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Abstract 

An integer n is called "congruent" if it corresponds to the area of a right triangle with 

three rational sides. The problem of classifying congruent numbers has an extensive 

history, and is as yet unresolved. The most promising approach to this problem uti- 

lizes elliptic curves. In this thesis we explicitly lay out the correspondence between 

the congruence of a number n and the rank of the elliptic curve y2 = x3 - n2x.  By 

performing two-descents on this curve and isogenous curves for n = p a prime, we 

are able to obtain a simple and unified proof of the majority of the known results 

concerning the congruence of primes. Finally, by calculating the equations for homo- 

geneous spaces associated to the curve when p - 1 mod 8, we position the problem 

for future analysis. 
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Chapter 1 

Introduction 

1.1 Congruent Numbers 

A positive rational number n E Q is said to be a Congruent Number if it is the area 

of a right triangle with rational sides, i.e. if there are rational numbers a, b,  c such 

that 

If n is a congruent number, then nr2 is also congruent for any r E Q, since nr2 is 

the area of the triangle with sides ra, rb, re. Thus whether a number is congruent 

is determined solely by its residue class in the group Q*/(Q*)2.  With this in mind, 

when searching for congruent numbers we restrict our attention to square free in- 

tegers. The question of determining which numbers are congruent is known as the 

Congruent Number Problem, and while the statement is completely elementary, this 

problem has been investigated by mathematicians for over one thousand years (see 

[lo]) without leading to a complete solution. By performing elementary transforma- 

tions on the equations (1.1), the problem can be formulated in many different ways. 

The earliest known reference the Congruent Number Problem is from A.D. 972 (see 

[lo]), and states the problem in another form. A rational number n is said to be 

congruent if there exists a rational number x such that x2 + n and x2 - n are both 
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squares. This is also the formulation that Leonardo Pisano (Fibonacci) used to show 

that 5 is a congruent number in 1220 [lo]. This formulation gives some insight into 

the name, since the three squares, x2 - n, x2 ,  x2 + n are congruent modulo n. The two 

definitions of a Congruent Number are easily seen to be equivalent by the maps 

For most of this thesis we will be using a third characterization of congruent 

numbers, one relating to  rational solutions to a cubic equation. 

A square-free natural number n is a congruent number if we can simultaneously 

solve two equations over the rationals 

which means 
( a  i b)2 2 

4 
= ( f )  i n .  

2 
Then setting x = (i) and y = (a2 - b2) i  gives a solution to  the cubic equation 

We will c,arefully examine the curve give by equation 1.2 in the case when n is 

prime to determine whether n is congruent. 

1.2 Known Results 

We now give a brief review of what is currently known about the Congruent Number 

Problem. Assuming the Birch and Swinnerton-Dyer Conjecture [4], the problem was 

essentially solved by Jerold B. Tunnel1 in 1983. 
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Tunnell's Theorem. Define 

Suppose n is congruent, if n is even then A, = Bn and if n is odd, then 2Cn = D,. If 

the Birch and Swinnerton-Dyer Conjecture holds for curves of the form y2 = x3 - n2x 

then, conversely, these equalities imply n is a congruent number. 

Proof. See [34], or [20] Chapter IV section 4. 0 

Currently this provides a method for showing certain numbers are not congruent, 

and assuming the Birch and Swinnerton-Dyer Conjecture this would provide a fairly 

efficient method for determining whether a given number is congruent, since counting 

solutions to  these equations can be done easily. We will not go into details about 

the Birch and Swinnerton-Dyer conjecture, but it should be noted that it is widely 

believed to be true, and is one of the Clay Mathematics Institute's Millenium Prize 

Problems. 

Much study has gone into Congruent Number Problem, not assuming the Birch 

and Swinnerton-Dyer Conjecture, and we will list the known results here. Let p, and 

q, denote distinct primes with p, = q, = i mod 8 Then the following results are known 

p3 is not a congruent number 
Genocchi, 1855 [13] 

and Tunnell, 1983 [34] 

p3q3 ,2p5, p5q5 are not congruent numbers Genocchi [13] and Tunnel1 [34] 

p5, p7 are congruent numbers Monsky, 1990 [24] 

1 2p7, 2p3_ p3q7, 2p3q5, 2p5q7 are congruent numbers Monsky, 1990 1241 

Overviews of progress made on the Congruent Number Problem can be found in 

[lo], [141, PI, [81, [281 and [271. 

In this thesis, we obtain upper bounds for the rank of the elliptic curve y2 = 

x3-n2x using the method of 2-descent. In this way, we show that pa is not a congruent, 
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number, p5: p7 are congruent numbers assuming the conjecture that UT(E/K)[2] is 

finite, and for pl,  if we decompose pl = a2 + b2, then pl is not congruent if (a + b)2 $ 1 

mod 16. This last result was stated by Bastien in 1915 [2], but a proof does not seem 

to have appeared in the literature until Tunnell's proof in [34]. Tunnell's proof comes 

as a consequence of Tunnell's Theorem, and hence his method is very different from 

the one presented here. 

The case of when p - 3 mod 8 was the first to be resolved. In 1855 Angelo 

Genocchi showed that p3 is not a congruent number. His paper predates much of the 

general machinery of elliptic curves, and his argument is fairly elementary. Neverthe- 

less, Genocchi's method bears many similarities to the method of descent used in this 

thesis. To show that p3 is not congruent, Genocchi shows that if p3 were congruent, 

this would lead to an integral point on a quartic, then he shows that because - 1 and 

2 are not squares in Z/p& these quartics have no rational points. To illustrate his 

technique, we give an overview of his original argument in 51.3. 

1.3 Genocchi's 1855 Argument 

We now make a brief digression to give Genocchi's argument [13] that if p is a prime 

with p EE 3 mod 8 then p is not a congruent number. Genocchi's paper is often cited, 

as it is one of the earliest demonstrations that an entire class of numbers is not con- 

gruent. Unfortunately, his paper has become very difficult to obtain. For its historical 

significance, as well as its ingenuity, we give a detailed account of his argument. The 

terminology has been updated, but the content of the proof remains the same. 

Fibonacci gave t,he following characterization of congruent numbers. A number 

is congruent if it is one of the four numbers a ,  b, a + b, a - b and the remaining three 

numbers are square. This is equivalent to the statement that n is congruent if there 

is a rational number x such that x2 f n are both square. Genocchi begins with 

Fibonacci's characterization, and considers four cases separately. 

Throughout the proof, we will make use of the fact that all Pythagorean Triples 
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can be paramatrized as 

( r2  - s2,  ~ T S ,  r2  + s2) .  

Suppose n is a congruent number then one of the following four cases holds. 

Case 1: 
2 2 ~ = n f ~ , b = ~  , a + b = h  , a - b = k  2 

Thus we have 

a2 - b2 = h2k2, a2 = b2 + ( f ~ k ) ~  

So b, hk ,  a  is a Pythagorean Triple. Then parametrizing we have a = r2 + s2 

and b = r2 - s2 or b = 2 ~ s .  This gives 

In the first case, since r ,  s  are relatively prime, we must have r  + s = a 2 ,  

r  - s  = P2. This gives 

In the second case, we get 

Case 2: 
2 2 2 2 a =  f , b = g  , a + b =  h , a - b = n k .  

Thus we have 

f 2  + g 2  = h2. 

