it is the model of fair valuation. Thus, if the Black-Scholes 

model is valid, the only source of systematic deviation for the 

formula estimate from the market price would be its bias with 

respect to the model price. 

I f  the set of assumptions under which a theoretical model o f .  
option valuation is developed, are correct, the model price 
would be the fair value of the option, and the model can be 
called the model of fair valuation. In general, this model will 
be unknown to a rqsearcher. 

TO be discussed later, formula estimate would be a biased 
estimate of the model price. 

6~haley(1982) introduced this perturbation in estimating the 
volatility rate from a regression using ISDs; but the economic 
purpose of the error term was not clear. 



AS mentioned earlier, formula estimate has commonly been 1 
f 

used in empilical studihas proxies for She model price. Much 

less commonly it has been recognized that the formula estimate 
# 

is a biased estimate of the model price. The bias arises due to ' 

the statistical fact that the expected value of a nonlinear 

function of a random variable is not equal to the function 

evaluted at the expected value of the random variable. In our 

context, the Black-Scholes formula is, the nonlinear function, 

and the random variable is the estimate of the volatility(or 

variance) rate7. Boyle and Ananthanarayanan(1977)'s controlled 

experiment indicates that the formula estimate would 

underestimate the model price for at and around-the-m0ne.y 

options, and overestimate for deeper-away-from-the-money 

options. The implication for empirical testing is that the 

observed deviations of the formula estimates from the market 

prices may predominantly be the nonlinearity bias, and/or their 

systematic tendencies primarily induced by the nonlinearity 

bias. The nature of the nonlinearity bias has also important 

ramifications for the model validation techniques, the 

appropriateness of the statistical techniques used, and their 

effects on the reported,results. 

For example,.the hedgfing technique of validating the 

Black-Scholes model utilizes the formula estimates to establish 
, 

the hedge positions in securities. These positions would in fact 
- - - - - - - - - - - - - - -T--  

' Though we cannot show it explicitly, we are assuming that 
biased estimate of the volatility(or variance) rate would not 
produce unbiased estimate of the model price. 



be distorted due to the bias of the formula estimates , and so 
4 

will be the result of testing excess hedge returns 8 .  Moreover, 

the hedging technique relies upon asset pricing model such as 

the CAPM, the latter itself being subject to empirical testing. 

In addition to the ISD-based technique mentioned earlier, 

and the hedging technique, there is another technique of model 

validation that has been used rather extensively. This technique 

relies upon comparing the actual market prices with the formula 

estimates, and examining whether the deviations are 

systematically related to factors such as the moneyness and the 

time to maturity of the option, the volatility rate, et cetera. 

Three ma j p r  statistical techniques of comparison have been use2: 

(1)classify sample opt&5hhs into some broad categories such as 

in-the-money versus out-of-the-money, or short versus long 
F, -Ba maturity, and then examine the signs and magnitudes of group 

averages for dollar or percentage deviation of the formula 

estimates from the market prices; (2)plot dollar or percentage 

deviations against a factor, and see if  any pattern emerges; 

(3)regress mispricing on factors such as moneyness and time to 

maturity of the option,, the estimated volatility rate, estimate 

of early exercise probabi,lity, et cetera., and see if the slope 

coefficients are significantg ------------------ 
'Butler and Schachter(l984a), pp 21, mentions this by pointing , 

out that the hedge ratios using estimated volatility rate will 
be biased. 

9The two measures of mispricing used are dollar deviatioh of the 
formula estimate from the market price, or the percentage 
deviation. Our expositions would be in terms of dollar 
deviations. 



As statistical techniques of relating the mispricing to the 

status of a factor, both grouping and plotting suffer from the 

problem of inadequate or no control for other relavant factors. 

Thus the primary source of uf$der or overpricing of an 

in-the-money option may not'be its monyeness status, even though 

under these two techniques it may appear to be so. Moreover, it - 

appears that, when the Black-Scholes model is valid, the 

nonlinearity bias for options within a broad group such as 

in-the-moiiey cannot be expected to have the same pattern. Thus 

the sample mixture of options can seriously affect the results. 
4 

In general, this criticism would be valid irrespective of the 

validity of the Black-Scholes model. On the other hand, finer 

groupings would be rather arbitrary. For example, the 

'nonlinearity kiss of the formula indicates that the same-option 
could be considered near-in-the-money (thus underpriced) or 

deeper-in-the-money(thus overpriced), depending upon the time to 

maturity and/or true volatility rate of the option. This 

contradictory needs of finer grouping and less arbitrary 

grouping would be called the 'dichotomous bias dilemma'. The 

word dichotomous bias arises from the fact that bias statements 
% 

are often made attributing two different directions(signs) of 

mispricing to two different broad groups of options. 

~lack(1975)'s direct striking price bias, and MacBeth and 

~erville(l979)'s inverse striking price bias can be cited as two 

examples. By their very nature, dichotomous bias statements and 
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It appears that given our market pricing scenario, the 
h 

complications of the formula's nonlinearity bias, the 

limitations of the general model validation techniques and of 

the specific statistical techniques used, an appropriately 

defined regression model may be necessary to elicit a concise 

but comprehensive understanding about the problems.involved. We 

hope to present such a model in chapter 3, which we shall call - 

an 'alternative regression model'. We derive an estimable 

regression equation which clearly shows the various probable 

components of the formula estimate's deviation from :he market 

price. The regression coefficienfs in this equation.would 

generally be option-specific, and reflect nodel misspecification 

bias over and above the nonlinearity bias. The use of estimated 

volatility rate as a proxy for the true volatility rate gives 

rise to the stochastic regressor problem for the least squares 
- 

coefficients, which may or may not be substantial, as is also . 
the degree of heteroskedasticity. 

The model shows the costs of simplification(such as 

assuming the regression coefficients constant across options) or 

incompleteness (such as omitting relevant factors,e.g., the 

early exercise protabi1ity);or lack of attention to econometric 

problems(such as stochastic regressor problem). The alternative * 

regression model also shows how one can address general problems 
3 

like the {validity of the Black-Scholes mode: or more specific 
* 

problems such as'dividend inducement of the systematic 
I- 

I 

relationships of mispricing with factors. 



have seen that the nonlinearity 

vital r6le in empirical 

In our discussion above, we 

bias of the formula may assume, a 

investigation of Black-Scholes pricing. The nature of this 'bias * 

is examined in chapter 4. 

Gn the basis of second order approximation to the 

nonlinearity bias,'we shall try to provide an explanation for' 

the pattern of striking price bias found by B o y l d n d  

Ananthanarayanan ( 1977) .  The systematic relat iodhips of the 
I 

nonlinearity bias with the moneyness and the time to maturity of 

the option, and the true variance rate will be given monte carlo 

investigation l o .  In doing so, the option specificness and the 

marginal nature of the systematic relationships will be 

emphasized. We will also discuss how the sample mixture of the 
8 

opt idns can af f ect the conclusions about systematic tendency of 

the formula estimate. 

We will also consider four alternative estimators and see 

if they are better than the formula estimator: ( 1  )pseudo 

estimator: if we plug-in estimated variance rate or volatility ------------------ 
loButler and Schachter(l983a) used numerical integration 
technique to do a similar analysis with respect to a composite 
measure of moneyness and the variance. See our chapter 4 for 
more details. 

" In this thesis, we would call one estimator 'better' than 
another, if  the former has lower bias, and lower standard, 
deviation or lower mean square error, unless otherwise stated 
explicitly. Another qualitative measure of goodness of an 
estimator would be the lack of any showing of systematic 
deviation. 

I2Butler and Schachter(l985) propose a technique to minimize 
mean squared error of estimating the Black-Scholes price ; the 
technique requires the knowledge of true volatility rate. 



- 

rate into a specific function of the true vaslance(or 

volatility) rate, the estimator should have zero bias, when the 

bjas is considered in the fcrm of a truncated Taylor series; 

(2)~utler-Schachter estimatclr: the estimator proposed by Butler 

and Schachter(l983a); (3)CC estimator: it is similar to 

Butler-Schachter estimator, .ut eliminates soae of the latter's 

deficiencies; (4)potentially unbiased estimator: both 

Butler-Schachter and CC are approximately unbiased, but another 

estimator is suggested, which would L mbiased, subject to 

operational limitation. 

We undertake a Monte Carlo for comparing the behaviors of 
\ 

the pseudo estimator and the formula estimator. Yet another 

monte carlo is undertaken to compare the performance of the 

Butler-Schachter and the CC estimator with that 'of the formula 

estimator. We do not find evidence of clear superiority of these 

e ~ ~ i m a t o r s  over the formula estimator, though the CC estimator 

seems toyhave slight edge. 

.Finally, we entertain some indirect tests of the 

 lack-~chofes model, and dividend-induced systematic 

relationships. We continue to use the formula estimate, and 

utilize the structure of our alternative regression model. 

In chapter 5, as a preliminary b a s k  of our tests in later 

chapters, we start our empirical estimations by assuming a 

coXstant coefficient version of the regression model developed 

in chapter 3. Followi.ng Gsske and ~011(19R4a), we divide our 
,- 

total sample into two subsamples, one containing the options 



with no dividend payment on the stock prior to maturity and the 
% 

other with options having one dividend payment prior to 

maturity. We discuss the signs and statistical significance of 
, -  

the coefficients estimated for the two subsamples, and compare 

them with previous studies. We also discuss the stochastic 

regressor problem, and find it as a potential source of sign 

reyersal of coefficients across samples. 

As indicat/d earlier,, recent studies have considered the 

lack of proper treatment for the early exercise possibility of 

unprotected American calls as the source of systematic 

deviations of the formula estimate. The question asked under 

testing dividend inducemnet is: if ke find the mispricing of 

formula estimate to be systeniatically related to the 

factors(such as moneyness and time to maturity of the option, 
i 

the volatility rate on stock return), is it mainly because of 
I 

the formula's not accounting for the early exercise feature of 

the option? Previous studies excert Geske and Roll(1984a) and 

~haley(1982) used techniques ocher than the multiple regression 

technique, and are subject to the criticisms we have made 

earlier13. Geske and Roll(1984a) ran two regressions, one for 

the total sample of options, and the other for the subsample of 

non-dividend-paying options. The significance of the coeffici'ent 

of a factor in the total sample, but insignificance in the 
f 

zero-dividend subsample was taken as evidence of 

13whaley(1982) did not present the estimated multiple regression 
equations 



dividend-inducement of formula's systematic relationship with 

that factor. We shall comment on their sample mixture of 

dividend-paying and non-dividend-paying options,as it can 

seriously affect the signific.ance of a coefficent in the two 

regressions. Moreover, they undertook no statistical test of 

differenc.2 in the coefficient estimates across the two 

equations. 
e 

In chapter 6,  we propose a Chow test for testing dividend 

inducement. Three regressions are run, assuming constant 

coefficient; one each for the zero-dividend subsample, the 

divi5cnd-paying subsample, and the total sample. The first two 

implies that we are not restricting the coefficients to be the 

same for zero-dividend and dividend-paying subsamples, but the 

last implies the restrictions. I f  there is no significant 

dividend inducement, the restrictions would not matter. Our test 

result indicate significant dividend inducement for the whole 

regression function. Tests of differences in the individual 

coefficients and pairs of coefficients indicate that the 

significant difference in the coefficient of the volatility rate 

may have caused the significat dividend inducement for the whole 

regression function. The coefficients of rnoneyness and the time 

to expiration do not seem to have any perceptible role in 

dividend inducement, These results are in contrast to those of 

Geske and Ro:1(?384a!, or ~haley(1982). 

In chapter 7, we present one of the indirect tests of the - - 
validity of the Black-Scholes model. We utilize the structure of 



* 

the second order approximation to the nonlinearity bias, and the 

f'act that when the Black-Scholes model is valid, the expected 

response function in cur regression model would consist of the 

nonlinearity bias alone. It appears that the approximation 

implies specific restrictions among the slope coefficients in 

our regression model. Thus an indirect test of the Black-Scholes , 

model would be to test the implied restrictions among the 

coefficients. The merit of the proposed test lies in that we 

take advantage of the existence of the nonlinearity bias of the 

Black-Scholes formula estimate, rather than being victimized by 

it, as the existing tests have been. We perform the small sample 

F-test as well as the large sample Wald test. Unfortunately, the 

two test results are contradictory. 

We noted earlier that the coefficients in a proper 

regression model would be option-specific,'while our estimations 

in chapter 7 and elsewhere relied on constant coefficient 
\ 

estimation. In chapter 8, we undertake cubic spline regression 
' 

to allow the coefficient of a factor to be nonlinear with 

respect tb that factor alone. 

Once the spilne regression equation is estimated, we use 

the estimated equation to predict the path of the mispricing as 

onlypne of the factors is allowed to vary over its sample 
/' 

cadge. This predjcted path is then compared with that of the . r 
nonlinearity bias alone, the latter being known from the ~ o n t e  

Carlo studies. If the former is extremely different from the 

latter, the validity of the Black-Scholk= model would be in 
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CHAPTER 1: - 
SURVEY OF THEORETICAL LITERATURE - 

, 

' +  



A simple call option written on a stock is a contract 

promising to pay max[O, P(t)-XI, if exercised at time t, where 

~ ( t )  is the stock price at time t, X is the striking price For 
* .  

*9 
a European call, the time of exercise, if to be exercised at 

all, is contractually defined to be t*, thestime when the 

contarct expires.. On the other hand, an America3 call entitles 

the holder to exerc5se any time on or before t*. An American 
- - 

call not having provisions of change so as to preserve its value 

in the event of cash distributions on thee undenrlying stock prior 

to contractual matur%ty, is commonly referred to as Payout 

Unprptected American Call, hereafter UAC. 

Both European and UAC will nave nonnegative values, since 
I 

they will be exercised only if the holder finds it profitable to 

do so. Unlike a forward or futures contract, exercise of'an 

option is a privilege, not an obligation. But the holder of an 
--. -/ 

UAC has an additional exercise in optimality, namely, that of 

whether to exercise prematurely, and if so, when. This early 

exercise feature of an 3 A C  gives rise to considerable 

complications in its valuation when dividends are paid on the 

underlying stock. 

Though substantial amount of research took place prior to 

1973, the seminal article of Black and Scholes revolutionized 

the science of derivative asset pricing, It will hardly be an 

overemphasis i f  we call the European call pricing model of Black 

and Scholes(1973) as 'the premier model' of option pric;ng. 

Using the argument of the absence of arbitrage in a market 



equilibriw , the valution formula of Black-Scholes was derived . 

as the solution to a linear parabolic partial differential 

equation, subject to time-independent boundary conditions15. The 

Black-Scholes valuation formula is given below:16 l 7  

c~(e)= P 4 ( d l )  - XB(T) #(d,) ..... ( 1 )  

where the notations are as follows: 

P the stock price'' 

X the striking price 

T the,contractual time to maturity 
i 

r the ri,sk-free rate per unit of time 

B ( T )  the price of & risk-free bond with time to maturity T and 

face value of $ 1  

a the volatility of stock return per unit of time c-- 
8 the set of arguments (P,X,~,T,O)'~ 

@ the standard normal distribution function 

------------------ 
l 5  Merton(1973) showed that the' stock price need not be the 
equilibrium price. 

l 6  Merton(1973) provides an alternative derivation of 
Black-Scholes valuation equation by using 3-security,instead of 
Black-Scholes's two-security hedge. Merton's is zero-equity, 
because proceeds from short selling and borrowing could be used 
to finance the long position. Black-Scholes's hedge necessitates 
net equity,though both Black-Scholes's and Merton's hedging 
portfolios are self-financing. 

''Hereafter, d l  and d, will be understood as magnitudes, based 
on relevant stock price adjustment for dividends. 

l B ~ o r  future reference, the stock price net of escrowed 
dividends will be denoted by S. For an option with no dividend 
payments prior to maturity, S would be equal to P. 

l 9  In the context of dividend adjustment, P will be replaced by 
S. . 



d ,  = [ ~ ~ ( P / X ) + ( ~ + O . ~ U ~ ) T ] / U ~ T  and 

The assumptions under which ( 1 )  was derived are: 

1.There is no restriction on borrowing and short selling, with 

full proceeds available. 

2.~0rrowing and lending rates are eqqal. 

3.There are no transaction costs or d ntial taxes. 

4.Trading takes place continuously in time. 
1 

5.The short term risk-free rate is known and constant through 

time. 

6.There are no dividend payments or other distributions during 

the 1ife.time of the option. 

7.The option is European. 

8.The sample path of the'stock price is c o n t i n u o ~ s ~ ~ .  

Specifically,the stock price follows a Geometric Brownian Motion 

through time(i.e.,follows a random walk in continuous time with 

a variance rate proportional to the square of the stock price). 

Thus, the distribution of the stock price over a finite interval 

of time is lognormal. 

9.The variance rate for the stock return is a known constant. 

The fir$t three assumptions con-stitute what h.as been termed 

as the "ideal conditions" in the market. The "ideal cohditionsn, 

together with the assumptions 4 and 5, specify the capital ------------------ 2 

20 Increments of the stock price exhibit local Markov 
property,i.e., in a shart interval of time, the stock price cana 
only change by a small amount. 



market environment. Assumptions 8 and 9 specify the stock return 

distribution. 

The plethpra of research that followed Black and 

Scholes( 1973)~ showed that the basic analysis of Blac,k and 

Scholes is not affected in any significant way by the relaxation 

of the capital market assumptions2'. --- 
~erton(1976) extends ~ l a c k - h o l e s  by considering a stock 

price process that combines the Gauss-Weiner and the Poisson. 

Even though completely riskless hedge cannot be formed under 

such a process, Merton derived a formula similar to the 

Black-Scholes's in spirit, by inv~king the CAPM. 

Cox and Ross(1976) consi&rad several other processes, and 

also proposed the risk-neutral approach of option valuation 

which has become very popular as a conceptual and simulation 

tool. The risk-neutrality argument is based on the observation 
4 

that if a riskless hedgecan be formed and maintained,. then the 

option valuation becomes preference-free, and thus could be 

undertaken as if the economy were risk-neutral2*. 

Jarrow and ~udd(1982) introduce the construct of deriving 

an approximate valuation for an arbitrary stochastic process. 

The approximate valuation is the sum of Black-Scholes valuation 

and adjustment terms involving the higher order moments of the ------------------ 
'I See Merton(1973) for stochastic interest rate, 

-fc IngersolI ( 1976) for differential taxes for capital gains veisus 
dividend or interest, and Rubinstein(l976) for discrete trading. 

2 2  For some simple types of processes, it is possible to form 
riskless hedge, and then the risk-neutrality approach can be 
applied to value the option. 



underlying stock price process. 

~eske(1979) derived a valuation equa ion for a call, f. 
viewing the call as a,compound option(on the value of the firm), 

with the Black-Scholes valuation as a special case when the firm 

in question is unlevered. The important distinction is that 

Geske's formula includes leverage effects,' and accommodates a 

varying variance rate for the stock return. ~ox(1975) also 

considered a non-stationary variance rate in deriving the 

Constant Elasticity of Variance(CEV1 diffusion formula. The CEV 

formul-a, though similar n appearance, is little more L 
complicated than the Black-Scholest3. Black-Scholes is, of 

course, contained as a special case of the CEV when the constant 

elasticity assumes the value of zero(i.e.,the elasticity, 

parameter is equal to 2). 

The Displaced Diffusion Option Pricing model of 

~ubinstein(l983),considered the asset structure of the firm in 

add'ition to the leverage considered by ~eske(1979)~~. The 

resulting valuation formula has the same structLre as the 

Black-Scholes, except that both the striking price and the stock 

price to be used in valuation are displaced by amounts dependent 

------------------ 
2 3  Both Merton's jump-diffusion and Cox's CEV diffusion involves 
the evaluation of infinite sums, and for empirical purpose, 
estimation of additional parameters than the Black-Scholes. 

2 4  Rubinstein assumes that the firm holds a risky asset with 
lognormal return, and a riskless asset. Capital strucure 
consists of riskless bonds 3nd equity. ~ l s o  the time and the 
size of dividend payment aye assumed to be known. 



on the asset structure and=-the capital structure25. 
,/' 

All thrmodels mext ioned above assumes that either the 

option is European or that early exercise is not optimal if it 

is an UAC. ~ertdn( 1973) and Snithj 1976) have shown that early 

exercise of an American call is not optimal, if there is no 
! 

distribution on the stock prior to the contractual maturity of 

the option2=. In that case, an ~me'ric'an call 'will have the same 
0 

value as an European option. 

For a proportional dividend policy D(P,T)=vP,.v>O, 

I ~erton(1973) derived the va;uel of a European warrant as:27 

C~(e;v)=exp(-vT)P@(d;)-XB(T)@(d,) ... (2) 
~ubinsfein(l976) derived the valuation formula for similar 

policy in discrete time. 

Let us note the following: 

( i )  CB(8)> CM(8;v) for v >O. Thus the Black-Scholes valuation 

will overestimate ah European option with distributions on the 

stock prior to maturity of the option. -_---------------- 
? The 
also. 

striking price adjustment depends on . the dividend policy 

, 2 6  At each point in time prior to the contractual maturity of 
the option, the holder will compare the value on exercise(P-X) 
with the value if held to maturity(C~(8)). But CB(8) is bounded 
below by P-XB(T). Given B,(T)<1, [P-XB(T)]>[P-XI. Thus, 
min[C~(8)]>[~-~]. An option is,\worth more alive than dead. 
Intuitively, if not exercised early,the dollars for the exercise 
price could earn riskless rate over the remaining life of the 
option. 

The notation is similar to that used by ~erton(1973), pp 171. 
I t  is assumed that the underlying stock pays dividends 
continuously at the rate u .  Smith(1976), pp 26, has similar 
exposition, but his valuation formula differs slightly from that 

d eported in Merton(l973J. .4 



(ii) For large P, 0(d,)-1, 4(d2)=1, and thus CM(B;V) 

=exp(-VT)P-XB(T). Then CM(B:v) < (P-X) for some large P. Hence, 

for large stock price, an American call could be worth more deed 

than alive. 

Merton(1973) also consideled a constant dividend policy. 

Though a closed form solution forJ< Q was not given, a solution 

for the perpetual warrant was derived. 

Geske(1978) derived an option valuation formula for the 

case of lognormally distributed dividend yield in a discrete 

time framework, using Rubinstein's technique of discounting 
r 

uncertain income streamz8. The distinction that the stochastic 

dividend brings about is that the variance rate for the stock 

return is to be adjusted to accommodate the instantaneous 

variance of compound dividend yield and the covariance between 

the return on the stock and the dividend yi'eldZ9. Like ( 2 1 ,  

Geske's stochastic div-idend valuation adjusts the Black-Scholes 

prices downward. But the early exercise feature of an UAC has* 

not been dealt with, in these basically-European-call-oriented 

valuations. 

2 8  Rubinstein's technique allows discrete trading to occur in 
discrete time and does not require a riskless hedge. Rut 
restrictions on investror preference and probability 
distribution of asset returns are required. For stochastic 
dividend, riskless hedge cannot be formed, because, in general, 
the dividend cannot be expressed as a nonstochastic function uf 
stock price and time. 

w 

S' 

2 , 9  The variance rate for the stock return needs to be adjusted 
also in the case of stochastic risk-free rate, as shown by 
~erton(l973)~pp 162-169.  



~chwartz(l977) developed a numerical solution to the 

partial differential equation governing the value of an UAC, 

with known date and size of dividend payments on the underlying 

stock prior to contractual maturity of the option. Roll(1977) 

prov'ided the first closed form solution for such 'valuation 

problem. Roll considered the case of an UAC, where the stock has 

a single dividend of known size D on a known date t,, prior to 

the expiration date t*. It was also assumed that on the 

ex-dividend date, the stock price would go down by a know-n 

fraction of D30. 

Inste-ad of'direqtly solving the partial differential 

equation governing the price dynamics of the UAC, Roll resorts 
- 

to the technique of valuation by duplication3'. Roll duplicates 

the cashfqow of an UAC by forming a portfolio of two European 

calls and an European compound option on one of the European 

calls. 

Noting that an UAC is, in fact, a compound option, 
-- 

i 

~eske(1979a) applies the Geske(1979)'s compound option formula 

to directly value an UAC. ~haley(l981) corrected some minor 

'O In what fsllows we will assume the value of the fraction to 
be equal to one, as has been assumed by the empirical studies 
employing Roll's model. Whaley(1982), of course, hinted that 
this simplifying assumption could be a probable source of the 
persistent variance bias, to be discussed later in th.is thesis. 

3 1  Ross(1976) showed that arbitrary simple options are A 

equivalent to a portfolio of call optionss. When the primitive I 

assets are of limited liability nature, and the striking price 
of the options are nonnegative, Ross proved,in.his Theorem 
3,that all simple options can be thought of as portfolios of 
puts and calls. 



mistakes in Roll( 1977)" s and Geske( l979a) 's valuation 

formulae32. Whaley pointed out that the-duplicating portfolio to 

replicate the cashflows of aq UAC is not unique. Geske(l981) 

showed that there are simpler duplicating portfolios than the 

ones used by Roll(1977) and Whaley(l981), containing fewer 

securities, and resulting in more compact solutions. Though both 

~oll(1977) and Geske(l979a)'s corrected versions will result in 

the same value of an UAC, Geske(l981) argue2 that the use of 

direct solution could prove cost-economic. Hereafter, we will 

refer to the UAC valuation model developed by Ro11(77), 

Geske(1979a), and ~haley(l981)~ as the   mo model. 

The RGW price for a singiz dividend case is given by: 

C(~)=S[4(b,)+4~(a,,-b,;-d(T~ / T ) ) ~ - X B ( T ) , [ ~ ~ ( ~ ~ ) / B ( T - T ~ ) ) +  

where 

S is the stock price net of escrowed dividend 

T I  is the time to ex-dividend instant or date 
,J 

S* is the critical level of the ex-dividend stock price above 

which the American call will be exercised 

R denotes the set of arguments (S,X,r,T,u,S*) 
- 

@z(a,b;c) is the bivariate-normal distribution function with 

integral limits a and and correlation coefficient 

3 2  The corrections are for the striking price(Sf,instead of 
S * + a D )  of one of the duplicating options in Ro11(1977), and the 
sign of the correlation correlation coefficient(-d(T,/T),rather 
than d(Tl/T), in our notation) !n Geske(1979a). 



A 

bl=[ln(Sj~*)+(r+0.502)T, l/odT,, 6,=b,-od~, 

~ollowing %eske(l9?8a),pp 377, and ~haley(198l)~pp 45, and 

as mentioned in Sterk(1983),, the fsllowing interpretation of the 

RGW valuation equation can be given. 

A .  On the ex-dividend date, S=SCt,), and T1=O. Thus if 

S>S*, bl=b2==, #,(.Is will be equal to zero, and @(.)s will be 

equal to one, and C(R) becoaes S-X+D, the exercise value if 
f 

**. exercised prematurely. If S<S*, b1=b2= -=, 

. value of the option if kept slive. 
% '  

B. Note that b, and b, are in fact d l  and d, of the 

Black-Scholes valuation eqdation ( 1 1 ,  with a time to maturity T1 

and striking price S*. Thus, following Jarrow and ~uddi1983), 

@(b,) could be interpreted as the probability that the 

hypothetical European call will end up in-the-money at 

[ maturity, i.e., S(t, )>s*. Hence, @(b,) co,dd be interpreted as 

the probability of early exercise33. 

C. Note that a, represents the d2 of the Black-Scholes 

valuation equation ( 1 )  for a European option with time to 

expiration T, and thus $(a2) represents the probability of this 

hypothetical option to end up in-the-money at maturity. On the 

other hand, 4(-b2)= 1-4(b2) represents the probability that the 

hypothetical option with time to maturity T I  in part B above 

will not end up in-the-money,i.e., p[S(t,) < S*]. Thus ------------------ 
33See Whaley(1982), footnote 17. 

- i 



- - 
@2(a2,-b2;-d(T1/T)) seems to represent the joint probability 

that s(~*)>x and S(t,)<S*, i.e., the probability that the call 

is not exercised early and is in-the-money atcontractual 

k 
I expiration. I 

D. In a risk-neutral economy, or if a riskless hedge canibe 

formed with the call and the stock, the value of an UAC with 

dividend payment ahead could be shown as the sum of: " 3 5  

(~)B(T~)[E~S(~,)( s(~~)>S*~+D-XI p[S(tl)>s*], the present value 
1 

of the conditional expected value of the exercise value when 

exercised just before the ex-dividend time. 

(ii) B(T)[E{S(~*)] s(t*)z~];~]p[S(t*)>~ and S(tl)~S*], the 

ex-dividend- time. 
d 

r 

To account for the early exercise possibility in the 

framework of Black and ~~choles(1973)~ ~lack(1975) suggested an 

approximation currently known as the pseudo-American valuation. 

Since the pseudo-American valuation has been in popular use, and 

the early exercise possibility is a vital part of an UAC 

valuation, we will end our discussion of the theoretical 
? 

research with a short digression on them. 

Let the stock prices be represented by: 

s(t)=~(t)-~~(t,-t) for t<t, 

=P(t) for tlt, 

3 4 ~ o t e  that the probabilities in B and C are risk-neutral 
probabilities. Thanks to Professor Whaley for pointing this out. 

35See Whaley(1982), footnote 17. 



Let At represent an instant of time. Jarrow and ~udd(1983) , 
- 

,pp 49, proves that : 

lim p(tI)+~=P(tl-At) with certainty. 

That is to say, at the ex-dividend time,the stock price 

would fall by the amount D with certainty, from the.leve1 

prevailing at an arbitrarily close previous instant. This also 

means that the stock price cum-dividend at tl-At will be : 

p(t1-A~)=P(~,)+D. Let us now see what would be the value of the 

c3t ion for t<t,, for the tvo hypothetical cases: (i) certain 

early exercise at tl-At, and (ii)certain exercise at t*(i.e.,no 

early exercise). 

(i)Certain exercise at t,-At , - 
The relevant stock price at t<tl would be P(~)-DB(T~), 

because value of the option corresponds to the risky component 

of, the stock price. The effective exercise price at tl-At will 
t 

x - D B ( ~ ~ - ~ ~ + A ~ ) F  X-D 

The reason is that if the option is exercised at t,-At, D 

can be claimed at t,, thus reducing the effective exercise price 

by the amount D . The option valuerthen, is given by: 
C~(~)=CB[~P(~)-DB(T~)),(X-D);U,~,T~] 

We have T, as the time to maturity here, because of early 

exercise taking place at t,-At, the option's life effectively 

shrinks to that moment. I t  is to be mentioned here that 

Merton(1973) has shown that an American callti•’ exercised early 



optimally,will be exercised only an instant before the 

ex-dividend time. 

., 

(iilcertain exercise ---- at t* or no early exercise: 

The relevant stock price and exercise prices are 

the opt ion P(t)-DB(T,) and X respectively. The value of 

will,then, be given by : 

CB(B)=CB[IP(,~~-DB(T~)I,X;~,~~TI 
b 

But the option will be exercised to the best interest 

the holder. Thus, if the probability of earl y exercise were a 

zero-one variable, American call should have the value: 

The above is the pseudo-American valuation, originally 

suggeste; by ~lack(1975). Pseudo valuation will be a good 

approximation if the probability of early exercise(p) is close 

to either of the extreme values. 

We will now examine when the early exercise willqake 
I i 

place. Early exercise at t ,-At wiil take piace i f  the obion , 

value on exercise at t,-At exceeds the value when exercise is 

postponed till t*. If exercised at tl-At, option's value at that 
t 

moment will be : P(t1-At)-x . I f  it is not exercised at t,-At, 
it will be worth: 

c~[{p(t,-~t)-o~(t,-t,+~t)),X; o,r,(tf-(tl-~t))] 



So option will be exercised at tl-At, if [p(t1-At) -Dl or 

P(t is such that : 

p(tl-At)-x > c~[~(t~),x;~,r,(t*-t~)l 

i.e.,P(tl)+D-X > ~ ~ [ ~ ( t ~ ) , ~ ; o , r , ( t * - t ~ ) ]  

Note that S(tl)=P(t,). 

We now have the condition of early exercise as: 

S(tl)+D-X > CBIS(tl),X; o,r,(t*-tl)l 

If i,t is an equality, then the holder will be indifferent, 

about whether to exercise prematurely or not. On the other hand, 

Xs a less than sign will lead to postponement o xercise. The 

solution S* to : 

is the critical level of the ex-dividend stock price above 

which option will be exercised early optimally. We will refer to 

this price as simply S*. 

It has been shown in Jarrow and Rudd(1983) that the 

sufficient condition for no early exercise is:35 

x-xB(t*-tl) > D 

or, X-D > XB(t*-tl) 

In other words, it means that if the effective exercise 

price, when exercised an instant before the ex-dividend time is 

greater than the present value, at tl-At, of the cost of 

, exercise at t*, the option will not be exercised early. ------------------ 
3 6 ~ h i s  was fir.st noted by ~oll(1977). 



NOW, if we are at t<tl-At, given ~ ( t ) ,  we can find out the 

probability of S(tl )>S*, bechse S* will be known in advance. 

Using the property of Geometric Brownian Motion for S: 

p=p(S(tl)>S*l ~(t)=s(t))=l-~(s*/s(t);(tl-t)) 

where F is the distribution function. 

The larger the size of the known dividend D, the cheaper 

the cost of exercise at tl-At, compared to the cost of exercise 

at t*. Also, closer the ex-dividend date to the contractual 

maturity date, lower will be the ex-dividend option value, i f  

not exercised at tl-At . In both of these cases, S* becomes 
* 

smaller, when the schedule S(tl)+~-x shifts to the left(for 

larger D) and the curve C[S(t,),(t*-tl),X] swings down(for 

smaller t*-tl) along with the' schedule S(~~)-XB(T-T,) shifting 

down ,in a diagram iike Figure 1,pp 253,of ~oll(1977). The 

implication is that by monotonicity of F, p becomes larger. 

Also notice that as the option goes in-the-money(or 

deeper-in-the-money), p would become larger. 



CHAPTER - 2: 

REVIEW OF EMPIRICAL LITERATURE - 
"9 



The body of applied research in the area of call valuation 

since t b  early 70's has centred predominantly around the model 

of Black and Scholes(1973). The principal questions asked were: 

Q1. Does the Black-Scholes European call valuation model, 
l 

or some modified or extended version of it represect 'well' the 

actual market prices of traded call options ? 

Q2. If the answer to Q1 is not a strong yes, then, (a) what 
-. 

is the nature of the weakness of the  lack-~choles model, and 
(b)what are the sources of weakness? 

Q3. Does an 'alternative model perform better than the 

Black-Scholes model in a prespecified sense ? 

Q L  can be interpreted as testing the validity of the 

Black-Scholes model against an unspecified alternative. 

Galai(1983) outlined the complications of testing model 
I 

validity. In general, such tests represent joint tests of the 

market synchronization, option market efficiency, and the 

validity of the model. 

