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ABSTRACT
Empirical studies have found the Black-Scholes prices to

deviate from the actual call prices in certain systematic ways.

‘But there is pronounced disagreementfregarding the sources and

directions of tﬁis;mispricing. The conclusions may critically

depend upon thevunderlying testing procedures. The purpose of -
this dissertation is to show the inadeqguacies of the existing

testing prodédures and offer some alternatiQe tests.

We propose a multiple regression model of Black-Scholes
mispricing and derive an estimable regression equation. We find
that one of the components in the expected fesponse function
will persist despite the assﬁmption that the Black-Scholes médel
is valid. This persistedt component is the bias of the
Black-Scholes price calculated with an estimated Qolatility

N

rate.

Three alternative estimators for the Black—écﬁéiesiﬁédel
price are considered. In our Monte Carlo, none seem to show
clear superiority over the éimple formuia estimator. We further
note that the relationships of the bias with moneyness, time to
maturity or variance rate are optio;-specific. This in turn
implies that the coefficients;iﬁ the regression equation will be

#
option-;pecific. Thus, the é%;fficient estimates in a constant
coefficient esimation framework, preyalent in current empirifal
options literature, may not reflect the marginal biases. =i
 We are further concerned with the stochastic regressor

problem arising from the use of estimated volatility rate as a

iii
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regressor and the effect of omitted vériablesl They are
identified as two probable sources of sign reVefsal of
coefficient eétimates across studies.

As an alternative to handle dividend effect on mispricing,
we propose a Chow Test for the reporfeq systematic biases. Our
test results, indicate significant dividend inducement for the
entiregﬁzgression relationship of Black-Scholes mispricing. The
volatility rate seems to play a dominant role behind this
dividend'inducemeﬁt.'

We undertake an indirect test'of‘Black-Scholgs validity by
testing restrictions among the regression coefficiehts. These
restrictions are available‘becaﬁge they are implied by the bias
in théiBladk-Scholes fermula esfimator. Unfortunately, our small
sample and large sample test :esult% are contradictory.

Finally, in order to_éombat oélion specificity, we ﬁonduét
multivariate cubic sﬁlineéfegr%%éion to allow curvaturé in the
relationship of Black-Schq}es formula mispricing to individual
factors. The spline predigtions of these relationships are then
visually compared with our Monte Carlo results, which have been
generafed on the assumption that the Black-Scholes model is

valid. The comparisons do not show support for the Black-Scholes

model.

iv
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INTRODUCT{?N)AND SUMMARY

Since the pioneering work%;fwalack and Schole§(1973), there
has been substantial research ig\extending and modifying ﬁheir
Eurépean call valuation model, along with the"monte carlo ahd b
empirical“testings. The American call valuation model developed
by Roll(1977),Geske(19795),and Whaley(1981) has inspifed another
surge of research to investigate the adeguacy of the |
‘Black-Scholes European call valhation model or its modified
versions in the context of American calls on dividend-paying
- stocks.

Black and Scholes(1973) assumed a known volatility rate in
deriving their valuation formula. Since the true vdlatility rate
is notrﬁngwn, researchers haye commonly used some estimate of
thevvéiatility(or variance) rate in the formula, in order to
investigate the-Black-Scholes pricing empirically. The resulting
price is an estimate of the price that would have been given by
the formula with the true volatility fate. Since the difference
between these two price magnitudes would assume a vital role in
our discussions ahead, we would like to make clear the terms to
be used while referring to them. The price given by the formulé
with the true volatility(or variance) rate woula be referred to
as the 'Black-Scholes quel price', or simply the 'modeiagiice‘,
when there is no chance of confusion. On thé other hand,
whenever any estimate of the true volatility (or variance) rate,
rather than the true volatility(or variance) raée itself is used’

in the formula, we would refer to the resulting price



alternatively as the 'estimated mpdel price', the 'estimated
formula pricé‘ or, simg ly the 'formula estimate'. Thus, when the
authors of emplrlral studles make statements about the model's
prlclng, almost invariably those statements are in fact about
'the estimated formula's pricing'. In what follows, when we
mentlon t\eere,ults of various studles based on emp1r1ca1 data,
they should'be interpreted as for the formula estimate.

B&aék and Scholes(1972) undertook the first empirical study
of their model. They found the model to overestimate
(uddetestimate) the market option prices for options on
high(loy).historically estimated variance stocks. This has come
to be known as the variance bias of the Black-Scholes pricing.
Later, Black(1975) found that the model tended to
overprice(underprice) deep-in-the-money(deep—eut-of-the-money)
options. This is referred to as the direct striking‘price bias.
He also found options wich short maturities(less than 90 days)
to be underpriced by the model.

MacBeth and Merville(1979,1980) found that the direction of
' the striking price bias of the dividend-adjusted Black-Scholes‘
prices is exactly opposite to what was reported by Black(1975).
This bias came to be known as the inverse striking price bias.
Since the data used for empirical purposes were data on
unprotected America. calls, the impact of the early exercise
possibility on the probable mispricing and the systematic but

—————————————————— ¢

' These comments apply, whether the Europen, the simple stock
price adjustment or the Pseudo-American version of the
Black-Scholes is being used.



reportedly conflactlgg biases of B‘ack Schpoles pricing came to
be the subject matter‘of a number of studies,e.qg., Whaley(1982)
‘ Sterk(1982,1983),Gultekln,Rogalskl, and Tinic(1982), Geske and
Rol1(1984,1984a). Wnaley(1982) compared two modified(for -
di&idend) versions of the Black and Scholes model against the
Roll-Geske-Whaley American valuation model and found that the
latter model eliminates all the biases of the former, except for
the vari;nce bias as reported by Black ané Scholes(1972). The
striking price bias was not significant, and the time to
expiration bias was in the same direction as found by
Black(1975). Sterk(1982) cohpared the péeudo-American versien of
the>Black and Scholes and the American call valuatiqnvmodel as
developed by Roll(1977) and Geske(1979a). He found the latter
model to reduce the striking price bias of the former. He also
éonfirmed the direct striking price bias of the Black and
Scholes model. Gultekin, Rogalski,and Tinic(1982) considered the
Roll-Geske- Whaley model and found that its bias characteristics
are ‘dentlcal to that of the Black ‘Scholes. They confirmed the
direct striking price bias and the direct estimated variance
bias. That both models have 1dent1 al bias characteristics was
also supported by Blomeyer and Klemkosky (1983).

Geske and Roll(1984) showed that the conflicting results on
the direction of the striking price bias, in particular, could
be explained by the early exercise probability of the sample
optiéns. Geske and Roll(1984a) reported that the striking price

and the time to expiration biases are essentially

\



dividend-induced, while the estimated variance-bias is
measurement-error-in-variance-inducgﬁ. They showed that the use
of James-Stein estimator of the wariance rates eliminates the
estimated variance bias. v
It may be said that the conclusions of empirical studies
about the validity of the Black-Scholes model are far from being
decisive, especially in view of the fact that the results of
various studies are not directly comparable due to the varied
ynature of (1)the data‘used, (2)the téchnigue of volatility rate
estimation used, and (3)the approach to model validafion and/or
comparison adopted?. Moreover, confusion arose from the
difference in the types of statements used to report their

findings. After a brief survey of the theoretical literature in

the first chapter, we detail these complaints in chapter 2. For

example, we will raise guestions such as:

(a)What problems lie behind the use of ISD, as was used by
MacBeth and Merville(1979) among many others? |

(b)Were the reportedly deeper-away-from-the-money options
of Black(1975) trply déeper-away—from-the—money?

(c)Is MacBeth and Merville(1979)'s result, basedAon tﬁe
classification in-the-money and out-of-the-money, comparable to
Black(1975)'s result which does not seem to be based on similar

classification?

2 In this thesis, we would not be concerned with the data
differences. o



(d)Can MacBeth andAMerville(1979)'é, ﬁhale§(1582)'s or
Geske and Rol1(1984a)'s regression coefficients b; construed as
the margfnal biases or theif unbiased estimates?

(e)Can we offer an alternative approach to address general
problemsksuch as testing the validity of(the ﬁlack—séholes model
or more specific problems such as testing the dividengz
inducement of thé reportéd empirical systematic‘iiases oftﬁhe
Black-Scholes formula estimate?

In dealing with these type of questi;ns; our discussion.
about Implied Standard DéQiation(ISD) plays an important role.
ISD is computed by equating the market price to the model price
and solvihg for the only unknown--ﬁhe volatility rate. That ISD
is not the'true volatility rate is indicated by the empirical
finding of varying ISDs of options on the same stock. If it is
an estimate of the true volatility rate only, it will be a
biased estimate, even if the model is valid. This bias arises
‘since_the inverse function of the formula will be nonlinear in
the estimation error(of the vélatility rate) when the mbdel is
valid. But more importantly the bias of ISD as an estimate of
the volatility rate would be related to the moneygess and time
to maturity of the option, and the true volatilitfwrate. Thusw
the technigque of model validaﬁ?qn which takes sytematic
tendencies of ISD as ej%deqcekagainst the model would be

flawed 3. ™
3~

lButler and Schachter(1984) provide an interesting discussion of
these issues. They also numrically analyze the bias of ISD as an
estimator of the volatility rate and the biases in option prices

generated by the use of ISD.



This also raises fundamental questions such as how does the
market prices options, ana what can’be considered asfa valid
model. Since the wvolatility rate would in general be unknown, we
are not permitted to assume that the market price would be
identically equal to the fair value of the option®. Nor we can
assuﬁe that the market plugs-in some estimate of the volatility
rate in a nonlinear formula such as the one of Black-Scholes,
sinée that would admit the possibility of the market beiné
systematically off the fair value of the option®. If we believe
in the wisdom of the market, then we need to assume that the
market prices options in such a way as to allow only zero-mean
perturbations around the fair value of the option ®. This
perturbation can also accommodaté the idiosynchratic behavior of
traders. | '

Under this scenario, a model can be said to be 'valid*eif
it is the model of fair véluation. Thus, if tﬁe Black-Scholes
model is valid, the only source of systematic deviation for the
formula estimate from the market price would be‘its bias with

respect to the model price.

- - e ——

* If the set of assumptions under which a theoretical model of .
option valuation is developed, are correct, the model price
would be the fair value of the option, and the model can be
called the model of fair valuation. In general, this model will
be unknown to a researcher. .

> To be discussed later, formula estimate would be a biased
estimate of the model price.

*Wwhaley(1982) introduced this perturbation in estimating the
volatility rate from a regression using ISDs; but the economic
purpose of the error term was not clear.



As mentioned eariier, formula estimate has commonly been
used in empirical studiesjas proxies for the model price. Much
1955 commonly it has been recognized that the formula estimate
is a biased estimate of the model price. The bias arises due to
the statistical fact that the expected value of a nonlinear
function of a random variable is not egual to the function
evaluted at the expected value of the random variable. In our
context, the Black-Scholes formula is the nonlinear~function,
and the random variable is the estimate of the volatility(or
variance) rate’j Boyle and Ananthanarayanan(1977)'s controlled
experiment indicates that the formula estimate would
underest{mate the médél price for at and around-the-money
options, and overestimate for deeper-away-from-the-money
options. The implication for empirical testing is that the
observed deviations of the formula estimates from the market
prices may predominantly be the nonlinearity bias, and/or their
systematic tendencies primarily induéed by the nonlinearity
bias. The nature of the nonlinearity bias has also important
ramifications for.the model validation techniques, the
abpropriateness of the statistical techniques used, and their
effects on the reported.results.

For example,. the hedging technique of validating the
Black-Scholes model utilizes the formula estimates to establish
the hedge positions in securities. These positions would in fact

B i e R T Sy S —

Though we cannot show it explicitly, we are assuming that
biased estimate of the volatility(or variance) rate would not
produce unbiased estimate of the model price.



be distorted due to the bias of the formula estimates , and so
yill be tﬁ% result of testiny excess hedge returns ®. Moreover,
the hedging technique relies upon asset pricing model such as
the CAPM, the latter itself being subject to empirical testing.

In addition to the ISD-based techﬁique mentioned earlier,
and the hedging technigue, there is another technique of model
validation that has been used rather extensively. This technique
relies upon comparing the actual market prices with the formula
estimétes, and examining whether the deviations are
systematically related to factors such as the moneyness and the
time to maturity of the option, the volatility rate, et cetera.
Three major statisticél téchniques of comparison have been used:
(1)classify sample optdcns-into some broad categories such as .
in-the-money versus out-of-the-money, or shert versus long:
mat%rity, and then examine the signs an&*hagnitudes of group
.averages for dbllar or percentage deviation of the formpla
estimates from the market prices; (2)plot dollar or percentage
deviétions against a factor, and see if ahy pattern‘emerges;'
(3)regress mispricihg on factors such as moneyness and time to
maturity of the option, the estimated volatility rate, estimate
of early exercise probability, et cetera., énd see if the slope
coefficieﬁts are significant?®

!Butler and Schachter(1984a), pp 21, mentions this by pointing
out that the hedge ratios using estimated volatility rate will
be biased.

The two measures of mispricing used are dollar deviationh of the
formula estimate from the market price, or the percentage
deviation. Qur expositions would be in terms of dollar
deviations,
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As statistical techniques of relating the mispricing to the
status of a factor, both grouping and‘ploéting suffer from the
problem of inadequate or no control for other relavant factors.
Thus the primary source of uBider of overpricing of an |
in-the-money option may not be its monyeness status, even though
under Eﬁese_two technidues it may appear to be so. Moreover, it
appears that, when the Black-Scholes model is vqlid; the
nonlineérity bias for options within a broad group sﬁch as
in-the-money cannot be expected to have the same paftern. Thus
the sample mixture of options can seriously affect the gesulfs.
In general, this criticism would be valid irfespective of the
validity of the Black-~Scholes model. Oon the other hand, finer
groupings would be rather arbitrary. For example, the
nonlinearity bias of the formula indicates that the same “option
could be considered neér—in-the-money (thus underpriced) or
deeper-in-the-money(thus overpriced), depending upon the time to
maturity and/or true volatility rate of the option. This
contradictory needs of finer grouping and less arbitrary
grouping would be called the 'dichotomous bias dilemma'. The
word dichotomous bias arises from the fact that bias statements
are often made attributing two different directions(signs) SE\
mispricing to two différent broad groups of options.
Black(1975)'s direct sériking price bias, and MacBeth and
Merville(1979)'s inverse striking price bias can be cited as two

examples. By their very nature, dichotomous bias statements and

N,
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the grouping technique suit each other;lBut, as we have
indiﬁiigd they are rather inaﬁprobrfate and misleading for
judging the validity of the Black-Scholes model.

The tegression technique is an improvement upon the
ggguping of?plotting techniques, in the sense that it attempts
to control for other factors when evaluating the relationship of’
‘mfspricing to a particular factor. By the very nature of‘a
regression model, it is not suitablé for issuing a statement of
the dichotomous bias type. The other category of bias
s}atements, which we would call the functional bias type, are
more coherent with the regréssion technique. Thus, if we say
that the hispricing increases as the moneyness increases, it
would be a functional bias statement, since it gives the reader
a sense of functional relationship between mispricing and the
level of moneyness. But notice that this statement does not
allow us to say that the model underprices(overprices)
in-the-money(out-of-the-money), since the sign of the mispricing
would depend upon the total effect of all relevant factors.
Untortunately, there has been a tendency in the current
literature to use the signs of.the regfession coefficients as
the basis for dichotomous bias statements.

That the regression results and the grouping results are
not comparable should be clear by now. Also, whether the
regression coefficients in a constant coefficient regression
model can be interpreted as the marginal biases is cast into
doubt by the option-specificness of the nonlinearity bias alone.

-
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It appears that given our market pricing scenario, the
complications of'the formula's nonlinearity bias, the "
limitations of the general model validation technigues and of
the specific statistical technigues used, an appropriétely
defined regression mbdel may be necessary to elicit a concise
but comprehensive understanding about the problems_involved. We
hope to present such a model in chapter 3, which we shall call
an 'alternative regression model'. We derive ah estimable
regression eqguation which clearly shows the various proﬁable
components of the formula estimate's deviation from the market
priée. The regressién coefficients in this equation would
generally be option-specific, and reflect model misspecification
bias over and above the nonlinearity bias. The use of estimated
volatility rate as a proxy for the true volatility rate gives
rise to the stochastic regressor problem for the least sguares
coefficients, which may otimay not be substantial, as is also .
the degree of heteroskedasticity.

The model shows the costs of simplification(such as
assuming the regression coefficients constant across options) or
incompleteness (such as omitting relevant factors,e.g., the
early exercise probability),-or lack of attention to econometric
problems(such as stochastic regressof problem). The alternative -
regression model also shows how one can addres; general problems
like the walidity of the Black-Scholes model or more spécific

problems such ag:aiVidend inducement of the systematic

-

relationships of mispricing with factors.



In our discussion above, we have seen that'the nonlinearity
bias of the formula may assume a vital role in empirical
invesfigation othlack—Schbles pricing. The nature of this bias
is examined in chapter 4.

Cn the basis of second order approximation to the
nonlinearity bias, we shall try to provide an explanation for
the pattern of striking price bias found by Boyl; and
Ananthanarayanan(1977). The systematic relatioﬁghips of the
;onlineafity bias with the moneyness and the time to maturity of
tﬁe option, and the true variance rate will be given monte carlo
investigation '°, In doing so, the option specificness and the
marginal nature of the systematic relationships will be
emphasized. We will alsé discuss how the sample mixture of the
optidns can affect the conclusﬁons about systematic tendency of
the formula estimate. ‘

We will also consiée; four alternative estimators and see
if they are better than the formula estimator:'' '2 (1)pseudo

estimator: if we plug-in estimated variance rate or volatility

'2Butler and Schachter(1983a) used numerical integration
technique to do a similar analysis with respect to a composite
measure of moneyness and the variance. See our chapter 4 for
more details.

'"" In this thesis, we would call one estimator 'better' than
another, if the former has lower bias, and lower standard.
deviation or lower mean square error, unless otherwise stated
explicitly. Another gqualitative measure of goodness of an
estimator would be the lack of any showing of systematic
deviation, ’ '

'2Butler and Schachter(1985) propose a technique to minimize

mean squared error of estimating the Black-Scholes price ; the
technigue requires the knowledge of true volatility rate.

12



rate into a specific function of the true vaiiance(é%
volatility) rgte, the estimator should havé zéfo bias, when the
bias is considered in the form of a truncated Taylor series;
(z)Butler-Schachter estimatcr: the estimator proposed by Butler
and Schachter(1983a); (3)CC estimator: it is similar to
Butler-Schachter estimator, .ut eliminates somne of the latter's
deficiencies; (4)potentiélly unbiased estimator: both
Butler-Schachter and CC are approximately unbiased, but another
estimator is suggested, which would L uinbiased, subject to
opérational limitation. c

We undertake a Monte Carlo for comparing the behaviors of
the pseudo estimator and the foréula estimatér. Yet another
monte carlo is undertaken to compare the performance of the
Butier-Schéchter and the CC estimator with thatfof the formula
estimator. We do not find evidence of clear superiority of these
" estimators over the formula estimator, though the CC estimator

seems to have slight edge.

:Finally, we entertain some indirect tests of the

Ly

Blackachofes model, and dividend-induced systematic
relationships. We continue to use the formula estimate, and
utilize the structure of our alternative regreséion model.

In chapter 5, as a preliminary basis of our tests in later
chapters, we start our empirical estimations by assuming a
coRstant coefficient version of the regression model developed
in chapter 3. Following G:ske and Roll(1984a), we divide our

total sample into two subsamples, one containing the options

13



with no dividend‘payment on the stock prior to matﬁrity and the
other with options having one dividend payment pfior to
maturity. We discuss the signs and statistical significance of
the coefficients estimated‘for the two subsamples, and compare
them with previous studies. We also discuss the stochastic
regfessor problem, and find it as a potential source of sign
reversal of coéfficients across samples,

As indicated earlier, recent studies have considered the
lack of proper tréatment for the éarly exercise possibility of
unprotected American calls as the source of the systematic
~deviations of the formula estimate. The question asked under
testing dividend inducemnet is: if We find the mispricing of
formula estimate to be systematically_relatéd to the
factors(such as moneyness and time to maturity of the option,
the volatility rate on stock :eturn);‘is it mainly because of
the formula's not accounting for the early exercise feature of
the optfon? Previous studies excépt Geske and Roll(1984a) and
Wha;ey(1982) used techniques ocher than fhe multiple regression
technique, and are subject to the criticisms we have made
earlier'?®, Geske and Roll(1984a) ran two regressions, one for
the total sample of options, and the other for the suBsampie of
non—dividend-paying‘options. The significance of the coefficient
of a factor in the total sample, but insignificancé in the

r
zero-dividend subsample was taken as evidence of

'3Whaley(1982) did not present the estimated multiple regression
equations

14



dividend-inducement of formula's systematic relationship with
that factor;VWe shall comment on their sample mixture of
dividend-paying and non-dividend-paying options,as it can
seriously affect the significance of a coefficent in the two
regressions. Moreover, they undertook no statistical test of
differeqce in thé coefficient estimates across the two
equations.

In chagter 6, we propose a Chow test fgr tgsting dividend
inducement. Three regressions are run; assuming constant |
coefficient; one each for the zero-dividend subsample, the
dividend-paying subsample, and the total sample. The first two
implies that we are not restricting the coefficients to be the
same for zero-dividend and dividend-paying subsamples, but the
last implies the restrictions. If there is no significant
dividend inducément, the Eestrictions would not métter. Our teét
result indicate significant dividend inducement for the whole
regression function. Tests of differences in the individual
coefficients and pairs of coefficients indicate that the
sfgnificant difference in the coefficient of the volatility rate
may have caused the significat dividend inducement for the whole
regression function.‘The coefficients of moneyness and the timé
to expiration do not seem to have any perceptiblé role in
dividend inducement. These results are in contrast to those of
Geske and Roll(1984a), or Whaley(1982).

Iﬁ chapter 7, we present one of the indirect tests of the
validity of the Black-Scholes model. We utilize the structure of

e

|
=
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the second order approximation to the nonlinearity bias, and the
fact that when the Black-Scholes model is valid, the expected
respon;e function in cur regression model would consist of the
nonlinearity bias alone. It appears that the approximatioh
implies specific reétrictions among the slope coefficients in
our regression model. Thus an indirect test of the Black~Scholes
model would be to test the implied restrictions among the
coefficients. The merit of~the proposed test lies in that we
take advantage of the existence of the nonlinearity bias of the
Black-Scholes formula estimate, rather than being victimized by
it, as the existing tests have been. We perform the small samplé
F-test as well as the large sample Wald test. Unfortunately, the
two test results are COntradicfory.

We noted earlier that the coefficients in a proper
regression model would be option-specific,* while our estimations
in chapter 7 and elsewhere relied on constant coefficient

~ .
estimation. In chapter 8, we undertake cubic spline regression

to allow the coefficient of a factor to be nonlinear with
respect té that factor alone.

Once the spilne regression equation is estimated, we use
the estimated equation to predict the path of the mispricing as
onlz/one of the factors is allowed to vary over its sample
saéée. Tuis predjicted path is then compared with that of the <
nonlinearity bias alone, the latter‘being known from the Monte

Carlo studies, If the former is extremely different from the

latter, the validity of the Black-Scholes model would be in
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doubt. For example, Boyle and Ananthaharayanan(1977)'s study and

our results in chapter 4 show that the negative of the
nonlinearity bias of the formula as a function of the moneyness
would exhibit four phases of decrease, increase, decrease, and
increase. If the functional relationship predicted by the spline
regression shows just the reverse cycle, we would have enough
reason to suspect the validity of the Black-Scholes model.
Unfortunately, our results indicate evidence against the
Black-Scholes model. ;;;

We also compare acrosc the two ‘subsamples, spline
predlctlon of the relationship of mlspr1c1ng to moneyness and
variance rate '?*. As found in chapter 6, dividend-related effect
do not seem to induce notlceableidepartures in striking price
vias of the Black-Scholes ermulaiestimate. The variance rate
bias, on the other hand, exhibits remarkable difference across
the two subsamples. This strengthens what we found in chapter. 6,

i.e., the important role played by the volatility rate in

dividend-induced mispricing.

'%*In chapter 4, we found the nonlinearity bias to have similar

relation with tlme to maturity and variance rate. Also, the
coefficient of time to maturity did not seem to have si¢nificant
dividend inducement in our tests of chapter 6.




CHAPTER 1:

SURVEY OF THEORETICAL LITERATURE
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A simple call option written on a stock is a contract
promising to pay max[0, P(t)-X], if exercised at time t, where
P(t) is the stock price at time t, X is the striking price.\For
a'Ebropean call, the time of exercise, if to be exercised at
all, is Contractually defined to be t*, thektime when the
contarct expires. On the other hand, an American call entitles
the holder to exercise any timewpn or befo;e t*. An American
call not‘having provisions of change so as to preserve its value:
in the event of cash distributions on the: undeTrlying stock prior
to contractual maturity, is commonly referred to as Payout
Unprotected American Call, hereafter UAC. ‘

Both European and UAC will have nonnegative values, since
they will be exercised only if the holder finds it brofitable to
do so. Unlike a forward or futures contract, exercise of'an
option is a privilege, not an obligation. But the holder of an
UAC has an additional exercise in obtimality, namely, that of
whefher to exercise prematurely, and if so, when. This early
exercise feature of an UAC gives rise to considerable
complications in its valuation when dividends are paid on the
underlying stock.

Though substantial amount of research took place prior to_
1973, the seminal article of Black and Scholes revoiutionized
the science of derivative asset pricing, It will hardly be an
overemphasis if we call the European call pricing model of Black

and Scholes(1973) as 'the premier model' of option pricing.

Usihg the argument of the absence of arbitrage in a market

18



equilibrium , the valution formula of Black-Scholes was derived
as the solution to a linear parabolic partial differential
equation, subject to time-independent boundary conditions'S, The

Black-Scholes valuation formula is given below:'S '7

CB(8)= P ¢(d,) - ZB(T) ¢(d;) .eco..(1)
where the notations are as follows:

P the stoék price’

X the striking price

T the contractual time to maturity |

r the rigsk-free rate per unit of time

B(T) the price of a risk-free bond with time to maturity T and

face value of $1
¢ the volatility of stock return per unit of time \

Y P e
6 the set of arguments (P,X,r,T,o)'?®

¢ the standard normal distribution function

1e Merton(1973) showed that the stock price need not be the
eqguilibrium price, ‘

' Merton(1973) provides an alternative derivation of
Black-Scholes valuation equatlon by using 3- secur1ty,1nstead of
Black-Scholes's two-security hedge. Merton's is zero-equity,
because proceeds from short selling and borrowing could be used
to finance the long position. Black-Scholes's hedge necessitates
net equity,though both Black-Scholes's and Merton's hedging
pertfolios are self-financing.

'"Hereafter, 4, and d, will be understood as magnitudes, based
on relevant stock price adjustment for dividends.

"®For future reference, the stock price net of escrowed
dividends will be denoted by S. For an option with no dividend
payments prior to maturity, S would be equal to P.

'* In the context of dividend adjustment, P will be replaced by
S. . ,
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da, = [ln(P/X)+(r+O.502)T]/aVT and

d2= d1 - O‘/T

- The assumptions under which (1) was derived are:
1.There is no restriction on borrowing and short selling, with
full proceeds available.

2.Borrowing and lending rates are equal. p

3.There are no transaction costs or diffefential taxés.

4.Trading takes place continuously in time.

5.The short term risk—freeirate is known and constant through

time.

6.There are no dividend payments or other distributions during

the life .time of the option. |

7.The option is European.

8.The sampie path of the stock price is continuous??.

Specifically,the stock price follows a Geometric Brownian Motion

through time(i.e.,follows a random walk in continuous time with

a variance rate proportional to the square of the stock price).

Thus, the distribution 9f the stock price over a finite interval

of time is iognormal.

9.The variance rate for the stock return is a kﬁown constant.
The first three assumptions constitute what has been termed

as the "ideal conditions” in the market. The "ideal conditions",

together with the assumptions 4 and 5, specify the capital

__________________ 2

2% Increments of the stock price exhibit local Markov
property,i.e., in a short interval of time, the stock price can:
only change by a small amount.
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market environment. Assumptions 8 and S specify the stdck return
distribution.

The plethpra of research that followed Black and
Scholes(1973), showed that the basic analysis of Black and
Scholes is not affected in any significant way by the relaxation
of the capital market assumptions?', —

Merton(1976) extends Black-Seholes by considering a stock
price process that combines the Gauss-Weiner and»the Poiéson.
Even though completely riskless hedge cannot be formed under
such a process, Merton derived a formula similar to the
Black-Scholes's in spirit, by invcking the CAPM.

Cox and Ross(19765 consider=d several other processes, and
also proposed the risk-neutral approach of option valuation
which has become very popular a§ a conceptual and simulation
tool. The risk-neutrality argument is based on the observation
that if a riskless hedge can be formed and maintained,-then'thé"
option valuation becomes preference—free,‘and thus could be
undertaken as if the economy were risk-neutral??2,

Jarrow and Rudd(1982) introduce the construct of deriving
an approximate valuation for an arbitrary stdchastic process. 7
The approximate valuation is the sum of Black-Scholes valuation
and adjustment terms involving the higher order moments of the

2! See Merton(1973) for stochastic interest rate,
Ingersoll(1976) for differential taxes for capital gains versus
- dividend or interest, and Rubinstein(1976) for discrete trading.

22 For some simple types of processes, it is possible to form

riskless hedge, and then the risk-neutrality approach can be
applied to value the option.
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underlying stock price process.

Geske(1979) derived avvaluation.equ%bion for a call;
viewing the call as a>compouhd option(on the value of the firm),
with the Black-Scholes valuation as a special case when the firm
in question is unlevered. The important distinction is that
Geske's formula includes leverage effects, and accommodates a
varying variance rate for the stock return. Cox(1975) also
considered a non-stationary variance rate in deriving the
Constant Elasticity of Variance(CEV) diffusion formula. The CEV
formula, though similartizwfppearance, is little more
complicated than the Black-Scholes??. Black-Scholes is, of
course, contained as a special case of the CEV when the constant
elasticity assumes the value of zero(i.e.,the elasticity
parameter is equal to 2).

The Displaced Diffusion Option Pricing model of
Rubinstein(1983) considered the asset structure of the firm in
addition to the leverage considered by Geske(1979)2", The
resulting valuation formula has the same structure as the
Black-Scholes, except‘that bo£h the striking price and the stock

price to be used in valuation are displaced by amounts dependent

23 Both Merton's jump-diffusion and Cox's CEV diffusion involves
the evaluation of infinite sums, and for empirical purpose,
estimation of additional parameters than the Black-Scholes.

2% Rubinstein assumes that the firm holds a risky asset with
lognormal return, and a riskless asset. Capital strucure
consists of r1sk1ess bonds and eguity. Also the time and the
size of dividend payment are assumed to be known.
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on the asset structure and.-the capital structure?®

//' -

All the-models mentioned above assumes that either the
option 1s Eufopean or that early exercise is not optimal if it
is an UAC. Merton(1973) and Smith(1976) have shown that early

exercise of an American call is not optimal, if there is no
. v

distribution on the stock prior tc the contractual maturity of

the option2€¢. In that case, an American call will have the same
0
value as an European option.,

For a propertional dividend policy D(P,T)=vP, »v>0,
Merton(1973) derived the value of a European warrant as:??
CM(8; »)=exp(-»T)Po(d;)-XB(T)¢(d;) ... (2)

Rubinstein(1976) derived the valuétion formula for similar

policy in discrete time.

Let us note the following:
(i) CB(6)> CM(6;v) for v >0. Thus the Black-Scholes valuation
will overestimate ah European option with distributions on the

stock prior to maturity of the option.
25 The striking price adjustment depends on the dividend policy
also. »

26 At each point in time prior to the contractual maturity of
the option, the holder will compare the value on exercise(P-X)
with the value if held to maturity(CB(6)). But CB(8) is bounded
below by P-XB(T). Given B{T)<1, [P-XB(T)]>[P-X]. Thus,
min{CB(68)]>[P-X]. An option is. worth more alive than dead.
Intuitively, if not exercised early,the dollars for the exercise
price could earn riskless rate over the remaining life of the
option. :

.
N

27 The notation is similar to that used by Merton(1973), pp 171.
It 1s assumed that the underlying stock pays dividends
continuously at the rate v. Smith(1976), pp 26, has similar
exp051t10n, but his valuation formula dlffers sllghtly from that
}eported in Merton(1973).
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(ii) For large P, #(d,)=1, ¢(d,)=1, and thus CM(8;»)
xexp(-»T)P-XB(T). Then CM(6;v) < (P-X) for some large P. Hence,
for large stock price, an American call could be worth ﬁore dead
than alive. |

Merton(1973)valso considered a constant dividend policy.
‘Though a closed form solution.for~Is ® was not given, a solution
for the perpetual warrant was derived.

Geske(1978) derived an option valuation formula for the
case of lognormally distributed dividend yield in a discrete
time framework, using Rubinstein's tethnique of discounting
uncertain income stream?®. The distinction that the stochastic
dividend brings about is that the variance rate for the stock
return is to be adjusted to accommodate the instantaneous
variance of compound dividend yield and the covariance between
the return on the stock and the dividend yield?®. Like (2),
Geske's stochastic dividend valuation adﬁusts the Black-Scholes
prices downward. But the early exercise feature of an UAC has-
-not been dealt with, in these basically-European-call-oriented
valuations.

2% Rubinstein's technigue allows discrete trading to occur in
discrete time and does not require a riskless hedge. Rut
restrictions on investror preference and probability
distribution of asset returns are required. For stochastic
dividend, riskless hedge cannot be formed, because, in general,
the dividend cannot be expressed as a nonstochastic function of
stock price and time. .
2% The variance rate for the stock return needs to be adjusted
also in the case of stochastic risk-free rate, as shown by

Merton(1973),pp 162-169.
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Schwartz(1977) developed a numerical solution to the
partial differéntial equation governing the value of an UAC,
with known date and size of dividend pay%ents on the underlying
stock prior to contractual maturity of the option. Roll(1977)
provided the first closed form solution for such valuation
problem. Roll considered the case of an UAC, where the stock has
a single dividend of known size D on a known date t,, prior to
the expiration date t*. It was also assumed that on the
ex-dividend aate, the stock price would go down by a known
fraction of D3°,

Instead of directly solving the partial differential

equation governing the price dynamics of the UAC, Roll resorts

to the technique of valuation by duplication®'. Roll duplicates
the cashffow of an UAC by forming a portfolio of two European
calls and an European compound option on one of the European

calls.

Noting that an UAC is, in fact, a compound option,

Geske(197%a) applies the Geske(1979)'s compound option formula

to directly value an UAC. Whaley(1981) corrected some minor

— - — - ——

39 In what follows we will assume the value of the fraction to
be equal to one, as has been assumed by the empirical studies
employing Roll's model. Whaley(1982), of course, hinted that
this simplifying assumption could be a probable source of the
persistent variance bias, to be discussed later in this thesis.
3! Ross(1976) showed that arbitrary simple options are ‘
equivalent to a portfolio of call options. When the primitive
assets are of limited liability nature, and the striking price
of the options are nonnegative, Ross proved,in his Theorem
3,that all simple options can be thought of as portfolios of
puts and calls.
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mistakes in Roll(1977)'s and Geske(1979a)'s valuation
formulae?®?, Whaley pointed out that ;hefduplicating portfolﬁo to
replicater the cashflows of an.UAC is not unique. Geske(1981)
showed that théré are simplér duplicating portfglios than the
ones used by Roll(1977) and Whaley(1981), containing fewer
securities, and reéulting in more compact solutions. Though both
Roll(1977) and Geske(197%9a)'s corrected versions will result in
the same value of an UAC, Geske(1981) arqued that the use of
direct solution could prove cost-economic. Hereafter, we will
refer to the UAC valuation model developed by Roll(77),
Geske(1979a), and Whaley(1981), as the RGW model.
The RGW price for a singie dividend case is giyen by:
C(R)=S[¢(by)+¢,(a,,~b,;-V(T, /T))]-XB(T)[{¢(b2)/B(T-T,)}+
92(az,-by 3=V (T,/T)) ]+ DB(T,)g(by) «ovv.n.. (3)
where
S is the stock pricé net of escrowed dividend
T, is the time to ex-dividend instaﬁt or date
S* 1s the critical ievel of the ex-dividend stock price above
which the American call will be exercised
R denotes the set of arguments (S,X,r,T,o,S*)
¢,(a,b;c) is the bivariate-norﬁal distributio; £unction with

upper integral limits a and b, and correlation coefficient ¢

a1=[ln(S/X)+(r+0.502)T]/O‘/T, a2=a1-0‘/T

%2 The corrections are for the striking price(S*,instead of
S*+aD) of one of the duplicating options in Roll(1977), and the
sign of the correlation correlation coefficient(-y(T,/T),rather
than v(T,/T), in our notation) in Geske(1979a).
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T .

by=[1n(S/S*)+(r+0.502)T,1/0¥T,, By=b,~ov'T,

Following Geske(1979a).pp 377, and Whaley(1981),pp 45, and
as mentioned in Sterk(1983), the following interpretation of the
RGW valuation equation can be given.

A. On the ex-dividend date, S=S(t,), and T,=0. Thus if
§>S*, b,=b,==, ¢,(.)s will be equal to zero, and ¢(.)s will be

equal to one, and C(R) becomes S-X+D, the exercise value if

“exércised prematurely. If S<S*, b,=b,= -,

¢2(a1,-b1;-‘/(T1/T))’=¢(a1)I ¢2(a2I-b2;_‘/(T1/T))=¢(a2)l

" ¢(b,)=¢(b,)=0. Thus, C(R) becomes S¢(a,) -XB(t*-t,)¢(a,), the

value of the option if kept alive.

B. Note that b, and b, are in fact d, and d, of the
Black-Scholes valuation eguation (1), with a time to maturity T,
and striking price S*. Thus, following Jarrow and Rudd(1983)}
¢(b,) could be interpreted as the probability that the
hypothetical European call will end up in-the-money at
maturity,i.e., S{(t,;)>S*. Hence, ¢(b,) cop&é be interpreted as
the probability of early exercise??3.