Thus ( f ,  g, h )  is a pythagorean triple, so ( f ,  g)  = ( r2  - s2, 2rs) or ( f ,  g) = 

(2rs,  r2 - s2) .  From the equation f 2  - g2 = nk2 ,  we then obtain 

Expanding gives 
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Case 3: 
2 2 2 2 a =  f , b = g  , a + b = n h  , a - b = k .  

Thus we have 

k2 + g2 = f2 .  

So parametrizing this pythagorean triple, we have f = r2 + s2 and g  = 2rs or 

g  = r2 - s2,  plugging into the equation 

gives 

( r 2  + s2)2 + ( 2 ~ s ) ~  = nh2 

or 

Thus 

Case 4: 
2 2 2 a =  f , b = n g  : a + b = h  , a - b = k 2 .  

Here, we are forced to use a different method since 

and 

f 2  - ng2 = k2 

tell us only that n  is a congruent number. Going back to  the definition of a 

congruent number, if n is congruent, we can find x l ,  x2, XQ E Q such that, 
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Clearing denominators we can find q such that xi = where pi, q E Z. Here, 

we assume that q is the smallest integer such that pl,p2,p3 E Z. Thus we have 

the equations 
2 2 

- nq2 =p:,pi + nq =p3.  

Since 
2 2 

p2 3 - pl = 2nq , 

we conclude that pl = p3 mod 2, thus we can define integers 

This gives 

pi = rf + r,2, 

which is a Pythagorean Triple, so we can parametrize this as 

Now, we also have ng2 = 2rlr3, so substituting our parametrization for r l ,  r3 we 

get 

ng2 = 4ab(a - b) (a  + b). 

Since n is congruent, we also know that we can find integers a ,  b such that three 

of the four integers a, b, a + b, a - b are square and n divides fourth. Assuming 

we are not in one of the three previous cases, if n is prime we must have nlb, so 

Then, these equations give 

So ng2 < ng2, but this contradicts the minimality of q. Thus we conclude that 

this case is impossible for n prime. 
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It remains to show that the first three cases are impossible. Genocchi does this 

by examining congruence conditions mod p. Gathering equations (1.3) - (1.7), and 

unifying notation, we have 

If p = 3 mod 8 and pin, then taking remainders modulo p shows that Equations 

(1.8), (1.9), (1.12) are impossible since - 1 is not a square mod p. To deal with equation 

(1. lo ) ,  we notice that 

and 2 is not a square mod p. Similarly for equation (1.11), we observe 

and it suffices to notice that either -1 or 2 is not a square mod p. 

Thus if p = 3 mod 8, then p is not a congruent number. 



Chapter 2 

Elliptic Curves 

2.1 Introduction 

We will be looking for rational solutions (x, y )  to  the equation E : y2 = x3 - n2x. 

This is an example of an elliptic curve. The theory of elliptic curves is well-developed, 

and before we begin analyzing the curve E, we review some of the general properties 

of elliptic curves that we will use. 

2.2 Definition 

Let P2 denote the projective plane. An elliptic curve is the locus of points in P2 

E : y 2 Z  + a l X Y Z  + a3YZ2 = x3 + a 2 x 2 2  + a 4 x Z 2  + a6z3 .  

It is usually convenient to  de-homogenize, i.e. change variables and let x = X / Z  and 

y = Y / Z .  Then we have the equation 

When the characteristic of the base field is not equal t o  2 or 3, then we can make a 

change of variables resulting in the simpler form 
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We denote by 0 the point [0 : 1 : 0] on E. Since this is the only point with Z = 0 
on E ,  for convenience, we will often denote a point P on E with P # 0 simply as 

P = (x, y) ,  where this is shorthand for the point P = (x : y : 1). 

Recall that a function f (x) = x3+ax+b has a double root if and only if 4a3+27b2 = 

0. A curve given by the equation y2 = f (x) is called singular if f (x) has a double 

root. 

2.3 Finite Fields 

An elliptic curve E : y2 = x3 + ax + b, is said to be defined over Q if a ,  b E Q. A 

point on E is called rational if its coordinates are rational numbers. When studying 

the rational points, it can be useful to examine the points in IF, for q = pf, where IF, 

denotes the finite field with q elements. For the curve to remain nonsingular in IF,, 

we need -16(4a3 + 27b" # 0 E IF, which means p f 2 and p f 4a3 + 27b2. Assuming 

this is the case, we denote the natural map 

for any rational point ( X  : Y : 2) on E, we can choose X: IT, Z such that X ,  Y, Z E Z 

and gcd(X, Y, Z )  = 1. Then we have a map 

Since gcd(X, IT, 2) = 1, we cannot have )? = Y = 2 = 0, thus P is a point in P2(IF,). 

We can sometimes (as in the proof of Theorem 1) use the finiteness of P"IF,) to great 

advantage. 
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The Group Law 

The set of rational points on an elliptic curve can be made into an abelian group, 

with 0 acting as the identity, and it is towards this group that we direct our further 

attentions. 

For a more in depth discussion of the group law, see [29] 111.2, [5] Chapter 7, or 

[18] Chapter 3. 

We describe the group law geometrically. First, we need a lemma. 

Lemma 1. If P = (XI : Yl : Z1) and Q = (X2 : Y2 : Z2) are two rational points on 

the curve E ,  then the line L through P and Q intersects E in a third rational point, 

R. 

Proof. This is a direct consequence of Bkzout's Theorem ([I51 Theorem 18.3 or [16] 

Corollary 1.7.8). 

0 

This means that the line at infinity intersects E with multiplicity 3 at 0. The line 

through the point 0 and R intersects the curve E in a third point by lemma 1, and 

we call this third point of intersection P + Q (see figure 2.1). This operation makes 

the rational points on E into an abelian group. 

It is straightforward to check that) 

Associativity can be checked directly, but the calculations are long. A verification 

using MAGMA can be found at [30]. We give a short argument for the associativity 

given in [5] Chapter 7. First, we note that three points P, Q, R are collinear if and 

only if there exists a linear form L1 such that L1 has zeros at P, Q, R. Thus if 0, R, S 

are collinear, then there is a linear form La with zeros at 0,  R, S. 
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Figure 2.1: The addition law on the curve y2 = 2- 412x. 

Suppose the points P, Q, R are collinear and 0,  R,  S are collinear, i.e. P + Q = S. 

Since P, Q, R are collinear there exists a linear form L1, such that L1 has zeros at 

P, Q, R. Similarly there exists a linear form L2 with zeros at 0, R, S. 

Thus the rational function 2 is defined on the curve E and has zeros at P, Q and 

poles at 0, S. In fact, the converse holds as well: if there exists a rational function 

f with zeros at P, Q and poles at 0, S, then P + Q = S. With this characterization 

of the addition law, it becomes straightforward to see that associativity holds. The 

equation 

X =  ( P + Q ) + T ,  

is thus equivalent to the existence of a function with simple poles at P, Q, T a double 
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zero at  0 ,  and a simple zero at X. But this is exactly the same as the function 

corresponding to  the equation 

so we conclude that ( P  + Q) + T = P + (Q + T). This characterization of will also 

be useful in our study of isogenies. 

The group law can be given explicitly as functions on the coordinates of the 

points. As we will not have occasion to  use the group la,w in its full generality, we will 

calculate only a few special cases here. We will be interested in curves of the form 

Let P = (xo, yo) be a point on E. This curve E is now symmetric about the x-axis. 