Q2 is, in fact, an integral part of answering Q 1 .  Q3 is a 

problem in model selection, nested or non-nested, as the case 

may be37. In this thesis, we do not consider testing the 

Black-Scholes model against any specific alternative model, 

though it remains a'n,important agenda for our future research. 

3 7 ~ n  the existing studies, the models against which the 
Black-Scholes model has been tested, contain the latter as a 
special case. Thus, they belong to the nested case. 



7 

Our focus, here, would' be on Q1 and Q2.38 

One would find the answers to these questions as diverse as 

the tools of research producing them. Although findings such as 

Black(1975)'s direct striking price bias and subsequently 

MacBeth and Merville (1979)'s inverse striking price bias have 

led to interesting debates, insufficient attention has been paid 

to issues such as the differences in the types of tools used, 

their limitations, their probable effects on the results 

reported, et cetera. Moreover, there has been a lack of care in 

0 the interpretation and comparison of results. It is with this 

critical eye that we shall review the empirical research in this 

chapter. 

There are cine sections in this chapter. The major 

approaches to model validation are briefly reviewed in section 

1.  Though these approaches differ in significant ways, th* 

studies based on them do share a common finding that the 

estimated Black-Scholes prices tend to exhibit systematic 

deviations from the market prices. The findings of these 
I 

: systematic deviations are summarised in section 2. Since these 

findings are mostly for UAC data, the treatment of dividend in 

these studies is a potentially important issue, and is briefly 

3 8  TO be clear, option market efficiency will be a maintained 
hypothesis, not a hypothesis to be tested as is the case in many 
studies. We feel that the proper technique of investigating 
option market efficiency is the hedging technique first proposed 
by Black and ~choles(1972). But we do not pursue the question of 
efficiency, and thus our results about model validity may have 
been affected by any departure from the maintained hypothesis of 
market efficiency. 



1 

surveyed in section 3. A summary of the nature of empirical 

testing follows in section 4. The methodological and statistical 

problems of ISD and their possible resolution via regression 

models are discussed in secion 5. In section- 6, we examine some 

of the important regression-based studies. 

In section 7, we classify bias statements into two broad 

categories: the dichotomous bias and the functional bias. It  is 

- surprising that the bias statements of these two differing types 

were indiscriminately used to compare empirical results by . 

researchers. We discuss the problem associated with making 

dichotomous statements in-section 8. .Finally, section 9 reviews 

the problems and prospects of the functional bias approach3g. 

3 9  Approaches to validation of the Black-Scholes model were 
classified by Galai(1983), according to the techniques of 
validation. alternative classification can be made based upon 
the type of$ ias statement or the tool of investigation used. As 
we would see later on in this chapter, the two approaches under 
this classification are dichotomous bias approach and functional 

. bias approach. 



Approaches to model validation differ in at least two 
4' 

important dimensionsn0: 

(i)The estimator for the unknown variance or volatility 

rate. cr 
(ii)Giyen the estimator,, the technique of validation. 

Examples of studies using different types of estimators 
9 

are: 
b 

(i)Historieal variance rate estimator: 
I 

Black-Scholes(l972),Boyle and Ananthanarayanan(1977)~ 

, Galai(1977), Butler and ~chachtef(l983,1983a,1984a), 

Merton(l976a) 4 ' .  
\ 7 (i i ) Actual variance rate estimator:  lack-Scholes ( 1972) , 

Latane and Rendleman(1976), ~hattacharya(l980)~ Chiras and 

(iii) Implied Standard Deviation (ISD) estimator: Latane 

and Rendleman (1976), Schmalensee and Trippi(19781, Chiras and 

.OThe definition of moneyness may be considered as yet another 
dimension. 

''Historical variance rate estimatbrs across studies differ in 
the unit of time and the length of the period over which they 
are estimated. - 
'~ctua? 'rariance rate estimptors imply estiination of 

volatilities from the stock'return data over the life of the 
option, and as such may be appropriate only for ex-post 
research. 



Emanuel and ~ a c ~ e t h ( l 9 8 2 ) ~  ~terk(1982,1983) 4 3 .  

~lack(1975), Bhattacharya(1980)~ Geske and ~oll(1984a) 

compared the stock price(or stock price adjusted for dividend) 

with the undiscounted exercise price. However, MacBeth and 

1983), Butler and ~chachter(l983~1983a)~ Jarrow and ~udd(1982) 

among-others compared the stock price(or stock price adjusted 

for dividend) and the discounted value of the exercise price. 

The difference between these two definitions could be pronounced 
! 

if the the time to expiration is substantial. In general, the 
1 

/y 
latter definition will be biased towards finding long-maturity 

options to be in-the-money. 

Four major, techniques of validation can be identified: 

(i)Monte Carlo studies: ~erton(l976a)~ Boyle and 

~nanthanarayanan(l977L Butler and ~chachter(1983,1983a), Jarrow 

and ~udd(1982), and to a limited extent ~hattacharya(1980)~ 

~011(1977), Geske(1978). The technique relies on relaxing one or 

more of the assumptions of the Black-Scholes model, and 

evaluatian of the success of the Black-Scholes prices in 

tracking the true prices. 

2 (ii) Studies based on risk-adjusted return o f  hedge 
\ 

positions: Black(1972) first proposed the technique, and i t  was ------------------ 
'3Latane and Rendleman(l976) compare the performance of the 
historical and the actual estimators in predicting volatility. 
Whaley(l982),footqote 3,points out that even thouqh Latane and 
~endlernan(l976)~and Chiras and Hanaster (1978) call this 
estimate the 'actual standard deviation of return', it is merely 
an estimate. Blacr and ~choles(!972) used both the historical 
and the actual. estimtor in two separate sets of tests. 



later used by Galai(1977), Chiras and Manaster(l978),'~hillips 

and ~mith(1980), Blomeyer and ~lemkosky(l983), Butler and 

~chachter(l984a) among others 4 4 .  The idea is to establish 

position5 in multiple securities(stocks and options) on the 
<-, 

basis of comparison between the estimated model price and the 

actual market price, so as to make the overall posit'ion 

riskless, and rebalance the position at some prespecified - 

interval of time. If the model is valid, the overall position 

should indeed be riskless(or no risk that would be priced by the 

market). A ~ S O ,  the model should be able to identify the 

temporarily under or overvalued options. In an efficient market, . 

the temporary under or overvaluation relative to the fair value 

of the option would eventually get eliminated. Hence, the return 

on the riskless hedge should 'be higher than the risk-free rate. 

The studies kn this category, of course, differ in the 

choice of securities to combine, the time-and prices at which to 

establish the hedge position, and the length of time over which 

the position to be held. 

This approach requires unbiased estimates of Black-Scholes 

model prices to identify under or over-valued options in order 

to establish the hedge positionn5. To give an example of the 

probable error involved in using the formula estimate, let us 

assume that a near-out-of-the-money option is trading at $1.00, 

44Phillips and Smith(l980) provides a good survey of the use of 
this technique. 

'5~utler and Schachter(l984a) discusses this problem. 



while the formula estimate is $0.80 . For such an option, the 
formula estimate would, on the average, underestimate the 

Black-Scholes model price. If the latter ekceeds $1.00, given 

that the Black-Scholes model is valid, the formula estimate 

would indicate the wrong h,ed.ge position, on the average. 

Moreover, since the discretely adjusted hedges are not 

completely riskless, users of this approach tend to depend on 

asset pricing models such as the CAPM to estimate risk-adjusted 

excess return on the hedge. Given that the asset pricing models 

themselves are subject to controversy and need to be validated 

empirically, the hedging approach adds yet another hypothesis in - 

the already crowded pool of joint hypotheses. 

(iii).~tudies based s.1 the behavior of ISD: Latane and 

~endlernan(l976)~ MacBeth and ~erville(1979)~ Schmalensee and 

~rippi(l978)~ +Geske and ~oll(1984) belong to this category. The 

idea is that , assuming synchronous and efficient market, i f  the 

model is valid, then the ISDs should not have any systematic 

relationship with the features of the option(moneyness, time to 

expiration). 

If one c$aims that TSD is the true volatility rate, then 

the finding that ISDs of options on the same stock'traded at 

about the same time period, differ, cannot be adequately 

explained. If it is only an estimate of the true volatility 

rate, then the implicit assumption is that the market plugs-in 

an estimate of volatility rate in an exact prlcing fu&.tion. such 

as the Black-Scholes formula. But then one is accepting the fact 



that the market will be systematically off the fair value of the 

option, since the formula estimates will have systematic biases. 

This scenario is difficult to agree upon. In fact, the problem 

could lie in the assumption of an exact pricing function 

generating the actual option prices* we intend to discuss these 

problems in more details 'in section 5 of this chapter, 

Merville(l979,1980), Ge'ske and ~o11(1984a),   lack (1975). 

Whaley(1982), ~terk(1982,1983), Bmanuel and ~ac~eth(l982)~ 
I 

Gultekin,~ogalski,and ~inic(1982), .Blomeyer and Klernko~k~(~g8~), 

Butler and ~chachter(l984a) belong to this category Q 6 .  This 

technique dwells on estimating the volatility rate, calculating 

the model price using the the estimated volatility rate, taking 

the difference of the actual price and the estimated model 

price (dollar difference or percefitage). group the opt ions and 

compare statistics on mispricing across groups, Or plot ' 

mispricing against the variables of interest, or regress on the 
* 
variables of interest. If the model is valid, the deviation of 

market price from the model price wculd be randoma7. 

The grouping technique faces the dilemma that i f  the, 

classification is inadequate, the sample mixture of options 

would affect the conclusions severely and finer ~ 1 a ~ ~ i f i ~ ~ t - i ~ ~  ------------------ 
"~ote that some studies appear in more than one category, since 
the authors considered more than one approaches to validation. 

J' 4 7 ~ ~ t  the deviation o f  formula estimate from the model price 9 s  
not random. 



. - 
would entail arbitrarinessa8. Plotting or regressing the 

mispricing against individual factors lack the control for .other 

factors needed to examine the impact of one factor. Although 

multiple regression technique may be an appropriate vehicle of 

investigation, unless properly laid out, simple interpretation 

of regression results could be misleading. For example, in 

chapter 7, we show that the regression coefficients do not 

necessarily indicate the directions of marginal biases, nor ,can 

their significance be construed as evidence against a pricing 

model, in our case, the Black-Scholes. 

SECTION - 2 

Though the techniques mentioned above differ in sigiiificant - a ways, they have at'least two things in co mon. The answer to Q1 

is almost invariably not a strong yes, and the finding that when 

the Black-Scholes prices deviate from the true(in Monte Carlo) 

or actual(in empirical) market prices, the deviations tend to 

exhibit some systematic pattern. The former of the'se two items 

is less than surprisiqg, but the latter deserves at least a 

brief discussion. 

Using over-the-counter options market data, Black and 

Scholes(1972) first reported that the model overpriced 
t 

(underpriced) options on high(1ow) estimated variance stocks. 

-----------------_ 
4 B ~  detailed discussion of this dilemma is provided in section 8 
of, this chapter. 



~h9problem was attributed to the errors-in-variable problem 

arising from the measurement error in the variance rate on stock 

return. Black(1975) found that the model systematically 

oveypriced(underpriced) deep-in-the-money(deep-out-of-the-money) . 

options and underpriced options with less than 90 days to 
, maturity. Examining some probable sources of these biases, Black 

ultimately concluded that "..we don't know why some kinds of 

options lare consistently overpriced according to the formula and 

others are consistently underpriced". 

~erton(1976) provided the qualitative results and 

~erton(l936a) tested the robustness of the Black-Scholes model 

postulating the jump-diffusion process to be the proper return 

generating process, and found that the Black-Scholes prices 

tended to unde~price both deep-in-the-money and 

deep-out-of-the-money options, and overprice around-the-money 

' options. The mispricing is expected to magnify for shorter 

maturity options, since for longer maturity, mispricing 

decreases as the distributions tend to c0nverg.e to each other 

a s .  Also Merton(1976),pp.140-141, states that the qualitative 

- results correspond to practitioners' claim that deep-in , 

deep-out, short maturity options are underpriced, and marginally 

in-the-money and longer maturity options are overpriced by the 

Black-Scholes. 
% --. 

Boyle and Ananthanarayanan ( 1977) considered tie bias of the 

Black-Scholes price with an estimated variance rate, against the ------------------ 
4sSee ~erton(1976),pp.140, and ~erton(19763) , pp . ,  345. 



B Black-Scholes price with the true variance rate. Using numerical 

integration to conpute the bias, they found that the formula 

estimate underprices at and around-the-money options and 

overprices deeper-atvay-from-the-money options50. They also 

reported that the size of these biases is small even when the 

sample size for estimating the variance rate is as low as 15. 

In a simulation study, Bhattacharya(l980) concluded that 

the fornula bias is significant for at-the-money options with 

less than one day to expiration. His other findings 

are:(a)near-in-the-money and near-out-of-the-money options are 

underpriced;(b)the bias decreases as the time to expiration 

increases;(c)no systematic bias with respect to the variance 

estimator. 

~alai(1977) and, Chiras and ~anaster(l978) found some 

evidence of market inefficiency using the Black and Scholes 

model to establish riskless hedge (according to the Black and 

~choles(1972) hedging technique). Bookstabber(l981), using the 

same data as Chiras and ~anaster(1978)~ suggested that the 

observed inefficiency could be due to the n,onsimultaneity of the 

data used. Phillips and Smith( 1980) suggested that the 

transaction cost would eliminate any inefficiency observed by 

Galai(1977) and, Chiras and Manaster(1978). As a result, the 

joint tests oi the validity and the market efficiency seem to 

remain indecisive. 

------------------ 
'O~utler and ~chachter( 1983,1983a) con•’ irmed this result. 



a 
MacBeth and Merville( 1979) considered the data for CBOE 

options on six stocks over the year of 1976. They observed that: 

(althe Black-Scholes underprices in-the-money options and 

overprices out-of-the-money options, irrespective of the time to 

maturity; (blthe time to expiration bias is similar to 

Black( 1975). 

MacBeth and Merville's finding about the striking price 

bias is diametrically opposed to the finding of Black(1975). 

This was attributed to the nonstationarity of the variance rate 

overlooked in Black(1975). 

MacBeth and Merville(l980) compared Cox's CEV and the 

Black-Scholes, by doing simulations and also empirical testing 

using the same data as in their 1979 paper. Their simulation 

confirmed their earlier finding of the inverse striking price 

bias of the Black-Scholes, due primarily to its constant 

variance rate assumption. On the empirical side, they found the 

CEV doing consistently better than the Black-Scholes. ' 

Emanuel and MacBeth(l982) enlarged the sample of MacBeth 
r 

and Merville(:979,1980) by including the observations from 1978. 

.They questioned the validity of the constancy of the CEV. 

parameters as assumed by MacBeth and ~erville(1980)~ and - 

concluded that: (a)the superior performance of the CEV wanes as 

the interval of prediction(of the variance rate) increases; 

(b)depending on the parameter values of the CEV, the 

Black-Scholes will consistently either overprice (underprice) or 

underprice(overprice1 in-the-money(out-of-the-money) options. 



The studies and the results cited in this section are but a 

fraction of the growing empirical 

Black-Scholes. In the next section e shall survey studies with 

the dividend-induced Black-Scholes ases. However, we have 

already encountered several factors to. which the mispricing 
,, 

could be systematically related. For example, ~erton(1976~1976a) 

relate the mispricing to moneyness and time to maturity, Boyle 

and ~nanthanarayanan(l977) relates to moneyness, Black(1975) 

and, MacBeth and Merville(1979) relate to both moneyness and 

. time to maturity. Most interestingly, the sources of bias vary 

among the investigators. For examples, the striking price or the 

moneyness bias is traced to the mispecification of the stock 

price process by ~erton(1976~1976a) and MacBeth and 

~erville(1979,1980), but to the nonlinearity of the 

Black-Scholes formula with respect to the variance(or 

volatility) rate by Boyle and ~nanthanarayanan(l977). Even more 

interesting is the fact that the directiens of the systematic 

relationships to a factortin this case, the moneyness, found by 

different authors (Black(1975) and, MacBeth and ~erville(1979)) 

are exactly opposite. Emanuel and MacBeth(l981) tried to explain 

this by means of nonstationarity of the CEV elasticity 

parameter, while Sterk(1982) and, Geske and ~oll(1984) couch 

their explanations in terms of dividend-inducement. 

The questions we shall pose are somewhat diagnostic, and to 

certain extent, prescriptive: 



(a)were the reportedly deeper-away-from-the-money options 

of ~lack(1975) truly deeper-away-from-the-money? 

(b)Is MacBeth and Merville(l979)'s result, based on the 

classification in-the-money and out-of-the-money, comparable to 

Black(1975)'s result which does not seem to be baied on similar 

classification? 

(c)Can MacBeth and Merville(1979)'s regression coefficients , . ,  

be construed as the marginal biases or their unbiased estimates? 

(d)What problems lie behind the use of ISD, as was used by 

MacBeth and ~erville(1979) among many others? 

(e)Can we offer an alternative approach to address general 

problems such as testing the validity of the Black-Scholes model 

or more specific problems such as testing the dividend-induced 

biases? 

SECTION 3 - 
e 

We have discussed earlier in chapter 1 the effect of 

dividend payment on the underlying stock prior to contractual 

maturity of an UAC. Neither the simple dividend adjustment nor 

the pseu6vAmerican version of the Black-Scholes appear viable 

relative to the Roll-Geske-Whaley model in capturing the early 

exercise phenomenon of an UAC l .  Since the ~ublication of 

Ro11(1977), there has been growing awareness of the impact of 

the early exercise possibility on the adequacy of simpler 
L ------------------ 

"We are assuming here, the truth of the lognormal diffusion of 
the dividend-adjusted stock price. t 



(compared to Roll's) modified versions of the Black-Scholes , 

and the nature of observed mispricing. Attempts to estimate 

Roll-Geske-Whaley model prices with empirical data are to be 
b 

found in ~haley(1982)~ Blomeyer and Klemkosky ( 1 9 8 3 ) ~  -. 
~te.rk(1983.)', Gultekin,Rogalski,and ~inic(1982), and to a limited 

1 

extent in MacBeth and Merville ( 1 9 8 0 ) ~  Geske and Roll(1984). 

Geske and Roll(1984) also discussed the probable implications of 

improper treatment of dividend in the earlier studies. 

Merton(l976)'s Monte,Carlo did not consider dividend 

payment. L,atane and ~endleman(1976) used the original 

Black-Scholes model directly without any adjustment for 
1 

dividends. Galai(19771, MacBeth and ~erville(1979,1980), 

Blomeyer and ~lemkosky(l983)~ Geske and ~oll(1984a) used the 

si;'mj,e dividend adjustment of the stock price approach. Chiras 

and ~anaster(l978) transformed the discrete dividend paymefits 

into a constant continuous yield. Schmalensee and Trippi(1978) 

applied the Black-Scholes withour any dividend adjustment to 

compute ISDs, but they tried to concentrate on low 

dividend-yield stocks. Sterk(1982,1983) used the pseudo-American 

version of the Black-Scholes to compare the Black-Scholes 

against the Roll-Geske-Whaley model. Whaley(1982) computed for 

both of the modified versions(simp1e dividend adjustment, and 

pseudo-Amer ican) of the Black-Scholes in comparing ~ l a E  k-~choles 

pricing against Roll-Geske-Whaley pricing. 

Simple adjustment and Merton's continuous dividend yield 

modification imply that the probability of early exercise is 
\ 



essentially zero. On the other hand, pseudo-American valuation 

implPes either certain early exercise or no early exercise. But 

as the probability of early exercise can take any value in the 

closed interval the results about the pricing error 

and its relationship to the features of the option will be 

affected to varying extents. 

Whaley(1982) found that when the estimated Roll-Geske- 

Whaley model price is used, the striking price bias and the time 

to expiration bias get almost eliminated, and the variance bias 

is,reduced, but not eliminated. ~terk(1982) confirmed 

Black(1975)'s finding that the Black-Scholes underprices 

(overprices) out-of-the-money(in-the-money) options, and found 

the Roll-Geske model to reduce the striking price bias52. 

Sterk's finding is in conflict with MacBeth and 

Merville(1979,1980)'s findings, and he attributed this to the 

larger number of firms used in hi= study(his 63 versus MacBeth 

and ~erville's 6). Sterk's other finding was that 27 of the 182 

options used in the study showed strong probability of early 

exercise, which could have offset the bias found by MacBeth and 

Merville. 

But Sterk(1982) did not show the extent offbetter 

performance by the Roll-Geske-Whaley model over the 

pseudo-American version of the Black-Scholes. Sterk(1983) 

attempted,to accomplish this task by using the same data as in ------------------ 
5 2  Sterk(1982) used the version of American valuation model 
prior to the corrections of ~haley(1981), while ~terk(1983) used 
the corrected version. 



Sterk(l98 1 ) ,  and developing a dividend measure which would 
'a 

incorporate th eterminants of early exercisetdividend dize, 

moneyness, time- interval between the ex-dividend time and the 

\ time of contractual e~piration)~'. As expkted, he found that 

the Roll-Geske-Whaley model performs significantly better than 

the pseudo version of the Black-Scholes as dividend size d- 
increases. For small dividends, the performance of the 

Roll-Geske-Whaley model is not significantly better 5 ' .  For 

probability of early exercise between 0.3 and 0.68(the dividend 

measure between 2.5 and 4 ) ,  the Roll-Geske-Whaley model performs 
k 

significantly better .than the pseudo-American version of the 

Black-Scholes. 

Blomeyer and ~lemkosky(1983) compared bot thepimple stock 9 
price adjustment version of the Black-Scholes and the 

Roll-Geske-Whaley model prices(estimated with weighted ISD, or 
t 

WISD) with the actual market prices, using transaction data for 

CBOE options on 18 stocks over the period 1977-1978 55. 1 

Examining the graphical relationship between the two measures 

------------------ 
5 3  The rationale for this composite measure as advanced by Sterk 
is that it is difficult to separate out the effects of the 
various determinants. According to Sterk's dividend measure, an 
option with average dividend, average value for the degree of 
moneyness, and average time interval between the ex-dividend 
time and the time of contractual expiration, will have a measure 
1. 

'"The Roll-Geske-Whaley model performs significantly better for 
dividends exceeding one dollar. 

5 5 W ~ S ~  from the Black-Scholes was used in estimating both 
Black-Scholes and Roll-Geske-Whaley model prices, thus biasing 
estimated Roll-Geske-Whaley model prices upward. 



k 

(degree of moneyness [{~/~~(~))-l*-and relative prediction 

error [ {C(market 1-C(estimated -&h~l) )/C(estimated model) 1 )  

stggested by MacBeth and ~erville(1979), Blomeyer and Klemkosky 

concluded: the two models-h&' identical ppicing bias 

characteristics; both.models tended to underprice 

,out-of-the-money options and price fairly well the at-the-money 

and in-the-money options. The out-of-the-money bias is in 

conformity with ~lack(1975) and ~erton(1976)~ but contradicting 

MacBeth and Merville( 1979). ' 

Blomeyer and Klemkosky 'also performed ex-post hedqing tests 

with the two models. Both models succeeded in identifying 

under-valued and over-valued calls, and the ex-post performance 
'a 

between the ,two models was not statistically signif ic*. 

Thus Blomeyer and Klemkosky concluded that the observed 

mispricing of the Black-Scholes is not dividend-induced, a 

conclusion which is in conformity with Gultekin,Rogalski, and 

~inic(1982), but somewhat in conflict with Whaley(1982) and 

~terk(1982~1983). 
Y 

Geske and Roll(1984) discussed why the earlier studies 

failed to detect the expected dominance of the Roll-Geske-Whaley 

model. They found an inverse relationshi~jbetween ISDs solved 

from the Black-Scholes and the striKing price in their Monte 

Carlo, as was also suggested by MacBeth and ~ervilie( 1979) ,for 

the no-early-exercise cases6. But the relationship reversed for ------------------ 
I' MacBeth and Merville's finding was for simple adjustment 
version of the Black-Scholes, which essentially implies zero 
probability of early exercise. -'++L. 

ri- 

52 a 



the certain early exercise case. Geske and Roll therefore 

suggested that, depending on whether the probability of early 

exercise is close to zero or one, one may find that the striking 

price bias reverses. 

Geske and Roll examined the data on dividend yield of S & P 

500 composite and the yield to maturity of short term bonds over 

the period 1976-1978, which covered the period considered by 

MacBeth and Merville. The inverse bias was detected when the 

average dividend yield was low, and thus of 

early exercise was probably low. 

Geske and Roll also pointed out that the assumption of 

correctness of at-the-money pricing by the Black-Scholes is 
I 

untenable, since the Black-Scholes(pseudo-~merican version) will 

underprice all options on dividend-paying stocks irrespective of 

their moneynqss. 

MacBeth and ~erville(1979) excluded the options whenever 

significant probability of early exercise was detected, thus 

biasing their sample towards no early exercise options, and 

ultimately finding the reverse striking price bias. 

Geske and Roll forced the Black-Scholes price to equal to 

the Roll-Geske-Whaley model price for at-the-money. But previous 

tests did not have this forced equality. Thus all Black-Scholes 

prices would be lower than Roll-Geske-Whaley model prices in 

those studies, but the in-the-money options will be most 

underpriced because of their higher probability of early 

exercise. 



Geske and Roll also suggested that dividend uncertainty may 

lead to option premia deqreasing in volatlity rather than the 

usual increasing pattern. Thus, the ~oll-~eske-~halby model will 

not 'be able' to eliminate the varisnce bi.as. 

SECTION 4 - - i 

We give below a summary of the nature of the empirical 

works for which we have given a brief description. 

A .  Use of 1SD(with different weighting schemes by different . 
7 authors) has been more popular than the historical variance rate 

estimator. 

B. Almost invariably, model prices were estimated by 

plugging in the estimate of the variance rate in the valuation 
i 

formula. 

C. With the exception of Black and ~choles(1972)~ data used. 

for empirical testing were data for UACs. 

D. The tools used for reaching conclusi~ns were: 
B 

(i)Scatter diagrams: Seerfor exarnpl6, MacBeth and 

Merville(1979,80), Geske and Ro11(1984), ~terk(1982). 

(ii) Ordinary Least Squares(0LS) regression: 

{a)To estimate ISD: MacBeth and 

~erville(l9?9),Sterk(1982,1983), ~haley(l982),Emanuel and 

MacBeth(l982). 
*r 

(b)To estimate CEV elasticity parameter: MacBeth and 

~erville(l980). 
1 



(c)To compare performance of ISD(or WISD) versus historical 

variance rate estimator: Latane and ~endleman(l976)~ Chiras and 

Manaster(l978), Schmalensee and ~rippi(1978)~~. 

(d)To examine systematic risk of hedge positions: Black and 

Scholes(1972),. Galai(1977), Blomeyer and ~lemkosky(1983), 

Whaley ( 1982). 

( e ) ~ o  relate the mispricing of a model to variables of 

interest: Whaley(l982),Gultekin1~ogalski,and ~inic(l982),~eske 

and Ro11(1984a), MacBeth and Merville(1979). 

i (iii)Simple comparison of means of the variables of 

interest: MacBeth and ~erville(1979,1980)~ratified according 

to the degree of moneyness and the time to expiration, Blomeyer 

and Klemko~k~(l983)~stratified according to the yield. 

(iv)Mispricing in the form of forecast 

~ac~eth(l982) ,root mean forecast error for options stratified 
r> 

according to the degree of moneyness and time to expiration. 

(v)~onparametric test: Sign test in Sterk(1983). 

SECTION - 5 5  

Black and Scholes(1972)'suggested that i f  the historical 

estimate of stock return volatility over the life of the option 

were known in advance, and used in the Black-Scho1.e~ formula to 

57Schmalensee and Trippi(1978) used also Cochrane-Orcutt 
-Generalized Least Squares combinati~n in the presence of 
autocorrelation. 

5 8 ~ a r t  of our discussion i!k-it/his sectian follows closeky that 
given by Butler and Schachter(l984). 



predict the actual option premium, the Black-Scholes would 

perform much betters9 6 0 .  Ceteris paribus, the performance of 

the model de3ends on the goodness of the estimate of stock 
i 

return volatility. However, if the r&turn distribution is 

non-stationary, then the historical estbimator of volatility rate 
-- + .  

will be a biased estimator. It is also argued that the 

historical estimator does not incorporate information other than 

the series of past returns, which may be deemed relevant by the 

market in pricing the option. Latane and Rendleman(l976)'s ISD 

measure is designed to circumvent both of these alleged 

deficiencies of the historical estimator ISDs are numerically Y -  
solved out of an equation that equates the actual market price 

of an option to its model value, in our case, the Black-Scholes 

model price. Cox and Rubinstein(1985) interprets ISD as 

'market's estimate' of volati.lity. 

Let us start our discussion of ISD by ex loring the 4 
investor behavior implicitly assumed. Based on the information 

I 

set available at the time bf trading, which may, include the 

histcrical series on return, an investor would form an ex-ante r7 

estimate of the volatility rate. Investors, using these ex-ante 

esti~ates of volatiWlity rates, would come up with estimates 

about the fair 'value of the cption, probably using some familiar 

------------------ 
5 9  This ex-post variance rate is sometimes referred to as the 
'actual variance rate' in the literature. 

60~etter in the sense of identifying the undervalued and the 
q overvalued calls, smaller serial correlation, and lower variance 

of hedge portfolio's excess return). 



model of fair valuation. In the market place, investor 

interactions then lead to a market price. One can ask, is ISD, 

solved from the market price formed in the above-mentioned way, 

the true volatility rate? 

Given the stock price process, the true volati 1 ity rate 
could be a function of the stock price, time, and other 

parameters such as the elasticity parameter for the CEV 

diffusion process. It can be a constant as it is assumed by the 

Black-Scholes model. 

If the Sochastic process and its parameters were known, 

everyone would know the volatility rate, and also the model of 

fair valuation. Thus barring,for idiosynchratic behavior of 

investors, the ISD should be the true volatility rate. Then, if 

the true process is constant volatility rate lognormal diffusion 

process, and other assumptions of the Black-Scholes model are 
- .  

valid, the ISD solved from the Black-Scholes formula should be 

the true volatility rate. And ISDs solved from different options 

on the same stock should not differ. ?\ 
In general, the true stock price process and it's parameters 

will not be known to either the investors or the researchers. So 

i 
investors will form estimates of volatility rate on the basis of 

the information set available and their individual expectations. 

Then they will use some model of fair valuation which is deemed 

appropriate.  gain, the interactions of the investors lead to a 

market price. But now, if we(researchers) use a particular model 

to solve for ISD, that  IS^ would merely be a,n estimate of the 



true volatility rate of the true stock price process. 

TO simplify matters, let us assume that all investors agree 

about the model ~f fa valuation, even though the agreed upon 
3 "F, < i 

is 
model could be an 'inappropriate model. The investors could thus 

differ in their estimates of the fair value of the option, to 

the extent that they may differ in their estimates of the 

other pakmeters determining it. As 

use the same model as the investors did, the 

solved ISD would reflect market's estimate of volatility. What 

we are assuming in addition,, is that the 'market's mind' 

plugs-in the forecasted volatility rate in the pricing function ' 

of the model. 

> If our purpose is to search for a model of fair valuation, 

the investigation should rather be directed towards identifying 

the true,stock price process, given that we know other relevant 

factors, such as dividend payme~ts, tax treatment, et 'cetera. On 

the 'other hand, our interest may be the investigation of whether 

a particular model is able to describe the observed market 

prices. Let this model be tfie Black-Scholes model. 

Researchers, in the past, put ISD into two types of uses: 

(a) examining the behavior of ISDs as a direct test of the 

Black-Scholes validity; (b) using ISDs of options on a stock(on 

a given date or of a cJmmon maturity) to form an estimate of the 

volatility rate, which in turn is plugged into the Black-Scholes 
6 

formula, the resulting formula estimate to be compared with the 

actual market price. If the market used the Black-Scholes 



formula and plugged-in the market's forecast of the volatility 

rate, the ISDs of options on the same stock would exhibit: 
I 

(a)constancy, if the market used the same estimate of 

volatility rate for all options on the same stock; or 

(blsystematic relatiorlships to features of option, if the 

market changes its estimate of volatility rate in certain ways, 

depending on these features; or 

(clerratic variations, if  the 'market's mind' chose 

estimates of volatility rate randomly for different options on 

the same stock. 

Given that the market deemed the Black-Scholes model as the 

model of fair valuation patterns (b) and (c) are rather C 
untenable, since the Black-Scholes model uses a constant 

volatility rate for all ~ptions on the same stxk. Cox and . 

Rubinstein(l985) advanced two explanations of differing ISDs of 

options on the same stock: 

(i)when the volatility rate is changing over time, options 

on the same Btock, but differing in maturity, may not be 

expected to yield the same ISD; 

(iilif the calls are UACs, options with the same 

contractual life, but differing in moneyness, may have different 

effective lives, and thus ISDs would be different when fhe 

contractual life is used to solve for ISD. 

But these explanations can be consistent with only the 
9 

assumption that the market knowingly used the Black-Scholes 

model in situations where it is not the fair model of valuation. 



This assumption would appear unacceptable. 

There may be another explanation, namely, that the market 

simply used some other model in valuing the options. In that 

case, the Black-Scholes is misspecified and would cause ISD to 

exhibit systematic tendencies. 

So far, we have assumed that the market plugged-in its /' 
forecast of the volatility rate in the pricing function given by 

a theoretical model of' fair va-luation. But the existing models 

of call valuation, including the Black-Scholes model; are all 

nonlinear in the volatility rate itself or the parameters 

determining it. Hence, even plugging-in unblased estimate of the 

volatility rate or its parameters in the model's pricing 

function would only produce biased estimate of the model price. 

Thus to entertain the idea that the market plugged-in the 

estimated parameter(s) in a nonlinear pricing function would be 

equivalent to admitting the possibility of the market being 

systematically off the price given by the model which it thinks 

is the model of fair valua-tion. To avoid such possibility, one 

can assume that the market would use an unbiased estimator of 

the model price deemed to be the fair value. 

Butler and Schachter(l983a) proposed an estimator for the 

Black-Scholes model price which they claim to be approximately 

unbiased. If it is truly so, it would not exhibit any systematic 

deviation from the Black-Scholes model price, while the formula 

estimator would, If the market considers the Black-Scholes model 

price to be the fair value, it may be thought that the 



Butler-Schachter estimator was used by the market in an effort 

t~ establish the fair value on the average. Under such 

circumstances, the ISDs harvested from the (Black-Scholes) - 
formula would exhibit systematic tendencies, The reason is that 

the market used an unbiased estimator of the model price, and 

the formula produces bi3sed estimate of the latter. 