C. Note that a, represents the d, of the Black-Scholes
valuation equation (1) for a European option with time to
expiration T, and thus ¢(a,) represents the probability of this
hypothetical option to end up in-the-money at maturity. On the
other hand, ¢(-b,)= 1-¢(b,) represents the probability that the
hypotheticél option with time to maturity T, in part B above
will not end up in-the-money,i.e., p[S(t;) < S*]. Thus

- - - - - = — = —

33See Whaley(1982), footnote 17,
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¢§(az,—bz;-/(T,/T)) seems to represent the joint probability
that S(t¥)>x and S(t,)<S*, i.,e., the probability that the call
is not exercised early and is in-the-money at contractual

., ‘expiration, | .

‘D. In a risk-neutral economy, or if a riskless hedge can;be
formed with the call and the stock, the value of an UAC with
dividend payment ahead could be shown as the sum of: 2% 35
(i)B(T,)[E{S(t,)] S(t,)>S*}+D-X] p[S(t,)>S*], the present value
of the conditional expected value of the exercise Qalue when
exercised just before the ex-dividend time.

(ii) B{T)[E{S(t*)| S(t*)>X}-X]p[S(t*)>X and S(t,)sS*], the
present value. of the option'gvalue unexercised just before the
ex-dividend time.

}

To account for the early exercise possibility in the

o

framework of Black and tholes(1973), Black(1975) suggested an
approximation currently known as Fhe’pseudo—American valuation,
Since the pseudo-American valuation has been in popular use, and
the early exercise possibility is a vital part of an UAC
valuation, we will end our discussion of the theoretical
research with a short digression on lhem.

Let the stock prices be represented by:

S(t)=P(t)-DB(t,-t) for t<t,

=P(t) for t2t,

*3%Note that the probabilities in B and C are risk-neutral
probabilities., Thanks to Professor Whaley for pointing this out.

355ee Whaley(1982), footnote 17,
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Let ‘At represent an instant of time. Jarrow and Rudd(1983)
,pp 49, proves that : -

lim P(t,)+D=P(t,-At) with certainty.

At™0

That is to say, at the ex-dividend time;the stock price
would fall by the amount D with certainty, from the level
prevailing at an arbitrarily close previous instant. This also
means that the stock price cum-dividend at t,-At will be :
P(t,-At)=P(t,)+D. Let us now see what would be the value of the
cotion for t<t,, fdr the two hypothetical cases: (i) certain
early exercise at t,-At, and (ii)certain exercise at t*(i.e.,no
early exercise).

(i)Certain exercise at t,-At '

The releQant stock price at t<t, would be P(t)-DB(T,),
because value of the option correspond§ to the risky component
o? the stock price. The effective exercise price at t,-At will
be:

X-DB(t,-t,+At)s= X-D

The reason is that if the option is exercised at t,-At, D
can bé claimed at t,, thus reducing the éffective exercise price
by the amount D . The option value,then, is given by:

CB(§)=CB[{P(t)-DB(T,)},(X-D);o,r,T,]

We have T, as the time to maturity here, because of early
exercise taking place at t,-At, the option's life effectively
shrinks to that.moment. It is to be mentioned here that

Merton(1973) has shown that an American call,if exercised early
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optimally,will be erxercised only an instant before the

ex~-dividend time.

-

(ii)Certain exercise at t* or no early exercise:

fhe relevant stock price and exercise prices are
P(t)-DB(T,) and X respectively. The value of the option
will,then, be given by :

CB(8)=CB[{P(t)-DB(tﬁ)},X;o,r,T]

But the option will be exercised to the best interest of
the holder. Thus, if the probability of early exercise were a
zero-one variable, American call should have the value:

C =max[CB{{P(t)-DB{T,)), (X-D)jo,r,T,}, ;
- CB{(P(t)-DB(T,)),X;0,r,T}]

The above is the pseudo-American valuation, originally
suggeste.” by Black(1975). Pseudo valuation will be a good
approximation if the probability of early exercise(p) is close
to either of the extreme values. ‘

We will now examine when the eafly exercise will take

‘ i
place. Early exercise at t,;-At will take piace if the oStion
value on exercise at t ,~At exceeds the value when exercise is
postponed till t*, If exércised at t,~At, option's value at that
moment will be : P(t,-At)-X . If it is not exercised at t,-At,

it will be worth:

CB[{P(t,-At)-DB(t -t +at)}, X; o,r,(t*-(t,-At))]
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~CB[ {P(t,-At)-D},X;0,r, (t*-t,)]

=CB[P(t,),X;0,r,(t*-t,)]

So option will be exerciéed at t,-At,ﬂif [P(t,-At) -D] or
P(t,) is such that :

P(t,-At)-X > CB[P(t,),X;0,r,(t*-t,)]

i.e.,P(t,)+D-X > CB[P(t,),X;0,r,(t*~t,)]

Note that S(t,)=P(t,).

We now have the condition of early exercise as:

S(t,)+D-X > CBIS(t,),X; o,r,(t*-t,)]

If it is an equality, then the holder wil; be indifferent.
about-whether to exercise prematurely or not. On the other hand,
a less than sign will lead to postponement ogigxercise.‘The
solution S* to

S*(t,)+D-X = CB[S*(t,),X;0,r,(t*-t,)]

is the critical level of the ex-dividend stock price above
which option will be exercised early optimally. We will refer to
this price as simply S*.

It has been shown in Jarrow and Rudd(1983) that the
sufficient condition for no early exercise is:3%

X-XB(t*-t,) > D

or, X-D > XB(t*-t,)

Inrother wo;ds, it means that if the effective exercise
price, when exercised an instant before the ex-dividend time is
greater than the present value, at t,-At, of the cost of
~exercise at t*, the option‘will not be exercised early.

¢This was first noted by Roll(1977).
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Now, if we are at t<t,-At, given S(t), we can find out the
probability of S(t,)>S*, because S* wiil be known in advance.
Using the property of Geometric Brownian Motion for S:

p=p(S(t,)>S*| S(t)=s(t))=1-F(S*/s(t);(t,~t))

where F is the distribution function.

The larger the size 5f the known dividend D, the cheaper
the cost of exercise at t,;-At, compared to the cost of exercise
at t*. Also, close; the ex-dividend date to the contractual
maturity date, lower will be the ex-dividend option value; if
not exercised at t,-At . In both of these caseg, S* becomes
smaller, when the schedule g(t1)+D—X shifts to the left(for
larger D) and the curve C[S(t,), (t*-t,),X] swings down(for
smaller t*-t,) along with the' schedule S(t,)-XB(T-T,) shifting
down ,in a diagram like Figure 1,pp 253,0f Roll(1977). The
implicétion is that by monotonicity of F, p becomes la}ger.

Also notice that as the option goes in-the-money(or

deeper-in-the-money), p would become larger.
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CHAPTER 2:

REVIEW OF EMPIRICAL LITERATURE
3
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The body of applied research in the area of call valuation
since the early 70's has centred predominantly around the model
of Black and Scholes(1973). The principal questions asked were:

Q1. Does the Black-Scholes European call yaluation model,
or some modified or extended version of it represent 'well' the
actual market érices of traded call options ?

Q2. 1f the answer to Q! is not a strong yeé, then, (a) what
is the nature of the weakness of the Black—Scholes,model, and |
(b)what are the sources of weakness?

Q3. Does an alternative model perform better than the
.Black-Scholes model in a prespecified sense ?

QL can be interpreted as testing the validity of the
Black-Scholes model against an unspecified alternative.
Galai(1983) outline? the complications of testing model
validity. In general, such tests represent joint tests of the
market synchronization, optéon market efficiency, and the
validity\of the model.

Q2 is, in fact, én integral part of answering Q!. Q3 is a
problem in model selection, nested or non-nected, as the case
may be®’, In this thesis, we do not consider testing the

Black-Scholes model against any specific alternative model,

though it remains an important agenda for our future research.

*7In the existing studies, the models against which the
Black-Scholes model has been tested, contain the latter as a
special case. Thus, they belong to the nested case.
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Our focus, here, would be on Q1 and Q2,32® ”

One would find the aﬁswers to these questions as diverse as
the tools of research producing them. Although findings such as
Black(1975)'s direct striking price bias and subsequently
MacBeth and Merville (1979)'s inverse striking price bias have
led to interesting debates, insufficient attention has been paid
to issues such as the differences in the types of tools used,
their limitations, their probable effects on the results
reported, et cetera. Moreover, fhere has been a lack of care in
the interpretation and comparison of results. It is with this
critical eye that we shall review the empirical research in this
chapter. |

There are nine sections in this chapter. The major
approaches to model validation are briefly reviewed in section
. Though these approaches differ in significant ways, the
studies based on them do share a common finding that the
estimated Black-Scholes prices tend to exhibit systematic
deviations from the market prices. The findings of these
systematic deviations are summarised in section 2; Since these
findings are mostly for UAC déta, the treatment of dividend in

these studies is a potentially important issue, and is briefly

% To be clear, option market efficiency will be a maintained
hypothesis, not a hypothesis to be tested as is the case in many
studies. We feel that the proper technique of investigating
option market efficiency is the hedging technique first proposed
by Black and Scholes(1972). But we do not pursue the question of
efficiency, and thus our results about model validity may have
been affected by any departure from the maintained hypothesis of
market efficiency.
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surveyed in section 3, A summafy of the nature of empirical
testing foliows in section 4. The methodologicai and statistical
problems of ISD and their possible resolution via regression
models arehdiscu55ed in secion S. In section 6, we examine some
of the important regression-based studies.

In section 7, we classify bias statements intq two broad
categories: the dichotomous bias’and'the functicnal bias. It is
surprising that the bias statements of these two differing types
were indiscriminately used to compare empiriéal results by .
researchers. We discuss the problem associated with making

- dichotomous statements in-section 8. Finally, section 9 reviews

the problems and prospects of the functional bias approach??,

3% Approaches to validation of the Black-Scholes model were
classified by Galai(1983), according to the techniques of
validation. alternative classification can be made based upon
the type ofwbias statement or the tool of investigation used. As
we would see later on in this chapter, the two approaches under
this classification are dichotomous bias approach and functional

bias approach.
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| SECTION 1
Approaches to model validation differ in at least two
importa;i dimensions®®: |

(i)The estimator for the unknown variance or volatiiity
rate. ; éyf*

(ii)Given the estimator, the technique of validation.

Examples of studies using different types of estimators
are: ‘

(i)Historical varianc;»rate estim9tor:
Black;Scholes(1972),Boyle and Ananthanarayanan(1977),
Galai(1977), Butler and Schachter(1983,1983a,1984a),
Merton(1976a) *'.

(ii) Actual variance rate estimator: Black-Scholes(1972),
Latane aﬁd Rendleman(1976), Bhattacharya(1980), Chiras and
Manaster (1978) 2.

(iii) Implied Standard Deviation (ISD) estimator: Latane
‘and Rendleman (1976), Schmalensee and Trippi(1978), Chiras and
Manaster(1978), MacBeth and Merville(1979,1980), Whaley(:382),

s0The definition of moneyness may be considered as yet another
dimension.

*'Historical variance rate estimatdors across studies differ in
the unit of time and the length of the period over which they
are estimated. .

fZpctual variance rate estimators imply estimation of
volatilities from the stock’ return data over the life of the
.option, and as such may be appropriate only for ex-post
research. .

38



Emanuel and MacBeth(1982), Sterk(1982,1983) %3, |

Black(1975), Bhattacharya(1980), Geske and Roll(1984af
compared the stock price(or stock price adjusted for dividend)
with the undiscodnted,exercise price., However, MacBeth and
Mervillek1979,1980), Merton(1976a), Whaley(1982), Sterk(1982,
1983), Butler and Schachter(1983,5983a), Jarrow and Rudd(1982) -
among .others compared thé stock price(of stock price adjusted.
for dividend) and the discounted value of the exercise price.
The difference between these two definitions could be pronounced
if the the time to expiration is subst;;tial. In general, the
latter définition will be biased towards finding long-maturity
options to be in-the-money.

Four major, techniques of validation can be identified:

(i)Monte Carlo studies:.Merton(1976a), Boyle and
Ananthanarayanan(1977), Butler and Schachter(1983,1983a), Jarrow
and Rudd(1982), and to a limited extent Bhattacharya(1980),
Rol11(1977), Geske(1978). The technique relies on relaxing one Or
more of the assumptions of the Black-Scholes model, and
evaluation of the success of the Bléck—ﬁcholes prices 1in
tracking the true prices. -
2 (ii) ‘Studies based on risk-adjusted return of hedge
positions: Blagk(1972) first proposed the technique, and it was

*3Latane and Rendleman(1976) compare the performance of the
historical and the actual estimators in predicting volatility.
Whaley(1982),footnote 3,points out that even thouckh Latane and
Rendleman(1976),and Chiras and Manaster (1978) call this
estimate the 'actual standard deviation of return', 1t 1is merely
an estimate. Blac: and Scholes(1972) used both the historical
and the actual estimator in two separate sets of tests.

)
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later used by Galai(1977), Chiras and Manaster(1978), Phillips

and Smith(1980), Blomeyer and Klemkosky(1983), Butler and.

" Schachter(1984a) among others %%, The idea is to establish

positions in‘mUltipIe!securities(stocks and options) on the
basis of cbmpafisoﬁ“gegween the estimated model price and the
actual market price, so as to make the overall pogition
riskless, and rebalance the position at some prespecified _
interval of time. If the model is valid, the overall position
should indeed be riskless(or no risk that would be priced by the
market). Also, the model should be able to identify the
temporarily under or overvalued options. In an efficient market,
the temporary under or overvaluation relative to the fair value
of the option would eventually get eliminated. Hence, the return
on the riskless hedge should be higher than the risk-free rate.

The studies in this category, of course, differ in the
choice of securities to combine, the time and prices at which to
establish the hedge position, and the length of time over which:
the position to be held. ‘

This approach requires unbiased estimates of Black-Scholes
model prices to identify under or over-valued options in order
to establish the hedge position®®, To give an example of the
probable error involved in using the fo}mula estimate, let us

assume that a near-out-of-the-money option is trading at $1.00,

*2Phillips and Smith(1380) provides a good survey of the use of
this technique. .

*5Butler and Schachter(1984a) discusses this problem.

40



——

while the formula estimate is $0.80 . For such an option, the
formula estimate would, on the average, underestimate the
Black-Scholes modélvprice. If the latter exceeds $1.00, given
that the Black-Scholes model is valid,'the formula estimate
would indicate the wrong hedge position, on the average.

Moreover, since the discretely adjusted hedges are not
completely riskless{ users of this approach tend to depend on
asset pricing models such as the CAPM to estimate risk-adjusted
ekcess return on the hedge. Given that the asset pricing models
tﬁemselves are subject to controve}sy'and need to be validated
empirically, the hedging approach adds yet another hypothesis in
the already crowded pool of joint hypotheses.

(iiiXStudies based <a the behavior of ISD: Latane and
Rendleman(1976), MacBeth and Merville(1979), Schmalensee and
Trippi(1978), .Geske and Roll(1984) belong to this category. The
ideé is that , assuming synchronous and efficient market, if the
model is valid, then the ISDs should not have any systematic
relationship with the features of the option(moneyness, time to
expiration).

I1f one claims that 1SD is the true volatility rate, then
the finding that ISDs of options on the same stock,traded at
about the same time period, differ, cannot be adequately
explained. If it is only an estimate of the true volatility
rate, then the implicit assumption is that the market plugs-in
an estimate of volatility rate in an exact pricing fuletion. such

as the Black-Scholes formula. But then one is accepting the fact
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that the market will be systemgtically off the fair value of the
option, since the formula estimates will have systematic biases.
This scenario is difficult to agree upon. In fact, the problem
could lie in the assumption of an exact pricing function
generating the actual option prices. We intend to discuss these
problems in more details in section 5 of this chapter.

(iv)?tudies béséa'on comparison of the estimated model
prices éhé the actual market prICes;gﬁ options: MacBeth and
Merville(1979,1980), Geske and Roll(1984a), Black (1975),
Whaley(1982), Sterk(1982,1983), Emanuel and MacBeth(1982),
Gultekin:Rogalski,and Tinic(1982), .Blomeyer and Klemkosky(1983);
Butler and Schachter(1984a) belong to this category *f. This |
technique dwells on esﬁimating the volatility rate, calculating
the .model price using the the estiméted volatility rate, taking
the difference of the actual price and the éstimated model
price(dollar difference or perceﬁtage),group the options and
comparé statistics on miépricing across groups, or plot
mispricing against the variables of interest, or regress on the
Jariables of interest. If the model is valid, the deviation of
market price from the model price would be random®’.

The grouping technigue faces the dilemma that if the.
classification is inadequate, the sample mixture of options
would affect the coné¢lusions severely and finer classification

- e e W e . em W s W

t6Note that some studies appear in more than one category, since
the authors coqsidered more than one approaches to validation,

‘7But the deviation of formula estimate from the model price {?:
not random.
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would éntail arbitrariness"i Plotting or regressing the
mispricing against individual factors lack the control for other
factors needed to examine the impact of one factor. Although
multiple regression technique may bé an appropriate vehicle of
investigation, unless properly laid out, simple interpretation
of regression results could be misleading. For example, in
chapter 7, we show that the regression coefficients do not
necessarily indicate the directions ofAmarginal biases, nor can
their significance be construed as evidence against a pricing

amodel, in our case, the Black-Scholes.

SECTION 2

Though the technigques mentioned above differ ih significant
ways, they have at”least two things in c;%mon. The answér to Q1
is almost invariably not a strong yes, and the finding that when
the Black-Scholes prices deviate'from the true(;n Monte Carlo)
or actual(in empirical) market prices, the deviations tend to
exhibit some systematic pattern. The former ofltheSe two items
is less than sufprisiqg, but the latter deserves at least a
brief discussion.

Using over~the-counter options market data, Black and
Scholes(1972) first reported that the model overpriced

. ,
(underpriced) options on high(low) estimated variance stocks.

82 detailed discussion of this dilemma is provided in section 8
of this chapter.
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Thép problem was attributed to the errors-in-variable problem
arising from the measurement error in the variance rate on stock
return. Black(1975) found that the model systematically

overpriced(underpriced) deep-in-the-money(deep-out-of-the-money)

~.

options and underpriced options with less than 90 days to
maturity. Examining some probable sources of these biases, Black
ultimately concluded that "..we don't know why some kinds of
options ‘are consistently overpriced according to the formula and
others are consistently underpriced”.

‘Merton(1976) provided the qualitative results and
Mertgn(1976a) tested the robustness of the Black-Scholes model
postulating the jump-diffusion process to be the proper retufn
generating process, and found that the Black-Scholes prices
tended to underprice both deep-in-the-money and
deep—out-of-the—money options, and overprice around-the-money
options. The mispricing is expected to magnify for shorter
maturity options, since for longer maturity, mispricing
decreases as the distributions tend to converge to each other
“3. Also Merton(1976),pp.140-141, states that the gqualitative
results correspond to practitioners' claim that deep;in p
deep-out, short maturity options are underpriced, and marginally
in-the-money and longer maturity options are overpriced by ?he

Biack-Scholes.

Boyle and Ananthanarayanan(1977) considered the bias of the

Black-Scholes price with an estimated variance rate, against the

—— em - G - . - —— e - -

'9S5ee Merton(1976),pp.140, and Merton(1976a) ,pp., 345.

»
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Black-Scholes price with the true variance rate. Using numerical
integration to compute the bias, they found that the formula
estimate underprices at and around-the—mohey options and
overprices deeper-away—from~the—money'options5°. They also
reported that the size of these biases is small even when the
sample size for estimating the variance rate is as low as 15,

In a simulation study, Bhattacharya(1980) concluded that
the formula bias is significant for at-the-money options with
less than one day to expiration. His other findings |
are:(a)near-in—the-money and near-out-of-the-money options are
underpriced; (b)the bias decreases as‘the time to expiration
increases;(c)no systematic bias with respect to the variance
estimator.

Galai(1977) and, Chiras and Manaster(1978) found some
evidence of market inefficiency using the Black and Scholes
model to establish riskless hedge (according to the Black and
S;holes(1972) hedging technique). Bookstabber(1981), using the
same data as Chiras and Manaster(1978), sﬁggested that the
observed inefficiency could be due to the nonsimultaneity of the
data used. Phillips and Smith(1980) suggested that the
transaction cbst would eliminate any inefficiency observed by
Galai(1977) and, Chiras and Manaster(1978). As a result, the
joint tests of the validity and the market efficiency seem to
remain indecisive.

50Butler and Schachter(1983,1983a) confirmed this result.

45



4ﬁ

\

MacBeth and Merville(1979) considered the data for CBOE
options on six stocks over the year of 1976. They observed that:

(a)the Black-Scholes underprices in-the-money options and
overprice; out-of-the-money options, irrespective of the time to
maturity; (b)the time to expiration bias is similar to
Black(1975).

MacBeth and Merville's fihding about the striking price
bias is diametrically opposed to the finding of Black(1975).
This was attributed to the nonstationarity of the variance rate
overlooked in Black(1975).

MacBeth and Merville(1980) compa}ed Cox's CEV and the
Black-séholes, by doing simulations and also empirical testing
using the same data as in their 1979 paper. Their simulation
confirmed their earl@ef finding of the inverse striking price
bias of the Black-Schdles, due primarily to its constant
variance rate assumption. On the empirical side, they found the
CEV doing consistently better than the Black;Scholes.'

Emanuel and MacBe?h(1982) enlarged the sample of MacBeth
*and Merville(1979,1980) by including the observations from 1978.
. They questioned the validity of the constancy of the CEV .
parameters as assumed by MacBeth and Merville(1930), and -
concluded that: (a)the superior performance'of the CEV wanes as
the interval of predictioq(of the variance rate) increases;
(b)depending on the parameter values of the CEV, the

Black-Scholes will consistently either overprice (underprice) or

underprice(overprice) in-the-money(out-of-the-money) options.
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The studies and the results cited in this section are but a
fraction of the growing empirical }iterature relatgd to the
Black-Scholes. In the néxt section\ we shall survey studies with
the dividend-in@uced Black-Scholes Biases. However, we have
already encountered several factors to which the mispricing
could be systematically related. For example, Merton(1976,1976a)
relate the mispficing to moneyness and iime to maturity, Boyle
and Ananthanaréyanan(1977) relates to moneyness, Black(1975)
and, MacBeth and Merville(1979) relate to both moneyness and
time to maturity. Most interestindly, tHe sources of bias vary
among the investigaﬁors. For examples, the striking price or tﬁe
moneyness bias is traced to the mispecification of the stock
price process by Merton(1976,1976a) and MacBeth and
Merville(1979,1980), but to the nonlinearity of the
Black~Scholes formula with respect to the variance(or
volatility) rate by Boyle and Ananthanarayanan(1977). Even more
interesting is the fact that the directions of the systematic
relationships to a factor,in this case, the moneyness, found by
different authors (Black(1975) and, MacBeth and Mervilie(1979))
are exactly opposite. Emanuel and MacBeth(1981) tried to explain
this by means of nonstationarity of the CEV elasticity
parameter, while Sterk(1982) and, GeSke and Roll1(1984) couch
their explanations in terms of dividend-inducement.

The guestions we shall pose are somewhat diagnostic, anq to

certain extent, prescriptive:
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(a)Were the reportedly deeper-away—frém-the-money options
of Black(1975) truly deeper-away-from-the-money?

(b)Is MacBeth and Merville(1979)'s résult; based on the
classification in-the-money and out-of-the-money, comparable to
Black(1975)'s result which does not seem to be based on similar
classification?

(c)Can MacBeth and Merville(1979)'s regression coefficients
be construed as the~marginal biases or their unbiased estimates?

(d)What problems lie behind the use of ISD, as was used by
MacBeth and Merville(1979) among many others?

(e)Can we offer an alternative approach to address general
problems such as testing the validity of the Black-Scholes model
or more specific problems such as testing the dividehd—induced

biases?

SECTION 3

We hdave discussed earlier in chapter 1 the effect of
dividend payment on the underlying stock prior to contfactual
maturity of an‘UACL Neither the simple dividend adjustment nor
the pseuco-American version of the Black-Scholes appear viable
relative to the Roll-Geske-Whaley model‘in capturing the early |
exercise phenomenon of an UAC *', Since the pdblicatidn of
Roll(1977), there has been growing awareness of the impact of

the early exercise possibility on the adequacy of simpler

.

*'We are assuming here, the truth of the lognormal diffusion of
the dividend-adjusted stock price.
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(compared to Roll's) modified versions of the Black-Scholes ,
and the nature of observed mispricing. Attempts to estimate
Roll-Geske-Whaley model prices with empirical data are to be

¥

found in Whaley(1982), Blomeyer and Klemkosky (1983),
Sterk(1983), Gultekin,Rogalski,and Tinic(1982), and to a limited
extent in MacBeth and MerQille (1980), Geske and Roll(1984),
Geske and Roll(1984) also discﬁssed theﬂprobable implications éf
improper treatment of dividend in the earlier studies.

Merton(1976)'s Monte,Carlg did not consider dividend
payment. Latane and Rendleman(1976) used the original
Black-Scholes model directly without any adjustment for
dividends. Galai(1977), MacBeth and ﬁerville(1979,1980),
Blomeyer and Klemkosky(1983), Geske and Roll(1§84a) used the
sfﬁﬁie dividend adjustment of the stock price appfoach.'Chﬁras
and Manaster(1978)‘trahsformed the discrete dividend payméﬁts
into a constant continuous yield. Schmalensee and Trippi(1978)
applied the Black-Scholes without any dividend adjustment to
compute ISDs, but they tried to concentrate on low
dividend-yield stocks. Sterk(1982,1983) used the pseudo-American
version of the Black-Scholes to compare the Black-Scholes
against the Roll-Geske-Whaley model. Whaley(1982) computed for
both of the ﬁOdified versions(simple dividend aajustment, and
pseudo-American) of the Black-Scholes in comparing Blafk-Scholes
pricing against Roll—Geéke—Whaley pricing.

Simple adjustment and Merton's continuous dividend yield
modification imply that the probability of early exercise is

~
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essentially zero. On the other hand, pseudo-American valuation
'implrés either certain early exercise or no early exercise. But
as the probability of early exercise can take any value in the
closed interval of 0 to 1,\the results about the pricing error
and its relationship to the features of the option will be

b

affected to varying extents.

'Whaley(1982) found that when the estimated Roll-Geske-
Whaley moael price is uséd, the striking price bias and the time
to expiration bias get almost eliminated, and the variance bias
"is reduced, but not eliminated. Sterk(1982) confirmed
Black(1975)'s finding that the Black-Scholes underprices
(overprices) out-of-the-money(in-the-money) aptions, and found
the Roll-Geske model to reduce the striking pr}ce bias52,
Sterk;s finding is in conflict with MacBeth and
Merville(1979,1980)'s findings, and he attributed this to the
larger number of firms used in hic study(his 63 versus MacBeth
and Merville's 6). Sterk's other finding was that 27 of the 182
options used in the study showed strong probability of early
exercise, which could have foset the bias found by MacBeth and
Merville,

But Sterk(1982) did not show the extent of better
performance by the Roll-Geske-Whaley model over the
pseudo-American version of the Black-Scholes. Sterk(1983)
attempted to accomplish this task‘by using the same data as in

2 gterk(1982) used the version of American valuation model
prior to the corrections of Whaley(1981), while Sterk(1983) used
the corrected version.
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Sterk(198§) and developing a dividend measure which would
incorporate th?xgetermlnants of early exerc1se(d1v1dend dlze,
moneyness, time interval between the ex-dividend time and the
time of contractual expiration)53. As expécted, he found that
the Roll-Geske-Whaley model performs significantly better than
the pseudo version of the Black-Scholes as dividend size h
increases. For small dividends, the performance of the
Roll-Geske-Whaley model is not significantly better 5°, For
probability of early exercise between 0.3 and 0.68(the dividend
measure between 2.5 and 4), the Roll-Geske-Whaley model performs
significantly bet£er.than the pseudo-American vérsion of the
Black-Scholes.

Blomeyer and Klemkosky(1983) compared Ezip thewsimple stock
price adjustment version of the Black-Scholes and the
Rgll—Geske-Whaley model prices(estimated with weighted 1SD, or
WISD) with the qctual market prices, using transaction data for
CBOE options on 18 stocks over the period 1977-1978 ®%.

Examining the graphical relationship between the two measures

*3 The rationale for this composite measure as advanced by Sterk
is that it is difficult to separate out the effects of the
various determinants. According to Sterk's dividend measure, an
option with average dividend, average value for the degree of
moneyness, and average time interval between the ex-dividend
time and the time of contractual expiration, will have a measure
1.

*%The Roll-Geske-Whaley model performs significantly better for
dividends exceeding one dollar.

*SWISD from the Black-Scholes was used in estimating both

Black-Scholes and Roll-Geske-Whaley model prices, thus b1as1ng
estimated Roll-Geske-Whaley model prices upward.
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(degree of moneyness [{S/XB(T)}-1};-and relative prediction
error [{C(market)-C(estimated>iaﬂéi;§/C(estimated model) ])
suggested by MacBeth and Merville(1979), Blomeyer ana Klemkbsky
concluded: the two models—havé;identfcal pﬁﬁcing bias
charactéristics;»both,models tended to underprice
out-of-the-money options'and price fairly Qell the at-the-money
and in—the-honey options., The out-of-the-money bias is in
conformity with Black(1975) and Merton(1976), but contradicting
MacBeth and Merville(1979). |

Eloméyer and Klemkosky'also performed ex-post hedging tests
with the two models. Both models succeeded in identifying
under-valued and over-valued calls, and the ex—pist performance
between the two models was not statistically signifiégﬁt.

Thus Bl&meyer and klemkosky conciuded that the observed
mispricing of the Black-Scholes is not dividend-induced, a
conclusion which is in conformity with Gultekin,Rogalski, and
Tinfc(1982), but somewhat in conflict with Whaley(1§82) and
Sterk(1982,1983), .

Geske and Roll(1984) discussed why the earlier studies
failed to detect the ekpected domiﬁance'of the Roll-GeSke—Whaley
model. They found an inverse relationship: between ISDs solved
from the Black-Scholes and the striking price in their Monte
Carlo, as was also suggested by MacBeth and Merville({979) , for
the no-early-exercise case®¢. But the relationship reversed for

¢ MacBeth and Merville's finding was for simple adjustment
version of the Black-Scholes, which essentially implies zero
probability of early exercise. ~
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the certain early exercise case. Geske and Roll therefore
suggested that, depending on whether the probability of early
exercise is close to zero or one, one may find that the striking
price bias‘revefses.

Geske and Réll examined the data on dividend yield of S & P
SCO composite and the yield to maturity of short term bonds over
the period 1976-1978, which covered the period considered by
MacBeth and Merville. The inverse bias was de£ected when the
‘average dividend yield was low, and‘thuslthe probability of
early exercise was probably low.

Geske and Roll also pointed out that the assumptibn of
correétness of at-the-money pricing by the Black-Scholes is
untenable, sinée the Bla;k-Schgles(pseudo-American version) will
underprice all options on dividend-paying stocks irrespective of
their moneyness.

MacBeth and Merville(1979) excluded the options whenever
significant probability of early exercise was detected, thus
biasing their sample towards no early exercise options, and
ultimately finding .the reverse striking price bias.

Geske and Roll forced the Black-Scholes price to egual to
the Roll-Geske-Whaley‘model price for at-the-money. But previous
tests did not have this forced equalitg. Thus all Black-Scholes
prices would be lower than Roll-Geske-Whaley model prices iﬁ
those studies, but the in-the-money options will be most
underprited because of their higher probability of early

exercise,
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Geske and Roll also suggested that dividend uncertainty may
lead to option premia decreasing in volatlity rather than the
usual increasing pattern. Thus, the Roll-Geske-Whalky model will

¢

not be able to eliminate the variance bias.

SECTION 4 )

We give below a summary of the nature of the empirical
works for which we have giveh a brief description.l

A. Use of ISD(with different weighting schemes by different
authors) has been more pbpular'than the historical variance rate
estimator. |

B. Almost invariably, mbdel prices were estimated by
plugging in the estimate of the variance rate in the valuation
fofmula. »

C. With the exception of Black and Scholes(i972Y,qdata used ,
for empirical testing were data for UACs,.

D. The tooisiused for reaching conclusions were:

(i)Scatter diagrams: See,for example, MacBeth an;
Merville(1979,80), Geske and Roll(1984), Sterk(1982),

(ii) Ordinary Least Squares(OLS) regression}

{a)To estimate ISD: MacBeth and
Merville(1979),Sterk(1982,1983), Whaley(1982),Emanuel and
MacBeth(1982),

(b)To estimate CEV elasticity parameter: MacBeth and

Merville(1980).

1
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(c)To compare performance of ISD(or WISD) versus historical
variance rate estimatar: Latane and Rendleman(1976), Chiras and
Manaster (1978), Schmalensee and Trippi(1978)%7,

(d)To examine systematic risk of hedge positions: Black and
Scholes(1972), Galai(1977), Blomeyer and Klemkosky(1983),
Whaley(1982). - |
k (e)To relate the mispricing of a model to variables of
interest: Whaley(1982),Gultekin,Rogalski,and Tinic(1982),Geske
and Roll(1984a), MacBeth and Merville(1979).

kiii)Simple comparison of means of the variables of
interest: MacBeth and Merville(1979,1980),stratified according
to the degree of moneyness and the time to expiration, Blomeyer
and Klemkosky(1983),stratified according to the dividend yield.

(iv)Mispricing in the form of forecast error; Emanuel and
MacBeth(1982) ,root mean forecast errof for options stratified
,éE£ordihg to the degree of moneyness and time to expiration.

(v)Nonparametric test: Sign test in Sterk(1983).

SECTION 55¢8
Black and Scholes(1972)' suggested that if the historical
estimate of stock return volatility over the life of the option

were known in advance, and used in the Black-Scholes formula to

7schmalensee and Trippi(1978) used also Cochrane-Orcutt
-Generalized Least Squares combination in the presence of
autocorrelation,

S8part of our discussion iﬁé{his section follows closely that
given by Butler and Schachter(1984).
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predict the actual option premium, the Black-Scholes would
perform much better?®?® 60, Ceteris paribus, the perfbrmance of
the model deS%nds on the goodness ofkthe estimate of stock
return volatility. However, if the ré%urn distribution is
non-stationary, then the historical estimator of volatility rate
'Qill be a biased estimator. 1£’Es also aréued that the

historical estimator does not incorporate information other than
the series of past returns, which may be deemed relevant by the
market in pricing the option. Latane and Rendleman(1976)'s ISD
measure is designed to circumvent both of Ehese alleged E ‘
deficiencies of the historical estimator:‘ISDs are numerically
solved out of an equation that equates the actual market price
of an option to its model value, in our case, the Black-Scholes
model price. Cox and Rubinstein(1985) interpréts ISD as '
'market's estimate' of volatility.

Let us start our discussion of ISD by exé&oring the
investor behavior implicitly assumed. Bafed on the information
set available at the time of trading, which may include the
his;orical series on return, an investor would form an ex-ante
estimate of the volatility rate. Investors, using these ex-ante

estimates of volatility rates, would come up with estimates

about the fair value of the cption, probably using some familiar

- - - - —— > > .-

°% This ex-post variance rate is sometimes referred to as the
"actual variance rate' in the literature.

$°Better in the sense of identifying the undervalued and the

overvalued calls, smaller serial correlation, and lower variance
of hedge portfolio's excess return).
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model of fair valuation. In the market place, investor
interactions ;hen lead to a mafkét rrice. One can aék, is ISD,
solved from the market price formed in the above-menfionéd way,
the true volatility rate?

Given the stock price process, the true volatiiity rate
could be a function of the stock price, time, and other
pafameters such as the elasticity parameter for the CEV
diffusion process. It can be a constant as it is assumed by the
Black-Scholes model.

If the g%ochastic process and its parameters were known,
ieveryone would know the volatility }ate, and also the model of
fair valuation. Thﬁs barring, for idiosynchratic behavior of |
investors, the I1SD should be the true vélatility rate. Then, if
the true process is constant volatility rate lognormal diffusion
process, and other assumptions of the Black-Scholes model are
valid, the ISD solved from the Black-Scholes formulé—ghould be
the true volatility rate. And ISDs solved from dif%é?ent options
on the same stock should nbt differ. T1

In general, the true stock price process and its parameters
will not be known to either the investors or the researchers. So
investors will form estimates of volatility rate on the basié of
the information set available and‘their individual expectations.
Then they will use some model of fair valuation which is deemed
appropriate. Again, the interactions of the investors lead to a
market price. Bug now, if we(researchers) use a particular model

to solve for ISD, that ISD would merely be an estimate of the
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true volatility rate of the true stock price proceSs.

To simplify matters, let us assume that all investors agree
. about the model of fai{§va}uation, even though the agreed upon
model could ge an inappropriate model. The investors could thus
differ in their estimates of tﬁe fair value of the option, to

the extent that they may differ in their estimates of the

volatility\fa- or other patameters determining it. As

researchérs, if we use the same model as the investors did, the
solved 1SD would reflect market's estimate of volétility. What
we are assuming in addition, is that the 'market's mind'
plugs?in the forecasted volatility‘rate in the pricing function °
of the model.

If gur purpose is to search‘for a model of fair valuation,
the investigation should rather be directed towards identifying
the true stock price process, given that we know other relevant
factors, such-as cdividend payments, tax treatment, et ‘cetera. On
the other hand, our interest may4be the investigation of whether
a particular model is able to describe the observed market
prices. Let this model be the Black-Scholes model.

Researchers, in the past, put ISD into two types of uses;
(a) examining the behavior of ISDs as a direct test of the
Black-Scholes validity; (b) using iSDs of options on a stock(on
a given date or of a common maturity) to form an estimate of the
volatility rate, which in turn is plugged into the Black-Scholes

ﬂ .
formula, the resulting formula estimate to be compared with the

actual market price. If the market used the Black-Scholes
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formula and plugged-in the market's forecast of the volatility
rate, the ISDs of options on the same stock would exhibit:_

(a)consténcy, if the market used the same estimate of
volatility rate for all optioné on the same stock; or

(b)systemétic relationships to features’of option, if the
market changes its estimate of volatility rate in‘certain'ways,
~ depending on these features; or

(c)erratic variations, if the 'market's mind' chose
estimates of volatility rate randomly for different options on
the same stock.