The line through P and 0 is vertical, so it intersects the curve again a t  the point 

(50, -yo). Thus ( so ,  -yo) + (xo, yo) = 0 ,  because the line through 0 and 0 intersects 

a t  0 with multiplicity 3. Thus we have 

As is the case with any abelian group, we can consider the group E as a Zmodule 

under the action 

[ n ] P =  P +  . . . +  P - 
n  times 

Let us calculate 2P for P = (so,  yo) on the curve E : y2 = x" ax + b. The 

tangent a t  the point (xo, yo) has slope 

So the equation of the tangent line becomes 

This intersects the curve at  the point (xl ,  yl)  where 
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2.5 The Structure of the Group 

The group of rational points on an elliptic curve is clearly abelian, but we can say 

much more. 

Mordell-Weil Theorem. The group of rational points on an elliptic curve is finitely 

generated. 

Proof. See [29] Theorem 4.1, [5] Theorem 13.1 and [18] Theorem 7.4. 0 

Fundamental Theorem of Finitely Generated Abelian Groups. Every finitely 

generated abelian group is the direct product of a finite torsion group and a number of 

copies of infinite cyclic groups (i.e. Z ) .  

Proof. See [26] Theorem 10.20. 0 

We now know that the group E(Q)  can be decomposed as 

where the integer r is known as the rank of the curve. Thus to fully describe the 

group E(Q) ,  we only need to calculate E(Q)tors and r. 

2.6 Torsion 

The torsion subgroup of an elliptic curve is well-understood. 

Mazur's Theorem. For an elliptic curve E over Q the torsion subgroup E(Qtors  is 

one of the following 15 groups 

Z / N Z  for 1 5 N 5 10 or N = 12 

Z / 2 Z  x Z / 2 N Z  for 1 < N 5 4 

This was originally proven by Barry Mazur in [21] and [22]. It is also stated with- 

out proof as [29] Theorem VIII.7.5, [18] Chapter 1 Theorem 5.3, and [27] Theorem 

2.2. 
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For our purposes we will only consider the two-torsion of a curve, i.e. the points of 

order dividing two. Since the group law gives us - (x ,  y) = ( x ,  - y ) ,  it is easy to see 

that a nonzero point is a two-torsion point if and only if its second coordinate is zero. 

We will not be overly concerned with the computation of the torsion group of E(Q) .  

It  should be noted, however, that the problem of calculating torsion points over the 

rationals has been solved, and a general algorithm for calculating the torsion group 

can be found in [9], Section 3.3. 

Torsion in the Congruent Number Curve 

On the curve, E : y2 = x3 - n2x,  we can see that there are four two-torsion points 

( 0 ,  (0, 0 ) ,  (f n ,  0)). Since 0, ztn are the only roots of x3 - n2x,  we conclude that these 

are the only two-torsion points on E. We now show that these are the only torsion 

points on E following the method in [20]. 

We begin by calculating the number of points on E over the finite field I F p .  

Lemma 2. Let p be a prime, with p { n and p = 3 mod 4. Then there are exactly 

p + 1 points on E over IFp. 

Proof. The curve E always has the four points ( 0 ,  (0; 0 ) ,  ( f  n ,  0)). Notice that these 

remain distinct over IF,  since p 1 n, and p odd. If p = 3, then these are the only four 

points because 0, f n are the only three possible values of the x-coordinate of a point 

on E. Let us now examine the points where x # 0, f n. There are p - 3 such values 

for x. We can group them in to pairs {f x ) .  Now, we have a point on our curve E 

exactly when x" n2x is a square in I F p .  Since p = 3 mod 4,  we know that -1 is 

not a square in IF,. Since the squares form a subgroup of index 2 in (IF,)*, we can 

see that every pair { f  x )  in ( I F p ) *  contains exactly one square. But we also have that 

x3 - n2x = - ( ( - x ) ~  - n2( -x ) ) ,  SO for every pair {f x ) ,  exactly one will lead to a point 

on our curve in I F p .  So we have (p - 3)/2 distinct x values. Since each x value leads 

to exactly two solutions f y ,  we have p - 3 additional points on E over Fp.  Adding in 

the four two-torsion points, we find there are exactly p + 1 points on E over Fp.  
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If PI ,  P2 are points on the curve E(Q), we now give a necessary and sufficient 

condition that PI = P2. 

Lemma 3. Let PI, P2 E P2(FP), i.e. Pi = (Xi : Y ,  : Zi) with Xi, Y,, Zi E 7, and 

gcd(Xi, Y,,  Zi) = 1. Then Pl = fi ifl p divides Y1Z2 - Y2Z1, X2Z1 - X1Z2 and 

X1Y2 - X2Yl. 

Proof. Notice that these are the con~ponents of the cross-product of Pl and P2 con- 

sidered as vectors in R3. 
If p divides the cross-product, then we consider two cases. 

(1) If p divides XI ,  then p divides X2Zl and X2Y1. Since p cannot divide both 

Yl and Z1, we conclude that p divides X2. NOW, we also know YlZ2 - Y2Zl 

mod p, so we have 

(2) If p does not divide X I ,  then 

For the converse, suppose Pl = P2. We know that p does not divide all three of 

XI, Yl, Z1, so suppose p { XI.  The other two cases will proceed in exactly the same 
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way. Since PI = P2 we have p { X2, thus 

Since the first components of these points are the same, we must have Y1X2 F XlY2 

mod p and Z1X2 = X1Z2 mod p. So it only remains to show that Y1Z2 r Y2Z1 

mod p. If p divides both Yl and Z1 this is clear, otherwise replacing X1, X2 by Yl, Y2 

or Z1, Z2 in the above argument gives the result. 0 

Now we are ready to characterize the torsion points of the curve E : y" x3 -n2x. 

Theorem 1. I E(Q)torsl = 4. 

Proof. We know there are exactly four two-torsion points on E(Q) ,  (0, (0, 0), (f n, 0)). 

Suppose there is another torsion point on E(Q).  Since this point is not a two-torsion 

point it must have order greater than two. Thus the group E(Q),,,, has a subgroup 

H of order nL where either m is odd, or m = 8. In fact, h4azur's Theorem (2.6)) 

lists all possible torsion groups, but we do not need such heavy machinery here. Let 

H = {PI,. . . , P,). We now examine for which p the reduction map P H P is injective 

on H. If we consider P I , .  . . , P, as vectors in iR3, since they are distinct in lP2(Q) no 

two are multiples of each other, so the cross product Pi x Pj # 6. If we let nij denote 

the greatest common divisor of the components of the vector Pi x Pj, by Lemma 3, 

Pi # P' if and only if p { nij. So if we let N = max(nij), we have that the reduction 

map P H P is injective on H for all primes p > N. Thus m divides the order of 

the group E(Fp) for all such p. By Lemma 2, if p F 3 mod 4, then IE(Fp)I = p + 1, 

thus mlp + 1, or p G -1 mod m. Thus we have shown that for all but finitely many 

primes p with p = 3 mod 4, we have p = -1 mod m. Now recall Dirichlet's famous 

theorem that for any a ,  m with gcd(a, m)  = 1 there are infinitely many primes p with 

p r a mod m. (See [19] Chapter 16 Theorem 1). If m = 8, we have shown that there 

are only finitely many primes p = 3 mod 8, which contradicts Dirichlet's Theorem. 