If the markei uses an estimator such as Butler and 

Schachter's, then the latter must show superiority over the 

usual formula estimator in that it always has lower bias, lower 

standard deviation, and negligible systematic tendency. However, 

our Monte Carlo study fails to establish such superiority for 
' <  

the two alternative estimators considered in chapter 4, one 

being the Butler-Schachter estimator. 

In light of the above discussion and if we believe that an 

efficient market cannot be systematically off the fair value of 

an option, we need to assume that the market comes fairly close 

to knowing the fair value. From the viewpoint of a researcher, 

the market price could be taken to represent the fair value of 

the option, allowing for a random error. Does this mean that, 

the ISDs from the Black-Scholes formula would show no systematic 

variation? That the answer is 'no! can be visualized from an 

example 6 1 .  Let the market price be: 

y=ln(o) (S/X) + E  

where ln(o)(S/~) is the fair value, and E(E)=O. 

------------------ 
6 1 ~ h e  example is for the purpose of exposition only. I t  should 
not be considered as a valid option pricing function. 



NOW, we have: 

ISD=exp(yX/S), and E(ISD)=o E[exp(eX/S)]. 
v 

The bias of ISD would be o[~{exp(e~/~))-11. It will, in 

general, not be equal to zero, and more importantly, would 

depend on the moneyness S/X and o. Though, the Black-Scholes 

formula is much more complicated than our example, the 

qualitative result would be similar. 

Thus, the ISDs solved from the Black-Scholes formula are 

expected to exhibit systematic tendencies even if the 

Black-Scholes model is the model of fair valuation. Therefore, 

examining the behavior of ISDs in order to judge the validity of 

the Black-Scholes model wou1,d be inappropriate. As for the other 

use of ISDs, namely,' that of. combining them to '•’arm 'an estimate 

of the volatility rate, plugging-in this estimate into the 

formula, and comparing this formula estimate with the market 

price, could be even less appropriate, since, in. fact, a biased 

estimate of the volatility rate would be used in the formula. 

In addition to the abovementioned problems, the methods of 

using ISDs of options on a stock in forming an estimate of the 

volatility rate, have come under criticisms. Practitioners of 

ISD have applied weighting functions to the.ISDs of options on 

the same stock to arride at a final estimate of the volatilty 

rate of the stock. As indicated by Chiras and ~anaster(l978),pp 

216, Latane and Rendlemanil976)'s weighted average is not truly 



a weighted average 62. It is also biased towards zero, the bias 

being >directly related t o w e  number of options used in 

weighting..~lso, Schmalensee and ~rippi(l978) ,pp132, pointed 

out that Latane and ~endleman ( 1976) 's weighting tends to attach 

little weight to short (time tolmaturity options, and ' 

deep-in-the-money or deep-out-of-the-money options. 

~rippi(1977) and, Schmalensee and Trippi(1978) used equal 

weighting for all options(the latter paper weeds out short 

maturity, far in-the-money or out-of-the-money options) on a. 

stock. Latane and ~endleman(1976) argued that such an.average 

would be unreasonable , given. that the sensitivity of the option 

prices differ depending on other characteristics of the option$.' 
>. 

Chiras and ~anaster(l978) notes that Latane and 

~endleman-( l976j's weighting by partials (of option price with 

respect to the volatility rate) ignores the size of 

investment (level of' option price) effect , and suggest the 
K 

weighting by elasticity instead 'j3. 

MacBeth and ~erville( 1979) recall; that  lack( 1975)'s 

result implied that the Black-SchoPes formula will.approximately 

correctly price an at-the-money option with time to maturity 

greater than 90 days. They suggest the regression of ISDs on the 

degree of moneyness and taking the estimated intercept as the 

estimate of the stock's volatility rate. Two objections have 

------------------ 
62~eights do not sum to unity. 

 or more criticisms of weighting, see Butler and Schachter 
(19831. 



baen advanced against this technique: (a)~utler and 
% 

Schachter( l 983a ) :  ISD's bias i s  not linearly related to the 

degree of moneyness. (b)Blomeyer and -Klemkosky(1983): According 

to the assumed linear relationship, out-of-the-money options 

would have lower ISD than the intercept would indicate. Thus the 

- - 
use of the intercept estimate as the estimate of the volatility 

rate would bias the -of-the-money prices upward, increasing 

the extent of overpr by the Black-Scholes formula) for 

outbof-the-money options. 

In addition to the above, the intercept estimator of 

~ a c ~ e t h  and Merville would suffer. from the limited availability* 

of the type of options to be used. 
d 

~haley(1982) proposes a nonlinear optimization procedure to 

estimate the volatility rate from the ISDs of options on a stock 

and the first partials of option premia with respect to the 
B 

volatility rate. He also controls for time to maturity by 

estimating one volatility rate for each time to maturity (on 

each day, for each stock). Whaley's procedure overcomes many of 

the problems associated with ISD, but still is subject to the-. 

following criticisms: (a) a model is assumed valid in its 

entirity, while the historical estimator requires only the 

validity of the specification for the stock price process: (b) 

econometric problems of estkation have been overlooked 6 ' .  

------------------ 
"~he lack of orthogonality of regression errors to the - regressor is an example. -- 



Moreover, Butler and Schachter(l983a) found that the use of 

the Black-Scholes formula with an estimated 'variance rate may 

lead to serious mjspricingufor an at-the-money option. Thus 

estimating.the volatility rate assuming the at-the-money 
A n  

correctness of the Black-Scholes formula pricing is 

questionable. 

SECTION 6 - 
It is surprising that regression has been used as a pri-mary 

vehicle of investigation only in whaley(1982). Gultekin,Rogalski 

and ~inic( 1982)~ and Geske and Roll( 1984a), with MacBeth' and 
\ 

Merville(l979)'s use of regression much less emphatic. The 

apparent lack of popularity of this powerful, yet- simple, 

technique can probably be traced to the following. 

With the exception of Geske and Ro11(1984a), all studies 

undertaken to date are based on pooling of time series and -. 
cross-section data. The otherwise simple te~hnique~of least 

squares regression becomes little more complicated in such 

cases. In particular, when the time series on'an option is ' 

1 

expected to have serial correlation, correcting for serial 

correlation in addit'ion to the pooling problem may become 

economically and computationally burdensome. Moreover, one will 

reasonably raise the issue of nonstationarity(at least of the 

stock return variance rate) of inputs to the regression problem. - .- - . 

In light of the above, what then will be the rationale for 
P 

the use of regression in addressing the basic pr-oblem of 



& 
investigating the validity of a valuation model, its strength 

against a competing model, and the nature and sources of 

mispricing , if any, by a model. To provide a rationale, we need 

to notice the following. 

In the empirical studies, attempts are made to relate the 

observed mispricing to various features of the opticn, e.g. , 

the degree of moneyness, time to expiration, volatility, 

probability of early exercise or its determinants, et cetera. 

Though the results are.conflicting some times, existence of 

systematic relationships between observed mispricing by a model 

and the state of one or more factors have been evidenced. For 
i 

example : 

(i) ~lack(1955) reported,that the Black-Scholes underprices 

(o~erpr ices) deep-out-of-the-money (deep-in--the- money) opt ions. 

( i i  ) MacBeth and ~;rville( 1979) reported that the 

Black-Scholes overpri'ces (underprices) 

out-of-the.-money(in-the-money) options. 

(iii)Geske and ~oll(1984) reported that depending on the 

probability of early exercise, either of the above two cases may 

occur. 

(iv) MacBeth and Merville(1979) also reported that the 

extent of mi'spricing for a specific degree of moneyness depends 
\ 

on the time o maturity6=. i 
I t  is these latter two types of evidences which bear the 

seed of rationale for the use of regression as a primary vehicle ------------------ 
65See PacBeth and ~erville(l97S), pp.1183. 



of investigation. What is suggested is that to assert a 

relationship between one of the factors and the observed 

mispricing, we need to controlfor the others, which the 

(multiple) regression is designed for. So far in the literature, 

kontrols in the form of control for a single factor has been 
, 

* 
more popular. For example, see Galai(1977), Emanuel and 

Mac~eth(l9821, Chiras and Manaster(l978) attempting to control 

the dividend impact, though the soundness of its implementation 

is in If multiple explanatory factors covary with each 

other and all of them are relevant, then the lack of control for 

one of the factors will lead to biased resu1ts"about the impacts 

of all others 67. 
h 

We,have another compelling reason to resort to the multiple 

regression technique. Studies to date ba-sed their conclusions on 

considering the formula estimates, while disregarding the fact . 

that the the biases observed can essentially be the formula's 

nonlinearity b i ~ s  (,wi.th respect to the model). Another 

possibility is that the observed biases are due to model 

misspecification over and above the nonlinearity bias of the 

formula. If the model is valid, the misspecification error would 

vanish. As indicated earlier, the model price then can be 

thought as the price of the option, which will' on the average, 

prevail in the market. ------------------ 
66MacBeth and ~erville(1979) institute controls for two factors 
through multiple regression. 

67See Kennedy( 198.0) for a lucid discussion about this issue. 
Kennedy introduces theuse of Venn diagrams in this context. 



These considerations lead one to believe that the 

difjerence between the estimated model value and the actual 

market price may contain several component:: 

(1)model misspecification; 

(2)bias of the estimated formula price with respect to the 

true model price; 

(3)random(zero-mean) disturbance. 

Regression technique will allow us an opportunity to 8- 
investigate~these components and lead us to devise a test of 

model' v,alidity. 

We begin by reviewing some important regression studies by 

~haley(1982), Gultekin,Rogalski,and Tinic(1982), and Geske and 

Whaley(1982) compared the pricing bias of (i) Black-Scholes 

valuation with sifiple dividend adjustment, (ii)pseudo-American 

valuation, and ( i i i ) ~ o l l - ~ e s k e - ~ h a l e ~ ( R ~ ~ )  valuation. Data Used 

were the weekly closing prices of all call options(with single 

diviaend prior to contractual maturity) on 91' stocks over the 

period ~ a n u a r ~  17,1975 through February 3,1978. The factors to 
f 

which th'e pricing biases were related through simple regressions 

are volatility rate, degree of moneyness, time to contractual 

expiration, probability of early exercise, and dividend yield on 

the underlying stock. The measure of mispricing used is the 

pricing error of the estimated model~value relative to 

1 



itself 6 8 .  

Whaley performed .I60 cross-sectional simple regressions for 
> 

six regressors (and thus six quations), and Student's t-test on 

the time average of  coefficient^^^. The test results of 

whaley(1982) may be summarized as: 

(1)~ontrary to previous evidences, striking price bias for 

none of the three valuation models is statistically significant. 

i 
But the coefficient is smbller for the RGW model. 

- 

(2) The bias with respect to the probability of early 

exercise is significant for both versions of Black-Scholes, the 

RGW completely eliminating this bias, as expected. The 
\ 

pseudo-American version does bettekthan the simple stock price 

adjustment versi~n. 

( 3 )  Statistically significant inverse relationship between 

the time to expiration and the relative prediction error of the 

simple stock price adjustment version exists. Coefficient for 

the pseudo-American version is smaller, and the coefficient for 

the RGW model, still smaller and statistically insignificant (at 

5% significance level). q 

6 e ~ h e  rationale for using the relative predictiqn error was 
advanced as : it will reduce the influence of hetroskedasticity. 
Geske and ~ol~(1984a) argued back that relative prediction error 
i%'%ery sensitive to whether the opticn is in- or 
out-of-the-money, since out-of-the-money model prices are 
usually very low. 

r 

6 9 ~ h e  technique is somewhat similar to the Fama-MacBeth 
procedure used in the empirical testing of the 
Sharpe-LintnerrMossin Capital Asset Pricing Model. 



( 4 )  For both versions(simp1e dividend adjustment and 

peu&-~erican) of the Black-Scholes model, the coefficient of 
-9 -- - - , 

the dividend yield is positive and statistically significant. 

For the RGW model, the coefficient is not significant. 

' (5)&The variance bias is direct and significant for all the 
$ 

..., 

three models. Thus the RGW model succeeds in eliminating all the 

biases except for the variance bias, indicating it may not be a 

dividend-related problem at all. 

Whaley also reported that multiple regressions using 

various combinations of regressors did not change the above 

simple regression results in any ,significant way. But the 

multiple regression results were not presented in the paper. 

We shall now turn to ~ult&n,~ogalski, and ~inic(1982) who 

used multiple regression to investigate the pricing bias of the 

RGW model. Weekly data on 36 call options(25 CBOE and 1 1  AMEX) 

d u w g  1975-1976 was used. In total, there were 1296 pooled time 

series cross-sectional observations. The measure of mispricing 

used was the dollar-difference(or the absolute dollar difference 
i 

in some of the regressions), and the measure of moneyness was 

P-X (or a dummy variable assuming the value of 1 for P<X in some 

of the regressions). The regressors were the measure of 

moneyness, the time to .expiration, the historical estimate of 
1 

the volatilities 70. The test results of Gultekin,Rogalski, and 

Tinic(1982) may be summarized as: 

70~istorical estimates were estimated from the most recent 6 
months' observations. 



( 1 )  RGW,tends to underestimate(overestimate) the market 

price for out-of-the-money(in-the-money) options7'. 

(2) Irrespective of the moneyness of the option, as the 

time to expiration increases, the dollar deviations tend to 

decreaseT2. This finding is in conflict with Whaley(1982)'s 

finding, but similar to Geske and Roll(1984a)'s. 

(3) In conformity with Whaley(1982), the RGW ' 

overprices(underprices) options on high(1ow) estimated variance 

What is noticeable in the results of ~ultekin~glo~alski, and 

Tinic(1982) is that the RGW could not eliminate the.striking 
1 

price and the time to expiration biases as Whaley(1982) 

reported. 

Regressions using the absolute value of the absolute 

prediction error as the regressand indicate that the prediction -.. 
errors are larger for in-the-money options and options on high 

est ima-ted variance stocks. 

In comparing the results of Whaley(1982) and 

Gultekin,$ogalski, and Tinic(1982), we should bear in mind that 

their measures of mispricinc are different. ------------------ 
7 1 ~ h i s  reporting is on the basis of conditional frequency 
distribution of average dollar deviations and multi~ie 
regression.See Gultekin,Rogalski, and Tinic(1982),pp.64-65. 

72This result is based on multiple regression. See 
Gultekin,Rogalski, and ~inic(1982),pp.65. 

7 3 ~ h i s  reporting is based on rank correlation of dollar 
deviations and estimated stock return volatilities, and multiple 
regression. See Gultekin,Rogalski, and Tinic(1982), pp.63  and 
65.  



Geske and R011(1984~i usedJtransaction data of 667 CBOE 

options on 85 stocks, the date of transaction being randomly 

chosen as August 24,1976. Historical variance rates were 

estimated usi~g the 6 months' data prior to the chosen date. 

Geske and Ro~ll(1984a)'s study is free from any time series 

related problem, except for the nonstationarity of the variance 9 

rate. They ran two cross-sectional regressions, one for the 

whole sample, and the other for the subsample of 119 options(on 

28 stocks) which did not have any dividend payments prior to 

contractual maturity. The regression equation looks like: 

C-CB(8)=po+ptlrL(S/~)+p,T+p3~ 

Comparing the statistical significance of coefficients in 

the two regressions, Geske and Roll(1984a) concluded that the 

striking price Aias and the maturity bias are essentially 

, dividend-induced biases ' 4 .  While the variance bias does not 

appear to be div4dend-related, Geske and Roll conjectured that 

the variance bias is ti measurement error problem, and could be 

redressed if James-Stein estimator, instead of the historical 

estimator,is used for estimating the volatilities. James-Stein 
I 

estimator for the simultaneous estimation of several variance 

rates pulls upward (downward) the smaller(1arger) historically 

estimated variznce rates, and thus alleviates the 

errors-in-variable problem, originally mentioned by 

 he variance bias and the striking price bias are in 
conformity with ~haley(1982) and Gultekin,Rogalski, and 
~inic(!982), but the maturity bias is in conflict with 
Whaley( 1 9 8 2 ) .  



y lack-Scholes(1972). Using the ~ames-stein estimator for the 

variance rates, Geske and Roll(1984a) found that the variance 

bias got eliminated 7 5 .  

We level the same criticisms as applied to 

Gultekin,Rogalski, and Tinic(1982). We plan to examine the 

results of Geske and ~oll(1984a) more closely in a later 

section. 

Some notable deficiencies of the existing regression 

studies can be summarized as: 

(I) Linear regression models ha.ve been postulated and 

estimated, without justification. 

(2)The existing option pricing models including the 

Black-Scholes model are non-!inear in the volatility rate or 

parameters determining it. Thus, if we replace the true 

parameters even by their unbiased estimates, the resulting 

formula estimate will be a biased estimate of the formula price 

with true parameter values, the latter price being referred to 

as the model price. No attention has been paid to this 

nonlinearity bias of the valuation formulae with respect ,to the 

volatility rate, and its probable impact on the estimate of 

By adjusting the variance rates towards the grand average, 
sentially the variability of the volatility regressor is 
astically reduced. This leads to a larger standard error of 

the volatility coefficient in the regression, and thus to 
smaller t-value for the least squares estimate of the 
coefficient. Thus the elimination of the variance bias by using 
the ~ames-Stein estimator of variance rates could just be a 
regression artifact without economically viability. 



coefficients 76. 
\ 

( 3 )  Estimated volatility rate has been used as a regreaso'r 
&\ 

without ever noticing thwprobable impacts on the least squares . 
coefficient estimates. The least squares estimates of 

coefficients will be biased and asymptotically biased, though 

these biases may be negligible under certain conditions 77. -. 
(4)Care has not been taken towards examining the nature of . 

the disturbance term in the regression7'. The disturbance may 

have economically meaningful components affecting the estimates 

of regression coefficients, as our discussion in 'the next 

chapter and in chapter 5 indicates. We also find the errors to 

(5) Coefficients across estimated equations were compared 

without individual ori a joint test for statistical 

significance of the difference between them. We intend to 

undertake such test(s) in chapter 6, in the context of 

investigating the dividend inducement of the systematic biases 

of estimated Black-Scholes prices. 

------------------ 
7 6 ~ n  chapter 4, the problem of nonlinearity bias will be 
discussed extensively. 

7 7 ~  discussion of this stochastic regressor problem is 
forthcoming in chapter 5. 

d8 ~hattachar~a( 1980) recognised the problem of 
heteroskedasticity in ~alai(1977)'s regression of excess hedge 
returns on market returns, while Schmalensee and ~rippi(1978) 
attempted to deal with serial correlation in a different 
context. 

79 Whether the problem is such that it warrants the use of more 
complicated techniques such as the Estimated Generalized Least 
Squares, Is a debatable question and we leave it for future* 
research. 

> 
1 



SECTION - 7 
SO far in our discussion, we did not differentiate between 

the types of statements used by authors to indicate their 

findings about systematic relationships of model mispricing or 

formula estimate's mispricing to various factors.' To the best of 

our knowledge, and to our surprise, this seems to have gone 

unnoticed id the literature. Consider the following statements: 

A .  "....the extent to which the B-S model price exceeds the 

market price .... decreases as the expiration date approaches." 
(MacBeth and ~erville(l979),pp.l184) 

B. "Options that are way out of the money tend to be 

overpriced, and options that are way into the money tend to be 

underpriced." (~lacli(1975),pp.64). 

Statement A gives one the flavor of a continuous functional 

relationship between mispricing and a factor(time to maturity 

here), and we will, refer to such statements as of the functional 
L 

bias type, Statement B, on the other hand, reveals no more than 

the reversal of the sign of mispricinq for two particular groups 

of options, and such statements would be referred to as of the 

type dichotomous bias. 

That adequate differentiation is not made in comparing 

results of different authors breed as much unqasiness as the 

following types of attempts: 

a. To base statements of one type on techniques best suited 

for the other'type. For example, based on the mean dollar 

deviations of broad categories of options, MacBeth and 



~erville(l979),pp.ll82, states: "...as r approaches zero so does 

y ...," where r is the time to expiration and y -is the dollar 

deviation. 

b. To state unqualified equivalence of the two types of 

biases. For example, consider b7haley(1982),pp.'48, " . . .there 
exists a significantly negative relationship ... (i.e., it C 
underprices short-lived options and overprices long-lived 

options) ... ." Also, consider Gultekin,Rogalski and 
~i~i~(1982),pp 65, "....,since (P -P ) would be negative for 

S E 
out-of-the-money options, the formula tends to overestimate 

their values." 8 0  That such equivalences do not necessarily 
-, 

follow, can be seen from a hypothetical sample of options in 

figure 2.1 . For this sample, functional time to maturity bias 
would be negative,. but the sign reversal of a dichotomous bias 

statement is not present(since both short and long maturity 

options would be on the average overpriced). 

It appears that broad classification technique. may be more 

appropriate for dichotomous bias type statements, and regression 

technique iould be more suitable for functional bias type 

statements. On .the basis of the teeh~'ique used', some of the 
i . -9 

important findings can be categorised as follows: 

Strikinq Price Bias 

------------------ 
BOThe latter statement is on the basis of the sign of regression 
coefficient estimate. 

B,lSome authors used both classification and regression 
techniques, and/or issued both types of statements. 



 lack( 1975) dichotomous . 
MacBeth and Merville(1979) dichotomous and functional a 

? 

~haley(1982) functional 

~terk(1982) dichotomous 

Gultekin,Rogalski, and Tinic(1982) dichotomous and 

functional 

Geske and Ro1111984a) functional 

Time to Maturity Bias -- 
~lack( 1975) dichotomous 

MacBeth and ~erville(l.979) dichotomous~and functional 

~haley(1982) functional 

Gultekin,Rogalski, and Tinic(1982) functional 

Geske and ~oll(1984a) functional 

Estimated Variance - or Volatility Rate -- Bias 

Black and Scholes(1972) dichotomous 

Whaley(1982) fancr.iona1 

Gultekin,Rogalski, and Tinic(1982) dichotomous and 

functional 

Geske and Roll(1984a) functional 

SECTION - 8 
MacBeth and ~erville(l979),pp.l185, emphasized that their 

finding of inverse (both dichotomous and functional) striking 

price bias is exactly opposite to that of Black( 1975)'s 

direct(dichotomous~ striking price bias. Geske and ~oll(1984) 

tr ed to ex,,lain tk,is reversal in terms of the effect of early t 



,exercise possibility of unprotected American calls. But let us 

now see how the dichotomous striking price bias could be, 

affected by mere variation of the sample'mixture of options. 

Let us assume t&at the Black-Scholes model is valid. As 

reported by Boyle and ~na&anara~anan( 19771, and Butler and 

Schachter(1983,1983a), and to be discussed in our chapter 4 ,  

at-the-money and around=-the-money options will be underpriced by 
C -- \ - 

tlk formula with an estimated volatility rate, and the '.. 
- - -> 

deeper-away- f ram-the-money opt ions will be overpriced. suppoke 

tha 

nea 

the sample is such that the proportion of 
"-. 

-out-of -themoney (near-in-the-money ) among the 
, 

out-of-the-money (in-the-money) options is much larger(smaller1 

than 0.5. We would then expect the direct dichotomous striki~~g 

price bias of ~lack(1975) to emerge. If the term larger(smal1er) 

is replaced by srnaller(larger), we would end up with the inverse 

dichotomous striking price bias s i m i l ~ ~ ~ ~ a c ~ e t h  and 

Merville(l979). 

On the other hand, i f ,  for example, Merton(l976)'s 
t' 

jump-diffus'on model isivalid, the misspecification error of the 7 
Black-Scholes model alone would reverse the dichotomous biases 

in our example. It  is not, of course, clear whether and to what 

extent the nonlinearity bias of the formula would actually 

neutralize the misspecification bias. 

We now turn to another problem associated especially with 

the dichotomous bias type statements, viz., that of the 

arbitrariness of the dichotomy. 



In our Monte Carlo study in chapter 4, we find that the 

dichotomous striking price bias of Boyle and Ananthanarayanan 

(1971) holds irrespettive of the levels of time to maturity . 

and/or t,rue variance rate. At first, this robustness might 

appear to nullify our criticism of the lack of control for other 

factors when relating the mispricing to any one factor. But a 

more careful consgeration would reveal that the problem lies in3 

.the arbitrariness of the dichotomy deeper-away-from-the-money 

versus around-the-money. The resul'ts of Boyle and 
L 

~nanthanarayanan(l977), Butler and Schachter(1983,1983a) 
b 

indicate the existence of two points of moneyness, one in the 
f 

e . " 

in-the-money and the other in the out-of-.the-money range, at 

which the expected mispricing w,ould be zero, when the 

Black-Scholes model model is valid. ~erton(1976) have also: 
, . < 

indicated the existence of two such points for the pure model I 

mis.specification bias of the Black-Scholes model with respect to 

the jump-diffusion model. The definition of closeness 

conformable to the dichotomy of underpricing versus overpricing . 
# 

( / Y q y S ,  found by the above a appear to be the one which would 

term as closer-to-the-money (of around-the-money) those options 
/' 

having moneyness between the two points of - z e w ,  bias. Then. at 

least, given the validity of the Black-Scholes model, whether an 

option is around-the-money(thus underpriced on the average).or 

deeper-away-from-the-money (thus overpriced on the average) 
s - 

would depend on the levels of time to maturity and/or the true 
< 

variance rate. since these factors affect the boundaries of 



closeness. Thus an option with 0.5 as the ratio of stock price g ;  
$ b - _ 

to the present value of the striking price, may appear 

deep-out-of-the-money, though, according to the aforementioned 

definitio-n of closeness, it could be near-out-of-the-money, if 

the tide, to maturity and/or true variance rate is rather'high. 

If this optior, is ac'tually found tobe underpriced by the 

estimated Black-Scholes formula relative to the market price, 

, m e ,  not caring for the above dPf  init ion -of closeness may be 
Q 

inclined to say that deep-out-of-the-money option is underpriced 

by the Black-Scholes model. If-the Black-Scholes model is valid, 

a near-out-of- the-money option will, in fact, be underpriced by 
, , .- 

the formula estimate. 

We cannot also rule ogt the possibility that Mertorf's 

jump-diffusion model is valid. The zeros of pure model 

misspecification bias of the Black-ScholeS model could be'such 

that a truly deep-obt-of-tk-money option is, in fact, being 

underpriced wit3 the model misspecification error overcoming the 

nonlinearity bias of the Black-Scholes formula estimate. 

The above discugsion sheds doubt on the interpretation of 

, Black.( 1975)'s w.idely discussed finding that ". .way out of the . 
money tend to be overpriced, and ... way into tb.e money tend to 
be ~nderpriced."~~ Unless one knows the true variance fates of 

the associated stocks, one cannot really say whether the 

overpriced(underpriced) opt ions were ?truly way out of (way' into) 

8 2 ~ o  recall, Black's overpricing i s  our underpricing, and vice 
'versa. .- p 

Q 



theLmoney. It {hen, appears that the striking price bias 
B 

reversal reported by MacBeth and Merville(1975,1980) may not be 

a reversal at all, for at least two reasons: (a)~lack's 

dichotomy is way cut versus way in, while MacFsth and Merville's 

is out versus in: (b)it is not clear whether Black's way out(in) 

was truly way out(in). 

The technique of grouping into broad classes of options and 

then comparing the mispricing across groups seems to be in a' 

methodological dilemma. The imsact of the sample mixture of 

options indicates the necessity of finer grouping. The 

arbitrariness, of dichotomy, on the other hand, seems to 

frustrate such an attempt. Functional bias approach, supported 

by an appropriate regression model has, at least, the potential 

of breaking out of such 3 dilemma. 

9 

SECTION - 9 

Under the functional bias approach, one tries to associate 

changes in mispricing with changes in some factors such as the 

degree ~f moneyness, time to maturity, stock volatility rate , 

etc. Thus the functional bias, being marginal ic nature, 

necessitates simultaneous control of other factors when the 

impact of variation in any one factor is being considered. As we 

have indicated earlier, multiple regression technique is 

suitable for this purpose. But in-using mu1tipl.e regression 

technique, more care is called for than just recjressing a 

measureof mispricing on several factors, as the most of the 



existing users in empirical options literature have done. 

First cf all, if the intentionqbehind using the multiple 

regression technique by authors such as MacBeth and - 
* -* 

~erville( 1979) or Geske and ~oll( 7 984a), were to investigate fW: 

signs and magnitudes of marginai biases(with respect to 

different factors), let us check ihether they did so 

investigate. 

~mplicit in the results of Boyle and Ananthanarayanan 

( 1977)~ Merton( l976a), and explicitly discussed ir our chapter 

-- 3, the marginal bias (or mispricing, which is the negative of 

bias) with respect to a factor is a functi~n(~ossibl~ nonlinear) 

of the levels of all relevant factors including the factor in 

question. This implies that coefficients estimated in a constant 

coefficient estimation, can hakdly be interpreted as estimates 

'of marginal biases. What is required for the_said purpose is 
n ,  

fully option-specific estimation of ah appropriate nonlinear 

regression equation,-In addition, the ecpnometric environment of 

estimation has to be evaluated. 

Note that fully option-specific estimation of an 

appropriate nonlinear regression equation would be free from 

both the problems of samplemixture of options and arbitrariness 
\ 

of dichotomy, as faced by the technique of grouping and 

comparison of mispri~ing~statistics across groups. 

We derive an option-specific nonlinear regression equation 

in the next chapter. Given the enormous complexities~of fully 
i. . 

option-specific estimation, one may want to limi,.t the objective 



-- 

to estimation allowing for polynomial approximation to the 

specificness of a coefficient with respect~to the level of the 

*a 
correspondinc; factor only. We make a limited attempt ,of this 

nature in chapter 8. 

As indicated earlier jn this chapter, and to be taken up in 

chapter 5, a frustrating orid rather unavoidable stochastic 

regressor problem arisea whene\er stock volatility rate is 

included as a regr ssor, since the estimates of volatility rates Y 
are subject to measurement error. In addition, there exists the 

problem of heteroskedastic error termm. Thus, the prospect for 

acceptably accurate and sound investigation- of ma:ginoi biases 

does not appear promising. However, there remain two areas of 

investigation that appear'less troublesome. They are: 

(i) Testing the di- ide end inducement of the alleged 
3 

systematic misbricing by the estimated Black-Scholes formula. 

This we do in chapter 6. .- 

; 
(ii) Testing the validity of the ~ l a d k - ~ ~ h o l e s  model 

against unspecified alternative through either testing 

restrictions on regression coefficients, or through allowing 

li,mited degree of option specificness in coefficients and then 

comparing predicted functional relation of mispricing to a 

factor with that implied by the validity of the Black-Scholes 

model. We shall pursue t h e s e m p t e r s  7 and 8. 

I 
r 

')The form of heteroskedasticity looks intractably complex even 
under second order Taylor series approximation to the 
nonlinearity bias of the formula. 

,a 



CHAPTER 3: . , - 
AN ALTERNATIVE REGRESSION MODEL - 



In the previous 

of the ISD approach, 

chapter, while discussing the deficiencies . 
we argued that from the viewpoint of a 

researcher, the market price of an option could be taken to 

represent its fair value, allowing for a zero-mean random error. 

The need for an appropriately defined multiple regression model 

was emphasized in order to undertake empirical inveq$igation of 

whether the Black-Scholes model price represent the market price 

on the average, and hence the fair value of the option. The 

underlying rationale is that if it does so, the deviation of the 

model's price from the market ?rice shoulb not be systematically 

related to factors such as moneyness,.,W-me to inaturity, or 

volatility rate. But the nonlinearity bias of the formula 

estimate poses a practical problem, namely, its use.as a proxy 

for the Black-Schcles model price induces systematic 

relationships, which a,re independent of any model 

misspecification error.  oreo over, the systematic relations . . 
induced by the nonlinearicy bias and any probable model 

misspecification error would in general be option-specific. 
4 

In our empirical survey, we have seen that tEe existing 

regression studies attempting to validate the Black-Scholes 
- A .  

, 
model empirically seem uninterested in these issues. The purpose 

: 

of this chapger is therefore to present an alternative 
3 

regression model which would embody explicit concern for these 
3- >d 

* - 
issues. I t  is also intended to help illuminate the limitations 

of the existi'ng s-tudies and the econometric environment of 

estimation. Though our exposition is in term 2f validating the + 



> 
k 

Black-Scholes model, the basic framework can be applied to'the 

validating other option pricing models as well. 
I 1- ? 

Let us assume that the actual option are generated 

according to the model: 

where 

C : the actual market price for the j-th sample option 
i 

Z? : row vector of nonstochastic treatment variables' 
j 

observations whichhair or may not include unity as an element 

u - N ( O , o Z  1.  
j.: u 

Notice two t'hings: 
> " 

(i) We are assuming that the model of fair valuation is the 

s h e  for all options, whether written on the same stock b r  not. 

(ii) The disturbance term which may incorporate the 
4f$. - 

idiosynchr$tic behavidr' of market participants is not 

option-sp&ific or stock-specific. And it does perturb the 
6: 

deterministic part in no systematic way. 

Let us denote the Black-Scholes inputs for the j-th option 

as B T  .   he following locational shiftof (3.1) would be useful: 
j 

/ 

In this farm, the response variate is the dislocation of 

the Black-Scholes model from the market price, and the 



expected response conditional on zT U OT is ~(z~')-cB(-B~ 1 .  
% j j j j 

For arbitrary realisations of ZT U OT , the expected 
j j 

response in (3.2) would be zero, if Black-Scholes is theeltrue 

model of fair valuation, i.e., if (i)ZT and OT are of the same - 
j j 

dimension and their difference is a null vector, and (ii) CB is 

identical function as f .  

Note that if a researcher's interest is model selection 
- 

vis-a-vis the Black-Scholes, f(zT ) could be thought as the 
j 

competing deterministic model function(rather than the assumed 

true deterministic model function). Then zT A Of =OT and ZT A 
j j j .  j 

o T  #zT , where A denotes intersection, would imply nesting of 
j 4  j 

the Black-Scholes model under the competing model. An example of 
- > 

, such a f(ZT ) would be the jump-diffusion model.of Merton or 
j 

Cox's CEV. If zT MT feT and ZT heT # zT , then we have a case 
j j j  - - j  j j 

a • ’  non-nested model selection, when f is treated as a competing 

model function. An example would be the pure jump model'as f. 

In this thesis, we would be dealing with only the case 6- 

Black-Scholes being &ested(or not). And the competing model' is 
.- 

unspecified. In ofher words, our framework is that of testing 

.the Black-Scholes against an unspecified alternative, with the 

assumption that the alternative is not nested in the 
- 

Black-Scholes model, 
.x / 

For developin ' a  convenient regression model, we need to 

hypcthesize a simple form'for f(zT 1-CB(BT )=g(ZT uOT 1. 
j 

- 

S j j 
Sometimes, a nonlinear expected response function could be 



conveniently expressed or approximated(by suitable normalisation 

and/or transformations) as the dot product of the gradient 

vector with respect to the treatment variables and the vector of 

treatment variables.An example would be the expected response 
a D 

function E(Y)~x, X, . For simplicity, we would assume that the 
case for g(.) is alike. 