Given that the market deemed the Black-Scholes model as the
model of fair valuation% patterns (b) and (c) are rather
untenable, since the Bléck—Scholes model uses a constant
volatility rate for all opfioys on the same stock. Cox and
Rubinstein(1985) advanced two explanations of differing 1SDs of
options on the same stock:

(i)when the volatility rate is changing over time, options
on the same étock, but differing in maturity, may not be
expected to yield the same ISD;

(ii1)if the calls are UACs, options with the same
contractual life, but differing in moneyness, may have different
effective lives, and thus ISDs would be different when the
contractual life is used to solve for ISD.

But these explanations can be consistent with only F?e '
assumption that the market kﬁowingly used the Black-Scholes

model in situations where it is not the fair model of valuation.
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This assumption would appear unacceptable,.

There may be another explanation, namely,ﬂfhat the market
simply used some other model in valuing the options. In that
case, the Black-Scholes iézmisspecified and would cause ISD to
exhibit systematic tendencies.

So far, we hévgfassumed that the market plugged-in its
forecast of the volatility rate in the pricing fﬁnction given by
a theoretical model of fair valuation. But the existing models
of call vaiuation, including the Black-Scholes model, are all
nonlinear in the volatility rate itself or the parameters
determining it. Hence, even élugging—in unbiasedvestimate of the
volatility rate or its parameters in the model's pricing
function would only produce biaséd estimate of the model price.
Thus to entertain the idea that the market plugged-in the
estimated parameter(s) in a nonlinear pricing function would be
equivalent to admitting the possibility of the mafket being
systematically off the price given by the model which it thinks
is the model of fair valﬁéxion. To aveid such possibility, one

can assume that fhe market would use an unbiased estimator of

" the model price deemed to be the fair value.

Butler and Schachter(1983a) proposed an estimator for the
Black-Scholes hodel priée which they claim to be approximately
unbiased., If it is truly so, it would not exhibit any systematic
deviation from the Black-Scholes model price, while the)formula
estimator would. If the market considers the Black-Scholes model
price to be the fair value, it may be thought that the

Y
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Butler-Schachter estimator wés used by the market in an effort
to establish the fair value on the average. Under such
circumstances; the ISDs harvested from the (Black-Scholes) -
formula would exhibit systematic tendencies. The reason.is thét
the market used an unbiased estimator of the model price, and
the formula produces biased estimate of the latter.

If the market uses an estimator such as Butler and
Schachter's, then the latter must show superiority over the
usual formula estimator in that it always has lower bias, lower
standard déviatiqn, and negligible systematic tendency. However,
our Monte Carlo study fails‘to establish such superiority for
the twévalternative eétimators considered in chaptér 4; one
being the Butler—Schachter estimator.

In light of the above discussion and if we believe that an
efficient market cannot be systematically off the fair value of
an option, we need to assume that the market comes fairly closer

to knowing the fair value. From the viewpoint of a researcher,

the market price could be taken to represent the fair value of

the option, allowing for a random error. Does this mean that,
the ISDs from the Black-Scholes formula would show no systematic

Y

variation? That the answer is 'no' can be visualized from an
example ¢'. Let the market price be:
y=1ln(o) (S/X) +e

where 1ln(o)(S/X) is the fair value, and E(e)=0.

¢ 'The example is for thevpurpose of exposition only. It should
not be considered as a valid option pricing function.
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Now, we have:

I1SD=exp(yX/S), and E(ISD)=0 E[exp(eX/S)].

The bias of ISD would be o[E{exp(eX/S)}-1]. It dill, in
general, ‘not be equal\to zero, and more importantly, would
depend on the moneyness S/X and o. Though, the Black-Scholes
formula is much more complicated than our example, the
qualitative‘result would be similar. ‘

Thus, the ISDs solvea from the Black-Scholes formula are
expected to exhibit systematic tendencies even if the
‘Black-§choles model is the model of fair valuation. Therefore,
examining the behavior of ISDs in order to judge the validiéy of
the Black-Scholes model would be inappropriate. As for the other
use of ISDs, namely, that of combining them to form an estimate
of the volatility rate, plugging-in this estimate into the
formula, and comparing this formulé estimate with the market
price, could be even less appropriate, since, in fact, a biased
estimate of the volatility.rate would be used in the formula.

In addition to the abovementioned problems, the methbds of
using ISDs of options on a stock iﬁ forming an estiméte of the
volatility rate, have come under criticisms. Practitioners of |
1SD have applied weighting functions to the .ISDs of options on
the same stock to arrigé at a final estimate of the volatilty
rate of the stock. As indicated by Chiras and Manaster(1978),pp

216, Latane and Rendleman(1976)'s weighted average is not truly

‘\_,——.//
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a weighted average ¢%., It 1s also biased towaras'zero, the.bias
being;directlyfreléted to xhe number of options used in
weighting. Also, Schmalensee and Trippi(1978) ,pp!32, pointed
out that Latane and Rendleman(1976)'s weighfing tends to attach
little weight to short (timg to)maturity options, and'’
deep—in—the;money or deep-oﬁt-of-the—money options.

Trippi(1977) and, Schmalensee and Trippi(1978) used equal
weighting for all options(the latter paper weeds out short
matﬁrity, far in-the-money or out-of-the-money options) on a
stock. Latane and Rendleman(1976) arqued that such an. average
would be unreasonable , given that the sensitivity of the option
prices differ depending on other characteristics of thé options.

. Chiras and Manaster(1978) notes that Latane and
Rendlemanﬁ19765's,weighting by partials (of option pricé with
respect to the volatility ;ate) ignores the size of
investment (level of option price) effect, and suggest the
weighting by elasticity instead ‘3.‘

MacBeth and Merville(1979) recalls that Black(1975)'s
result implied that the Black-Scholes formula will ,approximately
correctly price an at-the-money option with time to maturity
greater than 90 days. They suggest the reétession of ISDs on the
degree of moneyness and taking the estimated intercept as the

estimate of the stock's volatility rate. Two objections have

¢2Weights do not sum to unity.

®3For more criticisms of weighting, see Butler and Schachter
(1983). '
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been advanced against this technique: (a)Butler and
Schachter(1983a): I1SD's bias is not linearly related to the
degree of moneyness. (b)Blomeyer and Klemkosky(1983): According
to the assumed linear relationship, out-of-the-money options
would. have lower ISD than the intercept would indicate. Thus the
use of the intercept estimate as the estimate of the volatility
rate would bias the ou -of-the-money prices upward, increasing
the extent of overpr ¢in (by the Blaek-Scholes formula) for
out*of-the-money options.

In addition to the above, the intercept estimator of
MacBeth and Merville would suffer from the 11m1ted availabillty
of the type of options to be used.

Whaley(1982) proposes‘a nonline;r optimization procedure to
estimate the volatility rate from the ISDs of options on a stock
and the first partials of option premia with respect to the
volatility rate. He also controls for time to maturity Ly
estimating one volatility rate for each time to maturity (on
each day, for each stock). Whaley's procedure overcomes many of
the problems associated with ISD, but still is subject to the -~
fnllowing criticishs: (a) a model is assumed valid in its
entirity, while the historical estimator requires only the

validity of the specification for the stock price process; (b)

econometric problems of estimation have been overlooked 6%,

®%The lack of orthogonality of regression errors to the
regressor is an example. T
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Moreover, Butler and Schachter(1983a3 found that the use of
the Black-Scholes formula with an estimated variance rate may
lead to serious mjspricing ‘for an at-the-money option., Thus
estimating .the volatility rate assuming the at-the-money
correctﬁggs of the Black-Scholes formula pricing is

guestionable.

gy

SECTION 6

1t is surprising that regression has been used as a primary
vehicle of investigation only in Whaley(1982),-Gultekin,Rogalski
and Tinic{1982), and Geske and.Roll(1984a), with MacBeth and
Merville(1979)'s use of regression much less emphatic. The
apparenﬁ lack of popularity of this powerful, &et’simple,
technique can probably be traced to the following,

With the ekceﬁtion of Geske and Roll(1984a), all studies
undertaken to date are based on pooling of time sgries\qu |
cross-section data. The otherwise simple technique: of least -
squares regression becomes little more complicated in such
cases. In particular: when the time series on an opti;n is
expected to have serial correlation, correcting for serial
correlation in addition to the pooling problem may become
eﬁonomically and computationally burdensome. Moreove:, one will
reasonably raise the issue of nonstationarity(at least of the
stock return variance rate) of inpﬁts\fqgthe regression problem,

In light of the above, what then will bé the rationale for

r

the use of regression in addressing the basic ﬁfbblem of



investigating the validity of a valuation model, its strength
against a competing model, and the nature and sources of
Vmispgicgng , ifrany, by a madel: To pfovide a rationale, we need
to notice the following.

In the empirical studies, attempts are made to relate the
observed miépricingwto yafious features of the optidn, e.g. ,
tﬁe degree of moﬂéyness,,time to expiration, volatility,
probability of early gxercise or"its determinants, et cetera.

' Though the results are conflicting some times, existence of
systematic rglationships between observed mispficing by a model

and the state of one or more factors have been evidenced. For

“

example:

{i) Black(1975) reported‘£hat the Black-Scholes underprices
(overprices) deep-out-of-the-money (deep-in-the- money) éptions.

(ii) MacBeth and Merville(1979) reported: that the -
Black-Scholes overprices (uhderprices)
out-Pf-thefmoney(in—the-money) options.

(iii)Geske and Roll(1984) reported that depending on the
probability of early exercise, either of the above two cases ﬁay

occur.

(iv) MacBeth and Merville(1979) also reported that the

extent of mispricing for a specific degree of moneyness depends
- |

on the time %? maturity®5,

-

‘It is these latter two types of evidences which bear the

seed of rationale for the use of regression as a primary vehicle

$5See MacBeth and Merville(197S), pp.1183.

=
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of investigation. What is suggested is that to assert a
relationship.between one of the factors and the observed
mispricing, we need to control for tﬂe oghérs, which the
(multiple) regression is designed‘for. So far in the literature,
ctontrols in the form of gontrol for a 'single factor has been
more popular. For example, see G;lai(1977), Emanuel and
MacBeth(1982), Chiras aﬁd Manaster(1978) attempting to control
the dividend impact, though the soundness of its implementation
is in doubt®®, If multiple explanatory factors covarylﬁith each
other and all of them are relevant, then the lack of control for
one of the factors wiil lead to biased results ‘about the impacts
of all others 67,

We have another cohpelling reason to resort to the multiple
regression technique. Stﬁaies to déte based their conclusions on
considering the formuia estimates, while disregarding the fact
that the the biases observed can essentially be the formula's
nonlinearity bias (with respect to the model). Another
possibility is that the observed biases are due to model
misspecification over and above the-nonlinearity bias of the
formula. If the model is valid, the misspecification error would
vanish. As indicated eaflier; the model price then can be
thought as the price of the dptiqn, which will on the average,
prevail in the market.

6§6MacBeth and Merville(1979) institute controls for two factors
through multiple regression. '

¢7See Kennedy(1980) for a lucid discussion about this issue.
Kennedy introduces the use of Venn diagrams in this context.



These considerations lead one to believe that the
difierence between the estimated model value and the actual
market price méy contain several components: |

(1)model misspecificatibn;

(2)bias of the estimated formula price with respect to the
true model price;

(3)random(zero-mean) disturbance.

Regression technique will&?llow us an opportunity to
investigate ‘these components and lead us to devise a test of
model'validityf | |

We begin by reviewing some important regression studies by
Whaley(1982), Gultekin,Rogalski,and finic(1982), and Geskeland
Rel1(1984a). |

Whaley(1982) compared the pricing bias of (i) Black-Scholes
valuation Qith simple dividend adjustment, (ii)pseudo-American
valuation, and (iii)Roll-Geske-Whaley(RGW) valuation. Data Uused
~were fhe weekly closing prices of all call options(with single
diviaehd prior to contractual maturity) on 91 stocks over the
periqdiJanuary 17,1975 through February 3,1978; The factors to
which the pricing biases were related through simple regressions
are volatility rate, degree of moneyness, time té contractual
expiration, probability of early exercise, and dividend yield on
the underlying stock. The measﬁre of mispricing used is the

pricing error of the estimated model value relative to
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itself 68, .

Whaléy performed 160 cross-sectional simple regressions for
six regressors (and thus six eqUations),wénd Student's t-test on
the time average of coefficients®®, The test results of
Whaley(1982) may be summarized as:

* (1)Contrary to previous evidences, striking price bias for
none of the three valuation méde;s is statistically significant.
But the coefficient is smuller for the RGW model. |

(2) The bias with respect to the probability of early
exercise is significant for both versions of Black-Scholes, the
RGW completely eliminatingrthis bias, as expected. The
pseudo-American version does better than the simple stock price
adjustment version. '

(3) Statistically significant inverse relationship between
the time to expiration and the relative prediction error of the
simple stock price adjustment version exists. Coefficient for
the pseudo—American ver;ion is smaller, and the coefficient for
the RGW model, still smaller and sﬁatistically insignificanf(at

'

5% significance level).

*

®8The rationale for using the relative prediction error was
advanced as : it will reduce the influence of hetroskedasticity.
Geske and Roll(1984a) argued back that relative prediction error
is"very sensitive to whether the opticn is in- or
out~-of-the-money, since out-of-the-money model prices are
usually very low.

§9The technique is somewhat similar to the Fama-MacBeth

procedure used in the empirical testing of the
Sharpe-Lintner-~Mossin Capital Asset Pricing Model. \y

»
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(4) For both versions(simple dividend adjustment and

psegggzhmér{can)”of the Black-Scholes model, the coefficient of

the dividend yield is positive and statistically significént.
For the RGW model, the coefficient is‘not significant.

(5) “The variance bias is direct and significant for all theé
three models. Thus the RGW model succeeds in eliminating aii the
biases except for the variance bias, indicating it may not be a
dividend-related problem at all.

Whaley also reported that multiple regressions using
various combinations of regressors did not change the above
simple regression results in any significant way. But the
multiplg regression results were not presented in the paper.

We shall now turn to Gulte*ﬁn,Roéglski, and Tinic(1982) who
used multible regression to investigate the pricing bias of the
RGW model. Weekly data on 36 call options(25 CBOE and 11 AMEX)
ddz}hg 1975-1976 was used. In total, there were 1296 pooled time
series cross-sectional observations. The measure of mispricing
used was the dollar difference(or the absolute dollar difference
in some of the regressions), and the measure of mone}ness was
P-X (or a dummy variable assuming the value of 1 for P<X in some
of the regréssiohs). The regressors were the measure of

moneyness, the time to expiration, the historical estimate of

o
A

the volatilities 7°, The test results of Gultekin,Rogalski, and

Tinic(1982) may be summarized as:

-— e - —— g .-

"°Historical estimates were estimated from the most recent 6
months' observations.

oy
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(1) RGW:tends to underestimate(overestimate) the markét
price for out-of-the-money(in-the-money) options’’. |

(2) Irrespective of the moneyness of the option, as the
time to expiration inéreasés, the dollar deviations tend to
decrease’?. This finding is in conflict with Whaley(1982)'s
finding, but similar to Geske and Rall(1984a)'s.

(3) In.conformity with Whaley(1982), the RGW
overprices(underbrices) options on high(low) estimated variance
stocks??, |

What 1is noticeable in the rgsults of Gultekin?%ogalski, and
Tinic(1982) is that the RGW could not eliminate the striking
price and the time to expiration biases as Whaley(1982)
reported.

Regressions using the absolute value of the absolute
prediction error as the regressand_indicate that the prediction
errors are larger for in-the-money options and 6ptions on high
estimated variance stocks.

In comparing the results of Whaley(1982) and.
Gultekin,Rogalski, and Tinié(1982), we should bear in mind that
their measures of mispricinc are different.

7'This reporting is on the basis of conditional frequency
distribution of average dollar deviations and multirie
regression.See Gultekin,Rogalski, and Tinic(1982),pp.64-65.

72This result is based on multiple regression. See
Gultekin,Rogalski, and Tinic(1982),pp.65.

73This reporting is based on rank correlation of dollar
deviations and estimated stock return volatilities, and multiple
regression. See Gultekin,Rogalski, and Tinic(1982), pp.63 and
65.



Geske and Roll(1984c, used® transaction data of 667 CBOE
options on 85 stocks, the date of transaction being randomly
chosen as August 24,1976. Historical variance rates were
estimated using the 6 months' data prior to the chosen date.
Geske and Roll(1984a)'s study is free from any time series
related pfoblem, except for the nonstationarifyiof,the variance
rate. They ran two cross-sectional regressions, one for'thé
whole sample, and the cher‘for the subsample of 119 options{on
28 stocks) which did not have any dividend payments prior to
contractual maturity. The regression equation looks like:
C-CB(B)=o+B,1r(S/X)+B,T+B 5 |

Comparing the statistical significance of coefficients in
the two regressions, Geske and Roll(1984a) concluded that the
sfriking price Bias and the maturity bias are essentially
dividend-induced biases ’*. While the variance biasvaoes not
appear to be dividend-related, Geske and Roll conjec;ured that
the variance bias is a measurement error problem, and could be
redressed if James-Stein estimafor, instead of the historical
estimator,is used for estimating the volatilities. James-Stein
egtimator for the simultaneous estimation of several variance
rates pulls upward (downward) the smaller(larger) hlstorlcally
estimated variance rates and thus alleviates the

errors-in-variable problem, originally mentioned by

- e e - == = —— -

7%The variance bias and the striking price bias are in

conformity with Whaley(1982) and Gultekin,Rogalski, and
Tinic(1982), but the maturlty bias is in confllct with

Whaley(1982).

-J
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Black-Scholez(1972). Using the James-Stein estimator for the
variance rates,'Geske‘and Roll(1984a) found that the variance
bias got eliminated 75,

We level the same criticisms as applied to
Gultekin,Rogalski, and Tinic(1982). We plan to examine the .
results of Geske and Roll(1984a) more closely in a later
section.

Some notable deficiencies of the existing regression
studies can be summarized as:

(1) Linear regression models have been postulated and
estimated, without justification.

(2)The existing option pricing models including the
quck—Scholes model are nonlinear in the volatility rate or
parameters detérmining it. Thus, if we replace the.frue
parameters even by their unbiased estimates, the resulting
formula estimate will be a biased estimate of the formula price
with true parameter values, the latter price being referred to
as the model price. No attention has been paid to this

nonlinearity bias of the valuation formulae with respect ,to the

volatility rate, and its probable impact on the estimate of

——— o ———————————— o —

73 By adjusting the variance rates towards the grand average,
essentially the variability of the volatility regressor is
~drastically reduced. This leads to a larger standard error of
the volatility coefficient in the regression, and thus to
smaller t-value .for the least sguares estimate of the
coefficient. Thus the elimination of the variance bias by using
the James-Stein estimator of variance rates could just be a
regression artifact without economically viability.



coefficients 7%,
(3) Estimated volatility rate has been used as a regregsor

-

without ever noticing the\proﬁéble impacts on the least squares
coefficient estimates. Tge—least squares estimates of
| coefficients will be biased and asymptotically biased, though
these biases ma§ be negligible under certain conditions 77,
(4)Care h;s not been taken towards examining the nature of
the disturbance term in the regression’®. The disturbance may
have economically meaningful components affecting the estimates
of regression coefficients, as our discussion in the next
chapter and in chapter 5 indicates. We also find the errors to
be heteroskedastic,in general’?, ‘
(5) Coefficients across estimated equations were compared
without an individual or a joint test for statistical
significance of the diffefence between them. We intend to
undertake such test(s) in chapter 6, in the context of

investigating the dividend inducement of the systematic biases

of estimated Black-Scholes prices.

76In chapter 4, the problem of nonlinearity bias will be
discussed extensively. '

7TA discussion of this stochastic regressor problem is
forthcoming in chapter 5.

e Bhattacharya(1980) recognised the problem of
heteroskedasticity in Galai(1977)'s regression of excess hedge
returns on market returns, while Schmalensee and Trippi(1978)
attempted to deal with serial correlation in a different
context.

79 Whether the problem is such that it warrants the use of more
complicated techniques such as the Estimated Generalized Least
Squares, is a debatable Question and we leave it for future.
research. \

> .
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SECTION 7

So far in our discussion, we did not differentiate between
the types of statements used by authors to indicate their
findings about systematic relationships of model mispricing or
formula estimate's mispricing to various factors; To the best of
our knowiedge, anﬁ to our surprise, this seems to have gone.
unnoticed in the literature. Consider the following statements:

A. "....the extent'to which the B-S model price exceeds the
market price .... decreases as the expiration date approaches."
(MacBeth and Merville(1979),pp.1184)

B. "Options that are way out of the money tendbto be
overpriced, and options that are way into the money tend to be
underpriced." (Black(1975),pp.64). |

Statement A gives one the flavor of a continuous functional
relationship between mispricing and a factor(time to maturity
here), and we wili'fefer to such statements as of the functional

13

bias type. Statement B, on the other hand, reveals no more than

the reversal of the sign of mispricino for two particular groups
of options, and such statements would be referred to as of the

type dichotomous bias.

That aaequate differentiation is not made in comparing
results of different authors breed as much uneasiness as the
following types of attempts:

a. To base statements of one type on technigues best suited
for the other 'type. For example, based on the mean dollar

deviations of broad categories of options, MacBeth and

J
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vMerville(1979);pp.1182, states; "...85 T aéproaéhes zero so does
Y «..," where 7 is the time to expiration and y -is the dollar
deviation, | -

b. To state unqualified equivalence of the two types of
biasés. For example, consider Whaléy(1982),pp;48, " ...there
exists a significantly negative relationship ...(i.e., it
underprices short-lived options ana overprices long-lived
options)... ." Also, consider Gultekin,Rogalski and
Tinic(1982),pp 65, "...,since (P -P ) would be negative for
out-of-the-money options, the fd?mu?a tends to overestimate
their values." 8° That such equivalences do not necessarily
follow, can be seen froh a hypothetical sample of options in
figure 2.1 . For this sample, functional time to maturity bias
would be negative,.bu; éhe sign reversal of‘a dichotomous bias
statement is not present(since both short and long maturity
options would be on the average overpriced).

It appears that broad classification téchnique-ﬁay be more
appropriate for dichotomous bias type statements, and reggession
technique would be more suitable for functional bias type
statements. On ‘the basis of the fgéhﬁﬁque used, some of.the
81

important findings can be categorigéd as follows:

Striking Price Bias

®°The latter statement 1is on the basis of the sign of regression
coefficient estimate.

8 'Some authors used both classification and regression
techniques, and/or issued both types of statements.



Black(1975) dichotomous

~

MacBeth and Merville(1979) diéhotomous and functional

Whaley(1982) functiopal '

Sterk(1982) dichotom;us

Gultekin,Rogélski; and Tinic(1982) dichotomous and
functional .

Geske and Roll{1984a) functional

Time to Maturity Bias

Black(1975) dichotomous

MacBeth and Merville(1979) dichotomous.and functional
Whaley(1982) functional

Gultekin,Rogalski, and Tinic(1982) functional

Geske and Roll(1984a) functional

Estimated Variance or Volatility Rate Bias

Black and Scholes(1972) dichotomous

Whaley(1982) functional

Gultekin,Rogalski, and Tinic(1982) dichotomous and
functional

Geske and Roll(1984a) functional

SECTION 8
MaéBeth and Merville(1979),pp.1185,‘emphasized that their
finding of inverSe (both dichotomous and funétipnal) striking
prfce bias is exactly opposite to that of Black(1975)'s
direct(dichotomous) striking price bias. Geske and Rol1(1984)

tr{ed to explain this reversal in terms of the effect of early

\ P
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exercise possibility of unprotected American calls. But let us
now see how the dichotomous striking price bias could be _—
affected by mere variation of the samplé“mixture of dptions.‘
Let us assume that the Black-Scholes model is valid. As‘
reported by Boyle and Anan{%anarayénan(1977), and Butler and
Schachter(1983,1983a), and to be discussed in our chapter 4,

‘ at-the-money and around-the-money bptions will be underp;iged by
’ RN

~

tHe formula with an estimated volatilify rate, and the

(/j

deeper-away-from-the-money options will be overpriced. Suppose

that the sample is such that the proportion of o
_ —

near-out—of—themoneyV(near—in-the—money) among the

ouL-of-the-monsy (in-the-money) options is much larger(smaller)
than 0.5. We would then expect the direct dichotomous striking
price bias of Black(1975) to emerge. If the term‘largerismaller)
is replaced by smaller(larger), we would end up withythe inverse
“dichotomous striking price bias simiigrntc”MacBeth and
Merville(1579).

On the other hand, if, for example, Merton(1976)'s
jump—diffusgon model is‘:valid, the misspecification error of the
Black-Scholes model alons would reverse the dichotomous biases
in our example. It is not, of course, clear whether and to what
extent the nonlinearity bias of the formula would actually
neutralize the misspecification bias. |

~'w¢ now turn to another problem associated especially‘with

the dichotomous bias type statements, viz., that of the

arbitrariness of the dichotomy.
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In our ﬁonte Carlo study in chapter 4, we find that the
-dichotomous striking price bias of Boyle and Anahthanarayanan
(1977) holds irrespective of the levels of time to maturity
zand/or(tfue variance rate. At first, this robustness might
appear té nullify our criticism of the lack of control for other
factors when relating the mispricing to any one factor. But a
more careful consgggration would reveal that the problem lies in-
the arbitrariness of the dichotomy deeper-away—ffbm*the—money
versus arqund—the-mone&. The results of Boyle and' ‘
Ananthanarayanan(1977), Butler and Séhachtér(1983,1983a)
indicate the existence of twoﬁpo%nts of moneyness, onejin the
in-the-money and the other in the out-of-the-money range,  at
which the expected mispricing would be zero, when the
Black-Scholes model model is valid. Merton(1976) have also.
indicafed the existence of two such points for the bure model‘f
misspecification bias of the Black-Scholes model with réspect to
the jump-diffusion model. The definition of closeness
conformable to the dichotomy of uﬁderpricing versus overprifing,
founé by the aboveei hors, appear to be the one which woﬁid
term as closer-to-the-money (or around-the-money) those options
“ having moneyness between the two poiﬁts of . zero bias. Then, at
least, given the validity of the Black-Scholes médél,whether an
option is around-the-money(thus underpriced on the average) or.
deeper-away-from-the-money (thus overpriced on the éverage)

Ce

would depend on the levels of time to maturity and/or the true

-

variance rate, since these factors affect the boundaries of



closeness. Thus an option with 0.6 as the ratio of stbck price
to the present value of the striking priée, may appear
deep-out~of-the-money, though, according to the aforementioned
definitiqn of ﬁloseness, it could be near-out-of-the-money, if_
the time to maturity and/or true variance rate is rather\high.
If this option is actually found to be underpriced by the
estimateq Black-Scholes formula relative to the market price,
oneéhbt caring for the above définition‘of closeness may be
inclined to say that deep-out-of-the-money option is underpriced
by the Black-Scholes model. If-the Elack-Scholes'model is valid,

a heér-out-pf— the-money option will,'in fact, be underpriced by

PO

the formula estimate.

We cannot also rule out the possibility that ﬁerton‘s
jump-diffusion model is valid. The zeros of pure model
misspecification bias of the Black-Scholes model could be such
that a trﬁly deep-oGt-of-%ﬁEFmoney option is, in fact, being
underpriced with the model misspecification error overcoming the
nonlineariéy bias of the Black-Scholes formula estimate. |

The above discussion sheds doubt on the interpretation of
Black(1975)'s widely discﬁssed finding that "..way out of the
money teﬁd»to be overpriced, and ...way into tte money~tend to
be underpriced."®? Unless one knows the true vériance rates of

the associated stocks, one cannot really say whether the

overpriced(underpriced) options were.truly way out of(way into)

—— - ——— - - e A= -—

8270 recall, Black's overpricing is our underpricing, and vice
‘versa., ‘
<
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thg“money. It f%en, appears that the stiiking price bias
réiersal reported by MacBeth and Merville(1975,1980) may not be
- a reversal at all, for at least two reasons: (a)Black's
dichotomy is way cut versus way in, while MacRBReth and Merville's
is out versus in; (b)it is not clear whether Black's way out(in)

¥

was truly way out(in).

The technigue of grouping into broad classes of options and
“then comparing the mispricing across groups éeems to be in a“
methodological dilemma. The impact of the sample mixture of
options indicates the‘necessity of finer gfouping. The
arbitrariness of dichotomy, on the other hand, seems to:
frustrate such an attempt. Functional bias approach,‘supported
by an appropriate regression model has, at least! the potential

~of breaking out of such a1 dilemma.

SECTION 9
Under the functional bias approach, one triés to associate

changes in mispricing with changes in some factors such as the
‘degree >f moneyness, time to maturity, stock vblatility rate ,
etc. Thus the funétional biés, being mgrginal ir nature,
necessitates simultaneous control of other factors wﬂen the
impact of variation in any one factor is being considered. As we
have indicatéd earlier, multiple regression teéhnique is
suitable for this purpose. But infu;ing multiple‘regression

technigue, more care is called for than just rearessing a

* measure of mispricing on several factors, as the most of the
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existingvusers in empirical options literature have done.

First of all, if the intention-behind using the multiple
regression technique by authors such as MacBéth}apq
Merville(1979) or Geske and Roll(1984a), were to investigate éﬁéi
signs and magpitudes of marginal biases(with respect to.
different factors); let us check whether they did so
investigate. |

Implicit‘in the results of Boyle and Ananthanarayanan
(1975), Merton(1976a), and explicitly discussed ir our chapter

3, the marginal bias (or mispricing, which is the negative of

bias) with respect to é factor is a function(poss{bly nonlinear)
of the levels of all relevant factors including the factor in
guestion. This implies that coefficients estimated in a constant
coefficient estipation, can haialy be interpreted as estimates
of mafginal biases. What isjrgquired forrihewsa}q purpose is
fully option-specific estiﬁatioh of»ah appropriate nonlinear
regression equation;“}n éadition, the echometric enyironment of
estimation hasiip be evéluaped. ﬁ

Note that fully option-specific estimation of an
appropri;te nonlinear regression equation would be free from
both the problgps of sample mixture ofvoptions and arbitrariness
of di:hotomy,’as faced by the technigque of grouping and
comparison of mispricing.statistics across groups.

We derive an option-specific nonlinear régression equation

in the next chapter. Given the enormous complexities of fully

option-specific estimation, one may want to limit the objective



B

to estimation allowing for polynomial approximation to the
specificness of a coefficient with respectto the level of the
corresponding factor only. We hake a limited attempt of this
nature in chapter 8.

As indicated earlier in this chapter, and to be taken up in
chapter 5, a frustrating and rather unavoidable stochastic
regressor problem arises whénexer stock volatil.ity rate is
included as a'regrgssor; since the estimates of volatiiity rates
are subject to meaéurement error, In addition, there exists the
problem 6f heteroskedastic error term®*®, Thus, the. prospect for
acceptably accurate. and sound investigétion~of marginal biases
does not appear promising. However, there remain two areas of
investigation that appear less troublesome. They are:

(1) Eesting the dividend inducement of the alleged
systematib mispricing by the estimated Black-Scholes formula.

5

This we do in chapter 6.

(ii) Testing the validity of the Blaék—Scholes model
against unspecified altefnative through either testing
restrictions on regression coefficients, or through allowing
limited degree of option specificness in coefficients and then
compar%ng predicted functional relation of mispricing to a
factor with that implied by the validity of the Black-Scholes
model. We shall pursue these in chapters 7 and 8.

83The form of heteroskedasticity looks intractabhly complex even
under second order Taylor series approximation to the
nonlinearity bias of the formula. i
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» ~ CHAPTER 3:
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AN ALTERNATIVE REGRESSION MODEL
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In'thé previous_chaptef, while discussing thé deficiéncies
of the ISD approach, we argued that from the viewpoint of a
researcher, the mafkef price of an option could be taken to
represent its ﬁair Valﬁe, allowing for a zero—mean’rahdom error.
-The need for an appropriately defined multiple regression model
was emphasized in order to undertake empirical invés;igétiongof
. whether the Black-Scholes model price represen; thé‘market price
on the average, and hence the fair value of the option. The
underlying rationale is that if it does so, the deviation of the
model's price from the market nrice shoulﬁ not be systematically
related to factors suchias moneynessh/time‘to maturity, or
volatility rate. But thé nonlinearity bias of the formula
estimate poses a practical problem, namely, its use .as a proxy
for the Bléck-Schcles modei pricé induces systematic |
relationships, which are independent of any model o
misspecification error. Mo;eober[ the systematic relationsg;ps
induced by the noﬁlinearié& bias and any pgobabl; model
misspecification error would in general be option-specific.

In our empirical survey, we have seen that the exisfiné
regression studies attempting to validate the Black-Scholes
modelfempiricalry~éeem uninterested in these issues. The purpose
of this chapger is therefore to present an alternative
lregreifion mo§;l which would embody explicit concern for theser
issueé. It is also intended to help illuminate the limitations
of the existing studies and the econometric environment of
estimation. Though our exposition is in terms of validating the

[y
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Black=Scholes model, the basic framework can be applied to’the
validating other option pricing models as well.

Let us assume that the actual option prices are generated

TR

according to the model:

C.=f(z1.)+ u. N .I.l.........l'(3.1)
]fﬁq J FJ’» ) ' ,

where

C : the actual market price for the j-th sample option
p)
ZT : row vector of nonstochastic ‘treatment variables'

e

observations which\hay or may not include unity as an element
u "N(0,0% ).
B u
" Notice two thlngs'
(i) We are assumlng that the model of fair valuation is the
same for all options, whether written on the same stock or not.
(ii) The disturbance term which may incorporate the

,§ -
behav1or of market participants is not

1dlosynchr521c
option- speC1f1c or stock specific. And it does perturb the
determlnlstlc part 1n no systematic way.
Let us denote the Black-Scholes inputs for the j-th option
as 67 . The following locational shift of (3.1) would be useful:
j .
C-—CB(GT )=f(ZT )-CB(GT )+U [ ] ....QC......I.(3 2)
] J ] ] ]
In this form, the response variate is the dislocation of

~the Black-Scholes model pfice from the market price, and the
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expeéted response conditional on 27 U 67 is E(27*)-CB(6T ).
» ] ] ] ]
For arbitrary reélisations of 27 U 67T , the expéciéd
, . j j . :
response in (3.2) would be zero, if Black-Scholes is the‘“true
model of fair valuation, i.e., if (1)2T and 67 are of the same .

. J ]
dimension and their difference is a null vector, and (ii) CB is

identical function as f.

Note that if a researchgr's interest is model selection
vis-a-vis the Bladk-Scholeé,Tf(ZT‘) could be thought as thé
competing deterministic model fungtion(rathef than the assumed
true deterministic model function). Then ZT_ A 67;=67. and Zz7 A
07'¢ZT',jwhere A denotes intersection, woulg impl§ negting ofJ
thg blgck-Scholes model under the competing model. An example of
such a £(27 ) would be the jump-diffusion model of Merton or -
Cox's CEV,. %f ZT.AﬂT_¢eT_ and ZT.A67.¢ ZT., then we have a case
of non-nested mogel gelegtion:‘ gen g is greated as a competing
model function. An example w;uld be the pure jump model as f.

In this thesis, we would be dealing with only the case pfﬂ‘k
Black—Scholés being,@gstéd(or not). And the competingﬁmoderfis
unspecified. In oﬁhér wdrds, our framework is that of testing
- .the Black-SchOlés against an unspecified alternative, with the
assumption that the alternative is not nested in the

-

'Black-Scholes‘modelﬁ‘

A

For developfﬁ@?a convenient regression model, we nsed to
hypcthesize a simple form for f(27 )-CB(87 )=g(z7 U6T ).

. J 1 ]
Sometimes, a nonlinear expected response function could be
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conveniently expressed or approximated(by suitable normalisation
and/or transformations) as the dot product of the gradient
vector with respect to the treatment variables and the vector of

treatment variables.An example would be the expected response
a §
function E(Y)=X, X, . For simplicity, we would assume that the

case for g(.) is alike.

We can express (3.2) as :

+

C -CB(6T )=B" & + u ’ PP O 13
J AR ]

where

BT & is the assumed replacement for g(.)
> ]
%

BT is the row vectdr of suitable arguments chosen from 2T U47

and covering 2zl U§T ., % -

: J ]

—

4

—

® is the conformable(to BT ) column vector of coefficients.
] ’ J

Notice that the coefficient vector is subscripted. In

general, the coefficients would depend on the realisation of

treatment variables, whenever dealing with the Black-Scholes

____________ - ————

84Arguments,if chosen suitably,would make the interpretation of
empirical resulvs more tractable. For example, because r would
be the same for 211 options(at least for the same maturity -
options), and option prices have been observed to be extremely
insensitive to r, (see Cox and Rubinstein(1985),pp.217), we
might decide to drop r as an argument., Also, instead of dealing
with S and X as seperate arguments, S/X or ln(S/XY would make
more sense in terms of interpretation,
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model 8%,

It is now evident from (3.3) that if Black-Scho
model of fair valuation , then for arbitrary realisation of BT',

3
conditional mean response(BT & ) would be zero, only if & 1is a
, ] ]
null vector. Thus, if BT were known and nonstochastic in
] 5. : .
repeated sampling sense, a test of the validity of the

Y

Black-Scholes model would be the test whethe;;§_=0, a null
vector. ' ?

There are two immediate probleﬁs we encounter.

First, the column dimension of B 7 is unknown®®, Let us do

. . . J -
the hypothetical partition B T={6 7, & 7} and ¢ "={¢ T , & T},
o , ) ) ] J Bj 6]

the latter partition being conformable to the former. To be
consistent with our earlier assumption of unspecified
alternative to the Black-Scholes model, it is only reasonable to
use 6 T in the regression.

] ‘ \

Second, both the response variate [C -CB(6T )] and the

. ] J

treatment variable o (included in 8T as an argument) are

. ] ;| :
observed with error. We are assuming, all'other variables are

measured without error. .