If m is odd, then for all but finitely many primes p = 3 mod 4 we also have p = - 1 

mod m which together give p $ 3 mod 4m which is a contradiction to Dirichlet's 

Theorem if 3 { m. On the other hand, if 31m, then we have if p r 3 mod 4 then for 
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all but finitely many primes p = -1 mod 3 k ,  so there are only finitely many primes 

of p 7 mod 12k which again contradicts Dirichlet's Theorem. 0 

Calculating the rank of an elliptic curve is significantly more difficult, and cur- 

rently no general algorithm is known. The bulk of this thesis will be devoted to finding 

the rank of certain "congruent number curves". 

2.8 Isogenies 

An isogeny, 4 : El + E2, is a morphisni between elliptic curves El and E2 such that 

4(OE1) = 0E2. In fact 4 induces a group homomorphism from the group E1(K) to 

E 2 ( K ) ,  this is [29] Chapter 111 Theorem 4.8. We prove a special case of this theorem 

in 52.9. The map 4 also induces an injection of function fields by the pull-back, 

For non-constant 4 we define the degree of 4 to be the degree of the field K(E1)  as 

an extension of the field 4" K(E2) .  So degree(4) = [I<(El) : 4" K (E2)],  where K (El) 

is the rational function field of K over E l .  

If K is a number field, then the Mordell-Weil theorem holds, and we can talk 

about the rank of the curves El and E2. In this case we have the property that 

isogenous curves have equal rank. A proof is sketched below. 

We have already seen the multiplication-by-m map, denoted [m]. It is easy to see 

that this is in fact an isogeny. This isogeny is particularly important as it exists for 

all curves E and all positive integers m. For a more thorough discussion of isogenies 

see [29] Chapter 111, Section 4. The degree of the multiplication-by-nz. map is m2. 

If 4 : El + E2 is an isogeny of degree m,  then there is a unique isogeny of degree 

m,  4 : E2 + El such that 4 o 4 = [m]. The isogeny 4 is called the dual isogeny to 4. 
The existence and uniqueness of the dual isogeny is proven in [29] Theorem III.G.l. 

Since 4 is a homomorphism, 4 takes elements of finite order in E2(K)  to elements of 

finite order in E1(K).  The map [m] takes elements of infinite order to elements of 
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infinite order and 4 o q5 = [m], so we must have that q5 takes elements of infinite order 

elements of infinite order. This implies that 

Rank(E1 (K) )  5 Rank(E2 (K) )  

Then, applying the same argument t,o 4, we have that 

Rank(E1 (K) )  = Rank(E2(K)). 

The fact that isogenous curves have equal rank is useful to  us, as we can bound 

the rank of E1(K) by bounding the rank of E2(K) .  

We now examine in more detail a type of isogeny that will be of use to us. Specifically, 

we show how to create a degree two-isogeny from any two-torsion point on a curve. 

We follow the method outlined in [5] Chapter 14. 

While it is common, given an elliptic curve, to change variables and write the 

curve in the form y2 = x3 + ax + b. In this section, to simplify calculations, we write 

our elliptic curve in the form E : y2 = x(z2 + ax + b). This change of variables has 

the effect of putting a two-torsion point at  (0,O). Consider a map 

Notice that since (0,O) is a two-torsion point, we have that +(+(x, y)) = (x, y). The 

map + : (z, y) H (zl, yl) induces an automorphism on the function field K ( E ) .  Let 

us ~alculat~e the fixed field. The line through (0,O) and (z, y) intersects the curve at 

a third point, (zl , - yl). Solving gives 
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Since (z: y) and (z l ,  -yl) are on the same line through the origin, we must have 
Y = -y1 - -, so $ is invariant under $. Using the fact that y2 = x(x2 + ax + b),  we have 
5 51 

To find another fixed function, it suffices to notice that $(x, y) = (XI ,  yl) and $(XI,  yl) = 

(x, y)  we have that y + yl is fixed by $. Call this value p. Thus 

To find a relation between X and ,u notice that 

So we have the equation 

We now show that K(X, p)  is the entire fixed field of $. To this end, we solve for 

x ,  y in terms of X,p. We begin with 
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We also have 
x2 + ax  + b 

X = 
b 

= x + - + a .  
x x 

Combining these gives 

x = 
2 

Thus K ( x ,  y) C K (A, p ,  a ) ,  so [K(x, y) : K(X, p)] 5 2. Clearly the field of invariants 

contains K(X, p) ,  so to show that K(X, p )  is the complete field of invariants, it remains 

only to show that 11, is not the identity automorphism. This is clear though, since 

$(x) = # x. Now we are in a position to define the isogeny. Notice that the map 

11, has given us another curve El defined be equation (2.2), so we let 

It remains to show that 4 is, in fact, an isogeny, i.e. 4 preserves the group law. If P 

and Q are points on E, then we have seen that there is a function f E Q(x, y) with 

simple poles at  P, Q and simple zeros at  0 ,  P + Q. To create a function in Q(X, p ) ,  we 

can simply multiply f by its conjugate 11,( f ) .  Thus f 11,( f )  is in Q(X, p) ,  and f $( f )  

has simple poles at  4 (P ) ,  #(Q) and simple zeros at O,4(P + Q) since 4(0) = 0.  Thus 

f $( f )  corresponds to the equation 

which gives us that 4 is a group homomorphism. 

2 2.10 The Curve y 2 = x 3 - n  x 

We are now ready to begin examining t,he curve E defined by equation (1.2). If n 

is a congruent number then we have shown how to construct a rational point on the 

elliptic curve E ,  from the sides of the triangle with area n. If E has a rational point, 

this is not enough to guarantee that n is a congruent number, and we will examine 

the necessary and sufficient conditions below. 



CHAPTER 2. ELLIPTIC CURVES 22 

To see why every point on E does not correspond to a right hiangle with area 

n, notice, for instance, the point,s that we can generate from a right triangle all have 

a square x-coordinate. Points on E that have a non-square x-coordinate were not 

generated from a right triangle. In fact, a point P on our curve comes froin a right 

triangle if and only if P is twice a rational point, i.e. P = 2Q for some point Q E E. 

This follows from basic calculations using the addition laws on E. We sketch the 

correspondence here. 

If Q = (xo, yo), then the addition law for points (equat,ion 2.1) on E gives 

Using the fact, that y; = xi - n2xo, we have 

2 
z; + n,2 

= (yo) 

Thus we find that n is a congruent number (this is just our second definition of 

a congruent number). 

To show the converse, we must find a point (x, y) such that 

Writing out the addition law gives the two equations 

and 

Solving for x and y we find 
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Thus 2 ( x ,  y )  = ( ( 1 ) 2 ,  (a2 - b 2 ) ; ) .  Clearly 2((.z, y )  + P )  = 2 ( x ,  y )  for any two- 

torsion point P. But we know that the two torsion of the curve E is (0, (0 ,O) )  (n ,  0 ) ,  (-n, 0 ) )  

(see Theorem (I))! so, in fact, we can find four points which are "half' of the point 

coming from a right triangle. To effectively use this correspondence, we begin by an- 

alyzing which points on E can be twice another point. For our curve E ,  the sihation 

is rather simple, and since by Theorem 1 we know Etors(Q) = (0, (0,O),  (f n,  0 ) ) .  

None of these is twice another point because there is no four-torsion. So a square- 

free natural number n is a congruent number if and only if the curve E defined by 

(1.2) has positive rank. 