We can express (3.2) as : 

," 
where 

B~ + is the assumed replacement for g ( . )  
I j 

t 

BT is the rou vec@r of suitable arguments chosen from z T  uBT 
J _I. 

and covering Z$ uBT . 
4 '  -i 

+ is the conformable(to BT column vector of coefficients. 
j j 

Notice that the coefficient vector is subscripted. In 

general, the coefficients would depend on the realisation of 

treatment variables, whenever dealing with the Black-Scholes 

84Arguments,if chosen suitably,would make the interpretation of 
empirical resulrs more tra~table. For example, because r would 
be the same for.211 options(at least for the same maturity - 
options), and option prices have been observed to be extremely 
insensitive to r, (see Cox and ~ubinstein(l985),pp.217), we 
might decide to drop r as an argument. Also, instead of dealing 
with S and X as seperate arguments, S/X or ln(S/X)"would make 
more sense in terms of interpretbtion. 



model' 0 5 .  

is now evident from that the 

model of fair valuation , then for arbitrary realisation of B~ , - 
I 

conditional mean  response(^' * ! would be zero, only if + is 2 - 

j J j 
null vector. Thus, if B~ were known and nonstochastic in 

J >  

repeated sampling sense, a test of the validity of the 

Black-Scholes model would be the test whetherp+ =0, a null 

vector. 
, j  

There are two immediate problems we encounter. . 

First, the column dimension of B is unknownE6. Let us do 
j a 

P 
the hypothetical partit-ion B T=(B T, 6 '1 and + '=I@ I 

/ j j j j B j h j  
the latter partition being conformable to the former. To be 

consistent with our earlier assumption of:unspecified 

alternative to the Black-Scholes model, it is only reasonable to 

use B in the regression. 
-I 
J 
Second, both the response variate [ C  -CB(BT 1 1  and the 

j j 
treatment variable o (included in BT as an argument) are 

j j 
observed with error. We are assuming, alltother variables are 

measured without error. 

\ 

'=See our discussi n of nonlinearity bias in chapter 4. 
%z. S 
"Thus the dimension of parameter space is unknown. 



Corresponding to the true regression model (3.3). the 
"w+ ;i i 

following-would be the model with observed regressand: 

or. c - c B ( ~ ~  )=eT O +[CB(V )-cB(@~ ) I  +v ..........(3.4) 
j j j Bj j j j 

where v = u  +bT O . 
j j j b j  

In terms of equation (3.4). re can identify four different 
0 

sources to explain why the estimated-Black-Scholes formula price 

would differ from the actual market price: 

(a)u : The irreducible noise common to all stochastic 
t s  j models of market price generation. -- 

(b)cB(oT )-cB(B~ ) :  ~h'e error in estimation of the model 
j, j 

price resulting from the volatility being measured with error. 

(c)BT O : The error of functional misspecification in the 
j Bj 

Black-Scholes *lodell even though the arguments are the same as 

in the unknown market's model *of fair valuation. 

(d)bT O : The error of model truncation in the 
j 64 

 lack-~choiea 'model, or incompleteness in arguments of the 
Black-Scholes model. 

If Black-Scholes is the true model of fair valuation, O 
bj 

= O ,  a null vector, then (3.4) boils down to: 



* --. 
k -- Y .  . 

If we do the Taylor series expansion of ~ p ( 8 ~  ) around 
i j 

b =o  , truncate after the becond-order term far simplicity and 
j j '  - /-' 

tractability, then after some manipulations, we can arrive at 

the following : 

B 

where 

and 6 is an unbiased estimate of a . 
j j 

Note that E(? ) =0 ,  and E[CB(BT )-cB(B~ 11  is the negative 
i' 1 l J J 

of 'the bias of theJestimated Black-Scholes formula price with, 

respect to the Black-Scholes model price. 

If  we substitute (3.6) in (3.41, and at the risk of 
- 

"The truncation i&ot essential to the derivation of the 
regression equation. If not truncated, the error term in (-3.6) 
would be the sum of series ~f terms similar to 7 . 

j 
"Sample standard deviation s is not an unbiased estimatosfj 
the population standard deviatioh. The unbiased estimator b is 
equal-to ~ / [ 1 - ~ 1 / 4 ( n - 1 ) ~ + ~ 1 / 3 2 ( n - i ) ~ ~ I .  Both s and i.5 are 
distributed as a constant times a x variable with n-1 degrees of 
freedom, but differing in the constant.Here n denotes the number 
of stock return Iobservations from which the historical variance 
rate estimate is calculated.The difference in the central 
moments of s and b are negligible for large n. 



the following equation emerges: 

where QI =@ 4 
'k Bj Bj j  

~f we denote the coefficients of o as 4 3  and 0, >, then 
j , j  

the final estimable form looks like: 

The error in the regression equation deserves some economic 

and econometric discussion. The j-th error term is: (b 

/ 

{var(i? ) - ( a  - o  )21(6 - u p - )  I -  $, ( 3  -0 ) 
j  j  j  j j 

1 
j j j  

, i, 
where d l  and d, are a6idefined in chapter I .  

j j  +1 
, b 

# . ? 
I 

Clearly there are four components of the disturbance term 

from four di f f erent y ~ ~ ~ r ~ e ~ .  



(i)u : The irreducible noise. O 

a j 
w 

(ii)bT : The error from the omission of the relevant 
j 51 

varigbles. As we have indicated earlier, when. the  lack-~choles 

is complete in arg ments, = O f  a null vector. 8 9  Thus, this 
5i 

component will vanish when the Bbck-Scholes is complete in 

regressors. 

(iii)-$, ( 6  - a  ) :  The error emerging fromsthe measurement 
j j j  

error in the regrkssor a . 
j 

(iv)q -u -aT + + 4 3 ( 6  -o 1 :  This component is emitted by 
j j j a j  j j 

the nonlinearity bias of the Black-Schales formula estimated ' 

with respect to the Black-Scholes model. pote that this error 

emerged when we expressed the difference between the estimated 

Black-Scholes formula price and the Black-Scholes mod%el price in 

terms of the expected value of the diffearence(negative of the , 

formula bias) and the sampling error in the difference. 

. ~otice that if  $0 ,  thenthe 
6-i 

.will partially(when 5 and 8 has 
Y -, 
J J 

incorporated in the intercept term, 
.\-- 

+ thus the remaining of the composite 

effect of this component 

non-zero covariance) get 

when it is included. And 

error will have mean zero. 

1. For the purpose of testing validity of the Black-Scholes 

model, the following observations may prove useful: 
,--- - --,, 

are equating the arguments with the explanatory variables. 
Though in regression termini-hogy, regressor is differentiated 
from explanatory variable, we would be less strict here and use 
these terms interchangeably, unless explicit differentiatson is 
made. % ha 

0 



( 1 )  Even if the Black-Scholes is the true model of fair 

valuation, we might find the estimated coefficients to be 

significant. This would happen if f l  is nonLnull. Given the 
i 
J 

sensi-tivity of the Black-Scholes formula's bias with respect to 

the volatility, the coefficient of the volatility may come out 

significant even in a zero-dividend sample, where the 

Black-Scholes is least suspect. 

the  lack-Scholes 
+% 

is complete in arguments, but only 

functionally wrong, thus @ =O, we may findfthe joint 
61 

signif icy\ of the slope coefficients, '-net & the intercept if 

( 3  I • ’  the Black-Scholes is not the proper model, both ; incv ' 
* functionally and in arguments, we may find both joint 

significance of the slope coefficients and signifi ance of the k 
intercept. 

The econometric environment of estimation is characterized 
8 

by the following issues: 

'(i) The regression model is nonstationary across 

obseyvations, since at least the nonlinearity bias of the 

Black-Scholes formula estimate is optidn-ipecific. 

(ii)The design mat'rix would be stochastic in repeated 

sampling sense, and, hence the stocha6tic regressor problem 

emerges. 

gowhen we say functionally, we mean fundtionally for the common 
regressors. It is possible that whenever incomplete in 
regressors,also wrong functionally for the common regressors. 



(iii)The composite error teun-r) is heteroskedqstic for two 
-0 

reasons: 

a*  b. h, (alyar(8 may aiffer across options on different stocks; 
r 'I 

(b)$, =@, + p ,  would vary across options. 
j j j 

of these econometric problems are 

well-establ'shed, the cures are not, especially when the 

variance-covariance matrix of the disturbance vector is not 

known-. In chapter 8, we partially address the first problem, and 

in chapter 5, the effects of the second probl.em in our context 

are discussed. The third problem is left fo'r future research. 



CHAPTER 4: - 
ON THE NONLINEARITY BIAS OF -- -- 

THE BLACK-SCHOLES FORMULA ESTIMATE - 



V n  the foregoing chapter, we have seen that 

components of the observe3 deviation between the drket price of 
\ 

,an option and the Black-Scholes price computed by inserting an 

estimate of the variance (or volatility) rate in the formula, is 

the nonlinearity bias of the formula estimate with respect to 

the Black-Scholes model .price.' In our regression model, the 

expected response function have, in fact,* the negative of the 

nonlinearity bias as one of its components. For ease of 

exposition but a,t the risk of confusion, we will refer to the 

nonlinearity bias as the formula bias or formula 

mispri.cing(negat ive of the formula bias) intorchangeably. 

That even the use of an unbiased esti~ator for the variance 

rate leads to biased estimate of the model price, has been 

pointed out by Ingersoll(1976). This problem has been pursued in 

detail by Boyle and Ananthanara~anan(l977)~ Butler and 

Schachter(1983,1983a). This formula bias may assume significance 

as an issue,' i'f one attempts to validate the Black-Scholes model 

empirically, and/or investigate the sources of observed 

mispricing by the formula estimate. In particular, as indicated 

in the foregoing chapter, it is possible-to conclude that the 

Black-Scholes model misprices options in certain systematic 

ways, even though the  lack-~chole; model price does represent 

the fair value of the option, the observe2 mispricing being 
1 

induced by the nonlinearity bias of the formula. 
, -- 

/ '  

Given the potential importance of the formula bias-in 

empirical investigation-of the Black-Scholes pricing, it seems', 



appropriate to examine carefully the nature of the formula bias, 
3 " 

its implications&or the empirical studies, and explore the 
%i: - 7 

existence of unbiased or approximately unbiased estifitators of 
I 

the Bla~k-Scholes model price, and their ptoperties, if they 
.P fa.& 

exist. 

The remainder of this chapter is divided into eight 
r 

sections. The Taylor series representation of the nonlinearity 

bias of the formula estimate is discussed in section 1 .  In 

section 2,'we introduce the pseudo estimator, the bias of which 

would be to?zero when the bias is approximated 

of approximation. With a Monte 

Carlo, we compare the behavior of the pscydo estimator with that 

' of the formula estimator, as the variance rate'and the sample I +  
%, A 2 = 

size varies. @ '! 

t 4 

Both the formula estimate and the pseudo estimate are - 
6 P 
' ;c 

formed by replacing the true variance rate with the estimated , 
I .  

.d 

variance rate in the respective estimating functions. Butler and 

Cchachter ( i 983a) proposed an estimator which first approximates 

the Black-Scholes price by a pair of Taylor series, which are 

linear in 'the powers of the variance rate, and then these powers 

are replaced with their unbiased estimates, rather than with the 

powers of the estimated variance rate. We review this estimator 
w 

in section 3. 

A legitimate concern with respect to such attempts as 

Butler and Schachter(l983a), is the validity of series 

representation of the Black-Scholes model price, in general, and 



I the validity of Taylor series representation around arbitrarily 

L chosen points, in particular. These issues are our subject 
\ 2 

d 

matter is section 4. 

xn section 5, we propose an approximately unbiased 

estimator which retains the spirit' of the estimator proposed by 

Butler and ~chachter(l983a), but tries to improve upon it in 

terms of logical consistency and validity of approximation, and 

L sample size requirement. We-undertake a se,parate Monte Carlo 

study to compare the performance of these two estimators with 

tF4e formula estimator. In section 6, we considpr an estimator, 

for which the parameters of a normal distribution function are 

to be estimated, the point of evaluation being known. This 
6 

contrasts with the standard problem of considering estimators 

with known standard ngrmal distribution function, but unknown 

point(s) at which to evaluate the function. The new estimator 

has the potential to be unbiased, rather than just approximately 

unbiased. En+ the information requirement to form an estimate in 

practical situations seems to limit its usefulness, at least, at 

this stage of our research. - - 

Our Monte Carlo results did not find any of the alternative 

estirnabors to have clear sugeriority over the computationally 

simple formula estimator. So, in section 7, we explore further 

the nature of of the nonlinearity bias of the formula estimate. 

An explanation for the striking price bias found by Boyle and 

Ananthanarayanan (1977) is provided on the basis of second order 
i 

approximation to the nonlinearity bias. Using Monte Carlo 
I 



results, we review the systematic relationships of the 

nopl4nearity bias with moneyness a:., time to maturity of the 

optidg, and the true variance rate on the underlying s ock's 
'i' 

\ 
i 

return. ~ h k  marginal nature of these relationships are 

emphasized, along with the implications for the dichotomous bias 
A 

and the fur~ctional bibs approaches to model(B1ack-Scholes) 

validation. 

The final section summarizes some of the' results of this 

: chapter. 

SECTION - 1 

The nonlinearity bias of the formula arises when 

E[~(x)]#~[E(x)], i.e., if the function g of the random variable 

x, is nonlinear in x. In our case, the unbiased estimate V of 

the true- variarice rate V could be taken as x, and the 

Black-Scholes functional, form CB as g. To see the nonlinearity 

bias more clearly, let us expand CB(V) around the point V=V, k: 

9 1 ~ e  are, of course, assuming the-existence of the relevant 
expectations. Also, Rote that ~lirn[g(x)]=g[~lim x], i f  the 
probability linit exist. Thus, a biased estimator can be 
unbiased in the sense of probability limit, or roughly speaking, 

s asymptotically unbiased. 

9 2 ~ n  terms of our previous notation, CB(V) is equivalent to 
CB(B~), and CB(V) is equivalent to CB(BV . Since the only 
difference between OT and B T  is the replacement of o with tf'e 
random variable 6, for the purpose of this chapter, we will 
suppress the other arguments than the volatility rate. Further, 
for the sake of comparability with the existing studies in this 
context, we will use thq variance rate V as the argument, rather 
than the volatility rate. 



using Taylor series expansion, and then take the expectation: 9 2  

9 3 

where p (9) is the r-th central moment of V.  
r 

From ( 4 . 1 ) ,  the formula bias is: * 

I t  appears from (4.2) that if  we knew B(V), then we could 

find an unbiased estimator [cB(V)-B(V) I. If we could find an 

unbiased estimate of B(V), subtracting that from CB(V) would 

have yielded unbiased estimate of CB(V). But it seems that we 

cannot form unbiased estimate of B(V) for two reasons: 

9 3 ~  somewhat similar exposition of the nonlinearity bias is 
given in Butler and Schachter ( l 9 8 3 a ) .  



(a) Due to the existence of non-zero derivative of any 

order for CB(V), we are unable to form unbiased estimates of 
r r 

{a CB(V)/aV (V=V) . We can, of course, estimate p ( V )  without 
r 

bias, for all finite r. But even if we had unbiased estimate of 
r r .  

li { a  CB(V)/aV (V=V), the product of its unbiased estimate and that 

of p (9) would not be gn unbiased estimate of the product. 
L 

(b) In practice, it is not possible to account for all the, 

terms in the inftnite series. If we are prepared to consider the 
u 

bias in truncated form, i.e., consider finite number of terms in 

the TaylorSeries, we have two alternatives. We can try to 
n r K- 

rhoose an-n such that either Z [ i a  CB(V)/aV ~V=V]( p (V)/r! 1 1  
Po r r F a  t 7 r 

or Z [ { a  63(V)/aV JV=V)C p (V)/r! )I is rather small. 
v =ntt t 

If one is successful in chosing an n such that 
00 r r 
Z [ ( a  CB(V)/aV lV=V)i p V !  1 1  l o ,  that would imply 

*.MI r r r  
B (V)=C [{a CB(V)/aV (V=V){ p (V)/r! ) I  to be not approximately 
n F=i r 
zero if B(v) is not approximately zero. In general, B (v) would 

n .i *not be approximately zero or equal to zero. ~ d t  there exists 
fl r r 

functional form CS (V) for which B (V)=Z[Ca CS (O)/aV (V=V) 
ff-- -- - sn P*l n 

(V)/r!)] is identically equal to zero. If CS (V) were to 
r n 
approximate + - the behavior of CB(V) as V varies, CS (9) could be 

e n 
thought as a pseudo estimator of CB(V), for which the bias would 

be identically equal to zero when only the first n terms are 

considered in an expression similar to ( 4 . 2 ) .  As we search for 

alternative estimators, it would be interesting to investigate 
3 

the nature and the behavior of pseudo estimator as compared to 

the formula estimator, especially wnen the variance rate V or 



Y 

the sample size(from which the variance rate is estimated) N 

varies. 

SECTION 2 i 

In our discussion above, westindicated that there exists 

functional form in V, for which, insertion of V would lead to 

zero bias when only the first n terms in the Taylor series are 

considered. This assertion follows from the fact that the 

functional form mentioned satisfies the equation 
P 

B (V)=O, or, in other words, it is a solution to the n-th order 
sn 
linear differential equation in V with variable coefficients: 
a j j I 

. Z  [P V D 3W =O . . . (4.3) 
d n-j 
where 

W is the dependent variable 

D is the differential operator d/d~ 
j 

is equal to IV/(N-I)) E [ x 2  
j 

* -(N-1) I 
n- j N- 1 

(4.3) is a special case of Legendre Linear Equation. 9 4  In 

order to solve (4.3), we can write it in the following form, 

using the transformation Z=ln(V), and thc operator D =d/dz: 
n J-f z 
C[p (D -1)3]~=O ..........( 4.3a) 

n-j b o  z 

------------------ 
94~egendre Linear Equation is: 

n n n+l n+l n-r n-r 
[ p  (aX+b) D +p, (aX+b) D + ... +p (aX+b) D 
0 

+. .+ 

Y Y r 
p (aX+b)D +p ]Y=O, 

Y 

n- 1 Y n  
where Y and X are dependent and independent variables 
respectively, and D denotes d/dY. 

!, 
'\ Y 



zeros(i~~luding'multip1icifies) of the characteristic -" 

t t  j- I 
\ 

polynomial g(D )yZp TI (D -1))=0, will determine the nature 
z 411 n-j t-4 z 

of the solution to (4.3alaor (4.31, if it exists. This solution 

was referred to as CS (V) in the foregoing sectioh. 
n 

Lemma 4.1: The solution to (4.3) exists, and it is unique. - 
Proof: The existence and uniqueness o f  solution theorem for 

general n-th order linear differential equation requires that 
n n- 1 

the function D Y=G(Y,X,D Y,.. .,D Y) exists, G be continuous 
Y Y Y 

with respect to all n+l arguments, and be at least once 

differentiable with respect to the last n arguments. Assuming * '* 
* 

W(V) to belong to the same class of differentiable functions as 

CB(V), this theorem is satisfied for Y=w(v), X=V. D =D . Hence. 
Y z 

solution to (4.3a) exists, and is unique. By substitution for Z, 

the same follows for (4.3). 

Two things to be noticed about (4.3). First. V=O is a(in 
e 

fact, the only, except infinity) singular(of irregular type) 

point of (4.3). Second, as we have assumed, when the estimate 

i n y t e d  for V is an unbiased estimate of V, the solution to the - 
relevant differential equation would lack the property of 

v, 
boundedness, when considered in the semi-infinite interval of V. 

Lemma - 4.2: If V is such that E(V)=V, CS (v) is unstable 
n 

with respect to V. 

Proof: Whenever E(V)=V, at least onedo•’ the zeros of the < 

characteristic polynomial g(D ) is unity. Hence, the solution 
z 

would contain a segment A.V, where A is a constant. This would 

explode as V tends to infinity. 



Regarding singularity, since 0 is an irregular singular 

point, we cannot specify the value of the solution or its 

derivatives at that point. Thus, the solution would be unstable 

as V tends to 0. . , 

To address the above problems, one can choose a lower bound 

5 ,  arbitrarily close to 0, and an upper bound q ,  which, for most 

practical purposes, could be set to 1. 

solving ( 4 . 3 )  analytically for lower order n, and 

numericaily for higher orders, the general solution can be 

derived. To form the pseudo estimator for the Black-Scholes 

' model price, restrictions on the solution can be imposed by 
._-,. 

suitable choice of the constants in the general solution. 

One of, the boundary conditions can be used to incorporate 

the mpneyness of the option. It is to be noted that the 

Black-Scholes model price approaches differing lower limits 

depending on the degree of moneyness and definition of 

moneyness. For the purpose of this section, we wo~ld be 

referring to ln(S/~) as the indicator of moneyness. For 

at-the-money(ln(~/X)=O), and in-the-money(ln(~/~)> 01, the lower 

limit is S-Xexp(-rT). For out-of-the-money(ln(S/~)< O), the 

lower limit would be S-Xexp(-rT) or OIadepending on whether 

ln(S/X)+r~ >O, or ln(S/~)+r~ 50. 9 5   he& limits are taken as V 

approaches 0. To avoid the singularity at V=O, one would set lim 

------------------ 
9 5 ~ f  we adhere .to ln(g)=ln(S/X)+rT as the indicator of 
moneyness, the lower limit would be 0 for at-the-money(ln(g)=O), 
and out-of-the-money(ln(g)<O), and s-xexp(-r~) for in-the-money 
(ln(g)>O). 



CS (v) ,as V-0, 'equal to the appropriate lower limit of the 
n 

Black-Scholes model price as V-0, and thps try to incorporate 
t 

some option specificness in the pseudo estimator, 
' 

A second boundary condition can be used to set lim CS ( o )  
n, 

as V-r), equal to S, the upper limit of- the Black-Scholes model 

price, as V-=. 

To avoid under or overidentification of constants, one 

would need another n-2 equations in the n unknown constants. A '  

definite candidate for one of the equations would be to set CS 
n 

(v)= CB(V), when the variance rate is known, The rest of the 

conditions can be supplied by choosing n-3 arbitrary values of 

V, V 's, and setting CS (V )=CB(V 1 .  When the variance rate of 
i n i i 

the option at hand is not known, we would have to choose n-2 

arbitrar-y values of V. In choosing the arbitrary V 's, one 
* 
A 

would, of course, see that they do not exceed T )  or fall short 'of 

Before we go for the Monte Carlo study undertaken to 

illustrate the behavior of the pseudo estimator as compared to 

the usual formula estimator, let us make a somewhat 
a 

counterintuitive comment about the pseudo estimator. As the 

sample size N increases, the pseudo estimator may exhibit 

instability. This is due to the fact that as N increases, p in 
0 

( 4 . 3 )  may tend to 0, for a given V, and thus may have similar ------------------ 
9 6 ~ h e  above boundary conditions do not ensure nonnegativity for 
CS (V), neither do they ensure that it be increasing in V. 

n 
Further ingenuity may be required to impose such desirable 
restrictions. 



singularity effect as V tending towards 0. * 

Since the purpose the Monte Carlo undertaken is primarily 
- 

expositional, we have chosen the value of n t o  be 3 only. The 

solution to B (V)=O is: 
s3 

where a= 2..75 - 0.75 N . 
 he lower and upper limits of V were chosen as those values -. 

of the estimated variance rate which cutoff 2.5% probability 
I ' 

area on either tail of its distribution. For example, for 

V=0.025 and N=15, these limits are 0.0100535 and 0.0466071 

respectively. 

To solve for the constants,(we have used the two limiting 

boundary conditions, and the eqaution CS~(V)=CB(V). 

For a given degree of moneyness, time to expiration, 

riskless rate, variance rate, and sample size, 500 sample 

variance rates were generated with the given V and N as 

parameters. These sample variance rates were, in turn, used to 

compure 500 different values of the formula estimator and the 

pseudo estimator. For both the estimators, the mean of the 500 

estimates was subtracted from the Black-Scholes model price 
. 

CB(V) to arrive at a measure of mispricing, which, in fact, is 

the negative of the bias. 

The results reported in Table 4.1 seem to support the 

expected behavior for the estimators. Regardless of the 

situation, :he mispricing of the formula estimator decreases in 



absolute value, as the variance rate decreses. On the other 

hand, with a few exceptions, the absolute value of mispricing of 

the pseudo estimator increases as the variance rate decreases. 

When we come to variation of the sample size, again, regardless 

of the situation, the level of mispricing by the formula 

estimator decreses as the sample size increases. 9 7  As for the 

pseudo estimator, the level of mispricing increases with 

increasing sample size. Though not reported here, we observed 

that the standard deviation of the fprmula estimates is lower 

than that of the pseudo estimates. 

In conclusion, .it is less likely to uniformly improve upon 

the simple formula estimator by following the strategy of 

finding some alternative functional form in V in which a sample 
I 

variance is inserted. In particular, for options on low variance, 

7 stocks, the formula estimator seems to have performed relatively 

well. Moreover, whenever the use of larger sample size is not 

deemed inappropriate, the formula estimator appears viable. 

SECTION - 3 

The discussion in the preceding section was focused upon 

l ;. insertion of the sample variance rate into functional forms 

,nonlinear in the variance rate, and the bias considered was 

based upon Taylor series expansion of 'the estimat'e(of! 

Black-Scholes model price) around the true variance rate. Butler 

97This is in conformity with Boyle and 
Ananthanarayanan(l977),~utler and ~chacwr(l983a). 



and ~chachter(1983a) proposed an estimator, which attempts to 

redress the nonlinearity bias-problem from a different 

methodological perspective. Theifapproach differs in two 

important ways: first, Taylor series expansion is used to 

approximate the Black-Scholes model price, the approximating 

series being linear in the powers(positive and/or negative') of 

the true variance (or volatility) rate; second, the pri-e 

estimate is formed by replacing the powers of the variance(or 

volatility) rate with,their unbiased estimates instead of the 

-powers of the sample variance(or volatility) rate'. Use of the 

powers of the sample variance(or volatility) rate would have 

been equivalent to straight forward insertion of the sample 

variance(or volatility) rate in the estimating function, as is 

the case for both the formula estimate and the pseudo estimate,. 

Since each term in the approximating series can 

individually be estimated without bias, the Butler-Schachter 

estimate would be- an unbiased estimate of the approximating 

series. But it would be only an approximately unbiased estimate 

of the Black-Scholes model -price, the remaining bias being the 

approximation error of the finite order expansion. 

To outline the Butler-Schachter estimator, we first note 

that , to form unbiased estimate of the Black-Scholes model 
Ir price CB(V), it is sufficient to form unbiased estimaes of the 

E - -__ I 

cumulative standard normal probabilities 4(d,) and 4(d2), where, 



to recollect, d1=[ln(S/~)+r~~O.5VTI/~VT, and d2=dl-~VT.9a Rather 
1 i & 

than approximating CB(V) by a' single expansion, Butler and 
+ 

Schachter approximates )id- k, i=1,2 i6dividually by Taylor seri'es 
4 2 

1 

around d =0: 

where t$ ( 0 )  denotes the r-th derivative of the standard normal 

distribution function, evaluated at the centre 0. 

Using the features of the standard normal distribution, and 
&' after some manipblations, . 4 )  can be wrltten as: 

where f(0) is the standard normal density evaluated at 0, and 
I 

the m-th term in the bracke~ed expression is: 

for d 's and collecting terms in the like 
i 

to an expression, in which, each term is a 

constant multip h ied by some positive or negative exponents of 
4v. 

9BThe following exposition of Butler-Schachter estimator is 
taken from Eutler and Schachter (1983a). 



,s 
-t 

Now, 

where K=N-1 and s is the sample standard deviation or volatility 

rate. 
r 

So, unbiased estimate of ( d V )  would be: 

Replacing for the r-th power of dy from the above 

expression leads to'the Butler-Schachter estimate of the 

Black-Scholes model price. 

Butler and Schachter reported numerical inkegration results 

for different combinations of the true variance, sample size, 
. - 

--< 

and moneyness (g=S/(Xexp(-rT) ) . The main observations made in 
their paper are: 

B1. The bias of the Butler-Schachter estimator is 

considerably smaller than that of the formula estimator. 
I 

B2. Biases for the Butler-Schachter esimator are largest, 

when the variance is small, and the option is not at-theLmoney. 

B3. ( a )  Excep,t for out-of-the-money-and-small-variance 

case, the mean square error of the Butler-Schachter estimator is 

consistently higher than that of the formula estimator by one 
,/ 

per cent or less. 

(b)The mean sqaure error is highest for at-the-money an@ 

increases,with the variance. 



In addition to the above observations, we notice the 

following: . 
MI. For at-the-money options, larger bias is associated 

with higher variance. For not-at-the-money , no such discernible 

pattern appears. 

M2. Negative biases are more frequent for not-at-the-money 

with lower variance and/or small sample size. 

M3. For at-the-money, -the bias increases with sample size. 

Let us put forward our first comment about the 

Butler-Schachter estimator in the form of a lemma. 

Lemma 4.3: The expansion of $(dl) and #(d,) both around a 

common value(e.g., zero) is not logically consistent. 

Proof: Let us assume that both the expansions are around 

zero. Then the expansion .of @(d,) around dl=O implies a similar 

expansiontas f~nction'of V) around V= -2ln(g)/~. On the other 
r-' 

hand, the expansion of #(d2) around d2=0 implies expansion 

around ~=21n(g)/~. Only for an at-the-money option, both 

expansions . . are implicitly around the common value 0 of V. 

Otherwise, expansions of $(dl) and @(d2) around the common value 

0 of d implies approximating the same option value at two 

different points of V at the same time. 

Corollary - 4.1: If  @(dl) is expanded around dl=O, 4(d2) is 

to be exbanded around d2=-dVT, for the sake of logical 

consistezcy. 4% 

Proof: For d2=-JVT, the implicit value of V is -21n(g)/~ 

which is the same as implied by d,=O. Thus, the expansions would 



preserve logical consistency. 

Corollary - 4.2: Expansions of both 4(d,) and #(d2) around 0 

implies, for small enough VT, expansion around an at-the-money 

opt ion. 

Proof: d,=O implies ln(g)=-0.5VT and d2=0 implies 

1n(g)=0.5VTf both of which would'be approximately zero for small 

enough VT. Thus the expansion would be approximately around an 

at-the-money option's value. 

According to Corollary.4.2, when the variance is small, the 

approximation error may tend to be larger for 

away-from-the-money option, since the expansions used would 

imply approximation at about an at-the-money option's value. In 

addition, according to Lemma 4.3, only for an at-the-money 

option, we would have logically consistent expansions. Thus, we 

may expect the result as mentioned in B1. 

In the proof of Lemma 4.3, we have mentioned that for an 

at-the-money. option, expansions of #(d ),i='1,2 around d =O would 
i i 

imply logically consistent expansion ar'ound V=O(or I/V=O). Thus, 

when the Butl'er-Schachter estimator approximates the values of 
d 

k, 
larger variance at-the-money options, the expansion point(V=O or 

dV=O) would be at larger distances from the true variance rate. 

The approximations thus may tend to be poorer for larger 

variance, though not necessarily so. Our 0bservat:lon MI 3s in 

conformity with this explanation. 

There is another limitation of the Butler-Schachter 

estimator. For higher order e~~ansions, away-from-the-money 



options would necessitate larger sample sizes. This is due to 

the fact that for higher order negative powe.rs of dV, the Gamma 

functions would otherwise encounter inadmissible argument 

values. 9 9 . 

SECTION 4 - 

The essence of the .Butier-Schachter 'approach in redressing 

the problem of the nonlinearity bias of the formula lies in the 

alternative representation of the Black-Scholes model price by a 

Taylor series. stki4tly speaking, the authors uSed ~ a ~ l o r  series 
' 7 

to approxim;i$e the" two cumulative normal distribution functions 
5' 

, individually,*rather than the model price didtectly. A legitimate 
6 s  t . p  ,4 -.. , - <  

concern with respec$ to such attempts is thq;valSdity of the 
7, - 

series representation of the model price in general and the 

validity of Taylor series repreqentation around arbitrarily 

\ chosen points in particular. The folldwing exposition is 

intended to shed some light GZ these issues. 

For simplicity, let us assume that S=T=1. Then it can be 

shown that the 'Black-Scholes model price CB(V) satisfies the 

following second order differential equation in V: 

------------------ 
99This was pointed out by Dr. Pao Che,ng and L-. John Heaney. 



Let us consider the following power'series solution to 

where v=V-V , V being an arbitrary point in the accepptable 
0 0 I 

domain of CB(V). 

The coefficients c can be solved from: 
j 

c =CB(V ) 
0 0 

where . 2% ,. .-.> ;*- - A  

g =h 2 (  j+l) ( j * 2 )  and z =2a+V (1+4j-2bV . ) .  
j 0 j o o Q 

This series solution is in fact a Taylor series 

representation of the Black-Scholes model price around V=V . 
0 

But, for the hypothesized series solution to exist, the series 

should be convergent. In addition, thesuggested solutions for 

5 

4 

c 's which led to Taylor series representatbon, require V to be 
j o 

an ordinary point of (4.6). 
, . 

The series solution would conve'rge for all values of .V such 

that IV-V I <  R, where R is the radius of convergence, i.e., the 
0 



distance from the point V to the nearest point of singularity 
0 

for ( 4 . 6 ) .  It appears that V=O is the nearest point of 

singularity for finite V . '0•‹ Thus the hypothesized series 
0 

solution would converge for OcVe2V . 
0 

Given that V=O is a singular point, Taylor series 

representation of CB(V) around V=O fs not valid. I f  V=O were a 

singular point of regular type, then ( 4 . 6 )  would have had a 

Frobenius type series solution of the form: 

where the series would co~verge for all V in the radius of 

convergence. 

Unfortunately, V=O fails to qualify as a regular singular 

point. If we want to represent CB(V) around'V=O, the proper 

expansion would be a Laurent expansion, since V=O qualifies to 

be a point of isolated singularity. '01 

The Butler-Schachter approach expands @(dl) around d,=O, 

implying, in essence, expansion around V=-21n(g)/~, and @(d,) 

around d2=0 implying expansion around V=21n(g)/T. Considered in 

terms of r / ~ ,  their expansions would be valid and-also logically 

' " O A ~  exception would be the case where the Black-Scholes model 
is considered as a function of dV, and the option is 
at-the-money. In this situation, dV=O would not be a singular 
point for the correspoding differential equation in dv. But for 
not-at-the-money options, dV=O would be a singular point. 

1•‹'Thanks are due to Dr. John Heaney for pointing this out. 