.5See our discussi%n of nonlinearity bias in chapter 4.
~ .
®¢Thus the dimension of parameter space is unknown,
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Correspondlng to the true regress1on model (3.3), the
follow1ng would be the model with observed regressand:

C -CB(67 )-CB(GT.).—.QT. ~CB(87®) 4y

or, C -CB(8" )=6T & +[CB(8T )-CB(8T )] +v ..........(3.4)
] j j Bj J 3 3

.where §_=u +6T &
J 3 J 83

In terms of equation (3.4), we can identify four different
Y ‘
sources to explain why the estimated-Black-Scholes formula pr1ce

would differ from the actual market price:

~

(a)u : The irreducible noise common to all stochastic

]
models of market price generation.

(b)CB(9T )-CB(8T ): The error in estimation of the model
31 : . J
price resulting from the volatility being measured with error.

(c)e™ & : The error of functional misspecification in the
J B]
Black-Scholes fodel; even though the arguments are the same as

in the unknown market's model,of fair valuation.

(d)8T & : The error of model truncation in the
] 61 °* :
Black-Scholes model, or incompleteness in argumenrts of the

Black-Scholes model.
1f Black-Scholes is the true model of fair valuation, &
R 53
=0, a null vector, then (3.4) boils down to:

&
i

€ -CB(BT )=CB(4T )-CB(HT )+ u . e (305)
J ] j J ' |
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1f we do the Taylor series expansion of éa(af.) around
- ) ) e /, ‘/l » J L3 .
0 =0 , truncate after the second-order term far simplicity and

J ] ' _ _ . .
tractability, then aftgr some manipulations, we can arrive at”“//

-

the following : &7

CB(67 )-CB(B )=E[CB(8T )=CB(BT )I+F tevrureeenenenrnnnss(3.6)
3 ] i j ] | R

where v ‘ . ’

T =0.5[32CB(3T )v3(5 2)|g.=0 ] {Var(d )-(5 -0 )2} °
j | it o3 i3 j i 3

-[3CB(87 )/8(5 ) |6 =0 1 (5 -0 )
] i3 3 33

and & 1is an unbiased estimate of o . &%

J - : <)

Note that E(% )=0, and E[CB(GT.)-CB(B’.)] is the negative
of the bias of thejestimated Black-gcholes %ormula-price with
respect to the Black-Scholes model price. |

If we substitute (3.6) ir (3.4), and at the risk oE

oversimplification, express E[CB(GT.)-CB(BT_)] as GT.B_, then

ggi ) ] ] J 3

8’The truncation i ot essential to the derivation of the
regression eqguation. If not truncateéd, the error term in ¢3.6)
would be the sum of series of terms similar to ¢ .

- J ;
88gample standard deviation s is not an unbiased estimator of;
the population standard deviation. The unbiased estimatof”?vzs
equal-to s/[1-{1/4(n=-1)3}+{1/32(n-1)2}]. Both s and G are
distributed -as a constant times a x variable with n-1 degrees of
freedom, but differing in the constant.Here n denotes the number
of stock return .observations from which the historical variance
rate estimate is calculated.The difference in the central
moments of 8 and ¢ are negligible for large n.
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the fgllowing equation emerges:

o
C -CB(BT )=8T ¥ + e o cecssssecsesansses(3.7)
3 3 j B 7, )
‘ . ,f,f@‘m;i
where ¥ =9 ﬁﬁ N p
AN Bj Bj  j Y o

and e = V.""'E.
’ J J ]

I1f we denote the coefficients of ¢ as ¢; and B, ., then
| | I R
the final estimable form looks like:

C -CB(BT )=bT ¥ +n_ D ceveee.(3.8)
J J J Bl 3

Whefe n.=e.-(¢3_+53_) (6‘—05)
’ J 3 Jo-<_3J J 3

The error in the regression equation deserves some economic

and econometric discussion, The j-th error term is:

Ve

n =u +8T & +{3CB(BT )/8(5 )|& =0 }[ {d, 4, /20 }
7 3 3 8] ] i 3 3 - 3 3.3

fvar(s )=(5 -0 )?}(3 ~a-) )= ;3 (3 -0 )

33 3 3 3 - 3 3 3
Loon
where 4, and d, are asidefined in chapter 1.
j y 4 ;

b
A : : '
- 2

Clearly there are four égmponents of the disturbance term

from four different sources.
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(i)u : The irreducible noise. >
]

k4

(11)8T ¢ : The error from the omission of the relevant
J 83

ﬂvarlables. As we have indicated earller, when the Black- Scholes

is complete in arggments, ¢ =0, a null vector. 8% Thus, this
63
component will vanish when the Bkack-Scholes is complete in

regressors.

(iii)-y5; (6 -0 ): The error emerging from' the measurement

J o3 ]
error in the regressor o .
J
(iv)n -u =867 & +y,(6 -0 ): This component is emitted by
3 383 3 ]

the nonllnearlty bias of the Black-Scholes formula estimated
with respect to the Black-Scholes model. Note that this error
emerged when we expressed the difference between the estimated
Black~Scholes formula price and the Black-Scholes model price in
terms of the expected value of the difference(negative of the

formula bias) and the sampling error in the difference.

Notice that if & #0, then the effect of this component'

8
~.will partially(when § ; and ¢ T has non-zerp covariance) get

j j A
incorporated in the intercept term, when it is included. And

thus the remaining of the composite error will have mean zero.
For the purpose of testing validity of the Black-Scholes

model, the follow1ng observations may prove useful:

BSWe are equatlng the arguments with the explanatory variables.
Though in regression terminilogy, regressor is dlfﬁerentlated
from explanatory variable, we would be less strict here and use
these terms interchangeably, unless exp11c1t differentiation is

made. s 5
. [+
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(1) Even.if the Black-Scholes is the true model of fair
valuation, we might'find the estimated coeffiéients to be
éignificant. This woui@ happen if g is non;hull.‘Given the
sensifivity of the Black-Scholes fogmula's bias with respect to

the volatility, the coefficient of the volatility may come out

significant even in a zero-dividend sample, where the

Black-Scholes is least suspect.

(2) If the Black-Scholes is complete in arguments, but only
functionally wrong, thus & =0, we may find’the joint
83 :

signific‘ﬁEe\QE\ihe slope coefficients, mot of the intercept if
we inc ' | : n

If the Black-Scholes is not the proper model, both

.functlonally and in arguments, we may find both joint

significance of the slope coefficients and 51gn1flgénce of the
intercept. %°

The econometric environment of %Ftimation is characteri;ed
by the follqwing issues:

(i) The regression mod;l is nonstatiohary across
observations, Qince at_leéét the noplineafity bias of the
Black-Scholes formula estimate is optié%-épecific.

(ii)The aesign matrix would be stochastic in repeated
sampling sense, and, hence the stochastic regressor problem
emergesf

——— i —————— —————— -

®OWhen we say functionally, we mean funétionally for the common
regressors. It is possible that whenever incomplete in
regressors,also wrong functionally for the common regressors.

/o
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(iii)The composite error term—n is heteroskedastic for two
- J £ . \A
. " ‘
(a)var(o ) may differ across options on different stocks;
j .

reasons:

(b)w3_=¢3 *Bs3 would vary across options.
] J J
\7-—«—\

The ffécts of these.econometrjc probléms are
well-establshed, the cures are not, especially wﬁen the
variance-covariance matrix of tﬁe distufbance vector is not
known; In chapter 8, we partially address the first problem, and
in'chapter 5, the effects of the second problem in our context

are discussed. The third problem is left for future research.

N

Wt
A
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CHAPTER 4:

ON THE NONLINEARITY BIAS OF

THE BLACK-SCHOLES FORMULA ESTIMATE
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* In the foregoing chapter, we have seen that o&g of the
omponents of the observei deviation between the market price of
.an option and the Black-Scholes price computed by.inserting an
estiméte of the variance (or voiatility) rate in the formula, is
the nonlineafity bias of the formula estimate with respect to
the Black-Scholes model price. In our regression model, the
expected response function have, in fact, the négative’of the
nonlinearity bias as one of its components. For ease of
exposition but at the‘risk of confusion, we will refer to the
"nonlinearity bias as the formula bias or formula
mispricing(negative of the formula bias) interchangeably.

That even the use of an unbiased estimator for the variance
rate leads to biased estimate 6f the model price, has been
pointed out bj Ingersoll(1976): This problem has been pursued in
detail by Boyle and Ananthanarayanan(1977), Butler and
Schachter(1983,1983é). This formula bias may assume significance
as an issue, if one attempts to validate the Black-Scholes model
empirically, and/or investigate the sources of observed
mispricing by the formula estimate. In particular, as indicated
in the foregoing chapter, it is possible -to conclude that the
Black-Scholes model misprices options in certain systemafic
ways, even though the Black-Scholes model price doeé represent
the fair value of the option, éhe observed mispricing being

-
induced by the nonlinearity bias of the formula.

7

Given the potential importance of the formula bias-in

empirical investigation.of the Black-Scholes pricing, it seems’
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appropriate to examihé*carefully\the nature of the formula bias,

- ;ia A
its implicatio%géfor_the empirical studies, and explore the

existence of unbiased or approximately unbiased gstf&ators of
{

Ehe Bla@k-Schoﬁgs model price, and their properties, if they

exist.

Ed

!

The remainder of this chapter is divided into eight
sections. The Taylor series representation of the nonlinearity
bias of the formula estimate is discussed in section 1. In

-section 2, we introduce the pseudo estimator, the bias of which

P

would be identical}g”edual to,zero when the bias is approximated
only up to a specific order of approximation. With a Monte
Carlo, we compare the behavior of the pseydo estimator with that

of the formula estimator, as the variance rate and the sample b,

. ,”4 . g “‘J
Sl1ze wvariles. ngﬂﬁ Y

~

v
Both the formula estimate and the pseudo estimate are

s

s

formed by replacing the true variance rate with the estimafégjq
"
variance rate in the respective estimating functions, thlefwénd
Schachter(:983a) proposed an estimator which first apbfoximates
the Black-Scholes price by a pair of Taylor series, wﬁich are
linear in ‘the powers of the variance rate, and then these powers
are replaced with their unbiased ectimates, rather than with the
powers of the estimated variance rate, wé review this estimator
in section 3. | )
A legitimate concern with respect to such attempts as

Butler and Schachter(1983a), is the validity of series

representation of the Black-Scholes model price, in general, and
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the validity of Taylor series representation around arbitrarily .
g "
chosen points, in particular. These issues are our subject )
i -
matter in section 4.

In section 5, we propose an approximately unbiased
estimator whi;h retains the spirit of the estimator proposed by
Butler and Schachter(1983a), but tries to improve upon it in
‘terms of logical consistency and validity of approximation, and
sample size requirement. wghundertake’q seprarate Monte Carlo
study to compare the performance of these two estimators with
the formula estimator. In section 6, we consider an estimator,
for which the parameters of a normal distribution function are
to be estimated, the point of evaluation being known. This
contrasts with the standard problem of considering estimators
with known standard nBrmal distribution function, but unknown
-point(s) at which to evaluate the function. The new estimator
has the potential to be unbiased, rather than just approximately
Lnbiased. RBut the information reqﬁirement to form an estimate‘in
practical situations seems to limit its usefulness, at leasf, at
this stage of our research. . B

Our Monte Carlo results did not find any of the alternative
estimators to have cléar superiority over the computationally
simple formula estimator. So, in_secéion 7, we explore furthef
the nature of of the nonlinearity bias of the formula estimate.
An explaﬁation for the striking price bias found by Boyle and
Ananthanarayanan (1977) is provided on the basis of second order

approximation to the nonlinearity bias. Using Monte Carlo
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results, we review the systematic relationships of the
noplgnearlty bias with moneyness a:.. time to maturity of the
optlon, and the true variance rate on the underlylng\\kock s
return. The marginal nature of these relationships are

" emphasized, along with the implications for the dichotomous bias
and the functional bias appr;aches to model(Black-Scholes) |
validation.

The final section summarizes some of the results of this

chapter.

SECTION 1
The nonlinearity bias of the formula arises when
Elg(x)])#glE{x)], i.e., if the fuhétion g of the random variable
x, is nonlinear in x. ®' In our case, the unbiased estimate V of
the true variance rate V could be taken as x, and the

Black-Scholes functional form CB as g. To see the nonlinearity

T
n'} o

bias more clearly, let us expand CB(V) around the point V=V,

—— - ———— o ———

'We are, of course, assuming the existence of the relevant
expectations. Also, note that Plim[g(x)]l=g[Plim x], if the
probability linit exist. Thus, a biased estimatorﬁgan be
unbiased in the sense of probab111ty limit, or roughly speaking,
asymptotically unbiased.

°21n terms of our previous notation, CB(V) is equivalent to
CB(67), and CB(V) 1s equivalent to CB(87) . Since the only
difference between 67 and 87 is the replacement of ¢ with the
random variable &, for the purpose of this chapter, we will
suppress the other arguments than the volatlllty rate. Further,
for the sake of comparablllty with the existing studies in thlS
context, we will use the variance rate V as the argument, rather
than the volatility rate.
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using Taylor series expansion, and then take the expectation: %2

93

E[CB(7)]=CB(V)+ [{22CB(V)/0(V2)| 0=V} w,p(9)/21]+

r r

[{22CB(0)/3(V2) U=V} uy(V)/31]+...+[{0 CB(V)/3V [U=V}{ u
: r

(O)/r! }1+...

n n
+[{3 CB(V)/3Y |9=V}{ u (V)/n1}] +
n .

n+1 n+1 : :
({3 TB(W)/3av |U=vi{ u (V)/(n+1)t}]+....(4.1)
n+1

where u (V) is the r-th central moment of V.

r .
From‘i4.1), the formula bias is:

‘ n r r < '
B(V)=E[CB(V)-CB(V)]= Z [{d CB(V)/oV |U=V}{ u (O)/rt }] +
T =| oo r . -

‘? [{a?CB(V)/aVr|V=V}{ p (V) /rt }]...(4.2)
TN+ r
1t appears from (4.2) that if we knew B(V), then we could
find an Unbiased estimator [CB(¥)-B(V)]. If we could find an
unbiased estimate of B(V), subtracting that from CB(V) would
have yielded unbiased estimate of CB(V). But it seems that we

cannot form unbiased estimate of B(V) for two reasons:

- - e = e —

37 somewhat similar exposition of the nonllnearlty bias is
given in Butler and Schachter(1983a).
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(a) Due to the existence of non-zero derivative of any

1}
order for CB(V), we are unable to form unbiased estimates of

r S
{9 CB(V)/3V |9=V} . We can, of course, estimate u (V) without

r
blas, for all finite r. But even if we had unbiased estimate of
r

{9 CB(V)/aV |V V}, the product of its unbiased estimate and that

of u (V) would not be an unbiased estimate of the product.

r(b) In practice, it is not possible to account for all the.
terms in the infinite series. If we are prepared to copsider the
bias in‘truncated form, i.e., consider finite number of terms in

the Taylor“ééries,'we have two alternatives. We can try to

choose an n such that either Z [{a CB(V)/aV |9=V}i{ u (0)/r! }]

po r r
or_ Z [{a CB(V)/aV | 0= VI{ u (V)/r' }] is rather small.
r :
If one 1s successful in chosing an n such that
00
{{a CB(V)/aV | 0= V}{ m (V)/r"}] =0, that would’lmply

n r
B (V)= Z [{a CB(V)/BV |9=V}{ u (¥)/r! }] to be not approximately
n r
zero 1f B(V) is not_approx1mately zero. In general, B (V) would
: , n

‘not be approximately zero or equal to zero. But there exists

n r r .
functional form CS (V) for which B (V)=Z[{3 CS (V)/3V (V=V} {u

R sn Ne) n
()/r1}] is identically equal to zero. If CS (V) were to
r n
approximate the behavior of CB(V) as V varies, CS (V) could be
- : n

thought as a pseudo estimator of CB(V), for which the bias would
be identically equal to zero when only the first n terms are
considered in an expression similar to (4.2). As we search for
alterngtiye estimators, it would be interesting to inveﬁtigate
the nature and the behavior of pseudo estimator as compared to

the formula estimator, especially wnen the variance rate V or

B
‘\
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the sample size(from which the variance rate is estimated) N

varies.

SECTION 2
In our discussion above, we .indicated that there exists
functional form in V, for which, insertion df Vv would lead to
zero bias when only the first n terms ih the Taylor series are
considered. This assertion follows from the fact that the

functional form mentioned satisfies the equation

B (V)=O, or, in.other words, it is a solution to the n-th order
sn . <

linear differential equation in V with variable coefficients:
n J 3

.Z{p VDIwW=0 .. (4.3)

oo n-j . :
where

e

W is the dependent variable
D is the differential operator d/dv .
J J
o) is equal to {V/(N-1)} E[x? -(N-1)]
n-j ' N-1 ‘

(4.3) is a special case of Legendre Linear Equation. °*% In
order to solve (4.3), we can write it in the following form,
using the transformation Z=1n(V), and thc operator D =d/4Z:
n J-1 : 2

N Z[p { H(D —1)}]w =0 ccccccc -oo(4o3a)
J& n-j 00 =z

— - —— - ——— - a— a

"Legendre Linear Equation is: &
n n n+lt n+1 n-r n-r
[p (aX+b) D +p,(aX+b) D + ... +p (aX+b) D .04
0 y y r y
P (aX+b)D +p 1¥=0, _ ,
n-1 y n

where Y and X are dependent and independent variables
respectively, and D denotes 4/dvy.
Y
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Zeros(including‘multiplicities) of the characteristic
LS . - , N . “ - N

polynomial g(D );%p { I (D -1)}=0, will determine the nature
z 43l n-j &30 z

of the solution to (4.3a)or (4.3), if it exists. This solution

was referred to as CS (V) in the foregoing sectioh.

Lemma 4.1: The sglution to (4.3) exists, and it is unique.

Proof: The existence and uniqueness of solution theorem for
general n-th order linear differential eguation reguires that
the fﬁnction D nY=G(Y,X,D rl-1Y,...,D Y) exists, G be continuous
with respect tg all n+1 aggument;, aid be at least once
differentiable with respect to the last n arguments. Assuming
w(V) to b;long to fhe same class of differentiable functions as
CB(V), this theorem is satisfied for ¥Y=W(V), X=V, D =D . Hence,
solution to (4.3a) exists, and is unigue. By substi{utzon for Z,
the séme follows for (4.3).

Two things to be not;ced about (4.3). First, V=0-'is a(in //K
fact, the only, except infinity) singular(of irregular type) )
point of (4.3). Second, as we have assumed, when the estimate
ihs?éted for V is an unbiased esEimate of VvV, the solution to the
relevant differential equation would lack the property of
boundedness, when considered in the semi-infinite i?terval of V.

Lemma 4.2: I1f ¥V is such that E(V)=V, CS (V) is unstable
with respect to V. | "

Proof: Whenever E(V)=V, at least one.of the zeros of the
characteristic polynomial g(D ) is unity. Hence, the solution
would contain a segment A.V, :here A is a constant. This would

explode as V tends to infinity.
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Regarding singularity, since 0 is an irregular singular
point, we cannot specify the value of the solﬁtion or its
derivatives at that point. Thus, the solution would be unstable
as~V tends to 0.

To address the above problems, one can choose a lower bqund
g,uérbitLarily close to 0, and an upper bound %, which, for most
practicalbpﬁrposes; could be set to 1.

Solving (4.3) analytically for lower order n, and
numerically for higher orders, the general solution can be
derived. To form the pseudo estihator for the Black-Scholes
model price, restrictions on the solution ;an be imposed by
suitéble choice of the constants in the general soi;;ion.

One of. the boundary conditions can be used to incorporate
the moneyness of the option. It is to be ﬁoted that the
Black-Scholes model price approaches differing lower limits
depending on the degree of moneyness and definition of
moneyness. For the purpose of this section, we would be
referring to 1n(S/X) as the indicatdr of moneyness. For
at-the-money(1ln(S/X)=0), and in-the-money(ln(S/X)> 0), the lower
limit is S-Xexp(-rT). For out-of-the-money(ln(S/X)< 0), the
lower limit would be S-Xexp(-rT) or 0, -depending on whether
In(S/X)+rT >0, or 1n(S/X)+rT <0. ®5 Theske limits are taken as V

approaches 0, To avoid the singularity at V=0, one would set lim

°%1f we adhere to 1ln(g)=1n(S/X)+rT as the indicator of

_moneyness, the lower limit would be 0 for at-the-money(ln(g)=0),

and out-of-the-money(ln(g)<0), and S-Xexp(-rT) for in-the-money
(1n(g)>0). .
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CS (V) as V0, equal to the appropriate lower limit of the
n
Black-Scholes model price as V0, and thus try to incorporate

some option specificness in the pseudo estimator.

A second boundary condition can be used to set lim CS (9)
' : i n

as V 5, equal to S, the upper limit of- the Black-Scholes model

price, as V =,

To avoid under or overidentification of consﬁants, one
would needbanother n-2 equations in the n unknown constants. A’
definite candidate for éne of the equations would be to set CS
(v)= CB(V), when the variance rate is known. The rest of the "
conditions can be supplied by choosing n-3 arbitrary values of
vV, V. 's, and setting CS (V.)=CB(V_). When the variance fate of
the ;ption at hand 1is ngt ;nown, ;e would have to choose n-2'
arbitrafy values of V. In choosing the arbitrary V_'s, one

i
would, of course, see that they do not exceed n or fall short of

¢ 96, -

Before we go for the Monte Carlo study undertaken to
1llustrate the behavior of the pseudo estimator as compared to
the usual formula estimator, let us make a somewhat
counterintuitive comment about the pseudo estimator. As the
sample size N increases, the pseudo estimator may exhibit
instability. This is due to the fact that as N increases, p 1in

®éThe above boundary conditions do not ensure nonnegativity for
CS (V), neither do they ensure that it be increasing in V.

n .
Further ingenuity may be required to impose such desirable
restrictions.
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singularity effect as V tending towards 0. ,
Since the purpose the Monte Carlo undertaken’ig'primarily
expositional, we have chosen the value of p,tbgbé 3 only. The

solution to B (V)=0 is:
S -

a
CSz(V)=C1+ C- V+ ¢y V

where a= 2,75 - 0.75 N .

Th§ lower and upper limits of V were chosen as those values
of the estimatgd variancq rate whiéh cutoff 2.5% probability
area on either tail of 1ts diétribution. For ekample, for
V=0.025 and N=15, these limits are 0.0100535 and 0.0466071
respectively.

To solve for the constants,(we have used the two limitingl
boundary conditions, and the egaution CS,;(V)=CB(V).
| For a given degree of moneyness, time to expiration,
‘riskless rate, Qariance rate, and sample size, 500 sample
variance rates were generatéd\with the given V and N as
'~ parameters. These sample variance rates were, in turn, used to
computee 500 different values of the formula estimator and the
pseudo estimator. For both the estimators, the mean of the 500
estimates was subtracted from the Black-Scholes model price
CB(V) to drrive ;t a measure of mispf?cing, which, in fact, is
the negative of the bias.

The results reported in Table 4.1 seem to support the
expected behavior for the estimators. Rggardless of the

situation, the mispricing of the formula estimator decreases in
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absolute value, as the variance rate decreses. On the other
hand, with a few exceptions, the absolute value of miépricing of
the’pseudo estimator increases as the varian;e rate decreases.
When we come to variation of the sample size, again, xégardless
of the situation, the level of mispricing by the formula
estimator decreses és.the sample: size increases. °’ As for the
pseudo estimator, the level of mispricing increpses with
increasing sample size. Though not reported here, we observed
that the standard deviation of the formula estimates is lower
than that of the pseudo estimates. |

In conclusion, -it is less likely to uniformly improve upon
the simple formula estimator by following the strategy of
finding some alternative functional form in V in which a sample
variance is inserted. In barticular, for options on low variance
stocks, the formula estimator seems to have performed relatively

well. Moreover, whenever the use of larger sample size is not

deemed inappropriate, the formula estimator appears viable.

~

)

SECTION 3
The discussion in the preceding section was focused upon

insertion of the sample variance rate into functional forms

nonlinear in the variance rate, and the bias considered was

~ based upon Taylor series expansion of ‘the estimate(of!

Black-Scholes model price) around the true variance rate. Butler

°’This is in conformity with Boyle and
Ananthanarayanan(1977),Butler and Schachfer(1983a).
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and Schachter(1983a) proposed an estimator, which attempts to

redress the nonlinearity bias problem from a different

methodological perspectivef Their approach differs in two

important ways: first, Taylor series expansioh is used to
approximate the Black-Scholes model price, the approximating
series being linear in the powers(positive and/or negative) of
the true variance (or volatility) rate; second, the prize
estimate is formed by replacing the powers of the variance(or
volatility) rate with .their unbiased estimates instead of the
-powers of the sample variance(or volatility) rate. Use of the
powers of the sample variance(or volatility) rate would have
been equivalent to straight forward insertion of the sample
yariancé(or volatility) rate in the estiméting function, as is
the case for both the formula estimate and the pseudo estimate.

Since each term in the approximating series-can
individually be estimated without bias, the Butler-Schachter
estimate would be-anlunbiased estimate of the approximating
series. But it would be only an approximately unbiased estimate
of the Black-Scholes model -price, the reméining bias being the
approximatfon error of the finite order expansion.

To outline the Butler-Schachter estimator, we first note
that , to form unbiased eétimate of the Black-Scholes model
price CB(V), it is sufficfént to form unbiased estimates of the

cumulative standard normal probabilities ¢(d,) and ¢(d,), where,
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to recollect, d,=[1n(S/X)+rT+0.5VT]/YVT, and d2=d,*¢VT.;° Rather
. : A ,
than approximating CB(V) by & single expansion, Butler and

Schachter approximates g(d@%yf#1,2 Y%dividually by Taylor series
around 4 =0: ‘ :

' 1 \ N n
o(d )= ¢(0)+9'(0)d + ¢2(0){d ?/21}+...+¢ (0){4

1 1 1

/nt} ... (4.0)

1

r : . .
where ¢ (0) denotes the r-th derivative of the standard normal

distribution function, evaluated at the centre 0.
Using the features of the standard normal distribution, and

. o . ~
after some manipulations, . 4) can be written as;

¢(d )= 0.5+ £(0)[d -{d */6}+ {d 5/120- ...] ....unn (4.4a)
1 1 1 1

where f(O) is the standard normal density evaluated at 0, and

1

the m-th term in the brackeved expression is:

m-1- 2m-1
(=1) d {(1/2).1/4)...(1/(2m=-2)) . (1/(2m=1) )}

1

1

Substituting for d 's and collecting terms in the like
powers of YV ‘ ad to an expression, in which, each term is a

Ry

constant multipiied by some positive or negative exponents of

VV.

98The following exposition of Butler-Schachter estimator is
taken from Butler and Schachter (1983a).

110



Now,

r r/2 : r
Els 1=(2/k) [ T{(R+r)/2}/T(K/2)] (yV) ,

where K=N-1 and s is the sample standard deviation or volatility

rate,
r
So, unbiased estimate of (yV) would be:
r r/2 .

s (K/2) [F{(K/2)/T{(K+r)/2}] o

Replacing for the r-th power of yV from the above
expression leads to the Butler-Schachter estimate of the
Black-Scholes model price.

Butler and Schachter reported numerical integration results
for different combinaﬁions of the true variance, sample size,
;and moneyness (g=S/(Xexp(-rT))). The main observations made in

their paper are:
B1. The biés of the Butler-Schachter estimator is

considerably smaller than that of the formula estimator. i
B2. ﬁiases for the Butler-Schachter esimator are largést,
when the variaﬁce is small, and tﬁe option is not at-the:money.
B3. (a) Except for out-of-the-money-and-small-variance
case, the mean sguare error of the Butler-Schachter estimqtor is
consistently higher than that of the formula estimator by one
per cent or less. ‘

(b)The mean sqaure error is highest for at-the-money and

increases with the variance.



In addition to the above observations, we notice the
following:

M1. For at-thé-money options, larger bias is associateh
with higher variance. For not-at-the-money, no such discernible
pattern appears.

M2. Negative biases are more frequent for not-at-the-money
with lower variance and/or small sample size,

M3. For at-the-money,-the bias increases with sample size.

Let us put forward our f@rst comment about the
Butler-Schachter estimator in the form of a lemma.

Lemma 4.3: The expansion of ¢(d,) and ¢(d,) both around é
common value(e.g., zero) is not logically consistent.

Proof: Let us assume that both the expansions are around
zero. Then the expansion of ¢(d,) around d;=0 implies a similar
expansion(as function of V) around V= -21n(g)/T. On the other

. N .
hahd, the expansion of ¢(d!; around d,=0 implies expansion
around V=21n(g)/T. Only for an at-the-money option, both
expansions are implicitly around the common value 0 of V.
Otherwise, expansions‘of ¢(d,) and ¢(d,;) around the common value
0 of d implies approximating the same option value at two

different points of V at the same time.

Corollary 4.1: If ¢(d,) is expanded around d,=0, ¢(d,) is

to be exbandéd around d,=-yVT, for the sake of logical
consistency. @
Proof: For d,=-yVT, the implicit value of V is -21n(g)/T

which 1s the same as implied by d,=0. Thus, the expansions would
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preserve logical consistency.

Corollary 4.2: Expansions of both ¢(d,) and ¢(d,) around 0

implies, for small enough VT, expansion around an at-the-money
option.

Proof: d,=0 implies 1ln(g)}=-0.5VT and d,=0 implies
1n(g)=0.5VT, both of which would be approximately zero for small
enough VT, Thus the expansion would be approximately around an
at-the-money option's value.

According to Corollary. 4.2, when the variance is small, the
approximation error may tend to be larger for
awéy-from?the-money optfon, since the expansions used would
imply approximation at about an at-the-money option's value. In
addition, according to Lemma 4.3, only for an at-the-money
option, we would have logically consistent expansions. Thus, we
may expect the result as mentioned in B1,

In the proof of Lemma 4.3, we have mentioned that for an
at-the-money option, expansions of ¢(d.),i=1,2 around d =0 would
imply logically consistent expansion a;bund v=0(or VV=0;. Thus,
when the Butler-Schachtér estimator approximates thé values of
iarger variance at-the-money options, the expansion point(V=0 or
YV=0) wéuld be at larger distances from the true variance rate.
The approximations thus may tend to be poorer for larger
variance, though not necessarily so. Our observation M1 is in
conférmity with this explanation.

‘There is another limitation of the Butler-Schachter

estimator. For higher order evpansions, away-from-the-money
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options would necessitate larger sample sizes. This is due to
the fact that for higher order negative powers of vV, the Gamma
functions would otherwise encounter inadmissible argument

values., %%,

SECTION 4

The essence of the.Butier—Schachter'approach in redressing
the problem of the nonlinearity bias of the formula lies in the
altérnative representation of the Black-Scholes model price by a
Taylor series. Sé%i;fly speakinq, the authors USed Tailor series
to approx1ma&e the two cumulative normal dlstrlbutlon functions
1ndlvadually,_ratnpr than the model price dlrectly A legitimate
concern with réspec; to such attempts is tﬁe Valelty of the
series representation of the model price in general and the
validity of Taylor series representation around arbitrarily
chosen points in particular. The folldwing exposition is
intended to shed some light on these issues.

For simplicity, let us assume that S$=T=1, Then it can be
shown that the Black-Scholes model price CB(V) satisfies the

~

following second order differential eguation in V:

W
2V2{32CB(V)/aVv2} +{3CB(V)/aV} [2a -2bVv? +V] =0 ....... (4.6)

where a=-{1n(g)}%/2, and b=-1/8

97his was pointed out by Dr. Pao Cheng and L-. John Heaney.
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Let us consider the following power seriec solution to

(4.6):
® J

CB(V)=L c v oo (4.7)
Je0 J |

where v=V-V , V being an arbitrary point in the accepptable
0 0 ’ .
domain of CB(V). .

The coefficients c can be solved from:

J
¢ =CB(V )
0 0
c,={3CB(V)/aV|V=V }
0
¢ = -[(3+1)z /g 1 ¢ - [{2j(3-1)+301-2bV )}/q:] ¢+
j+2 i3 j+1 0 j 3

[2b(j-1)/q J ¢, 3=0,1,2,.....
. ] J-1

where e e

Tt
]

q =3y 2(j+13(ﬁ*2) and z =2a+V (1+43j-2bV ),
i 0 j 0 0 ‘

This series solution is in fact é Taylor series
representationAof the Black-Scholes model price around V=V .,
But, for the hypothesized series solution to exist, the segies
should be convergent. In addition, the suggested solutions for
¢ 's which led to Taylor series representation, require V to Be
qg ordinary point of (4.6). ’

The series solution would converge for all values of Vv such

that |V-V |< R, where R is the radius of convergence, i.e., the
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distance from the point V to the nearest point of singularity
for (4.6). It appears thag V=0 is the nearest point of
singularity for finite V . '°° Thus the hypothesized series
solution would converge gor 0<V<2V ,

Given that V=0 is a singular goint, Taylorvseries
representation of CB(V) around V=0 S not valid. If V=0 were a
singular point of regulag type, then (4.6) would have had a
Frobenius type series solﬁtion of the form:

0 jtw
CB(V)=Z ¢ V

J=0 j.

where the series would cqpbergé for all V in the radius of
convergence. :

Unfortunately, V=0 fails to qualify as a regular singular
point. If we want to represent CB(V) around V=0, the proper
expansion would be a Laurent expansion, since V=0 qgualifies to
be a point of isolated singularity. '°!

The Butler-Schachter approach expands ¢(d,) around d,=0,
implying, in essence, expansion around V=—21n(g)/T; and ¢(d;)
around d,=0 implying expansion around V=21n(g)/T. Considered in
térms of VYV, their expansions would be valid and also logically

s o - ——— ———————— ———

'°%An exception would be the case where the Black-Scholes model
is considered as a function of yV, and the option is
at-the-money. In this situation, yV=0 would not be a singular
point for the correspoding differential equation in yV. But for
not-at-the-money options, yV=0 would be a singular point.

'%1Thanks are due to Dr. John Heaney for pointing this out.
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consistent for an at-the-money option. '°2 For an

out-of-the-money option, their expansion for ¢(d,) would
converge if the assumed true variance rate is in the'rénge
0<V<-41n(g)/T. But for ¢(d,), then, V would be outside-the
radius of convergence, viz., 0 to 4ln(g)/T. Similar explanation
applies to in-the-money option. Thus, for not-at-the-money
options, the implied series representation of the Black-Scholes
model price by the Butler-Schachter estimator would not be |
valid. A

From our discussion in\this section, it appears that a
Taylor series representation of the Black-Scholes ﬁodel price
around a non-zero vélue of the variance rate would be valid, if
the true variance rate lies in the radius of convergence.

SECTION 5

The distinguishing feature of the Butler-Schachter approach
as discussed earlier is the series approximation of the
Black-Scholes model price, which is linéar in the powers of the
variance(volatility) rate and amenable to unbiased estimation.
But the specific type of approximation uééd by the authors led
to problems of logical consistency, validity of the series
representation, and convergence of the approximating series,
Moreover, a practical limitation is imposed by the requirement(
of large sample size(for stock returns) to undertake higher

'92 The problem of logical consistency can be visualized in two
alternative forms: (i)for a given g, different V's are implied,
when g#1; (ii)for a given V, different g's are implied. The
former case was discussed earlier in this chapter. We would
continue to interpret in terms of this case.
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order expansions for not-at-the-money options. A very simple
approach that retains the spirit of the Butler-Schachter
approach, but attempts to alleviate the aforementioned problems
is delineated below. |

Let us do the Taylor series expansion of CB(V) around an
arbitrdry point V=V0, V0¢0:

)+{aCB(v)/av]v=v J(v=-v )+

CB(V)=CB(V
. 0 0

0

[{32CB(V)/3V2|v=V }{(V-V )2/ 21}]+ ...+

0 0
n ' n . n
[{o CB(V)/aV [v=V }{(V-V ) /nl]+....o.onnnn. (4.8)
0 0
r .
Substituting for (V-V ) by its binomial expansion leads to
0 .

a series which is linear in the positive powers of V,
irrespective of the moneyness of the oQtion. Truncating the
series after‘the term involving the n-th defivative, and
replacing the powers of V by their unbiased estimates produces
an unbiased estimate of the truncated expansion. The truncation
(the finite order -expansion) error can be considered to be the d
bias of the estimator.

Notice that we are expanding the model price directly,
around the chosen value V , thus avoiding the problem of logical
consistency between the tSo individual expansions of the
Butler-Schachter approarh. Since we are chosing a non-zero V ,

, 0
we also escape the problem of singularity. Moreover, only
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positive powers of V are involved in contrast to both positive
and negative powers of V for notJat—the-money op;ion under the
Butler-Schachter approach. Thus the estimatorAproposed here,
alternatively referred to as the CC estimator, can be used for
. all types‘oftoptions without being limited by the requirement of
larger sample size. |

A limitation of the CC estimator is that, since the true
variance rate is unknown, we cannot' guarantee that the
convergence criterion 0<V<2V is satisfied, Given the positivity
of the true variance rate V,Ochoice of a larger V may
practicafﬁy reduce the possibility of the lack of convergence. -
But we do not mean to sa; that the convergence problem is
eliminated. |

A computational problem that may arise for the CC estimator
is the evaluation of higher order derivatives of the
Black-Scholes formula with respect to the variance rate. The
expressions for these derivatives are much more complicated than
the derivatives of the standard normal density functions only,
required under the Butler-Schachter approach. Towards this end,
we present, in Appendix 4.1, a simple algorithm to computé the
higher order derivatives of the Black-Scholes formula with
respect to th? variance rate '°7, ‘

Now that we have two approximately unbiased estimators of

the Black-Scholes model price, the Butler-Schachter

- e e e - - -

'9¥A similar algorithm applies to the computation of derivatives
with respect to the volatility rate.
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“estimator(BTS) and the the CC estimator, it would be interesting
to see how they compare in performance. In addition, we may ask
the question: 'Is the performance of any of the apéroximately
unbiased estimators compared to that of the formula estimator is
such that one would forsake the extreme simplicity of the
latter?’' We have undertaken a Monte Carlo study with these
issues in mind 108, For a given mean rate of return(assumed to
be zero), a‘variance rate, and a sample size, we generated 500
samples to yield the same number of sample variance rates. These
sample variance rates were used to generate as many estimates of
BTS, CC, and the férmula estimator, for a given option '°5, On
the basis of those est}mates, we computed the mean
mispricing(negative of the bias), the mean percentage (taken out
of the Black-Schoies model price) .error, the variance, and the
mean square error, for each estimator.