For the remainder of the paper we will concern ourselves with finding upper 

bounds on the rank of E. For an overview of some of the methods and results in the 

study of ranks of elliptic curves, see 1271. 



Chapter 3 

Two Descent 

3.1 Overview 

Our goal is to find an upper bound on the rank of the curve E. To that end we will find 

a bound on the size of t,he group E(Q) /2E(Q) .  Since we know E(Q)  e E(Q)tors x ZT,  

we have 

lE(Q)/2E(Q)l = lEtors(Q)/2Etors(Q) I . 12'1 . 

For the elliptic curve E : y 2  = x3 - n2x, we know there are exactly four torsion 

elements, and E,,,,(Q) = 2/22 x 2/22, so 

In order t,o bound the size of E(Q) /2E(Q) ,  we construct a homomorpliism p from 

the group E(Q) with ker(p) = 2E(Q). Thus we have an isomorphism 

In particular (E (Q) /2E(Q)J  = Ip(E(Q))I. It  will be difficult to calculate the group 

p(E (0)) directly, so we will calculate p(E(Q) )  for various primes I .  While Ip(E ( Q ) )  I # 
Ip(E(Q)) 1, we can use information about p(E(Ql) )  in an attempt to bound the size 

of P(E(Q) ) .  
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3.2 Themapp 

Consider the elliptic curve E : y2 = f ( x )  over a field K ;  where f ( x )  = x3 + ax + b. 

Let K [Q] = K [ X I / (  f ( x ) ) .  Set f = n,"_, fi  be the factorization of f into irreducibles 

in K[x] .  Since f has no repeated roots, f must square-free. In particular the ir- 

reducible components fi  are distinct. Then by the Chinese Remainder Theorem, 

K[Ql = n2, K[x l / ( f i ) .  
Let AK = K[B], A;( be the group of units in AK,  and let A: be the multiplicative 

subgroup of A> consisting of the squares of elements in A>. 

Define the map p as follows: 

We know that (xo - Q )  E A;( when (xo,  yo) 6 E[2] (K)  because then (xo - x )  is 

relatively prime to f (x). 

When (xo,  yo) E E[2] (K)  we have f (xo)  = 0, so f ( x )  = ( x  - X O ) ~ ( X )  and K[B] - 
K x K  [x ] / (g (x ) ) .  Here we define 

We now illustrate the important properties of p. 

Lemma 4. The map p  is a  homomorphism. 

Proof. We follow the proof in [19] Chapter 19. For an alternate proof see [5] Chapter 

15 Lemma 1. 

We begin by noting that if P = ( x ,  y ) ,  then 

because p(x, y )  is independent of y. We wish to show that P(P+Q) = p(P)p(Q).  Mul- 

tiplying both sides by p ( p ) ~ ( Q ) ,  we see that this is equivalent to  p(P+Q)p(P)p(Q) = 
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1. Then using the identity above, we see that it is enough to  prove p(P+Q)p(-P)p(--Q) = 

1. Changing notation, we need to show that if A+B+C = 0,  then j~ (A)p (B)p (c )  = 1. 

Recall that A + B + C = 0 is equivalent to stating that A, B, C are collinear. Let 

A = (xl ,  yl) ,  B = (x2, y2) and C = (xg, y3). We can also assume that A, B ,  C are 

distinct, for if p ( P  + Q) = p ( P )  + p(Q) for distinct P, Q, then we have 

Now, we divide the proof into cases 

0 If xl = x2 then since A # B ,  we must have B = -A, which gives C = 0 ,  so we 

have the equation 

If xl # x2 and none of the points have order two then, since A, B, C are collinear, 

there is a line y = cx + d passing through A, B, C. Thus we have 

Since both sides are monic polynomials of degree three with the same roots. 

Reducing modulo f (x) and recalling that 8 denotes the residue of x, we have 

Noticing the right hand side is just p(A)p(B)p(C) then gives the result. 

If exactly one of the points has order two, then without loss of generality, we 

may assume A = (x l ,  0). This means that xl is a root of f ,  and writing f (x) = 

(x - xl)g(x) as above, we have K[8] = K[x]/(x - xl )  x K[x]/(g(x)),  and we 

check each conlponent separately. By the definition of p we have that 

so the first component of p(A)p(B)p(C) is 
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Since y = cx + d goes through the point (zl, O ) ,  we have czl + d = 0, thus 

differentiating equation (3.1) and evaluating at x = xl gives 

Thus the first con~ponent is just ( f l ( ~ ~ ) ) ~ .  The fact that the second component, 

is a square follows as in the previous case by reducing equation (3.1) by g(x) 

and noting that g (  f .  

0 If two of the points have order two, then the third point must as well, so that 

leaves us in the final case that .4, B, C all have order two. Thus yl = y2 = y3 = 0. 

So 

K[8] K[z]/(.x - zl) x K[z]/(n: - z2) x K[z]/(n: - x3). 

We have 

But differentiating Equation (3.1) and plugging in x = X I ,  x2 and x3 gives 

Lemma 5. ker(p) = 2E(K) .  

Proof. We follow the proof in [19]. For an alternate proof see [5] Chapter 15 Lemma 

2. The kernel of p clearly contains 2E(K)  because p(2P)  = / I ( P ) ~  = 1 E A;(lA4?, 

so it only remains to  show the opposite inclusion. Let P E ker(p). If P # 0,  we can 

write P = (xo, y o )  Since p(P) = 1, if 2 P  # 0,  it must be that xo - 8 is a square in 

A;(. On the other hand, if 2 P  = 0,  then xo is a root of f ,  so one of the component of 

xo - 19 is zero, and the the others must be squares since P E ker(p). 

Thus we can write 

xo - 8 = (uo + ulQ + u2Q2)2 (3.3) 
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for some uo, u l ,  u2 E K Since f (0)  = 0, we have O3 = -a0 - b ,  so we have 

So v ,  w E K .  Squaring this equation gives 

Then substituting equation (3.3) gives 

We must have u, # 0, for otherwise equation (3.3) would not be satisfied. So dividing 

by U;  we have 

(10 - 0)(v2 - q2 = (v18 + ~ 1 ) ~ )  

where v2 = u1 /u2 ,  v1 = v /u2 ,  w1 = w/u2 .  Thus (vlx + ~ 1 ) ~  - (xo  - x)(v2 - x ) ~  is a 

multiple of f ( x ) .  Since they are both nlonic cubic polynon~ials, they must be equal, 

thus 
2 f ( x )  = (ulx + ~ 1 ) ~  - ( 2 0  - x)(u2 - x )  . 

Now, we can interpret this geometrically. If we consider the line L : y = vlx + wl ,  

we see that L intersects E at  x  = xo and x  = 212, with the latter intersection being of 

multiplicity two. Since three points P, Q, R are collinear iff P + Q + R = 0 ,  this gives 

for some t .  Thus 2(v2, - t )  = (xo ,  yo) ,  so P E 2 E ( K ) .  

With these facts in hand we be describe the method of 2-descent. 

3.3 The Two-descent 

With the above definition of p we have the exact sequence 
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We will use the fact that is an injection from E ( K ) / 2 E ( K )  to Ak/A$  to bound 

the rank of E over K .  To do this we will make heavy use of the commutative diagram 

There is no known method for computing the image of p  in A*/A*2, but it is 

contained in a finite group which is con~putable in practice. We define the 2-Selmer 

Group, denot,ed S ( 2 ) ( ~ / Q )  as 

s ( ~ ) ( E / Q )  = (6 E A*/A*2 : $4(6) E p(E(QI) )  for all 1 ) .  