C 

consistent for an at-the-money' option. l o *  For an 

wt-of-the-money option, their .expansion for #(d,) would 

Tonverge if the assumed true variance rate is in the range 

O<V<-41n(g)/T. But for @(d,), then, V would be outs.ide-the 

radius of convergence, viz., 0 to 41n(g)/~. Similar explanation 

applies to in-the-money option. Thus, for not-at-the-money 

options, the implied series representation of the Black-Scholes 

model price by the Butler-Schachter estimator would not be 

va 1 i d*. 4k 

* 

From our discussion in this section, it appears that a 

Taylor series representation of the Black-Scholes model price - 

around a non-zero value of the variance rate would be valid, if 

the true variance rate lies in the radius of convergence. 

SECTION - 5 

The distinguishing feature of the Butler-Schachter approech 

as discussed earlier is the series approximation of the 

Black-Scholes model price, which is linear in the powers of the 

variance(volati1ity) rate and amenable to unbiased estimation. 
.. 

But the specific type of approximation used by the authors led 

to problems of logical consistencg, validity of the series 

representation, and convergence of the approximating series. 

Moreover, a practical limitation is imposed by the requirement 

of large sample size(for stock returns) to undertake higher ------------------ 
' 0 2  The problem of logical consistency can be visualized in two 
alternative forms: (i)for a given g, different V's are implied, 
when g ~ 1 ;  (iilfor a given V, different g's are implied. The 
former case was discussed earlier in this chapter. We would 
continue to interpret in terms of this case. 



order expansions for not-at-the-money options. A very simple 

approach that retains the spirit of the Butler-Schachter 

approach, but attempts to alleviate the aforementioned problems 

is delineated below. 

Let us do the Taylor series expansion of CB(V) around an 

arbitrary point V=V , V $0: 
0 0 

n n\ n 
[{a ca(v)/av p = v  ]i(v-v ) /n!I+ ............ (4.8) 

0 * 0 

Substituting for (V-V ) by its binomial expansion leads to 
0 

a series which is linear in the positive powers of V, 

irrespective of the moneyness of the option. ~runcating the 

series after the term involving the n-th derivative, and 

replacing the powers of V by their unbiased estimates produces 

an unbiased estimate of the truncated expansion. The truncation 
f' 

(the finite order -expansion) error can be considered ta be the 

bias of the estimator. 

~otice that we are expanding the model price directly. 

around the chgsen Value V , thus avoiding the problem of logical 
0 

consistency between the two individual expansions of the 

Butler-Schachter approach. Since we are chosing a non-zero V , 
0 

we also escape the problem of singularity. Moreover, only 



positive powers of V are involved in contrast to both positive 

and negative powers of V for nat-"at-the-money option under the 

Butler-Schachter approach. Thus the estimator proposed here, 

alternatively referred to as the CC estimator, can be used for 

. all types of options without being limited by the requirement of 

larger sample size. 

A limitation of the CC estimator is that, since the true 

variance rate is unknown, we cannot' guarantee that the 

convergence criterion OcV<ZV is satisfied. Given the positivity 
0 

of the true variance rate V, choice of a larger V may 
0 

practicany reduce the possibility of the lack of convergence. 
I 

But we do not mean to say that the convergence problem is 

eliminated. 

A computational problem that may arise for the CC estimator 

is the evaluation of higher order derivatives of the 

Black-Scholes formula with respect to the variance rate. The 

expressions for these derivatives are much more complicated than 

the derivatives of the standard normal density functions only, 

required under the Butler-Schachter approach. Towards this end, 

we present, in Appendix 4.1, a simple algorithm to compute the 

higher order derivatives of the Black-Scholes formula with 

respect to the variance rate 103 

Now that we have two approximately unbiased, estimators of 

the Black-Scholes model price, the Butler-Schachter 

------------------ 
l o % ~  similar algorithm applies to the computation of derivatives 
with respect to the volatility rate. 



- estimator(BTS) and the the CC estimator, it would be interesting 

to see how they compare in performance. In addition, we may ask 

the question: 'Is the performance of any of the approximately 

unbiased estimators compared to that of the formula estimator is 

such that one would forsake the extreme simplicity of the 

latter?' We have un'dertaken a Monte Cgrlo study with these 

issues in mind '04. For a given mean rate of return(assumed to 

be zero), a variance rate, and a sample size, we generated 500 

samples to yield the same number of sample variance rates. These 

sample variance rate-s were used to generate as many estimates of 

BTS, CC, and the formula estimator, for a given option l o 5 .  On 
P 

the basis of those estimates, we computed the mean 

mispricing(negative oi the bias), the mean percentage (taken out 

of the Black-Scholes model price) -error, the variance, and the 

mean square error, for each estimator. 

In our computations, we truncated the series after the term 

containing the 31st derivative of the Black-Scholes formula with 

respect to the variance rate. Thus for the BTS estimator, the 

highest order of derivative for the standard normal density is 

30. For the CC estimator, V was taken to be 50% higher than the 
0 

------------------ 
lo4Both Boyle a~fT'Ananthanarayanan(1977), and Butler and 
Schachter(l983a) results are based on calculation of bias by 
numerical integration. Thus, their results are not directly 
comparable to our Monte Carlo results. 

'05~or the sake of comparability with the existing studies, we , 
would use in this section, ~/Xexp(-rT) as the indicafor of 
moneyness. The contracts are to buy one share with current price 
S=$1.0 . 



- 
true variance rate l o 6  

In total, we considered 40 different combinations ~f 

moneyness(g), variance rate(V), and sample size(N). Since the 

order of kxpansion for the BTS and the CC estimator was 31, we 
t 

could compute for the BTS in only 16 of the cases. The results 

are presented in Tables 4.2 to.4.4 . 
In general, the ranking of the absolute magnitudes is the 

, same whether we consider the mispricing or the percentage error. 
-. 

~ l s o ,  variance gives identical ranking as the mean square error. 

Except for the cases of g=0.8, all rankings are the same for the 

two variance rates considered. 
Q 

When we consider the absolute magnitude of mkspricingin 

the 16 common cases, both BTS and CC improves upon the formula 

estimator, but CC improves most. CC is lowest in 12 cases, BTS 

in 3(all 3 at-the-money) cases, and the farmula estimator in the 

lone case of relatively deeper-in-the-money(g=l.2) option with 

higher variance rate(V=0.04) for the stock. But in only 3(all 3 

at-the-money lower sample size) out of the 13 cases, where BTS 
\ -. 

improves upon the formula, the difference in the absolute value 
- 
y. 

d of the percentage error(dp) is greater than 1%. Considering the 

common 16 cases only, in 5 out of the 15 cases where CC improves 

\ 
- - - - - - - - - - - - - - - - > - -  - 
lo6These choices were to some extent constrained by the 
capability of the software used. But the knowledge of the true 
variance rate V is not required to choose V . Any value in the 
range of convergence would do.. For better c8mparisons across 
cases, we have chosen the V 's to be the same percentage 
distance away froz V's. 0 



upon the formula, dp is greater than 1% l o 7 .  

When we compare between  and CC,, in 2+--out of 13 cases 

where CC performs better(in terms magnitude of mispricing), the 

percentage error gain(i.e., dp) is more than 1%. BTS performs 

better in 3(all 3 at-the-money) cases, but in none of these, the 

percentage error gain is more than 1%. 

If  we consider performance in terms of variance or the mean 

square error of the estimators, formula outperforms both BTS and 

CC convincingly. Out of the 16 common cases,. BTS is lowest in 
- 

4(all 4 at-the-money higher sample sizes), CC is iowest- in 3 ( 2  

relatively deeper-in-the-money, 1 relatively 

deeper-out-of-the-money, and all largest sample size), and the 

formula in 9 cases 'Oa. Between BTS and CC, CC performs better 

in 10 out of the 16 'cases, 

Overall, BTS seems to have some advantage over the other 

two, for at-the-money option. But at-the-money options are,least 

frequently traded options. Majority of the traded options are 

around-the-money. For such options, CC enjoys advantage over 
9 

formula in terms of rnispricing magnitude, but the advantage 

heverses in terms of the variance or mean square error. 

It is to be noted that our Monte Carlo results for the 

mispricing(in particular, its magnitudes) of BTS relative to 

that of formula are very different from the r'esults of ~dtler 

------------------ 
'07Among all 40 cases, CC improves upon formula in 38 cases, 
dp>l% in 18 of these cases(most1y lower sample sizes). 

'OBOut of the all 40 cases, formula wins over CC in 29 cases. 



1- 
and ~chachter( 1983a). The results are not directly comparable 

due to the nature of the two studies and the difference in the 

sample sizes used. - 
Considering the directions of mispricing, the formula, as 

found by Boyle and ~nanthanarayanan(l977)~ underprices 

at-the-money and near-the-money options, and overprices 
\ 

relatively deeper-away-from-the-money options. Our Monte Carlo 

results are in conformity with this pattern. We find BTS to 

underprice at-the-money options, and overprice not-at-the-money 

options '09.'For CC, no such patterns seem to emerge. 

The variance and mean square error of both BTS(at-the-money 

only) and formula, and the mispricing of the latter, appear to 

decrease in magnitude as the sample size increases. Variance and . 

mean square error of CC seem to follow the same pattern, but the 

mispricing of CC does not exhibit any such pattern, as is also 

the case with BTS. 

For BTS, mean square error seems to be larger for 

at-the-money options, and does seem to increase with variance 

rate l l O .  Same is the case for formula and CC. 

From the above discussion, it appears that CC may have 

slight (pot clear) advantage in terms of lack of systematic 

pattern in its mispricing, and lower magnitudes of mispricing 

------------------ 
logButler and,Schachter(i983a)'s results also indicate 
underpricing of at-the-money option by BTS, and the cases of 
overpricing are all not-at-the-money, See our observation M2 in 
section 3. 

"'See observation B3(b) in section 3. 



for the widely traded around-the-money variety of options. But 

the formula estimator performs best in terms of variability and 

mean square error, and shows promise of advantage for larger 

sample size situations. Our results do not indicate a case of 

practical advantage &or the BTS estimator. In summary, we do not 

find any of .the alternative approximately unbiassd estimators to 

be superior to the biased form7Aa estimator I". SECTION 6 - 
In the context of the estimators we have considered so far, 

the standard normal distribution' function, was known, but the 

points at which this function is to be evaluated were not known. 

By suitable -manipulation, we can transform the'problem into one, 

where the value at which the distribution functio.1 of a 

normal(as opposed to standard normal) variable is to be 

evaluated is known. But now, mean and variance of the normal 

distribution func\ion are to be estimated. 

More specifically, the following can be shown: 

4(d2)=~rob[~,<ln(g)l 

where Y,=ZI/(VT~ -'JT/2, and 

Y,=ZI/(VT) +vT/2, 

and Z is a standard normal variable; 
h 

It is stifficient to estimate @(d ),i=1,2, without bias for 
i 

unbiased estimation of CB(V). ~ealey(1956) and ~uenther(l971) - 
k ------------------ 

"'AS indicated in the introductory chapter, superiority is 
established if the estiinator has always lower magnitude of bias, 
and lower variance and/or lower mean square error. It should 
also show no systematic mispricing. 



among others have proposed small sample unbiased estimators for 

the cumulative normal distribution function's value at a - 
specific point. These estimators require the estimation of the 

sample mean and variance of the normal variable. In our context, 

if we could find two normi:i~ distributed variables similar to 

Y, and Y,, for which samples are available, we could form 

unbiased estimates of @(dl) and @ ( d , ) ,  and hence unbiased 

estimate of CB(V). 

Lognormal distribution for stock price at the end of 

interval T implies: I ,  , 

ln(S /S)-aT= -(VT/2)+Zd(VT) 
t+T t 

where a is the geometric mean stock return per unit of time. 

The variable on the left hand side, is normally distributed 

with'mean -vT/~ and variance VT, as is Y,. ~ n d  negative of the 

+ +y left hand side would be distributed normally with mean V T / ~  and 
:. 

sgi' E 

variance VT, as is Y2. The ln(S /S ) part of these variables 
t+T t 

are observable. In addition, if we knew a, there would have been 

no problem in forming the unbiased estimate of CB(V). If we 

replace a with its unbiased estimate, the means of the 

constructed variables would remain unaffected, but the variance 

would no longer be VT. This creates a problem for further 

research. It alsv reiiiains to be seen whether the use of unbiased 

estimate of a or even the use of the riskless rate as a proxy 

could improve upon the approximately unbiased estimators 

considered earlier- in this chapter. I t  is ironic as well as 

unfortunate that, although the potentially unbiased estimator 



does not suffer. from the arbitrariness of series truncation or 

the point of expansion, and is unbiased rather than 

approximately unbiased, it necessitates"the estimation of the 

geometric mean rate of return, the absence of which in the 

Black-,Scholes model endears all researchers. 

SECTION - 7 
Our purpose in' this section is to investigate the nature of 

the nonlinearity bias of the formula beyond what has been 
I 

accomplished by Boyle and Ananthanarayananll977) and., Butler and 

~chachter(1983,1983a). There are at least three reasons why this 

investigation is called for: +- 
(a) Neither of the above studies explain why the formula 

estimator underestimates the Black-Scholes model price for at 
, ., 

and around-the-money options, and overestimates for 

deeper-away-from-the-money options. 

(b) The systematic relationships, i f  any, with time to 

maturity and variance rate did - not receive adequate attention. 

Also, the marginal nature of systematic relationships were not 

discussed. 

(c) The implications of these systematic relationships for 

commonly applied techniques of Black-Scholes validation were not 

clearly brought out. 

We will touch these issues in succession. 

Boyle and Ananthanarayanan(l977) first reported that the 

formula with the sample variance rate tends to underprice at and 



around-the-money options, and overprice deeper-away-from-the 

money options ' I 2 .  But no explanation was provided regarding 

this pattern of'mispricing. Butler and ~chachter(1983~1983a) 

confirmed this pattern, and in Butler and Schachter(l983a),*pp. 

5, the following'explanation was advanced: 

"The pattern of the biases examined by Boyle/Ananthanarayanan 

(1977) in their Table 2 results from the behavior' of a2@(d 
i 

i=1,2, over the range -=<d <=(see Figure 1). They 
i 

found that, as the stock price, and hence dl and d2, rises, a , 

small positive bias reaches a maximum, becomes a large negative 

bias, and then bqcomes positive again." 

The following points need to be made about the foregoing: 

A. Butler and Schachter(l983a) missed one of the four 
w 

phases in the changing pattern of bias. We think it is the' 4th 

phase, where the dollar bias, after becoming positive in the 3rd 
h 

phase, begins to decline again. On the other hand, Boyle and 

Ananthanara~anan(i977)~ considering, the percentage error, missed 

the 1 st phase, about which Butler and Schachter ( l983a) says that 

"...a small positive bias reaches a maximum...". ' I 3  

B. Though the bias of the formula estimator would be 

affected by higher than second order derivatives of the standard 
-b 

l12The'implicit indicator of moneyness seems to be the 
comparison of stock price and striking price. For Butler and 
Schachter(1983,1983a), the indicator of moneyness is explicitly 
menti~'ned,as the ratio of stock price to the discounted value of 
the striking price. 

l13when we plotted the dollar deviations of Boyle and 
~nanthanarayanan(l977)~ this phase reappeared. 



normal distribution function, for practical purposes, it may 

suffice to consider the second order bias only, since the type -- - 
of options for which the bias pattern is missed by the 

second-order derivative, are relatively infrequently traded. But 

it remains to be noted that even the second order.bias of the 

formula estimator is,the result of the mixing of two 

different-valued(in general) second order derivatives of the 

standard normal distribution functicn. Thus, it is not clear, 

whether m e  should merely look at the relationship of a2@(d)/ad2 

to d, as was considered in Butler and Schachter(l983a). 

We will try to provid~ an explanation on the basis of 

second order Taylor series approxiination to the nonline,arity 

bias of the formula, which incorporates the combined effect of 

d the two different-valued second order derivatives of the 
J 

standard normal distribution function. 

The second order approximation to the nonlinearity bias can 

be written as: ' I 4  

E=H d1d2 exp(-0.5dI2) 

where 

The sign of this bias depends on whether d l  and d2 are of 

the same or opposite signs. Formula will overprice if they are ------------------ 
a I I .This 'approximation is taken treating the formula as function 
of the volatility rate, since later in this thesis we will be 
using the volatility rate as a regressqr following the existing 
regression studies such as Whaley(l982),Geske and ~oll(1984a). 
In partycular, in chapter 7, we shall use this approximation to 
form an indirect test of the validity of the Black-Scholes 
model .. 



of the same signs, and underprice if they are of opposite signs. 

Given the positivity of d(VT), d l  and d, will be of opposite 

signs whenever d l  is in the range O<d,<dVT, i.e., 
I) 

Iln(S/X)+rT1<0.5VT. Beyond this range, they will be of the same 

sign. If moneyness is measured by g=S/~exp(-rT), this implies 

that out-of-the-money options whic.h have moneyness,in the range 

-0.5~T<ln(g)<O, will be underpriced ' I 5 .  Simiarly, in-the-money 

options with ln(g) lying between 0 and 0.5VT will be underpriced 

' I 6 .  Figure 4.1 clearly shows these ranges. 

For an at-the-money option, d, and d2 will be of opposite 

signs, and thus the formula will underprice. 

The range of moneyness over which underpricing takes place 

has width VT, independent of the indicator of moneyness ' I 7 .  
B 

Bu ler and Schachter(l983a) found, on the basis of simulation 7 
results for the total nonlinearity bias, that 

overpricing (underpricing) shrinks(broadens), 

/Lhe stock return increases. Our exposition of i- 
bias alone predicts the same. Though a strong 

the region of 
f 

as the variance of 

the second order 

enough prediction 

cannot be made, it seems likely'that options with high 

"=If ln(S/X) is the indicator of moneyness, the range of 
underpricing for out-of-the-money(ln(~/~)<O) opt.ions would be 
-(O.~VT+~T)<~~(S/X)<O, if  r<0.5V, and 
-(O.~VT+~T)<~~(S/X)<O.SVT-~T, if r>O.SVT. 

"6~hen ln(S/X) is the indicator of moheyness, the underpricing 
range for in-the-rnoney(ln(S/~)>O) options is O<ln(~/x)<0.5VT-rT, 
if r<0.5V. For r>0.5V, no in-the-money option would be 
underpriced. 

"'The indicator ln(S/~) shifts the boundaries of this width to 
the left compared to the indicator ln(g), by the amount rT. 



(truelvariance rate and/or long time to maturity would tend to 

be underpriced more often than not, if the Black-Scholes model 

is the model of fair valuation. The estimated variance bias of 

Black and ~choles(1972) and and time to maturity bias of 

~lack(1975) are in contrast to this. 

Though the extent of bias may dif,fer, the studies mentioned 

above found the sign of bias to be positive for both 

deep-in-the-money and deep-out-of-the-money, negative for 

near-in-the-money and near-out-of-the-money options. This 

$similarity in the directb~n of bias for in-the-money and 

out-of-the-money options' is clearly indicated by our finding 

that the range of underpricing or overpricing is dictated by the 

absolute value of the moneyness measure ln(g). 

It appears that the second order bias of the formula 

captures some important regularities of the total nonlinearity 

bias of the formula, if not the latter's mirror image. 

+ Our next issue is the systematic relationships of the total 

nonlinearity bias with the three important features 

(alternatively referred to as factors) of the option, i.e., the 

moneyness, the time to maturity, and the variance rate on the 

underlying stock's return. BoyIe and ~nanthanarayanan(1977) 

provided a graphic view of the relationhip between percentage 
. ?  

mispricing(negativc of the statistical percentage bias) and the 
t 

stock price(for a fixed striking price, moneyness), controlling 



for other factors. The relationships with time to maturity or 

the variance rate were not considered explicitly. Butldr and 
\ 

Schachter ( l983a) produced level surfaces indicating -the 

combinations of moneyness g(=S/~exp(-r~)) and variance VT that 

woould lead to a given amount of dollar bias. But this does not 

reveal the individual relationships of bias with V or T, or even 

mcneyness I~(s/x) which is independent of T. Moreover, none of 

these studies consider the marginal nature of the relationships. 

We have undertaken a Monte Carlo study to investigate the 

nature of the nonlinearity bias with emphasis on the 

abovementioned issues. To separate out the effects as much as 

possible, we would consider ln(S/X) as the indicator of 

moneyness here. Also, since it has become almost customary to 

graph the mispricing(negative of the statistical bias!, rather 

than the statistical bias, against a factor, we will do the 

same. Hence, it may be convenient hereafter to refer to the 

mispricing as bias, keeping well in mind their distinctign. To 

clarify, for example, if we say that the marginal variance rate 

bias is positive, what we truly mean i s  that for margianl 

increase in the variance rate, the statistical nonlinea%rity bias * 

- 
of the formula decreases. 

The design of the Monte Carlo is as follows. For a given 

variance rate, we generated 500 sample variances using its 

distribution and assuming the sample sizk to be 10. ' l a  

1 - - - - - - - - - - - - - - - - - -  

l18~he nature of the relationships do not change substantially 
for larger sample sizes, the magnitudes become smaller. 



Following Boyle and Ananthanara~anan(l977)~ we' used 

O.O15/quarter as the rikk1gss rate, and 50 as the striking price 

l 1 9 .  For a given option, 500 formula estimates are computed 

using the sample varinaces. These estimates are subtracted from 

- the Black-Scholes model price(the price with the assumed true 

variance rate). Averaging the deviations lead to our measure of 

bias or mispricing. 

Figures 4.2 to 4.4 confirms(with Monte Carlo) the already 

established nature of moneyness bias. ~t-the-money(S=50) and, 

near-the-money(S=45,S=55) options ace underpriced, and* 
7 

i 

deeper-away-from-th&-money(~=30,~=8D) options are overpriced. A s  

predicted by the second order bias, the range of underpricing 

widens for larger V or T. Note also the problem of dichotomous 

. bias ari-sing from the arbitrariness of naming the moneyness,. 

mentioned earlier in chapter 2. Options with the same degree of 
?, 

moneyness could be underpriced or overpriced depending on V 

4 

The option-specificness of marginal moneyness bias is also 

illustrated in these figures l Z 0 .  Though both near-in-the-money 

and near-out-of-the-money options are underpriced, the marginal 

moneyness bias is negative for the former, and positive for the 

latter. This can be seen from Boyle and ~nanthanarayanan(l97.7)'~ ------------------ 
" 9 ~ h e  variance rate is also on per quarter basis, and time to 
maturity is measured in quarters. - - 

lZOwe use the term 'moneyness bias', rather than the usual 
'striking price bias', since we feel that the former brings out 
more directly the connotation of the comparison between the 
stock price and the striking price. 

/ 



c- 

diagram also. The deeper-away-from-the-money options may have 

both and negative marginal moneyness bias. 

Figures 4.5 to 4.7 illustrates the nature of time to 

maturity bias. If we define T less than 1 quarter as short 

maturity as most existing studies have done, if can be seen that '. 
these options can both be underpiced or overpriced, depending 

upon the moneyness and the variance rate. For example, let us 

consider the option with T=0.9 in Figure 4.5'. If the stock -- 
price is 55, the option is overpriced;,if, on the other hand, 

t 

the stock price is 45, it is underpriced. In Figure 4.6, we see 

that when variance rate is 0.025(rather than 0.01)~ the option 

with T=0.3 and S=55 is underpriced(rather than overpriced). This 

example highlights the problem of the usual dichotomy--short 

maturity versus long maturity, and the directions of bias - 
/ 

attached to them. - - -  - /' 

For at-the-money options, the marginal time to maturity 

bias is always positive. This is also evident from the 

comparison of peaks in Figures 4.2 to 4.4, for,a given variance 

rate. &..i 

A s  for not-at-th -money options, the range of underpricing B . . 

versus overpricing again comes into play. For S=45 and S=55, 

except for very short maturity low variance rate options, the 

marginal time to maturity bias is positive. This exception can 

be understood going back to-~igure 4.2 , and exploiting the fact 

that higher time to maturity shifts the curveS(for moneyness 

bias) in similar way as higher variance rate. When the time to 



maturity or the variance rate decreases, as shown earlier, the 

range of underpricing around the at-the-money option shrinks, 

Thus the stock prices 45 and 55, with the striking price fixed 

at 50, would move out of the underpricing range for low enough T 

and V, and be positioned deep in the deeper-away-fromthC-money 

range. In that range, the higher maturity curve would be 

situated below the relatively lower maturity curve, thus . 
indicating negative marginal time to maturity bias: 

-bP 
Similarly, we find in Figures 4.5 to 4.7 that except for 

very long maturity-high variance rate options, the marginal time 

'f to maturity bias for S=30 and S=80 is negative. We can 

understand the exception by recollecting that when the time to 

maturity or the variance rate increases, the range of 

underpricing widens around the at-the-money option, and then 
-- 

imagining that the S=30 and S=80 points will be positioned in 

the underpricing range for long maturity-high variance rate 

options. In this range, marginally higher time to matu~rity curve 

would be situated higher, resulting in positive time to maturity 

bias. 

Figures 4.8 to 4.10 produces results for the systematic 

relationship with the variance rate which'are largely similar to 

those-for the time to maturity. For the range of parameter 

va'riation considered, here we could not detect the exception in 

the direction of marginal bias for S=45 and S=55. 



Now that we have considered the nature of systematic 

relationships of the nonlinearity bias with the factors, both in* 

the dichotomous and the functional sense, we are in a position 

to mention the implications for the validation techniques. Since 

the consequences for the dichotomous bias approach is hoped to 

be clear from our discussion above, the following is offered in 

the context of functional bias approach. 

Consider the effect of incomplete control for other factors 

when considering the systematic relationship to a factor. Let us 

suppose that we have two options represented by the points c, 

and c, in Figure 4.4. Both these options have the same time to 

maturity, but c 1  is relatively deeper-out-of-the-money, and has 

a lower variance rate. If we do not control for the variance 

rate difference, and try to relate mispricing functionally to 

moneyness, we would end up with the prediction that higher 

degree of moneyness leads to higher mispricing, if, in fact, the 

Yack-Scholes model is validf2'. That this prediction would be 
<> 

misleading can be seen by considering the point c,. This is an 

option with the same variance rate as c,, and the same degree of 
Y 

moneyness as c,: By controlling the variance rate, we would 

rougly move from c, to c,, not to c2. This ldicates that our 

prediction of positive relationship with moneyness was, in fact, 

induied,by the difference in the variance rate, not by the 

difference in moneyness. ------------------ 
"'When Black-Scholes model is valid, the only source of 
systematic mispricing is nonlinearity bias, for the formula 
estimate. 



The previous exaniple also indicates the need for - 
option-specific estiamtion in order to investigate margina>l 

* 
bias. 1f"we would have regressed mispricing on moneyness using 

t 

the two options c, and c, differing only in mdneyness, we would 

get a coefficient close to zero, when the Black-Schole's model is 

valid. But the true marginal bias at c, is negative, and at c,, 

close to zero. To identify such differences in marginal bias, 

fully option-specific estimation is required. I 

Next we consider the effect of sample mixture of options. 

Suppose that we have two samples, the first consisting of a, and 
.- - 

a,, and the s'econd consisting of ( a ,  and a 3 ,  the points shown in 
! 
I 

Figure 4.4 . In both samplqs, thejsample options differ only in ., - 
-. ,- 

moneyness. If we plot misprichg against moneyness, or perform 

'corresponding linear.regression, we would predict direct 

.relationship in the first sample, and inverse relationship in 

the second sample. Again, p s  anomaly could have been avoided 
,J 

by option-specific estimation. 

The above examples were in the context of investigating 

moneyness bias, but their essence applies to the investigation 

of time to maturity and variance rate biases as well. I t  is also 

clear that the findings of systematic relationships even when 

the Black-Scholes model is valid, are as likely as the errors 

involved in prediction due to the limitations of the techniques 

of investigation used. In particular, P sound investigation of 

the marginal biases looms rather difficult, and may even be 

infea~~ible. 



SECTION - 8 

Let us summarize our,findings in this chapter. The 

Black-Scholes formula with an estimated variance(or~volati1ity) 

rate produces biased estimates of the Black-Scholes node1 price. ' 

Three a,lternative estimators for the Black-Scholes model price 
c - -  

were cQnsidered, one of these previously proposed by Butler and 
t ' 

~chachter(1 83a). Our Monte Carlo results do not indicate 
i 7 

superiority for any of these estimators over the conventional 

formula estimator. 

The nature of the formula estimator's bias was explored in 

detail. We found that the sign of this bias would depend on 

whether the indicator of moneyness (ln(S/~)+rT) is greater or8 

less than half of the variance(V~) in absclute value. The Monte 

Carlo results confirmed the strikingqprice bias of Boyle and 

~nanthanarayanan(l977), and the time to expiration and variance 

rate biases seemed to depend on the level of moneyness. The 

option-specificness of the marginal nature of these biases 

require fully option-specific estimation, and may have important 

bearings upon the value of results based on alternative 

procedures. 



A SIMPLE METHOD OF COMPUTING HIGHER ORDER DERIVATIVES OF 

' BLACK-SCHOLES WITH RESPECT TO THE VARIANCE RATE 

Let us define the operator D as d/dV, and denote the r-th 
r 

derivative of the Black-Scholes model pricelC~(V) as D C. Then 

I it canbe shown that: 

where 

bl=exp(-1/81 

h=0.5/d(2ag), and g=S/[Xexp(-r~)] . 
a=ln(a,), b=ln(bl) and 

KCV)= b-(a/V2)-(1/2~) .... ( 2 ~ )  

At this point, let us recall ~eibniz's Formula: 

n n-r r n 
+ C D (u) D (v)+..+ u D (v)..(3) 

r 

where u=u(V) and v=v(v). 



In our case, u=DIC and v=K(v). 

Now, the n-th derivative of uv correspond (n+2)-th 

derivative of CB(V). So, for n=l,2,..., 

Thus the steps of computing higher order derivatives will 

be: 
6 .  

Step - 1:Compute the quantities a,,arblrb,and h for a givenl 

moneyness(g=S/Xexp(-rT)). 

Step - 2:For a given V, compute DIC from (1). 

Step - 3:Compute K(V) from (2~). 
Step - 4:Compute D ~ C  from (21, utilizing the values of DIC 

and K(V) from steps 2 and 3. 

Ste2 ?:For the highest order of derivative for CB(V) being 

J, compute the followings: 

for r=1,2, ..., (3-2). 



Step - 6:Compute D3C=(D2C)K(v)+(D1C)(D1~), by utilizing the 

values from steps 2 through 5. 

Step - 7:Compute D4C=(D3C)K(v)+ 2 ~ ,  ( D2C)(D1~)+ 2 C 2 ( D 1 C ) ( ~ 2 ~ )  

utilizing the values from steps 2 through 6. 

In general, there will be (J-1) terms for the J-th 

derivative of CB(V). 



CHAPTER 5: 

CONSTANT COEFFICIENT REGRESSION RESULTS 



In chapter 2, we emphasized the need of an appropriate 

regression model for empirical investigation of various aspects 

of Bla'ck-Scholes pricing. The limitations of the existing 

regre ion studies were,also examined there. A major shortcoming I= seeme to be .t'he lack of understanding about the linear-: 

regression results, over and above the inattentiveness to the 

effects of probable econometric problems. Much of this may be 

attributed to the absence of effort in defining a regression 

model with features special to the problem of empirica.1 

investigation of Black-Scholes pricing. In chapter 3, we 

presented such a model, and derived an estimable regression 

equation. This regression model shows that, in general, the 
7 

regression coefficients are option-specific and do not 

necessarily reflect the marginal biases. But the existing 

regressionresults are produced~exclusively by' constant 

co,efficient estimation, which may or may not be a reasonable 

approximation. Moreover,. the stochastic regressor problem 

arising from the use of estimated volatility rate as a regressor 

has been overloaked so far. 

In this chapter we report further constant coefficient 

regression results in cont2nuity with previous studies. But our 
4 

purpose is different here. First, to produce preliminary results 

which would be used as inputs and/or basis for comparison with 

the results in the forthcoming chapters. Second, to point out 

some of the effects associated with the existing procedures by 

replicating them. 



The remainder of the chapter isL organised as follows. The 

data sources are mentioned in section 1. Sample information 

about the explanatory variables of regression is provided in 

section 2. Section-3 deals with the nature of the Mack-Scholes 
7- 

formula estimates' deviations from the actual mdrket pric/sl 1 2 .  

The results of broad classification technique, plotting 

mispFicinagainst -- individual factors, and simple regressions 

are presented here. In section 4, constant coefficient multiple 
/ 

regression results are discussed,.~eping in view the regression 

model offered in chapter 3. Section 5 is on the problem of 

stochastic regressor. Finally, in section 6, the findings of 

this chapter are summarized. 

SECTION 1 - 

Fol1owin.g the strategy of sampling of Geske and, 

Roll ( 1984a), we selected the date February 05,198 1 randomly. 

 hen a sample of 383 call options written on 54 stocks traded on 
the chosen date in the CBOE was drawn randomly from the data 

base installed at Simon Fraser Uni~ersityl~~. The stock prices 

and the option prices are daily closing prices124 ------------------ 
12-2 We have used the simple stock price adjustment version of 
the Black-Scholes model. 

1 2 3  The data tapes were obtained from the Interactive Data 
Corporation, Options History Service 

12' See Cox and Rubinstein(1985), pp 341, for the problems 
associated with using closing prices. Some of these problems 
are: (iloften the stock and the options close at different 
times, the former being an inadeqaute approximation for the 
contemporaneous stock price; (iilit is difficult to discern 
whether the closing option is at the b:-d, at the ask, or in 



. The maximum number of options for-a single stock is 17 and the 
minimum number is Out of the 383 options, ,101 options(on 

30 different stocks) had no divid>end payment prior to their 

contractual maturity, 149 had a single dividend, and 133 had two 

or more. We screened out the 133 options with two or more 

dividends, thus retaiging a total sample of 250 options. 

The volatility rates(daily1 for the stock returns have been 

estimated from the daily return data of the Center for Research 

in Security Prices data base, over the period of 180 days prior 

to February 05,1981. Unbiased estimates of the volatility rates 

were for,med by adjusting the sample standard deviations of 

percentage stock returns. Given the expositions in 

~erton(l973a), pp 871-873, and, Jarrow and ~udd(1983), pp 90-91, 

we expect this to be a good approximation to the estimation of 

the volatility rate. Cox and Rubinstein(l985), pp 257-258, 

suggests the sample standard deviation of logarithms of one plus 

the stock-return as the estimator, while Butler and 

~chachtertl983a) proposes the sample average of squared 

percentage changes. The latter authors assume zero drift for the 

stock return126 ------------------ 
124(cont'd) between, thus giving rise to an interval of 
uncertainty which may be a significant proportion of the option 
price; (iii)closing quotations do not provide information about 
the depth of the market. Also, see Patell and ~olfson(l979),pp 
135-136, for the biases in ISD estimation using closing prices. 

1250nly 3 out of the 54 stocks have 1 option each. 