In our computations, we truncated the series after the term
containing the 31st derivative of the Black-Scholes formula with
respect to the variance rate. Thus for the BTS estimator, the
highest order of derivative for the standard normal density is

30. For the CC estimator, V was taken to be 50% higher than the
0

108Both Boyle asf§ Ananthanarayanan(1977), and Butler and
Schachter(1983a) results are based on calculation of bias by
numerical integration. Thus, their results are not directly
comparable to our Monte Carlo results.

'03For the sake of comparability with the existing studies, we
would use in this section, S/Xexp(-rT) as the indicator of
moneyness. The contracts are to buy one share with current price
S=$1Q0 a
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true variance rate '96

In total, we considered 40 different combinations of
moneyness(g), variance rate(V), and sample size(N). Since the
order of Expansion for the BTS and the CC estimator wés 31, we
could compute for the BTS in only 16 of the cases. The results
are presented in Tables‘4.2 to 4.4 .

In general, the ranking of the absolute magnitudes is the
same whether we consider the mispricing or the percentage error.
Also, variance gives identical ranking as the mean square error.
Except for the cases of g=0.8, all rankings are the same for the
two variance rates considered. 7

When we consider the absolute magnitude gf mispricing in
the 16 common cases, both BTS and CC improves upon thg formula
estimator, but CC improves most. CC is lowest in 12 cases, BTS
in 3(all 3 at-the-money) cases, and the formula estimator in the
lone case of relatively deeper-in-the-money(g=1.2) option with
higher variance rate(v=0.04) for the stock. But in only 3(all 3.

at-the-money lower sample size) out of the 13 cases, where BTS

improves upon the formula, the difference in the absolute value
of the pefcentage error(dp) 1s greater than 1%. Considering the

common 16 cases only, in 5 out of the 15 cases where CC improves

'06These choices were to some extent constrained by the
capability of the software used. But the knowledge of the true
variance rate V is not required to choose V . Any value in the
range of convergence would do. For better cBmparisons across
cases, we have chosen the V 's to be the same percentage
distance away from V's. 0
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upon the formula, dp is greater than 1% '°7.

When we compare between BTS and CC, in 2~out of 13 cases
where CC performs better(in terms magnitﬁde of mispricing), the
percentage error gain(i.e., dp) is more than 1%, BTS performs
better in 3(all 3 at-the-money) cases, but in none of these, the
percentage error gain is more than 1%.

If we consider performance in terms of variance or the mean
square error of the estimators, formula outperforms both BTS and
CC convincingly. Out of the 16 common cases, BTS is lowest in
4(all 4 at-the-money higher sample sizes), CC is lowest in 3(2
felatively deeper-in-the-money, ! relatively
deéper-out-of-the-money, and all largest sample size), and the
formula in 9 cases 108, Between BTS and CC, CC performs better
in 10 out of the 16 cases.

Overall, BTS seems to have some advantage over the other
two, for at-the-money option. But at-the-money options are least
frequently traded options. Majority of the traded options are
around—the-money; For such options, CC enjoys advantage over
formulé in terms of mispricing magnitude,‘but the advantage
reverses in terms of the variance or mean sQuare error.

It is to be noted that our Monte Carlo results for the
mispricing(in particular, its magnitudes) of BTS relative to

that of formula are very different from the fesults of Butler

'°7Among all 40 cases, CC iﬁproves upon formula in 38 cases,
dp>1% in 18 of these cases(mostly lower sample sizes).

1980ut of the all 40 cases, formula wins over CC in 29 cases.
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and Schachter(1983a). The results are not directly comparable

due to the nature of the two studies and the difference in the

sample sizes used.

Considering the directions of mispricing, the formula, as
found by Boyle and Ananthahérayanan(1977), underpriées
at-the-money and near-the-money options, and overprices
relatively deeper-awaé—from—the-monéy options. Our Monte Carlo
results are in conformity with this pattern, We find BTS to
underprice at-the-money options, and overprice not-at-the-money
. options 193/ Fog CC, no such patterns seem to emerge.

The variance and mean square error of both BTS(at-the-money
only) and formula, and the mispricing of the latter, appear to
decrease in magnitude as the sample size increaseé. Variance and
mean square error of CC seem to follow the same pattern, but the
mispricing of CC does not exkhibit any such pattern, as is also
the case with BTS.

For BTS, mean square error Seems to be larger for
at-the-money options, and does seem to increase wifh variance
rate ''%°, Same is the case for formula and CC.

From the above discussion, it appears that CC may have
slight (not clear) advantage in terms of lack of systematic

pattern in its mispricing; and lower magnitudes of mispricing

—— v ———

'®?Butler and, Schachter(1983a)'s results also indicate
underpricing of at-the-money option by BTS, and the cases of
overpricing are all not-at-the-money. See our observation M2 in
section 3. ' :

''%GSee observation B3(b) in section 3.
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for the widely traded arbund-the-money variety of options. But
the formula estimator performs best in terms of variability and
mean squafe error, and shows promise of advantage for larger
sampie size situations. Our results do not indicate a case of
practical advantage for the BTS estimator.'In summary, we do not
find aﬂy of the alternative approximately unbiased estimators to

be superior to the biased formula estimator ''', SECTION 6

In the context of éhe estimators we have considered so far,
the standard normal distribution'function was known, but the
points at which this function is to be evaluated were not known.
By suitable ‘manipulation, we can transform the problem into one,
where the value at which the distribution functio. of a
normal(as opposed to standard normal) variable is to bev
evaluated is known. But now, mean and variance of the normal
distribution function are to be estimated.
lMore specifically, the following can be shown:

¢(d,)=Prob[Y,<1ln(g)], and ‘
¢(d,;)=Prob{Y,<1n(g)]
where Y,=2y/(VT) -VvT/2, and
Y,=2y (VT) +VT/2,
and Z is a standard normal variable. .

A

It is sufficient to estimate ¢(d ),i=1,2, without bias for
i
unblased estimation of CB(V). Healey(1956) and Guenther(1971)

- —— - = ——— - ——

'"''As indicated in the introductory chapter, superiority is
established if the estiimator has always lower magnitude of bias,
and lower variance and/or lower mean square error. It should
also show no systematic mispricing.
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amdng others have proposed small sample unbiased estimators for
fhe cumulative normal distribution function's value at a
specific point. These estimators require the estimation of the
sample mean and variance of the normal variable. In our context,
if we could find two normaliy distributed variables similar to
Y, and Y,, for which samples are available, we could form
unbiased estimates of ¢(d,) and ¢(d,), and hence unbiased
estimate of CB(V),

Lognormal distribution for stock price at the end of
interval T implies: R,
In(S /S )-aT= -(VT/2)+Z/(VT)

t+T t ‘
where a is the geometric mean stock return per unit of time.

The variable on the left hand side, is normally distributed

~with mean -VT/2 and variance VT, as is Y,. And negative of the

gl left hand side would be distributed normally with mean VT/2 and

variance VT, as is Y,. The 1ln(S /S ) part of these variables
are observable. In addition, ift;z k;ew a, therevwould have been
no problem in forming the unbiased estimate of CB(V). If we
replace a with its unbiased estimate, the means of the
constructed variables would remain unaffected, but the variance
would no longer be VT. This creates a)problem for further
research. It alsc femalns to be seen whether'the use of unbiased
estimate of a or even the use of the riskless rate as a proxy
could improve upoh the approximately unbiased estimators

considered earlier in this chapter. It is ironic as well as

unfortunate that, although the potentially unbiased estimator
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does not suffer from the arbitrariness of series truncation or
the point of expansion, and is unbiased rather than
approximately unbiased, it necessitates the estimation of the
geometric mean rate of retufn, the absence of which in the

Black- Scholes model endears all researchers.

SECTION 7

Our purpose in this section is to investigate the nature of
the nonlinearity bias of the formula beyond what has been
accomplished by Boyle and Ananthanarayanan(1977) and, Butler and
Schachter(1983,1983a). There are at least three feasons why this
investigation is called for:

(a) Neither of the above étudi:; explain why the formula
estimator underestimates the Black-Scholes model price for at
and around-the;money options, and overestimates for = |
deeper-away-from-the-money options. |

| (b) The systematic relationshipé, if any, with time to
maturity and vafiance rate didﬁnot receive adequate attention.
Also, the marginal nature of systematic relationsﬁips were not
discussed.

(c) The implications of these systematic relationshipsvfor
commonly applied techniques of Black-Scholes validation were not
clearly brought out.

We will touch these issues in succession.

Boyle and Ananthanarayanan(1977) first reported that the

formula with the sample variance rate tends to underprice at and
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around-the-money options, and overprice deeper-away-from-the
money options ''?, But no explanation was provided regarding
this pattern of’mispricing. Butler and Schachter(1983,1983é),
confirmed this pattern, and in Butler and Schachter(1983a),pp.
5, the folloﬁiné’explanation was advanced:
"The pattern of the biases examined by Boyle/Ananthanarayanan
(1977) in their Table 2 results from the behavior of a2¢(d
)/8(s?)?, i=1,2, over the range -m(d‘<m(see Figure 1), The;
found thap, as the stock price, and ;ence'dj and d2, rises, a
small positive bias reaches a maximum, becomes a large negative
bias, and then becomes positive again."

The following points need to be made about the forégoing:

A. Butler and Schachter(1983a) missed one of the four
phases in the changing pattern of biés. We think it is the 4th
phase, where the dollar bias, after becoming positive in the 3rd
phase, begins to decline again. On the other hand, Boyle and
Ananthanarayanén(1977), considering the p?rcentage error, missed
the 1st phase, about which Butler and Schachter (1983a) says that
"...a small positive bias reaches a maximum,..,"., ''3

B. Though the bias of the formula estimator would be

affected by higher than second order derivatives of the standard

- —— -~ —— -

''2The "implicit indicator of moneyness seems to be the
comparison of stock price and striking price. For Butler and
Schachter(1983,1983a), the indicator of moneyness is explicitly
mentioned as the ratio of stock price to the discounted value of
the striking price.

'"3When we plotted the dollar deviations of Boyle and
Ananthanarayanan(1977), this phase reappeared.
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normal distribution function,vfor practical purposes, it may
suffice to consider the second order bias only, since the type
of options for which the bias pattern is missed by the
second-order derivative, are relati&ely infreguently traded. But
it remains to be noted that even the second order bias of the
formula estimator is.the result of the mixing of two
different-valued(in general) second order derivatives of the
standard normal distribution functien. Thus, it is not clear,
whether one should merely look at the relationship of 82¢(d) /2342
to d, as was considered in But%er and Schachter(1983a).

We will try to provide an explanation on the basis of
second order\Taylor series approximation to the nonlinearity
bias of the formula, which incorporates the combined effect of"
the two different-valued second order derivatives of the
standard normal distribution function.

The second order approximation to the'nonlinearity bias can
be writtén as: ''°®
E=H 4,4, exp(-0.54,%)
where
H={variance(vV)/2yVW(27) }SyT

The sign of this bias depends on whether 4, and 4, are of

““This/approximation is taken treating the formula as function
of the volatility rate, since later in this thesis we will be
using the volatility rate as a regressqr following the existing
regression studies such as Whaley(1982),Geske and Roll(1984a).
In particular, in chapter 7, we shall use this approximation to
form an indirect test of the validity of the Black-Scholes
model.
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of the same signs, and underprice if they are of opposité signs.
Given the positivity of v(VT), 4, and d, will be of opposite
signs whenéver d, is in the range 0<d,<yVvT, i.e.,
|In(S/X)+rT|<0.5VT. Beyond this range, they will be of the same
sign. If moneyness is measured by g=S/Xexp(-rT), this implies
that out-of-the-money optioﬁs wvhich have moneyness in the range
-0.5VT<1n(g)<0, will be underpriced ''%, Simiérly, in-the-money
options with 1ln(g) lying between 0 and 0.5VT will be underpriced
116, Figure 4.1 Elearly shows these rangés.

Fof an at-the-money option, d; and d, will be of opposite
signs, and thus the formula will underprice.

The range of moneyness over which underpricing takes place
has width VT, independent of the indicator qf moneyness '1!7, .

?

Butler and Schachter(1983a) found, on the basis of simulation

fesults for the total nonlinearity bias, that the region of
’ I

overpricing (underpricing) shrinks(broadens), as the variance of
_—+the stock return increases. Our exposition of the second order
bias alone predicts the same. Though a strong enough prediction

cannot be made, it seems likely that options with high

- - ——————————— = —

'"*1f 1n(S/X) is the indicator of moneyness, the range of
underpricing for out-of-the-money(1ln(S/X)<0) options would be
-{0.5VT+rT)<1n(S/X)<0, if r<0.5V, and
-(0.5VT+rT)<1n(S/X)<0.5VT-rT, if r>0.5VT.

"'®When 1n(S/X) is the indicator of mofieyness, the underpricing
range for in-the-money(1ln($/X)>0) options is 0<1n(S/X)<0.5VT-rT,
if r<0.5v. For r>0.5V, no in-the-money option would be
underpriced. : :

'"7The indicator 1n(S/X) shifts the boundaries of this width to
the left compared to the indicator 1ln(g), by the amount rT.
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(true)variance rate and/or long time to matufity wouldvtend to
be underpriced more often than not, if the Biack-Scholes model
is the model of fair valuation. The estimated variance bias of
Black and Scholes(i972) and and £ime to maturity bias of
Black(1975) are in contrast to this.

Though the extent of bias may differ, the studies mentioned
above found the sign of bias to be positive for both
deep-in-the-money and deep-out—of-the—money, negative for
near?in—the~money and near-out-of-the-money options. This
'similarity in the directioq of bias for in-the-money and
out-of-the-money options is clearly indicated by our finding
that the range of‘underpricing or overpriciﬁg is dictated by the

absolute value of the moneyness measure 1ln(g).

It appears that the second order bias of the formula
captures some important regularities of the total'nonlinearity

bias of the formula, if not the latter's mirror image.

Our next issue is tﬁe systematic relationships of the total
nonlinearity bias with the three important features
(alternafively referred to as factors) of the option, i.e., the
moneyness, the time to maturity, and the variance rate on the
underlying stock's return. Boyle and Ananthanarayanan(1977)
provided a graphic view of the relatioghip between percentage
mispricing(negative ?f the statistical percentage bias) and the

stock price(for a fixed striking price, moneyness), controlling
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for other factors. The relationships with time to maturity or
the variance rate were not considered explicitly. Butlér and
Schachter(1983a) produced level surfaces indicating -the
combinations of moneyness g(=S/Xexp(-rT)) and variance>VT that
wootid lead to a given amount of dollar bias. But this does not
reveal the individual relationships of bias with V or T, or even
moneyness 1n(S/X) which is independent of T. Moreover, none of
these studies conéider the marginal nature of the relationships.

We have undertaken.a Monte Carlo study to inveétigate the
nature of the nonlinearity bias with emphasis on the
abovementioned issues. To separate out the effects as much as
possible, we would consider 1n(S/X) as the indicator of
moneyness here. Also, since‘it has become almost customary to
gréph the mispricing(negative of the statistical biaé), ratﬁer
than the statistical bias, against a factor, we will do the
same. Hence, it may be convenient hereafter to refer to the
mispricing as bias, keeping well in mind their distinctign. To
clarify, for example, if we say that the marginal variance rate
bias'is positive, what we truly mean ig that for margianl
increase in the variance rate, the statistical nonlinearity bias
of the formuia decreases.

The design of the Monte Carlo is as follows. For a given
variance rate, we generated 500 sample variances usiﬁg its

distribution and assuming the sample sizé to be 10. '1'8

Towr e e - - - e EE g -

''8The nature of the relationships do not change substantially
for larger sample sizes, the magnitudes become smaller.
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Following Boyle and Ananthanarayanan(1977), we used
0.015/quarter as the riskless rate, and 50 as the striking price
‘59. For a given option, 500 formula estimates are computéd
using the sample varinaces. These estimates are subtracted from
the Black-Scholes model price(the price with the assumed true
variance rate). Averaging the deviations lead to our measure of
bias or misbricihg.

Figures 4.2 to 4.4 ébnfirms(with Monte Carlo) the already
established nature of moneyness bias. At-the~money(S=50) and,
near-the-money(s=45,S=5§) options ave underpricéd, andf‘
deeper—away—from-thé—mery(S=30,S=80) options are overpriced. As
predicted“by the second order bias, the range of underpricing
widens for larger V or T. Note also the problem of dichotomous
bias arising from the arbitrariness of naming the moneyness, .
mentioned earlier in chapter 2. Optionf with the same degree of
moneyness could be underpriced or overpriced depending on V
and/or T.

The option-specificness of marginal moneynéss bias is also
illustrated in these figufes 129, Though both near-in-the-money
and near-out-of-the-money options are underpriced, the marginal
moneyness bias is negative for the former, and positive for the
latter. This can be seen from Boyle and Ananthanarayanan(1977)'s

''®The variance rate is also on per quarter basis, and time to
maturity is measured in quarters.

'2%We use the term 'moneyness bias', rather than the usual
"striking price bias', since we feel that the former brings out
more directly the connotation of the comparison between the
stock price and the striking price.
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diagram also. The deeper-away-from-the-money options may have
both positibg and negative marginal moneyness bias.

Figures 4.5 to 4.7 illustrates the nature of time to
maturity bias. If we define T less than 1 quarter as short
maturity as most existing studies have done, it can be seen that

N
‘these options can both be underpiced or overpriced, depending
upon the moneyness and the variance rate. For example, let us
consider the option with T=0.9 in Figure 4.5 . If the stock
price is 55, the option is overpriced; if, on the other hand,
the stock price is 45, it is underpriced. In Figure 4.6, we see
that when variance rate is 0.025(rather than 0.01), the obtion

with T=0.3 and S=55 is underpriced(rather than overpriced). This

example highlights the problem of the usual dichotomy--short

maturity versus long maturity, and the directions of bias .

-

attached to them. =7 : L
For at-the-money options, the marginal time to maturity
bias is always positive. This is also evident from the

comparison of peaks in Figures 4.2 to 4.4, for a given variance

v
w

rate.
As for not—at—tﬁi;money options, the range of underpricing
versus overpricing again comes into play. For S=435 and S=g5;
except for very short maturity low varianée rate options, the
marginal time to maturity bias is positive. This exception can
be understood going back to Figure 4.2 , and exploiting the fact
that higher time t§ maturity shifts the curves(for moneyness

bias). in similar way as higher variance rate. When the time to
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maturity or the variance rate decreases, as shown earlier, the
range of underpricing around the at-the-money option shrinks.
Thus the stoék prices 45 and 55, with the striking price fixed
at 50, would move out of the underpricing range for low enough T
and VvV, and bg positioned deep in the deeper-away-fromthé-money
range. In that rénge, the higher maturity curve would be
situated below the relatively lower maturity‘cufve, thus
indicating negative marginal time to maturitf‘biasf

Similarly,wié find in Figures 4.5 to 4.7 that except for
very long maturity-high variance rate options, the marginal time
to maturity bias for S=30 and S=80 is negative. ﬁe can 1
understand the exception by recollecting that when the time to
maturity or the variance rate increases, the range of
underpricing widens around the at-the-money option, and then
imagining that the $=30 and S=80 points will be positioned in
the underpricing range for long maturity-high variance rate |
options. In this range, marginally higher time to maturity curve
- would be situated higher, resulting in positive time to maturity
bias.

Figures 4.8 ﬁo 4.10 produces results for the systematic
relationship with the variance rate which are largely similar to
those for the time to maturity. For the range of parameter

variation considered, here we could not detect the exception in

the direction of marginal bias for S$=45 and S=55,
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Now that we have considered the nature of systematic
relationships of the nonlinearityrbias with the factors, both in¢
the dichotohous and the functional sense, we are in a position
to mention the implications for the validation techniques.‘Since
the consequences for the dichotomous bias approach is hoped to
be ciear from our discussion above, the following is offered in
the context of functional bias approach.

Consider the effect of incomplete control for other factors
when considering the systematic relationship to a factor. Let us
suppose that wé have two options represented by the poiﬁts C,
and c, in Figure 4.4. Both these options have the same time to
maturity, but c, is relatively deeper-out-of-the-money, and has
a lowér variance rqté. 1f we do not control for the variance
rate difference, and try to relate mispricing functionally to
moneyhess, we would end up with the prediction that higher
degree of moneyness leads to higher mispricing, if, in fact, the
.‘lack-Scholes model is valid'?'., That this prediction would be
misléading can be seen by considering the point c;. This 1is an
option with the same variance rate as c,, and th§ same degree of
moneyness as czl By controlling the variance rate, we would
rougly move from ¢, to ¢;, not to c,. This ifdicates that our
prediction of positive relationship with moneyness was, in fact,
induced by the difference in the variance rate, not by the
difference in moneyness. |

'2'When Black-Scholes model is valid, the only source of
systematic mispricing is nonlinearity bias, for the formula
estimate. :
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Tﬁe previous example also indicates the need for
option-specific estiamtion‘in order to investigate marginal
bias. Iffwe would bave regfessed mispricing on moneyness using
the two options ¢, and c, differing only in moneyness, we would
get a coefficient close to zero, when the Black-Schole’s model is
valid. But the tfue marginal bias at ¢, is negative, and at c,,
close to zero. Tec identify such differences in marginal bias,
fully option-specific estimation is required.

Next we consider the effect of sample mixture of optioﬁs.

- Suppose that we have two samples,'the first consisting of a, and
a,, and the second consisting of(é;iand a,, the points shown in
Figure 4.4 . In both samplgs, theésaﬁple options Qiffer only in
moneyness. If we plot misprigfﬁ; against moneyness, or perform
corresponding linear-regressién, we would predict direct
relationship in the first éample, and inverse relationship in
the second sample. Again,yﬁh&s ancmaly could have been avoided
by option-specific estimation.

The above examples were in the context of investigating
moneyness bias, but their essence applies to the investigation
of time to maturity and variance rate biases as well. It is also
clear that the findings of systematic relationships even when
the Black-Scholes model is valid, are as likely as the errors
involved in prediction due to the limitations of the techniques
of investigation used. In particular, & sound investigation of
the marginal biases looms rather difficult, and may even be

infeasible.

136



SECTION 8

Let us summarize our,k findings in this chapter. The
Biack-Scholes formula with an estimated variance(or volatility)
rate produces biased estimates of the Black-Scholes model price.
Thregaalternative estimators for the Black-Scholes model price
Qer; c9nsidered, one of these previously proposed by Butler and
‘Sghacthr$}983a). Our Monte Carlo results do not indicéte
sﬁperiority for any'gf these estimators over the conventional
formula estimator. =

The nature of the formula estimator's bias was explored in
detail. We found that the sign of this bias would depend on
whether the indicator of moneyness (1n(S/X)+rT) is greater or
less than half of the variance(VT) in absclute value. The Monte.
Carlo results confirmed the striking'price bias of Boyle and
Ananthanarayanan(1977), and the time to expiration and variance
rate piases seemed to depend on the level of moneyness. The
option-specificness of the marginal nature of these biases
require fully option-specific estimation, and may have important
bearings upon .the value of results based on alternative

procedures.
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APPENDIX 4.1

A SIMPLE METHOD OF COMPUTING HIGHER ORDER DERIVATIVES OF

BBLACK-SCHOLES WITH RESPECT TO THE VARIANCE RATE

Let us define the operator D as d/dV, and denote the r-th
‘ : r
derivative of the Black-Scholes model price . CB(V) as D C. Then

it can be shown that:

(1/v) Vv
D'C = a,’ ‘ b, (1/¥V) h...(1)
D?C = [D'C] K(V)....(2)
where

a,=exp{-0.5(1ln(g))?}

b,=exp(-1/8) .w

h=0.5/v(2mg), and g=S/[Xexp(-rT)]
a=ln(a,), b=ln(b,) and

K(V)= b-(a/v?¥)-(1/2v)....(2A)
At this point, let us recall Leibniz's Formula:
n n n n-1 n n-2-

D (uv)= D (u)v+ C, D (u) D'(v)+ C, D (u) D2(v)+..

_ n. n-r r n
+ C D (u) D (v)+.,.+ u D (v)..(3)
r

wvhere u=u(V) and v=v(V).
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In our case, u;D‘C and v=K(V).
Now, the n-th derivative of uv correspond{\ié (n+2)-th
derivative of CB(V). So, for n=1,2,...,

n n+2
D (uv)=D C

n+1 n n n n-1
=(D C)K + C,(D C)(D'K) + C,(D C)(D?%K)+..

n N-r+1 r . n
+,.+ C (D C)(D K)+,.+(D'C)(D K)...(4)
r

Thus the steps of computing higher order derivatives will
be:
'Step 1:Compute the quaﬁtities a,,a,b,,b,and h for a given‘
moneyness(g=S/Xexp(-rT)).

Step 2:For a given V, compute D'C from (1).

Step 3:Compute K(V) from (2a).

Step 4:Compute D2C from (2), utilizing the values of D'C
and K(V) from steps 2 and 3.

Step 5:For the highest order of derivative for CB(V) being
J, compute the followings:

r - r+1 r+i
D K(V)= (-1) r! [{a(r+1)/Vv}+0.5]/(V ) e.e..(5)

for r=1,2,...,(3-2).
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Step 6:Compute D3C=(D2C)K(V)+(D‘C)(D‘K); by utilizing the
values from steps 2 through 5.
Step 7:Compute D*C=(D?C)K(V)+ 2C, (D2C)(D'K)+ 2C,(D'C)(D?K)

utilizing the values from steps 2 through 6.

In general, there will be (J-1) terms for the J-th

derivative of CB(V).
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CHAPTER 5:

CONSTANT COEFFICIENT REGRESSION RESULTS
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In chapter 2, we emphasized the need of én appropriate
regression model for empirical investigation of various aspects
of Black-Scholes pricing. The limitations of the existing
regre ion studies were,also'examined there. A major shortcoming
seemezfto be tﬁe lack of understanding about the linear™-
regression results, over and above the inattentiveness to the
effects of probable econometric problems. Much of this may be
‘attributed to the absence of effort in defining a regression
model with features speciél to the problem of empirical

investigation of Black-Scholes pficing. In chapter 3, we
presented such a model, and derived an estimable regression
equation. This regression model shows that, in general, the
regression coefficients afe option-specific and do not |
necessarily reflect the marginal biases. But the existing
regression results are produced: exclusively by constant
coefficient estimation, which may or may not be a reasonable
approximation. Moreover, the stochastic regressor problem
arising from the use of estimated volatility rate as a regressor
has been overloqked so far.

In this chapter we report further constant coefficient
regression results in continuity with previous studies. But our
purpose is different here. First, to produé; preliminary result§
which would be used as inputs and/or basis for compar}son with
the results in the forthcoming chapters. Second, to point out

some of the effects associated with the existing procedures by

replicating them,
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The remainder of thevéhaptér'is organised as follows. The
data sourcés are mentioned in section 1. Sample information . {
about the explanatory\va;iables of‘regression is provided in
se;tion 2. Section 3 deals with the nature of thgﬁpﬂéék-Scholes
formula estimates' deviations from the actual mé}ket prices'??,
Thé results of broad classification technique, plotting
mispfzgigg‘égainst individual factors, and simple regressions
are presented here. In section 4, constant coefficient multiple
regression results are discussed,.kgeping#in view the regress{;n
model offered in chapter 3. Sec£ion 5 ié on the problem of |

stochastic regressor. Finally, in section 6, the findings of

this chapter are summarized.

SECTION 1
Folloﬁiﬂg thevstrategy of sampling of Geske ang
Roll(1984a), we selected tﬁe date February 05,1981 randomly.
"Then a sample of 383 call optioné written on 54 stocks traded on
the chosen date in the CBOE was drawn randomly from the data
base installedaét Simon Fraser University'?3. The stock prices
and the ;ption prices are daily closing prices'?®

'22 We have used the simple stock price adjustment version of
the Black-Scholes model.

'23 The data tapes were obtained from the Interactive Data.
Corporation, Options History Service

'2% See Cox and Rubinstein(1985), pp 341, for the problems
associated with using closing prices. Some of these problems
are: (i)often the stock and the options close at different
times, the former being an inadegaute approximation for the
contemporaneous stock price; (ii)it is difficult to discern
whether the closing option is at the bid, at the ask, or in
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The maximum qumber of options for a single stock is 17 and the
minimum number is 1'2°, Out of the 383 options, 101 options{on
30 different stocks) had no dividend payment prior to their
contractual maturity, 149 had a ﬁingle dividend, and 133 had two
or more. We screened out the 133 options with two or more
dividends, thus retaining a total sample of 250 options.

The volatility rates(daily) for the stock returns have been
estimated from the daily return data of the Center for Research
in Security Prices data base, over the‘period of 180 days prior
to February 05,1981, Unbiased estimates of the‘volatility rates
were formed by adjusting the sample standard deviations of
percentage stock returns. Given the expositions in
Merton(1973a), pp 871-873, and, Jarrow and Rudd(1983), pp 90-91,
we expect this to be 5 good approximation to the estimation of
the volatility rate. Cox énd Rubinstein(1985), pp 257-258,
suggests the sample standard deviation of logarithms of one plus
the stock return as the eStimato;} while Butler and
Schachtér(1983a) proposes the sample average of squared
percentage changes. Thg latter authors assume zero drift for the
stock return'2¢

- Y24 (cont'd) between, thus giving rise to &n interval of

uncertainty which may be a significant proportion of the option
price; (iii)closing quotations do not provide information about
the depth of the market. Also, see Patell and Wolfson(1979),pp
135-136, for the biases in ISD estimation using closing prices.

'250nly 3 out of the 54 stocks have 1 option each.
126 Yet other estimators are available in the literature, which
may be termed 'non-classical'. Parkinson(1980) proposed an

estimator based upon the high and low prices, which was modified
by Garman and Klass(1980) to include opening and closing prices
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We have used a risk-free rate of 14.83% per year f@r all

" options '?7, This is the 1981's second quarter's average
discount rate on new issues of three-month U.S. Treasury Bills,
taken from International Financial Statistics,June, 1982, volume
35(6). Infofmatién from the Wall Street Journal shows that on
February 4, 1981, the new 13 week issue was trading at an

average return of 14.85%. It appears that our rate can be

considered as a good proxy '28 129,

SECTION 2
In this section, sample information about moneyness, time

to maturity, estimated volatility rates, and dividend-related

126 (cont'd) as well, and to adjust for the number of trades. The
estimator of Beckers(1983) combines the traditional
close-to-close estimator and Parkinson's estimator in a .
stock-specific manner. Becker goes on to include .the ISDs to
form better predictions of close-to-close stock price
variability.

'?2’We transformed it to daily rate.

'28The choice of proxy for the riskless rate differs across
studies . For example, Schmalensee and Trippi(1978) used daily
rate equivalent to the preceding Monday's auction rate on
i3-week U.S. Treasury Bill, while Blomeyer and Klemkosky(1983) .
used the mean of bis-asked quotations on the day before the
transactions observation date for a Treasury Bill with similar
maturity as the option. Whaley(1982) interpolated the effective
yields of the two Treasury Bills whose maturities closely
preceeded and exceeded the time to maturity of the option.

4 s
'291t has been ‘observed by Cox and Rubinstein(1985), pp 217,
that even more than doubling the risk-free rate leads to anly
about 8% increase in Black-Scholes value. MacBeth and
Merville(1979), pp 1174, observes that their results would have
remained virtually unchanged if a single risk-free rate were
used instead of maturity-specific rates.
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information are provided'?°,

Zero-dividend Subsample

According to both indicators of moneyness 1n(S/X) and
1n(g)=1n(S/X)+rT, this subsample of 101 options seem to be
in-the-money on the average. But according to 1n(S/X), wé have
more out-of-the-money than in-the-money options; while, 1ln(g)
says we have more in-the-money than out-of-the-money optionsl
This is probably due to the fact éhat marginally out-of-the-
‘-money options, according to 1n(S/X), came out of the
out-of-the-money range when rT was added according to ln(g). But
due to the right-skewness of the distribution within the
subsample, the in-the-moneyness of in-the-money options is
possibly not very deep.

On the time to expiration sidé, the options seem to be
short maturity(less than S0 days) on the average. The riéht-
skewgd distribution indicates the abundance of lesg-than
‘-~average short maturity options.

Estimated volatili£y rates have symmetric distribution. But
the avefage estimated volatility rate in this subsample is
slightly higher than that of the single-dividend subsample.

!

Single-dividend Subsample <

According to both indicators of moneyness, this subsample

of 149 options seem to be near-out-of-the-money on the average.

1306ee also Tables 5.1 and 5.1A,
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ouﬁ-of-the-money options than in-the-money, as expected ;hé"
1n(g) indicator gives us a significantly smaller préportion of
out-of-the-money options compared to ln(S{X). This is,~in_§é}t,
coming from the average longer maturity nathré of oﬁtions in
this subsample. The left-skewed disfribution for time to
maturity says that there are more opgions wifh above-average
time to maturity than with below;ayerage timefto maturity.

The distribution of estimated volatility fates is

L]

approximately the same as that for the zero-dividend subsample,
~ but with slightly lower mean. %

Total Sample

The mingling of the effects of the differences in the
degree of moneyness énd time to expiration of the two
éaubsamples led to contradictory characterization of moneyness
for the total sample, according to the two indicators of
moneyness. Average near—in*the—moneyneés is indicated by ln(g),
while 1n(S/X) says that the total sample is:
near—out-of-the-mdney on the average. The right-skewness of the
distribution, of course, shows the preponderance of
near-out-of~the-money options.

| Inspite of the push-up by longer maturity options in the
single-dividend subsample, the total sample remained short
maturity on the average. This may be due to the abundance of
very short maturity options in the zéro-dividend subsample'?’',

'31 since dividends are usually paid on Quarterly basis, we
would expect the zero-dividend options to be of short maturity.
Thanks to Professor Whaley for pointing this out to me.
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The distributien of egtimatéd volatility rates is similar
to the two subsamples.

It is to be noted that the average characterizations are
meant for general overview, and not to be related to the
empirical results to follow. The average moneyness
characteri;gﬁion, in particular, is very arbitrary, in view of
our discussion in chapter 2 and our results about the

-nonlinearity bias in chapter 4. ey

Dividend-related Informjtggn

The average size of the single dividend in the
sing;e-dividend subsample is about 41 cents, and the dividend as
a proportion of the stock p;ice averaged to about 1.02%, varying
from 0.01% to 2. 5. When we escrowed dividend, the mean of the
stqck price ad?Lsted for dividend was only 40‘cents lower than
the mean of the unadjusted stock prices.

Comparing the time to ex-dividend day and, the lag between
the qa;gividend day and the day of contractual maturity, we find
that éhe ex-dividend day is, on the average, closer to current
date(February 05,1981) than to the maturity date '3?. This, of

course, is expected to have dampening effect on the probability

of early exercise.

'32The average time to ex-dividend day is 44.5033, and the
average lag between the ex-dividend day and the maturity date is
52.302.
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The necessary condition for early exercise igs 133
D-X{1-B(T-T,}>0. We checked for this condition in our
single-dividerid subsample. The mean value for the left-hand side
expression came out as -0.559942, indicatingkprobably a lack df
strong early exercise possibility in the subsample. There are
only 32 options where it may be optimal to exercise early. We
may speculate about probable feasons for this: (i) the options
were on the average out-of-the-money; (ii)the ex-dividend date
was on the average closer to the current date than to éhe

maturity date; and (iii) the size of the dividend did seem to be

low on the average.
SECTION 3
Information about mispricing by the Black-Scholes formula
estimates is provided in this section'3®,

Absolute Prediction Error versus Relative Predigtion Error

{/-_\\\\\\\ In.- both the zero-dividend and the single-gividend T
™
i .sﬁpsamples, the dollar difference of formula estimate from the

; |
\ //’Eﬁm?ket Erice, referred to as absolute prediction error says that

\{fifjé?fow and Rudd(1983) provides the sufficient condition for
no early exercise. This implies the necessary condition for
early exercise.

133ye dia not find any unusual market behavior around the time
of our observation, éxcept for the general market uncertainty
about President Reagan's economic policies.

o

149



the options are, on the average, o&erpriced by the model!'?S, On
the other hand, the percentage(takeﬁ(gut of formula estimate)
difference, alternatively called the relative prediction error,
indicates average underpricing'?s, '

For the zero-dividend subsample, we observe the following
from Table 5.2:

(a)there are more out-of-the-money options than
in-the-money options'37;

(b)the number of overpriced options is almost double the
nﬁmber of“underpriced options;

(c)more out-of-the-money options are overpriced than
in-the-money options;

(d)the overpricing of out-of-the-money options is
substantially higher than that of the in-the-money options.

Thus, the absolute prediction errors are expected to be
negative (heaning overpricing) on the average. These, whén

weighted by the inverse of the formula estimates, the highly

overestimated out-of-the-money option values are expected to

e ——— —— i —— ————

'35 The mean absolute prediction error is -0.229993 for the
zero-dividend subsample and -0.293016 for the single-dividend
subsample. The mean relative prediction errors are 2.38457 and
0.062257 respectively.

'36 Black(1975), pp.4!, observed~that there are times when most
traded options seem underpriced(overpriced). He advanced two
explanations: (a)market's estimates of volatilities to be
generally lower(higher) than the estimates used in the formula;
(b)factors unrelated to the Black-Scholes model may be affecting
option prices.

'37 The indicator of moneyness we would use here, is, 1ln(S/X),
unless otherwise mentioned explicitly. .
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lead towards positive value for thé average relative prediction
error, |

A similar explanation applies to the single-dividend case.
In addition, we note that a greater proportion of overpriced
out-of-the-money options and their larger mean absolute
prediction error lead to to a smaller(relative to the
zero-dividend subsample) mean relative prediction error for the
single-dividend subsample.

The above discussion indicates that a probable source of
conflicting empirical results could be the difference in the

measures of formula mispricing adopted.