The 2-Selmer group contains the image of p, because if ( x ,  y) E E(Q) ,  then ( x ,  y )  E 

E(Q)  for all 1.  Since p(E(Q))  c S ( 2 ) ( ~ / Q ) ,  we will attempt to bound #p(E(Q) )  by 

calculating the size of S(2 ) (E /Q) .  

In other words, by intersecting the groups p(E(Q1))  with the images Ab/A$ in 

A&/Ag for various 1 we hope to obtain a bound on the size of Ab/Ab2, and hence 

the rank of E over Q. 

For a further discussion of the method of 2-Descent see [29] Chapter X, [9] Chapter 

3, [3], [19] Chapter 19 or [32]. 



Chapter 4 

Two-descent applied to congruent 

number curves 

Let p  be a prime number. We will be working with the elliptic curve: 

Since f (z) = x ( x  - p ) ( x  + p )  splits completely over Q, we have A ~ / A $  = 

(Q*/Q*2))" .  

So the map /L becomes 

Lemma 6. If ( x ,  y )  E E(Q)  then p ( x ,  y )  = ( b 1 , b 2 ,  b3)  where each 6, is in the set 

( 1 ,  -1; 2 ,  - 2 , p ,  -p ,  2p,  - 2 p ) ,  and b1b2b3 E Q*2 
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Proof. We have that blb2b3 = y2. Consider the l-adic valuation of the hi's. We have 

ordl(y2) = ordl(b162b3) = ordl (dl) + ordl(b2) + ordl (53) is even for any 1 .  If one of the 

hi's has odd valuation, then two must. If bi has odd valuation, then 1 I hi, but the &'s 

differ by p or 2p, so if I # 2,p, none of the & can have odd valuation. Since we are 

working modulo squares, we see that if 1 # 2 ,p  the hi's must have valuation 0 for all 

1. So each bi E (1,-1,2,-2,p,-p12p,-2p). 0 

Lemma 7. 

where 1211 is the 1-adic valuation of 2. 

Proof. This is [6] Lemma 5.1 and [7] equation 7.6.2. For an argument using Haar 

measure see [12] page 451. First notice that since ker(p(E(Q1))) = 2E(Q1) we have 

that #p(E(Qi)) = #E(Q)/2E(Q1). We will consider two cases, 1 < oo and 1 = oo. 

If 1 < oo, then the group E(Ql) has a subgroup H of finite index such that I1 -. Z1. 

See [29] Theorem VII.6.3. Consider the map 

Since H is torsion free, the kernel of map [2IH is in one-to-one correspondence with 

the kernel of the map [2], which is E[2](Q1), thus 

This gives us that 

The following equations are true of any abelian groups, 
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combining these three equations we have 

If I # 2 then #Z1/2Z1 = 1, and if I = 2 then #Z1/2Z1 = 2. This proves the lemma 

for I < ca. 

When I = ca, we distinguish two cases depending on how many roots f has in 

R. If f splits completely over R,  we call its roots, a l ,  a 2 ,  a3, and we can, without 

loss of generality, assume al < a 2  < as. In this case #E[2](R) = 4 and p : E(R)  --+ 

(1W*/1W*2)3 -. (iZ/2Z)3. If (x, y) is a point on the curve, t)hen a1 5 x 5 a 2  or a s  5 x, 

which gives p(x, Y)  = (x -a l ,  x -a2 ,  x-as )  = (1, -1, -1) or ( I l l ,  1). So #p(E(R))  = 

2. If f has only one root, a l ,  over R then #E[2](R) = 2 and p(x, y) = (1,1,1)  for all 

(x, y) E E(R)  since al 5 x for all x ,  so #P(E(R)) = 1. 

4.1 General Bounds 

Here we try to  find a bound on the size of p(E(Q)) ,  and hence the rank of E. 

By Lemma 6 we have that 

Now Ak/Ak2 = {(f 1, f 1, f 1)) since 1W*/IP2 = Z/2Z. We know #p(E(R))  = 2 

and p((0,O)) = (-1, -1,l) SO we conclude that p(E(R))  = {(1,1,1),  (-1, -1,l)). 

Then taking I = ca in diagram 3.5, we see that (-1,1, -1) $! p(E(Q)) .  

This shows that p(E(Q))  is generated by at  most 5 elements, but two of these are 

the images of two-torsion points, so at  most three of these generators can be images 

of points of infinite order, so we conclude that the rank of E (Q)  is a t  most 3. 
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4.2 Specific Bounds 

In the previous section we found a bound on the size of p(E(Q))  that is independent 

of p. Now we will impose congruence conditions on p to  further bound the size of 

P(E(Q)). 
For odd p, by (4.1): we have #E[2](Qp) = #p(E(Qp)) = 4, SO we have that 

p(E(QP)) = {(I l  1-11, (-1, -P,P)] (P, 21 2 ~ 1 ,  (-P, -2~ ,2 )} .  

Note that this is just the image of the 2-torsion points of E. We only wish to 

keep elements of ((-1, -1, I ) ,  (-1,1, -I), (p, p, I ) ,  (p, 1, p), (2,2,  I ) ,  (2,1,2)) that are 

equivalent to one of the above elements in 0,. 
We distinguish 4 cases for p 

If p 1 mod 8, then -1 = 2 .= -2 = 1 E Qg/Qg2 SO we eliminate nothing. 

If p 5 mod 8, then -1 - 1 and 2 $ -1 E Q g / q 2  SO 

I f p = 7  mod 8, then 2 = 1 and -1 $ 1 EQg/Qg2 

Finally we look at p(E(Q2)) .  By equation 4.1, #p(E(Q2)) = 8, so we need 3 

generators for the group. The image of the 2-torsion provides 2 generators, the point 

with x = 114 happens to map to an independent generator, (1/4,1/4 - p, 114 + p) E 

P(E(Q~)).  
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(1/4,1/4 - p, 114 + p) - (1, 1 - 4p, 1 + 4p) = (1 ,5 ,5)  E Q;/Qa2. 

This isbecausepisoddandso1-4p= 1 + 4 p = 5  m o d 8 , s o 1 - 4 p = 1 + 4 p =  

5 E Q;/Qj12. This gives us our third generator, so we have that 

Now we remove the elements that are not equivalent nlodulo squares (in Q2) to 

one of the above elements. 

We again distinguish 4 cases for p: 

This is because (-1, -5,5) . (1 ,5 ,5)  = (-1, - 1 , l )  E p(E(Q2)).  
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4.3 Results 

Our results so far can be summarized in the following inequality 

O i f p ~ 3  m o d 8  
rank(E) 5 

1 if p 5 mod 8 

From here we can already conclude that if p = 3 mod 8, p is not a congruent 

number. This was already proven in the 19th century by Genocchi in [13] (see [lo]). 

When p = 5 mod 8, or p G 7 mod 8, p is in fact a congruent number. This was 

stated in [31], and proven in [ll] for p < lo6 (p not necessarily prime), and finally 

proven for all prime p in [24]. Another derivation of the bounds we have obtained on 

the size of the 2-Selmer group can be found in [17]. 

If UI (E /K)  were known to  be finite, by [29] Chapter X Theorem 4.14, #UI(E/K)[2] 

would have to be a perfect square, thus it would have an even number of generators. 