1 2 6  Yet other estimators are available in the literature, which 
may be termed 'non-classical'. ~arkinson(l980) proposed an 
estimator based upon the high ana low prices, which was modified 
by Garman and ~lass(1980) to inciude opening and closing prices 



We have used a risk-free rate of 14.83% per year for all 

options l Z 7 .  This is the 1981's second quarter's average 

discount rate on new issues of three-month U.S. Treasury Bills, 

I taken from International Financial Statistics,June,l982, volume 

35(6). ~nformation from the Wall Street Journal shows that on 

February 4, 1981, the new 13 week issue was trading at an 

average return of 14.85%. It appears that our rate can be 

considered as a good proxy l Z 0  

SECTION 2 - 
, In this sect'ion, sample information about moneyness, time 

to maturity, estimated volatility rates, and dividend-related ------------------ 
I 26(cont'd) $S well, and to adjust for the number of trades. The 
estimator of Beckers(l983) combines the traditional 
close-to-close estimator and Parkinson's estimator in a .  
stock-specific manner. Becker goes on to include .the ISDs to 
form better predictions of close-to-close stock price 
variability. 

lZ7we transformed it to daily rate. 

l Z e ~ h e  choice of proxy for the riskless rate differs across 
studies . For example, Schmalensee and ~rippi(1978) used daily 

, rate equivalent to the preceding Monday's auction rate on 
13-week U.S. Treasury Bill, while Blomeyer and ~lemkosky(l983) I 
used the mean of bis-asked quotations on the day. before the 
transactions observation date fbr a Treasury Bill with similar 
maturity as the option. ~haley(1982) interpolated the effective 
yields of the two Treasury Bills whose maturities closely 
preceeded and exceeded the time to maturity of the option. 

lz91t has been dbserved by Cox and ~ubinstein( 19851, pp 217, 
that even more than doubling the risk-free rate leads to only 
about 8% increase in Black-Scholes value. MacBeth and 
~erville(1979), pp 1174, observes that their results would have 
remained virtually unchanged i f  a single risk-free rate were 
used instead of maturity-specific rates. 



information are provided1 lo. 

zero-dividend Subsample 

~ccording to both indicators of moneyness ln(S/~) and 

ln(g)=ln(~/~)+r~, this subsampLe of 101 options seem to be 

in-the-money on the average. But according to ln(S/~), we have 

more out-of-the-money than in-the-money options: while, ln(g) 

says we have more in-the-money than out-of-the-money options. 

This is probably due to the fact that marginally out-of-the- 

-money options, according to ln(~/&), came out of the 

out-of-the-money range when rT was added according to ln(g). But 

due to the right-skewness of the distribution within the 

subsample, the in-the-moneyness of in-the-money optiops is 

possibly not very deep. 

On the time to expiration side, the options seem to be 

short maturity(1ess than 90 days) on the average. The right- 

skewed distribution indicates the abundance of less-than . 
-average short maturity options. 

Estimated volatility rates have symmetric distr'ibution. But 

the average estimated volatility. rate in this subsample' is 

slightly higher than that of the single-dividend subsample. 

single-dividend Subsample 
L 

According to both indicators of moneyness, this subsample 

of 149 options seem to be near-out-of-the-money on the average. 

Though both indicators of moneyness indicate greater number of ------------------ 
"Osee also Tables 5.1 and 5.1A. 



out-of-the-money options than in-the-money, as expected the 

ln(g) indicator gives us a significantly smaller proportion of 
- ' I  

out-of-the-money options compared to ln(S/X). This is, in bart, 

coming from the average longer maturity nature oi options in 

this subsample. The left-skewed distribution for time to 
* 

maturity says that there aie more options with above-average 

time to maturity than with below-average time to maturity. 

The distribution of estimated volatility rates is 
8 

approximately the same as that for the zero-dividend subsample, 

but with slightly lower mean. 
"b 

Total Sample 

The mingling of the effects of the differences in the 

degree of moneyness and time to expiration of the two 

saubsamples led to contradictory characterization of moneyness 

for the total sample, according to the two indicators of 

moneyness. Average near-in-the-moneyness is indicated by ln(g), 

, while ln(S/X) says that the total sample is* 

near-out-of-the-money on the average. The right-skewness of the 

distribution, of course, shows the preponderance of 

near-out-of~the-money options. 

Inspite of the push-up by longer maturity options in the 

single-dividend subsample, the total sample remained short 

maturity on the average. This may be due to the abundance of 

very short maturity options in the zero-dividend subsample131. 
- - - - - - - -_--- - - - - - - ,  

l 3  Since dividends are usually paid on+uarterly basis, we 
would expect the zero-dividend options to be of short maturity. 
Thanks to Professor Whaley for pointing this out to me. 



il 

The distribution of es.timated volatility rates is similar 

to the two subsamples. 

It is to be noted that the average characterizations are 

meant for general overview, and not to be related to the 

empirical results to follow. The average moneyness 

character$ion, in particular, is very arbitrary, in view of , 
\ 

our discussion in chapter 2 and our results about the 

nonlinearity bias in chapter 4. -+ 

Dividend-related Inform 

The average size of the single dividend in the 

single-dividend subsample is about 41 cents, and the dividend as 

a proportion of the stock price averaged to about 1.02%, varying 

from 0.01% to 2.5%. When we escrowed dividend, the mean of the 
P' 

stock price adjusted for dividend was only 40 cents lower than 

the mean of the unadjusted stock prices. 

-==  Compaxing the time to ex-dividend day and, the lag between 

the +dividend day and the day of contractual maturity, we find 

that the ex-dividend day is, on the average, c,loser to current 

date(February 05,1981) than to the maturity date 1 3 ' .  This, of 

course, is expected to have dampening effect on the probability 

of early exercise. 

------------------ 
'"~he average time to ex-dividend day is 44.5033, and the 
average lag between the ex-di'vidend day and the maturity date is 
52.302. 



The necessary condition for early exercise is:133 

D-X{I-B(T-T,)>O. We checked for this condition in our 

single-dividend subsample. The mean value for the left-hand side 

expression came out as -0.559942, indicating probably a lack of 

strong early exercise possibility in the subsample. There are 
A 

only 32 options where it may be optimal to exercise early. We 
J 

may speculate about proba6l-e reasons for this: (i) the options 

were on the average out-of-the-money; (iilthe ex-dividend date 

was on the average closer to the cufrent date than to the 

maturity date; and (iii) the size of the dividend did seem to be 

low -on the average. 

SECTION - 3 

, '  

~nformation about mispricind by the Black-Scholes formula 

estimates is provided in this section134. 

Absolute Prediction Error versus Relative 
I 

/'------., 
1. 

In.both the zero-dividend and the 
I -", 

\ su~samples, the dollar difference of formula estimate from the 
I I 

! , /! wdrket price, referred to as absolute prediction error says that 
)fj v ------- 1 ---------- 

'~:1)fla;row and Rudd( 1983) provides the sufficient condition for 
n<early, exercise. This implies the necessary condition for 
early exercise. 

'We did not find any unusual market behavior around'the time 
of our observation, except for the general market uncertainty 
about President Reagan's economic policies. 



the options are, on the average, o;erpriced by the model135. On 

P the other hand, the percentagettaken out of formula estimate) 

difference, alternatively called the relative prediction error, 

indicates average ~nderpricing'~~. 

For the zero-dividend subsample, we observe the fo'lowing 

from Table 5.2: 

(althere are more out-of-the-money options than 

in-the-money 

(b)the number of overpriced options is almost double the . 

number of underpriced options; 

(clrnore out-of-the-money options are overpriced than 

in-the-money options; 

(dlthe overpricing of out-of-the-money options is 

substantially higher than that of the in-the-money options. 

Thus, the absolute prediction errors are expected to be 

negative (meaning overpricing ) on the average. These, when 

weighted by the inverse of the formula estimates, the highly 

overestimated out-of-the-money option values are expected to 

' 3 5  The mean absolute prediction error is -0 .229993  for the 
zero-dividend subsample and -0 .293016 for the single-dividend 
subsample. The mean relative prediction errors are 2.38457 and 
0 .062257  respectively. 

Black(19753, pp.41, observedAthat there are times when most 
traded options seem underpriced(overpriced). He advanced two 
explanations: (a)marketls estimates of volatilities to be 
generally lower(higher1 than the estimates used in the formula; 
(b)factors unrelated to the Black-Scholes model may be affecting 
opt i,-m prices. 

' 3 7  The indicator of moneyness we would use here, is, I~(s/x), 
unless otherwise mentioned explicitly. r, 



lead towards positive value for the average relative prediction 

error. 

- A similar explanation applies to the single-dividend case. 

In addition, we note that a greater proportior! of over-priced 

out-of-the-money options and their larger mean absolute 

prediction error lead to to a smaller(re1ative to the - 

zer"o-dividend subsample) mean relative prediction error for the 

single-dividend subsample. 

The above discussion indicates that a probable so1;rce of 

conflicting empirical results could be the difference-in the 

measures of formula misprieing adopted. 

Formula Mi spric inq - and Categor isat ion of Opt ions - 
As we have mentioned in 2, one of the toois of reaching 

x .  

- conclusion about formula pricing, used in the existing empirical 

v-- 

- studies, has been tofdo broad stratification of the sample 

' options, and then compare the strata means of the measure of 
I 

mispricing. Our grouping in Table 5.2 is not exactly similar. 

But,if we compare the mean mispr,icing(dollar deviation) of our , 

groups, we would notice the following: 

in both the subsamples, options that are relatively 

deeper-away-from-the-money(c1oser-to-the-money, of relatively 

shorter(1onger) time to maturity, and with relatively 

lower(higher1 estimated volatility rate on the underlying 

stock's return, tend to be underpriced(overpriced). 



To be more careful, this observation does not enable us to 

relate •’.ornula mispricing systematical1.y to any one of the 

individual factors. For example, it would not be proper to say 

that shorter(1onger) time to maturity options are 

underpriced(overpriced!, since we are unable to say, at least at 1 
C 

this stage, whether the underpricing -overpricing is due to the 

difference in any. one of the factors alone, or some combination 

of thedir differences. As was pointed out in chapter 2, this is a 

major shortcoming of the broad classification technique., and 

hence of the existing results based on this technique. 

We also note.that neither Black(1975)'s nor MacBeth and 

~erville(1979)'s dichotomous striking price bias is supported by 

our subsamples. Both in-the-money and out-of-the-money options 

are, on the average, overpriced, rather than one group being 

being underpriced, while the other being overpriced. As can be 

seen from Table 5.2, dichotomous bias pattern can be seriously 

affected by the sample mixture of options. For exaqyle, had the 

zero-dividend subsample been comprised of only the groups of 

zUO(ZO0) and zOI(ZUI), MacBeth 

been supported by the grouping 

p1ottinq - or Reqressing Formula 

Aqainst a Single Factor - 
------------------ 

and Merville(,Black) would have 

technique' 8 .  

& 

1 3 8  We are not being strict here about Black's grouping 
deeper-in-the-money versus deeper-out-of-the-money, rather than 
in-the-money versus out-of-the-money, the latter used by MacBeth 
and Merville. - 



x 

When we plot formula mispricing against moneyness, no 

discernible pattern in the relationship emerges in any of the 

subsamples. For time to maturity and estimated volatility rate, 

there seems to appear inverse relationships, these relationships 

being less strong in the case of the zero-dividend subsample. 

The simple regression results reported in Table 5.3 bear 

support to the above visual observations. Slope coefficient for 

moneyness is not statistically significant(at 5% significance 
9 

level) in any of the two su % samples. Those for time to maturity 
and estimated volatility rate are negative and significant in 

bo'th the subsamples. As we may like to recall, Whaley(1982)'s 

simple regression results for the formula estimate are 

similar 1 3 9 .  
/ 

We should keep in mind that although visual observations or 

simple regression results do not really help establish 

conjectures about marginal biases, they prompt us to explore 

with more appropriate techniques. 

Formula Mispricinq - and Black-Scholes Validity 

As established in chapter 4, a familiar result about the 

nonlinearity bias of the formula is that the formula estimate 

tends to understimate(overestimate) the model price for 

------------------ 
13gWhaley considered both simple stock price justment and 
Pseudo-~merican versions of the Black-Schole and the measure 
of mispricing was relative prediction err 2 r L  considering 
only the simple stock price adjustment version of the 
Black-Scholes, and our measure of mispricing is absolute 
prediction error. 



closer-to-the-money and at-the-money(dceper-aw.y-from-the-money) 

options, Though an observed(empirical1y) pa~ttern similar to this 

does not necessarily validate the Black-Scholes model, one 

nearly opposite to the above pattern would raise reasonable 

doubts about the validity of the Black-Scholes model. 

In both of our subsamples, the mispricing pattern is nearly 

opposite. to that of the nonlinearity %as of the formula. This 

can be seen from Table 5 . 2  and Figures 5 . 1  and 5 . 4  . Relatively 
closer-to-the-money(away-from-the-money) options tend to be 

overpriced(underpriced). In addition, the. two at-the-money 

options in the zero-dividend subsample are overpriced by the 

formula estimate. Though there is the possibility of sampling 

error, these patterns(al1 in the opposite direction to the 

nonlinearity bias) would be too much of a chance fluctuation. 

Thus, at this elementary level of investigation at least, 

we do not find support for the Black-Scholes model. This 

conclusion of ours is based upon analysis similar to the 

dichotomous bias approach, the soundness of which is very much 

in question. In chapter 2, the functional bias approach and the 

multiple regression analysis was suggested as a relatively 

better package. We now turn to our multiple regression results. 

SECTION - 4  

Constant Coefficient Multiple Regression Results 
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- 
The multiple regression model we presented in chapter 3, 

yielded the estimable regression equation: - - 

C -cB(B~ )=BT * + q 
j j j Bj j 

\ 
L 

As we remember, this estimable version' followed the - J 

specification of the volatility rate 8; a regressor in BT , and 
' j 

using estimate of the volatility rate as a proxy for the true 

volatility rate. For comparability with the existing results, t 

and also for the ease of interpretation, we are now suggesting 

the moneyness (ln(S /X )=m ) and the time to maturity(T ) of the 
j j  j j 

option as the two other regressors in BT . l Q O  Adding an 
j 

intercept, we can write the regression equation as: 

The coefficients in (5.1) arc subscripted by observation to 

denote option-specificness of marginal biases. In chapter 4, we 

have seen that the nonlinearity bias of the formula alone leads 

to option-specific marginal biases. This means that the 

coefficients in (5.1) are functions of at least the,included 
F 

variableslQ1 Note, in addition, the coefficients are not the ------------------ 
laOTo recall, we are using simple stock price adjustment version 
of the Black-Scholes. The formula is the same as that for the 
European call version, but the stock price is adjusted for the 
escrowed dividends, if any, and the volatility rate is from thb 
stochastic process of the adjusted stock price. 

l Q '  When the Black-Scholes model is not valid, the coefficients. 
may be functions of some a'dditional variables not included here. 
An example would be the variable--the lag between the 
ex-dividend day and the maturity day, if the Roll-Geske-Whaley 
model is valid. We remind the reader that we are not attempting 
to test options market efficiency, we are rather accepting it as 
a maintained hypothesis. 



option-specific margimnal biasesth2. if there were no 

nonlinearity bias of the formula, then the validity of the 

Black-Scholes model would have implied zero values for the 

coefficients. The indifference to the nonlinearity bias may have 

led the users of regression to interpret the coefficients as 

(marginallbiases. - 

If weaassume that the coefficients are constant across 

observations, considerable simplification in estimation is 

'achieved. Constant coefficient estimation implies: for each 
, 

factor, we are approximating the function relating mispricing to 

the factor by a straight line, the slope of which is invariant 

to the level of any of the factors, at least over the range of -. 
sample variation. For example, let us consider the coefficient 

of moneyness in the zero-dividend subsample. Suppose that the 

Black-Scholes model is valid. Then, Figures 4.2 to 4.4 tell us 

that the marginal moneyness bias would depend, both in terms of 

sign and magnitude, on the levels of moneyness, time to 

- maturity, and true volatility rate. Thus, if it were possible to 

write the nonlinearity bias in.-the form of e T  0 , the 
j j 

coefficient +, in ( 5 . 1 ) ~  which is equal to 0, in this case, 
j j 

would be a function of the,variables mentioned143. 

In chapter 7, our exposition on the basis of second order - 

approximation to the nonlinearity bias shows that when the 
Black-Scholes model is valid, the coefficients would be 
functions of the marginal biases. 

In chapter 7, we show that the second order ap roximation to 
the nonlinearity bias can be written in the form B P  0 . 



Now suppose that Merton's jump diffusion model is valid, 

and the model missp'bcif ication error of Black-Scholes 

overwhelmingly joutweighs,the nonlinearity bias of the 

Black-Scholes formula estimate. ~erton(l976a)'s ~igure 1,pp 341, 

indicate that the marginal moneyness bias would depend on the 

level of moneyness. Though figures were not drawn for varying 

levels of time to maturity, total volatility rate, jump 
8, 

frequency, or the relative contribution of the jump component to 
. 

the total volatility rate, his tablei bear indirect support that 

the curve in Figure 1 would be shifting due to these variations. 

Thus, the coefficient 9 ,  in ( 5 . 1 1 ,  which would now be equal to 
j 

, will be a function of the included variables plus some 
I 

extra variables. 

* In both cases of our example, the assumption of a constant 

slope coefficient would be reasonable only if the sample options 

have extreme similarity in terms of the variables in question. A 

practical problem to identify such a sample is the unknown 

nature of the true volatility rate or parameters determining 

Unless a truly homogeneous sample is available, one should 

be careful in interpreting the estimated constant coefficients 

as the marginal biases, though they may appear to be so. With 

this thought in mind, we have taken advantage of the simplicity 

of constant coefficient estimation in chapters 5 to 7. But we 

'''The design of a homogeneous sample is an item-+on our agenda 
for future research. 



have tried to avoid unqualified interpretation of the 

coefficient estimates as marginal biases. 

The Ordinary Least Squares(0LS) regression results for 

(5.1) are presented ih Ta le 5.4, both for the zero-dividend B 
subsample and the single-dividend subsample. As we consider the 

statistical significance of individual coefficients at 5% 

significance level, we do not find the coefficient of the 

moneyness regressor to be significant in any of the subsamples. 

~haley(1982) and, Geske and Roll(1984a) found similar result. 

Geske and ~oll(1984a) pointed out that the (so-cal1ed)striking 

price bias is more pronounced in comparing options on the same 

stock. But we would have reservation about interpreting this 

insignificance as the insignificance of the marginal striking 

price or moneyness bias, though our exposition in chapter 7 

indicates that this may be the case under certain 

circumstances 

, The coekficie9 of time to maturity is significant in both 

subsamples. We noted that this regressor has high variability 

which may have contributed to the significance. 

The coefficient of volatility rate has been found to be 
* 

significant in the single-dividend subsample, but not in the 

zero-dividend subsample. The latter part of this result is in 

contrast to all previous studies, where the'coefficient was ------------------ 
14' On the basis of second order approximation to the 
nonlinearity bias, the coefficient of moneyness is a ratio of 
two option-specific magnitudes, the marginal moneyness bias 
being in the numerator. Thus smallness of this marginal bias may 
also imply smallnes of the coefficient. 



found to be persistently significant. 

Similar to the preceding result, the intercept gained 

statistical significance from the zero-dividend subsample to the 

single-dividend subsample. It is to be mentioned that both 

~haley(1982) and, Geske and Roll(1984a)'s regression results. had 

significant. intercepts. As we may recall from chapter 3, the. 

intercept term would partially capture the effect of any 

relavant variable excluded from the regression, In-.this case, 

some early-exercise-related variable might have caused the 

The F-*tests of the signif,icance of regressions indicate '. 
rejection in both the subsamples of the hypothesis that all the 

slope coefficients in a regression are jointly zero. 

In the light of our observations about testing model 

validity in chapter 3, the'above results seem to lend support to 

the view that: (althe Black-Scholes model may be complete in 

regressors, but functionally wrong in the non-dividend-paying 

, case; (blthe Black-Scholes model may both be incomplete in 

regressors, and functionally wrong(in the included regressors) 

for the dividend-paying case. But we would like to emphasize 

that our observations in chapter 3 were based upon t 

option-specific regression, while the present results are from 

constant coefficient regression. 

l o 6  There may also be an statistical explanation in that the 
sheer magnitude of the coefficient of volatility rate in the 
single-dividend subsample is responsible for the significance of 
the intercept there. 



I) 

Regarding the signs of the coefficients, if'we may refe \\ 
the forthcoming expositions in chapter 7, one is more' likely to 

L 

be misled in interpreting the signs of the estimated constant 

coefficients as the directions of marginal biases than in 

equating the magnitudes(zer0 versus non-zero) . However, an 
- - a  

interesting feature of our result-regarding the signs, which 

deserves some discussion, is .that the coefficients of moneyness 

afnd volatility rate changed their signs from the zero-dividend 

subsample to the single-dividend subsample14'. In the 

zero-dividend subsample, the sign of the coefficient of 

moneyness seem to support MacBeth and Merville(l979)'s finding, 
J 

while in the single-dividend subsample, Whaley(1382) and, Geske 

and ~o11( l984a) are supported. For the coefficient of volatility 

rate, the less-debated negative sign appears in the 
8 

single-dividend subsample, while the zero-dividend subsample 

produces the first(to our knowledge) finding of positive sign. 

Let us see if we can advance some suggestion as to the 

cause of such reversal on the basis of our regression model in 

chapter 3. 

consider the hypothetical case that the jump-diffusion 

model of Merton provides the fair value(CM) of a non-d'ividend- 

-paying optio,~ . In the dividend-paying case, some appropriate 
i 

model, corresponding to the jump-diffusion process, would 

provide the fair value(CMD). In the zero-dividend case, the ------------- ----- -4 

l a 7  It may :jot be quite appropriate to consider sign reversal of 
coefficients which tested to be not significantly different from 
zero. Thanks are due to Francis Boabang for pointing this out. 



coefficient vector 9 ( O )  would have! two parts, one part 
B j 

9 ( O )  coming from th; difference CM-CB, and the other 
B j 

, 0 ( O )  arising from the nonlinearity bias of the  lack-~chdles - 
J 

formula., In the single-diGidend case, 9 ( can be thouqht to - 
'3 B j 

have two parts; 9 ( l ) (a) due to CMD-CM, and 9 ( ) (b) from 
B j Bj 

CM-CB. Thus, including 0 from the nonlinearity bias of the 
" 
.J 

Black-Scholes formula, * ( I )  would have three components. 
B j 

Unless the options in the two cases are very different(except 

for dividend) we would expect ( 4  ("(b), and 0 ( O )  10 
'f---3 Bj B j j j 

( I ) .  But + (l)(a),,the difference in pure model 
Bi 

misspecif ication error of Merton's in terms of 19' , may cause 
i 

+ the signs of some or all elements in 9 ( I-) to beddif ferent from 
q- 

the signs of the correspong.ing elements I n  9 ? l a 8  

B j 
Note also that part of the mgdel misspecification error may 

come in the form of omitted variqble effect, 6 T9 . Ordinarily, - 
j aj 

we would imagine that this effect get embodied in the intercept 

estimate, thus leaving the slope estimates unaffected. But we 

should ~ o t  overlook the possibility that the omitted variable(s1 

is(are) significantly correlated with some or all of the 
'I 

included regressors. Under such circumstances, the OLS estimates 

of the included regressors would be.biased. The signs and 

l a ~ h u s ,  for example, the coefficient for moneyness would have 
three components in each subsample. Let the component coming 
from CM-CB be equal across the subsamples and same be the case 
for the component coming from nonlinearity bias. But the 
remaining component coming from CMD-CM in the single-dividend 
subsample, which is zero in the zero-dividend subsample, will 
lead to different coefficient values across the subsamples and 
may even lead to different signs. 



magnitudes of these biases would depend upon that of the 
i, 

correlation (between the included and the excluded) and the 

coefficients of the excluded variables(if they were included).. 

Thus, the phenomenon of- omittea variable may contribute to sign 

reversal of- included regressors' coefficient estimates in two 
, a 

P 

ways: (i)variables omitted in the two cases are different; 
f 

(ii)the same omitded variables, but having different 
' i  .> 

\ 
coefficients ir;"the two cases. 

Comparison with Simple Regression Results 

It may also be interesting to consider the omitted variable b 

effect in the context of simple regression results such as ours 

There are two sign reversals in our case, as w 6  go from 
* 

multiple regression to simple regression results. In the 

zero-dividend subsample, the multiple regression doefficient of 

volatility is 1.60941, where as the simple regression 

coefficient is -15.2183. In the single-dividend subsample, the 

coefficient of moneyness 'change from -0.000703 id the multiple 

regression to 0.202008 in the simple regression. 

~ollowin; Goldberger ( 1964 1, pp. 194, we decomposed each of 
1- 

these multiple regression coefficients into the corresponding 

simple regression coefficient and another term incorporating the 

omitted variable effect .'In the case of volatility rate's 

coefficient, strong positive covariance of estimated volatility 

rate with time to expiration, in association with negativity of 



time to expiration's multiple regression coefficient produced 

the sign reversal. In the case of the coefficient of rnoneiness, 

large negative multiple regression coefficient of volatilit'y, 
3 

rate coupled with negative covariance between moneyness and j 

estimated volatility led to the sign reversal. 

Our results above raise doubt about the robustness o\f the 

simple regression results claimed by Whaley(1982),pp.48. 1 4 9  

MacBeth and ~ervi11?(1979)'s finding of positive coefficient for 

the measure of moreyness in their volatility rate-excluded two , 

variable reqressions, is also cast in doubt by our results. It 

appears that the omitted variable effect may have contributed to 

the conflicting results about the direction of the so-called 

striking price bias. 

SECTION 5 - 
- 

In the' foregoing section, we notedothat the coefficients of 

rnoneyness and volatility rate changed their signs from the 

zero-dividend subsample to the single-dividend subsample. We 

advanced two prabable rea ons, (i)the difference in the model 1 misspecif ication error of he   lack-~chdles, and ('ii) the 

difference in the omitted'variable effect across the two 

subsamples; In this section, the stochastic regressor problem is 

.identified as yet ,another source of sign reversal. The 

stochastjc regressor problem %rises due to the fact that the 
i----------------- 

189Whaley reports that his simple regression results remain 
,virtually unaffected when various combinations of the regressors 
are used instead. 



regressor volatility rate is measured with error, when we use 

estimated volatil'ity rate in its place. 
QS 

To begin with, the stochastic regressor problem is to be 

separated from a similar problem, namely, the errors-in-variable 

problem. The latter problem has been discussed eztensively in 

the context of grouping of portfolios for empirical testing of 

the capital ~ s s e t  Pricing Model, and was firsb mentioned by 

Black and Scholes(1972) in the context of testing the 

Black-Scholes option valuation model. 

Errors-in-variable Problem - of Black - and Scholes(1972) 
P 

the basis of historically estimated vatiances, Black and 

Scholes ranked the stocks from the m i n i h  to the maximum 

estimated variance, and assigned options on the 25 percent of 

the stocks with the lowest estimated variances to the first 

portfolio, the options on the next 25 percent of the stocks to 

the second portfolio, and so on. Then buying the options at 

model prices estimated with the estimated variance rates, and 

adjusting the hedge return of portfolios for the market risk, 

Black and Scholes found that the two portf p lios with the 
3 

iowerlhigher) estimated variances gave positive(negative) excess 

hedge returns. Thus, they concluded that the model(estimated) 

overpriced options on high variance(estimated) stocks, and 

underpriced options on low variance(estimated) stocks. In this 

last sentence, the parenthesized words are ours, and we think 

they are important. They attributed this phenomenon to the 



errors-in-variable problem. 

Let us now outline the errors-in-variable problem 150. 

If the true variance rate of a stock is low, then if the - 

estimated variance rate for 'the stock is also low(among the set 

of estimated variance rates), it will duly be assigned to a low 

variance category. But due to measurement error, if the 

estimated variance rate comes out high, it will be unduly placed 

in the higher variance rate category. 

the true variance stock is high, then the 

estimated variance rate is high, it will duly be categorised as 

high variance. But due to measurement error, if it is estimated 

low, it will erroneously be placed in a lower variance category. 
.' 

ThusJBlack and Scholes's portfolios of lower(higher) 50 

percent estimated variances will probably contain options on 

stocks with the true variance rate being high(low).151 For these 

s, the estimated model price will be lower(higher1 than 

the fair price or the model price. For the duly assigned 

options, expected excess hedge return, when transaction at model 

'price, being zero, the erroneously assigned options will lead to 

positive(negative) excess hedge return for the respective * 

I 

portfolio. The estimated model price thus would seem to 
'-5 

underprice(overpice) options on low(high1 estimated variance 

stocks. But the note of caution is that , due to measurement 
t 

I 50For this part, I have greatly benefitted from Prof. h r r y  
Schachter's ECON 317 lectures. 

,.='The errors would be severe for the extreme groups. 



error, true low(high) variance stocks are expected to have 

positive(negative) measurement errors more often. Thus if  the 

model is valid, options.on low(high) variance stocks will be 

overpriced(underpriced) by the model, relative to the market. 

Stochastic Regressor Problem 

The 7 rrors-in-variable problem discussed above arises in 
the context of the hedging-technique-cum-dichotomous-bias 

approach to-the validation of the Black-Scholes model. The 

stochastic regressor problem, on the other hand, arises in the 

context of the regression-technique-cum-functional-bias approach 

to validation. 

The regression model we presented in chapter 3 shows that 

one 0.f the regressors, the volatility rate, can only be measured 

with error. In ot-her words, given that the true volatility rates 

are not known, we can only.use their e~timates, which are 

subject to measurement error. Thus the applied regressor, the 

estimated volatility rate, would be correlated with the error 

term in the estimable regression equation. Under such 

circumstances, it is a well-established econometric result that 

the OLS estimate's of the regression coefficients would be biased 
'i - 

and asymptotically biased. Uader the simplifying assumption that 

the measurement errors in volatility estimates are identically 

distributed across stocks, and that the moments of the 

measurement errors of order greater than^two are approximately 



zero,' we derived an expression for the asymptotic bias of the 

OLS estimates 15'. 

Asymtotic bias vector: 

[ O  0 H I  C-' 

where 

0 2 *  the population iance of the regressor o 
j 

0 2 * *  the assumed co variance of the measurement errors 

1 G3 the assumed option-non-specific coefficient of volatility in 

our estimated regre-s~ions'~~ 

EA is the asymptotic expectation operator 

and C the population dispersion matrix of the regressors, 

assumed to exist and nonsingular. 

As we can seeIbtypical of the stochastic regressor 

problems, the asymptotic bias contains the unknown parameter $ 3 .  

The direction of the asymptotic bias in the OLS 

coefficients will depend on the sign of the covariance of the 

omposite error with the volatility estimate, and the magnitudes 5 t i  ., . 
and sigrs of the covariances of the regressors among themselves. 

------------------ 
1 5 2  These simplifying assunptions are much less restrictive than 
they might appear, when the sample size from khich the 
volatilities are estimated is large. 

1531n option-specific estimation, $, can be thought as the 
population first central moment of the $I, 's. 

j 



The covariance of 'estimated volatility and the composite error 

term will depend on the relative strengths of the components in 

the latter term. If the sampling error in the nonlinearity bias 

of the formula is the major component in the composite 

disturbance, the first two terms in the covariance expression H 

will dominate. In that situation, i f  d l  and d2 tend to be of 
i i 
J J 

the same sign, and half of their product be less than one, then 

a negative covariance will be expected. And the extent will 

By now; it is clear that if  the asymptotic bias problem is 

severe, this may lead to sign reversal of coefficients across 

different samples. Let us now examine the sign reversal in 'our 
B 

case. 

In both the subsam~les, d l  and d2 tended to have same 
j j 

sign, and (4, d, / 2 )  seeme3 to be 1;ss than 1 ,  on average. We 
j j 

would thus expect negative cwariance, larger for the sinr~le 
'7 

dividend subsample, for two reasons: 
\ 

g 

(i) mean { ~ c B ( B ~  )/a(6 )I6 = o  3 higher* 
i i i i 
J J J J 

( i i )  mean (dl d2 / 2 )  lower. 
-I 7 

J J  
The sign pattezn of the elements in the last column of the 

inverse of the estimated variance-covariance matrix of 

fegressors is: 

[ +  - +]T 

Thus, in both the subsamples, we would expect 

underestimation for the coefficients of moneyness and volatility 

rate, and overestimation for th-e coefficient of time to 



expiration, but more so for the single-dividend subsample. The 

observed sign reversal from the zero-dividend subsample to the , 
B 

single-dividend subsample is in conformity with this 
+ 

,expectation. Bear in mind, however: (i)our expectaticn is on the 

basis of some simplifying assumptions, and sample,estimates of 

. the relevant mamitudes in the asymptotic bias expression; 

(ii)more than ohe'probable sources of sign reversal.might have 

interacted. 

The existing regression studies using the estimated 

volatility rate as 'a regressor also suffer from the stochastic 

regressor problem similar to ours. But the problem was not 

identified as such. The question remains: what can be done about 

this problem and whether the problem is severe at all. 
0 

To avoid the stochastic regressor problem, a natural 

alternative that may come into consideration is that of dropping 

the vo3~tilit.y rate as a regressor, as was the case in, MacBeth 

and ~erville(1979)'~?. We may think that this would 

improve(1ower bias) the coefficient estimates for the remaining 
* 

regressors. ~cCallum(1972) and ~ickens(l972) showed that 
f. 

dropping the erroredlvariable would lead to' higher asymptotic 

biases for the remaining coefficients. Aigner(1974)'s results, 

based on mean square error, also broadly supports the use of the 

errored variable. Thus, if the problem of stochastic regressor 

is serious, MacBeth and ~erviile(l979)'s and ~haley(1982)'s 

------------------ 
l S a  MaeBeth and Mervi-lle, of course, do not talk about the 
stochastic regressor problem. 



resxlts would be more severely affected than Geske and 

~o11( l984a) ',s or ours. 

The other alternative is to use some alternative estimation 

procedure than OLS. Two of the well known procedures are the 
_I 

~nstrumental Variables and the Maximum Likelihood estination. 
< 

Under the former procedure, any instrument correlated with the 

, volatjqity rate, but uncorrelated with the error term in the 
7- -. 

2 -A' 

regression equati~n,.would lead to consistent estimates for all 
i 

P 

-- the coefficients. It would be difficult to find such an 

instrument given the nature of the composite error term in our 
, 

regression model. Even if we coqld find one, the Instrumental 

Variables Estimators do not have the minimum asymptotic 

variqnce. Moreover, given our objective of validating the 

 lack-~choles model, use of instrument for the volatility fate 
may bias the results against it. ~ 

Maximum Likelihood Estimation, on the other hand, leads to 

consistent and efficient estimates. But as shown in Judge, et 

a1, (1980), the procedure breaks down without information in 

addition to that provided by the sample. Unfortunately, the 

information requirements considered there will be unknown in our 

context. 