Formula Mispricing and Categorisation of Options

As we have mentioﬂed in 2, one of the tools of reaching
conclusion about formula pricing, used in the existing empirical
studies, has been tofdo broad stratification of the samplé‘
" options, and then compare the strata means of the measure of
mispricing. Our grouping in Table 5.2 is not exactly similar.
But if we compare the mean mispricing(dollar deviation) of our
groups, we would notice the‘following: |

in both the subsamples, options that are relatively

deeper-away-from-the-money(closer-to-the-money), of relatively

shorter(longer) time to maturity, and with relatively
lower(higher) estimated volatility rate on the underlying

stock's return, tend to be underpriced(overpriced).




To be more careful, this observation does not enable us to
relate formula mispricing systematically to any one of the
individual factors. For example, it would not be proper to say
that shorter(longer) time to maturity options are.
uﬁderpriced(overpriced), since we are unable to say, at least at 5‘
this stage, whether the underpricing -averpricing is due to the
differencé in any one of the factors alone, or some combination :
of ﬁheir differences. As was pointed out in chapter 2, this is a
major shortcoming of the broad classification technique., and
hence of the existing results based on this technique.

We also note.that neither Black(1975)'s nor MacBeth and
Merville(1979)'s dichotomous striking price bias is supported by
our subsamples. Both in-the-money and out-of-the-money options
are, on the average, overpriced, rather than one group being
being underpriced, while the other being overpriced. As can be
seen from Table 5.2, dichotomous bias pattern can be seriously
affected by the sample mixture of options. For ex;@gle, had the
zero-dividend subsample been comprised of only thé groups of

ZU0(200) and z01(2zUI), MacBeth and Merville(Black) would have

been supported by the gfouping technique'3®,

Plotting or Regressing Formula Mispricing

Against a Single Factor

——— e = v - e =

'38 We are not being strict here about Black's grouping
deeper-in-the-money versus deeper-out-of-the-money, rather than
in-the-money versus out-of-the-money, the latter used by MacBeth
and Merville.
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When we plot formula mispricing against moneyness, no
discernible pattern in the ;elationship emerges in any of the
sﬁbsamples. For time to maturity and estimated volatility rate,
there seems to appear inverse relationships, these relationships
being less strong in the case of the zero-dividend subsample.

The‘simpie regression results reported in Table 5.3 bear
support to the above visual observations. Slope coefficient for
moneyness is not statistically significant(at 5% significance
level) in any of the two sﬁ%samples. Those for time to maturity
and estimated volatility rate are negative and significant in
both the subsamples. As we may like to recall, Whaley(1982)'s
simple fegression results for the formula estimate are
similar"39.

We should keep in mind that although visual obser&ations or
simple regression results do not really help establish
conjectures about marginal biases, they prompt us to explore
with more appropriate techniqgues.

N

Formula Mispricing and Black-Scholes Validity

As established in chapter 4, a familiar result about the
nonlinearity bias of the formula is that the formula estimate

tends to understimate(overestimate) the model price for

__________________ -
'*°Whaley considered both simple stock price justment and
Pseudo-American versions of the Black-Scholegs and the measure
of mispricing was relative prediction error{ We are considering
only the simple stock price adjustment version of the
Black-Scholes, and our measure of mispricing is absolute
prediction error.
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closer-to-the-money and at-the—money(deeper—aWuy-frdm-the-money)
options. Though an observed(empirically) pattern similar to this
does not necessarily validate the Black—Scholeé model, one

nearly oprsite to the above patpérn would raise reasonable
doubts about the validity of the Black-Scholes model.

In both of our subsamples, the mispricing pattern is nearly
opposite to that of the nonlinéarity'ﬁias of the formula. This
can be seen from Table 5.2 and Figures 5.1 and 5.4 . Relatively
closer—to-the—ﬁoney(away-from—the-money) options tend to be
overpriced(underpriced). In addition, the. two at-the-money
options in the zero-dividend subsample afe overpriced by the
formula estimate. Though there is the possibility of sampling
error, these patterns(é;l in the opposite direction to the
nonlinéarity bias) would be too much of a chance fluctuation.

Thus, at this elementary level of investigation at least,
we do not find support for the Black-Scholes model. This
conclusion of ours is based upon analysis similar to the
dichotomous bias approach, the souhdness of which is very much
in question. In chapter 2, the functional bias approach and the
multiple regression analysis was suggested as a relatively

better package. We now turn to our multiple regression results.

SECTION 4

Constant Coefficient Multiple Regression Results
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13 # . . l
The multiple regression model we presented in chapter 3,

yielded the estimable regression equation:
C -CB(BT )=8" % + n B
J -3 3 B) J i o '

As we remember, this estimable version followed the
specification of the volatility rate as a regressor in 97., and
using estimate of the volatility rate as a proxy for the true
volatility rate. For comparability with the existing results,

and also for the ease of interpretation, we are now suggesting

the moneyness (1n(S /X )=m ) and the time to maturity(T ) of the
option as the two ogheg rearessors in 67_«““° Adding an
intercept, we can write the regression eéuation as:
C;=CB(PT )=a + ¢y m + y, T + ¢y & + n :.............;.(5.1)

J ] J 3 J ] J 3] J

The coefficients in (5.1) are subscripted by observation to
denote option-specificness of marginal biases. In chgptér 4, we
have seen that the noﬂlinearity bias of the formﬁla alone leads
to option-specific marginal biases. This means that the
coefficients in (5.1) are functions of at least the.includea

variables'®' Note, in addition, the coefficients are not the
'%%To recall, we are using simple stock price adjustment version
of the Black-Scholes. The formula is the same as that for the
European call version, but the stock price is adjusted for the
escrowed dividends, if any, and the volatility rate is from the
stochastic process of the adjusted stock price.

'*! When the Black-Scholes model is not valid, the coefficients:
may be functions of some additional variables not included here.
An example would be the variable--the lag between the
ex-dividend day and the maturity day, if the Roll-Geske-Whaley
model is valid. We remind the reader that we are not attempting
to test options market efficiency, we are rather accepting it as
a maintained hypothesis.
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option-specific marginal biases'®?, If there were no
nonlinearity bias of the formula, then the validity of the
Black-Scholes model would have implied zero values for the
coefficients. Thevinéﬁfference to the nonlinearity bias may have
led the users of regression to interpret the ccefficients as
(marginal)biases. -

I1f we assume that the coefficients are constaht across
observations, considerable simplification in estimation is
‘achieved. Constant coefficient estimationrimplies: for each
factor,‘we are approximating the functioh>relating mispricing to
the factor by a straight line, the slope of which is invariant
to the lefel éf any of the factors, at least over the range of
sample variation. For example, let us consider the coefficient
of moneyness in the zero-dividend subvample. Suppose that the
Black;Scholes model is valid. Then, Figures 4.2 to 4.4 tell us
that the marginal moneyness bias would depend, both in terms of
sign and magnitude, on the levels of moneyness, time to
méturity, and £ru¢ volatility rate. Thus, if it were possible to
write the nonlinearity bias igathe form of 97 3_; the |
coefficient ¥, in (5.1), which is equal to ﬁ?ljin this case, .

J ]
would be a function of the variables mentioned'*®?,

- - — - —————— ————

%2 1n chapter 7, our exposition on the basis of second order . .

approximation to the nonlinearity bias shows that when the
Black-Scholes model is valid, the coefficients would be
functions of the marginal biases.

'83 1n chapter 7, we show that the second order apgroximation to
the nonlinearity bias can be written in the form 67 §

J 3
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Now suppose’thatvMerton's jump diffusion model is valid,
and the model misspédification error of Black-Scholes
overwhelmingly outweighs the nonlinearity bias of the
Black-Scholes formula estimate. Merton(1976a)'s Figure 1,pp 341,
indicate that‘the marginal moneynéss bias would depend on the
level of moneyness. Tﬁough figures were not drawn for varying'
levels of time to maturity, total volatility rate, jump |
frequency,\or the relative contribution of the jshp component to
the total volatility rate, his table$ bear indirect support that
the curve in Fiqure 1 would be shifting due to these variations.
Thus, the coefficient ¥, in (5.1), which Qould now be equal to
¢ will be a function gf the included variables plus some
exgra variables,

In.both cases of our example, the assumption of a constant
slope coefficient would be reasonable only if the sample oﬁtions
have extreme éimilarity in terms‘of the variables in question. A
practical problem to;identify such a sample is the unknown
nature of the true volatility rate or parameters determining
it'1ﬂﬂ.

Unless a truly homogeneous sample is available, one should
be careful ;n interpreting the estimated constant coefficients
as the marginal biases, though they may appear to be so. With
this thought in mind, we have taken advantage of the simpliéity

of constant coefficient estimation in chapters 5 to 7. But we

'%%7he design of a homogeneous sample is an item-on our agenda
for future research.

Y
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have tried to avoid ungualified interpretation of the
coefficient estimates as marginal biases.

The Ordinary Least Squares(OLS) regression results for
(5.1) are presented in T;R}e 5.4, both for the zero-dividend
subsample and the single-dividend subsample. As we consider the
statistical significance of individual coefficients at 5%
significance level, we do not find the coefficient of the
moneyness regressor to be significant in any of the subsamples.
Whaley(1982) and, Geské and Roll(1984a) found similar result.
Geske and Roll(1984a) pointed out that the (so-called)striking
price bias is more pronounced in comparing options on the same
stock: But we would have reservation about interpreting this
insignificance as the insignificance of the marginal striking
price or moneyness-bias, though our exposition in chapter 7
indicates that this may be the case under certain
circumstances'®s,

'The coefficieg} of time to maturity is significant in both
subsamples. We noted that this regressor has high variability
which may have contributed to the significance.

The coefficient of volatility rate has been found to be
significant in the single-dividend subsample, but not in the
zero-dividend subsample. The latter part of this result is in
céntrast to all previous studies, where the ‘coefficient was

- e - —— - - —— - -

'45 On the basis of second order approximation to the
nonlinearity bias, the coefficient of moneyness is a ratio of
two option-specific magnitudes, the marginal moneyness bias
being in the numerator. Thus smallness of this marginal bias may
also imply smallnes of the coefficient.
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found to be persistently significant.

Similar to the preceding result, the intercept gained
;tatistical significance from the zero-dividend subsample to the
single-dividend subsample. It is to be mentioned tﬁat both
Whaley(1982) and, Geske and Roll(1984a)'s regression results had
significant-intercepts. As we may recall from chapter 3, the
intércept term would pgrtially capture the effect of any
relavant variable excluded from the regression. In . this case,
some early-exercise-related variable might have caused the

result'®¢,

The F:testé of the signifgpance of regressions indicate
rejection in both the subsample; of the hypothesis that all the
slope coefficients in a regression are jointly zero.

In the light of our observations about testing model
validity in chapter 3, the'above results seem to lend support to
tﬁe view that: (a)the Black-Scholes model may be complete in
regressors, but functionally wrong in the non-diviaend-paying
case; (B)the Black-Scholes model may both be incomplete ih
fegreésors, and functionally wrong(in the included regressors)
for the dividend—paying case. But we would like to emphasize
that our observations in chapter 3 were based upon

option-specific regression, while the present results are from

constant coefficient regression.

186 There may also be an statistical explanation in that the
sheer magnitude of the coefficient of volatility rate in the
single-dividend subsample is responsible for the significance of
the intercept there. ~
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Regarding the signs of the coefficients, if we may re}e

the forthcoming expositions in chapter 7, one is more likely to
be misled in interpreting the signs of the estimated constant
coefficients as the directions of marginal biases than in

equating the magnitudes(zero versus non-zero). However, an

. —

interesting feature of our result .regarding the signs, which
deserves some discussion, is that Ehe coefficients ofﬂmoneyness
dnd volatility rate changed their signs from the zero-dividend
subsample to the single-dividend subsample'®?. In the
zero-dividend subsample, the sign of the coefficient of
moﬁeyness seem to support MacBeth and Merville(1979)'s finding,
while in tﬁ; single-dividend subsample, Whaley(1382) and, Geske
and Rollk1984a) are supported. For the coefficient of volatility
rate, the.Iess—debated negative sign appears in thg
‘single-dividend subsample, while the zero-dividend subsa;ple
produces the first(to our knowledge) finding of positive sign,

Let‘us see if we can advance some suggestion as to the
cause of such reversal on the basis of our regression model in
chapter 3.

Consider the hypothetical case that the jump-diffusion
model of Merton provides the fair value(CM) of a'hon-dﬁvidendf
-paying option . In the dividend-paying case, some appropriate
model, correéponding to the jump?diffusion process, would
provide the fair value(CMD). In the zero-diviaend_sase, the

__________________ )

'*7 It may not be qQuite appropriate to consider sign reversal of
coefficients which tested to be not significantly different from
zero., Thanks are due to Francis Boabang for pointing this out.
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coefficient vector ¥ ¢°) would have.two parts, one part
) Bj :
& (9 coming from the difference CM-CB, and the other
Bj \
g (% arising from the nonlinearity bias of the Black-Scholes

J -
formula. In the single-dividend case, ¢ ('’ can be thought to
. Bj
have two parts, & ¢'’(a) duerbo CMD-CM, and & (''(b) from L
Bj Bj
CM-CB. Thus, including B.“’ from the nonllnearlty bias of the

J
Black-Scholes formula, ¥ ('’ would have three components.

. Bj
Unless the options in the two cases are very different(except

for dividend), we would expect & (9%'=p (1)(b), and g (2! =8
\ o , Bj  Bj j j
1), But ¢ ¢'’(a), the difference in pure model

Bj
misspecification error of Merton's in terms of GT., may cause

]
the signs of some or all elements in ¥ (') to be different from

. . By~ '
the signs of the corresponding elements in ¢ (0), 148
: , B
Note also that part of the model misspecification error may

come in the form of omitted variable effect, § & . Ordinarily,
‘ 8]
we would imagine that this effect get embodied in the intercept

estimate, thus leaving the slope estimates unaffected. But we
should not overlook.the possibility that the omitted variable(s)
is(are) significantly correlated with some or all of the
included regressors. Under such circumstances, the OLS esfimates

of the included regressors would be biased. The signs and

T T TP R ¥
'%8Thus, for example, the coefficient for moneyness would have
three components in each subsample. Let the component coming
from CM-CB be equal across the subsamples and same be the case
for the component coming from nonlinearity bias. But the
remaining component coming from CMD-CM in the single-dividend
subsample, which is zero in the zero-dividend subsample, will
lead to different coefficient values across the subsamples and
may even lead to different signs.

 \§
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[[
magnitudes of these biases would depend upon that of the
correlation (between the included and the excluded) and the
coefficients.of the excluded Qariables(if they were included).
Thus, the phenomenon of omitted variable may contribute to sign
reversal of included regressors' coefficient estimates in two
ways: (i)variables‘pmitted in the two cas;s are different;

¢ \
(ii)the same omit?ed variables, but having different \\

pe]

coefficients in the two cases.
Ve

Comparison with Simple Regression Results

It may also be interesting to consider the omitted variable
effect in the context of simple regression results such as ours
or Whaiey(1982)'s. )

There are two sign reversals in our case, as we go from
multiple regresgion to simple regression results. In the
zero-dividend subsample, the multiple regression éoefficient of
volatility is 1.60941, where as the simple regression
coefficient is -15.2183. In the single-dividend subsample, the
coefficient of moneyness change from -0.000703 in the multiple
regression to 0.202008 in the simple regression.

Following Goldberger(1964),pp.194, we decomposed each of
these multiple regression coefficients into the corre;ponding
simple regression coefficient and another term incorporating the
omitted variable effect . In the casevof volatility rate's

coefficient, strong positive covariance of estimated volatility

rate with time to expiration, in association with negativity of
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time to expiration's multiple'regression»coefficient‘produqeé
the sign reversal. In the case of the coefficient of moﬁe&he;s,
large negative multiple regression coefficient of volatiliLY~
rate coupled with negative covariance between moneyness and s
estimated volatility led to the sign reversal.

' Our results above raise doubt about the robustness oOf the
simple regression results claimed by Whaley(1982),pp.48. '%°¢
MacBeth and Mervill=(1979)'s finding of pésitive coefficient for
the meaéure of moreyness in their volatility rate-excluded two
“variébie regressions, is also cast in doubt by our results..It

- appears that the omitted variable effect may have contributed to

the conflicting results about the direction of the so-called

’

striking price bias.

SECTION 5

Infthe‘foregoinglsection, we noted-that the coefficients of
monéyness and volatility rate changed their signs from the
zero-dividend'subsample to the single-dividend subsample.RWe'
advanced two probable reaiins, (i)the difference in the médel

misspecification error of 4he Black-Scholes, and (ii)the

difference in the omitted variable effect across the two

Y

subsamples. In this section, the stochastic regressor problem is

-identified as yet another source of sign reversal. The

-

stochastic regressor problem arises due to the fact that the

o - -y - - -

'*IWhaley reports that his s1mple regression results remaln
+virtually unaffected when various comblnatlons of the regressors

are used 1nstead
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regressor volatility rate is measured with error, when we use

estimated volatility rate in its place. .

To begin with, the stochastic regressor problem is to be

separated from‘a similar problem, namely, the errors-in-variable
problem. The latter problem has been discussed extensively in
the context of grouping of portfolios for empirical testing of
‘the Capital Asset Pricing Model, and was first mentioned by
Black and Scholes(1972) in the context of testing the

Black-Scholes option valuation model.

Errors-in-variable Problem of Black and Scholes(1972)

,45; the basis of historically estimated'variénces, Black and
Scholes ranked the stocks from the miniimnm to the maximum
estiméted variance, and assigned options on the 25 percent of
the stocks wi;h the lowest estimated variances to the first
portfolio, the options on the next 25 percent of the stocks to
the second portfolio, and so on. Then buying the options at %
model prices estimated with the estimated variance rates, and
adjustihg the hedge return of portfolios for the market risk,
Black and S?holes found that the two portﬁ6T;;;\§ith the
lower (higher) estimated variances gave positive(negative) excess
hedge returns. Thus, they concluded that the model(estimated)
overpriced options on high variance(estimated) stocks, and
underpriced options on low variance(estimated) stocks. In this
last sentence, the parenthesized words are ours, and we think
they are important. They attributed this phenomenon to the

\
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errors-in-variable problem.

Let us ;ow outline the errérs—in-variable proBlem 180,

If the,t;ue variance ;ate of a stock is low, then if thé' -
estimated variance rate for the stock is also low(among the set
of estimated variance rates), it will duly be assigned to a low
variance category; But due to measurement error, if the
eétimated variance rate comes out high, it will be unduly placéd
in the higher variance rate category.

If the frué variance ge;e of a stoék is high, then if the
estimated variance rate is high, it will duly be categorised as
high variance. But due to measurement error, if it is estimated
low, it will erroneously be placed in a lower variance category.

Thus_ Black and Scholes's portfolios of lower(higher) 50
pércent estimated variances will probably céntain options on
stocks with the trﬁe variance rate being high(low).'®' For these
’gggiggs, the estimated médel price will be“lower(higher) than
the‘fair price or the model price; For the duly assigned
options, expected excess hedge return, when transéction at model
price, being zero, the erroneously assigned options will lead to
positive(negative) excess hedge return for the respective
‘éortfolio. The estimated model price thus would seem to

underprice(overpice) options on low(high) estimated variance

stocks. But the note of caution is that , due to measurement

i

'5%For this part, I have greatly benefitted from Prof. Barry
Schachter's ECON 817 lectures.

"$'The errors would be severe for the extreme groups.
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ecror, true lo&(high) variance stocks are expected to have
positive(negative) measurement errors more often. Thus if the
model is valid, options on low(high) variance stocks will be

overpriced(underpriced) by the model, relative to the market.

-

Stochastic Regressor Problem

The errors-in-variable problem discussed above arises in
the context of the hedging-technique-cum-dichotomous-bias
apprcach to the validation of the Black-Scholes model; The
stochastic regressor problem, on the other hand, arises in the
context of the regression-technique-cum-functional-bias approach
to validation.

- The regression model we presenfed in chapter 3 shows that
one of the regressors, the volatility rate, can only be measured
with error. In other words, given that the true volatility rates
are not known, we can only use their estimates, which are
subject to measurement error. Thus the applied regressor, the
estimated volatility rate, would be correlated with the error
term in the estimable regression equation. Under such
circumstances, it is a well—esfablished econometric result that
the OLS estimates of the regression coefficients would be biased
and asymptotiéally biased. Uader the sihplifying assumption that
the measurement errors in volatility estimates are identically

distributed across stocks, and that the moments of the

measurement errors of order greater than two are approximately
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zero; we derived an expression for the asymptbtic bias of the

OLS estimates '352,

Asymtotic bias vector:

[0 0 H] Z°
where ’
He= o?* EA[{(d, d; /2)}{0CB(8T )/3(5 ) |5 =0 }]

J ] J J ] 3

[
13

~o?%* EA{3CB(BT )/0(5 )| =0 } - yyo?** ],
J J J ]

02* the population variance of the regressor o
mmin variance of the measurement errors

o%?** the assumed co
v, the assumed option-non-specific coefficient of volatility in
our estimated regressions'®?3
EA is the asymptotic expectation operator
and Z the population dispersion matrix of the regressors}
assumed to exist and nonsingular,
As we can see,*typical of the stochastic regressor
problems, the asymptotic bias contains the unknown parémeter Va.
The direction of the asymptotic bias in»the OLS ‘
coefficients will depend on the sign of the covariance of the

ngmp051te error with the volatility estimate, and the magnitudes

and signs of the covariances of the regressors among themselves.

'#2 rhese simplifying assumptions are much less restrictive than
they might appear, when the sample size from whlch the
volatilities are estimated is large.

'531n option-specific estimation, ¥, can be thought as the
opulation first central moment of the Yy, 's.
pop 3
P!
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The covariance of'estimated volatilityAand the composite error
term will depend on the relative strengths of the components in
the latter term. If the sampling error in the nonlinearity Sias
of the formula is the major component in the composite
disturbance, the first twé terms in the covariance expression H
will dominate. In that situation, if d,' and dz. tend to bé of
the same sign; and half of their producg be lesg than one, then
a negative covariance will be expected. And the extent will
depend upon {aCB(BT.)/a(a.)J6.=a.}'s and\(d,.dz.)'s.
J ] .3 : J 3 i

By now; it is clear that if the asymptotic bias problem is
severe, this mav lead to sign reversal of coefficients across
different samples. Let us now e{?mine the sign reversal in our
case.

In both the subsamples, d,_ and dz_ tended to have same
sign, and (42.d2./2) seemed to ge less ghan 1, on average. wé

J ]

would thus expect negative covariance, larger for the singee

S
dividend subsample, for two reasons:

P

(i) mean {9CB(8T )/3(G )|o =0 } higher:
. j i3 3
(ii) mean (d, d, /2) lower.
J ] .

The sign patte:n of the elements in the last column of the
inverse of the estimated variance-covariance matrix of
regressors is:

[+ - +]°7
Thus, in both the subsamples, we would expect

underestimation for the coefficients of moneyness and volatility

:rate, and overestimation for the coefficient of time to
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expiration, but more so for the single-dividend subsam?le. The
observed sign reversal from the zero-dividend subsample to the
single-dividé;d subsample is in conformity with this
‘expectation. Bear 'in mind, however: (i)our expectaticn is on the
‘basis of some simplifying assumptiohs, and sample estimates of
the relevant magnitudes in the asymptotic bias expression;
(ii)more than dhe‘probable sources of sign reversalAmight have
interacted.

The existing regression studieé using the estimated
volatility rate as a regressor also suffer from the stochastic
regressor problem similar to ours. But the problem was not
iden£ified as such. The question reﬁains: what can be done about
‘this problem and whether the problem is severe at all.

To avoid the stochastic regressor problem, a natural
alternative that may come into consideration is that of dropping
‘the vo]afility rate as a regressor, as was the case in MacBeth
and Merville(1979)'%%, We may think that this would
improve(lower bias) the coefficient estimates for the remaining
regressors. McCallum(1972) and Wickens(1972) showed that
dropping the errorég\variable would lead to higher asymptotic
biases for the remaining coefficients. Aigner(1974)'s results,
based on mean square error, also broadly supports the use of the

errored variable. Thus, if the problem of stochastic regressor

is serjous, MacBeth and Merviile(1979)'s and Whaley(1982)'s

. '%% MacBeth and Merville, of course, do not talk about the
stochastic regressor problem.
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results would be more éeverely affected than Geske and
Roll1{(1984a)'s or ours.

The other alﬁernative is to use some alternative estimation
procedure than OLS. Tﬁo of the well known\procedures are the
Instf:;;htal Variables and the Maximum Likelihood estimation.
Under thé former pfobedure} any instrument correlated with the

volatility rate, but uncorrelated with the error term in the

_regression equation,.would lead to consistent estimates for all

-

“the coefficients. It would be difficult to find such an
instrument given the nature of the composite error term in our
regreségon model. Even if we could find one, the Iﬁstrumental
'Véfiables Esﬁimators do not have the minimum asymptotic
variance. Moreover, given our objective of validating the
Black4écholes model, use of inst;uhent for the volatility rate
may bias the results against it. .

Max imum ﬁikelihood Estimation, on the other hand, leads to
lconsistent and efficient estimates. But as shown in Judge, et
al,(1980), the procedure breaks down without information in
addition to that provided by the sample. Unfortunately, the
infor&aticn requiremenfs'considered there will be unknown in our
context.

‘Wexmay, then; wgﬁéer whether the problem of stochastic
regressor in our context is serious at all. There is no clear
answer to this. If we overlook the sampling error of the
‘nonlinearity bias, or assume it to be relatively a negligible\

component in the composite error term, some comments can be
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made. The complex covariance expression H simplifies to

_w;az** 155

The asymptotic bias of the coefficient for volatility rate
would be small if the cross-stock variability of the volatility
rate is relatively larger than the variability of the
measurement errors'5f, Our situation does not look very
different from this.

The asymtotic bias for the other coefficients will be small
if that for the coefficient of volatility rate is small, and in
addition, the probability limits of the coefficients of
regression of volatility rate on these regressors are smail.

Admittedly, the stochastic regressor problem will persist,
for which we neither find a satisfactory solution, nor a strong

apriori basis to gauge its severity. For the rest of this

thesis, we shall overlook this problem.

SECTION 6
To summarise our findings in this chapter, neither
Black(1975)'s’ nor MacBeth and Merville(1979)'s dichotomous
striking price bias is supported by our zero-dividend and
single-dividend subsamples. Contrary to‘the prediction of the

nonlinearity bias of the formula, we find relatively

- - - - - —

'5%Note that the previous predictions about the directions of
asymptotic biases in our subsamples would remain good, if y,>0 .

'56A smaller multiple correlation coefficient of volatility rate

with the other regressors will also help reduce the asymptotic
bias. |
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closer—tq-the—money(away—f;om-the—money) options to be
‘overpriced(underpriéed) by the formula estimates. Butrthe
soundness of the technique producing this result is
guestionable,

We then moved to constant coefficient multiple regression,
and found the coefficients of moneyness and'volatility rate to
change direction from the zero-dividend subsample to the
single-dividend‘subsample. Three probable sources, all in the
light of the regression model presented in chapter 3, of this
sign reversal were discussed, since such reversals prompted
substantialwresearch, e.g., MacBeth and Merville(1979,1980),
Emanuel and"MacBeth(1981), Sterk(1982), Whaley(1982),Geske and
Rol11(1984). These are: (i)the difference iﬁ the model
misspecification error of the Black-Scholes, in terms of the
includgd regressors, and {(ii)the. difference in the omitted
variable effect across the subsamples; and (iii)the asymptotic
bias of the OLS estimators arising from the use of estiﬁated
volétility rates as prox§%for the unknown true volatility rates.

The estimation results in this chapter did not provide any
substantial evidence about the validity of the Black-Scholes
model o: the dividend inducement of the systematic deviations of
Black-Scholes formula estimates. In the next chapter, we utilize
the multiple regression results of this chapter to test dividend

inducement.
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CHAPTER 6:

TESTING DIVIDEND-INDUCED SYSTEMATIC BIASES OF

BLACK-SCHOLES FORMULA ESTIMATE
8

e
P2
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The European éall valuation model of Black and
Scholes(1973) deos nbt-take into account the early exercise
possibility of Unprotected American Calls(UAC) which are the
most wicely traded options. Black(1975) proposed the
pseudo-American valuation of UAC which uses the Black-Scholes
European formula. But this valuation constrains the early
exercise probability to é zero-one variable. Schwartz(1977)
proposed a numerical valuation procejure. Laver, in other
papers, Roll(1977), Geske(1979a), and Whale§(1981) developed a
closed form solﬁtion 157, |

On the empirical front, with pessibly a few excepfions such

as Black and Scholes(1972), researchers continued to examine the

K}
I3

Black-Scholes pricing using UAC data. A common finding is that
the Black-Scholes formula (European, Simple Stock Price
Adjustment, or pseudoAmerican version) estimates tend to deviate-
from the actual market prices in certain systematic ways. Three
of the most popular factors to which the deviations havegbeen
systematically related to, are: moneynesg(or striking priée) and
time to maturity of the option, and the volatility rate on the
underlying stock's return. Since the data used for empiricalj
tests were mostly on UACs, a legitimate concern is whether thé
findings of these systematic relations are essentially
dividend-induced. If they are, the use of a model such as the
157These valuations assume lognormal diffusion process for the
stock price adjusted for escrowed dividends. No closed form
solution has yet been developed for the two other well known

stochastic processes--the constant elasticity of variance-and
the jump-diffusion.
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one developed by -Roll, Geske, and Whafey should be able to
eliminate fhe systematié tendencies of the Black-Schqles.

Whaley(1982) fouﬁd the Rol;—Ggske-Whaiey model to eliminate
all the systematic tendencies of Black-Scholes except for the
one related to the volatility rate. Sterk(1982) reported that
the Roll-Geske model reduces the striking price bias'®®,
Sterk(1983) found that the improvement;pf the‘Roll-Geské—Whaley
model is economically significant for the range 0.3 to 0.7 of
the early exercise probability, and size of the single dividend
more than a dollar. In two other studies, Blomeyer and
Klemkosky(1§83), and Gultekin,Rogalski, and Tinic(1982)

- concluded that the bias charac£eristics of the Roll-Geske-Whaley

model is identical to fhat of the‘Black—Scholes. Later, Géske
and Roll(1984a) suggested that tﬁe syétematic deviations of the
Black—Scholes with respect to moneyness and time to maturity are
essentially dividend-induced, while the one related to the
volatility rate is a measurement error problem.

The empirical studies are fo be evalua®ed keeping in view
the limitations of the testing procedures used. The
interpretation of the test results is egually 1mportant For
example, we need to know what is being interpreted as systematlc
relationship and d1v1dend 1nducement of such relationship. In
this chapter, we draw on dur discussions in the previous
chapters to throw light on these aspects and offer an

158 gterk(1982) used-the version of American valuation model
prior to the corrections of Whaley(1981) while Sterk(1983) used
the corrected version.
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alternatiVe test of dividend inducement.

Section 1 is a brief review of ch studies mentioned above.
In section 2, we propose an alternativevtest of dividend
inducement. The‘test results are presented.in the section 3.

Section 4 concludes the chapter.

SECTION 1

Whaley(1982), using ISD, computed formula estimates for the
siﬁple stock price adjgetmeht and the'pseudo-American versions
of the Black-Scholes, agd aleo for the Rb;l-Geske—Whaley model.
- He theh ran simple regrese}onsfof percentage deviation (from the
market price) on moneyness(g), time to maturity, estimated
volatility(from ISDs) rate,\early)exercise probability estimate,
et cetera‘59t The statistical signifﬁcance of the simple
‘regre551on coefficients was 1nterpreted as the exlstenCe of
systematlc relatlonshlps, and decrease(or ellmlnatlon) in the
statistical significance, from the Black-Scholes to the
Roll—Geske-Whaley, es srgnificant dividend‘rnducemeﬁt.

_Sterk(19§2) plotted hoth‘the percentage and dollar
deviations'of pseudo-American and Roll—Geske estimates against
Zmoneyness(g) 160, He found that the latter, compered to the
former, have lower number of ‘'underpriced out of-the- money and

- — i — - ———

159 whaley(t982)-performed,multlple regressions also,,but aid
not report the estimated equations. He mentioned that no
essential difference followed from the use of multlple
regre551on..ﬁ :

-

'V_i“°Sterk used MacBeth and Merv1lle(r979) s procedure to estimate

—volqt111ty rate from the 1SDs.

- 1 76 V ’ . et
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overpriced in-the-money options. Since this reduces
Black(1975)'s direct striking price bias, this was taken to mean

that the the bias was essentially dividend-induced. The

Roll-Geske estimates were also found to'have lower average

percentage deviation and average dollar deviation.

Blomeyer and Klémkosky(4983) plotted the percentage

deviations of the simple stock price adjustment version of the

“Black-Scholes , and the Roll-Geske-Whaley, against moneyness(g).

They found’that both pndefprice,but-of—thq—monéy and price
fairly well at and in-tﬁe—monéymoptions. They also compared
ex-post mean holding period return of hedges based upon the
estimated prices of the two models, and did not find

statistically significant difference. In addition, Blomeyer and

| Klemkosky stratified the options into three portfolios based

upon the dividend yield of unaerlying stocks. For none of these
portfolios, the two models yielded significantly different mean
hedge return,

Gultekin,Rogalski, and Tinic(1982) performed multiple
regression of the dollér deviations of the Roll;Geqke-whalex
estimates on moneynegs(s—x), time to maturity, and
estimated(from past series of return) volatility rate. The
coefficients were found significant;'The negative coefficients
for moneyness and estimated volati{ity rate were interpreted as
similar to-Black(1975)'s striking price and, Black and

~

Scholes(1972)'s variance bias Qf the Black-Scholes formula

+

estimates. Thﬁgjlfollows the implication that these biases are
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not dividend—reiated“‘.

All the studies above are based on pooling of time series
and cross-section data'®?, Geske and Roll(1984a) used
cross-section data‘only,'thus avoiding the econometric problems
related to poollng and time series. They ran two regre551ons of
the dollar devxatlons of the Black=-Scholes formula(51mple StOCﬁ
price adjustment version) estimates on moneyness(1ln(S/X)), time
to maturity, and estimated(from historical series of returns)
volatility rate. One regression was for the whole sample of
optlons with dividend payments as well as no dividend payments
on the stock prior to maturlty, and the other for the subsample
of options with no dividend payments ‘prior to maturity. The
coefficients for time to maturity and estimated volat}lity rate
were aignificant for the whole sample, but not significant for
the zero-dividend eubsample. The coefficient for moneyness was
not significant in any of the regressions, but the t-statistic
declined in the zero-dividend subsample. These results were ‘
interpretedjas evidence of significant dividend inducement for
the striking price and the time to maturity biases, but not for

)

the var.ance bilas.

When we have a critical look at the studies mentioned
above, we see that Whaley's suffer from absence of statistical

test of difference in coefficients, and pooling and time .
'6!' The authors do not make such a statement though.

'625ee Judge et al(1980),pp 325-358, for an extensive discussion
of pooling problems. '
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series-related problems '3, Sterk's suffer from insufficient
conti?l for’variables, dichotomoys bias di}eﬁag, and absenfé of
statistical test of difference in mean errors. Blomeyer and
Klemkosky;s is subject to'inadequate'cdntrol for variables(when
plotting), and the problems associated with the hedging approach
to model validation. Guliek{n et al dqés not exactly compare the
Black-Scholes with the Roll-Geske-ﬁﬂaiey, and may have pooling
and time-series related problems. Also, they do not take into
account that when the Black-Scholes model is not valid in the
non-dividend paying case, the Roll—Geske—Whaley-iS not also
valid in the dividend-paying case'®?®

Geske and Rpll;s probably came close to a more reliable
tést of dividend inducement. But the sample mixture of
dividepd—paying versus non-dividend-paying options in the total
sample may‘seriouély affect their resulfs through affecting the
statistical éignificance of coefficients. Moreover, no
statistical test of difference inyggé coefficient values across
the equations was undertaken. In the followiné section; we‘
propose aﬁ alternative test which uses thé basic idea—of Geske
and Roll, but aftempts to eliminate its deficiencies.

'¢3The reader is referred to chapter 2 for detailed d1scu551on
of most of the shortcomings to be mentioned here.

164 The Roll-Geske-Whaley model differs from the Black-Scholes
model in that the former assumes that the underlying stock pays
dividend prior to maturity of the American call. In the absence
of dividend payments, Black-Scholes gives the same value for an
American as for a European. Thus, if the.  Black-Scholes does not -
provide the fair value of an American call with no dividends, we
would not expect the Roll-Geske-Whaley model to provide the fair
value were there any dividends prior to maturity.
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SECTION 2

t

The test of dividend inducement we propose in this section

i.s based unon iLhe regression model presented in chapter 3, and

our discussion of the om1tted variable effect in chapter 5.
In our regress1on mode:l, the eXpected response function

embodies the (negat1ve of)nonl1near1ty bias of the Black-Scholes

formula estimate,;and any model aisspecification error in terms

of the included reéreSsors"s. The coefficients of the-
regressors would have tﬁo components corresponding to these two
broad sources of systematic mispricing.