The exact sequence 

gives us that #s(~)(E/K)/#E(K)/~E(K) = #UI(E/K)[2]. Because S ( 2 ) ( ~ / ~ )  

has at  most 3 generators for p = 5 mod 8, and p - 7 mod 8, this implies that 

III(E/K)[2] must be the trivial group. If ILLI(E/K)[2]1 = 1 then E ( K ) / 2 E ( K )  2. 

S ( 2 ) ( ~ / ~ ) ,  so the rank of E(Q)  would have to be exactly 1. For a slightly more in 

depth discussion of this, see [29] Chapter X, Rernark 6.3. While it is not known that, 

LU(E/K)[2] is finite, it is conjectured to be so, see [29] Chapter X, conjecture 4.13. 

We will continue by further analyzing the case when p = 1 mod 8. 



Chapter 5 

The Case When p - 1 mod 8 

5.1 A Specific Two-Isogeny 

We have done a 2-descent on the curve E : y2 = x(x + p)(x - p) in order to bound 

its rank. To further bound the rank in the case p fi 1 mod 8, we will perform a 

2-descent on an isogenous curve. 

The map 

is an isogeny of degree two generated by the 2-torsion point (0, 0), from our curve 

E : y2 = x3 - P 2 ~  to 

Since p = 1 mod 4 ,  we can write p as the sum of 2 squares in Z. Let a ,  b E Z 
such that p = a2 + b2. If we assume a ,  b > 0 and a is odd, then this representation is 

unique. We will make frequent use of this decomposition of p. 

Note that,  unlike E ,  El has only t,wo rational 2-torsion points, (0: (0,O)) 
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5.2 Method 

As before, we construct the exact sequence (3.4). 

Since f ( x )  = x(x2 + qp2) does not split completely over Q,  we now have two 

distinct forms for the group Ak/A$ where p is defined as follows. 

If i = a E K ,  i.e. f ( x )  splits completely over K ,  then 

When i  @ K, we have 

We proceed as before, making use of diagram (3.5), and equation (4.1). 

5.3 General Bounds 

We begin, as before, by identifying a finite set containing the image of p 

Lemma 8. p(El(Q))  c ( ( 2 , l  + i), ( p ,  a + bi), ( p ,  a - bi), (1,  i ) ) .  
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Proof. Suppose p ( z ,  y) = (61, 62). Then we have b1 . N(b2) = y2. Where N(J1) is 

the norm of b2 as an element of the extension field Q(i), i.e. N(b2) = 6262 where 

f 2  is the ordinary complex conjugate of 62. Consider the I-adic valuation of the 6,s. 

We have ordl(y2) = ordl(bl . N(62)) = ordl(bl) + ordl(N(b2)) is even for any I. If 

bl or N(b2) has odd valuation, then they both must. If dl has odd valuation, then 

I 1 dl, but since 62 = dl - 2pi, we have N(b2) = b1 + 4p2. So if I 1 dl and I 1 b2 

we have that I I 4p2, so the only divisors bl are 1 ,2 ,p .  In Z[i], 4p2 factors into 

irreducibles as (1 + i)2(1 - ~ ) ~ ( a  + bi)(a - bi), since every factor of d2 is a factor 

of 4p2 the only possible factors of 62 are 1 , i ,  1 + i ,  1 - i ,  a + bi, a - bi. The fact 

that p(El (Q)) C ( ( 2 , l  + i ) ,  (p, a + bi), (p, a - bi), (1, i ) )  follows from the fact that 

bl . N(d2) = 1 modulo squares. 

0 

I t  is also worthwhile t o  notice that since we are working modulo squares, 22 = 
(1 + i)2 = 1 and so ( 2 , l  + i ) ( l ,  i )  = ( 2 , l  - i )  mod squares. 

5.4 p-adics 

Since Ei[21(Qp) = (0,  (0, O ) ,  (2pi, O), (-2pi, O)), (4.1) gives that #p(El(Qp)) = 4. The 

map p looks like: 

The last equivalences follow from the fact that 2 and i are squares in Q, because 
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p = 1 mod 8. Since Ip(E(Qp))l = 4, we must have that 

Now since ( a  + bi)(n - bi) = p, we have that n + bi - p modulo squares and 

a - bi -- 1 modulo squares in Qp (or vice-versa), and since (1 + i)(l - i) = 2, which 

is a square in Q,, we see that 1 + i = i - 1 n~odulo squares. Before we can eliminate 

elements from p(E(Q)) ,  we must determine when 1 + i is a square in 0,. 

5.4.1 The Quadratic Character of 1 + i 
We have that p = a2 + b2, SO a - bi mod p. Using Quadratic Reciprocity and the 

laws of the Jacobi symbol we have 

a2 + b2 (;) = (E) = (7) = (f) = 1. 

Then (y) = (:) (y) = ( )  So we just need to calculate (y), which 

we do using the Jacobi symbol. 

(a+b12-1 
By Quadratic Reciprocity (5) = ( - 1 ) ~ .  This gives us that 1 + i is a 

quadratic residue mod p exactly when (a + b)2 - 1 mod 16. We distinguish 2 cases, 

by the quadratic charact,er of 1 + i .  

1. 1 + i =- E Qp (i.e. 1 + i is a square mod p) 

This occurs when (a + b)2 = 1 mod 16. 

p(E(Q)) -+ p(E(Qp)) C (Q;/Q;2)3 

2 1 + i)  H ( l , l ,  1) 

2 1 - 2 )  H (1, 1,l)  

(P, a + bi) ++ (P, P, 1) 

( P A P )  ++ (P ,LP) .  
In this case, we cannot further reduce the size of p(E(Q)) .  
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2. 1 + i f 0 E Qp (i.e. 1 + 2 is not a square mod p) 

This occurs when (a + b)2 = 9 mod 16. 

Since El [2](Q2) = (0, (070)),  we have, by (4. I ) ,  that #p(E1 ( 0 2 ) )  = 4 and p is defined 

as follows: 

Since #p(E1 (Q2)) = 4 we need to find 2 generators for the group. A little testing 

yields t,he points x = 5 and x = 2p. To see t,hat these are in fact points on the curve 

E1(Q2), recall that Q ; ~ / Q G ~  = 2 / 2 2  x (2/82)*, where an element in Q2 is a square if 

and only if it has even valuation (the first tern? in the ~ roduc t ) ,  and the odd part is a 

square mod 8 (i.e. 1 mod 8). Here we see that 5(52 + 4p2) = 125 + 20p2 - 5 + 4 = 1 

mod 8, and 2p((2~1)~ + 4p2) = gp3 + 8p3 = 16p3 which is a square because p - 1 

mod 8. 



C H A P T E R  5.  T H E  CASE W H E N  P = 1  MOD 8  

p ( x  = 5 )  = (5,s - 2 p i )  - ( 1 , 5  - 2p.i) mod squares 

p ( z  = 2p)  = ( 2 p ,  2p  - 2pi )  = ( 2 , l  + i )  mod squares. 

So we distinguish the same 2  cases as before. 

1. 1 + i  is asquarein Qp 

i.e. ( a  + b)2  - 1  mod 16 

p ( E ( Q ) )  -+ p ( E ( Q 2 ) )  c Q2 x Q 2 ( i )  

( 2 1 + )  ++ ( 2 , 1 + 2 )  

( p , a  + bi )  ++ (171)  

( p , a - b i )  ++ ( L 1 )  

( 1 , ~ )  ++ (1.4 51 p ( E ( Q 2 ) ) .  