We may, then, wonder whether the problem of stochastic 

regressor in ours context is serious at all. There is no clear 

answer to this. I f  we overlook the sampling error of the 

nonlinearity bias, or assume it to be relatively a negligible , 

component in the composite error term, some comments can be 



made. The complex covariance expression H simplifies to . 
-&(,2** 155. 

The asymptotic bias of the coefficient for volatility rate 

would be small if the cross-stock variability of the volatility 

rate is relatively larger ehan the variability of the 

measurement errors156. Our situation does not look very 

digferent from this. 

The asymtotic bias for the other coefficients will be small 

i f  that for the coefficient of volatility rate is small, and in 4 

addition, the probability limits of the coefficients of 

regression of volatility rate on these regressors are small. 

~dhittedl~, the stochastic regressor problem will persist, 

for which we neither find a satisfactory solution, nor a strong 

apriori basis to gauge its severity. For the rest of this 

thesis, we shall overlook this problem. 

SECTION - 6 

To summarise our findings in this chapter, neither 

~lack(1975)'s'-+nor ~ a c ~ e t h  and Merville(l979)'s dichotomous 

striking price bias is supported by our zero-dividend and 

single-dividend subsamples. Contrary to the prediction of the 

nonlinearity bias of the formula, we find relatively 

1 5 5 ~ o t e  that the previous predictions about the directions of 
asymptotic biases in our subsamples would remain good, if $,>O . 

smaller multiple correlation coefficient of volatility rate 
with the other regressors will also help reduce the asymptotic 
bias. 



closer-to-the-money(away-from-the-money) options to be 

overpriced(underpriced) by the formula estimates. But the 

soundness of the technique producing this result is 

questionable. 

r' 
We then moved to constant coefficient multiple regression, 

and found the coefficients of moneyness and -volatility rate to 

change direction from the zero-dividend subsample to the 

single-dividend subsample. Three probable sources, all in the 

light of the regression model presented in chapter 3, of this 

/ sign reversal were discussed, since such reversals prompted 

substantial -research, e.g., MacBeth and Merville( 1979,1980)~ 

Emanuel and'~ac~eth(l981), ~terk(1982), ~haley(l982)~Geske and 

~oll(1984). These are: (i)the difference in the model 

misspecificatior, error of the Black.-Scholes, in terms of the 

included regressors, and iii)the,difference in the omitted 

variable effect across the subsampJ+es; and (iii)the asymptotic 

bias of the OLS estimators arising from the use of estimated 
\. 

volatility rates as proxg".for the unknown true volatility rates. 

The estimation results in this chapter did not provide any 

substantial evidence about the validity of the Black-Scholes 

model OL the dividend indxement of the systematic deviations of 

Black-Ssholes formula estimates. In the next chapter, we utilize 

the multiple regression results of this chapter to test dividend 

inducement. 



CHAPTER 6: 
7- 

TESTING DIVIDEND-INDUCED SYSTEMATIC BIASES OF - 
BLACK-SCHOLES FORMULA ESTIMATE 

4' 



6 

The European call valuation model of Black and 

Scholes(1973) deos not take into account the early exercise L 

possibility of Unprotected American Calls(UAC) which are the 
, 

most :widely traded options. Black(1975) proposed the 

pseudo-American valuation of UAC which uses the Black-Scholes 

i 
European formula. But this valuation constrains the early 

exercise probability to a zero-one variable. SLchwartz(1977) 

proposed a numerical valuation proce.iure. '~acer, in other 

papers, ~oll'C1977), Geske(l979a1, and Whaley(l981) deTreloped a 

closed form solution 15'. 

On the empirical front, with possibiy a feu exceptions such 

as Black and Scholes(1972), researchers continued to examine the 
8 I 

Black-Scholes pricing using UAC data. A common finding is that 

the Black-Scholes formula (European, Simple Stock Price 

Adjustment,, or pseudoAmerican version) estimates tend to deviate 

from the actual market prices in certain systematic ways. Three 
a 

cf the most popular factors to which the deviations havebbeen 

sgstematicqlly related to, are: moneynq(or striking price) and 

time to maturity of the option, and the volatility rate on the 

underlying stock's return. Since the data used for empirical 

tests were mostly on UACs, a legitimate concern is whether the 

findings of these systematic relations are essentially 

dividend-induced. If they are, the use of a model such as the 
'f"-'-""""-" 

'These valuations assume lognormal diffusion process for the 
stock price adjusted for escrowed dividends. No closed form 
solution has yet been developed for the two other well known 
stochastic processes--the constant elasticity of variance and 
the jump-diffusion. 



one developed by-Roll, Geske, and Whaley should be able to 

eliminate the systematic tendencies of the Black-Scholes. 

~haley(1982) found the Roll-Geske-Whaley model to eliminate 

all the systematic tendencies of  lack-~choles except for the 

one related to the volatility rate. Sterk(1982) reported that 

the Roll-Geske model reduces the strikid price bias15e. 

Sterk(1983) found that the improvement f the Roll-Geske-Whaley 

model is economically significant for the range 0.3 to 0.7 of 

the early exercise probability, and size of the single dividend 

more than a dollar. In two other studies, Blomeyer and 

~lemkosky(l983)~ and Gultekin,Rogal~ki, and ~inic(1982) 
\ 

concluded that the bias characteristics of the Roll-Geske-Whaley 

model is identical to that of the Black-Scholes. Later, Geske 

and Roll(1984a) suggested that the systematic deviations of the 

Black-Scholes with respect to moneyness and time to maturity are 

essentially dividend-induced, while the one related to the 

volatility rate is a measurement error problem. 

The empirical studies are to be evaluaeed keeping in view 

the limitations of the test'ing procedures used. The 

interpretation of the test results is equally i,inportant. For 

example, we need to know what is being interpreted as systematic 

relationship and dividend inducement of such relationship. In 

this chapter, we draw on our discussions in the previous 

chapters to throw light on these aspects and offer an ------------------ 
l f e  Sterk(1982) used the version of ~merican valuation model 
prior to the corrections of ~haley( 1981 ) , while Sterk( 1983) used 
the corrected version. 
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L 

overpriced in-the-money opt ions. Since this reduces 

9 
~lack(1975)'s direct striking price bias, this was taken to mean 

that the the bias was essentially dividend-induced..Thb 

Roll-Geske estimates were also found to have lower average 

percen.tage deviation and average dollar deviation. 

Blomeyer and ~lemkosky(4983) plotted the percentage 

deviations of the simple' stock price adjustment version of the 
,> 

Black-Scholes , and the Roll-Geske-Whaley, against moneyness(g). 

They toundUthat both ~nderprice~~out-of-the-mongy and price 

fairly well at and in-the-money options. They also compared 
'F , 

ex-post mean holding period return of hedges based upon the 

estimated prices of the two models, and did not find 

statistically significant difference. In addition, Blameyer and 

Kleinkosky stratified the options into three portfolios based 

upon the dividend yield of underlying stocks. For none of these 

portfolios, the two models yielded significantly different mean 

hedge return. 

~ultekin,~o~alski, and ~inic( 1982) performed multiple 

regression of the dollsr deviations of the Roll-Geske-Whaley 

estimates on moneyness(S-X) , time to maturity, and 

estimated( f rom past series of return) volatility rate. The 

coefficients were found significant. 'The negative coefficients 

fo,r moneyness and estinated volatility rate were interpreted as 

Grnilar to.  lack( 1975) 's striking pr,ice and, BJack and 
7 

Scholes(1972)'s variance bias of the Black-Scholes formula 
C ." -7 

estimates. Thus, ,follows the implication that these biases are 



not dividend-relatedt6'. 

All the studies above are based on pooling of time s%riss 

and cross-section datatb2. Geske and Roll(1984a) used , 

cross-section data only,' thus avoiding the econometric problems 

related to pooling arid time series. They ran t?o regressions of 

the dollar dqviations of the Black-Scholes formula(simp1e stock 

price adjustment v'ersion) estimates 'on moneyness(ln(s/x) ) ,  time 

to maturity, and estimated(from historical series of returns) 

volatility rate. One regression was for the whole sample of 

options with dividend payments as well as no dividend payinents 

on the stock prior to maturity, and the other for the subsample 

of-options with no dividend payments prior to maturity. The 

coefficients for time to maturity and estimated volatility rate 

were significant for the whole sample, but not significant for 

the zero-dividend subsampl-e. The coefficient for moneyness was 

not significant in any of the regressions, but the t-statistic 

declined in tile zero-dividend subsample. These results were 

inte,rpreted 'as evidence of significant dividend inducement fcr 

the striking price and the time to maturity biases, but not for 
I 

the var~ance bias. 
. , ' 

When we have a critical look at the'studies mentioned 

above, we see that Whaley's suffer from absence of statistical 
3 

test of difference in coefficients, and pooiing and time , 
------------------ 
1 6 '  The authors do not make such a statement though. 

' 6 2 ~ e e  Judge et. a1(1980),pp 325-358, for an extensive discussion 
of pooling problems. 



series-related problems l S 3 .  Sterk's suffer from 

contr 1 for variables, dichotomoys bias di,e66nap .? 

insufficient 

and absence' of , 

statistical test of difference in mean er'rofs. Blomeyer and 

Klemkesky' s is subject to inadequate control for variables(when 

plotting), and the problems associated with the hedging approach 

to mbdel validation. ~ul-iekin et i.1 does not exactly compare the 

Black-Scholes with the ~011-~eskr -&aley, and may have pooling 

and time-series related problems. Also, they do not taie into 

account that when the Black-Scholes model is not ;slid in' the 

non-dividend paying case, the Roll-Geske-Whaley is not,also 

a valid in the dividend-paying caselS4. 
\ 

* 

Geske and R.oll's probably came close to a more reliable 
-- 

test of dividend inducement. But the sample mixture of 

dividend-paying versus non-dividend-paying options in the total 
1 

sample may seriously affect their results through affecting the 

statistical significance of coefficients. Moreover, no 
/ 

statistical 'test of difference in the coefficient values across 

th.e equations was undertaken. In the following section, we 

propose an alternative test which uses the basic idea of Geske 

and Roll, but attempts to eliminate its deficiencies. ------------------ 
163The reader is referred to chapter 2 for detailed discussion c' 

of most of the shortcomings to be mentioned here. 

16' The Roll-Geshe-Whaley model differs from the  lack-~choles 
model in that the former assumes that the underlying stock pays 
dividend prior to maturity of the American call. In the absence 
of dividend payments, Black-Scholes gives the same value for an 
American as for a European. Thus, if Lhe-Black-Scholes does not . 
provide the fair value of an American call with no dividends, we 
would not expect the Roll-Geske-Whaley model to provide the fair 
value were there any dividends prior to maturity, 



,' 

SECTION 2 ' 

The test of dividend inducement we propose in this section 

i-s based upon  he regression model presented in chapter 3, and 

our discussion of the omitted variable effect in chapter 5. 

In our regression model, the expected response function 

embodies the (negative of jnonlinearity bias of the Black-Scholes 
-.-. 

formula estimate,,. and any model aisspecif icat ion error in terms 

of the included regre~sors!';~. The coefficients of the 

regressors would hsve two components corresponding to these two 

broad sources of systematic mispricing. 

Now consider two options, one with a sigle dividend payment 

of known size prior to maturity, and the other with no such 
-- 3 payment. 

Consider the hypothetical case that the jump-diffusion 

model of Merton provides the fair value(CM) of the zero-dividend 

opt ion . 1r1 the dividend-paying case, SOE ~gpropriate model, 

corresponding to the.jump-diffusion process, wc,uld provide the 

fair value(C~~). In the zero-dividend case, the coefficient 

vector ( O )  would have two parts, one part 9 ( O )  coming from 
Bj . .  B j 

t'le differmce CM-CB, a~?d the other ( O )  arising from the 
\ j 

nonlinearity'.bias cf the Black-Scholes formula. In the 

single-dividend case, Q ( ' ) can be, thought to have two parts, 
B j 

(')(a) due to CMD-CM, and @ (')(b) from CM-CB. 
B j ~f 

16'~hese regressors are the usual ones--moneyness(ln(S/X)), time 
to matwity, and estimated(from historical reiurn data) 
volatility rate. 



Thus, includingn @ ( I )  'from the nonlinearity bias of the 
j 

Black-Schules formula, 9 ( ' I  would have chree components. 
, 

B j 
Unless the options in the'tuo cases are -very different(except 

for dividend), we would expect cP ( O ) = 4  (l)(b), and.0 ( O )  

B j B j j j 
( " .  But @ a the 'difference in pure model 

... B j 
misspecikication error of Merton's in terms of e T  , could still 

j 
distinguish the coefficients for the two options. If dividend , 

payment does make a significant difference in terms of the 

included regressors, some or all of the coefficients should be 

(statistically) significantly different across the two options.. 

Now suppose that the Black-Scholes model provides the fair 

value(C~) of the zero-dividend option. The Roll-Geske-Whaley 

model provides correspondingly the fair value(CR) of the 

single-dividend option, In the zero-dividend case, the 

coefficient vector + ( O )  would have just one part 0 arising 
B j j 

-from the nonlinearity bias of the-Black-Scholes formula. In the 

single-dividend case, 9 will have two parts, 
Bj ' 

(')-due to CR-CB, and 0 ( I )  from the nonlinearity bias of the 
Bj j .  
Black-Scholes formula. Unless the options in,the two cases are 
\ 

very different(except for dividend), we would expect 

0 ( O )  ( ' ) . But ( ) ,the -pure model misspecif ication error - 

j j Bj 
of the Black-Scholes model in terms of e T  in the -; 

J 

dividend-paying case, would st ill distinguish the coefficients 

for the two options. If dividend payment does make a significant 

difference in terms of the included - regressors, 
,' 

all of the coefficient estimates should be "Om' Or 



(statistica1ly)significantly different across the two options. 

We have seen that irrespective of the Black-Scholes 

validity in the zero-dividend case, dividend inducement would t 
distinguish the coefficients oLf the dividend-paying case from 

those of the non-dividend-paying case. In empirical testing, if 

the dividend inducement is significant, we should find 
I 

> - .  statistically significant difference across the two cases for I 

some or all of the 'coefficients, no matter e her the %? 
Black-Scholes model is va1i.d or not h the zero-dividend case. 

In our example, the coefficients OF parts thereof were 

subscripted to denote option-specificness of the coefficients. 

To estimate the coefficients, we would need samples of 

zero-dividend and single-dividend options. If we want to 

maintain the option-specificness, we would have too many 

differences;"to test with too few observations 1 6 6 .  Thus, as in . 
chapter 5, we would make the simplifying assumption of constant - 

/ 

coefficient(within the sample for any case) estimation. Then, 

there will be at most 4(including the intercept) differences(or 
t 

equality) to be tested jointly, across the samples of 

zero-dividend and single dividend options. 
- - 

Under the assumed constant coefficient estimation, the 

difference(or equality) of the coefficients across the two cases 

can be tested by undertaking a Chow-test bf switching rbg-ime. 
# ' , 

Fortunate for us, the -switching point is known. If we have a - 
'66The-problem, in fact, is also to estimate too many parameters 
with too few observations. 



total sample of single-dividend and zero-dividend options; and 

arrange the sample such that the single-dividend subsample 

follows the zero-dividend,subsample, the point where the 
4 

single-dividend subsample starts can be considered as the 

switching point, in analogy to time series data. 

In total, three regressions are to be run, one each for the 

two subsamples, and the third for the total sample to test the 

joint dividend inducement for all the parameters(inc1uding the 

intercept, if included) 167. The error sum of squares from the 

first two regressions would sum to the unrestricted error sum of 

squares(SS~~), and that of the,last regress'on to be treated as 

the restricted error sum of squares(SSER) 16'. Then, under the 

null hypothesis of the restictions being true, the following 

ratio will be central F-distributed with K and N-2K degrees of 

freedom for the numerator and the denominator re~pect,ively:'~~ 

where K is the number of parameters estimated in each 
------------------. 
167The parameters here refer to the ones to be estimated from 
r.egression. 

1 6 8 S S E ~  would ko greater than SSEU, because of the additional 
constraint imposed upon the minimization problem. 

16' The chow-test assumes that the valiance of the error term is 
the same across regimes. Toyoda(1974) and, Schmidt and 
Sickles(1977) found that the nominal level of significance would 
differ from the true level of significance(probabi1ity of 
rejecting the null hypothseis when it is true) under unequal 
variances, To cope with such circumstances, ~ayat issa( 1977) 
offered an alternative central F-test and ~att(1979) proposed an 
asymptotic central chi-squar~e test, while Hondatl982) compared ' 
the two tests with Monte Carlo. Given Honda's results, Watt's 
test may be-preferred for our case. Thanks to Professor p. 
Kennedy for exposing me to this literature 

P 
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single-dividend subsample 

The dividend ind'ucement of a subset of parameters can be- 
d 

tested by treating (6.2) as the unresrticted version, and 
- -- 

- - -- - 

deleting corresponding duhuny variables in (6.2) as the 

restricted version. Using the error sum of sqbaces from 
B 

these two versions', the relevant F:statistic can be computed 

from the general form of (6.1): 

where J is the number of restrictions, -here the number of 
i 

parameters for which we are testing dividend inducemefit. 
J 

This ratio will be distributed central F with J aria N-2K 

degrees of freedom for the numerator and,the denominator 

respectively, when - the restrictions ?*re true. 

To give an examble, suppose that we want to test joint 

dividend inducement for the intercept and the coefficient of 

moneyness-only. The restrictions are represented in the null 
\ 

t 

hypothesis of F-test: 

The alternative hypothesis, of course, is that none of the 

four(inc1uding the above two) parameters need remain the same 

a ross the two subsamples. ---------------- 
7ZSee Skvarcius and cromer(l971). P 



Two regressions ere to be tun over the total sample for 

this test. (6.2) would provide the unrestricted error sum of 

squares, add the regression deleting D and D, from (6.2) would 
j j 

provide <he restricted error sum of squares. These error sum of ' , 

squares canthe used ro compute the ratio in (6.1A), which will 
- - I* -- 

2. 

be distributqg O .( central F with 2 ~ n d  N-8 degrees of freedom. 
, ' 

Test pf ,dividend inducement for a single parameter only, 

can be undertaken merely by a central t-test of the 
P= 

corresponding dummy variable's coefficient estimated from 

(6.2) 17). Alternatively, we can fol'low the procedure of the 

previous paragraph17". Y . s* 

SECTION 3 I 

Since we have four parameters to estimate for a subsample, 

there would be 12 subsets ofthe parameters, in addition to the 

set of all four parameters, for which test of dividend 

inducement can be undertaken. The unrestricted error sum of 

squares in all these tests would be the same. It can be 

, . - a $  calculated by adding the error sum of squares from the two 

multiple regressions of chapter 5, or alternalively from running 

17'~he resulting ratio in (6.1A) would be approximately equal to 
the square of the t-statistic in (6.2). 

17'~ue to computational rounding in regression results, we found 
the latter to be 0.002% higher than the former. To calculate the 
F-ratios, the larger magnitude was used. Since this would, 
relatively lower the F-ratios, a significant F-ratio may 
indicate even stronger evidence against the null hypothesis. Our 

\ 
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Table 6.1 suqarizes the test results1''. The constant 

' coefficient 'regression- relationship(inc1wding the: intercept) for 

the deviation of Black-Scholes formula estimate from the market 

price as a whole seems to be significantly af fected by the early 

exercise possibility of UAC's. This significant dividend 

inducement occurs inspite of the lack of strong early exercise 

possibility we found in chapter.5. 

. The coefficients of moneyness and time to maturity do not 

show significant dividend inducement, either individually or_as, 
\ 

a pair. The coefficient of volatility rate, on the other hand, 

ixhibit strong dividend-induced effects both by itself and in w +, -& 

L 

combination with the coefficients of moneyness or time go 
C 4 - 

B. 

maturity. This was indicated by the farge'difference between the f 
P 

estimates of the coefficient of volatility rate in the two 

multiple regressions of chapter 5. 

The intercept shows dLvidend-induced effeits similar towthe 

coefficienit of volatility rate. As we have mentioned in chapter 

5, these effects may-reflect those through the coefficient of 

volatility rate and/or part of the effects of relevant omitted 

variable(s1, such as the time to ex-dividend date(given the time 

to expiration). - - ------------------- 
175(~ont1d) test results are, ho , unaffected by the choice 
between the two alternative magn 

\ 
TO see whether the assumpt io& o f ,  equal' error variances 

1 

across the two subsamples af f ect;"bb& test results, we underto6k- * 
q Watt(1979)'s chi-square test for our tests 1 and 2. We found ' 

similar results as reported in Table 6.1 



-. 

It appears that the principal source of the significant 

dividend inducement for the entire regression relationship may 
- 

be attributed to the coefficient of the volatility rate'alone. 

This apparent importance of the volatility rate could be g=nuine 

in the- sense that it is 'the' critical determinant of early 

exercise posiibility. Or, the importance could be an econometric 

illusion. As mentioned in chapter 5, the use of estimated 

u.01atility rate as a proxy for the true volatility rate 
i. 

regressor leads to biased OLS coefficient estimates in both 

small and large samples. The s-i,-z as well as the magnitude of 

this bias foi a coefficient estimate will depend upon the nature 

of sample options. If it is the coefficient of volatility 
4 

rate(and thus affecting the intercept estimate too) which is 

affected most, i t  is more likely to reject the hypothesis of 

equality of a.set of parameters when the volatility rate's 

coefficient is included- in thg.set than otherwise. Thus,- the 

volatility rate may appear to. play an important role in the 
- 

dividend inducement.'of the regression relationship, while in 

fact the stochastic regressor problem is responsible for this. 

However, our discussion in chapter 5 also indicates that the 

stochastic regrzssor problem may not be severe at all. 

SECTION 4 . - 
To summarize, using the Chow test of switching regime, we 

have found that the constant coeff icien+)regression relitionship , 

for the mispricing of the Black-Scholes formula estimate,is 



;LTT ..,; 
.,?* 

- significantly affected by the earl'f, ~xsercise ppssibility 
.f ? * 

63 F' 
feature of UAC's. Previous conclusi~~s that the striking price 

and the time to maturity biases are essentially dividend-induced 
3 .  P 

are ~ontr~dicted, while the volatiiity rate is found to be an 

important ingredient behind the dividend inducement of the 

mispricing by the Uack-Scholes formula estimate. 

Our test results are subeject to the limitations of 

constant coefficient estimation. Further evidence of dividend 

inducement is to follow in chapter 8, where we allow limited 

degree of option-specificness in estimation. But the test of 

dividend inducement here was rather indifferent to the validity 

,of the Black-Scholes model in the zero-dividend case, where the 

assumed known dividend plays no role. In the next chapter, we 

offer an indirect test of the validity of the Black-Scholes 

model in the zero-dividend case. 



CHAPTER 7: - 
AN INDIRECT TEST OF BLACK-SCHOLES - -- 

BY TESTING RESTRICTIONS AMONG REGRESSION COEFFICIENTS - 



P 4  

k-  , Whether the European call valuation-modelo•’ Black and 
L.' 

~choles(1973) or some modified version can be considered to be a 

valid model representing the actual market prices of traded 

calls has been a key concern in recent empirical studies 1 7 7 .  

~alai(1983) surveys the studies in this area and also outlines 
, 

the complications of testing modelvalidity. An important 

problem is that such tests are, in general, joirt tests of 

F ket synchronization, option market efficiency, andr the 
/validity of the model in question, in our case the Black-Scholes 

. . 

model17B Further complications arise, since an essential 

ingredient of the Black-Scholes model- the volatility rate of 

the underlying stock's return is not known and has to be 

estimated. 
I 

Since the  lack-~choles formula is nonlinear with respect 

to the volatility rate, even if an unbiased est-imate of the 

volatility rate is used, the resultant 'formula estimate would be 

a biased estimate *of the model price(the formula price with the 

true volatility rate). In chapter 4, we have studied the 
C 

. syste,matic nature of this bias in detail. 

The implication of the systematic nonlinearity bias of the 

formula estimate for testing the validity of the Black-Scholes , ------------------ 
17 7~ popular modified version is the pseudo-American call 
valuation originally proposed by ~lack(1975). This model seeks 
to accommodate the early exercise possibility of unprotected 
American calls. 

' 1 7 8  It is to be noted that the hypctheses other than the 
validity of the Black-Scholes model would be accepted as 

.*'maintained hypotheses in ouk testing and thus are not being 
'-tested. 



model is that such tests will be biased towards'finding evi~ence 
-- 

against the model, i.f the formula estimate is used as a proxy 

for the Black-Scholes model price. Given that the practitioners 

have almost invariably used some estiuate of the volatility 

rate(or the variance rate-)...in the Black-Scholes European formula 

or the pseudo-American formula, the existing tests of the . 

Black-Scholes model are themselves biased. 

The purpose of this chapter is to undertake a test of 

Black-Scholes validity by taking advantage of the nonlinearity 

bias of the formula estimate rather than being victimized by it 

as the existing studies have been. For analytical tractabil'ity, 

we consider only up to second order term in the Taylor series of 

the nonlinearity bias 17'. Note that the bi-s implies 

restrictions amorlg coefficients in ,our regression model. Since 

t& nonlinearity bias alone would be the expected response 
P 

function in our regression model when the Black-Scholes model is 

valid, an indirect' test of the Black-Scholes model is provided 

by the test of implied' restrictions among the coefficients. 

In section 1 ,  we describe our test of the Black-Scholes 

model validity. The test results are presented in section 2. 

And, some concluding thoughts follow in section 3. 

I ' O ~ e t  CB(o) be the Black-Scholes model price, where o' is the" 
true volatility rate. If we expand CB(~) around 2=o, and take 
expectation on both sides, then the nonlinearity bias would be: 

r r r 
E[cB(~)]-CB(U)= Z[a CB(6)/a$ 18=o] ~ ( 6 - o )  /r! ,where the 
summation runs over 1 to w .  



SECTION - 1 

If the-Black-Scholes model is the unknown true model of 
L 

fair valuation, the following equation emerges in our regression 

model : 

C - c B ( B ~  )=BT 0 + e  ............. ( 7 . 1 )  
j  j  j j  j  

For the sake of convenience and continuity with previous 

research, we have chosen the moneyness m(=ln(~/~)), time to 

maturity T, and volatility rate o as the regressors in 8. For 

simplicity if  we drop the subscript j ,  but keep in mind its 

existence, (7.1) can be written as : 

where E stands for the bias of the formula estimate in a second 

order Taylor serieshexpansion, and 

with 

and to recall 

dl=(h+0.5u2~)/(od~) 

d2=dl-odT 

where 

S is the stock price 



X is the striking price ar?d 

r is the risk-free rate 

In terms of our regression model, 

the coefficient of m is (aE/am)/R =f i t  

the coefficient of T is (aE/BT)/R = f i 2  

the coefficient of o is (aE/ao)/~ = P 3  

It appears that the coefficients of the regressors commonly 

used ale less likely to be the marginal biases: They are more 
4- 

A 

likely to be weights for the linear combination of m, TI and o 

to represent the "total(here the second order) bias. To'see this, . 

note that : 

That is, R is the sum of bias elasticities, and thus the 

coefficients are marginal biases relative to the sum of bias 

elasticities. ~n a linear regression of C -CBW ) on m , Tb., 
j j j I 

and 6 , we would be assuming these ratios to be constant. And, 
j 

of course, we would be estimating the,assumed constant ratios , 

not the marginal biases. But it surely would be misleading to 

assume the signs and magnitudes of the estimated coefficients to 
i \ 

be the same as of the marginal 0 

biasesI8O. This important aspect has hitherto been overlooked 

------------------ 
180 In chapter 5, we have mentioned that smallness of the 
coefficients may reflect smallness of the marginal biases. 



and cannot be overemphasized. 

Now notice that the marginal biases are: 
& 

(a~/am)=~w,, (~E.~T)=Ew,, (aE/a o)=Ew3 

Since they all have E in common, we can deduce that: 

( ~ E ; ~ ~ ) / ( W , R ) = ( ~ E / ~ T ) / ( W , R ) = ( ~ E / ~  o)/(~~,R) 

If the Black-Scholes model is 1 'id, and the.second order 

approximation is good enough, the coerficients of the regression 

model should satisfy the above restrictions for all 

observations. Note that for any observation, only two of the 

restictions are .independent. 
a 

One of the three probable s-ets of restrictions would be: 

In this fully option-specific form, we would have too 

few(N) observations to test too 2N) restrictions. In the 

context of constant coefficient estimation, a zompromise would 

be: \. 

where w2, and w 3 ,  are the population central moments of 

(w2 /w, ' )  and (w3 /w', respectively, and can be estimated by 
j j j j 



their sample means. In 'this form, we would have o ~ l y  two 

restrictions to test. 

SECTION 2 - 
For options with dividend payments prior to maturity, the 

B?-ackLscholes model is not acceptable as the model of fai; 
t ' 

vttiuetion on theoretical grounds. The test of Black-Scholes 

validity is to be undertaken in the context of options with no 

dividend payments prior to maturity. Hence, in our tests below, 
, . 

we have used only the zero-dividend subsample.' 

The first problem we face j n  testing is that the w 's are 
ij 

not known. The use of sample estimates for w 's lead to a 
i j 

situation of nonlinear stocha tic restrictions 1 8 ' .  For example, 8 .  ., 
one such set of restrictions hould be: 

where we have decomposed the w 's into their sample means ws 
ij ij 

'S and measurement errors v 's. 
i j 

.-The greatest ~~implification is achieved by pretending that 

the ws 's are the reGective population central moments, that 
i j 

is, overlooking the stochastic nature of the restrictions. In 

that case, we would have the following set of linear , i 

restrictions: 
* 

------------------ 
'''See Appendix 7.1 for a brief discussion of testing 
restrictions in a linear regression model. 



These restrictions, under the aisumtion of multivariate 

normality for disturbance vector, can be tested by undertaking ,-- 

F-test. Under the 'null hypothesis o-f restrictions being true, 

the follow:l.rig ratio would be central F-distributed with' 2 and 

N - 4  degrees of freedom: 

where SSER and SSEU are restricted and unres-tricted error sum of 

squares respectively. 
:, 

The results of F-test, both with and without the inclusion 

of intercept, are presented in Table 7.1. At 5% significance 

level, the restrictions are being rejected for all the cases. 

If the stochastic nature of the restrictions is not assumed 

away, the restrictions would be nonlinear in,the parahters A 

estimated which now include w 's. Thus, we would haveho rely 
ij 

on some large sample test. In addition, we need to make some 

assumption about the natl~re of v 's l B 2 .  

i j 
The choice between Wald test, Lagrange Multiplier -test, and 

likelihood rati? test depends mainly upon the ease of estimation , 

of the restricted and/or the unrestricted regression equafion. 

Since, in our case, it is easier to estimate the unrestricted 

version of the regression, we would be using the Wald test. 

lB21n the test to follow, we have assumed that the observational 
errors of w 's have zero covariance with the regression 

i j 
disturbances. 



Under the null hypothesis of the restrictions being true, the 

Wald statistic is asymptotically chi-sqaure distr uted with J ;b- 
degrees pf freedom, where J is the number of independent 

restrictions. The critical value of chi-square with J=2 at 5% 

significance level is 5.991. If the sample value of Wald 

statistic exceeds 5.991, the evidence would be against the null 

hypothesis of the restrictions being true, B 

The test results of Wald test, both with and without the 

inclusion of intercept, are presented in Table 7.2 . In all of 
the cases, we are unable to reject the null hypothesis of the 

restrictions being true. 

It appears -that the results of the F-test and the Wald test 

are contradictory. As discussed in Appendix 7.1, the additional 

variablity introduced by the stochastic nature of restrictions 

in the Wald test may have caused this. On apriori basis, it is 

rather difficult to conclude superdr,ity of one. test over the 

other in our context. 

i SECTION - 3 
Our test results indicate mixed evidence regarding the 

acceptability of the Black-Scholes as a reasonable mo 

describing the market prices of options without any a d e n d  

' payment prior to maturity. Our testing procedure was radically 

different from the existing procedures of testing the 

Black-Scholes validity. We used the nonlinearity bias of the 

commonly used Black-Scholes formula estimate to the advantage of 

testing, rather than being victimized by it as the existing 



studies have been. It is to be mentioned that o k  results are 

subject to the effect of the approximations we have used. In 

parti ular, the assumption of constant coefficient may have 

imp0 b tant bearing for the test results. In the next chapter, we 

would relax this assumption through the use of multivariate 

cubic spline regression and offer another indirect test of 

Black-Scholes validity. 



APPENDIX 7.1 

SHORT DIGRESSION ON TESTING RESTRICTIONS 

IN A.LINEAR REGRESSION MODEL 
.L 

In what follows, we briefly describe some key econometric 

results about testing equality restrictions among parameters in ', 

a classical normal linear regression model. The references are 

Goldberger(1964), Judge et a1(1980), and ~hite(1984). We shall 

refer to them as GB, JG and WT respectively. 

The regression model we are considering is: 

Y = X p + e  

where 

Y is N x 1 column vector of responses 

X is N x K design matrix 

0 is K x 1 column vector of response coefficients 

r is N x 1 column vector of disturbances and 

r has multivariate normal distribution with mean vector 0 
y. 

and variance-covariance matrix 0 2 1  . 
Four types of restrictions among the elements of 0 may 

arise: 

Case 1 :  Linear npn-stochastic restrictions, Such -- 
restrictions are conventionally expressed as RP=r, where R is a 

J x K matrix of rank J<K, and r is a 3 x 1 column vector of 

known elements. l e 3  An alternative expression for the. 

restrictions is: g(fi)=O, where g(@)=Ro-r. g is written as a ------------------ 
ko3Rank(R)=~ means we have J independent restrictions, -* 



function of fl only, since r is known and fixed. 
. - 

i e 4 2 .  Example: Pl+P2=1 in Y=X,P,+ X2P2+e . -s 

Case 2: Linear stochastic restrictions. JG represnts them -- 
as r=RP+v or, alternatively E(r)=RP, where r is now an 

observable random vector and v is an unobservable normally 

d'istribute'd random vector with 0 and 02Q as the mean vector and 
I 

the qovariance matrix respectively. l B 5  In this case, an 
d* < &/ 

alternative expression for the set of restrictions is q(8)=O, 
. I* 

where 0 contains'~(r1 as a subvector in addition to 0, and 

~(B)=R@-~(r). The restrictions are written as functions of all 

the unknown parameters, rather than as functions of /3 only. 

Example: 0.5=Pl+vl and 0.5=P2+v2. This example is given by 

Case 3: Nonlinear non-stochastic restrictions. These -- 
restrictions ar,e conventionally expressed as g(P)=O, .where 

g(o)='h(p)-r. The elements in h(P) are nonlinear in the elements 

of 0, and r is' known and fixed as in case 1.  

The example given by WTtpp 76, is: P ~ - P I P z = O  in 

Y=X1pl+X2f12+X3~3+~. Here, r is assumed to be zero. 

l E 4  Here, R=[l l],and r=l. 

lessee JG, pp 72-76. Note that r is normally distributed random 
vector with mean Rfl and covariance matrix 02Q. 