Now cdnsiderktwo options, one with a sigle»dividend payment

of known size prior to maturity, and the otner with no such
™~

4

payment.
Consider the hypothetical case that the jump~diffusion
model of Merton provides the fair value(CM) of the zero-dividend
option . In the dividend-paying case, some eppropriate model,
corresponding to the'jump-diffusibn procebs,:wculd provide the
fair’value(CMD). In the zero-dividend case, the coefficient
Qector ¥ (° would have two parts, one part ¢ .‘°’ ceming from
t'ie diffzggﬁce’CM-CB, and/the‘other B_‘°’ aris?gg from the
nonlinearity-bias cf the Black-Scholeg formula. In the
single-dividend case, & 1) can be thoughtﬁto have two parts,
@B_“’(a) due to CMD—CM?Jand ¢B'(1)(b) from CM-CB.
] J

'¢5These regressors are the usual ones--moneyness(1ln(S/X)), time
to maturity, and estimated(from hlstorlcal recurn data)
volatility rate.
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Thus, includingn B.¢" from the nonlinearity bias of the
- J B
Black-Scholes formula, ¥ ('’ would have three components.
' Bj ,
Unless the options in the two cases are very different(except

~

-

for dividend), we would expect ¢ (°®'=¢ (7)(b), and g '°’ =8
¢, But ¢ .‘}'(a), the'differen?g in pﬁge model - ji
misspecifizgtion error of Merton's in terhs of 07., could still
distinguish the coefficients for the two options.JIf dividend
payment does make a significanf difference in terms of the -
included regressors, some or all of the coefficients should be
(statistically) significantly different across the two options.
Now suppose that the Black-Scholes model provides the fair
value(CB) of the zero-dividend option. The Roll-Geske-Whaley
model provides correspondingly the fair value(CR) of the
single~dividend option. In the zero-dividend case, the
coefficient vector ¥ .‘°’ would have just one part ﬁ."’ arising
-from the npnlinearitgjbias of the-Black-Scholes formala. In the
single-dividend case, ¥ '’ will have two parts,
¢ .“’*Que to CR-CB, angjﬁ.“’ from the nonlinearity bias of the
B?ick-Scholes formula. Unlgés the options in the two cases are
v;fy different(except for dividend), we would expect
'B_‘°’ =ﬁ'f". But ¢ .“’ ,the pure model misspecification error
og the Bgack45cholegjmodel in terms of 97_ in the .
dividend-paying case, would still distingaish the égefficients
for the two options. If dividend payment does make a significant

difference in terms of the included regressors, agai{, some or

all of the coefficient estimatés should be
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(statistically)siénificantly different across the two options.
| We have seen that irrespective of the Black-Scholes
validity in the zero-dividend case,}diviaend inducement would1%
- distinguish the coefficients of the dividend-paying case from '
- those of the non-dividend-paying case. In empirical tésting, if

the dividend inducement is significant, we should find

statistically significant difference across the two cases for

some or all of theﬁcoefficients, no matter“Whejther the

‘

Black-Scholes model is valid or not in the 2ero-dividend case.
In our example, the coefficients or parté thereof were
subscripted to denote option-specificness of the coefficients.
 To estimate the coefficients, we would need samples of
zero-dividend and single-dividend options. If we want to
maintain theioption-specificness,‘we would have toc many
differences$;o teét‘with toc few observations ‘5‘. Thgf, as in
chapter 5, we would make the simplifying assump;ion of constant
coefficient(withinrtheAsample for any case) esti&étion. Then,
~there will be at most 4(including the intercept) differences(or
equality) to be tgsted jointly, across the samples of
zero-dividend and‘single @{yidend cptions.
Under the assumed constant coefficient estimation, the
difference(or equality) of the coefficients across the two cases

# N LN

can be tested by undertaking a Chow-test o6f switching régjme;

Fortunate for us, the switching point is known. If we have a

'66The .problem, in fact, is also to estimate too many parameters
with too few observations.
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total sample of single-dividend and zero-dividend options, and
arrange the sample such that the Single—dividend subsample
fﬁllowS’the zero-dividendﬁfubsample, the point where the
single-dividend gubsample starts can be considered as the
switching point, infahalogy to time series data.

In total, three regreésions,are to be run, one each for the
two subsamples, and the third for the total sample to test the
joint dividend inducement for all the parameters(including the
intercept, if included) '®7., The error sum of squares from the
first two regressions would sum to the unrestricted error sum of
squareskSSEU), and that of the last regression to be treated as
the restricted error sum of squares(SSER) '6®, Then, under the
null hypothesis of the restictions being true, the following
ratio will be central F-distributedAwith K and N-2K degrees of
freedom for the numérator and the denominator respectively:'®?

[ (SSER-SSEU) /K]/[SSEU/(N-2K) ] | N (IR
where K is the number of parameters estimated in each

167 The parameters here refer to the ones to be estimated from
regression.

'68SSER would k= greater than SSEU, because of the additional
constraint ihposed upon the minimization problem.

169 The Chow-test assumes that the variance of the error term is
the same across regimes. Toyoda(1974) and, Schmidt and
Sickles(1977) found that the nominal level of significance would
differ from the true level of significance(probability of
rejecting the null hypothseis when it is true) under unequal
variances. To cope with such circumstances, Jayatissa(1977)
offered an alternative central F-test and Watt(1979) proposed an
asymptotic central chi-square test, while Honda{1982) compared *
the two tests with Monte Carlo. Given Honda's results, Watt's
test may be preferred for our case. Thanks to Professor p.
Kennedy for exposing me to this literature

J

ey
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..
regression, and N is the size of the total sample.

The tes* above is for the dividend inducemhe& of the whole
regression rel?;ionship(including‘{he intercept). But we may be
interested in the dividend inducement of a subset of the
parameters. For this purpose, first observe that the SSEU above
could have alternatively been computed frém the following-

regression equation run over the total sample: '7°

5

C'TCB(GT')=.a+D'+\p1m.+'ﬂ'1D1 .+ ¢2T.+11’2D2.+¢36 +7T3D3' +7n ...(6.2')
]~ ] ] ] ] -] ] ] J ] :

where

ﬁl;D,.=D2_=D3.=0 for all observafions of the zero-dividend
] ] ] ] '

subsample and

for observations of the single-dividénd subsample

D =1

J ‘ '
Note that (6.2) is, in fact, the following two equations

written together: '7'

~

zero-dividend subsamble

C ’CB(BT )=a(0)+¢1(0)m +¢2(°)T +¢3(0)6 +7
i j j i3

'70°gee Maddala(1977), pp.136-137,194-201,

171-:: (6_.2),‘17 =¢ (_1)_¢ (0).
ii i
!
)
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single-dividend subsampie

C -CB(BT )=a' M+, Vm +w2(1)T +Y, 15 +n
] ) j ) 3]

The dividend inducement of a subset of parameters can be-

<

_tested by treating (6.2) as the unres;t};}gqryepgﬁqqlrqur

"delééingﬂegégéébégéingidummy variables in (6.2) as the
resfk&cted version."’2 Using the error sum of squares from
these two versions, the relevant F;statistic can‘be cbmputed
from the general form of (6.1):
[ (SSER-SSEU) /J]/[ SSEU/(N-2K) ] eeeeiieneneeeaa(6.1R)
where J is the number of restrictions, -here the numﬁer‘df
parameters for which we are testing dividend inducemert.

This ratio will be distributed central F with J and N-2K
degrees of freédom for the numerator and.the denominétor
respectively, when the restrictions are true.

To give an example, suppose that we want to test joint
dividend indﬁcement for the intercept and the coefficient of
moneyness only. The restrictions are represented in the null

K'hypothesﬁs of F-test: ‘
H @
o )
a‘°’=a({’,-¢1‘°’=¢1(')
The alternative hypothesis, of course, is that none of the
four(including the above twb) parameters need remain the same

agross the two subsamples.

72gee Skvarcius and Cromer(1971).
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Two regressions afe to be zun over the'toial sample for
this test. (6.2) would pfgvide the unrestricted error sum of
squares, and the regression deleting D and Dy from (6.2) would
»providé the restricted error sum df éqaares. Tgese error sum of
squares cang@;usedtoéomputétheratio in ‘ﬁ'JA)L whigh yill
be distribuégﬁ central F with 2z and N-8 degrees of freedom.

Test pf'ﬁividend inducement for a single pArameter only,
can be undertaken merely by a central t-test of the
corresponding dummy variable's coefficient estimated féZm

(6.2) '73, Alternatively, we can follow the procedure of the

previous paragraph'’?,

-

SECTION 3 '

Since we have four parémeters to estimate for aisubsample,
there would be 1ﬁ‘subsets of the parameters, in addition to the
set of all four parameters, for which test of dividend
ihducément can be undertaken. The unrestricted error sum of
squares in all these tests would be the same. It can be
calculated by adding the error sum of squares from the two
multiple regressions of chapter 5, or‘alternatively from running

(6.2) 73

‘13See Gujaréti(1970).

'7%The resulting ratio in (6.1A) would be approximately equal to
the square of the t-statistic in (6.2).

'75Due to computational rounding in regression results, we found
the latter to be 0.002% higher than the former. To calculate the
F-ratios, the larger magnitude was used. Since this would
relatively lower the F-ratios, a significant F-ratio may
indicate even stronger evidence against the null hypothesis. Our

N
—
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Table 6.1 snagarizes the test results'’€, The constant
coefficient'regression‘relationship(inciuding the intercept) for
the deviation of Black-Scholes formula estimate from the market
price as a whole seems to be significantly affected by the e;ily
exercise possinilitQ of UAC'S. This significant dividenc
inducement occurs inspite of the lack of strong early exercise
possibility we found in-chapter,5.

The coefficients of moneyness and time to maturity do not
show significant dividend inducement, either individuall§ or as__
a pair. The coefficient of volatility rate, on the other hand, -
exhibit strong dividend-induced effects both by itself and in e
combination with the coefficients of moneyness or tim;_%o
maturity. This was indicated by the large difference betneen the
escimates of the‘coefficient ci”voiatility rate in the twc -
multiple regressions of chapter 5. |

The intercept shows dividena—induced effects similar to"the
coefficient of volacility rate. As we have mentioned in chapter
5, these effects may reflect those through the coefficient of
volatility ~ate and/or part of the effects of relevant omitted

variable(s), such as the time to ex-dividend date(given the time

to expiration).

———— e - e — —— —— —— —
i

'75(cont'd) test results are, howgver, unaffected by the choice
between the two alternative magn?%pdes. ‘ %
. i ‘ T -
'7¢ To see whether the assumption of equal error variances

across the two subsamples affects”our} test results, we undertobk ™
Watt(1979)'s chi-square test for our tests 1 and 2. We found

similar results as reported in-Table 6.1
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It appears:that the priné;bal source of the significant
dividend inducement for the entire regression relationship may
be attf;buted td the coefficient of the volatility rate ‘alone.
This apparent importancé of the volatility rate could be genuine
in the: sense that itiis 'tﬁe';critical determinant of early
exercise posiibility. Or, the importance could be an econometric
illusion. As mentioned in chapter 5, the use of estimated
ve}atility rate as a proxy for the true volatility rate
reg;eésor leads to biased OLS goefficient estimates in both
small and large samples. The sign as well as the magnitude of
this bias for a coefficient estimate will depend upon the nature
of sample options. If it is the coefficient of volatility
rate(and thus affecting the intercept estimate too) which is
affected most, it is more likély to reject the hypothesis of
equality of ;isef of parameters when the volatility faéé's R
coefficient is included. in the.set fhén otherwise., Thus,- the
volatility rate may appear to.play'an important role in the
’ dividend inducement of the regression relatianship, while in
- fact the stochastic regressdr problem is“responsible for this.

However, our discussion in chapter 5 also indicates that the

stochastic regressor problem may not be severe at all.

SECTION 4
To summarize, using the Chow test of switching regime, we
have found that the constant coefficien;bregression relétionship

for the mispricing of the Black-Scholes formula estimate is
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feature of UAC's. Previous‘conclusf%ﬁs that the strikihg price
and the time to mafurity biasesvare;éssentially dividend-ipduced
‘are contradicted, while the volatiﬁgtf rate is fbund to be an
important”ingredient behind the aividend inducement of the
mispricing by the ﬁlgngSéholgs formulé estimate.

~ Our test results are subeject to the limitations of
éonstant coefficient eétihation. Further evidence of dividend
inducement is to follow in chapter 8, where we allow limited
degree of option—specificnéss in es;imétion. But the test of
dividend inducement heré was rather indifferent to the validigy“
.0of the Black-Scholes model in the zero-dividend case, where the
~ assumed known dividend piays no role. In the next chapter, we

offer an indirect test of the validity of the Black-Scholes

model in the zero-dividend case.

v
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CHAPTER 7:

AN INDIRECT TEST OF BLACK-SCHOLES

BY TESTING RESTRICTIONS AMCNG REGRESSION COEFFICIENTS
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4
/‘ Whether the European call valuationemodelg%%iBlack and
\gghcles(1973) or some modified version can be considered to be a
‘valid model representing the actual market prices of traded
calls has been a key concern in recent empirical studies '77.
Galai(1983) surveys the studies in ihis areé and also oﬁtlines
the complications of testing modeL_yal{dity. An important
problem is that‘such tests are, in general, joinrt teéts of
Eﬁgket synchro;ization;.option market efficiencyf andrthe
/validity of the model in quéstion, in our case the Black-Scholes
ﬁ\oael"B Further complications arise, since an esséﬁtial
ingredient of the Black-Scholes model- the'volatility rate of
the underlying stock's return is not known and has to be
estimated. ‘
/Sinée the Blaék-Scholes formula is nonlinear with respecf
to the volatility rate, even if an unbiased estimate of the |
volatility rate is used, the resultant formula estimate would be
a biased estimate of the model price(the formula price with the
true volatility rate}. In chapter 4, we have studied the
sYstematic nature of this bias in detail.
The implication of the systematic nonlinearit§ bias of the
formulé estimate for testing the validity of the Black-Scholeg

777 popular modified version is the pseudo-American call
valuation originally proposed by Black(1975). This model seeks
to accommodate the early exercise possibility of unprotected
American calls. '

-1‘73 It is to be noted that the hypctheses other than the
~validity of the Black-Scholes model would be accepted as

" maintained hypotheses in out testing and thus are not being
“~tested. - - ) ’
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» model is that such tests will be biased towards‘finding evidence

against the modei, if the formula estimate is used as a proxy
for the Black-Scholes model price. Given that the practitioners
have almost invariably used some estinate of the volatility
rate(or the variance rate) in the Black-Scholes European formula
or the pseudo-American formula, the existing tests of the |
Black-Scholes model are themselves biased.

The purpose of this chapter is to undertake a test of
Black-Scholes validity by taking advantage of the nonlinearity
bias of the formula estimate rather than being victimized by it
as the existing studies have been. For analytical tractability,
we consider only up to second order term in the Taylor series of
the nonlinearity bias '7?., Note that the bias implies
restrictions among coefficients in our regression model. Since

tH€ nonlinearity bias alone would be the expected’response

‘function in our regression model when the Black-Scholes model is

valid, an indirect test of the Black-Scholes model is provided
by the test of implied restrictions among the coefficients.
‘In section 1, we describe our test of the Black-Scholes

model validity. The test results are presented in section 2.

And, some concluding thoughts follow in section 3.

'7%Let CB(o) be the Black-Scholes model price, where o is the

true volatility rate. If we expand CB(¢) around 6=0, and take

expectation on both sides, then the nonlinearity bias would be:
' r r

E[CB(&)]-CB(o)= Z[3 CB

r
(6)/36 |0=0] E(G-0) /r! ,where the
summation runs over 1| to <,
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SECTION 1
| If the“Black-Scholes model is the unknown true model of
fair valvation, the following equation emerges in our regression
model:
C}-CB(BT_)=97.5.+e_ I R D
J J JJ 3
For the sake of convenience and continuity with previous
research, we have chosen the moneyness m(=1n(S/X)), time to
maturity T, and voiatility rate ¢ as the regressors in 6. For
simplicity if we drop the subscript j, but keep in mind its
existenbe,l(7.1) can be written as : o
C-CB(87)=[(3E/om)m/R]+ [(3E/3T) T/R]+ [(3E/d0)0o/R] + € ..(7.2)
where E stands for the bias of the formula estimate in a second
order Taylor serieskexpansioﬁ, and
R=w,m+ w,T+ w0,
with
wi=[2h/(02Td,d4,)] -d,/(ayT) i
wo=(1/2T)+ [(8rTh-0°T?)/{T(4h%-0"* T?)}] -

-[(2h+02?T) (4rT-2h+02T)/8(0T)? ]

ws=[d,d;-1-102T/(d,d,)}1/0
h=ln(S/X)+rT=1n(g) |
and to fecall
d,=(h+0.507T) /(oy'T)
d,=d,-o/T

where

S is the'sfock'price
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X is the striking price ard

r is the risk-free rate

In terms of our regression model,
the coefficient of m is (3E/om)/R =8,
the coefficient of T is (3E/dT)/R =8,

the coefficient of o is (3E/90)/R =83

Tt appears that the coefficients of the regressors commonly
used agg less likely to be the marginal biases. They are moré
likelyﬂto be weights for the linear combination of m, T, and ¢
to represgnt‘the"total(here the second order) bias. To ‘see this,
note that :

R={(3E/3m)m/E} + {(3E/3T)T/E} + {8E/dc) o/E}

That is, R is the sum of bias elasticities, and thus the
coefficients are marginal biases relative to the sum of bias
elasticities. In a linear regression of C.-CB(éT_) onm, T,

x j j i3
and 0 , we would be assuming these ratios to be constant. And,

J g
of course, we would be estimating the assumed constant ratios ,

not the marginal biases. But it surely would be misleading to
assume the signs and magnitudes of the estimated coefficients to
3

be the same as of the marginal

biases'®°. This important aspect has hitherto been overlooked

'80 In chapter 5, we have mentioned that smallness of the
coefficients may reflect smallness of the marginal biases.
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and cannof be overemphasized.
5 Now notice that the marginal biases are:
K (3E/3m)=Ew,, (dE/dT)=Ew,, (JE/d 0)=Ew,

Since they all have E in common, we can deduce that:
(3E,/dm) /(w,R)=(3E/3T)/(w,R)=(3E/3 0)/(v;R)
or, (By/wi)=(By/w2)=(B3/w3)

If the Black-Scholes model is v 'id, and the .second order
approximation is good enough, the coerficients of the regression
model should satisfy the above restrictions for all
observatibns. Note that for any observation, only two of the

restictions are ‘independent.
hY

One of the three probable sets of restrictions would be:

52.=ﬁ1.wz_/w1

] J 3]
53_=51_W3_/W1.
] J 3] J

j

In this fully option-specific form, we would have too
few(N) observations to test too many{2N) restrictions. In the
context of constant coefficient estimation, a compromise would
be: t

Bo=B1wzy and B3= W3,

——
~—
~,

where w,, and w,, are the population central moments of

(w, /w, ) and (w,; /w; ) respectively, and can be estimated by
i3 I3
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their sample means. In this form, we would have only two

restrictions to test.

SECTION 2
For options with dividend payments prior to maturity, the
Black?Scholes“médel is not acceptable as the model of féi%
valuation on theoretical groﬁnds. The test of Black-Scholes
validity is to be undertaken in the context of options with no

dividend payments prior to maturity. Hence, in our tests below,

1y
Vo

we have used only the zero-dividend subsamplé.”

The first problem we face in testing is that the w 's are
A ij
not known. The use of sample estimates for w 's lead to a
1]
situation of nonlinear stochagtic restrictions 181, For example,

e
i

one such set of restrlctlons,would be:
(B2/B-) - (Wszy+ vy,y)=0

(B3/By) - (Ws;3,+ v;3,)=0
where we have decomposed the w 's into their sample means ws
's and measurement errors v ;? ' H

. The greatest 51mp11f1c;glon is achieved by pretend1ng that
the ws 's are the respective population central moments, that
is, ovéglooking the stochastic nature of the restrictions. In
that case, we would have the following set of linear \

restrictions:

—— - - - - — -

'81'See Appendix 7.1 for a brief discussion of testing
restrictions in a linear regression model.
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B, - wsz,6, =0

Bz - ws3,$,=0

These restrictions, under the agéumtion of multivariate
normality for disturbance vector, can be tested by undertaking
F-test. Under the null hypothesis éf restrictions being true,
the following ratio would be central F-distributed with 2 and
N-4 degrees of freedo&:

[ (SSER-SSEU) /2] / (SSEU/N-4)
where SSER and SSEU are restricted and unrestricted error sum of
squares respectively. | |

The results of F-test, both with and without the inclusioniﬁ
of intercept, are presented in Table 7.1. At 5% significance
level, the restrictions are being rejected for all the cases.
' 'If the stochastic nature of the restrictions is not assumed
away, the restrictions would be nonlinear in-the paraﬁetgrs
estimated which now include w 's. Thus, we would have®to rely

i3 -
on some large sample test. In addition, we need to make some

'S 182

assumption about the nature of v
17 :
The choice between Wald test, Lagrange Multiplier -test, and

likelihood ratin test depends mainly upon the ease of estimation
of the restricted and/or the unrestricted regression eguation.
Since, in our case, it is easier to estimate the unrestricted

version of the regression, we would be using the Wald test.

'821n the test to follow, we have assumed that the observational
errors of w 's have zero covariance with the regression

1]
disturbances.
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Under the null hypothesis of the restrictions being true, the
wald statistic is asymptotically chi-sqadre distr%ggfed with J
degrees of freedom, where J is the number of independent
restrictions. The critical value of chi-square with j=2 at 5%
signifiéancé level is 5.991. If the sample value of Wald
statistic exceeds 5.991, the evidence would be against the null
hypothesis of the restrictions being true, 4

The test results of Wald test, both with and wfthout the
inclusion of intercept, are presented in Table 7.2 . In all of
the cases, we are unable to reject the null hypothesis of the
restrictions being true.

It appears that the resqlts of the F-test and the Wald test
are contradictor&. As discussed in Appendix 7.1, the additional
variablity introduced‘by the stochastic nature of restrictions
in the Wald test may have caused this. On apriori basis, it is
rather difficult to conclude superﬂgrity of one-test over the
‘other in our contéxt.

g ‘ SECTION 3

Our test results indicate mixed evidence regarding the
acceptability of the Black-Scholes as é reasonable mogel
describing the market.priceé of options without any éj:Zdend
payment prior to maturity. Our testing procedure was radically
different from the existing procedures of festing the
Black-Scholes validity. We used the nonlinearity bias of the
commonly used Black-Scholes formula estimate to the advantage of

testing, rather than being victimized by it as the existing
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studies have been. It is to be mentioned that our resultd are
subject to the effect of the approximations we have used. In

/

part:fular, the assumption of constant coefficient may have
important bearing for the test results. In the next chapter, we

would relax this assumption through the use of multivariate

" cubic spline regression and offer another indirect test of

Black-Scholes validity.
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APPENDIX 7.1
SHORT DIGRESSION ON TESTING RESTRICTIONS

IN A LINEAR REGRESSION MODEL

In what follows, we briefly describe some key econometric
results aboﬁt testing equalify restrictions among parameters in '
a classical normal linear regression model. The references are
Goldberger(1964), Judge et al(1980), and White(1984). We shall
refer to thém as GB, JG and ﬁT respectively.

The regression model we are considering is:

Y= X f + e
where

Y is N x 1 column vector of responses
is N x K design matrix

is K x 1 column vector of response coefficients

w =

e is N x 1 cblumn vector of disturbances and

¢ has multivariate normal distribu%ion with mean vector O
and variance-covariance matrix o2I .. \

Four types of restrictiohs among the elements of § may

arise:

Case 1: Linear npn-stochastic restrictions. Such

restrictions are conventionally expressed as Rf=r, where R is a
J x K matrix of rank J<K, and r is a J x 1 column vector of
known elements. '%®3 An alternative expression for the
restrictions is: g(B)=0, where g(B)=RB-r. g is written as a

l83Rank(R)=J means we have J independent restrictions, -
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function of B only, since r is known and fixed.

Example: f;+f,=1 in Y=X,f,+ X,f8,%e Jrest

Case 2: Linear stochastic restrictions. JG represnts them

as r=R@+v or, alternatively E(r)=RS, where r is now an
observable random vector and v is an unobservable'normally
distributed random vector wigp 0 and 02Q as the mean vecfor and
the gpvariance matrix respectively. '85 In this case, an

B *
alternative expression for the set of restrictions is g(6)=0,

where 6 contains E(r) as a subvector in addition to g, and
g(6)=RB-E(r). The restrictions are written as functions of all
the unknown parameters, rather than as functions of § only.

Example: 0.5=8,+v, and 0.5=8,+v,. This example is given by

JG, pp 72-73.

Case 3: Nonlinear non-stochastic restrictions. These

restrictions are conventionally expressed as g(f)=0, where
g(g)=h(p)-r. The elements in h(B) are nonlinear in the elemenﬁs
of B, and r is knan and fixed as in case 1.

The example given by WT,pp 76, is: f3-f,:8.=0 in

. Y=X,B,+X,0,+X;8;+e. Here, r is assumed to be zero.

8% Here, R=[1 1] and r=1,

'85gee JG, pp 72-76. Note that r is normally distributed random
vector with mean RS and covariance matrix o*Q.
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Case 4: Nonlinear stochastic restrictions. Such

restrictions are the.mixture of cases 2 and 3, and can be
expressed as h(f)=E(r), or alternatively as g(6)=0, where

' q(6)=h(B)-E(r). | | |

Example: f;-f,8, —-(0.5 +v)=0, where 0.5 is the value Bf r

observed with error.

Of all the above cases, case 1 is the easiest to test. We -
can mipimize the error of sum of squares without restrictions
and with restrictions. fhe restricted error sum ofwéquares(SSER)
would be higher than the unrestricted(SSEU). But, if‘the,
restrictions are true, it would not be significantly higher,
since the data would have already embodied the restrictions. It
" can be shown that: \

SSER-SSEU=§7G-'§

where
=R - r
u i '
B is the unrestricted CLS estimate of §
u

and G=[R(X7X)-'RT]
‘ Note that the covariance matrix for § is azG,land
therefore, (SSER-SSEU)/0? will be central x?2 distributed with J

degrees of freedom, if the restrictions are true. '8¢

- - -, - — - -

'8€1o see this, let I denote the covariance matrix o02G . Then
(SSER-SSEU)/0? can be expressed as (P3)'(P§), where PP=IZ-',
According to theorem 5.9 of GB, the random vector P§ is a
standard normal vector. Thus, theorem 5.21 of GB shows that
(SSER-SSEU)/0? would be distributed central x? with J degrees of
freedom, since I is idempotent of rank J.

‘ J
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The;SSEU is of ceurse equal to e¢"Me, where M=[1
-X(XTX) " 'XT] ie an idempotent with rank (N-K) . SSEUNwill be
distributed central o02x? with N-K degrees of freedom, according
to theorem 5.22 of GB. Then, SSEU/0? will be distributed central
x? with N-K degrees of freedom. Thus, if the restrictions are
true, the following ratio will be central F distributed with J

' and N-K degrees of freedom:'®’
[ (SSER-SSEU)/3]1/ [SSEU/N-K] ... (1)

Using this stalstlc, a conventional F-test can be
undertaken.

In addition to the F-test, three other tests are commonlf
used. These are Wald test, Lagrange multiplier test and .
Likelihood ratio test. They rely on asymptotic normality
property, and in all cases, the test statistie is asymptotically
central x? dlstrlbuted if the restrictions are true. A
dlscu551onJof all these tests and their relative merits is
‘beyond the scope of this appendix. In our context, it is

convenient to compute the Wald statistic. Given our expositions

above, it would also be easier to describe the Wald test.

'873ee theorem 5.7 of GB, and notice that under the truth of
restrictions, (SSER-SSEU) can be alternatively expressed as:
S
T[X(XTX)-'R"G - 'R(X"X)-'X"]e, where the bracketed matrix is an
1dempotent of rank J. Then, observe that the product of this \
matrix and is a null matrix.

i
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The underlying idea of Wald test can be described as’
follows. Due to sampling variation, the unrestricted estimate of

g would satisfy the restrictions only on the average, even if

the restrictions are true. Thus in our case 1, if the

regt}iction g(B)=0 is true, then § would be on the average equal

¥

to zero, given that B is an unbiased estimate of B, If we know
u .
the distribution of §, we can test how much deviation from 0 can

-

be allowed as mere sampling variation, before we reject the

hypothesis of restrictions being true.

For the convenience of exposition, let us first write down

the expression for Wald Statistic(W) in the more general context

of case 3:; '88

T N
e

e
\?%\‘}ﬁ
-y

g(B )Tlg,(X™X) "'g,T 1-'g(B )/ &% ...(2)
u , u

where

g,=0{3g(B) /3873 |6=p 1 ..
u
and 5Z=SSEU/N—KE,

]

— L .
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WT used the mean value theorem in deriving the Wald
statistic. But more 6rdinarily, we can imagine the following

linearization underlying (2):

g(B )=g(B)+g, (B -B)..(3)
u :

u

——

where g,=[{dg(p )/3B T}|B =F] and
‘ u 'y u

wherefrom the covariance of g(B ) is:'8%
u

Consistent estimate of I' can be formed from:

629, (XTX)"'g,T...(5)

.This estimate has been used in (2). Note from WT, pp 77,

that {L.g(B )}, where LTL=I" ', will be asymptotically -
u ' ’ ‘ B
distributed as a standard normal vector. Same would be the case

when T' is replaced by its consistent estimate. Thus, W would be
asymptotically x? distributed.
J
For linear nonstochastic restrictions(case 1), the W

statistic is equal to J times the F statdistic in (1). This can

be seen by noting that in this case, g;=g;=R.

'8% Under the null hypothesis of restrictions being true,
g(B)=0. =~ . o

< . .
~_

—
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Let us novw consider the situation of stochastic linear
restrictions(case 2). The restrictions in all cases involve the
parameter vector B, which is not known. The testing of
restrictions is carried on using estimate of f, and the latter's
sampling variation is the only source of variability for the
rando$ vector § and g(B ) in cases 1 and 3. In the case of
stochastic restrictions? additional variability is introduced by
the Sbservational error in r. Thus, -in devising a test
statistic, the variability of r,as,well as its possible
covariance with the regression disturbance ¢ are to be taken

2

into account, If it is assumed that the latter covariances are

-zero, then Theil's compatibility statistic can be applied in

case 2: '3°

u,=qlG+R]1-'a/J8%.. ... (1A)
where
g=Rj -r. -

u

Under the null hypothesis of restrictions being true, u1 is
central F distributed with J and N-K éegrees of freedom. Note
that the only différence between the F in (1) and u, is that the
covariance matrix of estima e for the restrictions in the latter
case has the additional component ¢2Q@. This would tend to
decrease the value of test statistic and thus reduce the
possibility of rejecting the restrictions merely because of the

19%5ee JG, pp 76.
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errors in obsefving E(r).

In the case of nonlinear stochastic restrictions, the
linearisation similar to (3) would now involve derivativé of
q(8) with respect to 87:
q(8)=q(8)+g,(8-6)...(3a)
where g,=[{aq(®)/3871| 6=6].

- The covarainc. of g(8) is:
Fi=0%g,Tg,".. (13)
" where T iswa:block-diagonal matrix with (xfx)" and © as the two
non-null blocks.'?' |

Replacing I'y by its consistent estimate T leads to the
asymptotically x? distributed statistic:'®?

J

'q(8)[ g (XTX)"'g, T+ %]~ 'q(B) /62 ...(2A)

where
g.,={3g(6)/3p7|6=6} and

# is a consistent estimate of .

Note again that the stochastic nature of restrictions
lowers the value of the test statistic by introducing more
varaiblity into the observed (or estimated) restrictions.
81 1t can be shown that:

Iy=0%[{g (X7X)"'q "} + Q..(4B), where q ={03g(8)/0B7|8=61}.
B B B

'92We are assuming that g(8) is a multivariate normal vector.
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The expositions above show that the test results may depend
upon how we view the rest;ictions. In a large sample Wald test,
we may unduly overemphasize the stochastic nature and/or impose
wrong covariance structure. On the other hand, in a small sampie
F-test, we overlook the additional variability of stochastic

restrictions and thug would tend to reject the restrictions more

often.
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CHAPTER 8:

MULTIVARIATE SPLINE REGRESSION AND

AN INDIRECT TEST OF BLACK-SCHOLES VALIDITY
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N

The empirical studies trying to validate the Black-Scholes
model, have largely overlooked the role of the nonlinearity bias
in inducing the observed'systematic~devietions of the
Black-Scholes formula estimates. We have also argued in various
parts of this thesis that the existing studies are plaguediwith
host of problems. They range from the fundamental deficiency of
the ISD approach(tofmbdel validation), to tools-of-analysis
related problems séqg as the dllemma of dichotomous bias studies
or the 1nappropr1ate estimation and/or interpretation of t:he%‘g
results of functional}bias studies.

The estimable regression eguation we derived in chapter 3
clearly showed ehat if the Black-Scholes model is valid, the
only component in the expected respense function is the |
nonlinearity bias of the formula estimate. And thus, tﬁe
systematic tendency ef the formula estimates should be that
induced by its nonlinearity bias. When, on the other hand, the
Black-Scholes model is not valid, the model misspecification
error ie expected to generate tendency which may reinforce or
eounteract those induced by the nonlinearity bias aione.l
Observed systematic tendencies‘radically different from that
induced by the nonlinearity bias would thus create reasonabie
doubts about the validity of the Black-Scholes model. That this
fact can be used to test the validity of the Black~Scholes model
have gone unnoticed in the literature. 1

In chapter 7, we used the structure of second order

approximation to the nonlinearity bias, and offered an indirect
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test of the validity of the B}ack-Scholes model. The
approximation imposes parameter restrictions in our regression
model. We tested these restrictions in the zero-dividend
subsample, wﬂere the Black-Scholes is least suspect. But an
important limitation of this test was the fact that we assumed
the slope coefficients to be constant across options, while they
are most likely to be option—speé}fic as indicated by the nature
of nonlinearity bias and portrayed?ﬁn ouf regression model.

In this chaﬁter, we will tg@ﬁlo approximate the
option-specificness by the u?ﬁ?ef multiva?iate cubic spline
regression technigue. More sﬁe&}ﬁd}d&iy,‘we would alioﬁ the

coefficient of a factor to be nonlinear in that factor alone.

£y
"“‘f‘(

Thus the nonlinearity would be non-interactive. Since the cubic
splines are very flexible functional forms, we hope to achieve
good approximations'to-the option-specificness of the
coefficients. |

Using the estimated eguation, we would trace the path of
predicted mispricing(by the formula estimate) as any one of éhe
factors varies over its sample range, the other factors fixed at
prespecified levels. Then, for a similar combination of
parameters, the predicted path will be compared with that of the
nonlinearity bias(monte carlo) found in chapter 4. If tne
Black-Scholes model is valida we should not observe radical
differences.

We would consider the variation c¢f moneyness and variance

rate only in generating spline predictions. As found in chapter



4, the relations of time to maturity and variance rate to the
nonlinearity bias are similar. Moreover, the volatiiity (square
root of variance) rate was :ound to be)the dominant soJrce of
significant dividend inducement in chapter 6. Thus, comparisén
of the spline predictions of the relation to the variance rate
aéross the two subsamples may provide further evidence in this
respect.

After briefly reviewing the spline approach in section 1,
the estimation results would be presented in section 2. Some

N

concluding comments follow in section 3.

SECTION 1

In its most common qséaé, a spline is a mechanical device_
used by draftsmen much/iﬁkera French Curve to-draw smooth
curves. The device 9ohsists of‘a flexible rod with weights
attached to make gﬂ; curve go through specific points. A cless
of functiBHE‘comﬁ;nly used in the approximation theory are
referred to as spline'functions, because their properties are
very similar tb fhose of the draftsmen's spline.

1f we consider an intefval [a,b] and its partition
a=Xo<X;<...<X =b, then a function S(x) is called‘g spine
function, wheg it satisfies the following properties:

(1)On each subinterval(x. <x<x.), i=1,2,...,k, S(x)

i-1 i ~

coincides with a polynomial of degree less than or equal to t, a

given integer.
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(ii)The r-th derivatiVe of S(x) is continuous for
r=0,1,..,t-1, except when t=0.

It is apparent that a spline function is a step function
for t=0, and a piecewise linear function for t=1. The most
widely used spline functions are cubic Splines,vcorresponding to
t=3. Cubic splines were showhlto achieve improvement upon
piecewise cubic Lagrange and piecewise cubic Hermite
interpolates for a given function, both in terms of smoothness
and bound on approximation error'®?. ‘ |

The cubic spline interpolate S(x) to a function f(x)
satisfies: |

(i)s(x )=f(x )=y , 0siskK (pure interpoléto%erOnstraint)
i i i.

(ii)(ars(x)/axr)|x=x' = (arf(x)/axr)|x=x.,'OsiSK; r=1,2,..
(smoothness constrai;t) '

The x 's are called knots, since at these points the
spline's v;lues are tied down By constraints, or alternatively
join points, since the cubics over adjacent‘subintervéls are
connected at these points.

Poirier(1973) showed that the above continuity conditions
of cubic spline interpoiation boil down to k-1 equations in the
k+1 unknowns, the second derivatives of the splins at the knots,
alternatively referred to as the moments '?*®, Two end conditions
193 See prenter(1975),pp.,78,84.

19%k-1 equations come from the equality of the one-sided limits

of the spline's first derivatives at the k-1 intermediate knots.
See Poirier's appendix.

-
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at the eitreme knots were imposed to eliminate this defiéiency.
Poirier also showed that, for any vector X (of dimension n,
greater than k+1) of abscissa values, the corresponding vector
of spiine irterpolants S(X) can be expressed as a linear
function of y_'s, the ordinate values at the k+1 knots. Thus,
for known y.';, we can write:

S(X)=W y '
_where W is n x (k+1) transformed data matrix

and y is the (k+1) x 1 vector of y 's .

In the context of unknown y, Poirier considered the

-
i

statistical model:

Y= S(X) + e

where

Y is the n x 1 vector of dependent variable observations

and E(e)=0, and E(eeT)=021I, 0 being an n x 1 null vector, and I
is an identity matrix of dimension n.

The least squares estimator of Y is the BLUE of Y, and,
given the normality of e, standard statistical tests can be
applied. ' \

The above model was named Cubic Spline Regression
Model (CSRM) by Poirier. In this model, the expected response
function was approximated by the cubic spline, and the unknown
expected values of the dependent variable at the known knots
were the parameters to be estimated. Using these estimates, one
can, of course, write down the estimated spiine as the set of k
cubic polynémials over the subintervals.

N
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Buse and Lim(1977) considered direct estimation of the

coefficients of the k polynomials:

S (x)=a + b x+ c x2%+ 4 x3,

1 1 1 1 1

X <x<x , i=1,2,..,k

1-1 i ' ,
Writing the observations on x as a block diagonal matrix,

all thevcoefficients can be jointly estimated subject to the
continuity conditions and the end point conditions of Poirier.
Buse and Lim‘showed’that their restricted least squares
estimates are identical to Poirier's indirect estimates. They
also mentioned that the arbitrary end point conditions are not
necessary for restricted least sgaures estimation, but ‘may
improve efficiency.of'the estimates.