We lose the generator ( 2 , l  - i ) ,  which gives us that p ( E 1 ( Q ) )  has at most 3 

generators, so we find that in this case the rank of El is at  most 2. 

2 .  1  + i is not a square in Qp 

i.e. ( a  + b)2 - 9 mod 16 

From this argument we have t'hat if p r 1  mod 8 ,  with a ,  b such that a2 + b2 = p 

and ( a  + b)2  - 9 mod 16, then p  is not a congruent number. On the other hand, 

when ( a  + b)2 = 1 mod 16,  we cannot make any conclusions. This result was stated 
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as early as 1915 by L. Bastien [2]. This result can also be obtained as a consequence 

of Tunnell's Theorem, as in [34] Proposition 6. 



Chapter 6 

Homogeneous Spaces 

6.1 Method 

In the previous sections, we have examined the image of the map 

where, as before E : y2 = f ( x ) ,  A = Q [ x ] / ( f  ( x ) )  = Q[0] and 0 is the residue of 

x. As f is a polynomial of degree three, we have that 1,0, O2 is a basis for A, so any 

element in A can be written as uo + ule + u2Q2, where uo, ul ,  u2 E Q. 

So for any 6 in the image of p we have the equation 

x ( P )  - 0 = b(uo + u18 + ~ ~ 0 ~ ) ~ .  

Expanding the square on the right hand side we have 

for some quadratic forms Q6,i E Q[uo, ul , u2] 

Equating powers of 0, we have that 
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So equat,ions (6.1) gives us a necessary condition for b to be in the image of p. 

These equations are in fact sufficient as well, and if equations (6.1) are satisfied, then 

Qs,o is the x-coordinate of a point on the elliptic curve E. 

We would like to restrict our attention to integral solutions to equations (6.1), 

and this is easily done by noting that Q6,1 is homogeneous of degree two, and clearing 

denominators, which gives us the two equations 

We will begin by examining the equation Qa,2 = 0. If we set 

then C is a conic, and if we can find a rational point on C will allow us to 

parametrize C.  

Supposing that we were able to parametrize, C as (uo(A), ul (A), u2(A)), we can 

move on to the second equation, Qa,i = -u$. Using our parametrization for C ,  we 

obtain the equation 

Since Qa,i, QhI2 are quadratic forms, the left hand side will be a quartic in A, call 

it g(X). Then the curve g(A) = -u: has a rational point exactly when d is in the 

image of p. 
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6.2 Conics 

We now examine the homogeneous spaces associated to the curve 

E~ : y2 = x3 + 4p2x. 

We have f (x) = x3 + 4p2x, which gives A = Q[x]/(x3 + 4p2x) = Q x Q(i).  

In the preceding sections we showed that if p = 1 mod 8, then 

P(E(Q)) c ( ( 2 , l  + 4, (P, a + bi), (P, a - b 4 .  

Remember, that when we calculated the 6 we used the natural basis (1, O), (0, I ) ,  (0, i) 

of Q x Q(i). We have to convert these into the basis 1 ,9,  O2 where 9 is the residue of 

x in Q[x]/(x3 + 4p2x) Y Q x Q(i). TO do this, we make explicit the isomorphism 

Now we are ready to try to solve the equation Qs,2 = 0 for the allowable values 

of 6. 

When 6 = (1,p) = 1 - so2, i.e. 6 is the image of the two-torsion point, (0,O). 

Then we have 

1 5 2 3 3 2 Q6,2 = -(I - P)U; - 4p u2 + 2p uou2 + p ul.  
4 (6.3) 

This has a solution (O,2p, 1). 
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0 When 6 = ( p ,  a + bi) = p + $ 3  + yo2 we have 

When 6 = ( p ,  a  - bi) = p - LO + $$02 we have 
2~ 

When 6 = ( 2 , l + i ) .  ( p , a +  bi) = 2p+ $o+ -Q2 we have 

Q6.2 = ( a  + b)puoul+ 2(a  - b)p2uou2 + ( a  - b)p2u? (6.7)  
1 b - a  , + -pu; + 4 ( b  - a)p4u; - 4 ( a  + b ) p h l u 2  + - 
2 4 uo. 

2p-b-a 2 
0 When 6 = ( 2 , l +  i )  . ( p ,  a - bi)  = 2p + 2 0  + T O  have 

Qs,2 = ( a  - ~ ) P U ~ I L ~  + 2(a + b ) p 2 u o u ~  + ( a  + b)p2u? (6.8)  

When 6 = ( 2 , 1  + i )  . ( p , a  - h i ) .  ( p , a +  bi) = ( 2 , p ( l  + i ) )  = 2+ ;Q+ 3Q2 have 

The first equation corresponds to a two-torsion point, so we analyze the only 

other space with a rational point. From (6.4)  for 6 = ( 2 , l +  i ) ,  we have 

We know that (-2p,  1 , 0 )  is a point on C ,  so letting L be the line uo = Xu2 - 2p, and 

considering the intersections of L with Qs,2 as in [25],  we arrive at  an equation 

Setting this to  zero and solving for u2 we get 
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Plugging back in to L we have 

So this gives a parametrization for C as 

Thus 

Absorbing squares into u:, the equation Qs,l(uo(X), ul(X), u2(X)) = -ug becomes 

So if we define 

f (x) = p(x4 + 16p2x3 - 96p4x2 + 768p6x - 1792p8), 

we have that f (z) is an irreducible quartic, and we would like t,o determine when the 

equation 

y2 = f ( 4  

has solutions We can simplify this by making the change of variable x ++ p2x, and 

y ++ p4y, and dividing both sides by p8, which gives us the equation 

Making a further change of coordinates x ++ -42 and y ++ 16y, and dividing both 

sides by 28, we can reduce this to 

Thus we conclude that (2: 1 + i) is in the image of ,LL exactly when we have a 

solution to equation (6.10). 
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6.3 Follow up 

The next step would be to find conditions on p such that equation (6.10) has a solution. 

If we can find a rational solution to equation (6.10), then ( 2 , l  + i )  is in the image of 

p ,  which means that the #E1/2E1 > 2, so p is a congruent number. On the other 

hand, if there is no rational solution to equation (6.10), then 

We know also that 

so in this case, we must have #LLI[2] > 1. 

If, as it is conjectured, #LU < m then as we argued before, by [29] Chapter X, 

Theorem 4.14, the order of IJ..I[2] must be a perfect square, so #LLI[2] 2 4. Since we 

have shown in the previous sections that #s(~)(E~/Q) 5 8, we must have #p(EIQ) = 

2, which means that Rank(El/Q) = 0. Thus in this case we conclude that p is not a 

congruent number. 

This gives us a criterion to determine whether p is a congruent number: p is 

congruent exactly when equation (6.10) has rational solutions. 

We have already examined local conditions for the solubility of equation (6.10). 

In sections 5.4 and 5.5 we examined when (2 ,1+ i )  was in the image of p ( E  (Q)) and 

p(E(Q2)) ,  and we determined that ( 2 , l  + i) was in both images when (a + b)2  E 1 

mod 16. Thus equation (6.10) has solutions Q2 and Qp when (a + b)2 = 1 mod 16. 

After testing for local solubility, the standard approach is to perform a second 2- 

descent on (6.10) as described in [23] and [33] to determine when equation (6.10) has 

rational solutions. We leave this for a future paper. 
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