Case 4: Nonlinear stochastic restrictions.'Such -- 
restrictions are the mixtu~e of cases 2 and 3, and can be 

expressed as h(P)=E(r), or alternatively as q(8)=0, where 

Example: P3-P1P2 -(0.5 +v)=O, where 0.5 is the value of r 

observed with error. 

Of all the above cases, case 1 is the easiest to test. We 
- 

can minimize the error of sum of squares without restrictions 
- .  

and with restrictions. The restricted error sum of squares(s~E~) 

would be higher than the unrestricted(SSEU). ButI if the. 

restrictions are true, it would not be significantly higher, 

since the data would have already embodied the restrictions. It 
, . 

can be shown that: 

where 

g=Rp - r 
U 

p is the unrestrikted GLS estimate of 0 
U 

and G=[R(XTX)-l~T] 

' Note that the covariance matrix for 6 is 02G, and 

therefore, (SSER-SSEU)/U~ will be central x2 distributed with J 

degrees of freedom, if the restrictions are true. l E 6  

lB6To see this, let C denote the covariance matrix 02G . Then 
(SSER-SSEU)/02 can be expressed as (~g)~(Pg), where pTp=C-l. 
According to theorem 5.9 of GB, the random vector PG is a 
standard normal vector. Thus, theorem 5.21 of GB shows that 
(SSER-SSEU)/02 would be distributed central x2 with J degrees of 
freedom, since I is idempotent of rank J. 

J 



d - 
The 6SEU is of course equal to eTMe, where M=[I 

N 
-X(xTx)-lxT] is an idempotent with rank (N-K) . SSEU will be 
distributed central 0 2 x X "  with N-K degrees of freedom, according 

. to theorem 5.'22 of * GB. Then, SSEU/uZ will be distributed central 

x 2  with N-K degrees of freedom. Thus, if the restrictions are 

true, the following ratio will be central F distributed with J 

and N-K degrees of freedom:18' 

Using thi.s staistic, a conventional F-test can be 

undertaken. 

In addition to the F-test, three other tests are commonly 

used. These are Wald test, Lagrange multiplier test and 

Likelihood ratio test. They rely on asymptotic normality 

property, and in all cases, the test statistic is asymptotically 

central x 2  distributed if the restrictions are true. A 
, J 

discussion of all these tests and their relative merits is 

beyond the scope of this appendix. In our context, it is 

convenient to compute the Wald statistic. Given our expositions 

above, it would also be easier to describe the Wald test. 

------------------ 
'''See theorem 5.7 of GB, and notice that under the truth of 
restrictions, (sSER-SSEU) can be alternatively expressed as: 

..J 
e T [ ~ ( ~ T ~ ) - l ~ T G  - l ~ ( ~ T ~ ) - l ~ T ] e ,  where the bracketed matrix is an 
idempotent of rank J. Then, observe that the product of this , 
matrix and R is a null matrix. 



- 

The underlying idea of Wald test' can be described asb 

follows. Due to sampling variat.i.on, the unrestricted estimate of 

0 would satisfy the restrictions only on the average, . even , if 
2 

the restrictions are true. Thus in our case 1 ,  if the 

res&iction g(b)=O is true, then 6 would be on the average equal 

to zero, given that p is an unbiased estimate qf 0. If we know 
U 

the distribution of Q, we can test how much devfation from 0 can 
C 

be allowed as mere sampling variation, before we reject the 

hypothesis of restrictions being true. 

For the convenience OF exposition, let us first write down 

the expression for Wald Statistic(W) in the more general context 

of case 3: l B B  

where 

------------------ 
.lBB~or a more general expression, see WT,pp 71, 77. 



WT used the mean value theorem in d.eriving the Wald 

statistic. But more brdinarily, . we can imagine the following 

linearization underlying ( 2 ) :  

wherefrom the covariance of g(D ) is:''' 
U 

Consistent estimate of r can be formed from: 

.ThiAs estimate has been used in ( 2 ) .  Note from WT, pp 77, 
S 

that {L.g(B ) ) ,  where L ~ L = ~ -  l ,  will be asymptotically I 

U - 

distributed as a standard normal vector. Same would be the case 

when r is replaced by its consistent estimate. Thus, W would be . 

asymptotically x 2  distributed. 
J 

For linear nonstochastic restrictions(case I), the W 

itatistic is equal to J times the F stakistic in (1). This can 

be seen by noting that in this case, gl=g,=R. 

------------------ 
/ 

l e g  Und-er the null hypothesis of restrictions being true, 
g(P)=O. ,-- . 

r .  , -' 



Let us now consider the situation of stochastic linear 

restrictions(case 2 ) .  The restrictions in all cases involve the 

parameter vector 0, which is not known. The testing of + 

restrictions is carried on using estimate of p ,  and the latter's 

sampling variation is the only source of variability for the 

random vector 4 and g ( P  ) in cases 1 and 3. In the case of 
U 

stochastic restrictions, additional variability is introduced by 

the observational error in r. Thus, -in devising a test 

statistic, the variability of r as well as its possible 

covariance with the regression disturbance e are to be taken 

into account. If it is assumed that the latter covariances are 
. 

zero, then Theil's compatibility statistic can be applied in 

ease 2: l g O  

where 

Under the null hypothesis of restrictions being true, ul is 

central F'distributed with J and N-K degrees of freedom. Note 

that the only difference betwe n the F in ( 1 ) .  and ul is that the 

covariance matrix of estima $ e for the restrictions in the latter 

case has the additional component u 2 Q .  This would tend to 

decrease the value of test statistic 'and thus reduce the 

possibility of rejecting the restrictions merely because of the ------------------ 
'''See JG, pp 76. 



errors in observing E(r). 

In the case of nonlinear stochastic rest,rictions, the 

linearisation similar to ( 3 )  would now involve derivative sf 

. The covarainc; of q(8) is: 

I ' , = U ~ ~ , T ~ ~ ~ , . ( ~ A )  

where T is $2 block-diagonal matrix with ( x ~ x )  - ' and 0 as the two 

non-null blocks. ' 

Replacing I'l by its consistent estimate r leads to the 
asymptotically x2 distributed statistic:lg2 

3 

3q(8)[g,(~T~)-1g,T+ 01-lq(B)/G2 ... ( 2 A )  

where 

S l  is a consistent estimate of Q. 

Note again that the stochastic nature of restrictions 

lowers the value of the test statistic by introducing more 

varaiblity into the observed (or estimated) restrictions. 

------------------ 
l S 1  I t  can be shown that: ' 

P P P 
lg2we are assurn5ng that q(B) is a multivariate normal vector. 



The expositions above show that the test results may depend 

upon how we view the restrictions. In a large sample Wald test. 

we may unduly overemphasize the stochastic nature and/or impose 

wrong covariance structure. On the other hand, in a small sample 

F-test. we overlook the additional variability of stochastic 

restrictions and thus would tend to reject the restrictions more 



CHAPTER - 8: 

MULTIVARIATE SPLINE REGRESSION - AND 

AN INDIRECT TEST OF BLACK-SCHOLES VALIDITY - -- 



The empirical studies trying to validate the Black-Scholes 

model, have largely overlooked the role of the nonlinearity bias 

in inducing the observed systematic~deviations of the 

Black-Scholes formula estimates. We have also argued in various 

parts of this bhesis that the existing studies are plagued with 

host of problems. They range from the fundamental deficiency of 

the ISD approach(to~$odel validatiqn), 1 to tools-of-analysis 
P f ? 8 

related problems as the dilerpma of dichotomous bias studjes 
_d gb; 

or tpe inappropriate estimation and/or interpretation of the 'I 
/' 

r id sults of functional bias studies. 
The estimable regression equation w e  derived in chapter 3 

clearly showed that if the Black-ScholeS model is valid, the 

only component in the expected response function is the 

nonlinearity bias of the formula estimate. And thus, the 

systematic tendency of the formula estimates should be that 

induced by its nonlinearity bias. When, on the other hand, the 

Black-Scholes model is not valid, the model misspecif ication 

error is expected to generate tendency which may reinforce or 

counteract those induced by the nonlinearity bias alone. . 
I 

Observed systematic tendencies radically different from that 

induced by the nonlinearity bias would thus create reasonable 

doubts about the validity of the Black-Scholes model. That this 
. - 

fact can be used to test the validity of the Black-Scholes model 
.4 

have gone unnoticed in the literature. 

In chapter 7, we used the structure of second order 

approximation to the nonlinearity bias, and offered an indirect 



test of the validity of the Black-Scholes model. The 
Q 
$ approximation imposes parameter restrictions in our regression 

model. We tested these restrictions in the zero-dividend 

subsample, where the Black-Scholes is least suspect. But an 

important limitation of this test was the fact that we assumed 

the slope coefficients to be constant across options, while they 

are most likely to be option-specific as indicated by the nature 
', 

of nonlinearity bias and portrayedl~in I our regression model. 

In this chapter, we will tr&ito approximate the 
\s.: ; 

option-specificness by the ugof multivariate cubic spline 
$1 

regression technique. More specjti%$lly, we would allow the 

coefficient of a factor to be nplinear in that fattor alane. .+ 
Thus the nonlinearity would be non-interactive. Since the cubic 

splines are very flexible functional forms, we hope to achieve 

good approximations to the option-specificness of the 

coefficients. 

Using the estimated equation, we would trace the path of 

predicted mispricing(by the formu13 estimate) as any one of the 

factors varies over its sample range, the other factors fixed at 

ptespecified levels. Then, for a simila-r combination of 

parameters, the predicted path will be compared with that of the 

nonlinear.ity bias(monte carlo) found in chapter 4. If t:~e 

Black-Scholes model is valid, we should not observe radical 
, 

differences. 
r- - 

We would consider the variation cf moneyness and variance 

rate only in generating spline predictions, As found in chapter 



4, the relations of time to maturity and variance rate to the 

nonlinearity bias are similar. Moreover, the volatility (square 
C 

root of variance) rate was Iound to be the dominant source of 

significant dividend inducement in chapter 6. Thus, comparison 

of the spline predictions of the relation to the variance rate 

across the two subsamples may provide further evidence in this 

respect. 

After briefly reviewing the spline approach in section 1, 

the estimation results would be presented in section 2. Some 

concluding comments follow in section 3. 

SECTION - 1 

In its most common usage, a spline is a mechanical device 
/ 

used by draftsmen muchAike a French Curve to draw smooth 

curves. The device c,&isists of a flexible rod with weights 
/ 

attached to make $be curve go through specific points. A cless 
," 

of f unct i&emonly used in the approximat ion theory aTe 

referred to as spline functions, because their properties are 

very similar to those of the draftsmen's spline. 
, 

I f  we consider an interval [arb] and its partition 

a=x,<x,<...<x =b, then a function S(x) is called a spine 
k 

function, when it satisfies the following properties: 

(i)On each subinterval(x <x<x ) ,  i=1,2, ..., k, S(x) 
i-1 i 

coincides with a polynomial of degree less than or equal to t, a 

given i.nteger. 



(ii)The r-th derivative of S(x) is continuous for 

r=O,l,..,t-1, except when t=O., 

It is apparent that a spline function is a step function 

for t=O, and a piecewise linear function for t=1. The most 

widely used spline functions are cubic splines, corresponding to 

t=3. Cubic splines were shown to achieve improvement upon 

piecewise cubic Lagrange and piecewise cubic Hermite 

interpolates for a given function, both in terms of smoothness 

and bound on a'pproximat ion error ' 3. 

The cubic spline interpolate S(x) to a function f(x) 

satisfies: 

(i)S(x )=f(x )=y , OsisK (pure interpolatory,constraint) 
i i i. 

r r r r 
(ii)(a S(x)/ax ) I x = x  = (a f(x')/ax )Ix=x , OsisK; r=1,2,.. 

i i 
(smoothness constraint) 

The x 's are called knsts, since at these points the 
i 

spline's values are tied down by constraints, or alternatively 

join points, since the cubics over adjacent subintervals are 

connected at these points. 

Poirier(l973) showed that the above continuity conditions 

of cubic spline interpolation boil down to k-1 equations in the 

k+l unknowns, the second derivatives of the spline at the knots, 

alternatively referred to as the moments 1 9 0 .  Two end conditions ------------------ 
l g 3  See Prenter(1975),pp.,78,84. 

lg4k-1 equations come from the equality of the one-sided limits 
of the spline's first derivatives at.the k-1 intermediate knots. 
See Poirier's appendix. 



a: the extreme knots were imposed to eliminate this deficiency. 

Poirier also showed that, for any vector X (of dimension n, 

greater than k+l) of abscissa values, the corresponding vector 

o spli-ne ir,terpolants S(X) can be expressed as a linear 

function of y 's, the ordinate values at the k+l knots. Thus, 
i 

for known y 's, we can write: 
i 

STX)=W y 

where W is n x (k+l) transformed data matrix 

and y is the (k+l) x 1 vector of y 's .& 

i 
In the context of unknown y, Poirier considered the 

statistical model: 
*" 

Y= S(X) + e 

where 

Y is the n x 1 vector of dependent variable observations 

and E(e)=O, and ~ ( e e ~ ) = o ~ ~ ,  0 being an n x 1 null vector, and I 

is an identity matrix of dimension n. 

The least squares estimator of Y is the BLUE of Y, and, 

given the normality of e, standard statistical tests can be 

appl ied. 

The above model was named Cubic Spline Regression 

Model(CSRM) by Poirier. In this model, the expected response 

function was approximated by the cubic spline, and the unknown 

expected valus of the dependent variable at the known knots 

were the parameters to be estiniated. Using these estimates, one 

can, of course, write down the estimated spline as the set of k 

chbic polynomials over the subintervals. 



za. 
* / 

- - 

Buse and Lim(1977) considered direct estimation of the 

,coefficients of the k polynomials: 

S ( x ) = ~  + b x+ c x2+ d,x3, 
i i i i i 

x SXIX , i=1,2,.. ,k 
i-1 i 

Writing the observations on x as a block diagonal matrix, 

all the coefficients can be jointly estimated subject to the 

continuity conditions and the end point conditions of Poirier. 

Buse and Lim showed.that their restricted least squares 

estimates are identical to Poirier's indirect estimates. They 

also mentioned that the arbitrary end point conditions are not 

necessary for restricted least sqaures estimation, but-may 

impr,ove efficiency. of the estimates. 

Both of the above papers assumed that the join points are 

known. Gallant and ~uller(1973) considered the same regression 

model in the context of unknown join points. They introduced 

some dummy variables and used the continuity restrictions to 

write down the regression equation similar to  use and Lim, in a 
compact reparameterized form. This reparameterized form is, of 

A 

courjse, nonlinear in. the parameters(t0 be est2mated). The 

authors suggested a complicated(re1ative to conventional least 

squares,) iterative least squares algorithm for the estimation of 

the nonlinear equatio"n. 
1 

It was until Suits, Mason and Chan(1978), the expositions 

on spline estimation remained mathematica,lly formidable, and 

thus this powerful technique was relatively obscure to 



practitioners of economics l g 5 .  With simple graphs, they showed 

the relative advantages of spline regression over dummy 

' variable,piecewise linear, or polynomial regression. The I 

greatest advantage is that it is not necessary to prespecify a 

functional form for the expected response function l g 6 .  

Suits, et a1 used the structure of Gallanrand 

Fuller(1973), but the assumption of known join points led to a 

reparameterized version linear in the parameters(t0 be 

estimated). Also, following Barth et all they used the 

displacements (x-x )Is, rather than the x 's. Their spline 
i i 

estimation finally boils dowr~ to a conventional multiple 

regression of the depenzent variable on a set of composite 
.es 

variables. The latter variables hre forged from: iilthe data on 
i r p  

the explanatory variable, (iilthe knots, (iiilthe widths of the 

intervals between knots, and (iv) (k-1) dummy variables. Since 

we would be following Suits et a1 in our estimation, let us 
/ -  

write down their equation 7 in slightly different notation: 

where xo,xl,x, are the first three of the four knots 7 
considered ------------------ 
lg50ne of the few exceptions is Barth,kraft, and Kraft(1976). 

1 9 6 ~ h e n  the knots are not known, the picewise linear regression 
can prove fatal. 

lg7Though more than three intervals can be used, it requires 
greater number composite variables, and in an expected response 
function of several explanatory variables, that can be 
cumbersome. 



D = I ,  iff x2x , and D =O otherwise 
i i i 

The parameter subscripts refer to the subinterval 

polynomials they belong to. Estimates for the rest of the 

parameters of these polynomials can be rec6vered f?om the 
i 

continuity restrictions, using the ones-in the above equation. 

Generally we would have more than one explanatory variable 

in the expected response function of the regression. In that 

case, we would just have to add more composite variables similar 

to the above ones to allow curvature with respect to the 

additional explanatory variables. The splines for different 

explanatory variables need not be of the same order, though the 

use of cubics all through may ^provide more flexibility. 

Finally, it is noted by Suits et all that the standard 

statistical tests can be applied to spline estimation results. 

SECTION 2 - 
We have noted in chapter 3 that the expected response 

1 function in our regression model comprises-of the non inearity 

bias of the Black-Scholes formula estimate and probable model 

misspecification error of the Black-Scholes model. In chapter 7, 

we have seen that even only the second order approximation to 

the nonlinearity bias gives rise to an expected response 

function in terms of the three explanatory variables, which is 
', 

1 much too complicated for description by any simple function. The 

assumption of ,constant coefficent there led to considerable ., 

simplification in estimation. 



I - 
1 .d 

NOW we would use three noninteractive additive cubic 

splines (with respect to the three explanatory variables) to - 
approximate the unknown but foreseeably complex expected 

, 
response function in our regression model l g e .  This would not %- 

still - fdlly capture the optibn specificness of'tge coefficients 
in our regression model of chapter 3. But by cubic spline 

regression , weJ would implicitly allow the coefjicient of an 

explanatory variable to be nonlinear with respect to that 

variadie. We hope that this may be a good enough approximation. 

We have foll.owed the spline regression construct of Suits 
-\* 

et al. Thus, for each of the three splines, we have four',knots. 

The'minimum' and maximum of the sample values for the explanawy 

variables were cqosen as the terminal knots. The intermediate 

knots were chosen so as to allow evenness in distribution across . 

the subintervals,+nd sufficient observations in each 

subinterval. During estimation, we, of course, varied the knots 

around the final choices, and found no significant depaiture in 

the key estimation results such as the error sum of squares. 

The estimated spline regression equations •’OF the 

zero-dividend subsample and the single-dividend subsample gre 

presented in table' 8.1. The regressions are significant at 5% 
0~ 

significance level. Our purpose in this chapter -was defined as 

to use spline regression for predicting possibly nonlinear 

functional relationships of Black-Scholes formula estimates' ------------------ 
lgeThere has been sorqe work, on incorporating interaction in I 

bivariate spline approximation and estimation. See ~oirier(l973) 
for these references. 



mispricing with respect to the explanatory variables, and then 

make visual w a r i s o n  with that of the nonlinearity bias (from 

monte carlo- in chapter 4 ) .  Hence, we would skip the-comput+ation 

and discussion of the subimterval- polynomials, which can be 

provided to interested readers. 
> 

Figures 8.1 to 8.6 pictures the spline predictions of the 

moneyness bias in the two subsamples. The curves in these 

figures look almost upside down of the curves for nonlinearity' \ 

bias in figures 4 . 2  to 4 . 4 .  There does not, of course, seem to 
. a. 

be any perceptibli difference in the curvature across the two 

subsamples. Thus the indication is that the Black-Scholes model 

is not valid in the zero-dividend subsample, and that tbere is 

. no significant dividend inducement in the moneyness bias. Though 

it is not warrante-d, we cannot resist saying that the spline 

prediction of moneyness bias is very similar to Merton(1976a)'s 

model misspecification error di-agram, and Ball and 

Torous(l985)'s empirical counterpart of this diagram. 

The variance bias predicted by the spline regressions. in L " 

figures 8.7 and 8.8 is also at contrast to the figures 4.8 to 

4.10 corresponding to 'the nonlinearity bias. The contrasts here 

are not as prominent as in the case of the moneyness bias. But 

the sharp difference in the variance bias across the two 

subsamples is rather noticeable. This produces further evidence 

about the varinace(or volatility) rate's dominant role in the 

significant dividend Snducement of the entire regqession 
G' 

relationship. The strong negative tendency !of the variance bias 
'P. 



in the single-dividend subsample is in conformity with the I large 

negative coefficient for volatility rate in the constant 

coefficient results of chapter 5. 

SECTION 3 

Overall, our indirect test via visual comparison in this 

,chapter produces evidence against the validity of the 

Black-Scholes model in the zero-dividend case. We also find 

support for our constant coefficient result in chapter 6 that 

the volatility rate played a dominant role in the dividend 

inducement of the entire regression relationship. 

Our results in this chapter are subject to the 

noninteractive option-specif icness we have allowed in 

estimation. Also, the assumption of known join points may have 

affected the results. 
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TABLE 4.1 

COMPARISON OF THE MISPRICING OF PSEUDO ESTI~TOB 
AND FORMULA ESTIMATOR FOR THE BLACK-SCHOLES PRICE 

Mispricing is the negative of statistical bias. 
Striking price of 50 and riskless rate of O.Q15/quarter 
were used following Boyle and ~nanthanarayanan(l977). 
Time to maturity(- is measured in quarter and V stands for 
qoarterly variance rate. N denotes the sample size from which 
the variance rate is estimated and S is the current stock price. 

FORMULA QSTIMATOR 



PSEUDO ESTIMATOR - - 



TABLE 4 . 2  

PERFORMANCE OF FORMULA ESTIMATOR FOR THE BLACK-SCHOLES PRICE 

The symbol g is the ratio of the stock price to the present 
value of the striking price. t 

V is the true variance rate; 'time to maturity and stock price 
are assumed to be equal to 1 ,  and N is the sample size from 
which V is estimated. 
The numberscin a row are mean mispricing(~ 1 0 0 0 ) ,  mean percen- 
-age error, variance(X 10000)  and mean square error(X 10000)  
respectively'. 







TABLE 4.3 

PERFORMANCE OF BUTLER-SCHACHTER, ESTIMATOR FOR 
THE BLACK-SCHOLES PRICE 

The symbol g denotes the ratio of the'stock price to the 
present value of the exercise price, 
V is the true variance rate, time to maturity and stock price 
aresassumed to be equal to 1 ,  and N is the sample size from 
which V is estimated. 
The numbers in a row tre mean mispricing(~ 1000), mean percent- 
-age error, variance(X 10000) and mean square error(X 10000) 
respectively. 
The Taylor series expansions of the cumulative 'normal distribu- 
-tion functions were truncated after the term involving the 31st. 
derivative. 





TABLE 4 - 4  

1 PERFORMANCE OF CC ESTIMATOR FOR 
THE BLACK-SCHOLES PRICE 

The symbol g is the ratio of the stock price to the present 
value of the striking-price. 
v is the true variance rate, time to maturity and stock price 
are assumed to be equal to 1, and N is the sample size from 
which V is estimated. 
The numbers in a row are mean mispricing(~ 1000),, mean percen- 
-tage error, variance(X 10000) and mean square error(X 10000) 
respectively. 
A 32-term Taylor series expansion of the Black-Scholes model 
price around the arbitrarily,chosen point of 1 1 5 ~  was used. 







TABLE 5.1 

SUMMARY INFORMATION ON THE SAMPLE 

ZERO-DI VI DEND SINGLE DIVIDEND 
SUBSAMPLE SUBSAMPLE 

- \  

ln(S/X) mean Od.033654 
+rT median 0.022897 

maximum 0.541091 
minimum -0.401377 

ln(S/X) mean 0.013220 
median -0.002503 
maximum 0.535030 
minimum -0.418044 

T(days) mean 53.91090 96.80540 
median 44.00000 100.00000 
maximum 254.00000 163.00000 
minimum 16.00000 16.00000 

Unbiased Estimate of 
Volatility 
Rate/day mean 0.021709 0.020436 

median 0.022392 0.019314 
maximum 0.033423 0.033573 
minimum 0.011418 0.01 1015 

Cases of ln(S/X)>O 48 
=o 2 
<o 51 

Cases of g>Q 
, =o 
<o 

TOTAL 
SAMPLE 



- .  - 

TABLE 5.1 A 

FREQUENCY DISTRIBUTION OF MONEYNESS(ln(S/X)), TIME TO MATURITY 
(DAYS) AND UNBIASED ESTIMATE OF DAILY VOLATILITY RATE FOR THE 
ZERO-DIVIDEND AND THE SINGLE DIVIDEND SUBSAMPLES 

ZERO-DIVIDEND SINGLE-DIVIDEND 
SUBSAMPLE SUBSAMPLE 

TIME TO MATURITY(D~~S) 

16 days 35 9' 
44 days 27 15 
72 days 30 36 
100 days 0 45 e 

- 135 days 3 23 
163 days and ove'r 6 2 1 

1 

UNBIASED ESTIMATE OF DAILY VOLATILITY RATE r . 



TABLE 5.2 

INFORMATION ON FORMULA PRICING IN THE ZERO-DIVIDEND 
AND THE SINGLE-DIVIDEND SUBSAMPLES 

OVERPRICED OPTIONS ------------------ ZERO-DIVIDEND SI NGLE-DIVI DEND 

Number of options 67 99 
Mean overpricing -0.4089987 -0.542326 

ln(s/x) 0.0054388 -0.052691 
T 62.179105 100.283000 
Estimated volatility 
rate 0.022509 0.021598 

). 

Overpriced in-the-money 
(ln(S/X)>O) options GROUP ZOI GROUP SO1 

Number of options 30 33 
Mean overpricing -0.370346 -0.516902 

In 0.144376 0.122707 
T 61.033300 93.424200 
Estimated volatility 
rate 0.022371. 0.'022049 

Overpriced at-the-money 
(ln(S/X)=O) options GROUP GOA 

Number of options 2 
Overpricing - -0.092918 and -0.352585 
T 72 and 44 
Esimated volatility rate 0.017773 and 0.018219 

Overpriced out-of-the-money 
(ln(S/X)<O) options ------------------ GROUP ZOO GROUP SO0 

' Number of options 35 66 
Mean overpricing -0.452771 -0.555037 

In ( S / X )  -0.1 13339 -0.140391 
T 63.400000 103.712000 
Estimated volatility 
rate 0.022886 0.021373 



Number of options 34 
Mean underpricing 0.1227536 

ln(S/x) 0.0285897 
T 37.617647 
Estimated volatility 
rate 0.0202484 

underpriced in-the-money 
(ln(S/X)>O) options GROUP ZUI 

t ------------------ 
Number of options. b 18 
Mean underpricing 0.175067 

ln(S/x) 0.220534 
T 45.944400 
Estimated volatility 
rate 0.019603 

Underpriced out-of-the-money 
(ln(S/X)<O) options ------------------ GROUP ZUO 

Number of options 16 
Mean underpricing 0.063901 

ln(S/X) -0.187349 
T 28.250000 
Estimated volatility 
rate 0.020726 

GROUP SUI 

GROUP SUO 



TABLE 5.3: SIMPLE REGRESSION RESULTS FOR THE 

ZERO-DIVIDEND AND THE SINGLE-DIVIDEND SUBSAMPLES** 

zero-dividend subsample 

Constant Slope. 
1 

F(1,99) 
1 .  

(-5.594060) (0.652033) 

RegressorfT 0.030441 -0.004831 36.894 

sinqle-dividend subsample 

Constant S 1 ope F(1,147) 

Regressor:ln(S/X) -0.283108 0.202008 0.692 

I 

Regressor: 6 0.515668 -39.57080 31.889 ,/ 

**The terms in parenthesis are t-statistics. ,,\+/ * // 

242 



TABLE 5.4 

MULTIPLE REGRESSION RESULTS FOR 

THE ZERO-DIVIDEND AND THE SINGLE-DIVIDEND SUBSAMPLES** 

zero-dividend Single-dividend 

Error Sum of Squares 12.405 30.101 

Constant 

Coefficient of ln(S/X) 0.17267 -0.000703 

(0 .90009 )  ( -0 .~00324 1 '  

Coefficient of T ' -0 .00492 -0.0029 

( -5 .64883)  ( -3 .16259)  

Coefficient of 6 1.60941 -39.2290 
I 

( .0.21868) ( -5 .70881)  

**The terms in parenthesis are t-statistics. 



Test 1 

Test 2 

Test 3 

Test 4 

Test 5 

Test 6 

Test. 7 

Test 8 

Test 9 

Test 3A 

Test 4 A  

Test 5 A  

Test 6 A  

Test 7 A  

TABLE 6.1 

TEST RESULTS FOR DIVIDEND INDUCEMENT 

Test 8 A  



x 

Test J S S E R ,  F F(J.242) R/uTR 

R 

R 

UTR 

R 

R 

UTR 

UTR 

**  F(J.242) is the value of F. for 2 and - degrees of 
freedom with 5% right-tail probability. 

. ** S S E R  is the restricted error sum of squares. In all cases. 
the unrestricted error sum of squares is 42.506. 
**  J denotes number of restrictions tested. 
** R denotes rejection of null hypothesis and UTR denotes that 
we are unable to reject null hypothesis. 



RESULTS OF F-TEST FOR BLACK-SCHOLES VALIDITY 
- & _  - 

Test Restrictions under null hypothesis 

-- - 
1 P ~ - ~ s ~ I P I = O I  P 3 - m ~ 3 1 P 1 = o  

Test F(2.97) R/UTR F(2.98) R/UTR 

(with constant) (without cunstant) 

** ~(2.60) withe5% right-tail probability is 3.15 and 
F(2.120) wi,th'& right-tail probability is 3.07. 

' 

* *  R denotes rejection of null hypothesis and UTR denotes that 
we are unable t.0 reject null hypothesis. 



TABLE I;-2 
RESULTS OF WALD-TEST FQR BLACK-SCHOLES VALIDITY 

Test Restrictions under null hypothesis 

(with constant) 

R/UTR ~ ( 2 )  

(without constant) 

UTR 0.7350 UTR 

UTR 0.9035 UTR 

UTR 0.1198 . ' UTR 

** x~~ with 5% right-tail probability is 5.99147. 

8- **  R denotes rejection of null hypothesis and UTR denotes that 
we are unable to reject null hypothesis. 



TABLE 8.1: SPLINE REGRESSION RESULTS FOR 

, Regression Equation: -+ 

' ~ h e  coefficients, knots and dummy variables of the splines are 
subscripted by the variable name. 



0.0130? 1.537093-04 
(-1.81318) (0.28404) 

I d -  

- 1.895843-04 -5.9 104eE-07 - (-1.83548). (-0.13211) 



**  Figures in parenthesis are t-statistics. 7 
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FIGURE 2.1 
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, FIGUriE 4 .2  

FORKULA : 4 I S P R I C I N G  A S  FUNCTION OF NONEYNESS, STRlkING P R I C E =  50, 

TIME TO P4ArPURITP=0. 5 WARTER, H I  SKLESS RATE=(), 0 1  QUARTER 
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FIGURE 4 . 3  

FORMULA MI SPRI C~ AS FUNCTION OF I~NEYNESS , STRIKING PRICE= 50, 

TIME TO MATURITP=I .O QUARTER, RISKLESS RATE=O.O~S/QUARTER 

- Stock Price 
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FZCiURE 4.5 
C 

FORMULA MISPRICING AS FUNCTION OF TIME TQ MATURITY, STRIKING 

STOCK P R I C E = ~ O  

1 1.5 2 2.5 

Time to Maturity (QUARTER) 



FIGURE 4.5 . 
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FIGURE 4.8 

FORMULA MI SPRI C I N G  AS FUNCTION OF VARIANCE RATE, STRI K I  NG 

P R I C E = 5 0 ;  TIME TO MATURITY=o. 5 QUARTER, RISKLESS' 
. . 

RATE=O.~I~/QUARTER 

~ u a r t z r l y  Variance Rate 
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F1G'JRE 4.9 

FOriRULA MI SPRI CLNG AS FUKTTCN OF VARIANCE RATE, STRIKING 

FRI CE=5Ci, '1'Ii.E TO biATURITY= i . O QUARTER, R I  SKLESS 
2 

'\ 
STOCK PRICE=80------- \-A-- -8 



m a r t  o r 1 7  variance' Rate 
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FORMULA MISPRICING AND TIiJiZ TO K A T U R I  TY , ZERO-T>I VS DEND SUBSAMPLE 

100 15 0 209 -- 
250 

Time to Maturity ( i:,y::; 
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FORiJIULA 141 SPRI C I  NG AND EST1 I~IITEZ) VOLATI L I  TY RATE, ZERO-DI V I  DEigD' 

SUBSAMPLE 

Estimated Volatility Rate on Underlying Stock 



FORMULA MISPRICING AND MONZYNESS, SINGLE-DIVIDEND' SUBSAMPLE 





FORMULA MI SPRI CI NG AND ESTIMATED VOLATL L I  TY R A T E ,  

- Estimated Vdatility Rclte of erlying Stock 
1 ; 1 .; 

~ .~ 



?FIGURE 8.1 
6 

SPLI NE PREDI CTI OIJ OF MONEYNESS BI  AS I N  THE ZERO-DIVL DEND - 
a 

SUBSAMPLE FOR QUARTERLY VARI pJ4CE OF 0.0 1 0 

- - T I M E  TO MATURITY=O. 5 
/' QUARTER 
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FIGURE 8,2 

SPLINE PREDICTICN OF MONEYNESS BIAS IN THE ZERO-DIVIDEND.  

SUBSAMPLE FOR QUARTERLY VAPIAMCE OF 0.025 - 



FIGURE 8.3 

SPLINE PREDICTION OF MONEYNESS BIAS IN THE ZERC-DIVIDEND 

SUBSAMPLE FOR QIJPJ~TERLY VARI AiJCE OF 0.0 4 5 

---TIME PO\ MATURITY= 
0.5 QUARTER 

1 .  
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FIGURE 8.5 

SPLINE PREDICTION 'OF MONEYNESS BIAS 114 THE SIXGLE-DIVIDEN9 

SURSAMPLE FGR OUARTEZY VARIANCE OF 0.022 A - 



t 
IN THE s I NGLE-I31 VI DEND 

0.045 
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S P L I N E  PREDICTION OF V A R I A N C E  B I A S  I N  THE Z E R ~ - - D I V I D E N T !  AND '1'HU 

SINGLE-DIVI3END SUBSAMPLES FOR 1 N-THE-MONEY OFTI ONS 

2,O 4.0 , 6.0 8.0 10-L 12.0 
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SPLINE PREDICTION OF VARIANCE E I A S  IN THE ZESO-DIVIDEND AND THE 
? 

SIVIGLE-DIVIDEND SUBSAMPLES FOR OUT-OF-TH3-MONEY OPTIONS 

STOG 

3ai 1 y Variance Rate : 