Both of the above papers assumed that the join points are
known. Gallant and Fuller(1973) considered the same regression
model in the context of unknown join points. They introduced
some dummy variables and used the continuity restrictions to
write down the regression equation similar to Buse and Lim, in a
compact reparameterized form. This reparameterized form is, of
course, nonlinear in the parameters(to be estimated). The
authors suggested a compiicated(relative to conventional least
squares) iterative least squares algorithm.for the estimation of
the nonlinear equation.

It was until Suits, Mason and Chan(1978), the expdsitions

on spline estimation remained mathematically formidable, and

thus this powerful technigue was relatively obscure to
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practitioners of economics '?%. With simple graphs, they showed
the relatiQe advantages of spiine regression over dummy
variable,piecewise linear, or,polynomiél regression. The
-greatest ‘advantage is that it is not necessary to prespecify a
fﬁnctional form for the expected response func#ibn 196,

Suits, et al used the structure of Gallantand
| Fuller(1973), but the assumption of known joiﬁ points led to'a_
reparameterized version linear in the parameters(to be
estimated). Also, following Barth et al, they used the
displacements (x-x')'s, rather than the x 's. Their spline
estimation finallylboils down to abconven;ional multiple
regression of the depemndent variable on a set of composite
variables. The latter variables are foiﬁgd from: (i)the data on
the explanétory variable, (ii)the knots, (iii)the widths of the
intervals betweéﬁ-knots, and (iv) (k-1) dummy variables..since
we would be following Suits et al;in our estimation, lef us
write down their equation 7 in slightly different notatiop:
Y=a,+b, (x-xo)*c,(x-%x4)2 +d,(x~x,)3+
(d,-d,)(x-x,)3D, +(d;-d;)(x-x,)°D,
where x,,X,.%, are the first three of the four knotskw

considered '9%7

1950ne of the few exceptions is Barth,kraft, and Kraft(1976).

'%6when the knots are not known, the picewise linear regression
can prove fatal.

'®7Though more than three intervals can be used, it requires
greater number composite variables, and in an expected response
function of several explanatory variables, that can be
cumbersome. '
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D =1, iff X2X , and D_=0 otherwise
' The para;eter suéscripts refer to the subinterval
pol{nomials they belong té. Estimates for the rest of the
parameters of these polynomials can bé recovered from the
continuity restrictions, using the ones.in the above equ;tion.
Genérally we would have more than one explanatory variable
in the expectéd response function of the regression. In that |
case, we would just have to add more composite variables similar
to the above ones to allow curvature with respect to the
additional explanatofy variables. The splines for different
explanatory variables need not be of the same order, though the
use of cubics all through may provide more flexibility. |

Finally, it is noted by Suits et al, that the standard

statistical tests can be applied to spline estimation results.

SECTION 2

We have noted in chapter 3 that the expected response
function in our reg}ession model comprises-of the nonginearity
bias of the Black-Scholes formula estimate and probable model
misspecification error of the Black-Scholes model. In chapter 7,
we have seen that even only the second order approximatidn to
the nonlinearity bias gives rise to an expected response
function in terms of the three explanatory variables, which is
much too complicated for description by any simple function. The
assumption of ‘constant coefficent there led to considerable .

simplification in estimation.

N,
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Now we would use three noninteractive additive cubiq
splines (with respect to the three explanatory variables) to

approximate the unknown but foreseeably complex expected

s ha

response function in our regression model '®®. This would not
stil{/?ﬁily capture the optién specificness of'tﬁé coefficients
in our regreésioﬁ model of chapter 3. But by cubic spline
regression , we would impliéitly allow the coefficient of an
explanatory variable to'be noniihear with respect to that
variaﬁie. We hope that this may be a good enough'approxiﬁation.

We have followed the spline regreésion'constguct of Suits
et al. Thus, for each of the three splines, we havégfour’knots.
\The minimum and maximum of the sample values for the explanato&y
variables were chosen as the terminal knots. The 1ntermed1ate
knots were chosen so as to allow evenness in distribution acréss
the subintervals, and sufficient observations in each
subinterval. During estimation, we, of courseg varied the knots
around the final choices, and found no signifiéant depafture in
the key estimation results such as the error sum of squares.

The estimated spline regression equations for tﬂq |
zero-dividend subsample and the single-dividend subsample are
presented in table 8.1. The regressions are significéht at 5%

"
éignificance level. Our purpose in this chapter was defined as
to use-spl@ne regression for‘predicting possibly nonlinear
functional relationships of Black-Scholes formula estimates'

'98There has been some work on 1ncorporat1ng interaction in
bivariate spline approximation and estimation. See Poirier(1973)
for these references.
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mispricing with qéspéct to the explanatory variables, énd then
make visual”?bﬁparis5n with that of the nonlinearity bias (from
monte carlo in chaptef 4), Hence,\we would skip the:domﬁutaticn
and discﬁsSion of the subinterval polynomials, which can be
p;ovided to interesled readers. |

Figures 8.1 to 8.6 pictures the spline predictions éf the
moheyness bias in the two subsamples. Thé curves 1in thése
figﬁres look almost upside down of the curves for nonlinearity
bias in figures>4.2‘to 4.4, There does‘not, of cogrse,‘seem to
be any perceptiblé difference ié the curvature across the two
subsamples. Thus the indication is that the Black-Scholes model
is nbt‘valid in the zero-dividend subsample, and that there is
no significant aividenq inducement in the moneyness bias. Though
fit is not warranted, ve cannét resist.saying that the spline
prediction of moneyness bias is very similar to Merton(1976a)'s
model misspecification error diagram, and Ball énd
Torous(1985)’s empirical counterpart of this diagram.

The variance bias éredicted by the spline regressions 1n
fggures 8.7 and 8.8 is also at contrast to the figures 4.8 to
4.10 corresponding to the nonlinearity bias. The contrasts here
~are not as prominent as in the case of the moneyness bias. But
the sharp difference in the variance bias across the two
subsamples is rather noticeable. This produces further evidence
about the varinace{or volatility) rate's dominant role in the
significant dividend inducement Sf the entire regression

&

relationship. The strong negative tendency tof the variance bias
\ - .
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in the single-dividend subsample is in conformity with the large
negative coefficient for volatility rate in the constant

~coefficient results of chapter 5,

SECTION 3

Overall, our indirect test via visual comparison in this
.chapter proauces evidence againsththe validity of the
Black?gcholes model in the zero-dividend case. We also find
§upgort for our constant coefficient resultNin chapter 6 that
the volatility rate played avdéminant role in the dividend
inducement of the entire regression relationship.

Our results in this chapter are subject to the
noninteractive option-specificness we have allowed in :
estimation. Also, the assumption of known join points may have

affected the results.
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TABLE 4.1

COMPARISON OF THE MISPRICING OF PSEUDO ESTIMATOR
AND FORMULA ESTIMATOR FOR THE BLACK-SCHOLES PRICE

Mispricing is the negative of statistical bias.

Striking price of 50 and riskless rate of 0.015/quarter

were used following Boyle and Ananthanarayanan(1977).

Time to maturity(T™ is measured in guarter and V stands for

guarterly variance rate. N denotes the sample size from which

the variance rate is estimated and S is the current stock price.
FORMULA ESTIMATOR

N T S v=0.01. v=0.025 V=0.045

10 0.5 30 -8.754103E-09 -0.000106 -0.002329
50 0.041279 0.065966 0.088798
80 -2.441400E-07 -0.000319 -0.005405
1.0 30 -2.611765E-05 -0.003819 -0.018059
50  0.057256 ©0.092415 0.124853
80 -5.969238E-05 -0.007113 -0.031188
1.5 30 -0.000441 - " -0.013151 -0.030953
50 0.068755 0.112110 0.152042
| 80 -0.000663 -0.020685 -0.050307
15 0.5 30 -6.204268E-10 =-5.469823E-05 -0.000157
50 0.028822 0.046064 0.062003
80 -6.103511E-08 -0.000175 -0.003748
: LS
1.0- 30 -1.148765E-05 -0.002667 -0.013637
50 0.039991 0.064541 0.087197
80 -2.752685E-05 -0.005014 -0.023621
1.5 30 =-0.000262 -0.009730  -0.023865
50  0.048035 0.078304 0.106212
80 -0.000392 -0.015397 -0.038679
30 0.5 30 0.000000 -1.980407E-05 -0.000788
50 0.007899 0.012703 0.171270
80 -2.136300E-07 -6.842040E-05 -0.001931
1.0 30 -3.361905E-06 -0.001387 '~0.007824
50 0.010913 0.017785 0.024137
80 -1.022339E-05 -0.002632 -0.013633
1.5 30 =-0.000113 -0.005469 . -0.014693
50 0.013039 0.021554 - 0.029472
80 -0.000169 -0.008632 -0.023794
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30
50
80

e

-0.741289
' =1.,125320
-1.226230

-0.741289
-1.082950
-1.217070

-0.741296
-1.051680
-1.207960

-0.835758
-1.283060
-1.382520

-0.835757
-1.240040
-1.372190

-0.835765
-1.207900
-1.361940

~0.973390
-1.531810
-1.610180

-0.973390
~1.493990
-1.598160

~0.973397
~1.464800
-1.586230

PSEUDO ESTIMATOR

229

-

-0.741312

-1.058410
-1.226250

=0.741187
-0.089147
-1.216830

-0.740166
-0.937712
-1.206250

-0.835781
-1.217110
-1.,382520

-0.835650
-1.147560
-1.371960

. —-0.834650

-1.095590
-1.360240

-0.973445
-1.479880
-1.610260

-0.973345
-1.421140
-1.598040

-0.972560
~1.376330
-1.584950

-0.741257
-0.996164
-1.226090

-0.739116
-0.901781
-1.212930

-0.731834
-0.831511
-1.193140

-0.835738
-1.155790
-1.382410

-0.833622
-1.061480
-1.368130

-0.826461
-0.000950

-1.347330

-0.973374
-1.431470
-1.610100

-0.971707
-1.353240
-1.594960

-0.966051
~-1.293790
-1.574710



TABLE 4.2
‘PERFORMANCE OF FORMULA ESTIMATOR FOR THE BLACK-SCHOLES PRICE

The symbol g is the ratio of the stock price to the present
value of the striking price. Y

V is the true variance rate; “time to maturity and stock price
are assumed to be equal to 1, and N is the sample size from
which V is estimated.

The numbers- in a row are mean mispricing(X 1000), mean percen-
-age error, variance(X 10000) and mean square error(X 10000)
"respectively’

230

v=0.03
—

"N=35 -0.2427514 -2.6929514 0.1676188 0.1882081
N=31 =-0.2520018 -2.7955707 0.1956182  0.1962532
N=15 =-0.4437155 =-4.9223387 0.3873705 0.3893394
N=11 -0.6891022 -7.6445253 0.5963708 0.6011194

g=0.95

=35 0.3176129  0.6674272  0.6906412 0.6916500
N=31  0.4182462 0.8788967 0.7952151 0.7969643
N=15 1.4660706 3.0807802 1.5784583  1.5999519
N=11  1.6817069 3.5339153  2.1142948  2,1425752

g=1.00
N=35 0.3717014 0.5385996 0.7192473 0.7206289
N=31 0.4814856 0.6976780 0.8279887 0.8303070
N=15  1.6200778 2.3475108 1.6607279  1.6869743
N=11  1.8813720 2.7261290 2.2217960 2.2571915



g=1.05

0.3279331

231

N=35 0.3076896 0.6303466 -6.6312934
N=31  0.4044612 0.4310715  0.7257749  0.7274108
N=15 1.4115896: 1.5044609  1.4419760 1.4619019
N=11 1.6212168 1.7278798  1.9312179  1.9575014

g=1.20
'N=35 -0.1139159 -0.0638031 0.1927383  0.1928680
N=31 -0.1022985 =-=0.0572963 0.2234309 0.2235355

'N=15 -0.1450963 -0.0812669 0.4389998  0.4392103
N=11 =-0.2824841 -0.1582164 0.6527238  0.6535217

V=0.04

3=0.80

"N=35 -0.1978470 -1.3346248  0.3354644 0.3358558
N=31 -0.2562891 -1.7288604 0.3388653  0.3395222
N=15 -0.3215196 ~-2.1688884 0.8331181 0.8341518
N=11 -0.0042801 ~-0.0288722 1.0177396 1.0177398

g=0.95

“N=35 0.3857000  0.6638506 0.9398362  0.9413239

N=31 0.7356461 1.2661628  1.0526356  1.0580474

C N=15  1.0942295  1.8833413  2.0376738  2.0196471
N=11  1.8821047  3.2393988 2.7467117  2.7821349



g=1.0

E ‘i&@g"‘ 0.4302459

-

N=31

N=15

N=11

g=1.05
=35

N=31

N=15

S N=11

g=1.20
N=3%

N=31
N=15

N=11

0.5570824
1.8718538

; 2.1744215

0.3717858

0.7062284
1.0527393
1.8085845

~0.0502059
~0.1001262
-0.2355243
-0.4516799

0.5401319

0.6993628

2.3499306
0.0272977

0.3579586
0.6799628

g

1.0135865
1.7413207

-0.0272029

-0.0542511

-0.2447320
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-0.1276134 .

0.9565785
1.1011644

12.2087229

2.9545326

0.8559209
0.9587188
1.8562953

2.5034353

0.3386162

0.4146760
0.7149487
0.9869581

¢

-

0.9584296
1.1042678
2.2437612
3.0018137

0.8573031
0.9637064

1.8673779

2.5361451

0.3386415
0.4147762
0.7155034
0.9889982



TABLE 4.3

PERFORMANCE OF BUTLER-SCHACHTER. ESTIMATOR FOR
THE BLACK-SCHOLES PRICE

The symbol g denotes the ratio of the stock price to the
present value of the exercise prlce.

V is the true variance rate, time to maturity and stock price
are assumed to be egual to 1, and N is the sample size from
which V is estimated. \

The numbers in a row are mean mispricing(X 1000), mean percent-

-age error, variance(X 10000) and mean sqguare error(X 10000)

respectively.

The Taylor series expansions of the cumulative normal distribu-
-tion functions were truncated after the term 1nvolv1ng the 31st.
derivative.

V=0.03

G=0.80

N=35 -0.1807991 -2.0056870 0.1743087 0.1746356

0916626

233%

G=0.95

N=35 -0.2258770 -0.4746549 0.7082651 0.7087753

G=1.00

N=35  0.1365863 0.1979150 0.657519%  0.6577059

N=31 0.0106656 0.0154545 0.7102703 0.7102714

N=15 0.3161313 0.4580778 -1.7341208 1.7351202
CN=11 0.0911227 0.1320379 2.3541830 2.3542660

G=1.05

N=35 -0.2152029 =-0.2293615 0.6462582 0.6467213

G=1.20 -

N=35 -0.1636570 -0 0.2009645 0.2012323



V=0.04
G=0.80
N=35 -0.2628432 ~-1,7730726 0.3514824 0.3521733
G=0.95
N=35 -0.2958485 -0.5092019 0.9656459 0.9665211
G=1.00
N=35 .0.1247157 0.1565685 0.8766820 0.8768374
N=31 0.2337891  0.2934996 0.9393952 0.9399418
N=15 0.3319917 0.4167833 2.3121275 2.3132297
N=11  0.0721875 0.0906244 3.13B8611 3.1389132
G=1.05 |
N=35 -0.2817248 -0.2712470 0.8792380 0.8800317
G=1.20
N=35 -0.2299517 -0.1245940 0.3539068 0.3544356
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TABLE 4.4

v PERFORMANCE OF CC ESTIMATOR FOR
THE BLACK-SCHOLES PRICE

The symbol g is the ratio of the stock price to the present
value of the strlklng price.

V is the true variance rate, time to maturity and stock price
are assumed to be equal to !, and N is the sample size from
which V is estimated.

The numbers in a row are mean mispricing(X 1000), mean percen-
-tage error, variance(X 10000) and mean square error(X 10000)
respectlvely

A 32-term Taylor series expan51on of the Black-Scholes model
price around the arbitrarily.chosen point of 1.5V was used.

235

v=0.03
‘

"N=35 -0.0815318 -0.9044715 0.1719397 0.1720061
N=31 -0.0767263 -0.8511610 0.2034179 0.2034768
N=15 0.1704859 1.8912814 0.3973426 0.3976333
N=11 -0.1581061 1.7539465 0.5613893 0.5616393

g=0.95

"N=35 -0.2220565 -0.4666258 0.6957164 - 0.6962095
N=31 -0.1903877 -0.4000775 . 0.8084436 0.8088060
N=15  0.3214269 0.6754411 1.6152515 1.6162846
N=11 0.1319883 0.2773580 2.1861742 2.1863485

"N=35 -0.0951202 -0.1378303 0.7019970 0.7020874
N=31 -0.0245757 -0.0356104 0.7953749 0.7953809
N=15  0.3301224  4.7835100 1.7299251 1.7310149
N=11 0.0617085 0.0894163 2.4007224 2.4007605



g=1.05

.0544888

23

N=35 -0.2129004 -0.2269074 0.6317456 0.6321989
N=31 -0.1802518 -0.1921108 0.7325740 0.7328989
N=15  0.2970226 0.3165641 1.4731588 1.4740410
N=11 0.1113794 0.1187072 -1.9969524 1.9970765
g=1.20
N=35 -0.0347012 -0.0194358 0.1886853 0.1886973
N=31 0.0024305 0.0013613 0.2133721 0.2133721
N=15 0.1603146 0.0897905 0.4571467 0.4574037
N=11  0.0759024  0.0425121 0.6758054 0.6758630
v=0.04

g=0,80

N=35 -0.1177599 -0.7943813  ©.3229171 0.3230558
N=31 -0.0766070 -0.5167732 0.3673446 0.3674033 -
N=15 0.1461615 0.9859715 0.7812130 0.7814266
N=11 0 0.3675686 1.1495169 1.1495466



g=0.95

N=35 -0.1757010

" N=31
N=15

- N=11

 N=35
N=31
N=15

N=11

-0.1296213

0.4321024
0.1912969

~0.1621391
-0.0818940

0.3269544

0.0207923.

~0.1674993
-0.1210242

0.4030697

0.1684902

-0,.1581696

-0.1130641

0.1354131

0.0131593

-0.3024095
-0.2230989

0.7437170

0.3292525

-0.2035502
-0.1028101

0.4104601

0.0261027

~0.1612699
-0.1165232

0.3880792
0.1622239

-0.0857005

-0.0612612

0.0733705
0.0071301
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0.9521773
1.0998270
2.2403947
3.0427831

0.9230851
1.0461069
2.2723086
3.1545902

0.8635489
0.9957343
2.0394339

2.7740053

0.3257955
0.3696524
0.7691110
1.1209038

0.9524860
1.0999950
2.2422618
3.0431490

0.9233479
1.0461739
2.2733776

3.1545945

0.8638294
0.9958807
2.0410586

2.7742932

0.3260457
0.3697802
0.7692943
1.1209055



SUMMARY INFORMATION ON THE SAMPLE

ZERO-DIVIDEND SINGLE DIVIDEND
SUBSAMPLE

TABLE 5.1

SUBSAMPLE
1n(S/X) mean 0..033654
+rT median 0.022897
maximum 0,.541091
minimum -0.401377
- 1n(S/X) mean 0.013220
median -0.002503
maximum 0.535030
minimum -0.418044
T(days) mean 53.91090
- median 44.00000
: maximum 254.00000
_minimum 16.00000
Unbiased Estimate of
Volatility
Rate/day mean 0.021709
median' 0.022392
maximum 0,033423
minimum 0.011418
Cases of 1n(S/X)>0 48
=0 2
<0 51
Cases of g>0 56
=0 0
<0 - 45

238

-0.012376
-0.009338

0.458952"

-0.493288

-0.049046
~0.044979
-0.442285
-0.520562

96.80540
100.00000
163.00000

16.00000

0.020436
0.019314
0.033573
0.011015

56
0
93

70
0
79

 TOTAL
SAMPLE

0.00622
~0.,001703

0.541091
-0.493288

-0.023886
-0.028510

0.535030
-0.520562

79.47600
72.00000
254.00000
16.00000

0.020951
0.019314
0.033573
0.011015

104
2
144

126
0
124



TABLE 5.1A

. FREQUENCY DISTRIBUTION OF MONEYNESS(1n(S/X)), TIME TO MATURITY
(DAYS) AND UNBIASED ESTIMATE OF DAILY VOLATILITY RATE FOR THE
ZERO-DIVIDEND AND THE SINGLE DIVIDEND SUBSAMPLES

ZERO-DIVIDEND SINGLE-DIVIDEND

SUBSAMPLE - SUBSAMPLE
MONEYNESS(1n(S/X)) .
-0.520562 ... -0.309444 4 « 11
-0.309444 ... -0.098325 22 .47
-0.098325 ... 0.112793 45 66

0.112793 ... 0.323910 26 22

0.323910- ... 0.535030 4 -3
TIME TO MATURITY(Days)

16 days 35 9

44 days ~ 27 15
72 days 30 36
100 days 0 45 .
135 days 3 23
163 days and over N 21

UNBIASED ESTIMATE OF DAILY VOLATILITY RATE

0.011015 ... 0.015527 18 24
0.015527 ... 0.020038 - 28 63
0.020038 ... 0.024550 21 30
0.024550 ... 0.029061 - 26 18
0.029061 ... 0.033573 8 . 14

0o
AN
'O



TABLE 5.2

INFORMATION ON FORMULA PRICING IN THE ZERO-DIVIDEND
AND THE SINGLE-DIVIDEND SUBSAMPLES

—— e o - ———————————

—————————————————— ZERO-DIVIDEND SINGLE-DIVIDEND

Number of options : 67 99

Mean overpricing -0.4089987 -0.542326
In(s/X) 0.0054388 -0.052691
T 62.179105 100.283000
Estimated volatility

rate 0.022509 . 0.021598

©

Overpriced in-the-money ‘ ’
(In(S/X)>0) options ‘ GROUP 1201 GROUP SO1I

Number of options 30 33

Mean overpricing © =-0.370346 -0.516902
1n(S/X) 0.144376 0.122707
T 61.033300 93.424200
Estimated volatility ' :
rate 0.022371 0.022049

Overpriced at-the-money

(I1n(S/X)=0) options GROUP GOA
- Number of options 2
Overpricing -0.092918 and -0.352585
T 72 and 44

Esimated volatility rate 0.017773 and 0.018219

Overpriced out-of-the-money
(1n(S/X)<0) options

B e bl | GROUP 200 GROUP SO0
- Number of options 35 66
Mean overpricing -0.45277 -0.555037
| In(S/X) ' -0.113339 -0.140391
T 63.400000 103.712000
Estimated volatility

rate 0.022886 0.021373
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-—— e - — - ——— —— - - -

—— i ——— - —

Number of options
Mean underpricing
In(S/X)
T
Estimated volatility
rate

Underpriced in-the-money
(1ln(sS/X)>0) optlons
Number of options.
Mean underpricing
1n(S/X)
T
Estimated volatility
rate

34
0.1227536
0.0285897

37.617647

0.0202484

GROUP ZUI

18
0.175067
0.220534

45.944400

0.019603

Underpriced out-of-the-money

(ln(S/X)<0) options

Number of options
Mean underpricing
1n(S/X)
T
Estimated volatility
rate

241

GROUP ZUO

16
0.063901
-0.187349
28.250000

0.020726

50
0.200617
-0.041828
89.920000

0.018136

GROUP SUI

23
0.291098
0.127096

93.304300

0.017577

GROUP SUO

27 :
0.123540
-0.185726
87.037000 -

0.018613



TABLE 5.3: SIMPLE REGRESSION RESULTS FOR THE
ZERO-DIVIDEND AND THE SINGLE-DIVIDEND SUBSAMPLES**

zero-dividend subsample

Constant X Slope - F(1,99)
Regressor:1n(S/X) -0.231886 0.143127 0.425
- (-5.594060) (0.652033)

~ Regressor:T 0.030441 -0.004831 36.894
| (0.547676) (-6.074020)

Regressor:s 0.100380 -15.21830 3.976
(0.588410) (-1.993960)

single-dividend subsample

Constant Sldpe F(1,147)
Regressor:1n(S/X) -0.283108 0.202008 0.692
(-6.457880) (0.832085)

Regressor:T -0.004336 -0.002982 8.799
(-0.041048) (-2.,966230)

Regressor:o 0.515668 -39.57080 31.889 .~

(3.478420) (-5.647030) '\\

1

/,

**The terms in parenthesis are t-statistics. g ff
] -
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TABLE 5.4
MULTIPLE REGRESSION RESULTS FOR
THE ZERO-DIVIDEND AND THE SINGLE-DIVIDEND SUBSAMPLES**

Zero-dividend Single-dividend

R? 0.27755 0.2316

Error Sum of Squares 12.405 30.101

F(3h97) 12.422

F(3,145) ‘ 14.568

Constant - -0.00200 0.78926
| (-0.01311) (4.68013)

Coefficient of 1n(S/X) 0.17267 -0.000703

(0.90009) (-0.00324)

E N
Coefficient of T ‘=-0.00492 -0.0029
(-5.64883) (-3.16255)
Coefficient of & 1.60941 -39.2290

(0.21868) (-5.70881)

+

**The terms in parenthesis are t-statistics.
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Test

Test

Test
Test
Test

Test

Test:

Test
Test
Test
Test
Test
Test
Test

Test

3A
4A
5A
6A
7A

8A

TABLE 6.1

TEST RESULTS FOR DIVIDEND INDUCEMENT

)

)

)

~
Restrictions under Null Hypothesis(H,)
a(0)=a(1)'w’(0)_w1 ,W2(0)=W2(1)rW3(°)=W3(1)
W1(O)=W1(1)rW2(O)=W2(1)rW3(O)= 3 ¢!
W1(°’=W{(1):W2(O)=W2(1)
w1(0)= 1(1)’ w3(5)=w3(1
V2 (O)"Wz rW3(0)=W3(1
Gyomy,
RO
w3(0)=w3(1)
al%)l=qt 1 3y
a(0)=qg! )’¢1(‘)=w1(1)’w2(0)=w2(1)
a(0)=a( )’w1(0)=w1(1) w3(0)=w3(1)
at® =gt 1), Vo (0=y, R R
a‘%)=q! V(0 sy 1)
a(O);a( ', Wp (0=, (1)
a(0)=a( )’ w3(0)=w3(1
e
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A

Test J  SSER F F(J,242) R/UTR

14

1 4 45,228 3.8743 2.37 R

2 3 45.130 4.9798 2.60 R
3 2 42.968 1.3152 3.00 UTR
4 2 45.067 7.2903 3.00 R
5 2 45.130 7.4696 3.00 R s
6 | 42.564 0.3302 3.84 UTR
7 1 42.914 2.3228 3.84 UTR -
8 1 .45.067 14.5806 3.84 R
9 1.44.471 11.1874 3.84- R
3A 3 45.220 5.1506 2.60 R
4a 3 45.068 '4.8621 2.60 R
5 3 45.228 5.1657 2.60 R
6A 2 44.475 5.6051 3.00 RS
"7 2 45.219 7.7514 3.00 R
8A 2 45.068 7.2931 3.00 R

** F(J,242) is the value of F, for 2 and = degrees of

freedom with 5% right-tail probability. . i

** SSER is the restricted error sum of squares. In all cases, '
the unrestricted error sum of squares is 42.506.

** J denotes number of restrictions tested.

** R denotes rejection of null hypothesis and UTR denotes that
we are unable to reject null hypothesis,

*
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TABLE 7.1 Y

RESULTS OF F'QESIMEQR BLACK-SCHOLES VALIDITY ‘ B

- !
—
-

T~ T N - N T

Test Restrictions under null hypothesis

e S

1 B,-ms;f4=0, B,-msSj3,$,=0

2 Bi-ms,y2P,=0, B3-ms;,6,=0
3 Bi-ms,;3B83=0, f,-mS;;38,;=0
‘Test F(2,97) R/UTR F(2,98) R/UTR
(with constant) (without constant)
1 15.6467 R 37.5445 rR
2 18.2857 R 29.8741 R
3 11.7135 R 12.3039 R

** F(2,60) withs5% right-tail probability is 3.15 and
F(2,120) with'% right-tail probability is 3.07. .

** R denotes rejection of null hypothesis and UTR denotes that
we are unable to reject null hypothesis.

A
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TABLE 2?25 )

: RESULTS OF WALD TEST FOR BLACK-SCHOLES VALIDITY
< |

Test Restrictions under null hypothesis

1 (B2/B1)-m;,=0, <a3/ﬁ§>—m3,fo

2 (B1/B2)-my3=0, (Bs/Bz)-ms;=0

3 <ﬁ,/ﬁ3>¥m,3=0, (ﬁz/ﬁa)*m%3=d

Test . W(2) R/UTR W(2) | R/UTR

(with constant) {without constanf}

1 0.8387 UTR 0.7350 ~ UTR
2 0.9048 | UTR 0.9035 UTR
3 0.4244 UTR 0.1198 . ° UTR

** x%2, with 5% right-tail probability is 5.99147,
** R denotes rejection of null hypothesis and UTR denotes that

we are unable to reject null hypothesis.
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TABLE 8.1: SPLINE REGRESSION RESULTS FOR
THE ZERO-DIVIDEND AND THE SINGLE-DIVIDEND SUBSAMPLES
1

, Regression Equation:

C;CB(5)=a1+b1 (m_mo)+C1 (m_m0)2+d1 (m-mo)3+

M M .M
(dz "d1 )(m-m1)3D1 +(d3 -dz )(m_m2)3D2 +
. M M~ M M M M
‘by (T_T0)+C1 (T'To)2+d1 (T-TO)3+f i
ML T T .- »
(dz —614)(T-T1)3D1 +(d3 _d2 )(T_T2)3D2 + R
T T . T T T T
Ab1 (5-50)+C1 (5-50)2+d1 (5-50)3+
(dedl ) (5-51)7 (d, -, ) E
(d :d1 6—61 D1 + d3 _dz 5‘52 Dz
\‘~/2/0\ o o c 0 o
Zero-dividend Single-dividend
R?2 0.4356 ’ 0.4339
F(15,85) 4.3740
F(15,133) _ . 6.795
a, 0.37093 - 0.79078
(0.86638) (1.82333)
b, - 2.66899 -0.60125
M ) (0.54526) (-0.13273)
C, : . —26.35960 -13,47250
M (-1.03693) (-0.79637)
d, . 46.52390  24.01680 .
M (1.21584) (1.26298) - »
(d, -4, ) - -61.81710 ~47.11380 |

M M (-1.27439) (-1.61277)

- J

'"The coefficients, knots and dummy variables of the splines are
subscripted by the variable name.
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T T T 7 .
15734860 . 39,13480
(0.56402) .(0.80983)
-0.22003 -0.00917

(-1.80%04) (-0.53228)
0.01307 1.53709E-04
(1.81318) (0.28404)
-1.89584E-04 ~5.91044E-07
< (=-1.,83548): (-0.13211)
2.49617E-04 -2.35739E-06
(1.85917) (-0.23295)
-6.19842E-05  3.49201E-06
(-1.93970) ~(0.40866)
~197.61500 200.9800
(-0.94567) (1.28335)
43504.9000 ~61757.000
(1.04103) (-1.68455)
-2.71384E+06 4.21069E+06
(-1.06224) (1.77766)
3.25912E+06 -7.83935E+06
(0.97503) (-1.92965)
4.86329E+05 "4.64327E+06
(0:21663) (1.86295)
-0.418044 -0.520562
-0.150000 -0.150000
0.150000 0.150000
16 16
46 75
71 100
0.0114318 - 0.011015
0.018000 0.018000
N
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kazk ‘ . 0.025000 0.022000- " ™~

** pigures in parenthesis are t-statistics. A ?
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. FIGURE 2.1

PT.OTTIN: OF BLACK-SCHOLES FORMULA ESTIMATE'S DEVIATION FROM

MARKET DPRICE AGAINST- TIME TO MATURITQ FOR A HYPFOTHETICAL EAMPLE>
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FIGURE 4.1

SECOND GRDER APPROZIMATION TO :ONLINEARITY BIA%

or

THE

ELACK-SCHOLES FORMULA ESTIMATE AND THE RANGE OF UNDER OR

OVERPRITING

1
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- FIGURE 4.2

FORMULA MISPRICING AS FUNCTION OF MONEYNESS, STRIKING DPRICE= 50

TIME TO MATURITY=0.5 QUARTER, RI SKLESS RATE=0.01 5/QUARTER
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FIGURE 4.3
FORMULA MISPRICING AS FUNCTION OF MONEYNESS, STRIKING PRICE= 50,

TIME TO MATURITY=1.0 QUARTER, RISKLESS RATE=0.015/QUARTER
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FIGURE 4.4

' FORMULA MISPRICING AS FUNCTION OF MONEYWESS, STRIKING PRICE= 50,

TIME TO WATURITY=1.5 QUARTER, RISHKLESS RATE=0.015/QUARTER
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FIGURE 4.5

1S

'ZVFORMULA MISPRICING AS FUNCTIOWH OF TIME TO MATURITY, STRIKING

PRICE=50, QgﬁlANCE=0.010/QUARTER, RISKLESS RATE=0,015/QUARTER
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FIGURE 4.5 -

FO%EE?A/MISPRICING AS FUNC:ION OF TIME TQ MATURI'TY, STRIKING
CE=57

; VARIANCE=0.025/QUARTER, RISKLESS‘RATE=0.015/QUAR”ER
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FORMULA MISPRICING AS FUNCTION O

FIGURE 4.7

e

F TIME TO MATURITY, STRIKING
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FIGURE 4.8 = | : Lo
FORMULA MISPRICING AS FUNCTION OF VARIANCE RATE, STRIKING

PRICE=50; TIME TO MATURITY=0.5 QUARTER, RISKLESS

RATE=0.715/OUARTER _ . s | e
’ - ' o~
- 0.15+.. % . o
‘ : STOCK PRICE=50 ‘—-‘—4;;" - ,
ol8} g ) . |
3 Y //E |
— o
& | <2 STOCK PRICE=55
2 0.10 | //x - PRIO -
2 <Z__ STOCK PRICE=45
© , J
r—{ . R}
3
=
g A
g -~
0.05- %
0.00 —
A
—-0.05+4"
ﬂ '.
) \ﬁh\\f\\ ’ ’ P
, | AN -0
—0.10 I I T I 1 \‘\I : l
0.00 '0.02 0.04 0.06 0.08 G.10 otz 0.

uarterly  Variance Rate
259



¢

- FIGURE 4.9

4

FORMULA MISPRICING AS FUNCTICN OF VARIANCE RATE, STRIRKING
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FISURE 4.10

FORMULA MISPRICIKG. AS FUNCTION CF VARIANCE RATE, STRIKING
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FIGURE 5.1

FORMULA EISPRICING4AND*MONEYNESS, ZERO-DIVIDEKD SUBSAMPLE
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“PIGURE 5.2

FORMULA MISPRICING AND TIME TO MATURITY, ZERC-DIVIDEND SUBSAMPLE

Formula M?spricih‘g

0.5~

._.%5«
\%} o B
._.‘!——4 | /r,
e
) /
—1.5
A
-2 I T e
0 50 100 150 200 250 300

Time to Maturity .ys)
263



— N

FIGURE 5.3

FORMULA MISPRICING AND ESTIMATED VOLATILITY RATE, ZERO-DIVIDEND“t
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FIGL%RE 75.4‘-

FORMULA MISPRICING AI‘\JD MONZYNESS, S‘INGLE—DIVIDEND\ SUBSAMPLE -
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FIGURE 5.5

FORMULA MISPRICING AND TIME TO MATURITY, SINGLE-DIVIDEND
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“ FIGURE 5.6

FORMULA MISPRICING AND ESTiMATED VOLATILITY RATE,

SINGLE-DIVIDEND SUBSAMPLE
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~FIGURE. 8.1
- ?‘ N ’ "7.
SPLINE. PREDICTION OF MONEYNESS BIAS IN THE ZERO-DIVIDEND
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FIGURE 8.2

SPLINE PREDICTICN OF MONEYNESS BIAS IN THE ZERO-DIVIDEND.

SUBSAMPLE FOR QUARTERLY VARIANCE OF 0.025
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FIGURE 8.3

SPLINE PREDICTION OF MONEYNESS BIAS IN THE ZERC-DIVIDEND

SUBSAMPLE FOR QUARTERLY VARIANCE OF 0.045
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FIGURE 8.4

SPLINE PREDICTION OF MONEYNESS BIAS IN THE §INGLE—DI~VI\T)E—?“.D

271

 SUBSAMPLE FOR QUARTERLY VARIANCE OF 0.010 _ = __
0.6 7 >§ . . |
{ \ __.DIME TO MATURITY#1.0 QUARTER
~i-= pTME 70 MATURITY=0.5 QUARTER
’ \‘ A .
0.4+ LAY o
| “_\'_____ TIME TC MATURITY=1.5' QUARTER
0.2 ‘
= K “\\\{/Ag
Q- I//
K20 | / ]
E O .O T // . ‘ [:! .
o ! ;
|- '\ . / i ,
~0.24 AN )
\ / /
\\. e
\\ N
N\
~0.4 N
4
’ - ] e 2 —-——-_—_—-—--———--]
-0.6 ] l e T
-0.6 —-0.4 -0.2 0.0 0.2 0.4 0.6



FIGURE 8.5

SPLINE PREDICTION OF MONEYNE5S BIAS IN THE SINGLE-DIVIDEND

SUBSAMPLE FUR QUARTERLY VARIANCE OF 0.025 .
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~FIGURE 8.6
+ ’ ‘ Y » ’
SPLINE PREDICTION OF MONEYNESS BIAS IN THE SINGLE-DIVIDEND

SUBSAMPLE FOR QUARTERLY VARIANCE OF 0.045
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FIGURE 8.7 w

Y

SPLINE PREDICTION OF VARIANCE BIAS IN THE ZERO“DIVIﬁEND AND ‘THE

SINGLE-DIVIDEND SUBSAMPLES FOR IN-THE-MONEY OPTIONé
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FIGURE 8.8
SPLINE PREDICTION OF VARIANCE BIAS IN THE ZERO-DIVIDEND AND THE

SI?‘IGLE—DIVIDENID SUBSAMPLES FOR OUT-OF~THE-MONLEY OPTIONS
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